
Oracle® Big Data Spatial and Graph
User’s Guide and Reference

Release 2.5
E67958-15
May 2018

Oracle Big Data Spatial and Graph User’s Guide and Reference, Release 2.5

E67958-15

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

Contributors: Bill Beauregard, Hector Briseno, Hassan Chafi, Zazhil Herena, Sungpack Hong, Roberto
Infante, Hugo Labra, Gabriela Montiel-Moreno, Siva Ravada, Carlos Reyes, Korbinian Schmid, Jane Tao,
Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvii

Documentation Accessibility xvii

Related Documents xvii

Conventions xvii

 Changes in This Release for Oracle Big Data Spatial and Graph

Changes for Release 2.5 xix

Changes for Release 2.4 xix

1 Big Data Spatial and Graph Overview

1.1 About Big Data Spatial and Graph 1-1

1.2 Spatial Features 1-2

1.3 Property Graph Features 1-2

1.3.1 Property Graph Sizing Recommendations 1-3

1.4 Multimedia Analytics Features 1-3

1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance 1-4

1.6 Installing and Configuring the Big Data Spatial Image Processing Framework 1-4

1.6.1 Getting and Compiling the Cartographic Projections Library 1-5

1.6.2 Installing the Image Processing Framework for Oracle Big Data
Appliance Distribution 1-5

1.6.3 Installing the Image Processing Framework for Other Distributions (Not
Oracle Big Data Appliance) 1-6

1.6.3.1 Prerequisites for Installing the Image Processing Framework for
Other Distributions 1-6

1.6.3.2 Installing the Image Processing Framework for Other Distributions 1-6

1.6.4 Post-installation Verification of the Image Processing Framework 1-7

1.6.4.1 Image Loading Test Script 1-7

1.6.4.2 Image Processor Test Script (Mosaicking) 1-8

1.6.4.3 Single-Image Processor Test Script 1-9

1.6.4.4 Image Processor DEM Test Script 1-10

1.6.4.5 Multiple Raster Operation Test Script 1-11

iii

1.7 Installing the Oracle Big Data SpatialViewer Web Application 1-12

1.7.1 Assumptions for SpatialViewer 1-12

1.7.2 Installing SpatialViewer on Oracle Big Data Appliance 1-13

1.7.3 Installing SpatialViewer for Other Systems (Not Big Data Appliance) 1-13

1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance 1-13

1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data Appliance) 1-15

1.8 Installing Property Graph Support on a CDH Cluster or Other Hardware 1-15

1.8.1 Apache HBase Prerequisites 1-16

1.8.2 Property Graph Installation Steps 1-16

1.8.3 About the Property Graph Installation Directory 1-17

1.8.4 Optional Installation Task for In-Memory Analyst Use 1-17

1.8.4.1 Installing and Configuring Hadoop 1-17

1.8.4.2 Running the In-Memory Analyst on Hadoop 1-18

1.9 Installing and Configuring Multimedia Analytics Support 1-18

1.9.1 Assumptions and Libraries for Multimedia Analytics 1-18

1.9.2 Transcoding Software (Options) 1-19

2 Using Big Data Spatial and Graph with Spatial Data

2.1 About Big Data Spatial and Graph Support for Spatial Data 2-2

2.1.1 What is Big Data Spatial and Graph on Apache Hadoop? 2-2

2.1.2 Advantages of Oracle Big Data Spatial and Graph 2-2

2.1.3 Oracle Big Data Spatial Features and Functions 2-3

2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements 2-3

2.2 Oracle Big Data Vector and Raster Data Processing 2-4

2.2.1 Oracle Big Data Spatial Raster Data Processing 2-4

2.2.2 Oracle Big Data Spatial Vector Data Processing 2-4

2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster
Data Processing 2-5

2.3.1 Image Loader 2-6

2.3.2 Image Processor 2-7

2.4 Loading an Image to Hadoop Using the Image Loader 2-8

2.4.1 Image Loading Job 2-9

2.4.2 Input Parameters 2-9

2.4.3 Output Parameters 2-10

2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor 2-11

2.5.1 Image Processing Job 2-12

2.5.1.1 Default Image Processing Job Flow 2-12

2.5.1.2 Multiple Raster Image Processing Job Flow 2-13

2.5.2 Input Parameters 2-13

2.5.2.1 Catalog XML Structure 2-14

2.5.2.2 Mosaic Definition XML Structure 2-15

iv

2.5.3 Job Execution 2-16

2.5.4 Processing Classes and ImageBandWritable 2-17

2.5.4.1 Location of the Classes and Jar Files 2-19

2.5.5 Map Algebra Operations 2-19

2.5.6 Multiple Raster Algebra Operations 2-22

2.5.6.1 Basic Multiple Raster Algebra Operations 2-22

2.5.6.2 Complex Multiple Raster Algebra Operations 2-23

2.5.7 Pyramids 2-24

2.5.8 Output 2-25

2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster
Processing API 2-25

2.7 Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster
Processing 2-27

2.8 Oracle Big Data Spatial Raster Processing for Spark 2-31

2.8.1 Spark Raster Loader 2-31

2.8.1.1 Input Parameters to the Spark Raster Loader 2-32

2.8.1.2 Expected Output of the Spark Raster Loader 2-33

2.8.2 Spark SQL Raster Processor 2-34

2.8.2.1 Input Parameters to the Spark SQL Raster Processor 2-35

2.8.2.2 Expected Output of the Spark SQL Raster Processor 2-36

2.8.3 Using the Spark Raster Processing API 2-36

2.8.3.1 Using the Spark Raster Loader API 2-36

2.8.3.2 Configuring for Using the Spark SQL Processor API 2-37

2.8.3.3 Creating the DataFrame 2-39

2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations 2-42

2.9 Oracle Big Data Spatial Vector Analysis 2-43

2.9.1 Multiple Hadoop API Support 2-44

2.9.2 Spatial Indexing 2-44

2.9.2.1 Spatial Indexing Class Structure 2-45

2.9.2.2 Configuration for Creating a Spatial Index 2-46

2.9.2.3 Spatial Index Metadata 2-47

2.9.2.4 Input Formats for a Spatial Index 2-48

2.9.2.5 Support for GeoJSON and Shapefile Formats 2-49

2.9.2.6 Removing a Spatial Index 2-49

2.9.3 Using MVSuggest 2-49

2.9.4 Spatial Filtering 2-51

2.9.4.1 Filtering Records 2-52

2.9.4.2 Filtering Using the Input Format 2-53

2.9.5 Classifying Data Hierarchically 2-54

2.9.5.1 Changing the Hierarchy Level Range 2-59

2.9.5.2 Controlling the Search Hierarchy 2-59

2.9.5.3 Using MVSuggest to Classify the Data 2-60

v

2.9.6 Generating Buffers 2-61

2.9.7 Spatial Binning 2-62

2.9.8 Spatial Clustering 2-63

2.9.9 Spatial Join 2-64

2.9.10 Spatial Partitioning 2-65

2.9.11 RecordInfoProvider 2-66

2.9.11.1 Sample RecordInfoProvider Implementation 2-67

2.9.11.2 LocalizableRecordInfoProvider 2-68

2.9.12 HierarchyInfo 2-69

2.9.12.1 Sample HierarchyInfo Implementation 2-71

2.9.13 Using JGeometry in MapReduce Jobs 2-74

2.9.14 Support for Different Data Sources 2-77

2.9.15 Job Registry 2-81

2.9.16 Tuning Performance Data of Job Running Times Using the Vector
Analysis API 2-82

2.10 Oracle Big Data Spatial Vector Analysis for Spark 2-83

2.10.1 Spatial RDD (Resilient Distributed Dataset) 2-83

2.10.2 Spatial Transformations 2-85

2.10.2.1 Filter Transformation 2-86

2.10.2.2 FlatMap Transformation 2-86

2.10.2.3 Join Transformation 2-87

2.10.2.4 Controlling Spatial Evaluation 2-88

2.10.2.5 Spatially Enabled Transformations 2-88

2.10.3 Spatial Actions (MBR and NearestNeighbors) 2-89

2.10.4 Spatially Indexing a Spatial RDD 2-90

2.10.4.1 Spatial Partitioning of a Spatial RDD 2-91

2.10.4.2 Local Spatial Indexing of a Spatial RDD 2-91

2.10.5 Support for Common Spatial Formats 2-91

2.10.6 Spatial Spark SQL API 2-92

2.10.6.1 Spark 2 API Enhancements 2-93

2.10.6.2 Spatial Analysis Spark SQL UDFs 2-96

2.10.7 JDBC Data Sources for Spatial RDDs 2-101

2.11 Oracle Big Data Spatial Vector Hive Analysis 2-102

2.11.1 HiveRecordInfoProvider 2-103

2.11.2 Using the Hive Spatial API 2-104

2.11.3 Using Spatial Indexes in Hive 2-106

2.12 Using the Oracle Big Data SpatialViewer Web Application 2-108

2.12.1 Creating a Hadoop Spatial Index Using SpatialViewer 2-110

2.12.2 Exploring the Hadoop Indexed Spatial Data 2-110

2.12.3 Creating a Spark Spatial Index Using SpatialViewer 2-111

2.12.4 Exploring the Spark Indexed Spatial Data 2-111

vi

2.12.5 Running a Categorization Job Using SpatialViewer 2-112

2.12.6 Viewing the Categorization Results 2-113

2.12.7 Saving Categorization Results to a File 2-113

2.12.8 Creating and Deleting Templates 2-114

2.12.9 Configuring Templates 2-114

2.12.10 Running a Clustering Job Using SpatialViewer 2-115

2.12.11 Viewing the Clustering Results 2-116

2.12.12 Saving Clustering Results to a File 2-116

2.12.13 Running a Binning Job Using SpatialViewer 2-116

2.12.14 Viewing the Binning Results 2-117

2.12.15 Saving Binning Results to a File 2-117

2.12.16 Running a Job to Create an Index Using the Command Line 2-118

2.12.17 Running a Job to Create a Categorization Result 2-120

2.12.18 Running a Job to Create a Clustering Result 2-122

2.12.19 Running a Job to Create a Binning Result 2-124

2.12.20 Running a Job to Perform Spatial Filtering 2-125

2.12.21 Running a Job to Get Location Suggestions 2-126

2.12.22 Running a Job to Perform a Spatial Join 2-127

2.12.23 Running a Job to Perform Partitioning 2-129

2.12.24 Using Multiple Inputs 2-131

2.12.25 Loading Images from the Local Server to the HDFS Hadoop Cluster 2-131

2.12.26 Visualizing Rasters in the Globe 2-132

2.12.27 Processing a Raster or Multiple Rasters with the Same MBR 2-132

2.12.28 Creating a Mosaic Directly from the Globe 2-133

2.12.29 Adding Operations for Raster Processing 2-134

2.12.30 Creating a Slope Image from the Globe 2-135

2.12.31 Changing the Image File Format from the Globe 2-136

3 Integrating Big Data Spatial and Graph with Oracle Database

3.1 Using Oracle SQL Connector for HDFS with Delimited Text Files 3-1

3.2 Using Oracle SQL Connector for HDFS with Hive Tables 3-3

3.3 Using Oracle SQL Connector for HDFS with Files Generated by Oracle
Loader for Hadoop 3-5

3.3.1 Creating HDFS Data Pump Files or Delimited Text Files 3-7

3.3.2 Creating the SQL Connector for HDFS 3-10

3.4 Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data
SQL 3-11

3.4.1 Creating Oracle External Tables for HDFS Files with Big Data SQL 3-14

3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data SQL 3-15

vii

4 Configuring Property Graph Support

4.1 Tuning Apache HBase for Use with Property Graphs 4-1

4.1.1 Modifying the Apache HBase Configuration 4-1

4.1.2 Modifying the Java Memory Settings 4-3

4.2 Tuning Oracle NoSQL Database for Use with Property Graphs 4-4

5 Using Property Graphs in a Big Data Environment

5.1 About Property Graphs 5-2

5.1.1 What Are Property Graphs? 5-2

5.1.2 What Is Big Data Support for Property Graphs? 5-3

5.1.2.1 In-Memory Analyst 5-4

5.1.2.2 Data Access Layer 5-4

5.1.2.3 Storage Management 5-4

5.1.2.4 RESTful Web Services 5-5

5.2 About Property Graph Data Formats 5-5

5.2.1 GraphML Data Format 5-5

5.2.2 GraphSON Data Format 5-6

5.2.3 GML Data Format 5-6

5.2.4 Oracle Flat File Format 5-7

5.3 Getting Started with Property Graphs 5-8

5.4 Using Java APIs for Property Graph Data 5-8

5.4.1 Overview of the Java APIs 5-8

5.4.1.1 Oracle Big Data Spatial and Graph Java APIs 5-8

5.4.1.2 TinkerPop Blueprints Java APIs 5-9

5.4.1.3 Apache Hadoop Java APIs 5-9

5.4.1.4 Oracle NoSQL Database Java APIs 5-10

5.4.1.5 Apache HBase Java APIs 5-10

5.4.2 Parallel Loading of Graph Data 5-10

5.4.2.1 Parallel Data Loading Using Partitions 5-11

5.4.2.2 Parallel Data Loading Using Fine-Tuning 5-12

5.4.2.3 Parallel Data Loading Using Multiple Files 5-13

5.4.2.4 Parallel Retrieval of Graph Data 5-13

5.4.2.5 Using an Element Filter Callback for Subgraph Extraction 5-15

5.4.2.6 Using Optimization Flags on Reads over Property Graph Data 5-18

5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph 5-20

5.4.2.8 Getting Property Graph Metadata 5-25

5.4.3 Opening and Closing a Property Graph Instance 5-26

5.4.3.1 Using Oracle NoSQL Database 5-26

5.4.3.2 Using Apache HBase 5-27

5.4.4 Creating Vertices 5-28

viii

5.4.5 Creating Edges 5-29

5.4.6 Deleting Vertices and Edges 5-29

5.4.7 Reading a Graph from a Database into an Embedded In-Memory
Analyst 5-30

5.4.8 Specifying Labels for Vertices 5-31

5.4.9 Building an In-Memory Graph 5-31

5.4.10 Dropping a Property Graph 5-32

5.4.10.1 Using Oracle NoSQL Database 5-32

5.4.10.2 Using Apache HBase 5-33

5.5 Managing Text Indexing for Property Graph Data 5-33

5.5.1 Configuring a Text Index for Property Graph Data 5-34

5.5.2 Using Automatic Indexes for Property Graph Data 5-36

5.5.3 Using Manual Indexes for Property Graph Data 5-38

5.5.4 Executing Search Queries Over Property Graph Text Indexes 5-41

5.5.5 Handling Data Types 5-45

5.5.5.1 Appending Data Type Identifiers on Apache Lucene 5-46

5.5.5.2 Appending Data Type Identifiers on SolrCloud 5-48

5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper 5-50

5.5.7 Updating Configuration Settings on Text Indexes for Property Graph
Data 5-51

5.5.8 Using Parallel Query on Text Indexes for Property Graph Data 5-52

5.5.9 Using Native Query Objects on Text Indexes for Property Graph Data 5-55

5.5.10 Using Native Query Results on Text Indexes for Property Graph Data 5-59

5.6 Querying Property Graph Data Using PGQL 5-62

5.7 Using Apache Spark with Property Graph Data 5-64

5.7.1 Using Apache Spark with Property Graph Data in Apache HBase 5-64

5.7.2 Integrating Apache Spark with Property Graph Data Stored in Oracle
NoSQL Database 5-67

5.8 Support for Secure Oracle NoSQL Database 5-69

5.9 Implementing Security on Graphs Stored in Apache HBase 5-71

5.10 Using the Groovy Shell with Property Graph Data 5-74

5.11 REST Support for Property Graph Data 5-76

5.11.1 Building the REST Web Application Archive (WAR) File 5-76

5.11.2 Deploying the RESTful Property Graph Web Service 5-78

5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml) 5-80

5.11.3 Property Graph REST API Operations Information 5-82

5.11.3.1 GET Operations (Property Graphs) 5-82

5.11.3.2 POST Operations (Property Graphs) 5-101

5.11.3.3 PUT Operations (Property Graphs) 5-111

5.11.3.4 DELETE Operations (Property Graphs) 5-113

5.12 Exploring the Sample Programs 5-115

5.12.1 About the Sample Programs 5-115

ix

5.12.2 Compiling and Running the Sample Programs 5-116

5.12.3 About the Example Output 5-116

5.12.4 Example: Creating a Property Graph 5-117

5.12.5 Example: Dropping a Property Graph 5-118

5.12.6 Examples: Adding and Dropping Vertices and Edges 5-118

5.13 Oracle Flat File Format Definition 5-120

5.13.1 About the Property Graph Description Files 5-120

5.13.2 Vertex File 5-121

5.13.3 Edge File 5-123

5.13.4 Encoding Special Characters 5-125

5.13.5 Example Property Graph in Oracle Flat File Format 5-125

5.13.6 Converting an Oracle Database Table to an Oracle-Defined Property
Graph Flat File 5-125

5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files 5-129

5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File
Format (.opv) 5-129

5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format
(.ope) 5-132

5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing
Both Vertices and Edges Data into a Pair of Graph Flat Files 5-136

5.14 Example Python User Interface 5-137

5.15 Example iPython Notebooks User Interface 5-139

6 Using the In-Memory Analyst (PGX)

6.1 Reading a Graph into Memory 6-2

6.1.1 Connecting to an In-Memory Analyst Server Instance 6-3

6.1.2 Using the Shell Help 6-3

6.1.3 Providing Graph Metadata in a Configuration File 6-3

6.1.4 Reading Graph Data into Memory 6-4

6.1.4.1 Read a Graph Stored in Apache HBase into Memory 6-6

6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory 6-7

6.1.4.3 Read a Graph Stored in the Local File System into Memory 6-8

6.2 Configuring the In-Memory Analyst 6-8

6.2.1 Specifying the Configuration File to the In-Memory Analyst 6-15

6.3 Reading Custom Graph Data 6-16

6.3.1 Creating a Simple Graph File 6-17

6.3.2 Adding a Vertex Property 6-18

6.3.3 Using Strings as Vertex Identifiers 6-19

6.3.4 Adding an Edge Property 6-20

6.4 Storing Graph Data on Disk 6-20

6.4.1 Storing the Results of Analysis in a Vertex Property 6-21

x

6.4.2 Storing a Graph in Edge-List Format on Disk 6-21

6.5 Executing Built-in Algorithms 6-22

6.5.1 About the In-Memory Analyst 6-22

6.5.2 Running the Triangle Counting Algorithm 6-22

6.5.3 Running the Pagerank Algorithm 6-23

6.6 Creating Subgraphs 6-24

6.6.1 About Filter Expressions 6-24

6.6.2 Using a Simple Edge Filter to Create a Subgraph 6-27

6.6.3 Using a Simple Vertex Filter to Create a Subgraph 6-27

6.6.4 Using a Complex Filter to Create a Subgraph 6-27

6.6.5 Combining Expression Filters 6-29

6.6.6 Using an Expression Filter to Create a Set of Vertices or Edges 6-31

6.6.7 Using a Vertex Set to Create a Bipartite Subgraph 6-31

6.7 Using Pattern-Matching Queries with Graphs 6-33

6.7.1 Example: The Enemy of My Enemy is My Friend 6-33

6.7.2 Example: Top 10 Most Collaborative People 6-36

6.7.3 Example: Transitive Connectivity Between Electrical Devices 6-37

6.8 Starting the In-Memory Analyst Server 6-39

6.8.1 Configuring the In-Memory Analyst Server 6-40

6.9 Deploying to Jetty 6-41

6.10 Deploying to Apache Tomcat 6-42

6.11 Deploying to Oracle WebLogic Server 6-42

6.11.1 Installing Oracle WebLogic Server 6-43

6.11.2 Deploying the In-Memory Analyst 6-43

6.11.3 Verifying That the Server Works 6-43

6.12 Connecting to the In-Memory Analyst Server 6-43

6.12.1 Connecting with the In-Memory Analyst Shell 6-44

6.12.1.1 About Logging HTTP Requests 6-44

6.12.2 Connecting with Java 6-45

6.12.3 Connecting with JavaScript 6-45

6.13 Using the In-Memory Analyst in Distributed Mode 6-45

6.14 Reading and Storing Data in HDFS 6-47

6.14.1 Reading Data from HDFS 6-48

6.14.2 Storing Graph Snapshots in HDFS 6-48

6.14.3 Compiling and Running a Java Application in Hadoop 6-49

6.15 Running the In-Memory Analyst as a YARN Application 6-50

6.15.1 Starting and Stopping In-Memory Analyst Services 6-50

6.15.1.1 Configuring the In-Memory Analyst YARN Client 6-50

6.15.1.2 Starting a New In-Memory Analyst Service 6-50

6.15.1.3 About Long-Running In-Memory Analyst Services 6-50

6.15.1.4 Stopping In-Memory Analyst Services 6-51

xi

6.15.2 Connecting to In-Memory Analyst Services 6-51

6.15.3 Monitoring In-Memory Analyst Services 6-51

6.16 Using Oracle Two-Tables Relational Format 6-51

6.17 Using the In-Memory Analyst to Analyze Graph Data in Apache Spark 6-54

6.17.1 Controlling the Degree of Parallelism in Apache Spark 6-55

6.18 Using the In-Memory Analyst Zeppelin Interpreter 6-56

6.19 Using the In-Memory Analyst Enterprise Scheduler 6-57

6.19.1 Using Lambda Syntax with Execution Environments 6-59

7 Using Multimedia Analytics

7.1 About Multimedia Analytics 7-1

7.2 Processing Video and Image Data Stored in HDFS Using the Multimedia
Analytics Framework 7-2

7.3 Processing Streaming Video Using the Multimedia Analytics Framework 7-2

7.4 Face Recognition Using the Multimedia Analytics Framework 7-3

7.4.1 Training to Detect Faces 7-3

7.4.2 Selecting Faces to be Used for Training 7-4

7.4.3 Detecting Faces in Videos 7-5

7.4.4 Detecting Faces in Images 7-7

7.4.5 Working with Oracle NoSQL Database 7-7

7.4.6 Working with Apache HBase 7-8

7.4.7 Examples and Training Materials for Detecting Faces 7-8

7.5 Configuration Properties for Multimedia Analytics 7-9

7.5.1 Configuration Properties for Processing Stored Videos and Images 7-9

7.5.2 Configuration Properties for Processing Streaming Video 7-16

7.5.3 Configuration Properties for Training Images for Face Recognition 7-20

7.6 Using the Multimedia Analytics Framework with Third-Party Software 7-21

7.7 Displaying Images in Output 7-21

A Third-Party Licenses for Bundled Software

A.1 Apache Licensed Code A-2

A.2 ANTLR 3 A-6

A.3 AOP Alliance A-6

A.4 Apache Commons CLI A-6

A.5 Apache Commons Codec A-6

A.6 Apache Commons Collections A-7

A.7 Apache Commons Configuration A-7

A.8 Apache Commons IO A-7

A.9 Apache Commons Lang A-7

A.10 Apache Commons Logging A-7

xii

A.11 Apache Commons VFS A-7

A.12 Apache fluent A-8

A.13 Apache Groovy A-8

A.14 Apache htrace A-8

A.15 Apache HTTP Client A-8

A.16 Apache HTTPComponents Core A-8

A.17 Apache Jena A-8

A.18 Apache Log4j A-9

A.19 Apache Lucene A-9

A.20 Apache Tomcat A-9

A.21 Apache Xerces2 A-9

A.22 Apache xml-commons A-10

A.23 Argparse4j A-10

A.24 check-types A-10

A.25 Cloudera CDH A-11

A.26 cookie A-11

A.27 Fastutil A-11

A.28 functionaljava A-12

A.29 GeoNames Data A-12

A.30 Geospatial Data Abstraction Library (GDAL) A-17

A.31 Google Guava A-22

A.32 Google Guice A-22

A.33 Google protobuf A-22

A.34 int64-native A-22

A.35 Jackson A-23

A.36 Jansi A-23

A.37 JCodec A-23

A.38 Jettison A-25

A.39 JLine A-25

A.40 Javassist A-25

A.41 json-bignum A-26

A.42 Jung A-26

A.43 Log4js A-27

A.44 MessagePack A-29

A.45 Netty A-30

A.46 Node.js A-32

A.47 node-zookeeper-client A-40

A.48 OpenCV A-41

A.49 rxjava-core A-42

A.50 Slf4j A-42

A.51 Spoofax A-42

xiii

A.52 Tinkerpop Blueprints A-43

A.53 Tinkerpop Gremlin A-43

A.54 Tinkerpop Pipes A-44

B Hive and Spark Spatial SQL Functions

B.1 ST_AnyInteract B-2

B.2 ST_Area B-3

B.3 ST_AsWKB B-4

B.4 ST_AsWKT B-4

B.5 ST_Buffer B-5

B.6 ST_Contains B-5

B.7 ST_ConvexHull B-6

B.8 ST_Distance B-7

B.9 ST_Envelope B-7

B.10 ST_Geometry B-8

B.11 ST_Inside B-9

B.12 ST_Length B-10

B.13 ST_LineString B-10

B.14 ST_MultiLineString B-11

B.15 ST_MultiPoint B-13

B.16 ST_MultiPolygon B-14

B.17 ST_Point B-15

B.18 ST_Polygon B-16

B.19 ST_Simplify B-17

B.20 ST_SimplifyVW B-18

B.21 ST_Volume B-19

Index

xiv

List of Figures

5-1 Simple Property Graph Example 5-3

5-2 Oracle Property Graph Architecture 5-4

5-3 Image Resulting from iPython Notebooks Example 5-143

6-1 Property Graph Rendered by sample.adj Data 6-4

6-2 Simple Custom Property Graph 6-17

6-3 Sample Graph 6-25

6-4 Subgraph Created by the Simple Edge Filter 6-26

6-5 Edges Matching the outDegree Filter 6-28

6-6 Graph Created by the outDegree Filter 6-28

6-7 Union of Two Filters 6-29

6-8 Intersection of Two Filters 6-30

6-9 Electrical Network Graph 6-38

xv

List of Tables

1 Temporal Data Types Support in PGX xx

1-1 Property Graph Sizing Recommendations 1-3

2-1 ImageBandWritable Properties 2-18

2-2 tileInfo Column Data 2-39

2-3 userRequest Column Data 2-40

2-4 Performance time for running jobs using Vector Analysis API 2-82

5-1 Optimization Flags for Processing Vertices or Edges in a Property Graph 5-18

5-2 Apache Lucene Data Type Identifiers 5-46

5-3 SolrCloud Data Type Identifiers 5-49

5-4 Property Graph Program Examples (Selected) 5-115

5-5 Property Graph Data Type Abbreviations 5-117

5-6 Vertex File Record Format 5-121

5-7 Edge File Record Format 5-123

5-8 Special Character Codes in the Oracle Flat File Format 5-125

6-1 Configuration Parameters for the In-Memory Analyst 6-8

6-2 Configuration Options for In-Memory Analyst Server 6-40

6-3 Additional Fields for Two-Tables Format 6-51

6-4 NODES Table Values for Two-Tables Example 6-52

6-5 EDGES Table Values for Two-Tables Example 6-52

xvi

Preface

This document provides conceptual and usage information about Oracle Big Data
Spatial and Graph, which enables you to create, store, and work with Spatial and
Graph vector, raster, and property graph data in a Big Data environment.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database and application developers in Big Data
environments.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the titles in the Big Data Appliance library that contain
Oracle Big Data Spatial and Graph, plus these other documents.

• Oracle Big Data Connectors User's Guide

• Oracle Big Data Appliance Site Checklists

• Oracle Big Data Appliance Owner's Guide

• Oracle Big Data Appliance Safety and Compliance Guide

Conventions
The following text conventions are used in this document:

xvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xviii

Changes in This Release for Oracle Big
Data Spatial and Graph

Big Data Spatial and Graph includes the following changes to the product in Release
2.4.

• Changes for Release 2.5

• Changes for Release 2.4

Changes for Release 2.5
The following changes apply to Release 2.5 of Big Data Spatial and Graph.

• Spark Vector API Changes for Release 2.5

• Multimedia Analytics Feature Deprecated

Spark Vector API Changes for Release 2.5
The following features have been added to the Spark Vector API for Big Data Spatial
and Graph 2.5:

• Count action added to the Spatial Index

Multimedia Analytics Feature Deprecated
The multimedia analytics feature of Big Data Spatial and Graph is deprecated in this
release and may be desupported in a future release. There is no replacement for the
multimedia analytics features.

The multimedia analytics feature is currently documented in Using Multimedia
Analytics.

Changes for Release 2.4
The following changes apply to Release 2.4 of Big Data Spatial and Graph.

• In-Memory Analyst (PGX) - Related Changes

• Spark Vector API Changes for Release 2.4

• Vector REST API Additions

• SpatialViewer Changes

xix

In-Memory Analyst (PGX) - Related Changes
The following changes relate to the in-memory analyst (PGX) capabilities in Big Data
Spatial and Graph.

• New PGX Built-in Algorithms for Cycle Detection

• Temporal Data Types Support in PGX

• PGX Java API Improvements

• New Features in PGQL

• PGX Loader Improvements

• PGX Distributed Engine Improvements

• PGX Deprecations

New PGX Built-in Algorithms for Cycle Detection
Release 2.4 of the in-memory analyst (PGX) introduces two in-memory algorithms for
finding cycles: a robust version, which always scans the whole graph by performing
several DFS traversals, and a lightweight version, which will perform just one single
DFS traversal for the task. The lightweight version is faster, but may not explore the
whole graph and could thus fail to detect some cycles.

You can use the new algorithms through the analyst.findCycle() API.

Temporal Data Types Support in PGX
The in-memory analyst (PGX) in Release 2.4 gives you more precise control on time-
related properties, with support for five temporal data types that map directly to the five
temporal types in SQL as well as to the new Java 8 date-time types. The date property
type is now deprecated and replaced
by local_date, time, timestamp, time_with_timezone, and timestamp_with_timezone.
The new types are supported both in the PGX API and in PGQL, as the following table
summarizes.

Table 1 Temporal Data Types Support in PGX

Type PGX property type Example
plain text

Example
PGQL
literal

PGQL ResultSet API

TIMESTAM
P WITH
TIMEZONE

timestamp_with_timez
one

"2017-08-18
20:15:00+08
"

TIMESTAM
P
'2017-08-18
20:15:00+0
8'

java.time.OffsetDateTime
getTimestampWithTimezon
e(..)

TIMESTAM
P

timestamp "2017-08-18
20:15:00"

TIMESTAM
P
'2017-08-18
20:15:00'

java.time.LocalDateTime
getTimestamp(..)

TIME WITH
TIMEZONE

time_with_timezone "20:15:00+0
8"

TIME
'20:15:00+0
8'

java.time.OffsetTime
getTimeWithTimezone(..)

Changes in This Release for Oracle Big Data Spatial and Graph

xx

Table 1 (Cont.) Temporal Data Types Support in PGX

Type PGX property type Example
plain text

Example
PGQL
literal

PGQL ResultSet API

TIME time "20:15:00" TIME
'20:15:00'

java.time.LocalTime
getTime(..)

DATE local_date "2017-08-18
"

DATE
'2017-08-18'

java.time.LocalDate
getDate(..)

PGX Java API Improvements
Release 2.4 introduces several additions and improvements in the PGX Java API:

• Added Java API for getting all session private graphs and getting a graph by its
name (PgxSession#getGraphs(), PgxSession#getGraph(String)).

• Added API for checking whether a graph has vertex/edge labels
(PgxGraph#hasVertexLabels, PgxGraph#hasEdgeLabel.

• The GraphConfig builders can now copy values from existing GraphConfigs and it is
now possible to remove properties from a GraphConfig builder.
(copyFrom(GraphConfig), copyBaseFrom(GraphConfig), removeVertexProperty(String),
removeEdgeProperty(String)).

• Added API for retrieving a random edge (PgxGraph#getRandomEdge)).

New Features in PGQL
Release 2.4 introduces several new features in PGQL, including the following.

Prepared Statements

Prepared statements provide a way to safeguard your application from query injection.
The use of prepared statements can also speed up query execution as queries do not
need to get recompiled every time their bind values change. PGQL uses the question
mark symbol (?) to indicate a bind variable. Values for the bind variables are then
assigned through the PreparedStatement API

Undirected Edge Queries

PGQL has now support for undirected edge queries, which can be used to query
undirected graphs or ignoring edge direction in directed graphs. These two use cases
are illustrated in the following two queries:

SELECT d1.name WHERE (d1:Device) -[:connects_to]- (d2:Device), d1.name =
'LoadTransformer 2533'
SELECT m.name WHERE (n:Person) -[:follows]- (m:Person) , n.name = 'Bono'

The first query matches undirected edges labeled connects_to, the second query
matches all people that follow or are followed by a person named 'Bono'.

Other Additions and Improvements in PGQL

• PGQL now has an all_different(a, b, c, ...) function , which allows to specify
that a set of values (typically vertices or edges) are all different from each other.

Changes in This Release for Oracle Big Data Spatial and Graph

xxi

• Support for greater than, greater than equal, less than, and less than equal for
comparing String values (also works for filter expressions in the Java API).

• Added support for constraints on vertices in PATH patterns, as in the following
example. Previously, only constraints on edges in PATH patterns were supported.
For example:

PATH connects_to_high_volt_dev := (:Device) -> (:Device WITH voltage > 35000)
SELECT ...

PGX Loader Improvements
The PGX graph loader in Release 2.4 has extended capabilities:

• The Apache Spark loader now supports Spark 2.X through the
oracle.pgx.api.spark2.PgxSparkContext class. Loading from Spark 1.x is still
possible using the class in oracle.pgx.api.spark1.

• Columns names are now configurable when loading from the Oracle RDBMS in
two- tables format.

• The two- tables format now supports string, integer, and long as vertex ID types.

• Added support for directly loading compressed (gzip) graph data without the need
to unpack the archives first.

PGX Distributed Engine Improvements
The in-memory analyst (PGX) distributed graph processing execution engine included
in Release 2.4 includes several improvements:

• PGX.D now supports top-k and bottom-k for string properties.

• Fixed a bug concering NULL values (Oracle bug 25491165).

• Added support for edge properties of vector type.

• Extended the supported endpoints in the client-server API: added support
for rename(), getNeighbours(), getEdges(), getRandomVertex(), getRandomEdge(), getS
ource(), and getDestination().

PGX Deprecations
The following are now deprecated.

• PgxSparkContext for in the oracle.pgx.api is now deprecated. Use the class in the
oracle.pgx.api.spark1 package instead.

• The REST endpoint /core/graph/<graphname>/randomNode is deprecated. Call /core/
graph/<graphname/randomEntity instead

• The graph configuration fields for Spark skip_nodes and skip_edges are deprecated.
Use graph loading configuration
fields loading.skip_vertices and loading.skip_edges instead.

• The graph configuration methods isSkipNodes() and isSkipEdges() are deprecated.
Use the skipVertexLoading() and skipEdgeLoading() methods instead.

• The SALSA algorithm algorithms/link_prediction/salsa_deprecated.gm is
deprecated. Use algorithms/ranking_and_walking/salsa.gm instead.

• The CALLER_THREAD PoolType is deprecated.

Changes in This Release for Oracle Big Data Spatial and Graph

xxii

• The REST endpoint /core/analysis/<analysisId> with a targetPool is deprecated.
Use the workloadCharacteristics field instead

• The use of the path finding filter argument type is deprecated.

• The property type DATE is deprecated. Use LOCAL_DATE, TIME, TIMESTAMP,
TIME_WITH_TIMEZONE or TIMESTAMP_WITH_TIMEZONE instead.

• The REST endpoint GET /core/graph/<graphname>/query is deprecated. Use POST
to /core/graph/<graphname>/query with query and semantic options in the JSON
payload

• In PGQL, user-defined pattern matching semantic (i.e., ISOMORPHISM /
HOMOMORPHSIM) is deprecated. Homomorphism remains the default semantic,
but isomorphic constraints should now be specified using either the new built-in
PGQL function all_different(v1, v2, ...) or using non-equality constraints (for
example, v1 != v2). The deprecations are as follows:

– The method PgxGraph.queryPgql(String,
PatternMatchingSemantic) (use PgxGraph.queryPgql(String) instead)

– The method PgxSession.setPatternMatchingSemantic(..)

– The configuration field pattern_matching_semantic

Spark Vector API Changes for Release 2.4
The following capabilities have been added to the Spark Vector API for Release 2.4:

• Spatial transformations for the Spark Streaming API:

– Filter, flatMap, nearestNeighbors

– Java and Scala APIs

• Spatial join using two spatial indexes

• GeoEnrich transformation for the Streaming API

Vector REST API Additions
The following APIs are available:

• Vector Hadoop REST API with the following available operations:

– List/create/delete a spatial index

– Filter spatially the records using a spatial index

– Categorization, clustering, binning

• Vector Spark REST API with the following available operations:

– List/create/delete a spatial index

– Filter spatially the records using a spatial index

SpatialViewer Changes
The Big Data Spatial Image Server has been integrated into the Oracle Big Data
SpatialViewer web application. SpatialViewer uses Oracle JET, which provides a rich
set of UI components.

Changes in This Release for Oracle Big Data Spatial and Graph

xxiii

1
Big Data Spatial and Graph Overview

This chapter provides an overview of Oracle Big Data support for Oracle Spatial and
Graph spatial, property graph, and multimedia analytics features.

• About Big Data Spatial and Graph
Oracle Big Data Spatial and Graph delivers advanced spatial and graph analytic
capabilities to supported Apache Hadoop and NoSQL Database Big Data
platforms.

• Spatial Features
Spatial location information is a common element of Big Data.

• Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze
relationships found in social networks, cyber security, utilities and
telecommunications, life sciences and clinical data, and knowledge networks.

• Multimedia Analytics Features
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The
framework enables distributed processing of video and image data.

• Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
The Mammoth command-line utility for installing and configuring the Oracle Big
Data Appliance software also installs the Oracle Big Data Spatial and Graph
option, including the spatial, property graph, and multimedia capabilities.

• Installing and Configuring the Big Data Spatial Image Processing Framework
Installing and configuring the Image Processing Framework depends upon the
distribution being used.

• Installing the Oracle Big Data SpatialViewer Web Application
To install the Oracle Big Data SpatialViewer web application (SpatialViewer),
follow the instructions in this topic.

• Installing Property Graph Support on a CDH Cluster or Other Hardware
You can use property graphs on either Oracle Big Data Appliance or commodity
hardware.

• Installing and Configuring Multimedia Analytics Support
To use the Multimedia analytics feature, the video analysis framework must be
installed and configured.

1.1 About Big Data Spatial and Graph
Oracle Big Data Spatial and Graph delivers advanced spatial and graph analytic
capabilities to supported Apache Hadoop and NoSQL Database Big Data platforms.

The spatial features include support for data enrichment of location information, spatial
filtering and categorization based on distance and location-based analysis, and spatial

1-1

data processing for vector and raster processing of digital map, sensor, satellite and
aerial imagery values, and APIs for map visualization.

The property graph features support Apache Hadoop HBase and Oracle NoSQL
Database for graph operations, indexing, queries, search, and in-memory analytics.

The multimedia analytics features provide a framework for processing video and
image data in Apache Hadoop, including built-in face recognition using OpenCV.

1.2 Spatial Features
Spatial location information is a common element of Big Data.

Businesses can use spatial data as the basis for associating and linking disparate data
sets. Location information can also be used to track and categorize entities based on
proximity to another person, place, or object, or on their presence a particular area.
Location information can facilitate location-specific offers to customers entering a
particular geography, something known as geo-fencing. Georeferenced imagery and
sensory data can be analyzed for a variety of business benefits.

The spatial features of Oracle Big Data Spatial and Graph support those use cases
with the following kinds of services.

Vector Services:

• Ability to associate documents and data with names, such as cities or states, or
longitude/latitude information in spatial object definitions for a default
administrative hierarchy

• Support for text-based 2D and 3D geospatial formats, including GeoJSON files,
Shapefiles, GML, and WKT, or you can use the Geospatial Data Abstraction
Library (GDAL) to convert popular geospatial encodings such as Oracle
SDO_Geometry, ST_Geometry, and other supported formats

• An HTML5-based map client API and a sample console to explore, categorize,
and view data in a variety of formats and coordinate systems

• Topological and distance operations: Anyinteract, Inside, Contains, Within
Distance, Nearest Neighbor, and others

• Spatial indexing for fast retrieval of data

Raster Services:

• Support for many image file formats supported by GDAL and image files stored in
HDFS

• A sample console to view the set of images that are available

• Raster operations, including, subsetting, georeferencing, mosaics, and format
conversion

1.3 Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze
relationships found in social networks, cyber security, utilities and telecommunications,
life sciences and clinical data, and knowledge networks.

Chapter 1
Spatial Features

1-2

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including,
telecommunications, life sciences and healthcare, security, media and publishing can
benefit from graphs.

The property graph features of Oracle Big Data Spatial and Graph support those use
cases with the following capabilities:

• A scalable graph database on Apache HBase and Oracle NoSQL Database

• Developer-based APIs based upon Tinkerpop Blueprints, and Java graph APIs

• Text search and query through integration with Apache Lucene and SolrCloud

• Scripting languages support for Groovy and Python

• A parallel, in-memory graph analytics engine

• A fast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, path finding

• Parallel bulk load and export of property graph data in Oracle-defined flat files
format

• Manageability through a Groovy-based console to execute Java and Tinkerpop
Gremlin APIs

• Property Graph Sizing Recommendations

1.3.1 Property Graph Sizing Recommendations
The following are recommendations for property graph installation.

Table 1-1 Property Graph Sizing Recommendations

Graph Size Recommended Physical
Memory to be Dedicated

Recommended Number of CPU
Processors

10 to 100M
edges

Up to 14 GB RAM 2 to 4 processors, and up to 16
processors for more compute-intensive
workloads

100M to 1B
edges

14 GB to 100 GB RAM 4 to 12 processors, and up to 16 to 32
processors for more compute-intensive
workloads

Over 1B edges Over 100 GB RAM 12 to 32 processors, or more for
especially compute-intensive workloads

1.4 Multimedia Analytics Features
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The framework
enables distributed processing of video and image data.

A main use case is performing facial recognition in videos and images.

Chapter 1
Multimedia Analytics Features

1-3

1.5 Installing Oracle Big Data Spatial and Graph on an
Oracle Big Data Appliance

The Mammoth command-line utility for installing and configuring the Oracle Big Data
Appliance software also installs the Oracle Big Data Spatial and Graph option,
including the spatial, property graph, and multimedia capabilities.

You can enable this option during an initial software installation, or afterward using the
bdacli utility.

To use Oracle NoSQL Database as a graph repository, you must have an Oracle
NoSQL Database cluster.

To use Apache HBase as a graph repository, you must have an Apache Hadoop
cluster.

See Also:

Oracle Big Data Appliance Owner's Guide for software configuration
instructions.

1.6 Installing and Configuring the Big Data Spatial Image
Processing Framework

Installing and configuring the Image Processing Framework depends upon the
distribution being used.

• The Oracle Big Data Appliance cluster distribution comes with a pre-installed
setup, but you must follow few steps in Installing the Image Processing Framework
for Oracle Big Data Appliance Distribution to get it working.

• For a commodity distribution, follow the instructions in Installing the Image
Processing Framework for Other Distributions (Not Oracle Big Data Appliance).

For both distributions:

• You must download and compile PROJ libraries, as explained in Getting and
Compiling the Cartographic Projections Library.

• After performing the installation, verify it (see Post-installation Verification of the
Image Processing Framework).

• If the cluster has security enabled, make sure that the user executing the jobs is in
the princs list and has an active Kerberos ticket.

• Getting and Compiling the Cartographic Projections Library

Chapter 1
Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance

1-4

• Installing the Image Processing Framework for Oracle Big Data Appliance
Distribution
The Oracle Big Data Appliance distribution comes with a pre-installed
configuration, though you must ensure that the image processing framework has
been installed.

• Installing the Image Processing Framework for Other Distributions (Not Oracle Big
Data Appliance)
For Big Data Spatial and Graph in environments other than the Big Data
Appliance, follow the instructions in this section.

• Post-installation Verification of the Image Processing Framework
Several test scripts are provided to perform the following verification operations.

1.6.1 Getting and Compiling the Cartographic Projections Library
Before installing the Image Processing Framework, you must download the
Cartographic Projections Library and perform several related operations.

1. Download the PROJ.4 source code and datum shifting files:

$ wget http://download.osgeo.org/proj/proj-4.9.1.tar.gz
$ wget http://download.osgeo.org/proj/proj-datumgrid-1.5.tar.gz

2. Untar the source code, and extract the datum shifting files in the nad subdirectory:

$ tar xzf proj-4.9.1.tar.gz
$ cd proj-4.9.1/nad
$ tar xzf ../../proj-datumgrid-1.5.tar.gz
$ cd ..

3. Configure, make, and install PROJ.4:

$./configure
$ make
$ sudo make install
$ cd ..

libproj.so is now available at /usr/local/lib/libproj.so.

4. Copy the libproj.so file in the spatial installation directory:

cp /usr/local/lib/libproj.so /opt/oracle/oracle-spatial-graph/spatial/raster/
gdal/lib/libproj.so

5. Provide read and execute permissions for the libproj.so library for all users

sudo chmod 755 /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib/
libproj.so

1.6.2 Installing the Image Processing Framework for Oracle Big Data
Appliance Distribution

The Oracle Big Data Appliance distribution comes with a pre-installed configuration,
though you must ensure that the image processing framework has been installed.

Be sure that the actions described in Getting and Compiling the Cartographic
Projections Library have been performed, so that libproj.so (PROJ.4) is accessible to
all users and is set up correctly.

For OBDA, ensure that the following directories exist:

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-5

• SHARED_DIR (shared directory for all nodes in the cluster): /opt/shareddir

• ALL_ACCESS_DIR (shared directory for all nodes in the cluster with Write access
to the hadoop group): /opt/shareddir/spatial

1.6.3 Installing the Image Processing Framework for Other
Distributions (Not Oracle Big Data Appliance)

For Big Data Spatial and Graph in environments other than the Big Data Appliance,
follow the instructions in this section.

• Prerequisites for Installing the Image Processing Framework for Other
Distributions

• Installing the Image Processing Framework for Other Distributions

1.6.3.1 Prerequisites for Installing the Image Processing Framework for Other
Distributions

• Ensure that HADOOP_LIB_PATH is under /usr/lib/hadoop. If it is not there, find the
path and use it as it your HADOOP_LIB_PATH.

• Install NFS.

• Have at least one folder, referred in this document as SHARED_FOLDER, in the
Resource Manager node accessible to every Node Manager node through NFS.

• Provide write access to all the users involved in job execution and the yarn users
to this SHARED_FOLDER

• Download oracle-spatial-graph-<version>.x86_64.rpm from the Oracle e-delivery
web site.

• Execute oracle-spatial-graph-<version>.x86_64.rpm using the rpm command.

• After rpm executes, verify that a directory structure created at /opt/oracle/oracle-
spatial-graph/spatial/raster contains these folders: console, examples, jlib, gdal,
and tests. Additionally, index.html describes the content, and javadoc.zip contains
the Javadoc for the API..

1.6.3.2 Installing the Image Processing Framework for Other Distributions
1. Make the libproj.so (Proj.4) Cartographic Projections Library accessible to the

users, as explained in Getting and Compiling the Cartographic Projections Library.

2. In the Resource Manager Node, copy the data folder under /opt/oracle/oracle-
spatial-graph/spatial/raster/gdal into the SHARED_FOLDER as follows:

cp -R /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/data SHARED_FOLDER

3. Create a directory ALL_ACCESS_FOLDER under SHARED_FOLDER with write access for all
users involved in job execution. Also consider the yarn user in the write access
because job results are written by this user. Group access may be used to
configure this.

Go to the shared folder.

cd SHARED_FOLDER

Create a new directory.

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-6

mkdir ALL_ACCESS_FOLDER

Provide write access.

chmod 777 ALL_ACCESS_FOLDER

4. Copy the data folder under /opt/oracle/oracle-spatial-graph/spatial/raster/
examples into ALL_ACCESS_FOLDER.

cp -R /opt/oracle/oracle-spatial-graph/spatial/raster/examples/data

ALL_ACCESS_FOLDER

5. Provide write access to the data/xmls folder as follows (or just ensure that users
executing the jobs, including tests and examples, have write access):

chmod 777 ALL_ACCESS_FOLDER/data/xmls/

1.6.4 Post-installation Verification of the Image Processing Framework
Several test scripts are provided to perform the following verification operations.

• Test the image loading functionality

• Test test the image processing functionality

• Test a processing class for slope calculation in a DEM and a map algebra
operation

• Verify the image processing of a single raster with no mosaic process (it includes a
user-provided function that calculates hill shade in the mapping phase).

• Test processing of two rasters using a mask operation

Execute these scripts to verify a successful installation of image processing
framework.

If the cluster has security enabled, make sure the current user is in the princs list and
has an active Kerberos ticket.

Make sure the user has write access to ALL_ACCESS_FOLDER and that it belongs to
the owner group for this directory. It is recommended that jobs be executed in
Resource Manager node for Big Data Appliance. If jobs are executed in a different
node, then the default is the hadoop group.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD_LIBRARY_PATH=$ALLACCESSDIR/gdal/native

• Image Loading Test Script

• Image Processor Test Script (Mosaicking)

• Single-Image Processor Test Script

• Image Processor DEM Test Script

• Multiple Raster Operation Test Script

1.6.4.1 Image Loading Test Script
This script loads a set of six test rasters into the ohiftest folder in HDFS, 3 rasters of
byte data type and 3 bands, 1 raster (DEM) of float32 data type and 1 band, and 2

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-7

rasters of int32 data type and 1 band. No parameters are required for OBDA
environments and a single parameter with the ALL_ACCESS_FOLDER value is
required for non-OBDA environments.

Internally, the job creates a split for every raster to load. Split size depends on the
block size configuration; for example, if a block size >= 64MB is configured, 4 mappers
will run; and as a result the rasters will be loaded in HDFS and a corresponding
thumbnail will be created for visualization. An external image editor is required to
visualize the thumbnails, and an output path of these thumbnails is provided to the
users upon successful completion of the job.

The test script can be found here:

/opt/oracle/oracle-spatial-graph/spatial/raster/tests/runimageloader.sh

For ODBA environments, enter:

./runimageloader.sh

For non-ODBA environments, enter:

./runimageloader.sh ALL_ACCESS_FOLDER

Upon successful execution, the message GENERATED OHIF FILES ARE LOCATED IN HDFS
UNDER is displayed, with the path in HDFS where the files are located (this path
depends on the definition of ALL_ACCESS_FOLDER) and a list of the created images
and thumbnails on HDFS. The output may include:

“THUMBNAILS CREATED ARE:
--
total 13532
drwxr-xr-x 2 yarn yarn 4096 Sep 9 13:54 .
drwxr-xr-x 3 yarn yarn 4096 Aug 27 11:29 ..
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 hawaii.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 inputimageint32.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 inputimageint32_1.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 kahoolawe.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 maui.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 4182040 Sep 9 13:54 NapaDEM.tif.ohif.tif
YOU MAY VISUALIZE THUMBNAILS OF THE UPLOADED IMAGES FOR REVIEW FROM THE FOLLOWING
PATH:

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

NOT ALL THE IMAGES WERE UPLOADED CORRECTLY, CHECK FOR HADOOP LOGS

The amount of memory required to execute mappers and reducers depends on the
configured HDFS block size By default, 1 GB of memory is assigned for Java, but you
can modify that and other properties in the imagejob.prop file that is included in this test
directory.

1.6.4.2 Image Processor Test Script (Mosaicking)
This script executes the processor job by setting three source rasters of Hawaii islands
and some coordinates that includes all three. The job will create a mosaic based on
these coordinates and resulting raster should include the three rasters combined in a
single one.

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-8

runimageloader.sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 3 band rasters of byte data type.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

Additionally, if the output should be stored in HDFS, the "-o" parameters must be used
to set the HDFS folder where the mosaic output will be stored.

Internally the job filters the tiles using the coordinates specified in the configuration
input, xml, only the required tiles are processed in a mapper and finally in the reduce
phase, all of them are put together into the resulting mosaic raster.

The test script can be found here:

/opt/oracle/oracle-spatial-graph/spatial/raster/tests/runimageprocessor.sh

For ODBA environments, enter:

./runimageprocessor.sh

For non-ODBA environments, enter:

./runimageprocessor.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE IS:
ALL_ACCESS_FOLDER/processtest/hawaiimosaic.tif is displayed, with the path to the
output mosaic file. The output may include:

EXPECTED OUTPUT FILE IS: ALL_ACCESS_FOLDER/processtest/hawaiimosaic.tif
total 9452
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:12 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4741101 Sep 10 09:12 hawaiimosaic.tif

MOSAIC IMAGE GENERATED
--
YOU MAY VISUALIZE THE MOSAIC OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/hawaiimosaic.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAIC WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

To test the output storage in HDFS, use the following command

For ODBA environments, enter:

./runimageprocessor.sh -o hdfstest

For non-ODBA environments, enter:

./runimageprocessor.sh -s ALL_ACCESS_FOLDER -o hdfstest

1.6.4.3 Single-Image Processor Test Script
This script executes the processor job for a single raster, in this case is a DEM source
raster of North Napa Valley. The purpose of this job is process the complete input by
using the user processing classes configured for the mapping phase. This class

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-9

calculates the hillshade of the DEM, and this is set to the output file. No mosaic
operation is performed here.

runimageloader.sh should be executed as a prerequisite, so that the source raster
exists in HDFS. This is 1 band of float 32 data type DEM rasters.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

The test script can be found here:

/opt/oracle/oracle-spatial-graph/spatial/raster/tests/runsingleimageprocessor.sh

For ODBA environments, enter:

./runsingleimageprocessor.sh

For non-ODBA environments, enter:

./runsingleimageprocessor.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/
processtest/NapaSlope.tif is displayed, with the path to the output DEM file. The
output may include:

EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/processtest/NapaDEM.tif
total 4808
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:42 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4901232 Sep 10 09:42 NapaDEM.tif
IMAGE GENERATED
--

YOU MAY VISUALIZE THE OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/NapaDEM.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

IMAGE WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

1.6.4.4 Image Processor DEM Test Script
This script executes the processor job by setting a DEM source raster of North Napa
Valley and some coordinates that surround it. The job will create a mosaic based on
these coordinates and will also calculate the slope on it by setting a processing class
in the mosaic configuration XML.

runimageloader.sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. This is 1 band of float 32 data type DEM raster.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

The test script can be found here:

/opt/oracle/oracle-spatial-graph/spatial/raster/tests/runimageprocessordem.sh

For ODBA environments, enter:

./runimageprocessordem.sh

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-10

For non-ODBA environments, enter:

./runimageprocessordem.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/
processtest/NapaSlope.tif is displayed, with the path to the slope output file. The
output may include:

EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/processtest/NapaSlope.tif
total 4808
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:42 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4901232 Sep 10 09:42 NapaSlope.tif
MOSAIC IMAGE GENERATED
--

YOU MAY VISUALIZE THE MOSAIC OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/NapaSlope.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAIC WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

You may also test the “if” algebra function, where every pixel in this raster with value
greater than 2500 will be replaced by the value you set in the command line using the
“–c” flag. For example:

For ODBA environments, enter:

./runimageprocessordem.sh –c 8000

For non-ODBA environments, enter:

./runimageprocessordem.sh -s ALL_ACCESS_FOLDER –c 8000

You can visualize the output file and notice the difference between simple slope
calculation and this altered output, where the areas with pixel values greater than 2500
look more clear.

1.6.4.5 Multiple Raster Operation Test Script
This script executes the processor job for two rasters that cover a very small area of
North Napa Valley in the US state of California.

These rasters have the same MBR, pixel size, SRID, and data type, all of which are
required for complex multiple raster operation processing. The purpose of this job is
process both rasters by using the mask operation, which checks every pixel in the
second raster to validate if its value is contained in the mask list. If it is, the output
raster will have the pixel value of the first raster for this output cell; otherwise, the zero
(0) value is set. No mosaic operation is performed here.

runimageloader.sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 1 band of int32 data type rasters.

No parameters are required for OBDA environments. For non-ODBA environments, a
single parameter -s with the ALL_ACCESS_FOLDER value is required.

The test script can be found here:

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

1-11

/opt/oracle/oracle-spatial-graph/spatial/raster/tests/runimageprocessormultiple.sh

For ODBA environments, enter:

./runimageprocessormultiple.sh

For non-ODBA environments, enter:

./runimageprocessormultiple.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/
processtest/MaskInt32Rasters.tif is displayed, with the path to the mask output file.
The output may include:

EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/processtest/MaskInt32Rasters.tif
total 4808
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:42 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4901232 Sep 10 09:42 MaskInt32Rasters.tif
IMAGE GENERATED
--

YOU MAY VISUALIZE THE OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/MaskInt32Rasters.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

IMAGE WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

1.7 Installing the Oracle Big Data SpatialViewer Web
Application

To install the Oracle Big Data SpatialViewer web application (SpatialViewer), follow
the instructions in this topic.

• Assumptions for SpatialViewer

• Installing SpatialViewer on Oracle Big Data Appliance

• Installing SpatialViewer for Other Systems (Not Big Data Appliance)

• Configuring SpatialViewer on Oracle Big Data Appliance

• Configuring SpatialViewer for Other Systems (Not Big Data Appliance)

See Also:

Using the Oracle Big Data SpatialViewer Web Application

1.7.1 Assumptions for SpatialViewer
The following assumptions apply for installing and configuring SpatialViewer.

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

1-12

• The API and jobs described here run on a Cloudera CDH5.7, Hortonworks HDP
2.4, or similar Hadoop environment.

• Java 8 or a newer version is present in your environment.

• The image processing framework has been installed as described in Installing and
Configuring the Big Data Spatial Image Processing Framework.

1.7.2 Installing SpatialViewer on Oracle Big Data Appliance
You can install SpatialViewer on Big Data Appliance as follows

1. Run the following script:

sudo /opt/oracle/oracle-spatial-graph/spatial/configure-server/install-bdsg-
consoles.sh

2. Start the web application by using one of the following commands (the second
command enables you to view logs):

sudo service bdsg start
sudo /opt/oracle/oracle-spatial-graph/spatial/web-server/start-server.sh

If any errors occur, see the the README file located in /opt/oracle/oracle-
spatial-graph/spatial/configure-server.

3. Open: http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/

4. If the active nodes have changed after the installation or if Kerberos is enabled,
then update the configuration file as described in Configuring SpatialViewer on
Oracle Big Data Appliance.

5. Optionally, upload sample data (used with examples in other topics) to HDFS:

sudo -u hdfs hadoop fs -mkdir /user/oracle/bdsg
sudo -u hdfs hadoop fs -put /opt/oracle/oracle-spatial-graph/spatial/vector/
examples/data/tweets.json /user/oracle/bdsg/

1.7.3 Installing SpatialViewer for Other Systems (Not Big Data
Appliance)

Follow the steps for manual configuration described in in Installing SpatialViewer on
Oracle Big Data Appliance.

Then, change the configuration, as described in Configuring SpatialViewer for Other
Systems (Not Big Data Appliance)

1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance
To configure SpatialViewer on Oracle Big Data Appliance, follow these steps.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045/
spatialviewer/?root=swadmin

2. Change the general configuration, as needed:

• Local working directory: SpatialViewer local working directory. Absolute path.
The default directory /usr/oracle/spatialviewer is created when installing
SpatialViewer.

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

1-13

• HDFS working directory: SpatialViewer HDFS working directory. The default
directory /user/oracle/spatialviewer is created when installing SpatialViewer.

• Hadoop configuration file: The Hadoop configuration directory. By
default: /etc/hadoop/conf

If you change this value, you must restart the server.

• Spark configuration file: The Spark configuration directory. By default: /etc/
spark/conf

If you change this value, you must restart the server.

• eLocation URL: URL used to get the eLocation background maps. By default:
http://elocation.oracle.com

• Kerberos keytab: If Kerberos is enabled, provide the full path to the file that
contains the keytab file.

• Display logs: If necessary, disable the display of the jobs in the Spatial Jobs
screen. Disable this display if the logs are not in the default format. The default
format is: Date LogLevel LoggerName: LogMessage

The Date must have the default format: yyyy-MM-dd HH:mm:ss,SSS. For example:
2012-11-02 14:34:02,781.

If the logs are not displayed and the Display logs field is set to Yes, then
ensure that yarn.log-aggregation-enable in yarn-site.xml is set to true. Also
ensure that the Hadoop jobs configuration parameters
yarn.nodemanager.remote-app-log-dir and yarn.nodemanager.remote-app-log-
dir-suffix are set to the same value as in yarn-site.xml.

3. Change the raster configuration, as needed:

• Shared directory: Directory used to read and write from different nodes, which
requires that is be shared and have the greatest permissions or at least be in
the Hadoop user group.

• Network file system mount point: NFS mountpoint that allows the shared
folders to be seen and accessed individually. Can be blank if you are using a
non-distributed environment.

• GDAL directory: Native GDAL installation directory. Must be accessible to all
the cluster nodes.

If you change this value, you must restart the server.

• Shared GDAL data directory: GDAL shared data folder. Must be a shared
directory. (See the instructions in Installing the Image Processing Framework
for Other Distributions (Not Oracle Big Data Appliance).)

4. Change the Hadoop configuration, as needed.

5. Change the Spark configuration, as needed. The raster processor needs
additional configuration details:

• spark.driver.extraClassPath, spark.executor.extraClassPath: Specify your
hive library installation using these keys. Example: /usr/lib/hive/lib/*

• spark.kryoserializer.buffer.max: Enter the memory for the data serialization.
Example: 160m

6. If Kerberos is enabled, then you may need to add the parameters:

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

1-14

• spark.yarn.keytab: the full path to the file that contains the keytab for the
principal.

• spark.yarn.principal: the principal to be used to log in to Kerberos. The
format of a typical Kerberos V5 principal is primary/instance@REALM.

7. On Linux systems, you may need to change the secure container executor to
LinuxContainerExecutor. For that, set the following parameters:

• Set yarn.nodemanager.container-executor.class to
org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.

• Set yarn.nodemanager.linux-container-executor.group to hadoop.

8. Ensure that the user can read the keytab file.

9. Copy the keytab file to the same location on all the nodes of the cluster.

1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data
Appliance)

Before installing the SpatialViewer on other systems, you must install the image
processing framework as specified in Installing the Image Processing Framework for
Other Distributions (Not Oracle Big Data Appliance).

Then follow the steps mentioned in Configuring SpatialViewer on Oracle Big Data
Appliance.

Additionally, change the Hadoop Configuration, replacing the Hadoop property
yarn.application.classpath value /opt/cloudera/parcels/CDH/lib/ with the actual
library path, which by default is /usr/lib/.

Additionally, change the Hadoop and Spark configuration, replacing the Hadoop conf.
directory and Spark conf. directory values according your Hadoop and Spark
installations.

1.8 Installing Property Graph Support on a CDH Cluster or
Other Hardware

You can use property graphs on either Oracle Big Data Appliance or commodity
hardware.

• Apache HBase Prerequisites

• Property Graph Installation Steps

• About the Property Graph Installation Directory

• Optional Installation Task for In-Memory Analyst Use

See Also:

Configuring Property Graph Support

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

1-15

1.8.1 Apache HBase Prerequisites
The following prerequisites apply to installing property graph support in HBase.

• Linux operating system

• Cloudera's Distribution including Apache Hadoop (CDH)

For the software download, see: http://www.cloudera.com/content/cloudera/en/
products-and-services/cdh.html

• Apache HBase

• Java Development Kit (JDK) (Java 8 or higher)

Details about supported versions of these products, including any interdependencies,
will be provided in a My Oracle Support note.

1.8.2 Property Graph Installation Steps
To install property graph support, follow these steps.

1. Unzip the software package:

rpm -i oracle-spatial-graph-<version>.x86_64.rpm

By default, the software is installed in the following directory: /opt/oracle/

After the installation completes, the opt/oracle/oracle-spatial-graph directory
exists and includes a property_graph subdirectory.

2. Set the JAVA_HOME environment variable. For example:

setenv JAVA_HOME /usr/local/packages/jdk8

3. Set the PGX_HOME environment variable. For example:

setenv PGX_HOME /opt/oracle/oracle-spatial-graph/pgx

4. If HBase will be used, set the HBASE_HOME environment variable in all HBase region
servers in the Apache Hadoop cluster. (HBASE_HOME specifies the location of the
hbase installation directory.) For example:

setenv HBASE_HOME /usr/lib/hbase

Note that on some installations of Big Data Appliance, Apache HBase is placed in
a directory like the following: /opt/cloudera/parcels/
CDH-5.3.3-1.cdh5.3.3.p0.5/lib/hbase/

5. If HBase will be used, copy the data access layer library into $HBASE_HOME/lib.
For example:

cp /opt/oracle/oracle-spatial-graph/property_graph/lib/sdopgdal*.jar $HBASE_HOME/
lib

6. Tune the HBase or Oracle NoSQL Database configuration, as described in other
tuning topics.

7. Log in to Cloudera Manager as the admin user, and restart the HBase service.
Restarting enables the Region Servers to use the new configuration settings.

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

1-16

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html

1.8.3 About the Property Graph Installation Directory
The installation directory for Oracle Big Data Spatial and Graph property graph
features has the following structure:

$ tree -dFL 2 /opt/oracle/oracle-spatial-graph/property_graph/
/opt/oracle/oracle-spatial-graph/property_graph/
|-- dal
| |-- groovy
| |-- opg-solr-config
| `-- webapp
|-- data
|-- doc
| |-- dal
| `-- pgx
|-- examples
| |-- dal
| |-- pgx
| `-- pyopg
|-- lib
|-- librdf
`-- pgx
 |-- bin
 |-- conf
 |-- groovy
 |-- scripts
 |-- webapp
 `-- yarn

1.8.4 Optional Installation Task for In-Memory Analyst Use
Follow this installation task if property graph support is installed on a client without
Hadoop, and you want to read graph data stored in the Hadoop Distributed File
System (HDFS) into the in-memory analyst and write the results back to the HDFS,
and/or use Hadoop NextGen MapReduce (YARN) scheduling to start, monitor and
stop the in-memory analyst.

• Installing and Configuring Hadoop

• Running the In-Memory Analyst on Hadoop

1.8.4.1 Installing and Configuring Hadoop
To install and configure Hadoop, follow these steps.

1. Download the tarball for a supported version of the Cloudera CDH.

2. Unpack the tarball into a directory of your choice. For example:

tar xvf hadoop-2.5.0-cdh5.2.1.tar.gz -C /opt

3. Have the HADOOP_HOME environment variable point to the installation directory. For
example.

export HADOOP_HOME=/opt/hadoop-2.5.0-cdh5.2.1

4. Add $HADOOP_HOME/bin to the PATH environment variable. For example:

export PATH=$HADOOP_HOME/bin:$PATH

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

1-17

5. Configure $HADOOP_HOME/etc/hadoop/hdfs-site.xml to point to the HDFS name node
of your Hadoop cluster.

6. Configure $HADOOP_HOME/etc/hadoop/yarn-site.xml to point to the resource manager
node of your Hadoop cluster.

7. Configure the fs.defaultFS field in $HADOOP_HOME/etc/hadoop/core-site.xml to point
to the HDFS name node of your Hadoop cluster.

1.8.4.2 Running the In-Memory Analyst on Hadoop
When running a Java application using in-memory analytics and HDFS, make sure
that $HADOOP_HOME/etc/hadoop is on the classpath, so that the configurations get picked
up by the Hadoop client libraries. However, you do not need to do this when using the
in-memory analyst shell, because it adds $HADOOP_HOME/etc/hadoop automatically to the
classpath if HADOOP_HOME is set.

You do not need to put any extra Cloudera Hadoop libraries (JAR files) on the
classpath. The only time you need the YARN libraries is when starting the in-memory
analyst as a YARN service. This is done with the yarn command, which automatically
adds all necessary JAR files from your local installation to the classpath.

You are now ready to load data from HDFS or start the in-memory analyst as a YARN
service. For further information about Hadoop, see the CDH 5.x.x documentation.

1.9 Installing and Configuring Multimedia Analytics Support
To use the Multimedia analytics feature, the video analysis framework must be
installed and configured.

Note:

The multimedia analytics feature of Big Data Spatial and Graph is
deprecated in Big Data Spatial and Graph Release 2.5 and may be
desupported in a future release. There is no replacement for the multimedia
analytics features.

• Assumptions and Libraries for Multimedia Analytics

• Transcoding Software (Options)

1.9.1 Assumptions and Libraries for Multimedia Analytics
If you have licensed Oracle Big Data Spatial and Graph with Oracle Big Data
Appliance, the video analysis framework for Multimedia analytics is already installed
and configured. However, you must set $MMA_HOME to point to /opt/oracle/oracle-
spatial-graph/multimedia.

Otherwise, you can install the framework on Cloudera CDH 5 or similar Hadoop
environment, as follows:

1. Install the framework by using the following command on each node on the
cluster:

Chapter 1
Installing and Configuring Multimedia Analytics Support

1-18

rpm2cpio oracle-spatial-graph-<version>.x86_64.rpm | cpio -idmv

You can use the dcli utility (see Executing Commands Across a Cluster Using the
dcli Utility).

2. Set $MMA_HOME to point to /opt/oracle/oracle-spatial-graph/multimedia.

3. Identify the locations of the following libraries:

• Hadoop jar files (available in $HADOOP_HOME/jars)

• Video processing libraries (see Transcoding Software (Options)

• OpenCV libraries (available with the product)

4. Copy all the lib* files from $MMA_HOME/opencv_3.1.0/lib to the native Hadoop
library location.

On Oracle Big Data Appliance, this location is /opt/cloudera/parcels/CDH/lib/
hadoop/lib/native.

5. If necessary, install the desired video processing software to transcode video data
(see Transcoding Software (Options)).

1.9.2 Transcoding Software (Options)
The following options are available for transcoding video data:

• JCodec

• FFmpeg

• Third-party transcoding software

To use Multimedia analytics with JCodec (which is included with the product), when
running the Hadoop job to recognize faces, set the oracle.ord.hadoop.ordframegrabber
property to the following value: oracle.ord.hadoop.decoder.OrdJCodecFrameGrabber

To use Multimedia analytics with FFmpeg:

1. Download FFmpeg from: https://www.ffmpeg.org/.

2. Install FFmpeg on the Hadoop cluster.

3. Set the oracle.ord.hadoop.ordframegrabber property to the following value:
oracle.ord.hadoop.decoder.OrdFFMPEGFrameGrabber

To use Multimedia analytics with custom video decoding software, implement the
abstract class oracle.ord.hadoop.decoder.OrdFrameGrabber. See the Javadoc for more
details

Chapter 1
Installing and Configuring Multimedia Analytics Support

1-19

2
Using Big Data Spatial and Graph with
Spatial Data

This chapter provides conceptual and usage information about loading, storing,
accessing, and working with spatial data in a Big Data environment.

• About Big Data Spatial and Graph Support for Spatial Data
Oracle Big Data Spatial and Graph features enable spatial data to be stored,
accessed, and analyzed quickly and efficiently for location-based decision making.

• Oracle Big Data Vector and Raster Data Processing
Oracle Big Data Spatial and Graph supports the storage and processing of both
vector and raster spatial data.

• Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data
Processing
Oracle Spatial Hadoop Image Processing Framework allows the creation of new
combined images resulting from a series of processing phases in parallel.

• Loading an Image to Hadoop Using the Image Loader
The first step to process images using the Oracle Spatial and Graph Hadoop
Image Processing Framework is to actually have the images in HDFS, followed by
having the images separated into smart tiles.

• Processing an Image Using the Oracle Spatial Hadoop Image Processor
Once the images are loaded into HDFS, they can be processed in parallel using
Oracle Spatial Hadoop Image Processing Framework.

• Loading and Processing an Image Using the Oracle Spatial Hadoop Raster
Processing API
The framework provides a raster processing API that lets you load and process
rasters without creating XML but instead using a Java application. The application
can be executed inside the cluster or on a remote node.

• Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster
Processing
When you create custom processing classes. you can use the Oracle Spatial
Hadoop Raster Simulator Framework to do the following by "pretending" to plug
them into the Oracle Raster Processing Framework.

• Oracle Big Data Spatial Raster Processing for Spark
Oracle Big Data Spatial Raster Processing for Apache Spark is a spatial raster
processing API for Java.

• Oracle Big Data Spatial Vector Analysis
Oracle Big Data Spatial Vector Analysis is a Spatial Vector Analysis API, which
runs as a Hadoop job and provides MapReduce components for spatial
processing of data stored in HDFS.

• Oracle Big Data Spatial Vector Analysis for Spark
Oracle Big Data Spatial Vector Analysis for Apache Spark is a spatial vector
analysis API for Java and Scala that provides spatially-enabled RDDs (Resilient

2-1

Distributed Datasets) that support spatial transformations and actions, spatial
partitioning, and indexing.

• Oracle Big Data Spatial Vector Hive Analysis
Oracle Big Data Spatial Vector Hive Analysis provides spatial functions to analyze
the data using Hive.

• Using the Oracle Big Data SpatialViewer Web Application
You can use the Oracle Big Data SpatialViewer Web Application (SpatialViewer)
to perform a variety of tasks.

2.1 About Big Data Spatial and Graph Support for Spatial
Data

Oracle Big Data Spatial and Graph features enable spatial data to be stored,
accessed, and analyzed quickly and efficiently for location-based decision making.

Spatial data represents the location characteristics of real or conceptual objects in
relation to the real or conceptual space on a Geographic Information System (GIS) or
other location-based application.

The spatial features are used to geotag, enrich, visualize, transform, load, and process
the location-specific two and three dimensional geographical images, and manipulate
geometrical shapes for GIS functions.

• What is Big Data Spatial and Graph on Apache Hadoop?

• Advantages of Oracle Big Data Spatial and Graph

• Oracle Big Data Spatial Features and Functions

• Oracle Big Data Spatial Files, Formats, and Software Requirements

2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?
Oracle Big Data Spatial and Graph on Apache Hadoop is a framework that uses the
MapReduce programs and analytic capabilities in a Hadoop cluster to store, access,
and analyze the spatial data. The spatial features provide a schema and functions that
facilitate the storage, retrieval, update, and query of collections of spatial data. Big
Data Spatial and Graph on Hadoop supports storing and processing spatial images,
which could be geometric shapes, raster, or vector images and stored in one of the
several hundred supported formats.

Note:

Oracle Spatial and Graph Developer's Guide for an introduction to spatial
concepts, data, and operations

2.1.2 Advantages of Oracle Big Data Spatial and Graph
The advantages of using Oracle Big Data Spatial and Graph include the following:

Chapter 2
About Big Data Spatial and Graph Support for Spatial Data

2-2

• Unlike some of the GIS-centric spatial processing systems and engines, Oracle
Big Data Spatial and Graph is capable of processing both structured and
unstructured spatial information.

• Customers are not forced or restricted to store only one particular form of data in
their environment. They can have their data stored both as a spatial or nonspatial
business data and still can use Oracle Big Data to do their spatial processing.

• This is a framework, and therefore customers can use the available APIs to
custom-build their applications or operations.

• Oracle Big Data Spatial can process both vector and raster types of information
and images.

2.1.3 Oracle Big Data Spatial Features and Functions
The spatial data is loaded for query and analysis by the Spatial Server and the images
are stored and processed by an Image Processing Framework. You can use the
Oracle Big Data Spatial and Graph server on Hadoop for:

• Cataloguing the geospatial information, such as geographical map-based
footprints, availability of resources in a geography, and so on.

• Topological processing to calculate distance operations, such as nearest neighbor
in a map location.

• Categorization to build hierarchical maps of geographies and enrich the map by
creating demographic associations within the map elements.

The following functions are built into Oracle Big Data Spatial and Graph:

• Indexing function for faster retrieval of the spatial data.

• Map function to display map-based footprints.

• Zoom function to zoom-in and zoom-out specific geographical regions.

• Mosaic and Group function to group a set of image files for processing to create a
mosaic or subset operations.

• Cartesian and geodetic coordinate functions to represent the spatial data in one of
these coordinate systems.

• Hierarchical function that builds and relates geometric hierarchy, such as country,
state, city, postal code, and so on. This function can process the input data in the
form of documents or latitude/longitude coordinates.

2.1.4 Oracle Big Data Spatial Files, Formats, and Software
Requirements

The stored spatial data or images can be in one of these supported formats:

• GeoJSON files

• Shapefiles

• Both Geodetic and Cartesian data

• Other GDAL supported formats

You must have the following software, to store and process the spatial data:

Chapter 2
About Big Data Spatial and Graph Support for Spatial Data

2-3

• Java runtime

• GCC Compiler - Only when the GDAL-supported formats are used

2.2 Oracle Big Data Vector and Raster Data Processing
Oracle Big Data Spatial and Graph supports the storage and processing of both vector
and raster spatial data.

• Oracle Big Data Spatial Raster Data Processing

• Oracle Big Data Spatial Vector Data Processing

2.2.1 Oracle Big Data Spatial Raster Data Processing
For processing the raster data, the GDAL loader loads the raster spatial data or
images onto a HDFS environment. The following basic operations can be performed
on a raster spatial data:

• Mosaic: Combine multiple raster images to create a single mosaic image.

• Subset: Perform subset operations on individual images.

• Raster algebra operations: Perform algebra operations on every pixel in the
rasters (for example, add, divide, multiply, log, pow, sine, sinh, and acos).

• User-specified processing: Raster processing is based on the classes that user
sets to be executed in mapping and reducing phases.

This feature supports a MapReduce framework for raster analysis operations. The
users have the ability to custom-build their own raster operations, such as performing
an algebraic function on a raster data and so on. For example, calculate the slope at
each base of a digital elevation model or a 3D representation of a spatial surface, such
as a terrain. For details, see Oracle Big Data Spatial Hadoop Image Processing
Framework for Raster Data Processing.

2.2.2 Oracle Big Data Spatial Vector Data Processing
This feature supports the processing of spatial vector data:

• Loaded and stored on to a Hadoop HDFS environment

• Stored either as Cartesian or geodetic data

The stored spatial vector data can be used for performing the following query
operations and more:

• Point-in-polygon

• Distance calculation

• Anyinteract

• Buffer creation

Sevetal data service operations are supported for the spatial vector data:

• Data enrichment

• Data categorization

• Spatial join

Chapter 2
Oracle Big Data Vector and Raster Data Processing

2-4

In addition, there is a limited Map Visualization API support for only the HTML5 format.
You can access these APIs to create custom operations. For details, see "Oracle Big
Data Spatial Vector Analysis."

2.3 Oracle Big Data Spatial Hadoop Image Processing
Framework for Raster Data Processing

Oracle Spatial Hadoop Image Processing Framework allows the creation of new
combined images resulting from a series of processing phases in parallel.

It includes the following features:

• HDFS Images storage, where every block size split is stored as a separate tile,
ready for future independent processing

• Subset, user-defined, and map algebra operations processed in parallel using the
MapReduce framework

• Ability to add custom processing classes to be executed in the mapping or
reducing phases in parallel in a transparent way

• Fast processing of georeferenced images

• Support for GDAL formats, multiple bands images, DEMs (digital elevation
models), multiple pixel depths, and SRIDs

• Java API providing access to framework operations; useful for web services or
standalone Java applications

• Framework for testing and debugging user processing classes in the local
environment

The Oracle Spatial Hadoop Image Processing Framework consists of two modules, a
Loader and Processor, each one represented by a Hadoop job running on different
stages in a Hadoop cluster, as represented in the following diagram. Also, you can
load and process the images using the Image Server web application, and you can
use the Java API to expose the framework’s capabilities.

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

2-5

For installation and configuration information, see:

• Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance

• Installing and Configuring the Big Data Spatial Image Processing Framework

• Image Loader

• Image Processor

2.3.1 Image Loader
The Image Loader is a Hadoop job that loads a specific image or a group of images
into HDFS.

• While importing, the image is tiled and stored as an HDFS block.

• GDAL is used to tile the image.

• Each tile is loaded by a different mapper, so reading is parallel and faster.

• Each tile includes a certain number of overlapping bytes (user input), so that the
tiles cover area from the adjacent tiles.

• A MapReduce job uses a mapper to load the information for each tile. There are 'n'
number of mappers, depending on the number of tiles, image resolution and block
size.

• A single reduce phase per image puts together all the information loaded by the
mappers and stores the images into a special .ohif format, which contains the
resolution, bands, offsets, and image data. This way the file offset containing each
tile and the node location is known.

• Each tile contains information for every band. This is helpful when there is a need
to process only a few tiles; then, only the corresponding blocks are loaded.

The following diagram represents an Image Loader process:

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

2-6

2.3.2 Image Processor
The Image Processor is a Hadoop job that filters tiles to be processed based on the
user input and performs processing in parallel to create a new image.

• Processes specific tiles of the image identified by the user. You can identify one,
zero, or multiple processing classes. These classes are executed in the mapping
or reducing phase, depending on your configuration. For the mapping phase, after
the execution of processing classes, a mosaic operation is performed to adapt the
pixels to the final output format requested by the user. If no mosaic operation was
requested, the input raster is sent to reduce phase as is. For reducer phase, all the
tiles are put together into a GDAL data set that is input for user reduce processing
class, where final output may be changed or analyzed according to user needs.

• A mapper loads the data corresponding to one tile, conserving data locality.

• Once the data is loaded, the mapper filters the bands requested by the user.

• Filtered information is processed and sent to each mapper in the reduce phase,
where bytes are put together and a final processed image is stored into HDFS or
regular File System depending on the user request.

The following diagram represents an Image Processor job:

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

2-7

2.4 Loading an Image to Hadoop Using the Image Loader
The first step to process images using the Oracle Spatial and Graph Hadoop Image
Processing Framework is to actually have the images in HDFS, followed by having the
images separated into smart tiles.

This allows the processing job to work separately on each tile independently. The
Image Loader lets you import a single image or a collection of them into HDFS in
parallel, which decreases the load time.

The Image Loader imports images from a file system into HDFS, where each block
contains data for all the bands of the image, so that if further processing is required on
specific positions, the information can be processed on a single node.

• Image Loading Job

• Input Parameters

• Output Parameters

Chapter 2
Loading an Image to Hadoop Using the Image Loader

2-8

2.4.1 Image Loading Job
The image loading job has its custom input format that splits the image into related
image splits. The splits are calculated based on an algorithm that reads square blocks
of the image covering a defined area, which is determined by

area = ((blockSize - metadata bytes) / number of bands) / bytes per pixel.

For those pieces that do not use the complete block size, the remaining bytes are
refilled with zeros.

Splits are assigned to different mappers where every assigned tile is read using GDAL
based on the ImageSplit information. As a result an ImageDataWritable instance is
created and saved in the context.

The metadata set in the ImageDataWritable instance is used by the processing classes
to set up the tiled image in order to manipulate and process it. Since the source
images are read from multiple mappers, the load is performed in parallel and faster.

After the mappers finish reading, the reducer picks up the tiles from the context and
puts them together to save the file into HDFS. A special reading process is required to
read the image back.

2.4.2 Input Parameters
The following input parameters are supplied to the Hadoop command:

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageloader.jar
 -files <SOURCE_IMGS_PATH>
 -out <HDFS_OUTPUT_FOLDER>
 -gdal <GDAL_LIB_PATH>
 -gdalData <GDAL_DATA_PATH>
 [-overlap <OVERLAPPING_PIXELS>]
 [-thumbnail <THUMBNAIL_PATH>]
 [-expand <false|true>]
 [-extractLogs <false|true>]
 [-logFilter <LINES_TO_INCLUDE_IN_LOG>]
 [-pyramid <OUTPUT_DIRECTORY, LEVEL, [RESAMPLING]>]

Where:

SOURCE_IMGS_PATH is a path to the source image(s) or folder(s). For multiple inputs
use a comma separator. This path must be accessible via NFS to all nodes in the
cluster.

HDFS_OUTPUT_FOLDER is the HDFS output folder where the loaded images are stored.
OVERLAPPING_PIXELS is an optional number of overlapping pixels on the borders of
each tile, if this parameter is not specified a default of two overlapping pixels is
considered.
GDAL_LIB_PATH is the path where GDAL libraries are located.
GDAL_DATA_PATH is the path where GDAL data folder is located. This path must be
accessible through NFS to all nodes in the cluster.

Chapter 2
Loading an Image to Hadoop Using the Image Loader

2-9

THUMBNAIL_PATH is an optional path to store a thumbnail of the loaded image(s). This
path must be accessible through NFS to all nodes in the cluster and must have
write access permission for yarn users.
-expand controls whether the HDFS path of the loaded raster expands the source
path, including all directories. If you set this to false, the .ohif file is stored directly
in the output directory (specified using the -o option) without including that
directory’s path in the raster.
-extractLogs controls whether the logs of the executed application should be
extracted to the system temporary directory. By default, it is not enabled. The
extraction does not include logs that are not part of Oracle Framework classes.
-logFilter <LINES_TO_INCLUDE_IN_LOG> is a comma-separated String that lists all the
patterns to include in the extracted logs, for example, to include custom processing
classes packages.
-pyramid <OUTPUT_DIRECTORY, LEVEL, [RESAMPLING]> allows the creation of pyramids
while making the initial raster load. An OUPUT_DIRECTORY must be provided to
store the local pyramids before uploading to HDFS; pyramids are loaded in the
same HDFSA directory requested for load. A pyramid LEVEL must be provided to
indicate how many pyramids are required for each raster. A RESAMPLING
algorithm is optional to specify the method used to execute the resampling; if none
is set, then BILINEAR is used.

For example, the following command loads all the georeferenced images under the
images folder and adds an overlapping of 10 pixels on every border possible. The
HDFS output folder is ohiftest and thumbnail of the loaded image are stored in the
processtest folder.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageloader.jar -files /opt/shareddir/spatial/demo/imageserver/images/hawaii.tif -
out ohiftest -overlap 10 -thumbnail /opt/shareddir/spatial/processtest –gdal /opt/
oracle/oracle-spatial-graph/spatial/raster/gdal/lib –gdalData /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command is
being executed. This properties file may list all the configuration properties that you
want to override. For example,

mapreduce.map.memory.mb=2560
mapreduce.reduce.memory.mb=2560
mapreduce.reduce.java.opts=-Xmx2684354560
mapreduce.map.java.opts=-Xmx2684354560

Java heap memory (java.opts properties) must be equal to or less than the total
memory assigned to mappers and reducers (mapreduce.map.memory and
mapreduce.reduce.memory). Thus, if you increase Java heap memory, you might also
need to increase the memory for mappers and reducers.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD_LIBRARY_PATH=$ALLACCESSDIR/gdal/native

2.4.3 Output Parameters
The reducer generates two output files per input image. The first one is the .ohif file
that concentrates all the tiles for the source image, each tile may be processed as a

Chapter 2
Loading an Image to Hadoop Using the Image Loader

2-10

separated instance by a processing mapper. Internally each tile is stored as a HDFS
block, blocks are located in several nodes, one node may contain one or more blocks
of a specific .ohif file. The .ohif file is stored in user specified folder with -out flag,
under the /user/<USER_EXECUTING_JOB>/OUT_FOLDER/
<PARENT_DIRECTORIES_OF_SOURCE_RASTER> if the flag –expand was not used. Otherwise,
the .ohif file will be located at /user/<USER_EXECUTING_JOB>/OUT_FOLDER/, and the file
can be identified as original_filename.ohif.

The second output is a related metadata file that lists all the pieces of the image and
the coordinates that each one covers. The file is located in HDFS under the metadata
location, and its name is hash generated using the name of the ohif file. This file is for
Oracle internal use only, and lists important metadata of the source raster. Some
example lines from a metadata file:

srid:26904
datatype:1
resolution:27.90809458890406,-27.90809458890406
file:/user/hdfs/ohiftest/opt/shareddir/spatial/data/rasters/hawaii.tif.ohif
bands:3
mbr:532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
0,532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
thumbnailpath:/opt/shareddir/spatial/thumb/

If the -thumbnail flag was specified, a thumbnail of the source image is stored in the
related folder. This is a way to visualize a translation of the .ohif file. Job execution
logs can be accessed using the command yarn logs -applicationId <applicationId>.

2.5 Processing an Image Using the Oracle Spatial Hadoop
Image Processor

Once the images are loaded into HDFS, they can be processed in parallel using
Oracle Spatial Hadoop Image Processing Framework.

You specify an output, and the framework filters the tiles to fit into that output,
processes them, and puts them all together to store them into a single file. Map
algebra operations are also available and, if set, will be the first part of the processing
phase. You can specify additional processing classes to be executed before the final
output is created by the framework.

The image processor loads specific blocks of data, based on the input (mosaic
description or a single raster), and selects only the bands and pixels that fit into the
final output. All the specified processing classes are executed and the final output is
stored into HDFS or the file system depending on the user request.

• Image Processing Job

• Input Parameters

• Job Execution

• Processing Classes and ImageBandWritable

• Map Algebra Operations

• Multiple Raster Algebra Operations

• Pyramids

• Output

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-11

2.5.1 Image Processing Job
The image processing job has different flows depending on the type of processing
requested by the user.

• Default Image Processing Job Flow: executed for processing that includes a
mosaic operation, single raster operation, or basic multiple raster operation.

• Multiple Raster Image Processing Job Flow: executed for processing that includes
complex multiple raster algebra operations.

• Default Image Processing Job Flow

• Multiple Raster Image Processing Job Flow

2.5.1.1 Default Image Processing Job Flow
The default image processing job flow is executed when any of the following
processing is requested:

• Mosaic operation

• Single raster operation

• Basic multiple raster algebra operation

The flow has its own custom FilterInputFormat, which determines the tiles to be
processed, based on the SRID and coordinates. Only images with same data type
(pixel depth) as the mosaic input data type (pixel depth) are considered. Only the tiles
that intersect with coordinates specified by the user for the mosaic output are included.
For processing of a single raster or basic multiple raster algebra operation (excluding
mosaic), the filter includes all the tiles of the input rasters, because the processing will
be executed on the complete images. Once the tiles are selected, a custom
ImageProcessSplit is created for each image.

When a mapper receives the ImageProcessSplit, it reads the information based on
what the ImageSplit specifies, performs a filter to select only the bands indicated by
the user, and executes the list of map operations and of processing classes defined in
the request, if any.

Each mapper process runs in the node where the data is located. After the map
algebra operations and processing classes are executed, a validation verifies if the
user is requesting mosaic operation or if analysis includes the complete image; and if
a mosaic operation is requested, the final process executes the operation. The mosaic
operation selects from every tile only the pixels that fit into the output and makes the
necessary resolution changes to add them in the mosaic output. The single process
operation just copies the previous raster tile bytes as they are. The resulting bytes are
stored in NFS to be recovered by the reducer.

A single reducer picks the tiles and puts them together. If you specified any basic
multiple raster algebra operation, then it is executed at the same time the tiles are
merged into the final output. This operation affects only the intersecting pixels in the
mosaic output, or in every pixel if no mosaic operation was requested. If you specified
a reducer processing class, the GDAL data set with the output raster is sent to this
class for analysis and processing. If you selected HDFS output, the ImageLoader is
called to store the result into HDFS. Otherwise, by default the image is prepared using
GDAL and is stored in the file system (NFS).

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-12

2.5.1.2 Multiple Raster Image Processing Job Flow
The multiple raster image processing job flow is executed when a complex multiple
raster algebra operation is requested. It applies to rasters that have the same MBR,
pixel type, pixel size, and SRID, since these operations are applied pixel by pixel in the
corresponding cell, where every pixel represents the same coordinates.

The flow has its own custom MultipleRasterInputFormat, which determines the tiles to
be processed, based on the SRID and coordinates. Only images with same MBR,
pixel type, pixel size and SRID are considered. Only the rasters that match with
coordinates specified by the first raster in the catalog are included. All the tiles of the
input rasters are considered, because the processing will be executed on the complete
images.

Once the tiles are selected, a custom MultipleRasterSplit is created. This split
contains a small area of every original tile, depending on the block size, because now
all the rasters must be included in a split, even if it is only a small area. Each of these
is called an IndividualRasterSplit, and they are contained in a parent
MultipleRasterSplit.

When a mapper receives the MultipleRasterSplit, it reads the information of all the
raster´s tiles that are included in the parent split, performs a filter to select only the
bands indicated by the user and only the small corresponding area to process in this
specific mapper, and then executes the complex multiple raster algebra operation.

Data locality may be lost in this part of the process, because multiple rasters are
included for a single mapper that may not be in the same node. The resulting bytes for
every pixel are put in the context to be recovered by the reducer.

A single reducer picks pixel values and puts them together. If you specified a reducer
processing class, the GDAL data set with the output raster is sent to this class for
analysis and processing. The list of tiles that this class receives is null for this
scenario, and the class can only work with the output data set. If you selected HDFS
output, the ImageLoader is called to store the result into HDFS. Otherwise, by default
the image is prepared using GDAL and is stored in the file system (NFS).

2.5.2 Input Parameters
The following input parameters can be supplied to the hadoop command:

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar
 -config <MOSAIC_CONFIG_PATH>
 -gdal <GDAL_LIBRARIES_PATH>
 -gdalData <GDAL_DATA_PATH>
 [-catalog <IMAGE_CATALOG_PATH>]
 [-usrlib <USER_PROCESS_JAR_PATH>]
 [-thumbnail <THUMBNAIL_PATH>]
 [-nativepath <USER_NATIVE_LIBRARIES_PATH>]
 [-params <USER_PARAMETERS>]
 [-file <SINGLE_RASTER_PATH>]

Where:

MOSAIC_CONFIG_PATH is the path to the mosaic configuration xml, that defines the
features of the output.
GDAL_LIBRARIES_PATH is the path where GDAL libraries are located.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-13

GDAL_DATA_PATH is the path where the GDAL data folder is located. This path must
be accessible via NFS to all nodes in the cluster.
IMAGE_CATALOG_PATH is the path to the catalog xml that lists the HDFS image(s) to be
processed. This is optional because you can also specify a single raster to process
using –file flag.
USER_PROCESS_JAR_PATH is an optional user-defined jar file or comma-separated list of
jar files, each of which contains additional processing classes to be applied to the
source images.
THUMBNAIL_PATH is an optional flag to activate the thumbnail creation of the loaded
image(s). This path must be accessible via NFS to all nodes in the cluster and is
valid only for an HDFS output.
USER_NATIVE_LIBRARIES_PATH is an optional comma-separated list of additional native
libraries to use in the analysis. It can also be a directory containing all the native
libraries to load in the application.
USER_PARAMETERS is an optional key/value list used to define input data for user
processing classes. Use a semicolon to separate parameters. For example:
azimuth=315;altitude=45

SINGLE_RASTER_PATH is an optional path to the .ohif file that will be processed by the
job. If this is set, you do not need to set a catalog.

For example, the following command will process all the files listed in the catalog file
input.xml file using the mosaic output definition set in testFS.xml file.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar -catalog /opt/shareddir/spatial/demo/imageserver/images/input.xml
-config /opt/shareddir/spatial/demo/imageserver/images/testFS.xml -thumbnail /opt/
shareddir/spatial/processtest –gdal /opt/oracle/oracle-spatial-graph/spatial/raster/
gdal/lib –gdalData /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command is
being executed.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD_LIBRARY_PATH=$ALLACCESSDIR/gdal/native

• Catalog XML Structure

• Mosaic Definition XML Structure

2.5.2.1 Catalog XML Structure
The following is an example of input catalog XML used to list every source image
considered for mosaic operation generated by the image processing job.

-<catalog>
 -
</catalog>

A <catalog> element contains the list of <image> elements to process.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-14

Each <image> element defines a source image or a source folder within the <raster>
element. All the images within the folder are processed.

The <bands> element specifies the number of bands of the image, The datatype
attribute has the raster data type and the config attribute specifies which band should
appear in the mosaic output band order. For example: 3,1,2 specifies that mosaic
output band number 1 will have band number 3 of this raster, mosaic band number 2
will have source band 1, and mosaic band number 3 will have source band 2. This
order may change from raster to raster.

2.5.2.2 Mosaic Definition XML Structure
The following is an example of a mosaic configuration XML used to define the features
of the output generated by the image processing job.

-<mosaic exec="false">
 -<output>
 <SRID>26904</SRID>
 <directory type="FS">/opt/shareddir/spatial/processOutput</directory>
 <!--directory type="HDFS">newData</directory-->
 <tempFSFolder>/opt/shareddir/spatial/tempOutput</tempFSFolder>
 <filename>littlemap</filename>
 <format>GTIFF</format>
 <width>1600</width>
 <height>986</height>
 <algorithm order="0">2</algorithm>
 <bands layers="3" config="3,1,2"/>
 <nodata>#000000</nodata>
 <pixelType>1</pixelType>
 </output>
 -<crop>
 -<transform>
 356958.985610072,280.38843650364862,0,2458324.0825054757,0,-280.38843650364862 </
transform>
 </crop>
<process><classMapper
params="threshold=454,2954">oracle.spatial.hadoop.twc.FarmTransformer</
classMapper><classReducer
params="plot_size=100400">oracle.spatial.hadoop.twc.FarmAlignment</classReducer></
process>
 <operations>
 <localif operator="<" operand="3" newvalue="6"/>
 <localadd arg="5"/>
 <localsqrt/>
 <localround/>
 </operations>
</mosaic>

The <mosaic> element defines the specifications of the processing output. The exec
attribute specifies if the processing will include mosaic operation or not. If set to
“false”, a mosaic operation is not executed and a single raster is processed; if set to
“true” or not set, a mosaic operation is performed. Some of the following elements are
required only for mosaic operations and ignored for single raster processing.

The <output> element defines the features such as <SRID> considered for the output.
All the images in different SRID are converted to the mosaic SRID in order to decide if
any of its tiles fit into the mosaic or not. This element is not required for single raster
processing, because the output rster has the same SRID as the input.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-15

The <directory> element defines where the output is located. It can be in an HDFS or
in regular FileSystem (FS), which is specified in the tag type.

The <tempFsFolder> element sets the path to store the mosaic output temporarily. The
attribute delete=”false” can be specified to keep the output of the process even if the
loader was executed to store it in HDFS.

The <filename> and <format> elements specify the output filename. <filename> is not
required for single raster process; and if it is not specified, the name of the input file
(determined by the -file attribute during the job call) is used for the output file.
<format> is not required for single raster processing, because the output raster has the
same format as the input.

The <width> and <height> elements set the mosaic output resolution. They are not
required for single raster processing, because the output raster has the same
resolution as the input.

The <algorithm> element sets the order algorithm for the images. A 1 order means, by
source last modified date, and a 2 order means, by image size. The order tag
represents ascendant or descendant modes. (These properties are for mosaic
operations where multiple rasters may overlap.)

The <bands> element specifies the number of bands in the output mosaic. Images with
fewer bands than this number are discarded. The config attribute can be used for
single raster processing to set the band configuration for output, because there is no
catalog.

The <nodata> element specifies the color in the first three bands for all the pixels in the
mosaic output that have no value.

The <pixelType> element sets the pixel type of the mosaic output. Source images that
do not have the same pixel size are discarded for processing. This element is not
required for single raster processing: if not specified, the pixel type will be the same as
for the input.

The <crop> element defines the coordinates included in the mosaic output in the
following order: startcoordinateX, pixelXWidth, RotationX, startcoordinateY, RotationY,
and pixelheightY. This element is not required for single raster processing: if not
specified, the complete image is considered for analysis.

The <process> element lists all the classes to execute before the mosaic operation.

The <classMapper> element is used for classes that will be executed during mapping
phase, and the <classReducer> element is used for classes that will be executed during
reduce phase. Both elements have the params attribute, where you can send input
parameters to processing classes according to your needs.

The <operations> element lists all the map algebra operations that will be processed
for this request. This element can also include a request for pyramid operations; for
example:

<operations>
 <pyramid resampling="NEAREST_NEIGHBOR" redLevel="6"/>
</operations>

2.5.3 Job Execution
The first step of the job is to filter the tiles that would fit into the output. As a start, the
location files that hold tile metadata are sent to theInputFormat.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-16

By extracting the pixelType, the filter decides whether the related source image is valid
for processing or not. Based on the user definition made in the catalog xml, one of the
following happens:

• If the image is valid for processing, then the SRID is evaluated next

• If it is different from the user definition, then the MBR coordinates of every tile are
converted into the user SRID and evaluated.

This way, every tile is evaluated for intersection with the output definition.

• For a mosaic processing request, only the intersecting tiles are selected, and a
split is created for each one of them.

• For a single raster processing request, all the tiles are selected, and a split is
created for each one of them.

• For a complex multiple raster algebra processing request, all the tiles are selected
if the MBR and pixel size is the same. Depending on the number of rasters
selected and the blocksize, a specific area of every tile´s raster (which does not
always include the complete original raster tile) is included in a single parent split.

A mapper processes each split in the node where it is stored. (For complex multiple
raster algebra operations, data locality may be lost, because a split contains data from
several rasters.) The mapper executes the sequence of map algebra operations and
processing classes defined by the user, and then the mosaic process is executed if
requested. A single reducer puts together the result of the mappers and, for user-
specified reducing processing classes, sets the output data set to these classes for
analysis or process. Finally, the process stores the image into FS or HDFS upon user
request. If the user requested to store the output into HDFS, then the ImageLoader job
is invoked to store the image as an .ohif file.

By default, the mappers and reducers are configured to get 1 GB of JVM, but you can
override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command is
being executed.

2.5.4 Processing Classes and ImageBandWritable
The processing classes specified in the catalog XML must follow a set of rules to be
correctly processed by the job. All the processing classes in the mapping phase must
implement the ImageProcessorInterface interface. For the reducer phase, they must
implement the ImageProcessorReduceInterface interface.

When implementing a processing class, you may manipulate the raster using its object
representation ImageBandWritable. An example of an processing class is provided with
the framework to calculate the slope on DEMs. You can create mapping operations,
for example, to transforms the pixel values to another value by a function. The
ImageBandWritable instance defines the content of a tile, such as resolution, size, and
pixels. These values must be reflected in the properties that create the definition of the
tile. The integrity of the mosaic output depends on the correct manipulation of these
properties.

The ImageBandWritable instance defines the content of a tile, such as resolution, size,
and pixels. These values must be reflected in the properties that create the definition
of the tile. The integrity of the output depends on the correct manipulation of these
properties.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-17

Table 2-1 ImageBandWritable Properties

Type - Property Description

IntWritable dstWidthSize Width size of the tile

IntWritable dstHeightSize Height size of the tile

IntWritable bands Number of bands in the tile

IntWritable dType Data type of the tile

IntWritable offX Starting X pixel, in relation to the source image

IntWritable offY Starting Y pixel, in relation to the source image

IntWritable totalWidth Width size of the source image

IntWritable totalHeight Height size of the source image

IntWritable bytesNumber Number of bytes containing the pixels of the tile and stored into
baseArray

BytesWritable[] baseArray Array containing the bytes representing the tile pixels, each cell
represents a band

IntWritable[][]
basePaletteArray

Array containing the int values representing the tile palette, each
array represents a band. Each integer represents an entry for
each color in the color table, there are four entries per color

IntWritable[] baseColorArray Array containing the int values representing the color
interpretation, each cell represents a band

DoubleWritable[]
noDataArray

Array containing the NODATA values for the image, each cell
contains the value for the related band

ByteWritable isProjection Specifies if the tile has projection information with
Byte.MAX_VALUE

ByteWritable isTransform Specifies if the tile has the geo transform array information with
Byte.MAX_VALUE

ByteWritable isMetadata Specifies if the tile has metadata information with
Byte.MAX_VALUE

IntWritable projectionLength Specifies the projection information length

BytesWritable projectionRef Specifies the projection information in bytes

DoubleWritable[]
geoTransform

Contains the geo transform array

IntWritable metadataSize Number of metadata values in the tile

IntWritable[]
metadataLength

Array specifying the length of each metadataValue

BytesWritable[] metadata Array of metadata of the tile

GeneralInfoWritable
mosaicInfo

The user-defined information in the mosaic xml. Do not modify
the mosaic output features. Modify the original xml file in a new
name and run the process using the new xml

MapWritable extraFields Map that lists key/value pairs of parameters specific to every tile
to be passed to the reducer phase for analysis

Processing Classes and Methods

When modifying the pixels of the tile, first get the band information into an array using
the following method:

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-18

byte [] bandData1 =(byte []) img.getBand(0);

The bytes representing the tile pixels of band 1 are now in the bandData1 array. The
base index is zero.

The getBand(int bandId) method will get the band of the raster in the specified bandId
position. You can cast the object retrieved to the type of array of the raster; it could be
byte, short (unsigned int 16 bits, int 16 bits), int (unsigned int 32 bits, int 32 bits), float
(float 32 bits), or double (float 64 bits).

With the array of pixels available, it is possible now to transform them upon a user
request.

After processing the pixels, if the same instance of ImageBandWritable must be used,
then execute the following method:

img.removeBands;

This removes the content of previous bands, and you can start adding the new bands.
To add a new band use the following method:

img.addBand(Object band);

Otherwise, you may want to replace a specific band by using trhe following method:

img.replaceBand(Object band, int bandId)

In the preceding methods, band is an array containing the pixel information, and bandID
is the identifier of the band to be replaced.. Do not forget to update the instance size,
data type, bytesNumber and any other property that might be affected as a result of
the processing operation. Setters are available for each property.

• Location of the Classes and Jar Files

2.5.4.1 Location of the Classes and Jar Files
All the processing classes must be contained in a single jar file if you are using the
Oracle Image Server Console. The processing classes might be placed in different jar
files if you are using the command line option.

When new classes are visible in the classpath, they must be added to the mosaic XML
in the <process><classMapper> or <process><classReducer> section. Every <class>
element added is executed in order of appearance: for mappers, just before the final
mosaic operation is performed; and for reducers, just after all the processed tiles are
put together in a single data set.

2.5.5 Map Algebra Operations
You can process local map algebra operations on the input rasters, where pixels are
altered depending on the operation. The order of operations in the configuration XML
determines the order in which the operations are processed. After all the map algebra
operations are processed, the processing classes are run, and finally the mosaic
operation is performed.

The following map algebra operations can be added in the <operations> element in the
mosaic configuration XML, with the operation name serving as an element name. (The
data types for which each operation is supported are listed in parentheses.)

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-19

• localnot: Gets the negation of every pixel, inverts the bit pattern. If the result is a
negative value and the data type is unsigned, then the NODATA value is set. If the
raster does not have a specified NODATA value, then the original pixel is set.
(Byte, Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits)

• locallog: Returns the natural logarithm (base e) of a pixel. If the result is NaN,
then original pixel value is set; if the result is Infinite, then the NODATA value is
set. If the raster does not have a specified NODATA value, then the original pixel
is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32
bits, Float 64 bits)

• locallog10: Returns the base 10 logarithm of a pixel. If the result is NaN, then the
original pixel value is set; if the result is Infinite, then the NODATA value is set. If
the raster does not have a specified NODATA value, then the original pixel is set.
(Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits,
Float 64 bits)

• localadd: Adds the specified value as argument to the pixel .Example: <localadd
arg="5"/>. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float
32 bits, Float 64 bits)

• localdivide: Divides the value of each pixel by the specified value set as
argument. Example: <localdivide arg="5"/>. (Unsigned int 16 bits, Unsigned int
32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localif: Modifies the value of each pixel based on the condition and value
specified as argument. Valid operators: = , <, >, >=, < !=. Example:: <localif
operator="<" operand="3" newvalue="6"/>, which modifies all the pixels whose
value is less than 3, setting the new value to 6. (Unsigned int 16 bits, Unsigned int
32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localmultiply: Multiplies the value of each pixel times the value specified as
argument. Example: <localmultiply arg="5"/>. (Unsigned int 16 bits, Unsigned int
32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localpow: Raises the value of each pixel to the power of the value specified as
argument. Example: <localpow arg="5"/>. If the result is infinite, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

• localsqrt: Returns the correctly rounded positive square root of every pixel. If the
result is infinite or NaN, the NODATA value is set to this pixel. If the raster does
not have a specified NODATA value, then the original pixel is set. (Unsigned int 16
bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localsubstract: Subtracts the value specified as argument to every pixel value.
Example: <localsubstract arg="5"/>. (Unsigned int 16 bits, Unsigned int 32 bits,
Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localacos: Calculates the arc cosine of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

• localasin: Calculates the arc sine of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-20

• localatan: Calculates the arc tangent of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

• localcos: Calculates the cosine of a pixel. If the result is NaN, the NODATA value
is set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32
bits, Float 32 bits, Float 64 bits)

• localcosh: Calculates the hyperbolic cosine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localsin: Calculates the sine of a pixel. If the result is NaN, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32
bits, Float 32 bits, Float 64 bits)

• localtan: Calculates the tangent of a pixel. The pixel is not modified if the cosine of
this pixel is 0. If the result is NaN, the NODATA value is set to this pixel. If the
raster does not have a specified NODATA value, then the original pixel is set.
(Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits,
Float 64 bits)

• localsinh: Calculates the arc hyperbolic sine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localtanh: Calculates the hyperbolic tangent of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

• localdefined: Maps an integer typed pixel to 1 if the cell value is not NODATA;
otherwise, 0. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits,
Float 32 bits)

• localundefined: Maps an integer typed Raster to 0 if the cell value is not NODATA;
otherwise, 1. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits)

• localabs: Returns the absolute value of signed pixel. If the result is Infinite, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Int 16 bits, Int 32 bits, Float 32 bits, Float 64
bits)

• localnegate: Multiplies by -1 the value of each pixel. (Int 16 bits, Int 32 bits, Float
32 bits, Float 64 bits)

• localceil: Returns the smallest value that is greater than or equal to the pixel
value and is equal to a mathematical integer. If the result is Infinite, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Float 32 bits, Float 64 bits)

• localfloor: Returns the smallest value that is less than or equal to the pixel value
and is equal to a mathematical integer. If the result is Infinite, the NODATA value
is set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Float 32 bits, Float 64 bits)

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-21

• localround: Returns the closest integer value to every pixel. (Float 32 bits, Float 64
bits)

2.5.6 Multiple Raster Algebra Operations
You can process raster algebra operations that involve more than one raster, where
pixels are altered depending on the operation and taking in consideration the pixels
from all the involved rasters in the same cell.

Only one operation can be processed at a time and it is defined in the configuration
XML using the <multipleops> element. Its value is the operation to process.

There are two types of operations:

• Basic Multiple Raster Algebra Operations are executed in the reduce phase right
before the Reduce User Processing classes.

• Complex Multiple Raster Algebra Operations are processed in the mapping phase.

• Basic Multiple Raster Algebra Operations

• Complex Multiple Raster Algebra Operations

2.5.6.1 Basic Multiple Raster Algebra Operations
Basic multiple raster algebra operations are executed in the reducing phase of the job.

They can be requested along with a mosaic operation or just a process request. If
requested along with a mosaic operation, the input rasters must have the same MBR,
pixel size, SRID and data type.

When a mosaic operation is performed, only the intersecting pixels (pixels that are
identical in both rasters) are affected.

The operation is processed at the time that mapping tiles are put together in the output
dataset, the pixel values that intersect (if a mosaic operation was requested) or all the
pixels (when mosaic is not requested) are altered according to the requested
operation.

The order in which rasters are added to the data set is the mosaic operation order if it
was requested; otherwise, it is the order of appearance in the catalog.

The following basic multiple raster algebra operations are available:

• add: Adds every pixel in the same cell for the raster sequence.

• substract: Subtracts every pixel in the same cell for the raster sequence.

• divide: Divides every pixel in the same cell for the raster sequence.

• multiply: Multiplies every pixel in the same cell for the raster sequence.

• min: Assigns the minimum value of the pixels in the same cell for the raster
sequence.

• max: Assigns the maximum value of the pixels in the same cell for the raster
sequence.

• mean: Calculates the mean value for every pixel in the same cell for the raster
sequence.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-22

• and: Processes binary “and” operation on every pixel in the same cell for raster
sequence, “and“ operation copies a bit to the result if it exists in both operands.

• or: Processes binary “or” operation on every pixel in the same cell for raster
sequence, “or” operation copies a bit if it exists in either operand.

• xor: Processes binary “xor” operation on every pixel in the same cell for raster
sequence, “xor” operation copies the bit if it is set in one operand but not both.

2.5.6.2 Complex Multiple Raster Algebra Operations
Complex multiple raster algebra operations are executed in the mapping phase of the
job, and a job can only process this operation; any request for resizing, changing the
SRID, or custom mapping must have been previously executed. The input for this job
is a series of rasters with the same MBR, SRID, data type, and pixel size.

The tiles for this job include a piece of all the rasters in the catalog. Thus, every
mapper has access to an area of cells in all the rasters, and the operation is
processed there. The resulting pixel for every cell is written in the context, so that
reducer can put results in the output data set before processing the reducer
processing classes.

The order in which rasters are considered to evaluate the operation is the order of
appearance in the catalog.

The following complex multiple raster algebra operations are available:

• combine: Assigns a unique output value to each unique combination of input values
in the same cell for the raster sequence.

• majority: Assigns the value within the same cells of the rasters sequence that is
the most numerous. If there is a values tie, the one on the right is selected.

• minority: Assigns the value within the same cells of the raster sequence that is the
least numerous. If there is a values tie, the one on the right is selected.

• variety: Assigns the count of unique values at each same cell in the sequence of
rasters.

• mask: Generates a raster with the values from the first raster, but only includes
pixels in which the corresponding pixel in the rest of rasters of the sequence is set
to the specified mask values. Otherwise, 0 is set.

• inversemask: Generates a raster with the values from the first raster, but only
includes pixels in which the corresponding pixel in the rest of rasters of the
sequence is not set to the specified mask values. Otherwise, 0 is set.

• equals: Creates a raster with data type byte, where cell values equal 1 if the
corresponding cells for all input rasters have the same value. Otherwise, 0 is set.

• unequal: Creates a raster with data type byte, where cell values equal 1 if the
corresponding cells for all input rasters have a different value. Otherwise, 0 is set.

• greater: Creates a raster with data type byte, where cell values equal 1 if the cell
value in the first raster is greater than the rest of corresponding cells for all input.
Otherwise, 0 is set.

• greaterorequal: Creates a raster with data type byte, where cell values equal 1 if
the cell value in the first raster is greater or equal than the rest of corresponding
cells for all input. Otherwise, 0 is set.

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-23

• less: Creates a raster with data type byte, where cell values equal 1 if the cell
value in the first raster is less than the rest of corresponding cells for all input.
Otherwise, 0 is set.

• lessorequal: Creates a raster with data type byte, where cell values equal 1 if the
cell value in the first raster is less or equal than the rest of corresponding cells for
all input. Otherwise, 0 is set.

2.5.7 Pyramids
Pyramids are subobjects of a raster object that represent the raster image or raster
data at differing sizes and degrees of resolution.

The size is usually related to the amount of time that an application needs to retrieve
and display an image, particularly over the web. That is, the smaller the image size,
the faster it can be displayed; and as long as detailed resolution is not needed (for
example, if the user has "zoomed out" considerably), the display quality for the smaller
image is adequate.

Pyramid levels represent reduced or increased resolution images that require less or
more storage space, respectively. (Big Data Spatial and Graph supports only reduced
resolution pyramids.) A pyramid level of 0 indicates the original raster data; that is,
there is no reduction in the image resolution and no change in the storage space
required. Values greater than 0 (zero) indicate increasingly reduced levels of image
resolution and reduced storage space requirements.

A single raster is processed for each pyramid request, and the following parameters
apply:

• Pyramid level (required): the maximum reduction level; that is, the number of
pyramid levels to create at a reduced size than the original object. For example,
redLevel=”6” causes pyramid levels to be created for levels 0 through 5.

The dimension sizes at each lower level are: r(n) = r(n - 1)/2 and c(n) = c(n -
1)/2 where:

r(n) and c(n) are the row and column sizes for a pyramid at level n

The smaller of the row and column dimension sizes of the top-level overview is
between 64 and 128 (maximum reduced-resolution level): (int)(log2(a/64))
where a is the smaller of the original row or column dimension size.

If an rLevel value greater than the maximum reduced-resolution level is specified,
the rLevel value is set to the maximum reduced-resolution level.

• Resampling algorithm: the resampling method to use.

Must be one of the following: NEAREST_NEIGHBOR, BILINEAR, AVERAGE4, AVERAGE16.
(BILINEAR and AVERAGE4 have the same effect.) If no resampling algorithm is
specified, BILINEAR is used by default.

Pyramids can be created while loading multiple rasters or processing a single raster:

• While loading the rasters in HDFS, by adding the -pyramid parameter to the loader
command line call or by using the API loader.addPyramid()

• For processing a single raster, by adding the operation in the user request XML or
by using the API processor.addPyramid()

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-24

2.5.8 Output
When you specify an HDFS directory in the configuration XML, the output generated is
an .ohif file as in the case of an ImageLoader job,

When the user specifies a FS directory in the configuration XML, the output generated
is an image with the filename and type specified and is stored into regular FileSystem.

In both the scenarios, the output must comply with the specifications set in the
configuration XML. The job execution logs can be accessed using the command yarn
logs -applicationId <applicationId>.

2.6 Loading and Processing an Image Using the Oracle
Spatial Hadoop Raster Processing API

The framework provides a raster processing API that lets you load and process rasters
without creating XML but instead using a Java application. The application can be
executed inside the cluster or on a remote node.

The API provides access to the framework operations, and is useful for web service or
standalone Java applications.

To execute any of the jobs, a HadoopConfiguration object must be created. This object
is used to set the necessary configuration information (such as the jar file name and
the GDAL paths) to create the job, manipulate rasters, and execute the job. The basic
logic is as follows:

 //Creates Hadoop Configuration
 HadoopConfiguration hadoopConf = new HadoopConfiguration();
 //Assigns GDAL_DATA location based on specified SHAREDDIR, this data folder is
required by gdal to look for data tables that allow SRID conversions
 String gdalData = sharedDir + ProcessConstants.DIRECTORY_SEPARATOR + "data";
 hadoopConf.setGdalDataPath(gdalData);
 //Sets jar name for processor
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");
 //Creates the job
 RasterProcessorJob processor = (RasterProcessorJob)
hadoopConf.createRasterProcessorJob();

If the API is used on a remote node, you can set properties in the Hadoop
Configuration object to connect to the cluster. For example:

 //Following config settings are required for standalone execution. (REMOTE
ACCESS)
 hadoopConf.setUser("hdfs");
 hadoopConf.setHdfsPathPrefix("hdfs://den00btb.us.oracle.com:8020");
 hadoopConf.setResourceManagerScheduler("den00btb.us.oracle.com:8030");
 hadoopConf.setResourceManagerAddress("den00btb.us.oracle.com:8032");
 hadoopConf.setYarnApplicationClasspath("/etc/hadoop/conf/,/usr/lib/
hadoop/*,/usr/lib/hadoop/lib/*," +
 "/usr/lib/hadoop-hdfs/*,/usr/lib/hadoop-
hdfs/lib/*,/usr/lib/hadoop-yarn/*," +
 "/usr/lib/hadoop-yarn/lib/*,/usr/lib/hadoop-
mapreduce/*,/usr/lib/hadoop-mapreduce/lib/* ");

Chapter 2
Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

2-25

After the job is created, the properties for its execution must be set depending on the
job type. There are two job classes: RasterLoaderJob to load the rasters into HDFS, and
RasterProcessorJob to process them.

The following example loads a Hawaii raster into the APICALL_HDFS directory. It
creates a thumbnail in a shared folder, and specifies 10 pixels overlapping on each
edge of the tiles.

 private static void executeLoader(HadoopConfiguration hadoopConf){
 hadoopConf.setMapreduceJobJar("hadoop-imageloader.jar");
 RasterLoaderJob loader = (RasterLoaderJob)
hadoopConf.createRasterLoaderJob();
 loader.setFilesToLoad("/net/den00btb/scratch/zherena/hawaii/hawaii.tif");
 loader.setTileOverlap("10");
 loader.setOutputFolder("APICALL");
 loader.setRasterThumbnailFolder("/net/den00btb/scratch/zherena/
processOutput");
 try{
 loader.setGdalPath("/net/den00btb/scratch/zherena/gdal/lib");

 boolean loaderSuccess = loader.execute();
 if(loaderSuccess){
 System.out.println("Successfully executed loader job");
 }
 else{
 System.out.println("Failed to execute loader job");
 }
 }catch(Exception e){
 System.out.println("Problem when trying to execute raster loader " +
e.getMessage());
 }
 }
}

The following example processes the loaded raster.

private static void executeProcessor(HadoopConfiguration hadoopConf){
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");
 RasterProcessorJob processor = (RasterProcessorJob)
hadoopConf.createRasterProcessorJob();

 try{
 processor.setGdalPath("/net/den00btb/scratch/zherena/gdal/lib");
 MosaicConfiguration mosaic = new MosaicConfiguration();
 mosaic.setBands(3);
 mosaic.setDirectory("/net/den00btb/scratch/zherena/processOutput");
 mosaic.setFileName("APIMosaic");
 mosaic.setFileSystem(RasterProcessorJob.FS);
 mosaic.setFormat("GTIFF");
 mosaic.setHeight(3192);
 mosaic.setNoData("#FFFFFF");
 mosaic.setOrderAlgorithm(ProcessConstants.ALGORITMH_FILE_LENGTH);
 mosaic.setOrder("1");
 mosaic.setPixelType("1");
 mosaic.setPixelXWidth(67.457513);
 mosaic.setPixelYWidth(-67.457513);
 mosaic.setSrid("26904");
 mosaic.setUpperLeftX(830763.281336);
 mosaic.setUpperLeftY(2259894.481403);
 mosaic.setWidth(1300);
 processor.setMosaicConfigurationObject(mosaic.getCompactMosaic());

Chapter 2
Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

2-26

 RasterCatalog catalog = new RasterCatalog();
 Raster raster = new Raster();
 raster.setBands(3);
 raster.setBandsOrder("1,2,3");
 raster.setDataType(1);
 raster.setRasterLocation("/user/hdfs/APICALL/net/den00btb/scratch/zherena/
hawaii/hawaii.tif.ohif");
 catalog.addRasterToCatalog(raster);

 processor.setCatalogObject(catalog.getCompactCatalog());
 boolean processorSuccess = processor.execute();
 if(processorSuccess){
 System.out.println("Successfully executed processor job");
 }
 else{
 System.out.println("Failed to execute processor job");
 }
 }catch(Exception e){
 System.out.println("Problem when trying to execute raster processor " +
e.getMessage());
 }
}

In the preceding example, the thumbnail is optional if the mosaic results will be stored
in HDFS. If a processing jar file is specified (used when the additional user processing
classes are specified), the location of the jar file containing these lasses must be
specified. The other parameters are required for the mosaic to be generated
successfully.

Several examples of using the processing API are provided /opt/oracle/oracle-
spatial-graph/spatial/raster/examples/java/src. Review the Java classes to
understand their purpose. You may execute them using the scripts provided for each
example located under /opt/oracle/oracle-spatial-graph/spatial/raster/examples/
java/cmd.

After you have executed the scripts and validated the results, you can modify the Java
source files to experiment on them and compile them using the provided script /opt/
oracle/oracle-spatial-graph/spatial/raster/examples/java/build.xml. Ensure that you
have write access on the /opt/oracle/oracle-spatial-graph/spatial/raster/jlib
directory.

2.7 Using the Oracle Spatial Hadoop Raster Simulator
Framework to Test Raster Processing

When you create custom processing classes. you can use the Oracle Spatial Hadoop
Raster Simulator Framework to do the following by "pretending" to plug them into the
Oracle Raster Processing Framework.

• Develop user processing classes on a local computer

• Avoid the need to deploy user processing classes in a cluster or in Big Data Lite to
verify their correct functioning

• Debug user processing classes

• Use small local data sets

• Create local debug outputs

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

2-27

• Automate unit tests

The Simulator framework will emulate the loading and processing processes in your
local environment, as if they were being executed in a cluster. You only need to create
a Junit test case that loads one or more rasters and processes them according to your
specification in XML or a configuration object.

Tiles are generated according to specified block size, so you must set a block size.
The number of mappers and reducers to execute depends on the number of tiles, just
as in regular cluster execution. OHIF files generated during the loading process are
stored in local directory, because no HDFS is required.

• Simulator (“Mock”) Objects

• User Local Environment Requirements

• Sample Test Cases to Load and Process Rasters

Simulator (“Mock”) Objects

To load rasters and convert them into .OHIF files that can be processed, a
RasterLoaderJobMock must be executed. This class constructor receives the
HadoopConfiguration that must include the block size, the directory or rasters to load,
the output directory to store the OHIF files, and the gdal directory. The parameters
representing the input files and the user configuration vary in terms of how you specify
them:

• Location Strings for catalog and user configuration XML file

• Catalog object (CatalogMock)

• Configuration objects (MosaicProcessConfigurationMock or
SingleProcessConfigurationMock)

• Location for a single raster processing and a user configuration
(MosaicProcessConfigurationMock or SingleProcessConfigurationMock)

User Local Environment Requirements

Before you create test cases, you need to configure your local environment.

1. 1. Ensure that a directory has the native gdal libraries, gdal-data and libproj.

For Linux:

a. Follow the steps in Getting and Compiling the Cartographic Projections Library
to obtain libproj.so.

b. Get the gdal distribution from the Spatial installation on your cluster or
BigDataLite VM at /opt/oracle/oracle-spatial-graph/spatial/raster/gdal.

c. Move libproj.so to your local gdal directory under gdal/lib with the rest of the
native gdal libraries.

For Windows:

a. Get the gdal distribution from your Spatial install on your cluster or BigDataLite
VM at /opt/oracle/oracle-spatial-graph/spatial/raster/examples/java/
mock/lib/gdal_windows.x64.zip.

b. Be sure that Visual Studio installed. When you install it, make sure you select
the Common Tools for Visual C++.

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

2-28

c. Download the PROJ 4 source code, version branch 4.9 from https://
trac.osgeo.org/proj4j.

d. Open the Visual Studio Development Command Prompt and type:

cd PROJ4/src_dir
nmake /f makefile.vc

e. Move proj.dll to your local gdal directory under gdal/bin with the rest of the
native gdal libraries.

2. Add GDAL native libraries to system path.

For Linux: Export LD_LIBRARY_PATH with corresponding native gdal libraries
directory

For Windows: Add to the Path environment variable the native gdal libraries
directory.

3. Ensure that the Java project has Junit libraries.

4. Ensure that the Java project has the following Hadoop jar and Oracle Image
Processing Framework files in the classpath You may get them from the Oracle
BigDataLite VM or from your cluster; these are all jars included in the Hadoop
distribution, and for specific framework jars, go to /opt/oracle/oracle-spatial-
graph/spatial/raster/jlib:

(In the following list, VERSION_INCLUDED refers to the version number from the
Hadoop installation containing the files; it can be a BDA cluster or a BigDataLite
VM.)

commons-collections-VERSION_INCLUDED.jar
commons-configuration-VERSION_INCLUDED.jar
commons-lang-VERSION_INCLUDED.jar
commons-logging-VERSION_INCLUDED.jar
commons-math3-VERSION_INCLUDED.jar
gdal.jar
guava-VERSION_INCLUDED.jar
hadoop-auth-VERSION_INCLUDED-cdhVERSION_INCLUDED.jar
hadoop-common-VERSION_INCLUDED-cdhVERSION_INCLUDED.jar
hadoop-imageloader.jar
hadoop-imagemocking-fwk.jar
hadoop-imageprocessor.jar
hadoop-mapreduce-client-core-VERSION_INCLUDED-cdhVERSION_INCLUDED.jar
hadoop-raster-fwk-api.jar
jackson-core-asl-VERSION_INCLUDED.jar
jackson-mapper-asl-VERSION_INCLUDED.jar
log4j-VERSION_INCLUDED.jar
slf4j-api-VERSION_INCLUDED.jar
slf4j-log4j12-VERSION_INCLUDED.jar

Sample Test Cases to Load and Process Rasters

After your Java project is prepared for your test cases, you can test the loading and
processing of rasters.

The following example creates a class with a setUp method to configure the directories
for gdal, the rasters to load, your configuration XML files, the output thumbnails, ohif
files, and process results. It also configures the block size (8 MB). (A small block size
is recommended for single computers.)

 /**
 * Set the basic directories before starting the test execution

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

2-29

https://trac.osgeo.org/proj4j
https://trac.osgeo.org/proj4j

 */
 @Before
 public void setUp(){
 String sharedDir = "C:\\Users\\zherena\\Oracle Stuff\\Hadoop\\Release 4\
\MockTest";
 String allAccessDir = sharedDir + "/out/";
 gdalDir = sharedDir + "/gdal";
 directoryToLoad = allAccessDir + "rasters";
 xmlDir = sharedDir + "/xmls/";
 outputDir = allAccessDir;
 blockSize = 8;
 }

The following example creates a RasterLoaderJobMock object, and sets the rasters to
load and the output path for OHIF files:

/**
 * Loads a directory of rasters, and generate ohif files and thumbnails
 * for all of them
 * @throws Exception if there is a problem during load process
 */
 @Test
 public void basicLoad() throws Exception {
 System.out.println("***LOAD OF DIRECTORY WITHOUT EXPANSION***");
 HadoopConfiguration conf = new HadoopConfiguration();
 conf.setBlockSize(blockSize);
 System.out.println("Set block size of: " +
 conf.getProperty("dfs.blocksize"));
 RasterLoaderJobMock loader = new RasterLoaderJobMock(conf,
 outputDir, directoryToLoad, gdalDir);
 //Puts the ohif file directly in the specified output directory
 loader.dontExpandOutputDir();
 System.out.println("Starting execution");

System.out.println("---
---");
 loader.waitForCompletion();
 System.out.println("Finished loader");
 System.out.println("LOAD OF DIRECTORY WITHOUT EXPANSION ENDED");
 System.out.println();
 System.out.println();
 }

The following example specifies catalog and user configuration XML files to the
RasterProcessorJobMock object. Make sure your catalog xml points to the correct
location of your local OHIF files.

 /**
 * Creates a mosaic raster by using configuration and catalog xmls.
 * Only two bands are selected per raster.
 * @throws Exception if there is a problem during mosaic process.
 */
 @Test
 public void mosaicUsingXmls() throws Exception {
 System.out.println("***MOSAIC PROCESS USING XMLS***");
 HadoopConfiguration conf = new HadoopConfiguration();
 conf.setBlockSize(blockSize);
 System.out.println("Set block size of: " +
 conf.getProperty("dfs.blocksize"));
 String catalogXml = xmlDir + "catalog.xml";
 String configXml = xmlDir + "config.xml";

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

2-30

 RasterProcessorJobMock processor = new RasterProcessorJobMock(conf, configXml,
catalogXml, gdalDir);
 System.out.println("Starting execution");

System.out.println("---
---");
 processor.waitForCompletion();
 System.out.println("Finished processor");
 System.out.println("***MOSAIC
PROCESS USING XMLS ENDED***");
 System.out.println();
 System.out.println();

Additional examples using the different supported configurations for
RasterProcessorJobMock are provided in /opt/oracle/oracle-spatial-graph/spatial/
raster/examples/java/mock/src.They include an example using an external processing
class, which is also included and can be debugged.

2.8 Oracle Big Data Spatial Raster Processing for Spark
Oracle Big Data Spatial Raster Processing for Apache Spark is a spatial raster
processing API for Java.

This API allows the creation of new combined images resulting from a series of user-
defined processing phases, with the following features:

• HDFS images storage, where every block size split is stored as a separate tile,
ready for future independent processing

• Subset, mosaic, and raster algebra operations processed in parallel using Spark to
divide the processing.

• Support for GDAL formats, multiple bands images, DEMs (digital elevation
models), multiple pixel depths, and SRIDs

• Spark Raster Loader

• Spark SQL Raster Processor

• Using the Spark Raster Processing API

2.8.1 Spark Raster Loader
The first step in using the raster processing for Spark Java API is to have the images
in HDFS, followed by having the images separated into smart tiles. This allows the
processor to work on each tile independently. The Spark raster loader lets you import
a single image or a collection of them into HDFS in parallel, which decreases the load
time. Each block contains data for all the raster bands, so that if further processing is
required on specific pixels, the information can be processed on a single node.

The basic workflow for the Spark raster loader is as follows.

1. GDAL is used to import the rasters, tiling them according to block size and then
storing each tile as an HDFS block.

2. The set of rasters to be loaded is read into a SpatialRasterJavaRDD, which is an
extension of JavaRDD. This RDD is a collection of ImagePieceWritable objects that
represent the information of the tiles to create per raster, based on the number of

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-31

bands, pixel size, HDFS block size, and raster resolution. This is accomplished by
using the custom input format used in the spatial Hadoop loader.

3. The raster information for each tile is loaded. This load is performed by an
executor for each tile, so reading is performed parallel. Each tile includes a certain
number of overlapping bytes (user input), so that the tiles cover area from the
adjacent tiles. There are “n” number of Spark executors, depending on the number
of tiles, image resolution, and block size.

4. The RDD is grouped by key, so that all the tiles that correspond to the same raster
are part of the same record. This RDD is saved as OHIF using the
OhifOutputFormat, which puts together all the information loaded by the executors
and stores the images into a special .ohif format, which contains the resolution,
bands, offsets, and image data. In this way, the file offset containing each tile and
the node location is known. A special reading process is required to read the
image back and is included in the Spark SQL raster processor.

Each tile contains information for every band. This is helpful when there is a need to
process only a few tiles; then, only the corresponding blocks are loaded.

The loader can be configured by setting parameters on the command line or by using
the Spark API.

• Input Parameters to the Spark Raster Loader

• Expected Output of the Spark Raster Loader

2.8.1.1 Input Parameters to the Spark Raster Loader
The following example shows input parameters supplied using the spark-submit
command:

spark-submit
 --class <DRIVER_CLASS>
 --driver-memory <DRIVER_JVM>
 --driver-class-path <DRIVER_CLASSPATH>
 --jars <EXECUTORS_JARS>
 <DRIVER_JAR>
 -files <SOURCE_IMGS_PATH>
 -out <HDFS_OUTPUT_FOLDER>
 -gdal <GDAL_LIB_PATH>
 -gdalData <GDAL_DATA_PATH>
 [-overlap <OVERLAPPING_PIXELS>]
 [-thumbnail <THUMBNAIL_PATH>]
 [-expand <false|true>]

Where:

• DRIVER_CLASS is the class that has the driver code and that Spark will execute.

• DRIVER_JVM is the memory to assign to driver´s JVM.

• DRIVER_CLASSPATH is the classpath for driver class, jars are separated by colon.

• EXECUTOR_JARS is the classpath to be distributed to executors, jars are separated by
comma.

• DRIVER_JAR is the jar that contains the <DRIVER_CLASS> to execute by Spark.

• SOURCE_IMGS_PATH is a path to the source raster(s) or folder(s). For multiple inputs
use a comma separator. This path must be accessible via NFS to all nodes in the
cluster.

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-32

• HDFS_OUTPUT_FOLDER is the HDFS output folder where the loaded images are stored.

• OVERLAPPING_PIXELS is an optional number of overlapping pixels on the borders of
each tile, if this parameter is not specified a default of two overlapping pixels is
considered.

• GDAL_LIB_PATH is the path where GDAL libraries are located.

• GDAL_DATA_PATH is the path where GDAL data folder is located. This path must be
accessible through NFS to all nodes in the cluster.

• THUMBNAIL_PATH is an optional path to store a thumbnail of the loaded image(s).
This path must be accessible through NFS to all nodes in the cluster and must
have write access permission for yarn users.

• -expand controls whether the HDFS path of the loaded raster expands the source
path, including all directories. If you set this to false, the .ohif file is stored directly
in the output directory (specified using the -o option) without including that
directory’s path in the raster.

Each tile contains information for every band. This is helpful when there is a need to
process only a few tiles; then, only the corresponding blocks are loaded.

The loader can be configured by setting parameters on the command line or by using
the Spark API.

2.8.1.2 Expected Output of the Spark Raster Loader
For each input image to the Spark raster loader, there are two output files per input
image.

• The .ohif file that concentrates all the tiles for the source image. Each tile (stored
as a HDFS block) may be processed as a separated instance by a processing
executor. The .ohif file is stored in a user-specified folder with -out flag, under /
user/<USER_EXECUTING_JOB>/OUT_FOLDER/<PARENT_DIRECTORIES_OF_SOURCE_RASTER> if
the flag –expand was not used. Otherwise, the .ohif file will be located at /user/
<USER_EXECUTING_JOB>/OUT_FOLDER/, and the file can be identified as
original_filename.ohif.

• A related metadata file that lists all the pieces of the image and the coordinates
that each one covers. This file is located in HDFS under the spatial_raster/
metadata location, and its name is hash-generated using the name of the .ohif file.
This file is for Oracle internal use only, and lists important metadata of the source
raster. Some example lines from a metadata file:

size:3200,2112
srid:26904
datatype:1
resolution:27.90809458890406,-27.90809458890406
file:/user/hdfs/ohiftest/opt/shareddir/spatial/data/rasters/hawaii.tif.ohif
bands:3
mbr:532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
0,532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
thumbnailpath:/opt/shareddir/spatial/thumb/

If the -thumbnail flag was specified, a thumbnail of the source image is stored in the
related folder. This is a way to visualize a translation of the .ohif file. Execution logs
can be accessed using the command yarn logs -applicationId <applicationId>.

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-33

2.8.2 Spark SQL Raster Processor
Once the images are loaded into HDFS, they can be processed using Spark SQL
Raster Processor. You specify the expected raster output features using the Mosaic
Definition XML Structure or the Spark API, and the mosaic UDF filters the tiles to fit
into that output and processes them. Raster algebra operations are also available in
UDF.

A custom InputFormat, which is also used in the Hadoop raster processing framework,
loads specific blocks of data, based on the input (mosaic description or a single raster)
using raster SRID and coordinates, and selects only the bands and pixels that fit into
the final output before accepting processing operations:

• For a mosaic processing request, only the intersecting tiles are selected, and a
split is created for each one of them.

• For a single raster processing request, all the tiles are selected, and a split is
created for each one of them.

The Spark SQL Raster Processor allows you to filter the OHIF tiles based on input
catalog or raster into a Dataframe, with every row representing a tile, and to use
Spatial UDF Spark functions to process them.

A simplified pseudocode representation of Spark SQL raster processing is:

sqlContext.udf().register("localop", new
LocalOperationsFunction(),DataTypes.createStructType(SpatialRasterJavaRDD.createSimpl
eTileStructField(dataTypeOfTileToProcess)));
tileRows.registerTempTable("tiles");
String query = "SELECT localop(tileInfo, userRequest, \"localnot\"), userRequest
FROM tiles";
DataFrame processedTiles = sqlContext.sql(query);

The basic workflow if the Spark SQL raster processor is as follows.

1. The rasters to process are first loaded in tiles metadata as RDD. These tiles may
be filtered if the user set a configuration for mosaic operation. The RDD is later
converted to a Spark DataFrame of two complex rows: the first row is tileInfo,
which has all the metadata for the tiles, and the second row is the userRequest,
which has the user input configuration listing the expected features of the raster
output.

2. Once the DataFrame is created, the driver must register the “localop” UDF, and
also register the DataFrame as a table before executing a query to process. The
mosaic UDF can only be executed if the user configured all the required
parameters correctly. If no XML is used and the configuration is set using the API,
then by default a mosaic operation configuration is expected unless the
setExecuteMosaic(false) method is set.

3. The mosaic operation selects from every tile only the pixels that fit into the output,
and makes the necessary resolution changes to add them in the mosaic output.

4. Once the query is executed, an executor loads the data corresponding tile,
conserving data locality, and the specified local raster algebra operation is
executed.

5. The row in the DataFrame is updated with the new pixel data and returned to the
driver for further processing if required.

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-34

6. Once the processing is done, the DataFrame is converted to a list of
ImageBandWritable objects, which are the MapReduce representation of processed
tiles. These are input to the ProcessedRasterCreator, where resulting bytes of local
raster algebra and/or mosaic operations are put together, and a final raster is
stored into HDFS or the regular file system depending on the user request.

Only images with same data type (pixel depth) as the user configuration input data
type (pixel depth) are considered. Only the tiles that intersect with coordinates
specified by the user for the mosaic output are included. For processing of a single
raster, the filter includes all the tiles of the input rasters, because the processing will be
executed on the complete images.

• Input Parameters to the Spark SQL Raster Processor

• Expected Output of the Spark SQL Raster Processor

2.8.2.1 Input Parameters to the Spark SQL Raster Processor
The following example shows input parameters supplied using the spark-submit
command:

spark-submit
 --class <DRIVER_CLASS>
 --driver-memory <DRIVER_JVM>
 --driver-class-path <DRIVER_CLASSPATH>
 --jars <EXECUTORS_JARS>
 <DRIVER_JAR>
 -config <MOSAIC_CONFIG_PATH>
 -gdal <GDAL_LIBRARIES_PATH>
 -gdalData <GDAL_DATA_PATH>
 [-catalog <IMAGE_CATALOG_PATH>]
 [-file <SINGLE_RASTER_PATH>]

Where:

• DRIVER_CLASS is the class that has the driver code and that Spark will execute.

• DRIVER_JVM is the memory to assign to driver´s JVM.

• DRIVER_CLASSPATH is the classpath for driver class, jars are separated by colon.

• EXECUTOR_JARS is the classpath to be distributed to executors, jars are separated by
comma.

• DRIVER_JAR is the jar that contains the <DRIVER_CLASS> to execute by Spark.

• MOSAIC_CONFIG_PATH is the path to the mosaic configuration XML, which defines the
features of the output.

• GDAL_LIBRARIES_PATH is the path where GDAL libraries are located.

• GDAL_DATA_PATH is the path where the GDAL data folder is located. This path must
be accessible via NFS to all nodes in the cluster.

• IMAGE_CATALOG_PATH is the path to the catalog xml that lists the HDFS image(s) to
be processed. This is optional because you can also specify a single raster to
process using –file flag.

• SINGLE_RASTER_PATH is an optional path to the .ohif file that will be processed by the
job. If this is set, you do not need to set a catalog.

The following example command will process all the files listed in the catalog file
inputSPARK.xml using the mosaic output definition set in the testFS.xml file.

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-35

spark-submit --class oracle.spatial.spark.raster.test.SpatialRasterTest --driver-
memory 2048m --driver-class-path /opt/oracle/oracle-spatial-graph/spatial/raster/
jlib/hadoop-raster-fwk-api.jar:/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/
gdal.jar:/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageloader.jar:/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar --jars /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/
hadoop-imageloader.jar,/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar,/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/
gdal.jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/spark-raster-fwk-
api.jar -taskType algebra -catalog /opt/shareddir/spatial/data/xmls/inputSPARK.xml -
config /opt/shareddir/spatial/data/xmls/testFS.xml -gdal /opt/oracle/oracle-spatial-
graph/spatial/raster/gdal/lib –gdalData /opt/shareddir/data

2.8.2.2 Expected Output of the Spark SQL Raster Processor
For Spark processing, only file system output is supported, which means that the
output generated is an image with the file name and type specified and is stored in a
regular FileSystem.

The job execution logs can be accessed using the command yarn logs -applicationId
<applicationId>.

2.8.3 Using the Spark Raster Processing API
You can use the Spark raster API to load and process rasters by creating the driver
class.

Some example classes are provided under /opt/oracle/oracle-spatial-graph/spatial/
raster/examples/java/src. The /opt/oracle/oracle-spatial-graph/spatial/raster/
examples/java/cmd directory also contains scripts to execute these examples from
command line.

After executing the scripts and validated the results, you can modify the Java source
files to experiment on them and compile them using the provided script /opt/oracle/
oracle-spatial-graph/spatial/raster/examples/java/build.xml. Ensure that there is
write access on the /opt/oracle/oracle-spatial-graph/spatial/raster/jlib directory.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD_LIBRARY_PATH=$ALLACCESSDIR/gdal/native

• Using the Spark Raster Loader API

• Configuring for Using the Spark SQL Processor API

• Creating the DataFrame

• Using the Spark SQL UDF for Raster Algebra Operations

2.8.3.1 Using the Spark Raster Loader API
To perform image loading, you must create a SpatialRasterLoader object. This object is
used to set the necessary configuration information for the execution. There are two
ways of creating an instance:

• Send as a parameter the array of arguments received from the command line. For
example:

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-36

 //args is the String[] received from command line
 SpatialRasterLoader core = new SpatialRasterLoaderCore(args);

• Configure directly in the driver class using the API, which is the subject of this
topic

Using the Loader API, set the GDAL library path, since it will internally initialize the
SparkContext and its corresponding Hadoop configuration. For example:

 SpatialRasterLoader core = new SpatialRasterLoader();
 core.setGdalLibrary("/opt/sharedddir/spatial/gdal");
 core.setFilesToLoad("/opt/shareddir/spatial/rasters");
 core.setHDFSOutputDirectory("ohifsparktest");
 core.setGdalData("/opt/shareddir/data");
 core.setOverlap("20");
 core.setThumbnailDirectory("/opt/shareddir/spatial/");

You can optionally change the block size, depending on the most common size of
rasters involved. For example, if the cluster HDFS block size is by default too big (such
as 256 MB) and the average size of the user rasters is 64 MB in average, you should
avoid using HDFS space that contains no real data, because every tile occupies a
block in HDFS even if the pixels do not fill it. In this scenario, you can change the block
side to 64 MB, as in this example:

 JavaSparkContext sc = core.getRasterSparkContext();
 core.getHadoopConfiguration().set("dfs.blocksize", "67108864");

To execute the loader, use the loadRasters method, which returns true if rasters were
loaded with success and false otherwise. For example:

 if (core.loadRasters(sc, StorageLevel.DISK_ONLY())) {
 LOG.info("Successfully loaded raster files");
 }

If the processing finished successfully, the OHIF files are in HDFS and the
corresponding thumbnails are in the specified directory for user validation.

2.8.3.2 Configuring for Using the Spark SQL Processor API
To execute a processor, you must create a SpatialRasterProcessor object to set the
necessary configuration information for the execution. There are two ways to create an
instance:

• Send as a parameter the array of arguments received from the command line. For
example:

//args is the String[] received from command line
SpatialRasterProcessor processor = new SpatialRasterProcessor(args);

• Configure directly in the driver class using the API, which is the subject of this
topic.

Using the Loader API, set the GDAL library path, because it will internally initialize the
SparkContext and its corresponding Hadoop configuration. For example:

SpatialRasterProcessor processor = new SpatialRasterProcessor();
processor.setGdalLibrary("/opt/sharedddir/spatial/gdal");
processor.setGdalData("/opt/sharedddir/spatial/data");

Specify the rasters that will be processed.

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-37

• For adding a catalog of rasters to process, especially if a mosaic operation will be
performed, consider the following example:

String ohifPath = "ohifsparktest/opt/shareddir/spatial/data/rasters");
//Creates a catalog to list the rasters to process
RasterCatalog catalog = new RasterCatalog();

//Creates a raster object for the catalog
Raster raster = new Raster();
//raster of 3 bands
raster.setBands(3);
//the tree bands will appear in order 1,2,3. You may list less bands here.
raster.setBandsOrder("1,2,3");
//raster data type is byte
raster.setDataType(1);

raster.setRasterLocation(ohifPath + "hawaii.tif.ohif");
//Add raster to catalog
//catalog.addRasterToCatalog(raster);

Raster rasterKahoolawe = new Raster();
rasterKahoolawe.setBands(3);
rasterKahoolawe.setBandsOrder("1,2,3");
rasterKahoolawe.setDataType(1);
rasterKahoolawe.setRasterLocation(ohifPath + "kahoolawe.tif.ohif");
catalog.addRasterToCatalog(rasterKahoolawe);

//Sets the catalog to the job
processor.setCatalogObject(catalog.getCompactCatalog());

• For processing a single raster, consider the following example:

String ohifPath = "ohifsparktest/opt/shareddir/spatial/data/rasters");
//Set the file to process to the job
processor.setFileToProcess(ohifPath + "NapaDEM.tif.ohif");*/

Set the user configuration request, which defines details for the output raster.

• If a mosaic operation will be performed, then all the features of the expected
output must be set in a MosaicConfiguration object, including the coordinates. the
following example creates a raster that includes both Hawaii rasters added to the
catalog previously:

MosaicConfiguration mosaic = new MosaicConfiguration();
mosaic.setFormat("GTIFF");
mosaic.setBands(3);
mosaic.setFileSystem(RasterProcessorJob.FS);
mosaic.setDirectory("/opt/shareddir/spatial/processtest");
mosaic.setFileName("HawaiiIslands");
mosaic.setHeight(986);
//value for pixels where there is no data, starts with #, followed by
//two characters per band
mosaic.setNoData("#FFFFFF");
//byte datatype
mosaic.setPixelType("1");
//width for pixels in X and Y
mosaic.setPixelXWidth(280.388143);
mosaic.setPixelYWidth(-280.388143);
mosaic.setSrid("26904");
//upper left coordinates
mosaic.setUpperLeftX(556958.985610);
mosaic.setUpperLeftY(2350324.082505);

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-38

mosaic.setWidth(1600);
mosaic.setOrderAlgorithm(ProcessConstants.ALGORITHM_FILE_LENGTH);
mosaic.setOrder(RasterProcessorJob.DESC);
//mosaic configuration must be set to the job
processor.setUserRequestConfigurationObject(mosaic.getCompactMosaic());

• If a mosaic operation will not be performed, then a much simpler configuration is
required. For example:

MosaicConfiguration mosaic = new MosaicConfiguration();
mosaic.setExecuteMosaic(false);
mosaic.setBands(1);
mosaic.setLayers("1");
mosaic.setDirectory("/opt/shareddir/spatial/processtest");
mosaic.setFileSystem(RasterProcessorJob.FS);
mosaic.setNoData("#00");

At this point, all required configuration is done. You can now start processing.

2.8.3.3 Creating the DataFrame
Before running queries against the rasters, you must load them into a DataFrame
where every row represents a split. The splits are created into a SpatialJavaRDD of tiles,
which are then converted to a DataFrame. Depending on your available JVM runtime
memory, it is recommended that you cache the DataFrame in memory or on disk. For
disk caching, your Spark installation must have Kryo.

The DataFrame consists of two complex columns: tileInfo and userRequest.

• tileInfo: Data for every tile, including not only pixel information but also metadata
details.

Table 2-2 tileInfo Column Data

Column DataType Nullable Description

dstWidthSize Integer False Width

dstHeightSize Integer False Height

bands Integer False Number of bands

dType Integer False Data type

piece Integer False Piece number of total pieces in
source raster

offX Integer False Offset in X

offY Integer False Offset in Y

sourceWidth Integer False Source raster width

sourceHeight Integer False Source raster height

bytesNumber Integer False Number of bytes

baseArray [[Pixel DataType]] False Array of pixels, one per band

basePaletteArray [[Integer]] True Array of palette interpretation, if
the raster has it, one per band

baseColorArray [Integer] False Array of colors, one per band

noDataArray [Double] False Array of NODATA value, one per
band

Overlap Integer False Number of overlapping pixels

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-39

Table 2-2 (Cont.) tileInfo Column Data

Column DataType Nullable Description

leftOv Byte False Flag to indicate if there are any
overlapping pixels on the left

rightOv Byte False Flag to indicate if there are any
overlapping pixels on the right

upOv Byte False Flag to indicate if there are any
overlapping pixels on the top

downOv Byte False Flag to indicate if there are any
overlapping pixels on the bottom

projectionRef String False Projection reference

geoTransform [Double] False Geo Transformation array

Metadata [String] False Location metadata

lastModified Long False Source raster last modification
date

imageLength Double False Source raster length

dataLength Integer True Number of bytes after mosaic

xCropInit Integer True Pixel start in X after mosaic

yCropInit Integer True Pixel start in Y after mosaic

xCropLast Integer True Pixel end in X after mosaic

yCropLast Integer True Pixel end in Y after mosaic

catalogOrder Integer False Order in the catalog

baseMountPoint String False Source raster path

sourceResolution String False Source raster resolution

extraFields [String] True Extra fields map, NA

• userRequest: User request configuration, where expected output raster features are
defined.

Table 2-3 userRequest Column Data

Column DataType Nullable Description

offset Long False Offset

piece Integer False Piece number

splitSize Long False Split size

bandsToAdd String False Bands to include in output
i.e. “1,2,3”

upperLeftX Double True Coordinate of output in X
upper left, used when
mosaic is requested

upperLeftY Double True Coordinate of output in Y
upper left, used when
mosaic is requested

lowerRightX Double True Coordinate of output in X
lower right, used when
mosaic is requested

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-40

Table 2-3 (Cont.) userRequest Column Data

Column DataType Nullable Description

lowerRightY Double True Coordinate of output in Y
lower right, used when
mosaic is requested

width Integer True Output width, used when
mosaic is requested

height Integer True Output height, used when
mosaic is requested

srid String True Output SRID, used when
mosaic is requested

order String True Output order , Ascendant or
Descendant, used when
mosaic is requested

format String True Output GDALformat, used
when mosaic is requested

noData String False Output NODATA value, a #
followed by two digits per
band, i.e. for 3 band output
“#000000”

pixelType String True Output GDAL Data type,
used when mosaic is
requested

Directory String False Output directory

pixelXWidth Double True Output pixel width, used
when mosaic is requested

pixelYWidth Double True Output pixel height, used
when mosaic is requested

wkt String False Source projection reference

mosaicWkt String True Output projection reference,
used when mosaic is
requested

processingClasses String True User processing classes to
execute, still not supported
in Spark

reducingClasses String True User reducing classes to
execute, still not supported
in Spark

tempOut String True Temporary output folder
when HDFS output is
requested, still not
supported in Spark

filename String False Output filename

contextId String False Execution context Id

sourceResolution String False Source raster resolution

catalogOrder Integer False Source raster order in
catalog

executeMosaic Boolean False Flag to indicate if mosaic
operation is requested or not

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-41

The following example creates a DataFrame and displays information about it:

JavaSparkContext sc = processor.getRasterSparkContext();
SpatialRasterJavaRDD<GeneralInfoWritable> spatialRDD = processor.getProcessSplits();
HiveContext sqlContext = new HiveContext(sc.sc());
DataFrame tileRows = spatialRDD.createSpatialTileDataFrame(sqlContext,
StorageLevel.DISK_ONLY());

Row[] rows = tileRows.collect();
System.out.println("First Tile info: ");
System.out.println("Width " + rows[0].getStruct(0).getInt(0));
System.out.println("Height " + rows[0].getStruct(0).getInt(1));
System.out.println("Total width " + rows[0].getStruct(0).getInt(7));
System.out.println("Total height " + rows[0].getStruct(0).getInt(8));
System.out.println("File " + rows[0].getStruct(0).getString(30));

System.out.println("First Tile User request data: ");

System.out.println("Bands to add " + rows[0].getStruct(1).getString(3));

2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations
A Spark UDF localop allows the execution of the raster algebra operations described
in Map Algebra Operations for processing images using the Hadoop image processor.
The operation names and supported data types for the Spark SQL UDF are the same
as for Hadoop

Before any query is executed, the driver class must register the UDF and must register
the tiles' DataFrame as a temporary table. For example:

sqlContext.udf().register("localop", new LocalOperationsFunction(),

DataTypes.createStructType(SpatialRasterJavaRDD.createSimpleTileStructField(dataTypeO
fTileToProcess)));
tileRows.registerTempTable("tiles");

Now that localop UDF is registered, it is ready to be used. This function accepts two
parameters:

• A tileInfo row

• A string with the raster algebra operations to execute. Multiple operations may be
executed in the same query, and they must be separated by a semicolon. For
operations that receive parameters, they must be separated by commas.

The function returns the tileInfo that was sent to query, but with the pixel data
updated based on the executed operations.

Following are some examples for the execution of different operations.

String query = "SELECT localop(tileInfo, \"localnot\"),
 userRequest FROM tiles";

String query = "SELECT localop(tileInfo,\"localadd,456;localdivide,2;
 localif,>,0,12;localmultiply,20;
 localpow,2;localsubstract,4;
 localsqrt;localacos\"),
 userRequest FROM tiles";
String query = "SELECT localop(tileInfo,\"localnot;localatan;localcos;
 localasin;localtan;localcosh;
 localtanh\"), userRequest FROM tiles";

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2-42

To execute the query, enter the following:

DataFrame cachedTiles = processor.queryAndCache(query, sqlContext);

This new DataFrame has the updated pixels. You can optionally save the content of a
specific tile as a TIF file, in which it will be stored in the configured output directory. For
example:

Row[] pRows = cachedTiles.collect();
processor.debugTileBySavingTif(pRows[0],
 processor.getHadoopConfiguration());

To execute the mosaic operation, first perform any raster algebra processing, and then
perform the mosaic operation. A new Spark UDF is used for the mosaic operation; it
receives the tileInfo and userRequest columns, and returns the updated tileInfo that
fits in the mosaic. For example:

sqlContext.udf().register("mosaic", new MosaicFunction(),

DataTypes.createStructType(SpatialRasterJavaRDD.createSimpleTileStructField(dataTypeO
fTileToProcess)));
cachedTiles.registerTempTable("processedTiles");
String queryMosaic = "SELECT mosaic(tileInfo, userRequest), userRequest
 FROM processedTiles";
DataFrame mosaicTiles = processor.queryAndCache(queryMosaic,
 sqlContext);

After the processing is done, you can put together the tiles into the output raster by
using ProcessedRasterCreator, which receives a temporary HDFS directory for internal
work, the DataFrame to merge, and the Spark Context from the Hadoop configuration.
This will create the expected output raster in the specified output directory. For
example:

try {
 ProcessedRasterCreator creator = new ProcessedRasterCreator();
 creator.create(new Text("createOutput"), mosaicTiles,
 sc.hadoopConfiguration());
 LOG.info("Finished");
} catch (Exception e) {
 LOG.error("Failed processor job due to " + e.getMessage());
 throw e;
 }

2.9 Oracle Big Data Spatial Vector Analysis
Oracle Big Data Spatial Vector Analysis is a Spatial Vector Analysis API, which runs
as a Hadoop job and provides MapReduce components for spatial processing of data
stored in HDFS.

These components make use of the Spatial Java API to perform spatial analysis tasks.
There is a web console provided along with the API.

• Multiple Hadoop API Support

• Spatial Indexing

• Using MVSuggest

• Spatial Filtering

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-43

• Classifying Data Hierarchically

• Generating Buffers

• Spatial Binning

• Spatial Clustering

• Spatial Join

• Spatial Partitioning

• RecordInfoProvider

• HierarchyInfo

• Using JGeometry in MapReduce Jobs

• Support for Different Data Sources

• Job Registry

• Tuning Performance Data of Job Running Times Using the Vector Analysis API

See Also:

See the following topics for understanding the implementation details:

• RecordInfoProvider

• HierarchyInfo

• Using JGeometry in MapReduce Jobs

• Tuning Performance Data of Job Running Times Using the Vector
Analysis API

2.9.1 Multiple Hadoop API Support
Oracle Big Data Spatial Vector Analysis provides classes for both the old and new
(context objects) Hadoop APIs. In general, classes in the mapred package are used
with the old API, while classes in the mapreduce package are used with the new API

The examples in this guide use the old Hadoop API; however, all the old Hadoop
Vector API classes have equivalent classes in the new API. For example, the old class
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing has the equivalent new
class named oracle.spatial.hadoop.vector.mapreduce.job.SpatialIndexing. In general,
and unless stated otherwise, only the change from mapred to mapreduce is needed to
use the new Hadoop API Vector classes.

Classes such as oracle.spatial.hadoop.vector.RecordInfo, which are not in the
mapred or mapreduce package, are compatible with both Hadoop APIs.

2.9.2 Spatial Indexing
A spatial index is in the form of a key/value pair and generated as a Hadoop MapFile.
Each MapFile entry contains a spatial index for one split of the original data. The key
and value pair contains the following information:

• Key: a split identifier in the form: path + start offset + length.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-44

• Value: a spatial index structure containing the actual indexed records.

The following figure depicts a spatial index in relation to the user data. The records are
represented as r1, r2, and so on. The records are grouped into splits (Split 1, Split 2,
Split 3, Split n). Each split has a Key-Value pair where the key identifies the split and
the value identifies an Rtree index on the records in that split.

• Spatial Indexing Class Structure

• Configuration for Creating a Spatial Index

• Spatial Index Metadata

• Input Formats for a Spatial Index

• Support for GeoJSON and Shapefile Formats

• Removing a Spatial Index

2.9.2.1 Spatial Indexing Class Structure
Records in a spatial index are represented using the class
oracle.spatial.hadoop.vector.RecordInfo. A RecordInfo typically contains a subset of
the original record data and a way to locate the record in the file where it is stored. The
specific RecordInfo data depends on two things:

• InputFormat used to read the data

• RecordInfoProvider implementation, which provides the record's data

The fields contained within a RecordInfo:

• Id: Text field with the record Id.

• Geometry: JGeometry field with the record geometry.

• Extra fields: Additional optional fields of the record can be added as name-value
pairs. The values are always represented as text.

• Start offset: The position of the record in a file as a byte offset. This value depends
on the InputFormat used to read the original data.

• Length: The original record length in bytes.

• Path: The file path can be added optionally. This is optional because the file path
can be known using the spatial index entry key. However, to add the path to the

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-45

RecordInfo instances when a spatial index is created, the value of the configuration
property oracle.spatial.recordInfo.includePathField key is set to true.

2.9.2.2 Configuration for Creating a Spatial Index
A spatial index is created using a combination of FileSplitInputFormat,
SpatialIndexingMapper, InputFormat, and RecordInfoProvider, where the last two are
provided by the user. The following code example shows part of the configuration
needed to run a job that creates a spatial index for the data located in the HDFS
folder /user/data.

//input

conf.setInputFormat(FileSplitInputFormat.class);
FileSplitInputFormat.setInputPaths(conf, new Path("/user/data"));
FileSplitInputFormat.setInternalInputFormatClass(conf, GeoJsonInputFormat.class);
FileSplitInputFormat.setRecordInfoProviderClass(conf,
GeoJsonRecordInfoProvider.class);

//output

conf.setOutputFormat(MapFileOutputFormat.class);
FileOutputFormat.setOutputPath(conf, new Path("/user/data_spatial_index"));

//mapper

conf.setMapperClass(SpatialIndexingMapper.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(RTreeWritable.class);

In this example,

• The FileSplitInputFormat is set as the job InputFormat. FileSplitInputFormat is a
subclass of CompositeInputFormat (WrapperInputFormat in the new Hadoop API
version), an abstract class that uses another InputFormat implementation
(internalInputFormat) to read the data. The internal InputFormat and the
RecordInfoProvider implementations are specified by the user and they are set to
GeoJsonInputFormat and GeoJsonRecordInfoProvider, respectively.

• The MapFileOutputFormat is set as the OutputFormat in order to generate a MapFile

• The mapper is set to SpatialIndexingMappper. The mapper output key and value
types are Text (splits identifiers) and RTreeWritable (the actual spatial indexes).

• No reducer class is specified so it runs with the default reducer. The reduce phase
is needed to sort the output MapFile keys.

Alternatively, this configuration can be set easier by using the
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing class. SpatialIndexing is a
job driver that creates a spatial index. In the following example, a SpatialIndexing
instance is created, set up, and used to add the settings to the job configuration by
calling the configure() method. Once the configuration has been set, the job is
launched.

SpatialIndexing<LongWritable, Text> spatialIndexing = new
SpatialIndexing<LongWritable, Text>();

//path to input data

spatialIndexing.setInput("/user/data");

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-46

//path of the spatial index to be generated

spatialIndexing.setOutput("/user/data_spatial_index");

//input format used to read the data

spatialIndexing.setInputFormatClass(TextInputFormat.class);

//record info provider used to extract records information

spatialIndexing.setRecordInfoProviderClass(TwitterLogRecordInfoProvider.class);

//add the spatial indexing configuration to the job configuration

spatialIndexing.configure(jobConf);

//run the job

JobClient.runJob(jobConf);

2.9.2.3 Spatial Index Metadata
A metadata file is generated for every spatial index that is created. The spatial index
metadata can be used to quickly find information related to a spatial index, such as the
number of indexed records, the minimum bounding rectangle (MBR) of the indexed
data, and the paths of both the spatial index and the indexed source data. The spatial
index metadata can be retrieved using the spatial index name.

A spatial index metadata file contains the following information:

• Spatial index name

• Path to the spatial index

• Number of indexed records

• Number of local indexes

• Extra fields contained in the indexed records

• Geometry layer information such as th SRID, dimensions, tolerance, dimension
boundaries, and whether the geometries are geodetic or not

• The following information for each of the local spatial index files: path to the
indexed data, path to the local index, and MBR of the indexed data

The following metadata proeprties can be set when creating a spatial index using the
SpatialIndexing class:

• indexName: Name of the spatial index. If not set, the output folder name is used.

• metadataDir: Path to the directory where the metadata file will be stored.

– By default, it will be stored in the following path relative to the user directory:
oracle_spatial/index_metadata. If the user is hdfs, it will be /user/hdfs/
oracle_spatial/index_metadata.

• overwriteMetadata: If set to true, then when a spatial index metadata file already
exists for a spatial index with the same indexName in the current metadataDir, the
spatial index metadata will be overwritten. If set to false and if a spatial index
metadata file already exists for a spatial index with the same indexName in the
current metadataDir, then an error is raised.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-47

The following example sets the metadata directory and spatial index name, and
specifies to overwrite any existing metadata if the index already exists:

spatialIndexing.setMetadataDir("/user/hdfs/myIndexMetadataDir");
spatialIndexing.setIndexName("testIndex");
spatialIndexing.setOverwriteMetadata(true);

An existing spatial index can be passed to other jobs by specifying only the indexName
and optionally the indexMetadataDir where the index metadata can be found. When the
index name is provided, there is no need to specify the spatial index path and the input
format.

The following job drivers accept the indexName as a parameter:

• oracle.spatial.hadoop.vector.mapred.job.Categorization

• oracle.spatial.hadoop.vector.mapred.job.SpatialFilter

• oracle.spatial.hadoop.vector.mapred.job.Binning

• Any driver that accepts oracle.spatial.hadoop.vector.InputDataSet, such as
SpatialJoin and Partitioning

If the index name is not found in the indexMetadataDir path, an error is thrown
indicating that the spatial index could not be found.

The following example shows a spatial index being set as the input data set for a
binning job:

Binning binning = new Binning();
binning.setIndexName("indexExample");
binning.setIndexMetadataDir("indexMetadataDir");

2.9.2.4 Input Formats for a Spatial Index
An InputFormat must meet the following requisites to be supported:

• It must be a subclass of FileInputFormat.

• The getSplits()method must return either FileSplit or CombineFileSplit split
types.

• For the old Hadoop API, the RecordReader’s getPos() method must return the
current position to track back a record in the spatial index to its original record in
the user file. If the current position is not returned, then the original record cannot
be found using the spatial index.

However, the spatial index still can be created and used in operations that do not
require the original record to be read. For example, additional fields can be added
as extra fields to avoid having to read the whole original record.

Note:

The spatial indexes are created for each split as returned by the
getSplits() method. When the spatial index is used for filtering (see
Spatial Filtering), it is recommended to use the same InputFormat
implementation than the one used to create the spatial index to ensure
the splits indexes can be found.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-48

The getPos() method has been removed from the Hadoop new API; however,
org.apache.hadoop.mapreduce.lib.input.TextInputFormat and CombineTextInputFormat
are supported, and it is still possible to get the record start offsets.

Other input formats from the new API are supported, but the record start offsets will
not be contained in the spatial index. Therefore, it is not possible to find the original
records. The requirements for a new API input format are the same as for the old API.
However, they must be translated to the new APIs FileInputFormat, FileSplit, and
CombineFileSplit.

2.9.2.5 Support for GeoJSON and Shapefile Formats
The Vector API comes with InputFormat and RecordInfoProvider implementations for
GeoJSON and Shapefile file formats.

The following InputFormat/RecordInfoProvider pairs can be used to read and interpret
GeoJSON and ShapeFiles, respectively:

oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat /
oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider

oracle.spatial.hadoop.vector.shapefile.mapred.ShapeFileInputFormat /
oracle.spatial.hadoop.vector.shapefile.ShapeFileRecordInfoProvider

More information about the usage and properties is available in the Javadoc.

2.9.2.6 Removing a Spatial Index
A previously generated spatial index can be removed by executing the following.

oracle.spatial.hadoop.vector.util.Tools removeSpatialIndex indexName=<INDEX_NAME>
[indexMetadataDir=<PATH>] [removeIndexFiles=<true|false*>]

Where:

• indexName: Name of a previously generated index.

• indexMetadataDir (optional): Path to the index metadata directory. If not specified,
the following path relative to the user directory will be used: oracle_spatial/
index_metadata

• removeIndexFiles (optional): true if generated index map files need to be removed
in addition to the index metadata file. By default, it is false.

2.9.3 Using MVSuggest
MVSuggest can be used at the time of spatial indexing to get an approximate location for
records that do not have geometry but have some text field. This text field can be used
to determine the record location. The geometry returned by MVSuggest is used to
include the record in the spatial index.

Because it is important to know the field containing the search text for every record,
the RecordInfoProvider implementation must also implement
LocalizableRecordInfoProvider. Alternatively, the configuration parameter
oracle.spatial.recordInfo.locationField can be set with the name of the field
containing the search text. For more information, see the Javadoc for
LocalizableRecordInfoProvider.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-49

A standalone version of MVSuggest is shipped with the Vector API and it can be used in
some jobs that accept the MVSConfig as an input parameter.

The following job drivers can work with MVSuggest and all of them have the
setMVSConfig() method which accepts an instance of MVSConfig:

• oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing: has the option of using
MVSuggest to get approximate spatial location for records which do not contain
geometry.

• oracle.spatial.hadoop.vector.mapred.job.Categorization: MVSuggest can be used to
assign a record to a specific feature in a layer, for example, the feature California
in the USA states layer.

• oracle.spatial.hadoop.vector.mapred.job.SuggestService: A simple job that
generates a file containing a search text and its match per input record.

The MVSuggest configuration is passed to a job using the MVSConfig or the
LocalMVSConfig classes. The basic MVSuggest properties are:

• serviceLocation: It is the minimum property required in order to use MVSuggest. It
contains the path or URL where the MVSuggest directory is located or in the case of
a URL, where the MVSuggest service is deployed.

• serviceInterfaceType: the type of MVSuggest implementation used. It can be
LOCAL(default) for a standalone version and WEB for the web service version.

• matchLayers: an array of layer names used to perform the searches.

When using the standalone version of MVSuggest, you must specify an MVSuggest
directory or repository as the serviceLocation. An MVSuggest directory must have the
following structure:

mvsuggest_config.json
repository folder
 one or more layer template files in .json format
 optionally, a _config_ directory
 optionally, a _geonames_ directory

The examples folder comes with many layer template files and a _config_ directory with
the configuration for each template.

It is possible to set the repository folder (the one that contains the templates) as the
mvsLocation instead of the whole MVSuggest directory. In order to do that, the class
LocalMVSConfig can be used instead of MVSConfig and the repositoryLocation property
must be set to true as shown in the following example:

LocalMVSConfig lmvsConf = new LocalMVSConfig();
lmvsConf.setServiceLocation(“file:///home/user/mvs_dir/repository/”);
lmvsConf.setRepositoryLocation(true);
lmvsConf.setPersistentServiceLocation(“/user/hdfs/hdfs_mvs_dir”);
spatialIndexingJob.setMvsConfig(lmvsConf);

The preceding example sets a repository folder as the MVS service location.
setRepositoryLocation is set to true to indicate that the service location is a repository
instead of the whole MVSuggest directory. When the job runs, a whole MVSuggest
directory will be created using the given repository location; the repository will be
indexed and will be placed in a temporary folder while the job finishes. The previously
indexed MVSuggest directory can be persisted so it can be used later. The preceding
example saves the generated MVSuggest directory in the HDFS path /user/hdfs/
hdfs_mvs_dir. Use the MVSDirectory if the MVSuggest directory already exists.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-50

2.9.4 Spatial Filtering
Once the spatial index has been generated, it can be used to spatially filter the data.
The filtering is performed before the data reaches the mapper and while it is being
read. The following sample code example demonstrates how the
SpatialFilterInputFormat is used to spatially filter the data.

//set input path and format

FileInputFormat.setInputPaths(conf, new Path("/user/data/"));
conf.setInputFormat(SpatialFilterInputFormat.class);

//set internal input format

SpatialFilterInputFormat.setInternalInputFormatClass(conf, TextInputFormat.class);
if(spatialIndexPath != null)
{

 //set the path to the spatial index and put it in the distributed cache

 boolean useDistributedCache = true;
 SpatialFilterInputFormat.setSpatialIndexPath(conf, spatialIndexPath,
useDistributedCache);
}
else
{
 //as no spatial index is used a RecordInfoProvider is needed

 SpatialFilterInputFormat.setRecordInfoProviderClass(conf,
TwitterLogRecordInfoProvider.class);
}

//set spatial operation used to filter the records

SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setJsonQueryWindow("{\"type\":\"Polygon\", \"coordinates\":
[[-106.64595, 25.83997, -106.64595, 36.50061, -93.51001, 36.50061, -93.51001,
25.83997 , -106.64595, 25.83997]]}");
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);

SpatialFilterInputFormat has to be set as the job's InputFormat. The InputFormat that
actually reads the data must be set as the internal InputFormat. In this example, the
internal InputFormat is TextInputFormat.

If a spatial index is specified, it is used for filtering. Otherwise, a RecordInfoProvider
must be specified in order to get the records geometries, in which case the filtering is
performed record by record.

As a final step, the spatial operation and query window to perform the spatial filter are
set. It is recommended to use the same internal InputFormat implementation used
when the spatial index was created or, at least, an implementation that uses the same
criteria to generate the splits. For details see "Input Formats for a Spatial Index."

If a simple spatial filtering needs to be performed (that is, only retrieving records that
interact with a query window), the built-in job driver

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-51

oracle.spatial.hadoop.vector.mapred.job.SpatialFilter can be used instead. This job
driver accepts indexed or non-indexed input and a SpatialOperationConfig to perform
the filtering.

• Filtering Records

• Filtering Using the Input Format

2.9.4.1 Filtering Records
The following steps are executed when records are filtered using the
SpatialFilterInputFormat and a spatial index.

1. SpatialFilterInputFormat getRecordReader() method is called when the mapper
requests a RecordReader for the current split.

2. The spatial index for the current split is retrieved.

3. A spatial query is performed over the records contained in it using the spatial
index.

As a result, the ranges in the split that contains records meeting the spatial filter
are known. For example, if a split goes from the file position 1000 to 2000, upon
executing the spatial filter it can be determined that records that fulfill the spatial
condition are in the ranges 1100-1200, 1500-1600 and 1800-1950. So the result of
performing the spatial filtering at this stage is a subset of the original filter
containing smaller splits.

4. An InternalInputFormat RecordReader is requested for every small split from the
resulting split subset.

5. A RecordReader is returned to the caller mapper. The returned RecordReader is
actually a wrapper RecordReader with one or more RecordReaders returned by
the internal InputFormat.

6. Every time the mapper calls the RecordReader, the call to next method to read a
record is delegated to the internal RecordReader.

These steps are shown in the following spatial filter interaction diagram.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-52

2.9.4.2 Filtering Using the Input Format
A previously generated Spatial Index can be read using the input format
implementation oracle.spatial.hadoop.vector.mapred.input.SpatialIndexInputFormat
(or its new Hadoop API equivalent with the mapreduce package instead of mapred).
SpatialIndexInputFormat is used just like any other FileInputFormat subclass in that it
takes an input path and it is set as the job’s input format. The key and values returned
are the id (Text) and record information (RecordInfo) of the records stored in the
spatial index.

Aditionally, a spatial filter opertion can be performed by specifying a spatial operation
configuration to the input format, so that only the records matching some spatial
interaction will be returned to a mapper. The following example shows how to
configure a job to read a spatial index to retrieve all the records that are inside a
specific area.

JobConf conf = new JobConf();
conf.setMapperClass(MyMapper.class);
conf.setInputFormat(SpatialIndexInputFormat.class);
SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setQueryWindow(JGeometry.createLinearPolygon(new double[]{47.70,
-124.28, 47.70, -95.12, 35.45, -95.12, 35.45, -124.28, 47.70, -124.28}, 2, 8307));
SpatialIndexInputFormat.setFilterSpatialOperationConfig(spatialOpConf, conf);

The mapper in the preceding example can add a nonspatial filter by using the
RecordInfo extra fields, as shown in the following example.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-53

public class MyMapper extends MapReduceBase implements Mapper<Text, RecordInfo,
Text, RecordInfo>{
 @Override
 public void map(Text key, RecordInfo value, OutputCollector<Text, RecordInfo>
output, Reporter reporter)
 throws IOException {
 if(Integer.valueOf(value.getField("followers_count")) > 0){
 output.collect(key, value);
 }
 }
}

2.9.5 Classifying Data Hierarchically
The Vector Analysis API provides a way to classify the data into hierarchical entities.
For example, in a given set of catalogs with a defined level of administrative
boundaries such as continents, countries and states, it is possible to join a record of
the user data to a record of each level of the hierarchy data set. The following example
generates a summary count for each hierarchy level, containing the number of user
records per continent, country, and state or province:

Categorization catJob = new Categorization();
//set a spatial index as the input

catJob.setIndexName("indexExample");

//set the job's output

catJob.setOutput("hierarchy_count");

//set HierarchyInfo implementation which describes the world administrative
boundaries hierarchy

catJob.setHierarchyInfoClass(WorldDynaAdminHierarchyInfo.class);

//specify the paths of the hierarchy data

Path[] hierarchyDataPaths = {
 new Path("file:///home/user/catalogs/world_continents.json"),
 new Path("file:///home/user/catalogs/world_countries.json"),
 new Path("file:///home/user/catalogs/world_states_provinces.json")};
catJob.setHierarchyDataPaths(hierarchyDataPaths);

//set the path where the index for the previous hierarchy data will be generated

catJob.setHierarchyIndexPath(new Path("/user/hierarchy_data_index/"));

//setup the spatial operation which will be used to join records from the two
datasets (spatial index and hierarchy data).
SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);
catJob.setSpatialOperationConfig(spatialOpConf);

//add the previous setup to the job configuration

catJob.configure(conf);

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-54

//run the job
RunningJob rj = JobClient.runJob(conf);

The preceding example uses the Categorization job driver. The configuration can be
divided into the following categories:

• Input data: A previously generated spatial index (received as the job input).

• Output data: A folder that contains the summary counts for each hierarchy level.

• Hierarchy data configuration: This contains the following:

– HierarchyInfo class: This is an implementation of HierarchyInfo class in
charge of describing the current hierarchy data. It provides the number of
hierarchy levels, level names, and the data contained at each level.

– Hierarchy data paths: This is the path to each one of the hierarchy catalogs.
These catalogs are read by the HierarchyInfo class.

– Hierarchy index path: This is the path where the hierarchy data index is stored.
Hierarchy data needs to be preprocessed to know the parent-child
relationships between hierarchy levels. This information is processed once
and saved at the hierarchy index, so it can be used later by the current job or
even by any other jobs.

• Spatial operation configuration: This is the spatial operation to be performed
between records of the user data and the hierarchy data in order to join both
datasets. The parameters to set here are the Spatial Operation type (IsInside),
SRID (8307), Tolerance (0.5 meters), and whether the geometries are Geodetic
(true).

Internally, the Categorization.configure() method sets the mapper and reducer to be
SpatialHierarchicalCountMapper and SpatialHierarchicalCountReducer, respectively. Spa
tialHierarchicalCountMapper's output key is a hierarchy entry identifier in the
form hierarchy_level + hierarchy_entry_id. The mapper output value is a single count
for each output key. The reducer sums up all the counts for each key.

Note:

The entire hierarchy data may be read into memory and hence the total size
of all the catalogs is expected to be significantly less than the user data. The
hierarchy data size should not be larger than a couple of gigabytes.

If you want another type of output instead of counts, for example, a list of user records
according to the hierarchy entry. In this case, the SpatialHierarchicalJoinMapper can
be used. The SpatialHierarchicalJoinMapper output value is a RecordInfo instance,
which can be gathered in a user-defined reducer to produce a different output. The
following user-defined reducer generates a MapFile for each hierarchy level using the
MultipleOutputs class. Each MapFile has the hierarchy entry ids as keys and
ArrayWritable instances containing the matching records for each hierarchy entry as
values. The following is an user-defined reducer that returns a list of records by
hierarchy entry:

public class HierarchyJoinReducer extends MapReduceBase implements Reducer<Text,
RecordInfo, Text, ArrayWritable> {

 private MultipleOutputs mos = null;

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-55

 private Text outKey = new Text();
 private ArrayWritable outValue = new ArrayWritable(RecordInfo.class);

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);

 //use MultipleOutputs to generate different outputs for each hierarchy level

 mos = new MultipleOutputs(conf);
 }
 @Override
 public void reduce(Text key, Iterator<RecordInfo> values,
 OutputCollector<Text, RecordInfoArrayWritable> output,
Reporter reporter)
 throws IOException
 {

 //Get the hierarchy level name and the hierarchy entry id from the key

 String[] keyComponents =
HierarchyHelper.getMapRedOutputKeyComponents(key.toString());
 String hierarchyLevelName = keyComponents[0];
 String entryId = keyComponents[1];
 List<Writable> records = new LinkedList<Writable>();

 //load the values to memory to fill output ArrayWritable

 while(values.hasNext())
 {
 RecordInfo recordInfo = new RecordInfo(values.next());
 records.add(recordInfo);
 }
 if(!records.isEmpty())
 {

 //set the hierarchy entry id as key

 outKey.set(entryId);

 //list of records matching the hierarchy entry id

 outValue.set(records.toArray(new Writable[]{}));

 //get the named output for the given hierarchy level

 hierarchyLevelName = FileUtils.toValidMONamedOutput(hierarchyLevelName);
 OutputCollector<Text, ArrayWritable> mout =
mos.getCollector(hierarchyLevelName, reporter);

 //Emit key and value

 mout.collect(outKey, outValue);
 }
}

 @Override
 public void close() throws IOException
 {
 mos.close();

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-56

 }
}

The same reducer can be used in a job with the following configuration to generate a
list of records according to the hierarchy levels:

JobConf conf = new JobConf(getConf());

//input path

FileInputFormat.setInputPaths(conf, new Path("/user/data_spatial_index/"));

//output path

FileOutputFormat.setOutputPath(conf, new Path("/user/records_per_hier_level/"));

//input format used to read the spatial index

conf.setInputFormat(SequenceFileInputFormat.class);

//output format: the real output format will be configured for each multiple output
later

conf.setOutputFormat(NullOutputFormat.class);

//mapper

conf.setMapperClass(SpatialHierarchicalJoinMapper.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(RecordInfo.class);

//reducer

conf.setReducerClass(HierarchyJoinReducer.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(ArrayWritable.class);

//

//hierarchy data setup

//set HierarchyInfo class implementation

conf.setClass(ConfigParams.HIERARCHY_INFO_CLASS, WorldAdminHierarchyInfo.class,
HierarchyInfo.class);

//paths to hierarchical catalogs

Path[] hierarchyDataPaths = {
new Path("file:///home/user/catalogs/world_continents.json"),
new Path("file:///home/user/catalogs/world_countries.json"),
new Path("file:///home/user/catalogs/world_states_provinces.json")};

//path to hierarchy index

Path hierarchyDataIndexPath = new Path("/user/hierarchy_data_index/");

//instantiate the HierarchyInfo class to index the data if needed.

HierarchyInfo hierarchyInfo = new WorldAdminHierarchyInfo();
hierarchyInfo.initialize(conf);

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-57

//Create the hierarchy index if needed. If it already exists, it will only load the
hierarchy index to the distributed cache

HierarchyHelper.setupHierarchyDataIndex(hierarchyDataPaths, hierarchyDataIndexPath,
hierarchyInfo, conf);

///

//setup the multiple named outputs:

int levels = hierarchyInfo.getNumberOfLevels();
for(int i=1; i<=levels; i++)
{
 String levelName = hierarchyInfo.getLevelName(i);

 //the hierarchy level name is used as the named output

 String namedOutput = FileUtils.toValidMONamedOutput(levelName);
 MultipleOutputs.addNamedOutput(conf, namedOutput, MapFileOutputFormat.class,
Text.class, ArrayWritable.class);
}

//finally, setup the spatial operation

SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);
spatialOpConf.store(conf);

//run job

JobClient.runJob(conf);

Supposing the output value should be an array of record ids instead of an array of
RecordInfo instances, it would be enough to perform a couple of changes in the
previously defined reducer.

The line where outValue is declared, in the previous example, changes to:

private ArrayWritable outValue = new ArrayWritable(Text.class);

The loop where the input values are retrieved, in the previous example, is changed.
Therefore, the record ids are got instead of the whole records:

while(values.hasNext())
{
 records.add(new Text(values.next().getId()));
}

While only the record id is needed the mapper emits the whole RecordInfo instance.
Therefore, a better approach is to change the mappers output value. The mappers
output value can be changed by extending AbstractSpatialJoinMapper. In the following
example, the mapper emits only the record ids instead of the whole RecorInfo instance
every time a record matches some of the hierarchy entries:

public class IdSpatialHierarchicalMapper extends AbstractSpatialHierarchicalMapper<
Text >
{

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-58

 Text outValue = new Text();

 @Override
 protected Text getOutValue(RecordInfo matchingRecordInfo)
 {

 //the out value is the record's id

 outValue.set(matchingRecordInfo.getId());
 return outValue;
 }
}

• Changing the Hierarchy Level Range

• Controlling the Search Hierarchy

• Using MVSuggest to Classify the Data

2.9.5.1 Changing the Hierarchy Level Range
By default, all the hierarchy levels defined in the HierarchyInfo implementation are
loaded when performing the hierarchy search. The range of hierarchy levels loaded is
from level 1 (parent level) to the level returned by HierarchyInfo.getNumberOfLevels()
method. The following example shows how to setup a job to only load the levels 2 and
3.

conf.setInt(ConfigParams.HIERARCHY_LOAD_MIN_LEVEL, 2);
conf.setInt(ConfigParams.HIERARCHY_LOAD_MAX_LEVEL, 3);

Note:

These parameters are useful when only a subset of the hierarchy levels is
required and when you do not want to modify the HierarchyInfo
implementation.

2.9.5.2 Controlling the Search Hierarchy
The search is always performed only at the bottom hierarchy level (the higher level
number). If a user record matches some hierarchy entry at this level, then the match is
propagated to the parent entry in upper levels. For example, if a user record matches
Los Angeles, then it also matches California, USA, and North America. If there are no
matches for a user record at the bottom level, then the search does not continue into
the upper levels.

This behavior can be modified by setting the configuration parameter
ConfigParams.HIERARCHY_SEARCH_MULTIPLE_LEVELS to true. Therefore, if a search at the
bottom hierarchy level resulted in some unmatched user records, then search
continues into the upper levels until the top hierarchy level is reached or there are no
more user records to join. This behavior can be used when the geometries of parent
levels do not perfectly enclose the geometries of their child entries

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-59

2.9.5.3 Using MVSuggest to Classify the Data
MVSuggest can be used instead of the spatial index to classify data. For this case, an
implementation of LocalizableRecordInfoProvider must be known and sent to
MVSuggest to perform the search. See the information about
LocalizableRecordInfoProvider.

In the following example, the program option is changed from spatial to MVS. The
input is the path to the user data instead of the spatial index. The InputFormat used to
read the user record and an implementation of LocalizableRecordInfoProvider are
specified. The MVSuggest service configuration is set. Notice that there is no spatial
operation configuration needed in this case.

Categorization<LongWritable, Text> hierCount = new Categorization<LongWritable,
Text>();

// the input path is the user's data

hierCount.setInput("/user/data/");

// set the job's output

hierCount.setOutput("/user/mvs_hierarchy_count");

// set HierarchyInfo implementation which describes the world
// administrative boundaries hierarchy

hierCount.setHierarchyInfoClass(WorldDynaAdminHierarchyInfo.class);

// specify the paths of the hierarchy data

Path[] hierarchyDataPaths = { new Path("file:///home/user/catalogs/
world_continents.json"),
 new Path("file:///home/user/catalogs/world_countries.json"),
 new Path("file:///home/user/catalogs/world_states_provinces.json") };
hierCount.setHierarchyDataPaths(hierarchyDataPaths);

// set the path where the index for the previous hierarchy data will be
// generated

hierCount.setHierarchyIndexPath(new Path("/user/hierarchy_data_index/"));

// No spatial operation configuration is needed, Instead, specify the
// InputFormat used to read the user's data and the
// LocalizableRecordInfoProvider class.

hierCount.setInputFormatClass(TextInputFormat.class);
hierCount.setRecordInfoProviderClass(MyLocalizableRecordInfoProvider.class);

// finally, set the MVSuggest configuration

LocalMVSConfig lmvsConf = new LocalMVSConfig();
lmvsConf.setServiceLocation("file:///home/user/mvs_dir/oraclemaps_pub");
lmvsConf.setRepositoryLocation(true);
hierCount.setMvsConfig(lmvsConf);

// add the previous setup to the job configuration
hierCount.configure(conf);

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-60

// run the job

JobClient.runJob(conf);

Note:

When using MVSuggest, the hierarchy data files must be the same as the layer
template files used by MVSuggest. The hierarchy level names returned by the
HierarchyInfo.getLevelNames() method are used as the matching layers by
MVSuggest.

2.9.6 Generating Buffers
The API provides a mapper to generate a buffer around each record's geometry. The
following code sample shows how to run a job to generate a buffer for each record
geometry by using the BufferMapper class.

//configure input
conf.setInputFormat(FileSplitInputFormat.class);
FileSplitInputFormat.setInputPaths(conf, "/user/waterlines/");
FileSplitInputFormat.setRecordInfoProviderClass(conf,
GeoJsonRecordInfoProvider.class);

//configure output
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputPath(conf, new Path("/user/data_buffer/"));

//set the BufferMapper as the job mapper
conf.setMapperClass(BufferMapper.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(RecordInfo.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(RecordInfo.class);

//set the width of the buffers to be generated
conf.setDouble(ConfigParams.BUFFER_WIDTH, 0.2);

//run the job
JobClient.runJob(conf);

BufferMapper generates a buffer for each input record containing a geometry. The
output key and values are the record id and a RecordInfo instance containing the
generated buffer. The resulting file is a Hadoop MapFile containing the mapper output
key and values. If necessary, the output format can be modified by implementing a
reducer that takes the mapper’s output keys and values, and outputs keys and values
of a different type.

BufferMapper accepts the following parameters:

Parameter ConfigParam
constant

Type Description

oracle.spatial.buffer.wi
dth

BUFFER_WIDTH double The buffer width

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-61

Parameter ConfigParam
constant

Type Description

oracle.spatial.buffer.s
ma

BUFFER_SMA double The semi major axis
for the datum used in
the coordinate system
of the input

oracle.spatial.buffer.iFl
at

BUFFER_IFLAT double The flattening value

oracle.spatial.buffer.ar
cT

BUFFER_ARCT double The arc tolerance
used for geodetic
densification

2.9.7 Spatial Binning
The Vector API provides the class oracle.spatial.hadoop.vector.mapred.job.Binning to
perform spatial binning over a spatial data set. The Binning class is a MapReduce job
driver that takes an input data set (which can be spatially indexed or not), assigns
each record to a bin, and generates a file containing all the bins (which contain one or
more records and optionally aggregated values).

A binning job can be configured as follows:

1. Specify the data set to be binned and the way it will be read and interpreted
(InputFormat and RecordInfoProvider), or, specify the name of an existing spatial
index.

2. Set the output path.

3. Set the grid MBR, that is, the rectangular area to be binned.

4. Set the shape of the bins: RECTANGLE or HEXAGON.

5. Specify the bin (cell) size. For rectangles, specify the width and height. For
hexagon-shaped cells, specify the hexagon width. Each hexagon is always drawn
with only one of its vertices as the base.

6. Optionally, pass a list of numeric field names to be aggregated per bin.

The resulting output is a text file where each record is a bin (cell) in JSON format and
contains the following information:

• id: the bin id

• geom: the bin geometry; always a polygon that is a rectangle or a hexagon

• count: the number of points contained in the bin

• aggregated fields: zero or more aggregated fields

The following example configures and runs a binning job:

//create job driver
Binning<LongWritable, Text> binJob = new Binning<LongWritable, Text>();
//setup input
binJob.setInput("/user/hdfs/input/part*");
binJob.setInputFormatClass(GeoJsonInputFormat.class);
binJob.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
//set binning output
binJob.setOutput("/user/hdfs/output/binning");
//create a binning configuration to produce rectangular cells

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-62

BinningConfig binConf = new BinningConfig();
binConf.setShape(BinShape.RECTANGLE);
//set the bin size
binConf.setCellHeight(0.2);
binConf.setCellWidth(0.2);
//specify the area to be binned
binConf.setGridMbr(new double[]{-50,10,50,40});
binJob.setBinConf(binConf);
//save configuration
binJob.configure(conf);
//run job
JobClient.runJob(conf);

2.9.8 Spatial Clustering
The job driver class oracle.spatial.hadoop.mapred.KMeansClustering can be used to
find spatial clusters in a data set. This class uses a distributed version of the K-means
algorithm.

Required parameters:

• Path to the input data set, the InputFormat class used to read the input data set
and the RecordInfoProvider used to extract the spatial information from records.

• Path where the results will be stored.

• Number of clusters to be found.

Optional parameters:

• Maximum number of iterations before the algorithm finishes.

• Criterion function used to determine when the clusters converge. It is given as an
implementation of
oracle.spatial.hadoop.vector.cluster.kmeans.CriterionFunction. The Vector API
contains the following criterion function implementations:
SquaredErrorCriterionFunction and EuclideanDistanceCriterionFunction.

• An implementation of
oracle.spatial.hadoop.vector.cluster.kmeans.ClusterShapeGenerator, which is
used to generate a geometry for each cluster. The default implementation is
ConvexHullClusterShapeGenerator and generates a convex hull for each cluster. If
no cluster geometry is needed, the DummyClusterShapeGenerator class can be used.

• The initial k cluster points as a sequence of x,y ordinates. For example:
x1,y1,x2,y2,…xk,yk

The result is a file named clusters.json, which contains an array of clusters called
features. Each cluster contains the following information:

• id: Cluster id

• memberCount: Number of elements in the cluster

• geom: Cluster geometry

The following example runs the KMeansClustering algorithm to find 5 clusters. By
default, the SquredErrorCriterionFunction and ConvexHullClusterShapeGenerator are
used , so you do not need yo set these classes explicitly. Also note that
runIterations() is called to run the algorithm; internally, it launches one MapReduce
per iteration. In this example, the number 20 is passed to runIterations() as the
maximum number of iterations allowed.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-63

//create the cluster job driver
KMeansClustering<LongWritable, Text> clusterJob = new KMeansClustering<LongWritable,
Text>();
//set input properties:
//input dataset path
clusterJob.setInput("/user/hdfs/input/part*");
//InputFormat class
clusterJob.setInputFormatClass(GeoJsonInputFormat.class);
//RecordInfoProvider implementation
clusterJob.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
//specify where the results will be saved
clusterJob.setOutput("/user/hdfs/output/clusters");
//5 cluster will be found
clusterJob.setK(5);
//run the algorithm
success = clusterJob.runIterations(20, conf);

2.9.9 Spatial Join
The spatial join feature allows detecting spatial interactions between records of two
different large data sets.

The driver class oracle.spatial.hadoop.vector.mapred.job.SpatialJoin can be used to
execute or configure a job to perform a spatial join between two data sets. The job
driver takes the following inputs:

• Input data sets: Two input data sets are expected. Each input data set is
represented using the class oracle.spatial.hadoop.vector.InputDataSet, which
holds information about where to find and how to read a data set, such as path(s),
spatial index, input format, and record info provider used to interpret records from
the data set. It also accepts a spatial configuration for the data set.

• Spatial operation configuration: The spatial operation configuration defines the
spatial interaction used to determine if two records are related to each other. It
also defines the area to cover (MBR), that is, only records within or intersecting the
MBR will be considered in the search.

• Partitioning result file path: An optional parameter that points to a previously
generated partitioning result for both data sets. Data need to be partitioned in
order to distribute the work; if this parameter is not provided, a partitioning process
will be executed over the input data sets. (See Spatial Partitioning for more
information.)

• Output path: The path where the result file will be written.

The spatial join result is a text file where each line is a pair of records that meet the
spatial interaction defined in the spatial operation configuration.

The following table shows the currently supported spatial interactions for the spatial
join.

Spatial Operation Extra Parameters Type

AnyInteract None (NA)

IsInside None (N/A)

WithinDistance oracle.spatial.hadoop.vector.util.SpatialOperationConfig.PA
RAM_WD_DISTANCE

double

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-64

For a WithinDistance operation, the distance parameter can be specified in the
SpatialOperationConfig, as shown in the following example:

spatialOpConf.setOperation(SpatialOperation.WithinDistance);
spatialOpConf.addParam(SpatialOperationConfig.PARAM_WD_DISTANCE, 5.0);

The following example runs a Spatial Join job for two input data sets. The first data
set, postal boundaries, is specified providing the name of its spatial index. For the
second data set, tweets, the path to the file, input format, and record info provider are
specified. The spatial interaction to detect is IsInside, so only tweets (points) that are
inside a postal boundary (polygon) will appear in the result along with their containing
postal boundary.

SpatialJoin spatialJoin = new SpatialJoin();
List<InputDataSet> inputDataSets = new ArrayList<InputDataSet>(2);

// set the spatial index of the 3-digit postal boundaries of the USA as the first
input data set
InputDataSet pbInputDataSet = new InputDataSet();
pbInputDataSet.setIndexName("usa_pcb3_index");

//no input format or record info provider are required here as a spatial index is
provided
inputDataSets.add(pbInputDataSet);

// set the tweets data set in GeoJSON format as the second data set
InputDataSet tweetsDataSet = new InputDataSet();
tweetsDataSet.setPaths(new Path[]{new Path("/user/example/tweets.json")});
tweetsDataSet.setInputFormatClass(GeoJsonInputFormat.class);
tweetsDataSet.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
inputDataSets.add(tweetsDataSet);

//set input data sets
spatialJoin.setInputDataSets(inputDataSets);

//spatial operation configuration
SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setBoundaries(new double[]{47.70, -124.28, 35.45, -95.12});
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);
spatialJoin.setSpatialOperationConfig(spatialOpConf);

//set output path
spatialJoin.setOutput("/user/example/spatialjoin");

// prepare job
JobConf jobConf = new JobConf(getConf());

//preprocess will partition both data sets as no partitioning result file was
specified
spatialJoin.preprocess(jobConf);
spatialJoin.configure(jobConf);
JobClient.runJob(jobConf);

2.9.10 Spatial Partitioning
The partitioning feature is used to spatially partition one or more data sets.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-65

Spatial partitioning consists of dividing the space into multiple rectangles, where each
rectangle is intended to contain approximately the same number of points. Eventually
these partitions can be used to distribute the work among reducers in other jobs, such
as Spatial Join.

The spatial partitioning process is run or configured using the
oracle.spatial.hadoop.mapred.job.Partitioning driver class, which accepts the
following input parameters:

• Input data sets: One or more input data sets can be specified. Each input data set
is represented using the class oracle.spatial.hadoop.vector.InputDataSet, which
holds information about where to find and how to read a data set, such as path(s),
spatial index, input format, and record info provider used to interpret records from
the data set. It also accepts a spatial configuration for the data set.

• Sampling ratio: Only a fraction of the entire data set or sets is used to perform the
partitioning. The sample ratio is the ratio of the sample size to the whole input data
set size. If it is not specified, 10 percent (0.1) of the input data set size is used.

• Spatial configuration: Defines the spatial properties of the input data sets, such as
the SRID. You must specify at least the dimensional boundaries.

• Output path: The path where the result file will be written.

The generated partitioning result file is in GeoJSON format and contains information
for each generated partition, including the partition’s geometry and the number of
points contained (from the sample).

The following example partitions a tweets data set. Because the sampling ratio is not
provided, 0.1 is used by default.

Partitioning partitioning = new Partitioning();
List<InputDataSet> inputDataSets = new ArrayList<InputDataSet>(1);

//define the input data set
InputDataSet dataSet = new InputDataSet();
dataSet.setPaths(new Path[]{new Path("/user/example/tweets.json")});
dataSet.setInputFormatClass(GeoJsonInputFormat.class);
dataSet.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
inputDataSets.add(dataSet);
partitioning.setInputDataSets(inputDataSets);

//spatial configuration
SpatialConfig spatialConf = new SpatialConfig();
spatialConf.setSrid(8307);
spatialConf.setBoundaries(new double[]{-180,-90,180,90});
partitioning.setSpatialConfig(spatialConf);

//set output
partitioning.setOutput("/user/example/tweets_partitions.json");

//run the partitioning process
partitioning.runFullPartitioningProcess(new JobConf());

2.9.11 RecordInfoProvider
A record read by a MapReduce job from HDFS is represented in memory as a key-
value pair using a Java type (typically) Writable subclass, such as LongWritable, Text,
ArrayWritable or some user-defined type. For example, records read using
TextInputFormat are represented in memory as LongWritable, Text key-value pairs.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-66

RecordInfoProvider is the component that interprets these memory record
representations and returns the data needed by the Vector Analysis API. Thus, the
API is not tied to any specific format and memory representations.

The RecordInfoProvider interface has the following methods:

• void setCurrentRecord(K key, V value)

• String getId()

• JGeometry getGeometry()

• boolean getExtraFields(Map<String, String> extraFields)

There is always a RecordInfoProvider instance per InputFormat. The method
setCurrentRecord() is called passing the current key-value pair retrieved from the
RecordReader. The RecordInfoProvider is then used to get the current record id,
geometry, and extra fields. None of these fields are required fields. Only those records
with a geometry participates in the spatial operations. The Id is useful for differentiating
records in operations such as categorization. The extra fields can be used to store any
record information that can be represented as text and which is desired to be quickly
accessed without reading the original record, or for operations where MVSuggest is
used.

Typically, the information returned by RecordInfoProvider is used to populate
RecordInfo instances. A RecordInfo can be thought as a light version of a record and
contains the information returned by the RecordInfoProvider plus information to locate
the original record in a file.

• Sample RecordInfoProvider Implementation

• LocalizableRecordInfoProvider

2.9.11.1 Sample RecordInfoProvider Implementation
This sample implementation, called JsonRecordInfoProvider, takes text records in
JSON format, which are read using TextInputFormat. A sample record is shown here:

{ "_id":"ABCD1234", "location":" 119.31669, -31.21615", "locationText":"Boston, Ma",
"date":"03-18-2015", "time":"18:05", "device-type":"cellphone", "device-
name":"iPhone"}

When a JsonRecordInfoProvider is instantiated, a JSON ObjectMapper is created. The
ObjectMapper is used to parse records values later when setCurrentRecord() is called.
The record key is ignored. The record id, geometry, and one extra field are retrieved
from the _id, location and locationText JSON properties. The geometry is represented
as latitude-longitude pair and is used to create a point geometry using
JGeometry.createPoint() method. The extra field (locationText) is added to the
extraFields map, which serves as an out parameter and true is returned indicating that
an extra field was added.

public class JsonRecordInfoProvider implements RecordInfoProvider<LongWritable,
Text> {
private Text value = null;
private ObjectMapper jsonMapper = null;
private JsonNode recordNode = null;

public JsonRecordInfoProvider(){

//json mapper used to parse all the records

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-67

jsonMapper = new ObjectMapper();

}

@Override
public void setCurrentRecord(LongWritable key, Text value) throws Exception {
 try{

 //parse the current value

 recordNode = jsonMapper.readTree(value.toString());
 }catch(Exception ex){
 recordNode = null;
 throw ex;
 }
}

@Override
public String getId() {
 String id = null;
 if(recordNode != null){
 id = recordNode.get("_id").getTextValue();
 }
 return id;
}
@Override
public JGeometry getGeometry() {
 JGeometry geom = null;
 if(recordNode!= null){
 //location is represented as a lat,lon pair
 String location = recordNode.get("location").getTextValue();
 String[] locTokens = location.split(",");
 double lat = Double.parseDouble(locTokens[0]);
 double lon = Double.parseDouble(locTokens[1]);
 geom = JGeometry.createPoint(new double[]{lon, lat}, 2, 8307);
 }
 return geom;
}

@Override
public boolean getExtraFields(Map<String, String> extraFields) {
 boolean extraFieldsExist = false;
 if(recordNode != null) {
 extraFields.put("locationText",
recordNode.get("locationText").getTextValue());
 extraFieldsExist = true;
 }
 return extraFieldsExist;
}
}

2.9.11.2 LocalizableRecordInfoProvider
This interface extends RecordInfoProvider and is used to know the extra fields that can
be used as the search text, when MVSuggest is used.

The only method added by this interface is getLocationServiceField(), which returns
the name of the extra field that will be sent to MVSuggest.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-68

In addition, the following is an implementation based on "Sample RecordInfoProvider
Implementation." The name returned in this example is locationText, which is the
name of the extra field included in the parent class.

public class LocalizableJsonRecordInfoProvider extends JsonRecordInfoProvider
implements LocalizableRecordInfoProvider<LongWritable, Text> {

@Override
public String getLocationServiceField() {
 return "locationText";
}
}

An alternative to LocalizableRecordInfoProvider is to set the configuration property
oracle.spatial.recordInfo.locationField with the name of the search field, which
value should be sent to MVSuggest. Example:
configuration.set(LocatizableRecordInfoProvider.CONF_RECORD_INFO_LOCATION_FIELD,

“locationField”)

2.9.12 HierarchyInfo
The HierarchyInfo interface is used to describe a hierarchical dataset. This
implementation of HierarchyInfo is expected to provide the number, names, and the
entries of the hierarchy levels of the hierarchy it describes.

The root hierarchy level is always the hierarchy level 1. The entries in this level do not
have parent entries and this level is referred as the top hierarchy level. Children
hierarchy levels will have higher level values. For example: the levels for the hierarchy
conformed by continents, countries, and states are 1, 2 and 3 respectively. Entries in
the continent layer do not have a parent, but have children entries in the countries
layer. Entries at the bottom level, the states layer, do not have children.

A HierarchyInfo implementation is provided out of the box with the Vector Analysis
API. The DynaAdminHierarchyInfo implementation can be used to read and describe the
known hierarchy layers in GeoJSON format. A DynaAdminHierarchyInfo can be
instantiated and configured or can be subclassed. The hierarchy layers to be
contained are specified by calling the addLevel() method, which takes the following
parameters:

• The hierarchy level number

• The hierarchy level name, which must match the file name (without extension) of
the GeoJSON file that contains the data. For example, the hierarchy level name
for the file world_continents.json must be world_continents, for
world_countries.json it is world_countries, and so on.

• Children join field: This is a JSON property that is used to join entries of the
current level with child entries in the lower level. If a null is passed, then the entry
id is used.

• Parent join field: This is a JSON property used to join entries of the current level
with parent entries in the upper level. This value is not used for the top most level
without an upper level to join. If the value is set null for any other level greater than
1, an IsInside spatial operation is performed to join parent and child entries. In this
scenario, it is supposed that an upper level geometry entry can contain lower level
entries.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-69

For example, let us assume a hierarchy containing the following levels from the
specified layers: 1- world_continents, 2 - world_countries and 3 -
world_states_provinces. A sample entry from each layer would look like the following:

world_continents:
 {"type":"Feature","_id":"NA","geometry": {"type":"MultiPolygon", "coordinates":
[x,y,x,y,x,y] }"properties":{"NAME":"NORTH AMERICA", "CONTINENT_LONG_LABEL":"North
America"},"label_box":[-118.07998,32.21006,-86.58515,44.71352]}

world_countries: {"type":"Feature","_id":"iso_CAN","geometry":
{"type":"MultiPolygon","coordinates":[x,y,x,y,x,y]},"properties":
{"NAME":"CANADA","CONTINENT":"NA","ALT_REGION":"NA","COUNTRY
CODE":"CAN"},"label_box":[-124.28092,49.90408,-94.44878,66.89287]}

world_states_provinces:
{"type":"Feature","_id":"6093943","geometry": {"type":"Polygon", "coordinates":
[x,y,x,y,x,y]},"properties":{"COUNTRY":"Canada", "ISO":"CAN",
"STATE_NAME":"Ontario"},"label_box":[-91.84903,49.39557,-82.32462,54.98426]}

A DynaAdminHierarchyInfo can be configured to create a hierarchy with the above
layers in the following way:

DynaAdminHierarchyInfo dahi = new DynaAdminHierarchyInfo();

dahi.addLevel(1, "world_continents", null /*_id is used by default to join with
child entries*/, null /*not needed as there are not upper hierarchy levels*/);

dahi.addLevel(2, "world_countries", "properties.COUNTRY CODE"/*field used to join
with child entries*/, "properties.CONTINENT" /*the value "NA" will be used to find
Canada's parent which is North America and which _id field value is also "NA" */);

dahi.addLevel(3, "world_states_provinces", null /*not needed as not child entries
are expected*/, "properties.ISO"/*field used to join with parent entries. For
Ontario, it is the same value than the field properties.COUNTRY CODE specified for
Canada*/);

//save the previous configuration to the job configuration

dahi.initialize(conf);

A similar configuration can be used to create hierarchies from different layers, such as
countries, states and counties, or any other layers with a similar JSON format.

Alternatively, to avoid configuring a hierarchy every time a job is executed, the
hierarchy configuration can be enclosed in a DynaAdminHierarchyInfo subclass as in
the following example:

public class WorldDynaAdminHierarchyInfo extends DynaAdminHierarchyInfo \

{
 public WorldDynaAdminHierarchyInfo()

 {
 super();
 addLevel(1, "world_continents", null, null);
 addLevel(2, "world_countries", "properties.COUNTRY CODE",
"properties.CONTINENT");
 addLevel(3, "world_states_provinces", null, "properties.ISO");
 }

}

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-70

• Sample HierarchyInfo Implementation

2.9.12.1 Sample HierarchyInfo Implementation
The HierarchyInfo interface contains the following methods, which must be
implemented to describe a hierarchy. The methods can be divided in to the following
three categories:

• Methods to describe the hierarchy

• Methods to load data

• Methods to supply data

Additionally there is an initialize() method, which can be used to perform any
initialization and to save and read data both to and from the job configuration

void initialize(JobConf conf);

//methods to describe the hierarchy

String getLevelName(int level);
int getLevelNumber(String levelName);
int getNumberOfLevels();

//methods to load data

void load(Path[] hierDataPaths, int fromLevel, JobConf conf) throws Exception;
void loadFromIndex(HierarchyDataIndexReader[] readers, int fromLevel, JobConf conf)
throws Exception;

//methods to supply data

Collection<String> getEntriesIds(int level);
JGeometry getEntryGeometry(int level, String entryId);
String getParentId(int childLevel, String childId);

The following is a sample HierarchyInfo implementation, which takes the previously
mentioned world layers as the hierarchy levels. The first section contains the initialize
method and the methods used to describe the hierarchy. In this case, the initialize
method does nothing. The methods mentioned in the following example use the
hierarchyLevelNames array to provide the hierarchy description. The instance variables
entriesGeoms and entriesParent are arrays of java.util.Map, which contains the entries
geometries and entries parents respectively. The entries ids are used as keys in both
cases. Since the arrays indices are zero-based and the hierarchy levels are one-
based, the array indices correlate to the hierarchy levels as array index + 1 = hierarchy
level.

public class WorldHierarchyInfo implements HierarchyInfo
{

 private String[] hierarchyLevelNames = {"world_continents",
"world_countries", "world_states_provinces"};
 private Map<String, JGeometry>[] entriesGeoms = new Map[3];
 private Map<String, String>[] entriesParents = new Map[3];

 @Override
 public void initialize(JobConf conf)
 {

 //do nothing for this implementation

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-71

}

 @Override
 public int getNumberOfLevels()
 {
 return hierarchyLevelNames.length;
}

 @Override
 public String getLevelName(int level)
 {
 String levelName = null;
 if(level >=1 && level <= hierarchyLevelNames.length)
 {
 levelName = hierarchyLevelNames[level - 1];
 }
 return levelName;
 }

 @Override
 public int getLevelNumber(String levelName)
 {
 for(int i=0; i< hierarchyLevelNames.length; i++)
 {
 if(hierarchyLevelNames.equals(levelName)) return i+1;
 }
 return -1;
}

The following example contains the methods that load the different hierarchy levels
data. The load() method reads the data from the source files world_continents.json,
world_countries.json, and world_states_provinces.json. For the sake of simplicity, the
internally called loadLevel() method is not specified, but it is supposed to parse and
read the JSON files.

The loadFromIndex() method only takes the information provided by the
HierarchyIndexReader instances passed as parameters. The load() method is
supposed to be executed only once and only if a hierarchy index has not been
created, in a job. Once the data is loaded, it is automatically indexed and
loadFromIndex() method is called every time the hierarchy data is loaded into the
memory.

 @Override
 public void load(Path[] hierDataPaths, int fromLevel, JobConf conf) throws
Exception {
 int toLevel = fromLevel + hierDataPaths.length - 1;
 int levels = getNumberOfLevels();

 for(int i=0, level=fromLevel; i<hierDataPaths.length && level<=levels; i++,
level++)
 {

 //load current level from the current path

 loadLevel(level, hierDataPaths[i]);
 }
 }

 @Override
 public void loadFromIndex(HierarchyDataIndexReader[] readers, int fromLevel,

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-72

JobConf conf)
 throws Exception
 {
 Text parentId = new Text();
 RecordInfoArrayWritable records = new RecordInfoArrayWritable();
 int levels = getNumberOfLevels();

 //iterate through each reader to load each level's entries

 for(int i=0, level=fromLevel; i<readers.length && level<=levels; i++, level++)
 {
 entriesGeoms[level - 1] = new Hashtable<String, JGeometry>();
 entriesParents[level - 1] = new Hashtable<String, String>();

 //each entry is a parent record id (key) and a list of entries as RecordInfo
(value)

 while(readers[i].nextParentRecords(parentId, records))
 {
 String pId = null;

 //entries with no parent will have the parent id UNDEFINED_PARENT_ID. Such
is the case of the first level entries

 if(! UNDEFINED_PARENT_ID.equals(parentId.toString()))
 {
 pId = parentId.toString();
 }

 //add the current level's entries

 for(Object obj : records.get())
 {
 RecordInfo entry = (RecordInfo) obj;
 entriesGeoms[level - 1].put(entry.getId(), entry.getGeometry());
 if(pId != null)
 {
 entriesParents[level -1].put(entry.getId(), pId);
 }
 }//finishin loading current parent entries
 }//finish reading single hierarchy level index
 }//finish iterating index readers
}

Finally, the following code listing contains the methods used to provide information of
individual entries in each hierarchy level. The information provided is the ids of all the
entries contained in a hierarchy level, the geometry of each entry, and the parent of
each entry.

@Override
public Collection<String> getEntriesIds(int level)
{
 Collection<String> ids = null;

 if(level >= 1 && level <= getNumberOfLevels() && entriesGeoms[level - 1] !=
null)
 {

 //returns the ids of all the entries from the given level

 ids = entriesGeoms[level - 1].keySet();

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-73

 }
 return ids;
}

@Override
public JGeometry getEntryGeometry(int level, String entryId)
{
 JGeometry geom = null;
 if(level >= 1 && level <= getNumberOfLevels() && entriesGeoms[level - 1] !=
null)
 {

 //returns the geometry of the entry with the given id and level

 geom = entriesGeoms[level - 1].get(entryId);
 }
 return geom;
}

@Override
public String getParentId(int childLevel, String childId)
{
 String parentId = null;
 if(childLevel >= 1 && childLevel <= getNumberOfLevels() &&
entriesGeoms[childLevel - 1] != null)
 {

 //returns the parent id of the entry with the given id and level

 parentId = entriesParents[childLevel - 1].get(childId);
 }
 return parentId;
 }
}//end of class

2.9.13 Using JGeometry in MapReduce Jobs
The Spatial Hadoop Vector Analysis only contains a small subset of the functionality
provided by the Spatial Java API, which can also be used in the MapReduce jobs. This
section provides some simple examples of how JGeometry can be used in Hadoop for
spatial processing. The following example contains a simple mapper that performs the
IsInside test between a dataset and a query geometry using the JGeometry class.

In this example, the query geometry ordinates, srid, geodetic value and tolerance used
in the spatial operation are retrieved from the job configuration in the configure
method. The query geometry, which is a polygon, is preprocessed to quickly perform
the IsInside operation.

The map method is where the spatial operation is executed. Each input record value is
tested against the query geometry and the id is returned, when the test succeeds.

public class IsInsideMapper extends MapReduceBase implements Mapper<LongWritable,
Text, NullWritable, Text>
{
 private JGeometry queryGeom = null;
 private int srid = 0;
 private double tolerance = 0.0;
 private boolean geodetic = false;
 private Text outputValue = new Text();
 private double[] locationPoint = new double[2];

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-74

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);
 srid = conf.getInt("srid", 8307);
 tolerance = conf.getDouble("tolerance", 0.0);
 geodetic = conf.getBoolean("geodetic", true);

 //The ordinates are represented as a string of comma separated double values

 String[] ordsStr = conf.get("ordinates").split(",");
 double[] ordinates = new double[ordsStr.length];
 for(int i=0; i<ordsStr.length; i++)
 {
 ordinates[i] = Double.parseDouble(ordsStr[i]);
 }

 //create the query geometry as two-dimensional polygon and the given srid

 queryGeom = JGeometry.createLinearPolygon(ordinates, 2, srid);

 //preprocess the query geometry to make the IsInside operation run faster

 try
 {
 queryGeom.preprocess(tolerance, geodetic,
EnumSet.of(FastOp.ISINSIDE));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 @Override
 public void map(LongWritable key, Text value,
 OutputCollector<NullWritable, Text> output, Reporter reporter)
 throws IOException
 {

 //the input value is a comma separated values text with the following columns:
id, x-ordinate, y-ordinate

 String[] tokens = value.toString().split(",");

 //create a geometry representation of the record's location

 locationPoint[0] = Double.parseDouble(tokens[1]);//x ordinate
 locationPoint[1] = Double.parseDouble(tokens[2]);//y ordinate
 JGeometry location = JGeometry.createPoint(locationPoint, 2, srid);

 //perform spatial test

 try
 {
 if(location.isInside(queryGeom, tolerance, geodetic)){

 //emit the record's id

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-75

 outputValue.set(tokens[0]);
 output.collect(NullWritable.get(), outputValue);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}
}

A similar approach can be used to perform a spatial operation on the geometry itself.
For example, by creating a buffer. The following example uses the same text value
format and creates a buffer around each record location. The mapper output key and
value are the record id and the generated buffer, which is represented as a
JGeometryWritable. The JGeometryWritable is a Writable implementation contained in
the Vector Analysis API that holds a JGeometry instance.

public class BufferMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, JGeometryWritable>
{
 private int srid = 0;
 private double bufferWidth = 0.0;
 private Text outputKey = new Text();
 private JGeometryWritable outputValue = new JGeometryWritable();
 private double[] locationPoint = new double[2];

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);
 srid = conf.getInt("srid", 8307);

 //get the buffer width

 bufferWidth = conf.getDouble("bufferWidth", 0.0);
 }

 @Override
 public void map(LongWritable key, Text value,
 OutputCollector<Text, JGeometryWritable> output, Reporter reporter)
 throws IOException
 {

 //the input value is a comma separated record with the following
columns: id, longitude, latitude

 String[] tokens = value.toString().split(",");

 //create a geometry representation of the record's location

 locationPoint[0] = Double.parseDouble(tokens[1]);
 locationPoint[1] = Double.parseDouble(tokens[2]);
 JGeometry location = JGeometry.createPoint(locationPoint, 2, srid);

 try
 {

 //create the location's buffer

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-76

 JGeometry buffer = location.buffer(bufferWidth);

 //emit the record's id and the generated buffer

 outputKey.set(tokens[0]);
 outputValue.setGeometry(buffer);
 output.collect(outputKey, outputValue);
 }

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

2.9.14 Support for Different Data Sources
In addition to file-based data sources (that is, a file or a set of files from a local or a
distributed file system), other types of data sources can be used as the input data for a
Vector API job.

Data sources are referenced as input data sets in the Vector API. All the input data
sets implement the interface oracle.spatial.hadoop.vector.data.AbstractInputDataSet.
Input data set properties can be set directly for a Vector job using the methods
setInputFormatClass(), setRecordInfoProviderClass(), and setSpatialConfig(). More
information can be set, depending the type of input data set. For example, setInput()
can specify the input string for a file data source, or setIndexName() can be used for a
spatial index. The job determines the input data type source based on the properties
that are set.

Input data set information can also be set directly for a Vector API job using the job’s
method setInputDataSet(). With this method, the input data source information is
encapsulated, you have more control, and it is easier to identify the type of data
source that is being used.

The Vector API provides the following implementations of AsbtractInputDataSet:

• SimpleInputDataSet: Contains the minimum information required by the Vector API
for an input data set. Typically, this type of input data set should be used for non-
file based input data sets, such as Apache Hbase, an Oracle database, or any
other non-file-based data source.

• FileInputDataSet: Encapsulates file-based input data sets from local or distributed
file systems. It provides properties for setting the input path as an array of Path
instances or as a string that can be a regular expression for selecting paths.

• SpatialIndexInputDataSet: A subclass of FileInputDataSet optimized for working
with spatial indexes generated by the Vector API. It is sufficient to specify the
index name for this type of input data set.

• NoSQLInputDataSet: Specifies Oracle NoSQL data sources. It should be used in
conjunction with Vector NoSQL API. If the NoSQL KVInputFormat or
TableInputFormat classes need to be used, use SimpleInputFormat instead.

• MultiInputDataSet: Input data set that encapsulates two or more input data sets.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-77

Multiple Input Data Sets

Most of the Hadoop jobs provided by the Vector API (except Categorization) are able
to manage more than one input data set by using the class
oracle.spatial.hadoop.vector.data.MultiInputDataSet.

To add more than one input data set to a job, follow these steps.

1. Create and configure two or more instances of AbstractInputDataSet subclasses.

2. Create an instance of oracle.spatial.hadoop.vector.data.MultiInputDataSet.

3. Add the input data sets created in step 1 to the MultiInputDataSet instance.

4. Set MultiInputDataSet instance as the job’s input data set.

The following code snippet shows how to set multiple input data sets to a Vector API.

//file input data set
FileInputDataSet fileDataSet = new FileInputDataSet();
fileDataSet.setInputFormatClass(GeoJsonInputFormat.class);
fileDataSet.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
fileDataSet.setInputString("/user/myUser/geojson/*.json");

//spatial index input data set
SpatialIndexInputDataSet indexDataSet = new SpatialIndexInputDataSet();
indexDataSet.setIndexName("myIndex");

//create multi input data set
MultiInputDataSet multiDataSet = new MultiInputDataSet();

//add the previously defined input data sets
multiDataSet.addInputDataSet(fileDataSet);
multiDataSet.addInputDataSet(indexDataSet);

Binning binningJob = new Binning();
//set multiple input data sets to the job
binningJob.setInputDataSet(multiDataSet);

NoSQL Input Data Set

The Vector API provides classes to read data from Oracle NoSQL Database. The
Vector NoSQL components let you group multiple key-value pairs into single records,
which are passed to Hadoop mappers as RecordInfo instances. They also let you map
NoSQL entries (key and value) to Hadoop records fields (RecordInfo’s id, geometry,
and extra fields).

The NoSQL parameters are passed to a Vector job using the NoSQLInputDataSet class.
You only need to fill and set a NoSQLConfiguration instance that contains the KV store,
hosts, parent key, and additional information for the NoSQL data source. InputFormat
and RecordInfoProvider classes do not need to be set because the default ones are
used.

The following example shows how to configure a job to use NoSQL as data source,
using the Vector NoSQL classes.

//create NoSQL configuration
NoSQLConfiguration nsqlConf = new NoSQLConfiguration();
// set connection data
nsqlConf.setKvStoreName("mystore");
nsqlConf.setKvStoreHosts(new String[] { "myserver:5000" });

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-78

nsqlConf.setParentKey(Key.createKey("tweets"));
// set NoSQL entries to be included in the Hadoop records
// the entries with the following minor keys will be set as the
// RecordInfo's extra fields
nsqlConf.addTargetEntries(new String[] { "friendsCount", "followersCount" });
// add an entry processor to map the spatial entry to a RecordInfo's
// geometry
nsqlConf.addTargetEntry("geometry", NoSQLJGeometryEntryProcessor.class);
//create and set the NoSQL input data set
NoSQLInputDataSet nsqlDataSet = new NoSQLInputDataSet();
//set noSQL configuration
nsqlDataSet.setNoSQLConfig(nsqlConf);
//set spatial configuration
SpatialConfig spatialConf = new SpatialConfig();
spatialConf.setSrid(8307);
nsqlDataSet.setSpatialConfig(spatialConf);

Target entries refer to the NoSQL entries that will be part of the Hadoop records and
are specified by the NoSQL minor keys. In the preceding example, the entries with the
minor keys friendsCount and followersCount will be part of a Hadoop record. These
NoSQL entries will be parsed as text values and assigned to the Hadoop RecordInfo as
the extra fields called friendsCount and followersCount. By default, the major key is
used as record id. The entries that contain “geometry” as minor key are used to set the
RecordInfo’s geometry field.

In the preceding example, the value type of the geometry NoSQL entries is JGeometry,
so it is necessary to specify a class to parse the value and assign it to the RecordInfo’s
geometry field. This requires setting an implementation of the NoSQLEntryProcessor
interface. In this case, the NoSQLJGeometryEntryProcessor class is used, and it reads the
value from the NoSQL entry and sets that value to the current RecordInfo’s geometry
field. You can provide your own implementation of NoSQLEntryProcessor for parsing
specific entry formats.

By default, NoSQL entries sharing the same major key are grouped into the same
Hadoop record. This behavior can be changed by implementing the interface
oracle.spatial.hadoop.nosql.NoSQLGrouper and setting the NoSQLConfiguration property
entryGrouperClass with the new grouper class.

The Oracle NoSQL library kvstore.jar is required when running Vector API jobs that
use NoSQL as the input data source.

Other Non-File-Based Data Sources

Other non-file-based data sources can be used with the Vector API, such as NoSQL
(using the Oracle NoSQL classes) and Apache HBase. Although the Vector API does
not provide specific classes to manage every type of data source, you can associate
the specific data source with the job configuration and specify the following information
to the Vector job:

• InputFormat: The InputFormat implementation used to read data from the data
source.

• RecordInfoProvider: An implementation of RecordInfoProvider to extract required
information such as id, spatial information, and extra fields from the key-value
pairs returned by the current InputFormat.

• Spatial configuration: Describes the spatial properties of the input data, such as
the SRID and the dimension boundaries.

The following example shows how to use Apache HBase data in a Vector job.

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-79

//create job
Job job = Job.getInstance(getConf());
job.setJobName(getClass().getName());
job.setJarByClass(getClass());

//Setup hbase parameters
Scan scan = new Scan();
scan.setCaching(500);
scan.setCacheBlocks(false);
scan.addColumn(Bytes.toBytes("location_data"), Bytes.toBytes("geometry"));
scan.addColumn(Bytes.toBytes("other_data"), Bytes.toBytes("followers_count"));
scan.addColumn(Bytes.toBytes("other_data"), Bytes.toBytes("user_id"));

//initialize job configuration with hbase parameters
TableMapReduceUtil.initTableMapperJob(
 "tweets_table",
 scan,
 null,
 null,
 null,
 job);
//create binning job
Binning<ImmutableBytesWritable, Result> binningJob = new
Binning<ImmutableBytesWritable, Result>();
//setup the input data set
SimpleInputDataSet inputDataSet = new SimpleInputDataSet();
//use HBase's TableInputFormat
inputDataSet.setInputFormatClass(TableInputFormat.class);
//Set a RecordInfoProvider which can extract information from HBase
TableInputFormat's returned key and values
inputDataSet.setRecordInfoProviderClass(HBaseRecordInfoProvider.class);
//set spatial configuration
SpatialConfig spatialConf = new SpatialConfig();
spatialConf.setSrid(8307);
inputDataSet.setSpatialConfig(spatialConf);
binningJob.setInputDataSet(inputDataSet);

//job output
binningJob.setOutput("hbase_example_output");

//binning configuration
BinningConfig binConf = new BinningConfig();
binConf.setGridMbr(new double[]{-180, -90, 180, 90});
binConf.setCellHeight(5);
binConf.setCellWidth(5);
binningJob.setBinConf(binConf);

//configure the job
binningJob.configure(job);

//run
boolean success = job.waitForCompletion(true);

The RecordInfoProvider class set in the preceding example is a custom implementation
called HBaseRecordInfoProvider, the definition of which is as follows.

public class HBaseRecordInfoProvider implements
RecordInfoProvider<ImmutableBytesWritable, Result>, Configurable{

 private Result value = null;
 private Configuration conf = null;

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-80

 private int srid = 0;

 @Override
 public void setCurrentRecord(ImmutableBytesWritable key, Result value) throws
Exception {
 this.value = value;
 }

 @Override
 public String getId() {
 byte[] idb = value.getValue(Bytes.toBytes("other_data"),
Bytes.toBytes("user_id"));
 String id = idb != null ? Bytes.toString(idb) : null;
 return id;
 }

 @Override
 public JGeometry getGeometry() {
 byte[] geomb = value.getValue(Bytes.toBytes("location_data"),
Bytes.toBytes("geometry"));
 String geomStr = geomb!=null ? Bytes.toString(geomb) : null;
 JGeometry geom = null;
 if(geomStr != null){
 String[] pointsStr = geomStr.split(",");
 geom = JGeometry.createPoint(new double[]{Double.valueOf(pointsStr[0]),
Double.valueOf(pointsStr[1])}, 2, srid);
 }
 return geom;
 }

 @Override
 public boolean getExtraFields(Map<String, String> extraFields) {
 byte[] fcb = value.getValue(Bytes.toBytes("other_data"),
Bytes.toBytes("followers_count"));
 if(fcb!=null){
 extraFields.put("followers_count", Bytes.toString(fcb));
 }
 return fcb!=null;
 }

 @Override
 public Configuration getConf() {
 return conf;
 }

 @Override
 public void setConf(Configuration conf) {
 srid = conf.getInt(ConfigParams.SRID, 0);
 }

}

2.9.15 Job Registry
Every time a Vector API job is launched using the command line interface or the web
console, a registry file is created for that job. A job registry file contains the following
information about the job:

• Job name

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-81

• Job ID

• User that executed the job

• Start and finish time

• Parameters used to run the job

• Jobs launched by the first job (called child jobs). Child jobs contain the same fields
as the parent job.

A job registry file preserves the parameters used to run the job, which can be used as
an aid for running an identical job even when it was not initially run using the command
line interface.

By default, job registry files are created under the HDFS path relative to the user folder
oracle_spatial/job_registry (for example, /user/hdfs/oracle_spatial/job_registry for
the hdfs user).

Job registry files can be removed directly using HDFS commands or using the
following utility methods from class
oracle.spatial.hadoop.commons.logging.registry.RegistryManager:

• public static int removeJobRegistry(long beforeDate, Configuration conf):
Removes all the job registry files that were created before the specified time stamp
from the default job registry folder.

• public static int removeJobRegistry(Path jobRegDirPath, long beforeDate,

Configuration conf): Removes all the job registry files that were created before the
specified time stamp from a specified job registry folder.

2.9.16 Tuning Performance Data of Job Running Times Using the
Vector Analysis API

The table lists some running times for jobs built using the Vector Analysis API. The
jobs were executed using a 4-node cluster. The times may vary depending on the
characteristics of the cluster. The test dataset contains over One billion records and
the size is above 1 terabyte.

Table 2-4 Performance time for running jobs using Vector Analysis API

Job Type Time taken (approximate value)

Spatial Indexing 2 hours

Spatial Filter with Spatial Index 1 hour

Spatial Filter without Spatial Index 3 hours

Hierarchy count with Spatial Index 5 minutes

Hierarchy count without Spatial Index 3 hours

The time taken for the jobs can be decreased by increasing the maximum split size
using any of the following configuration parameters.

mapred.max.split.size
mapreduce.input.fileinputformat.split.maxsize

This results in more splits are being processed by each single mapper and improves
the execution time. This is done by using the SpatialFilterInputFormat (spatial

Chapter 2
Oracle Big Data Spatial Vector Analysis

2-82

indexing) or FileSplitInputFormat (spatial hierarchical join, buffer). Also, the same
results can be achieved by using the implementation of CombineFileInputFormat as
internal InputFormat.

2.10 Oracle Big Data Spatial Vector Analysis for Spark
Oracle Big Data Spatial Vector Analysis for Apache Spark is a spatial vector analysis
API for Java and Scala that provides spatially-enabled RDDs (Resilient Distributed
Datasets) that support spatial transformations and actions, spatial partitioning, and
indexing.

These components make use of the Spatial Java API to perform spatial analysis tasks.
The supported features include the following.

• Spatial RDD (Resilient Distributed Dataset)

• Spatial Transformations

• Spatial Actions (MBR and NearestNeighbors)

• Spatially Indexing a Spatial RDD

• Support for Common Spatial Formats

• Spatial Spark SQL API

• JDBC Data Sources for Spatial RDDs

2.10.1 Spatial RDD (Resilient Distributed Dataset)
A spatial RDD (Resilient Distributed Dataset) is a Spark RDD that allows you to
perform spatial transformations and actions.

The current spatial RDD implementation is the class
oracle.spatial.spark.vector.rdd.SpatialJavaRDD for Java and
oracle.spatial.spark.vector.scala.rdd.SpatialRDD for Scala. A spatial RDD
implementation can be created from an existing instance of RDD or JavaRDD, as
shown in the following examples:

Java:

//create a regular RDD
JavaRDD<String> rdd = sc.textFile("someFile.txt");
//create a SparkRecordInfoProvider to extract spatial information from the source
RDD’s records
SparkRecordInfoProvider<String> recordInfoProvider = new MySparkRecordInfoProvider();
//create a spatial RDD
SpatialJavaRDD<String> spatialRDD = SpatialJavaRDD.fromJavaRDD(rdd,
recordInfoProvider, String.class));

Scala:

//create a regular RDD
val rdd: RDD[String] = sc.textFile("someFile.txt")
//create a SparkRecordInfoProvider to extract spatial information from the source
RDD’s records
val recordInfoProvider: SparkRecordInfoProvider[String] = new
MySparkRecordInfoProvider()
//create a spatial RDD
val spatialRDD: SpatialRDD[String] = SpatialRDD(rdd, recordInfoProvider)

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-83

A spatial RDD takes an implementation of the interface
oracle.spatial.spark.vector.SparkRecordInfoProvider, which is used for extracting
spatial information from each RDD element.

A regular RDD can be transformed into a spatial RDD of the same generic type, that
is, if the source RDD contains records of type String. The spatial RDD will also contain
String records.

You can also create a Spatial RDD with records of type
oracle.spatial.spark.vector.SparkRecordInfo. A SparkRecordInfo is an abstraction of a
record from the source RDD; it holds the source record’s spatial information and may
contain a subset of the source record’s data.

The following examples show how to create an RDD of SparkRecordInfo records.

Java:

//create a regular RDD
JavaRDD<String> rdd = sc.textFile("someFile.txt");
//create a SparkRecordInfoProvider to extract spatial information from the source
RDD’s records
SparkRecordInfoProvider<String> recordInfoProvider = new MySparkRecordInfoProvider();
//create a spatial RDD
SpatialJavaRDD<SparkRecordInfo> spatialRDD = SpatialJavaRDD.fromJavaRDD(rdd,
recordInfoProvider));

Scala:

//create a regular RDD
val rdd: RDD[String] = sc.textFile("someFile.txt")
//create a SparkRecordInfoProvider to extract spatial information from the source
RDD’s records
val recordInfoProvider: SparkRecordInfoProvider[String] = new
MySparkRecordInfoProvider()
//create a spatial RDD
val spatialRDD: SpatialRDD[SparkRecordInfo] = SpatialRDD.fromRDD(rdd,
recordInfoProvider))

A spatial RDD of SparkRecordInfo records has the advantage that spatial information
does not need to be extracted from each record every time it is needed for a spatial
operation.

You can accelerate spatial searches by spatially indexing a spatial RDD. Spatial
indexing is described in section 1.4 Spatial Indexing.

The spatial RDD provides the following spatial transformations and actions, which are
described in the sections 1.2 Spatial Transformations and 1.3 Spatial Actions.

Spatial transformations:

• filter

• flatMap

• join (available when creating a spatial index)

Spatial Actions:

• MBR

• nearestNeighbors

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-84

Spatial Pair RDD

A pair version of the Java classSpatialJavaRDD is provided and is implemented as the
class oracle.spatial.spark.vector.rdd.SpatialJavaPairRDD. A spatial pair RDD is
created from an existing pair RDD and contains the same spatial transformations and
actions as the single spatial RDD. A SparkRecordInfoProvider used for a spatial pair
RDD should receive records of type scala.Tuple2<K,V>, where K and V correspond to
the pair RDD key and value types, respectively.

Example 2-1 SparkRecordInfoProvider to Read Information from a CSV File

The following example shows how to implement a simple SparkRecordInfoProvider to
read information from a CSV file.

public class CSVRecordInfoProvider implements SparkRecordInfoProvider<String>{
 private int srid = 8307;

 //receives an RDD record and fills the given recordInfo
 public boolean getRecordInfo(String record, SparkRecordInfo recordInfo) {
 try {
 String[] tokens = record.split(",");
 //expected records have the format: id,name,last_name,x,y where x and y
are optional
 //output recordInfo will contain the fields id, last name and geometry
 recordInfo.addField("id", tokens[0]);
 recordInfo.addField("last_name", tokens[2]);
 if (tokens.length == 5) {
 recordInfo.setGeometry(JGeometry.createPoint(tokens[3], tokens[4],
2, srid));
 }
 } catch (Exception ex) {
 //return false when there is an error extracting data from the input
value
 return false;
 }
 return true;
 }

 public void setSrid(int srid) {this.srid = srid;}
 public int getSrid() {return srid;}
}

In this example, the record’s ID and last-name fields are extracted along with the
spatial information to be set to the SparkRecordInfo instance used as an out parameter.
Extracting additional information is only needed when the goal is to create a spatial
RDD containing SparkRecordInfo elements and is necessary to preserve a subset of
the original records information. Otherwise, it is only necessary to extract the spatial
information.

The call to SparkRecordInfoProvider.getRecordInfo() should return true whenever the
record should be included in a transformation or considered in a search. If
SparkRecordInfoProvider.getRecordInfo() returns false, the record is ignored.

2.10.2 Spatial Transformations
The transformations described in the following subtopics are available for spatial RDD,
spatial pair RDD, and the distributed spatial index unless stated otherwise (for
example, a join transformation is only available for a distributed spatial index).

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-85

• Filter Transformation

• FlatMap Transformation

• Join Transformation

• Controlling Spatial Evaluation

• Spatially Enabled Transformations

2.10.2.1 Filter Transformation
A filter transformation is a spatial version of the regular RDD’s filter() transformation. In
addition to a user-provided filtering function, it takes an instance of
oracle.spatial.hadoop.vector.util.SpatialOperationConfig, which is used to describe
the spatial operation used to filter spatial records. A SpatialOperationConfig contains a
query window which is the geometry used as reference and a spatial operation. The
spatial operation is executed in the form: (RDD record’s geometry) (spatial operation)
(query window). For example: (RDD record) IsInside (queryWindow)

Spatial operations available are AnyInteract, IsInside, Contains, and WithinDistance.

The following examples return an RDD containing only records that are inside the
given query window and with not null ID.

Java:

SpatialOperationConfig soc = new SpatialOperationConfig();
soc.setOperation(SpatialOperation.IsInside);
soc.setQueryWindow(JGeometry.createLinearPolygon(new double[] { 2.0, 1.0, 2.0, 3.0,
6.0, 3.0, 6.0, 1.0, 2.0, 1.0 }, 2, srid));
SpatialJavaRDD<SparkRecordInfo> filteredSpatialRDD = spatialRDD.filter(
(record) -> {
return record.getField(“id”) != null;
}, soc);

Scala:

val soc = new SpatialOperationConfig()
soc.setOperation(SpatialOperation.IsInside)
soc.setQueryWindow(JGeometry.createLinearPolygon(Array(2.0, 1.0, 2.0, 3.0, 6.0, 3.0,
6.0, 1.0, 2.0, 1.0), 2, srid))
val filteredSpatialRDD: SpatialRDD[SparkRecordInfo] = spatialRDD.filter(
record => { record.getField(“id”) != null }, soc)

2.10.2.2 FlatMap Transformation
A FlatMap transformation is a spatial version of the regular RDD’s flatMap()
transformation. In addition to the user-provided function, it takes a
SpatialOperationConfig to perform a spatial filtering. It works like the Filter
Transformation, except that spatially filtered results are passed to the map function
and flattened.

The following examples create an RDD that contains only elements that interact with
the given query window and geometries that have been buffered.

Java:

SpatialOperationConfig soc = new SpatialOperationConfig();
soc.setOperation(SpatialOperation.AnyInteract);
soc.setQueryWindow(JGeometry.createLinearPolygon(new double[] { 2.0, 1.0, 2.0, 3.0,

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-86

6.0, 3.0, 6.0, 1.0, 2.0, 1.0 }, 2, srid));
JavaRDD<SparkRecordInfo> mappedRDD = spatialRDD.flatMap(
(record) -> {
 JGeometry buffer = record.getGeometry().buffer(2.5);
 record.setGeometry(buffer);
return Collections.singletonList(record);
}, soc);

Scala:

val soc = new SpatialOperationConfig()
soc.setOperation(SpatialOperation.AnyInteract)
soc.setQueryWindow(JGeometry.createLinearPolygon(Array(2.0, 1.0, 2.0, 3.0, 6.0,
3.0, 6.0, 1.0, 2.0, 1.0), 2, srid))
val mappedRDD: RDD[SparkRecordInfo] = spatialRDD.flatMap(
record => {
 val buffer: JGeometry = record.getGeometry().buffer(2.5)
 record.setGeometry(buffer)
record
}, soc)

Note:

As of Spark 2, the Java class
org.apache.spark.api.java.function.FlatMapFunction received by the flatMap
transformation returns an instance of java.util.Iterator instead of Iterable,
so the return line of the preceding flatMap transformation Java example
changes for Spark 2 to: return
Collections.singletonList(record).iterator();

2.10.2.3 Join Transformation
A join transformation joins two spatial RDDs based on a spatial relationship between
their records. In order to perform this transformation, one of the two RDDs must be
spatially indexed. (See Spatial Indexing for more information about indexing a spatial
RDD.)

The result type of a spatial join transformation is defined by a user-provided lambda
function that is called for each pair of joined records.

The following examples join all the records from both data sets that interact in any
way.

Java:

DistributedSpatialIndex index = DistributedSpatialIndex.createIndex(sparkContext,
spatialRDD1, new QuadTreeConfiguration());
SpatialJavaRDD<SparkRecordInfo> spatialRDD2 = SpatialJavaRDD.fromJavaRDD(rdd2, new
RegionsRecordInfoProvider(srid));
SatialOperationConfig soc = new SpatialOperationConfig();
soc.setOperation(SpatialOperation.AnyInteract);
JavaRDD<Tuple2<SparkRecordInfo, SparkRecordInfo> joinedRDD =
index.spatialJoin(spatialRDD2,
(recordRDD1, recordRDD2) -> {
return Collections.singletonList(new Tuple2<>(recordRDD1, recordRDD2)).iterator());
}, soc);

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-87

Scala:

val index: DistributedSpatialIndex[SparkRecordInfo] =
DistributedSpatialIndex.createIndex(spatialRDD1, new QuadTreeConfiguration())
val spatialRDD2: SpatialRDD[SparkRecordInfo] = SpatialRDD.fromRDD(rdd2, new
RegionsRecordInfoProvider(srid))
val soc = new SpatialOperationConfig()
soc.setOperation(SpatialOperation.AnyInteract)
val joinedRDD: RDD[(SparkRecordInfo, SparkRecordInfo)] = index.join(spatialRDD2,
(recordRDD1, recordRDD2) => {Seq((recordRDD1, recordRDD2))}, soc)

2.10.2.4 Controlling Spatial Evaluation
When executing a filtering transformation or nearest neighbors action, by default the
spatial operation is executed before calling the user-defined filtering function; however,
you can change this behavior. Executing a user-defined filtering function before the
spatial operation can improve performance in scenarios where the spatial operation is
costly in comparison to the user-defined filtering function.

To set the user-defined function to be executed before the spatial operation, set the
following parameter to the SpatialOperationConfig passed to either a filter
transformation or nearest neighbors action.

SpatialOperationConfig spatialOpConf = new
SpatialOperationConfig(SpatialOperation.AnyInteract, qryWindow, 0.05);
//set the spatial operation to be executed after the user-defined filtering function
spatialOpConf.addParam(SpatialOperationConfig.PARAM_SPATIAL_EVAL_STAGE,
SpatialOperationConfig.VAL_SPATIAL_EVAL_STAGE_POST);
spatialRDD.filter((r)->{ return r.getFollowersCount()>1000;}, spatialOpConf);

The preceding example applies to both spatial RDDs and a distributed spatial index.

2.10.2.5 Spatially Enabled Transformations
Spatial operations can be performed in regular transformations by creating a
SpatialTransformationContext before executing any transformation.

After the SpatialTransformationContext instance is in the transformation function, that
instance can be used to get the record’s geometry and apply spatial operations, as
shown in the following example, which transforms an RDD of String records into a pair
RDD where the key and value corresponds to the source record ID and a buffered
geometry.

Java:

SpatialJavaRDD<String> spatialRDD = SpatialJavaRDD.fromJavaRDD(rdd, new
CSVRecordInfoProvider(srid), String.class);
SpatialTransformationContext stCtx = spatialRDD.createSpatialTransformationContext();
JavaPairRDD<String, JGeometry> bufferedRDD = spatialRDD.mapToPair(
(record) -> {
 SparkRecordInfo recordInfo = stCtx.getRecordInfo(record);
 String id = (String) recordInfo.getField(“id”)
 JGeometry geom. = recordInfo.getGeometry(record);
 JGeometry buffer = geom.buffer(0.5);
return new Tuple2(id, buffer);
});

Scala:

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-88

val spatialRDD: SpatialRDD[String]= SpatialRDD.fromRDD(rdd, new
CSVRecordInfoProvider(srid))
val stCtx: SpatialTransformationContext[String] =
spatialRDD.createSpatialTransformationContext()
val bufferedRDD: RDD[(String, JGeometry)] = spatialRDD.map(
record => {
 val recordInfo: SparkRecordInfo = stCtx.getRecordInfo(record)
 val id: String = recordInfo.getField(“id”).asInstanceOf[String]
 val geom: JGeometry = recordInfo.getGeometry(record)
 val buffer: JGeometry = geom.buffer(0.5)
(id, buffer)
})

When working on a per-partition basis, you should use a stateful version of
SpatialTransformationContext, which avoids creating multiple instances of
SparkRecordInfo. The following pattern can be followed when working on a per-partition
basis:

val stCtx: SpatialTransformationContext[String] =
spatialRDD.createSpatialTransformationContext()
val bufferedRDD: RDD[(String, JGeometry)] = spatialRDD.mapPartitions(
(records) => {
 val sSTCtx = new StatefulSpatialTransformationContext(stCtx)
 records.map(record=>{
 val recordInfo: SparkRecordInfo = sSTCtx.getRecordInfo(record)
 val id: String = recordInfo.getField(“id”).asInstanceOf[String]
 val geom: JGeometry = recordInfo.getGeometry(record)
 val buffer: JGeometry = geom.buffer(0.5)
 (id, buffer)
 })
}, true)

2.10.3 Spatial Actions (MBR and NearestNeighbors)
Spatial RDDs,spatial pair RDDs, and the distributed spatial index provide the following
spatial actions.

• MBR: Calculates the RDD’s minimum bounding rectangle (MBR). The MBR is only
calculated once and cached so the second time it is called, it will not be
recalculated. The following examples show how to get the MBR from a spatial
RDD. (This transformation is not available for DistributedSpatialIndex.)

Java:

doubl[] mbr = spatialRDD.getMBR();

Scala:

val mbr: Array[Double] = spatialRDD.getMBR()

• NearestNeighbors: Returns a list containing the K nearest elements from an RDD
or distributed spatial index to a given geometry. Additionally, a user-defined filter
lambda function can be passed, so that only the records that pass the filter will be
candidates to be part of the K nearest neighbors list. The following examples show
how to get the 5 records closest to the given point.

Java:

JGeometry qryWindow = JGeometry.createPoint(new double[] { 2.0, 1.0 }, 2, srid));
SpatialOperationConfig soc = new SpatialOperationConfig(SpatialOperation.None,
qryWindow, 0.05);

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-89

List<SparkRecordInfo> nearestNeighbors = spatialRDD.nearestNeighbors(
(record)->{
 return ((Integer)record.getField(“followers_count”))>1000;
}, 5, soc);

Scala:

val qryWindow: JGeometry = JGeometry.createPoint(Array(2.0, 1.0), 2, srid))
val soc: SpatialOperationConfig = new
SpatialOperationConfig(SpatialOperation.None, qryWindow, 0.05)
val nearestNeighbors: Seq[SparkRecordInfo] = spatialRDD.nearestNeighbors(
record=>{ record.getField(“followers_count”).asInstanceOf[Int]>1000 }, 5, soc);

2.10.4 Spatially Indexing a Spatial RDD
A spatial RDD can be spatially indexed to speed up spatial searches when performing
spatial transformations.

A spatial index repartitions the spatial RDD so that each partition only contains records
on some specific area. This allows partitions that do not contain results in a spatial
search to be quickly discarded, making the search faster.

A spatial index is created through the Java abstract class
oracle.spatial.spark.vector.index.DistributedSpatialIndex or its Scala equivalent
oracle.spatial.spark.vector.scala.index.DistributedSpatialIndex, both of which use
a specific implementation to create the actual spatial index. The following examples
show how to create a spatial index using a QuadTree-based spatial index
implementation.

Java:

DistributedSpatialIndex<String> index =
DistributedSpatialIndex.createIndex(sparkContext, spatialRDD1, new
QuadTreeConfiguration());

Scala:

val index: DistributedSpatialIndex[String] =
DistributedSpatialIndex.createIndex(spatialRDD1, new QuadTreeConfiguration())
(sparkContext)

The type of spatial index implementation is determined by the last parameter, which is
a subtype of oracle.spatial.spark.vector.index.SpatialPartitioningConfiguration.
Depending on the index implementation, the configuration parameter may accept
different settings for performing partitioning and indexing. Currently, the only
implementation of a spatial index is the class
oracle.spatial.spark.vector.index.quadtree.QuadTreeDistIndex, and it receives a
configuration of type
oracle.spatial.spark.vector.index.quadtree.QuadTreeConfiguration.

The DistributedSpatialIndex class currently supports the filter, flatMap, join, and
nearestNeighbors transformations, which are described in Spatial Transformations.

A spatial index can be persisted using the method DistributedSpatialIndex.save(),
which takes an existing SparkContext and a path where the index will be stored. The
path may be in a local or a distributed (HDFS) file system. Similarly, a persisted spatial
index can be loaded by calling the method DistributedSpatialIndex.load(), which also
takes an existing SparkContext and the path where the index is stored.

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-90

• Spatial Partitioning of a Spatial RDD

• Local Spatial Indexing of a Spatial RDD

2.10.4.1 Spatial Partitioning of a Spatial RDD
A spatial RDD can be partitioned through an implementation of the class
oracle.spatial.spark.vector.index.SpatialPartitioning. The SpatialPartitioning
class represents a spatial partitioning algorithm that transforms a spatial RDD into a
spatially partitioned spatial pair RDD whose keys point to a spatial partition.

A SpatialPartitioning algorithm is used internally by a spatial index, or it can be used
directly by creating a concrete class. Currently, there is a QuadTree-based
implementation called
oracle.spatial.spark.vector.index.quadtree.QuadTreePartitioning. The following
example shows how to spatially partition a spatial RDD.

QuadTreePartitioning<T> partitioning = new QuadTreePartitioning<>(sparkContext,
spatialRDD, new QuadTreeConfiguration());
SpatialJavaPairRDD<PartitionKey, T> partRDD = partitioning.getPartitionedRDD();

2.10.4.2 Local Spatial Indexing of a Spatial RDD
A local spatial index can be created for each partition of a spatial RDD. Locally
partitioning the content of each partition helps to improve spatial searches when
working on a partition basis.

A local index can be created for each partition by setting the parameter useLocalIndex
to true when creating a distributed spatial index. A spatially partitioned RDD can also
be transformed so each partition is locally indexed by calling the utility method
oracle.spatial.spark.vector.index.local.LocalIndex.createLocallyIndexedRDD(Spatial

JavaPairRDD<PartitionKey, T> rdd).

2.10.5 Support for Common Spatial Formats
The Spark Vector API provides utilities to easily read data from common spatial
formats such as GeoJSON and ESRI ShapeFile.

The Java class oracle.spatial.spark.vector.io.SpatialSources and the Scala class
oracle.spatial.spark.vector.scala.io.SpatialSources contain static methods to read
data from GeoJSON and ShapeFile formats by specifying the data path, the data
Spatial Reference System ID (SRID), and the list of non-spatial fields to be loaded.

The following examples show how to load data from a GeoJSON file. The records are
automatically transformed to instances of SparkRecordInfo, which contain the spatial
information plus the _id and followers_count fields. If all the fields need to be retrieved,
null can be passed instead of the whole list of fields. Both GeoJSON and Shapefile
read methods contain an overload that returns the original records as String and
MapWritable representations, respectively.

Java:

//list of GeoJSON field names to be loaded for each feature
List<String> fieldNames = new ArrayList<String>();
fieldNames.add("_id");
fieldNames.add("followers_count");

//create a spatial RDD from a GeoJSON file

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-91

SpatialJavaRDD<SparkRecordInfo> spatialRDD =
SpatialSources.readGeoJSONRecordInfo(geoJSONInputPath, 8307, fieldNames,
sparkContext);

Scala:

//create a spatial RDD from a GeoJSON file
val spatialRDD = SpatialSources.readGeoJSONRecordInfo(geoJSONInputPath, 8307,
Seq("_id","followers_count"))(sparkContext)

Or, using implicit classes:

//create a spatial RDD from a GeoJSON file
import oracle.spatial.spark.vector.scala.io.SpatialSources.ImplicitSpatialSources
val spatialRDD = sparkContext.readGeoJSONRecordInfo(geoJSONInputPath, 8307,
Seq("_id","followers_count"))

2.10.6 Spatial Spark SQL API
The Spatial Spark SQL API supports Spark SQL DataFrame objects containing spatial
information in any format.

Oracle Big Data Spatial Vector Hive Analysis can be used with Spark SQL.

Example 2-2 Creating a Spatial DataFrame for Querying Tweets

The following example uses the Spark 1.x API to create a spatial DataFrame for
querying tweets. Ithe data is loaded using a spatial RDD, then a DataFrame can be
created using the function SpatialJavaRDD.createSpatialDataFrame.

//create HiveContext
HiveContext sqlContext = new HiveContext(sparkContext.sc());
//get the spatial DataFrame from the SpatialRDD
//the geometries are in GeoJSON format
DataFrame spatialDataFrame = spatialRDD.createSpatialDataFrame(sqlContext,
properties);
// Register the DataFrame as a table.
spatialDataFrame.registerTempTable("tweets");
//register UDFs
sqlContext.sql("create temporary function ST_Polygon as
'oracle.spatial.hadoop.vector.hive.ST_Polygon'");
sqlContext.sql("create temporary function ST_Point as
'oracle.spatial.hadoop.vector.hive.ST_Point'");
sqlContext.sql("create temporary function ST_Contains as
'oracle.spatial.hadoop.vector.hive.function.ST_Contains'");
// SQL can be run over RDDs that have been registered as tables.
StringBuffer query = new StringBuffer();
query.append("SELECT geometry, friends_count, location, followers_count FROM tweets
");
query.append("WHERE ST_Contains(");
query.append(" ST_Polygon('{\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}', 8307) ");
query.append(" , ST_Point(geometry, 8307) ");
query.append(" , 0.05)");
query.append(" and followers_count > 50");
DataFrame results = sqlContext.sql(query.toString());
//Filter the tweets in a query window (somewhere in the north of Mexico)
//and with more than 50 followers.
//Note that since the geometries are in GeoJSON format it is possible to create the
ST_Point like
//ST_Point(geometry, 8307)

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-92

//instead of
//ST_Point(geometry,
'oracle.spatial.hadoop.vector.hive.json.GeoJsonHiveRecordInfoProvider')
List<String> filteredTweets = results.javaRDD().map(new Function<Row, String>() {
 public String call(Row row) {
 StringBuffer sb = new StringBuffer();
 sb.append("Geometry: ");
 sb.append(row.getString(0));

 sb.append("\nFriends count: ");
 sb.append(row.getString(1));
 sb.append("\nLocation: ");
 sb.append(row.getString(2));
 sb.append("\nFollowers count: ");
 sb.append(row.getString(3));
 return sb.toString();
 }
}).collect();
//print the filtered tweets
filteredTweets.forEach(tweet -> System.out.println("Tweet: "+tweet));

• Spark 2 API Enhancements

• Spatial Analysis Spark SQL UDFs

2.10.6.1 Spark 2 API Enhancements
New Spark SQL capabilities have been added to the Spark 2 Vector API.

• Spatial DataSet/DataFrame

• Spatial UDFs

• Spatial Index

• Performance Considerations with a Spatial Index Over Spark 2 SQL

Spatial DataSet/DataFrame

Spatial RDDs can be transformed to DataSets/DataFrames using the functions
provided by the class oracle.spatial.spark.vector.sql.SpatialJavaRDDConversions
(Java) and oracle.spatial.spark.vector.scala.sql. SpatialRDDConversions (Scala).
The latter provides an implicit class in order to make it possible to call the
transformation from the Spatial RDD instance. The following examples show how to
transform a Spatial RDD to a DataFrame.

Java:

List<String> fields = Arrays.asList(new String[]{("friends_count","location",
"followers_count"});
DataSet<Row> spatialDataFrame = SpatialJavaRDDConversions.toDataFrame(spatialRDD,
fields, sparkSession);

Scala:

//using implicit classes
import
oracle.spatial.spark.vector.scala.sql.SpatialRDDConversions.ImplicitSpatialRDDConvers
ions
val spatialDataFrame = spatialRDD.toDataFrame(Seq("friends_count","location",
"followers_count"))(sparkSession)

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-93

Spatial UDFs

The same set of Hive UDFs is available as Spark UDFs for the Spark 2 Vector API.
For details, see Spatial Analysis Spark SQL UDFs.

SpatialEnvironment.setup(sparkSession)

Spatial Index

An existing Spark Vector API’s spatial index can be used from Spark 2 SQL to perform
faster spatial queries.

The following examples show how to transform an instance of a spatial index to a
DataFrame:

Java:

// Create a spatial RDD from a GeoJSON file
List<String> fieldNames = Arrays.asList(new String[] {"id", "followers_count"});
SpatialJavaRDD<SparkRecordInfo> spatialRDD =
SpatialSources.readGeoJSONRecordInfo(path, srid, fieldNames, sparkContext);

//Create a spatial index
DistributedSpatialIndex<SparkRecordInfo> index =
DistributedSpatialIndex.createIndex(sparkContext, spatialRDD, new
QuadTreeConfiguration());

//Specify the columns as StructFields. The geometry column is always included by
default
StructField[] fields = SchemaUtils.toStringStructFields(fieldNames);

//options can be null if there are no options to be passed
Map<String, Object> options = new HashMap<>();
//include the CRS to all the geometries to avoid using SDO_<TYPE> wrappers in
spatial UDF's
options.put(QuadTreeIndexRelation.OptIncludeCRS(), true);

//transform the existing spatial index to DataFrame and register as a temporal table
QuadTreeIndexRelation.toDataFrame(index, SparkRecordInfo.class, fields, options,
sparkSession).createOrReplaceTempView("tweets_index");

Scala:

import oracle.spatial.spark.vector.scala.io.SpatialSources.ImplicitSpatialSources
import oracle.spatial.spark.vector.scala.sql.index.quadtree.QuadTreeIndexRelation._
import
oracle.spatial.spark.vector.scala.sql.SpatialRDDConversions.ImplicitSpatialRDDConvers
ions

//List of field names to be loaded from the GeoJSON file
val fieldNames = Seq("id", "followers_count")

//create a spatial RDD
val spatialRDD = sparkContext.readGeoJSON(path, srid, fieldNames)

//spatially index the spatial RDD
val index = DistributedSpatialIndex.createIndex(spatialRDD, new
QuadTreeConfiguration())(implicitly, sparkContext)

//transform the existing spatial index to DataFrame and register as a temporal table
//fieldNames are automatically transformed to an array of string StructFields thanks

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-94

to the //import of QuadTreeIndexRelation._
//toDataFrame can be called from the index thanks to the import of //
ImplicitSpatialRDDConversions
index.toDataFrame(fieldNames, Map(QuadTreeIndexRelation.OptIncludeCRS->true))
(sparkSession).createOrReplaceTempView("tweets_index")

It is also possible to load directly a persisted spatial index into a DataFrame, as the
following examples show.

Java:

// list of GeoJSON field names to be loaded for each feature
List<String> fieldNames = Arrays.asList(new String[] { "id", "followers_count"});

// Create the required schema for the index. In this case, the schema
// contains only fields of type StringType. A schema with other data
// types can be passed if needed.
StructType schema = SchemaUtils.createStringFieldsSchema(fieldNames);

// read an existing spatial index and register it as table
sparkSession.read().format(QuadTreeIndexRelation.Format()).schema(schema).load(indexP
ath).createOrReplaceTempView("tweets_index");

Scala:

//List of field names from the spatial index to be included as columns.
val fieldNames = Seq("id", "followers_count")

//Create the required schema for the index.
//In this case, the schema contains only fields of type StringType.
//A schema with other data types can be passed if needed.
val schema = SchemaUtils.createStringFieldsSchema(fieldNames)

//read an existing spatial index and register it as a table
sparkSession.read.format(QuadTreeIndexRelation.Format).schema(schema).load(indexPath)
.createOrReplaceTempView("tweets_index")

After a spatial index is transformed to a DataFrame, it can be used as any other spatial
DataFrame.

Performance Considerations with a Spatial Index Over Spark 2 SQL

A Spatial index performs faster when using only a spatial filter or a spatial filter and
AND conditions in the WHERE clause. The following queries take full advantage of a
spatial index as the spatial data is pre filtered before executing the SQL query:

SELECT * FROM tweets_index WHERE ST_ANYINTERACT(ST_POLYGON('$polygonJSON',8307),
ST_POINT(geometry,8307), 0.05)

SELECT * FROM tweets_index WHERE ST_CONTAINS(ST_POLYGON('$polygonJSON',8307),
ST_POINT(geometry,8307), 0.05) AND followers_count > 50

SELECT * FROM tweets_index WHERE ST_INSIDE(ST_POINT(geometry,8307),
ST_POLYGON('$polygonJSON',8307), 0.05) AND followers_count > 50 AND id != null

Using OR conditions avoids the spatial data to be pre filtered, however, some spatial
index optimizations are applied. The following query is an example of this case:

SELECT * FROM tweets_index WHERE ST_CONTAINS(ST_POLYGON('$polygonJSON',8307),
ST_POINT(geometry,8307), 0.05) OR followers_count > 50

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-95

When using more than one spatial filter in a WHERE clause, no spatial index
optimizations are used and the query is performed as if there were no spatial index.
For example:

SELECT * FROM tweets_index
 WHERE
 ST_ANYINTERACT(ST_POLYGON('$polygonJSON1',8307), ST_POINT(geometry,8307),
0.05)
 AND
 ST_CONTAINS(ST_POLYGON('$polygonJSON2',8307), ST_POINT(geometry,8307), 0.05)

2.10.6.2 Spatial Analysis Spark SQL UDFs
Spatial analysis functions are available as Spark 2 SQL UDFs (user-defined
functions).

The same set of Hive UDFs is available as Spark UDFs for the Spark 2 Vector API. In
order to start using the Spatial UDFs, the following method from class
oracle.spatial.spark.vector.scala.sql.SpatialEnvironment needs to be executed
before calling any query containing a spatial UDF:

SpatialEnvironment.setup(sparkSession)

The input spatial data can be in GeoJSON, WKT, or WKB format. You can also use a
spatial index for faster processing.

In the queries, spatial geometry type constructors, such as ST_Polygon or ST_Point,
can be used to create a GeoJSON representation of the input geometry and to add a
SRID (coordinate system) for the geometry. Such constructors must be used if a
geometry is specified in the query, even if the geometry is already in GeoJSON format
– unless you use the spatial index option to set the SRID in the geometry, in which
case a spatial geometry type constructor is not needed; for example:

spark.read().format(QuadTreeIndexRelation.Format()).schema(schema)
 .option(QuadTreeIndexRelation.OptIncludeCRS(), true) //avoid using Type
Functions
 .load(indexPath).createOrReplaceTempView("tweets_index");

• Prerequisite Libraries for Spatial Analysis Spark SQL UDFs

• Using Spark SQL UDFs

• Using Spatial Indexes with Spark UDFs

Prerequisite Libraries for Spatial Analysis Spark SQL UDFs

The required libraries for Spatial Analysis Spark SQL UDFs are:

• sdohadoop-vector.jar

• sdospark2-vector.jar

• sdoutl.jar

• sdoapi.jar

• ojdbc8.jar

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-96

Using Spark SQL UDFs

Spatial analysis Spark SQL UDFs are a series of Spark SQL user-defined functions
used to create geometries and perform spatial operations using one or two geometries
in creating a Spark SQL query.

Hive and Spark Spatial SQL Functions provides reference information for the available
spatial functions.

The following example returns the tweet records within a specific geographical polygon
and where there are more than 50 followers. The general steps for the example are:

1. Set up the spatial SQL environment.

2. Create a spatial RDD from geographical input.

3. Create a DataSet from the SpatialRDD. A spatial DataSet contains a column
called geometry whose values are in GeoJSON format.

4. Register the DataSet so it can be used within SQL statements as a table.

5. Create the query to filter the records.

6. Execute the filter.

Java Example:

import java.util.Arrays;
import java.util.List;

import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

import oracle.spatial.spark.vector.SparkRecordInfo;
import oracle.spatial.spark.vector.io.SpatialSources;
import oracle.spatial.spark.vector.rdd.SpatialJavaRDD;
import oracle.spatial.spark.vector.scala.sql.SpatialEnvironment;
import oracle.spatial.spark.vector.sql.SpatialJavaRDDConversions;

public class SpatialQueryExample {
 public static void main(String[] args) {
 SparkSession spark = SparkSession.builder().appName("SpatialEx").getOrCreate();
 //Setup spatial SQL environment
 SpatialEnvironment.setup(spark);
 String geoJSONInput = args[0];
 //The coordinate system the spatial data is expected to be
 int srid = 8307;
 // list of GeoJSON field names to be loaded for each feature
 List<String> fieldNames = Arrays.asList(new String[] {
 "id", "followers_count", "friends_count", "location"});
 // Create a spatial RDD from a GeoJSON file
 SpatialJavaRDD<SparkRecordInfo> spatialRDD =
 SpatialSources.readGeoJSONRecordInfo(geoJSONInput, srid, fieldNames,
 JavaSparkContext.fromSparkContext(spark.sparkContext()));
 // Create a DataSet from the SpatialRDD.
 Dataset<Row> spatialDF = SpatialJavaRDDConversions.toDataFrame(
 spatialRDD, fieldNames, spark);
 // Register the dataset so it can be used within SQL statements
 spatialDF.createOrReplaceTempView("sample_tweets");
 //polygon used to spatially filter data

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-97

 String qryWindow = "{\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
[-106,
 30], [-104, 30], [-104, 25], [-106, 25]]]}";

 // Filter the tweets within the query window (somewhere in the north of Mexico)
 StringBuilder query =new StringBuilder()
 .append(" SELECT geometry, friends_count, location, followers_count")
 .append(" FROM sample_tweets ")
 .append(" WHERE ")
 .append(" ST_CONTAINS(ST_POLYGON('").append(qryWindow).append("',
8307),
 ST_POINT(geometry, 8307), 0.05)")
 .append(" AND followers_count > 50 ");
 //Execute the query
 spark.sql(query.toString()).show();
 }
}

Scala Example:

import org.apache.spark.sql.SparkSession
import oracle.spatial.spark.vector.sql.udf.function.FunctionExecutor
import oracle.spatial.spark.vector.scala.io.SpatialSources.ImplicitSpatialSources
import
oracle.spatial.spark.vector.scala.sql.SpatialRDDConversions.ImplicitSpatialRDDConvers
ions
import scala.collection.mutable.StringBuilder
import oracle.spatial.spark.vector.scala.sql.SpatialEnvironment

object SpatialQueryExample {
 def main(args: Array[String]): Unit = {
 val spark = SparkSession.builder().appName("SpatialQueryExample").getOrCreate()
 //Setup spatial SQL environment
 SpatialEnvironment.setup(spark)
 val geoJSONInput = args(0)
 //The coordinate system the spatial data is expected to be
 val srid = 8307
 // list of GeoJSON field names to be loaded for each feature
 val fieldNames = Seq("id", "followers_count", "friends_count", "location")
 // Create a spatial RDD from a GeoJSON file
 val spatialRDD = spark.sparkContext.readGeoJSONRecordInfo(geoJSONInput,
srid,
 fieldNames)
 // Create a DataSet from the SpatialRDD.
 val spatialDF = spatialRDD.toDataFrame(fieldNames)(spark)
 // Register the dataset so it can be used within SQL statements
 spatialDF.createOrReplaceTempView("sample_tweets")
 //polygon used to spatially filter data
 val qryWindow = """{"type": "Polygon","coordinates":
 [[[-106, 25], [-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}"""

 // Filter the tweets within the query window (somewhere in the north of Mexico)
 val query =s""" SELECT geometry, friends_count, location, followers_count
 | FROM sample_tweets
 | WHERE
 | ST_CONTAINS(ST_POLYGON('$qryWindow', $srid),
 ST_POINT(geometry, $srid), 0.05)
 | AND followers_count > 50 """.stripMargin
 //Execute the query
 val results = spark.sql(query)
 results.show()

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-98

 }
}

Using Spatial Indexes with Spark UDFs

Spatial Spark SQL UDFs can process indexed data sets. You can create an index on
the fly or you can use a persisted spatial index. For more information, see Spatially
Indexing a Spatial RDD.

The following example filters the tweet records that spatially interact with a specified
polygon or with fewer than 2 followers, and it uses the spatial index option to include
the SRID in the geometry column. In this scenario there is no need to wrap the
geometry in a Type function.

The general steps are:

1. Set up the spatial SQL environment.

2. Read a persisted index into a DataSet and register it as a table.

3. Create the query to filter the records.

4. Execute the filter.

Java Example:

import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import oracle.spatial.spark.vector.scala.sql.SpatialEnvironment;
import oracle.spatial.spark.vector.scala.sql.index.quadtree.QuadTreeIndexRelation;
import oracle.spatial.spark.vector.serialization.SpatialVectorKryoRegistrator;

public class IndexOptionsAndSchemaTypesExample {
 public static void main(String[] args) {
 SparkConf conf = new SparkConf();
 // the index is expected to have its partitions indexed with an R-Tree
 // so the following line is required if Kryo is used
 SpatialVectorKryoRegistrator.register(conf);
 SparkSession
spark=SparkSession.builder().config(conf).appName("I").getOrCreate();
 //Setup spatial SQL environment
 SpatialEnvironment.setup(spark);
 String indexPath = args[0];
 //Create the required schema for the index.
 StructType schema = new StructType(new StructField[]{
 new StructField("followers_count", DataTypes.IntegerType, true,
Metadata.empty()),
 new StructField("friends_count", DataTypes.IntegerType, true,
Metadata.empty()),
 new StructField("location", DataTypes.StringType, true, Metadata.empty())
 });
 //read an existing spatial index and register it as table called "tweets_index"
 spark.read().format(QuadTreeIndexRelation.Format()).schema(schema)
 .option(QuadTreeIndexRelation.OptIncludeCRS(), true)//avoid using Type
Functions
 .load(indexPath).createOrReplaceTempView("tweets_index");

 //polygon used to spatially filter data

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-99

 String qryWindow = "{\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
 [-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}";

 // Retrieve all the tweets which spatially interact with the given
polygon
 // Note that geometry column is not surrounded by the ST_POINT function
 StringBuilder query =new StringBuilder()
 .append(" SELECT geometry, friends_count, location, followers_count")
 .append(" FROM tweets_index ")
 .append(" WHERE ")
 .append(" ST_ANYINTERACT(
 ST_POLYGON('").append(qryWindow).append("',
8307),
 geometry, 0.05)")
 .append(" OR followers_count = 2 ");
 System.out.println(query);
 spark.sql(query.toString()).show();
 }
}

Scala Example:

import org.apache.spark.sql.SparkSession
import oracle.spatial.spark.vector.sql.udf.function.FunctionExecutor
import oracle.spatial.spark.vector.scala.io.SpatialSources.ImplicitSpatialSources
import
oracle.spatial.spark.vector.scala.sql.SpatialRDDConversions.ImplicitSpatialRDDConvers
ions
import scala.collection.mutable.StringBuilder
import org.apache.spark.SparkConf
import oracle.spatial.spark.vector.serialization.SpatialVectorKryoRegistrator
import oracle.spatial.spark.vector.scala.sql.SpatialEnvironment
import oracle.spatial.spark.vector.scala.sql.index.quadtree.QuadTreeIndexRelation
import oracle.spatial.spark.vector.scala.sql.util.SchemaUtils
import org.apache.spark.sql.types.StructField
import oracle.spatial.spark.vector.scala.sql.util.SchemaUtils
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.Metadata
import org.apache.spark.sql.types.StringType

object IndexOptionsAndSchemaTypesExample {
 def main(args: Array[String]): Unit = {
 val conf = new SparkConf
 //the index is expected to have its partitions indexed with an R-Tree
 //so the following line is required if Kryo is used
 SpatialVectorKryoRegistrator.register(conf)
 val spark = SparkSession.builder().config(conf).appName("IndexEx").getOrCreate()
 //Setup spatial SQL environment
 SpatialEnvironment.setup(spark)
 val indexPath = args(0)

 //Create the required schema for the index
 val schema = StructType(Array(
 StructField("followers_count",IntegerType, true, Metadata.empty),
 StructField("friends_count",IntegerType, true, Metadata.empty),
 StructField("location",StringType, true, Metadata.empty)))

 //read an existing spatial index and register it as table called "tweets_index"
 spark.read.format(QuadTreeIndexRelation.Format).schema(schema)
 .option(QuadTreeIndexRelation.OptIncludeCRS, true)//set to avoid using Type

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-100

Functs
 .load(indexPath).createOrReplaceTempView("tweets_index")

 //polygon used to spatially filter the data
 val polygonJSON = """{"type": "Polygon", "coordinates": [[[-106, 25], [-106,
30],
 [-104, 30], [-104, 25], [-106, 25]]]}"""

 //Spatial reference system ID of the data
 val srid = 8307
 //Retrieve tweets which spatially interact with the given polygon
 //Note that geometry column is not surrounded by the ST_POINT function
 val query = s"""SELECT geometry, location, friends_count, followers_count
 | FROM tweets_index
 | WHERE
 | ST_ANYINTERACT(ST_POLYGON('$polygonJSON',$srid), geometry, 0.05)
 | OR followers_count = 2 """.stripMargin
 println(s"Executing: \n$query")
 val results = spark.sql(query)
 results.show()
 }
}

2.10.7 JDBC Data Sources for Spatial RDDs
Oracle Database data can be used as the data source of a Spatial RDD by using the
Spark Vector Analysis API.

The class oracle.spatial.spark.vector.util.JDBCUtils (or
oracle.spatial.spark.vector.scala.util.JDBCUtils for Scala) provides convenience
methods for creating a Spatial RDD from an Oracle database table or from a SQL
query to an Oracle database. The table or SQL query should contain one column of
type SDO_GEOMETRY in order to create a Spatial RDD.

Both the from-table and from-query method versions require a connection to the
Oracle database, which is supplied by a lambda function defined by the template
oracle.spatial.spark.vector.util.ConnectionSupplier (or
oracle.spatial.spark.vector.scala.util.ConnectionSupler for Scala).

The resulting Spatial RDD type parameter will always be SparkRecordInfo, that is, the
resulting RDD will contain records of the type SparkRecordInfo, which will contain the
fields specified when querying the table or the columns in the SELECT section of the
SQL query. By default, the name and type of the columns retrieved are inferred using
the ResultSet metadata; however, you can control the naming and type of the retrieved
fields by supplying an implementation of SparkRecordInfoProvider

The following examples show how to create a Spatial RDD from a table and from a
SQL query respectively.

Example 2-3 Creating a Spatial RDD from a Database Table

SpatialJavaRDD<SparkRecordInfoProvider> jdbcSpatialRDD =
JDBCUtils.createSpatialRDDFromTable(
 sparkContext, //spark context
 ()->{
 Class.forName("oracle.jdbc.driver.OracleDriver");
 return new DriverManager.getConnection(connURL, usr, pwd);
 }, //DB connection supplier lambda
 “VEHICLES”, //DB table
 Arrays.asList(new String[]{"ID","DESC","LOCATION"}), //list of fields to retrieve

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

2-101

 null //SparkRecordInfoProvider<ResultSet, SparkRecordIngo> (optional)
);

Example 2-4 Creating a Spatial RDD from a SQL Query to the Database

SpatialJavaRDD<SparkRecordInfoProvider> jdbcSpatialRDD =
JDBCUtils.createSpatialRDDFromQuery(
 sparkContext, //spark context
 ()->{
 Class.forName("oracle.jdbc.driver.OracleDriver");
 return new DriverManager.getConnection(connURL, usr, pwd);
 }, //DB connection supplier lambda
 “SELECT * FROM VEHICLES WHERE category > 5”, //SQL query
 null //SparkRecordInfoProvider<ResultSet, SparkRecordIngo> (optional)
);

In the preceding examples, data from the Oracle database is queried and partitioned
to create a Spark RDD. The number and size of the partitions is determined
automatically by the Spark Vector Analysis API.

You can also specify the desired number of database rows to be contained in a Spark
partition by calling a method overload that takes this number as a parameter. Manually
specifying the number of rows per partition can improve the performance of the Spatial
RDD creation.

2.11 Oracle Big Data Spatial Vector Hive Analysis
Oracle Big Data Spatial Vector Hive Analysis provides spatial functions to analyze the
data using Hive.

The spatial data can be in any Hive supported format. You can also use a spatial index
created with the Java analysis API (see Spatial Indexing) for fast processing.

The supported features include:

• Using the Hive Spatial API

• Using Spatial Indexes in Hive

See also HiveRecordInfoProvider for details about the implementation of these
features.

Hive and Spark Spatial SQL Functions provides reference information about the
available functions.

Prerequisite Libraries

The following libraries are required by the Spatial Vector Hive Analysis API.

• sdohadoop-vector-hive.jar

• sdohadoop-vector.jar

• sdoutil.jar

• sdoapi.jar

• ojdbc.jar

• HiveRecordInfoProvider

• Using the Hive Spatial API

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-102

• Using Spatial Indexes in Hive

2.11.1 HiveRecordInfoProvider
A record in a Hive table may contain a geometry field in any format like JSON, WKT,
or a user-specifiedformat. Geometry constructors like ST_Geometry can create a
geometry receiving the GeoJSON, WKT, or WKB representation of the geometry. If
the geometry is stored in another format, a HiveRecordInfoProvider can be used.

HiveRecordInfoProvider is a component that interprets the geometry field
representation and returns the geometry in a GeoJSON format.

The returned geometry must contain the geometry SRID, as in the following example
format:

{"type":<geometry-type", "crs": {"type": "name", "properties": {"name": "EPSG:
4326"}}"coordinates":[c1,c2,....cn]}

The HiveRecordInfoProvider interface has the following methods:

• void setCurrentRecord(Object record)

• String getGeometry()

The method setCurrentRecord() is called by passing the current geometry field
provided when creating a geometry in Hive. The HiveRecordInfoProvider is used then
to get the geometry or to return null if the record has no spatial information.

The information returned by the HiveRecordInfoProvider is used by the Hive Spatial
functions to create geometries (see Hive and Spark Spatial SQL Functions).

Sample HiveRecordInfoProvider Implementation

This sample implementation, named SimpleHiveRecordInfoProvider, takes text records
in JSON format. The following is a sample input record:

{"longitude":-71.46, "latitude":42.35}

When SimpleHiveRecordInfoProvider is instantiated, a JSON ObjectMapper is created.
The ObjectMapper is used to parse records values later when setCurrentRecord() is
called. The geometry is represented as latitude-longitude pair, and is used to create a
point geometry using the JsonUtils.readGeometry() method. Then the GeoJSON
format to be returned is created using GeoJsonGen.asGeometry(), and the SRID is added
to the GeoJSON using JsonUtils.addSRIDToGeoJSON().

public class SimpleHiveRecordInfoProvider implements HiveRecordInfoProvider{
 private static final Log LOG =
 LogFactory.getLog(SimpleHiveRecordInfoProvider.class.getName());

 private JsonNode recordNode = null;
 private ObjectMapper jsonMapper = null;

 public SimpleHiveRecordInfoProvider(){
 jsonMapper = new ObjectMapper();
 }

 @Override
 public void setCurrentRecord(Object record) throws Exception {
 try{
 if(record != null){

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-103

 //parse the current value
 recordNode = jsonMapper.readTree(record.toString());
 }
 }catch(Exception ex){
 recordNode = null;
 LOG.warn("Problem reading JSON record
 value:"+record.toString(), ex);
 }
 }

 @Override
 public String getGeometry() {
 if(recordNode == null){
 return null;
 }

 JGeometry geom = null;

 try{
 geom = JsonUtils.readGeometry(recordNode,
 2, //dimensions
 8307 //SRID
);
 }catch(Exception ex){
 recordNode = null;
 LOG.warn("Problem reading JSON record
 geometry:"+recordNode.toString(), ex);
 }

 if(geom != null){
 StringBuilder res = new StringBuilder();
 //Get a GeoJSON representation of the JGeometry
 GeoJsonGen.asGeometry(geom, res);
 String result = res.toString();
 //add SRID to GeoJSON and return the result
 return JsonUtils.addSRIDToGeoJSON(result, 8307);
 }

 return null;
 }
}

2.11.2 Using the Hive Spatial API
The Hive Spatial API consists of Oracle-supplied Hive User Defined Functions that can
be used to create geometries and perform operations using one or two geometries.

The functions can be grouped into logical categories: types, single-geometry, and two-
geometries. (Hive and Spark Spatial SQL Functions lists the functions in each
category and provides reference information about each function.)

Example 2-5 Hive Script

The following example script returns information about Twitter users in a data set who
are within a specified geographical polygon and who have more than 50 followers. It
does the following:

1. Adds the necessary jar files:

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-104

 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar;

2. Creates the Hive user-defined functions that will be used:

create temporary function ST_Point as
'oracle.spatial.hadoop.vector.hive.ST_Point';
create temporary function ST_Polygon as
'oracle.spatial.hadoop.vector.hive.ST_Polygon';
create temporary function ST_Contains as
'oracle.spatial.hadoop.vector.hive.function.ST_Contains';

3. Creates a Hive table based on the files under the HDFS directory /user/oracle/
twitter. The InputFormat used in this case is
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat and the Hive
SerDe is a user-provided SerDe
oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe.

CREATE EXTERNAL TABLE IF NOT EXISTS sample_tweets (id STRING, geometry STRING,
followers_count STRING, friends_count STRING, location STRING)
ROW FORMAT SERDE 'oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/oracle/twitter';

4. Runs a spatial query receiving an ST_Polygon query area and the ST_Point
tweets geometry, and using 0.5 as the tolerance value for the spatial operation.
The output will be information about Twitter users in the query area who have
more than 50 followers.

SELECT id, followers_count, friends_count, location FROM sample_tweets
WHERE ST_Contains(
 ST_Polygon(
 '{"type": "Polygon",
 "coordinates":
 [[[-106, 25],[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}',
 8307
),
 ST_Point(geometry, 8307),
 0.5
)
and followers_count > 50;

The complete script is as follows:

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar;

create temporary function ST_Point as 'oracle.spatial.hadoop.vector.hive.ST_Point';
create temporary function ST_Polygon as
'oracle.spatial.hadoop.vector.hive.ST_Polygon';
create temporary function ST_Contains as
'oracle.spatial.hadoop.vector.hive.function.ST_Contains';

CREATE EXTERNAL TABLE IF NOT EXISTS sample_tweets (id STRING, geometry STRING,
followers_count STRING, friends_count STRING, location

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-105

STRING)
ROW FORMAT SERDE 'oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/oracle/twitter';

SELECT id, followers_count, friends_count, location FROM sample_tweets
WHERE
ST_Contains(
 ST_Polygon(
 '{"type": "Polygon",
 "coordinates":
 [[[-106, 25],[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}',
 8307
),
 ST_Point(geometry, 8307),
 0.5
)
and followers_count > 50;

2.11.3 Using Spatial Indexes in Hive
Hive spatial queries can use a previously created spatial index, which you can create
using the Java API (see Spatial Indexing).

If you do not need to use the index in API functions that will access the original data,
you can specify isMapFileIndex=false when you call
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing, or you can use the function
setMapFileIndex(false). In these cases, the index will have the following structure:

HDFSIndexDirectory/part-xxxxx

And in these cases, when creating a Hive table, just provide the folder where you
created the index.

If you need to access the original data and you do not set the parameter
isMapFileIndex=false, the index structure is as follows:

part-xxxxx
 data
 index

In such cases, to create a Hive table, the data files of the index are needed. Copy the
data files into a new HDFS folder, with each data file having a different name, like
data1, data2,, and so on. The new folder will be used to create the Hive table.

The index contains the geometry records and extra fields. That data can be used when
creating the Hive table.

(Note that Spatial Indexing Class Structure describes the index structure, and
RecordInfoProvider provides an example of a RecordInfoProvider adding extra fields.)

InputFormat oracle.spatial.hadoop.vector.mapred.input.SpatialIndexTextInputFormat

will be used to read the index. The output of this InputFormat is GeoJSON.

Before running any query, you can specify a minimum bounding rectangle (MBR) that
will perform a first data filtering using SpatialIndexTextInputFormat..

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-106

Example 2-6 Hive Script Using a Spatial Index

The following example script returns information about Twitter users in a data set who
are within a specified geographical polygon and who have more than 50 followers. It
does the following:

1. Adds the necessary jar files:

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar;

2. Creates the Hive user-defined functions that will be used:

create temporary function ST_Point as
'oracle.spatial.hadoop.vector.hive.ST_Point';
create temporary function ST_Polygon as
'oracle.spatial.hadoop.vector.hive.ST_Polygon';
create temporary function ST_Contains as
'oracle.spatial.hadoop.vector.hive.function.ST_Contains';

3. Sets the data maximum and minimum boundaries
(dim1Min,dim2Min,dim1Max,dim2Max):

set oracle.spatial.boundaries=-180,-90,180,90;

4. Sets the extra fields contained in the spatial index that will be included in the table
creation:

set
oracle.spatial.index.includedExtraFields=followers_count,friends_count,location;

5. Creates a Hive table based on the files under the HDFS directory /user/oracle/
twitter. The InputFormat used in this case is
oracle.spatial.hadoop.vector.mapred.input.SpatialIndexTextInputFormat and the
Hive SerDe is a user-provided SerDe
oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe. (The code for
oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe is included with the Hive
examples.) The geometry of the tweets will be saved in the geometry column with
the format {"longitude":n, "latitude":n} :

CREATE EXTERNAL TABLE IF NOT EXISTS sample_tweets_index (id STRING, geometry
STRING, followers_count STRING, friends_count STRING, location
STRING)
ROW FORMAT SERDE
'oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.mapred.input.SpatialIndexTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/oracle/twitter/index';

6. Defines the minimum bounding rectangle (MBR) to filter in the
SpatialIndexTextInputFormat. Any spatial query will only have access to the data in
this MBR. If no MBR is specified, then the data boundaries will be used. This
setting is recommended to improve the performance.

set oracle.spatial.spatialQueryWindow={"type": "Polygon","coordinates": [[[-107,
24], [-107, 31], [-103, 31], [-103, 24], [-107, 24]]]};

7. Runs a a spatial query receiving an ST_Polygon query area and the ST_Point
tweets geometry, and using 0.5 as the tolerance value for the spatial operation.

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

2-107

The tweet geometries are in GeoJSON format, and the ST_Point function is
usedspecifying the SRID as 8307.. The output will be information about Twitter
users in the query area who have more than 50 followers.

SELECT id, followers_count, friends_count, location FROM sample_tweets
WHERE ST_Contains(
 ST_Polygon('{"type": "Polygon","coordinates": [[[-106, 25], [-106, 30], [-104,
30], [-104, 25], [-106, 25]]]}', 8307)
 , ST_Point(geometry, 8307)
 , 0.5)
 and followers_count > 50;

The complete script is as follows. (Differences between this script and the one in Using
the Hive Spatial API are marked in bold; however, all of the steps are described in the
preceding list.)

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar;

create temporary function ST_Polygon as
'oracle.spatial.hadoop.vector.hive.ST_Polygon';
create temporary function ST_Point as 'oracle.spatial.hadoop.vector.hive.ST_Point';
create temporary function ST_Contains as
'oracle.spatial.hadoop.vector.hive.function.ST_Contains';

set oracle.spatial.boundaries=-180,-90,180,90;
set oracle.spatial.index.includedExtraFields=followers_count,friends_count,location;

CREATE EXTERNAL TABLE IF NOT EXISTS sample_tweets_index (id STRING, geometry STRING,
followers_count STRING, friends_count STRING, location
STRING)
ROW FORMAT SERDE 'oracle.spatial.hadoop.vector.hive.json.GeoJsonSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.mapred.input.SpatialIndexTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/oracle/twitter/index';

set oracle.spatial.spatialQueryWindow={"type": "Polygon","coordinates": [[[-107,
24], [-107, 31], [-103, 31], [-103, 24], [-107, 24]]]};

SELECT id, followers_count, friends_count, location FROM sample_tweets
WHERE ST_Contains(
 ST_Polygon('{"type": "Polygon","coordinates": [[[-106, 25], [-106, 30], [-104,
30], [-104, 25], [-106, 25]]]}', 8307)
 , ST_Point(geometry, 8307)
 , 0.5)
 and followers_count > 50;

2.12 Using the Oracle Big Data SpatialViewer Web
Application

You can use the Oracle Big Data SpatialViewer Web Application (SpatialViewer) to
perform a variety of tasks.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-108

These include tasks related to spatial indexing, creating and showing thematic maps,
loading rasters into HDFS, visualizing uploaded rasters in the globe, selecting
individual or multiple footprints, performing raster algebra operations, dealing with
gaps and overlaps, combining selected footprints, generating a new image with the
specified file format from the selected footprints, and applying user-specific
processing.

• Creating a Hadoop Spatial Index Using SpatialViewer

• Exploring the Hadoop Indexed Spatial Data

• Creating a Spark Spatial Index Using SpatialViewer

• Exploring the Spark Indexed Spatial Data

• Running a Categorization Job Using SpatialViewer

• Viewing the Categorization Results

• Saving Categorization Results to a File

• Creating and Deleting Templates

• Configuring Templates

• Running a Clustering Job Using SpatialViewer

• Viewing the Clustering Results

• Saving Clustering Results to a File

• Running a Binning Job Using SpatialViewer

• Viewing the Binning Results

• Saving Binning Results to a File

• Running a Job to Create an Index Using the Command Line

• Running a Job to Create a Categorization Result

• Running a Job to Create a Clustering Result

• Running a Job to Create a Binning Result

• Running a Job to Perform Spatial Filtering

• Running a Job to Get Location Suggestions

• Running a Job to Perform a Spatial Join

• Running a Job to Perform Partitioning

• Using Multiple Inputs

• Loading Images from the Local Server to the HDFS Hadoop Cluster

• Visualizing Rasters in the Globe

• Processing a Raster or Multiple Rasters with the Same MBR

• Creating a Mosaic Directly from the Globe

• Adding Operations for Raster Processing

• Creating a Slope Image from the Globe

• Changing the Image File Format from the Globe

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-109

2.12.1 Creating a Hadoop Spatial Index Using SpatialViewer
To create a Hadoop spatial index using SpatialViewer, follow these steps.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045/
spatialviewer/?root=vector

2. Click Spatial Index.

3. Specify all the required details:

a. Index name.

b. Path of the file or files to index in HDFS. For example, /user/oracle/bdsg/
tweets.json.

c. New index path: This is the job output path. For example: /user/oracle/bdsg/
index.

d. SRID of the geometries to be indexed. Example: 8307

e. Tolerance of the geometries to be indexed. Example: 0.05

f. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

g. Record Info Provider class: The class that provides the spatial information. For
example: oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

Note:

If the InputFormat class or the RecordInfoProvider class is not in the
API, or in the hadoop API classes, then a jar with the user-defined
classes must be provided. To be able to use this jar, you must add it
in the /opt/oracle/oracle-spatial-graph/spatial/web-server/
spatialviewer/WEB-INF/lib directory and restart the server.

h. Whether the the enrichment service (MVSuggest) must be used or not. If the
geometry has to be found from a location string, then use the MVSuggest
service. In this case the provided RecordInfoProvider must implement the
interface oracle.spatial.hadoop.vector.LocalizableRecordInfoProvider.

i. MVSuggest Templates (Optional): When using the MVSuggest service, you can
define the templates used to create the index.

4. Click Create.

A URL will be displayed to track the job.

2.12.2 Exploring the Hadoop Indexed Spatial Data
To explore Hadoop indexed spatial data, follow these steps.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045/
spatialviewer/?root=vector

2. Click Explore Data.

For example, you can:

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-110

• Select the desired indexed data and use the rectangle tool to display the data in
the desired area.

• Change the background map style.

• Show data using a heat map.

2.12.3 Creating a Spark Spatial Index Using SpatialViewer
To create a Spark spatial index using SpatialViewer, follow these steps.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045/
spatialviewer/?root=vectorspark

2. Click Spatial Index.

3. Specify all the required details:

a. Index name.

b. Path of the file or files to index in HDFS. For example, /user/oracle/bdsg/
tweets.json.

c. New index path: This is the job output path. For example: /user/oracle/bdsg/
index.

d. SRID of the geometries to be indexed. Example: 8307

e. Tolerance of the geometries to be indexed. Example: 0.05

f. Input Format class (optional): The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

g. Key class (required if an input format class is defined): Class of the input
format keys. For example: org.apache.hadoop.io.LongWritable

h. Value class (required if an input format class is defined): Class of the input
format values. For example: org.apache.hadoop.io.Text

i. Record Info Provider class: The class that provides the spatial information. For
example:
oracle.spatial.spark.vector.recordinfoprovider.GeoJsonRecordInfoProvider

Note:

If the InputFormat class or the RecordInfoProvider class is not in the
API, or in the hadoop API classes, then a jar with the user-defined
classes must be provided. To be able to use this jar the user must
add it in the /opt/oracle/oracle-spatial-graph/spatial/web-server/
spatialviewer/WEB-INF/lib directory and restart the server.

4. Click Create.

A URL will be displayed to track the job.

2.12.4 Exploring the Spark Indexed Spatial Data
To explore Spark indexed spatial data, follow these steps.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-111

1. Open the console:http://<oracle_big_data_spatial_vector_console>:8045/
spatialviewer/?root=vectorspark

2. Click Explore Data.

For example, you can:

• Select the desired indexed data and use the rectangle tool to display the data in
the desired area.

• Change the background map style.

2.12.5 Running a Categorization Job Using SpatialViewer
You can run a categorization job with or without the spatial index. Follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Categorization, then Categorization Job.

3. Select either With Index or Without Index and provide the following details, as
required:

• With Index

a. Index name

• Without Index

a. Path of the data: Provide the HDFS data path. For example, /user/oracle/
bdsg/tweets.json.

b. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API classes,
then a jar with the user-defined classes must be provided. To be able to
use this jar the user must add it in the /opt/oracle/oracle-spatial-graph/
spatial/web-server/spatialviewer/WEB-INF/lib directory and restart the
server.

c. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

d. Record Info Provider class: The class that will provide the spatial
information. For example:
oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

e. Whether the enrichment service MVSuggest service must be used or not. If
the geometry must be found from a location string, then use the MVSuggest
service. In this case the provided RecordInfoProvider has to implement the
interface oracle.spatial.hadoop.vector.LocalizableRecordInfoProvider.

f. Templates: The templates to create the thematic maps.

Note:

If a template refers to point geometries (for example, cities), the
result returned is empty for that template, if MVSuggest is not
used. This is because the spatial operations return results only
for polygons.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-112

Tip:

When using the MVSuggest service the results will be more
accurate if all the templates that could match the results are
provided. For example, if the data can refer to any city, state,
country, or continent in the world, then the better choice of
templates to build results are World Continents, World Countries,
World State Provinces, and World Cities. On the other hand, if
the data is from the USA states and counties, then the suitable
templates are USA States and USA Counties. If an index that
was created using the MVSuggest service is selected, then select
the top hierarchy for an optimal result. For example, if it was
created using World Countries, World State Provinces, and
World Cities, then use World Countries as the template.

g. Output path: The Hadoop job output path. For example: /user/oracle/
bdsg/catoutput

h. Result name: The result name. If a result exists for a template with the
same name, it is overwritten. For example, Tweets test.

Click Create. A URL will be displayed to track the job.

2.12.6 Viewing the Categorization Results
To view the categorization results, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Categorization, then Results.

3. Click any one of the Templates. For example, World Continents.

The World Continents template is displayed.

4. Click any one of the Results displayed.

Different continents appear with different patches of colors.

5. Click any continent from the map. For example, North America.

The template changes to World Countries and the focus changes to North America
with the results by country.

2.12.7 Saving Categorization Results to a File
You can save categorization results to a file (for example, the result file created with a
job executed from the command line) on the local system for possible future uploading
and use. The templates are located in the folder /opt/oracle/oracle-spatial-graph/
spatial/web-server/spatialviewer/templates. The templates are GeoJSON files with
features and all the features have ids. For example, the first feature in the template
USA States starts with: {"type":"Feature","_id":"WYOMING",...

The results must be JSON files with the following format:
{"id":"JSONFeatureId","result":result}.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-113

For example, if the template USA States is selected, then a valid result is a file
containing: {"id":"WYOMING","result":3232} {"id":"SOUTH DAKOTA","result":74968}

1. Click Categorization, then Results.

2. Select a Template .

3. Click the icon for saving the results.

4. Specify a Name.

5. Click Choose File to select the File location.

6. Click Save.

The results can be located in the folder clustering_results contained in the
SpatialViewer local working directory (see Configuring SpatialViewer on Oracle
Big Data Appliance).

2.12.8 Creating and Deleting Templates
To create new templates do the following:

1. Add the template JSON file in the folder /opt/oracle/oracle-spatial-graph/
spatial/web-server/spatialviewer/templates/.

2. Add the template configuration file in the folder /opt/oracle/oracle-spatial-graph/
spatial/web-server/spatialviewer/templates/_config_.

To delete the template, delete the JSON and configuration files added in steps 1 and
2.

2.12.9 Configuring Templates
Each template has a configuration file. The template configuration files are located in
the folder /opt/oracle/oracle-spatial-graph/spatial/web-server/spatialviewer/
templates/_config_. The name of the configuration file is the same as the template files
suffixed with config.json instead of .json.For example, the configuration file name of
the template file usa_states.json is usa_states.config.json. The configuration
parameters are:

• name: Name of the template to be shown on the console. For example, name: USA
States.

• display_attribute: When displaying a categorization result, a cursor move on the
top of a feature displays this property and result of the feature. For example,
display_attribute: STATE NAME.

• point_geometry: True, if the template contains point geometries and false, in case
of polygons. For example, point_geometry: false.

• child_templates (optional): The templates that can have several possible child
templates separated by a coma. For example, child_templates:
["world_states_provinces, usa_states(properties.COUNTRY

CODE:properties.PARENT_REGION)"].

If the child templates do not specify a linked field, it means that all the features
inside the parent features are considered as child features. In this case, the
world_states_provinces doesn't specify any fields. If the link between parent and
child is specified, then the spatial relationship doesn't apply and the feature
properties link are checked. In the above example, the relationship with the

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-114

usa_states is found with the property COUNTRY CODE in the current template, and the
property PARENT_REGION in the template file usa_states.json.

• srid: The SRID of the template's geometries. For example, srid: 8307.

• back_polygon_template_file_name (optional): A template with polygon geometries
to set as background when showing the defined template. For example,
back_polygon_template_file_name: usa_states.

• vectorLayers: Configuration specific to the MVSuggest service. For example:

{
"vectorLayers": [
{
 "gnidColumns":["_GNID"],
 "boostValues":[2.0,1.0,1.0,2.0]
 }
]
 }

Where:

– gnidColumns is the name of the column(s) within the Json file that represents
the Geoname ID. This value is used to support multiple languages with
MVSuggest. (See references of that value in the file templates/_geonames_/
alternateNames.json.) There is nodefault value for this property.

– boostValues is an array of float numbers that represent how important a
column is within the "properties" values for a given row. The higher the
number, the more important that field is. A value of zero means the field will be
ignored. When boostValues is not present, all fields receive a default value of
1.0, meaning they all are equally important properties. The MVSuggest service
may return different results depending on those values. For a Json file with the
following properties, the boost values might be as follows:

"properties":{"Name":"New York City","State":"NY","Country":"United
States","Country Code":"US","Population":8491079,"Time Zone":"UTC-5"}
"boostValues":[3.0,2.0,1.0,1.0,0.0,0.0]

2.12.10 Running a Clustering Job Using SpatialViewer
To run a clustering job using SpatialViewer, follow these steps.

1. Open: http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector

2. Click Clustering, then Clustering Job.

3. Provide the following details, as required:

a. Path of the data: Provide the HDFS data path. For example, /user/oracle/
bdsg/tweets.json.

b. The SRID of the geometries. For example: 8307

c. The tolerance of the geometries. For example: 0.05

d. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API classes, then
a jar with the user-defined classes must be provided. To be able to use this jar
the user must add it in the /opt/oracle/oracle-spatial-graph/spatial/web-
server/spatialviewer/WEB-INF/lib directory and restart the server.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-115

e. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

f. Record Info Provider class: The class that will provide the spatial information.
For example:
oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

g. Number of clusters: The number of clusters to be found.

h. Output path: The Hadoop job output path. For example: /user/oracle/bdsg/
catoutput

i. Result name: The result name. If a result exists for a template with the same
name, it is overwritten. For example, Tweets test.

4. Click Create.

A URL will be displayed to track the job.

2.12.11 Viewing the Clustering Results
To view the clustering results, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Clustering, then Results.

3. Click any one of the Results displayed.

2.12.12 Saving Clustering Results to a File
You can save clustering results to a file on your local system, for later uploading and
use. To save the clustering results to a file, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Clustering, then Results.

3. Click the icon for saving the results.

4. Specify a name.

5. Specify the SRID of the geometries. For example: 8307

6. Click Choose File and select the file location.

7. Click Save.

2.12.13 Running a Binning Job Using SpatialViewer
You can run a binning job with or without the spatial index. Follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Binning, then Binning Job.

3. Select either With Index or Without Index and provide the following details, as
required:

• With Index

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-116

a. Index name

• Without Index

a. Path of the data: Provide the HDFS data path. For example, /user/oracle/
bdsg/tweets.json

b. The SRID of the geometries. For example: 8307

c. The tolerance of the geometries. For example: 0.05

d. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API classes,
then a jar with the user-defined classes must be provided. To be able to
use this jar the user must add it in the /opt/oracle/oracle-spatial-graph/
spatial/web-server/spatialviewer/WEB-INF/lib directory and restart the
server.

e. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

f. Record Info Provider class: The class that will provide the spatial
information. For example:
oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

4. Binning grid minimum bounding rectangle (MBR). You can click the icon for seeing
the MBR on the map.

5. Binning shape: hexagon (specify the hexagon width) or rectangle (specify the
width and height).

6. Thematic attribute: If the job uses an index, double-click to see the possible
values, which are those returned by the function getExtraFields of the
RecordInfoProvider used when creating the index. If the job does not use an index,
then the field can be one of the fields returned by the function getExtraFields of
the specified RecordInfoProvider class. In any case, the count attribute is always
available and specifies the number of records in the bin.

7. Output path: The Hadoop job output path. For example: /user/oracle/bdsg/
binningOutput

8. Result name: The result name. If a result exists for a template with the same
name, it is overwritten. For example, Tweets test.

Click Create. A URL will be displayed to track the job.

2.12.14 Viewing the Binning Results
To view the binning results, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Binning, then Results.

3. Click any of the Results displayed.

2.12.15 Saving Binning Results to a File
You can save binning results to a file on your local system, for later uploading and use.
To save the binning results to a file, follow these steps.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-117

1. Open http://<oracle_big_data_spatial_vector_console>:8045/spatialviewer/?
root=vector.

2. Click Binning, then View Results.

3. Click the icon for saving the results.

4. Specify the SRID of the geometries. For example: 8307

5. Specify the thematic attribute, which must be a property of the features in the
result. For example, the count attribute can be used to create results depending on
the number of results per bin.

6. Click Choose File and select the file location.

7. Click Save.

2.12.16 Running a Job to Create an Index Using the Command Line
To create a spatial index, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH>/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing [generic options]
input=<path|comma_separated_paths|path_pattern> output=<path>
inputFormat=<InputFormat_subclass> recordInfoProvider=<RecordInfoProvider_subclass>
[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<minX,minY,maxX,maxY>] [indexName=<index_name>]
[indexMetadataDir=<path>] [overwriteIndexMetadata=<true|false>] [mvsLocation=<path|
URL> [mvsMatchLayers=<comma_separated_layers>][mvsMatchCountry=<country_name>]
[mvsSpatialResponse=<[NONE, FEATURE_GEOMETRY, FEATURE_CENTROID]>]
[mvsInterfaceType=<LOCAL, WEB>][mvsIsRepository=<true|false>][rebuildMVSIndex=<true|
false>][mvsPersistentLocation=<hdfs_path>][mvsOverwritePersistentLocation=<true|
false>]]

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing with
oracle.spatial.hadoop.vector.mapreduce.job.SpatialIndexing.

Input/output arguments:

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

• inputFormat: the inputFormat class implementation used to read the input data.

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class.

• output: the path where the spatial index will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxY

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-118

Spatial index metadata arguments:

• indexName (optional, default=output folder name):The name of the index to be
generated.

• indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata
will be stored.

• overwriteIndexMetadata (optional, default=false) boolean argument that indicates
whether the index metadata can be overwritten if an index with the same name
already exists.

MVSuggest arguments:

• mvsLocation: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

• mvsMatchLayers (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

• mvsMatchCountry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

• mvsSpatialResponse (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

• mvsInterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

• mvsIsRepository (optional: default=false) (LOCAL only): boolean value which
specifies whether mvsLocation points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_ and _geonames_ folder.

• mvsRebuildIndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

• mvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

• mvsIsOverwritePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing mvsPersistentLocation must be overwritten in case it
already exists.

Example: Create a spatial index called indexExample. The index metadata will be
stored in the HDFS directory spatialMetadata.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing input="/user/hdfs/
demo_vector/tweets/part*" output=/user/hdfs/demo_vector/tweets/spatial_index
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider
srid=8307 geodetic=true tolerance=0.5 indexName=indexExample
indexMetadataDir=indexMetadataDir overwriteIndexMetadata=true

Example: Create a spatial index using MVSuggest to assign a spatial location to records
that do not contain geometries.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing input="/user/hdfs/

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-119

demo_vector/tweets/part*" output=/user/hdfs/demo_vector/tweets/spatial_index
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=mypackage.Simple LocationRecordInfoProvider srid=8307
geodetic=true tolerance=0.5 indexName=indexExample indexMetadataDir=indexMetadataDir
overwriteIndexMetadata=true mvsLocation=file:///local_folder/mvs_dir/oraclemaps_pub/
mvsRepository=true

2.12.17 Running a Job to Create a Categorization Result
To create a categorization result, use a command in one of the following formats.

With a Spatial Index

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Categorization [generic options]
(indexName=<indexName> [indexMetadataDir=<path>]) | (input=<path|
comma_separated_paths|path_pattern> isInputIndex=true [srid=<integer_value>]
[geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<min_x,min_y,max_x,max_y>]) output=<path>
hierarchyIndex=<hdfs_hierarchy_index_path> hierarchyInfo=<HierarchyInfo_subclass>
[hierarchyDataPaths=<level1_path,level2_path,,levelN_path>] spatialOperation=<[None,
IsInside, AnyInteract]>

Without a Spatial Index

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Categorization [generic options] input=<path|
comma_separated_paths|path_pattern> inputFormat=<InputFormat_subclass>
recordInfoProvider=<RecordInfoProvider_subclass> [srid=<integer_value>]
[geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<min_x,min_y,max_x,max_y>] output=<path>
hierarchyIndex=<hdfs_hierarchy_index_path> hierarchyInfo=<HierarchyInfo_subclass>
hierarchyDataPaths=<level1_path,level2_path,,levelN_path>] spatialOperation=<[None,
IsInside, AnyInteract]>

Using MVSuggest

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Categorization [generic options]
(indexName=<indexName> [indexMetadataDir=<path>]) |
(
(input=<path|comma_separated_paths|path_pattern> isInputIndex=true) | (input=<path|
comma_separated_paths|path_pattern> inputFormat=<InputFormat_subclass>
recordInfoProvider=<LocalizableRecordInfoProvider_subclass>)
[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<min_x,min_y,max_x,max_y>]
) output=<path>
mvsLocation=<path|URL> [mvsMatchLayers=<comma_separated_layers>]
[mvsMatchCountry=<country_name>] [mvsSpatialResponse=<[NONE, FEATURE_GEOMETRY,
FEATURE_CENTROID]>] [mvsInterfaceType=<[UNDEFINED, LOCAL, WEB]>]
[mvsIsRepository=<true|false>] [mvsRebuildIndex=<true|false>]
[mvsPersistentLocation=<hdfs_path>] [mvsOverwritePersistentLocation=<true|false>]
[mvsMaxRequestRecords=<integer_number>] hierarchyIndex=<hdfs_hierarchy_index_path>
hierarchyInfo=<HierarchyInfo_subclass>

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.Categorization with
oracle.spatial.hadoop.vector.mapreduce.job.Categorization.

Input/output arguments:

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-120

• indexName: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument input is
ignored.

• indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if indexName is specified.)

• inputFormat: the inputFormat class implementation used to read the input data.
(Ignored if indexName is specified.)

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class. (Ignored if indexName is
specified.)

• output: the path where the spatial index will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxY

• spatialOperation: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are IsInside and AnyInteract.

Hierarchical data set arguments:

• hierarchyIndex: the HDFS path of an existing hierarchical index or where it can be
stored if it needs to be generated.

• hierarchyInfo: the fully qualified name of a HierarchyInfo subclass which is used
to describe the hierarchical data.

• hierarchyDataPaths (optional, default=none): a comma separated list of paths of
the hierarchy data. The paths should be sorted in ascending way by hierarchy
level. If a hierarchy index path does not exist for the given hierarchy data, this
argument is required.

MVSuggest arguments:

• mvsLocation: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

• mvsMatchLayers (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

• mvsMatchCountry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-121

• mvsSpatialResponse (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

• mvsInterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

• mvsIsRepository (optional: default=false) (LOCAL only): Boolean value that
specifies whether mvsLocation points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_ and _geonames_ folder.

• mvsRebuildIndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

• mvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

• mvsIsOverwritePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing mvsPersistentLocation must be overwritten in case it
already exists.

Example: Run a Categorization job to create a summary containing the records
counts by continent, country, and state/provinces. The input is an existing spatial index
called indexExample. The hierarchical data will be indexed and stored in HDFS at the
path hierarchyIndex.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Categorization indexName= indexExample
output=/user/hdfs/demo_vector/tweets/hier_count_spatial
hierarchyInfo=vectoranalysis.categorization.WorldAdminHierarchyInfo
hierarchyIndex=hierarchyIndex hierarchyDataPaths=file:///templates/
world_continents.json,file:///templates/world_countries.json,file:///templates/
world_states_provinces.json spatialOperation=IsInside

Example: Run a Categorization job to create a summary of tweet counts per
continent, country, states/provinces, and cities using MVSuggest.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Categorization input="/user/hdfs/demo_vector/
tweets/part*" inputFormat=<InputFormat_subclass>
recordInfoProvider=<LocalizableRecordInfoProvider_subclass> output=/user/hdfs/
demo_vector/tweets/hier_count_mvs
hierarchyInfo=vectoranalysis.categorization.WorldAdminHierarchyInfo
hierarchyIndex=hierarchyIndex mvsLocation=file:///mvs_dir
mvsMatchLayers=world_continents,world_countries,world_states_provinces
spatialOperation=IsInside

2.12.18 Running a Job to Create a Clustering Result
To create a clustering result, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.KMeansClustering [generic options]
input=<path|comma_separated_paths|path_pattern> inputFormat=<InputFormat_subclass>
recordInfoProvider=<RecordInfoProvider_subclass> output=<path>
[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<min_x,min_y,max_x,max_y>] k=<number_of_clusters>
[clustersPoints=<comma_separated_points_ordinates>] [deleteClusterFiles=<true|
false>] [maxIterations=<integer_value>] [critFunClass=<CriterionFunction_subclass>]
[shapeGenClass=<ClusterShapeGenerator_subclass>] [maxMemberDistance=<double_value>]

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-122

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.KMeansClustering with
oracle.spatial.hadoop.vector.mapreduce.job.KMeansClustering.

Input/output arguments:

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

• inputFormat: the inputFormat class implementation used to read the input data.

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class.

• output: the path where the spatial index will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxY

• spatialOperation: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are IsInside and AnyInteract.

Clustering arguments:

• k: the number of clusters to be found.

• clusterPoints (optional, default=none): the initial cluster centers as a comma-
separated list of point ordinates in the form: p1_x,p1_y,p2_x,p2_y,…,pk_x,pk_y

• deleteClusterFiles (optional, default=true): Boolean arguments that specifies
whether the intermediate cluster files generated between iterations should be
deleted or not

• maxIterations (optional, default=calculated based on the number k): the maximum
number of iterations allowed before the job completes.

• critFunClass (optional, default=oracle.spatial.hadoop.vector.cluster.kmeans.
SquaredErrorCriterionFunction) a fully qualified name of a CriterionFunction
subclass.

• shapeGenClass (optional, default= oracle.spatial.hadoop.vector.cluster.kmeans.
ConvexHullClusterShapeGenerator) a fully qualified name of a
ClusterShapeGenerator subclass used to generate the geometry of the clusters.

• maxMemberDistance (optional, default=undefined): a double value that specifies the
maximum distance between a cluster center and a cluster member.

Example: Run a Clustering job to generate 5 clusters. The generated clusters
geometries will be the convex hull of all .

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.KMeansClustering input="/user/hdfs/
demo_vector/tweets/part*" output=/user/hdfs/demo_vector/tweets/result

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-123

inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider
srid=8307 geodetic=true tolerance=0.5 k=5
shapeGenClass=oracle.spatial.hadoop.vector.cluster.kmeans.ConvexHullClusterShapeGener
ator

2.12.19 Running a Job to Create a Binning Result
To create a binning result, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Binning [generic options]
(indexName=<INDEX_NAME> [indexMetadataDir=<INDEX_METADATA_DIRECTORY>]) |
(input=<DATA_PATH> inputFormat=<INPUT_FORMAT_CLASS>
recordInfoProvider=<RECORD_INFO_PROVIDER_CLASS> [srid=<SRID>] [geodetic=<GEODETIC>]
[tolerance=<TOLERANCE>]) output=<RESULT_PATH> cellSize=<CELL_SIZE>
gridMbr=<GRID_MBR> [cellShape=<CELL_SHAPE>] [aggrFields=<EXTRA_FIELDS>]

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.Binning with
oracle.spatial.hadoop.vector.mapreduce.job.Binning.

Input/output arguments:

• indexName: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument input is
ignored.

• indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

• inputFormat: the inputFormat class implementation used to read the input data.

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class.

• output: the path where the spatial index will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

Binning arguments:

• cellSize: the size of the cells in the format: width,height

• gridMbr : the minimum and maximum dimension values for the grid in the form:
minX,minY,maxX,maxY

• cellShape (optional, default=RECTANGLE): the shape of the cells. It can be
RECTANGLE or HEXAGON

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-124

• aggrFields (optional, default=none): a comma-separated list of field names that will
be aggregated.

Example: Run a spatial binning job to generate a grid of hexagonal cells and
aggregate the value of the field SALES..

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Binning indexName=indexExample
indexMetadataDir=indexMetadataDir output=/user/hdfs/demo_vector/result
cellShape=HEXAGON cellSize=5 gridMbr=-175,-85,175,85 aggrFields=SALES

2.12.20 Running a Job to Perform Spatial Filtering
To perform spatial filtering, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialFilter [generic options]
(indexName=<indexName> [indexMetadataDir=<path>]) |
(
(input=<path|comma_separated_paths|path_pattern> isInputIndex=true) | (input=<path|
comma_separated_paths|path_pattern> inputFormat=<InputFormat_subclass>
recordInfoProvider=<RecordInfoProvider_subclass>)
[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_value>]
[boundaries=<min_x,min_y,max_x,max_y>]
) output=<path> spatialOperation=<[IsInside, AnyInteract]> queryWindow=<json-
geometry>

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.SpatialFilter with
oracle.spatial.hadoop.vector.mapreduce.job.SpatialFilter.

Input/output arguments:

• indexName: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument input is
ignored.

• indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

• inputFormat: the inputFormat class implementation used to read the input data.

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class.

• output: the path where the spatial index will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

Binning arguments:

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-125

• cellSize: the size of the cells in the format: width,height

• gridMbr : the minimum and maximum dimension values for the grid in the form:
minX,minY,maxX,maxY

• cellShape (optional, default=RECTANGLE): the shape of the cells. It can be
RECTANGLE or HEXAGON

• aggrFields (optional, default=none): a comma-separated list of field names that will
be aggregated.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minx,minY,maxX,maxY

• spatialOperation: the operation to be applied between the queryWindow and the
geometries from the input data set

• queryWindow: the geometry used to filter the input dataset.

Example: Perform a spatial filtering operation.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialFilter indexName=indexExample
indexMetadataDir=indexMetadataDir output=/user/hdfs/demo_vector/result
spatialOperation=IsInside queryWindow='{"type":"Polygon", "coordinates":[[-106, 25,
-106, 30, -104, 30, -104, 25, -106, 25]]}'

2.12.21 Running a Job to Get Location Suggestions
To create a job to get location suggestions, use a command in the following format.

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SuggestService [generic options] input=<path|
comma_separated_paths|path_pattern> inputFormat=<InputFormat_subclass>
recordInfoProvider=<RecordInfoProvider_subclass> output=<path> mvsLocation=<path|
URL> [mvsMatchLayers=<comma_separated_layers>] [mvsMatchCountry=<country_name>]
[mvsSpatialResponse=<[NONE, FEATURE_GEOMETRY, FEATURE_CENTROID]>]
[mvsInterfaceType=<[UNDEFINED, LOCAL, WEB]>] [mvsIsRepository=<true|false>]
[mvsRebuildIndex=<true|false>] [mvsPersistentLocation=<hdfs_path>]
[mvsOverwritePersistentLocation=<true|false>] [mvsMaxRequestRecords=<integer_number>]

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.SuggestService with
oracle.spatial.hadoop.vector.mapreduce.job.SuggestService.

Input/output arguments:

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if indexName is specified.)

• inputFormat: the inputFormat class implementation used to read the input data.
(Ignored if indexName is specified.)

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class. (Ignored if indexName is
specified.)

• output: the path where the spatial index will be stored

MVSuggest arguments:

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-126

• mvsLocation: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

• mvsMatchLayers (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

• mvsMatchCountry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

• mvsSpatialResponse (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

• mvsInterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

• mvsIsRepository (optional: default=false) (LOCAL only): Boolean value that
specifies whether mvsLocation points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_ and _geonames_ folder.

• mvsRebuildIndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

• mvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

• mvsIsOverwritePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing mvsPersistentLocation must be overwritten in case it
already exists.

Example: Get suggestions based on location texts from the input data set..

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SuggestService input="/user/hdfs/demo_vector/
tweets/part*" inputFormat=<InputFormat_subclass>
recordInfoProvider=<LocalizableRecordInfoProvider_subclass> output=/user/hdfs/
demo_vector/tweets/suggest_res mvsLocation=file:///mvs_dir
mvsMatchLayers=world_continents,world_countries,world_states_provinces

2.12.22 Running a Job to Perform a Spatial Join
To perform a spatial join operation on two data sets, use a command in the following
format.

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job. SpatialJoin [generic options]
inputList={
 {
 (indexName=<dataset1_spatial_index_name>
indexMetadataDir=<dataset1_spatial_index_metadata_dir_path>)
 |
 (input=<dataset1_path|comma_separated_paths|path_pattern>
inputFormat=<dataset1_InputFormat_subclass>
recordInfoProvider=<dataset1_RecordInfoProvider_subclass>)
 [boundaries=<min_x,min_y,max_x,max_y>]
 }
 {
 (indexName=<dataset2_spatial_index_name>
indexMetadataDir=<dataset2_spatial_index_metadata_dir_path>
)

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-127

 |
 (input=<dataset2_path|comma_separated_paths|path_pattern>
inputFormat=<dataset2_InputFormat_subclass>
recordInfoProvider=<dataset2_RecordInfoProvider_subclass>
)
 [boundaries=<min_x,min_y,max_x,max_y>]
 }
} output=<path>[srid=<integer_value>] [geodetic=<true|false>]
[tolerance=<double_value>] boundaries=<min_x,min_y,max_x,max_y>
spatialOperation=<AnyInteract|IsInside|WithinDistance> [distance=<double_value>]
[samplingRatio=<decimal_value_between_0_and_1> | partitioningResult=<path>]

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.SpatialJoin with
oracle.spatial.hadoop.vector.mapreduce.job.SpatialJoin.

InputList: A list of two input data sets. The list is enclosed by curly braces ({}). Each
list element is an input data set, which is enclosed by curly braces. An input data set
can contain the following information, depending on whether the data set is specified
as a spatial index.

If specified as a spatial index:

• indexName: the name of an existing spatial index.

• indexMetadataDir : the directory where the spatial index metadata is located

If not specified as a spatial index:

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if indexName is specified.)

• inputFormat: the inputFormat class implementation used to read the input data.
(Ignored if indexName is specified.)

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class. (Ignored if indexName is
specified.)

output: the path where the results will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxY

• spatialOperation: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are IsInside and AnyInteract.

• distance: distance used for WithinDistance operations.

Partitioning arguments:

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-128

• samplingRatio (optional, default=0.1): ratio used to sample the data sets when
partitioning needs to be performed

• partitioningResult (optional, default=none): Path to a previously generated
partitioning result file

Example: Perform a spatial join on two data sets.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.SpatialJoin inputList="{{input=/user/hdfs/
demo_vector/world_countries.json
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider}
{input=file="/user/hdfs/demo_vector/tweets/part*”
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider}}"
output=/user/hdfs/demo_vector/spatial_join srid=8307 spatialOperation=AnyInteract
boundaries=-180,-90,180,90

2.12.23 Running a Job to Perform Partitioning
To perform a spatial partitioning, use a command in the following format.

hadoop jar <HADOOP_LIB_PATH >/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job. SpatialJoin [generic options]
inputList={
 {
 (indexName=<dataset1_spatial_index_name>
indexMetadataDir=<dataset1_spatial_index_metadata_dir_path>)
 |
 (input=<dataset1_path|comma_separated_paths|path_pattern>
inputFormat=<dataset1_InputFormat_subclass>
recordInfoProvider=<dataset1_RecordInfoProvider_subclass>)
 [boundaries=<min_x,min_y,max_x,max_y>]
 }
[
 {
 (indexName=<dataset2_spatial_index_name>
indexMetadataDir=<dataset2_spatial_index_metadata_dir_path>
)
 |
 (input=<dataset2_path|comma_separated_paths|path_pattern>
inputFormat=<dataset2_InputFormat_subclass>
recordInfoProvider=<dataset2_RecordInfoProvider_subclass>
)
 [boundaries=<min_x,min_y,max_x,max_y>]
 }
 ……
 {
 (indexName=<datasetN_spatial_index_name>
indexMetadataDir=<datasetN_spatial_index_metadata_dir_path>
)
 |
 (input=<datasetN_path|comma_separated_paths|path_pattern>
inputFormat=<datasetN_InputFormat_subclass>
recordInfoProvider=<datasetN_RecordInfoProvider_subclass>
)
 [boundaries=<min_x,min_y,max_x,max_y>]
 }

}

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-129

] output=<path>[srid=<integer_value>] [geodetic=<true|false>]
[tolerance=<double_value>] boundaries=<min_x,min_y,max_x,max_y>
[samplingRatio=<decimal_value_between_0_and_1>]

To use the new Hadoop API format, replace
oracle.spatial.hadoop.vector.mapred.job.Partitioning with
oracle.spatial.hadoop.vector.mapreduce.job.Partitioning.

InputList: A list of two input data sets. The list is enclosed by curly braces ({}). Each
list element is an input data set, which is enclosed by curly braces. An input data set
can contain the following information, depending on whether the data set is specified
as a spatial index.

If specified as a spatial index:

• indexName: the name of an existing spatial index.

• indexMetadataDir : the directory where the spatial index metadata is located

If not specified as a spatial index:

• input : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if indexName is specified.)

• inputFormat: the inputFormat class implementation used to read the input data.
(Ignored if indexName is specified.)

• recordInfoProvider: the recordInfoProvider implementation used to extract
information from the records read by the InputFormat class. (Ignored if indexName is
specified.)

output: the path where the results will be stored

Spatial arguments:

• srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

• geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

• tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

• boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxY

Partitioning arguments:

• samplingRatio (optional, default=0.1): ratio used to sample the data sets when
partitioning needs to be performed

Example: Partition two data sets.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector.jar
oracle.spatial.hadoop.vector.mapred.job.Partitioning inputList="{{input=/user/hdfs/
demo_vector/world_countries.json
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider}
{input=file="/user/hdfs/demo_vector/tweets/part*”
inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider}}"
output=/user/hdfs/demo_vector/partitioning srid=8307 boundaries=-180,-90,180,90

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-130

2.12.24 Using Multiple Inputs
Multiple input data sets can be specified to a Vector job through the command line
interface using the inputList parameter. The inputList parameter value is a group of
input data sets. The inputList parameter format is as follows:

inputList={ {input_data_set_1_params} {input_data_set_2_params} …
{input_data_set_N_params} }

Each individual input data set can be one of the following input data sets:

• Non-file input data set: inputFormat=<InputFormat_subclass>
recordInfoProvider=<RecordInfoProvider_subclass> [srid=<integer_value>]

[geodetic=<true|false>] [tolerance=<double_value>]

[boundaries=<min_x,min_y,max_x,max_y>]

• File input data set: input=<path|comma_separated_paths|path_pattern>
inputFormat=<FileInputFormat_subclass>

recordInfoProvider=<RecordInfoProvider_subclass> [srid=<integer_value>]

[geodetic=<true|false>] [tolerance=<double_value>]

[boundaries=<min_x,min_y,max_x,max_y>]

• Spatial index input data set: ((indexName=<<indexName>>
[indexMetadataDir=<<path>>]) | (isInputIndex=<true> input=<path|

comma_separated_paths|path_pattern>)) [srid=<integer_value>]

[geodetic=<true|false>] [tolerance=<double_value>]

[boundaries=<min_x,min_y,max_x,max_y>]

• NoSQL input data set: kvStore=<kv store name> kvStoreHosts=<comma separated
list of hosts> kvParentKey=<parent key> [kvConsistency=<Absolute|NoneRequired|

NoneRequiredNoMaster>] [kvBatchSize=<integer value>] [kvDepth=<CHILDREN_ONLY|

DESCENDANTS_ONLY|PARENT_AND_CHILDREN|PARENT_AND_DESCENDANTS>]

[kvFormatterClass=<fully qualified class name>] [kvSecurity=<properties file

path>] [kvTimeOut=<long value>] [kvDefaultEntryProcessor=<fully qualified

class name>] [kvEntryGrouper=<fully qualified class name>]

[kvResultEntries={ { minor key 1: a minor key name relative to the major key

[fully qualified class name: a subclass of NoSQLEntryProcessor class used to

process the entry with the given key] } * }] [srid=<integer_value>]

[geodetic=<true|false>] [tolerance=<double_value>]

[boundaries=<min_x,min_y,max_x,max_y>]

Notes:

• A Categorization job does not support multiple input data sets.

• A SpatialJoin job only supports two input data sets.

• A SpatialIndexing job does not accept input data sets of type spatial index.

• NoSQL input data sets can only be used when kvstore.jar is present in the
classpath.

2.12.25 Loading Images from the Local Server to the HDFS Hadoop
Cluster

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-131

2. Click the Raster tab.

3. Click Select File or Path and browse to the demo folder that contains a set of
Hawaii images (/opt/shareddir/spatial/data/rasters).

4. By default, Spark is selected. If you want to use Hadoop, click the Use Spark
button to change it to Use Hadoop.

5. Select the rasters folder and click Load images.

You will receive a message about the job being accepted, with a tracking URL.
You can track the job status using that URL.

After the job finishes, you can see the uploaded images in the globe in the Viewer
tab.

Note:

If you cannot find the raster files, you can copy them to the shared directory
folder created during the installation: check the Admin tab for the directory
location, then copy the raster files into it.

If you receive an error, check the Raster Configuration details. If GDAL
native library is not set-up correctly, much of the raster functionality of the
web application will not work.

2.12.26 Visualizing Rasters in the Globe
Before you can visualize the rasters in the globe, you must upload the raster files to
HDFS, as explained in Loading Images from the Local Server to the HDFS Hadoop
Cluster.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045.

2. Click the Raster tab.

3. Click the Hadoop Viewer tab.

4. Click Refresh Footprints to update the footprints in the globe, and wait until all
footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge

2.12.27 Processing a Raster or Multiple Rasters with the Same MBR
Before you can visualize the rasters in the globe, you must upload the raster files to
HDFS, as explained in Loading Images from the Local Server to the HDFS Hadoop
Cluster.

Before processing rasters with the same MBR (minimum bounding rectangle), you
must upload the raster files to HDFS, as explained in Loading Images from the Local
Server to the HDFS Hadoop Cluster, and visualize the rasters, as explained in
Visualizing Rasters in the Globe.

1. Right click over a raster. If you select a raster with a red or yellow edge, a tooltip
with a list of rasters may appear.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-132

2. Click Process Rasters with Same MBR. You can exclude rasters from the
process by clicking the X button on the left side of every row. If single raster was
select, click Process Image (No Mosaic).

The Raster Process dialog box is displayed.

3. By default, Spark is selected to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

4. In the Raster Process dialog, scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

5. Optionally, download the result by clicking Download Full Size Image below the
result image.

2.12.28 Creating a Mosaic Directly from the Globe
Before you can create the mosaic image, you must upload the raster files to HDFS, as
explained in Loading Images from the Local Server to the HDFS Hadoop Cluster.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045.

2. Click the Raster tab.

3. Click the Hadoop Viewer tab.

4. Click Refresh Footprints to update the footprints in the globe, and wait until all
footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge

5. Click Select and crop coordinates of Footprints.

6. Draw a rectangle that wraps the rasters (at least one) and desired area, zooming
in or out as necessary.

7. Right-click on the map and select Generate Mosaic.

The raster process dialog is displayed.

8. By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

9. In the raster process dialog, scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

10. Optionally, download the result by clicking Download Full Size Image.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-133

Note:

Spark raster processing does not yet support all the options provided for
Hadoop raster processing. For Spark raster processing, you must specify
additional configuration parameters in the Spark Configuration section of the
Admin tab:

• spark.driver.extraClassPath, spark.executor.extraClassPath: Specify
your hive library installation using these keys. Example: /usr/lib/
hive/lib/*

• spark.kryoserializer.buffer.max: Enter a value to support the kryo
serialization. Example: 160m

2.12.29 Adding Operations for Raster Processing
Before you add algebra operations for raster processing or image mosaic creation,
follow the instructions in Processing a Raster or Multiple Rasters with the Same MBR
until you have the raster processing dialog displayed. Before clicking Create Mosaic,
perform these steps:

1. Click Advanced options.

A group of new elements is displayed for adding add the advanced options.

2. Scroll down until you see the raster operations.

3. Choose a raster operation from the list. If you want to add a complex operation,
toggle the Hide Complex Operations checkbox.

Only one complex operation is allowed per raster processing action.

4. After you select an operation from the list on the left, add it to the process by
clicking the right arrow.

Some operations also require parameters.

5. Add more operations if you want.

To remove an operation, select it in the list on the right and click the left arrow.
You can also remove all operations in the list.

6. By default, Spark is selected to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

7. Click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

8. Optionally, download the result by clicking Download Full Size Image.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-134

Note:

For some raster process operations using spark, you need to supply memory
details to the spark drivers and executors, with the details depending of the
size and details of the rasters in the process. For Spark raster processing,
you must specify additional configuration parameters in the Spark
Configuration section of the Admin tab:

• spark.driver.extraClassPath, spark.executor.extraClassPath: Specify
your hive library installation using these keys. Example: /usr/lib/
hive/lib/*

• spark.kryoserializer.buffer.max: Enter a value to support the kryo
serialization. Example: 160m

2.12.30 Creating a Slope Image from the Globe
Before you can create the mosaic image, you must upload the raster files to HDFS, as
explained in Loading Images from the Local Server to the HDFS Hadoop Cluster.

1. Open the console: http://<oracle_big_data_spatial_vector_console>:8045.

2. Click the Raster tab.

3. Click the Hadoop Viewer tab.

4. Click Refresh Footprints to update the footprints in the globe, and wait until all
footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge

5. Click Select and crop coordinates of Footprints.

6. Draw a rectangle that wraps the rasters (at least one) and desired area, zooming
in or out as necessary.

7. Right-click on the map and select Generate Mosaic.

The raster process dialog is displayed.

8. By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

9. Select the appropriate Pixel Type

Usually these images are Float 32 Bits.

10. Click Advanced Options.

You will see a group of new elements to add as advanced options.

11. Scroll down until you see the Process Classes controls.

12. Specify the Fully Qualified Class Name, then click Add.

The framework provides a default process class for slope:
oracle.spatial.hadoop.imageprocessor.process.ImageSlope

13. Click Create Mosaic

Wait until the raster processing is finished.

The result will displayed in the Result tab.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-135

Note:

Spark raster processing does not yet support custom process classes.

2.12.31 Changing the Image File Format from the Globe
Before you can change the image file format, follow the instructions in Processing a
Raster or Multiple Rasters with the Same MBR until you have the raster processing
dialog displayed. Before clicking Create Mosaic, perform these steps:

1. Select the the desired image Output Format.

2. By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

3. Scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

4. Optionally, download the result by clicking Download Full Size Image.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2-136

3
Integrating Big Data Spatial and Graph with
Oracle Database

You can use Oracle Big Data Connectors to facilitate spatial data access between Big
Data Spatial and Graph and Oracle Database.

This chapter assumes that you have a working knowledge of the following:

• Oracle SQL Connector for HDFS

For information, see Oracle SQL Connector for Hadoop Distributed File System.

• Oracle Loader for Hadoop

For information, see Oracle Loader for Hadoop

• Apache Hive

For information, see the Apache Hive documentation at https://cwiki.apache.org/
confluence/display/Hive/Home#Home-UserDocumentation.

• Using Oracle SQL Connector for HDFS with Delimited Text Files
This topic is applicable when the files in HDFS are delimited text files (fields must
be delimited using single-character markers, such as commas or tabs) and the
spatial data is stored as GeoJSON or WKT format.

• Using Oracle SQL Connector for HDFS with Hive Tables
Oracle SQL Connector for HDFS (OSCH) directly supports HIVE tables defined on
HDFS.

• Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for
Hadoop
To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data
from HDFS to Oracle Database.

• Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL
You can use Oracle Big Data SQL to facilitate spatial data access between HDFS
and Oracle Database.

3.1 Using Oracle SQL Connector for HDFS with Delimited
Text Files

This topic is applicable when the files in HDFS are delimited text files (fields must be
delimited using single-character markers, such as commas or tabs) and the spatial
data is stored as GeoJSON or WKT format.

If such data is to be used by Big Data Spatial and Graph and is to be accessed from
an Oracle database using the Oracle SQL connection for HDFS, certain configuration
steps are needed.

3-1

https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation
https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation

For this example, assume that the files in HDFS contain records separated by new
lines, and the fields within each record are separated by tabs, such as in the following:

"6703" 1 62 "Hong Kong" 3479846 POINT (114.18306 22.30693)
"6702" 57 166 "Singapore" 1765655 POINT (103.85387 1.29498)

1. Log in to a node of the Hadoop cluster.

2. Create the configuration file required by OSCH (Oracle SQL Connector for HDFS),
such as the following example:

<?xml version="1.0"?>
 <configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>TWEETS_EXT_TAB_FILE</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>text</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>/user/scott/simple_tweets_data/*.log</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>scott</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.fieldTerminator</name>
 <value>\u0009</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.columnNames</name>
 <value>ID,FOLLOWERS_COUNT,FRIENDS_COUNT,LOCATION,USER_ID,GEOMETRY</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>TWEETS_DT_DIR</value>
 </property>
</configuration>

3. Name the configuration file tweets_text.xml.

4. On a node of the Hadoop cluster, execute the following command:

hadoop jar $OSCH_HOME/jlib/orahdfs.jar \
 oracle.hadoop.exttab.ExternalTable \
 -conf /home/oracle/tweets_text.xml \
 -createTable

The command prompts for the database password .

You can either create the OSCH_HOME environment variable or replace
OSCH_HOME in the command syntax with the full path to the installation directory
for Oracle SQL Connector for HDFS. On Oracle Big Data Appliance, this directory
is: /opt/oracle/orahdfs-version

Chapter 3
Using Oracle SQL Connector for HDFS with Delimited Text Files

3-2

The table TWEETS_EXT_TAB_FILE is now ready to query. It can be queried like any
other table from the database. The database is the target database specified in the
configuration file in a previous step.. The following query selects the count of rows in
the table:

select count(*) from TWEETS_EXT_TAB_FILE;

You can perform spatial operations on that table just like any other spatial table in the
database. The following example retrieves information about users that are tweeting
within in a quarter-mile (0.25 mile) radius of a specific movie theater:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_GEOMETRY(tw.geometry, 8307), 0.05,
'UNIT=MILE'), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_FILE tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_GEOMETRY(tw.geometry, 8307), 'DISTANCE=0.25 UNIT=MILE') = 'TRUE'

Here the table CINEMA is a spatial table in the Oracle database, and the HDFS table
TWEETS_EXT_TAB_FILE can be used to query against this table. The data from the
tweets table is read in as WKT (well known text), and the WKT constructor of
SDO_GEOMETRY is used to materialize this data as a geometry in the database.

Note that the SRID of the geometries is 8307. Also ,if the spatial data is in GeoJSON
format, then the query should be as follows:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_UTIL.FROM_GEOJSON(tw.geometry, '',
8307), 0.05, 'UNIT=MILE'), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_FILE tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_UTIL.FROM_GEOJSON(tw.geometry, '', 8307), 'DISTANCE=0.25 UNIT=MILE') = 'TRUE'

3.2 Using Oracle SQL Connector for HDFS with Hive Tables
Oracle SQL Connector for HDFS (OSCH) directly supports HIVE tables defined on
HDFS.

The Hive tables must be nonpartitioned, and defined using ROW FORMAT
DELIMITED and FILE FORMAT TEXTFILE clauses. The spatial data must be in
GeoJSON or WKT format.

Both Hive-managed tables and Hive external tables are supported.

For example, the Hive command to create a table on the file described in Using Oracle
SQL Connector for HDFS with Delimited Text Files is as follows. It assumes that the
user already has a Hive table defined on HDFS data. The data in HDFS must be in the
supported format, and the spatial data must be in GeoJSON or WKT format.

CREATE EXTERNAL TABLE IF NOT EXISTS TWEETS_HIVE_TAB(
 ID string,
 FOLLOWERS_COUNT int,
 FRIENDS_COUNT int,
 LOCATION string,
 USER_ID int,
 GEOMETRY string)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\t'
STORED AS INPUTFORMAT
 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
 '/user/scott/simple_tweets_data';

Chapter 3
Using Oracle SQL Connector for HDFS with Hive Tables

3-3

The following example queries the table.

select ID, FOLLOWERS_COUNT, FRIENDS_COUNT, LOCATION, USER_ID, GEOMETRY from
TWEETS_HIVE_TAB limit 10;

The output looks as follow:

"6703" 1 62 "Hong Kong" 3479846 POINT (114.18306 22.30693)
"6702" 57 166 "Singapore" 1765655 POINT (103.85387 1.29498)

1. Log in to a node of the Hadoop cluster.

2. Create the configuration file required by OSCH (Oracle SQL Connector for HDFS),
such as the following example:

<?xml version="1.0"?>
 <configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>TWEETS_EXT_TAB_HIVE</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>hive</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.tableName</name>
 <value>TWEETS_HIVE_TAB</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.databaseName</name>
 <value>default</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>scott</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>TWEETS_DT_DIR</value>
 </property>
</configuration>

3. Name the configuration file tweets_text.xml.

4. On a node of the Hadoop cluster, execute the following command:

Add HIVE_HOME/lib* to HADOOP_CLASSPATH.
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*
hadoop jar $OSCH_HOME/jlib/orahdfs.jar \
 oracle.hadoop.exttab.ExternalTable \
 -conf /home/oracle/tweets_hive.xml \
 -createTable

The command prompts for the database password . You can either create the
OSCH_HOME environment variable or replace OSCH_HOME in the command
syntax with the full path to the installation directory for Oracle SQL Connector for

Chapter 3
Using Oracle SQL Connector for HDFS with Hive Tables

3-4

HDFS. On Oracle Big Data Appliance, this directory is: /opt/oracle/orahdfs-
version

Set the environment variable HIVE_HOME to point to the Hive installation
directory (for example, /usr/lib/hive).

The table TWEETS_EXT_TAB_FILE is now ready to query. It can be queried like any
other table from the database. The following query selects the count of rows in the
table:

select count(*) from TWEETS_EXT_TAB_HIVE;;

You can perform spatial operations on that table just like any other spatial table in the
database. The following example retrieves information about users that are tweeting
within in a quarter-mile (0.25 mile) radius of a specific movie theater:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_GEOMETRY(tw.geometry, 8307), 0.05,
'UNIT=MILE), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_HIVE tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_GEOMETRY(tw.geometry, 8307), 'DISTANCE=0.25 UNIT=MILE') = 'TRUE'

Here the table CINEMA is a spatial table in the Oracle database, and the HDFS table
TWEETS_EXT_TAB_FILE can be used to query against this table. The data from the
tweets table is read in as WKT (well known text), and the WKT constructor of
SDO_GEOMETRY is used to materialize this data as a geometry in the database.

Note that the SRID of the geometries is 8307. Also ,if the spatial data is in GeoJSON
format, then the query should be as follows:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_UTIL.FROM_GEOJSON(tw.geometry, '',
8307), 0.05, 'UNIT=MILE), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_HIVE tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_UTIL.FROM_GEOJSON(tw.geometry, '', 8307), 'DISTANCE=0.25 UNIT=MILE') = 'TRUE'

3.3 Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop

To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data from
HDFS to Oracle Database.

Modifications are required for moving Big Data Spatial and Graph spatial data into the
database. This solution generally applies for any kind of files in HDFS or any kind of
Hive data. The spatial information can be in a well known format or a custom format.

First, an example of how to create external tables from files in HDFS containing spatial
information in a user defined format. Assume that the files in HDFS have records the
following format:

{
 "type":"Feature",
 "id":"6703",
 "followers_count":1,
 "friends_count":62,
 "location":"Hong Kong",
 "user_id":3479846,
 "longitude":114.18306,
 "latitude":22.30693
}

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-5

{
 "type":"Feature",
 "id":"6702",
 "followers_count":57,
 "friends_count":166,
 "location":"Singapore",
 "user_id":1765655,
 "longitude":103.85387,
 "latitude":1.29498
}

The Hive command to create a table for those records is as follows:

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar
 … (add here jars containing custom SerDe and/or InputFormats);
CREATE EXTERNAL TABLE IF NOT EXISTS CUST_TWEETS_HIVE_TAB (id STRING, geometry
STRING, followers_count STRING, friends_count STRING, location STRING, user_id
STRING)
ROW FORMAT SERDE 'mypackage.TweetsSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/scott/simple_tweets_data';

The InputFormat object
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat can read those
records even if they are not strict GeoJSON. Thus, the preceding example does not
need a custom InputFormat specification. However, it does require a custom Hive
Serializer and Deserializer (SerDe) to transform the latitude and longitude into a WKT
or GeoJSON geometry. For that, the Spatial Java API can be used in the deserialize
function of the SerDe, as the following example

 @Override
 public Object deserialize(Writable w) throws SerDeException {
 Text rowText = (Text) w;
 List<Text> row = new ArrayList<Text>(columnNames.size());

 //default all values to null
 for(int i=0;i<columnNames.size();i++){
 row.add(null);
 }

 // Try parsing row into JSON object
 JsonNode recordNode = null;

 try {
 String txt = rowText.toString().trim();
 recordNode = jsonMapper.readTree(txt);
 row.set(columnNames.indexOf("id"), new
Text(recordNode.get("id").getTextValue()));
 row.set(columnNames.indexOf("followers_count"), new
Text(recordNode.get("followers_count").toString()));
 row.set(columnNames.indexOf("friends_count"), new
Text(recordNode.get("friends_count").toString()));
 row.set(columnNames.indexOf("location"), new

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-6

Text(recordNode.get("location").getTextValue()));
 row.set(columnNames.indexOf("user_id"), new
Text(recordNode.get("user_id").toString()));

 Double longitude = recordNode.get("longitude").getDoubleValue();
 Double latitude = recordNode.get("latitude").getDoubleValue();

 //use the Spatial API to create the geometry
 JGeometry geom = JGeometry.createPoint(new double[]{
 longitude,
 latitude},
 2, //dimensions
 8307 //SRID
);
 //Transform the JGeometry to WKT
 String geoWKT = new String(wkt.fromJGeometry(geom));
 row.set(columnNames.indexOf("geometry"), new Text(geoWKT));
 } catch (Exception e) {
 throw new SerDeException("Exception parsing JSON: " +e.getMessage(), e);
 }

 return row;
 }

In the preceding example, to return the geometries in GeoJSON format, replace the
following:

String geoWKT = new String(wkt.fromJGeometry(geom));
row.set(columnNames.indexOf("geometry"), new Text(geoWKT));

with this:

row.set(columnNames.indexOf("geometry"), new Text(geom.toGeoJson()));

More SerDe examples to transform data in GeoJSON, WKT, or ESRI Shapefiles with
the Spatial Java API are available in the folder: /opt/oracle/oracle-spatial-graph/
spatial/vector/examples/hive/java/src/oracle/spatial/hadoop/vector/hive/java/src/

serde

The following example queries the Hive table:

select ID, FOLLOWERS_COUNT, FRIENDS_COUNT, LOCATION, USER_ID, GEOMETRY from
CUST_TWEETS_HIVE_TAB limit 10;

The output looks like the following:

6703 1 62 Hong Kong 3479846 POINT (114.18306 22.30693)
6702 57 166 Singapore 1765655 POINT (103.85387 1.29498)

• Creating HDFS Data Pump Files or Delimited Text Files

• Creating the SQL Connector for HDFS

3.3.1 Creating HDFS Data Pump Files or Delimited Text Files
You can use the Hive table from Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop to create HDFS Data Pump files or delimited
text files.

1. Create a table in the Oracle database as follows:

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-7

CREATE TABLE tweets_t(id INTEGER
 PRIMARY KEY, geometry VARCHAR2(4000), followers_count NUMBER,
 friends_count NUMBER, location VARCHAR2(4000), user_id NUMBER);

This table will be used as the target table. Oracle Loader for Hadoop uses table
metadata from the Oracle database to identify the column names, data types,
partitions, and other information. For simplicity, create this table with the same
columns (fields) as the Hive table. After the external table is created, you can
remove this table or use it to insert the rows from the external table into the target
table. (For more information about target tables, see About the Target Table
Metadata.

2. Create the loader configuration file, as in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
<!-- Input settings -->
<property>
 <name>mapreduce.inputformat.class</name>
 <value>oracle.hadoop.loader.lib.input.HiveToAvroInputFormat</value>
</property>
<property>
 <name>oracle.hadoop.loader.input.hive.databaseName</name>
 <value>default</value>
</property>
<property>
 <name>oracle.hadoop.loader.input.hive.tableName</name>
 <value>CUST_TWEETS_HIVE_TAB</value>
</property>
<!-- Output settings -->
 <property>
 <name>mapreduce.outputformat.class</name>
 <value>oracle.hadoop.loader.lib.output.DataPumpOutputFormat</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>/user/scott/data_output</value>
 </property>
<!-- Table information -->
<property>
 <name>oracle.hadoop.loader.loaderMap.targetTable</name>
 <value>tweets_t</value>
</property>
<!-- Connection information -->
<property>
 <name>oracle.hadoop.loader.connection.url</name>
 <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
</property>
<property>
 <name>oracle.hadoop.loader.connection.user</name>
 <value>scott</value>
</property>
<property>
 <name>oracle.hadoop.loader.connection.password</name>
 <value>welcome1</value>
 <description> Having the password in cleartext is NOT RECOMMENDED. Use
Oracle Wallet instead. </description>
</property>
</configuration>

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-8

With this configuration, Data Pump files will be created in HDFS. If you want
delimited text files as the output, then replace th following:

oracle.hadoop.loader.lib.output.DataPumpOutputFormat

with this:

oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

3. Name the configuration file tweets_hive_to_data_pump.xml.

4. Create the Data Pump files:

Add HIVE_HOME/lib* and the Hive configuration directory to HADOOP_CLASSPATH.
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*:$HIVE_CONF_DIR
Add Oracle Spatial libraries to HADOOP_CLASSPATH.
export ORACLE_SPATIAL_VECTOR_LIB_PATH=/opt/oracle/oracle-spatial-graph/spatial/
vector/jlib

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$ORACLE_SPATIAL_VECTOR_LIB_PATH/
ojdbc8.jar:$ORACLE_SPATIAL_VECTOR_LIB_PATH/
sdoutl.jar:$ORACLE_SPATIAL_VECTOR_LIB_PATH/
sdoapi.jar:$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-
vector.jar:$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-vector-hive.jar

The Oracle Spatial libraries need to be added to the libjars option as well.
export LIBJARS=$ORACLE_SPATIAL_VECTOR_LIB_PATH/
ojdbc8.jar,$ORACLE_SPATIAL_VECTOR_LIB_PATH/
sdoutl.jar,$ORACLE_SPATIAL_VECTOR_LIB_PATH/
sdoapi.jar,$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-
vector.jar,$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-vector-hive.jar

And the following HIVE jar files have to be added to the libjars option.
export LIBJARS=$LIBJARS,$HIVE_HOME/lib/hive-exec-*.jar,$HIVE_HOME/lib/hive-
metastore-*.jar,$HIVE_HOME/lib/libfb303*.jar

hadoop jar ${OLH_HOME}/jlib/oraloader.jar \
 oracle.hadoop.loader.OraLoader \
 -conf /home/oracle/tweets_hive_to_data_pump.xml \
 -libjars $LIBJARS

For the preceding example:

• Be sure that the environment variable OLH_HOME has to be set to the installation
directory.

• Set the environment variable HIVE_HOME to point to the Hive installation
directory (for example, /usr/lib/hive).

• Set the environment variable HIVE_CONF_DIR to point to the Hive configuration
directory (for example, /etc/hive/conf).

• Add the following Hive jar files, in a comma-separated list, to the -libjars option of
the hadoop command. Replace the asterisks (*) with the complete file names on
your system:

hive-exec-*.jar
hive-metastore-*.jar
libfb303*.jar

• If oracle.kv.hadoop.hive.table.TableStorageHandler is used to create the Hive
table (with the data coming from Oracle NoSQL Database), you must also add the
following jar file to the -libjars option of the hadoop command: $KVHOME/lib/

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-9

kvclient.jar (where KVHOME is the directory where the Oracle NoSQL Database
is installed)

• If org.apache.hadoop.hive.hbase.HBaseStorageHandler is used to create the Hive
table (with the data coming from Apache HBase), you must also add the following
JAR files, in a comma-separated list, to the -libjars option of the hadoop
command:

$HIVE_HOME/lib/hbase-server.jar
$HIVE_HOME/lib/hive-hbase-handler.jar
$HIVE_HOME/lib/hbase-common.jar
$HIVE_HOME/lib/hbase-client.jar
$HIVE_HOME/lib/hbase-hadoop2-compat.jar
$HIVE_HOME/lib/hbase-hadoop-compat.jar
$HIVE_HOME/lib/hbase-protocol.jar
$HIVE_HOME/lib/htrace-core.jar

3.3.2 Creating the SQL Connector for HDFS
To create the SQL Connector fo HDFS, follow the instructions in this topic.

1. Create the configuration file for the SQL Connector for HDFS), as in the following
example:

<?xml version="1.0"?>
 <configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>TWEETS_EXT_TAB_DP</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>datapump</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>/user/scott/data_output/oraloader-0000*.dat</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>scott</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>TWEETS_DT_DIR</value>
 </property>
</configuration>

If the files are delimited text files, follow the steps in Using Oracle SQL Connector
for HDFS with Delimited Text Files.

2. Name the configuration file tweets_ext_from_dp.xml.

3. Create the external table.

hadoop jar $OSCH_HOME/jlib/orahdfs.jar \
 oracle.hadoop.exttab.ExternalTable \

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

3-10

 -conf /home/oracle/tweets_ext_from_dp.xml\
 -createTable

In the preceding command, you can either create the OSCH_HOME environment
variable, or replace OSCH_HOME in the command with the full path to the
installation directory for Oracle SQL Connector for HDFS. On Oracle Big Data
Appliance, this directory is: /opt/oracle/orahdfs-version

The table TWEETS_EXT_TAB_DP is now ready to query. It can be queried like any
other table in the database. For example:

select count(*) from TWEETS_EXT_TAB_DP;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_GEOMETRY(tw.geometry, 8307), 0.5,
'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_DP tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_GEOMETRY(tw.geometry, 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_UTIL.FROM_GEOJSON(tw.geometry, '',
8307), 0.5, 'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, TWEETS_EXT_TAB_DP tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_UTIL.FROM_GEOJSON(tw.geometry, '', 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

3.4 Integrating HDFS Spatial Data with Oracle Database
Using Oracle Big Data SQL

You can use Oracle Big Data SQL to facilitate spatial data access between HDFS and
Oracle Database.

To enable the spatial features in Oracle Big Data SQL, update the file
bigdata.properties to add the following lines at the end
(replacing $ORACLE_SPATIAL_VECTOR_LIB_PATH with the path to the Oracle
Spatial libraries):

java.classpath.user=$ORACLE_SPATIAL_VECTOR_LIB_PATH/ojdbc8.jar:
$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdoutl.jar: $ORACLE_SPATIAL_VECTOR_LIB_PATH/
sdoapi.jar:
$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-vector.jar:
$ORACLE_SPATIAL_VECTOR_LIB_PATH/sdohadoop-vector-hive.jar
(Also add here jars containing custom SerDe and/or InputFormat specifications.)

If the files are in HDFS, you can use the following solutions:

• Creating Oracle External Tables for HDFS Files with Big Data SQL

• Creating Oracle External Tables Using Hive Tables with Big Data SQL

If you are accessing spatial data from Oracle NoSQL Database or Apache HBase, you
can use the solution in Creating Oracle External Tables Using Hive Tables with Big
Data SQL.

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

3-11

To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data from
HDFS to Oracle Database.

Modifications are required for moving Big Data Spatial and Graph spatial data into the
database. This solution generally applies for any kind of files in HDFS or any kind of
Hive data. The spatial information can be in a well known format or a custom format.

First, an example of how to create external tables from files in HDFS containing spatial
information in a user defined format. Assume that the files in HDFS have records the
following format:

{
 "type":"Feature",
 "id":"6703",
 "followers_count":1,
 "friends_count":62,
 "location":"Hong Kong",
 "user_id":3479846,
 "longitude":114.18306,
 "latitude":22.30693
}

{
 "type":"Feature",
 "id":"6702",
 "followers_count":57,
 "friends_count":166,
 "location":"Singapore",
 "user_id":1765655,
 "longitude":103.85387,
 "latitude":1.29498
}

The Hive command to create a table for those records is as follows:

add jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/ojdbc8.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoutl.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdoapi.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector.jar
 /opt/oracle/oracle-spatial-graph/spatial/vector/jlib/sdohadoop-vector-hive.jar
 … (add here jars containing custom SerDe and/or InputFormats);
CREATE EXTERNAL TABLE IF NOT EXISTS CUST_TWEETS_HIVE_TAB (id STRING, geometry
STRING, followers_count STRING, friends_count STRING, location STRING, user_id
STRING)
ROW FORMAT SERDE 'mypackage.TweetsSerDe'
STORED AS INPUTFORMAT
'oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/user/scott/simple_tweets_data';

The InputFormat object
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat can read those
records even if they are not strict GeoJSON. Thus, the preceding example does not
need a custom InputFormat specification. However, it does require a custom Hive
Serializer and Deserializer (SerDe) to transform the latitude and longitude into a WKT
or GeoJSON geometry. For that, the Spatial Java API can be used in the deserialize
function of the SerDe, as the following example

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

3-12

 @Override
 public Object deserialize(Writable w) throws SerDeException {
 Text rowText = (Text) w;
 List<Text> row = new ArrayList<Text>(columnNames.size());

 //default all values to null
 for(int i=0;i<columnNames.size();i++){
 row.add(null);
 }

 // Try parsing row into JSON object
 JsonNode recordNode = null;

 try {
 String txt = rowText.toString().trim();
 recordNode = jsonMapper.readTree(txt);
 row.set(columnNames.indexOf("id"), new
Text(recordNode.get("id").getTextValue()));
 row.set(columnNames.indexOf("followers_count"), new
Text(recordNode.get("followers_count").toString()));
 row.set(columnNames.indexOf("friends_count"), new
Text(recordNode.get("friends_count").toString()));
 row.set(columnNames.indexOf("location"), new
Text(recordNode.get("location").getTextValue()));
 row.set(columnNames.indexOf("user_id"), new
Text(recordNode.get("user_id").toString()));

 Double longitude = recordNode.get("longitude").getDoubleValue();
 Double latitude = recordNode.get("latitude").getDoubleValue();

 //use the Spatial API to create the geometry
 JGeometry geom = JGeometry.createPoint(new double[]{
 longitude,
 latitude},
 2, //dimensions
 8307 //SRID
);
 //Transform the JGeometry to WKT
 String geoWKT = new String(wkt.fromJGeometry(geom));
 row.set(columnNames.indexOf("geometry"), new Text(geoWKT));
 } catch (Exception e) {
 throw new SerDeException("Exception parsing JSON: " +e.getMessage(), e);
 }

 return row;
 }

In the preceding example, to return the geometries in GeoJSON format, replace the
following:

String geoWKT = new String(wkt.fromJGeometry(geom));
row.set(columnNames.indexOf("geometry"), new Text(geoWKT));

with this:

row.set(columnNames.indexOf("geometry"), new Text(geom.toGeoJson()));

More SerDe examples to transform data in GeoJSON, WKT, or ESRI Shapefiles with
the Spatial Java API are available in the folder: /opt/oracle/oracle-spatial-graph/
spatial/vector/examples/hive/java/src/oracle/spatial/hadoop/vector/hive/java/src/

serde

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

3-13

The following example queries the Hive table:

select ID, FOLLOWERS_COUNT, FRIENDS_COUNT, LOCATION, USER_ID, GEOMETRY from
CUST_TWEETS_HIVE_TAB limit 10;

The output looks like the following:

6703 1 62 Hong Kong 3479846 POINT (114.18306 22.30693)
6702 57 166 Singapore 1765655 POINT (103.85387 1.29498)

• Creating Oracle External Tables for HDFS Files with Big Data SQL

• Creating Oracle External Tables Using Hive Tables with Big Data SQL

3.4.1 Creating Oracle External Tables for HDFS Files with Big Data
SQL

You can create Oracle external tables for any kind of files in HDFS. The spatial
information can be in a well known format or a custom format.

If the geometry format is not WKT or GeoJSON, then use one of the provided SerDe
examples in the folder /opt/oracle/oracle-spatial-graph/spatial/vector/examples/
hive/java/src/oracle/spatial/hadoop/vector/hive/java/src/serde, or create a custom
SerDe as in the example in Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop.

After that, create an Oracle external table, as in the following example:

CREATE TABLE SAMPLE_TWEETS (id VARCHAR2(4000),
 geometry VARCHAR2(4000),
 followers_count VARCHAR2(4000),
 friends_count VARCHAR2(4000),
 location VARCHAR2(4000), user_id VARCHAR2(4000)) ORGANIZATION EXTERNAL
 (TYPE oracle_hdfs DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (
 com.oracle.bigdata.rowformat: \
 SERDE 'mypackage.TweetsSerDe'
 com.oracle.bigdata.fileformat: \
 INPUTFORMAT 'oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat' \
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' \
)
LOCATION ('/user/scott/simple_tweets_data/*.log'));

The table SAMPLE_TWEETS is now ready to query. It can be queried like any other
table in the database. For example:

select count(*) from SAMPLE_TWEETS;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_GEOMETRY(tw.geometry, 8307), 0.5,
'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, SAMPLE_TWEETS tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_GEOMETRY(tw.geometry, 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

3-14

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_UTIL.FROM_GEOJSON(tw.geometry, '',
8307), 0.5, 'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, SAMPLE_TWEETS tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_UTIL.FROM_GEOJSON(tw.geometry, '', 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data
SQL

You can create Oracle external tables using Hive tables with Big Data SQL. The
spatial information can be in a well known format or a custom format.

A Hive table used to create an Oracle external table must be created as described in
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for
Hadoop.

Create an Oracle external table that can be created using the Hive table. For example:

CREATE TABLE SAMPLE_TWEETS (id VARCHAR2(4000), geometry VARCHAR2(4000),
followers_count VARCHAR2(4000), friends_count VARCHAR2(4000), location
VARCHAR2(4000), user_id VARCHAR2(4000)) ORGANIZATION EXTERNAL
(TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (
com.oracle.bigdata.cluster=cluster
com.oracle.bigdata.tablename=default.CUST_TWEETS_HIVE_TAB)
) PARALLEL 2 REJECT LIMIT UNLIMITED;

The table SAMPLE_TWEETS is now ready to query. It can be queried like any other
table in the database. For example:

select count(*) from SAMPLE_TWEETS;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_GEOMETRY(tw.geometry, 8307), 0.5,
'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, SAMPLE_TWEETS tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_GEOMETRY(tw.geometry, 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

select sdo_geom.SDO_DISTANCE(ci.geometry, SDO_UTIL.FROM_GEOJSON(tw.geometry, '',
8307), 0.5, 'UNIT=YARD'), ci.name, tw.user_id
from CINEMA ci, SAMPLE_TWEETS tw where SDO_WITHIN_DISTANCE(ci.geometry,
SDO_UTIL.FROM_GEOJSON(tw.geometry, '', 8307), 'DISTANCE=200 UNIT=MILE') = 'TRUE';

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

3-15

4
Configuring Property Graph Support

This chapter explains how to configure the support for property graphs in a Big Data
environment.
It assumes that you have already performed the installation on a Big Data Appliance
(see Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance),
an Apache Hadoop system (see Installing Property Graph Support on a CDH Cluster
or Other Hardware), or an Oracle NoSQL Database.

You might be able to improve the performance of property graph support by altering
the database and Java configuration settings. The suggestions provided are
guidelines, which you should follow only after carefully and thoroughly evaluating your
system.

• Tuning Apache HBase for Use with Property Graphs
Modifications to the default Apache HBase and Java Virtual Machine
configurations can improve performance.

• Tuning Oracle NoSQL Database for Use with Property Graphs
To obtain the best performance from Oracle NoSQL Database, do the following.

4.1 Tuning Apache HBase for Use with Property Graphs
Modifications to the default Apache HBase and Java Virtual Machine configurations
can improve performance.

• Modifying the Apache HBase Configuration

• Modifying the Java Memory Settings

4.1.1 Modifying the Apache HBase Configuration
To modify the Apache HBase configuration, follow the steps in this section for your
CDH release. (Note that specific steps might change from one CDH release to the
next.)

For CDH 5.2.x, CDH 5.3.x, and CDH 5.4.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. In the Category panel on the left, expand Service-Wide, and then choose
Advanced.

5. Edit the value of HBase Service Advanced Configuration Snippet (Safety Valve)
for hbase-site.xml as follows:

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>32</value>
</property>

4-1

<property>
 <name>hbase.hregion.max.filesize</name>
 <value>1610612736</value>
</property>
<property>
 <name>hbase.hregion.memstore.block.multiplier</name>
 <value>4</value>
</property>
<property>
 <name>hbase.hregion.memstore.flush.size</name>
 <value>134217728</value>
</property>
<property>
 <name>hbase.hstore.blockingStoreFiles</name>
 <value>200</value></property>
<property>
 <name>hbase.hstore.flusher.count</name>
 <value>1</value>
</property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

For CDH 5.4.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click HBase (Service-wide), scroll to the bottom of the page, and select Display
All Entries (not Display 25 Entries).

6. On this page, locate HBase Service Advanced Configuration Snippet (Safety
Valve) for hbase-site.xml, and enter the following value for the <property>
element:

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>32</value>
</property>
<property>
 <name>hbase.hregion.max.filesize</name>
 <value>1610612736</value>
</property>
<property>
 <name>hbase.hregion.memstore.block.multiplier</name>
 <value>4</value>
</property>
<property>
 <name>hbase.hregion.memstore.flush.size</name>
 <value>134217728</value>
</property>
<property>
 <name>hbase.hstore.blockingStoreFiles</name>
 <value>200</value></property>

Chapter 4
Tuning Apache HBase for Use with Property Graphs

4-2

<property>
 <name>hbase.hstore.flusher.count</name>
 <value>1</value>
</property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.

7. Click Save Changes.

8. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

4.1.2 Modifying the Java Memory Settings
To modify the Java memory settings, follow the steps in this section for your CDH
release. (Note that specific steps might change from one CDH release to the next.)

For CDH 5.2.x and CDH 5.3.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. For RegionServer Group (default and others), click Advanced, and use the
following for Java Configuration Options for HBase RegionServer:

-Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSInitiatingOccupancyOnly

5. Click Resource Management, and enter an appropriate value (for example, 18G)
for Java Heap Size of HBase RegionServer.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

For CDH 5.4.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click RegionServer, scroll to the bottom of the page, and select Display All
Entries (not Display 25 Entries).

6. On this page, for Java Configuration Options for HBase RegionServer, enter
the following value:

-Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSInitiatingOccupancyOnly

7. For Java Heap Size of HBase RegionServer in Bytes, enter an appropriate
value (for example, 18G).

8. Click Save Changes.

9. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

Chapter 4
Tuning Apache HBase for Use with Property Graphs

4-3

See Also:

For detailed information about Java garbage collection, see:

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/

For descriptions of all settings, see the Java Tools Reference:

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html

4.2 Tuning Oracle NoSQL Database for Use with Property
Graphs

To obtain the best performance from Oracle NoSQL Database, do the following.

• Ensure that the replication groups (shards) are balanced.

• Adjust the user process resource limit setting (ulimit). For example:

ulimit -u 131072

• Set the heap size of the Java Virtual Machines (JVMs) on the replication nodes to
enable the B-tree indexes to fit in memory.

To set the heap size, use either the -memory_mb option of the makebookconfig
command or the memory_mb parameter for the storage node.

Oracle NoSQL Database uses 85% of memory_mb as the heap size for processes
running on the storage node. If the storage node hosts multiple replication nodes,
then the heap is divided equally among them. Each replication node uses a cache
that is 70% of the heap.

For example, if you set memory_mb to 3000 MB on a storage node that hosts two
replication nodes, then each replication node has the following:

– 1275 MB heap, calculated as (3000 MB * .85)/2

– 892 MB cache, calculated as 1275 MB * .70

See Also:

Oracle NoSQL Database FAQ at

http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-

faq-518364.html#HowdoesNoSQLDBbudgetmemory

Chapter 4
Tuning Oracle NoSQL Database for Use with Property Graphs

4-4

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory

5
Using Property Graphs in a Big Data
Environment

This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in a Big Data environment.

• About Property Graphs
Property graphs allow an easy association of properties (key-value pairs) with
graph vertices and edges, and they enable analytical operations based on
relationships across a massive set of data.

• About Property Graph Data Formats
The following graph formats are supported.

• Getting Started with Property Graphs
To get started with property graphs, follow these main steps.

• Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property
graph and objects in it.

• Managing Text Indexing for Property Graph Data
Indexes in Oracle Big Data Spatial and Graph allow fast retrieval of elements by a
particular key/value or key/text pair. These indexes are created based on an
element type (vertices or edges), a set of keys (and values), and an index type.

• Querying Property Graph Data Using PGQL
Oracle Big Data Spatial and Graph supports a rich set of graph pattern matching
capabilities.

• Using Apache Spark with Property Graph Data
Apache Spark lets you process large amounts of data efficiently, and it comes with
a set of libraries for processing data: SQL, MLlib, Spark Streaming,
and DataFrames, Apache Spark can read data from different sources, such as
HDFS, Oracle NoSQL Database, and Apache HBase.

• Support for Secure Oracle NoSQL Database
Oracle Big Data Spatial and Graph property graph support works with both secure
and non-secure Oracle NoSQL Database installations. This topic provides
information about how to use property graph functions with a secure Oracle
NoSQL Database setup.

• Implementing Security on Graphs Stored in Apache HBase
Kerberos authentication is recommended for Apache HBase to secure property
graphs in Oracle Big Data Spatial and Graph.

• Using the Groovy Shell with Property Graph Data
The Oracle Big Data Spatial and Graph property graph support includes a built-in
Groovy shell (based on the original Gremlin Groovy shell script). With this
command-line shell interface, you can explore the Java APIs.

• REST Support for Property Graph Data
A set of RESTful APIs exposes the Data Access Layer Java APIs through HTTP/
REST protocols.

5-1

• Exploring the Sample Programs
The software installation includes a directory of example programs, which you can
use to learn about creating and manipulating property graphs.

• Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

• Example Python User Interface
The Oracle Big Data Spatial and Graph support for property graphs includes an
example Python user interface. It can invoke a set of example Python scripts and
modules that perform a variety of property graph operations.

• Example iPython Notebooks User Interface
Support is provided for the following types of iPython Notebook shell interface to
major property graph functions.

5.1 About Property Graphs
Property graphs allow an easy association of properties (key-value pairs) with graph
vertices and edges, and they enable analytical operations based on relationships
across a massive set of data.

• What Are Property Graphs?

• What Is Big Data Support for Property Graphs?

5.1.1 What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

• A set of outgoing edges

• A set of incoming edges

• A collection of properties

Each edge has a unique identifier and can have:

• An outgoing vertex

• An incoming vertex

• A text label that describes the relationship between the two vertices

• A collection of properties

Figure 5-1 illustrates a very simple property graph with two vertices and one edge. The
two vertices have identifiers 1 and 2. Both vertices have properties name and age. The
edge is from the outgoing vertex 1 to the incoming vertex 2. The edge has a text label
knows and a property type identifying the type of relationship between vertices 1 and 2.

Chapter 5
About Property Graphs

5-2

Figure 5-1 Simple Property Graph Example

Standards are not available for Big Data Spatial and Graph property graph data model,
but it is similar to the W3C standards-based Resource Description Framework (RDF)
graph data model. The property graph data model is simpler and much less precise
than RDF. These differences make it a good candidate for use cases such as these:

• Identifying influencers in a social network

• Predicting trends and customer behavior

• Discovering relationships based on pattern matching

• Identifying clusters to customize campaigns

Note:

The property graph data model that Oracle supports at the database side
does not allow labels for vertices. However, you can treat the value of a
designated vertex property as one or more labels, as explained in Specifying
Labels for Vertices.

5.1.2 What Is Big Data Support for Property Graphs?
Property graphs are supported for Big Data in Hadoop and in Oracle NoSQL
Database. This support consists of a data access layer and an analytics layer. A
choice of databases in Hadoop provides scalable and persistent storage management.

Figure 5-2 provides an overview of the Oracle property graph architecture.

Chapter 5
About Property Graphs

5-3

Figure 5-2 Oracle Property Graph Architecture

• In-Memory Analyst

• Data Access Layer

• Storage Management

• RESTful Web Services

5.1.2.1 In-Memory Analyst
The in-memory analyst layer enables you to analyze property graphs using parallel in-
memory execution. It provides over 35 analytic functions, including path calculation,
ranking, community detection, and recommendations.

5.1.2.2 Data Access Layer
The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges
using key-value pairs, create text indexes, and perform other manipulations. The Java
APIs include an implementation of TinkerPop Blueprints graph interfaces for the
property graph data model. The APIs also integrate with the Apache Lucene and
Apache SolrCloud, which are widely-adopted open-source text indexing and search
engines.

5.1.2.3 Storage Management
You can store your property graphs in either Oracle NoSQL Database or Apache
HBase. Both databases are mature and scalable, and support efficient navigation,

Chapter 5
About Property Graphs

5-4

querying, and analytics. Both use tables to model the vertices and edges of property
graphs.

5.1.2.4 RESTful Web Services
You can also use RESTful web services to access the graph data and perform graph
operations. For example, you can use the Linux curl command to obtain vertices and
edges, and to add and remove graph elements.

5.2 About Property Graph Data Formats
The following graph formats are supported.

• GraphML Data Format

• GraphSON Data Format

• GML Data Format

• Oracle Flat File Format

5.2.1 GraphML Data Format
The GraphML file format uses XML to describe graphs. Example 5-1 shows a
GraphML description of the property graph shown in Figure 5-1.

See Also:

"The GraphML File Format" at

http://graphml.graphdrawing.org/

Example 5-1 GraphML Description of a Simple Property Graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <key id="name" for="node" attr.name="name" attr.type="string"/>
 <key id="age" for="node" attr.name="age" attr.type="int"/>
 <key id="type" for="edge" attr.name="type" attr.type="string"/>
 <graph id="PG" edgedefault="directed">
 <node id="1">
 <data key="name">Alice</data>
 <data key="age">31</data>
 </node>
 <node id="2">
 <data key="name">Bob</data>
 <data key="age">27</data>
 </node>
 <edge id="3" source="1" target="2" label="knows">
 <data key="type">friends</data>
 </edge>
 </graph>
</graphml>

Chapter 5
About Property Graph Data Formats

5-5

http://graphml.graphdrawing.org/

5.2.2 GraphSON Data Format
The GraphSON file format is based on JavaScript Object Notation (JSON) for
describing graphs. Example 5-2 shows a GraphSON description of the property graph
shown in Figure 5-1.

See Also:

"GraphSON Reader and Writer Library" at

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-

Library

Example 5-2 GraphSON Description of a Simple Property Graph

{
 "graph": {
 "mode":"NORMAL",
 "vertices": [
 {
 "name": "Alice",
 "age": 31,
 "_id": "1",
 "_type": "vertex"
 },
 {
 "name": "Bob",
 "age": 27,
 "_id": "2",
 "_type": "vertex"
 }
],
 "edges": [
 {
 "type": "friends",
 "_id": "3",
 "_type": "edge",
 "_outV": "1",
 "_inV": "2",
 "_label": "knows"
 }
]
 }
}

5.2.3 GML Data Format
The Graph Modeling Language (GML) file format uses ASCII to describe graphs.
Example 5-3 shows a GML description of the property graph shown in Figure 5-1.

Chapter 5
About Property Graph Data Formats

5-6

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

See Also:

"GML: A Portable Graph File Format" by Michael Himsolt at

http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/

projekte/gml/gml-technical-report.pdf

Example 5-3 GML Description of a Simple Property Graph

graph [
 comment "Simple property graph"
 directed 1
 IsPlanar 1
 node [
 id 1
 label "1"
 name "Alice"
 age 31
]
 node [
 id 2
 label "2"
 name "Bob"
 age 27
]
 edge [
 source 1
 target 2
 label "knows"
 type "friends"
]
]

5.2.4 Oracle Flat File Format
The Oracle flat file format exclusively describes property graphs. It is more concise
and provides better data type support than the other file formats. The Oracle flat file
format uses two files for a graph description, one for the vertices and one for edges.
Commas separate the fields of the records.

Example 5-4 shows the Oracle flat files that describe the property graph shown in
Figure 5-1.

See Also:

"Oracle Flat File Format Definition"

Example 5-4 Oracle Flat File Description of a Simple Property Graph

Vertex file:

1,name,1,Alice,,
1,age,2,,31,

Chapter 5
About Property Graph Data Formats

5-7

http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

2,name,1,Bob,,
2,age,2,,27,

Edge file:

1,1,2,knows,type,1,friends,,

5.3 Getting Started with Property Graphs
To get started with property graphs, follow these main steps.

1. The first time you use property graphs, ensure that the software is installed and
operational.

2. Create your Java programs, using the classes provided in the Java API.

See "Using Java APIs for Property Grsph Data".

5.4 Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

• Overview of the Java APIs

• Parallel Loading of Graph Data
A Java API is provided for performing parallel loading of graph data.

• Opening and Closing a Property Graph Instance

• Creating Vertices

• Creating Edges

• Deleting Vertices and Edges

• Reading a Graph from a Database into an Embedded In-Memory Analyst

• Specifying Labels for Vertices

• Building an In-Memory Graph

• Dropping a Property Graph

5.4.1 Overview of the Java APIs
The Java APIs that you can use for property graphs include the following.

• Oracle Big Data Spatial and Graph Java APIs

• TinkerPop Blueprints Java APIs

• Apache Hadoop Java APIs

• Oracle NoSQL Database Java APIs

• Apache HBase Java APIs

5.4.1.1 Oracle Big Data Spatial and Graph Java APIs
Oracle Big Data Spatial and Graph property graph support provides database-specific
APIs for Apache HBase and Oracle NoSQL Database. The data access layer API

Chapter 5
Getting Started with Property Graphs

5-8

(oracle.pg.*) implements TinkerPop Blueprints APIs, text search, and indexing for
property graphs stored in Oracle NoSQL Database and Apache HBase.

To use the Oracle Big Data Spatial and Graph API, import the classes into your Java
program:

import oracle.pg.nosql.*; // or oracle.pg.hbase.*
import oracle.pgx.config.*;
import oracle.pgx.common.types.*;

Also include TinkerPop Blueprints Java APIs.

See Also:

Oracle Big Data Spatial and Graph Java API Reference

5.4.1.2 TinkerPop Blueprints Java APIs
TinkerPop Blueprints supports the property graph data model. The API provides
utilities for manipulating graphs, which you use primarily through the Big Data Spatial
and Graph data access layer Java APIs.

To use the Blueprints APIs, import the classes into your Java program:

import com.tinkerpop.blueprints.Vertex;
import com.tinkerpop.blueprints.Edge;

See Also:

"Blueprints: A Property Graph Model Interface API" at

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html

5.4.1.3 Apache Hadoop Java APIs
The Apache Hadoop Java APIs enable you to write your Java code as a MapReduce
program that runs within the Hadoop distributed framework.

To use the Hadoop Java APIs, import the classes into your Java program. For
example:

import org.apache.hadoop.conf.Configuration;

See Also:

"Apache Hadoop Main 2.5.0-cdh5.3.2 API" at

http://archive.cloudera.com/cdh5/cdh/5/hadoop/api/

Chapter 5
Using Java APIs for Property Graph Data

5-9

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html
http://archive.cloudera.com/cdh5/cdh/5/hadoop/api/

5.4.1.4 Oracle NoSQL Database Java APIs
The Oracle NoSQL Database APIs enable you to create and populate a key-value
(KV) store, and provide interfaces to Hadoop, Hive, and Oracle NoSQL Database.

To use Oracle NoSQL Database as the graph data store, import the classes into your
Java program. For example:

import oracle.kv.*;
import oracle.kv.table.TableOperation;

See Also:

"Oracle NoSQL Database Java API Reference" at

http://docs.oracle.com/cd/NOSQL/html/javadoc/

5.4.1.5 Apache HBase Java APIs
The Apache HBase APIs enable you to create and manipulate key-value pairs.

To use HBase as the graph data store, import the classes into your Java program. For
example:

import org.apache.hadoop.hbase.*;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;

See Also:

"HBase 0.98.6-cdh5.3.2 API" at

http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-

summary.html

5.4.2 Parallel Loading of Graph Data
A Java API is provided for performing parallel loading of graph data.

Given a set of vertex files (or input streams) and a set of edge files (or input streams),
they can be split into multiple chunks and loaded into database in parallel. The number
of chunks is determined by the degree of parallelism (DOP) specified by the user.

Parallelism is achieved with Splitter threads that split vertex and edge flat files into
multiple chunks and Loader threads that load each chunk into the database using
separate database connections. Java pipes are used to connect Splitter and Loader
threads -- Splitter: PipedOutputStream and Loader: PipedInputStream.

Chapter 5
Using Java APIs for Property Graph Data

5-10

http://docs.oracle.com/cd/NOSQL/html/javadoc/
http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html
http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html

The simplest usage of data loading API is specifying a property graph instance, one
vertex file, one edge file, and a DOP.

The following example of the load process loads graph data stored in a vertices file
and an edges file of the optimized Oracle flat file format, and executes the load with 48
degrees of parallelism.

opgdl = OraclePropertyGraphDataLoader.getInstance();
vfile = "../../data/connections.opv";
efile = "../../data/connections.ope";
opgdl.loadData(opg, vfile, efile, 48);

• Parallel Data Loading Using Partitions

• Parallel Data Loading Using Fine-Tuning

• Parallel Data Loading Using Multiple Files

• Parallel Retrieval of Graph Data

• Using an Element Filter Callback for Subgraph Extraction

• Using Optimization Flags on Reads over Property Graph Data

• Adding and Removing Attributes of a Property Graph Subgraph

• Getting Property Graph Metadata

5.4.2.1 Parallel Data Loading Using Partitions
The data loading API allows loading the data into database using multiple partitions.
This API requires the property graph, the vertex file, the edge file, the DOP, the total
number of partitions, and the partition offset (from 0 to total number of partitions - 1).
For example, to load the data using two partitions, the partition offsets should be 0 and
1. That is, there should be two data loading API calls to fully load the graph, and the
only difference between the two API calls is the partition offset (0 and 1).

The following code fragment loads the graph data using 4 partitions. Each call to the
data loader can be processed using a separate Java client, on a single system or from
multiple systems.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

int totalPartitions = 4;
int dop= 32; // degree of parallelism for each client.

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
SimpleLogBasedDataLoaderListenerImpl dll =
SimpleLogBasedDataLoaderListenerImpl.getInstance(100 /* frequency */,
 true /* Continue on error */);

// Run the data loading using 4 partitions (Each call can be run from a
// separate Java Client)

// Partition 1
OraclePropertyGraphDataLoader opgdlP1 = OraclePropertyGraphDataLoader.getInstance();
opgdlP1.loadData(opg, szOPVFile, szOPEFile, dop,
 4 /* Total number of partitions, default 1 */,
 0 /* Partition to load (from 0 to totalPartitions - 1, default 0 */,
 dll);

Chapter 5
Using Java APIs for Property Graph Data

5-11

// Partition 2
OraclePropertyGraphDataLoader opgdlP2 = OraclePropertyGraphDataLoader.getInstance();
opgdlP2.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 1 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

// Partition 3
OraclePropertyGraphDataLoader opgdlP3 = OraclePropertyGraphDataLoader.getInstance();
opgdlP3.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 2 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

// Partition 4
OraclePropertyGraphDataLoader opgdlP4 = OraclePropertyGraphDataLoader.getInstance();
opgdlP4.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 3 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

5.4.2.2 Parallel Data Loading Using Fine-Tuning
Data loading APIs also support fine-tuning those lines in the source vertex and edges
files that are to be loaded. You can specify the vertex (or edge) offset line number and
vertex (or edge) maximum line number. Data will be loaded from the offset line number
until the maximum line number. If the maximum line number is -1, the loading process
will scan the data until reaching the end of file.

The following code fragment loads the graph data using fine-tuning.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

int totalPartitions = 4;
int dop= 32; // degree of parallelism for each client.

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
SimpleLogBasedDataLoaderListenerImpl dll =
SimpleLogBasedDataLoaderListenerImpl.getInstance(100 /* frequency */,
 true /* Continue on error */);

// Run the data loading using fine tuning
long lVertexOffsetlines = 0;
long lEdgeOffsetlines = 0;
long lVertexMaxlines = 100;
long lEdgeMaxlines = 100;
int totalPartitions = 1;
int idPartition = 0;

OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to start loading
 from partition, default 0*/,
 lEdgeOffsetlines /* offset of lines to start loading
 from partition, default 0*/,
 lVertexMaxlines /* maximum number of lines to start loading
 from partition, default -1 (all lines in partition)*/,
 lEdgeMaxlines /* maximun number of lines to start loading
 from partition, default -1 (all lines in partition)*/,
 dop,

Chapter 5
Using Java APIs for Property Graph Data

5-12

 totalPartitions /* Total number of partitions, default 1 */,
 idPartition /* Partition to load (from 0 to totalPartitions - 1,
 default 0 */,
 dll);

5.4.2.3 Parallel Data Loading Using Multiple Files
Oracle Big Data Spatial and Graph also support loading multiple vertex files and
multiple edges files into database. The given multiple vertex files will be split into DOP
chunks and loaded into database in parallel using DOP threads. Similarly, the multiple
edge files will also be split and loaded in parallel.

The following code fragment loads multiple vertex fan and edge files using the parallel
data loading APIs. In the example, two string arrays szOPVFiles and szOPEFiles are
used to hold the input files; Although only one vertex file and one edge file is used in
this example, you can supply multiple vertex files and multiple edge files in these two
arrays.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String[] szOPVFiles = new String[] {"../../data/connections.opv"};
String[] szOPEFiles = new String[] {"../../data/connections.ope"};

// Clear existing vertices/edges in the property graph
opg.clearRepository();
opg.setQueueSize(100); // 100 elements

// This object will handle parallel data loading over the property graph
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();

opgdl.loadData(opg, szOPVFiles, szOPEFiles, dop);

System.out.println("Total vertices: " + opg.countVertices());
System.out.println("Total edges: " + opg.countEdges());

5.4.2.4 Parallel Retrieval of Graph Data
The parallel property graph query provides a simple Java API to perform parallel scans
on vertices (or edges). Parallel retrieval is an optimized solution taking advantage of
the distribution of the data among splits with the back-end database, so each split is
queried using separate database connections.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific split. The subset of shards queried will be separated by the
given start split ID and the size of the connections array provided. This way, the subset
will consider splits in the range of [start, start - 1 + size of connections array]. Note that
an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the vertex table
with N splits.

The following code loads a property graph using Apache HBase, opens an array of
connections, and executes a parallel query to retrieve all vertices and edges using the
opened connections. The number of calls to the getVerticesPartitioned
(getEdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

Chapter 5
Using Java APIs for Property Graph Data

5-13

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create connections used in parallel query
HConnection[] hConns= new HConnection[dop];
for (int i = 0; i < dop; i++) {
Configuration conf_new =
HBaseConfiguration.create(opg.getConfiguration());
hConns[i] = HConnectionManager.createConnection(conf_new);
}

long lCountV = 0;
// Iterate over all the vertices’ splits to count all the vertices
for (int split = 0; split < opg.getVertexTableSplits();
 split += dop) {
Iterable<Vertex>[] iterables
 = opg.getVerticesPartitioned(hConns /* Connection array */,
 true /* skip store to cache */,
 split /* starting split */);
lCountV += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCountV);

long lCountE = 0;
// Iterate over all the edges’ splits to count all the edges
for (int split = 0; split < opg.getEdgeTableSplits();
 split += dop) {
Iterable<Edge>[] iterables
 = opg.getEdgesPartitioned(hConns /* Connection array */,
 true /* skip store to cache */,
 split /* starting split */);
lCountE += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all edges
System.out.println("Edges found using parallel query: " + lCountE);

// Close the connections to the database after completed
for (int idx = 0; idx < hConns.length; idx++) {
hConns[idx].close();
}

To load a property graph using Oracle NoSQL Database connections instead of
Apache HBase, you should use the following code:

// Create connections used in parallel query
hConns = new KVStoreConfig[dop];
kvsc = opg.getKVStoreConfig();

Chapter 5
Using Java APIs for Property Graph Data

5-14

for (i = 0; i < dop; i++) {hConns[i] = kvsc.clone(); }
opg.setNumSplits(dop);

5.4.2.5 Using an Element Filter Callback for Subgraph Extraction
Oracle Big Data Spatial and Graph provides support for an easy subgraph extraction
using user-defined element filter callbacks. An element filter callback defines a set of
conditions that a vertex (or an edge) must meet in order to keep it in the subgraph.
Users can define their own element filtering by implementing the VertexFilterCallback
and EdgeFilterCallback API interfaces.

The following code fragment implements a VertexFilterCallback that validates if a
vertex does not have a political role and its origin is the United States.

/**
* VertexFilterCallback to retrieve a vertex from the United States
* that does not have a political role
*/
private static class NonPoliticianFilterCallback
implements VertexFilterCallback
{
@Override
public boolean keepVertex(OracleVertexBase vertex)
{
String country = vertex.getProperty("country");
String role = vertex.getProperty("role");

if (country != null && country.equals("United States")) {
if (role == null || !role.toLowerCase().contains("political")) {
return true;
}
}

return false;
}

public static NonPoliticianFilterCallback getInstance()
{
return new NonPoliticianFilterCallback();
}
}

The following code fragment implements an EdgeFilterCallback that uses the
VertexFilterCallback to keep only edges connected to the given input vertex, and
whose connections are not politicians and come from the United States.

/**
 * EdgeFilterCallback to retrieve all edges connected to an input
 * vertex with "collaborates" label, and whose vertex is from the
 * United States with a role different than political
*/
private static class CollaboratorsFilterCallback
implements EdgeFilterCallback
{
private VertexFilterCallback m_vfc;
private Vertex m_startV;

public CollaboratorsFilterCallback(VertexFilterCallback vfc,
 Vertex v)
{

Chapter 5
Using Java APIs for Property Graph Data

5-15

m_vfc = vfc;
m_startV = v;
}

@Override
public boolean keepEdge(OracleEdgeBase edge)
{
if ("collaborates".equals(edge.getLabel())) {
if (edge.getVertex(Direction.IN).equals(m_startV) &&
m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.OUT))) {
return true;
}
else if (edge.getVertex(Direction.OUT).equals(m_startV) &&
 m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.IN))) {
return true;
}
}

return false;
}

public static CollaboratorsFilterCallback
getInstance(VertexFilterCallback vfc, Vertex v)
{
return new CollaboratorsFilterCallback(vfc, v);
}

}

Using the filter callbacks previously defined, the following code fragment loads a
property graph, creates an instance of the filter callbacks and later gets all of Barack
Obama’s collaborators who are not politicians and come from the United States.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// VertexFilterCallback to retrieve all people from the United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Barack Obama
Vertex v = opg.getVertices("name", "Barack Obama").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Barack Obama
// from the United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getInstance(npvfc, v);

Iterable<<Edge> obamaCollabs = opg.getEdges((String[])null /* Match any
of the properties */,

Chapter 5
Using Java APIs for Property Graph Data

5-16

cefc /* Match the
EdgeFilterCallback */
);
Iterator<<Edge> iter = obamaCollabs.iterator();

System.out.println("\n\n--------Collaborators of Barack Obama from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if obama is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the filter callbacks associated with the property graph using the
methods opg.setVertexFilterCallback(vfc) and opg.setEdgeFilterCallback(efc). If
there is no filter callback set, then all the vertices (or edges) and edges will be
retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

// VertexFilterCallback to retrieve all people from the United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Barack Obama
Vertex v = opg.getVertices("name", "Barack Obama").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Barack Obama
// from the United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getInstance(npvfc, v);

opg.setEdgeFilterCallback(cefc);

Iterable<Edge> obamaCollabs = opg.getEdges();
Iterator<Edge> iter = obamaCollabs.iterator();

System.out.println("\n\n--------Collaborators of Barack Obama from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if obama is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex

Chapter 5
Using Java APIs for Property Graph Data

5-17

}

countV++;
}

5.4.2.6 Using Optimization Flags on Reads over Property Graph Data
Optimization flags can improve graph iteration performance. Optimization flags allow
processing vertices or edges as objects with no or minimal information, such as ID,
label, and incoming/outgoing vertices. This way, the time required to process each
vertex or edge during iteration is reduced.

The following table shows the optimization flags available when processing vertices or
edges in a property graph.

Table 5-1 Optimization Flags for Processing Vertices or Edges in a Property
Graph

Optimization Flag Description

DO_NOT_CREATE_O
BJECT

Use a predefined constant object when processing vertices or edges.

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_
ID

Construct edge objects with ID and label only when processing edges.

JUST_LABEL_VERTE
X_EDGE_ID

Construct edge objects with ID, label, and in/out vertex IDs only when
processing edges

JUST_VERTEX_EDG
E_ID

Construct edge objects with just ID and in/out vertex IDs when
processing edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the IDs
from the vertices and edges in the property graph. The objects retrieved by reading all
vertices and edges will include only the IDs and no Key/Value properties or additional
information.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

// Print all vertices

Chapter 5
Using Java APIs for Property Graph Data

5-18

Iterator<Vertex> vertices =
opg.getVertices((String[])null /* Match any of the
properties */,
null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges =
opg.getEdges((String[])null /* Match any of the properties */,
null /* Match the EdgeFilterCallback */,
optFlagEdge /* optimization flag */
).iterator();

System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the optimization flag associated with the property graph using the
method opg.setDefaultVertexOptFlag(optFlagVertex) and
opg.setDefaultEdgeOptFlag(optFlagEdge). If the optimization flags for processing
vertices and edges are not defined, then all the information about the vertices and
edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

opg.setDefaultVertexOptFlag(optFlagVertex);
opg.setDefaultEdgeOptFlag(optFlagEdge);

Iterator<Vertex> vertices = opg.getVertices().iterator();
System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}

Chapter 5
Using Java APIs for Property Graph Data

5-19

System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges = opg.getEdges().iterator();
System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph
Oracle Big Data Spatial and Graph supports updating attributes (key/value pairs) to a
subgraph of vertices and/or edges by using a user-customized operation callback. An
operation callback defines a set of conditions that a vertex (or an edge) must meet in
order to update it (either add or remove the given attribute and value).

You can define your own attribute operations by implementing the VertexOpCallback
and EdgeOpCallback API interfaces. You must override the needOp method, which
defines the conditions to be satisfied by the vertices (or edges) to be included in the
update operation, as well as the getAttributeKeyName and getAttributeKeyValue
methods, which return the key name and value, respectively, to be used when
updating the elements.

The following code fragment implements a VertexOpCallback that operates over the
obamaCollaborator attribute associated only with Barack Obama collaborators. The
value of this property is specified based on the role of the collaborators.

private static class CollaboratorsVertexOpCallback
implements VertexOpCallback
{
private OracleVertexBase m_obama;
private List<Vertex> m_obamaCollaborators;

public CollaboratorsVertexOpCallback(OraclePropertyGraph opg)
{
// Get a list of Barack Obama'sCollaborators
m_obama = (OracleVertexBase) opg.getVertices("name",
 "Barack Obama")
.iterator().next();

Iterable<Vertex> iter = m_obama.getVertices(Direction.BOTH,
"collaborates");
m_obamaCollaborators = OraclePropertyGraphUtils.listify(iter);
}

public static CollaboratorsVertexOpCallback
getInstance(OraclePropertyGraph opg)
{
return new CollaboratorsVertexOpCallback(opg);
}

/**
 * Add attribute if and only if the vertex is a collaborator of Barack
 * Obama
*/
@Override

Chapter 5
Using Java APIs for Property Graph Data

5-20

public boolean needOp(OracleVertexBase v)
{
return m_obamaCollaborators != null &&
 m_obamaCollaborators.contains(v);
}

@Override
public String getAttributeKeyName(OracleVertexBase v)
{
return "obamaCollaborator";
}

/**
 * Define the property's value based on the vertex role
 */
@Override
public Object getAttributeKeyValue(OracleVertexBase v)
{
String role = v.getProperty("role");
role = role.toLowerCase();
if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philant")) {
return "philanthropy";
}
return " ";
}
}

The following code fragment implements an EdgeOpCallback that operates over the
obamaFeud attribute associated only with Barack Obama feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCallback
implements EdgeOpCallback
{
private OracleVertexBase m_obama;
private List<Edge> m_obamaFeuds;

public FeudsEdgeOpCallback(OraclePropertyGraph opg)
{
// Get a list of Barack Obama's feuds
m_obama = (OracleVertexBase) opg.getVertices("name",
 "Barack Obama")
.iterator().next();

Chapter 5
Using Java APIs for Property Graph Data

5-21

Iterable<Edge> iter = m_obama.getEdges(Direction.BOTH,
"feuds");
m_obamaFeuds = OraclePropertyGraphUtils.listify(iter);
}

public static FeudsEdgeOpCallback getInstance(OraclePropertyGraph opg)
{
return new FeudsEdgeOpCallback(opg);
}

/**
 * Add attribute if and only if the edge is in the list of Barack Obama's
 * feuds
*/
@Override
public boolean needOp(OracleEdgeBase e)
{
return m_obamaFeuds != null && m_obamaFeuds.contains(e);
}

@Override
public String getAttributeKeyName(OracleEdgeBase e)
{
return "obamaFeud";
}

/**
 * Define the property's value based on the in/out vertex role
 */
@Override
public Object getAttributeKeyValue(OracleEdgeBase e)
{
OracleVertexBase v = (OracleVertexBase) e.getVertex(Direction.IN);
if (m_obama.equals(v)) {
v = (OracleVertexBase) e.getVertex(Direction.OUT);
}
String role = v.getProperty("role");
role = role.toLowerCase();

if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";

Chapter 5
Using Java APIs for Property Graph Data

5-22

}
}

Using the operations callbacks defined previously, the following code fragment loads a
property graph, creates an instance of the operation callbacks, and later adds the
attributes into the pertinent vertices and edges using the addAttributeToAllVertices
and addAttributeToAllEdges methods in OraclePropertyGraph.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create the vertex operation callback
CollaboratorsVertexOpCallback cvoc = CollaboratorsVertexOpCallback.getInstance(opg);

// Add attribute to all people collaborating with Obama based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

// Look up for all collaborators of Obama
// The function getVerticesAsString prints the vertices in the given iterable
Iterable<Vertex> collaborators = opg.getVertices("obamaCollaborator", "political");
System.out.println("Political collaborators of Barack Obama " +
getVerticesAsString(collaborators));

collaborators = opg.getVertices("obamaCollaborator", "business");
System.out.println("Business collaborators of Barack Obama " +
getVerticesAsString(collaborators));

// Add an attribute to all people having a feud with Barack Obama to set
// the type of relation they have
FeudsEdgeOpCallback feoc = FeudsEdgeOpCallback.getInstance(opg);
opg.addAttributeToAllEdges(feoc, true /** Skip store to Cache */, dop);

// Look up for all feuds of Obama
// The function getEdgesAsString prints the edges in the given iterable
Iterable<Edge> feuds = opg.getEdges("obamaFeud", "political");
System.out.println("\n\nPolitical feuds of Barack Obama " + getEdgesAsString(feuds));

feuds = opg.getEdges("obamaFeud", "business");
System.out.println("Business feuds of Barack Obama " +
getEdgesAsString(feuds));

The following code fragment defines an implementation of VertexOpCallback that can
be used to remove vertices having value philanthropy for attribute obamaCollaborator,
then call the API removeAttributeFromAllVertices; It also defines an implementation of
EdgeOpCallback that can be used to remove edges having value business for attribute
obamaFeud, then call the API removeAttributeFromAllEdges.

System.out.println("\n\nRemove 'obamaCollaborator' property from all the" +
 "philanthropy collaborators");
PhilanthropyCollaboratorsVertexOpCallback pvoc =
PhilanthropyCollaboratorsVertexOpCallback.getInstance();

Chapter 5
Using Java APIs for Property Graph Data

5-23

opg.removeAttributeFromAllVertices(pvoc);

System.out.println("\n\nRemove 'obamaFeud' property from all the" + "business
feuds");
BusinessFeudsEdgeOpCallback beoc = BusinessFeudsEdgeOpCallback.getInstance();

opg.removeAttributeFromAllEdges(beoc);

/**
 * Implementation of a EdgeOpCallback to remove the "obamaCollaborators"
 * property from all people collaborating with Barack Obama that have a
 * philanthropy role
 */
private static class PhilanthropyCollaboratorsVertexOpCallback implements
VertexOpCallback
{
 public static PhilanthropyCollaboratorsVertexOpCallback getInstance()
 {
 return new PhilanthropyCollaboratorsVertexOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for
 * obamaCollaborator is Philanthropy
 */
 @Override
 public boolean needOp(OracleVertexBase v)
 {
 String type = v.getProperty("obamaCollaborator");
 return type != null && type.equals("philanthropy");
 }

 @Override
 public String getAttributeKeyName(OracleVertexBase v)
 {
 return "obamaCollaborator";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleVertexBase v)
 {
 return " ";
 }
}

/**
 * Implementation of a EdgeOpCallback to remove the "obamaFeud" property
 * from all connections in a feud with Barack Obama that have a business role
 */
private static class BusinessFeudsEdgeOpCallback implements EdgeOpCallback
{
 public static BusinessFeudsEdgeOpCallback getInstance()
 {
 return new BusinessFeudsEdgeOpCallback();
 }

 /**

Chapter 5
Using Java APIs for Property Graph Data

5-24

 * Remove attribute if and only if the property value for obamaFeud is
 * business
 */
 @Override
 public boolean needOp(OracleEdgeBase e)
 {
 String type = e.getProperty("obamaFeud");
 return type != null && type.equals("business");
 }

 @Override
 public String getAttributeKeyName(OracleEdgeBase e)
 {
 return "obamaFeud";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleEdgeBase e)
 {
 return " ";
 }
}

5.4.2.8 Getting Property Graph Metadata
You can get graph metadata and statistics, such as all graph names in the database;
for each graph, getting the minimum/maximum vertex ID, the minimum/maximum edge
ID, vertex property names, edge property names, number of splits in graph vertex, and
the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in the back-end database (either Oracle NoSQL Database or Apache
HBase). The arguments required vary for each database.

// Get all graph names in the database
List<String> graphNames = OraclePropertyGraphUtils.getGraphNames(dbArgs);

for (String graphName : graphNames) {
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
graphName);

System.err.println("\n Graph name: " + graphName);
System.err.println(" Total vertices: " +
 opg.countVertices(dop));

System.err.println(" Minimum Vertex ID: " +
 opg.getMinVertexID(dop));
System.err.println(" Maximum Vertex ID: " +
 opg.getMaxVertexID(dop));

// The function getPropertyNamesAsString prints the given set of properties
Set<String> propertyNamesV = new HashSet<String>();
opg.getVertexPropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesV);

System.err.println(" Vertices property names: " +
getPropertyNamesAsString(propertyNamesV));

Chapter 5
Using Java APIs for Property Graph Data

5-25

System.err.println("\n\n Total edges: " + opg.countEdges(dop));
System.err.println(" Minimum Edge ID: " + opg.getMinEdgeID(dop));
System.err.println(" Maximum Edge ID: " + opg.getMaxEdgeID(dop));

Set<String> propertyNamesE = new HashSet<String>();
opg.getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesE);

System.err.println(" Edge property names: " +
getPropertyNamesAsString(propertyNamesE));

System.err.println("\n\n Table Information: ");
System.err.println("Vertex table number of splits: " +
 (opg.getVertexTableSplits()));
System.err.println("Edge table number of splits: " +
 (opg.getEdgeTableSplits()));
}

5.4.3 Opening and Closing a Property Graph Instance
When describing a property graph, use these Oracle Property Graph classes to open
and close the property graph instance properly:

• OraclePropertyGraph.getInstance: Opens an instance of an Oracle property graph.
This method has two parameters, the connection information and the graph name.
The format of the connection information depends on whether you use HBase or
Oracle NoSQL Database as the backend database.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from the
property graph instance.

• OraclePropertyGraph.shutdown: Closes the graph instance.

In addition, you must use the appropriate classes from the Oracle NoSQL Database or
HBase APIs.

• Using Oracle NoSQL Database

• Using Apache HBase

5.4.3.1 Using Oracle NoSQL Database
For Oracle NoSQL Database, the OraclePropertyGraph.getInstance method uses the
KV store name, host computer name, and port number for the connection:

String kvHostPort = "cluster02:5000";
String kvStoreName = "kvstore";
String kvGraphName = "my_graph";

// Use NoSQL Java API
KVStoreConfig kvconfig = new KVStoreConfig(kvStoreName, kvHostPort);

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(kvconfig, kvGraphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();

Chapter 5
Using Java APIs for Property Graph Data

5-26

If the in-memory analyst functions are required for your application, then it is
recommended that you use GraphConfigBuilder to create a graph config for Oracle
NoSQL Database, and instantiates OraclePropertyGraph with the config as an
argument.

As an example, the following code snippet constructs a graph config, gets an
OraclePropertyGraph instance, loads some data into that graph, and gets an in-memory
analyst.

 import oracle.pgx.config.*;
 import oracle.pgx.api.*;
 import oracle.pgx.common.types.*;

 ...

 String[] hhosts = new String[1];
 hhosts[0] = "my_host_name:5000"; // need customization
 String szStoreName = "kvstore"; // need customization
 String szGraphName = "my_graph";
 int dop = 8;

 PgNosqlGraphConfig cfg = GraphConfigBuilder.forPropertyGraphNosql()
 .setName(szGraphName)
 .setHosts(Arrays.asList(hhosts))
 .setStoreName(szStoreName)
 .addEdgeProperty("lbl",
PropertyType.STRING, "lbl")
 .addEdgeProperty("weight",
PropertyType.DOUBLE, "1000000")
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // perform a parallel data load
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

 ...
 PgxSession session = Pgx.createSession("session-id-1");
 PgxGraph g = session.readGraphWithProperties(cfg);

 Analyst analyst = session.createAnalyst();
 ...

5.4.3.2 Using Apache HBase
For Apache HBase, the OraclePropertyGraph.getInstance method uses the Hadoop
nodes and the Apache HBase port number for the connection:

String hbQuorum = "bda01node01.example.com, bda01node02.example.com,
bda01node03.example.com";
String hbClientPort = "2181"
String hbGraphName = "my_graph";

// Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();

Chapter 5
Using Java APIs for Property Graph Data

5-27

 conf.set("hbase.zookeeper.quorum", hbQuorum);
 conf.set("hbase.zookeper.property.clientPort", hbClientPort);
HConnection conn = HConnectionManager.createConnection(conf);

// Open the property graph
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(conf, conn, hbGraphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();
// Close the HBase connection
conn.close();

If the in-memory analyst functions are required for your application, then it is
recommended that you use GraphConfigBuilder to create a graph config, and
instantiates OraclePropertyGraph with the config as an argument.

As an example, the following code snippet sets the configuration for in memory
analytics, constructs a graph config for Apache HBase, instantiates an
OraclePropertyGraph instance, gets an in-memory analyst, and counts the number of
triangles in the graph.

 confPgx = new HashMap<PgxConfig.Field, Object>();
 confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
 confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2);
 confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 8); // <= # of physical cores
 confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
 confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0);// no timeout set
 confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no timeout set
 ServerInstance instance = Pgx.getInstance();
 instance.startEngine(confPgx);

int iClientPort = Integer.parseInt(hbClientPort);
int splitsPerRegion = 2;

PgHbaseGraphConfig cfg = GraphConfigBuilder.forPropertyGraphHbase()
 .setName(hbGraphName)
 .setZkQuorum(hbQuorum)
 .setZkClientPort(iClientPort)
 .setZkSessionTimeout(60000)
 .setMaxNumConnections(dop)
 .setSplitsPerRegion(splitsPerRegion)
 .addEdgeProperty("lbl", PropertyType.STRING, "lbl")
 .addEdgeProperty("weight", PropertyType.DOUBLE, "1000000")
 .build();

PgxSession session = Pgx.createSession("session-id-1");
PgxGraph g = session.readGraphWithProperties(cfg);
Analyst analyst = session.createAnalyst();

long triangles = analyst.countTriangles(g, false);

5.4.4 Creating Vertices
To create a vertex, use these Oracle Property Graph methods:

• OraclePropertyGraph.addVertex: Adds a vertex instance to a graph.

Chapter 5
Using Java APIs for Property Graph Data

5-28

• OracleVertex.setProperty: Assigns a key-value property to a vertex.

• OraclePropertyGraph.commit: Saves all changes to the property graph instance.

The following code fragment creates two vertices named V1 and V2, with properties for
age, name, weight, height, and sex in the opg property graph instance. The v1
properties set the data types explicitly.

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("weight", Float.valueOf(135.0f));
 v1.setProperty("height", Double.valueOf(64.5d));
 v1.setProperty("female", Boolean.TRUE);

Vertex v2 = opg.addVertex(2l);
 v2.setProperty("age", 27);
 v2.setProperty("name", "Bob");
 v2.setProperty("weight", Float.valueOf(156.0f));
 v2.setProperty("height", Double.valueOf(69.5d));
 v2.setProperty("female", Boolean.FALSE);

5.4.5 Creating Edges
To create an edge, use these Oracle Property Graph methods:

• OraclePropertyGraph.addEdge: Adds an edge instance to a graph.

• OracleEdge.setProperty: Assigns a key-value property to an edge.

The following code fragment creates two vertices (v1 and v2) and one edge (e1).

// Add vertices v1 and v2
Vertex v1 = opg.addVertex(1l);
v1.setProperty("name", "Alice");
v1.setProperty("age", 31);

Vertex v2 = opg.addVertex(2l);
v2.setProperty("name", "Bob");
v2.setProperty("age", 27);

// Add edge e1
Edge e1 = opg.addEdge(1l, v1, v2, "knows");
e1.setProperty("type", "friends");

5.4.6 Deleting Vertices and Edges
You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

• OraclePropertyGraph.removeEdge: Removes the specified edge from the graph.

• OraclePropertyGraph.removeVertex: Removes the specified vertex from the graph.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from the
property graph instance.

The following code fragment removes edge e1 and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This

Chapter 5
Using Java APIs for Property Graph Data

5-29

is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

The OraclePropertyGraph.clearRepository method can be used to remove all contents
from an OraclePropertyGraph instance. However, use it with care because this action
cannot be reversed.

5.4.7 Reading a Graph from a Database into an Embedded In-Memory
Analyst

You can read a graph from Apache HBase or Oracle NoSQL Database into an in-
memory analyst that is embedded in the same client Java application (a single JVM).
For the following Apache HBase example:

• A correct java.io.tmpdir setting is required.

• dop + 2 is a workaround for a performance issue before Release 1.1.2. Effective
with Release 1.1.2, you can instead specify a dop value directly in the configuration
settings.

int dop = 8; // need customization
Map<PgxConfig.Field, Object> confPgx = new HashMap<PgxConfig.Field, Object>();
confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2); // use dop directly with
release 1.1.2 or newer
confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, dop); // <= # of physical cores
confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0); // no timeout set
confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no timeout set

PgHbaseGraphConfig cfg = GraphConfigBuilder.forPropertyGraphHbase()
 .setName("mygraph")
 .setZkQuorum("localhost") // quorum, need customization
 .setZkClientPort(2181)
 .addNodeProperty("name", PropertyType.STRING,
"default_name")
 .build();

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance localInstance = Pgx.getInstance();
localInstance.startEngine(confPgx);
PgxSession session = localInstance.createSession("session-id-1"); // Put your
session description here.

Analyst analyst = session.createAnalyst();

// The following call will trigger a read of graph data from the database
PgxGraph pgxGraph = session.readGraphWithProperties(opg.getConfig());

long triangles = analyst.countTriangles(pgxGraph, false);
System.out.println("triangles " + triangles);
// After reading a graph in memory, modifying the graph on the database side should
not affect in memory results:

Chapter 5
Using Java APIs for Property Graph Data

5-30

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

5.4.8 Specifying Labels for Vertices
As explained in What Are Property Graphs?, the database and data access layer do
not provide labels for vertices. However, you can treat the value of a designated vertex
property as one or more labels. Such a transformation is relevant only to the in-
memory analyst.

In the following example, a property "country" is specified in a call to
setUseVertexPropertyValueAsLabel(), and the comma delimiter "," is specified in a call
to setPropertyValueDelimiter(). These two together imply that values of the country
vertex property will be treated as vertex labels separated by a comma. For example, if
vertex X has a string value "US" for its country property, then its vertex label will be US;
and if vertex Y has a string value "UK,CN", then it will have two labels: UK and CN.

GraphConfigBuilder.forPropertyGraph...
 .setName("<your_graph_name>")
 ...
 .setUseVertexPropertyValueAsLabel("country")
 .setPropertyValueDelimiter(",")
 .build();

5.4.9 Building an In-Memory Graph
In addition to Reading Graph Data into Memory, you can create an in-memory graph
programmatically. This can simplify development when the size of graph is small or
when the content of the graph is highly dynamic. The key Java class is GraphBuilder,
which can accumulate a set of vertices and edges added with the addVertex and
addEdge APIs. After all changes are made, an in-memory graph instance (PgxGraph) can
be created by the GraphBuilder.

The following Java code snippet illustrates a graph construction flow. Note that there
are no explicit calls to addVertex, because any vertex that does not already exist will be
added dynamically as its adjacent edges are created.

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

To construct a graph with vertex properties, you can use setProperty against the
vertex objects created.

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

Chapter 5
Using Java APIs for Property Graph Data

5-31

builder.addVertex(1).setProperty("double-prop", 0.1);
builder.addVertex(2).setProperty("double-prop", 2.0);
builder.addVertex(3).setProperty("double-prop", 0.3);
builder.addVertex(4).setProperty("double-prop", 4.56789);

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

To use long integers as vertex and edge identifiers, specify IdType.LONG when getting a
new instance of GraphBuilder. For example:

import oracle.pgx.common.types.IdType;
GraphBuilder<Long> builder = session.newGraphBuilder(IdType.LONG);

During edge construction, you can directly use vertex objects that were previously
created in a call to addEdge.

v1 = builder.addVertex(1l).setProperty("double-prop", 0.5)
v2 = builder.addVertex(2l).setProperty("double-prop", 2.0)

builder.addEdge(0, v1, v2)

As with vertices, edges can have properties. The following example sets the edge
label by using setLabel:

builder.addEdge(4, v4, v2).setProperty("edge-prop",
"edge_prop_4_2").setLabel("label")

5.4.10 Dropping a Property Graph
To drop a property graph from the database, use the
OraclePropertyGraphUtils.dropPropertyGraph method. This method has two
parameters, the connection information and the graph name.

The format of the connection information depends on whether you use HBase or
Oracle NoSQL Database as the backend database. It is the same as the connection
information you provide to OraclePropertyGraph.getInstance.

• Using Oracle NoSQL Database

• Using Apache HBase

5.4.10.1 Using Oracle NoSQL Database
For Oracle NoSQL Database, the OraclePropertyGraphUtils.dropPropertyGraph method
uses the KV store name, host computer name, and port number for the connection.
This code fragment deletes a graph named my_graph from Oracle NoSQL Database.

String kvHostPort = "cluster02:5000";
String kvStoreName = "kvstore";
String kvGraphName = "my_graph";

// Use NoSQL Java API
KVStoreConfig kvconfig = new KVStoreConfig(kvStoreName, kvHostPort);

Chapter 5
Using Java APIs for Property Graph Data

5-32

// Drop the graph
OraclePropertyGraphUtils.dropPropertyGraph(kvconfig, kvGraphName);

5.4.10.2 Using Apache HBase
For Apache HBase, the OraclePropertyGraphUtils.dropPropertyGraph method uses the
Hadoop nodes and the Apache HBase port number for the connection. This code
fragment deletes a graph named my_graph from Apache HBase.

String hbQuorum = "bda01node01.example.com, bda01node02.example.com,
bda01node03.example.com";
String hbClientPort = "2181";
String hbGraphName = "my_graph";

// Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", hbQuorum);
 conf.set("hbase.zookeper.property.clientPort", hbClientPort);

// Drop the graph
OraclePropertyGraphUtils.dropPropertyGraph(conf, hbGraphName);

5.5 Managing Text Indexing for Property Graph Data
Indexes in Oracle Big Data Spatial and Graph allow fast retrieval of elements by a
particular key/value or key/text pair. These indexes are created based on an element
type (vertices or edges), a set of keys (and values), and an index type.

Two types of indexing structures are supported by Oracle Big Data Spatial and Graph:
manual and automatic.

• Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices
and edges based on particular key/value pairs.

• Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go
into the index.

Oracle Big Data Spatial and Graph provides APIs to create manual and automatic text
indexes over property graphs for Oracle NoSQL Database and Apache HBase.
Indexes are managed using the available search engines, Apache Lucene and
SolrCloud. The rest of this section focuses on how to create text indexes using the
property graph capabilities of the Data Access Layer.

• Configuring a Text Index for Property Graph Data

• Using Automatic Indexes for Property Graph Data

• Using Manual Indexes for Property Graph Data

• Executing Search Queries Over Property Graph Text Indexes

• Handling Data Types

• Uploading a Collection's SolrCloud Configuration to Zookeeper

• Updating Configuration Settings on Text Indexes for Property Graph Data

• Using Parallel Query on Text Indexes for Property Graph Data

Chapter 5
Managing Text Indexing for Property Graph Data

5-33

• Using Native Query Objects on Text Indexes for Property Graph Data

• Using Native Query Results on Text Indexes for Property Graph Data

5.5.1 Configuring a Text Index for Property Graph Data
The configuration of a text index is defined using an OracleIndexParameters object. This
object includes information about the index, such as search engine, location, number
of directories (or shards) , and degree of parallelism.

By default, text indexes are configured based on the OracleIndexParameters associated
with the property graph using the method opg.setDefaultIndexParameters(indexParams).
The initial creation of the automatic index delimits the configuration and text search
engine for future indexed keys.

Indexes can also be created by specifying a different set of parameters. The following
code fragment creates an automatic text index over an existing property graph using a
Lucene engine with a physical directory.

// Create an OracleIndexParameters object to get Index configuration (search engine,
etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

If you want to modify the initial configuration of a text index, you may need first to drop
the existing graph and recreate the index using the new configuration.

• Configuring Text Indexes Using the Apache Lucene Search Engine

• Configuring Text Indexes using the SolrCloud Search Engine

Configuring Text Indexes Using the Apache Lucene Search Engine

A text index using Apache Lucene Search engine uses a LuceneIndexParameters
configuration object. The configuration parameters for indexes using a Lucene Search
engine include:

• Number of directories: Integer specifying the number of Apache Lucene
directories to use for the automatic index. Using multiple directories provides
storage and performance scalability. The default value is set to 1.

• Batch Size: Integer specifying the batch size to use for document batching in
Apache Lucene. The default batch size used is 10000.

• Commit Batch Size: Integer specifying the number of document to add into the
Apache Lucene index before a commit operation is executed. The default commit
batch size used is 500000.

• Data type handling flag: Boolean specifying if Apache Lucene data types
handling is enabled. Enabling data types handling fasten up lookups over numeric
and date time data types.

• Directory names: String array specifying the base path location where the
Apache Lucene directories will be created.

The following code fragment creates the configuration for a text index using Apache
Lucene Search Engine with a physical directory.

Chapter 5
Managing Text Indexing for Property Graph Data

5-34

OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index");

Configuring Text Indexes using the SolrCloud Search Engine

A text index using SolrCloud Search engine uses a SolrIndexParameters object behind
the scenes to identify the SolrCloud host name, the number of shards, and replication
factor used during the index construction. The configuration parameters for indexes
using a SolrCloud Search engine include:

• Configuration name: Name of the Apache Zookeeper directory where the
SolrCloud configuration files for Oracle Property Graph are stored. Example:
opgconfig. The configuration files include the required field’s schema
(schema.xml) and storage settings (solrconfig.xml).

• Server URL: the SolrCloud server URL used to connect to the SolrCloud service.
Example: http://localhost:2181/solr

• SolrCloud Node Set: Hostnames of the nodes in the SolrCloud service where the
collection’s shards will be stored. Example:
node01:8983_solr,node02:8983_solr,node03:8983_solr. If the value is set to null,
then the collection will be created using all the SolrCloud nodes available in the
service.

• Zookeeper Timeout: Positive integer representing the timeout (in seconds) used to
wait for a Zookeeper connection.

• Number of shards: Number of shards to create for the text index collection. If the
SolrCloud configuration is using an HDFS directory, the number of shards must
not exceed the number of SolrCloud nodes specified in the SolrCloud node set.

• Replication factor: Replication factor used in the SolrCloud collection. The
default value is set to 1.

• Maximum shards per node: Maximum number of shards that can be created on
each SolrCloud node. Note that this value must not be smaller than the number of
shards divided by the number of nodes in the SolrCloud Node set.

• DOP: Degree of parallelism to use when reading the vertices (or edges) from the
property graph and indexing the key/value pairs. The default value is set to 1.

• Batch Size: Integer specifying the batch size to use for document batching in
Apache SolrCloud. The default batch size used is 10000.

• Commit Batch Size: Integer specifying the number of documents to add into the
Apache SolrCloud index before a commit operation is executed. The default
commit batch size used is 500000 (five hundred thousand).

• Write timeout: Timeout (in seconds) used to wait for an index operation to be
completed. If the index operation was unsuccessful due to a communication error,
the operation will be tried repeatedly as needed until the timeout is reached or the
operation completes.

The following code fragment creates the configuration for a text index using SolrCloud.

String configName = "opgconfig";
String solrServerUrl = "nodea:2181/solr"
String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

int zkTimeout = 15;
int numShards = 4;

Chapter 5
Managing Text Indexing for Property Graph Data

5-35

int replicationFactor = 1;
int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);

When using SolrCloud, you must first load a collection's configuration for the text
indexes into Apache Zookeeper, as described in Uploading a Collection's SolrCloud
Configuration to Zookeeper.

5.5.2 Using Automatic Indexes for Property Graph Data
An automatic text index provides automatic indexing of vertices or edges by a set of
property keys. Its main purpose is to speed up lookups over vertices and edges based
on particular key/value pair. If an automatic index for the given key is enabled, then a
key/value pair lookup will be performed as a text search against the index instead of
executing a database lookup.

When describing an automatic index over a property graph, use these Oracle property
graph methods to create, remove, and manipulate an automatic index:

• OraclePropertyGraph.createKeyIndex(String key, Class elementClass, Parameter[]

parameters): Creates an automatic index for all elements of type elementClass by
the given property key. The index is configured based on the specified
parameters.

• OraclePropertyGraph.createKeyIndex(String[] keys, Class elementClass,

Parameter[] parameters): Creates an automatic index for all elements of type
elementClass by using a set of property keys. The index is configured based on the
specified parameters.

• OraclePropertyGraph.dropKeyIndex(String key, Class elementClass): Drops the
automatic index for all elements of type elementClass for the given property key.

• OraclePropertyGraph.dropKeyIndex(String[] keys, Class elementClass): Drops the
automatic index for all elements of type elementClass for the given set of property
keys.

• OraclePropertyGraph.getAutoIndex(Class elementClass): Gets an index instance of
the automatic index for type elementClass.

• OraclePropertyGraph.getIndexedKeys(Class elementClass): Gets the set of indexed
keys currently used in an automatic index for all elements of type elementClass.

The supplied examples ExampleNoSQL6 and ExampleHBase6 create a property graph from
an input file, create an automatic text index on vertices, and execute some text search
queries using Apache Lucene.

The following code fragment creates an automatic index over an existing property
graph's vertices with these property keys: name, role, religion, and country. The

Chapter 5
Managing Text Indexing for Property Graph Data

5-36

automatic text index will be stored under four subdirectories under the /home/data/
text-index directory. Apache Lucene data types handling is enabled. This example
uses a DOP (parallelism) of 4 for re-indexing tasks.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene engine.
// Specify Index Directory parameters (number of directories,
// number of connections to database, batch size, commit size,
// enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index ");
opg.setDefaultIndexParameters(indexParams);

// specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class);

By default, indexes are configured based on the OracleIndexParameters associated with
the property graph using the method opg.setDefaultIndexParameters(indexParams).

Indexes can also be created by specifying a different set of parameters. This is shown
in the following code snippet.

// Create an OracleIndexParameters object to get Index configuration (search engine,
etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

The code fragment in the next example executes a query over all vertices to find all
matching vertices with the key/value pair name:Barack Obama. This operation will
execute a lookup into the text index.

Additionally, wildcard searches are supported by specifying the parameter
useWildCards in the getVertices API call. Wildcard search is only supported when
automatic indexes are enabled for the specified property key. For details on text
search syntax using Apache Lucene, see https://lucene.apache.org/core/2_9_4/
queryparsersyntax.html.

// Find all vertices with name Barack Obama.
 Iterator<Vertices> vertices = opg.getVertices("name", "Barack Obama").iterator();
 System.out.println("----- Vertices with name Barack Obama -----");
 countV = 0;

Chapter 5
Managing Text Indexing for Property Graph Data

5-37

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

 // Find all vertices with name including keyword "Obama"
 // Wildcard searching is supported.
 boolean useWildcard = true;
 Iterator<Vertices> vertices = opg.getVertices("name",
"*Obama*",useWildcard).iterator();
 System.out.println("----- Vertices with name *Obama* -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with name Barack Obama-----
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 1

----- Vertices with name *Obama* -----
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 1

See Also:

• Executing Search Queries Over Property Graph Text Indexes

• Exploring the Sample Programs

5.5.3 Using Manual Indexes for Property Graph Data
Manual indexes provide support to define multiple indexes over the vertices and edges
of a property graph. A manual index requires you to manually put, get, and remove
elements from the index.

When describing a manual index over a property graph, use these Oracle property
graph methods to add, remove, and manipulate a manual index:

• OraclePropertyGraph.createIndex(String name, Class elementClass, Parameter[]

parameters): Creates a manual index with the specified name for all elements of
type elementClass.

• OraclePropertyGraph.dropIndex(String name): Drops the given manual index.

• OraclePropertyGraph.getIndex(String name, Class elementClass): Gets an index
instance of the given manual index for type elementClass.

Chapter 5
Managing Text Indexing for Property Graph Data

5-38

• OraclePropertyGraph.getIndices(): Gets an array of index instances for all manual
indexes created in the property graph.

The supplied examples ExampleNoSQL7 and ExampleHBase7 create a property graph from
an input file, create a manual text index on edges, put some data into the index, and
execute some text search queries using Apache SolrCloud.

When using SolrCloud, you must first load a collection's configuration for the text
indexes into Apache Zookeeper, as described in Uploading a Collection's SolrCloud
Configuration to Zookeeper.

The following code fragment creates a manual text index over an existing property
graph using four shards, one shard per node, and a replication factor of 1. The number
of shards corresponds to the number of nodes in the SolrCloud cluster.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create a manual text index using SolrCloud// Specify Index Directory parameters:
configuration name, Solr Server URL, Solr Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
 // number of connections to database, batch size, commit size,
 // write timeout (in secs)
 String configName = "opgconfig";
 String solrServerUrl = "nodea:2181/solr"
 String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

 int zkTimeout = 15;
 int numShards = 4;
 int replicationFactor = 1;
 int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);
opg.setDefaultIndexParameters(indexParams);

// Create manual indexing on above properties for all vertices
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Chapter 5
Managing Text Indexing for Property Graph Data

5-39

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 }

The next code fragment executes a query over the manual index to get all edges with
the key/value pair collaboratesWith:Beyonce. Additionally, wildcards search can be
supported by specifying the parameter useWildCards in the get API call.

// Find all edges with collaboratesWith Beyonce.
 // Wildcard searching is supported using true parameter.
 edges = index.get("collaboratesWith", "Beyonce").iterator();
 System.out.println("----- Edges with name Beyonce -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

// Find all vertices with name including Bey*.
 // Wildcard searching is supported using true parameter.
 edges = index.get("collaboratesWith", "*Bey*", true).iterator();
 System.out.println("----- Edges with collaboratesWith Bey* -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: " + countE);

The preceding code example produces output like the following:

----- Edges with name Beyonce -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

----- Edges with collaboratesWith Bey* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

Chapter 5
Managing Text Indexing for Property Graph Data

5-40

See Also:

• Executing Search Queries Over Property Graph Text Indexes

• Exploring the Sample Programs

5.5.4 Executing Search Queries Over Property Graph Text Indexes
You can execute text search queries over automatic and manual text indexes. These
capabilities vary from querying based on a particular key/value pair, to executing a text
search over a single or multiple keys (with extended query options as wildcards, fuzzy
searches, and range queries).

• Executing Search Queries Over a Text Index Using Apache Lucene

• Executing Search Queries Over a Text Index Using SolrCloud

Executing Search Queries Over a Text Index Using Apache Lucene

The following code fragment creates an automatic index using Apache Lucene, and
executes a query over the text index by specifying a particular key/value pair.

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
 OraclePropertyGraphDataLoader.getInstance();

opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene engine.
// Specify Index Directory parameters (number of directories,
// number of connections to database, batch size, commit size,
// enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index ");
opg.setDefaultIndexParameters(indexParams);

// Create manual indexing on above properties for all vertices
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 index.put("country", vIn.getProperty("country"), edge);
}

// Wildcard searching is supported using true parameter.
Iterator<Edge> edges = index.get("country", "United States").iterator();
System.out.println("----- Edges with query: " + queryExpr + " -----");
long countE = 0;
while (edges.hasNext()) {

Chapter 5
Managing Text Indexing for Property Graph Data

5-41

 System.out.println(edges.next());
 countE++;
}
System.out.println("Edges found: "+ countE);

In this case, the text index will produce a search query out of the key and value
objects. Also note that if the useWildcards flag is not specified or enabled, then results
retrieved will include only exact matches. If the value object is a numeric or date-time
value, the produced query will be an inclusive range query where the lower and upper
limit are defined by the value. Only numeric or date-time matches will be retrieved.

If the value is a string, then all matching key/value pairs will be retrieved regardless of
their data type. The resulting text query of this type of queries is a Boolean query with
a set of optional search terms, one for each supported data type. For more information
about data type handling, see Handling Data Types.

Thus, the previous code example produces a query expression country1:"United
States" OR country9:"United States" OR … OR countryE:"United States" (if Lucene's
data type handling is enabled), or country:"1United States" OR country:"2United
States" OR … OR country:"EUnited States" (if Lucene's data type handling is
disabled).

If a String value object has wildcards enabled, the value must be written using Apache
Lucene Syntax. For information about text search syntax using Apache Lucene, see:
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index using a single key/value pair with String data type only. The following
code produces a query expression country1:"United States" (if Lucene's data type
handling is enabled), or country:"1United States" (if Lucene's data type handling is
disabled).

// Wildcard searching is supported using true parameter.
Iterator<Edge> edges = index.get("country", "United States", true,
String.class).iterator();

System.out.println("----- Edges with query: " + queryExpr + " -----");
long countE = 0;
while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
}
System.out.println("Edges found: "+ countE);

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. Utilities are provided
to help users write their own Lucene text search queries using the query syntax and
data type identifiers required by the automatic and manual text indexes.

The method buildSearchTerm(key, value, dtClass) in LuceneIndex creates a query
expression of the form field:query_expr by adding the data type identifier to the key (or
value) and transforming the value into the required string representation based on the
given data type and Apache Lucene's data type handling configuration.

The following code fragment uses the buildSearchTerm method to produce a query
expression country1:United* (if Lucene's data type handling is enabled), or country:
1United* (if Lucene's data type handling is disabled) used in the previous examples:

Chapter 5
Managing Text Indexing for Property Graph Data

5-42

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

String szQueryStrCountry = index.buildSearchTerm("country",
 "United*", String.class);

To deal with the key and values as individual objects to construct a different Lucene
query like a WildcardQuery, the methods appendDatatypesSuffixToKey(key,
dtClass) and appendDatatypesSuffixToValue(value, dtClass) in LuceneIndex will append
the appropriate data type identifiers and transform the value into the required Lucene
string representation based on the given data type.

The following code fragment uses the appendDatatypesSuffixToKey method to generate
the field name required in a Lucene text query. If Lucene’s data type handling is
enabled, the string returned will append the String data type identifier as a suffix of the
key (country1). In any other case, the retrieved string will be the original key (country).

String key = index.appendDatatypesSuffixToKey("country", String.class);

The next code fragment uses the appendDatatypesSuffixToValue method to generate
the query body expression required in a Lucene text query. If Lucene’s data type
handling is disabled, the string returned will append the String data type identifier as a
prefix of the key (1United*). In all other cases, the string returned will be the string
representation of the value (United*).

String value = index.appendDatatypesSuffixToValue("United*", String.class);

LuceneIndex also supports generating a Term object using the
method buildSearchTermObject(key, value, dtClass). Term objects are commonly
used among different types of Lucene Query objects to constrain the fields and values
of the documents to be retrieved. The following code fragment shows how to create a
WildcardQuery object using the buildSearchTermObject method.

Term term = index.buildSearchTermObject("country", "United*", String.class);
Query query = new WildcardQuery(term);

Executing Search Queries Over a Text Index Using SolrCloud

The following code fragment creates an automatic index using SolrCloud, and
executes a query over the text index by specifying a particular key/value pair.

// Create a manual text index using SolrCloud// Specify Index Directory parameters:
configuration name, Solr Server URL, Solr Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
// number of connections to database, batch size, commit size,
// write timeout (in secs)
String configName = "opgconfig";
String solrServerUrl = "nodea:2181/solr"
String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

int zkTimeout = 15;
int numShards = 4;
int replicationFactor = 1;
int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,

Chapter 5
Managing Text Indexing for Property Graph Data

5-43

 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);
opg.setDefaultIndexParameters(indexParams);

// specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class);

// Create manual indexing on above properties for all vertices
OracleIndex<Vertex> index = ((OracleIndex<Vertex>) opg.getAutoIndex(Vertex.class);

Iterator<Vertex> vertices = index.get("country", "United States").iterator();
System.out.println("----- Vertices with query: " + queryExpr + " -----");
countV = 0;
while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
}
System.out.println("Vertices found: "+ countV);

In this case, the text index will produce a search out of the value object. Also note that
if the useWildcards flag is not specified or enabled, then results retrieved will include
only exact matches. If the value object is a numeric or date time value, the produced
query will be an inclusive range query where the lower and upper limit is defined by
the value. Only numeric or date-time matches will be retrieved.

If the value is a string, then all matching key/value pairs will be retrieved regardless of
their data type. The resulting text query of this type of queries is a Boolean query with
a set of optional search terms, one for each supported data type. For more information
about data type handling, see Handling Data Types.

Thus, the previous code example produces a query expression country_str:"United
States" OR country_ser:"United States" OR … OR country_json:"United States".

Using a String value object with wildcards enabled requires that the value is written
using Apache Lucene Syntax. For information about text search syntax using Apache
Lucene, see Handling Data Types

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index using a single key/value pair with String data type only. The following
code produces a query expression country_str:"United States".

// Wildcard searching is supported using true parameter.
Iterator<Edge> edges = index.get("country", "United States", true,
String.class).iterator();
 System.out.println("----- Edges with query: " + queryExpr + " -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());

Chapter 5
Managing Text Indexing for Property Graph Data

5-44

 countE++;
 }
 System.out.println("Edges found: "+ countE);

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. A set of utilities is
provided to help users write their own SolrCloud text search queries using the query
syntax and data type identifiers required by the automatic and manual text indexes.

The method buildSearchTerm(key, value, dtClass) in SolrIndex creates a query
expression of the form field:query_expr by adding the data type identifier to the key (or
value) and transforming the value into the required string representation using the data
type formats required by the index.

The following code fragment uses the buildSearchTerm method to produce a query
expression country_str:United* used in the previous example:

String szQueryStrCountry = index.buildSearchTerm("country",
 "United*", String.class);

To deal with the key and values as individual objects to construct a different SolrClud
query like a WildcardQuery, the methods appendDatatypesSuffixToKey(key,
dtClass) and appendDatatypesSuffixToValue(value, dtClass) in SolrIndex will append
the appropriate data type identifiers and transform the key and value into the required
SolrCloud string representation based on the given data type.

The following code fragment uses the appendDatatypesSuffixToKey method to generate
the field name required in a SolrCloud text query. The retrieved string will append the
String data type identifier as a suffix of the key (country_str).

String key = index.appendDatatypesSuffixToKey("country", String.class);

The next code fragment uses the appendDatatypesSuffixToValue method to generate
the query body expression required in a SolrCloud text query. The string returned will
be the string representation of the value (United*).

String value = index.appendDatatypesSuffixToValue("United*", String.class);

5.5.5 Handling Data Types
Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the key/
value pair age:30, a query is executed over all age fields with a data type integer. If the
value is a query expression, you can also specify the data type class of the value to
find by calling the API get(String key, Object value, Class dtClass, Boolean
useWildcards). If no data type is specified, the query expression will be matched to all
possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. The following topics
describe how to append this prefix/suffix for Apache Lucene and SolrCloud.

• Appending Data Type Identifiers on Apache Lucene

• Appending Data Type Identifiers on SolrCloud

Chapter 5
Managing Text Indexing for Property Graph Data

5-45

5.5.5.1 Appending Data Type Identifiers on Apache Lucene
When Lucene's data types handling is enabled, you must append the proper data type
identifier as a suffix to the key in the query expression. This can be done by executing
a String.concat() operation to the key. If Lucene's data types handling is disabled, you
must insert the data type identifier as a prefix in the value String. Table 5-2 shows the
data type identifiers available for text indexing using Apache Lucene (see also the
Javadoc for LuceneIndex).

Table 5-2 Apache Lucene Data Type Identifiers

Lucene Data Type Identifier Description

TYPE_DT_STRING String

TYPE_DT_BOOL Boolean

TYPE_DT_DATE Date

TYPE_DT_FLOAT Float

TYPE_DT_DOUBLE Double

TYPE_DT_INTEGER Integer

TYPE_DT_LONG Long

TYPE_DT_CHAR Character

TYPE_DT_SHORT Short

TYPE_DT_BYTE Byte

TYPE_DT_SPATIAL Spatial

TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using Lucene's data
type handling, adds data, and later executes a query over the manual index to get all
edges with the key/value pair collaboratesWith:Beyonce AND country1:United* using
wildcards.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Specify Index Directory parameters (number of directories,
 // number of connections to database, batch size, commit size,
 // enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index ");
opg.setDefaultIndexParameters(indexParams);
// Create manual indexing on above properties for all edges
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Chapter 5
Managing Text Indexing for Property Graph Data

5-46

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 index.put("country", vIn.getProperty("country"), edge);
 }

// Wildcard searching is supported using true parameter.
 String key = "country";
 key =
key.concat(String.valueOf(oracle.pg.text.lucene.LuceneIndex.TYPE_DT_STRING));

 String queryExpr = "Beyonce AND " + key + ":United*";
 edges = index.get("collaboratesWith", queryExpr, true /
UseWildcard/).iterator();
 System.out.println("----- Edges with query: " + queryExpr + " -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with name Beyonce AND country1:United* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

The following code fragment creates an automatic index on vertices, disables Lucene's
data type handling, adds data, and later executes a query over the manual index from
a previous example to get all vertices with the key/value pair country:United* AND
role:1*political* using wildcards.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene engine.
// Specify Index Directory parameters (number of directories,
 // number of connections to database, batch size, commit size,
 // enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, false, "/ home/data/text-
index ");
opg.setDefaultIndexParameters(indexParams);

Chapter 5
Managing Text Indexing for Property Graph Data

5-47

// specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class);

// Wildcard searching is supported using true parameter.
 String value = "*political*";
 value = String.valueOf(LuceneIndex.TYPE_DT_STRING) + value;
String queryExpr = "United* AND role:" + value;

vertices = opg.getVertices("country", queryExpr, true /*useWildcard*/).iterator();
 System.out.println("----- Vertices with query: " + queryExpr + " -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example might produce output like the following:

----- Vertices with query: United* and role:1*political* -----
Vertex ID 30 {name:str:Jerry Brown, role:str:political authority, occupation:str:
34th and 39th governor of California, country:str:United States, political
party:str:Democratic, religion:str:roman catholicism}
Vertex ID 24 {name:str:Edward Snowden, role:str:political authority,
occupation:str:system administrator, country:str:United States,
religion:str:buddhism}
Vertex ID 22 {name:str:John Kerry, role:str:political authority, country:str:United
States, political party:str:Democratic, occupation:str:68th United States Secretary
of State, religion:str:Catholicism}
Vertex ID 21 {name:str:Hillary Clinton, role:str:political authority,
country:str:United States, political party:str:Democratic, occupation:str:67th
United States Secretary of State, religion:str:Methodism}
Vertex ID 19 {name:str:Kirsten Gillibrand, role:str:political authority,
country:str:United States, political party:str:Democratic, occupation:str:junior
United States Senator from New York, religion:str:Methodism}
Vertex ID 13 {name:str:Ertharin Cousin, role:str:political authority,
country:str:United States, political party:str:Democratic}
Vertex ID 11 {name:str:Eric Holder, role:str:political authority, country:str:United
States, political party:str:Democratic, occupation:str:United States Deputy Attorney
General}
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 8

5.5.5.2 Appending Data Type Identifiers on SolrCloud
For Boolean operations on SolrCloud text indexes, you must append the proper data
type identifier as suffix to the key in the query expression. This can be done by
executing a String.concat() operation to the key. Table 5-3 shows the data type
identifiers available for text indexing using SolrCloud (see the Javadoc for SolrIndex).

Chapter 5
Managing Text Indexing for Property Graph Data

5-48

Table 5-3 SolrCloud Data Type Identifiers

Solr Data Type Identifier Description

TYPE_DT_STRING String

TYPE_DT_BOOL Boolean

TYPE_DT_DATE Date

TYPE_DT_FLOAT Float

TYPE_DT_DOUBLE Double

TYPE_DT_INTEGER Integer

TYPE_DT_LONG Long

TYPE_DT_CHAR Character

TYPE_DT_SHORT Short

TYPE_DT_BYTE Byte

TYPE_DT_SPATIAL Spatial

TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using SolrCloud, adds
data, and later executes a query over the manual index to get all edges with the key/
value pair collaboratesWith:Beyonce AND country1:United* using wildcards.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create a manual text index using SolrCloud// Specify Index Directory parameters:
configuration name, Solr Server URL, Solr Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
 // number of connections to database, batch size, commit size,
 // write timeout (in secs)
 String configName = "opgconfig";
 String solrServerUrl = "nodea:2181/solr";
 String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

 int zkTimeout = 15;
 int numShards = 4;
 int replicationFactor = 1;
 int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,

Chapter 5
Managing Text Indexing for Property Graph Data

5-49

 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);
opg.setDefaultIndexParameters(indexParams);

// Create manual indexing on above properties for all vertices
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 index.put("country", vIn.getProperty("country"), edge);
 }

// Wildcard searching is supported using true parameter.
 String key = "country";
 key = key.concat(oracle.pg.text.solr.SolrIndex.TYPE_DT_STRING);

 String queryExpr = "Beyonce AND " + key + ":United*";
 edges = index.get("collaboratesWith", queryExpr, true /**
UseWildcard*/).iterator();
 System.out.println("----- Edges with query: " + queryExpr + " -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with name Beyonce AND country_str:United* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper
Before using SolrCloud text indexes on Oracle Big Data Spatial and Graph property
graphs, you must upload a collection's configuration to Zookeeper. This can be done
using the ZkCli tool from one of the SolrCloud cluster nodes.

A predefined collection configuration directory can be found in dal/opg-solr-config
under the installation home. The following shows an example on how to upload the
PropertyGraph configuration directory.

1. Copy dal/opg-solr-config under the installation home into /tmp directory on one of
the Solr cluster nodes. For example:

Chapter 5
Managing Text Indexing for Property Graph Data

5-50

scp –r dal/opg-solr-config user@solr-node:/tmp

2. Execute the following command line like the following example using the ZkCli tool
on the same node:

$SOLR_HOME/bin/zkcli.sh -zkhost 127.0.0.1:2181/solr -cmd upconfig –confname
opgconfig -confdir /tmp/opg-solr-config

5.5.7 Updating Configuration Settings on Text Indexes for Property
Graph Data

Oracle's property graph support manages manual and automatic text indexes through
integration with Apache Lucene and SolrCloud. At creation time, you must create an
OracleIndexParameters object specifying the search engine and other configuration
settings to be used by the text index. After a text index for property graph is created,
these configuration settings cannot be changed. For automatic indexes, all vertex
index keys are managed by a single text index, and all edge index keys are managed
by a different text index using the configuration specified when the first vertex or edge
key is indexed.

If you need to change the configuration settings, you must first disable the current
index and create it again using a new OracleIndexParameters object. The following code
fragment creates two automatic Apache Lucene-based indexes (on vertices and
edges) over an existing property graph, disables them, and recreates them to use
SolrCloud.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene.
// Specify Index Directory parameters (number of directories,
// number of connections to database, batch size, commit size,
// enable datatypes, location)
OracleIndexParameters luceneIndexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/oracle/text-index ");

// Specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class, luceneIndexParams.getParameters());

// Create auto indexing on weight for all edges
opg.createKeyIndex("weight", Edge.class, luceneIndexParams.getParameters());

// Disable auto indexes to change parameters

Chapter 5
Managing Text Indexing for Property Graph Data

5-51

opg.getOracleIndexManager().disableVertexAutoIndexer();
opg.getOracleIndexManager().disableEdgeAutoIndexer();

// Recreate text indexes using SolrCloud
// Specify Index Directory parameters: configuration name, Solr Server URL, Solr
Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
// number of connections to database, batch size, commit size,
// write timeout (in secs)
String configName = "opgconfig";
String solrServerUrl = "nodea:2181/solr";
String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

int zkTimeout = 15;
int numShards = 4;
int replicationFactor = 1;
int maxShardsPerNode = 1;

OracleIndexParameters solrIndexParams =
OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class, solrIndexParams.getParameters());

// Create auto indexing on weight for all edges
opg.createKeyIndex("weight", Edge.class, solrIndexParams.getParameters());

5.5.8 Using Parallel Query on Text Indexes for Property Graph Data
Text indexes in Oracle Big Data Spatial and Graph allow executing text queries over
millions of vertices and edges by a particular key/value or key/text pair using parallel
query execution.

Parallel text querying is an optimized solution taking advantage of the distribution of
the data in the index among shards in SolrCloud (or subdirectories in Apache Lucene),
so each one is queried using separate index connection. This involves multiple threads
and connections to SolrCloud (or Apache Lucene) search engines to increase
performance on read operations and retrieve multiple elements from the index. Note
that this approach will not rank the matching results based on their score.

Parallel text query will produce an array where each element holds all the vertices (or
edges) with an attribute matching the given K/V pair from a shard. The subset of
shards queried will be delimited by the given start sub-directory ID and the size of the
connections array provided. This way, the subset will consider shards in the range of
[start, start - 1 + size of connections array]. Note that an integer ID (in the range of [0,
N - 1]) is assigned to all the shards in index with N shards.

Chapter 5
Managing Text Indexing for Property Graph Data

5-52

Parallel Text Query Using Apache Lucene

You can use parallel text query using Apache Lucene by calling the method
getPartitioned in LuceneIndex, specifying an array of connections to set of
subdirectories (SearcherManager objects), the key/value pair to search, and the starting
subdirectory ID. Each connection needs to be linked to the appropriate subdirectory,
as each subdirectory is independent of the rest of the subdirectories in the index.

The following code fragment generates an automatic text index using the Apache
Lucene Search engine, and executes a parallel text query. The number of calls to the
getPartitioned method in the LuceneIndex class is controlled by the total number of
subdirectories and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index
OracleIndexParameters indexParams
= OracleIndexParameters.buildFS(dop /* number of directories */,
dop /* number of connections
used when indexing */,
10000 /* batch size before commit*/,
500000 /* commit size before Lucene commit*/,
true /* enable datatypes */,
"./lucene-index" /* index location */);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name for vertices");
opg.createKeyIndex("name", Vertex.class);

// Get the LuceneIndex object
SearcherManager[] conns = new SearcherManager[dop];
LuceneIndex<Vertex> index = (LuceneIndex<Vertex>) opg.getAutoIndex(Vertex.class);

long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
// Gets a connection object from subdirectory split to
//(split + conns.length)
for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getOracleSearcherManager(idx + split);
}

// Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr
= index.getPartitioned(conns /* connections */,
 "name"/* key */,

Chapter 5
Managing Text Indexing for Property Graph Data

5-53

 "*" /* value */,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */

// Do not close the connections to the subdirectories after completion,
// because those connections are used by the LuceneIndex object itself.
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCount);

Parallel Text Search Using SolrCloud

You can use parallel text query using SolrCloud by calling the method getPartitioned
in SolrIndex, specifying an array of connections to SolrCloud (CloudSolrServer objects),
the key/value pair to search, and the starting shard ID.

The following code fragment generates an automatic text index using the SolrCloud
Search engine and executes a parallel text query. The number of calls to the
getPartitioned method in the SolrIndex class is controlled by the total number of
shards in the index and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

String configName = "opgconfig";
String solrServerUrl = args[4];//"localhost:2181/solr"
String solrNodeSet = args[5]; //"localhost:8983_solr";

int zkTimeout = 15; // zookeeper timeout in seconds
int numShards = Integer.parseInt(args[6]); // number of shards in the index
int replicationFactor = 1; // replication factor
int maxShardsPerNode = 1; // maximum number of shards per node

// Create an automatic index using SolrCloud
OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout /* zookeeper timeout in seconds */,
 numShards /* total number of shards */,
 replicationFactor /* Replication factor */,
 maxShardsPerNode /* maximum number of shardsper node*/,
 4 /* dop used for scan */,
 10000 /* batch size before commit*/,
 500000 /* commit size before SolrCloud commit*/,
 15 /* write timeout in seconds */);

opg.setDefaultIndexParameters(indexParams);

Chapter 5
Managing Text Indexing for Property Graph Data

5-54

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name for vertices");
opg.createKeyIndex("name", Vertex.class);

// Get the SolrIndex object
SearcherManager[] conns = new SearcherManager[dop];
SolrIndex<Vertex> index = (SolrIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Open an array of connections to handle connections to SolrCloud needed for
parallel text search
CloudSolrServer[] conns = new CloudSolrServer[dop];

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getCloudSolrServer(15 /* write timeout in
secs*/);
}

// Iterate to cover all the shards in the index
long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
// Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 "name"/* key */,
 "*" /* value */,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */
}

// Close the connections to the subdirectories after completed
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].shutdown();
}

// Count results
System.out.println("Vertices found using parallel query: " + lCount);

5.5.9 Using Native Query Objects on Text Indexes for Property Graph
Data

Using Query objects directly is for advanced users, enabling them to take full
advantage of the underlying query capabilities of the text search engine (Apache
Lucene or SolrCloud). For example, you can add constraints to text searches, such as
adding a boost to the matching scores and adding sorting clauses.

Using text searches with Query objects will produce an Iterable object holding all the
vertices (or edges) with an attribute (or set of attributes) matching the text query while
satisfying the constraints. This approach will automatically rank the results based on
their matching score.

To build the clauses in the query body, you may need to consider the data type used
by the key/value pair to be matched, as well as the configuration of the search engine
used. For more information about building a search term, see Handling Data Types.

Chapter 5
Managing Text Indexing for Property Graph Data

5-55

Using Native Query Objects with Apache Lucene

You can use native query objects using Apache Lucene by calling the method
get(Query) in LuceneIndex. You can also use parallel text query with native query
objects by calling the method getPartitioned(SearcherManager[], Query, int) in
LuceneIndex specifying an array of connections to a set of subdirectories
(SearcherManager objects), the Lucene query object, and the starting subdirectory ID.
Each connection must be linked to the appropriate subdirectory, because each
subdirectory is independent of the rest of the subdirectories in the index.

The following code fragment generates an automatic text index using Apache Lucene
Search engine, creates a Lucene Query, and executes a parallel text query. The
number of calls to the getPartitioned method in the LuceneIndex class is controlled by
the total number of subdirectories and the number of connections used.

import oracle.pg.text.lucene.LuceneIndex;
import org.apache.lucene.search.*;
import org.apache.lucene.index.*;

...

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(dop /* number of
directories */,
dop /* number of connections
used when indexing */,
10000 /* batch size before commit*/,
500000 /* commit size before Lucene commit*/,
true /* enable datatypes */,
"./lucene-index" /* index location */);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name and country properties for all vertices
System.out.println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];
indexedKeys[0]="name";
indexedKeys[1]="country";
opg.createKeyIndex(indexedKeys, Vertex.class);

// Get the LuceneIndex object
LuceneIndex<Vertex> index = (LuceneIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Search first for Key name with property value Beyon* using only string
//data types
Term term = index.buildSearchTermObject("name", "Beyo*", String.class);

Chapter 5
Managing Text Indexing for Property Graph Data

5-56

Query queryBey = new WildcardQuery(term);

// Add another condition to query all the vertices whose country is
//"United States"
String key = index.appendDatatypesSuffixToKey("country", String.class);
String value = index.appendDatatypesSuffixToValue("United States", String.class);

Query queryCountry = new PhraseQuery();
StringTokenizer st = new StringTokenizer(value);
while (st.hasMoreTokens()) {
 queryCountry.add(new Term(key, st.nextToken()));
};

//Concatenate queries
BooleanQuery bQuery = new BooleanQuery();
bQuery.add(queryBey, BooleanClause.Occur.MUST);
bQuery.add(queryCountry, BooleanClause.Occur.MUST);

long lCount = 0;
SearcherManager[] conns = new SearcherManager[dop];
for (int split = 0; split < index.getTotalShards(); split += conns.length) {
 // Gets a connection object from subdirectory split to
 //(split + conns.length). Skip the cache so we clone the connection and
 // avoid using the connection used by the index.
 for (int idx = 0; idx < conns.length; idx++) {
 conns[idx] = index.getOracleSearcherManager(idx + split,
 true /* skip looking in the
cache*/
);
 }

 // Gets elements from split to split + conns.length
 Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 bQuery,
 split /* start split ID */);

 lCount = countFromIterables(iterAr); /* Consume iterables in parallel */

 // Do not close the connections to the sub-directories after completed,
 // as those connections are used by the index itself

}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCount);

Using Native Query Objects withSolrCloud

You can directly use native query objects against SolrCloud by calling the method
get(SolrQuery) in SolrIndex. You can also use parallel text query with native query
objects by calling the method getPartitioned(CloudSolrServer[],SolrQuery,int) in
SolrIndex specifying an array of connections to SolrCloud (CloudSolrServer objects),
the SolrQuery object, and the starting shard ID.

The following code fragment generates an automatic text index using the Apache
SolrCloud Search engine, creates a SolrQuery object, and executes a parallel text
query. The number of calls to the getPartitioned method in the SolrIndex class is
controlled by the total number of subdirectories and the number of connections used.

import oracle.pg.text.solr.*;
import org.apache.solr.client.solrj.*;

Chapter 5
Managing Text Indexing for Property Graph Data

5-57

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

String configName = "opgconfig";
String solrServerUrl = args[4];//"localhost:2181/solr"
String solrNodeSet = args[5]; //"localhost:8983_solr";

int zkTimeout = 15; // zookeeper timeout in seconds
int numShards = Integer.parseInt(args[6]); // number of shards in the index
int replicationFactor = 1; // replication factor
int maxShardsPerNode = 1; // maximum number of shards per node

// Create an automatic index using SolrCloud
OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout /* zookeeper timeout in seconds */,
 numShards /* total number of shards */,
 replicationFactor /* Replication factor */,
 maxShardsPerNode /* maximum number of shardsper node*/,
 4 /* dop used for scan */,
 10000 /* batch size before commit*/,
 500000 /* commit size before SolrCloud commit*/,
 15 /* write timeout in seconds */
);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];
indexedKeys[0]="name";
indexedKeys[1]="country";
opg.createKeyIndex(indexedKeys, Vertex.class);

// Get the SolrIndex object
SolrIndex<Vertex> index = (SolrIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Search first for Key name with property value Beyon* using only string
//data types
String szQueryStrBey = index.buildSearchTerm("name", "Beyo*", String.class);
String key = index.appendDatatypesSuffixToKey("country", String.class);
String value = index.appendDatatypesSuffixToValue("United States", String.class);

String szQueryStrCountry = key + ":" + value;
Solrquery query = new SolrQuery(szQueryStrBey + " AND " + szQueryStrCountry);

//Query using get operation
index.get(query);

Chapter 5
Managing Text Indexing for Property Graph Data

5-58

// Open an array of connections to handle connections to SolrCloud needed
// for parallel text search
CloudSolrServer[] conns = new CloudSolrServer[dop];

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getCloudSolrServer(15 /* write timeout in
secs*/);
}

// Iterate to cover all the shards in the index
long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
// Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 query,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */
}

// Close the connections to SolCloud after completion
for (int idx = 0; idx < conns.length; idx++) {
 conns[idx].shutdown();
}

// Count results
System.out.println("Vertices found using parallel query: " + lCount);

5.5.10 Using Native Query Results on Text Indexes for Property Graph
Data

Using native query results directly into property graph data enables users to take full
advantage of the querying capabilities of the text search engine (Apache Lucene or
SolrCloud). This way, users can execute different type of queries (like Faceted
queries) on the text engine and parse the retrieved results into vertices (or edges)
objects.

Using text searches with Query results will produce an Iterable object holding all the
vertices (or edges) from the given result object. This approach will automatically rank
the results based on their result set order.

To execute the search queries directly into Apache Lucene or SolrCloud index, you
may need to consider the data type used by the key/value pair to be matched, as well
as the configuration of the search engine used. For more information about building a
search term, see Handling Data Types.

• Using Native Query Results with Apache Lucene

• Using Native Query Results with SolrCloud

Using Native Query Results with Apache Lucene

You can use native query results using Apache Lucene by calling the
method get(TopDocs) in LuceneIndex. A TopDocs object provides a set of Documents
matching a text search query over a specific Apache Lucene directory. LuceneIndex will

Chapter 5
Managing Text Indexing for Property Graph Data

5-59

produce an Iterable object holding all the vertices (or edges) from the documents
found in the TopDocs object.

Oracle property graph text indexes using Apache Lucene are created using multiple
Apache Lucene directories. Indexed vertices and edges are spread among the
directories to enhance storage scalability and query performance. If you need to
execute a query against all the data in the property graph’s text index, execute the
query against each Apache Lucene directory. You can easily get the IndexSearcher
object associated to a directory by using the API getOracleSearcher in LuceneIndex.

The following code fragment generates an automatic text index using the Apache
Lucene Search engine, creates a Lucene Query and executes it against an
IndexSearcher object to get a TopDocs object. Later, an Iterable object of vertices is
created from the given result object.

import oracle.pg.text.lucene.LuceneIndex;
import org.apache.lucene.search.*;
import org.apache.lucene.index.*;

...

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 …);

// Create an automatic index
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(dop /* number of
directories */,
dop /* number of connections
used when indexing */,
10000 /* batch size before commit*/,
500000 /* commit size before Lucene commit*/,
true /* enable datatypes */,
"./lucene-index" /* index location */);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name and country properties for all vertices
System.out.println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];
indexedKeys[0]="name";
indexedKeys[1]="country";
opg.createKeyIndex(indexedKeys, Vertex.class);

// Get the LuceneIndex object
LuceneIndex<Vertex> index = (LuceneIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Search first for Key name with property value Beyon* using only string
//data types
Term term = index.buildSearchTermObject("name", "Beyo*", String.class);
Query queryBey = new WildcardQuery(term);

// Add another condition to query all the vertices whose country is
//"United States"
String key = index.appendDatatypesSuffixToKey("country", String.class);
String value = index.appendDatatypesSuffixToValue("United States", String.class);

Query queryCountry = new PhraseQuery();
StringTokenizer st = new StringTokenizer(value);
while (st.hasMoreTokens()) {
 queryCountry.add(new Term(key, st.nextToken()));
};

Chapter 5
Managing Text Indexing for Property Graph Data

5-60

//Concatenate queries
BooleanQuery bQuery = new BooleanQuery();
bQuery.add(queryBey, BooleanClause.Occur.MUST);
bQuery.add(queryCountry, BooleanClause.Occur.MUST);

// Get the IndexSearcher object needed to execute the query.
// The index searcher object is mapped to a single Apache Lucene directory
SearcherManager searcherMgr =
 index.getOracleSearcherManager(0, true /* skip looking in the cache*/);
IndexSearcher indexSearcher = searcherMgr.acquire();
// search for the first 1000 results in the current index directory 0
TopDocs docs = index.search(bQuery, 1000);

long lCount = 0;
Iterable<Vertex> it = index.get(docs);

while (it.hasNext()) {
 System.out.println(it.next());
 lCount++;
}
System.out.println("Vertices found: "+ lCount);

Using Native Query Results with SolrCloud

You can use native query results using SolrCloud by calling the
method get(QueryResponse) in SolrIndex. A QueryResponse object provides a set of
Documents matching a text search query over a specific SolrCloud collection.
SolrIndex will produce an Iterable object holding all the vertices (or edges) from the
documents found in the QueryResponse object.

The following code fragment generates an automatic text index using the Apache
SolrCloud Search engine, creates a SolrQuery object, and executes it against a
CloudSolrServer object to get a QueryResponse object. Later, an Iterable object of
vertices is created from the given result object.

import oracle.pg.text.solr.*;
import org.apache.solr.client.solrj.*;

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 …);

String configName = "opgconfig";
String solrServerUrl = args[4];//"localhost:2181/solr"
String solrNodeSet = args[5]; //"localhost:8983_solr";

int zkTimeout = 15; // zookeeper timeout in seconds
int numShards = Integer.parseInt(args[6]); // number of shards in the index
int replicationFactor = 1; // replication factor
int maxShardsPerNode = 1; // maximum number of shards per node

// Create an automatic index using SolrCloud
OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout /* zookeeper timeout in seconds */,
 numShards /* total number of shards */,
 replicationFactor /* Replication factor */,
 maxShardsPerNode /* maximum number of shardsper node*/,

Chapter 5
Managing Text Indexing for Property Graph Data

5-61

 4 /* dop used for scan */,
 10000 /* batch size before commit*/,
 500000 /* commit size before SolrCloud commit*/,
 15 /* write timeout in seconds */
);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];
indexedKeys[0]="name";
indexedKeys[1]="country";
opg.createKeyIndex(indexedKeys, Vertex.class);

// Get the SolrIndex object
SolrIndex<Vertex> index = (SolrIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Search first for Key name with property value Beyon* using only string
//data types
String szQueryStrBey = index.buildSearchTerm("name", "Beyo*", String.class);
String key = index.appendDatatypesSuffixToKey("country", String.class);
String value = index.appendDatatypesSuffixToValue("United States", String.class);

String szQueryStrCountry = key + ":" + value;
Solrquery query = new SolrQuery(szQueryStrBey + " AND " + szQueryStrCountry);

CloudSolrServer conn = index.getCloudSolrServer(15 /* write timeout in
secs*/);

//Query using get operation
QueryResponse qr = conn.query(query, SolrRequest.METHOD.POST);
Iterable<Vertex> it = index.get(qr);

long lCount = 0;

while (it.hasNext()) {
 System.out.println(it.next());
 lCount++;
}

System.out.println("Vertices found: "+ lCount);

5.6 Querying Property Graph Data Using PGQL
Oracle Big Data Spatial and Graph supports a rich set of graph pattern matching
capabilities.

It provides a SQL-like declarative language called PGQL (Property Graph Query
Language), which allows you to express a graph query pattern that consists of vertices
and edges, and constraints on the properties of the vertices and edges. For detailed
information, see the following:

• PGQL specification: https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-
specification.html

An example property graph query is as follows. It defines a graph pattern inspired by
the famous ancient proverb: The enemy of my enemy is my friend. In this example,
variables x, y, z are used for vertices, and variables e1, e2 are used for edges. There is

Chapter 5
Querying Property Graph Data Using PGQL

5-62

https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-specification.html
https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-specification.html

a constraint on the edge label, and the query returns (projects) the value of the name
property of vertices x and y.

SELECT x.name, z.name
WHERE
 x -[e1:'feuds']-> y,
 y -[e2:'feuds']-> z

For the preceding query to run successfully, set the required flags to read the edge
labels, in addition to vertex/edge properties, when constructing the in-memory graph.
An example graph configuration for Oracle NoSQL Database is as follows:

cfg =
GraphConfigBuilder.setName(...) .hasEdgeLabel(true).setLoadEdgeLabel(true)
.addEdgeProperty(...).build();

You can run the query either in a Groovy shell environment or from Java. For example,
to run the preceding query from the Groovy shell for Apache HBase or Oracle NoSQL
Database, you can first read the graph from the database into the in-memory analyst,
get an in-memory graph, and invoke the queryPgql function.

// Read graph data from a backend database into memory
// Note that opg is an instance of OraclePropertyGraph class
opg-hbase> G = session.readGraphWithProperties(opg.getConfig());
opg-hbase>

resultSet = G.queryPgql("SELECT x.name, z.name WHERE x -[e1 WITH label = 'feuds']->
y, y -[e2 WITH label = 'feuds']-> z")

To get the type and variable name of the first projected variable in the result set, you
can enter the following:

opg-hbase> resultElement = resultElements.get(0)
opg-hbase> type = resultElement.getElementType() // STRING
opg-hbase> varName = resultElement.getVarName() // x.name

You can also iterate over the result set. For example:

opg-hbase> resultSet.getResults().each { \
 // the variable 'it' is implicitly declared to references each PgqlResult
instance
 }

Finally, you can display (print) results. For example, to display the first 10 rows:

opg-hbase> resultSet.print(10) // print the first 10 results

See Also:

Using Pattern-Matching Queries with Graphs for examples of using PGQL to
issue pattern-matching queries against in-memory graphs

Chapter 5
Querying Property Graph Data Using PGQL

5-63

5.7 Using Apache Spark with Property Graph Data
Apache Spark lets you process large amounts of data efficiently, and it comes with a
set of libraries for processing data: SQL, MLlib, Spark Streaming, and DataFrames,
Apache Spark can read data from different sources, such as HDFS, Oracle NoSQL
Database, and Apache HBase.

A set of helper methods is provided for running Apache Spark jobs against graph data
stored in Oracle NoSQL Database or Apache HBase. This way, you can easily load a
graph into an Apache Spark-based application in order to query the information using
Spark SQL or to run functions provided in MLlib.

The interface SparkUtilsBase provides a set of methods to gather all the information of
a vertex (or edge) stored in the vertex and edge tables. This information includes a
vertex (or edge) identifier, its property names and values, as well as label, incoming
and outgoing vertices for edges only. SparkUtils uses Spark version 1.6 (included in
CDH 5.7 and 5.9).

SparkUtilsBase includes the following methods to transform the data from the backend
tables into graph information:

• getGraphElementReprOnDB(dbObj): Obtains the database representation of a vertex
(or an edge) stored in a backend database.

• getElementID(Object graphElementReprOnDB): Obtains the graph element (vertex or
edge) ID.

• getPropertyValue(Object graphElementReprOnDB, String key): Gets the property
value of a graph element for a given property key.

• getPropertyNames(Object graphElementReprOnDB): Returns the set of property names
from a given graph element representation from the back-end database.

• isElementForVertex(Object graphElementReprOnDB): Verifies if the given graph
element object obtained from a database result is a representation of a vertex.

• isElementForEdge(Object graphElementReprOnDB): Verifies if the given graph element
object obtained from a database result is a representation of a vertex.

• getInVertexID(Object graphElementReprOnDB): Obtains the incoming vertex ID from
database representation of an edge.

• getOutVertexID(Object graphElementReprOnDB): Obtains the outgoing vertex ID from
database representation of an edge.

• getEdgeLabel(Object graphElementReprOnDB): Obtains the edge label from database
representation of an edge.

• Using Apache Spark with Property Graph Data in Apache HBase

• Integrating Apache Spark with Property Graph Data Stored in Oracle NoSQL
Database

5.7.1 Using Apache Spark with Property Graph Data in Apache HBase
The oracle.pg.hbase.SparkUtils class includes methods to gather the information
about a vertex (or an edge) represented as a row in the <graph_name>VT. (or
<graph_name>GE.) tables stored in Apache HBase. In Apache HBase, when

Chapter 5
Using Apache Spark with Property Graph Data

5-64

scanning a table, each row has a corresponding
org.apache.hadoop.hbase.client.Result object.

To use SparkUtils to run an Apache Spark job against a property graph, you must first
load the graph data into two Apache Spark RDD objects. This requires you to create
sc, a Spark context of your application. The following example creates a Spark context
object:

import org.apache.spark.SparkContext.*;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import oracle.pg.hbase.SparkUtils;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.conf.Configuration;

SparkContext sc = new SparkContext(new SparkConf().setAppName("Example")
 .setMaster("spark://localhost:
7077"));

Using this context, you can easily get an RDD out of a Hadoop file by invoking the
newAPIHadoopRDD method. To do so, you must first create the Hadoop Configuration
objects to access the vertices and edges tables stored in Apache HBase. A
Configuration object specifies the parameters used to connect to Apache HBase, such
as the Zookeeper quorum, Zookeper Client port, and table name. This Configuration
object is used by the newAPIHadoopRDD together with the InputFormat and the classes of
its keys and values. The result of this method will be an RDD of type
RDD[(ImmutableBytesWritable, Result)].

The following example creates a Configuration object to connect to Apache HBase
and read the vertex table of the graph. Assume that socialNetVT. is the name of the
Apache HBase table containing information about the vertices of a graph. Later you
will use this configuration to get an RDD from the vertex table:

Configuration hBaseConfVertices = HBaseConfiguration.create();
hBaseConfVertices.set(TableInputFormat.INPUT_TABLE, "socialNetVT.")
hBaseConfVertices.set("hbase.zookeeper.quorum", "node041,node042,node043")
hBaseConfVertices.set("hbase.zookeeper.port", "2181")

JavaPairRDD<ImmutableBytesWritable,Result> bytesResultVertices =
sc.newAPIHadoopRDD(hBaseConfVertices,
 TableInputFormat.class,
 ImmutableBytesWritable.class,
 Result.class)

Similarly, the following example creates a Configuration object to connect to the edge
table stored in Apache HBase and get an RDD for the table's rows. Note that
socialNetGE. is the name of the table containing the edges definition.

Configuration hBaseConfEdges = HBaseConfiguration.create();
hBaseConfEdges.set(TableInputFormat.INPUT_TABLE, "socialNetGE.")
hBaseConfEdges.set("hbase.zookeeper.quorum", "node041,node042,node043")
hBaseConfEdges.set("hbase.zookeeper.port", "2181")

JavaPairRDD<ImmutableBytesWritable,Result> bytesResultEdges =
sc.newAPIHadoopRDD(hbaseConfEdges,

Chapter 5
Using Apache Spark with Property Graph Data

5-65

 TableInputFormat.class,
 ImmutableBytesWritable.class,
 Result.class)

Each Result object contains the attributes of each node and edge of graph, so you
must apply some transformation to these RDDs in order to extract that information.
oracle.pg.hbase.SparkUtils implements several methods that help you define such
transformations.

For example, you can define transformations extracting each vertex attribute value
from a Result object to create an object instance of MyVertex, a Java bean class storing
ID and name of a vertex. The following example defines method res2vertex that uses
SparkUtils for extracting the identifier and name key/value pairs from a given Result
object representing a vertex.

public static MyVertex res2vertex(Result res) throws Exception
{
SparkUtils su = SparkUtils.getInstance();
 Object dbRepr = su.getGraphElementReprOnDB(res);
 long id = su.getElementId(dbRepr);
 String name = (String)su.getPropertyValue(dbRepr, "name");
 return new MyVertex(id,name);
}

The method getGraphElemetReprOnDB returns a graph element representation stored in
Apache HBase and throws an IllegalArgumentException exception if its parameter is
null or a non-instance of corresponding class. This representation is database specific
(available only on Apache HBase) and the return value should only be consumed by
other APIs defined in the interface. For the case of Apache HBase, dbRepr is a non-null
instance of Result class. Once you have a database representation object, you can
pass it as a parameter of any of the other methods defined in the interface.

The method getElementId returns the ID of a vertex and method getPropertyValue
retrieves attribute value name from object dbRepr.. Exceptions IOException and
java.text.ParseException are thrown if incorrect parameters are passed in.

The following example defines a method res2edge that uses SparkUtils to extract the
identifier, label, and incoming/outgoing vertices from a given Result object
representing an edge.

public static MyEdge res2Edge(Result res) throws Exception
{
SparkUtils su = SparkUtils.getInstance();
 Object dbRepr = su.getGraphElementReprOnDB(res);
 long rowId = su.getElementId(dbRepr);
 String label = (String)su.getEdgeLabel(dbRepr);
 long inVertex = (long)su.getInVertexId(dbRepr);
 long outVertex = (long)su.getOutVertexId(dbRepr);
 return new MyEdge(rowId,inVertex,outVertex,label);
}

Once you have these transformations, you can map them on the values set of
bytesResultVertices and bytesResultEdges. For example:

JavaRDD<Result> resultVerticesRDD = bytesResult.values();
JavaRDD<Vertex> nodesRDD = resultVerticesRDD.map(result ->
MyConverters.res2vertex(result));
JavaRDD<Result> resultEdgesRDD = bytesResultEdges.values();
JavaRDD<Edge> edgesRDD = resultEdgesRDD.map(result -> MyConverters.res2Edge(result));

Chapter 5
Using Apache Spark with Property Graph Data

5-66

In your Spark application, you can then start working on nodesRDD and edgesRDD.
For example, you can create corresponding data frames to execute a Spark SQL
query. The following example creates a SQL Context, gets two data frames from the
nodesRDD and edgesRDD, and runs a query to get all friends of a vertex with ID 1:

SQLContext sqlCtx = new SQLContext(sc);
DataFrame verticesDF = sqlCtx.createDataFrame(verticesRDD);
verticesDF.registerTempTable("VERTICES_TABLE");

DataFrame edgesDF = sqlCtx.createDataFrame(edgesRDD);
edgesDF.registerTempTable("EDGES_TABLE");

sqlCtx.sql("select name from (select target from EDGES_TABLE WHERE source = 1)
REACHABLE
left join VERTICES_TABLE on VERTICES_TABLE.id = REACHABLE.target ").show();

Note that case classes MyVertex and MyEdge play an important role here because Spark
uses them to find the data frame’s column names.

In addition to reading out graph data directly from Apache HBase and performing
operations on the graph in Apache Spark, you can use the in-memory analyst to
analyze graph data in Apache Spark, as explained in Using the In-Memory Analyst to
Analyze Graph Data in Apache Spark.

5.7.2 Integrating Apache Spark with Property Graph Data Stored in
Oracle NoSQL Database

The oracle.pg.nosql.SparkUtils class includes methods to gather the information of a
vertex (or an edge) represented as a row in the <graph_name>VT_ (or
<graph_name>GE_) tables stored in Oracle NoSQL Database. In Oracle NoSQL
Database, when a table is scanned, each row in the table has a corresponding
oracle.kv.table.Row object.

To use SparkUtils to run an Apache Spark job against a property graph, you must first
load the graph data into two Apache Spark RDD objects. This requires you to create
sc, a Spark context of your application. The following example describes how to create
a Spark context object:

import java.io.*;
import org.apache.spark.SparkContext.*;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import oracle.kv.hadoop.table.TableInputFormat;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import org.apache.hadoop.conf.Configuration;

SparkConf sparkConf = new SparkConf().setAppName("Testing
SparkUtils").setMaster(“local”);

JavaSparkContext sc = new JavaSparkContext(sparkConf);

Using this context, you can easily get an RDD out of a Hadoop file by invoking the
newAPIHadoopRDD method. To create RDDs, you must first create the Hadoop

Chapter 5
Using Apache Spark with Property Graph Data

5-67

Configuration objects to access the vertices and edges tables stored in Oracle NoSQL
Database. This Configuration object is used by the newAPIHadoopRDD together with the
InputFormat and the classes of its keys and values. The result of this method will be an
RDD of type RDD[(PrimaryKey, Row)].

The following example creates a Configuration object to connect to Oracle NoSQL
Database and read the vertex table of the graph. Assume that socialNetVT_ is the
name of the table containing the vertices information of a graph. Later, you will use this
configuration to get an RDD from the vertex table.

 Configuration noSQLNodeConf = new Configuration();
 noSQLNodeConf.set("oracle.kv.kvstore", "kvstore");
 noSQLNodeConf.set("oracle.kv.tableName", “socialNetVT_”);
 noSQLNodeConf.set("oracle.kv.hosts", "localhost:5000");

Similarly, the following example creates a Configuration object to connect to the edge
table stored in Oracle NoSQL Database and get an RDD for the table's rows. Note that
socialNetGE_ is the name of the table containing the edges data.

 Configuration noSQLEdgeConf = new Configuration();
 noSQLEdgeConf.set("oracle.kv.kvstore", "kvstore");
 noSQLEdgeConf.set("oracle.kv.tableName", “socialNetGE_”);
 noSQLEdgeConf.set("oracle.kv.hosts", "localhost:5000");

JavaPairRDD<PrimaryKey,Row> bytesResultVertices = sc.newAPIHadoopRDD(noSQLNodeConf,
 oracle.kv.hadoop.table.TableInputFormat.class,PrimaryKey.class,
Row.class);

JavaPairRDD<PrimaryKey,Row> bytesResultEdges = sc.newAPIHadoopRDD(noSQLEdgeConf,
 oracle.kv.hadoop.table.TableInputFormat.class,
 PrimaryKey.class, Row.class);

Because a Row object may contain one or multiple attributes of a vertex or an edge of
the graph, you must apply some transformations to these RDDs in order to get the
relevant information out. oracle.pg.nosql.SparkUtils implements several methods that
help you define such transformations.

For example, you can define a transformation that extracts vertex property values from
a Result object and creates an object instance of MyVertex, a Java bean class storing
the ID and name of a vertex. The following example defines the method res2vertex
that uses SparkUtils for extracting the identifier and name key/value pairs from a given
Row object representing a vertex.

public static MyVertex res2vertex(Row res) throws Exception
{
 SparkUtils su = SparkUtils.getInstance();
 Object dbRepr = su.getGraphElementReprOnDB(res);
 long id = su.getElementId(dbRepr);
 String name = (String)su.getPropertyValue(dbRepr, "name");
 return new MyVertex(id,name);
}

The method getGraphElemetReprOnDB returns a graph element representation stored in
Oracle NoSQL Database and throws an IllegalArgumentException exception in case its
parameter is null or a non-instance of a corresponding class. This representation is
database-specific, and the return value should only be consumed by other APIs
defined in the interface. For Oracle NoSQL Database, dbRepr is a non-null instance of
the Row class. After you have a database representation object, you can pass it as a
parameter of any of the other methods defined in the interface.

Chapter 5
Using Apache Spark with Property Graph Data

5-68

The method getElementId returns the ID of a vertex, and the method getPropertyValue
retrieves attribute value “name” from object dbRepr. Exceptions IOException and
java.text.ParseException are thrown when incorrect parameters are passed in.

Similarly, you can define a transformation to create an object instance of MyEdge from a
Row object, using a Java bean class that stores the ID, label, and incoming/outgoing
vertices ID values. The following example defines a method res2edge that uses
SparkUtils to extract the identifier, label and in/out vertex IDs from a given Row object
representing an edge.

public static MyEdge res2Edge(Row res) throws Exception
{
 SparkUtils su = SparkUtils.getInstance();
 Object dbRepr = su.getGraphElementReprOnDB(res);
 long rowId = su.getElementId(dbRepr);
 String label = (String)su.getEdgeLabel(dbRepr);
 long inVertex = (long)su.getInVertexId(dbRepr);
 long outVertex = (long)su.getOutVertexId(dbRepr);
 return new MyEdge(rowId,inVertex,outVertex,label);
}

After you have these transformations, you can map them on the values set of
bytesResultVertices and bytesResultEdges:

JavaRDD<Row> resultVerticesRDD = bytesResult.values();
JavaRDD<Vertex> nodesRDD = resultVerticesRDD.map(result ->
MyConverters.res2vertex(result));
JavaRDD<Row> resultEdgesRDD = bytesResultEdges.values();
JavaRDD<Edge> edgesRDD = resultEdgesRDD.map(result -> MyConverters.res2Edge(result));

After the preceding steps, you can start working on nodesRDD and edgesRDD. For
example, you can create corresponding data frames to execute Spark SQL queries.
The following example creates a SQL Context, gets two data frames from the nodesRDD
and edgesRDD, and runs a query to get all friends of a vertex with ID 1:

SQLContext sqlCtx = new SQLContext(sc);
DataFrame verticesDF = sqlCtx.createDataFrame(verticesRDD);
verticesDF.registerTempTable("VERTICES_TABLE");

DataFrame edgesDF = sqlCtx.createDataFrame(edgesRDD);
edgesDF.registerTempTable("EDGES_TABLE");

sqlCtx.sql("select name from (select target from EDGES_TABLE WHERE source = 1)
REACHABLE
left join VERTICES_TABLE on VERTICES_TABLE.id = REACHABLE.target ").show();

Note that case classes MyVertex and MyEdge play an important role here, because
Spark uses them in order to determine the data frame’s column names.

In addition to reading out graph data directly from Oracle NoSQL Database and
performing operations on the graph in Apache Spark, you can use the in-memory
analyst to analyze graph data in Apache Spark, as explained in Using the In-Memory
Analyst to Analyze Graph Data in Apache Spark.

5.8 Support for Secure Oracle NoSQL Database
Oracle Big Data Spatial and Graph property graph support works with both secure and
non-secure Oracle NoSQL Database installations. This topic provides information

Chapter 5
Support for Secure Oracle NoSQL Database

5-69

about how to use property graph functions with a secure Oracle NoSQL Database
setup.

It assumes that a secure Oracle NoSQL Database is already installed (a process
explained in "Performing a Secure Oracle NoSQL Database Installation" in the Oracle
NoSQL Database Security Guide at http://docs.oracle.com/cd/NOSQL/html/
SecurityGuide/secure_installation.html).

You must have the correct credentials to access the secure database. Create a user
such as the following:

kv-> plan create-user -name myusername -admin -wait

Grant this user the readwrite and dbaadmin roles. For example:

kv-> plan grant -user myusername -role readwrite -wait
kv-> plan grant -user myusername -role dbadmin -wait

When generating the login_properties.txt from the file client.security, make sure
the user name is correct. For example:

oracle.kv.auth.username=myusername

On Oracle property graph client side, you must have the security-related files and
libraries to interact with the secure Oracle NoSQL Database. First, copy these files (or
directories) from KVROOT/security/ to the client side:

client.security
client.trust
login.wallet/
login_properties.txt

If Oracle Wallet is used to hold passwords that are needed for accessing the secure
database, copy these three libraries to the client side and set the class path correctly:

oraclepki.jar
osdt_cert.jar
osdt_core.jar

After configuring the database and Oracle property graph client side correctly, you can
connect to a graph stored in Secure NoSQL Database using either one of the following
two approaches.

• Specify the login properties file, using a Java VM setting with the following format:

-Doracle.kv.security=/<your-path>/login_properties.txt

You can also set this Java VM property for applications deployed into a J2EE
container (including in-memory analytics). For example, before starting WebLogic
Server, you can set an environment variable in the following format to refer to the
login properties configuration file:

setenv JAVA_OPTIONS "-Doracle.kv.security=/<your-path>/login_properties.txt"

Then you can call OraclePropertyGraph.getInstance(kconfig, szGraphName) as
usual to create an OraclePropertyGraph instance.

• Call OraclePropertyGraph.getInstance(kconfig, szGraphName, username, password,
truStoreFile), where username and password are the correct credentials to access
secure Oracle NoSQL Database, and truStoreFile is the path to the client side
trust store file client.trust.

Chapter 5
Support for Secure Oracle NoSQL Database

5-70

http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html
http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html

The following code fragment creates a property graph in a Secure Oracle NoSQL
Database, loads the data, and then counts how many vertices and edges in the
graph:

// This object will handle operations over the property graph
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(kconfig,
szGraphName,
username,
password,
truStoreFile);

// Clear existing vertices/edges in the property graph
opg.clearRepository();
opg.setQueueSize(100); // 100 elements

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
// This object will handle parallel data loading over the property graph
System.out.println("Load data for graph " + szGraphName);
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);
// Count all vertices
long countV = 0;
Iterator<Vertex> vertices = opg.getVertices().iterator();
while (vertices.hasNext()) {
vertices.next();
countV++;
}

System.out.println("Vertices found: " + countV);
// Count all edges
long countE = 0;
Iterator<Edge> edges = opg.getEdges().iterator();
while (edges.hasNext()) {
edges.next();
countE++;
}

System.out.println("Edges found: " + countE);

5.9 Implementing Security on Graphs Stored in Apache
HBase

Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

Oracle's property graph support works with both secure and non-secure Cloudera
Hadoop (CDH) cluster installations. This topic provides information about secure
Apache HBase installations.

Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

This topic assumes that a secure Apache HBase is already configured with Kerberos,
that the client machine has the Kerberos libraries installed and that you have the
correct credentials. For detailed information, see "Configuring Kerberos Authentication
for HBase" at: http://www.cloudera.com/content/cloudera/en/documentation/core/

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

5-71

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html

latest/topics/cdh_sg_hbase_authentication.html. For information about how to set up
your Kerberos cluster and clients, see the MIT Kerberos Documentation at http://
web.mit.edu/kerberos/krb5-latest/doc/index.html.

On the client side, you must have a Kerberos credential to interact with the Kerberos-
enabled HDFS daemons. Additionally, you need to modify the Kerberos configuration
information (located in krb5.conf) to include the realm and mappings of hostnames
onto Kerberos realms used in the Secure CDH Cluster.

The following code fragment shows the realm and hostname mapping used in a
Secure CDH cluster on BDA.COM:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes

[realms]
 EXAMPLE.COM = {
kdc = hostname1.example.com:88
kdc = hostname2.example.com:88
admin_server = hostname1.example.com:749
default_domain = example.com
 }
BDA.COM = {
kdc = hostname1.bda.com:88
kdc = hostname2.bda.com:88
admin_server = hostname1.bda.com:749
default_domain = bda.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .bda.com = BDA.COM
 bda.com = BDA.COM

After modifying krb5.conf, you can connect to a graph stored in Apache HBase by
using a Java Authentication and Authorization Service (JAAS) configuration file to
provide your credentials to the application. This provides the same capabilities of the
preceding example without having to modify a single line of your code in case you
already have an application that uses an insecure Apache HBase installation.

To use property graph support for for HBase with a JAAS configuration, create a file
with content in the following form, replacing the keytab and principal entries with your
own information:

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
useTicketCache=true
keyTab="/path/to/your/keytab/user.keytab"
principal="your-user/your.fully.qualified.domain.name@YOUR.REALM";
};

The following code fragment shows an example JAAS file with the realm used in a
Secure CDH cluster on BDA.COM:

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

5-72

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
useTicketCache=true
keyTab="/path/to/keytab/user.keytab"
principal="hbaseuser/hostname1@BDA.COM";
};

In order to run your Secure HBase application you must specify the JAAS
configuration file you created by using the java.security.auth.login.config flag. You can
run your application using a command in the following format:

java -Djava.security.auth.login.config=/path/to/your/jaas.conf/ -classpath ./
classes/:../../lib/'*' YourJavaApplication

Then, you can call OraclePropertyGraph.getInstance(conf, hconn, szGraphName) as
usual to create an Oracle property graph.

Another option to use the Oracle Big Data Spatial and Graph property graph support
on a secure Apache HBase installation is to use a secure HBase configuration. The
following code fragment shows how to obtain a secure HBase configuration using
prepareSecureConfig(). This API requires the security authentication setting used in
Apache Hadoop and Apache HBase, as well as Kerberos credentials set to
authenticate and obtain an authorized ticket.

The following code fragment creates a property graph in a Secure Apache HBase,
loads the data, and then counts how many vertices and edges in the graph.

String szQuorum= "hostname1,hostname2,hostname3";
String szCliPort = "2181";
String szGraph = "SecureGraph";

String hbaseSecAuth="kerberos";
String hadoopSecAuth="kerberos";
String hmKerberosPrincipal="hbase/_HOST@BDA.COM";
String rsKerberosPrincipal="hbase/_HOST@BDA.COM";
String userPrincipal = "hbase/hostname1@BDA.COM";
String keytab= "/path/to/your/keytab/hbase.keytab";
int dop= 8;

Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", szQuorum);
conf.set("hbase.zookeeper.property.clientPort", szCliPort);

// Prepare the secure configuration providing the credentials in the keytab
conf = OraclePropertyGraph.prepareSecureConfig(conf,
 hbaseSecAuth,
 hadoopSecAuth,
 hmKerberosPrincipal,
 rsKerberosPrincipal,
 userPrincipal,
 keytab);
HConnection hconn = HConnectionManager.createConnection(conf);

OraclePropertyGraph opg=OraclePropertyGraph.getInstance(conf, hconn, szGraph);
opg.setInitialNumRegions(24);
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

5-73

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);
opg.commit();

5.10 Using the Groovy Shell with Property Graph Data
The Oracle Big Data Spatial and Graph property graph support includes a built-in
Groovy shell (based on the original Gremlin Groovy shell script). With this command-
line shell interface, you can explore the Java APIs.

To start the Groovy shell, go to the dal/groovy directory under the installation home
(/opt/oracle/oracle-spatial-graph/property_graph by default). For example:

cd /opt/oracle/oracle-spatial-graph/property_graph/dal/groovy/

Included are the scripts gremlin-opg-nosql.sh and gremlin-opg-hbase.sh, for connecting
to an Oracle NoSQL Database and an Apache HBase, respectively.

Note:

To run some gremlin traversal examples, you must first do the following
import operation:

import com.tinkerpop.pipes.util.structures.*;

The following example connects to an Oracle NoSQL Database, gets an instance of
OraclePropertyGraph with graph name myGraph, loads some example graph data, and
gets the list of vertices and edges.

$./gremlin-opg-nosql.sh

opg-nosql>
opg-nosql> hhosts = new String[1];
==>null

opg-nosql> hhosts[0] = "bigdatalite:5000";
==>bigdatalite:5000

opg-nosql> cfg =
GraphConfigBuilder.forPropertyGraphNosql().setName("myGraph").setHosts(Arrays.asList(
hhosts)).setStoreName("mystore").addEdgeProperty("lbl", PropertyType.STRING,
"lbl").addEdgeProperty("weight", PropertyType.DOUBLE, "1000000").build();
==>{"db_engine":"NOSQL","loading":{},"format":"pg","name":"myGraph","error_handling":
{},"hosts":["bigdatalite:5000"],"node_props":[],"store_name":"mystore","edge_props":
[{"type":"string","name":"lbl","default":"lbl"},
{"type":"double","name":"weight","default":"1000000"}]}

opg-nosql> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-nosql> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.nosql.OraclePropertyGraphDataLoader@576f1cad

opg-nosql> opgdl.loadData(opg, new FileInputStream("../../data/connections.opv"),
new FileInputStream("../../data/connections.ope"), 1, 1, 0, null);

Chapter 5
Using the Groovy Shell with Property Graph Data

5-74

==>null

opg-nosql> opg.getVertices();
==>Vertex ID 5 {country:str:Italy, name:str:Pope Francis, occupation:str:pope,
religion:str:Catholicism, role:str:Catholic religion authority}
[... other output lines omitted for brevity ...]

opg-nosql> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff Bezos,
occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United States,
name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

The following example customizes several configuration parameters for in-memory
analytics. It connects to an Apache HBase, gets an instance of OraclePropertyGraph
with graph name myGraph, loads some example graph data, gets the list of vertices and
edges, gets an in-memory analyst, and execute one of the built-in analytics, triangle
counting.

$./gremlin-opg-hbase.sh
opg-hbase>
opg-hbase> dop=2; // degree of parallelism
==>2
opg-hbase> confPgx = new HashMap<PgxConfig.Field, Object>();
opg-hbase> confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 3);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0);
==>null
opg-hbase> instance = Pgx.getInstance()
==>null
opg-hbase> instance.startEngine(confPgx)
==>null

opg-hbase> cfg =
GraphConfigBuilder.forPropertyGraphHbase() .setName("myGraph") .setZkQuorum("bigdatal
ite") .setZkClientPort(iClientPort) .setZkSessionTimeout(60000) .setMaxNumConnection
s(dop) .setLoadEdgeLabel(true) .setSplitsPerRegion(1) .addEdgeProperty("lbl",
PropertyType.STRING, "lbl") .addEdgeProperty("weight", PropertyType.DOUBLE,
"1000000") .build();
==>{"splits_per_region":1,"max_num_connections":2,"node_props":
[],"format":"pg","load_edge_label":true,"name":"myGraph","zk_client_port":
2181,"zk_quorum":"bigdatalite","edge_props":
[{"type":"string","default":"lbl","name":"lbl"},
{"type":"double","default":"1000000","name":"weight"}],"loading":{},"error_handling":
{},"zk_session_timeout":60000,"db_engine":"HBASE"}

opg-hbase> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-hbase> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.hbase.OraclePropertyGraphDataLoader@3451289b

Chapter 5
Using the Groovy Shell with Property Graph Data

5-75

opg-hbase> opgdl.loadData(opg, "../../data/connections.opv", "../../data/
connections.ope", 1, 1, 0, null);
==>null

opg-hbase> opg.getVertices();
==>Vertex ID 78 {country:str:United States, name:str:Hosain Rahman,
occupation:str:CEO of Jawbone}
...

opg-hbase> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff Bezos,
occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United States,
name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

opg-hbase> session = Pgx.createSession("session-id-1");
opg-hbase> g = session.readGraphWithProperties(cfg);
opg-hbase> analyst = session.createAnalyst();

opg-hbase> triangles = analyst.countTriangles(false).get();
==>22

For detailed information about the Java APIs, see the Javadoc reference information in
doc/dal/ and doc/pgx/ under the installation home (/opt/oracle/oracle-spatial-graph/
property_graph/ by default).

5.11 REST Support for Property Graph Data
A set of RESTful APIs exposes the Data Access Layer Java APIs through HTTP/
REST protocols.

These RESTful APIs provide support to create, update, query, and traverse a property
graph, as well as to execute text search queries, perform graph traversal queries using
gremlin, and handle graphs from multiple database back ends, such as Oracle NoSQL
Database and Apache HBase.

The following topics explain how to create a RESTful Web service for Oracle Big Data
Spatial and Graph property graph support using the REST APIs included in the Data
Access Layer (DAL). The service can later on be deployed either on Apache Tomcat
or Oracle WebLogic Server (12c Release 2 or later).

• Building the REST Web Application Archive (WAR) File

• Deploying the RESTful Property Graph Web Service

• Property Graph REST API Operations Information

5.11.1 Building the REST Web Application Archive (WAR) File
This topic describes how to create a Web Application Archive (WAR) file for Oracle Big
Data Spatial and Graph to use the RESTful APIs for property graphs.

1. Go to the webapp directory under the product home directory.

cd /opt/oracle/oracle-spatial-graph/property_graph/dal/webapp

2. Set the HTTP_PROXY environment variable (if required) in order to allow
downloading the third party libraries from the available maven repositories. For
example:

Chapter 5
REST Support for Property Graph Data

5-76

setenv HTTP_PROXY www-myproxy.com:80
export HTTP_PROXY=www-myproxy.com:80

3. Download the third party libraries required by the RESTful APIs by running the
script fetch_required_libraries.sh.

4. Specify the directory where the third party libraries will be stored. If the directory
does not exist, the directory will be created automatically. For example:

Please enter the directory name where the REST third party libraries will be
stored (e.g. /tmp/extlib-unified-rest): /tmp/extlib-unified-rest

The script will list out a set of progress details when the directory is created and
each third party library is downloaded. At the end of the script, a message similar
to the following will be shown:

Done. The final downloaded jars are in the following directory:
-rw-r--r-- 1 user group 305001 Aug 21 2007 commons-httpclient-3.1.jar
-rw-r--r-- 1 user group 46509 Mar 20 2013 gremlin-java-2.3.0.jar
-rw-r--r-- 1 user group 30226 Oct 13 2016 jackson-jaxrs-base-2.8.4.jar
-rw-r--r-- 1 user group 15807 Oct 13 2016 jackson-jaxrs-json-
provider-2.8.4.jar
-rw-r--r-- 1 user group 34589 Oct 13 2016 jackson-module-jaxb-
annotations-2.8.4.jar
-rw-r--r-- 1 user group 69940 Jan 19 2017 jersey-entity-filtering-2.25.1.jar
-rw-r--r-- 1 user group 21691 Jan 19 2017 jersey-media-json-
jackson-2.25.1.jar
-rw-r--r-- 1 user group 67859 Jan 19 2017 jersey-media-multipart-2.25.1.jar
-rw-r--r-- 1 user group 63977 Jul 17 2015 mimepull-1.9.6.jar
-rw-r--r-- 1 user group 41473 Mar 20 2013 rexster-core-2.3.0.jar
-rw-r--r-- 1 user group 81352 Mar 20 2013 rexster-protocol-2.3.0.jar
-rw-r--r-- 1 user group 712325 Mar 20 2013 rexster-server-2.3.0.jar

5. Create the RESTFul Web Application archive by running the script
assemble_unified_rest.sh.

sh assemble_unified_rest.sh

6. Specify a temporary directory to be used to build the opg_unified.war. For
example:

Please enter a temporary work directory name (e.g. /tmp/work_unified): /tmp/
work_unified

The script will use this directory to create a temporary work directory using the
system’s current date (MMDDhhmmss) to hold all the intermediate files required to
build the RESTful web application archive. These include the RESTful APIs, third
party libraries, and REST configurations. Note that you must ensure that directory
can be created and be used to hold these intermediate files.

Is it OK to use /tmp/work_unified/0823150126 to hold some intermediate files?
(Yes|No): Yes

7. Specify the product home directory. For example:

Move on...
Please enter the directory name to property graph directory (e.g. /opt/oracle/
oracle-spatial-graph/property_graph): /opt/oracle/oracle-spatial-graph/
property_graph

opt/oracle/oracle-spatial-graph/property_graph seems to be valid

8. Specify the directory holding the RESTful third party libraries.

Chapter 5
REST Support for Property Graph Data

5-77

This is the directory that you previously specified. For example: /tmp/extlib-
unified-rest

After setting up the required directories, the script will update the REST APIs and
configure the REST web application archive using Jersey. At the end of the
process, a message will be printed out with the final size and location of the
generated war file. For example:

assed sanity checking.
Updating rest logic
Updating the web application
Done. The final web application is
-rw-r--r-- 1 user group 108219486 Aug 24 08:59 /tmp/work_unified/0823150126/
opg_unified.war

Note that the timestamp-based temporary directory name (0823150126/ in this
example) that is created will be different when you perform the steps.

5.11.2 Deploying the RESTful Property Graph Web Service
This topic describes how to deploy the opg_unified.war file into Oracle WebLogic
12.2.0.1 or Apache Server Apache Tomcat.

1. Ensure that you have downloaded the REST third party libraries and created the
opg_unified.war REST Web Application Archive (WAR) file, as explained in
Building the REST Web Application Archive (WAR) file.

2. Extract the rexster.xml file located in the opg_unified.war using the following
commands:

cd /tmp/work_unified/<MMDDhhmmss>/
jar xf opg_unified.war WEB-INF/classes/rexster.xml

3. Modify the REST configuration file (rexster.xml) to specify the default back-end,
additional list of back ends (if they exist), as well of a list of available graphs that
will be used when servicing property graph requests. For detailed information
about this file, see RESTful Property Graph Service Configuration File
(rexster.xml).

4. Rebuild opg_unified.war by updating the rexster.xml file as follows:

jar uf opg_unified.war WEB-INF/classes/rexster.xml

5. Deploy opg_unified.war into the selected J2EE container.

Deployment container options:

• Deployment Using Apache Tomcat

• Deployment Using Oracle WebLogic Server

Deployment Using Apache Tomcat

This section describes how to deploy the RESTful Property Graph web service using
Apache Tomcat 8.5.14 (or above). Apache Tomcat is an open source web server
implementing Java Servlet and JavaServer Pages (JSP) and providing an HTTP web
server environment to run web applications. For more information about Apache
Tomcat, see http://tomcat.apache.org/.

1. Download and install Apache Tomcat 8.5.14.

Chapter 5
REST Support for Property Graph Data

5-78

http://tomcat.apache.org/

2. Go to the web application directory of Apache Tomcat Server and copy the
opg_unified.war file as follows.

cd $CATALINA_BASE
cp -f /tmp/work_unified/<MMDDhhmmss>/opg_unified.war webapps

This operation will unpack the war file and deploy the web application. (For more
information about deploying web application in Apache Tomcat, see the Apache
Tomcat documentation.)

3. Verify your deployment by opening the following URL in your browser (assume
that the Web application is deployed at port 8080): http://<hostname>:8080/
opg_unified

You should see a page titled Welcome to the unified property graph REST
interface!

Deployment Using Oracle WebLogic Server

This section describes how to deploy the RESTful Property Graph endpoint using
Oracle WebLogic Server 12c version 12.2.1.2.0. For more information about Oracle
WebLogic Server, see its product documentation.

1. Download and Install Oracle WebLogic Server 12c Release 2 (12.2.1.2.0).

2. Register the shared pre-built shared library for Jersey 2.5.1 (JAX-RS 2.0. RI)
included in your WebLogic Server installation. This library is required to run
applications based on Jersey 2.5.1, such as the RESTful web service for Big Data
Spatial and Graph Property Graph.

a. Log into the WebLogic Server Administration Console (http://localhost:7001/
console).

b. Select Deployments.

c. Click Install to install the shared library.

d. In the Path field, enter or navigate to the following directory: MW_HOME
\wlserver\common\deployable-libraries.

e. Select the jax-rs-2.0.war file, and click Next.

f. Select Install this deployment as a library.

g. Click Next.

h. Click Finish.

3. Modify opg_unified.war to remove the jersey and hk2 third party libraries already
provided by WebLogic Server.

a. Create a temporary work directory under the work_unified directory where the
opg_unified.war was created. For example:

cd /tmp/work_unified/<MMDDhhmmss>/
mkdir work_weblogic
cd work_weblogic

b. Extract the opg_unified.war contents into the temporary directory: For
example:

jar xf ../opg_unified.war

c. Remove Jersey 2.25 third party libraries from the WEB-INF/lib directory:

Chapter 5
REST Support for Property Graph Data

5-79

rm –rf WEB-INF/lib/jersey-client-2.25.1.jar
rm –rf WEB-INF/lib/jersey-common-2.25.1.jar
rm –rf WEB-INF/lib/jersey-container-servlet-core-2.25.1.jar
rm –rf WEB-INF/lib/jersey-entity-filtering-2.25.1.jar
rm –rf WEB-INF/lib/jersey-guava-2.25.1.jar
rm –rf WEB-INF/lib/jersey-server-2.25.1.jar
rm –rf WEB-INF/lib/hk2-api-2.5.0-b32.jar
rm –rf WEB-INF/lib/hk2-locator-2.5.0-b32.jar
rm –rf WEB-INF/lib/hk2-utils-2.5.0-b32.jar

d. Rebuild opg_unified.war:

jar cfM ../opg_unified.war *

4. Go to the autodeploy directory of the WebLogic Server installation and copy files.
For example:

cd <domain_name>/autodeploy
cp -rf /tmp/work_unified/<MMDDhhmmss>/opg_unified.war <domain_name>/autodeploy

In the preceding example, <domain_name> is the name of a WebLogic Server
domain.

Note that although you can run a WebLogic Server domain in development or
production mode, only development mode allows you use the auto-deployment
feature.

5. Verify your deployment by opening the following URL in your browser (assume
that the Web application is deployed at port 7001): http://<hostname>:7001/
opg_unified

You should see a page titled Welcome to the unified property graph REST
interface!

• RESTful Property Graph Service Configuration File (rexster.xml)

5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml)
Oracle Big Data Spatial and Graph extends Tinkerpop Rexster RESTful APIs to
provide RESTful capabilities over property graphs. To enable configuration of the
RESTful services, the opg_unified.war includes a rexster.xml file with the configuration
of the database back ends and graphs that should be set up and loaded when the
service is started.

The rexster.xml file is an XML-based configuration file with at least four main sections
(or tags):

• <script-engines>: The script engine used for running scripts over the property
graph. By default, gremlin-groovy is used.

• <oracle-pool-size>: The number of concurrent connections allowed to a property
graph. By default, the configuration uses a pool size of 3.

• <oracle-property-graph-backends>: The information about the database back
end(s) that should be used by the RESTful APIs. By default, at least one back-end
configuration with the <default-backend>true</default-backend> tag specified must
be defined. This configuration will be used as the default database connection for
all the RESTful API services.

Chapter 5
REST Support for Property Graph Data

5-80

• <graphs>: The list of available graphs to serve requests when the service is
started. Graphs defined in this list are created based on their associated database
configurations.

By default, rexster.xml must define at least one back-end configuration under the
<oracle-property-graph-backends> section. Each back end is identified by a
backend-name and a backend-type (either apache_hbase or oracle_nosql). Additional
database parameters must be specified as properties of the back end. In the case of
Apache HBase, these properties include the Zookeeper quorum and Zookeeper client
port. For Oracle NoSQL Database, these database parameters include the Database
Host and Port as well as the KV Store name.

A configuration file can include multiple back-end configurations belonging to the same
or different back-end types.

The following snippet shows the configuration of a rexster.xml with two back-ends: the
first one to an Apache HBase database and the second one to an Oracle NoSQL
Database.

<backend>
 <backend-name>hbase_connection</backend-name>
 <backend-type>apache_hbase</backend-type>
 <default-backend>true</default-backend>
 <properties>
 <quorum>127.0.0.1</quorum>
 <clientport>2181</clientport>
 </properties>
</backend>

<backend>
 <backend-name>nosql_connection</backend-name>
 <backend-type>oracle_nosql</backend-type>
 <properties>
 <host>127.0.0.1</host>
 <port>5000</port>
 <storeName>kvstore</storeName>
 </properties>
</backend>

A default back end must be set up for the service, because this back end will be used
as the default database configuration for all property graph RESTful operations
executed over graphs that have not been previously defined in the graph section of the
rexster.xml file. In the preceding example, the back end named hbase_connections
will be set up as the default back end.

The <graphs> XML element identifies the list of property graphs that will be available
for user requests. Each graph is identified by a graph-name and a graph-type
(oracle.pg.hbase or oracle.pg.nosql.OraclePropertyGraphConfiguration). Additional
database parameters must be specified as properties based on the type of the graph.
In the case of an hbase graph, these properties include the Zookeeper quorum and
Zookeeper client port. For a nosql graph, these database parameters include the
Database Host and Port as well as the KV Store name.

Additionally, you can specify if there are allowed extensions that can be run over the
graph, such as the capabilities to run gremlin queries, by using the allow tag with a
tp:gremlin value under the extensions subsection.

Chapter 5
REST Support for Property Graph Data

5-81

The following snippet shows the configuration of rexster.xml with two property graphs:
a connections graph using an Apache HBase database and a test graph using an
Oracle NoSQL database.

<graphs>
 <graph>
 <graph-name>connections</graph-name>
 <graph-type>oracle.pg.hbase.OraclePropertyGraphConfiguration</graph-type>
 <properties>
 <quorum>127.0.0.1</quorum>
 <clientport>2181</clientport>
 </properties>
 <extensions>
 <allows>
 <allow>tp:gremlin</allow>
 </allows>
 </extensions>
 </graph>
 <graph>
 <graph-name>connections</graph-name>
 <graph-type>oracle.pg.nosql.OraclePropertyGraphConfiguration</graph-type>
 <properties>
 <storeName>kvstore</storeName>
 <host>127.0.0.1</host>
 <port>5000</port>
 </properties>
 <extensions>
 <allows>
 <allow>tp:gremlin</allow>
 </allows>
 </extensions>
 </graph>
</graphs>

When an HTTP request (GET, POST, PUT, DELETE) operation is executed against a
given graph name, the service will look up for the graph database configuration
defined in the rexster.xml configuration file. If the graph is not included in the
configuration file, then the request will fail with a “graph cannot be found” error
message and the operation will not be completed.

You can dynamically add a new graph into the service to be used for subsequent
HTTP requests by executing an HTTP POST request over the create graph service.

5.11.3 Property Graph REST API Operations Information
This topic describes the operations of the property graph REST API.

• GET Operations (Property Graphs)

• POST Operations (Property Graphs)

• PUT Operations (Property Graphs)

• DELETE Operations (Property Graphs)

5.11.3.1 GET Operations (Property Graphs)
This topic describes the GET operations of the property graph REST API.

Chapter 5
REST Support for Property Graph Data

5-82

Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

• /graphs/{graphname}/indices

• /graphs/{graphname}/indices/{indexName}

• /graphs/{graphname}/indices/{indexName}/count

• /graphs/{graphname}/keyindices

• /graphs/{graphname}/keyindices/{class}

• /backends

• /backends/default

• /backends/{backendName}

• /graphs/{graphname}

• /graphs/{graphname}/edges

• /graphs/{graphname}/edges/{id}

• /graphs/{graphname}/vertices

• /graphs/{graphname}/vertices/{id}

• /graphs/{graphName}/vertices/{id}/{direction}

• /graphs/{graphname}/config

• /graphs/{graphname}/exportData

• /graphs/{graphname}/config

• /edges/{graphname}/textquery

• /edges/{graphname}/properties

• /vertices/{graphname}/textquery

/graphs/{graphname}/indices

Description: Gets the name and class of all the manual indexes that have been
created for the specified graph.

Parameters

• graphname:

The name of the property graph.

Usage Notes

This GET operation performs a call to the OraclePropertyGraph.getIndices() method.

Example

The following URL gets all the manual indexes for a graph named connections:

http://localhost:7001/opg_unified/dal/graphs/connections/indices

Chapter 5
REST Support for Property Graph Data

5-83

The result may look like the following:

 {
 results: [
 name: "myIdx",
 class: "vertex"
],
 totalSize:1,
 queryTime: 9.112078
 }

/graphs/{graphname}/indices/{indexName}?key=<key>&value=<value>

DescriptionGets the elements in the specified index having a certain key-value pair.

Parameters

• graphname:

The name of the property graph.

• indexName:

The name of the index.

• <key>:

The key in the key-value pair.

• <value>:

The value in the key-value pair.

Usage Notes

If no key-value pair is specified, then information about the specified manual index is
displayed. If the index does not exist, a “Could not find index” message is returned.

This GET operation performs a call to OracleIndex.get(key,value) method.

Example

The following URL gets all vertices in the myIdx index with the key-value pair name-
Beyonce:

http://localhost:7001/opg_unified/dal/graphs/connections/indices/myIdx?
key=name&value=Beyonce

The result may look like the following:

{
 "results": [
 {
 "country": {
 "type": "string",
 "value": "United States"
 },
 "music genre": {
 "type": "string",
 "value": "pop soul "
 },
 "role": {
 "type": "string",
 "value": "singer actress"
 },

Chapter 5
REST Support for Property Graph Data

5-84

 "name": {
 "type": "string",
 "value": "Beyonce"
 },
 "_id": 2,
 "_type": "vertex"
 }
],
 "totalSize": 1,
 "queryTime": 79.910928
}

/graphs/{graphname}/indices/{indexName}/count?key=<key>&value=<value>

Description: Gets the number of elements in the specified index having a certain key-
value pair.

Parameters

• graphname:

The name of the property graph.

• indexName:

The name of the index.

• <key>:

The key in the key-value pair.

• <value>:

The value in the key-value pair.

Usage Notes

This GET operation performs a call to OracleIndex.count(key,value) method.

Example

The following URL gets the count of vertices with the key-value pair name-Beyonce in the
myIdx index of the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/indices/myIdx/count?
key=name&value=Beyonce

The result may look like the following:

 {
 totalSize: 1,
 queryTime: 20.781228
 }

/graphs/{graphname}/keyindices

Description: Gets the information about all the automatic text indexes in the specified
graph. It provides the indexed keys currently used in automatic index.

Parameters

• graphname:

The name of the property graph.

Chapter 5
REST Support for Property Graph Data

5-85

Usage Notes

This GET operation performs a call to OraclePropertyGraph.getIndexedKeys(class)
method for both Vertex and Edge classes.

Example

The following URL gets informaiton about all the automatic indexes for the connections
graph.

http://localhost:7001/opg_unified/dal/graphs/connections/keyindices

The result may look like the following:

 {
 keys: {
 edge: [],
 vertex: [
 "name"
]
 },
 queryTime: 28.776229
 }

/graphs/{graphname}/keyindices/{class}

Description: Gets the indexed keys currently used in automatic indexes for all
elements of the given type.

Parameters

• graphname:

The name of the property graph.

• class:

The class type of the elements in the key index.

Usage Notes

This GET operation performs a call to the OraclePropertyGraph.getIndexedKeys(class)
method.

Example

The following URL gets all the automatic indexes for the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/keyindices/vertex/

The result may look like the following:

 {
 results: [
 "name"
],
 queryTime: 28.776229
 }

/backends

Description: Returns all the available back ends and their configuration information.

Parameters

Chapter 5
REST Support for Property Graph Data

5-86

(None.)

Usage Notes

(None.)

Example

The following URL gets all the configured back ends:

http://localhost:7001/opg_unified/dal/backends/

The result may look like the following:

 {
 backends: [
 {
 backendName: "hbase_connection",
 isDefault: false,
 port: "2181",
 backendType: "HBaseBackendConnection",
 quorum: " localhost "
 },
 {
 host: "localhost",
 backendName: "nosql_connection",
 isDefault: true,
 store: "kvstore",
 port: "5000",
 backendType: "OracleNoSQLBackendConnection"
 }
],
 queryTime: 0.219886,
 upTime: "0[d]:02[h]:33[m]:40[s]"
 }

/backends/default

Description: Gets the default back end used by the graph.

Parameters

(None.)

Usage Notes

(None.)

Example

The following URL gets the default back end:

http://localhost:7001/opg_unified/dal/backends/default/

The result may look like the following:

 {
 defaultBackend: {
 host: "localhost",
 backendName: "nosql_connection",
 isDefault: true,
 store: "kvstore",
 port: "5000",

Chapter 5
REST Support for Property Graph Data

5-87

 backendType: "OracleNoSQLBackendConnection"
 },
 queryTime: 0.219886,
 upTime: "0[d]:02[h]:33[m]:40[s]"
 }

/backends/{backendName}

Description: Gets all the configuration information about the specified back end.

Parameters

• beckendName:

The name of the back end.

Usage Notes

(None.)

Example

The following URL gets the configuration of the nosql_connection back end:

http://localhost:7001/opg_unified/dal/backends/nosql_connection/

The result may look like the following:

 {
 backend: {
 host: "localhost",
 backendName: "nosql_connection",
 isDefault: true,
 store: "kvstore",
 port: "5000",
 backendType: "OracleNoSQLBackendConnection"
 },
 queryTime: 0.219886,
 upTime: "0[d]:02[h]:33[m]:40[s]"
 }

/graphs/{graphname}

Description: Gets information about the type and supported features of the specified
graph.

Parameters

• graphname:

The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets information about the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/

The result may look like the following:

Chapter 5
REST Support for Property Graph Data

5-88

 {
 name: "connections",
 graph: "oraclepropertygraph with name connections",
 features:
 {
 isWrapper: false,
 supportsVertexProperties: true,
 supportsMapProperty: true,
 supportsUniformListProperty: true,
 supportsIndices: true,
 ignoresSuppliedIds: false,
 supportsFloatProperty: true,
 supportsPrimitiveArrayProperty: true,
 supportsEdgeIndex: true,
 supportsKeyIndices: true,
 supportsDoubleProperty: true,
 isRDFModel: false,
 isPersistent: true,
 supportsVertexIteration: true,
 supportsEdgeProperties: true,
 supportsSelfLoops: false,
 supportsDuplicateEdges: true,
 supportsSerializableObjectProperty: true,
 supportsEdgeIteration: true,
 supportsVertexIndex: true,
 supportsIntegerProperty: true,
 supportsBooleanProperty: true,
 supportsMixedListProperty: true,
 supportsEdgeRetrieval: true,
 supportsTransactions: true,
 supportsThreadedTransactions: true,
 supportsStringProperty: true,
 supportsVertexKeyIndex: true,
 supportsEdgeKeyIndex: true,
 supportsLongProperty: true
 },
 readOnly: false,
 type: "oracle.pg.nosql.OraclePropertyGraph",
 queryTime: 1010.203456,
 upTime: "0[d]:19[h]:28[m]:37[s]"
 }

/graphs/{graphname}/edges

Description: Gets the information about edges of the specified graph.

Parameters

• graphname:

The name of the property graph.

• opg.showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

• opg.offset.start (query parameter):

Integer denoting the number of edges to skip when processing the request.

• opg.offset.limit (query parameter):

Maximum number of edges to retrieve from the graph..

Chapter 5
REST Support for Property Graph Data

5-89

• opg.ids=[<id1>, <id2>, <id3>, ...] (query parameter):

List of edge IDs from which to choose the results.

Usage Notes

(None.)

Example

The following GET request gets information about all the edges of the connections
graph:

http://localhost:7001/opg_unified/dal/graphs/connections/edges

The result may look like the following:

 {
 results: [
 {
 weight: 1,
 _id: 1001,
 _type: "edge",
 _outV: 1,
 _inV: 3,
 _label: "collaborates"
 },
 {
 weight: 1,
 _id: 1002,
 _type: "edge",
 _outV: 1,
 _inV: 4,
 _label: "admires"
 },
 …
],
 totalSize: 164,
 queryTime: 49.491961
 }

The following GET request modifies the preceding one to request only the edges with
ID values 1001 and 1002 in the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/edges?opg.ids=[1001,1002]

The result may look like the following:

 {
 results: [
 {
 weight: 1,
 _id: 1001,
 _type: "edge",
 _outV: 1,
 _inV: 3,
 _label: "collaborates"
 },
 {
 weight: 1,
 _id: 1002,
 _type: "edge",
 _outV: 1,

Chapter 5
REST Support for Property Graph Data

5-90

 _inV: 4,
 _label: "admires"
 }
],
 totalSize: 2,
 queryTime: 49.491961
 }

The following GET request fetches one edge after skipping the first five edges of the
connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/edges?
opg.offset.start=5&opg.offset.limit=1

The result may look like the following:

 {
 results: [
 {
 weight: 1,
 _id: 1005,
 _type: "edge",
 _outV: 1,
 _inV: 7,
 _label: "collaborates"
 }
],
 totalSize: 1,
 queryTime: 49.491961
 }

/graphs/{graphname}/edges/{id}

Description: Gets the information about the edge with the specified ID from the graph.

Parameters

• graphname:

The name of the property graph.

• id:

Edge ID of the edge to read.

• opg.showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

Usage Notes

(None.)

Example

The following GET request gets information about edge ID 1001 of the connections
graph:

http://localhost:7001/opg_unified/dal/graphs/connections/edges/1001

The result may look like the following:

Chapter 5
REST Support for Property Graph Data

5-91

 {
 results:
 {
 weight:
 {
 type: "double",
 value: 1
 },
 _id: 1001,
 _type: "edge",
 _outV: 1,
 _inV: 3,
 _label: "collaborates"
 },
 queryTime: 43.720456
 }

The following GET request shows the output of a failed request for edge 1, which does
not exist in the connections graph.

http://localhost:7001/opg_unified/dal/graphs/connections/edges/1

The result may look like the following:

{
message: "Edge with name [1] cannot be found."
}

The following GET request fetches one edge after skipping the first five edges of the
connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/edges?
opg.offset.start=5&opg.offset.limit=1

The result may look like the following:

 {
 results: [
 {
 weight: 1,
 _id: 1005,
 _type: "edge",
 _outV: 1,
 _inV: 7,
 _label: "collaborates"
 }
],
 totalSize: 1,
 queryTime: 49.491961
 }

/graphs/{graphname}/vertices

Description: Gets the information about vertices of the specified graph.

Parameters

• graphname:

The name of the property graph.

• opg.showTypes (query parameter):

Chapter 5
REST Support for Property Graph Data

5-92

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

• opg.offset.start (query parameter):

Integer denoting the number of vertices to skip when processing the request.

• opg.offset.limit (query parameter):

Maximum number of vertices to retrieve from the graph..

• opg.ids=[<id1>, <id2>, <id3>, ...] (query parameter):

List of vertex IDs from which to choose the results.

Usage Notes

(None.)

Example

The following GET request gets information about all the vertices of the connections
graph:

http://localhost:7001/opg_unified/dal/graphs/connections/vertices

The result may look like the following:

 {
 results: [
 {
 country: "Portugal",
 occupation: "Professional footballer",
 name: "Cristiano Ronaldo",
 _id: 63,
 _type: "vertex"
 },
 {
 country: "North Korea",
 occupation: "Supreme leader of North Korea",
 role: "political authority",
 name: "Kim Jong Un",
 political party: "Workers' Party of Korea",
 religion: "atheism",
 _id: 32,
 _type: "vertex"
 },
 …
],
 totalSize: 78,
 queryTime: 22.345108
 }

The following GET request modifies the preceding one to request only the vertices
with ID values 4 and 63 in the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/vertices?opg.ids=[4,63]

The result may look like the following:

 {
 results: [
 {
 country: "United States",

Chapter 5
REST Support for Property Graph Data

5-93

 role: " american economist",
 name: "Janet Yellen",
 political party: "Democratic",
 _id: 4,
 _type: "vertex"
 },
 {
 country: "Portugal",
 occupation: "Professional footballer",
 name: "Cristiano Ronaldo",
 _id: 63,
 _type: "vertex"
 },
],
 totalSize: 2,
 queryTime: 22.345108
 }

The following GET request fetches one vertex after skipping the first five vertices of
the connections graph:

http://localhost:7001/opg_unified/dal/graphs/connections/vertices?
opg.offset.start=5&opg.offset.limit=1

The result may look like the following:

 {
 results: [
 {
 country: "United States",
 occupation: "founder",
 role: "philantropist",
 name: "Tom Steyer",
 company: "Farallon Capital Management",
 political party: "Democratic",
 _id: 20,
 _type: "vertex"
 }
],
 totalSize: 1,
 queryTime: 65.366488
 }

/graphs/{graphname}/vertices/{id}

Description: Gets the information about the vertex with the specified ID from the
graph.

Parameters

• graphname:

The name of the property graph.

• id:

Vertex ID of the vertex to read.

• opg.showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

Chapter 5
REST Support for Property Graph Data

5-94

Usage Notes

(None.)

Example

The following GET request gets information about vertex ID 1 of the connections
graph:

http://localhost:7001/opg_unified/dal/graphs/connections/vertices/1

The result may look like the following:

 {
 results:
 {
 country: "United States",
 occupation: "44th president of United States of America",
 role: "political authority",
 name: "Barack Obama",
 political party: "Democratic",
 religion: "Christianity",
 _id: 1,
 _type: "vertex"
 },
 queryTime: 13.95932
 }

The following GET request modified the preceding one to include the data type of all
properties for vertex 1.

http://localhost:7001/opg_unified/dal/graphs/connections/vertices/1?
opg.showTypes=true

The result may look like the following:

{
 results:
 {
 country:
 {
 type: "string",
 value: "United States"
 },
 occupation:
 {
 type: "string",
 value: "44th president of United States of America"
 },
 role:
 {
 type: "string",
 value: "political authority"
 },
 name:
 {
 type: "string",
 value: "Barack Obama"
 },
 political party:
 {
 type: "string",

Chapter 5
REST Support for Property Graph Data

5-95

 value: "Democratic"
 },
 religion:
 {
 type: "string",
 value: "Christianity"
 },
 _id: 1,
 _type: "vertex"
 },
 queryTime: 13.147989
}

The following GET request shows the output of a failed request for vertex 1000, which
does not exist in the connections graph.

http://localhost:7001/opg_unified/dal/graphs/connections/vertices/1000

The result may look like the following:

{
message: "Vertex with name [1000] cannot be found."
}

/graphs/{graphName}/vertices/{id}/{direction}

Description: Gets the {in,out,both}-adjacent vertices of the vertex with the specified ID
value.

Parameters

• direction:

Can be in for in-vertices, out for out-vertices, or both for in-vertices and out-
vertices.

Usage Notes

(None.)

Example

The following URL gets the out-vertices of the vertex with id 5:

http://localhost:7001/opg_unified/dal/graphs/connections/vertices/5/out/

The result may look like the following:

 {
 results: [
 {
 name: "Omar Kobine Layama",
 _id: 56,
 _type: "vertex"
 },
 {
 name: "Dieudonne Nzapalainga",
 _id: 57,
 _type: "vertex"
 },
 {
 name: "Nicolas Guerekoyame Gbangou",
 _id: 58,

Chapter 5
REST Support for Property Graph Data

5-96

 _type: "vertex"
 },
 {
 country: "Rome",
 name: "The Vatican",
 type: "state",
 religion: "Catholicism",
 _id: 59,
 _type: "vertex"
 }
],
 totalSize: 4,
 queryTime: 56.044806
 }

/graphs/{graphname}/config

Description: Gets a representation (in JSON format) of the configuration of the
specified graph.

Parameters

• graphname:

The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets a graph configuration for the connections graph:

http://localhost:7001/opg_unified/graphs/connections/config

The result may look like the following:

 {
 edge_props: [
 {
 name: "weight",
 type: "string"
 }
],
 db_engine: "NOSQL",
 hosts: [
 "localhost:5000"
],
 vertex_props: [
 {
 name: "name",
 type: "string"
 },
 {
 name: "role",
 type: "string"
 },
 …
 {
 name: "country",
 type: "string"
 }

Chapter 5
REST Support for Property Graph Data

5-97

],
 format: "pg",
 name: "connections",
 store_name: "kvstore",
 attributes: { },
 max_num_connections: 2,
 error_handling: { },
 loading: {
 load_edge_label: true
 },
 edge_label: true
 }

/graphs/{graphname}/exportData

Description: Downloads a .zip file containing the graph in Oracle Property Graph Flat
File format (.opv and .ope files).

Parameters

• graphname:

The name of the property graph.

• dop (query parameter)

Degree or parallelism for the operation.

Usage Notes

(None.)

Example

The following URL exports the connections graph using up to 4 parallel execution
threads:

http://localhost:7001/opg_unified/graphs/connections/exportData?dop=4

It downloads a zip file containing an OPV (vertices) file and an OPE (edge) file with
contents similar to the following.

OPV file:

1,name,1,Barack%20Obama,,
1,role,1,political%20authority,,
1,occupation,1,44th%20president%20of%20United%20States%20of%20America,,
1,country,1,United%20States,,
…

OPE file:

1000,1,2,collaborates,weight,3,,1.0,
1001,1,3,collaborates,weight,3,,1.0,
1002,1,4,admires,weight,3,,1.0,
1003,1,5,admires,weight,3,,1.0,
…

/edges/{graphname}/properties

Description: Gets the set of property keys used by edges of the specified graph.

Parameters

Chapter 5
REST Support for Property Graph Data

5-98

• graphname:

The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets the edge property keys of the connections graph:

http://localhost:7001/opg_unified/edges/connections/properties

The result may look like the following:

 {
 complete: 1,
 results: [
 "weight"
],
 totalSize: 1,
 queryTime: 360.491961
 }

/vertices/{graphname}/textquery

DescriptionGets the vertices of a graph that match certain key value pair criteria.
Performs a full text search against an existing index.

Parameters

• graphname:

The name of the property graph.

• key (query parameter)

The property key that matching vertices must have.

• value (query parameter)

The propertyvalue that matching vertices must have.

• useWildCards (query parameter)

Boolean string specifying whether to perform an exact match search (false) or use
wildcards (true).

Usage Notes

The returned result depends not only on the value of the parameters, but also on their
presence.

• If no query parameters are specified, then it behaves exactly the same as /graphs/
{graphname}/vertices. If only the key query parameter is specified, it returns only
the edges that have that property key, regardless of the value.

• If the key and value query parameters are specified, but the useWildCards query
parameter does not equal true, it returns only the vertices that have an exact
match with that key-value pair, even if the value contains wildcard characters (*).

• If the key and value query parameters are specified and the useWildCards query
parameter is true, it uses the index to perform a text search and returns the
matching vertices.

Chapter 5
REST Support for Property Graph Data

5-99

If a wildcard search is requested and the requested index does not exist for the
specified key, an error is returned.

Example

The following URL gets the vertices that have a name key whose value starts with the
string Po in the connections graph.

http://localhost:7001/opg_unified/vertices/connections/textquery?
key=name&value=Po*&useWildCards=true

The returned JSON may look like the following:

 {
 results: [
 {
 country: "Italy",
 occupation: "pope",
 role: "Catholic religion authority",
 name: "Pope Francis",
 religion: "Catholicism",
 _id: 5,
 _type: "vertex"
 },
 {
 country: "China",
 occupation: "business man",
 name: "Pony Ma",
 _id: 71,
 _type: "vertex"
 }
],
 totalSize: 2,
 queryTime: 49.491961
 }

/edges/{graphname}/textquery

Description: Gets the edges of a graph that match certain key value pair criteria.
Performs a full text search against an existing index.

Parameters

• graphname:

The name of the property graph.

• key (query parameter)

The property key that matching edges must have.

• value (query parameter)

The value that matching edges must have.

• useWildCards (query parameter)

Boolean string specifying whether to perform an exact match search (falsefalse)
or use wildcards (true)..

Usage Notes

The returned result depends not only on the value of the parameters, but also on their
presence.

Chapter 5
REST Support for Property Graph Data

5-100

• If no query parameters are specified, then it behaves exactly the same as /graphs/
{graphname}/edges. If only the key query parameter is specified, it returns only the
edges that have that property key, regardless of the value.

• If the key and value query parameters are specified, but the useWildCards query
parameter does not equal true, it returns the edges that have an exact match with
that key-value pair, even if the value contains wildcard characters (*).

• If the key and value query parameters are specified and the useWildCards query
parameter equals true, it uses the index to perform a text search and returns the
matching edges.

Example

The following URL gets the edges that have a type key whose value starts with the
string frien in the connections graph.

http://localhost:7001/opg_unified/edges/connections/textquery?
key=type&value=frien*&useWildCards=true

The returned JSON may look like the following:

 {
 results: [
 {
 weight: 1,
 type: "friends",
 _id: 10000,
 _type: "edge",
 _outV: 1,
 _inV: 3,
 _label: "collaborates"
 }
],
 totalSize: 1,
 queryTime: 49.491961
 }

5.11.3.2 POST Operations (Property Graphs)
This topic describes the POST operations of the property graph REST API.

Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

• /graphs/{graphname}/indices/{indexName}?class=<class>

• /graphs/{graphname}/keyindices/{class}/{keyName}

• graphs/connections/edges

• /csv/edges

• graphs/connections/vertices

• /graphs/{graphname}/loadData

Chapter 5
REST Support for Property Graph Data

5-101

• /backends/{newBackendName}

• /edges/{graphname}/ids

• /edges/{graphname}/properties

/graphs/{graphname}/indices/{indexName}?class=<class>

Description: Creates the specified manual index for the specified graph.

Parameters

• graphname:

The name of the property graph.

• indexName:

The name of the manual index to be created.

• class:

Class of the index. It can be either vertex or edge edge.

Usage Notes

This POST operation performs a call to the
OraclePropertyGraph.createIndex(name,class) method.

Example

The following POST operation creates the myIdx index of class vertex in the
connections property graph.

http:// localhost:7001/opg_unified/dal/graphs/connections/indices/myIdx?class=vertex

The result may look like the following:

{
 "queryTime": 551.798547,
 "results":
 {
 "name": "myIdx",
 "class": "vertex"
 }}

/graphs/{graphname}/keyindices/{class}/{keyName}

Description: Creates an automatic key index in the specified graph.

Parameters

• graphname:

The name of the property graph.

• class:

Class of the index. It can be either vertex or edge.

• keyName:

Name of the key index.

Usage Notes

Chapter 5
REST Support for Property Graph Data

5-102

This POST operation performs a call to the
OraclePropertyGraph.createKeyIndex(key,class) method.

Example

The following POST operation creates the myVKeyIdx automatic index of class vertex in
the connections property graph.

http:// localhost:7001/opg_unified/dal/graphs/connections/keyindices/vertex/myVKeyIdx

The result may look like the following:

{
 "queryTime": 234.970874
}

/graphs/connections/edges

…edges?_outV=<id>&_label=value&_inV=<id>
…edges/<edgeId>?_outV=<id>&_label=value&_inV=<id>
…edges/<edgeId>?<key>=value

Description: Creates a new edge between two vertices.

Parameters

• _outV:

The outgoing vertex.

• _inV:

The incoming vertex.

• _label:

The outgoing label of the edge.

• edgeID:

The ID of the edge to create.

• key:

The key value to create.

Usage Notes

(None.)

Example

The following POST operation creates an edge with the label friend from vertex 29 to
vertex 26.

http://localhost:8080/graphs/connections/edges_outV=29&_label=friend&_inV=26

The result may look like the following:

{"results": {"_id": 1810534020425227300,"_type": "edge","_outV": 29,"_inV":
26,"_label": "friend"},"queryTime": 36.635908}

/csv/edges

Description: Transforms an edge file from CSV format to OPE format.

Chapter 5
REST Support for Property Graph Data

5-103

Parameters

• fileName:

The name of the edge file (CSV format).

• cboxEdgeIDColName:

The key that should be used as edge ID.

• cboxEdgeSVIDColName:

The key that should be used as start vertex ID.

• cboxEdgeLabelColName:

The key that should be used as edge label.

• cboxEdgeDVIDColName:

The key that should be used as end vertex ID.

Usage Notes

For information about the file fiormat, see Oracle Flat File Format Definition.

Example

The following is an HTML form that can be used to perform a POST operation and
transform a CSV file into an OPE file.

<html>
 <body>
 <h1>CSV Example - Edges</h1>
 <form id="myForm" action="http://localhost:7001/opg_unified/dal/csv/edges"
method="POST" enctype="multipart/form-data">
 <p>Select a file for edges : <input type="file" name="fileEdge"
size="45" /></p>
 <p>Edge Id : <input type="text" name="cboxEdgeIDColName" size="25" /></p>
 <p>Start vertex Id : <input type="text" name="cboxEdgeSVIDColName"
size="25" /></p>
 <p>Edge Label : <input type="text" name="cboxEdgeLabelColName"
size="25" /></p>
 <p>End vertex Id : <input type="text" name="cboxEdgeDVIDColName"
size="25" /></p>
 <input type="button" onclick="myFunction()" value="Upload">
 </form>
 <script>
 function myFunction() {
 frm = document.getElementById("myForm");
 frm.submit();
 }
 </script>
 </body>
</html>

This is how the form might look in the browser:

Chapter 5
REST Support for Property Graph Data

5-104

The contents of the input edge file (edges.csv) are the following:

EDGE_ID,START_ID:long,weight:float,END_ID:long,label:string
1,1,1.0,2,knows

The contents of the output edge file (vertices.ope) are the following:

1,1,2,knows,weight,3,,1.0,

/csv/vertices

Description: Transforms a vertex file from CSV format to OPV format.

Parameters

• fileVertex:

The name of the vertex file (CSV format).

• cboxVertexIDColName:

The key that should be used as vertex ID.

Usage Notes

For information about the file fiormat, see Oracle Flat File Format Definition.

Example

The following is an HTML form that can be used to perform a POST operation and
transform a CSV file into an OPV file.

<html>
 <body>
 <h1>CSV Example</h1>
 <form id="myForm" action="http://localhost:7001/opg_unified/dal/csv/vertices"
method="POST" enctype="multipart/form-data">
 <p>Select a file for vertices : <input type="file" name="fileVertex"
size="45" /></p>
 <p>Vertex Id : <input type="text" name="cboxVertexIDColName" size="25" /></p>
 <input type="button" onclick="myFunction()" value="Upload">
 </form>
 <script>
 function myFunction() {
 frm = document.getElementById("myForm");
 frm.submit();
 }

Chapter 5
REST Support for Property Graph Data

5-105

 </script>
 </body>
</html>

This is how the form might look in the browser:

The contents of the input vertex file (vertices.csv) are the following:

id,name,country
1,Eros%20Ramazzotti,Italy
2,Monica%20Bellucci,Italy

The contents of the output vertex file (vertices.opv) are the following:

1,name,1,Eros%20Ramazzotti,,
1,country,1,Italy,,
2,name,1,Monica%20Bellucci,,
2,country,1,Italy}

/graphs/{graphname}/loadData

Description: Uploads OPV and OPE files to the server and imports the vertices and
edges into the graph. Returns graph metadata.

Parameters

• graphname:

The name of the property graph.

• vertexFile (Request Payload):

The vertex (.opv) file.

• edgeFile (Request Payload):

The edge (.ope) file.

• clearRepository (Request Payload):

Boolean value indicating whether to clear the graph before starting the load
operation.

• dop (Request Payload):

Degree of parallelism for the operation.

Usage Notes

This operation enables you to post both the vertex and edge files in the same
operation.

Example

Chapter 5
REST Support for Property Graph Data

5-106

The following simple HTML form can be used to upload a pair of .OPV and .OPE files
to the server:

http://localhost:7001/opg_unified/graphs/connections/loadData
<html>
<body>
 <h1>File Upload to OPG Unified</h1>
 <p>
 Graph name : <input type="text" name="graphTxt" id="graphTxt" size="45" />
 </p>
 <form id="myForm" action="http://localhost:7001/opg_unified/graphs/"
method="POST" enctype="multipart/form-data">
 <p>
 Select a file for vertices : <input type="file" name="vertexFile"
size="45" />
 </p>
 <p>
 Select a file for edges : <input type="file" name="edgeFile" size="45" />
 </p>
 <p>
 Clear graph ? : <input type="text" name="clearRepository" size="25" />
 </p>

 <input type="button" onclick="myFunction()" value="Upload">
 </form>
 <script>
 function myFunction() {
 frm = document.getElementById("myForm");
 frm.action = frm.action + graphTxt.value + '/loadData';
 frm.submit();
 }
 </script>
</body>
</html>

The displayed form looks like the following:

The following are the contents of the OPV (vertices) file:

1,name,1,Barack%20Obama,,
1,role,1,political%20authority,,
1,occupation,1,44th%20president%20of%20United%20States%20of%20America,,
1,country,1,United%20States,,
…

Chapter 5
REST Support for Property Graph Data

5-107

The following are the contents of the OPE (edgee) file:

1000,1,2,collaborates,weight,3,,1.0,
1001,1,3,collaborates,weight,3,,1.0,
1002,1,4,admires,weight,3,,1.0,
1003,1,5,admires,weight,3,,1.0,
…

The returned JSON result may look like the following:

 {
 name: "connections",
 graph: "oraclepropertygraph with name connections",
 features:
 {
 isWrapper: false,
 supportsVertexProperties: true,
 supportsMapProperty: true,
 supportsUniformListProperty: true,
 supportsIndices: true,
 ignoresSuppliedIds: false,
 supportsFloatProperty: true,
 supportsPrimitiveArrayProperty: true,
 supportsEdgeIndex: true,
 supportsKeyIndices: true,
 supportsDoubleProperty: true,
 isRDFModel: false,
 isPersistent: true,
 supportsVertexIteration: true,
 supportsEdgeProperties: true,
 supportsSelfLoops: false,
 supportsDuplicateEdges: true,
 supportsSerializableObjectProperty: true,
 supportsEdgeIteration: true,
 supportsVertexIndex: true,
 supportsIntegerProperty: true,
 supportsBooleanProperty: true,
 supportsMixedListProperty: true,
 supportsEdgeRetrieval: true,
 supportsTransactions: true,
 supportsThreadedTransactions: true,
 supportsStringProperty: true,
 supportsVertexKeyIndex: true,
 supportsEdgeKeyIndex: true,
 supportsLongProperty: true
 },
 readOnly: false,
 type: "oracle.pg.nosql.OraclePropertyGraph",
 queryTime: 1010.203456,
 upTime: "0[d]:19[h]:28[m]:37[s]"
 }

/backends/{newBackendName}

Description: Sets a new back end entry with the specified properties.

Parameters

• newBackendName:

The name of the new back end to be supported.

Chapter 5
REST Support for Property Graph Data

5-108

Usage Notes

If the back end name does already exist, an error is generated

Any other parameters specified, such as isDefault or backendType, are passed as part
of the payload.

Example

The following POST operation creates a new back end named hbase_connection2.

http://localhost:7001/opg_unified/dal/backends/hbase_connection2

Payload for example:

{"isDefault": false,"port": "2181","backendType":"HBaseBackendConnection","quorum":
"127.0.0.1"}

The result may look like the following:

{"backend": {"backendName": "hbase_connection2","isDefault": false,"port":
"2181","backendType": "HBaseBackendConnection","quorum": "127.0.0.1"},"queryTime":
49.904438,"upTime": "0[d]:00[h]:56[m]:14[s]"}

/edges/{graphName}/ids

Description: Returns a set of edges.

Parameters

• graphname:

The name of the property graph.

• ids (Request Payload):

A JSON array with the IDs of the requested edges.

Usage Notes

This API sends a JSON array with an IDs key and an array of integer ID values. It
returns an array matching the size of the input ids parameter

If an edge is not found, its corresponding value in the results array will be null.

It always returns an array of results even if none of the edges exists in the graph, in
which case returns an array full of null values but not a 404 HTTP code.

Example

The following command gets the edges with IDs 1001 and 1002 (if they exist) in the
connections graph..

curl -v -X POST 'http://localhost:7001/opg_unified/edges/connections/ids' -H
"Content-Type: application/json" -d '{"ids":[1001,1002,1]}

The returned JSON may look like the following:

 {
 results: [
 {
 weight: 1,
 _id: 1001,
 _type: "edge",

Chapter 5
REST Support for Property Graph Data

5-109

 _outV: 1,
 _inV: 3,
 _label: "collaborates"
 },
 {
 weight: 1,
 _id: 1002,
 _type: "edge",
 _outV: 1,
 _inV: 4,
 _label: "admires"
 },
 null
],
 totalSize: 3,
 queryTime: 49.491961
 }

/edges/{graphName}/properties

Description: Returns a specified property of specified edges.

Parameters

• graphname:

The name of the property graph.

• ids (Request Payload):

A JSON array with the IDs of edges.

• propertyName (Request Payload):

A JSON string specifying the name of the property.

Usage Notes

This API sends a JSON array with an “ids” key and an array of integer ID values. It
returns an array matching the size of the input ids parameter

If an edge is not found, its corresponding value in the results array will be null.

It always returns an array of results even if none of the edges exists in the graph, in
which case returns an array full of null values but not a 404 HTTP code.

Example

The following command gets the weight values of the edges with IDs 1001, 1002, and
1003 (if they exist) in the connections graph..

curl -v -X POST 'http://localhost:7001/opg_unified/edges/connections/properties' -H
"Content-Type: application/json" -d '{"ids":
[1001,1002,1003],"propertyName":"weight"}'

The returned JSON may look like the following:

 {
 results: [
 {
 _id: 1001,
 weight: 1
 },
 {

Chapter 5
REST Support for Property Graph Data

5-110

 _id: 1002,
 weight: 1
 },
 {
 _id: 1003,
 weight: 1
 }
],
 totalSize: 3,
 queryTime: 12.491961 }

5.11.3.3 PUT Operations (Property Graphs)
This topic describes the PUT operations of the property graph REST API.

Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

• /backends/{backendNameNew}

• /graphs/connections/edges

• /graphs/{graphname}/indices/{indexName}}?key=<key>&value=<value>&id=<id>

/backends/{backendNameNew}

Description: Sets a new back end entry with the specified properties.

Parameters

• backendNameNew:

The name of the new back end to be supported.

• backendType:

The type of the new back end to be supported.

• (other):

(Other back end-specific properties.)

Usage Notes

If the back end name does already exist, an error is generated.

Any other parameters specified, such as isDefault or backendType, are passed as part
of the payload.

Example

The following PUT operation creates a new back end named hbase_connection2.

http://localhost:7001/opg_unified/dal/backends/hbase_connection2

Payload for example:

Chapter 5
REST Support for Property Graph Data

5-111

{"isDefault": false,"port": "2182","backendType":"HBaseBackendConnection","quorum":
"127.0.0.1"}

The result may look like the following:

{"backend": {"backendName": "hbase_connection2","isDefault": false,"port":
"2182","backendType": "HBaseBackendConnection","quorum": "127.0.0.1"},
"queryTime": 20.929009, "upTime": "0[d]:02[h]:22[m]:19[s]"}

/graphs/connections/edges

…edges?_outV=<id>&_label=value&_inV=<id>
…edges/<edgeId>?_outV=<id>&_label=value&_inV=<id>
…edges/<edgeId>?<key>=value

Description: Creates a new edge between two vertices.

Parameters

• _outV:

The outgoing vertex.

• _inV:

The incoming vertex.

• _label:

The outgoing label of the edge.

• edgeID:

The ID of the edge to create.

• key:

The key value to create.

Usage Notes

(None.)

Example

The following PUT operation creates an edge with the label friend from vertex 29 to
vertex 26.

http://localhost:8080/graphs/connections/edges_outV=29&_label=friend&_inV=26

The result may look like the following:

{"results": {"_id": 1810534020425227300,"_type": "edge","_outV": 29,"_inV":
26,"_label": "friend"},"queryTime": 36.635908}

/graphs/{graphname}/indices/{indexName}}?key=<key>&value=<value>&id=<id>

Description: Adds the specified vertex or edge to the key-value pair of the specified
manual index.

Parameters

• graphName:

The name of the property graph.

Chapter 5
REST Support for Property Graph Data

5-112

• indexName:

The name of the index.

• <key>:

The key for the key-value pair.

• <value>:

The value for the key-value pair.

• <id>:

The ID value of the vertex or edge.

Usage Notes

This PUT operation performs a call to OracleIndex.put(key,value,class) method.

Example

The following example adds the key-value pair “name”-“Beyonce” to the vertex with ID
2..

http://localhost:7001/opg_unified/dal/graphs/connections/indices/myIdx?
key=name&value=Beyonce&id=2

If the PUT operation is successful, you may see a response like the following:

{
 "queryTime": 39.265613
}

5.11.3.4 DELETE Operations (Property Graphs)
This topic describes the DELETE operations of the property graph REST API.

Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

• /backends/{backendName}

• /graphs/{graphName}/edges/<id>

• /graphs/{graphName}/indices/{IndexName}

• /graphs/{graphName}/keyindices/{class}/{keyName}

/backends/{backendName}

Description: Deletes the specified back end from the list of available back ends for
the graph server. It returns the information of the deleted back end.

Parameters

• backendName:

The name of the back end.

Chapter 5
REST Support for Property Graph Data

5-113

Usage Notes

(None.)

Example

The following PUT operation

The result may look like the following:

{"backend":
{"backendName":"hbase_connection","isDefault":false,"port":"2181","backendType":"HBas
eBackendConnection","quorum":"127.0.0.1"},"queryTime":0.207346,"upTime":"0[d]:00[h]:
18[m]:40[s]"}

/graphs/{graphName}/edges/<id>

Description: Deletes from the specified graph the edge with the specified edge ID.

Parameters

• id:

ID of the edge to be deleted.

Usage Notes

This API returns the time taken for the operation.

Example

The following example deletes the edge with ID 1010..

http://localhost:7001/opg_unified/dal/graphs/connections/edges/1010

If the operation is successful, you may see a response like the following:

{
 "queryTime": 10.925611
}

/graphs/{graphName}/indices/{IndexName}

Description: Deletes from the specified graph the specified manual index.

Parameters

• graphName:

The name of the property graph.

• indexName:

The name of the mamual index to delete.

Usage Notes

This DELETE operation performs a call to OraclePropertyGraph.dropIndex(name)
method.

Example

The following example drops the manual index myIdx from the connections graph.

http:// localhost:7001/opg_unified/dal/graphs/connections/indices/myIdx

Chapter 5
REST Support for Property Graph Data

5-114

/graphs/{graphName}/keyindices/{class}/{keyName}

Description: Deletes from the specified graph the specified automatic index.

Parameters

• graphName:

The name of the property graph.

• indexName:

The name of the automatic index to delete.

Usage Notes

This DELETE operation performs a call to
OraclePropertyGraph.dropKeyIndex(name,class) method.

Example

The following example drops the automatic index myVKeyIdx from the connections
graph.

http:// localhost:7001/opg_unified/dal/graphs/connections/keyindices/vertex/myVKeyIdx

5.12 Exploring the Sample Programs
The software installation includes a directory of example programs, which you can use
to learn about creating and manipulating property graphs.

• About the Sample Programs

• Compiling and Running the Sample Programs

• About the Example Output

• Example: Creating a Property Graph

• Example: Dropping a Property Graph

• Examples: Adding and Dropping Vertices and Edges

5.12.1 About the Sample Programs
The sample programs are distributed in an installation subdirectory named examples/
dal. The examples are replicated for HBase and Oracle NoSQL Database, so that you
can use the set of programs corresponding to your choice of backend database. The
following table describes the some of the programs.

Table 5-4 Property Graph Program Examples (Selected)

Program Name Description

ExampleNoSQL1

ExampleHBase1

Creates a minimal property graph consisting of one vertex, sets
properties with various data types on the vertex, and queries the
database for the saved graph description.

ExampleNoSQL2

ExampleHBase2

Creates the same minimal property graph as Example1, and then
deletes it.

Chapter 5
Exploring the Sample Programs

5-115

Table 5-4 (Cont.) Property Graph Program Examples (Selected)

Program Name Description

ExampleNoSQL3

ExampleHBase3

Creates a graph with multiple vertices and edges. Deletes some vertices
and edges explicitly, and other implicitly by deleting other, required
objects. This example queries the database repeatedly to show the
current list of objects.

5.12.2 Compiling and Running the Sample Programs
To compile and run the Java source files:

1. Change to the examples directory:

cd examples/dal

2. Use the Java compiler:

javac -classpath ../../lib/'*' filename.java

For example: javac -classpath ../../lib/'*' ExampleNoSQL1.java

3. Execute the compiled code:

java -classpath ../../lib/'*':./ filename args

The arguments depend on whether you are using Oracle NoSQL Database or
Apache HBase to store the graph. The values are passed to
OraclePropertyGraph.getInstance.

Apache HBase Argument Descriptions

Provide these arguments when using the HBase examples:

1. quorum: A comma-delimited list of names identifying the nodes where HBase
runs, such as "node01.example.com, node02.example.com, node03.example.com".

2. client_port: The HBase client port number, such as "2181".

3. graph_name: The name of the graph, such as "customer_graph".

Oracle NoSQL Database Argument Descriptions

Provide these arguments when using the NoSQL examples:

1. host_name: The cluster name and port number for Oracle NoSQL Database
registration, such as "cluster02:5000".

2. store_name: The name of the key-value store, such as "kvstore"

3. graph_name: The name of the graph, such as "customer_graph".

5.12.3 About the Example Output
The example programs use System.out.println to retrieve the property graph
descriptions from the database where it is stored, either Oracle NoSQL Database or
Apache HBase. The key name, data type, and value are delimited by colons. For

Chapter 5
Exploring the Sample Programs

5-116

example, weight:flo:30.0 indicates that the key name is weight, the data type is float,
and the value is 30.0.

Table 5-5 identifies the data type abbreviations used in the output.

Table 5-5 Property Graph Data Type Abbreviations

Abbreviation Data Type

bol Boolean

dat date

dbl double

flo float

int integer

ser serializable

str string

5.12.4 Example: Creating a Property Graph
ExampleNoSQL1 and ExampleHBase1 create a minimal property graph consisting of one
vertex. The code fragment in Example 5-5 creates a vertex named v1 and sets
properties with various data types. It then queries the database for the saved graph
description.

Example 5-5 Creating a Property Graph

// Create a property graph instance named opg
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args);

// Clear all vertices and edges from opg
 opg.clearRepository();

// Create vertex v1 and assign it properties as key-value pairs
 Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(18));
 v1.setProperty("name", "Name");
 v1.setProperty("weight", Float.valueOf(30.0f));
 v1.setProperty("height", Double.valueOf(1.70d));
 v1.setProperty("female", Boolean.TRUE);

// Save the graph in the database
 opg.commit();

// Display the stored vertex description
System.out.println("Fetch 1 vertex: " + opg.getVertices().iterator().next());

// Close the graph instance
 opg.shutdown();

The OraclePropertyGraph.getInstance arguments (args) depend on whether you are
using Oracle NoSQL Database or Apache HBase to store the graph. See "Compiling
and Running the Sample Programs".

System.out.println displays the following output:

Chapter 5
Exploring the Sample Programs

5-117

Fetch 1 vertex: Vertex ID 1 {age:int:18, name:str:Name, weight:flo:30.0, height:dbl:
1.7, female:bol:true}

See the property graph support Javadoc (/opt/oracle/oracle-spatial-graph/
property_graph/doc/pgx by default) for the following:

OraclePropertyGraph.addVertex
OraclePropertyGraph.clearRepository
OraclePropertyGraph.getInstance
OraclePropertyGraph.getVertices
OraclePropertyGraph.shutdown
Vertex.setProperty

5.12.5 Example: Dropping a Property Graph
ExampleNoSQL2 and ExampleHBase2 create a graph like the one in "Example:
Creating a Property Graph", and then drop it from the database.

The code fragment in Example 5-6 drops the graph. See "Compiling and Running the
Sample Programs" for descriptions of the OraclePropertyGraphUtils.dropPropertyGraph
arguments.

Example 5-6 Dropping a Property Graph

// Drop the property graph from the database
OraclePropertyGraphUtils.dropPropertyGraph(args);

// Display confirmation that the graph was dropped
System.out.println("Graph " + graph_name + " dropped. ");

System.out.println displays the following output:

Graph graph_name dropped.

See the Javadoc for OraclePropertyGraphUtils.dropPropertyGraph.

5.12.6 Examples: Adding and Dropping Vertices and Edges
ExampleNoSQL3 and ExampleHBase3 add and drop both vertices and edges.

Example 5-7 Creating the Vertices

The code fragment in Example 5-7 creates three vertices. It is a simple variation of
Example 5-5.

// Create a property graph instance named opg
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args);

// Clear all vertices and edges from opg
 opg.clearRepository();

// Add vertices a, b, and c
 Vertex a = opg.addVertex(1l);
 a.setProperty("name", "Alice");
 a.setProperty("age", 31);

 Vertex b = opg.addVertex(2l);
 b.setProperty("name", "Bob");
 b.setProperty("age", 27);

Chapter 5
Exploring the Sample Programs

5-118

 Vertex c = opg.addVertex(3l);
 c.setProperty("name", "Chris");
 c.setProperty("age", 33);

Example 5-8 Creating the Edges

The code fragment in Example 5-8 uses vertices a, b, and c to create the edges.

// Add edges e1, e2, and e3
 Edge e1 = opg.addEdge(1l, a, b, "knows");
 e1.setProperty("type", "partners");

 Edge e2 = opg.addEdge(2l, a, c, "knows");
 e2.setProperty("type", "friends");

 Edge e3 = opg.addEdge(3l, b, c, "knows");
 e3.setProperty("type", "colleagues");

Example 5-9 Deleting Edges and Vertices

The code fragment in Example 5-9 explicitly deletes edge e3 and vertex b. It implicitly
deletes edge e1, which was connected to vertex b.

 // Remove edge e3
 opg.removeEdge(e3);

// Remove vertex b and all related edges
 opg.removeVertex(b);

Example 5-10 Querying for Vertices and Edges

This example queries the database to show when objects are added and dropped. The
code fragment in Example 5-10 shows the method used.

// Print all vertices
 vertices = opg.getVertices().iterator();
 System.out.println("----- Vertices ----");
 vCount = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 vCount++;
 }
 System.out.println("Vertices found: " + vCount);

 // Print all edges
 edges = opg.getEdges().iterator();
 System.out.println("----- Edges ----");
 eCount = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 eCount++;
 }
 System.out.println("Edges found: " + eCount);

The examples in this topic may produce output like the following:

----- Vertices ----
Vertex ID 3 {name:str:Chris, age:int:33}
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 2 {name:str:Bob, age:int:27}
Vertices found: 3
----- Edges ----

Chapter 5
Exploring the Sample Programs

5-119

Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 3 from Vertex ID 2 {name:str:Bob, age:int:27} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
Edge ID 1 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 2
{name:str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 3
 Remove edge Edge ID 3 from Vertex ID 2 {name:str:Bob, age:int:27} =[knows]=> Vertex
ID 3 {name:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
----- Vertices ----
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 2 {name:str:Bob, age:int:27}
Vertex ID 3 {name:str:Chris, age:int:33}
Vertices found: 3
----- Edges ----
Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 1 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 2
{name:str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 2
Remove vertex Vertex ID 2 {name:str:Bob, age:int:27}
----- Vertices ----
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 3 {name:str:Chris, age:int:33}
Vertices found: 2
----- Edges ----
Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edges found: 1

5.13 Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

• About the Property Graph Description Files

• Vertex File

• Edge File

• Encoding Special Characters

• Example Property Graph in Oracle Flat File Format

• Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat
File

• Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph
Flat Files

5.13.1 About the Property Graph Description Files
A pair of files describe a property graph:

• Vertex file: Describes the vertices of the property graph. This file has an .opv file
name extension.

• Edge file: Describes the edges of the property graph. This file has an .ope file
name extension.

Chapter 5
Oracle Flat File Format Definition

5-120

It is recommended that these two files share the same base name. For example,
simple.opv and simple.ope define a property graph.

5.13.2 Vertex File
Each line in a vertex file is a record that describes a vertex of the property graph. A
record can describe one key-value property of a vertex, thus multiple records/lines are
used to describe a vertex with multiple properties.

A record contains six fields separated by commas. Each record must contain five
commas to delimit all fields, whether or not they have values:

vertex_ID, key_name, value_type, value, value, value

Table 5-6 describes the fields composing a vertex file record.

Table 5-6 Vertex File Record Format

Field
Number

Name Description

1 vertex_ID An integer that uniquely identifies the vertex

2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(%20). This example describes vertex 1 with no
properties:

1,%20,,,,

3 value_type An integer that represents the data type of the value in
the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
20 Spatial data, which can be geospatial
coordinates, lines, polygons, or Well-Known Text
(WKT) literals
101 Serializable Java object

4 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

5 value The encoded, nonnull value of key_name when it is
numeric

Chapter 5
Oracle Flat File Format Definition

5-121

Table 5-6 (Cont.) Vertex File Record Format

Field
Number

Name Description

6 value The encoded, nonnull value of key_name when it is a
timestamp (date)

Use the Java SimpleDateFormat class to identify the
format of the date. This example describes the date
format of 2015-03-26T00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

Required Grouping of Vertices: A vertex can have multiple properties, and the
vertex file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records for
other vertices. You can accomplish this any way you want, but a convenient way is to
sort the vertex file records in ascending (or descending) order by vertex ID. (Note,
however, a vertex file is not required to have all records sorted by vertex ID; this is
merely one way to achieve the grouping requirement.)

When building a vertex file in Oracle flat file format, it is important to verify that the
vertex property name and value fields are correctly encoded (see especially Encoding
Special Characters). To simplify the encoding, you can use the
OraclePropertyGraphUtils.escape Java API.

You can use the OraclePropertyGraphUtils.outputVertexRecord(os, vid, key, value)
utility method to serialize a vertex record directly in Oracle flat file format. With this
method, you no longer need to worry about encoding of special characters. The
method writes a new line of text in the given output stream describing the key/value
property of the given vertex identified by vid.

Example 5-11 Using OraclePropertyGraphUtils.outputVertexRecord

This example uses OraclePropertyGraphUtils.outputVertexRecord to write two new lines
for vertex 1.

String opv = "./example.opv";
OutputStream os = new FileOutputStream(opv);
int birthYear = 1961;
long vid = 1;
OraclePropertyGraphUtils.outputVertexRecord(os, vid, "name", "Barack Obama");
OraclePropertyGraphUtils.outputVertexRecord(os, vid, "birth year", birthYear);
os.flush();
os.close();

The first line in the generated output file describes the property name with value
"Barack Obama", and the second line describes his birth year of 1961.

% cat example.opv
1,name,Barack%20Obama,,
1,birth%20year,2,,1961,

Chapter 5
Oracle Flat File Format Definition

5-122

5.13.3 Edge File
Each line in an edge file is a record that describes an edge of the property graph. A
record can describe one key-value property of an edge, thus multiple records are used
to describe an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight
commas to delimit all fields, whether or not they have values:

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key_name,
value_type, value, value, value

Table 5-7 describes the fields composing an edge file record.

Table 5-7 Edge File Record Format

Field
Number

Name Description

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the
relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

If the edge has no properties, then enter a space
(%20). This example describes edge 100 with no
properties:

100,1,2,likes,%20,,,,

6 value_type An integer that represents the data type of the value
in the key-value pair:

1 String
2 Integer
3 Float
4 Double
5Ttimestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
101 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

8 value The encoded, nonnull value of key_name when it is
numeric

Chapter 5
Oracle Flat File Format Definition

5-123

Table 5-7 (Cont.) Edge File Record Format

Field
Number

Name Description

9 value The encoded, nonnull value of key_name when it is
a timestamp (date)

Use the Java SimpleDateFormat class to identify the
format of the date. This example describes the date
format of 2015-03-26Th00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'Th'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

Required Grouping of Edges: An edge can have multiple properties, and the edge
file includes a record (represented by a single line of text in the flat file) for each
combination of an edge ID and a property for that edge. In the edge file, all records for
each edge must be grouped together (that is, not have any intervening records for
other edges. You can accomplish this any way you want, but a convenient way is to
sort the edge file records in ascending (or descending) order by edge ID. (Note,
however, an edge file is not required to have all records sorted by edge ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify that the
edge property name and value fields are correctly encoded (see especially Encoding
Special Characters). To simplify the encoding, you can use the
OraclePropertyGraphUtils.escape Java API.

You can use the OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid,
label, key, value) utility method to serialize an edge record directly in Oracle flat file
format. With this method, you no longer need to worry about encoding of special
characters. The method writes a new line of text in the given output stream describing
the key/value property of the given edge identified by eid.

Example 5-12 Using OraclePropertyGraphUtils.outputEdgeRecord

This example uses OraclePropertyGraphUtils.outputEdgeRecord to write two new lines
for edge 100 between vertices 1 and 2 with label friendOf.

String ope = "./example.ope";
OutputStream os = new FileOutputStream(ope);
int sinceYear = 2009;
long eid = 100;
long svid = 1;
long dvid = 2;
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid, "friendOf", "since
(year)", sinceYear);
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid, "friendOf", "weight",
1);
os.flush();
os.close();

The first line in the generated output file describes the property “since (year)" with
value 2009, and the second line and the next line sets the edge weight to 1

Chapter 5
Oracle Flat File Format Definition

5-124

% cat example.ope
100,1,2,friendOf,since%20(year),2,,2009,
100,1,2,friendOf,weight,2,,1,

5.13.4 Encoding Special Characters
The encoding is UTF-8 for the vertex and edge files. Table 5-8 lists the special
characters that must be encoded as strings when they appear in a vertex or edge
property (key-value pair) or an edge label. No other characters require encoding.

Table 5-8 Special Character Codes in the Oracle Flat File Format

Special Character String Encoding Description

% %25 Percent

\t %09 Tab

%20 Space

\n %0A New line

\r %0D Return

, %2C Comma

5.13.5 Example Property Graph in Oracle Flat File Format
An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a
friend of Mary.

%cat simple.opv
1,age,2,,10,
1,name,1,John,,
2,name,1,Mary,,
2,hobby,1,soccer,,

%cat simple.ope
100,1,2,friendOf,%20,,,,

5.13.6 Converting an Oracle Database Table to an Oracle-Defined
Property Graph Flat File

You can convert Oracle Database tables that represent the vertices and edges of a
graph into an Oracle-defined flat file format (.opv and .ope file extensions).

If you have graph data stored in Oracle Database tables, you can use Java API
methods to convert that data into flat files, and later load the tables into Oracle
Database as a property graph. This eliminates the need to take some other manual
approach to generating the flat files from existing Oracle Database tables.

Converting a Table Storing Graph Vertices to an .opv File

You can convert an Oracle Database table that contains entities (that can be
represented as vertices of a graph) to a property graph flat file in .opv format.

Chapter 5
Oracle Flat File Format Definition

5-125

For example, assume the following relational table: EmployeeTab (empID integer not
null, hasName varchar(255), hasAge integer, hasSalary number)

Assume that this table has the following data:

101, Jean, 20, 120.0
102, Mary, 21, 50.0
103, Jack, 22, 110.0
……

Each employee can be viewed as a vertex in the graph. The vertex ID could be the
value of employeeID or an ID generated using some heuristics like hashing. The
columns hasName, hasAge, and hasSalary can be viewed as attributes.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPV and its Javadoc
information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* vidColName is the name of an column in RDBMS table to be treated as vertex ID
* lVIDOffset is the offset will be applied to the vertex ID
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control the
behavior when errors happen
*/
OraclePropertyGraphUtils.convertRDBMSTable2OPV(
 Connection conn,
 String rdbmsTableName,
 String vidColName,
 long lVIDOffset,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opvOS,
 DataConverterListener dcl);

The following code snippet converts this table into an Oracle-defined vertex file (.opv):

// location of the output file
String opv = "./EmployeeTab.opv";
OutputStream opvOS = new FileOutputStream(opv);
// an array of ColumnToAttrMapping objects; each object defines how to map a column
in the RDBMS table to an attribute of the vertex in an Oracle Property Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[3];
// map column "hasName" to attribute "name" of type String
ctams[0] = ColumnToAttrMapping.getInstance("hasName", "name", String.class);
// map column "hasAge" to attribute "age" of type Integer
ctams[1] = ColumnToAttrMapping.getInstance("hasAge", "age", Integer.class);
// map column "hasSalary" to attribute "salary" of type Double
ctams[2] = ColumnToAttrMapping.getInstance("hasSalary", "salary",Double.class);
// convert RDBMS table "EmployeeTab" into opv file "./EmployeeTab.opv", column
"empID" is the vertex ID column, offset 1000l will be applied to vertex ID, use
ctams to map RDBMS columns to attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPV(conn, "EmployeeTab", "empID", 1000l,
ctams, 8, opvOS, (DataConverterListener) null);

Chapter 5
Oracle Flat File Format Definition

5-126

Note:

The lowercase letter "l" as the last character in the offset value 1000l denotes
that the value before it is a long integer.

The conversion result is as follows:

1101,name,1,Jean,,
1101,age,2,,20,
1101,salary,4,,120.0,
1102,name,1,Mary,,
1102,age,2,,21,
1102,salary,4,,50.0,
1103,name,1,Jack,,
1103,age,2,,22,
1103,salary,4,,110.0,

In this case, each row in table EmployeeTab is converted to one vertex with three
attributes. For example, the row with data "101, Jean, 20, 120.0" is converted to a
vertex with ID 1101 with attributes name/"Jean", age/20, salary/120.0. There is an
offset between original empID 101 and vertex ID 1101 because an offset 1000l is
applied. An offset is useful to avoid collision in ID values of graph elements.

Converting a Table Storing Graph Edges to an .ope File

You can convert an Oracle Database table that contains entity relationships (that can
be represented as edges of a graph) to a property graph flat filein .ope format.

For example, assume the following relational table: EmpRelationTab (relationID
integer not null, source integer not null, destination integer not null,

relationType varchar(255), startDate date)

Assume that this table has the following data:

90001, 101, 102, manage, 10-May-2015
90002, 101, 103, manage, 11-Jan-2015
90003, 102, 103, colleague, 11-Jan-2015
……

Each relation (row) can be viewed as an edge in a graph. Specifically, edge ID could
be the same as relationID or an ID generated using some heuristics like hashing. The
column relationType can be used to define edge labels, and the column startDate can
be treated as an edge attribute.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPE and its Javadoc
information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* eidColName is the name of an column in RDBMS table to be treated as edge ID
* lEIDOffset is the offset will be applied to the edge ID
* svidColName is the name of an column in RDBMS table to be treated as source vertex
ID of the edge
* dvidColName is the name of an column in RDBMS table to be treated as destination
vertex ID of the edge
* lVIDOffset is the offset will be applied to the vertex ID

Chapter 5
Oracle Flat File Format Definition

5-127

* bHasEdgeLabelCol a Boolean flag represents if the given RDBMS table has a column
for edge labels; if true, use value of column elColName as the edge label;
otherwise, use the constant string elColName as the edge label
* elColName is the name of an column in RDBMS table to be treated as edge labels
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control the
behavior when errors happen
*/
OraclePropertyGraphUtils.convertRDBMSTable2OPE(
 Connection conn,
 String rdbmsTableName,
 String eidColName,
 long lEIDOffset,
 String svidColName,
 String dvidColName,
 long lVIDOffset,
 boolean bHasEdgeLabelCol,
 String elColName,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opeOS,
 DataConverterListener dcl);

The following code snippet converts this table into an Oracle-defined edge file (.ope):

// location of the output file
String ope = "./EmpRelationTab.ope";
OutputStream opeOS = new FileOutputStream(ope);
// an array of ColumnToAttrMapping objects; each object defines how to map a column
in the RDBMS table to an attribute of the edge in an Oracle Property Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[1];
// map column "startDate" to attribute "since" of type Date
ctams[0] = ColumnToAttrMapping.getInstance(“startDate", “since",Date.class);
// convert RDBMS table “EmpRelationTab" into ope file “./EmpRelationTab.opv", column
“relationID" is the edge ID column, offset 10000l will be applied to edge ID, the
source and destination vertices of the edge are defined by columns “source" and
“destination", offset 1000l will be applied to vertex ID, the RDBMS table has an
column “relationType" to be treated as edge labels, use ctams to map RDBMS columns
to edge attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPE(conn, “EmpRelationTab", “relationID",
10000l, “source", “destination", 1000l, true, “relationType", ctams, 8, opeOS,
(DataConverterListener) null);

Note:

The lowercase letter “l" as the last character in the offset value 10000l
denotes that the value before it is a long integer.

The conversion result is as follows:

100001,1101,1102,manage,since,5,,,2015-05-10T00:00:00.000-07:00
100002,1101,1103,manage,since,5,,,2015-01-11T00:00:00.000-07:00
100003,1102,1103,colleague,since,5,,,2015-01-11T00:00:00.000-07:00

In this case, each row in table EmpRelationTab is converted to a distinct edge with the
attribute since. For example, the row with data “90001, 101, 102, manage, 10-

Chapter 5
Oracle Flat File Format Definition

5-128

May-2015" is converted to an edge with ID 100001 linking vertex 1101 to vertex 1102.
This edge has attribute since/“2015-05-10T00:00:00.000-07:00". There is an offset
between original relationID “90001" and edge ID “100001" because an offset 10000l is
applied. Similarly, an offset 1000l is applied to the source and destination vertex IDs.

5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files

Some applications use CSV (comma-separated value) format to encode vertices and
edges of a graph. In this format, each record of the CSV file represents a single vertex
or edge, with all its properties. You can convert a CSV file representing the vertices of
a graph to Oracle-defined flat file format definition (.opv for vertices, .ope for edges).

The CSV file to be converted may include a header line specifying the column name
and the type of the attribute that the column represents. If the header includes only the
attribute names, then the converter will assume that the data type of the values will be
String.

The Java APIs to convert CSV to OPV or OPE receive an InputStream from which they
read the vertices or edges (from CSV), and write them in the .opv or .ope format to an
OutputStream. The converter APIs also allow customization of the conversion process.

The following subtopics provide instructions for converting vertices and edges. The
instructions for the first two are very similar, but with differences specific to vertices
and edges.

• Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

• Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

• Vertices and Edges: Converting a Single CSV File Containing Both Vertices and
Edges Data into a Pair of Graph Flat Files

5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File Format
(.opv)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping array
describing all the attribute names (mapped to its values data types) in the same order
in which they appear in the CSV file. Additionally, the entire columns from the CSV file
must be described in the array, including special columns such as the ID for the
vertices. If you want to specify the headers for the column in the first line of the same
CSV file, then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV2OPV
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the vertex ID (this column must
appear in the CSV file)

• An integer offset to add to the VID (an offset is useful to avoid collision in ID values
of graph elements)

• A ColumnToAttrMapping array (which must be null if the headers are specified in the
file)

• Degree of parallelism (DOP)

Chapter 5
Oracle Flat File Format Definition

5-129

• An integer denoting offset (number of vertex records to skip) before converting

• An OutputStream in which the vertex flat file (.opv) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs

Additional parameters can be used to specify a different format of the CSV file:

• The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

• The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified if the
CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters. If
this parameter is set to true, all the Strings in the file that contain new lines or
quotation characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of
which I have no desire to call to mind""."

The following code fragment shows how to create a ColumnToAttrMapping array and use
the API to convert a CSV file into an .opv file.

 String inputCSV = "/path/mygraph-vertices.csv";
 String outputOPV = "/path/mygraph.opv";
 ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[4];
 ctams[0] = ColumnToAttrMapping.getInstance("VID",
Long.class);
 ctams[1] = ColumnToAttrMapping.getInstance("name",
String.class);
 ctams[2] = ColumnToAttrMapping.getInstance("score",
Double.class);
 ctams[3] = ColumnToAttrMapping.getInstance("age",
Integer.class);
 String vidColumn = "VID";

 isCSV = new FileInputStream(inputCSV);
 osOPV = new FileOutputStream(new File(outputOPV));

Chapter 5
Oracle Flat File Format Definition

5-130

 // Convert Vertices
 OraclePropertyGraphUtilsBase.convertCSV2OPV(isCSV, vidColumn, 0, ctams, 1, 0,
osOPV, null);
 isOPV.close();
 osOPV.close();

In this example, the CSV file to be converted must not include the header and contain
four columns (the vertex ID, name, score, and age). An example CVS is as follows:

1,John,4.2,30
2,Mary,4.3,32
3,"Skywalker, Anakin",5.0,46
4,"Darth Vader",5.0,46
5,"Skywalker, Luke",5.0,53

The resulting .opv file is as follows:

1,name,1,John,,
1,score,4,,4.2,
1,age,2,,30,
2,name,1,Mary,,
2,score,4,,4.3,
2,age,2,,32,
3,name,1,Skywalker%2C%20Anakin,,
3,score,4,,5.0,
3,age,2,,46,
4,name,1,Darth%20Vader,,
4,score,4,,5.0,
4,age,2,,46,
5,name,1,Skywalker%2C%20Luke,,
5,score,4,,5.0,
5,age,2,,53,

Another way to convert a CSV file containing vertices data is to use the
convertCSV2OPV APIs that take a CSV2OPVConfig object as one of the following input
arguments:

• An InputStream to read vertices from a CSV file

• A CSV2OPVConfig object that specifies the configuration

• An OutputStream to write the vertex flat file (.opv) to

The CSV2OPVConfig class has different members, which can be set according to the
desired tuning; this is equivalent to call the convertCSV2OPV API with all the different
configuration parameters.

The following code fragment shows how to create a CSV2OPVConfig object and use the
API to convert a CSV file into an .opv file.

 String inputCSV = "/path/mygraph-vertices.csv";
 String outputOPV = "/path/mygraph.opv";

 ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[4];
 ctams[0] = ColumnToAttrMapping.getInstance("VID",
Long.class);
 ctams[1] = ColumnToAttrMapping.getInstance("name",
String.class);
 ctams[2] = ColumnToAttrMapping.getInstance("score",
Double.class);
 ctams[3] = ColumnToAttrMapping.getInstance("age",
Integer.class);

Chapter 5
Oracle Flat File Format Definition

5-131

 InputStream isCSV = new FileInputStream(inputCSV);
 OutputStream osOPV = new FileOutputStream(new File(outputOPV));
 CSV2OPVConfig config = (CSV2OPVConfig) new CSV2OPVConfig()
 .setVidColumnName("VID")
 .setCtams(ctams)
 .setAllowExtraFields(false)
 .setDelimiterChar(',')
 .setQuotationChar('"');

 // Convert vertices
 OraclePropertyGraphCSVConverter.convertCSV2OPV(isCSV, config, osOPV);
 isCSV.close();
 osOPV.close();

If the CSV2OPVConfig includes a ColumnToAttrMapping array, then the input CSV must not
include a header, because the mappings have already been defined in the
ColumnToAttrMapping array. Additionally, because the setAllowExtraFields flag is set to
false in the CSV2OPVConfig, the number of columns in the CSV file must match the
length of the ColumnToAttrMapping array (in the example, one for the vertex ID, the
second one for name, third one for score, and the last one for age). An example CSV
is:

1,John,4.2,30
2,Mary,4.3,32
3,"Skywalker, Anakin",5.0,46
4,"Darth Vader",5.0,46
5,"Skywalker, Luke",5.0,53

The resulting .opv file is as follows:

1,name,1,John,,
1,score,4,,4.2,
1,age,2,,30,
2,name,1,Mary,,
2,score,4,,4.3,
2,age,2,,32,
3,name,1,Skywalker%2C%20Anakin,,
3,score,4,,5.0,
3,age,2,,46,
4,name,1,Darth%20Vader,,
4,score,4,,5.0,
4,age,2,,46,
5,name,1,Skywalker%2C%20Luke,,
5,score,4,,5.0,
5,age,2,,53,

5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format
(.ope)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping array
describing all the attribute names (mapped to its values data types) in the same order
in which they appear in the CSV file. Additionally, the entire columns from the CSV file
must be described in the array, including special columns such as the ID for the edges
if it applies, and the START_ID, END_ID, and TYPE, which are required. If you want to
specify the headers for the column in the first line of the same CSV file, then this
parameter must be set to null.

Chapter 5
Oracle Flat File Format Definition

5-132

To convert a CSV file representing vertices, you can use one of the convertCSV2OPE
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the edge ID (this is optional in the
CSV file; if it is not present, the line number will be used as the ID)

• An integer offset to add to the EID (an offset is useful to avoid collision in ID values
of graph elements)

• Name of the column that is representing the source vertex ID (this column must
appear in the CSV file)

• Name of the column that is representing the destination vertex ID (this column
must appear in the CSV file)

• Offset to the VID (lOffsetVID). This offset will be added on top of the original SVID
and DVID values. (A variation of this API takes in two arguments (lOffsetSVID and
lOffsetDVID): one offset for SVID, the other offset for DVID.)

• A boolean flag indicating if the edge label column is present in the CSV file.

• Name of the column that is representing the edge label (if this column is not
present in the CSV file, then this parameter will be used as a constant for all edge
labels)

• A ColumnToAttrMapping array (which must be null if the headers are specified in the
file)

• Degree of parallelism (DOP)

• An integer denoting offset (number of edge records to skip) before converting

• An OutputStream in which the edge flat file (.ope) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs.

Additional parameters can be used to specify a different format of the CSV file:

• The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

• The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified if the
CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

Chapter 5
Oracle Flat File Format Definition

5-133

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters. If
this parameter is set to true, all the Strings in the file that contain new lines or
quotation characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of
which I have no desire to call to mind""."

The following code fragment shows how to use the API to convert a CSV file into
an .ope file with a null ColumnToAttrMapping array.

 String inputOPE = "/path/mygraph-edges.csv";
 String outputOPE = "/path/mygraph.ope";
 String eidColumn = null; // null implies that an integer sequence
will be used
 String svidColumn = "START_ID";
 String dvidColumn = "END_ID";
 boolean hasLabel = true;
 String labelColumn = "TYPE";

 isOPE = new FileInputStream(inputOPE);
 osOPE = new FileOutputStream(new File(outputOPE));

 // Convert Edges
 OraclePropertyGraphUtilsBase.convertCSV2OPE(isOPE, eidColumn, 0, svidColumn,
dvidColumn, hasLabel, labelColumn, null, 1, 0, osOPE, null);

An input CSV that uses the former example to be converted should include the header
specifying the columns name and their type. An example CSV file is as follows.

START_ID:long,weight:float,END_ID:long,:TYPE
1,1.0,2,loves
1,1.0,5,admires
2,0.9,1,loves
1,0.5,3,likes
2,0.0,4,likes
4,1.0,5,is the dad of
3,1.0,4,turns to
5,1.0,3,saves from the dark side

The resulting .ope file is as follows.

1,1,2,loves,weight,3,,1.0,
2,1,5,admires,weight,3,,1.0,
3,2,1,loves,weight,3,,0.9,
4,1,3,likes,weight,3,,0.5,
5,2,4,likes,weight,3,,0.0,
6,4,5,is%20the%20dad%20of,weight,3,,1.0,
7,3,4,turns%20to,weight,3,,1.0,
8,5,3,saves%20from%20the%20dark%20side,weight,3,,1.0,

Another way to convert a CSV file containing edges data is to use the
convertCSV2OPE APIs that take a CSV2OPEConfig object as one of the following input
arguments:

• An InputStream to read edges from a CSV file

• A CSV2OPVConfig object that specifies the configuration

• An OutputStream to write the edge flat file (.opv) to

Chapter 5
Oracle Flat File Format Definition

5-134

The CSV2OPEConfig class has different members, which can be set according to the
desired tuning; this is equivalent to call the convertCSV2OPE API with all the different
configuration parameters.

The following code fragment shows how to create a CSV2OPEConfig object and use the
API to convert a CSV file into an .ope file.

 String inputOPE = "/path/mygraph-edges.csv";
 String outputOPE = "/path/mygraph.ope";
 String eidColumn = null; // null implies that an integer sequence
will be used
 String svidColumn = "START_ID";
 String dvidColumn = "END_ID";
 boolean hasLabel = true;
 String labelColumn = "TYPE";

 InputStream isCSV = new FileInputStream(inputOPE);
 OutputStream osOPE = new FileOutputStream(new File(outputOPE));
 CSV2OPEConfig config = (CSV2OPEConfig) new CSV2OPEConfig()
 .setEidColumnName(eidColumn)
 .setSvidColumnName(svidColumn)
 .setDvidColumnName(dvidColumn)
 .setHasEdgeLabelColumn(hasLabel)
 .setElColumnName(labelColumn)
 .setCtams(null)
 .setDelimiterChar(',')
 .setQuotationChar('"');

 // Convert Edges
 OraclePropertyGraphCSVConverter.convertCSV2OPE(isCSV, config, osOPE);
 isCSV.close();
 osOPE.close();

If the CSV2OPEConfig does not include a ColumnToAttrMapping array or if this array is set
to null, then the input CSV must include a header specifying the column names and
data type. An example CSV file is:

START_ID:long,weight:float,END_ID:long,:TYPE
1,1.0,2,loves
1,1.0,5,admires
2,0.9,1,loves
1,0.5,3,likes
2,0.0,4,likes
4,1.0,5,is the dad of
3,1.0,4,turns to
5,1.0,3,saves from the dark side

The resulting .ope file is as follows:

1,1,2,loves,weight,3,,1.0,
2,1,5,admires,weight,3,,1.0,
3,2,1,loves,weight,3,,0.9,
4,1,3,likes,weight,3,,0.5,
5,2,4,likes,weight,3,,0.0,
6,4,5,is%20the%20dad%20of,weight,3,,1.0,
7,3,4,turns%20to,weight,3,,1.0,
8,5,3,saves%20from%20the%20dark%20side,weight,3,,1.0,

Chapter 5
Oracle Flat File Format Definition

5-135

5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing Both
Vertices and Edges Data into a Pair of Graph Flat Files

The property graph support also provides an option to convert a single CSV file
containing both vertices and edges data, into a pair of graph flat files. One can use the
convertCSV2OPG APIs to make this conversion and the input parameters are as
follows:

• An InputStream to read vertices and edges from a CSV file

• A CSV2OPGConfig object that specifies the configuration

• An OutputStream to write the vertex flat file (.opv) to

• An OutputStream to write the edge flat file (.ope) to

The following code fragment shows how to create a CSV2OPGConfig object and use the
API to convert a single CSV file into .opv and .ope files.

 String inputCSV = "/path/mygraph.csv";
 String outputOPV = "/path/mygraph.opv";
 String outputOPE = "/path/mygraph.ope";

 String eidColumn = null; // null implies that an integer sequence
will be used
 String svidColumn = "START_ID";
 String dvidColumn = "END_ID";
 boolean hasLabel = true;
 String labelColumn = "TYPE";

 String[] vertexNames = new String [2];
 vertexNames[0] = svidColumn;
 vertexNames[1] = dvidColumn;

 InputStream isCSV = new FileInputStream(inputOPE);
 OutputStream osOPV = new FileOutputStream(new File(outputOPV));
 OutputStream osOPE = new FileOutputStream(new File(outputOPE));

 CSV2OPGConfig config = (CSV2OPGConfig) new CSV2OPGConfig()
 .setVidColumnNames(vertexNames)
 .setKeepOriginalID(true)
 .setOriginalIDName("myId")
 .setEidColumnName(eidColumn)
 .setSvidColumnName(svidColumn)
 .setDvidColumnName(dvidColumn)
 .setHasEdgeLabelColumn(hasLabel)
 .setElColumnName(labelColumn)
 .setCtams(null)
 .setDelimiterChar(',')
 .setQuotationChar('"');

 // Convert Graph
 OraclePropertyGraphCSVConverter.convertCSV2OPG(isCSV, config, osOPV, osOPE);
 isCSV.close();
 osOPV.close();
 osOPE.close();

If the CSV2OPEConfig does not include a ColumnToAttrMapping array or this array is set to
null, then the input CSV must include a header specifying the column names and data
type. An example CSV file is:

Chapter 5
Oracle Flat File Format Definition

5-136

START_ID:long,weight:float,END_ID:long,:TYPE
John,1.0,Mary,loves
John,1.0,"Skywalker, Luke",admires
Mary,0.9,John,loves
John,0.5,"Skywalker, Anakin",likes
Mary,0.0,"Darth Vader",likes
"Darth Vader",1.0,"Skywalker, Luke",is the dad of
"Skywalker, Anakin",1.0,"Darth Vader",turns to
"Skywalker, Luke",1.0,"Skywalker, Anakin",saves from the dark side

The resulting .opv file is as follows:

-4984830045544402721,myId,1,John,,
6010046165116255926,myId,1,Mary,,
-5861570303285508288,myId,1,Skywalker%2C%20Anakin,,
-6450119557041804291,myId,1,Darth%20Vader,,
3941046021651468440,myId,1,Skywalker%2C%20Luke,,

The resulting .ope file is as follows:

1,-4984830045544402721,6010046165116255926,loves,weight,3,,1.0,
2,-4984830045544402721,3941046021651468440,admires,weight,3,,1.0,
3,6010046165116255926,-4984830045544402721,loves,weight,3,,0.9,
4,-4984830045544402721,-5861570303285508288,likes,weight,3,,0.5,
5,6010046165116255926,-6450119557041804291,likes,weight,3,,0.0,
6,-6450119557041804291,3941046021651468440,is%20the%20dad%20of,weight,3,,1.0,
7,-5861570303285508288,-6450119557041804291,turns%20to,weight,3,,1.0,
8, 3941046021651468440,-5861570303285508288,saves%20from%20the%20dark%20side,weight,
3,,1.0,

5.14 Example Python User Interface
The Oracle Big Data Spatial and Graph support for property graphs includes an
example Python user interface. It can invoke a set of example Python scripts and
modules that perform a variety of property graph operations.

Instructions for installing the example Python user interface are in the /property_graph/
examples/pyopg/README file under the installation home (/opt/oracle/oracle-spatial-
graph by default).

The example Python scripts in /property_graph/examples/pyopg/ can be used with
Oracle Spatial and Graph Property Graph, and you may want to change and enhance
them (or copies of them) to suit your needs.

To invoke the user interface to run the examples, use the script pyopg.sh.

The examples include the following:

• Example 1: Connect to an Oracle NoSQL Database and perform a simple check of
number of vertices and edges. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectONDB("mygraph", "kvstore", "localhost:5000")
print "vertices", countV()
print "edges", countE()

In the preceding example, mygraph is the name of the graph stored in the Oracle
NoSQL Database, kvstore and localhost:5000 are the connection information to

Chapter 5
Example Python User Interface

5-137

access the Oracle NoSQL Database. They must be customized for your
environment.

• Example 2: Connect to an Apache HBase and perform a simple check of number
of vertices and edges. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectHBase("mygraph", "localhost", "2181")
print "vertices", countV()
print "edges", countE()

In the preceding example, mygraph is the name of the graph stored in the Apache
HBase, and localhost and 2181 are the connection information to access the
Apache HBase. They must be customized for your environment.

• Example 3: Connect to an Oracle NoSQL Database and run a few analytical
functions. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectONDB("mygraph", "kvstore", "localhost:5000")
print "vertices", countV()
print "edges", countE()

import pprint

analyzer = analyst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"commid":i.getName(),"size":i.size()} for i in
analyzer.communities().iterator()]

import pandas as pd
import numpy as np

community_frame = pd.DataFrame(graph_communities)
community_frame[:5]

import matplotlib as mpl
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frame["size"].plot(kind="bar", title="Communities and Sizes")
ax.set_xticklabels(community_frame.index);
plt.show()

The preceding example connects to an Oracle NoSQL Database, prints basic
information about the vertices and edges, get an in memory analyst, computes the
number of triangles, performs community detection, and finally plots out in a bar
chart communities and their sizes.

• Example 4: Connect to an Apache HBase and run a few analytical functions. To
run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectHBase("mygraph", "localhost", "2181")
print "vertices", countV()

Chapter 5
Example Python User Interface

5-138

print "edges", countE()

import pprint

analyzer = analyst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"commid":i.getName(),"size":i.size()} for i in
analyzer.communities().iterator()]
import pandas as pd
import numpy as np
community_frame = pd.DataFrame(graph_communities)
community_frame[:5]

import matplotlib as mpl
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frame["size"].plot(kind="bar", title="Communities and Sizes")
ax.set_xticklabels(community_frame.index);
plt.show()

The preceding example connects to an Apache HBase, prints basic information
about the vertices and edges, gets an in-memory analyst, computes the number of
triangles, performs community detection, and finally plots out in a bar chart
communities and their sizes.

For detailed information about this example Python interface, see the following
directory under the installation home:

property_graph/examples/pyopg/doc/

5.15 Example iPython Notebooks User Interface
Support is provided for the following types of iPython Notebook shell interface to major
property graph functions.

iPython Notebook is a convenient tool for building a workflow or demo based on a
property graph. This topic explains how to add visualization to an iPython Notebook-
based property graph workflow.

Instructions for installing iPython Notebook are in the /property_graph/examples/pyopg/
README file under the installation home (/opt/oracle/oracle-spatial-graph by default).

After you have installed iPython Notebook, you can copy and paste the code snippets
into an iPython notebook.

Follow these steps to get started.

1. Specify a few necessary libraries and imports. For example:

import matplotlib as mpl
import matplotlib.pyplot as plt
import sys
default_stdout = sys.stdout
default_stderr = sys.stderr
reload(sys)
sys.setdefaultencoding("utf-8")
sys.stdout = default_stdout
sys.stderr = default_stderr

Chapter 5
Example iPython Notebooks User Interface

5-139

from pyopg.core import *
pgx_config = JPackage('oracle.pgx.config')
pgx_types = JPackage('oracle.pgx.common.types')
pgx_control = JPackage('oracle.pgx.api')
hbase = JPackage('oracle.pg.hbase')

2. Create a graph configuration. For example:

graph_builder = pgx_config.GraphConfigBuilder.forPropertyGraphHbase() \
.setName("my_graph").setZkQuorum("hostname1").setZkClientPort(2181) \
.setZkSessionTimeout(120000).setInitialEdgeNumRegions(3) \
.setInitialVertexNumRegions(3).setSplitsPerRegion(1)
graph_builder.addEdgeProperty("weight", pgx_types.PropertyType.DOUBLE, "1000000")

3. Read the graph into the in-memory analyst. For example:

opg = hbase.OraclePropertyGraph.getInstance(graph_builder.build())
pgx_param = JClass("java.util.HashMap")()
instance = JClass("oracle.pgx.api.Pgx").getInstance()
if not instance.isEngineRunning():instance.startEngine(pgx_param)
session = instance.createSession("my_recommender_session1")
analyst = session.createAnalyst()
pgxGraph = session.readGraphWithProperties(opg.getConfig(), True)
pgxGraph.getNumEdges()

4. (optional) Read out a few vertices. For example:

for element in range(1,10,1):
 vertex = opg.getVertex(element)
 print 'Vertex ID: ' + str(element) + ' - Name: ' + vertex.getProperty("name")
#Vertex ID: 1 - Name: Barack Obama
#Vertex ID: 2 - Name: Beyonce
#...

5. Create JSON objects (nodes, links) out of edges (and vertices) that you want to
visualize. For example:

Get Edges
edges = opg.getEdges().iterator();
edge = edges.next()
Dictiony for Nodes and Links
nodes = []
links = []
names = []
sources = []
targets = []
values = []
Get Nodes
for count in range(1,20,1):
 # Vertex Values
 outVertexName = edge.getOutVertex().getProperty("name")
 outVertexRole = edge.getOutVertex().getProperty("country")
 inVertexName = edge.getInVertex().getProperty("name")
 inVertexRole = edge.getInVertex().getProperty("country")
 # Add out Vertex
 if {"name": outVertexName, "group": outVertexRole} not in nodes:
 nodes.append({"name": outVertexName, "group": outVertexRole})
 names.append(outVertexName)
 # Add in Vertex
 if {"name": inVertexName, "group": inVertexRole} not in nodes:
 nodes.append({"name": inVertexName, "group": inVertexRole})
 names.append(inVertexName)
 # Edge Information
 sources.append(outVertexName)

Chapter 5
Example iPython Notebooks User Interface

5-140

 targets.append(inVertexName)
 values.append(edge.getLabel())
 # Next Edge
 edge = edges.next()
Get Links
for count in range(0,19,1):
 # Vertex Values
 outVertexName = sources[count]
 inVertexName = targets[count]
 # Edge Values
 source = names.index(outVertexName)
 target = names.index(inVertexName)
 value = values[count]
 links.append({"source": source, "target": target, "value": value})

from IPython.display import Javascript
import json
Transform the graph into a JSON graph
data = {"nodes":nodes, "links":links}
jsonGraph = json.dumps(data, indent=4)
Send to Javascript
Javascript("""window.jsonGraph={};""".format(jsonGraph))

6. Set up a <div>...</div> for graph plotting. For example:

%%html
<div id="d3-example"></div>
<style>
.node {stroke: #fff; stroke-width: 1.5px;}
.link {stroke: #999; stroke-opacity: 5.6;}
</style>

7. Perform graph processing with D3 Force-directed layout. For example:

%%javascript
// We load the d3.js library from the Web.
require.config({paths: {d3: "http://d3js.org/d3.v3.min"}});
require(["d3"], function(d3) {
 // The code in this block is executed when the
 // d3.js library has been loaded.
 // First, we specify the size of the canvas containing
 // the visualization (size of the <div> element).
 var width = 800, height = 600;
 // We create a color scale.
 var color = d3.scale.category20();
 // We create a force-directed dynamic graph layout.
 var force = d3.layout.force().charge(-300).linkDistance(100).size([width,
height]);
 // In the <div> element, we create a <svg> graphic
 // that will contain our interactive visualization.
 var svg = d3.select("#d3-example").select("svg")
 if (svg.empty()) {
 svg = d3.select("#d3-example").append("svg").attr("width",
width).attr("height", height);
 }
 // We load the JSON graph we generated from iPython input
 var graph = window.jsonGraph;
 plotGraph(graph);
 // Graph Plot function
 function plotGraph(graph) {
 // We load the nodes and links in the force-directed graph.
 force.nodes(graph.nodes).links(graph.links).start();
 // We create a <line> SVG element for each link in the graph.

Chapter 5
Example iPython Notebooks User Interface

5-141

 var link =
svg.selectAll(".link").data(graph.links).enter().append("line").attr("class",
 "link").attr("stroke-width", 7);
 // Link Value
 link.append("title").text(function(d) {
 return d.value;
 });
 // We create a <circle> SVG element for each node
 // in the graph, and we specify a few attributes.
 var node =
svg.selectAll(".node").data(graph.nodes).enter().append("circle").attr("class",
 "node").attr("r", 16) //radius
 .style("fill", function(d) {
 // The node color depends on the club.
 return color(d.group);
 }).call(force.drag);
 // The name of each node is the node number.
 node.append("title").text(function(d) {
 var info = "Name: " + d.name + "\n" + "Country: " + d.group;
 return info;
 });
 // Text Over Nodes
 var text =
svg.append("g").selectAll("text").data(force.nodes()).enter().append("text").att
r("x", function(d) {
 return -10
 }).attr("y", 0).style("font-size","10px").text(function(d) {
 if (d.name.length > 15) {
 return d.name.substring(0, 15) + "...";
 }
 return d.name;
 });
 // We bind the positions of the SVG elements
 // to the positions of the dynamic force-directed graph,
 // at each time step.
 force.on("tick", function() {
 link.attr("x1", function(d) {
 return d.source.x;
 }).attr("y1", function(d) {
 return d.source.y;
 }).attr("x2", function(d) {
 return d.target.x;
 }).attr("y2", function(d) {
 return d.target.y;
 });
 node.attr("cx", function(d) {
 return d.x;
 }).attr("cy", function(d) {
 return d.y;
 });
 text.attr("transform", function(d) {
 return "translate(" + d.x + "," + d.y + ")";
 });
 });
 }
});

If you performed all the preceding steps, an image like the following should appear in
your HTML area.

Chapter 5
Example iPython Notebooks User Interface

5-142

Figure 5-3 Image Resulting from iPython Notebooks Example

Chapter 5
Example iPython Notebooks User Interface

5-143

6
Using the In-Memory Analyst (PGX)

The in-memory analyst feature of Oracle Spatial and Graph supports a set of analytical
functions.

This chapter provides examples using the in-memory analyst (also referred to as
Property Graph In-Memory Analytics, and often abbreviated as PGX in the Javadoc,
command line, path descriptions, error messages, and examples). It contains the
following major topics.

• Reading a Graph into Memory
This topic provides an example of reading graph interactively into memory using
the shell interface.

• Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

• Reading Custom Graph Data
You can read your own custom graph data. This example creates a graph, alters
it, and shows how to read it properly.

• Storing Graph Data on Disk
After reading a graph into memory using either Java or the Shell, you can store it
on disk in different formats. You can then use the stored graph data as input to the
in-memory analyst at a later time.

• Executing Built-in Algorithms
The in-memory analyst contains a set of built-in algorithms that are available as
Java APIs.

• Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory.

• Using Pattern-Matching Queries with Graphs
You can issue a pattern-matching query against an in-memory graph, and then
work with the results of that query.

• Starting the In-Memory Analyst Server
Big Data Spatial and Graph bundles a preconfigured version of Apache Tomcat
that allows you to start the in-memory analyst server by running a script.

• Deploying to Jetty
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a
web application with Eclipse Jetty.

• Deploying to Apache Tomcat
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy the in-memory analyst as a web
application with Apache Tomcat.

6-1

• Deploying to Oracle WebLogic Server
You can deploy the in-memory analysts to Eclipse Jetty, Apache Tomcat, or
Oracle WebLogic Server. This example shows how to deploy the in-memory
analyst as a web application with Oracle WebLogic Server.

• Connecting to the In-Memory Analyst Server
After the property graph in-memory analyst is deployed as a server, and installed
in a Hadoop cluster -- or on a client system without Hadoop as a web application
on Eclipse Jetty, Apache Tomcat, or Oracle WebLogic Server -- you can connect
to the in-memory analyst server.

• Using the In-Memory Analyst in Distributed Mode
The in-memory analyst can be run in shared memory mode or distributed mode.

• Reading and Storing Data in HDFS
The in-memory analyst supports the Hadoop Distributed File System (HDFS). This
example shows how to read and access graph data in HDFS using the in-memory
analyst APIs.

• Running the In-Memory Analyst as a YARN Application
In this example you will learn how to start, stop and monitor in-memory analyst
servers on a Hadoop cluster via Hadoop NextGen MapReduce (YARN)
scheduling.

• Using Oracle Two-Tables Relational Format
When using a relational data model, graph data can be represented with two
relational tables. One table is for nodes and their properties; the other table is for
edges and their properties.

• Using the In-Memory Analyst to Analyze Graph Data in Apache Spark
The property graph feature in Oracle Big Data Spatial and Graph enables
integration of in-memory analytics and Apache Spark.

• Using the In-Memory Analyst Zeppelin Interpreter
The in-memory analyst provides an interpreter implementation for Apache
Zeppelin. This tutorial topic explains how to install the in-memory analyst
interpreter into your local Zeppelin installation and to perform some simple
operations.

• Using the In-Memory Analyst Enterprise Scheduler
The in-memory analyst enterprise scheduler provides advanced scheduling
features.

6.1 Reading a Graph into Memory
This topic provides an example of reading graph interactively into memory using the
shell interface.

These are the major steps:

• Connecting to an In-Memory Analyst Server Instance

• Using the Shell Help

• Providing Graph Metadata in a Configuration File

• Reading Graph Data into Memory

Chapter 6
Reading a Graph into Memory

6-2

6.1.1 Connecting to an In-Memory Analyst Server Instance
To start the in-memory analyst:

1. Open a terminal session on the system where property graph support is installed.

2. In the shell, enter the following commands, but select only one of the commands
to start or connect to the desired type of instance:

cd $PGX_HOME
./bin/pgx --help
./bin/pgx --version

start embedded shell
./bin/pgx

start remote shell
./bin/pgx --base_url http://my-server.com:8080/pgx

For the embedded shell, the output should be similar to the following:

10:43:46,666 [main] INFO Ctrl$2 - >>> PGX engine running.
pgx>

3. Optionally, show the predefined variables:

pgx> instance
==> ServerInstance[embedded=true]
pgx> session
==> PgxSession[ID=ab9bdc1d-3401-460c-b1cf-5ef97ec5c5f9,source=pgxShell]
pgx> analyst
==> NamedArgumentAnalyst[session=ab9bdc1d-3401-460c-b1cf-5ef97ec5c5f9]
pgx>

Examples in some other topics assume that the instance and session variables
have been set as shown here.

If the in-memory analyst software is installed correctly, you will see an engine-running
log message and the in-memory analyst shell prompt (pgx>):

The variables instance, session, and analyst are ready to use.

In the preceding example in this topic, the shell started a local instance because the
pgx command did not specify a remote URL.

6.1.2 Using the Shell Help
The in-memory analyst shell provides a help system, which you access using the :help
command.

6.1.3 Providing Graph Metadata in a Configuration File
An example graph is included in the installation directory, under /opt/oracle/oracle-
spatial-graph/property_graph/examples/pgx/graphs/. It uses a configuration file that
describes how the in-memory analyst reads the graph.

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj.json
===> {

Chapter 6
Reading a Graph into Memory

6-3

 "uri": "sample.adj",
 "format": "adj_list",
 "node_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " "
}

The uri field provides the location of the graph data. This path resolves relative to the
parent directory of the configuration file. When the in-memory analyst loads the graph,
it searches the examples/graphs directory for a file named sample.adj.

The other fields indicate that the graph data is provided in adjacency list format, and
consists of one node property of type integer and one edge property of type double.

This is the graph data in adjacency list format:

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj
===> 128 10 1908 27.03 99 8.51
99 2 333 338.0
1908 889
333 6 128 51.09

Figure 6-1 shows a property graph created from the data:

Figure 6-1 Property Graph Rendered by sample.adj Data

6.1.4 Reading Graph Data into Memory
To read a graph into memory, you must pass the following information:

Chapter 6
Reading a Graph into Memory

6-4

• The path to the graph configuration file that specifies the graph metadata

• A unique alphanumeric name that you can use to reference the graph

An error results if you previously loaded a different graph with the same name.

To specify the path to the file:

• If the vertices and edges are specified in one file, use uri:

{ "uri": "path/to/file.format", ...}

• To specify multiple files (for example, ADJ_LIST, EDGE_LIST), use uris:

{ "uris": ["file1.format", "file2.format"] ...}

Note that most plain-text formats can be parsed in parallel by thee in-memory
analyst.

• If the file format is different depending on whether it contains vertices or edges (for
example, FLAT_FILE, TWO_TABLES), use vertex_uris and edge_uris:

{ "vertex_uris": ["vertices1.format", "vertices2.format"], "edge_uris":
["edges1.format", "edges2.format"] ...}

Supported File Systems

The in-memory analyst supports loading from graph configuration files and graph data
files over various protocols and virtual file systems. The type of file system or protocol
is determined by the scheme of the uniform resource identifier (URI):

• Local file system (file:). This is also the default if the given URI does not contain
any scheme.

• classpath (classpath: or res:)

• HDFS (hdfs:)

• HTTP (http: or https:)

• Various archive formats (zip:, jar:, tar:, tgz:, tbz2:, gz:, and bz2:)

The URI format is scheme://arch-file-uri[!absolute-path]. For example:
jar:../lib/classes.jar!/META-INF/graph.json

Paths may be nested. For example: tar:gz:http://anyhost/dir/mytar.tar.gz!/
mytar.tar!/path/in/tar/graph.data

To use the exclamation point (!) as a literal file-name character, it must be
escaped using: %21;

Note that relative paths are always resolved relative to the parent directory of the
configuration file.

Example: Using the Shell to Read a Graph

pgx> graph = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "sample");
==> PgxGraph[name=sample,N=4,E=4,created=1476225669037]
pgx> graph.getNumVertices()
==> 4

Example: Using Java to Read a Graph

import oracle.pgx.api.*;

Chapter 6
Reading a Graph into Memory

6-5

ServerInstance instance = Pgx.getInstance(Pgx.EMBEDDED_URL);
// ServerInstance instance = Pgx.getInstance("http://my-server:7007"); // remote
instance
PgxSession session = instance.createSession("my-session");
PgxGraph graph = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json");

Example: Using JavaScript to Read a Graph

const pgx = require('oracle-pgx-client');
let p = pgx.connect("http://my-server:7007");
let json = {
 "uri": "sample.adj",
 "format": "adj_list",
 "node_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " "
}

p.then(function(session) {
 return session.readGraphWithProperties(json);
}).then(function(graph) {
 // do something with graph
});

The following topics contain additional examples of reading a property graph into
memory.

• Read a Graph Stored in Apache HBase into Memory

• Read a Graph Stored in Oracle NoSQL Database into Memory

• Read a Graph Stored in the Local File System into Memory

6.1.4.1 Read a Graph Stored in Apache HBase into Memory
To read a property graph stored in Apache HBase, you can create a JSON based
configuration file as follows. Note that the quorum, client port, graph name, and other
information must be customized for your own setup.

% cat /tmp/my_graph_hbase.json
{
 "format": "pg",
 "db_engine": "hbase",
 "zk_quorum": "scaj31bda07,scaj31bda08,scaj31bda09",
 "zk_client_port": 2181,
 "name": "connections",
 "node_props": [{
 "name": "country",
 "type": "string"
 }],

 "edge_props": [{
 "name": "label",
 "type": "string"

Chapter 6
Reading a Graph into Memory

6-6

 }, {
 "name": "weight",
 "type": "float"
 }],
 "loading": {
 "load_edge_label": true
 }
}
EOF

With the following command, the property graph connections will be read into memory:

pgx> session.readGraphWithProperties("/tmp/my_graph_hbase.json", "connections")
==> PGX Graph named connections ...

Note that when dealing with a large graph, it may become necessary to tune
parameters like number of IO workers, number of workers for analysis, task timeout,
and others. See Configuring the In-Memory Analyst.

6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory
To read a property graph stored in Oracle NoSQL Database, you can create a JSON
based configuration file as follows. Note that the hosts, store name, graph name, and
other information must be customized for your own setup.

% cat /tmp/my_graph_nosql.json
{
 "format": "pg",
 "db_engine": "nosql",
 "hosts": [
 "zathras01:5000"
],
 "store_name": "kvstore",
 "name": "connections",
 "node_props": [{
 "name": "country",
 "type": "string"
 }],
 "loading": {
 "load_edge_label": true
 },
 "edge_props": [{
 "name": "label",
 "type": "string"
 }, {
 "name": "weight",
 "type": "float"
 }]
}

Then, read the configuration file into memory. The following example snippet read the
file into memory, generates an undirected graph (named U) from the original data, and
counts the number of triangles.

pgx> g = session.readGraphWithProperties("/tmp/my_graph_nosql.json", "connections")
pgx> analyst.countTriangles(g, false)
==> 8

Chapter 6
Reading a Graph into Memory

6-7

6.1.4.3 Read a Graph Stored in the Local File System into Memory
The following command uses the configuration file from "Providing Graph Metadata in
a Configuration File" and the name my-graph:

pgx> g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph")

6.2 Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

This file can include the parameters shown in the following table. Some examples
follow the table.

To specify the specify the configuration file, see Specifying the Configuration File to
the In-Memory Analyst.

Note:

• Relative paths in parameter values are always resolved relative to the
configuration file in which they are specified. For example, if the
configuration file is /pgx/conf/pgx.conf and if a file in a parameter value
is specified as graph-configs/my-graph.bin.json, then the file path is
resolved to /pgx/conf/graph-configs/my-graph.bin.json.

• The parameter default values are optimized to deliver the best
performance across a wide set of algorithms. Depending on your
workload. you may be able to improve performance further by
experimenting with different strategies, sizes, and thresholds.

Table 6-1 Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

admin_request_cache_ti
meout

integer After how many seconds
admin request results get
removed from the cache.
Requests which are not
done or not yet consumed
are excluded from this
timeout. Note: this is only
relevant if PGX is deployed
as a webapp.

60

allow_idle_timeout_over
write

boolean If true, sessions can
overwrite the default idle
timeout.

true

Chapter 6
Configuring the In-Memory Analyst

6-8

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

allow_local_filesystem boolean (This flag reduces security,
enable it only if you know
what you're doing!) Allow
loading from local
filesystem, if in client/server
mode. WARNING: This
should only be enabled if
you want to explicitly allow
users of the PGX remote
interface to access files on
the local file system.

false

allow_task_timeout_over
write

boolean If true, sessions can
overwrite the default task
timeout

true

allow_user_auto_refresh boolean If true, users may enable
auto refresh for graphs they
load. If false, only graphs
mentioned in graphs can
have auto refresh enabled.

false

bfs_iterate_que_task_si
ze

integer Task size for BFS iterate
QUE phase.

128

bfs_threshold_read_bas
ed

integer Threshold of BFS traversal
level items to switch to read-
based visiting strategy.

1024

bfs_threshold_single_thr
eaded

integer Until what number of BFS
traversal level items vertices
are visited single-threaded.

128

cctrace boolean If true, log every call to a
Control or Core interface.

false

cctrace_out string [relevant for cctrace] When
cctrace is enabled, specifies
a path to a file where
cctrace should log to.
If null, it will log to stderr. If it
is the special value :log: it
will use the default PGX
logging facility

null

character_set string Standard character set to
use throughout PGX. UTF-8
is the default. Note: Some
formats may not be
compatible.

utf-8

cni_diff_factor_default integer Default diff factor value used
in the common neighbor
iterator implementations.

8

cni_small_default integer Default value used in the
common neighbor iterator
implementations, to indicate
below which threshold a
subarray is considered
small.

128

Chapter 6
Configuring the In-Memory Analyst

6-9

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

cni_stop_recursion_defa
ult

integer Default value used in the
common neighbor iterator
implementations, to indicate
the minimum size where the
binary search approach is
applied.

96

dfs_threshold_large integer Value that determines at
which number of visited
vertices the DFS
implementation will switch to
data structures that are
optimized for larger numbers
of vertices.

4096

enable_csrf_token_chec
ks

boolean If true, the PGX webapp will
verify the Cross-Site
Request Forgery (CSRF)
token cookie and request
parameters sent by the
client exist and match. This
is to prevent CSRF attacks.

true

enable_solaris_studio_la
beling

boolean [relevant when profiling
with solaris studio] When
enabled, label experiments
using the 'er_label'
command.

false

explicit_spin_locks boolean true means spin explicitly in
a loop until lock becomes
available. false means using
JDK locks which rely on the
JVM to decide whether to
context switch or spin.
Setting this value to true
usually results in better
performance.

true

graphs array of string List of paths to graph
configurations to be
registered at startup.

[]

max_active_sessions integer Maximum number of
sessions allowed to be
active at a time.

1024

Chapter 6
Configuring the In-Memory Analyst

6-10

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

max_off_heap_size integer Maximum amount of off-
heap memory (in
megabytes) that PGX is
allowed to allocate before an
OutOfMemoryError will be
thrown. Note: this limit is not
guaranteed to never be
exceeded, because of
rounding and
synchronization trade-offs. It
only serves as threshold
when PGX starts to reject
new memory allocation
requests.

<available-
physical-memory>

max_queue_size_per_s
ession

integer The maximum number of
pending tasks allowed to be
in the queue, per session. If
a session reaches the
maximum, new incoming
requests of that sesssion get
rejected. A negative value
means no limit.

-1

max_snapshot_count integer Number of snapshots that
may be loaded in the engine
at the same time. New
snapshots can be created
via auto or forced update. If
the number of snapshots of
a graph reaches this
threshold, no more auto-
updates will be performed,
and a forced update will
result in an exception until
one or more snapshots are
removed from memory. A
value of zero indicates to
support an unlimited amount
of snapshots.

0

memory_cleanup_interv
al

integer Memory cleanup interval in
seconds.

600

ms_bfs_frontier_type_str
ategy

enum[auto_grow,
short, int]

The type strategy to use for
MS-BFS frontiers.

auto_grow

num_spin_locks integer Number of spin locks each
generated app will create at
instantiation. Trade-off: a
small number implies less
memory consumption; a
large number implies faster
execution (if algorithm uses
spin locks).

1024

num_workers_analysis integer Number of worker threads to
use for analysis tasks.

<no-of-cpus>

Chapter 6
Configuring the In-Memory Analyst

6-11

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

num_workers_fast_track
_analysis

integer Number of worker threads to
use for fast-track analysis
tasks.

1

num_workers_io integer Number of worker threads to
use for I/O tasks (load/
refresh/write from/to disk).
This value will not affect file-
based loaders, because
they are always single-
threaded. Database loaders
will open a new connection
for each I/O worker.

<no-of-cpus>

pattern_matching_sema
ntic

enum[isomorphis
m,
homomorphism]

The graph pattern-matching
semantic, which is either
homomorphism or isomorphi
sm.

homomorphism

parallelization_strategy enum[segmented,
task_stealing,
task_stealing_cou
nted, rts]

Parallelization strategy to
use: segmented = split work
into segments, use 1 thread
per segment;
task_stealing = F/J pool
using recursive actions;
task_stealing_counted = F/J
pool using counted
completers to reduce joins;
rts = experimental run-time
system.

task_stealing_cou
nted

random_generator_strat
egy

enum[non_determ
inistic,
deterministic]

Mmethod of generating
random numbers in the in-
memory analyst.

non_deterministic

random_seed long [relevant
for deterministic random
number generator
only] Seed for the
deterministic random
number generator used in
the in-memory analyst. The
default is
-24466691093057031.

-24466691093057
031

Chapter 6
Configuring the In-Memory Analyst

6-12

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

release_memory_thresh
old

number Threshold percentage
(decimal fraction) of used
memory after which the
engine starts freeing unused
graphs. Examples: A value
of 0.0 means graphs get
freed as soon as their
reference count becomes
zero. That is, all sessions
which loaded that graph
were destroyed/timed out. A
value of 1.0 means graphs
never get freed, and the
engine will throw
OutOfMemoryErrors as
soon as a graph is needed
which does not fit in memory
anymore. A value of 0.7
means the engine keeps all
graphs in memory as long
as total memory
consumption is below 70%
of total available memory,
even if there is currently no
session using them. When
consumption exceeds 70%
and another graph needs to
get loaded, unused graphs
get freed until memory
consumption is below 70%
again.

0.85

session_idle_timeout_se
cs

integer Timeout of idling sessions in
seconds. Zero (0) means no
timeout

0

session_task_timeout_s
ecs

integer Timeout in seconds to
interrupt long-running tasks
submitted by sessions
(algorithms, I/O tasks). Zero
(0) means no timeout.

0

small_task_length integer Task length if the total
amount of work is smaller
than default task length
(only relevant for task-
stealing strategies).

128

spark_streams_interface string The name of an interface
will be used for spark data
communication.

null

Chapter 6
Configuring the In-Memory Analyst

6-13

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

strict_mode boolean If true, exceptions are
thrown and logged
with ERROR level whenever
the engine encounters
configuration problems,
such as invalid keys,
mismatches, and other
potential errors. If false, the
engine logs problems with
ERROR/WARN level
(depending on severity) and
makes best guesses and
uses sensible defaults
instead of throwing
exceptions.

true

task_length integer Default task length (only
relevant for task-stealing
strategies). Should be
between 100 and 10000.
Trade-off: a small number
implies more fine-grained
tasks are generated, higher
stealing throughput; a large
number implies less memory
consumption and GC
activity.

4096

tmp_dir string Temporary directory to store
compilation artifacts and
other temporary data. If set
to <system-tmp-dir>, uses
the standard tmp directory of
the underlying system (/
tmp on Linux).

<system-tmp-dir>

use_string_pool boolean If true, the in-memory
analyst will store string
properties in a pool in order
to consume less memory on
string properties.

true

Example 6-1 Minimal In-Memory Analyst Configuration

The following example causes the in-memory analyst to initialize its analysis thread
pool with 32 workers. (Default values are used for all other parameters.)

{ "num_workers_analysis": 32 }

Example 6-2 In-Memory Analyst Configuration with Two Fixed Graphs

The following example specifies additional parameters, including the graphs parameter
to load two fixed graphs into memory during in-memory analyst startup. This feature
helps to avoid redundancy when you need the same graph configuration pre-loaded
and for standalone use later to reference the graph.

Chapter 6
Configuring the In-Memory Analyst

6-14

{
 "num_workers_analysis": 32,
 "num_workers_fast_track_analysis": 32,
 "memory_cleanup_interval": 600,
 "max_active_sessions": 1,
 "release_memory_threshold": 0.2,
 "graphs": ["graph-configs/my-graph.bin.json", "graph-configs/my-other-
graph.adj.json"]
}

Example 6-3 In-Memory Analyst Configuration with Non-Default Run-Time
Values

The following example specifies some parameters to configure in-memory analyst run-
time behavior.

{
 "num_workers_analysis": 32,
 "num_spin_locks": 128,
 "task_length": 1024,
 "array_factory_strategy": "java_arrays"
}

• Specifying the Configuration File to the In-Memory Analyst

6.2.1 Specifying the Configuration File to the In-Memory Analyst
The in-memory analyst configuration file is parsed by the in-memory analyst at startup-
time whenever ServerInstance#startEngine (or any of its variants) is called. You can
write the path to your configuration file to the in-memory analyst or specify it
programmatically. This topic identifies several ways to specify the file

Programmatically

All configuration fields exist as Java enums. Example:

Map<PgxConfig.Field, Object> pgxCfg = new HashMap<>();
pgxCfg.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 32);

ServerInstance instance = ...
instance.startEngine(pgxCfg);

All parameters not explicitly set will get default values.

Explicitly Using a File

Instead of a map, you can write the path to an in-memory analyst configuration JSON
file. Example:

instance.startEngine("path/to/pgx.conf"); // file on local file system
instance.startEngine("hdfs:/path/to/pgx.conf"); // file on HDFS
(required $HADOOP_CONF_DIR on the classpath)
instance.startEngine("classpath:/path/to/pgx.conf"); // file on current classpath

For all other protocols, you can write directly in the input stream to a JSON file.
Example:

InputStream is = ...
instance.startEngine(is);

Chapter 6
Configuring the In-Memory Analyst

6-15

Implicitly Using a File

If startEngine() is called without an argument, the in-memory analyst looks for a
configuration file at the following places, stopping when it finds the file:

• File path found in the Java system property pgx_conf. Example: java -
Dpgx_conf=conf/my.pgx.config.json ...

• A file named pgx.conf in the root directory of the current classpath

• A file named pgx.conf in the root directory relative to the
current System.getProperty("user.dir") directory

Note: Providing a configuration is optional. A default value for each field will be used if
the field cannot be found in the given configuration file, or if no configuration file is
provided.

Using the Local Shell

To change how the shell configures the local in-memory analyst instance,
edit $PGX_HOME/conf/pgx.conf. Changes will be reflected the next time you
invoke $PGX_HOME/bin/pgx.

You can also change the location of the configuration file as in the following example:

./bin/pgx --pgx_conf path/to/my/other/pgx.conf

Setting System Properties

Any parameter can be set using Java system properties by writing -
Dpgx.<FIELD>=<VALUE> arguments to the JVM that the in-memory analyst is running on.
Note that setting system properties will overwrite any other configuration. The following
example sets the maximum off-heap size to 256 GB, regardless of what any other
configuration says:

java -Dpgx.max_off_heap_size=256000 ...

Setting Environment Variables

Any parameter can also be set using environment variables by adding 'PGX_' to the
environment variable for the JVM in which the in-memory analyst is executed. Note
that setting environment variables will overwrite any other configuration; but if a
system property and an environment variable are set for the same parameter, the
system property value is used. The following example sets the maximum off-heap size
to 256 GB using an environment variable:

PGX_MAX_OFF_HEAP_SIZE=256000 java ...

6.3 Reading Custom Graph Data
You can read your own custom graph data. This example creates a graph, alters it,
and shows how to read it properly.

This graph uses the adjacency list format, but the in-memory analyst supports several
graph formats.

The main steps are the following.

• Creating a Simple Graph File

Chapter 6
Reading Custom Graph Data

6-16

• Adding a Vertex Property

• Using Strings as Vertex Identifiers

• Adding an Edge Property

6.3.1 Creating a Simple Graph File
This example creates a small, simple graph in adjacency list format with no vertex or
edge properties. Each line contains the vertex (node) ID, followed by the vertex IDs to
which its outgoing edges point:

1 2
2 3 4
3 4
4 2

In this list, a single space separates the individual tokens. The in-memory analyst
supports other separators, which you can specify in the graph configuration file.

Figure 6-2 shows the data rendered as a property graph with 4 vertices and 5 edges.
(There are two edges between vertex 2 and vertex 4, each pointing in a direction
opposite form the other.)

Figure 6-2 Simple Custom Property Graph

Reading a graph into the in-memory analyst requires a graph configuration. You can
provide the graph configuration using either of these methods:

• Write the configuration settings in JSON format into a file

• Using a Java GraphConfigBuilder object.

The following examples show both methods.

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" "
}

Chapter 6
Reading Custom Graph Data

6-17

Java Configuration

import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;
FileGraphConfig config = GraphConfigBuilder
 .forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .build();

6.3.2 Adding a Vertex Property
The graph in "Creating a Simple Graph File" consists of vertices and edges, without
vertex or edge properties. Vertex properties are positioned directly after the source
vertex ID in each line. The graph data would look like this if you added a double vertex
(node) property with values 0.1, 2.0, 0.3, and 4.56789 to the graph:

1 0.1 2
2 2.0 3 4
3 0.3 4
4 4.56789 2

Note:

The in-memory analyst supports only homogeneous graphs, in which all
vertices have the same number and type of properties.

For the in-memory analyst to read the modified data file, you must add a vertex (node)
property in the configuration file or the builder code. The following examples provide a
descriptive name for the property and set the type to double.

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }]
}

Java Configuration

import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")

Chapter 6
Reading Custom Graph Data

6-18

 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .build();

6.3.3 Using Strings as Vertex Identifiers
The previous examples used integer vertex (node) IDs. The default in In-Memory
Analytics is integer vertex IDs, but you can define a graph to use string vertex IDs
instead.

This data file uses "node 1", "node 2", and so forth instead of just the digit:

"node 1" 0.1 "node 2"
"node 2" 2.0 "node 3" "node 4"
"node 3" 0.3 "node 4"
"node 4" 4.56789 "node 2"

Again, you must modify the graph configuration to match the data file:

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }],
 "node_id_type":"string"
}

Java Configuration

import oracle.pgx.common.types.IdType;
import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .setNodeIdType(IdType.STRING)
 .build();

Note:

string vertex IDs consume much more memory than integer vertex IDs.

Any single or double quotes inside the string must be escaped with a
backslash (\).

Newlines (\n) inside strings are not supported.

Chapter 6
Reading Custom Graph Data

6-19

6.3.4 Adding an Edge Property
This example adds an edge property of type string to the graph. The edge properties
are positioned after the destination vertex (node) ID.

"node1" 0.1 "node2" "edge_prop_1_2"
"node2" 2.0 "node3" "edge_prop_2_3" "node4" "edge_prop_2_4"
"node3" 0.3 "node4" "edge_prop_3_4"
"node4" 4.56789 "node2" "edge_prop_4_2"

The graph configuration must match the data file:

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }],
 "node_id_type":"string",
 "edge_props":[{
 "name":"edge-prop",
 "type":"string"
 }]
}

Java Configuration

import oracle.pgx.common.types.IdType;
import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .setNodeIdType(IdType.STRING)
 .addEdgeProperty("edge-prop", PropertyType.STRING)
 .build();

6.4 Storing Graph Data on Disk
After reading a graph into memory using either Java or the Shell, you can store it on
disk in different formats. You can then use the stored graph data as input to the in-
memory analyst at a later time.

Storing graphs over HTTP/REST is currently not supported.

The options include the following.

• Storing the Results of Analysis in a Vertex Property

• Storing a Graph in Edge-List Format on Disk

Chapter 6
Storing Graph Data on Disk

6-20

6.4.1 Storing the Results of Analysis in a Vertex Property
These examples read a graph into memory and analyze it using the Pagerank
algorithm. This analysis creates a new vertex property to store the PageRank values.

Using the Shell to Run PageRank

pgx> g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph")
==> ...
pgx> rank = analyst.pagerank(g, 0.001, 0.85, 100)

Using Java to Run PageRank

PgxGraph g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph");
VertexProperty<Integer, Double> rank = session.createAnalyst().pagerank(g, 0.001,
0.85, 100);

Using JavaScript to Run PageRank

let p = pgx.connect(url, options);
p.then(function(session) {
 return session.readGraphWithProperties(jsonContent);
}).then(function(graph) {
 return graph.session.analyst.pagerank(graph);
});

6.4.2 Storing a Graph in Edge-List Format on Disk
This example stores the graph, the result of the Pagerank analysis, and all original
edge properties as a file in edge-list format on disk.

To store a graph, you must specify:

• The graph format

• A path where the file will be stored

• The properties to be stored. Specify VertexProperty.ALL or EdgeProperty.ALL to
store all properties, or VertexProperty.NONE or EdgePropery.NONE to store no
properties. To specify individual properties, pass in the VertexProperty or
EdgeProperty objects you want to store.

• A flag that indicates whether to overwrite an existing file with the same name

The following examples store the graph data in /tmp/sample_pagerank.elist, with
the /tmp/sample_pagerank.elist.json configuration file. The return value is the graph
configuration for the stored file. You can use it to read the graph again.

Using the Shell to Store a Graph

pgx> config = g.store(Format.EDGE_LIST, "/tmp/sample_pagerank.elist", [rank],
EdgeProperty.ALL, false)
==> {"uri":"/tmp/sample_pagerank.elist","edge_props":
[{"type":"double","name":"cost"}],"vertex_id_type":"integer","loading":
{},"format":"edge_list","attributes":{},"vertex_props":
[{"type":"double","name":"pagerank"}],"error_handling":{}}

Chapter 6
Storing Graph Data on Disk

6-21

Using Java to Store a Graph

import oracle.pgx.api.*;
import oracle.pgx.config.*;

FileGraphConfig config = g.store(Format.EDGE_LIST, "/tmp/sample_pagerank.elist",
Collections.singletonList(rank), EdgeProperty.ALL, false);

Using JavaScript to Store a Graph

let p = graph.store({format: 'EDGE_LIST', targetPath: '/tmp/sample_pagerank.elist'});

6.5 Executing Built-in Algorithms
The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs.

This topic describes the use of the in-memory analyst using Triangle Counting and
Pagerank analytics as examples.

• About the In-Memory Analyst

• Running the Triangle Counting Algorithm

• Running the Pagerank Algorithm

6.5.1 About the In-Memory Analyst
The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs. The details of the APIs are documented in the Javadoc that is included in the
product documentation library. Specifically, see the Analyst class Method Summary for
a list of the supported in-memory analyst methods.

For example, this is the Pagerank procedure signature:

/**
 * Classic pagerank algorithm. Time complexity: O(E * K) with E = number of edges,
K is a given constant (max
 * iterations)
 *
 * @param graph
 * graph
 * @param e
 * maximum error for terminating the iteration
 * @param d
 * damping factor
 * @param max
 * maximum number of iterations
 * @return Vertex Property holding the result as a double
 */
 public <ID> VertexProperty<ID, Double> pagerank(PgxGraph graph, double e, double
d, int max);

6.5.2 Running the Triangle Counting Algorithm
For triangle counting, the sortByDegree boolean parameter of countTriangles() allows
you to control whether the graph should first be sorted by degree (true) or not (false).

Chapter 6
Executing Built-in Algorithms

6-22

If true, more memory will be used, but the algorithm will run faster; however, if your
graph is very large, you might want to turn this optimization off to avoid running out of
memory.

Using the Shell to Run Triangle Counting

pgx> analyst.countTriangles(graph, true)
==> 1

Using Java to Run Triangle Counting

import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
long triangles = analyst.countTriangles(graph, true);

Using JavaScript to Run Triangle Counting

p.then(function(graph) {
 return graph.session.analyst.countTriangles(graph, true);
})

The algorithm finds one triangle in the sample graph.

Tip:

When using the in-memory analyst shell, you can increase the amount of log
output during execution by changing the logging level. See information about
the :loglevel command with :h :loglevel.

6.5.3 Running the Pagerank Algorithm
Pagerank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a double property. The algorithm therefore creates a vertex
property of type double for the output.

In the in-memory analyst, there are two types of vertex and edge properties:

• Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

• Transient Properties: Values can only be written to transient properties, which
are session private. You can create transient properties by calling
createVertexProperty and createEdgeProperty on PgxGraph objects.

This example obtains the top three vertices with the highest Pagerank values. It uses a
transient vertex property of type double to hold the computed Pagerank values. The
Pagerank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001, damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run Pagerank

pgx> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
==> ...
pgx> rank.getTopKValues(3)

Chapter 6
Executing Built-in Algorithms

6-23

==> 128=0.1402019732468347
==> 333=0.12002296283541904
==> 99=0.09708583862990475

Using Java to Run Pagerank

import java.util.Map.Entry;
import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
for (Entry<Integer, Double> entry : rank.getTopKValues(3)) {
 System.out.println(entry.getKey() + "=" + entry.getValue());
}

Using JavaScript to Run Pagerank

p.then(function(graph) {
 return graph.session.analyst.pagerank(graph, {e: 0.001, d: 0.85, max: 100});
});

6.6 Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory.

You can use filter expressions or create bipartite subgraphs based on a vertex (node)
collection that specifies the left set of the bipartite graph.

For information about reading a graph into memory, see Reading Graph Data into
Memory.

• About Filter Expressions

• Using a Simple Edge Filter to Create a Subgraph

• Using a Simple Vertex Filter to Create a Subgraph

• Using a Complex Filter to Create a Subgraph

• Combining Expression Filters

• Using an Expression Filter to Create a Set of Vertices or Edges

• Using a Vertex Set to Create a Bipartite Subgraph

6.6.1 About Filter Expressions
Filter expressions are expressions that are evaluated for either each vertex or each
edge. The expression can define predicates that an edge must fulfill to be contained in
the result, in this case a subgraph.

Consider the graph in Figure 6-1, which consists of four vertices (nodes) and four
edges. For an edge to match the filter expression src.prop1 == 10, the source vertex
prop property must equal 10. Two edges match that filter expression, as shown in
Figure 6-3.

Chapter 6
Creating Subgraphs

6-24

Figure 6-3 Sample Graph

The following edge filter expression:

src.prop1 == 10

specifies that each edge where the source vertex’s property named prop1 has the
value 10 will match the filter expression. In this case the following edges match the
expression:

• The edge across the top (cost: 27.03) from vertex id: 128 to vertex id: 1908

• The edge on the left (cost: 8.51) from vertex id: 128 to vertex id: 99

Figure 6-4 shows the subgraph that results when the preceding filter expression is
applied. This subgraph includes the vertex with id: 128, the left and top edges, and the
destination vertex of each edge (vertices with id: 1908 and id: 99).

Chapter 6
Creating Subgraphs

6-25

Figure 6-4 Subgraph Created by the Simple Edge Filter

The following vertex filter expression:

vertex.prop1 < 10

specifies that each vertex where the property named prop1 has a value less than 10
will match the filter expression. In this case the following edge matches the
expression:

• The edge across the bottom (cost: 338.0) from vertex id: 99 to vertex id: 333

Filter Expression Examples

• Date. The following expression accesses the property date of an edge and checks
if it is equal to 03/27/2007 06:00.

edge.date = date('2007-03-27 06:00:00')

• In/out degree. inDegree() returns the number of incoming edges of a vertex, while
outDegree() returns the number of outgoing edges of the vertex. In the following
examples, src denotes the source (out) vertex of the current edge, while dst
denotes the destination (in) vertex.

src.inDegree() > 3
dst.outDegree() < 5

• Label. hasLabel returns true if a vertex has a particular label. The following returns
true if a vertex has a city label and if its population is greater than 10000.

vertex.hasLabel('city') && (vertex.population > 10000)

• Label. label returns the label of an edge. The following example returns true if an
edge label is either friend_of or clicked_by.

edge.label() = 'friend_of' || edge.label() = 'clicked_by'

Chapter 6
Creating Subgraphs

6-26

• Type Conversion: The following example converts the value of the cost property of
the source vertex to an integer.

(int) src.cost

• Arithmetic Support: The following examples show arithmetic expressions that can
be used in filter expressions.

1 + 5
-vertex.degree()
edge.cost * 2 > 5
src.value * 2.5 = (dst.inDegree() + 5) / dst.outDegree()

6.6.2 Using a Simple Edge Filter to Create a Subgraph
The following examples create the first subgraph described in About Filter
Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new EdgeFilter("src.prop1 == 10"))

Using Java to Create a Subgraph

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new EdgeFilter("src.prop1 == 10"));

Using JavaScript to create a Subgraph

return graph.filter(pgx.createEdgeFilter("src.prop1 == 10"));

6.6.3 Using a Simple Vertex Filter to Create a Subgraph
The following examples create the second subgraph described in About Filter
Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop1 < 10"))

Using Java to Create a Subgraph

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new VertexFilter("src.prop1 < 10"));

Using JavaScript to create a Subgraph

return graph.filter(pgx.createVertexFilter("vertex.prop1 < 10"));

6.6.4 Using a Complex Filter to Create a Subgraph
This example uses a slightly more complex filter. It uses the outDegree function, which
calculates the number of outgoing edges for an identifier (source src or destination

Chapter 6
Creating Subgraphs

6-27

dst). The following filter expression matches all edges with a cost property value
greater than 50 and a destination vertex (node) with an outDegree greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in Figure 6-5.

Figure 6-5 Edges Matching the outDegree Filter

Figure 6-6 shows the graph that results when the filter is applied. The filter excludes
the edges associated with vertixes 99 and 1908, and so excludes those vertices also.

Figure 6-6 Graph Created by the outDegree Filter

Chapter 6
Creating Subgraphs

6-28

6.6.5 Combining Expression Filters
You can combine vertex filters with edge filters.

Both filters are evaluated separately and afterwards merged by creating either of the
following:

• A union of the results

• An intersection of the results

Creating a Union of Two Filters

If you perform a union of the edge filter:

src.prop1 == 10

and the vertex filter:

vertex.prop1 < 10

Then the result is shown in the following graph.

Figure 6-7 Union of Two Filters

Shell Example:

edgeFilter = new EdgeFilter("src.prop1 == 10")
vertexFilter = new VertexFilter("vertex.prop1 < 10")
filter = edgeFilter.union(vertexFilter)
subgraph = g.filter(filter)

Java Example:

Chapter 6
Creating Subgraphs

6-29

import oracle.pgx.api.filter.*;
...
EdgeFilter edgeFilter = new EdgeFilter("src.prop1 == 10");
VertexFilter vertexFilter = new VertexFilter("vertex.prop1 < 10");
GraphFilter filter = edgeFilter.union(vertexFilter);

PgxGraph subgraph = g.filter(filter);

JavaScript Example:

return p.then(function(graph) {
 let edgeFilter = pgx.createEdgeFilter("src.prop1 == 10");
 let vertexFilter = pgx.createVertexFilter("vertex.prop1 < 10");
 let filter = edgeFilter.union(vertexFilter);
 return graph.filter(filter);
});

Creating an Intersection of Two Filters

Creating the intersection of the filters mentioned in the union example will result in the
following graph, which consists only of a single vertex.

Figure 6-8 Intersection of Two Filters

Shell Example:

edgeFilter = new EdgeFilter("src.prop1 == 10")
vertexFilter = new VertexFilter("vertex.prop1 < 10")
filter = edgeFilter.intersect(vertexFilter)
subgraph = g.filter(filter)

Java Example:

import oracle.pgx.filter.expressions.*;
...
EdgeFilter edgeFilter = new EdgeFilter("src.prop1 == 10");
VertexFilter vertexFilter = new VertexFilter("vertex.prop1 < 10");
GraphFilter filter = edgeFilter.intersect(vertexFilter);

PgxGraph subgraph = g.filter(filter);

JavaScript Example:

return p.then(function(graph) {
 let edgeFilter = pgx.createEdgeFilter("src.prop1 == 10");
 let vertexFilter = pgx.createVertexFilter("vertex.prop1 < 10");
 let filter = edgeFilter.intersect(vertexFilter);
 return graph.filter(filter);
});

Chapter 6
Creating Subgraphs

6-30

6.6.6 Using an Expression Filter to Create a Set of Vertices or Edges
In addition to using expression filters to create a subgraph (discussed in other topics),
you can use them to select just a set of vertices or edges from a graph.

For example, you can create a vertex set on the sample graph from About Filter
Expressions using the following vertex filter expression:

vertex.prop1 < 10

This yields the following set: vertices with ID values 99 and 333.

Example 6-4 Creating a Vertex Set

Shell Example:

vertices = g.getVertices(new VertexFilter("vertex.prop1 < 10"))
==> PgxVertex with ID 99
==> PgxVertex with ID 333

Java Example:

import oracle.pgx.api.*;
import oracle.pgx.filter.expressions.*;
...
VertexSet<Integer> = g.getVertices(new VertexFilter("vertex.prop1 < 10"));

Example 6-5 Creating an EdgeSet

Shell Example:

edges = g.getEdges(new EdgeFilter("src.prop1 == 10"))
==> PgxEdge with ID 0
==> PgxEdge with ID 1

Java Example:

import oracle.pgx.api.*;
import oracle.pgx.filter.expressions.*;
...
EdgeSet = g.getEdges(new EdgeFilter("src.prop1 == 10"));

6.6.7 Using a Vertex Set to Create a Bipartite Subgraph
You can create a bipartite subgraph by specifying a set of vertices (nodes), which are
used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory analyst, vertices that are isolated
because all incoming and outgoing edges were deleted are not part of the bipartite
subgraph.

The following figure shows a bipartite subgraph. No properties are shown.

Chapter 6
Creating Subgraphs

6-31

The following examples create a bipartite subgraph from the simple graph created in
Figure 6-1. They create a vertex collection and fill it with the vertices for the left side.

Using the Shell to Create a Bipartite Subgraph

pgx> s = graph.createVertexSet()
==> ...
pgx> s.addAll([graph.getVertex(333), graph.getVertex(99)])
==> ...
pgx> s.size()
==> 2
pgx> bGraph = graph.bipartiteSubGraphFromLeftSet(s)
==> PGX Bipartite Graph named sample-sub-graph-4

Using Java to Create a Bipartite Subgraph

import oracle.pgx.api.*;

VertexSet<Integer> s = graph.createVertexSet();
s.addAll(graph.getVertex(333), graph.getVertex(99));
BipartiteGraph bGraph = graph.bipartiteSubGraphFromLeftSet(s);

When you create a subgraph, the in-memory analyst automatically creates a Boolean
vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unique name for the property.

The resulting bipartite subgraph looks like this:

Chapter 6
Creating Subgraphs

6-32

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed also.

6.7 Using Pattern-Matching Queries with Graphs
You can issue a pattern-matching query against an in-memory graph, and then work
with the results of that query.

Data Sets for the Pattern-Matching Query Examples

The pattern-matching examples use two different data sets:

• Relationships between politicians, athletes, celebrities, and companies

• An electrical network with devices, connections and switches

Submitting the Pattern-Matching Queries Using PGQL

You can submit a graph pattern-matching query in the Property Graph Suery
Language (PGQL), a SQL-like declarative language that allows you to express a
pattern consisting of vertices and edges, plus constraints on the properties of the
vertices and edges.

To submit a query to the in-memory analyst, you can use the queryPgql() Java method
of PgxGraph (the type of object you get when you load a graph using the session), or
you can use the equivalent JavaScript function. Java example:

The following topics use pattern matching in queries.

• Example: The Enemy of My Enemy is My Friend

• Example: Top 10 Most Collaborative People

• Example: Transitive Connectivity Between Electrical Devices

6.7.1 Example: The Enemy of My Enemy is My Friend
The example in this topic describes a graph pattern inspired by the famous ancient
proverb, The enemy of my enemy is my friend. Specifically, the graph includes two
entities that are connected by two edges of the feuds edge label. Vertices represent

Chapter 6
Using Pattern-Matching Queries with Graphs

6-33

people or clans or countries. A pair of vertices that are feuding with each other will
have an edge with the feuds edge label.

Such a query is written in PGQL as follows:

SELECT x.name, z.name
WHERE
 (x) -[e1:feuds]-> (y),
 (y) -[e2:feuds]-> (z),
 x != y
ORDER BY x.name, z.name

Note that in the preceding query, the results are ordered by x.name and then z.name.

Submit the query to PGX:

Shell Example:

pgx> resultSet = connectionsGraph.queryPgql("SELECT x.name, z.name WHERE (x) -
[e1:feuds]-> (y), (y) -[e2:feuds]-> (z), x != z ORDER BY x.name, z.name")

Java Example:

import oracle.pgx.api.*;

...

PgqlResultSet resultSet = connectionsGraph.queryPgql("SELECT x.name, z.name WHERE
(x) -[e1:feuds]-> (y), (y) -[e2:feuds]-> (z), x != z ORDER BY x.name, z.name");

JavaScript Example:

return p.then(function(graph) {
 return graph.queryPgql("SELECT x.name, z.name WHERE (x) -[e1:feuds]-> (y), (y) -
[e2:feuds]-> (z), x != z ORDER BY x.name, z.name");
});

PgqlResultSet manages a result set of a query. A result set contains multiple results
(such a query may match many sub-graphs). Each result consists of a list of result
elements. The order of result elements follows the order of variables in
the SELECT clause of a query.

Iterating over a query results means iterating over a set
of PgqlResultElement instances. A PgqlResultElement maintains the type and variable
name of a result element.

You can get the list of PgqlResultElement instances as follows:

Shell Example:

pgx> resultElements = resultSet.getPgqlResultElements()

Java Example:

import oracle.pgx.api.*;
import java.util.List;

...

List<PgqlResultElement> resultElements = resultSet.getPgqlResultElements();

JavaScript Example:

Chapter 6
Using Pattern-Matching Queries with Graphs

6-34

return p.then(function(resultSet) {
 console.log(resultSet.resultElements);
});

Get the type and variable name of the first result element:

Shell Example:

pgx> resultElement = resultElements.get(0)
pgx> type = resultElement.getElementType() // STRING
pgx> varName = resultElement.getVarName() // x.name

Java Example:

import oracle.pgx.api.*;

...

PgqlResultElement resultElement = resultElements.get(0);
PqglResultElement.Type = resultElement.getElementType(); // STRING
String varName = resultElement.getVarName(); // x.name

JavaScript Example:

return p.then(function(resultSet) {
 console.log(resultSet.resultElements[0].varName);
 console.log(resultSet.resultElements[0].elementType);
});

Iterate over a result set using the for-each style for loop. In the loop, you get
a PgqlResult instance that contains a query result.

Shell Example:

pgx> resultSet.getResults().each { \
 // the variable 'it' is implicitly declared to references each PgqlResult
instance
 }

Java Example:

import oracle.pgx.api.*;

...

for (PgqlResult result : resultSet.getResults()) {
 ...
}

JavaScript Example:

return p.then(function(resultSet) {
 return resultSet.iterate(function(row) {
 console.log(row);
 });
});

In the shell, you can conveniently print out the result set in textual format
using print method of PqglResultSet.

pgx> resultSet.print(10) // print the first 10 results

Chapter 6
Using Pattern-Matching Queries with Graphs

6-35

You will see the following results:

| x.name | z.name |
================================
ABC	CBS
ABC	NBC
Alibaba	Beyonce
Alibaba	Google
Alibaba	eBay
Amazon	Carl Icahn
Amazon	Facebook
Amazon	Tencent
Angela Merkel	Barack Obama
Angela Merkel	John Kerry

You can also get a handle of individual PgqlResult instances or their elements.

By the index of the result element:

pgx> nameX = it.getString(0)
pgx> nameZ = it.getString(1)

By the variable name of the result element:

pgx> nameX = it.getString("x.name")
pgx> nameZ = it.getString("z.name")

You can also get a result element without knowing its type:

pgx> nameX = it.get(0)
// or
pgx> nameX = it.get("x.name")

In JavaScript, you can access result elements by the variable name like this:

return p.then(function(resultSet) {
 return resultSet.iterate(function(row) {
 console.log(row['n']);
 console.log(row['n.pagerank']);
 });
});

6.7.2 Example: Top 10 Most Collaborative People
This example finds the top 10 most collaborative people in the graph in a decreasing
order of the number of collaborators. Such a query exploits various features of PGQL,
which include grouping, aggregating, ordering, and limiting the graph patterns found in
the WHERE clause. The following query string expresses a user's inquiry in PGQL.

pgx> resultSet = connectionsGraph.queryPgql("SELECT x.name, COUNT(*) AS
num_collaborators WHERE (x) -[:collaborates]-> () GROUP BY x ORDER BY
DESC(num_collaborators) LIMIT 10")

The preceding query does the following:

1. Find all collaboration relationship patterns from the graph by matching the
`collaborates' edge label.

2. Group the found patterns by its source vertex.

Chapter 6
Using Pattern-Matching Queries with Graphs

6-36

3. Apply the count aggregation to each group to find the number of collaborators.

4. Order the groups by the number of collaborators in a decreasing order.

5. Take only the first 10 results.

The print() method shows the name and the number of collaborators of the top 10
collaborative people in the graph.

pgx> resultSet.print()

You will see the following results.

| x.name | num_collaborators |
===
Barack Obama	10
Charlie Rose	4
Omar Kobine Layama	3
Dieudonne Nzapalainga	3
Nicolas Guerekoyame Gbangou	3
NBC	3
Pope Francis	3
Beyonce	2
Eric Holder	2
Tom Steyer	2

6.7.3 Example: Transitive Connectivity Between Electrical Devices
This example tests for reachability between vertices. It uses the electrical network
graph in the following figure.

Chapter 6
Using Pattern-Matching Queries with Graphs

6-37

Figure 6-9 Electrical Network Graph

The example seeks to determine whether every Device in the graph is transitively
connected to every other Device. Note that devices are connected
by Connection vertices and Switch vertices.

First, find out how many devices there are in the graph by submitting the following
PGQL query:

SELECT COUNT(*) AS numDevices
WHERE (n:Device)

The result is 6031:

| numDevices |
==============
6031

For each device, count the number of devices that can be reached by following zero or
more Connection or Switch vertices (and necessary edges). This query can be
expressed in PGQL as follows:

PATH connects_to := () <- (/*:Connection|Switch*/) -> ()
SELECT n.nickname AS device, count(m) AS reachabilityCount

Chapter 6
Using Pattern-Matching Queries with Graphs

6-38

WHERE (n:Device) -/:connects_to*/-> (m:Device)
GROUP BY n
ORDER BY COUNT(m), n.nickname

In the preceding query, express connectivity between two neighboring devices/
connections is expressed using a path pattern connects_to. A Kleene star (*)
expresses that the path pattern may repeatedly match zero or more times, with the
goal of determining transitive connectivity. (The labels in the path pattern are
commented out because the in-memory analyst does not yet support this feature.)

The query uses GROUP BY to make a group for each of the source devices n, and then
counts the number of reachable destination devices m. The first 20 results are as
follows:

--
| device | reachabilityCount |
==
190-7361-M1089120	6031
190-8581-D5587291-3_INT	6031
190-8593-D5860423-3_INT	6031
196-29518-L3122816	6031
196-29519-L3066815	6031
196-29520-L3160109	6031
196-29521-N1136355	6031
196-31070-D5861005-2_INT	6031
196-35541-M1108317	6031
196-35813-N1140519	6031
196-36167-L3011298	6031
198-5320-221-311359	6031
221-240988-L3141411	6031
221-240991-L3066817	6031
221-242079-L3011293	6031
221-282818-N1230123	6031
221-282819-N1230122	6031
221-306686-L2970258	6031
221-306687-L2916625	6031
221-308718-L2803199	6031
--

Because the results are sorted by increasing reachabilityCount and because even the
first device in the results transitively connects to every device in the graph
(reachabilityCount = 6031), you now know that all the devices in the graph are fully
reachable from each other.

6.8 Starting the In-Memory Analyst Server
Big Data Spatial and Graph bundles a preconfigured version of Apache Tomcat that
allows you to start the in-memory analyst server by running a script.

If you need to configure the server before starting it, see Configuring the In-Memory
Analyst Server.

You can start the server by running the following script: /opt/oracle/oracle-spatial-
graph/property_graph/pgx/bin/start-server

• Configuring the In-Memory Analyst Server

Chapter 6
Starting the In-Memory Analyst Server

6-39

6.8.1 Configuring the In-Memory Analyst Server
You can configure the in-memory analyst server by modifying the /opt/oracle/oracle-
spatial-graph/property_graph/pgx/conf/server.conf file. The following table shows the
valid configuration options, which can be specified in JSON format:

Table 6-2 Configuration Options for In-Memory Analyst Server

Option Type Description Default

authorization string File that maps clients to
roles for authorization.

server.auth.conf

ca_certs array
of
string

List of trusted certificates
(PEM format). If
'enable_tls' is set to false,
this option has no effect.

[See information after this
table.]

enable_client_authentic
ation

boolea
n

If true, the client is
authenticated during TLS
handshake. See the TLS
protocol for details. This
flag does not have any
effect if 'enable_tls' is false.

true

enable_tls boolea
n

If true, the server enables
transport layer security
(TLS).

true

port integer Port that the PGX server
should listen on

7007

server_cert string The path to the server
certificate to be presented
to TLS clients (PEM
format). If 'enable_tls' is set
to false, this option has no
effect

null

server_private_key string the private key of the
server (PKCS#8, PEM
format). If 'enable_tls' is set
to false, this option has no
effect

null

The in-memory analyst web server enables two-way SSL/TLS (Transport Layer
Security) by default. The server enforces TLS 1.2 and disables certain cipher suites
known to be vulnerable to attacks. Upon a TLS handshake, both the server and the
client present certificates to each other, which are used to validate the authenticity of
the other party. Client certificates are also used to authorize client applications.

The following is an example server.conf configuration file:

{
 "port": 7007,
 "server_cert": "certificates/server_certificate.pem",
 "server_private_key": "certificates/server_key.pem",
 "ca_certs": ["certificates/ca_certificate.pem"],
 "authorization": "auth/server.auth.conf",
 "enable_tls": true,

Chapter 6
Starting the In-Memory Analyst Server

6-40

 "enable_client_authentication": true
}

The following is an example server.auth.conf configuration file: mapping client
(applications) identified by their certificate DN string to roles:

{
 "authorization": [{
 "dn": "CN=Client, OU=Development, O=Oracle, L=Belmont, ST=California, C=US",
 "admin": false
 }, {
 "dn": "CN=Admin, OU=Development, O=Oracle, L=Belmont, ST=California, C=US",
 "admin": true
 }]
}

You can turn off client-side authentication or SSL/TLS authentication entirely in the
server configuration. However, we recommend having two-way SSL/TLS enabled for
any production usage.

6.9 Deploying to Jetty
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a web
application with Eclipse Jetty.

Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure Jetty to enforce proper
authentication and authorization, store the credentials securely, and only
allow connections over HTTPS.

1. Copy the in-memory analyst web application archive (WAR) file into the Jetty
webapps directory (replace <VERSION> with the actual version number):

cp $PGX_HOME/server/shared-mem/pgx-webapp-<VERSION>.war.war $JETTY_HOME/webapps/
pgx.war

2. Ensure that port 8080 is not already in use, and then start Jetty:

cd $JETTY_HOME
java -jar start.jar

3. Verify that Jetty is working:

cd $PGX_HOME
./bin/pgx --base_url http://localhost:8080/pgx

4. (Optional) Modify the in-memory analyst configuration files.

The configuration file (pgx.conf) and the logging parameters (log4j.xml) for the in-
memory analyst engine are in the WAR file under WEB-INF/classes.

After you make any changes, restart the server to enable the changes.

Chapter 6
Deploying to Jetty

6-41

See Also:

The Jetty documentation for configuration and use at http://eclipse.org/
jetty/documentation/

6.10 Deploying to Apache Tomcat
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy the in-memory analyst as a web
application with Apache Tomcat.

Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure Apache Tomcat to enforce proper
authentication and authorization, store the credentials securely, and only
allow connections over HTTPS.

1. Copy the in-memory analyst WAR file into the Tomcat webapps directory. For
example (and replace <VERSION> with the actual version number):

cp $PGX_HOME/server/shared-mem/pgx-webapp-<VERSION>.war $CATALINA_HOME/webapps/
pgx.war

2. Ensure that port 8080 is not already in use, and then start Tomcat:

cd $CATALINA_HOME
./bin/startup.sh

3. Verify that Tomcat is working.

cd $PGX_HOME
./bin/pgx --base_url http://localhost:8080/pgx

See Also:

The Tomcat documentation at

http://tomcat.apache.org/tomcat-7.0-doc/

6.11 Deploying to Oracle WebLogic Server
You can deploy the in-memory analysts to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a web
application with Oracle WebLogic Server.

Chapter 6
Deploying to Apache Tomcat

6-42

http://eclipse.org/jetty/documentation/
http://eclipse.org/jetty/documentation/
http://tomcat.apache.org/tomcat-7.0-doc/

Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure WebLogic Server to enforce
proper authentication and authorization, store the credentials securely, and
only allow connections over HTTPS.

• Installing Oracle WebLogic Server

• Deploying the In-Memory Analyst

• Verifying That the Server Works

6.11.1 Installing Oracle WebLogic Server
To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

6.11.2 Deploying the In-Memory Analyst
To deploy the in-memory analyst to Oracle WebLogic, use commands like the
following. Substitute your administrative credentials and WAR file for the values shown
in this example:

. $MW_HOME/user_projects/domains/mydomain/bin/setDomainEnv.sh

. $MW_HOME/wlserver/server/bin/setWLSEnv.sh
java weblogic.Deployer -adminurl http://localhost:7001 -username username -password
password -deploy -source $PGX_HOME/server/pgx-webapp-wls.war

If the script runs successfully, you will see a message like this one:

Target state: deploy completed on Server myserver

6.11.3 Verifying That the Server Works
Verify that you can connect to the server.

$PGX_HOME/bin/pgx --base_url http://localhost:7001/pgx

6.12 Connecting to the In-Memory Analyst Server
After the property graph in-memory analyst is deployed as a server, and installed in a
Hadoop cluster -- or on a client system without Hadoop as a web application on
Eclipse Jetty, Apache Tomcat, or Oracle WebLogic Server -- you can connect to the
in-memory analyst server.

• Connecting with the In-Memory Analyst Shell

• Connecting with Java

• Connecting with JavaScript

Chapter 6
Connecting to the In-Memory Analyst Server

6-43

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

6.12.1 Connecting with the In-Memory Analyst Shell
The simplest way to connect to an in-memory analyst instance is to specify the base
URL of the server.

You can use the --base_url command line argument to connect to a server running on
that base URL. For example, if the server has SSL/TLS disabled, does not require any
authentication, and is running on http://localhost:8080/pgx, you can connect to it
using PGX shell by entering the following:

cd $PGX_HOME
./bin/pgx --base_url http://scott:<password>@localhost:8080/pgx

You can connect to a remote instance the same way.

If the server requires BASIC auth, you can specify the username and password as in
the following example:

./bin/pgx --base_url http://localhost:8080/pgx --username scott --password <password-
for-scott>

If the server has SSL/TLS enabled, you can specify the path to the trust store (in JKS
format) which is used to validate the server certificate with the --truststore option.

./bin/pgx --base_url https://localhost:8080/pgx --truststore path/to/truststore.jks

If the server has two-way SSL/TLS enabled, you can specify the keystore file
containing the client certificate and the keystore password with the --keystore and –-
password options.

./bin/pgx --base_url https://localhost:8080/pgx --truststore path/to/truststore.jks
--keystore path/to/keystore.jks --password <password>

• About Logging HTTP Requests

6.12.1.1 About Logging HTTP Requests
The in-memory analyst shell suppresses all debugging messages by default. To see
which HTTP requests are executed, set the log level for oracle.pgx to DEBUG, as shown
in this example:

pgx> :loglevel oracle.pgx DEBUG
===> log level of oracle.pgx logger set to DEBUG
pgx> session.readGraphWithProperties("sample_http.adj.json", "sample")
10:24:25,056 [main] DEBUG RemoteUtils - Requesting POST http://
scott:<password>@localhost:8080/pgx/core/session/session-shell-6nqg5dd/graph HTTP/
1.1 with payload {"graphName":"sample","graphConfig":{"uri":"http://
path.to.some.server/pgx/sample.adj","separator":" ","edge_props":
[{"type":"double","name":"cost"}],"node_props":
[{"type":"integer","name":"prop"}],"format":"adj_list"}}
10:24:25,088 [main] DEBUG RemoteUtils - received HTTP status 201
10:24:25,089 [main] DEBUG RemoteUtils - {"futureId":"87d54bed-bdf9-4601-98b7-
ef632ce31463"}
10:24:25,091 [pool-1-thread-3] DEBUG PgxRemoteFuture$1 - Requesting GET http://
scott:<password>@localhost:8080/pgx/future/session/session-shell-6nqg5dd/result/
87d54bed-bdf9-4601-98b7-ef632ce31463 HTTP/1.1
10:24:25,300 [pool-1-thread-3] DEBUG RemoteUtils - received HTTP status 200
10:24:25,301 [pool-1-thread-3] DEBUG RemoteUtils - {"stats":{"loadingTimeMillis":

Chapter 6
Connecting to the In-Memory Analyst Server

6-44

0,"estimatedMemoryMegabytes":0,"numEdges":4,"numNodes":
4},"graphName":"sample","nodeProperties":{"prop":"integer"},"edgeProperties":
{"cost":"double"}}

6.12.2 Connecting with Java
You can specify the base URL when you initialize the in-memory analyst using Java.
An example is as follows. A URL to an in-memory analyst server is provided to the
getInstance API call.

import oracle.pg.nosql.*;
import oracle.pgx.api.*;

PgNosqlGraphConfig cfg =
GraphConfigBuilder.forNosql().setName("mygraph").setHosts(...).build();
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance remoteInstance = Pgx.getInstance("http://scott:tiger@hostname:port/
pgx");
PgxSession session = remoteInstance.createSession("my-session");

PgxGraph graph = session.readGraphWithProperties(opg.getConfig());

To specify the trust store, key store, and keystore password when connecting with
Java, you must set the javax.net.ssl.trustStore, javax.net.ssl.keyStore, and
javax.net.ssl.keyStorePassword system properties, respectively.

6.12.3 Connecting with JavaScript
You can specify the base URL when you initialize the in-memory analyst using
JavaScript. An example is as follows. A URL to an in-memory analyst server is
provided to the connect API call.

const pgx = require('oracle-pgx-client'); // oracle-pgx-client npm package
const fs = require('fs');
// options to connect to pgx server
let options = {
 clientKey: fs.readFileSync('client_key.pem'),
 clientCert: fs.readFileSync('client_cert.pem'),
 caCert: fs.readFileSync('ca_cert.pem'),
 passphrase: 'passphrase',
};
// connect to pgx server
let p = pgx.connect(url, options).then(function(session) {
 return session.readGraphWithProperties(…); // load graph from pgx server
}).then(function(graph) {
 return graph.session.analyst.pagerank(graph); // run pagerank algorithm in pgx
server
}).catch(function(err) {
 console.log("error: " + err);
});

6.13 Using the In-Memory Analyst in Distributed Mode
The in-memory analyst can be run in shared memory mode or distributed mode.

• Shared memory mode

Chapter 6
Using the In-Memory Analyst in Distributed Mode

6-45

Multiple threads work in parallel on in-memory graph data stored in a single node
(a single, shared memory space). In shared memory mode, the size of the graph is
constrained by the physical memory size and by other applications running on the
same node.

• Distributed mode

To overcome the limitations of shared memory mode, you can run the in-memory
analyst in distributed mode, in which multiple nodes (computers) form a cluster,
partition a large property graph across distributed memory, and work together to
provide efficient and scalable graph analytics.

For using the in-memory analyst feature in distributed mode, the following
requirements apply to each node in the cluster:

• GNU Compiler Collection (GCC) 4.8.2 or later

C++ standard libraries built upon 3.4.20 of the GNU C++ API are needed.

• Ability to open a TCP port

Distributed in-memory analyst requires a designated TCP port to be open for initial
handshaking. The default port number is 7777, but you can set it using the run-
time parameter pgx_side_channel_port.

• Ability to use InfiniBand or UDP on Ethernet

Data communication among nodes mainly uses InfiniBand (IB) or UDP on
Ethernet. When using Ethernet, the machines in the cluster need to accept UDP
packets from other computers.

• JDK8 or later

To start the in-memory analyst in distributed mode, do the following. (For this example,
assume that four nodes (computers) have been allocated for this purpose, and that
they have the host names hostname0, hostname1, hostname2, and hostname3.)

On each of the nodes, log in and perform the following operations (modifying the
details for your actual environment):

export PGX_HOME=/opt/oracle/oracle-spatial-graph/property_graph/pgx
export LD_LIBRARY_PATH=$PGX_HOME/server/distributed/lib:$JAVA_HOME/jre/lib/amd64/
server:$LD_LIBRARY_PATH

cd $PGX_HOME/server/distributed
./bin/node ./package/main/ClusterHost.js -server_config=./package/options.json -
pgx_hostnames=hostname0,hostname1,hostname2,hostname3

After the operations have successfully completed on all four nodes. you can see a log
message similar to the following:

17:11:42,709 [hostname0] INFO pgx.dist.cluster_host - PGX.D Server listening on
http://hostname0:8023/pgx

The distributed in-memory analyst in now up and running. It provides service through
the following endpoint: http://hostname0:8023/pgx

This endpoint can be consumed in the same manner as a remotely deployed shared-
memory analyst. You can use Java APIs, Groovy shells, and the PGX shell. An
example of using the PGX shell is as follows:

cd $PGX_HOME
./bin/pgx --base_url=http://hostname0:8023/pgx

Chapter 6
Using the In-Memory Analyst in Distributed Mode

6-46

The following example uses the service from a Groovy shell for Oracle NoSQL
Database:

opg-nosql> session=Pgx.createSession("http://hostname0:8023/pgx", "session-id-123");
opg-nosql> analyst=session.createAnalyst();
opg-nosql> pgxGraph = session.readGraphWithProperties(opg.getConfig());

The following is an example options.json file:

$ cat ./package/options.json
{
 "pgx_use_infiniband": 1,
 "pgx_command_queue_path": ".",
 "pgx_builtins_path": "./lib",
 "pgx_executable_path": "./bin/pgxd",
 "java_class_path": "./jlib/*",
 "pgx_httpserver_port": 8023,
 "pgx_httpserver_enable_csrf_token": 1,
 "pgx_httpserver_enable_ssl": 0,
 "pgx_httpserver_client_auth": 1,
 "pgx_httpserver_key": "<INSERT_VALUE_HERE>/server_key.pem",
 "pgx_httpserver_cert": "<INSERT_VALUE_HERE>/server_cert.pem",
 "pgx_httpserver_ca": "<INSERT_VALUE_HERE>/server_cert.pem",
 "pgx_httpserver_auth": "<INSERT_VALUE_HERE>/server.auth.json",
 "pgx_log_configure": "./package/log4j.xml",
 "pgx_ranking_query_max_cache_size": 1048576,
 "zookeeper_timeout": 10000,
 "pgx_partitioning_strategy": "out_in",
 "pgx_partitioning_ignore_ghostnodes": false,
 "pgx_ghost_min_neighbors": 5000,
 "pgx_ghost_max_node_counts": 40000,
 "pgx_use_bulk_communication": true,
 "pgx_num_worker_threads": 28
}

6.14 Reading and Storing Data in HDFS
The in-memory analyst supports the Hadoop Distributed File System (HDFS). This
example shows how to read and access graph data in HDFS using the in-memory
analyst APIs.

Graph configuration files are parsed on the client side. The graph data and
configuration files must be stored in HDFS. You must install a Hadoop client on the
same computer as In-Memory Analytics. See Oracle Big Data Appliance Software
User's Guide.

Note:

The in-memory analyst engine runs in memory on one node of the Hadoop
cluster only.

• Reading Data from HDFS

• Storing Graph Snapshots in HDFS

• Compiling and Running a Java Application in Hadoop

Chapter 6
Reading and Storing Data in HDFS

6-47

6.14.1 Reading Data from HDFS
This example copies the sample.adj graph data and its configuration file into HDFS,
and then reads it into memory.

1. Copy the graph data into HDFS:

cd $PGX_HOME
hadoop fs -mkdir -p /user/pgx
hadoop fs -copyFromLocal ../examples/pgx/graphs/sample.adj /user/pgx

2. Edit the uri field of the graph configuration file sample.adj.json to point to an
HDFS resource:

{
 "uri": "hdfs:/user/pgx/sample.adj",
 "format": "adj_list",
 "node_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " "
}

3. Copy the configuration file into HDFS:

cd $PGX_HOME
hadoop fs -copyFromLocal ../examples/pgx/graphs/sample.adj.json /user/pgx

4. Read the sample graph from HDFS into the in-memory analyst, as shown in the
following examples.

Using the Shell to Read the Graph from HDFS

g = session.readGraphWithProperties("hdfs:/user/pgx/sample.adj.json");
===> PgxGraph[name=sample,N=4,E=4,created=1475525438479]

Using Java to Read the Graph from HDFS

import oracle.pgx.api.*;
PgxGraph g = session.readGraphWithProperties("hdfs:/user/pgx/sample.adj.json");

6.14.2 Storing Graph Snapshots in HDFS
The in-memory analyst binary format (.pgb) is a proprietary binary graph format for the
in-memory analyst. Fundamentally, a .pgb file is a binary dump of a graph and its
property data, and it is efficient for in-memory analyst operations. You can use this
format to quickly serialize a graph snapshot to disk and later read it back into memory.

You should not alter an existing .pgb file.

The following examples store the sample graph, currently in memory, in PGB format in
HDFS.

Chapter 6
Reading and Storing Data in HDFS

6-48

Using the Shell to Store a Graph in HDFS

g.store(Format.PGB, "hdfs:/user/pgx/sample.pgb", VertexProperty.ALL,
EdgeProperty.ALL, true)

Using Java to Store a Graph in HDFS

import oracle.pgx.config.GraphConfig;
import oracle.pgx.api.*;

GraphConfig pgbGraphConfig = g.store(Format.PGB, "hdfs:/user/pgx/sample.pgb",
VertexProperty.ALL, EdgeProperty.ALL, true);

To verify that the PGB file was created, list the files in the /user/pgx HDFS directory:

hadoop fs -ls /user/pgx

6.14.3 Compiling and Running a Java Application in Hadoop
The following is the HdfsDemo Java class for the previous examples:

import oracle.pgx.api.Pgx;
import oracle.pgx.api.PgxGraph;
import oracle.pgx.api.PgxSession;
import oracle.pgx.api.ServerInstance;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfig;
import oracle.pgx.config.GraphConfigFactory;

public class HdfsDemo {
 public static void main(String[] mainArgs) throws Exception {
 ServerInstance instance = Pgx.getInstance(Pgx.EMBEDDED_URL);
 instance.startEngine();
 PgxSession session = Pgx.createSession("my-session");
 GraphConfig adjConfig = GraphConfigFactory.forAnyFormat().fromPath("hdfs:/
user/pgx/sample.adj.json");
 PgxGraph graph1 = session.readGraphWithProperties(adjConfig);
 GraphConfig pgbConfig = graph1.store(Format.PGB, "hdfs:/user/pgx/sample.pgb");
 PgxGraph graph2 = session.readGraphWithProperties(pgbConfig);
 System.out.println("graph1 N = " + graph1.getNumVertices() + " E = " +
graph1.getNumEdges());
 System.out.println("graph2 N = " + graph1.getNumVertices() + " E = " +
graph2.getNumEdges());
 }
}

These commands compile the HdfsDemo class:

cd $PGX_HOME
mkdir classes
javac -cp ../lib/'*' HdfsDemo.java -d classes

This command runs the HdfsExample class:

java -cp ../lib/*:conf:classes:$HADOOP_CONF_DIR HdfsDemo

Chapter 6
Reading and Storing Data in HDFS

6-49

6.15 Running the In-Memory Analyst as a YARN Application
In this example you will learn how to start, stop and monitor in-memory analyst servers
on a Hadoop cluster via Hadoop NextGen MapReduce (YARN) scheduling.

• Starting and Stopping In-Memory Analyst Services

• Connecting to In-Memory Analyst Services

• Monitoring In-Memory Analyst Services

6.15.1 Starting and Stopping In-Memory Analyst Services
Before you can start the in-memory analyst as a YARN application, you must configure
the in-memory analyst YARN client.

• Configuring the In-Memory Analyst YARN Client

• Starting a New In-Memory Analyst Service

• About Long-Running In-Memory Analyst Services

• Stopping In-Memory Analyst Services

6.15.1.1 Configuring the In-Memory Analyst YARN Client
The in-memory analyst distribution contains an example YARN client configuration file
in $PGX_HOME/conf/yarn.conf.

Ensure that all the required fields are set properly. The specified paths must exist in
HDFS, and zookeeper_connect_string must point to a running ZooKeeper port of the
CDH cluster.

6.15.1.2 Starting a New In-Memory Analyst Service
To start a new in-memory analyst service on the Hadoop cluster, use the following
command (replace <VERSION> with the actual version number):

yarn jar $PGX_HOME/yarn/pgx-yarn-<VERSION>.jar

To use a YARN client configuration file other than $PGX_HOME/conf/yarn.conf, provide
the file path (replace <VERSION> with the actual version number, and /path/to/
different/ with the actual path):

yarn jar $PGX_HOME/yarn/pgx-yarn-<VERSION>.jar /path/to/different/yarn.conf

When the service starts, the host name and port of the Hadoop node where the in-
memory analyst service launched are displayed.

6.15.1.3 About Long-Running In-Memory Analyst Services
The in-memory analyst YARN applications are configured by default to time out after a
specified period. If you disable the time out by setting pgx_server_timeout_secs to 0, the
in-memory analyst server keeps running until you or Hadoop explicitly stop it.

Chapter 6
Running the In-Memory Analyst as a YARN Application

6-50

6.15.1.4 Stopping In-Memory Analyst Services
To stop a running in-memory analyst service:

yarn application -kill appId

In this syntax, appId is the application ID displayed when the service started.

To inspect the logs of a terminated in-memory analyst service:

yarn logs -applicationId appId

6.15.2 Connecting to In-Memory Analyst Services
You can connect to in-memory analyst services in YARN the same way you connect to
any in-memory analyst server. For example, to connect the Shell interface with the in-
memory analyst service, use a command like this one:

$PGX_HOME/bin/pgx --base_url username:password@hostname:port

In this syntax, username and password match those specified in the YARN
configuration.

6.15.3 Monitoring In-Memory Analyst Services
To monitor in-memory analyst services, click the corresponding YARN application in
the Resource Manager Web UI. By default, the Web UI is located at

http://resource-manager-hostname:8088/cluster

6.16 Using Oracle Two-Tables Relational Format
When using a relational data model, graph data can be represented with two relational
tables. One table is for nodes and their properties; the other table is for edges and
their properties.

The in-memory analyst allows graphs to be read from such a relational graph
representation: two relational (RDBMS) tables representing nodes and edges. All you
need to do is specify the following additional fields in the graph config object.

Table 6-3 Additional Fields for Two-Tables Format

Field Type Description Default

edges_key_column string Name of primary key column in edges table eid

edges_table_name string Name of edges table null

from_nid_column string Column name for source node svid

insert_batch_size integer Batch size of the rows to be inserted 10000

max_prefetched_ro
ws

integer Maximum number or rows prefetched during
each round trip (result set - the database)

10000

nodes_key_column string Name of primary key column in nodes table vid

nodes_table_name string Name of nodes table null

Chapter 6
Using Oracle Two-Tables Relational Format

6-51

Table 6-3 (Cont.) Additional Fields for Two-Tables Format

Field Type Description Default

num_connections integer Number of connections to read/write data
from/to two tables

<no-of-
cpus>

schema string Schema where the tables are going to be
written

null

tablespace string Tablespace where the tables are going to be
written

users

to_nid_column string Column name for destination node dvid

vertex_id_type enum[long,
string]

Type of the vertex id long

Note:

To read data from Oracle Database using the two-tables format directly into
the Oracle Big Data Spatial and Graph in-memory analyst, you must have
the following license or licenses:

• Oracle Big Data Spatial and Graph license on an Oracle Big Data
Appliance, OR

• Oracle Big Data Spatial and Graph license on another supported
configuration, and a license for the Oracle Spatial and Graph option on
the Oracle Database Enterprise Edition system.

See Big Data Appliance Licensing Information User Manual for details on
licensing Oracle Big Data Spatial and Graph.

• Example of Using Two-Tables Format

• How Null Values Are Handled

Example of Using Two-Tables Format

The following example reads graph data from two relational tables (NODES and
EDGES), using the values shown in the following tables.

Table 6-4 NODES Table Values for Two-Tables Example

nid NP1 NP2 NP3

1829107 “hello” 06/06/2012 0.30

1829179 “world” 06/08/2012 0.999

Table 6-5 EDGES Table Values for Two-Tables Example

eid from_nid to_nid EP1 EP2 EP3

21123 1829107 1829179 “alpha” 06/06/2012 10.5

Chapter 6
Using Oracle Two-Tables Relational Format

6-52

Table 6-5 (Cont.) EDGES Table Values for Two-Tables Example

eid from_nid to_nid EP1 EP2 EP3

48180 1788817 1829179 “beta” 06/08/2012 22.3

{
 "jdbc_url": "jdbc:oracle:thin:@mydatabaseserver:1521/dbName",
 "format": "two_tables",
 "datastore": "rdbms",
 "username": "dbUser",
 "password": "dbPassword",
 "nodes_table_name": "nodes",
 "edges_table_name": "edges",
 "node_props": [{
 "name": "NP1",
 "type": "string"
 },{
 "name": "NP2",
 "type": "date"
 },{
 "name": "NP3",
 "type": "double"
 }],
 "edge_props": [{
 "name": "EP1",
 "type": "string"
 },{
 "name": "EP2",
 "type": "date"
 },{
 "name": "EP3",
 "type": "float"
 }]
}

For additional examples of using the two-tables format, see Using the In-Memory
Analyst to Analyze Graph Data in Apache Spark.

How Null Values Are Handled

For the in-memory analyst, property values in the nodes or edges cannot be null. So
whenever a property value in the nodes or edges table is set to null, a default value
will be assigned instead. If not specified in the config object, the default value is the
Java default value for the property type (for example, 0.0 for double).

However, you can specify a different default value in the config object, as shown in the
following example.

{
 "name": "NP1",
 "type": "double",
 "default": 1.0
}

Chapter 6
Using Oracle Two-Tables Relational Format

6-53

6.17 Using the In-Memory Analyst to Analyze Graph Data in
Apache Spark

The property graph feature in Oracle Big Data Spatial and Graph enables integration
of in-memory analytics and Apache Spark.

The following examples create a Spark context, load a graph in two-tables format
(vertices/nodes table and edges table) as a Spark DataFrame, read from this
DataFrame into an in-memory analyst, and finally build an in-memory graph. For
simplicity, only the Java APIs are illustrated.

(For an explanation of the two-tables format, see Using Oracle Two-Tables Relational
Format.)

See Also: Controlling the Degree of Parallelism in Apache Spark

Example 6-6 Create Spark Context

// import classes required by Apache Spark and PGX
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.*;
import oracle.pgx.api.*;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.*;

String sparkMaster = "spark://..."; // the access point for your Spark cluster
String sparkAppName = "My Spark App ..."; // the name of this application
String [] appJarPaths = new String[] {"/your/jar/path" }; // a file path to your jar
file
// create a Spark configuration and a context
SparkConf sparkConf = new
SparkConf().setMaster(sparkMaster).setAppName(sparkAppName).setJars(appJarPaths);
JavaSparkContext sc = new JavaSparkContext(sparkConf);
SQLContext sqlContext = new SQLContext(sc);

Example 6-7 Build Spark DataFrame from a Graph in Two-Tables Format

This example assumes that the vertex CSV file ("vertex table") has, in each row, an ID
of long integer type, VProp1 of integer type, and VProf2 of double type. It also
assumes that the edge CSV file ("edge table") has, in each row, an SRCID of long
integer type, DSTID of long integer type, EProp1 of integer type, and EProp2 of double
type.

JavaRDD<String> vLines = sc.textFile("<path>/test_graph_nodes_table.csv", 2)
JavaRDD<String> eLines = sc.textFile("<path>/test_graph_edges_table.csv", 2)

JavaRDD<Row> vRowRdd =
vLines.map(_.split(",")).map(p=>Row(p(0).toLong,p(1).toInt,p(2).toDouble));
StructType vDataframeScheme = new StructType().add("ID", LongType).add("VProp1",
IntegerType).add("VProp2", DoubleType);
Dataframe vDataframe = sqlc.createDataFrame(vRowRdd, vDataframeScheme);

JavaRDD<Row> eRowRdd =
eLines.map(_.split(",")).map(p=>Row(p(0).toLong,p(1).toLong,p(2).toInt,p(3).toDouble)
);
StructType eDataframeScheme = new StructType().add("SRCID", LongType).add("DSTID",
LongType).add("EProp1", IntegerType).add("EProp2", DoubleType);
Dataframe eDataframe = sqlc.createDataFrame(eRowRdd, eDataframeScheme);

Chapter 6
Using the In-Memory Analyst to Analyze Graph Data in Apache Spark

6-54

Example 6-8 Read Spark DataFrame into In-Memory Analyst (1)

This example creates a PgxSession and a PgxSparkContext, and uses the
PgxSparkContext to read and build an in-memory graph out of the two Spark
DataFrames.

String pgxServer = "http://..."; // the access point for a PGX server
// create a PGX session and a context
PgxSession pgxSession = Pgx.getInstance(pgxServer).createSession("spark-session");
PgxSparkContext pgxContext = new PgxSparkContext(sparkContext, pgxSession);

// load into PGX
PgxGraph g = pgxContext.read(vDataframe, eDataframe, "spark-test-graph");

After an instance of PgxGraph is created, all existing analytical functions can be used.

Example 6-9 Read Spark DataFrame into In-Memory Analyst (2)

The following example stores the already loaded in-memory graph g back into Apache
Spark by creating a pair of two Spark DztaFrames. The elements of the pair store
vertex and edge information, respectively.

// store graph "spark-test-graph" into Apache Spark
Pair<DataFrame, DataFrame> dataframePair =
pgxContext.writeToDataframes(vertexDataFrame, eDataframeScheme, "spark-test-graph");

• Controlling the Degree of Parallelism in Apache Spark

6.17.1 Controlling the Degree of Parallelism in Apache Spark
The degree of parallelism of a graph read job in Apache Spark is determined by the
number of partitions of the vertex and edge RDD / Dataframe objects. If the total
number of partitions of vertex and edge RDD / Dataframe objects is larger than the
total number of available workers in your Apache Spark cluster, the
PgxSparkContext::read function will throw an exception.

In this situation, you must adjust the degree of parallelism by reducing the number of
partitions in the RDD / Dataframe objects. You can use the coalesce API.

For example, assume that your Spark cluster has 15 available workers, and that the
graph to be read into the in-memory analyst has 500,000 vertices and 1,000,000 (1
million) edges. Given the 15 workers, the sum of the vertex and edge data frame
partitions must not exceed 15, because otherwise you would be requesting more
parallelism than is available in the cluster.

Because you have twice as many edges as vertices, it is best to have 1/3 (one-third) of
the available workers assigned to the vertices and 2/3 (two-thirds) assigned to the
edges. To use all 15 workers in those proportions, then, create 5 vertex partitions and
10 edge partitions. For example:

var newVertexDataFrame = vertexDataFrame.coalesce(5);
var newEdgeDataFrame = edgeDataFrame.coalesce(10);

Chapter 6
Using the In-Memory Analyst to Analyze Graph Data in Apache Spark

6-55

6.18 Using the In-Memory Analyst Zeppelin Interpreter
The in-memory analyst provides an interpreter implementation for Apache Zeppelin.
This tutorial topic explains how to install the in-memory analyst interpreter into your
local Zeppelin installation and to perform some simple operations.

Installing the Interpreter

The following steps were tested with Zeppelin version 0.7.0, and might have to be
modified with newer versions.

1. If you have not already done so, download and install Apache Zeppelin.

2. Locate the in-memory analyst interpreter package: /opt/oracle/oracle-spatial-
graph/property_graph/pgx/client/pgx-<version>-zeppelin-interpreter.zip

3. Follow the official interpreter installation steps.

a. Unzip the in-memory analyst interpreter package into $ZEPPELIN_HOME/
interpreter/pgx.

b. Edit $ZEPPELIN_HOME/conf/zeppelin-site.xml and add the in-memory analyst
Zeppelin interpreter class nameoracle.pgx.zeppelin.PgxInterpreter to
the zeppelin.interpreters property field.

c. Clear the CLASSPATH setting before the next step (restarting Zeppelin). On a
Linux system, execute unset CLASSPATH in the shell.

d. Restart Zeppelin.

e. In the Zeppelin interpreter page, click the +Create button to add a new
interpreter of interpreter group pgx.

4. Configure the new in-memory analyst interpreter.

a. Choose an option for interpreter for note:

• Shared: All notes will share the same in-memory analyst session (not
recommended).

• Scoped: Every note gets its own in-memory analyst session but shares
the same process (recommended).

• Isolated: Every note gets its own in-memory client shell process. This is
the highest level of isolation, but might consume unnecessary resources
on the system running the Zeppelin interpreters.

b. For pgx.baseUrl, specify at least the base URL at which the in-memory
analyst server is running, because the in-memory analyst interpreter acts like
a client that talks to a remote in-memory analyst server.

Using the Interpreter

If you named the in-memory analyst interpreter pgx, you can send paragraphs to the
in-memory analyst interpreter by starting the paragraphs with the %pgxdirective, just as
with any other interpreter.

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid in-
memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

Chapter 6
Using the In-Memory Analyst Zeppelin Interpreter

6-56

http://zeppelin.apache.org/download.html
https://zeppelin.apache.org/docs/latest/development/writingzeppelininterpreter.html#install-your-interpreter-binary

%pgx
g_brands = session.readGraphWithProperties("/opt/data/exommerce/brand_cat.json")
g_brands.getNumVertices()
rank = analyst.pagerank(g_brands, 0.001, 0.85, 100)
rank.getTopKValues(10)

The following figure shows the results of that query after you click the icon to execute
it.

As you can see in the preceding figure, the in-memory analyst Zeppelin interpreter
automatically renders the values returned by rank.getTopKValues(10) as a Zeppelin
table, to make it more convenient for you to browse results.

Besides property values (getTopKValues(), getBottomKValues() and getValues()), the
following return types are automatically rendered as table also if they are returned
from a paragraph:

• PgqlResultSet - the object returned by the queryPgql("...") method of
the PgxGraph class

• MapIterable - the object returned by the entries() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory
analyst shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

6.19 Using the In-Memory Analyst Enterprise Scheduler
The in-memory analyst enterprise scheduler provides advanced scheduling features.

Note:

The advanced scheduling features are currently only available for Linux
(x86_64), Mac OS X (x86_64), and Solaris (x86_64, SPARC).

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

6-57

https://zeppelin.apache.org/

This tutorial topic shows how you can use the advanced scheduling features of the in-
memory analyst enterprise scheduler. It shows:

• How to enable the advanced scheduling features by configuring the in-memory
analyst server

• How to retrieve and inspect the execution environment

• How to modify the execution environment and run tasks with it

Enabling Advanced Scheduling Features

To enable the advanced scheduling features, set the flag
allow_override_scheduling_information of the in-memory analyst instance
configuration to true.

{
 "allow_override_scheduling_information": true
}

Retrieving and Inspecting the Execution Environment

Execution environments are bound to a session. To retrieve the execution
environment for a session, call getExecutionEnvironment() on a PgxSession.

pgx> execEnv = session.getExecutionEnvironment()
==> ExecutionEnvironment[session=576af1fd-73aa-4866-abf0-00a71757d75b]

An execution environment is split into three sub-environments, one for each task type:

• The IO environment: for IO tasks

• The Analysis environment: for CPU bound analytics tasks

• The Fast Analysis environment: for lightweight, but CPU bound analytics tasks

To query the current state of the execution environment call the getValues() method.

pgx> execEnv.getValues()
==> io-pool.num_threads_per_task=72
==> analysis-pool.max_num_threads=72
==> analysis-pool.weight=72
==> analysis-pool.priority=MEDIUM
==> fast-track-analysis-pool.max_num_threads=72
==> fast-track-analysis-pool.weight=1
==> fast-track-analysis-pool.priority=HIGH

To retrieve the sub-environments use
the getIoEnvironment(), getAnalysisEnvironment(), and getFastAnalysisEnvironment()
methods: Each sub-environment has itx own getValues() method for retrieving the
configuration of the sub-environment.

pgx> ioEnv = execEnv.getIoEnvironment()
==> IoEnvironment[pool=io-pool]
pgx> ioEnv.getValues()
==> num_threads_per_task=72

pgx> analysisEnv = execEnv.getAnalysisEnvironment()
==> CpuEnvironment[pool=analysis-pool]
pgx> analysisEnv.getValues()
==> max_num_threads=72
==> weight=72
==> priority=MEDIUM

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

6-58

pgx> fastAnalysisEnv = execEnv.getFastAnalysisEnvironment()
==> CpuEnvironment[pool=fast-track-analysis-pool]
pgx> fastAnalysisEnv.getValues()
==> max_num_threads=72
==> weight=1
==> priority=HIGH

Modifying the Execution Environment and Submitting Tasks Under the Updated
Environment

You can modify the number of threads for I/O environments by using the
setNumThreadsPerTask() method of IoEnvironment. The value is updated immediately,
and all tasks that are submitted after the update are executed with the updated value.

pgx> ioEnv.setNumThreadsPerTask(8)
==> 8
pgx> g = session.readGraphWithProperties(...)
==> PgxGraph[name=graph,N=3,E=6,created=0]

To reset an environment to its initial values, call the reset() method.

pgx> ioEnv.reset()
==> null

For CPU environments, the weight, priority and maximum number of threads can be
modified using the setWeight(), setPriority()and setMaxThreads() methods.

pgx> analysisEnv.setWeight(50)
==> 50
pgx> fastAnalysisEnv.setMaxThreads(1)
==> 1
pgx> rank = analyst.pagerank(g)
==> VertexProperty[name=pagerank,type=double,graph=graph]

You can reset all environments at once by calling reset() on the ExecutionEnvironment.

pgx> execEnv.reset()
==> null

• Using Lambda Syntax with Execution Environments

6.19.1 Using Lambda Syntax with Execution Environments
You can use lambda syntax to combine steps used with execution environments.
Typically, the environment is used in the following way.

1. Set up execution environment

2. Execute task

3. Reset execution environment

To make these three steps easier, there is a method that combines these three steps:
For each set method there is a method using the with prefix that takes the updated
value and a lambda that should be executed using the updated value. For example,
instead of setNumThreadsPerTask() there is a method
called withNumThreadsPerTask(), which can be invoked like this:

• In an Java application, using Java 8 lambdas:

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

6-59

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

PgxGraph g = ioEnv.withNumThreadsPerTask(8, () ->
session.readGraphWithPropertiesAsync(...));

• In the in-memory analyst shell, using Groovy closures:

pgx> g = ioEnv.withNumThreadsPerTask(8,
{ session.readGraphWithPropertiesAsync(...) })
==> PgxGraph[name=graph,N=3,E=6,created=0]

Both of the preceding are equivalent to the following sequence of actions:

oldValue = ioEnv.getNumThreadsPerTask()
ioEnv.setNumThreadsPerTask(currentValue)
g = session.readGraphWithProperties(...)
ioEnv.setNumThreadsPerTask(oldValue)

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

6-60

7
Using Multimedia Analytics

You can use the multimedia analytics framework in a Big Data environment to perform
facial recognition in videos and images.

Note:

The multimedia analytics feature of Big Data Spatial and Graph is
deprecated in Big Data Spatial and Graph Release 2.5 and may be
desupported in a future release. There is no replacement for the multimedia
analytics features.

• About Multimedia Analytics
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop.

• Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics
Framework
The multimedia analytics framework processes video and image data stored in
HDFS using MapReduce.

• Processing Streaming Video Using the Multimedia Analytics Framework
The multimedia analytics framework processes streaming video from RTSP and
HTTP servers using Apache Spark.

• Face Recognition Using the Multimedia Analytics Framework
The multimedia analytics feature is configured to perform face recognition with
OpenCV libraries. These OpenCV libraries are available with the product.

• Configuration Properties for Multimedia Analytics
The multimedia analytics framework uses the standard methods for specifying
configuration properties in the hadooop command.

• Using the Multimedia Analytics Framework with Third-Party Software
You can implement and install custom modules for multimedia decoding and
processing.

• Displaying Images in Output
If the output is displayed as images, oracle.ord.hadoop.OrdPlayImages can be used
to display all the images in the output HDFS directory.

7.1 About Multimedia Analytics
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop.

The framework enables distributed processing of video and image data. Features of
the framework include:

• APIs to process and analyze video and image data in Apache Hadoop

7-1

– APIs to process and analyze video and image data in batch using MapReduce
(input data can be in HDFS, Oracle NoSQL Database, or Apache HBase)

– APIs to process and analyze streaming video in real-time using Apache Spark

• Scalable, high speed processing, leveraging the parallelism of Apache Hadoop

• Built-in face recognition using OpenCV

• Ability to install and implement custom video/image processing (for example,
license plate recognition) to use the framework to run in Apache Hadoop

The video analysis framework is installed on Oracle Big Data Appliance if Oracle
Spatial and Graph is licensed, and you can install it on other Hadoop clusters.

7.2 Processing Video and Image Data Stored in HDFS
Using the Multimedia Analytics Framework

The multimedia analytics framework processes video and image data stored in HDFS
using MapReduce.

Face recognition using OpenCV is integrated with the framework and available with
the product. Third party processing code can also be integrated into the framework for
a variety of use cases, such as face recognition, license plate recognition, and object
recognition.

Video and image data processing involves the following

1. Input data comes from HDFS, Oracle NoSQL Database, or Apache HBase.

• Video input data can be stored in HDFS, or decoded frames can be stored in
Oracle NoSQL Database or Apache HBase.

• Image input data can be stored in HDFS, Oracle NoSQL Database, or Apache
HBase.

2. The data is split into a set of images or video frames.

3. The Images or video frames are processed on each node, using OpenCV or third
party code.

4. The output of processing is stored in HDFS or Apache HBase.

7.3 Processing Streaming Video Using the Multimedia
Analytics Framework

The multimedia analytics framework processes streaming video from RTSP and HTTP
servers using Apache Spark.

Face detection and face recognition using OpenCV is integrated with the framework
and available with the product. Third party processing code can be integrated into the
framework for a variety of use cases, such as face recognition, license plate
recognition, and object recognition.

Streaming video is processed by an Apache Spark job. The Spark job processes each
frame and outputs the result into HDFS, or to specialized output locations using
custom implementations to write output. Sample implementations of custom writers to

Chapter 7
Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics Framework

7-2

write to the local file system and send data to a demo image player are available with
the product.

Streaming video processing involves the following

1. Input data comes from RTSP or HTTP streaming servers or from HDFS. The
framework can also read video streaming into HDFS.

2. Streaming video is decoded into frames.

3. Video frames are processed by Apache Spark.

4. Results of the processing can be written to HDFS or to specialized locations, such
as an image player using custom plugins. Sample plugins are available for:

• Writing JSON, CSV, and/or image data to the local file system

• Sending the image data to an image player, enabling the results to be viewed
in real time. (A demo image player is included with the product.)

7.4 Face Recognition Using the Multimedia Analytics
Framework

The multimedia analytics feature is configured to perform face recognition with
OpenCV libraries. These OpenCV libraries are available with the product.

This topic describes using this face recognition functionality with MapReduce to
process video and images stored in HDFS. Face recognition has two steps:

1. “Training” a model with face images. This step can be run in any Hadoop client or
node.

2. Recognizing faces from input video or images using the training model. This step
is a MapReduce job that runs in a Hadoop cluster.

The training process creates a model stored in a file. This file is used as input for face
recognition from videos or images.

• Training to Detect Faces

• Selecting Faces to be Used for Training

• Detecting Faces in Videos

• Detecting Faces in Images

• Working with Oracle NoSQL Database

• Working with Apache HBase

• Examples and Training Materials for Detecting Faces

7.4.1 Training to Detect Faces
Training is done using the Java program OrdFaceTrainer, which is part of
ordhadoop_multimedia_analytics.jar. Inputs to this program are a set of images and a
label mapping file that maps images to labels. The output is a training model that is
written to a file. (You must not edit this file.)

To train the multimedia analytics feature to detect (recognize) faces, follow these
steps.

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-3

1. Create a parent directory and subdirectories to store images that are to be
recognized.

Each subdirectory should contain one or more images of one person. A person
can have images in multiple subdirectories, but a subdirectory can have images of
only one person. For example, assume that a parent directory named images exists
where one subdirectory (d1) contains images of a person named Andrew, and two
subdirectories (d2 and d3) contain images of a person named Betty (such as
pictures taken at two different times in two different locations). In this example, the
directories and their contents might be as follows:

• images/1 contains five images of Andrew.

• images/2 contains two images of Betty.

• images/3 contains four images of Betty.

2. Create a mapping file that maps image subdirectories to labels.

A “label” is a numeric ID value to be associated with a person who has images for
recognition. For example, Andrew might be assigned the label value 100, and
Betty might be assigned the label value 101. Each record (line) in the mapping file
must have the following structure:

<subdirectory>,<label-id>,<label-text>

For example:

1,100,Andrew
2,101,Betty
3,101,Betty

3. Set the required configuration properties:

oracle.ord.hadoop.ordfacemodel
oracle.ord.hadoop.ordfacereader
oracle.ord.hadoop.ordsimplefacereader.dirmap
oracle.ord.hadoop.ordsimplefacereader.imagedir

For information about the available properties, see Configuration Properties for
Multimedia Analytics.

4. Create the training model. Enter a command in the following general form:

hadoop jar ${MMA_HOME}/lib/ordhadoop-multimedia-analytics-example.jar
faceTrainer <training_config_file.xml>

Note:

$MMA_HOME/example has a set of sample files. It includes scripts for setting the
Java CLASSPATH. You can edit the example as needed to create a training
model.

7.4.2 Selecting Faces to be Used for Training
Images used to create the training model should contain only the face, with as little
extra detail around the face as possible. The following are some examples, showing
four images of the same man’s face with different facial expressions.

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-4

The selection of images for training is important for accurate matching. The following
guidelines apply:

• The set of images should contain faces with all possible positions and facial
movements, for example, closed eyes, smiles, and so on.

• The images should have the same size.

• The images should have good resolution and good pixel quality.

• Try to avoid including images that are very similar.

• If it is necessary to recognize a person with several backgrounds and light
conditions, include images with these backgrounds.

• The number of images to include depends on the variety of movements and
backgrounds expected in the input data.

An example to process images in a set of images and create good training images is
available in: $MMA_HOME/example/facetrain/runFaceTrainUIExample.sh

7.4.3 Detecting Faces in Videos
To detect (recognize) faces in videos, you have the following options for video
processing software to transcode video data:

• Use OrdOpenCVFaceRecognizerMulti as the frame processor, along with any of the
frontal face cascade classifiers available with OpenCV.

Haarcascade_frontalface_alt2.xml is a good place to start. You can experiment
with the different cascade classifiers to identify a good fit for your requirements.

• Use third-party face recognition software.

To perform recognition, follow these steps:

1. Copy the video files (containing video in which you want to recognize faces) to
HDFS.

2. Copy these required files to a shared location accessible by all nodes in the
cluster:

• Generated training model

• Mapping file that maps image subdirectories to labels

• Cascade classifier XML file

3. Create the configuration file.

Required configuration parameters:

• oracle.ord.hadoop.inputtype: Type if input data (video or image).

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-5

• oracle.ord.hadoop.outputtypes: Format of generated results (JSON/text/Image).

• oracle.ord.hadoop.ordframegrabber: Get a video frame from the video data.
You can use the Java classes available with the product or you can provide an
implementation for the abstraction.

– OrdJCodecFrameGrabber is available with the product. This class can be
used without any additional steps. See www.jcodec.org for more details on
JCodec.

– OrdFFMPEGFrameGrabber is available with the product. This class
requires installation of FFMPEG libraries. See www.ffmpeg.org for more
details

• oracle.ord.hadoop.ordframeprocessor: Processor to use on the video frame to
recognize faces. You can use the Java classes available with the product or
you can provide an implementation for the abstraction. The classes available
with the product are:

– oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognize for face recognition.

– oracle.ord.hadoop.demo.OrdFaceDetectionSample for face detection.

• oracle.ord.hadoop.recognizer.classifier: Cascade classifier XML file.

• oracle.ord.hadoop.recognizer.labelnamefile: Mapping file that maps image
subdirectories to labels.

Optional configuration parameters:

• oracle.ord.hadoop.frameinterval: Time interval (number of seconds) between
frames that are processed. Default: 1.

• oracle.ord.hadoop.numofsplits: Number of splits of the video file on the
Hadoop cluster, with one split analyzed on each node of the Hadoop cluster.
Default: 1.

• oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor: Scale factor to
be used for matching images used in training with faces identified in video
frames or images. Default: 1.1 (no scaling)

• oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor: Determines size
of the sliding window to detect face in video frame or image. Default: 1.

• oracle.ord.hadoop.recognizer.cascadeclassifier.flags: Determines type of
face detection.

• oracle.ord.hadoop.recognizer.cascadeclassifier.minsize: Smallest bounding
box used to detect a face.

• oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize: Largest bounding
box used to detect a face.

• oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence: Maximum
allowable distance between the detected face and a face in the model.

• oracle.ord.hadoop.ordframeprocessor.k2: Key class for the implemented class
for OrdFrameProcessor.

• oracle.ord.hadoop.ordframeprocessor.v2: Value class for the implemented
class for OrdFrameProcessor.

4. Run the Hadoop job to recognize faces. Enter a command in the following format:

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-6

http://www.jcodec.org
http://www.ffmpeg.org

$ hadoop jar $MMA_HOME/lib/orhadoop-multimedia-analytics.jar -conf <conf file>
<hdfs_input_directory_containing_video_data>
<hdfs_output_directory_to_write_results>

Be sure that the configuration file specifies the
oracle.ord.hadoop.ordframeprocessor property with the desired value.

The accuracy of detecting faces depends on a variety of factors, including lighting,
brightness, orientation of the face, distance of the face from the camera, and clarity of
the video or image. You should experiment with the configuration properties to
determine the best set of values for your use case. Note that it is always possible to
have false positives (identifing objects that are not faces as faces) and false
recognitions (wrongly labeling a face).

Note:

$MMA_HOME/example has a set of sample files. It includes scripts for setting the
Java CLASSPATH. You can edit as needed to submit a job to detect faces.

7.4.4 Detecting Faces in Images
To detect faces in images, copy the images to HDFS. Specify the following property:

<property>
 <name>oracle.ord.hadoop.inputtype</name>
 <value>image</value>
</property>

7.4.5 Working with Oracle NoSQL Database
Oracle NoSQL Database providesperformance improvements when working with small
objects such as images. Images can be stored in Oracle NoSQL Database and
accessed by the multimedia analytics framework. If input data is video, then the video
must be decoded into frames and the frames stored in Oracle NoSQL Database.
HDFS or HBase can be used to store the output of multimedia processing.

Starting with Oracle NoSQL Database Release 4.3, user authentication is enabled by
default. If you use Oracle NoSQL Database, you must set up a mechanism for
authenticating user access. Instructions for configuring demos in $MMA_HOME/example/
kvlite are available in $MMA_HOME/example/README.txt.

The following properties are required when the input is in an Oracle NoSQL database:

• oracle.ord.hadoop.datasource – Storage option for input data. Specify kvstore if
input data is in Oracle NoSQL Database. Default is HDFS.

• oracle.ord.kvstore.input.name – Name of NoSQL Database storage.

• oracle.ord.kvstore.input.table – Name of the NoSQL Database table.

• oracle.ord.kvstore.input.hosts – Hostname and port.

• oracle.ord.kvstore.input.primarykey – Primary key for accessing records in a
table.

• oracle.ord.hadoop.datasink – Storage option for the output of multimedia analysis.
Default is HDFS. Specify HBase to use an HBase table to store the output.

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-7

Related Topics

• Blog post: "Oracle NoSQL Database Keeps Your Data Secure"

• Oracle NoSQL Database Security Guide

• Oracle NoSQL Database documentation

7.4.6 Working with Apache HBase
Apache provides performance improvements when working with small objects such as
images. Images can be stored in an HBase table and accessed by the multimedia
analytics framework. If input data is video, then the video must be decoded into frames
and the frames stored in an HBase table.

The following properties are used when the input or output is an HBase table:

• oracle.ord.hadoop.datasource – Storage option for input data. Specify HBase if
input data is in an HBase table. Default is HDFS.

• oracle.ord.hbase.input.table – Name of the HBase table containing the input
data.

• oracle.ord.hbase.input.columnfamily – Name of the HBase column family
containing the input data.

• oracle.ord.hbase.input.column – Name of the HBase column containing the input
data.

• oracle.ord.hadoop.datasink – Storage option for the output of multimedia analysis.
Specify HBase to use an HBase table to store the output. Default is HDFS.

• oracle.ord.hbase.output.columnfamily – Name of the HBase column family in the
output HBase table.

7.4.7 Examples and Training Materials for Detecting Faces
Several examples and training materials are provided to help you get started detecting
faces.

$MMA_HOME contains these directories:

video/ (contains a sample video file in mp4 and avi formats)
facetrain/
analytics/

facetrain/ contains an example for training, facetrain/config/ contains the sample
configuration files, and facetrain/faces/ contains images to create the training model
and the mapping file that maps labels to images.

runFaceTrainExample.sh is a bash example script to run the training step.

You can create the training model as follows:

$./runFaceTrainExample.sh

The training model will be written to ordfacemodel_bigdata.dat.

For detecting faces in videos, analytics/ contains an example for running a Hadoop
job to detect faces in the input video file. This directory contains conf/ with
configuration files for the example.

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

7-8

https://blogs.oracle.com/nosql/oracle-nosql-database-keeps-your-data-secure
http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/index.html
https://docs.oracle.com/cd/NOSQL/html/index.html

You can run the job as follows (includes copying the video file to HDFS directory
vinput)

$./runFaceDetectionExample.sh

The output of the job will be in the HDFS directory voutput.

For recognizing faces in videos, analytics/ contains an example for running a Hadoop
job to recognize faces in the input video file. This directory contains conf/ with
configuration files for the example. You can run the job as follows (includes copying
the video file to the HDFS directory vinput):

$./runFaceRecognizerExample.sh

After the face recognition job, you can display the output images:

$./runPlayImagesExample.sh

7.5 Configuration Properties for Multimedia Analytics
The multimedia analytics framework uses the standard methods for specifying
configuration properties in the hadooop command.

You can use the –conf option to identify configuration files, and the -D option to specify
individual properties.

This topic presents reference information about the configuration properties, grouped
into the following subtopics:

• Configuration Properties for Processing Stored Videos and Images

• Configuration Properties for Processing Streaming Video

• Configuration Properties for Training Images for Face Recognition

7.5.1 Configuration Properties for Processing Stored Videos and
Images

This category of multimedia analytics framework configuration properties applies to the
processing of stored videos and images.

These property names all start with oracle.ord. They can be grouped into two
subcategories:

• Generic Framework Properties

• Face Recognition Properties (contain the string recognizer)

Within each subcategory, the available configuration properties are listed in
alphabetical order. For each property the property name is listed, then information
about the property.

Generic Framework Properties

oracle.ord.hadoop.datasink
String. Storage option for the output of multimedia analysis: HBase to use an HBase
table to store the output; otherwise, HDFS. Default value: HDFS. Example:

Chapter 7
Configuration Properties for Multimedia Analytics

7-9

<property>
 <name>oracle.ord.hadoop.datasink</name>
 <value>hbase</value>
</property>

oracle.ord.hadoop.datasource
String. Storage option for input data: HBase if the input data is in an HBase database;
kvstore if the input data is in an Oracle NoSQL Database; otherwise, HDFS. Default
value: HDFS: Example:

<property>
 <name>oracle.ord.hadoop.datasource</name>
 <value>hbase</value>
</property>

oracle.ord.hadoop.frameinterval
String. Timestamp interval (in seconds) to extract frames for processing. Allowable
values: positive integers and floating point numbers. Default value: 1. Example:

<property>
 <name>oracle.ord.hadoop.frameinterval</name>
 <value>1</value>
</property>

oracle.ord.hadoop.inputformat
Sring. The InputFormat class name in the framework, which represents the input file
type in the framework. Default value: oracle.ord.hadoop.OrdVideoInputFormat.
Example:

<property>
 <name>oracle.ord.hadoop.inputformat</name>
 <value>oracle.ord.hadoop.OrdVideoInputFormat</value>
</property>

oracle.ord.hadoop.inputtype
String. Type of input data: video or image. Example:

<property>
 <name>oracle.ord.hadoop.inputtype</name>
 <value>video</value>
</property>

oracle.ord.hadoop.numofsplits
Positive integer. Number of the splits of the video files on the Hadoop cluster, with
one split able to be analyzed in each node of the Hadoop cluster. Recommended
value: the number of nodes/processors in the cluster. Default value: 1. Example:

<property>
 <name>oracle.ord.hadoop.numofsplits</name>
 <value>1</value>
</property>

oracle.ord.hadoop.ordfacemodel
String. Name of the file that stores the model created by the training. Example:

<property>
 <name> oracle.ord.hadoop.ordfacemodel </name>
 <value>ordfacemodel_bigdata.dat</value>
</property>

Chapter 7
Configuration Properties for Multimedia Analytics

7-10

oracle.ord.hadoop.ordfacereader
String. Name of the Java class that reads images used for training the face
recognition model. Example:

<property>
 <name> oracle.ord.hadoop.ordfacereader </name>
 <value> oracle.ord.hadoop.OrdSimpleFaceReader </value>
</property>

oracle.ord.hadoop.ordfacereaderconfig
String. File containing additional configuration properties for the specific application.
Example:

<property>
 <name> oracle.ord.hadoop.ordfacereaderconfig </name>
 <value>config/ordsimplefacereader_bigdata.xml</value>
</property>

oracle.ord.hadoop.ordframegrabber
String. Name of the Java class that decodes a video file. This is the implemented
class for OrdFrameGrabber, and it is used by the mapper to decode the video file.
Available installed implementations with the product:
oracle.ord.hadoop.OrdJCodecFrameGrabber (the default) and
oracle.ord.hadoop.OrdFFMPEGFrameGrabber (when FFMPEG is installed by the user).
You can add custom implementations. Example:

<property>
 <name>oracle.ord.hadoop.ordframegrabber</name>
 <value>oracle.ord.hadoop.OrdJCodecFrameGrabber</value>
</property>

oracle.ord.hadoop.ordframeprocessor
String. Name of the implemented Java class of interface OrdFrameProcessor, which
is used by the mapper to process the frame and recognize the object of interest.
Default value: oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognizerMulti.
Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor </name>
 <value>oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognizerMulti</value>
</property>

oracle.ord.hadoop.ordframeprocessor.k2
String. Java class name, output key class of the implemented class of interface
OrdFrameProcessor. Default value: org.apache.hadoop.io.Text. Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor.k2</name>
 <value>org.apache.hadoop.io.Text</value>
</property>

oracle.ord.hadoop.ordframeprocessor.v2
String. Java class name, output value class of the implemented class of interface
OrdFrameProcessor . Default value: oracle.ord.hadoop.mapreduce.OrdImageWritable.
Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor.v2 </name>
 <value>oracle.ord.hadoop.mapreduce.OrdImageWritable</value>
</property>

Chapter 7
Configuration Properties for Multimedia Analytics

7-11

oracle.ord.hadoop.ordoutputprocessor
String. Only only relevant for custom (user-specified) plug-ins: name of the
implemented Java class of interface OrdOutputProcessor that processes the key-value
pair from the map output in the reduce phase. Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor</name>
 <value>mypackage.MyOutputProcessorClass</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.dirmap
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.dirmap </name>
 <value>faces/bigdata/dirmap.txt</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.imagedir
String. File system directory containing faces used to create a model. This is typically
in a local file system. Example:

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.imagedir </name>
 <value>faces/bigdata</value>
</property>

oracle.ord.hadoop.outputformat
String. Name of the OutputFormat class, which represents the output file type in the
framework. Default value: org.apache.hadoop.mapreduce.lib.output.TextOutputFormat.
Example:

<property>
 <name>oracle.ord.hadoop.outputformat</name>
 <value> org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; </value>
</property>

oracle.ord.hadoop.outputtype
String. Format of output that contains face labels of identified faces with the time
stamp, location, and confidence of the match: must be json, image, or text. Example:

<property>
 <name>oracle.ord.hadoop.outputtype</name>
 <value>json</value>
</property>

oracle.ord.hadoop.parameterfile
String. File containing additional configuration properties for the specific job. Example:

<property>
 <name>oracle.ord.hadoop.parameterfile </name>
 <value>oracle_multimedia_face_recognition.xml</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.flags
String. Use this property to select the type of object detection. Must be
CASCADE_DO_CANNY_PRUNING, CASCADE_SCALE_IMAGE, CASCADE_FIND_BIGGEST_OBJECT (look
only for the largest face), or CASCADE_DO_ROUGH_SEARCH. . Default: CASCADE_SCALE_IMAGE |
CASCADE_DO_ROUGH_SEARCH. Example:

Chapter 7
Configuration Properties for Multimedia Analytics

7-12

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.flags</name>
 <value>CASCADE_SCALE_IMAGE</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence
Floating point value. Specifies how large the distance (difference) between a face in
the model and a face in the input data can be. Larger valuse will give more matches
but might be less accurate (more false positives). Smaller values will give fewer
matches, but be more accurate. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence</name>
 <value>200.0</value>
</property

oracle.ord.hbase.input.column
String. Name of the HBase column containing the input data. Example:

<property>
 <name>oracle.ord.hbase.input.column</name>
 <value>binary_data</value>
</property>

oracle.ord.hbase.input.columnfamily
String. Name of the HBase column family containing the input data. Example:

<property>
 <name>oracle.ord.hbase.input.columnfamily</name>
 <value>image_data</value>
</property>

oracle.ord.hbase.input.table
String. Name of the HBase table containing the input data. Example:

<property>
 <name>oracle.ord.hbase.input.table</name>
 <value>images</value>
</property>

oracle.ord.hbase.output.columnfamily
String. Name of the HBase column family in the output HBase table. Example:

<property>
 <name>oracle.ord.hbase.output.columnfamily</name>
 <value>face_data</value>
</property>

oracle.ord.hbase.output.table
String. Name of the HBase table for output data. Example:

<property>
 <name>oracle.ord.hbase.output.table</name>
 <value>results</value>
</property>

oracle.ord.kvstore.get.consistency
String. Defines the consistency constraints during read. Read operations can be
serviced at a Master or Replica node. The default value of ABSOLUTE ensures the read
operation is serviced at the Master node. Example:

Chapter 7
Configuration Properties for Multimedia Analytics

7-13

<property>
 <name>oracle.ord.kvstore.get.consistency</name>
 <value>absolute</value>
</property>

oracle.ord.kvstore.get.timeout
Number. Upper bound on the time interval for retrieving a chunk of the large object or
its associated metadata. A best effort is made not to exceed the specified limit. If zero,
the KVStoreConfig.getLOBTimeout(java.util.concurrent.TimeUnit) value is used.
Default value is 5. Example:

<property>
 <name>oracle.ord.kvstore.get.timeout</name>
 <value>5</value>
</property>

oracle.ord.kvstore.get.timeunit
String. Unit of the timeout parameter, can be NULL only if timeout is zero. Default
value is seconds. Example:

<property>
 <name>oracle.ord.kvstore.get.timeunit</name>
 <value>seconds</value>
</property>

oracle.ord.kvstore.input.hosts
String. Host and port of an active node in Oracle NoSQL Database store. Example:

<property>
 <name>oracle.ord.kvstore.input.hosts</name>
 <value>localhost:5000</value>
</property>

oracle.ord.kvstore.input.lob.prefix and oracle.ord.kvstore.input.lob.suffix
Oracle NoSQL Database uses these to construct the keys used to load and retrieve
large objects (LOBs). Default value for oracle.ord.kvstore.input.lob.prefix is
lobprefix. Default value for oracle.ord.kvstore.input.lob.suffix is lobsuffix.lob.
Example:

<property>
 <name>oracle.ord.kvstore.lob.prefix</name>
 <value>lobprefix</value>
</property>
<property>
 <name>oracle.ord.kvstore.lob.suffix</name>
 <value>lobsuffix.lob</value>
</property>

oracle.ord.kvstore.input.name
String. Name of Oracle NoSQL Database store. The name provided here must be
identical to the name used when the store was installed. Example:

<property>
 <name>oracle.ord.kvstore.input.name</name>
 <value>kvstore</value>
</property>

oracle.ord.kvstore.input.primarykey
String. Primary key of the Oracle NoSQL Database table. Example:

Chapter 7
Configuration Properties for Multimedia Analytics

7-14

<property>
 <name>oracle.ord.kvstore.input.primarykey</name>
 <value>filename</value>
</property>

oracle.ord.kvstore.input.table
String. Name of the Oracle NoSQL Database table containing the input data.
Example:

<property>
 <name>oracle.ord.kvstore.input.table</name>
 <value>images</value>
</property>

Face Recognition Properties (contain the string recognizer)

oracle.ord.hadoop.recognizer.cascadeclassifier.flags
String. Use this property to select the type of object detection. Must be
CASCADE_DO_CANNY_PRUNING, CASCADE_SCALE_IMAGE, CASCADE_FIND_BIGGEST_OBJECT (look
only for the largest face), or CASCADE_DO_ROUGH_SEARCH. . Default: CASCADE_SCALE_IMAGE |
CASCADE_DO_ROUGH_SEARCH. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.flags</name>
 <value>CASCADE_SCALE_IMAGE</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence
Floating point value. Specifies how large the distance (difference) between a face in
the model and a face in the input data can be. Larger valuse will give more matches
but might be less accurate (more false positives). Smaller values will give fewer
matches, but be more accurate. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence</name>
 <value>200.0</value>
</property

oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize
String, specifically a pair of values. Specifies the maximum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the
object is far away, like faces on a beach, the bounding box is smaller. Objects with a
larger bounding box than the maximum size are ignored. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize</name>
 <value>(500,500)</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor
Integer. Determines the size of the sliding window used to detect the object in the
input data. Higher values will detect fewer objects but with higher quality. Default
value: 1. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor</name>
 <value>1</value>
</property>

Chapter 7
Configuration Properties for Multimedia Analytics

7-15

oracle.ord.hadoop.recognizer.cascadeclassifier.minsize
String, specifically a pair of values. Specifies the minimum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the
object is far away, like faces on a beach, the bounding box is smaller. Objects with a
smaller bounding box than the minimum size are ignored. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.minsize</name>
 <value>(100,100)</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor
Floating pointnumber. Scale factor to be used with the mapping file that maps face
labels to directory names and face images. A value of 1.1 means to perform no
scaling before comparing faces in the run-time input with images stored in
subdirectories during the training process. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor</name>
 <value>1.1</value>
</property>

oracle.ord.hadoop.recognizer.classifier
String. XML file containing classifiers for face. The feature can be used with any of the
frontal face pre-trained classifiers available with OpenCV. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.classifier</name>
 <value>haarcascade_frontalface_alt2.xml</value>
</property>

oracle.ord.hadoop.recognizer.labelnamefile
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
 <name> oracle.ord.hadoop.recognizer.labelnamefiler</name>
 <value>haarcascade_frontalface_alt2.xml</value>
</property>

oracle.ord.hadoop.recognizer.modelfile
String. File containing the model generated in the training step. The file must be in a
shared location, accessible by all cluster nodes. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.modelfile</name>
 <value>myface_model.dat</value>
</property>

7.5.2 Configuration Properties for Processing Streaming Video
This category of multimedia analytics framework configuration properties applies to the
processing of streaming video.

These property names all start with spark.oracle.ord. They can be grouped into two
subcategories:

• Generic Framework Properties

• Face Recognition and Face Detection Properties (contain the string recognizer)

Chapter 7
Configuration Properties for Multimedia Analytics

7-16

Within each subcategory, the available configuration properties are listed in
alphabetical order. For each property the property name is listed, then information
about the property.

Generic Framework Properties

spark.oracle.ord.demo.imageplayer.framerate
String. Frame rate when the sample image player displays the results as frames
containing the results of the processing. The player will show a new frame each n
seconds. Default is 1.
Example:

spark.oracle.ord.demo.imageplayer.framerate=1

spark.oracle.ord.demo.localfswriter.outputcsvpath
String. Local file system directory that receives the CSV output of video frame
processing. Example:

spark.oracle.ord.demo.localfswriter.outputcsvpath=/home/oracle/example/spark/
facerecognizer/output/csv

spark.oracle.ord.demo.localfswriter.outputimagepath
String. Local file system directory that receives the image output of video frame
processing. Example:

spark.oracle.ord.demo.localfswriter.outputimagepath=/home/oracle/example/spark/
facerecognizer/output/image

spark.oracle.ord.demo.localfswriter.outputjsonpath
String. Local file system directory that receives the JSON output of video frame
processing. Example:

spark.oracle.ord.demo.localfswriter.outputjsonpath=/home/oracle/example/spark/
facerecognizer/output/json

spark.oracle.ord.inputdirectory
String. HDFS directory that receives video frames from the Spark streaming adapter.
Example:

spark.oracle.ord.inputdirectory=spark_input

spark.oracle.ord.demo.localfswriter.outputimagepath
String. Local file system directory that receives the image output of video frame
processing. Example:

spark.oracle.ord.demo.localfswriter.outputimagepath=/home/oracle/example/spark/
facerecognizer/output/image

spark.oracle.ord.demo.localfswriter.outputjsonpath
String. Local file system directory that receives the JSON output of video frame
processing. Example:

spark.oracle.ord.demo.localfswriter.outputjsonpath=/home/oracle/example/spark/
facerecognizer/output/json

spark.oracle.ord.ordsparkframeprocessor
String. Processor to use to process the video frame. You can use the Java classes
available with the product for face detection and recognition, or you can provide an
implementation for the abstraction. Examples:

Chapter 7
Configuration Properties for Multimedia Analytics

7-17

• spark.oracle.ord.ordsparkframeprocessor=oracle.ord.spark.demo.OrdSparkFaceDete

ctor detects that there is a face in a video frame.

• spark.

oracle.ord.ordsparkframeprocessor=oracle.ord.spark.demo.OrdSparkFaceRecognizer

recognizes the face using the training model.

OrdSparkFaceDetector and OrdSparkFaceRecognizer are available with the product as
sample implementations for use with spark.oracle.ord.ordsparkframeprocessor.

spark.oracle.ord.ordsparkresultwriter
String. Name of the class that implements an image player that plays the video
frames. Example:

spark.oracle.ord.ordsparkresultwriter=oracle.ord.spark.demo.OrdSparkImagePlayer

spark.oracle.ord.outputdirectory
String. HDFS directory that receives the output of video frame processing. Example:

spark.oracle.ord.outputdirectory=spark_output

spark.oracle.ord.outputtypes
String. Format of generated results (JSON/CSV/image). Example:

spark.oracle.ord.outputtypes=JSON

spark.oracle.ord.streamingduration
Number. The time interval that determines the set of frames processed as a batch.
The unit is milliseconds. Default is 5. Example:

spark.oracle.ord.streamingduration=5

spark.oracle.ord.streamsink
String. Output of the Spark job process. By default the output is written to HDFS, but
custom writers can be implemented. The product includes a custom writer for writing
to the local file system and an image player. Example:

spark.oracle.ord.streamsink=HDFS

spark.oracle.ord.streamsource
Input data for the Spark job. This can be HTTP or RTSP streaming servers, or HDFS.
Default is HDFS. Example:

spark.oracle.ord.streamsource=HDFS

Face Recognition and Face Detection Properties (contain the string recognizer)

spark.oracle.ord.recognizer.classifier
String. XML file containing classifiers for face. The feature can be used with any of the
frontal face pre-trained classifiers available with OpenCV. Example:

spark.oracle.ord.recognizer.classifier=haarcascade_frontalface_alt2_opencv3.0.xml

spark.oracle.ord.recognizer.flags
String. Use this property to select the type of object detection. Must
be CASCADE_DO_CANNY_PRUNING, CASCADE_SCALE_IMAGE, CASCADE_FIND_BIGGEST_OBJECT (look
only for the largest face), or CASCADE_DO_ROUGH_SEARCH. Default: CASCADE_SCALE_IMAGE |
CASCADE_DO_ROUGH_SEARCH. Example:

spark.oracle.ord.recognizer.flags=CASCADE_SCALE_IMAGE|CASCADE_DO_ROUGH_SEARCH

Chapter 7
Configuration Properties for Multimedia Analytics

7-18

spark.oracle.ord.recognizer.gridx
Number. The number of grid cells on the X axis used in each frame to extract
histograms. A typical value is 8. The greater the value, higher will be the
dimensionality of the resulting feature vector. Example:

spark.oracle.ord.recognizer.gridx=8

spark.oracle.ord.recognizer.gridy
Number. The number of grid cells on the Y axis used in each frame to extract
histograms. A typical value is 8 .Example:

spark.oracle.ord.recognizer.gridy=8

spark.oracle.ord.recognizer.labelfilepath
String. Mapping file that maps face labels to directory names and face images.
Example:

spark.oracle.ord.recognizer.labelfilepath=faces/bigdata/dirmap.txt

spark.oracle.ord.recognizer.maxsize
String. Specifies the maximum size of the bounding box (in number of pixels on the X
and Y axis) for the object detected.. If the object is nearby, the bounding box is larger;
if the object is far away, such as faces on a beach, the bounding box is smaller.
Objects with a larger bounding box than the maximum size are ignored. Example:

spark.oracle.ord.recognizer.maxsize=500

spark.oracle.ord.recognizer.minneighbors
Integer. Available options are 1, 2, or 3. 1 will recognize more faces, but might also
recognize objects that are not faces. 3 is the most accurate, but might miss some
faces. . Example:

spark.oracle.ord.recognizer.minneighbors=1

spark.oracle.ord.recognizer.minsize
String. Specifies the minimum size of the bounding box (in number of pixels on the X
and Y axis) for the object detected. If the object is nearby, the bounding box is larger;
if the object is far away, such as faces on a beach, the bounding box is smaller.
Objects with a smaller bounding box than the minimum size are ignored. Example:

spark.oracle.ord.recognizer.minsize=100

spark.oracle.ord.recognizer.neighbors
Number. Number of sample points to build a circular local binary pattern. Example:

spark.oracle.ord.recognizer.neighbors=8

spark.oracle.ord.recognizer.scalefactor
Floating point number. Specifies how quickly the algorithm should increase the scale
as it makes multiple passes over an image. Setting this higher makes the detector run
faster (since it results in fewer passes), but a very high value might miss information
as it jumps to a new scale. The default is 1.1, which means the scale increases by
10% in each pass. This parameter can have value 1.1, 1.2, 1.3, or 1.4. Example:

spark.oracle.ord.recognizer.scalefactor=1.1

spark.oracle.ord.recognizer.threshold
Number. The value that determines whether a face is matched or not. If the output
value when comparing a face with a face in the video is higher than this value, the

Chapter 7
Configuration Properties for Multimedia Analytics

7-19

face is considered not a match. Otherwise it is considered a match.. Default is 130.
Example:

spark.oracle.ord.recognizer.threshold=130

spark.oracle.ord.recognizer.trainingmodelpath
String. Name of the file that stores the model created by the training. Example:

spark.oracle.ord.recognizer.trainingmodelpath=ordfacemodel_bigdata.data

7.5.3 Configuration Properties for Training Images for Face
Recognition

This category of multimedia analytics framework configuration properties applies to the
training of images for face recognition.

These properties contain the string face, and they are listed in alphabetical order. For
each property the property name is listed, then information about the property.

oracle.ord.hadoop.ordfacemodel
String. Name of the file that stores the model created by the training. Example:

<property>
 <name> oracle.ord.hadoop.ordfacemodel </name>
 <value>ordfacemodel_bigdata.dat</value>
</property>

oracle.ord.hadoop.ordfacereader
String. Name of the Java class that reads images used for training the face
recognition model. Example:

<property>
 <name> oracle.ord.hadoop.ordfacereader </name>
 <value> oracle.ord.hadoop.OrdSimpleFaceReader </value>
</property>

oracle.ord.hadoop.ordfacereaderconfig
String. File containing additional configuration properties for the specific application.
Example:

<property>
 <name> oracle.ord.hadoop.ordfacereaderconfig </name>
 <value>config/ordsimplefacereader_bigdata.xml</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.dirmap
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.dirmap </name>
 <value>faces/bigdata/dirmap.txt</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.imagedir
String. File system directory containing faces used to create a model. This is typically
in a local file system. Example:

Chapter 7
Configuration Properties for Multimedia Analytics

7-20

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.imagedir </name>
 <value>faces/bigdata</value>
</property>

7.6 Using the Multimedia Analytics Framework with Third-
Party Software

You can implement and install custom modules for multimedia decoding and
processing.

You can use a custom video decoder in the framework by implementing the abstract
class oracle.ord.hadoop.decoder.OrdFrameGrabber. See the Javadoc for additional
details. The product includes two implementations of the video decoder that extend
OrdFrameGrabber for JCodec and FFMPEG (requires a separate installation of
FFMPEG).

You can use custom multimedia analysis in the framework by implementing two
abstract classes.

• oracle.ord.hadoop.mapreduce.OrdFrameProcessor<K1,V1,K2,V2>. The extended class
of OrdFrameProcessor is used in the map phase of the MapReduce job that
processes the video frames or images. (K1, V1) is the input key-value pair types
and (K2, V2) is the output key-value pair type. See the Javadoc for additional
details. The product includes an implementation using OpenCV.

•
oracle.ord.hadoop.mapreduce.OrdOutputProcessor<K1,V1,K2,V2>. The extended
class of OrdFrameProcessor is used in the reducer phase of the MapReduce job that
processes the video frames or images. (K1, V1) is the input key-value pair types
and (K2, V2) is the output key-value pair type. See the Javadoc for additional
details. Most implementations do not require implementing this class.

An example of framework configuration parameters is available in $MMA_HOME/example/
analytics/conf/oracle_multimedia_analysis_framework.xml.

7.7 Displaying Images in Output
If the output is displayed as images, oracle.ord.hadoop.OrdPlayImages can be used to
display all the images in the output HDFS directory.

This will display the image frames marked with labels for identified faces. For example:

$ java oracle.ord.hadoop.demo.OrdPlayImages –hadoop_conf_dir $HADOOP_CONF_DIR –
image_file_dir voutput

Chapter 7
Using the Multimedia Analytics Framework with Third-Party Software

7-21

A
Third-Party Licenses for Bundled Software

Oracle Big Data Spatial and Graph installs several third-party products. This appendix
lists information that applies to all Apache licensed code, and then it lists license
information for the installed third-party products.

• Apache Licensed Code

• ANTLR 3

• AOP Alliance

• Apache Commons CLI

• Apache Commons Codec

• Apache Commons Collections

• Apache Commons Configuration

• Apache Commons IO

• Apache Commons Lang

• Apache Commons Logging

• Apache Commons VFS

• Apache fluent

• Apache Groovy

• Apache htrace

• Apache HTTP Client

• Apache HTTPComponents Core

• Apache Jena

• Apache Log4j

• Apache Lucene

• Apache Tomcat

• Apache Xerces2

• Apache xml-commons

• Argparse4j

• check-types

• Cloudera CDH

• cookie

• Fastutil

• functionaljava

• GeoNames Data

A-1

• Geospatial Data Abstraction Library (GDAL)

• Google Guava

• Google Guice

• Google protobuf

• int64-native

• Jackson

• Jansi

• JCodec

• Jettison

• JLine

• Javassist

• json-bignum

• Jung

• Log4js

• MessagePack

• Netty

• Node.js

• node-zookeeper-client

• OpenCV

• rxjava-core

• Slf4j

• Spoofax

• Tinkerpop Blueprints

• Tinkerpop Gremlin

• Tinkerpop Pipes

A.1 Apache Licensed Code
The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

Appendix A
Apache Licensed Code

A-2

See the License for the specific language governing permissions and limitations under
the License.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright
owner. For the purposes of this definition, "submitted" means any form of electronic,
verbal, or written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by the
copyright owner as "Not a Contribution."

Appendix A
Apache Licensed Code

A-3

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within
the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses granted
to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that you meet the following conditions:

a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b) You must cause any modified files to carry prominent notices stating that You
changed the files; and

c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d) If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not pertain
to any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions
stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the Licensor

Appendix A
Apache Licensed Code

A-4

shall be under the terms and conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law (such
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your
own behalf and on Your sole responsibility, not on behalf of any other Contributor, and
only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information. (Do
not include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

Appendix A
Apache Licensed Code

A-5

http://www.apache.org/licenses/LICENSE-2.0

CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation (http://
www.apache.org/Opens a new window) (listed below):

A.2 ANTLR 3
This product was build using ANTLR, which was provided to Oracle under the
following terms:Copyright (c) 2010 Terence ParrAll rights reserved.Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:Redistributions of source code must retain the
above copyright notice, this list of conditions and the following
disclaimer.Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.Neither the name of the author nor the names
of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.THIS SOFTWARE IS PROVIDED BY
THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.3 AOP Alliance
LICENCE: all the source code provided by AOP Alliance is Public Domain.

A.4 Apache Commons CLI
Copyright 2001-2009 The Apache Software FoundationThis product includes software
developed by The Apache Software Foundation (http://www.apache.org/).

A.5 Apache Commons Codec
Copyright 2002-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

src/test/org/apache/commons/codec/language/DoubleMetaphoneTest.java contains
test data from http://aspell.sourceforge.net/test/batch0.tab.

Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org). Verbatim copying and
distribution of this entire article is permitted in any medium, provided this notice is
preserved.

Appendix A
ANTLR 3

A-6

http://www.apache.org/
http://www.apache.org/

A.6 Apache Commons Collections
This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Apache Commons Collections Copyright 2001-2008 The Apache Software Foundation

A.7 Apache Commons Configuration
This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Apache Commons Configuration Copyright 2001-2014 The Apache Software
Foundation

A.8 Apache Commons IO
Copyright 2002-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.9 Apache Commons Lang
Copyright 2001-2010 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.10 Apache Commons Logging
Copyright 2003-2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.11 Apache Commons VFS
You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Appendix A
Apache Commons Collections

A-7

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

A.12 Apache fluent
Copyright © 2011-2014 The Apache Software Foundation. All rights reserved.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.13 Apache Groovy
Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.14 Apache htrace
Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.15 Apache HTTP Client
Copyright 1999-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.16 Apache HTTPComponents Core
Copyright 2005-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

This project contains annotations derived from JCIP-ANNOTATIONS

Copyright (c) 2005 Brian Goetz and Tim Peierls. See http://www.jcip.net

A.17 Apache Jena
Copyright 2011, 2012, 2013, 2014 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

- Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Hewlett-Packard
Development Company, LP

- Copyright 2010, 2011 Epimorphics Ltd.

Appendix A
Apache fluent

A-8

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

- Copyright 2010, 2011 Talis Systems Ltd.

These have been licensed to the Apache Software Foundation under a software grant.

This product includes software developed by PluggedIn Software under a BSD
license.

This product includes software developed by Mort Bay Consulting Pty. Ltd.

Copyright (c) 2004-2009 Mort Bay Consulting Pty. Ltd.

A.18 Apache Log4j
Copyright 2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.19 Apache Lucene
Copyright 2011-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.20 Apache Tomcat
Copyright 1999-2014 The Apache Software Foundation

This product includes software developed at The Apache Software Foundation (http://
www.apache.org/).

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

The Windows Installer is built with the Nullsoft Scriptable Install Sysem (NSIS), which
is open source software. The original software and related information is available at
http://nsis.sourceforge.net.

Java compilation software for JSP pages is provided by Eclipse, which is open source
software. The original software and related information is available at

http://www.eclipse.org.

A.21 Apache Xerces2
Copyright 1999-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Appendix A
Apache Log4j

A-9

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.eclipse.org
http://www.apache.org/

A.22 Apache xml-commons
Apache XML Commons XML APIs

Copyright 1999-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

- software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

- software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

- software copyright (c) 2000 World Wide Web Consortium, http://www.w3.org

A.23 Argparse4j
Copyright (C) 2011, 2014, 2015 Tatsuhiro Tsujikawa

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE

SOFTWARE.

A.24 check-types
Copyright © 2012, 2013, 2014, 2015 Phil Booth

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in allcopies or
substantial portions of the Software.

Appendix A
Apache xml-commons

A-10

http://www.apache.org/

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.25 Cloudera CDH
Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

A.26 cookie
Copyright (c) 2012-2014 Roman Shtylman <shtylman@gmail.com>

Copyright (c) 2015 Douglas Christopher Wilson <doug@somethingdoug.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the 'Software'), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.27 Fastutil
Fastutil is available under the Apache License, Version 2.0.

Appendix A
Cloudera CDH

A-11

A.28 functionaljava
Copyright (c) 2008-2011, Tony Morris, Runar Bjarnason, Tom Adams, Brad Clow,
Ricky Clarkson, Jason Zaugg All rights reserved.

Redistribution and use in source and binary forms, with or withoutmodification, are
permitted provided that the following conditionsare met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

A.29 GeoNames Data
This distribution includes and/or the service uses a modified version of the GeoNames
geographical database, for distributions which may be found in a set of files with
names in the form world_xxxxx.json: one file for cities, one for counties, one for states,
and one for countries. And there is another file with alternate names called
db_alternate_names.txt. All of these files are generated from the GeoNames
database. The original GeoNames database is available at www.geonames.org under
the license set forth below.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT
CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS
PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS
MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND
DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

Appendix A
functionaljava

A-12

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

"Adaptation" means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably derived from the
original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation for
the purpose of this License.

"Collection" means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject
matter other than works listed in Section 1(f) below, which, by reason of the selection
and arrangement of their contents, constitute intellectual creations, in which the Work
is included in its entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this License.

"Distribute" means to make available to the public the original and copies of the Work
or Adaptation, as appropriate, through sale or other transfer of ownership.

"Licensor" means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

"Original Author" means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in
the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

"Work" means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or other work of the
same nature; a dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work

Appendix A
GeoNames Data

A-13

performed by a variety or circus performer to the extent it is not otherwise considered
a literary or artistic work.

"You" means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

"Publicly Perform" means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the performances of
the Work, including by public digital performance; to broadcast and rebroadcast the
Work by any means including signs, sounds or images.

"Reproduce" means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or exceptions that are
provided for in connection with the copyright protection under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in the Work as stated below:

to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

to create and Reproduce Adaptations provided that any such Adaptation, including any
translation in any medium, takes reasonable steps to clearly label, demarcate or
otherwise identify that changes were made to the original Work. For example, a
translation could be marked "The original work was translated from English to
Spanish," or a modification could indicate "The original work has been modified.";

to Distribute and Publicly Perform the Work including as incorporated in Collections;
and, to Distribute and Publicly Perform Adaptations.

For the avoidance of doubt:

Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

Waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor waives the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License; and,

Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of
the rights granted under this License.

Appendix A
GeoNames Data

A-14

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as
are technically necessary to exercise the rights in other media and formats. Subject to
Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to
and limited by the following restrictions:

You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms of
the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection apart from the
Work itself to be made subject to the terms of this License. If You create a Collection,
upon notice from any Licensor You must, to the extent practicable, remove from the
Collection any credit as required by Section 4(b), as requested. If You create an
Adaptation, upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor's copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with
the Work, unless such URI does not refer to the copyright notice or licensing
information for the Work; and (iv) , consistent with Section 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French
translation of the Work by Original Author," or "Screenplay based on original Work by
Original Author"). The credit required by this Section 4 (b) may be implemented in any
reasonable manner; provided, however, that in the case of a Adaptation or Collection,
at a minimum such credit will appear, if a credit for all contributing authors of the
Adaptation or Collection appears, then as part of these credits and in a manner at
least as prominent as the credits for the other contributing authors. For the avoidance
of doubt, You may only use the credit required by this Section for the purpose of
attribution in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Original Author, Licensor and/or Attribution Parties.

Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work
either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would be
prejudicial to the Original Author's honor or reputation. Licensor agrees that in those

Appendix A
GeoNames Data

A-15

jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of
this License (the right to make Adaptations) would be deemed to be a distortion,
mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this
Section, to the fullest extent permitted by the applicable national law, to enable You to
reasonably exercise Your right under Section 3(b) of this License (right to make
Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to be,
granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the
license granted to You under this License.

If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement, such provision shall be

Appendix A
GeoNames Data

A-16

reformed to the minimum extent necessary to make such provision valid and
enforceable.

No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be
charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Literary
and Artistic Works (as amended on September 28, 1979), the Rome Convention of
1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant jurisdiction in which the
License terms are sought to be enforced according to the corresponding provisions of
the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional
rights not granted under this License, such additional rights are deemed to be included
in the License; this License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever
in connection with the Work. Creative Commons will not be liable to You or any party
on any legal theory for any damages whatsoever, including without limitation any
general, special, incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of the
trademark "Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use
will be in compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made available upon
request from time to time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

A.30 Geospatial Data Abstraction Library (GDAL)
GDAL/OGR General

In general GDAL/OGR is licensed under an MIT/X style license with the

following terms:

Appendix A
Geospatial Data Abstraction Library (GDAL)

A-17

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESSOR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

gdal/frmts/gtiff/tif_float.c

Copyright (c) 2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Industrial Light & Magic nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/hdf4/hdf-eos/*

Copyright (C) 1996 Hughes and Applied Research Corporation

Permission to use, modify, and distribute this software and its documentation

Appendix A
Geospatial Data Abstraction Library (GDAL)

A-18

for any purpose without fee is hereby granted, provided that the above

copyright notice appear in all copies and that both that copyright notice and

this permission notice appear in supporting documentation.

gdal/frmts/pcraster/libcsf

Copyright (c) 1997-2003, Utrecht University

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Utrecht University nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/grib/degrib/*

The degrib and g2clib source code are modified versions of code produced by NOAA
NWS and are in the public domain subject to the following restrictions:

http://www.weather.gov/im/softa.htm

DISCLAIMER The United States Government makes no warranty, expressed or
implied, as to the usefulness of the software and documentation for any purpose. The
U.S. Government, its instrumentalities, officers, employees, and agents assumes no
responsibility (1) for the use of the software and documentation listed below, or (2) to
provide technical support to users.

http://www.weather.gov/disclaimer.php

Appendix A
Geospatial Data Abstraction Library (GDAL)

A-19

The information on government servers are in the public domain, unless specifically
annotated otherwise, and may be used freely by the public so long as you do not 1)
claim it is your own (e.g. by claiming copyright for NWS information -- see below), 2)
use it in a manner that implies an endorsement or affiliation with NOAA/NWS, or 3)
modify it in content and then present it as official government material. You also
cannot present information of your own in a way that makes it appear to be official
government information.

The user assumes the entire risk related to its use of this data. NWS is providing this
data "as is," and NWS disclaims any and all warranties, whether express or implied,
including (without limitation) any implied warranties of merchantability or fitness for a
particular purpose. In no event will NWS be liable to you or to any third party for any
direct, indirect, incidental, consequential, special or exemplary damages or lost profit
resulting from any use or misuse of this data.

As required by 17 U.S.C. 403, third parties producing copyrighted works consisting
predominantly of the material appearing in NWS Web pages must provide notice with
such work(s) identifying the NWS material incorporated and stating that such material
is not subject to copyright protection.

port/cpl_minizip*

This is version 2005-Feb-10 of the Info-ZIP copyright and license.

The definitive version of this document should be available at

ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely.

Copyright (c) 1990-2005 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, "Info-ZIP" is defined as

the following set of individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,

Jean-loup Gailly, Hunter Goatley, Ed Gordon, Ian Gorman, Chris Herborth,

Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz,

David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko,

Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,

Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M. Schweda,

Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren,

Rich Wales, Mike White

This software is provided "as is," without warranty of any kind, express or implied. In
no event shall Info-ZIP or its contributors be held liable for any direct, indirect,
incidental, special or consequential damages arising out of the use of or inability to use
this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

Appendix A
Geospatial Data Abstraction Library (GDAL)

A-20

1. Redistributions of source code must retain the above copyright notice, definition,
disclaimer, and this list of conditions.

2. Redistributions in binary form (compiled executables) must reproduce the above
copyright notice, definition, disclaimer, and this list of conditions in documentation
and/or other materials provided with the distribution. The sole exception to this
condition is redistribution of a standard UnZipSFX binary (including SFXWiz) as part of
a self-extracting archive; that is permitted without inclusion of this license, as long as
the normal SFX banner has not been removed from the binary or disabled.

3. Altered versions--including, but not limited to, ports to new operating systems,
existing ports with new graphical interfaces, and dynamic, shared, or static library
versions--must be plainly marked as such and must not be misrepresented as being
the original source. Such altered versions also must not be misrepresented as being
Info-ZIP releases--including, but not limited to, labeling of the altered versions with the
names "Info-ZIP" (or any variation thereof, including, but not limited to, different
capitalizations), "Pocket UnZip," "WiZ" or "MacZip" without the explicit permission of
Info-ZIP. Such altered versions are further prohibited from misrepresentative use of
the Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).

4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip," "UnZipSFX,"
"WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and binary
releases.

gdal/ogr/ogrsf_frmts/dxf/intronurbs.cpp

This code is derived from the code associated with the book "An Introduction to
NURBS" by David F. Rogers. More information on the book and the code is available
at:

http://www.nar-associates.com/nurbs/

Copyright (c) 2009, David F. Rogers

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the David F. Rogers nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Appendix A
Geospatial Data Abstraction Library (GDAL)

A-21

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.31 Google Guava
Guava is licensed under the Apache License, Version 2.0

Copyright 2006 - 2011 Google, Inc. All rights reserved.

A.32 Google Guice
Guice is licensed under the Apache License, Version 2.0

Copyright 2006 – 2011 Google, Inc. All rights reserved.

A.33 Google protobuf
Copyright 2008, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.34 int64-native
Copyright (c) 2014 Robert Kieffer

Appendix A
Google Guava

A-22

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

A.35 Jackson
Copyright 2009 FasterXML, LLC

Jackson is available under the Apache License, Version 2.0.

A.36 Jansi
Copyright (C) 2009, Progress Software Corporation and/or its subsidiaries or affiliates.

Jansi is available under the Apache License, Version 2.0.

A.37 JCodec
This software is based in part on the work of the Independent JPEG Group.

All files except two are available under the FreeBSD license:

http://www.jcodec.org/lic.html

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

Appendix A
Jackson

A-23

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

--

1 file (StringUtils.java) is "borrowed from Apache". This file is from Apache Commons
Lang which is licensed under Apache 2.0

http://www.apache.org/licenses/LICENSE-2.0

1 file (VP8DCT.java) refers to Independent JPEG Group) which has the following
license (note - the configuration scripts and GIF code mentioned by the license are not
included):

The authors make NO WARRANTY or representation, either express or implied, with
respect to this software, its quality, accuracy, merchantability, or fitness for a particular
purpose. This software is provided "AS IS", and you, its user, assume the entire risk as
to its quality and accuracy.

This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.

All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this software (or
portions thereof) for any purpose, without fee, subject to these conditions:

(1) If any part of the source code for this software is distributed, then this README file
must be included, with this copyright and no-warranty notice unaltered; and any
additions, deletions, or changes to the original files must be clearly indicated in
accompanying documentation.

(2) If only executable code is distributed, then the accompanying documentation must
state that "this software is based in part on the work of the Independent JPEG Group".

(3) Permission for use of this software is granted only if the user accepts full
responsibility for any undesirable consequences; the authors accept NO LIABILITY for
damages of any kind.

These conditions apply to any software derived from or based on the IJG code, not
just to the unmodified library. If you use our work, you ought to acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name in
advertising or publicity relating to this software or products derived from it. This
software may be referred to only as "the Independent JPEG Group's software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are assumed by the
product vendor.

The Unix configuration script "configure" was produced with GNU Autoconf.

It is copyright by the Free Software Foundation but is freely distributable.

Appendix A
JCodec

A-24

The same holds for its supporting scripts (config.guess, config.sub, ltmain.sh). Another
support script, install-sh, is copyright by X Consortium but is also freely distributable.

The IJG distribution formerly included code to read and write GIF files. To avoid
entanglement with the Unisys LZW patent (now expired), GIF reading support has
been removed altogether, and the GIF writer has been simplified to produce
"uncompressed GIFs". This technique does not use the LZW algorithm; the resulting
GIF files are larger than usual, but are readable by all standard GIF decoders.

We are required to state that "The Graphics Interchange Format(c) is the Copyright
property of CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."

A.38 Jettison
Copyright 2006 Envoi Solutions LLC.

Jettison is available under the Apache License, Version 2.0.

A.39 JLine
Copyright (c) 2002-2006, Marc Prud'hommeaux <mwp1@cornell.edu>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of JLine nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.40 Javassist
Copyright 1999-2015 by Shigeru Chiba.

Appendix A
Jettison

A-25

the contents of this software may be used under the terms of the Apache License
Version 2.0.

A.41 json-bignum
Copyright (c) 2012-2013 Datalanche, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.42 Jung
THE JUNG LICENSE

Copyright (c) 2003-2004, Regents of the University of California and the JUNG Project
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the University of California nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

Appendix A
json-bignum

A-26

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.43 Log4js
This product includes software developed by the Apache Software Foundation (http://
www.apache.org).

Copyright 2015 Gareth Jones (with contributions from many other people)

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

--

SEMVER 4.3.6 license:

The ISC License

Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

--

readable-stream 1.0.33 license:

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

Appendix A
Log4js

A-27

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

--

core-util-is 1.0.2 license:

Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

inherits 2.0.1 license:

The ISC License

Copyright (c) Isaac Z. Schlueter

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

--

isarray 0.0.1 license:

(MIT)

Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>

Appendix A
Log4js

A-28

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

--

string_decoder 0.10.31 license

Copyright Joyent, Inc. and other Node contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the

following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.44 MessagePack
Copyright (C) 2008-2010 FURUHASHI Sadayuki

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

Appendix A
MessagePack

A-29

License for the specific language governing permissions and limitations under the
License.

A.45 Netty
The Netty Project

=================

Please visit the Netty web site for more information:

http://netty.io/

Copyright 2011 The Netty Project

The Netty Project licenses this file to you under the Apache License, version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Also, please refer to each LICENSE.<component>.txt file, which is located in the
'license' directory of the distribution file, for the license terms of the components that
this product depends on.

This product contains the extensions to Java Collections Framework which has been
derived from the works by JSR-166 EG, Doug Lea, and Jason T. Greene:

* LICENSE:

* license/LICENSE.jsr166y.txt (Public Domain)

* HOMEPAGE:

* http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/

* http://viewvc.jboss.org/cgi-bin/viewvc.cgi/jbosscache/experimental/jsr166/

This product contains a modified version of Robert Harder's Public Domain Base64
Encoder and Decoder, which can be obtained at:

* LICENSE:

* license/LICENSE.base64.txt (Public Domain)

* HOMEPAGE:

* http://iharder.sourceforge.net/current/java/base64/

This product contains a modified version of 'JZlib', a re-implementation of zlib in pure
Java, which can be obtained at:

* LICENSE:

* license/LICENSE.jzlib.txt (BSD Style License)

Appendix A
Netty

A-30

* HOMEPAGE:

* http://www.jcraft.com/jzlib/

Copyright (c) 2000-2011 ymnk, JCraft,Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the distribution.

3. The names of the authors may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS TO
THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This product optionally depends on 'Protocol Buffers', Google's data interchange
format, which can be obtained at:

* LICENSE:

* license/LICENSE.protobuf.txt (New BSD License)

* HOMEPAGE:

* http://code.google.com/p/protobuf/

This product optionally depends on 'SLF4J', a simple logging facade for Java, which
can be obtained at:

* LICENSE:

* license/LICENSE.slf4j.txt (MIT License)

* HOMEPAGE:

* http://www.slf4j.org/

This product optionally depends on 'Apache Commons Logging', a logging framework,
which can be obtained at:

* LICENSE:

Appendix A
Netty

A-31

* license/LICENSE.commons-logging.txt (Apache License 2.0)

* HOMEPAGE:

* http://commons.apache.org/logging/

This product optionally depends on 'Apache Log4J', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.log4j.txt (Apache License 2.0)

* HOMEPAGE:

* http://logging.apache.org/log4j/

This product optionally depends on 'JBoss Logging', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.jboss-logging.txt (GNU LGPL 2.1)

* HOMEPAGE:

* http://anonsvn.jboss.org/repos/common/common-logging-spi/

This product optionally depends on 'Apache Felix', an open source OSGi framework
implementation, which can be obtained at:

* LICENSE:

* license/LICENSE.felix.txt (Apache License 2.0)

* HOMEPAGE:

* http://felix.apache.org/

This product optionally depends on 'Webbit', a Java event based WebSocket and
HTTP server:

* LICENSE:

* license/LICENSE.webbit.txt (BSD License)

* HOMEPAGE:

* https://github.com/joewalnes/webbit

A.46 Node.js
Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

Appendix A
Node.js

A-32

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Node.js also includes a number of externally maintained third-party dependencies,
including the following:

--c-ares v '1.10.1-DEV'

--http-parser v '2.5.2'

--libuv v '1.8.0'

----tree.h

----inet_pton, inet_ntop

----stdint-msvc2008

----pthread-fixes.hs

----android-ifaddrs.h, android-ifaddrs.c

--OpenSSL v '1.0.2g'

--Punnycode.js

--v8 v '4.5.103.35'

----PCRE test suite

Appendix A
Node.js

A-33

----Layout tests

----Strongtalk assembler

----Valgrind client API header

--zlib v '1.2.8'

"""

The following licensees apply to these externally maintained dependencies:

- c-ares is licensed as follows:

Copyright 1998 by the Massachusetts Institute of Technology.

Copyright (C) 2007-2013 by Daniel Stenberg

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. M.I.T. makes no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.

"""

- HTTP Parser is licensed as follows:

http_parser.c is based on src/http/ngx_http_parse.c from NGINX copyright Igor
Sysoev.

Additional changes are licensed under the same terms as NGINX and copyright
Joyent, Inc. and other Node contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

"""

- libuv is licensed as follows:

Appendix A
Node.js

A-34

"""

libuv is part of the Node project: http://nodejs.org/

libuv may be distributed alone under Node's license:

====

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

====

This license applies to all parts of libuv that are not externally maintained libraries.

The externally maintained libraries used by libuv are:

- tree.h (from FreeBSD), copyright Niels Provos. Two clause BSD license.

- inet_pton and inet_ntop implementations, contained in src/inet.c, are copyright the
Internet Systems Consortium, Inc., and licensed under the ISC license.

- stdint-msvc2008.h (from msinttypes), copyright Alexander Chemeris. Three clause
BSD license.

- pthread-fixes.h, pthread-fixes.c, copyright Google Inc. and Sony Mobile
Communications AB. Three clause BSD license.

- android-ifaddrs.h, android-ifaddrs.c, copyright Berkeley Software Design Inc,
Kenneth MacKay and Emergya (Cloud4all, FP7/2007-2013, grant agreement n°
289016). Three clause BSD license.

- OpenSSL, located at deps/openssl, is licensed as follows:

/*
===
===

* Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

Appendix A
Node.js

A-35

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR

Appendix A
Node.js

A-36

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*
===
===

*

* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*

*/ """

- Punycode.js, located at lib/punycode.js, is licensed as follows:

Copyright Mathias Bynens <https://mathiasbynens.be/>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

"""

- V8, located at deps/v8, is licensed as follows:

Appendix A
Node.js

A-37

This license applies to all parts of V8 that are not externally maintained libraries. The
externally maintained libraries used by V8 are:

- PCRE test suite, located in test/mjsunit/third_party/regexp-pcre/regexp-pcre.js. This
is based on the test suite from PCRE-7.3, which is copyrighted by the University of
Cambridge and Google, Inc. The copyright notice and license are embedded in
regexp-pcre.js.

(/ PCRE LICENCE

// ------------

//

// PCRE is a library of functions to support regular expressions whose syntax

// and semantics are as close as possible to those of the Perl 5 language.

//

// Release 7 of PCRE is distributed under the terms of the "BSD" licence, as

// specified below. The documentation for PCRE, supplied in the "doc"

// directory, is distributed under the same terms as the software itself.

//

// The basic library functions are written in C and are freestanding. Also

// included in the distribution is a set of C++ wrapper functions.)

- Layout tests, located in test/mjsunit/third_party/object-keys. These are based on
layout tests from webkit.org which are copyrighted by Apple Computer, Inc. and
released under a 3-clause BSD license.

- Strongtalk assembler, the basis of the files assembler-arm-inl.h, assembler-arm.cc,
assembler-arm.h, assembler-ia32-inl.h, assembler-ia32.cc, assembler-ia32.h,
assembler-x64-inl.h, assembler-x64.cc, assembler-x64.h, assembler-mips-inl.h,
assembler-mips.cc, assembler-mips.h, assembler.cc and assembler.h. This code is
copyrighted by Sun Microsystems Inc. and released under a 3-clause BSD license.

- Valgrind client API header, located at third_party/valgrind/valgrind.h This is release
under the BSD license.

These libraries have their own licenses; we recommend you read them, as their terms
may differ from the terms below.

Further license information can be found in LICENSE files located in sub-directories.

Copyright 2014, the V8 project authors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Appendix A
Node.js

A-38

* Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""

- zlib, located at deps/zlib, is licensed as follows:

"""

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April
28th, 2013

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

"""

ISC lisence for inet-pton and inet-ntop:

ISC License (ISC)

Copyright (c) 4-digit year, Company or Person's Name <E-mail address>

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

Appendix A
Node.js

A-39

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.47 node-zookeeper-client
note-zookeeper-client, version 0.2.2, is licensed under the following terms:

Copyright (c) 2013 Yahoo! Inc. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

node-zokeeper-client also comes with two related components, async v0.2.10 and
underscore v1.4.4.

License for async v0.2.10:

Copyright (c) 2010-2016 Caolan McMahon

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

Appendix A
node-zookeeper-client

A-40

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

License for underscore v1.4.4:

Copyright (c) 2009-2016 Jeremy Ashkenas, DocumentCloud and Investigative

Reporters & Editors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.48 OpenCV
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR
USING.

By downloading, copying, installing or using the software you agree to this license. If
you do not agree to this license, do not download, install, copy or use the software.

License Agreement

For Open Source Computer Vision Library

Copyright (C) 2000-2008, Intel Corporation, all rights reserved.

Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.

Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* The name of the copyright holders may not be used to endorse or promote products
derived from this software without specific prior written permission.

Appendix A
OpenCV

A-41

This software is provided by the copyright holders and contributors "as is" and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed.

In no event shall the Intel Corporation or contributors be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any way out of the use of
this software, even if advised of the possibility of such damage.

A.49 rxjava-core
You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

A.50 Slf4j
Copyright (c) 2004-2011 QOS.ch

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.51 Spoofax
Copyright 2016 Delft University of Technology

Appendix A
rxjava-core

A-42

This project includes software developed at the Programming Languages Group at
Delft University of Technology (http://www.tudelft.nl).

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

A.52 Tinkerpop Blueprints
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.53 Tinkerpop Gremlin
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

Appendix A
Tinkerpop Blueprints

A-43

http://www.tudelft.nl

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.54 Tinkerpop Pipes
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Appendix A
Tinkerpop Pipes

A-44

B
Hive and Spark Spatial SQL Functions

This appendix provides reference information about the Hive and Spark spatial SQL
functions.
To use these functions, you must understand the concepts and techniques described
in whichever of the following apply to your needs:

• Oracle Big Data Spatial Vector Hive Analysis, especially Using the Hive Spatial
API,

• Oracle Big Data Spatial Vector Analysis for Spark, especially Spatial Analysis
Spark SQL UDFs

The functions are presented alphabetically. However, they can be grouped into the
following logical categories: geometry constructors, single-geometry functions, and
two-geometry functions.

Geometry constructors:

• ST_Geometry

• ST_LineString

• ST_MultiLineString

• ST_MultiPoint

• ST_MultiPolygon

• ST_Point

• ST_Polygon

Single-geometry functions:

• ST_Area

• ST_AsWKB

• ST_AsWKT

• ST_Buffer

• ST_ConvexHull

• ST_Envelope

• ST_Length

• ST_Simplify

• ST_SimplifyVW

• ST_Volume

Two-geometry functions:

• ST_AnyInteract

• ST_Contains

• ST_Distance

B-1

• ST_Inside

• ST_AnyInteract

• ST_Area

• ST_AsWKB

• ST_AsWKT

• ST_Buffer

• ST_Contains

• ST_ConvexHull

• ST_Distance

• ST_Envelope

• ST_Geometry

• ST_Inside

• ST_Length

• ST_LineString

• ST_MultiLineString

• ST_MultiPoint

• ST_MultiPolygon

• ST_Point

• ST_Polygon

• ST_Simplify

• ST_SimplifyVW

• ST_Volume

B.1 ST_AnyInteract
Format

ST_AnyInteract(
 geometry1 ST_Geometry,
 geometry1 ST_Geometry,
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Determines if geometry1 has any spatial interaction with geometry2, returning true or
false.

Parameters

geometry1
A 2D or 3D geometry object.

Appendix B
ST_AnyInteract

B-2

geometry2
Another 2D or 3D geometry object.

tolerance
Tolerance at which geometry2 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_AnyInteract(
 ST_Point('{ "type": "Point", "coordinates": [2, 3]}', 8307),
 ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
[1, 2]]]}', 8307))
from hivetable LIMIT 1;
-- return true

B.2 ST_Area
Format

ST_Area(
 geometry ST_Geometry
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Returns the area of a polygon or multipolygon geometry.

Parameters

geometry
An ST_Geometry object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Area(ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5,
7], [1, 7], [1, 2]]]}', 0))
 from hivetable LIMIT 1; -- return 20

Appendix B
ST_Area

B-3

B.3 ST_AsWKB
Format

ST_AsWKB(
 geometry ST_Geometry);

Description

Returns the well-known binary (WKB) representation of the geometry.

Parameters

geometry
An ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_AsWKB(ST_Point('{ "type": "Point", "coordinates": [0, 5]}', 8307))
 from hivetable LIMIT 1;

B.4 ST_AsWKT
Format

ST_AsWKT(
 geometry ST_Geometry);

Description

Returns the well-known text (WKT) representation of the geometry.

Parameters

geometry
An ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_AsWKT(ST_Point('{ "type": "Point", "coordinates": [0, 5]}', 8307))
 from hivetable LIMIT 1;

Appendix B
ST_AsWKB

B-4

B.5 ST_Buffer
Format

ST_Buffer(
 geometry ST_Geometry,
 bufferWidth NUMBER,
 arcTol NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Generates a new ST_Geometry object that is the buffered version of the input
geometry.

Parameters

geometry
Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and bufferWidth and tolerance
are interpreted as meters.

bufferWidth
The distance value used for the buffer.

arcTol
Tolerance used for geodetic arc densification. (Ignored for nongeodetic geometries.)

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Buffer(ST_Point('{ "type": "Point", "coordinates": [0, 5]}', 0), 3)
 from hivetable LIMIT 1;
-- return {"type":"Polygon", "coordinates": [[[-3,5],[-2.8977774789,4.2235428647],
[-2.5980762114,3.5],[-2.1213203436,2.8786796564],[-1.5,2.4019237886],
[-0.7764571353,2.1022225211],[0,2],[0.7764571353,2.1022225211],[1.5,2.4019237886],
[2.1213203436,2.8786796564],[2.5980762114,3.5],[2.8977774789,4.2235428647],[3,5],
[2.8977774789,5.7764571353],[2.5980762114,6.5],[2.1213203436,7.1213203436],
[1.5,7.5980762114],[0.7764571353,7.8977774789],[0,8],[-0.7764571353,7.8977774789],
[-1.5,7.5980762114],[-2.1213203436,7.1213203436],[-2.5980762114,6.5],
[-2.8977774789,5.7764571353],[-3,5]]],"crs":{"type":"name","properties":
{"name":"EPSG:0"}}}

B.6 ST_Contains
Format

ST_Contains(
 geometry1 ST_Geometry,
 geometry1 ST_Geometry,
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Appendix B
ST_Buffer

B-5

Description

Determines if geometry1 contains geometry2, returning true or false.

Parameters

geometry1
A polygon or solid geometry object.

geometry2
Another 2D or 3D geometry object.

tolerance
Tolerance at which geometry2 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Contains(
 ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
[1, 2]]]}', 8307),
 ST_Point('{ "type": "Point", "coordinates": [2, 3]}', 8307))
from hivetable LIMIT 1;
-- return true

B.7 ST_ConvexHull
Format

ST_ConvexHull(
 geometry ST_Geometry);

Description

Returns the convex hull of the input geometry as an ST_Geometry object.

Parameters

geometry
A 2D ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_ConvexHull(
 ST_MultiPoint(' { "type": "MultiPoint","coordinates": [[1, 2], [-1, -2], [5,
6]] }', 0))

Appendix B
ST_ConvexHull

B-6

from hivetable LIMIT 1;
-- return {"type":"Polygon", "coordinates":[[[5,6],[1,2],[-1,-2],[5,6]]],"crs":
{"type":"name","properties":{"name":"EPSG:0"}}}

B.8 ST_Distance
Format

ST_Distance(
 geometry1 ST_Geometry,
 geometry1 ST_Geometry,
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Determines the distance between two 2D geometries.

Parameters

geometry1
A 2D geometry object.

geometry2
A 2D geometry object.

tolerance
Tolerance at which geometry2 is valid.

Usage Notes

This function returns thedistance between the two given geometries. For projected
data, the distance is in the same unit as the unit of projection. For geodetic data, the
distance is in meters.

If an error occurs, the function returns -1.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Distance(
 ST_Point('{ "type": "Point", "coordinates": [0, 0]}', 0),
 ST_Point('{ "type": "Point", "coordinates": [6, 8]}', 0))
from hivetable LIMIT 1;
-- return 10.0

B.9 ST_Envelope
Format

ST_Envelope(
 geometry ST_Geometry);

Appendix B
ST_Distance

B-7

Description

Returns the envelope (bounding polygon) of the input geometry as an ST_Geometry
object.

Parameters

geometry
A 2D ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Envelope(
 ST_MultiPoint(' { "type": "MultiPoint","coordinates": [[1, 2], [-1, -2], [5,
6]] }', 0))
from hivetable LIMIT 1;
-- return {"type":"Polygon", "coordinates":[[[-1,-2],[5,-2],[5,6],[-1,6],
[-1,-2]]],"crs":{"type":"name","properties":{"name":"EPSG:0"}}}

B.10 ST_Geometry
Format

ST_GEOMETRY(
 geometry STRING
 srid INT);

or

ST_GEOMETRY(
 geometry BINARY
 srid INT);

or

ST_GEOMETRY(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a GeoJSON string representation of the geometry, and returns a GeoJSON
string representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

Appendix B
ST_Geometry

B-8

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a point using GeoJSON
select ST_Geometry (' { "type": "Point", "coordinates": [100.0, 0.0]}', 8307) from
hivetable LIMIT 1;
-- creates a point using WKT
select ST_Geometry ('point(100.0 0.0)', 8307) from hivetable LIMIT 1;
-- creates the geometries using a HiveRecordInfoProvider
select ST_Geometry (geoColumn, ‘hive.samples.SampleHiveRecordInfoProviderImpl’) from
hivetable;

B.11 ST_Inside
Format

ST_Inside(
 geometry1 ST_Geometry,
 geometry1 ST_Geometry,
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Determines if geometry1 is inside geometry2, returning true or false.

Parameters

geometry1
A 2D or 3D geometry object.

geometry2
A polygon or solid geometry object.

tolerance
Tolerance at which geometry1 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

Appendix B
ST_Inside

B-9

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Inside(
 ST_Point('{ "type": "Point", "coordinates": [2, 3]}', 8307),
 ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
[1, 2]]]}', 8307))
from hivetable LIMIT 1;
-- return true

B.12 ST_Length
Format

ST_Length(
 geometry ST_Geometry
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Returns the length of a line or polygon geometry.

Parameters

geometry
An ST_Geometry object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Length(ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5,
6], [1, 6], [1, 2]]]}', 0))
 from hivetable LIMIT 1; -- return 16

B.13 ST_LineString
Format

ST_LineString(
 geometry STRING
 srid INT);

or

ST_LineString(
 geometry BINARY
 srid INT);

Appendix B
ST_Length

B-10

or

ST_LineString(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a line string geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a line using GeoJSON
select ST_LineString (' { "type": "LineString","coordinates": [[100.0, 0.0],
[101.0, 1.0]]} ', 8307) from hivetable LIMIT 1;
-- creates a line using WKT
select ST_LineString (' linestring(1 1, 5 5, 10 10, 20 20)', 8307) from hivetable
LIMIT 1;
-- creates the lines using a HiveRecordInfoProvider
select ST_LineString (geoColumn, ‘mypackage.hiveRecordInfoProviderImpl’) from
hivetable;

B.14 ST_MultiLineString
Format

ST_MultiLineString(
 geometry STRING
 srid INT);

or

Appendix B
ST_MultiLineString

B-11

ST_MultiLineString(
 geometry BINARY
 srid INT);

or

ST_MultiLineString(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a multiline string geometry in GeoJSON format, and returns a GeoJSON
string representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a MultiLineString using GeoJSON
select ST_ MultiLineString (' { "type": "MultiLineString","coordinates": [[[100.0,
0.0], [101.0, 1.0]], [[102.0, 2.0], [103.0, 3.0]]] }', 8307) from hivetable LIMIT
1;
-- creates a MultiLineString using WKT
select ST_ MultiLineString ('multilinestring ((10 10, 20 20, 10 40),
(40 40, 30 30, 40 20, 30 10))', 8307) from hivetable LIMIT 1;
-- creates MultiLineStrings using a HiveRecordInfoProvider
select ST_ MultiLineString (geoColumn, ‘mypackage.hiveRecordInfoProviderImpl’) from
hivetable;

Appendix B
ST_MultiLineString

B-12

B.15 ST_MultiPoint
Format

ST_MultiPoint(
 geometry STRING
 srid INT);

or

ST_MultiPoint(
 geometry BINARY
 srid INT);

or

ST_MultiPoint(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a multipoint geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a MultiPoint using GeoJSON
select ST_MultiPoint (' { "type": "MultiPoint","coordinates": [[100.0, 0.0],
[101.0, 1.0]] }', 8307) from hivetable LIMIT 1;
-- creates a MultiPoint using WKT
select ST_ MultiPoint ('multipoint ((10 40), (40 30), (20 20), (30 10))', 8307) from

Appendix B
ST_MultiPoint

B-13

hivetable LIMIT 1;
-- creates MultiPoints using a HiveRecordInfoProvider
select ST_ MultiPoint (geoColumn, ‘mypackage.hiveRecordInfoProviderImpl’) from
hivetable;

B.16 ST_MultiPolygon
Format

ST_MultiPolygon(
 geometry STRING
 srid INT);

or

ST_MultiPolygon(
 geometry BINARY
 srid INT);

or

ST_MultiPolygon(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a multipolygon geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Appendix B
ST_MultiPolygon

B-14

Examples

-- creates a MultiPolygon using GeoJSON
select ST_ MultiPolygon (' { "type": "MultiPolygon","coordinates": [[[[102.0, 2.0],
[103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]], [[[100.0, 0.0], [101.0,
0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]], [[100.2, 0.2], [100.8, 0.2],
[100.8, 0.8], [100.2, 0.8], [100.2, 0.2]]]] }', 8307) from hivetable LIMIT 1;
-- creates a MultiPolygon using WKT
select ST_ MultiPolygon ('multipolygon(((30 20, 45 40, 10 40, 30 20)),
((15 5, 40 10, 10 20, 5 10, 15 5)))', 8307) from hivetable LIMIT 1;
-- creates MultiPolygons using a HiveRecordInfoProvider
select ST_ MultiPolygon (geoColumn, ‘mypackage.hiveRecordInfoProviderImpl’) from
hivetable;

B.17 ST_Point
Format

ST_Point(
 geometry STRING
 srid INT);

or

ST_Point(
 geometry BINARY
 srid INT);

or

ST_Point(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a point geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.

Appendix B
ST_Point

B-15

The format with the hiveRecordInfoProvider parameter does not apply to Spark spatial
SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a point using GeoJSON
select ST_Point (' { "type": "Point", "coordinates": [100.0, 0.0]}', 8307) from
hivetable LIMIT 1;
-- creates a point using WKT
select ST_Point ('point(100.0 0.0)', 8307) from hivetable LIMIT 1;
-- creates the points using a HiveRecordInfoProvider
select ST_Point (geoColumn, ‘hive.samples.SampleHiveRecordInfoProviderImpl’) from
hivetable;

B.18 ST_Polygon
Format

ST_Polygon(
 geometry STRING
 srid INT);

or

ST_Polygon(
 geometry BINARY
 srid INT);

or

ST_Polygon(
 geometry Object
 hiveRecordInfoProvider STRING);

Description

Creates a polygon geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry
To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.
To create a geometry from a WKB object (second format): Geometry definition in
WKB format.
To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

Appendix B
ST_Polygon

B-16

hiveRecordInfoProvider
The fully qualified name of an implementation of the interface
oracle.spatial.hadoop.vector.hive.HiveRecordInfoProvider to extract the geometry in
GeoJSON format.
The function format with the hiveRecordInfoProvider parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

-- creates a polygon using GeoJSON
select ST_Polygon (' { "type": "Polygon","coordinates": [[[100.0, 0.0], [101.0,
0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]] }', 8307) from hivetable LIMIT 1;
-- creates a polygon using WKT
select ST_ Polygon ('polygon((0 0, 10 0, 10 10, 0 0))', 8307) from hivetable LIMIT 1;
-- creates the polygons using a HiveRecordInfoProvider
select ST_ Polygon (geoColumn, ‘mypackage.hiveRecordInfoProviderImpl’) from
hivetable;

B.19 ST_Simplify
Format

ST_Simplify(
 geometry ST_Geometry,
 threshold NUMBER);

Description

Generates a new ST_Geometry object by simplifying the input geometry using the
Douglas-Peucker algorithm.

Parameters

geometry
Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and bufferWidth and tolerance
are interpreted as meters.

threshold
Threshold value to be used for the geometry simplification. Should be a positive
number. (Zero causes the input geometry to be returned.) If the input geometry is
geodetic, the value is the number of meters; if the input geometry is non-geodetic, the
value is the number of units associated with the data.
As the threshold value is decreased, the generated geometry is likely to be closer to
the input geometry; as the threshold value is increased, fewer vertices are likely to be
in the returned geometry.

Usage Notes

Depending on the threshold value, a polygon can simplify into a line or a point, and a
line can simplify into a point. Therefore, the output object should be checked for type,
because the output geometry type might be different from the input geometry type.

Appendix B
ST_Simplify

B-17

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Simplify(
 ST_POLYGON('{"type": "Polygon","coordinates": [[[1, 2], [1.01, 2.01], [5, 2], [5,
6], [1, 6], [1, 2]]]}', 0),
 1)
from hivetable LIMIT 1;
-- return {"type":"Polygon", "coordinates":[[[1,2],[5,2],[5,6],[1,6],[1,2]]],"crs":
{"type":"name","properties":{"name":"EPSG:0"}}}

B.20 ST_SimplifyVW
Format

ST_SimplifyVW(
 geometry ST_Geometry,
 threshold NUMBER);

Description

Generates a new ST_Geometry object by simplifying the input geometry using the
Visvalingham-Whyatt algorithm.

Parameters

geometry
Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and bufferWidth and tolerance
are interpreted as meters.

threshold
Threshold value to be used for the geometry simplification. Should be a positive
number. (Zero causes the input geometry to be returned.) If the input geometry is
geodetic, the value is the number of meters; if the input geometry is non-geodetic, the
value is the number of units associated with the data.
As the threshold value is decreased, the generated geometry is likely to be closer to
the input geometry; as the threshold value is increased, fewer vertices are likely to be
in the returned geometry.

Usage Notes

Depending on the threshold value, a polygon can simplify into a line or a point, and a
line can simplify into a point. Therefore, the output object should be checked for type,
because the output geometry type might be different from the input geometry type.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_SimplifyVW(
 ST_POLYGON('{"type": "Polygon","coordinates": [[[1, 2], [1.01, 2.01], [5, 2], [5,
6], [1, 6], [1, 2]]]}', 0),
 50)
from hivetable LIMIT 1;

Appendix B
ST_SimplifyVW

B-18

-- return {"type":"Polygon", "coordinates":[[[1,2],[5,6],[1,6],[1,2]]],"crs":
{"type":"name","properties":{"name":"EPSG:0"}}}

B.21 ST_Volume
Format

ST_Volume(
 multipolygon ST_MultiPolygon,
 tolerance NUMBER DEFAULT 0 (nongeodetic geometries) or 0.05 (geodetic
geometries));

Description

Returns the area of a multipolygon 3D geometry. The multipolygon is handled as a
solid.

Parameters

multipolygon
An ST_Multipolygon object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

For projected data, the volume is in the same unit as the unit of projection. For
geodetic data, the volume is in cubic meters.

Returns -1 in case of an error.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST_Volume(
 ST_MultiPolygon (' { "type": "MultiPolygon", "coordinates":
 [[[[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0], [0, 0, 0]]],
 [[[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0], [0, 0, 0]]],
 [[[0, 0, 0], [1, 0, 0], [1, 0, 1], [0, 0, 1], [0, 0, 0]]],
 [[[1, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0], [1, 1, 0]]],
 [[[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0], [0, 1, 0]]],
 [[[0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1], [0, 0, 1]]]]}',
 0))
 from hivetable LIMIT 1; -- return 1.0

Appendix B
ST_Volume

B-19

Index

A
Apache HBase

using Apache Spark with property graph
data, 5-64

Apache Spark
using with property graph data, 5-64

H
Hive spatial functions

ST_AnyInteract, B-2
ST_Area, B-3
ST_AsWKB, B-4
ST_AsWKT, B-4
ST_Buffer, B-5
ST_Contains, B-5
ST_ConvexHull, B-6
ST_Distance, B-7
ST_Envelope, B-7
ST_Geometry, B-8
ST_Inside, B-9
ST_Length, B-10
ST_LineString, B-10
ST_MultiLineString, B-11
ST_MultiPoint, B-13
ST_MultiPolygon, B-14
ST_Point, B-15
ST_Polygon, B-16
ST_Simplify, B-17
ST_SimplifyVW, B-18
ST_Volume, B-19

N
NoSQL

NoSQL (continued)
using Apache Spark with property graph

data, 5-67

P
PGQL (Property Graph Query Language), 5-62
Property Graph Query Language (PGQL), 5-62

S
Spark

using with property graph data, 5-64
ST_AnyInteract function, B-2
ST_Area function, B-3
ST_AsWKB function, B-4
ST_AsWKT function, B-4
ST_Buffer function, B-5
ST_Contains function, B-5
ST_ConvexHull function, B-6
ST_Distance function, B-7
ST_Envelope function, B-7
ST_Geometry function, B-8
ST_Inside function, B-9
ST_Length function, B-10
ST_LineString function, B-10
ST_MultiLineString function, B-11
ST_MultiPoint function, B-13
ST_MultiPolygon function, B-14
ST_Point function, B-15
ST_Polygon function, B-16
ST_Simplify function, B-17
ST_SimplifyVW function, B-18
ST_Volume function, B-19

Index-1

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Big Data Spatial and Graph
	Changes for Release 2.5
	Spark Vector API Changes for Release 2.5
	Multimedia Analytics Feature Deprecated

	Changes for Release 2.4
	In-Memory Analyst (PGX) - Related Changes
	New PGX Built-in Algorithms for Cycle Detection
	Temporal Data Types Support in PGX
	PGX Java API Improvements
	New Features in PGQL
	PGX Loader Improvements
	PGX Distributed Engine Improvements
	PGX Deprecations

	Spark Vector API Changes for Release 2.4
	Vector REST API Additions
	SpatialViewer Changes

	1 Big Data Spatial and Graph Overview
	1.1 About Big Data Spatial and Graph
	1.2 Spatial Features
	1.3 Property Graph Features
	1.3.1 Property Graph Sizing Recommendations

	1.4 Multimedia Analytics Features
	1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
	1.6 Installing and Configuring the Big Data Spatial Image Processing Framework
	1.6.1 Getting and Compiling the Cartographic Projections Library
	1.6.2 Installing the Image Processing Framework for Oracle Big Data Appliance Distribution
	1.6.3 Installing the Image Processing Framework for Other Distributions (Not Oracle Big Data Appliance)
	1.6.3.1 Prerequisites for Installing the Image Processing Framework for Other Distributions
	1.6.3.2 Installing the Image Processing Framework for Other Distributions

	1.6.4 Post-installation Verification of the Image Processing Framework
	1.6.4.1 Image Loading Test Script
	1.6.4.2 Image Processor Test Script (Mosaicking)
	1.6.4.3 Single-Image Processor Test Script
	1.6.4.4 Image Processor DEM Test Script
	1.6.4.5 Multiple Raster Operation Test Script

	1.7 Installing the Oracle Big Data SpatialViewer Web Application
	1.7.1 Assumptions for SpatialViewer
	1.7.2 Installing SpatialViewer on Oracle Big Data Appliance
	1.7.3 Installing SpatialViewer for Other Systems (Not Big Data Appliance)
	1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance
	1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data Appliance)

	1.8 Installing Property Graph Support on a CDH Cluster or Other Hardware
	1.8.1 Apache HBase Prerequisites
	1.8.2 Property Graph Installation Steps
	1.8.3 About the Property Graph Installation Directory
	1.8.4 Optional Installation Task for In-Memory Analyst Use
	1.8.4.1 Installing and Configuring Hadoop
	1.8.4.2 Running the In-Memory Analyst on Hadoop

	1.9 Installing and Configuring Multimedia Analytics Support
	1.9.1 Assumptions and Libraries for Multimedia Analytics
	1.9.2 Transcoding Software (Options)

	2 Using Big Data Spatial and Graph with Spatial Data
	2.1 About Big Data Spatial and Graph Support for Spatial Data
	2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?
	2.1.2 Advantages of Oracle Big Data Spatial and Graph
	2.1.3 Oracle Big Data Spatial Features and Functions
	2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements

	2.2 Oracle Big Data Vector and Raster Data Processing
	2.2.1 Oracle Big Data Spatial Raster Data Processing
	2.2.2 Oracle Big Data Spatial Vector Data Processing

	2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing
	2.3.1 Image Loader
	2.3.2 Image Processor

	2.4 Loading an Image to Hadoop Using the Image Loader
	2.4.1 Image Loading Job
	2.4.2 Input Parameters
	2.4.3 Output Parameters

	2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor
	2.5.1 Image Processing Job
	2.5.1.1 Default Image Processing Job Flow
	2.5.1.2 Multiple Raster Image Processing Job Flow

	2.5.2 Input Parameters
	2.5.2.1 Catalog XML Structure
	2.5.2.2 Mosaic Definition XML Structure

	2.5.3 Job Execution
	2.5.4 Processing Classes and ImageBandWritable
	2.5.4.1 Location of the Classes and Jar Files

	2.5.5 Map Algebra Operations
	2.5.6 Multiple Raster Algebra Operations
	2.5.6.1 Basic Multiple Raster Algebra Operations
	2.5.6.2 Complex Multiple Raster Algebra Operations

	2.5.7 Pyramids
	2.5.8 Output

	2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API
	2.7 Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing
	2.8 Oracle Big Data Spatial Raster Processing for Spark
	2.8.1 Spark Raster Loader
	2.8.1.1 Input Parameters to the Spark Raster Loader
	2.8.1.2 Expected Output of the Spark Raster Loader

	2.8.2 Spark SQL Raster Processor
	2.8.2.1 Input Parameters to the Spark SQL Raster Processor
	2.8.2.2 Expected Output of the Spark SQL Raster Processor

	2.8.3 Using the Spark Raster Processing API
	2.8.3.1 Using the Spark Raster Loader API
	2.8.3.2 Configuring for Using the Spark SQL Processor API
	2.8.3.3 Creating the DataFrame
	2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations

	2.9 Oracle Big Data Spatial Vector Analysis
	2.9.1 Multiple Hadoop API Support
	2.9.2 Spatial Indexing
	2.9.2.1 Spatial Indexing Class Structure
	2.9.2.2 Configuration for Creating a Spatial Index
	2.9.2.3 Spatial Index Metadata
	2.9.2.4 Input Formats for a Spatial Index
	2.9.2.5 Support for GeoJSON and Shapefile Formats
	2.9.2.6 Removing a Spatial Index

	2.9.3 Using MVSuggest
	2.9.4 Spatial Filtering
	2.9.4.1 Filtering Records
	2.9.4.2 Filtering Using the Input Format

	2.9.5 Classifying Data Hierarchically
	2.9.5.1 Changing the Hierarchy Level Range
	2.9.5.2 Controlling the Search Hierarchy
	2.9.5.3 Using MVSuggest to Classify the Data

	2.9.6 Generating Buffers
	2.9.7 Spatial Binning
	2.9.8 Spatial Clustering
	2.9.9 Spatial Join
	2.9.10 Spatial Partitioning
	2.9.11 RecordInfoProvider
	2.9.11.1 Sample RecordInfoProvider Implementation
	2.9.11.2 LocalizableRecordInfoProvider

	2.9.12 HierarchyInfo
	2.9.12.1 Sample HierarchyInfo Implementation

	2.9.13 Using JGeometry in MapReduce Jobs
	2.9.14 Support for Different Data Sources
	2.9.15 Job Registry
	2.9.16 Tuning Performance Data of Job Running Times Using the Vector Analysis API

	2.10 Oracle Big Data Spatial Vector Analysis for Spark
	2.10.1 Spatial RDD (Resilient Distributed Dataset)
	2.10.2 Spatial Transformations
	2.10.2.1 Filter Transformation
	2.10.2.2 FlatMap Transformation
	2.10.2.3 Join Transformation
	2.10.2.4 Controlling Spatial Evaluation
	2.10.2.5 Spatially Enabled Transformations

	2.10.3 Spatial Actions (MBR and NearestNeighbors)
	2.10.4 Spatially Indexing a Spatial RDD
	2.10.4.1 Spatial Partitioning of a Spatial RDD
	2.10.4.2 Local Spatial Indexing of a Spatial RDD

	2.10.5 Support for Common Spatial Formats
	2.10.6 Spatial Spark SQL API
	2.10.6.1 Spark 2 API Enhancements
	2.10.6.2 Spatial Analysis Spark SQL UDFs

	2.10.7 JDBC Data Sources for Spatial RDDs

	2.11 Oracle Big Data Spatial Vector Hive Analysis
	2.11.1 HiveRecordInfoProvider
	2.11.2 Using the Hive Spatial API
	2.11.3 Using Spatial Indexes in Hive

	2.12 Using the Oracle Big Data SpatialViewer Web Application
	2.12.1 Creating a Hadoop Spatial Index Using SpatialViewer
	2.12.2 Exploring the Hadoop Indexed Spatial Data
	2.12.3 Creating a Spark Spatial Index Using SpatialViewer
	2.12.4 Exploring the Spark Indexed Spatial Data
	2.12.5 Running a Categorization Job Using SpatialViewer
	2.12.6 Viewing the Categorization Results
	2.12.7 Saving Categorization Results to a File
	2.12.8 Creating and Deleting Templates
	2.12.9 Configuring Templates
	2.12.10 Running a Clustering Job Using SpatialViewer
	2.12.11 Viewing the Clustering Results
	2.12.12 Saving Clustering Results to a File
	2.12.13 Running a Binning Job Using SpatialViewer
	2.12.14 Viewing the Binning Results
	2.12.15 Saving Binning Results to a File
	2.12.16 Running a Job to Create an Index Using the Command Line
	2.12.17 Running a Job to Create a Categorization Result
	2.12.18 Running a Job to Create a Clustering Result
	2.12.19 Running a Job to Create a Binning Result
	2.12.20 Running a Job to Perform Spatial Filtering
	2.12.21 Running a Job to Get Location Suggestions
	2.12.22 Running a Job to Perform a Spatial Join
	2.12.23 Running a Job to Perform Partitioning
	2.12.24 Using Multiple Inputs
	2.12.25 Loading Images from the Local Server to the HDFS Hadoop Cluster
	2.12.26 Visualizing Rasters in the Globe
	2.12.27 Processing a Raster or Multiple Rasters with the Same MBR
	2.12.28 Creating a Mosaic Directly from the Globe
	2.12.29 Adding Operations for Raster Processing
	2.12.30 Creating a Slope Image from the Globe
	2.12.31 Changing the Image File Format from the Globe

	3 Integrating Big Data Spatial and Graph with Oracle Database
	3.1 Using Oracle SQL Connector for HDFS with Delimited Text Files
	3.2 Using Oracle SQL Connector for HDFS with Hive Tables
	3.3 Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop
	3.3.1 Creating HDFS Data Pump Files or Delimited Text Files
	3.3.2 Creating the SQL Connector for HDFS

	3.4 Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL
	3.4.1 Creating Oracle External Tables for HDFS Files with Big Data SQL
	3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data SQL

	4 Configuring Property Graph Support
	4.1 Tuning Apache HBase for Use with Property Graphs
	4.1.1 Modifying the Apache HBase Configuration
	4.1.2 Modifying the Java Memory Settings

	4.2 Tuning Oracle NoSQL Database for Use with Property Graphs

	5 Using Property Graphs in a Big Data Environment
	5.1 About Property Graphs
	5.1.1 What Are Property Graphs?
	5.1.2 What Is Big Data Support for Property Graphs?
	5.1.2.1 In-Memory Analyst
	5.1.2.2 Data Access Layer
	5.1.2.3 Storage Management
	5.1.2.4 RESTful Web Services

	5.2 About Property Graph Data Formats
	5.2.1 GraphML Data Format
	5.2.2 GraphSON Data Format
	5.2.3 GML Data Format
	5.2.4 Oracle Flat File Format

	5.3 Getting Started with Property Graphs
	5.4 Using Java APIs for Property Graph Data
	5.4.1 Overview of the Java APIs
	5.4.1.1 Oracle Big Data Spatial and Graph Java APIs
	5.4.1.2 TinkerPop Blueprints Java APIs
	5.4.1.3 Apache Hadoop Java APIs
	5.4.1.4 Oracle NoSQL Database Java APIs
	5.4.1.5 Apache HBase Java APIs

	5.4.2 Parallel Loading of Graph Data
	5.4.2.1 Parallel Data Loading Using Partitions
	5.4.2.2 Parallel Data Loading Using Fine-Tuning
	5.4.2.3 Parallel Data Loading Using Multiple Files
	5.4.2.4 Parallel Retrieval of Graph Data
	5.4.2.5 Using an Element Filter Callback for Subgraph Extraction
	5.4.2.6 Using Optimization Flags on Reads over Property Graph Data
	5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph
	5.4.2.8 Getting Property Graph Metadata

	5.4.3 Opening and Closing a Property Graph Instance
	5.4.3.1 Using Oracle NoSQL Database
	5.4.3.2 Using Apache HBase

	5.4.4 Creating Vertices
	5.4.5 Creating Edges
	5.4.6 Deleting Vertices and Edges
	5.4.7 Reading a Graph from a Database into an Embedded In-Memory Analyst
	5.4.8 Specifying Labels for Vertices
	5.4.9 Building an In-Memory Graph
	5.4.10 Dropping a Property Graph
	5.4.10.1 Using Oracle NoSQL Database
	5.4.10.2 Using Apache HBase

	5.5 Managing Text Indexing for Property Graph Data
	5.5.1 Configuring a Text Index for Property Graph Data
	5.5.2 Using Automatic Indexes for Property Graph Data
	5.5.3 Using Manual Indexes for Property Graph Data
	5.5.4 Executing Search Queries Over Property Graph Text Indexes
	5.5.5 Handling Data Types
	5.5.5.1 Appending Data Type Identifiers on Apache Lucene
	5.5.5.2 Appending Data Type Identifiers on SolrCloud

	5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper
	5.5.7 Updating Configuration Settings on Text Indexes for Property Graph Data
	5.5.8 Using Parallel Query on Text Indexes for Property Graph Data
	5.5.9 Using Native Query Objects on Text Indexes for Property Graph Data
	5.5.10 Using Native Query Results on Text Indexes for Property Graph Data

	5.6 Querying Property Graph Data Using PGQL
	5.7 Using Apache Spark with Property Graph Data
	5.7.1 Using Apache Spark with Property Graph Data in Apache HBase
	5.7.2 Integrating Apache Spark with Property Graph Data Stored in Oracle NoSQL Database

	5.8 Support for Secure Oracle NoSQL Database
	5.9 Implementing Security on Graphs Stored in Apache HBase
	5.10 Using the Groovy Shell with Property Graph Data
	5.11 REST Support for Property Graph Data
	5.11.1 Building the REST Web Application Archive (WAR) File
	5.11.2 Deploying the RESTful Property Graph Web Service
	5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml)

	5.11.3 Property Graph REST API Operations Information
	5.11.3.1 GET Operations (Property Graphs)
	5.11.3.2 POST Operations (Property Graphs)
	5.11.3.3 PUT Operations (Property Graphs)
	5.11.3.4 DELETE Operations (Property Graphs)

	5.12 Exploring the Sample Programs
	5.12.1 About the Sample Programs
	5.12.2 Compiling and Running the Sample Programs
	5.12.3 About the Example Output
	5.12.4 Example: Creating a Property Graph
	5.12.5 Example: Dropping a Property Graph
	5.12.6 Examples: Adding and Dropping Vertices and Edges

	5.13 Oracle Flat File Format Definition
	5.13.1 About the Property Graph Description Files
	5.13.2 Vertex File
	5.13.3 Edge File
	5.13.4 Encoding Special Characters
	5.13.5 Example Property Graph in Oracle Flat File Format
	5.13.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File
	5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files
	5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)
	5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)
	5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing Both Vertices and Edges Data into a Pair of Graph Flat Files

	5.14 Example Python User Interface
	5.15 Example iPython Notebooks User Interface

	6 Using the In-Memory Analyst (PGX)
	6.1 Reading a Graph into Memory
	6.1.1 Connecting to an In-Memory Analyst Server Instance
	6.1.2 Using the Shell Help
	6.1.3 Providing Graph Metadata in a Configuration File
	6.1.4 Reading Graph Data into Memory
	6.1.4.1 Read a Graph Stored in Apache HBase into Memory
	6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory
	6.1.4.3 Read a Graph Stored in the Local File System into Memory

	6.2 Configuring the In-Memory Analyst
	6.2.1 Specifying the Configuration File to the In-Memory Analyst

	6.3 Reading Custom Graph Data
	6.3.1 Creating a Simple Graph File
	6.3.2 Adding a Vertex Property
	6.3.3 Using Strings as Vertex Identifiers
	6.3.4 Adding an Edge Property

	6.4 Storing Graph Data on Disk
	6.4.1 Storing the Results of Analysis in a Vertex Property
	6.4.2 Storing a Graph in Edge-List Format on Disk

	6.5 Executing Built-in Algorithms
	6.5.1 About the In-Memory Analyst
	6.5.2 Running the Triangle Counting Algorithm
	6.5.3 Running the Pagerank Algorithm

	6.6 Creating Subgraphs
	6.6.1 About Filter Expressions
	6.6.2 Using a Simple Edge Filter to Create a Subgraph
	6.6.3 Using a Simple Vertex Filter to Create a Subgraph
	6.6.4 Using a Complex Filter to Create a Subgraph
	6.6.5 Combining Expression Filters
	6.6.6 Using an Expression Filter to Create a Set of Vertices or Edges
	6.6.7 Using a Vertex Set to Create a Bipartite Subgraph

	6.7 Using Pattern-Matching Queries with Graphs
	6.7.1 Example: The Enemy of My Enemy is My Friend
	6.7.2 Example: Top 10 Most Collaborative People
	6.7.3 Example: Transitive Connectivity Between Electrical Devices

	6.8 Starting the In-Memory Analyst Server
	6.8.1 Configuring the In-Memory Analyst Server

	6.9 Deploying to Jetty
	6.10 Deploying to Apache Tomcat
	6.11 Deploying to Oracle WebLogic Server
	6.11.1 Installing Oracle WebLogic Server
	6.11.2 Deploying the In-Memory Analyst
	6.11.3 Verifying That the Server Works

	6.12 Connecting to the In-Memory Analyst Server
	6.12.1 Connecting with the In-Memory Analyst Shell
	6.12.1.1 About Logging HTTP Requests

	6.12.2 Connecting with Java
	6.12.3 Connecting with JavaScript

	6.13 Using the In-Memory Analyst in Distributed Mode
	6.14 Reading and Storing Data in HDFS
	6.14.1 Reading Data from HDFS
	6.14.2 Storing Graph Snapshots in HDFS
	6.14.3 Compiling and Running a Java Application in Hadoop

	6.15 Running the In-Memory Analyst as a YARN Application
	6.15.1 Starting and Stopping In-Memory Analyst Services
	6.15.1.1 Configuring the In-Memory Analyst YARN Client
	6.15.1.2 Starting a New In-Memory Analyst Service
	6.15.1.3 About Long-Running In-Memory Analyst Services
	6.15.1.4 Stopping In-Memory Analyst Services

	6.15.2 Connecting to In-Memory Analyst Services
	6.15.3 Monitoring In-Memory Analyst Services

	6.16 Using Oracle Two-Tables Relational Format
	6.17 Using the In-Memory Analyst to Analyze Graph Data in Apache Spark
	6.17.1 Controlling the Degree of Parallelism in Apache Spark

	6.18 Using the In-Memory Analyst Zeppelin Interpreter
	6.19 Using the In-Memory Analyst Enterprise Scheduler
	6.19.1 Using Lambda Syntax with Execution Environments

	7 Using Multimedia Analytics
	7.1 About Multimedia Analytics
	7.2 Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics Framework
	7.3 Processing Streaming Video Using the Multimedia Analytics Framework
	7.4 Face Recognition Using the Multimedia Analytics Framework
	7.4.1 Training to Detect Faces
	7.4.2 Selecting Faces to be Used for Training
	7.4.3 Detecting Faces in Videos
	7.4.4 Detecting Faces in Images
	7.4.5 Working with Oracle NoSQL Database
	7.4.6 Working with Apache HBase
	7.4.7 Examples and Training Materials for Detecting Faces

	7.5 Configuration Properties for Multimedia Analytics
	7.5.1 Configuration Properties for Processing Stored Videos and Images
	7.5.2 Configuration Properties for Processing Streaming Video
	7.5.3 Configuration Properties for Training Images for Face Recognition

	7.6 Using the Multimedia Analytics Framework with Third-Party Software
	7.7 Displaying Images in Output

	A Third-Party Licenses for Bundled Software
	A.1 Apache Licensed Code
	A.2 ANTLR 3
	A.3 AOP Alliance
	A.4 Apache Commons CLI
	A.5 Apache Commons Codec
	A.6 Apache Commons Collections
	A.7 Apache Commons Configuration
	A.8 Apache Commons IO
	A.9 Apache Commons Lang
	A.10 Apache Commons Logging
	A.11 Apache Commons VFS
	A.12 Apache fluent
	A.13 Apache Groovy
	A.14 Apache htrace
	A.15 Apache HTTP Client
	A.16 Apache HTTPComponents Core
	A.17 Apache Jena
	A.18 Apache Log4j
	A.19 Apache Lucene
	A.20 Apache Tomcat
	A.21 Apache Xerces2
	A.22 Apache xml-commons
	A.23 Argparse4j
	A.24 check-types
	A.25 Cloudera CDH
	A.26 cookie
	A.27 Fastutil
	A.28 functionaljava
	A.29 GeoNames Data
	A.30 Geospatial Data Abstraction Library (GDAL)
	A.31 Google Guava
	A.32 Google Guice
	A.33 Google protobuf
	A.34 int64-native
	A.35 Jackson
	A.36 Jansi
	A.37 JCodec
	A.38 Jettison
	A.39 JLine
	A.40 Javassist
	A.41 json-bignum
	A.42 Jung
	A.43 Log4js
	A.44 MessagePack
	A.45 Netty
	A.46 Node.js
	A.47 node-zookeeper-client
	A.48 OpenCV
	A.49 rxjava-core
	A.50 Slf4j
	A.51 Spoofax
	A.52 Tinkerpop Blueprints
	A.53 Tinkerpop Gremlin
	A.54 Tinkerpop Pipes

	B Hive and Spark Spatial SQL Functions
	B.1 ST_AnyInteract
	B.2 ST_Area
	B.3 ST_AsWKB
	B.4 ST_AsWKT
	B.5 ST_Buffer
	B.6 ST_Contains
	B.7 ST_ConvexHull
	B.8 ST_Distance
	B.9 ST_Envelope
	B.10 ST_Geometry
	B.11 ST_Inside
	B.12 ST_Length
	B.13 ST_LineString
	B.14 ST_MultiLineString
	B.15 ST_MultiPoint
	B.16 ST_MultiPolygon
	B.17 ST_Point
	B.18 ST_Polygon
	B.19 ST_Simplify
	B.20 ST_SimplifyVW
	B.21 ST_Volume

	Index

