Oracle® Big Data Spatial and Graph
User’'s Guide and Reference

ORACLE"

Oracle Big Data Spatial and Graph User's Guide and Reference, Release 2.5
E67958-15

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Chuck Murray

Contributors: Bill Beauregard, Hector Briseno, Hassan Chafi, Zazhil Herena, Sungpack Hong, Roberto
Infante, Hugo Labra, Gabriela Montiel-Moreno, Siva Ravada, Carlos Reyes, Korbinian Schmid, Jane Tao,
Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVil
Documentation Accessibility XVil
Related Documents XVili
Conventions XVil

Changes in This Release for Oracle Big Data Spatial and Graph

Changes for Release 2.5 XiX
Changes for Release 2.4 XiX

1 Big Data Spatial and Graph Overview

1.1 About Big Data Spatial and Graph 1-1
1.2 Spatial Features 1-2
1.3 Property Graph Features 1-2
1.3.1 Property Graph Sizing Recommendations 1-3
1.4 Multimedia Analytics Features 1-3
1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance 1-4
1.6 Installing and Configuring the Big Data Spatial Image Processing Framework 1-4
1.6.1 Getting and Compiling the Cartographic Projections Library 1-5
1.6.2 Installing the Image Processing Framework for Oracle Big Data
Appliance Distribution 1-5
1.6.3 Installing the Image Processing Framework for Other Distributions (Not
Oracle Big Data Appliance) 1-6
1.6.3.1 Prerequisites for Installing the Image Processing Framework for
Other Distributions 1-6
1.6.3.2 Installing the Image Processing Framework for Other Distributions 1-6
1.6.4 Post-installation Verification of the Image Processing Framework 1-7
1.6.4.1 Image Loading Test Script 1-7
1.6.4.2 Image Processor Test Script (Mosaicking) 1-8
1.6.4.3 Single-Image Processor Test Script 1-9
1.6.4.4 Image Processor DEM Test Script 1-10
1.6.4.5 Multiple Raster Operation Test Script 1-11

ORACLE iii

1.7 Installing the Oracle Big Data SpatialViewer Web Application 1-12

1.7.1 Assumptions for SpatialViewer 1-12
1.7.2 Installing SpatialViewer on Oracle Big Data Appliance 1-13
1.7.3 Installing SpatialViewer for Other Systems (Not Big Data Appliance) 1-13
1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance 1-13
1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data Appliance) 1-15

1.8 Installing Property Graph Support on a CDH Cluster or Other Hardware 1-15
1.8.1 Apache HBase Prerequisites 1-16
1.8.2 Property Graph Installation Steps 1-16
1.8.3 About the Property Graph Installation Directory 1-17
1.8.4 Optional Installation Task for In-Memory Analyst Use 1-17
1.8.4.1 Installing and Configuring Hadoop 1-17

1.8.4.2 Running the In-Memory Analyst on Hadoop 1-18

1.9 Installing and Configuring Multimedia Analytics Support 1-18
1.9.1 Assumptions and Libraries for Multimedia Analytics 1-18
1.9.2 Transcoding Software (Options) 1-19

2 Using Big Data Spatial and Graph with Spatial Data

2.1 About Big Data Spatial and Graph Support for Spatial Data 2-2
2.1.1 What is Big Data Spatial and Graph on Apache Hadoop? 2-2
2.1.2 Advantages of Oracle Big Data Spatial and Graph 2-2
2.1.3 Oracle Big Data Spatial Features and Functions 2-3
2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements 2-3

2.2 Oracle Big Data Vector and Raster Data Processing 2-4
2.2.1 Oracle Big Data Spatial Raster Data Processing 2-4
2.2.2 Oracle Big Data Spatial Vector Data Processing 2-4

2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster

Data Processing 2-5
2.3.1 Image Loader 2-6
2.3.2 Image Processor 2-7

2.4 Loading an Image to Hadoop Using the Image Loader 2-8
2.4.1 Image Loading Job 2-9
2.4.2 Input Parameters 2-9
2.4.3 Output Parameters 2-10

2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor 2-11
2.5.1 Image Processing Job 2-12

2.5.1.1 Default Image Processing Job Flow 2-12
2.5.1.2 Multiple Raster Image Processing Job Flow 2-13
2.5.2 Input Parameters 2-13
2.5.2.1 Catalog XML Structure 2-14
2.5.2.2 Mosaic Definition XML Structure 2-15

ORACLE iv

2.5.3 Job Execution

2.5.4 Processing Classes and ImageBandWritable
2.5.4.1 Location of the Classes and Jar Files

2.5.5 Map Algebra Operations

2.5.6 Multiple Raster Algebra Operations
2.5.6.1 Basic Multiple Raster Algebra Operations
2.5.6.2 Complex Multiple Raster Algebra Operations

2.5.7 Pyramids

2.5.8 Output

2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster
Processing API

2.7 Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster
Processing

2.8 Oracle Big Data Spatial Raster Processing for Spark
2.8.1 Spark Raster Loader
2.8.1.1 Input Parameters to the Spark Raster Loader
2.8.1.2 Expected Output of the Spark Raster Loader
2.8.2 Spark SQL Raster Processor
2.8.2.1 Input Parameters to the Spark SQL Raster Processor
2.8.2.2 Expected Output of the Spark SQL Raster Processor
2.8.3 Using the Spark Raster Processing API
2.8.3.1 Using the Spark Raster Loader API
2.8.3.2 Configuring for Using the Spark SQL Processor API
2.8.3.3 Creating the DataFrame
2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations
2.9 Oracle Big Data Spatial Vector Analysis
2.9.1 Multiple Hadoop API Support
2.9.2 Spatial Indexing
2.9.2.1 Spatial Indexing Class Structure
2.9.2.2 Configuration for Creating a Spatial Index
2.9.2.3 Spatial Index Metadata
2.9.2.4 Input Formats for a Spatial Index
2.9.2.5 Support for GeoJSON and Shapefile Formats
2.9.2.6 Removing a Spatial Index
2.9.3 Using MVSuggest
2.9.4 Spatial Filtering
2.9.4.1 Filtering Records
2.9.4.2 Filtering Using the Input Format
2.9.5 Classifying Data Hierarchically
2.9.5.1 Changing the Hierarchy Level Range
2.9.5.2 Controlling the Search Hierarchy
2.9.5.3 Using MVSuggest to Classify the Data

ORACLE

2-16
2-17
2-19
2-19
2-22
2-22
2-23
2-24
2-25

2-25

2-27
2-31
2-31
2-32
2-33
2-34
2-35
2-36
2-36
2-36
2-37
2-39
2-42
2-43
2-44
2-44
2-45
2-46
2-47
2-48
2-49
2-49
2-49
2-51
2-52
2-53
2-54
2-59
2-59
2-60

2.9.6
297
2.9.8
29.9
2.9.10
29.11

Generating Buffers
Spatial Binning
Spatial Clustering
Spatial Join
Spatial Partitioning
RecordInfoProvider

2.9.11.1 Sample RecordInfoProvider Implementation

2.9.11.2 LocalizableRecordInfoProvider

29.12

Hierarchylnfo

2.9.12.1 Sample Hierarchylnfo Implementation

2.9.13
29.14
2.9.15
2.9.16

Using JGeometry in MapReduce Jobs
Support for Different Data Sources
Job Registry

Tuning Performance Data of Job Running Times Using the Vector

Analysis API

2.10 Oracle Big Data Spatial Vector Analysis for Spark

2.10.1
2.10.2

Spatial RDD (Resilient Distributed Dataset)
Spatial Transformations

2.10.2.1 Filter Transformation
2.10.2.2 FlatMap Transformation
2.10.2.3 Join Transformation

2.10.2.4 Controlling Spatial Evaluation

2.10.2.5 Spatially Enabled Transformations

2.10.3
2.104

Spatial Actions (MBR and NearestNeighbors)
Spatially Indexing a Spatial RDD

2.10.4.1 Spatial Partitioning of a Spatial RDD
2.10.4.2 Local Spatial Indexing of a Spatial RDD

2.10.5
2.10.6

Support for Common Spatial Formats
Spatial Spark SQL API

2.10.6.1 Spark 2 API Enhancements
2.10.6.2 Spatial Analysis Spark SQL UDFs

2.10.7

JDBC Data Sources for Spatial RDDs

2.11 Oracle Big Data Spatial Vector Hive Analysis

2111
2.11.2
2.11.3

HiveRecordInfoProvider
Using the Hive Spatial API
Using Spatial Indexes in Hive

2.12 Using the Oracle Big Data SpatialViewer Web Application

2121
2.12.2
2.12.3
2.12.4

ORACLE

Creating a Hadoop Spatial Index Using SpatialViewer
Exploring the Hadoop Indexed Spatial Data

Creating a Spark Spatial Index Using SpatialViewer
Exploring the Spark Indexed Spatial Data

2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-71
2-74
2-77
2-81

2-82
2-83
2-83
2-85
2-86
2-86
2-87
2-88
2-88
2-89
2-90
2-91
2-91
2-91
2-92
2-93
2-96
2-101
2-102
2-103
2-104
2-106
2-108
2-110
2-110
2-111
2-111

Vi

2.12.5 Running a Categorization Job Using SpatialViewer 2-112

2.12.6 Viewing the Categorization Results 2-113
2.12.7 Saving Categorization Results to a File 2-113
2.12.8 Creating and Deleting Templates 2-114
2.12.9 Configuring Templates 2-114
2.12.10 Running a Clustering Job Using SpatialViewer 2-115
2.12.11 Viewing the Clustering Results 2-116
2.12.12 Saving Clustering Results to a File 2-116
2.12.13 Running a Binning Job Using SpatialViewer 2-116
2.12.14 Viewing the Binning Results 2-117
2.12.15 Saving Binning Results to a File 2-117
2.12.16 Running a Job to Create an Index Using the Command Line 2-118
2.12.17 Running a Job to Create a Categorization Result 2-120
2.12.18 Running a Job to Create a Clustering Result 2-122
2.12.19 Running a Job to Create a Binning Result 2-124
2.12.20 Running a Job to Perform Spatial Filtering 2-125
2.12.21 Running a Job to Get Location Suggestions 2-126
2.12.22 Running a Job to Perform a Spatial Join 2-127
2.12.23 Running a Job to Perform Partitioning 2-129
2.12.24 Using Multiple Inputs 2-131
2.12.25 Loading Images from the Local Server to the HDFS Hadoop Cluster 2-131
2.12.26 Visualizing Rasters in the Globe 2-132
2.12.27 Processing a Raster or Multiple Rasters with the Same MBR 2-132
2.12.28 Creating a Mosaic Directly from the Globe 2-133
2.12.29 Adding Operations for Raster Processing 2-134
2.12.30 Creating a Slope Image from the Globe 2-135
2.12.31 Changing the Image File Format from the Globe 2-136

3 Integrating Big Data Spatial and Graph with Oracle Database

3.1 Using Oracle SQL Connector for HDFS with Delimited Text Files 3-1
3.2 Using Oracle SQL Connector for HDFS with Hive Tables 3-3
3.3 Using Oracle SQL Connector for HDFS with Files Generated by Oracle
Loader for Hadoop 3-5
3.3.1 Creating HDFS Data Pump Files or Delimited Text Files 3-7
3.3.2 Creating the SQL Connector for HDFS 3-10
3.4 Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data
SQL 3-11
3.4.1 Creating Oracle External Tables for HDFS Files with Big Data SQL 3-14
3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data SQL 3-15

ORACLE vii

4 Configuring Property Graph Support

4.1 Tuning Apache HBase for Use with Property Graphs 4-1
4.1.1 Modifying the Apache HBase Configuration 4-1
4.1.2 Modifying the Java Memory Settings 4-3

4.2 Tuning Oracle NoSQL Database for Use with Property Graphs 4-4

5 Using Property Graphs in a Big Data Environment

5.1 About Property Graphs 5-2
5.1.1 What Are Property Graphs? 5-2
5.1.2 What Is Big Data Support for Property Graphs? 5-3

5.1.2.1 In-Memory Analyst 5-4
5.1.2.2 Data Access Layer 5-4
5.1.2.3 Storage Management 5-4
5.1.2.4 RESTful Web Services 5-5

5.2 About Property Graph Data Formats 5-5
5.2.1 GraphML Data Format 5-5
5.2.2 GraphSON Data Format 5-6
5.2.3 GML Data Format 5-6
5.2.4 Oracle Flat File Format 5-7

5.3 Getting Started with Property Graphs 5-8

5.4 Using Java APIs for Property Graph Data 5-8
5.4.1 Overview of the Java APIs 5-8

5.4.1.1 Oracle Big Data Spatial and Graph Java APIs 5-8
5.4.1.2 TinkerPop Blueprints Java APIs 5-9
5.4.1.3 Apache Hadoop Java APIs 5-9
5.4.1.4 Oracle NoSQL Database Java APIs 5-10
5.4.1.5 Apache HBase Java APIs 5-10
5.4.2 Parallel Loading of Graph Data 5-10
5.4.2.1 Parallel Data Loading Using Partitions 5-11
5.4.2.2 Parallel Data Loading Using Fine-Tuning 5-12
5.4.2.3 Parallel Data Loading Using Multiple Files 5-13
5.4.2.4 Parallel Retrieval of Graph Data 5-13
5.4.2.5 Using an Element Filter Callback for Subgraph Extraction 5-15
5.4.2.6 Using Optimization Flags on Reads over Property Graph Data 5-18
5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph 5-20
5.4.2.8 Getting Property Graph Metadata 5-25
5.4.3 Opening and Closing a Property Graph Instance 5-26
5.4.3.1 Using Oracle NoSQL Database 5-26
5.4.3.2 Using Apache HBase 5-27
5.4.4 Creating Vertices 5-28

ORACLE viii

5.4.5 Creating Edges 5-29

5.4.6 Deleting Vertices and Edges 5-29
5.4.7 Reading a Graph from a Database into an Embedded In-Memory
Analyst 5-30
5.4.8 Specifying Labels for Vertices 5-31
5.4.9 Building an In-Memory Graph 5-31
5.4.10 Dropping a Property Graph 5-32
5.4.10.1 Using Oracle NoSQL Database 5-32
5.4.10.2 Using Apache HBase 5-33
5.5 Managing Text Indexing for Property Graph Data 5-33
5.5.1 Configuring a Text Index for Property Graph Data 5-34
5.5.2 Using Automatic Indexes for Property Graph Data 5-36
5.5.3 Using Manual Indexes for Property Graph Data 5-38
5.5.4 Executing Search Queries Over Property Graph Text Indexes 5-41
5.5.5 Handling Data Types 5-45
5.5.5.1 Appending Data Type Identifiers on Apache Lucene 5-46
5.5.5.2 Appending Data Type Identifiers on SolrCloud 5-48
5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper 5-50
5.5.7 Updating Configuration Settings on Text Indexes for Property Graph
Data 5-51
5.5.8 Using Parallel Query on Text Indexes for Property Graph Data 5-52
5.5.9 Using Native Query Objects on Text Indexes for Property Graph Data 5-55
5.5.10 Using Native Query Results on Text Indexes for Property Graph Data 5-59
5.6 Querying Property Graph Data Using PGQL 5-62
5.7 Using Apache Spark with Property Graph Data 5-64
5.7.1 Using Apache Spark with Property Graph Data in Apache HBase 5-64
5.7.2 Integrating Apache Spark with Property Graph Data Stored in Oracle
NoSQL Database 5-67
5.8 Support for Secure Oracle NoSQL Database 5-69
5.9 Implementing Security on Graphs Stored in Apache HBase 5-71
5.10 Using the Groovy Shell with Property Graph Data 5-74
5.11 REST Support for Property Graph Data 5-76
5.11.1 Building the REST Web Application Archive (WAR) File 5-76
5.11.2 Deploying the RESTful Property Graph Web Service 5-78
5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml) 5-80
5.11.3 Property Graph REST API Operations Information 5-82
5.11.3.1 GET Operations (Property Graphs) 5-82
5.11.3.2 POST Operations (Property Graphs) 5-101
5.11.3.3 PUT Operations (Property Graphs) 5-111
5.11.3.4 DELETE Operations (Property Graphs) 5-113
5.12 Exploring the Sample Programs 5-115
5.12.1 About the Sample Programs 5-115

ORACLE iX

5.12.2 Compiling and Running the Sample Programs 5-116
5.12.3 About the Example Output 5-116
5.12.4 Example: Creating a Property Graph 5-117
5.12.5 Example: Dropping a Property Graph 5-118
5.12.6 Examples: Adding and Dropping Vertices and Edges 5-118

5.13 Oracle Flat File Format Definition 5-120
5.13.1 About the Property Graph Description Files 5-120
5.13.2 Vertex File 5-121
5.13.3 Edge File 5-123
5.13.4 Encoding Special Characters 5-125
5.13.5 Example Property Graph in Oracle Flat File Format 5-125
5.13.6 Converting an Oracle Database Table to an Oracle-Defined Property

Graph Flat File 5-125
5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files 5-129
5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File
Format (.opv) 5-129
5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format
(-ope) 5-132
5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing
Both Vertices and Edges Data into a Pair of Graph Flat Files 5-136
5.14 Example Python User Interface 5-137
5.15 Example iPython Notebooks User Interface 5-139
6 Using the In-Memory Analyst (PGX)

6.1 Reading a Graph into Memory 6-2
6.1.1 Connecting to an In-Memory Analyst Server Instance 6-3
6.1.2 Using the Shell Help 6-3
6.1.3 Providing Graph Metadata in a Configuration File 6-3
6.1.4 Reading Graph Data into Memory 6-4

6.1.4.1 Read a Graph Stored in Apache HBase into Memory 6-6
6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory 6-7
6.1.4.3 Read a Graph Stored in the Local File System into Memory 6-8

6.2 Configuring the In-Memory Analyst 6-8
6.2.1 Specifying the Configuration File to the In-Memory Analyst 6-15

6.3 Reading Custom Graph Data 6-16
6.3.1 Creating a Simple Graph File 6-17
6.3.2 Adding a Vertex Property 6-18
6.3.3 Using Strings as Vertex Identifiers 6-19
6.3.4 Adding an Edge Property 6-20

6.4 Storing Graph Data on Disk 6-20
6.4.1 Storing the Results of Analysis in a Vertex Property 6-21

ORACLE X

6.4.2

Storing a Graph in Edge-List Format on Disk

6.5 Executing Built-in Algorithms

6.5.1
6.5.2
6.5.3

About the In-Memory Analyst
Running the Triangle Counting Algorithm
Running the Pagerank Algorithm

6.6 Creating Subgraphs

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7

About Filter Expressions

Using a Simple Edge Filter to Create a Subgraph

Using a Simple Vertex Filter to Create a Subgraph

Using a Complex Filter to Create a Subgraph

Combining Expression Filters

Using an Expression Filter to Create a Set of Vertices or Edges
Using a Vertex Set to Create a Bipartite Subgraph

6.7 Using Pattern-Matching Queries with Graphs

6.7.1
6.7.2
6.7.3

Example: The Enemy of My Enemy is My Friend
Example: Top 10 Most Collaborative People
Example: Transitive Connectivity Between Electrical Devices

6.8 Starting the In-Memory Analyst Server

6.8.1

Configuring the In-Memory Analyst Server

6.9 Deploying to Jetty

6.10 Deploying to Apache Tomcat

6.11 Deploying to Oracle WebLogic Server

6.11.1
6.11.2

Installing Oracle WebLogic Server
Deploying the In-Memory Analyst

6.11.3 Verifying That the Server Works
6.12 Connecting to the In-Memory Analyst Server

6.12.1

Connecting with the In-Memory Analyst Shell

6.12.1.1 About Logging HTTP Requests

6.12.2

Connecting with Java

6.12.3 Connecting with JavaScript

6.13 Using the In-Memory Analyst in Distributed Mode
6.14 Reading and Storing Data in HDFS

6.14.1
6.14.2
6.14.3

Reading Data from HDFS
Storing Graph Snapshots in HDFS
Compiling and Running a Java Application in Hadoop

6.15 Running the In-Memory Analyst as a YARN Application

6.15.1

Starting and Stopping In-Memory Analyst Services

6.15.1.1 Configuring the In-Memory Analyst YARN Client
6.15.1.2 Starting a New In-Memory Analyst Service

6.15.1.3 About Long-Running In-Memory Analyst Services

6.15.1.4 Stopping In-Memory Analyst Services

ORACLE

6-21
6-22
6-22
6-22
6-23
6-24
6-24
6-27
6-27
6-27
6-29
6-31
6-31
6-33
6-33
6-36
6-37
6-39
6-40
6-41
6-42
6-42
6-43
6-43
6-43
6-43
6-44
6-44
6-45
6-45
6-45
6-47
6-48
6-48
6-49
6-50
6-50
6-50
6-50
6-50
6-51

Xi

6.15.2 Connecting to In-Memory Analyst Services 6-51

6.15.3 Monitoring In-Memory Analyst Services 6-51
6.16 Using Oracle Two-Tables Relational Format 6-51
6.17 Using the In-Memory Analyst to Analyze Graph Data in Apache Spark 6-54

6.17.1 Controlling the Degree of Parallelism in Apache Spark 6-55
6.18 Using the In-Memory Analyst Zeppelin Interpreter 6-56
6.19 Using the In-Memory Analyst Enterprise Scheduler 6-57

6.19.1 Using Lambda Syntax with Execution Environments 6-59

7 Using Multimedia Analytics

7.1 About Multimedia Analytics 7-1
7.2 Processing Video and Image Data Stored in HDFS Using the Multimedia
Analytics Framework 7-2
7.3 Processing Streaming Video Using the Multimedia Analytics Framework 7-2
7.4 Face Recognition Using the Multimedia Analytics Framework 7-3
7.4.1 Training to Detect Faces 7-3
7.4.2 Selecting Faces to be Used for Training 7-4
7.4.3 Detecting Faces in Videos 7-5
7.4.4 Detecting Faces in Images 7-7
7.4.5 Working with Oracle NoSQL Database 7-7
7.4.6 Working with Apache HBase 7-8
7.4.7 Examples and Training Materials for Detecting Faces 7-8
7.5 Configuration Properties for Multimedia Analytics 7-9
7.5.1 Configuration Properties for Processing Stored Videos and Images 7-9
7.5.2 Configuration Properties for Processing Streaming Video 7-16
7.5.3 Configuration Properties for Training Images for Face Recognition 7-20
7.6 Using the Multimedia Analytics Framework with Third-Party Software 7-21
7.7 Displaying Images in Output 7-21

A Third-Party Licenses for Bundled Software

A.1 Apache Licensed Code A-2
A.2 ANTLR3 A-6
A.3 AOP Alliance A-6
A.4 Apache Commons CLI A-6
A.5 Apache Commons Codec A-6
A.6 Apache Commons Collections A-7
A.7 Apache Commons Configuration A-7
A.8 Apache Commons IO A-7
A.9 Apache Commons Lang A-7
A.10 Apache Commons Logging A-7

ORACLE Xii

A.ll
A.l12
A.13
A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29
A.30
A.31
A.32
A.33
A.34
A.35
A.36
A.37
A.38
A.39
A.40
A4l
A.42
A.43
A.44
A.45
A.46
A.47
A.48
A.49
A.50
A51

ORACLE

Apache Commons VFS
Apache fluent

Apache Groovy
Apache htrace

Apache HTTP Client
Apache HTTPComponents Core
Apache Jena

Apache Log4j

Apache Lucene
Apache Tomcat
Apache Xerces2
Apache xml-commons
Argparse4;j
check-types

Cloudera CDH

cookie

Fastutil

functionaljava
GeoNames Data

Geospatial Data Abstraction Library (GDAL)

Google Guava
Google Guice
Google protobuf
int64-native
Jackson

Jansi

JCodec
Jettison

JLine
Javassist
json-bignum
Jung

Log4js
MessagePack
Netty

Node.js
node-zookeeper-client
OpenCV
rxjava-core
SIf4j

Spoofax

A-7

A-8
A-8
A-8
A-8

A-9
A-9
A-9
A-9

A-10

A-10

A-10

A-11

A-11

A-11

A-12

A-12

A-17

A-22

A-22

A-22

A-22

A-23

A-23

A-23

A-25

A-25

A-25

A-26

A-26

A-27

A-29

A-30

A-32

A-40

A-41

A-42

A-42

A-42

Xiii

A.52 Tinkerpop Blueprints A-43
A.53 Tinkerpop Gremlin A-43
A.54 Tinkerpop Pipes A-44

B Hive and Spark Spatial SQL Functions

B.1 ST_Anylinteract B-2
B.2 ST_Area B-3
B.3 ST_AsWKB B-4
B.4 ST_AsWKT B-4
B.5 ST Buffer B-5
B.6 ST_Contains B-5
B.7 ST_ConvexHull B-6
B.8 ST Distance B-7
B.9 ST_Envelope B-7
B.10 ST_Geometry B-8
B.11 ST Inside B-9
B.12 ST_Length B-10
B.13 ST_LineString B-10
B.14 ST_MultiLineString B-11
B.15 ST_MultiPoint B-13
B.16 ST_MultiPolygon B-14
B.17 ST_Point B-15
B.18 ST_Polygon B-16
B.19 ST_Simplify B-17
B.20 ST_SimplifyVW B-18
B.21 ST_Volume B-19
Index

ORACLE" Xiv

List of Figures

5-1 Simple Property Graph Example

5-2 Oracle Property Graph Architecture

5-3 Image Resulting from iPython Notebooks Example
6-1 Property Graph Rendered by sample.adj Data
6-2 Simple Custom Property Graph

6-3 Sample Graph

6-4 Subgraph Created by the Simple Edge Filter
6-5 Edges Matching the outDegree Filter

6-6 Graph Created by the outDegree Filter

6-7 Union of Two Filters

6-8 Intersection of Two Filters

6-9 Electrical Network Graph

ORACLE

5-3
5-4
5-143
6-4
6-17
6-25
6-26
6-28
6-28
6-29
6-30
6-38

XV

List of Tables

1 Temporal Data Types Support in PGX

1-1 Property Graph Sizing Recommendations

2-1 ImageBandWritable Properties

2-2 tileInfo Column Data

2-3 userRequest Column Data

2-4 Performance time for running jobs using Vector Analysis API
5-1 Optimization Flags for Processing Vertices or Edges in a Property Graph
5-2 Apache Lucene Data Type Identifiers

5-3 SolrCloud Data Type Identifiers

5-4 Property Graph Program Examples (Selected)

5-5 Property Graph Data Type Abbreviations

5-6 Vertex File Record Format

5-7 Edge File Record Format

5-8 Special Character Codes in the Oracle Flat File Format

6-1 Configuration Parameters for the In-Memory Analyst

6-2 Configuration Options for In-Memory Analyst Server

6-3 Additional Fields for Two-Tables Format

6-4 NODES Table Values for Two-Tables Example

6-5 EDGES Table Values for Two-Tables Example
ORACLE

XX

1-3
2-18
2-39
2-40
2-82
5-18
5-46
5-49
5-115
5-117
5-121
5-123
5-125
6-8
6-40
6-51
6-52
6-52

XVi

Preface

This document provides conceptual and usage information about Oracle Big Data
Spatial and Graph, which enables you to create, store, and work with Spatial and
Graph vector, raster, and property graph data in a Big Data environment.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for database and application developers in Big Data
environments.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the titles in the Big Data Appliance library that contain
Oracle Big Data Spatial and Graph, plus these other documents.

* Oracle Big Data Connectors User's Guide
* Oracle Big Data Appliance Site Checklists
* Oracle Big Data Appliance Owner's Guide
* Oracle Big Data Appliance Safety and Compliance Guide

Conventions

The following text conventions are used in this document:

ORACLE' Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XViii

Changes in This Release for Oracle Big
Data Spatial and Graph

Big Data Spatial and Graph includes the following changes to the product in Release
2.4.

e Changes for Release 2.5

e Changes for Release 2.4

Changes for Release 2.5

The following changes apply to Release 2.5 of Big Data Spatial and Graph.
» Spark Vector API Changes for Release 2.5

e Multimedia Analytics Feature Deprecated

Spark Vector API Changes for Release 2.5

The following features have been added to the Spark Vector API for Big Data Spatial
and Graph 2.5:

* Count action added to the Spatial Index

Multimedia Analytics Feature Deprecated

The multimedia analytics feature of Big Data Spatial and Graph is deprecated in this
release and may be desupported in a future release. There is no replacement for the
multimedia analytics features.

The multimedia analytics feature is currently documented in Using Multimedia
Analytics.

Changes for Release 2.4

The following changes apply to Release 2.4 of Big Data Spatial and Graph.

* In-Memory Analyst (PGX) - Related Changes
» Spark Vector APl Changes for Release 2.4
* Vector REST API Additions

e SpatialViewer Changes

ORACLE Yix

Changes in This Release for Oracle Big Data Spatial and Graph

In-Memory Analyst (PGX) - Related Changes

The following changes relate to the in-memory analyst (PGX) capabilities in Big Data
Spatial and Graph.

* New PGX Built-in Algorithms for Cycle Detection
» Temporal Data Types Support in PGX

* PGX Java API Improvements

* New Features in PGQL

e PGX Loader Improvements

* PGX Distributed Engine Improvements

 PGX Deprecations

New PGX Built-in Algorithms for Cycle Detection

Release 2.4 of the in-memory analyst (PGX) introduces two in-memory algorithms for
finding cycles: a robust version, which always scans the whole graph by performing
several DFS traversals, and a lightweight version, which will perform just one single
DFS traversal for the task. The lightweight version is faster, but may not explore the
whole graph and could thus fail to detect some cycles.

You can use the new algorithms through the anal yst. fi ndCycl e() API.

Temporal Data Types Support in PGX

ORACLE

The in-memory analyst (PGX) in Release 2.4 gives you more precise control on time-
related properties, with support for five temporal data types that map directly to the five
temporal types in SQL as well as to the new Java 8 date-time types. The date property
type is now deprecated and replaced

by local_date, time, timestamp, time_with_timezone, and timestamp_with_timezone.
The new types are supported both in the PGX API and in PGQL, as the following table
summarizes.

Table1l Temporal Data Types Support in PGX
|

Type PGX property type Example Example PGQL ResultSet API
plain text PGQL
literal
TIMESTAM timestamp_with_timez "2017-08-18 TIMESTAM java.time.OffsetDateTime
P WITH one 20:15:00+08 P getTimestampWithTimezon
TIMEZONE " '2017-08-18 e(..)
20:15:00+0
g
TIMESTAM timestamp "2017-08-18 TIMESTAM java.time.LocalDateTime
P 20:15:00" P getTimestamp(..)
'2017-08-18
20:15:00'
TIME WITH time_with_timezone "20:15:00+0 TIME java.time.OffsetTime
TIMEZONE 8" '20:15:00+0 getTimeWithTimezone(..)

8

XX

Changes in This Release for Oracle Big Data Spatial and Graph

Table 1 (Cont.) Temporal Data Types Support in PGX

Type PGX property type Example Example PGQL ResultSet API
plain text PGQL
literal
TIME time "20:15:00" TIME java.time.LocalTime
'20:15:00" getTime(..)

DATE local_date "2017-08-18 DATE java.time.LocalDate
" '2017-08-18' getDate(..)

PGX Java APl Improvements

Release 2.4 introduces several additions and improvements in the PGX Java API:

* Added Java API for getting all session private graphs and getting a graph by its
name (PgxSessi on#get G aphs(), PgxSessi on#get G aph(String)).

e Added API for checking whether a graph has vertex/edge labels
(PgxG aph#hasVer t exLabel s, PgxG aph#hasEdgeLabel .

e The G aphConfi g builders can now copy values from existing GraphConfigs and it is
now possible to remove properties from a GraphConfig builder.
(copyFron{ GraphConfi g), copyBaseFr on{ G aphConfi g), r emoveVer t exProperty(String),
removeEdgeProperty(String)).

* Added API for retrieving a random edge (PgxG aph#get RandonEdge)).

New Features in PGQL

ORACLE

Release 2.4 introduces several new features in PGQL, including the following.

Prepared Statements

Prepared statements provide a way to safeguard your application from query injection.
The use of prepared statements can also speed up query execution as queries do not
need to get recompiled every time their bind values change. PGQL uses the question
mark symbol (?) to indicate a bind variable. Values for the bind variables are then
assigned through the Prepar edSt at ement API

Undirected Edge Queries

PGQL has now support for undirected edge queries, which can be used to query
undirected graphs or ignoring edge direction in directed graphs. These two use cases
are illustrated in the following two queries:

SELECT d1.name WHERE (d1:Device) -[:connects_to]- (d2:Device), dl.name =

" LoadTr ansf or mer 2533’
SELECT m nane WHERE (n:Person) -[:follows]- (mPerson) , n.name = 'Bono'

The first query matches undirected edges labeled connect s_t o, the second query
matches all people that follow or are followed by a person named 'Bono'.

Other Additions and Improvements in PGQL

e PGQLnowhasanall _different(a, b, ¢, ...) function, which allows to specify
that a set of values (typically vertices or edges) are all different from each other.

XXi

Changes in This Release for Oracle Big Data Spatial and Graph

Support for greater than, greater than equal, less than, and less than equal for
comparing String values (also works for filter expressions in the Java API).

Added support for constraints on vertices in PATH patterns, as in the following
example. Previously, only constraints on edges in PATH patterns were supported.
For example:

PATH connects_to_high_volt _dev := (:Device) -> (:Device WTH vol tage > 35000)
SELECT ...

PGX Loader Improvements

The PGX graph loader in Release 2.4 has extended capabilities:

The Apache Spark loader now supports Spark 2.X through the
oracl e. pgx. api . spar k2. PgxSpar kCont ext class. Loading from Spark 1.x is still
possible using the class in or acl e. pgx. api . spar k1.

Columns names are now configurable when loading from the Oracle RDBMS in
two- tables format.

The two- tables format now supports string, integer, and long as vertex ID types.

Added support for directly loading compressed (gzip) graph data without the need
to unpack the archives first.

PGX Distributed Engine Improvements

The in-memory analyst (PGX) distributed graph processing execution engine included
in Release 2.4 includes several improvements:

PGX.D now supports t op- k and bot t om k for string properties.
Fixed a bug concering NULL values (Oracle bug 25491165).
Added support for edge properties of vector type.

Extended the supported endpoints in the client-server API. added support
for rename(), get Nei ghbour s(), get Edges(), get RandonVert ex(), get RandonEdge(), getS
ource(), and get Destination().

PGX Deprecations

ORACLE

The following are now deprecated.

PgxSpar kCont ext for in the or acl e. pgx. api is now deprecated. Use the class in the
oracl e. pgx. api . sparkl1 package instead.

The REST endpoint / cor e/ gr aph/ <gr aphname>/ r andonNode is deprecated. Call / core/
gr aph/ <gr aphnane/ r andonEnti ty instead

The graph configuration fields for Spark ski p_nodes and ski p_edges are deprecated.
Use graph loading configuration
fields | oadi ng. ski p_vertices and | oadi ng. ski p_edges instead.

The graph configuration methods i sSki pNodes() and i sSki pEdges() are deprecated.
Use the ski pVert exLoadi ng() and ski pEdgeLoadi ng() methods instead.

The SALSA algorithm al gori t hns/ i nk_predi cti on/ sal sa_depr ecat ed. gmis
deprecated. Use al gori t hms/ ranki ng_and_wal ki ng/ sal sa. gminstead.

The CALLER_THREAD PoolType is deprecated.

XXIi

Changes in This Release for Oracle Big Data Spatial and Graph

* The REST endpoint / cor e/ anal ysi s/ <anal ysi sl d> with a t ar get Pool is deprecated.
Use the wor kl oadChar acteri sti cs field instead

* The use of the path finding filter argument type is deprecated.

* The property type DATE is deprecated. Use LOCAL_DATE, TIME, TIMESTAMP,
TIME_WITH_TIMEZONE or TIMESTAMP_WITH_TIMEZONE instead.

* The REST endpoint GET / cor e/ gr aph/ <gr aphnanme>/ query is deprecated. Use POST
to / cor e/ graph/ <gr aphnane>/ query with query and semantic options in the JSON
payload

* In PGQL, user-defined pattern matching semantic (i.e., ISOMORPHISM /
HOMOMORPHSIM) is deprecated. Homomorphism remains the default semantic,
but isomorphic constraints should now be specified using either the new built-in
PGQL function al | _di fferent(vl, v2, ...) orusing non-equality constraints (for
example, vl ! = v2). The deprecations are as follows:

— The method PgxG aph. quer yPggl (Stri ng,
Pat t er nMat chi ngSemant i ¢) (use PgxG aph. queryPgql (String) instead)

— The method PgxSessi on. set Pat t er nMat chi ngSemantic(. .)

— The configuration field pat t er n_nat chi ng_semantic

Spark Vector API Changes for Release 2.4

The following capabilities have been added to the Spark Vector API for Release 2.4:

* Spatial transformations for the Spark Streaming API:
— Filter, flatMap, nearestNeighbors
— Java and Scala APIs

e Spatial join using two spatial indexes

e GeoEnrich transformation for the Streaming API

Vector REST API Additions

The following APIs are available:

* Vector Hadoop REST API with the following available operations:
— List/create/delete a spatial index
— Filter spatially the records using a spatial index
— Categorization, clustering, binning

* Vector Spark REST API with the following available operations:
— List/create/delete a spatial index

— Filter spatially the records using a spatial index

SpatialViewer Changes

The Big Data Spatial Image Server has been integrated into the Oracle Big Data
SpatialViewer web application. SpatialViewer uses Oracle JET, which provides a rich
set of Ul components.

ORACLE xXiii

Big Data Spatial and Graph Overview

This chapter provides an overview of Oracle Big Data support for Oracle Spatial and
Graph spatial, property graph, and multimedia analytics features.

About Big Data Spatial and Graph

Oracle Big Data Spatial and Graph delivers advanced spatial and graph analytic
capabilities to supported Apache Hadoop and NoSQL Database Big Data
platforms.

Spatial Features
Spatial location information is a common element of Big Data.

Property Graph Features

Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze
relationships found in social networks, cyber security, utilities and
telecommunications, life sciences and clinical data, and knowledge networks.

Multimedia Analytics Features

The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The
framework enables distributed processing of video and image data.

Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
The Mammoth command-line utility for installing and configuring the Oracle Big
Data Appliance software also installs the Oracle Big Data Spatial and Graph
option, including the spatial, property graph, and multimedia capabilities.

Installing and Configuring the Big Data Spatial Image Processing Framework
Installing and configuring the Image Processing Framework depends upon the
distribution being used.

Installing the Oracle Big Data SpatialViewer Web Application
To install the Oracle Big Data SpatialViewer web application (SpatialViewer),
follow the instructions in this topic.

Installing Property Graph Support on a CDH Cluster or Other Hardware
You can use property graphs on either Oracle Big Data Appliance or commodity
hardware.

Installing and Configuring Multimedia Analytics Support
To use the Multimedia analytics feature, the video analysis framework must be
installed and configured.

1.1 About Big Data Spatial and Graph

Oracle Big Data Spatial and Graph delivers advanced spatial and graph analytic
capabilities to supported Apache Hadoop and NoSQL Database Big Data platforms.

ORACLE

The spatial features include support for data enrichment of location information, spatial
filtering and categorization based on distance and location-based analysis, and spatial

1-1

Chapter 1
Spatial Features

data processing for vector and raster processing of digital map, sensor, satellite and
aerial imagery values, and APIs for map visualization.

The property graph features support Apache Hadoop HBase and Oracle NoSQL
Database for graph operations, indexing, queries, search, and in-memory analytics.

The multimedia analytics features provide a framework for processing video and
image data in Apache Hadoop, including built-in face recognition using OpenCV.

1.2 Spatial Features

Spatial location information is a common element of Big Data.

Businesses can use spatial data as the basis for associating and linking disparate data
sets. Location information can also be used to track and categorize entities based on
proximity to another person, place, or object, or on their presence a particular area.
Location information can facilitate location-specific offers to customers entering a
particular geography, something known as geo-fencing. Georeferenced imagery and
sensory data can be analyzed for a variety of business benefits.

The spatial features of Oracle Big Data Spatial and Graph support those use cases
with the following kinds of services.

Vector Services:

» Ability to associate documents and data with names, such as cities or states, or
longitude/latitude information in spatial object definitions for a default
administrative hierarchy

* Support for text-based 2D and 3D geospatial formats, including GeoJSON files,
Shapefiles, GML, and WKT, or you can use the Geospatial Data Abstraction
Library (GDAL) to convert popular geospatial encodings such as Oracle
SDO_Geometry, ST_Geometry, and other supported formats

* An HTML5-based map client APl and a sample console to explore, categorize,
and view data in a variety of formats and coordinate systems

* Topological and distance operations: Anyinteract, Inside, Contains, Within
Distance, Nearest Neighbor, and others

e Spatial indexing for fast retrieval of data

Raster Services:

» Support for many image file formats supported by GDAL and image files stored in
HDFS

* A sample console to view the set of images that are available

» Raster operations, including, subsetting, georeferencing, mosaics, and format
conversion

1.3 Property Graph Features

ORACLE

Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze
relationships found in social networks, cyber security, utilities and telecommunications,
life sciences and clinical data, and knowledge networks.

1-2

Chapter 1
Multimedia Analytics Features

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including,
telecommunications, life sciences and healthcare, security, media and publishing can
benefit from graphs.

The property graph features of Oracle Big Data Spatial and Graph support those use
cases with the following capabilities:

e A scalable graph database on Apache HBase and Oracle NoSQL Database

e Developer-based APIs based upon Tinkerpop Blueprints, and Java graph APls
e Text search and query through integration with Apache Lucene and SolrCloud
e Scripting languages support for Groovy and Python

e A parallel, in-memory graph analytics engine

e Afast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, path finding

e Parallel bulk load and export of property graph data in Oracle-defined flat files
format

e Manageability through a Groovy-based console to execute Java and Tinkerpop
Gremlin APIs

* Property Graph Sizing Recommendations

1.3.1 Property Graph Sizing Recommendations

The following are recommendations for property graph installation.

Table 1-1 Property Graph Sizing Recommendations

Graph Size Recommended Physical Recommended Number of CPU
Memory to be Dedicated Processors

10 to 100M Up to 14 GB RAM 2 to 4 processors, and up to 16

edges processors for more compute-intensive
workloads

100M to 1B 14 GB to 100 GB RAM 4 to 12 processors, and up to 16 to 32

edges processors for more compute-intensive
workloads

Over 1B edges Over 100 GB RAM 12 to 32 processors, or more for

especially compute-intensive workloads

1.4 Multimedia Analytics Features

ORACLE

The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The framework
enables distributed processing of video and image data.

A main use case is performing facial recognition in videos and images.

1-3

Chapter 1
Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance

1.5 Installing Oracle Big Data Spatial and Graph on an
Oracle Big Data Appliance

The Mammoth command-line utility for installing and configuring the Oracle Big Data
Appliance software also installs the Oracle Big Data Spatial and Graph option,
including the spatial, property graph, and multimedia capabilities.

You can enable this option during an initial software installation, or afterward using the
bdacl i utility.

To use Oracle NoSQL Database as a graph repository, you must have an Oracle
NoSQL Database cluster.

To use Apache HBase as a graph repository, you must have an Apache Hadoop
cluster.

" See Also:

Oracle Big Data Appliance Owner's Guide for software configuration
instructions.

1.6 Installing and Configuring the Big Data Spatial Image
Processing Framework

Installing and configuring the Image Processing Framework depends upon the
distribution being used.

e The Oracle Big Data Appliance cluster distribution comes with a pre-installed
setup, but you must follow few steps in Installing the Image Processing Framework
for Oracle Big Data Appliance Distribution to get it working.

e For a commodity distribution, follow the instructions in Installing the Image
Processing Framework for Other Distributions (Not Oracle Big Data Appliance).

For both distributions:

e You must download and compile PROJ libraries, as explained in Getting and
Compiling the Cartographic Projections Library.

e After performing the installation, verify it (see Post-installation Verification of the
Image Processing Framework).

e If the cluster has security enabled, make sure that the user executing the jobs is in
the princs list and has an active Kerberos ticket.

e Getting and Compiling the Cartographic Projections Library

ORACLE 1-4

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

Installing the Image Processing Framework for Oracle Big Data Appliance
Distribution

The Oracle Big Data Appliance distribution comes with a pre-installed
configuration, though you must ensure that the image processing framework has
been installed.

Installing the Image Processing Framework for Other Distributions (Not Oracle Big
Data Appliance)

For Big Data Spatial and Graph in environments other than the Big Data
Appliance, follow the instructions in this section.

Post-installation Verification of the Image Processing Framework
Several test scripts are provided to perform the following verification operations.

1.6.1 Getting and Compiling the Cartographic Projections Library

Before installing the Image Processing Framework, you must download the
Cartographic Projections Library and perform several related operations.

1.

Download the PROJ.4 source code and datum shifting files:

$ wget http://downl oad. osgeo. org/proj/proj-4.9.1. tar.gz
$ wget http://downl oad. osgeo. or g/ proj/proj-datungrid-1.5.tar.gz

Untar the source code, and extract the datum shifting files in the nad subdirectory:

$ tar xzf proj-4.9.1.tar.gz

$ cd proj-4.9.1/nad

$ tar xzf ../../proj-datungrid-1.5.tar.gz
$cd..

Configure, make, and install PROJ.4:

$./configure

$ nmake

$ sudo make install
$cd ..

l'i bproj.sois now available at /usr/local /1ib/1ibproj.so.
Copy the i bproj . so file in the spatial installation directory:

cp /usr/local/lib/libproj.so /opt/oracle/oracle-spatial-graph/spatial/raster/
gdal /1ib/libproj.so

Provide read and execute permissions for the i bproj . so library for all users

sudo chrmod 755 /opt/oracl e/ oracl e-spati al - graph/ spatial /raster/gdal/lib/
I'ibproj.so

1.6.2 Installing the Image Processing Framework for Oracle Big Data
Appliance Distribution

The Oracle Big Data Appliance distribution comes with a pre-installed configuration,
though you must ensure that the image processing framework has been installed.

ORACLE

Be sure that the actions described in Getting and Compiling the Cartographic
Projections Library have been performed, so that | i bproj . so (PRQJ. 4) is accessible to
all users and is set up correctly.

For OBDA, ensure that the following directories exist:

1-5

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

SHARED_DIR (shared directory for all nodes in the cluster): / opt/ shar eddi r

ALL_ACCESS DIR (shared directory for all nodes in the cluster with Write access
to the hadoop group): / opt/ shar eddi r/ spat i al

1.6.3 Installing the Image Processing Framework for Other
Distributions (Not Oracle Big Data Appliance)

For Big Data Spatial and Graph in environments other than the Big Data Appliance,

follow the instructions in this section.

Prerequisites for Installing the Image Processing Framework for Other
Distributions

Installing the Image Processing Framework for Other Distributions

1.6.3.1 Prerequisites for Installing the Image Processing Framework for Other

Distributions

Ensure that HADOOP_LI B_PATHis under /usr/1i b/ hadoop. If it is not there, find the
path and use it as it your HADOOP_L| B_PATH.

Install NFS.

Have at least one folder, referred in this document as SHARED FOLDER, in the
Resource Manager node accessible to every Node Manager node through NFS.

Provide write access to all the users involved in job execution and the yarn users
to this SHARED_FOLDER

Download or acl e- spati al - graph- <ver si on>. x86_64. r pmfrom the Oracle e-delivery
web site.

Execute oracl e- spati al - gr aph- <ver si on>. x86_64. r pmusing the rpm command.

After rpm executes, verify that a directory structure created at / opt/ or acl e/ or acl e-
spati al - graph/ spati al / rast er contains these folders: consol e, exanpl es, j |i b, gdal ,
and t est s. Additionally, i ndex. ht M describes the content, and j avadoc. zi p contains
the Javadoc for the API..

1.6.3.2 Installing the Image Processing Framework for Other Distributions

ORACLE

1.

Make the i bproj.so (Proj.4) Cartographic Projections Library accessible to the
users, as explained in Getting and Compiling the Cartographic Projections Library.

In the Resource Manager Node, copy the dat a folder under / opt / or acl e/ or acl e-
spatial - graph/ spatial /raster/gdal intothe SHARED_ FOLDER as follows:

cp -R /opt/oracl e/ oracl e-spatial -graph/spatial/raster/gdal /data SHARED FOLDER

Create a directory ALL_ACCESS FOLDER under SHARED FOLDER with write access for all
users involved in job execution. Also consider the yarn user in the write access
because job results are written by this user. Group access may be used to
configure this.

Go to the shared folder.
cd SHARED FOLDER

Create a new directory.

1-6

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

nkdir ALL_ACCESS_FOLDER
Provide write access.
chmod 777 ALL_ACCESS FOLDER

4. Copy the dat a folder under / opt/ or acl e/ or acl e- spati al - graph/ spati al / rast er/
exanpl es into ALL_ACCESS FOLDER.

cp -R /opt/oracl el oracl e-spatial -graph/spatial /raster/exanpl es/ data
ALL_ACCESS_FOLDER

5. Provide write access to the dat a/ xn s folder as follows (or just ensure that users
executing the jobs, including tests and examples, have write access):

chnod 777 ALL_ACCESS FOLDER/ data/ xm s/

1.6.4 Post-installation Verification of the Image Processing Framework

Several test scripts are provided to perform the following verification operations.

e Test the image loading functionality
e Test test the image processing functionality

e Test a processing class for slope calculation in a DEM and a map algebra
operation

e Verify the image processing of a single raster with no mosaic process (it includes a
user-provided function that calculates hill shade in the mapping phase).

e Test processing of two rasters using a mask operation

Execute these scripts to verify a successful installation of image processing
framework.

If the cluster has security enabled, make sure the current user is in the princs list and
has an active Kerberos ticket.

Make sure the user has write access to ALL_ACCESS_FOLDER and that it belongs to
the owner group for this directory. It is recommended that jobs be executed in
Resource Manager node for Big Data Appliance. If jobs are executed in a different
node, then the default is the hadoop group.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD LI BRARY_PATH=$ALLACCESSDI R/ gdal / nat i ve
* Image Loading Test Script

* Image Processor Test Script (Mosaicking)

e Single-Image Processor Test Script

* Image Processor DEM Test Script

e Multiple Raster Operation Test Script

1.6.4.1 Image Loading Test Script

This script loads a set of six test rasters into the ohi ft est folder in HDFS, 3 rasters of
byte data type and 3 bands, 1 raster (DEM) of float32 data type and 1 band, and 2

ORACLE r

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

rasters of int32 data type and 1 band. No parameters are required for OBDA
environments and a single parameter with the ALL_ACCESS_FOLDER value is
required for non-OBDA environments.

Internally, the job creates a split for every raster to load. Split size depends on the
block size configuration; for example, if a block size >= 64MB is configured, 4 mappers
will run; and as a result the rasters will be loaded in HDFS and a corresponding
thumbnail will be created for visualization. An external image editor is required to
visualize the thumbnails, and an output path of these thumbnails is provided to the
users upon successful completion of the job.

The test script can be found here:

[opt/oracl e/ oracl e-spatial -graph/ spatial /raster/tests/runi magel oader. sh

For ODBA environments, enter:

. I runi magel oader. sh

For non-ODBA environments, enter:

./ runi magel oader. sh ALL_ACCESS_FOLDER

Upon successful execution, the message GENERATED OHI F FI LES ARE LOCATED | N HDFS
UNDER is displayed, with the path in HDFS where the files are located (this path
depends on the definition of ALL_ACCESS FOLDER) and a list of the created images
and thumbnails on HDFS. The output may include:

“ THUMBNAI LS CREATED ARE:

total 13532

drwxr-xr-x 2 yarn yarn 4096 Sep 9 13:54 .
drwxr-xr-x 3 yarn yarn 4096 Aug 27 11:29 ..

-rwr--r-- 1 yarn yarn 3214053 Sep 9 13:54 hawaii.tif.ohif.tif

-rwr--r-- 1 yarn yarn 3214053 Sep 9 13:54 inputinmageint32.tif.ohif.tif
-rwr--r-- 1 yarn yarn 3214053 Sep 9 13:54 inputinmageint32_1.tif.ohif.tif
-rwr--r-- 1 yarn yarn 3214053 Sep 9 13:54 kahool awe.tif.ohif.tif
-rwr--r-- 1 yarn yarn 3214053 Sep 9 13:54 maui.tif.ohif.tif

-rwr--r-- 1 yarn yarn 4182040 Sep 9 13:54 NapaDEMtif.ohif.tif

YOU MAY VI SUALI ZE THUMBNAI LS OF THE UPLOADED | MAGES FOR REVI EW FROM THE FOLLOW NG
PATH:

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

NOT ALL THE | MAGES WERE UPLOADED CORRECTLY, CHECK FOR HADOOP LOGS

The amount of memory required to execute mappers and reducers depends on the
configured HDFS block size By default, 1 GB of memory is assigned for Java, but you
can modify that and other properties in the i magej ob. pr op file that is included in this test
directory.

1.6.4.2 Image Processor Test Script (Mosaicking)

ORACLE

This script executes the processor job by setting three source rasters of Hawaii islands
and some coordinates that includes all three. The job will create a mosaic based on
these coordinates and resulting raster should include the three rasters combined in a
single one.

1-8

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

runi magel oader . sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 3 band rasters of byte data type.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

Additionally, if the output should be stored in HDFS, the "-0" parameters must be used
to set the HDFS folder where the mosaic output will be stored.

Internally the job filters the tiles using the coordinates specified in the configuration
input, xml, only the required tiles are processed in a mapper and finally in the reduce
phase, all of them are put together into the resulting mosaic raster.

The test script can be found here:

[opt/oracl el oracl e-spatial -graph/ spatial /raster/tests/runimgeprocessor.sh

For ODBA environments, enter:

./ runi magepr ocessor. sh

For non-ODBA environments, enter:

. I runi mageprocessor. sh -s ALL_ACCESS FOLDER

Upon successful execution, the message EXPECTED QUTPUT FILE I S:
ALL_ACCESS_FOLDER! processt est/ hawai i mosai c.tif is displayed, with the path to the
output mosaic file. The output may include:

EXPECTED QUTPUT FILE IS: ALL_ACCESS FOLDER/ processtest/hawaii mosaic.tif
total 9452

drwxrwkrwx 2 hdfs hdf s 4096 Sep 10 09:12 .

drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..

-rwxrwxrwx 1 yarn yarn 4741101 Sep 10 09: 12 hawaiinosaic.tif

MOSAI C | MAGE GENERATED

YOU MAY VI SUALI ZE THE MOSAI C QUTPUT | MAGE FOR REVIEW I N THE FOLLOW NG PATH:
ALL_ACCESS_FOLDER/ processt est/ hawai i mosaic. tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAI C WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVI EW THE PROBLEM
To test the output storage in HDFS, use the following command
For ODBA environments, enter:

./ runi mageprocessor. sh -o hdfstest

For non-ODBA environments, enter:

. I'runi mageprocessor.sh -s ALL_ACCESS FOLDER -0 hdf stest

1.6.4.3 Single-Image Processor Test Script

This script executes the processor job for a single raster, in this case is a DEM source
raster of North Napa Valley. The purpose of this job is process the complete input by
using the user processing classes configured for the mapping phase. This class

ORACLE 1-9

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

calculates the hillshade of the DEM, and this is set to the output file. No mosaic
operation is performed here.

runi magel oader . sh should be executed as a prerequisite, so that the source raster
exists in HDFS. This is 1 band of float 32 data type DEM rasters.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

The test script can be found here:

[opt/oracl el oracl e-spatial -graph/spatial /raster/tests/runsinglei mageprocessor. sh

For ODBA environments, enter:

./ runsi ngl ei mageprocessor. sh

For non-ODBA environments, enter:

.Irunsi ngl ei mageprocessor.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED QUTPUT FI LE: ALL_ACCESS FOLDER/
processt est/ NapaSl ope. ti f is displayed, with the path to the output DEM file. The
output may include:

EXPECTED QUTPUT FILE: ALL_ACCESS_FOLDER/ processt est/ NapaDEM ti f
total 4808

drwxrwkrwx 2 hdfs hdf s 4096 Sep 10 09:42 .

drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..

Srwxrwxrwx 1 yarn yarn 4901232 Sep 10 09:42 NapaDEM ti f

| MAGE GENERATED

YOU MAY VI SUALI ZE THE QUTPUT | MAGE FOR REVIEWIN THE FOLLOA NG PATH:
ALL_ACCESS FOLDER/ processt est/ NapaDEM ti f”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

| MAGE WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVI EW THE PROBLEM

1.6.4.4 Image Processor DEM Test Script

ORACLE

This script executes the processor job by setting a DEM source raster of North Napa
Valley and some coordinates that surround it. The job will create a mosaic based on
these coordinates and will also calculate the slope on it by setting a processing class
in the mosaic configuration XML.

runi nagel oader . sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. This is 1 band of float 32 data type DEM raster.

No parameters are required for OBDA environments, and a single parameter "-s" with
the ALL_ACCESS_FOLDER value is required for non-OBDA environments.

The test script can be found here:

[opt/oracl e/ oracl e-spatial -graph/spatial /raster/tests/runimgeprocessordem sh

For ODBA environments, enter:

./ runi magepr ocessor dem sh

1-10

Chapter 1
Installing and Configuring the Big Data Spatial Image Processing Framework

For non-ODBA environments, enter:

./ runi mageprocessordem sh -s ALL_ACCESS FOLDER

Upon successful execution, the message EXPECTED QUTPUT FI LE: ALL_ACCESS FOLDER/
processt est/ NapaSl ope. ti f is displayed, with the path to the slope output file. The
output may include:

EXPECTED QUTPUT FILE: ALL_ACCESS_FOLDER/ processt est/ NapaS| ope. ti f
total 4808

drwxrwxrwx 2 hdfs hdf s 4096 Sep 10 09:42 .

drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..

SrwWwxrwxrwx 1 yarn yarn 4901232 Sep 10 09: 42 NapaSl ope. tif
MOSAI C | MAGE GENERATED

YOU MAY VI SUALI ZE THE MOSAI C QUTPUT | MAGE FOR REVIEWIN THE FOLLOW NG PATH:
ALL_ACCESS_FOLDER! processt est/ NapaS| ope. tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAI C WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVI EW THE PROBLEM

You may also test the “if” algebra function, where every pixel in this raster with value
greater than 2500 will be replaced by the value you set in the command line using the
“—c” flag. For example:

For ODBA environments, enter:

. I runi magepr ocessordem sh —c 8000

For non-ODBA environments, enter:

./ runi mageprocessordem sh -s ALL_ACCESS_FOLDER —c 8000

You can visualize the output file and notice the difference between simple slope
calculation and this altered output, where the areas with pixel values greater than 2500
look more clear.

1.6.4.5 Multiple Raster Operation Test Script

ORACLE

This script executes the processor job for two rasters that cover a very small area of
North Napa Valley in the US state of California.

These rasters have the same MBR, pixel size, SRID, and data type, all of which are
required for complex multiple raster operation processing. The purpose of this job is
process both rasters by using the mask operation, which checks every pixel in the
second raster to validate if its value is contained in the mask list. If it is, the output
raster will have the pixel value of the first raster for this output cell; otherwise, the zero
(0) value is set. No mosaic operation is performed here.

runi magel oader . sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 1 band of int32 data type rasters.

No parameters are required for OBDA environments. For non-ODBA environments, a
single parameter - s with the ALL_ACCESS_FOLDER value is required.

The test script can be found here:

1-11

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

[opt/oracl el oracl e-spatial -graph/spatial /raster/tests/runimageprocessormultiple.sh

For ODBA environments, enter:

./ runi mageprocessornul tiple. sh

For non-ODBA environments, enter:

./ runi mageprocessormul tiple.sh -s ALL_ACCESS FOLDER

Upon successful execution, the message EXPECTED QUTPUT FI LE: ALL_ACCESS FOLDER/
processt est/ Maskl nt 32Rasters. tif is displayed, with the path to the mask output file.
The output may include:

EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/ processtest/Maskl nt 32Rasters. tif
total 4808

drwxrwkrwx 2 hdfs hdf s 4096 Sep 10 09:42 .

drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..

-rwxrwkrwx 1 yarn yarn 4901232 Sep 10 09:42 Masklnt 32Rasters. tif

| MAGE GENERATED

YOU MAY VI SUALI ZE THE QUTPUT | MAGE FOR REVIEWIN THE FOLLOA NG PATH:
ALL_ACCESS FOLDER/ processt est/ Maskl nt 32Rasters. tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

| MAGE WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVI EW THE PROBLEM

1.7 Installing the Oracle Big Data SpatialViewer Web
Application

To install the Oracle Big Data SpatialViewer web application (SpatialViewer), follow
the instructions in this topic.

* Assumptions for SpatialViewer

* Installing SpatialViewer on Oracle Big Data Appliance

* Installing SpatialViewer for Other Systems (Not Big Data Appliance)
» Configuring SpatialViewer on Oracle Big Data Appliance

» Configuring SpatialViewer for Other Systems (Not Big Data Appliance)

" See Also:

Using the Oracle Big Data SpatialViewer Web Application

1.7.1 Assumptions for SpatialViewer

The following assumptions apply for installing and configuring SpatialViewer.

ORACLE 1-12

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

* The API and jobs described here run on a Cloudera CDH5.7, Hortonworks HDP
2.4, or similar Hadoop environment.

» Java 8 or a newer version is present in your environment.

* The image processing framework has been installed as described in Installing and
Configuring the Big Data Spatial Image Processing Framework.

1.7.2 Installing SpatialViewer on Oracle Big Data Appliance

You can install SpatialViewer on Big Data Appliance as follows

1. Run the following script:

sudo /opt/oracl e/ oracl e-spatial -graph/ spatial / configure-server/install-bdsg-
consol es. sh

2. Start the web application by using one of the following commands (the second
command enables you to view logs):

sudo service bdsg start
sudo /opt/oracl e/ oracl e-spati al - graph/ spati al / web-server/start-server.sh

If any errors occur, see the the README file located in / opt / or acl e/ or acl e-
spati al - graph/ spati al / confi gure-server
3. Open: http://<oracle_big_data_spatial vector_consol e>: 8045/ spati al vi ewer/

4. If the active nodes have changed after the installation or if Kerberos is enabled,
then update the configuration file as described in Configuring SpatialViewer on
Oracle Big Data Appliance.

5. Optionally, upload sample data (used with examples in other topics) to HDFS:

sudo -u hdfs hadoop fs -nkdir /user/oraclel/hbdsg
sudo -u hdfs hadoop fs -put /opt/oracle/oracle-spatial-graph/spatial/vector/
exanpl es/ dat a/ t weet's. j son /user/oracl e/ bdsg/

1.7.3 Installing SpatialViewer for Other Systems (Not Big Data

Appliance)

Follow the steps for manual configuration described in in Installing SpatialViewer on
Oracle Big Data Appliance.

Then, change the configuration, as described in Configuring SpatialViewer for Other
Systems (Not Big Data Appliance)

1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance

ORACLE

To configure SpatialViewer on Oracle Big Data Appliance, follow these steps.

1. Open the console: http://<oracl e_big_data spatial vector_consol e>: 8045/
spati al vi ewer/ ?r oot =swadmi n

2. Change the general configuration, as needed:

* Local working directory: SpatialViewer local working directory. Absolute path.
The default directory / usr/ oracl e/ spati al vi ewer is created when installing
SpatialViewer.

1-13

Chapter 1
Installing the Oracle Big Data SpatialViewer Web Application

» HDFS working directory: SpatialViewer HDFS working directory. The default
directory / user/ oracl e/ spati al vi ener is created when installing SpatialViewer.

e Hadoop configuration file: The Hadoop configuration directory. By
default: / et ¢/ hadoop/ conf

If you change this value, you must restart the server.

» Spark configuration file: The Spark configuration directory. By default: / et ¢/
spar k/ conf

If you change this value, you must restart the server.

* elocation URL: URL used to get the eLocation background maps. By default:
http://elocation.oracle.com

« Kerberos keytab: If Kerberos is enabled, provide the full path to the file that
contains the keytab file.

» Display logs: If necessary, disable the display of the jobs in the Spatial Jobs
screen. Disable this display if the logs are not in the default format. The default
format is: Date LogLevel LoggerNane: LogMessage

The Date must have the default format: yyyy- Mt dd HH nm ss, SSS. For example:
2012-11-02 14:34:02, 781.

If the logs are not displayed and the Display logs field is set to Yes, then
ensure that yarn. | og- aggr egat i on-enabl e in yarn-site. xnl is settotrue. Also
ensure that the Hadoop jobs configuration parameters

yar n. nodenmanager . r enot e- app- | og- di r and yar n. nodenanager . r enot e- app- | og-
dir-suffix are set to the same value as inyarn-site. xni .

3. Change the raster configuration, as needed:

e Shared directory: Directory used to read and write from different nodes, which
requires that is be shared and have the greatest permissions or at least be in
the Hadoop user group.

e Network file system mount point: NFS mountpoint that allows the shared
folders to be seen and accessed individually. Can be blank if you are using a
non-distributed environment.

e GDAL directory: Native GDAL installation directory. Must be accessible to all
the cluster nodes.

If you change this value, you must restart the server.

e Shared GDAL data directory: GDAL shared data folder. Must be a shared
directory. (See the instructions in Installing the Image Processing Framework
for Other Distributions (Not Oracle Big Data Appliance).)

4. Change the Hadoop configuration, as needed.

5. Change the Spark configuration, as needed. The raster processor needs
additional configuration details:

e spark.driver.extraQ assPath, spark.executor.extraC assPath: Specify your
hive library installation using these keys. Example: /usr/lib/hive/lib/*

e spark. kryoserializer. buffer.max: Enter the memory for the data serialization.
Example: 160m

6. If Kerberos is enabled, then you may need to add the parameters:

ORACLE 1-14

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

» spark.yarn. keyt ab: the full path to the file that contains the keytab for the
principal.

e spark.yarn. principal : the principal to be used to log in to Kerberos. The
format of a typical Kerberos V5 principal is pri mary/ i nst ance @REALM

7. On Linux systems, you may need to change the secure container executor to
Li nuxCont ai ner Execut or . For that, set the following parameters:

e Setyarn. nodemanager. cont ai ner - execut or. cl ass to
or g. apache. hadoop. yar n. server . nodemanager . Li nuxCont ai ner Execut or .

e Setyarn. nodemanager. | i nux- cont ai ner - execut or . gr oup to hadoop.
8. Ensure that the user can read the keytab file.

9. Copy the keytab file to the same location on all the nodes of the cluster.

1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data

Appliance)

Before installing the SpatialViewer on other systems, you must install the image
processing framework as specified in Installing the Image Processing Framework for
Other Distributions (Not Oracle Big Data Appliance).

Then follow the steps mentioned in Configuring SpatialViewer on Oracle Big Data
Appliance.

Additionally, change the Hadoop Configuration, replacing the Hadoop property
yarn. appl i cation. cl asspat h value / opt/ cl ouder a/ parcel s/ CDH | i b/ with the actual
library path, which by defaultis /usr/lib/.

Additionally, change the Hadoop and Spark configuration, replacing the Hadoop conf .
directory and Spark conf. directory values according your Hadoop and Spark
installations.

1.8 Installing Property Graph Support on a CDH Cluster or
Other Hardware

ORACLE

You can use property graphs on either Oracle Big Data Appliance or commodity
hardware.

e Apache HBase Prerequisites
e Property Graph Installation Steps
e About the Property Graph Installation Directory

e Optional Installation Task for In-Memory Analyst Use

" See Also:

Configuring Property Graph Support

1-15

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

1.8.1 Apache HBase Prerequisites

The following prerequisites apply to installing property graph support in HBase.

Linux operating system
Cloudera's Distribution including Apache Hadoop (CDH)

For the software download, see: http://ww. cl ouder a. conf cont ent/ cl ouder a/ en/
product s- and- servi ces/ cdh. ht m

Apache HBase
Java Development Kit (JDK) (Java 8 or higher)

Details about supported versions of these products, including any interdependencies,
will be provided in a My Oracle Support note.

1.8.2 Property Graph Installation Steps

To install property graph support, follow these steps.

ORACLE

1.

Unzip the software package:

rpm-i oracle-spatial -graph-<version>. x86_64.rpm

By default, the software is installed in the following directory: / opt / or acl e/

After the installation completes, the opt/ oracl e/ or acl e- spati al - gr aph directory
exists and includes a property_graph subdirectory.

Set the JAVA_HOME environment variable. For example:
setenv JAVA HOME /usr/local /packages/jdk8

Set the PGX_HOME environment variable. For example:
setenv PGX_HOME /opt/oracl e/ oracl e-spati al - graph/ pgx

If HBase will be used, set the HBASE_HOME environment variable in all HBase region
servers in the Apache Hadoop cluster. (HBASE_HOME specifies the location of the
hbase installation directory.) For example:

setenv HBASE HOME /usr/li b/ hbase

Note that on some installations of Big Data Appliance, Apache HBase is placed in
a directory like the following: / opt/ cl ouder a/ parcel s/
CDH-5. 3. 3-1. cdh5. 3. 3. p0. 5/ 1'i b/ hbase/

If HBase will be used, copy the data access layer library into $HBASE_HOME/Iib.
For example:

cp /opt/oracl e/ oracl e-spatial -graph/ property_graph/lib/sdopgdal *.jar $HBASE_ HOVE/
lib

Tune the HBase or Oracle NoSQL Database configuration, as described in other
tuning topics.

Log in to Cloudera Manager as the adni n user, and restart the HBase service.
Restarting enables the Region Servers to use the new configuration settings.

1-16

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html

Chapter 1
Installing Property Graph Support on a CDH Cluster or Other Hardware

1.8.3 About the Property Graph Installation Directory

The installation directory for Oracle Big Data Spatial and Graph property graph
features has the following structure:

$ tree -dFL 2 /opt/oracle/oracle-spatial-graph/property_graph/

[opt/oracl e/ oracl e-spati al - graph/ property_graph/

|-- da

| |-- groovy

| | -- opg-solr-config

| -- webapp

|-- data

| -- doc

| |-- dal

| -~ pgx

| -- exanpl es

| |-- dal

| 1-- pgx

| "-- pyopg

[-- lib

|-- librdf

o= pgX
|-- bin

-- conf

- groovy

- scripts

- webapp

T-- yarn

1.8.4 Optional Installation Task for In-Memory Analyst Use

Follow this installation task if property graph support is installed on a client without
Hadoop, and you want to read graph data stored in the Hadoop Distributed File
System (HDFS) into the in-memory analyst and write the results back to the HDFS,
and/or use Hadoop NextGen MapReduce (YARN) scheduling to start, monitor and
stop the in-memory analyst.

e Installing and Configuring Hadoop

e Running the In-Memory Analyst on Hadoop

1.8.4.1 Installing and Configuring Hadoop

ORACLE

To install and configure Hadoop, follow these steps.

1. Download the tarball for a supported version of the Cloudera CDH.
2. Unpack the tarball into a directory of your choice. For example:
tar xvf hadoop-2.5.0-cdh5.2. 1.tar.gz -C /opt

3. Have the HADOOP_HOME environment variable point to the installation directory. For
example.

export HADOOP_HOVE=/ opt / hadoop- 2. 5. 0- cdh5. 2. 1
4. Add $HADOOP_HOME/ bi n to the PATH environment variable. For example:
export PATH=$HADCOP_HOME/ bi n: $PATH

1-17

Chapter 1
Installing and Configuring Multimedia Analytics Support

5. Configure $HADOOP_HOME/ et ¢/ hadoop/ hdf s-si t e. xnl to point to the HDFS name node
of your Hadoop cluster.

6. Configure $HADOOP_HOME/ et ¢/ hadoop/ yar n-si te. xm to point to the resource manager
node of your Hadoop cluster.

7. Configure the fs. def aul t FS field in $HADOOP_HOVE/ et ¢/ hadoop/ core-si te. xnl to point
to the HDFS name node of your Hadoop cluster.

1.8.4.2 Running the In-Memory Analyst on Hadoop

When running a Java application using in-memory analytics and HDFS, make sure
that $HADOOP_HOME/ et ¢/ hadoop is on the classpath, so that the configurations get picked
up by the Hadoop client libraries. However, you do not need to do this when using the
in-memory analyst shell, because it adds $HADOOP_HOME/ et ¢/ hadoop automatically to the
classpath if HADOOP_HOME is set.

You do not need to put any extra Cloudera Hadoop libraries (JAR files) on the
classpath. The only time you need the YARN libraries is when starting the in-memory
analyst as a YARN service. This is done with the yarn command, which automatically
adds all necessary JAR files from your local installation to the classpath.

You are now ready to load data from HDFS or start the in-memory analyst as a YARN
service. For further information about Hadoop, see the CDH 5.x.x documentation.

1.9 Installing and Configuring Multimedia Analytics Support

To use the Multimedia analytics feature, the video analysis framework must be
installed and configured.

Note:

The multimedia analytics feature of Big Data Spatial and Graph is
deprecated in Big Data Spatial and Graph Release 2.5 and may be
desupported in a future release. There is no replacement for the multimedia
analytics features.

e Assumptions and Libraries for Multimedia Analytics

e Transcoding Software (Options)

1.9.1 Assumptions and Libraries for Multimedia Analytics

ORACLE

If you have licensed Oracle Big Data Spatial and Graph with Oracle Big Data
Appliance, the video analysis framework for Multimedia analytics is already installed
and configured. However, you must set $MVA_HOVE to point to / opt / or acl e/ or acl e-
spatial - graph/ mul timedi a.

Otherwise, you can install the framework on Cloudera CDH 5 or similar Hadoop
environment, as follows:

1. Install the framework by using the following command on each node on the
cluster:

1-18

Chapter 1
Installing and Configuring Multimedia Analytics Support

rpn2cpi 0 oracl e-spati al - graph-<versi on>. x86_64.rpm| cpio -idm
You can use the dcl i utility (see Executing Commands Across a Cluster Using the
dcli Utility).
2. Set $MVA HOME to point to / opt/ oracl e/ or acl e- spati al - graph/ mul ti medi a.
3. ldentify the locations of the following libraries:
» Hadoop jar files (available in $HADOOP_HOME/ j ar s)
e Video processing libraries (see Transcoding Software (Options)
e OpenCV libraries (available with the product)

4. Copy all the l'i b* files from $MA_HOVE/ opencv_3. 1. 0/l i b to the native Hadoop
library location.

On Oracle Big Data Appliance, this location is / opt / ¢l ouder a/ par cel s/ CDH | i b/
hadoop/ i b/ nati ve.

5. If necessary, install the desired video processing software to transcode video data
(see Transcoding Software (Options)).

1.9.2 Transcoding Software (Options)

ORACLE

The following options are available for transcoding video data:

* JCodec
* FFmpeg
e Third-party transcoding software

To use Multimedia analytics with JCodec (which is included with the product), when
running the Hadoop job to recognize faces, set the oracl e. or d. hadoop. or df r amegr abber
property to the following value: or acl e. or d. hadoop. decoder . O dJCodecFr aneG abber

To use Multimedia analytics with FFmpeg:
1. Download FFmpeg from: https://www.ffmpeg.org/.
2. Install FFmpeg on the Hadoop cluster.

3. Setthe oracle. ord. hadoop. or df r anegr abber property to the following value:
oracl e. ord. hadoop. decoder . O dFFMPEGFr aneG abber

To use Multimedia analytics with custom video decoding software, implement the
abstract class oracl e. or d. hadoop. decoder . Or dFr ameG abber . See the Javadoc for more
details

1-19

Using Big Data Spatial and Graph with
Spatial Data

ORACLE

This chapter provides conceptual and usage information about loading, storing,
accessing, and working with spatial data in a Big Data environment.

About Big Data Spatial and Graph Support for Spatial Data
Oracle Big Data Spatial and Graph features enable spatial data to be stored,
accessed, and analyzed quickly and efficiently for location-based decision making.

Oracle Big Data Vector and Raster Data Processing
Oracle Big Data Spatial and Graph supports the storage and processing of both
vector and raster spatial data.

Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data
Processing

Oracle Spatial Hadoop Image Processing Framework allows the creation of new
combined images resulting from a series of processing phases in parallel.

Loading an Image to Hadoop Using the Image Loader

The first step to process images using the Oracle Spatial and Graph Hadoop
Image Processing Framework is to actually have the images in HDFS, followed by
having the images separated into smart tiles.

Processing an Image Using the Oracle Spatial Hadoop Image Processor
Once the images are loaded into HDFS, they can be processed in parallel using
Oracle Spatial Hadoop Image Processing Framework.

Loading and Processing an Image Using the Oracle Spatial Hadoop Raster
Processing API

The framework provides a raster processing API that lets you load and process
rasters without creating XML but instead using a Java application. The application
can be executed inside the cluster or on a remote node.

Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster
Processing

When you create custom processing classes. you can use the Oracle Spatial
Hadoop Raster Simulator Framework to do the following by "pretending" to plug
them into the Oracle Raster Processing Framework.

Oracle Big Data Spatial Raster Processing for Spark
Oracle Big Data Spatial Raster Processing for Apache Spark is a spatial raster
processing API for Java.

Oracle Big Data Spatial Vector Analysis

Oracle Big Data Spatial Vector Analysis is a Spatial Vector Analysis API, which
runs as a Hadoop job and provides MapReduce components for spatial
processing of data stored in HDFS.

Oracle Big Data Spatial Vector Analysis for Spark
Oracle Big Data Spatial Vector Analysis for Apache Spark is a spatial vector
analysis API for Java and Scala that provides spatially-enabled RDDs (Resilient

2-1

2.1 About
Data

2.1.1 What i

Chapter 2
About Big Data Spatial and Graph Support for Spatial Data

Distributed Datasets) that support spatial transformations and actions, spatial
partitioning, and indexing.

» Oracle Big Data Spatial Vector Hive Analysis
Oracle Big Data Spatial Vector Hive Analysis provides spatial functions to analyze
the data using Hive.

* Using the Oracle Big Data SpatialViewer Web Application
You can use the Oracle Big Data SpatialViewer Web Application (SpatialViewer)
to perform a variety of tasks.

Big Data Spatial and Graph Support for Spatial

Oracle Big Data Spatial and Graph features enable spatial data to be stored,
accessed, and analyzed quickly and efficiently for location-based decision making.

Spatial data represents the location characteristics of real or conceptual objects in
relation to the real or conceptual space on a Geographic Information System (GIS) or
other location-based application.

The spatial features are used to geotag, enrich, visualize, transform, load, and process
the location-specific two and three dimensional geographical images, and manipulate
geometrical shapes for GIS functions.

* What is Big Data Spatial and Graph on Apache Hadoop?
* Advantages of Oracle Big Data Spatial and Graph
* Oracle Big Data Spatial Features and Functions

» Oracle Big Data Spatial Files, Formats, and Software Requirements

s Big Data Spatial and Graph on Apache Hadoop?

Oracle Big Data Spatial and Graph on Apache Hadoop is a framework that uses the
MapReduce programs and analytic capabilities in a Hadoop cluster to store, access,
and analyze the spatial data. The spatial features provide a schema and functions that
facilitate the storage, retrieval, update, and query of collections of spatial data. Big
Data Spatial and Graph on Hadoop supports storing and processing spatial images,
which could be geometric shapes, raster, or vector images and stored in one of the
several hundred supported formats.

Note:

Oracle Spatial and Graph Developer's Guide for an introduction to spatial
concepts, data, and operations

2.1.2 Advantages of Oracle Big Data Spatial and Graph

ORACLE

The advantages of using Oracle Big Data Spatial and Graph include the following:

2-2

Chapter 2
About Big Data Spatial and Graph Support for Spatial Data

Unlike some of the GIS-centric spatial processing systems and engines, Oracle
Big Data Spatial and Graph is capable of processing both structured and
unstructured spatial information.

Customers are not forced or restricted to store only one particular form of data in
their environment. They can have their data stored both as a spatial or nonspatial
business data and still can use Oracle Big Data to do their spatial processing.

This is a framework, and therefore customers can use the available APIs to
custom-build their applications or operations.

Oracle Big Data Spatial can process both vector and raster types of information
and images.

2.1.3 Oracle Big Data Spatial Features and Functions

The spatial data is loaded for query and analysis by the Spatial Server and the images
are stored and processed by an Image Processing Framework. You can use the
Oracle Big Data Spatial and Graph server on Hadoop for:

Cataloguing the geospatial information, such as geographical map-based
footprints, availability of resources in a geography, and so on.

Topological processing to calculate distance operations, such as nearest neighbor
in a map location.

Categorization to build hierarchical maps of geographies and enrich the map by
creating demographic associations within the map elements.

The following functions are built into Oracle Big Data Spatial and Graph:

Indexing function for faster retrieval of the spatial data.
Map function to display map-based footprints.
Zoom function to zoom-in and zoom-out specific geographical regions.

Mosaic and Group function to group a set of image files for processing to create a
mosaic or subset operations.

Cartesian and geodetic coordinate functions to represent the spatial data in one of
these coordinate systems.

Hierarchical function that builds and relates geometric hierarchy, such as country,
state, city, postal code, and so on. This function can process the input data in the
form of documents or latitude/longitude coordinates.

2.1.4 Oracle Big Data Spatial Files, Formats, and Software

Requirements

The stored spatial data or images can be in one of these supported formats:

GeoJSON files
Shapefiles
Both Geodetic and Cartesian data

Other GDAL supported formats

You must have the following software, to store and process the spatial data:

ORACLE

2-3

Chapter 2
Oracle Big Data Vector and Raster Data Processing

e Javaruntime

* GCC Compiler - Only when the GDAL-supported formats are used

2.2 Oracle Big Data Vector and Raster Data Processing

Oracle Big Data Spatial and Graph supports the storage and processing of both vector
and raster spatial data.

e Oracle Big Data Spatial Raster Data Processing

e Oracle Big Data Spatial Vector Data Processing

2.2.1 Oracle Big Data Spatial Raster Data Processing

For processing the raster data, the GDAL loader loads the raster spatial data or
images onto a HDFS environment. The following basic operations can be performed
on a raster spatial data:

e Mosaic: Combine multiple raster images to create a single mosaic image.
e Subset: Perform subset operations on individual images.

e Raster algebra operations: Perform algebra operations on every pixel in the
rasters (for example, add, divide, multiply, log, pow, sine, sinh, and acos).

e User-specified processing: Raster processing is based on the classes that user
sets to be executed in mapping and reducing phases.

This feature supports a MapReduce framework for raster analysis operations. The
users have the ability to custom-build their own raster operations, such as performing
an algebraic function on a raster data and so on. For example, calculate the slope at
each base of a digital elevation model or a 3D representation of a spatial surface, such
as a terrain. For details, see Oracle Big Data Spatial Hadoop Image Processing
Framework for Raster Data Processing.

2.2.2 Oracle Big Data Spatial Vector Data Processing

ORACLE

This feature supports the processing of spatial vector data:

* Loaded and stored on to a Hadoop HDFS environment
» Stored either as Cartesian or geodetic data

The stored spatial vector data can be used for performing the following query
operations and more:

* Point-in-polygon

» Distance calculation

* Anyinteract

- Buffer creation

Sevetal data service operations are supported for the spatial vector data:
» Data enrichment

e Data categorization

e Spatial join

2-4

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

In addition, there is a limited Map Visualization API support for only the HTML5 format.
You can access these APIs to create custom operations. For details, see "Oracle Big
Data Spatial Vector Analysis."

2.3 Oracle Big Data Spatial Hadoop Image Processing
Framework for Raster Data Processing

Oracle Spatial Hadoop Image Processing Framework allows the creation of new
combined images resulting from a series of processing phases in parallel.

ORACLE

It includes the following features:

HDFS Images storage, where every block size split is stored as a separate tile,
ready for future independent processing

Subset, user-defined, and map algebra operations processed in parallel using the
MapReduce framework

Ability to add custom processing classes to be executed in the mapping or
reducing phases in parallel in a transparent way

Fast processing of georeferenced images

Support for GDAL formats, multiple bands images, DEMs (digital elevation
models), multiple pixel depths, and SRIDs

Java API providing access to framework operations; useful for web services or
standalone Java applications

Framework for testing and debugging user processing classes in the local
environment

The Oracle Spatial Hadoop Image Processing Framework consists of two modules, a
Loader and Processor, each one represented by a Hadoop job running on different
stages in a Hadoop cluster, as represented in the following diagram. Also, you can
load and process the images using the Image Server web application, and you can
use the Java API to expose the framework’s capabilities.

Loader FProcessor
Job Job
I |
MapReduce
|
L T
i (T L
gt b et fras ﬁ@
=TT anl N.E::: ol Eags B
59
L FpaerEs
FileSystem
Hadoop Cluster

2-5

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

For installation and configuration information, see:

Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
Installing and Configuring the Big Data Spatial Image Processing Framework
Image Loader

Image Processor

2.3.1 Image Loader

The Image Loader is a Hadoop job that loads a specific image or a group of images
into HDFS.

ORACLE

While importing, the image is tiled and stored as an HDFS block.
GDAL is used to tile the image.
Each tile is loaded by a different mapper, so reading is parallel and faster.

Each tile includes a certain number of overlapping bytes (user input), so that the
tiles cover area from the adjacent tiles.

A MapReduce job uses a mapper to load the information for each tile. There are 'n'
number of mappers, depending on the number of tiles, image resolution and block
size.

A single reduce phase per image puts together all the information loaded by the
mappers and stores the images into a special . ohi f format, which contains the
resolution, bands, offsets, and image data. This way the file offset containing each
tile and the node location is known.

Each tile contains information for every band. This is helpful when there is a need
to process only a few tiles; then, only the corresponding blocks are loaded.

The following diagram represents an Image Loader process:

2-6

Calculates splits
basedon image

Metadata, each 5 Reads piece

i d Each split :
splitis) procesged by oftheimage
of a block size Mapper —

Chapter 2
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

LoaderinputFormat Mappers Reducer

—_ .

Mapper

| |

Blocks saved into HDFS

Loader
Job

/
N\

ke [\ Each block contains
rom information for all the
oniflimage bands

MapReduce

FileSystem

T
R F Dol =S

2.3.2 Image Processor

The Image Processor is a Hadoop job that filters tiles to be processed based on the
user input and performs processing in parallel to create a new image.

Processes specific tiles of the image identified by the user. You can identify one,
zero, or multiple processing classes. These classes are executed in the mapping
or reducing phase, depending on your configuration. For the mapping phase, after
the execution of processing classes, a mosaic operation is performed to adapt the
pixels to the final output format requested by the user. If no mosaic operation was
requested, the input raster is sent to reduce phase as is. For reducer phase, all the
tiles are put together into a GDAL data set that is input for user reduce processing
class, where final output may be changed or analyzed according to user needs.

A mapper loads the data corresponding to one tile, conserving data locality.
Once the data is loaded, the mapper filters the bands requested by the user.

Filtered information is processed and sent to each mapper in the reduce phase,
where bytes are put together and a final processed image is stored into HDFS or
regular File System depending on the user request.

The following diagram represents an Image Processor job:

ORACLE

2-7

Basedon
image
Metadata,
determines
thetiles and
makes a split
foreach tile

FilterinputFormat

Mappers

LI Mapper

Each splitis
processedby 1
amapper

Process the

L—1 tile

Reducer

Chapter 2
Loading an Image to Hadoop Using the Image Loader

Tiles saved into HDFS

Processor
Job

MapReduce

T
A F TS

2.4 Loading an Image to Hadoop Using the Image Loader

The first step to process images using the Oracle Spatial and Graph Hadoop Image
Processing Framework is to actually have the images in HDFS, followed by having the
images separated into smart tiles.

ORACLE

This allows the processing job to work separately on each tile independently. The
Image Loader lets you import a single image or a collection of them into HDFS in
parallel, which decreases the load time.

The Image Loader imports images from a file system into HDFS, where each block
contains data for all the bands of the image, so that if further processing is required on
specific positions, the information can be processed on a single node.

* Image Loading Job

e Input Parameters

e Output Parameters

2-8

Chapter 2
Loading an Image to Hadoop Using the Image Loader

2.4.1 Image Loading Job

The image loading job has its custom input format that splits the image into related
image splits. The splits are calculated based on an algorithm that reads square blocks
of the image covering a defined area, which is determined by

area = ((blockSize - metadata bytes) / number of bands) / bytes per pixel.

For those pieces that do not use the complete block size, the remaining bytes are
refilled with zeros.

Splits are assigned to different mappers where every assigned tile is read using GDAL
based on the I mageSpl i t information. As a result an | mageDat aW i t abl e instance is
created and saved in the context.

The metadata set in the | rageDat aW i t abl e instance is used by the processing classes
to set up the tiled image in order to manipulate and process it. Since the source
images are read from multiple mappers, the load is performed in parallel and faster.

After the mappers finish reading, the reducer picks up the tiles from the context and
puts them together to save the file into HDFS. A special reading process is required to
read the image back.

2.4.2 Input Parameters

ORACLE

The following input parameters are supplied to the Hadoop command:

hadoop jar /opt/oraclel/oracle-spatial-graph/spatial/raster/jlib/hadoop-
i mgel oader . j ar

-files <SOURCE_| MGS_PATH>

-out <HDFS_QUTPUT FOLDER>

-gdal <GDAL_LIB_PATH>

-gdal Data <GDAL_DATA PATH>

[-overlap <OVERLAPPI NG Pl XELS>]

[-thunbnai | <THUVBNAI L_PATH>]

[-expand <fal se|true>]

[-extractLogs <fal se|true>]

[-logFilter <LINES_TO I NCLUDE IN LOG

[-pyram d <OUTPUT_ DI RECTCRY, LEVEL, [RESAMPLING >]

Where:

SOURCE_| MGS_PATH is a path to the source image(s) or folder(s). For multiple inputs
use a comma separator. This path must be accessible via NFS to all nodes in the
cluster.

HDFS_QUTPUT_FOLDER is the HDFS output folder where the loaded images are stored.

OVERLAPPI NG_PI XELS is an optional number of overlapping pixels on the borders of
each tile, if this parameter is not specified a default of two overlapping pixels is
considered.

GDAL_LI B_PATH is the path where GDAL libraries are located.

GDAL_DATA PATH is the path where GDAL data folder is located. This path must be
accessible through NFS to all nodes in the cluster.

2-9

Chapter 2
Loading an Image to Hadoop Using the Image Loader

THUMBNAI L_PATH is an optional path to store a thumbnail of the loaded image(s). This
path must be accessible through NFS to all nodes in the cluster and must have
write access permission for yarn users.

-expand controls whether the HDFS path of the loaded raster expands the source
path, including all directories. If you set this to f al se, the . ohi f file is stored directly
in the output directory (specified using the - o option) without including that
directory’s path in the raster.

-extract Logs controls whether the logs of the executed application should be
extracted to the system temporary directory. By default, it is not enabled. The
extraction does not include logs that are not part of Oracle Framework classes.

-l ogFilter <LINES TO I NCLUDE_I N LOG> is a comma-separated String that lists all the
patterns to include in the extracted logs, for example, to include custom processing
classes packages.

-pyram d <OQUTPUT_DI RECTORY, LEVEL, [RESAMPLING > allows the creation of pyramids
while making the initial raster load. An OUPUT_DIRECTORY must be provided to
store the local pyramids before uploading to HDFS; pyramids are loaded in the
same HDFSA directory requested for load. A pyramid LEVEL must be provided to
indicate how many pyramids are required for each raster. A RESAMPLING
algorithm is optional to specify the method used to execute the resampling; if none
is set, then BI LI NEAR is used.

For example, the following command loads all the georeferenced images under the
i mges folder and adds an overlapping of 10 pixels on every border possible. The
HDFS output folder is ohi ft est and thumbnail of the loaded image are stored in the
processt est folder.

hadoop jar /opt/oraclel/oracl e-spatial -graph/spatial/raster/jlib/hadoop-

i mgel oader.jar -files /opt/shareddir/spatial/deno/inmageserver/inmages/hawaii.tif -
out ohiftest -overlap 10 -thunbnail /opt/shareddir/spatial/processtest —gdal /opt/
oracl e/ oracl e-spatial -graph/ spatial /raster/gdal /lib —gdal Data /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an

i magej ob. prop properties file in the same folder location from where the command is
being executed. This properties file may list all the configuration properties that you

want to override. For example,

mapr educe. map. nenory. mh=2560

mapr educe. r educe. menory. nh=2560

mapr educe. reduce. j ava. opt s=- Xmx2684354560
mapr educe. map. j ava. opt s=- Xmx2684354560

Java heap memory (j ava. opt s properties) must be equal to or less than the total
memory assigned to mappers and reducers (mapr educe. nap. menory and

mapr educe. reduce. menory). Thus, if you increase Java heap memory, you might also
need to increase the memory for mappers and reducers.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD LI BRARY_PATH=$ALLACCESSDI R/ gdal / nat i ve

2.4.3 Output Parameters

The reducer generates two output files per input image. The first one is the . ohi f file
that concentrates all the tiles for the source image, each tile may be processed as a

ORACLE 2-10

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

separated instance by a processing mapper. Internally each tile is stored as a HDFS
block, blocks are located in several nodes, one node may contain one or more blocks
of a specific . ohi f file. The . ohi f file is stored in user specified folder with -out flag,
under the / user/ <USER_EXECUTI NG_JOB>/ OUT_FOLDER/

<PARENT_DI RECTORI ES_OF_SOURCE_RASTER> if the flag —expand was not used. Otherwise,
the . ohi f file will be located at / user/ <USER_EXECUTI NG_JOB>/ QUT_FQOLDER/ , and the file
can be identified as ori gi nal _fil enane. ohi f.

The second output is a related metadata file that lists all the pieces of the image and
the coordinates that each one covers. The file is located in HDFS under the metadata
location, and its name is hash generated using the name of the ohi f file. This file is for
Oracle internal use only, and lists important metadata of the source raster. Some
example lines from a metadata file:

srid: 26904

datatype: 1

resol ution: 27. 90809458890406, - 27. 90809458890406
file:/user/hdfs/ohiftest/opt/shareddir/spatial/data/rasters/hawaii.tif.ohif
bands: 3

nbr: 532488. 7648166901, 4303164. 583549625, 582723. 3350767174, 4269619. 053853762
0, 532488. 7648166901, 4303164. 583549625, 582723. 3350767174, 4269619. 053853762

t hunbnai | pat h: / opt/ shareddi r/ spati al / t hunb/

If the -t hunbnai | flag was specified, a thumbnail of the source image is stored in the
related folder. This is a way to visualize a translation of the . ohi f file. Job execution
logs can be accessed using the command yarn | ogs -applicationld <applicationld>

2.5 Processing an Image Using the Oracle Spatial Hadoop
Image Processor

ORACLE

Once the images are loaded into HDFS, they can be processed in parallel using
Oracle Spatial Hadoop Image Processing Framework.

You specify an output, and the framework filters the tiles to fit into that output,
processes them, and puts them all together to store them into a single file. Map
algebra operations are also available and, if set, will be the first part of the processing
phase. You can specify additional processing classes to be executed before the final
output is created by the framework.

The image processor loads specific blocks of data, based on the input (mosaic
description or a single raster), and selects only the bands and pixels that fit into the
final output. All the specified processing classes are executed and the final output is
stored into HDFS or the file system depending on the user request.

* Image Processing Job

* Input Parameters

* Job Execution

* Processing Classes and ImageBandWritable
e Map Algebra Operations

e Multiple Raster Algebra Operations

e Pyramids

e Output

2-11

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2.5.1 Image Processing Job

The image processing job has different flows depending on the type of processing
requested by the user.

» Default Image Processing Job Flow: executed for processing that includes a
mosaic operation, single raster operation, or basic multiple raster operation.

e Multiple Raster Image Processing Job Flow: executed for processing that includes
complex multiple raster algebra operations.

e Default Image Processing Job Flow

e Multiple Raster Image Processing Job Flow

2.5.1.1 Default Image Processing Job Flow

ORACLE

The default image processing job flow is executed when any of the following
processing is requested:

* Mosaic operation
* Single raster operation
» Basic multiple raster algebra operation

The flow has its own custom Fi | t er I nput For mat , which determines the tiles to be
processed, based on the SRID and coordinates. Only images with same data type
(pixel depth) as the mosaic input data type (pixel depth) are considered. Only the tiles
that intersect with coordinates specified by the user for the mosaic output are included.
For processing of a single raster or basic multiple raster algebra operation (excluding
mosaic), the filter includes all the tiles of the input rasters, because the processing will
be executed on the complete images. Once the tiles are selected, a custom

I mageProcessSpl it is created for each image.

When a mapper receives the | mageProcessSpl i t, it reads the information based on
what the | rageSpl i t specifies, performs a filter to select only the bands indicated by
the user, and executes the list of map operations and of processing classes defined in
the request, if any.

Each mapper process runs in the node where the data is located. After the map
algebra operations and processing classes are executed, a validation verifies if the
user is requesting mosaic operation or if analysis includes the complete image; and if
a mosaic operation is requested, the final process executes the operation. The mosaic
operation selects from every tile only the pixels that fit into the output and makes the
necessary resolution changes to add them in the mosaic output. The single process
operation just copies the previous raster tile bytes as they are. The resulting bytes are
stored in NFS to be recovered by the reducer.

A single reducer picks the tiles and puts them together. If you specified any basic
multiple raster algebra operation, then it is executed at the same time the tiles are
merged into the final output. This operation affects only the intersecting pixels in the
mosaic output, or in every pixel if no mosaic operation was requested. If you specified
a reducer processing class, the GDAL data set with the output raster is sent to this
class for analysis and processing. If you selected HDFS output, the | nageLoader is
called to store the result into HDFS. Otherwise, by default the image is prepared using
GDAL and is stored in the file system (NFS).

2-12

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

2.5.1.2 Multiple Raster Image Processing Job Flow

The multiple raster image processing job flow is executed when a complex multiple
raster algebra operation is requested. It applies to rasters that have the same MBR,
pixel type, pixel size, and SRID, since these operations are applied pixel by pixel in the
corresponding cell, where every pixel represents the same coordinates.

The flow has its own custom Ml ti pl eRast er | nput For mat , which determines the tiles to
be processed, based on the SRID and coordinates. Only images with same MBR,
pixel type, pixel size and SRID are considered. Only the rasters that match with
coordinates specified by the first raster in the catalog are included. All the tiles of the
input rasters are considered, because the processing will be executed on the complete
images.

Once the tiles are selected, a custom Ml ti pl eRaster Split is created. This split
contains a small area of every original tile, depending on the block size, because now
all the rasters must be included in a split, even if it is only a small area. Each of these
is called an | ndi vi dual Rast er Spl i t, and they are contained in a parent

Mul tipl eRasterSplit.

When a mapper receives the Mil ti pl eRaster Spl i t, it reads the information of all the
raster’s tiles that are included in the parent split, performs a filter to select only the
bands indicated by the user and only the small corresponding area to process in this
specific mapper, and then executes the complex multiple raster algebra operation.

Data locality may be lost in this part of the process, because multiple rasters are
included for a single mapper that may not be in the same node. The resulting bytes for
every pixel are put in the context to be recovered by the reducer.

A single reducer picks pixel values and puts them together. If you specified a reducer
processing class, the GDAL data set with the output raster is sent to this class for
analysis and processing. The list of tiles that this class receives is null for this
scenario, and the class can only work with the output data set. If you selected HDFS
output, the | mageLoader is called to store the result into HDFS. Otherwise, by default
the image is prepared using GDAL and is stored in the file system (NFS).

2.5.2 Input Parameters

ORACLE

The following input parameters can be supplied to the hadoop command:

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
i mageprocessor. jar
-config <MOSAI C_CONFI G PATH>
-gdal <GDAL_LI BRAR ES_PATH>
-gdal Data <GDAL_DATA PATH>
[-catal og <I MAGE_CATALOG PATH>]
[-usrlib <USER PROCESS JAR PATH>]
[-thunbnai | <THUVBNAI L_PATH>]
[-nativepath <USER NATIVE LI BRARI ES_PATH>]
[-params <USER_PARAMETERS>]
[-file <SINGLE_RASTER PATH>]

Where:

MOSAI C_CONFI G_PATH is the path to the mosaic configuration xml, that defines the
features of the output.

GDAL_LI BRARI ES_PATH is the path where GDAL libraries are located.

2-13

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

GDAL_DATA_PATH is the path where the GDAL data folder is located. This path must
be accessible via NFS to all nodes in the cluster.

| MAGE_CATALOG PATH is the path to the catalog xml that lists the HDFS image(s) to be
processed. This is optional because you can also specify a single raster to process
using -fil e flag.

USER_PROCESS_JAR PATH is an optional user-defined jar file or comma-separated list of
jar files, each of which contains additional processing classes to be applied to the
source images.

THUMBNAI L_PATH is an optional flag to activate the thumbnail creation of the loaded
image(s). This path must be accessible via NFS to all nodes in the cluster and is
valid only for an HDFS output.

USER_NATI VE_LI BRARI ES_PATH is an optional comma-separated list of additional native
libraries to use in the analysis. It can also be a directory containing all the native
libraries to load in the application.

USER_PARAMETERS is an optional key/value list used to define input data for user
processing classes. Use a semicolon to separate parameters. For example:

azi mut h=315; al ti t ude=45

SI NGLE_RASTER PATH is an optional path to the . ohi f file that will be processed by the
job. If this is set, you do not need to set a catalog.

For example, the following command will process all the files listed in the catalog file
i nput. xm file using the mosaic output definition set in t est FS. xni file.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

i mageprocessor.jar -catal og /opt/shareddir/spatial/deno/imageserver/images/input.xn
-config /opt/shareddir/spatial/denmo/imageserver/imges/testFS. xm -thunbnail /opt/
shareddi r/spatial / processtest —gdal /opt/oracle/oracle-spatial-graph/spatial/raster/
gdal /1ib -gdal Data /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an

i magej ob. prop properties file in the same folder location from where the command is
being executed.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD LI BRARY_PATH=$ALLACCESSDI R/ gdal / nat i ve

e Catalog XML Structure

* Mosaic Definition XML Structure

2.5.2.1 Catalog XML Structure

ORACLE

The following is an example of input catalog XML used to list every source image
considered for mosaic operation generated by the image processing job.

-<cat al og>
- <i mage>
<raster>/user/hdf s/ ohiftest/opt/shareddir/spatial/datalrasters/ maui.tif.ohif</raster>
<bands datatype='1" config="1, 2, 3' >3</ bands>
</i mage>
</ cat al og>

A <cat al og> element contains the list of <image> elements to process.

2-14

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

Each <i mage> element defines a source image or a source folder within the <raster>
element. All the images within the folder are processed.

The <bands> element specifies the number of bands of the image, The dat at ype
attribute has the raster data type and the confi g attribute specifies which band should
appear in the mosaic output band order. For example: 3,1,2 specifies that mosaic
output band number 1 will have band number 3 of this raster, mosaic band number 2
will have source band 1, and mosaic band number 3 will have source band 2. This
order may change from raster to raster.

2.5.2.2 Mosaic Definition XML Structure

ORACLE

The following is an example of a mosaic configuration XML used to define the features
of the output generated by the image processing job.

-<nosai ¢ exec="fal se">
- <out put >
<SRl D>26904</ SRI D>
<directory type="FS">/ opt/shareddir/spatial/processQutput</directory>
<I--directory type="HDFS'>newDat a</directory-->
<t enpFSFol der >/ opt / shar eddi r/ spat i al / t enpQut put </ t enpFSFol der >
<filename>littlemap</filename>
<f or mat >GT| FF</ f or mat >
<wi dt h>1600</wi dt h>
<hei ght >986</ hei ght >
<al gorithm order="0">2</al gorithm
<bands | ayers="3" config="3,1,2"/>
<nodat a>#000000</ nodat a>
<pi xel Type>1</ pi xel Type>
</ out put >
-<crop>
-<transf or m»
356958. 985610072, 280. 38843650364862, 0, 2458324. 0825054757, 0, - 280. 38843650364862 </
transfornmp
</crop>
<process><cl assMapper
par ans="t hr eshol d=454, 2954" >or acl e. spati al . hadoop. t we. Far nlr ansf or ner </
cl assMapper ><cl assReducer
par ans="pl ot _si ze=100400" >or acl e. spati al . hadoop. t wc. Far mAl i gnnent </ cl assReducer ></
process>
<oper ati ons>
<localif operator="<" operand="3" newal ue="6"/>
<l ocal add arg="5"/>
<l ocal sqrt/>
<l ocal round/ >
</ operations>
</ mosai ¢>

The <nosai c> element defines the specifications of the processing output. The exec
attribute specifies if the processing will include mosaic operation or not. If set to

“fal se”, a mosaic operation is not executed and a single raster is processed; if set to
“true” or not set, a mosaic operation is performed. Some of the following elements are
required only for mosaic operations and ignored for single raster processing.

The <out put > element defines the features such as <SRID> considered for the output.
All the images in different SRID are converted to the mosaic SRID in order to decide if
any of its tiles fit into the mosaic or not. This element is not required for single raster
processing, because the output rster has the same SRID as the input.

2-15

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

The <di rect ory> element defines where the output is located. It can be in an HDFS or
in regular FileSystem (FS), which is specified in the tag type.

The <t enpFsFol der > element sets the path to store the mosaic output temporarily. The
attribute del et e="fal se” can be specified to keep the output of the process even if the
loader was executed to store it in HDFS.

The <fil enane> and <f or mat > elements specify the output filename. <fi | ename> is not
required for single raster process; and if it is not specified, the name of the input file
(determined by the -fil e attribute during the job call) is used for the output file.

<f or mat > is not required for single raster processing, because the output raster has the
same format as the input.

The <wi dt h> and <hei ght > elements set the mosaic output resolution. They are not
required for single raster processing, because the output raster has the same
resolution as the input.

The <al gori t hm> element sets the order algorithm for the images. A 1 order means, by
source last modified date, and a 2 order means, by image size. The order tag
represents ascendant or descendant modes. (These properties are for mosaic
operations where multiple rasters may overlap.)

The <bands> element specifies the number of bands in the output mosaic. Images with
fewer bands than this number are discarded. The confi g attribute can be used for
single raster processing to set the band configuration for output, because there is no
catalog.

The <nodat a> element specifies the color in the first three bands for all the pixels in the
mosaic output that have no value.

The <pi xel Type> element sets the pixel type of the mosaic output. Source images that
do not have the same pixel size are discarded for processing. This element is not
required for single raster processing: if not specified, the pixel type will be the same as
for the input.

The <cr op> element defines the coordinates included in the mosaic output in the
following order: st art coor di nat eX, pi xel XW dt h, Rot ati onX, startcoor di nat eY, Rotati onY,
and pi xel hei ght Y. This element is not required for single raster processing: if not
specified, the complete image is considered for analysis.

The <process> element lists all the classes to execute before the mosaic operation.

The <cl assMapper > element is used for classes that will be executed during mapping
phase, and the <cl assReducer > element is used for classes that will be executed during
reduce phase. Both elements have the par ans attribute, where you can send input
parameters to processing classes according to your needs.

The <oper at i ons> element lists all the map algebra operations that will be processed
for this request. This element can also include a request for pyramid operations; for
example:

<oper ations>
<pyram d resanpl i ng="NEAREST_NElI GHBCR" redLevel ="6"/>
</ operati ons>

2.5.3 Job Execution

The first step of the job is to filter the tiles that would fit into the output. As a start, the
location files that hold tile metadata are sent to thel nput For mat .

ORACLE 2-16

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

By extracting the pi xel Type, the filter decides whether the related source image is valid
for processing or not. Based on the user definition made in the catalog xml, one of the
following happens:

» If the image is valid for processing, then the SRID is evaluated next

» Ifitis different from the user definition, then the MBR coordinates of every tile are
converted into the user SRID and evaluated.

This way, every tile is evaluated for intersection with the output definition.

» For a mosaic processing request, only the intersecting tiles are selected, and a
split is created for each one of them.

» For a single raster processing request, all the tiles are selected, and a split is
created for each one of them.

* For a complex multiple raster algebra processing request, all the tiles are selected
if the MBR and pixel size is the same. Depending on the number of rasters
selected and the blocksize, a specific area of every tile’s raster (which does not
always include the complete original raster tile) is included in a single parent split.

A mapper processes each split in the node where it is stored. (For complex multiple
raster algebra operations, data locality may be lost, because a split contains data from
several rasters.) The mapper executes the sequence of map algebra operations and
processing classes defined by the user, and then the mosaic process is executed if
requested. A single reducer puts together the result of the mappers and, for user-
specified reducing processing classes, sets the output data set to these classes for
analysis or process. Finally, the process stores the image into FS or HDFS upon user
request. If the user requested to store the output into HDFS, then the | mrageLoader job
is invoked to store the image as an . ohi f file.

By default, the mappers and reducers are configured to get 1 GB of JVM, but you can
override this settings or any other job configuration properties by adding an

i magej ob. prop properties file in the same folder location from where the command is
being executed.

2.5.4 Processing Classes and ImageBandWritable

ORACLE

The processing classes specified in the catalog XML must follow a set of rules to be
correctly processed by the job. All the processing classes in the mapping phase must
implement the | mageProcessor I nt er f ace interface. For the reducer phase, they must
implement the | mgePr ocessor Reducel nt er f ace interface.

When implementing a processing class, you may manipulate the raster using its object
representation | mageBandW i t abl e. An example of an processing class is provided with
the framework to calculate the slope on DEMs. You can create mapping operations,
for example, to transforms the pixel values to another value by a function. The

| mageBandW i t abl e instance defines the content of a tile, such as resolution, size, and
pixels. These values must be reflected in the properties that create the definition of the
tile. The integrity of the mosaic output depends on the correct manipulation of these
properties.

The | mageBandWi t abl e instance defines the content of a tile, such as resolution, size,
and pixels. These values must be reflected in the properties that create the definition
of the tile. The integrity of the output depends on the correct manipulation of these
properties.

2-17

ORACLE

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

Table 2-1 ImageBandWritable Properties

Type - Property

Description

IntWritable dstWidthSize
IntWritable dstHeightSize
IntWritable bands
IntWritable dType
IntWritable offX
IntWritable offY
IntWritable totalWidth
IntWritable totalHeight
IntWritable bytesNumber

BytesWritable[] baseArray

IntWritable[][]
basePaletteArray

IntWritable[] baseColorArray

DoubleWritable[]
noDataArray

ByteWritable isProjection

ByteWritable isTransform

ByteWritable isMetadata

IntWritable projectionLength
BytesWritable projectionRef

DoubleWritable[]
geoTransform

IntWritable metadataSize

IntWritable[]
metadatal.ength

BytesWritable[] metadata

GenerallnfoWritable
mosaiclnfo

MapWritable extraFields

Width size of the tile

Height size of the tile

Number of bands in the tile

Data type of the tile

Starting X pixel, in relation to the source image
Starting Y pixel, in relation to the source image
Width size of the source image

Height size of the source image

Number of bytes containing the pixels of the tile and stored into
baseArray

Array containing the bytes representing the tile pixels, each cell
represents a band

Array containing the int values representing the tile palette, each
array represents a band. Each integer represents an entry for
each color in the color table, there are four entries per color

Array containing the int values representing the color
interpretation, each cell represents a band

Array containing the NODATA values for the image, each cell
contains the value for the related band

Specifies if the tile has projection information with
Byte.MAX_VALUE

Specifies if the tile has the geo transform array information with
Byte.MAX_VALUE

Specifies if the tile has metadata information with
Byte. MAX_VALUE

Specifies the projection information length
Specifies the projection information in bytes

Contains the geo transform array

Number of metadata values in the tile

Array specifying the length of each metadataValue

Array of metadata of the tile

The user-defined information in the mosaic xml. Do not modify
the mosaic output features. Modify the original xml file in a new
name and run the process using the new xml

Map that lists key/value pairs of parameters specific to every tile
to be passed to the reducer phase for analysis

Processing Classes and Methods

When modifying the pixels of the tile, first get the band information into an array using

the following method:

2-18

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

byte [] bandDatal =(byte []) ing.getBand(0);

The bytes representing the tile pixels of band 1 are now in the bandDatal array. The
base index is zero.

The get Band(i nt bandl d) method will get the band of the raster in the specified bandl d
position. You can cast the object retrieved to the type of array of the raster; it could be
byte, short (unsigned int 16 bits, int 16 bits), int (unsigned int 32 bits, int 32 bits), float
(float 32 hits), or double (float 64 bits).

With the array of pixels available, it is possible now to transform them upon a user
request.

After processing the pixels, if the same instance of ImageBandWritable must be used,
then execute the following method:

i ng. renoveBands;

This removes the content of previous bands, and you can start adding the new bands.
To add a new band use the following method:

i ng. addBand(Obj ect band);
Otherwise, you may want to replace a specific band by using trhe following method:
i ng. repl aceBand(Cbj ect band, int bandld)

In the preceding methods, band is an array containing the pixel information, and bandl D
is the identifier of the band to be replaced.. Do not forget to update the instance size,
data type, bytesNumber and any other property that might be affected as a result of
the processing operation. Setters are available for each property.

» Location of the Classes and Jar Files

2.5.4.1 Location of the Classes and Jar Files

All the processing classes must be contained in a single jar file if you are using the
Oracle Image Server Console. The processing classes might be placed in different jar
files if you are using the command line option.

When new classes are visible in the classpath, they must be added to the mosaic XML
in the <process><cl assMapper > Or <pr ocess><cl assReducer > section. Every <cl ass>
element added is executed in order of appearance: for mappers, just before the final
mosaic operation is performed; and for reducers, just after all the processed tiles are
put together in a single data set.

2.5.5 Map Algebra Operations

ORACLE

You can process local map algebra operations on the input rasters, where pixels are
altered depending on the operation. The order of operations in the configuration XML
determines the order in which the operations are processed. After all the map algebra
operations are processed, the processing classes are run, and finally the mosaic
operation is performed.

The following map algebra operations can be added in the <oper ati ons> element in the
mosaic configuration XML, with the operation name serving as an element name. (The
data types for which each operation is supported are listed in parentheses.)

2-19

ORACLE

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

I ocal not : Gets the negation of every pixel, inverts the bit pattern. If the result is a
negative value and the data type is unsigned, then the NODATA value is set. If the
raster does not have a specified NODATA value, then the original pixel is set.
(Byte, Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits)

I ocal | og: Returns the natural logarithm (base e) of a pixel. If the result is NaN,
then original pixel value is set; if the result is Infinite, then the NODATA value is
set. If the raster does not have a specified NODATA value, then the original pixel
is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32
bits, Float 64 bits)

I ocal | 0g10: Returns the base 10 logarithm of a pixel. If the result is NaN, then the
original pixel value is set; if the result is Infinite, then the NODATA value is set. If
the raster does not have a specified NODATA value, then the original pixel is set.
(Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits,
Float 64 bits)

| ocal add: Adds the specified value as argument to the pixel .Example: <l ocal add
arg="5"/>. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float
32 bits, Float 64 bits)

I ocal di vi de: Divides the value of each pixel by the specified value set as
argument. Example: <l ocal di vi de arg="5"/>. (Unsigned int 16 bits, Unsigned int
32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

local i f: Modifies the value of each pixel based on the condition and value
specified as argument. Valid operators: =, <, >, >=, < !=, Example:: <l ocal i f
operator="<" operand="3" newal ue="6"/>, which modifies all the pixels whose
value is less than 3, setting the new value to 6. (Unsigned int 16 bits, Unsigned int
32 hits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

I ocal mul tiply: Multiplies the value of each pixel times the value specified as
argument. Example: <l ocal nul ti ply arg="5"/>. (Unsigned int 16 bits, Unsigned int
32 hits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

| ocal pow: Raises the value of each pixel to the power of the value specified as
argument. Example: <l ocal pow arg="5"/>. If the result is infinite, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 hits, Float 32 bits, Float 64 bits)

I ocal sqrt: Returns the correctly rounded positive square root of every pixel. If the
result is infinite or NaN, the NODATA value is set to this pixel. If the raster does
not have a specified NODATA value, then the original pixel is set. (Unsigned int 16
bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

| ocal subst ract : Subtracts the value specified as argument to every pixel value.
Example: <l ocal substract arg="5"/>. (Unsigned int 16 bits, Unsigned int 32 bits,
Int 16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

I ocal acos: Calculates the arc cosine of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

| ocal asi n: Calculates the arc sine of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

2-20

ORACLE

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

I ocal at an: Calculates the arc tangent of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits,
Int 32 bits, Float 32 bits, Float 64 bits)

I ocal cos: Calculates the cosine of a pixel. If the result is NaN, the NODATA value
is set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32
bits, Float 32 bits, Float 64 bits)

I ocal cosh: Calculates the hyperbolic cosine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

I ocal si n: Calculates the sine of a pixel. If the result is NaN, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32
bits, Float 32 bits, Float 64 bits)

I ocal t an: Calculates the tangent of a pixel. The pixel is not modified if the cosine of
this pixel is 0. If the result is NaN, the NODATA value is set to this pixel. If the
raster does not have a specified NODATA value, then the original pixel is set.
(Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits, Float 32 bits,
Float 64 bits)

I ocal si nh; Calculates the arc hyperbolic sine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

I ocal t anh: Calculates the hyperbolic tangent of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Unsigned int 16 bits, Unsigned int 32 bits, Int
16 bits, Int 32 bits, Float 32 bits, Float 64 bits)

I ocal def i ned: Maps an integer typed pixel to 1 if the cell value is not NODATA,
otherwise, 0. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits,
Float 32 bits)

I ocal undefi ned: Maps an integer typed Raster to 0 if the cell value is not NODATA,;
otherwise, 1. (Unsigned int 16 bits, Unsigned int 32 bits, Int 16 bits, Int 32 bits)

| ocal abs: Returns the absolute value of signed pixel. If the result is Infinite, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set. (Int 16 bits, Int 32 bits, Float 32 bits, Float 64
bits)

| ocal negat e: Multiplies by -1 the value of each pixel. (Int 16 bits, Int 32 bits, Float
32 bits, Float 64 bits)

I ocal cei | : Returns the smallest value that is greater than or equal to the pixel
value and is equal to a mathematical integer. If the result is Infinite, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value,
then the original pixel is set. (Float 32 bits, Float 64 bits)

I ocal fl oor: Returns the smallest value that is less than or equal to the pixel value
and is equal to a mathematical integer. If the result is Infinite, the NODATA value

is set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set. (Float 32 bits, Float 64 bits)

2-21

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

* local round: Returns the closest integer value to every pixel. (Float 32 bits, Float 64
bits)

2.5.6 Multiple Raster Algebra Operations

You can process raster algebra operations that involve more than one raster, where
pixels are altered depending on the operation and taking in consideration the pixels
from all the involved rasters in the same cell.

Only one operation can be processed at a time and it is defined in the configuration
XML using the <mul ti pl eops> element. Its value is the operation to process.

There are two types of operations:

* Basic Multiple Raster Algebra Operations are executed in the reduce phase right
before the Reduce User Processing classes.

* Complex Multiple Raster Algebra Operations are processed in the mapping phase.
» Basic Multiple Raster Algebra Operations

e Complex Multiple Raster Algebra Operations

2.5.6.1 Basic Multiple Raster Algebra Operations

ORACLE

Basic multiple raster algebra operations are executed in the reducing phase of the job.

They can be requested along with a mosaic operation or just a process request. If
requested along with a mosaic operation, the input rasters must have the same MBR,
pixel size, SRID and data type.

When a mosaic operation is performed, only the intersecting pixels (pixels that are
identical in both rasters) are affected.

The operation is processed at the time that mapping tiles are put together in the output
dataset, the pixel values that intersect (if a mosaic operation was requested) or all the
pixels (when mosaic is not requested) are altered according to the requested
operation.

The order in which rasters are added to the data set is the mosaic operation order if it
was requested; otherwise, it is the order of appearance in the catalog.

The following basic multiple raster algebra operations are available:

* add: Adds every pixel in the same cell for the raster sequence.

e substract: Subtracts every pixel in the same cell for the raster sequence.
» divide: Divides every pixel in the same cell for the raster sequence.

e multiply: Multiplies every pixel in the same cell for the raster sequence.

* nin: Assigns the minimum value of the pixels in the same cell for the raster
sequence.

* mx: Assigns the maximum value of the pixels in the same cell for the raster
sequence.

e nean: Calculates the mean value for every pixel in the same cell for the raster
sequence.

2-22

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

* and: Processes binary “and” operation on every pixel in the same cell for raster
sequence, “and” operation copies a bit to the result if it exists in both operands.

e or: Processes binary “or” operation on every pixel in the same cell for raster
sequence, “or” operation copies a bit if it exists in either operand.

» xor: Processes binary “xor” operation on every pixel in the same cell for raster
sequence, “xor” operation copies the bit if it is set in one operand but not both.

2.5.6.2 Complex Multiple Raster Algebra Operations

ORACLE

Complex multiple raster algebra operations are executed in the mapping phase of the
job, and a job can only process this operation; any request for resizing, changing the

SRID, or custom mapping must have been previously executed. The input for this job
is a series of rasters with the same MBR, SRID, data type, and pixel size.

The tiles for this job include a piece of all the rasters in the catalog. Thus, every
mapper has access to an area of cells in all the rasters, and the operation is
processed there. The resulting pixel for every cell is written in the context, so that
reducer can put results in the output data set before processing the reducer
processing classes.

The order in which rasters are considered to evaluate the operation is the order of
appearance in the catalog.

The following complex multiple raster algebra operations are available:

* conbi ne: Assigns a unique output value to each unique combination of input values
in the same cell for the raster sequence.

e mjority: Assigns the value within the same cells of the rasters sequence that is
the most numerous. If there is a values tie, the one on the right is selected.

* minority: Assigns the value within the same cells of the raster sequence that is the
least numerous. If there is a values tie, the one on the right is selected.

e variety: Assigns the count of unique values at each same cell in the sequence of
rasters.

* msk: Generates a raster with the values from the first raster, but only includes
pixels in which the corresponding pixel in the rest of rasters of the sequence is set
to the specified mask values. Otherwise, 0 is set.

e inversenmask: Generates a raster with the values from the first raster, but only
includes pixels in which the corresponding pixel in the rest of rasters of the
sequence is not set to the specified mask values. Otherwise, 0O is set.

* equal s: Creates a raster with data type byte, where cell values equal 1 if the
corresponding cells for all input rasters have the same value. Otherwise, 0 is set.

e unequal : Creates a raster with data type byte, where cell values equal 1 if the
corresponding cells for all input rasters have a different value. Otherwise, 0 is set.

e greater: Creates a raster with data type byte, where cell values equal 1 if the cell
value in the first raster is greater than the rest of corresponding cells for all input.
Otherwise, 0 is set.

e greaterorequal : Creates a raster with data type byte, where cell values equal 1 if
the cell value in the first raster is greater or equal than the rest of corresponding
cells for all input. Otherwise, 0 is set.

2-23

Chapter 2
Processing an Image Using the Oracle Spatial Hadoop Image Processor

* less: Creates a raster with data type byte, where cell values equal 1 if the cell
value in the first raster is less than the rest of corresponding cells for all input.
Otherwise, 0 is set.

e lessorequal : Creates a raster with data type byte, where cell values equal 1 if the
cell value in the first raster is less or equal than the rest of corresponding cells for
all input. Otherwise, 0 is set.

2.5.7 Pyramids

ORACLE

Pyramids are subobjects of a raster object that represent the raster image or raster
data at differing sizes and degrees of resolution.

The size is usually related to the amount of time that an application needs to retrieve
and display an image, particularly over the web. That is, the smaller the image size,
the faster it can be displayed; and as long as detailed resolution is not needed (for
example, if the user has "zoomed out" considerably), the display quality for the smaller
image is adequate.

Pyramid levels represent reduced or increased resolution images that require less or
more storage space, respectively. (Big Data Spatial and Graph supports only reduced
resolution pyramids.) A pyramid level of 0 indicates the original raster data; that is,
there is no reduction in the image resolution and no change in the storage space
required. Values greater than 0 (zero) indicate increasingly reduced levels of image
resolution and reduced storage space requirements.

A single raster is processed for each pyramid request, and the following parameters
apply:

* Pyramid level (required): the maximum reduction level; that is, the number of
pyramid levels to create at a reduced size than the original object. For example,
redLevel =" 6" causes pyramid levels to be created for levels 0 through 5.

The dimension sizes at each lower level are: r(n) =r(n - 1)/2andc(n) = c(n -
1)/ 2 where:

r(n) and c(n) are the row and column sizes for a pyramid at level n

The smaller of the row and column dimension sizes of the top-level overview is
between 64 and 128 (maximum reduced-resolution level): (int) (| og2(a/ 64))
where a is the smaller of the original row or column dimension size.

If an rLevel value greater than the maximum reduced-resolution level is specified,
the rLevel value is set to the maximum reduced-resolution level.

e Resampling algorithm: the resampling method to use.

Must be one of the following: NEAREST_NEI GHBCR, Bl LI NEAR, AVERAGE4, AVERAGELG.
(BI LI NEAR and AVERAGE4 have the same effect.) If no resampling algorithm is
specified, Bl LI NEAR is used by default.

Pyramids can be created while loading multiple rasters or processing a single raster:

e While loading the rasters in HDFS, by adding the - pyrani d parameter to the loader
command line call or by using the API | oader . addPyr ani d()

e For processing a single raster, by adding the operation in the user request XML or
by using the API processor . addPyrami d()

2-24

Chapter 2
Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

2.5.8 Output

When you specify an HDFS directory in the configuration XML, the output generated is
an .ohif file as in the case of an | mageLoader job,

When the user specifies a FS directory in the configuration XML, the output generated
is an image with the filename and type specified and is stored into regular FileSystem.

In both the scenarios, the output must comply with the specifications set in the
configuration XML. The job execution logs can be accessed using the command yarn
| ogs -applicationld <applicationld>.

2.6 Loading and Processing an Image Using the Oracle
Spatial Hadoop Raster Processing API

ORACLE

The framework provides a raster processing API that lets you load and process rasters
without creating XML but instead using a Java application. The application can be
executed inside the cluster or on a remote node.

The API provides access to the framework operations, and is useful for web service or
standalone Java applications.

To execute any of the jobs, a HadoopConfi gur ati on object must be created. This object
is used to set the necessary configuration information (such as the jar file name and
the GDAL paths) to create the job, manipulate rasters, and execute the job. The basic
logic is as follows:

I/ Creates Hadoop Configuration

HadoopConfi guration hadoopConf = new HadoopConfi guration();

/| Assi gns GDAL_DATA | ocation based on specified SHAREDDIR, this data folder is
required by gdal to look for data tables that allow SRID conversions

String gdal Data = sharedDir + ProcessConstants. DI RECTORY_SEPARATCR + "data";

hadoopConf . set Cdal Dat aPat h(gdal Dat a) ;

//Sets jar name for processor

hadoopConf . set Mapr educeJobJar (" hadoop- i magepr ocessor.jar");

//Creates the job

Rast er ProcessorJob processor = (RasterProcessorJob)
hadoopConf . creat eRast er Processor Job() ;

If the API is used on a remote node, you can set properties in the Hadoop
Configuration object to connect to the cluster. For example:

[/ Following config settings are required for standal one execution. (REMOTE
ACCESS)
hadoopConf . set User ("hdfs");
hadoopConf . set Hdf sPat hPref i x("hdfs://den00bt b. us. oracl e. com 8020") ;
hadoopConf . set Resour ceManager Schedul er (" den00bt b. us. oracl e. com 8030") ;
hadoopConf . set Resour ceManager Addr ess(" den00bt b. us. oracl e. com 8032");
hadoopConf . set Yar nAppl i cati onC asspat h("/ et c/ hadoop/ conf/,/usr/lib/
hadoop/ *, [usr/1ib/ hadoop/lib/*, " +
"[usr/lib/hadoop-hdfs/*, /usr/lib/hadoop-
hdfs/1ib/*,/usr/lib/hadoop-yarn/*," +
“[usr/lib/hadoop-yarn/lib/*, [usr/lib/hadoop-
mapr educe/ *, [usr/|i b/ hadoop- mapreduce/lib/* ");

2-25

Chapter 2
Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

After the job is created, the properties for its execution must be set depending on the
job type. There are two job classes: Rast er Loader Job to load the rasters into HDFS, and
Rast er Processor Job to process them.

The following example loads a Hawaii raster into the APICALL_HDFS directory. It
creates a thumbnail in a shared folder, and specifies 10 pixels overlapping on each
edge of the tiles.

private static void executelLoader (HadoopConfiguration hadoopConf){
hadoopConf . set Mapr educeJobJar ("hadoop- i magel oader.jar");
Rast er Loader Job | oader = (RasterLoader Job)
hadoopConf . creat eRast er Loader Job() ;
| oader . set Fi | esToLoad("/ net/den00bt b/ scrat ch/ zherena/ hawai i / hawaii.tif");
| oader. set Ti | eQverlap("10");
| oader . set Qut put Fol der (" APl CALL");
| oader . set Rast er Thunbnai | Fol der ("/ net/ den00bt b/ scrat ch/ zher ena/
processQut put");

tryf
| oader . set Gdal Pat h("/ net/den00bt b/ scrat ch/ zherenal/ gdal /1ib");

bool ean | oader Success = | oader. execute();
i f (I oaderSuccess){
Systemout. println("Successfully executed |oader job");

}
el se{

Systemout.printIn("Failed to execute | oader job");
}

}cat ch(Exception e){
Systemout. println("Probl emwhen trying to execute raster |oader " +
e. get Message());
}
}
}

The following example processes the loaded raster.

private static void executeProcessor(HadoopConfiguration hadoopConf){
hadoopConf . set Mapr educeJobJar ("hadoop- i mageprocessor.jar");
Rast er Processor Job processor = (RasterProcessorJob)

hadoopConf . creat eRast er Processor Job() ;

tryf
processor. set Gdal Pat h("/ net/den00bt b/ scrat ch/ zherena/ gdal /i b");
Mbsai cConfi guration nmosai ¢ = new Msai cConfiguration();
mosai c. set Bands(3) ;
mosai c. set Directory("/ net/den00bt b/ scrat ch/ zher enal/ processQut put");
mosai c. set Fi | eNanme(" APl Mbsai ¢");
mosai c. set Fi | eSyst en{ Rast er Processor Job. FS);
mosai c. set For mat (" GTI FF") ;
mosai c. set Hei ght (3192) ;
mosai c. set NoDat a(" #FFFFFF") ;
mosai ¢. set Order Al gori t hn(ProcessConst ants. ALGORI TMH_FI LE_LENGTH) ;
mosai c. set Order ("1");
mosai c. set Pi xel Type("1");
mosai c. set Pi xel XW dt h(67. 457513) ;
mosai c. set Pi xel YW dt h(-67.457513);
mosai c. set Sri d("26904");
mosai c. set Upper Lef t X(830763. 281336) ;
mosai c. set Upper Lef t Y(2259894. 481403) ;
mosai c. set Wdt h(1300);
processor. set Mbsai cConfi gurati onCbj ect (nosai . get Conpact Msai c());

ORACLE 2-26

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

Rast er Cat al og catal og = new RasterCatal og();

Raster raster = new Raster();

raster. setBands(3);

raster.setBandsOrder("1,2,3");

raster.setDataType(1);

raster.set RasterLocation("/user/hdfs/ APl CALL/ net/den00bt b/ scrat ch/ zher ena/
hawai i / hawaii.tif.ohif");

cat al og. addRast er ToCat al og(raster);

processor. set Cat al ogCbj ect (cat al og. get Conpact Cat al og());
bool ean processor Success = processor. execute();
i f (processorSuccess){
System out. println("Successfully executed processor job");

}
el se{

Systemout.printIn("Failed to execute processor job");
}

}catch(Exception e){
Systemout. println("Probl emwhen trying to execute raster processor " +
e. get Message());

}

In the preceding example, the thumbnail is optional if the mosaic results will be stored
in HDFS. If a processing jar file is specified (used when the additional user processing
classes are specified), the location of the jar file containing these lasses must be
specified. The other parameters are required for the mosaic to be generated
successfully.

Several examples of using the processing API are provided / opt/ or acl e/ or acl e-
spati al - graph/ spati al / rast er/ exanpl es/ j ava/ src. Review the Java classes to
understand their purpose. You may execute them using the scripts provided for each
example located under / opt/ oracl e/ oracl e- spati al - graph/ spati al / rast er/ exanpl es/
javal cmd.

After you have executed the scripts and validated the results, you can modify the Java
source files to experiment on them and compile them using the provided script / opt /
oracl e/ oracl e-spatial -graph/ spati al / raster/ exanpl es/java/ bui | d. xm . Ensure that you
have write access on the / opt/oracl e/ oracl e-spati al - graph/ spatial /raster/jlib
directory.

2.7 Using the Oracle Spatial Hadoop Raster Simulator
Framework to Test Raster Processing

ORACLE

When you create custom processing classes. you can use the Oracle Spatial Hadoop
Raster Simulator Framework to do the following by "pretending" to plug them into the
Oracle Raster Processing Framework.

» Develop user processing classes on a local computer

» Avoid the need to deploy user processing classes in a cluster or in Big Data Lite to
verify their correct functioning

» Debug user processing classes
» Use small local data sets

e Create local debug outputs

2-27

ORACLE

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

e Automate unit tests

The Simulator framework will emulate the loading and processing processes in your
local environment, as if they were being executed in a cluster. You only need to create
a Junit test case that loads one or more rasters and processes them according to your
specification in XML or a configuration object.

Tiles are generated according to specified block size, so you must set a block size.
The number of mappers and reducers to execute depends on the number of tiles, just
as in regular cluster execution. OHIF files generated during the loading process are
stored in local directory, because no HDFS is required.

e Simulator (“Mock”) Objects
e User Local Environment Requirements

e Sample Test Cases to Load and Process Rasters

Simulator (“Mock”) Objects

To load rasters and convert them into .OHIF files that can be processed, a

Rast er Loader JobMbck must be executed. This class constructor receives the

HadoopConf i gur ati on that must include the block size, the directory or rasters to load,
the output directory to store the OHIF files, and the gdal directory. The parameters
representing the input files and the user configuration vary in terms of how you specify
them:

* Location Strings for catalog and user configuration XML file
» Catalog object (Cat al ogMock)

e Configuration objects (Mbsai cProcessConfi gurati onMbck or
Si ngl eProcessConfi gurati onMock)

e Location for a single raster processing and a user configuration
(Mbsai cProcessConfi gurati onMck or Si ngl eProcessConf i gur ati onMbck)

User Local Environment Requirements
Before you create test cases, you need to configure your local environment.

1. 1. Ensure that a directory has the native gdal libraries, gdal - data and | i bpr oj .
For Linux:

a. Follow the steps in Getting and Compiling the Cartographic Projections Library
to obtain I'i bproj . so.

b. Get the gdal distribution from the Spatial installation on your cluster or
BigDataLite VM at / opt/ oracl e/ or acl e-spati al - graph/ spati al / rast er/ gdal .

c. Move libproj.so to your local gdal directory under gdal /1 i b with the rest of the
native gdal libraries.

For Windows:

a. Get the gdal distribution from your Spatial install on your cluster or BigDataL.ite
VM at /opt/oracl e/ oracl e-spati al -graph/ spati al / rast er/ exanpl es/ j ava/
mock/ |i b/ gdal _wi ndows. x64. zi p.

b. Be sure that Visual Studio installed. When you install it, make sure you select
the Common Tools for Visual C++.

2-28

ORACLE

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

c. Download the PROJ 4 source code, version branch 4.9 from https://
trac.osgeo.org/proj4j.

d. Open the Visual Studio Development Command Prompt and type:

cd PRQJ4/src_dir
nmeke /f makefile.vc

e. Move proj.dll to your local gdal directory under gdal / bi n with the rest of the
native gdal libraries.

Add GDAL native libraries to system path.

For Linux: Export LD_LIBRARY_PATH with corresponding native gdal libraries
directory

For Windows: Add to the Path environment variable the native gdal libraries
directory.

Ensure that the Java project has Junit libraries.

Ensure that the Java project has the following Hadoop jar and Oracle Image
Processing Framework files in the classpath You may get them from the Oracle
BigDataLite VM or from your cluster; these are all jars included in the Hadoop
distribution, and for specific framework jars, go to / opt/ or acl e/ or acl e- spati al -
graph/spatial /raster/jlib:

(In the following list, VERSI ON_I NCLUDED refers to the version number from the
Hadoop installation containing the files; it can be a BDA cluster or a BigDatal.ite
VM.)

commons- col | ecti ons- VERSI ON_| NCLUDED. j ar

commons- confi gurati on- VERSI ON_I NCLUDED. j ar

comons- | ang- VERSI ON_I NCLUDED. j ar

comons- | oggi ng- VERSI ON_| NCLUDED. | ar

conmmons- mat h3- VERSI ON_| NCLUDED. j ar

gdal .jar

guava- VERSI ON_| NCLUDED. j ar

hadoop- aut h- VERSI ON_I NCLUDED- cdhVERSI ON_I NCLUDED. j ar
hadoop- common- VERSI ON_| NCLUDED- cdhVERSI ON_| NCLUDED. j ar
hadoop- i magel oader. j ar

hadoop- i magenocki ng- f wk. j ar

hadoop- i mageprocessor. jar

hadoop- mapr educe-cl i ent - cor e- VERSI ON_I| NCLUDED- cdhVERSI ON_| NCLUDED. j ar
hadoop-raster-fwk-api.jar

j ackson- core-asl - VERSI ON_I NCLUDED. j ar

j ackson- mapper - asl - VERS| ON_| NCLUDED. j ar

| 0g4j - VERSI ON_I NCLUDED. j ar

sl f4j - api - VERSI ON_| NCLUDED. j ar

sl f4j -1 0g4j 12- VERSI ON_| NCLUDED. j ar

Sample Test Cases to Load and Process Rasters

After your Java project is prepared for your test cases, you can test the loading and
processing of rasters.

The following example creates a class with a set Up method to configure the directories
for gdal, the rasters to load, your configuration XML files, the output thumbnails, ohif
files, and process results. It also configures the block size (8 MB). (A small block size
is recommended for single computers.)

/**

* Set the basic directories before starting the test execution

2-29

https://trac.osgeo.org/proj4j
https://trac.osgeo.org/proj4j

ORACLE

Chapter 2
Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing

*/

@efore

public void setUp(){
String sharedDir = "C\\Users\\zherena\\ Oracle Stuff\\Hadoop\\Rel ease 4\

\ MockTest ";

String all AccessDir = sharedDir + "/out/";
gdalDir = sharedDir + "/gdal";
directoryToLoad = al | AccessDir + "rasters";
xm Dir = sharedDir + "/xms/";
outputDir = allAccessDir;
bl ockSi ze = §;

}

The following example creates a RasterLoaderJobMock object, and sets the rasters to
load and the output path for OHIF files:
/**
* Loads a directory of rasters, and generate ohif files and thunbnails
* for all of them
* @hrows Exception if there is a problemduring |oad process
*|
@est
public void basiclLoad() throws Exception {
Systemout. println("***LOAD OF DI RECTORY W THOUT EXPANSI ON***"):
HadoopConfi gurati on conf = new HadoopConfiguration();
conf. set Bl ockSi ze(bl ockSi ze);
Systemout. printIn("Set block size of: " +
conf. get Property("dfs. bl ocksi ze"));
Rast er Loader JobMock | oader = new Rast er Loader JobMck(conf,
outputDir, directoryToLoad, gdalDir);
//Puts the ohif file directly in the specified output directory
| oader . dont ExpandQut putDir();
Systemout.printIn("Starting execution");

| oader . wai t For Conpl etion();

System out. println("Finished | oader");
Systemout. println("LOAD OF DI RECTORY W THOUT EXPANSI ON ENDED');
Systemout. printin();

Systemout. println();

}

The following example specifies catalog and user configuration XML files to the
Rast er Processor JobMock object. Make sure your catal og xm points to the correct
location of your local OHIF files.
/**
* Creates a nosaic raster by using configuration and catal og xnis.
* Only two bands are selected per raster.
* @hrows Exception if there is a problemduring nosaic process.
*|
@est
public void nosai cUsi ngXm s() throws Exception {
System out. println("***MOSAI C PROCESS USI NG XMLS***");
HadoopConfi guration conf = new HadoopConfi guration();
conf. set Bl ockSi ze(bl ockSi ze);
Systemout.printIn("Set block size of: " +
conf. get Property("dfs. bl ocksi ze"));
String catalogXml = xm Dir + "catal og. xm";
String configXm = xmDir + "config.xm";

2-30

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

Rast er Processor JobMock processor = new RasterProcessor JobMck(conf, configXm,
catal ogXm, gdalDir);
Systemout. println("Starting execution");

processor. wai t For Conpl etion();
System out. print|n("Finished processor");
System OUt.print|n("***|VDSA|C
PRmEss USI NG XM_S EN[ID***");
Systemout. println();
Systemout. println();

Additional examples using the different supported configurations for

Rast er Processor JobMck are provided in / opt/ oracl e/ or acl e- spati al - graph/ spati al /
rast er/ exanpl es/ j ava/ nock/ src.They include an example using an external processing
class, which is also included and can be debugged.

2.8 Oracle Big Data Spatial Raster Processing for Spark

Oracle Big Data Spatial Raster Processing for Apache Spark is a spatial raster
processing API for Java.

This API allows the creation of new combined images resulting from a series of user-
defined processing phases, with the following features:

« HDFS images storage, where every block size split is stored as a separate tile,
ready for future independent processing

e Subset, mosaic, and raster algebra operations processed in parallel using Spark to
divide the processing.

e Support for GDAL formats, multiple bands images, DEMs (digital elevation
models), multiple pixel depths, and SRIDs

e Spark Raster Loader
* Spark SQL Raster Processor
* Using the Spark Raster Processing API

2.8.1 Spark Raster Loader

ORACLE

The first step in using the raster processing for Spark Java APl is to have the images
in HDFS, followed by having the images separated into smart tiles. This allows the
processor to work on each tile independently. The Spark raster loader lets you import
a single image or a collection of them into HDFS in parallel, which decreases the load
time. Each block contains data for all the raster bands, so that if further processing is
required on specific pixels, the information can be processed on a single node.

The basic workflow for the Spark raster loader is as follows.

1. GDAL is used to import the rasters, tiling them according to block size and then
storing each tile as an HDFS block.

2. The set of rasters to be loaded is read into a Spati al Rast er JavaRDD, which is an
extension of JavaRDD. This RDD is a collection of | magePi eceW i t abl e objects that
represent the information of the tiles to create per raster, based on the number of

2-31

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

bands, pixel size, HDFS block size, and raster resolution. This is accomplished by
using the custom input format used in the spatial Hadoop loader.

The raster information for each tile is loaded. This load is performed by an
executor for each tile, so reading is performed parallel. Each tile includes a certain
number of overlapping bytes (user input), so that the tiles cover area from the

adjacent tiles. There are “n” number of Spark executors, depending on the number
of tiles, image resolution, and block size.

The RDD is grouped by key, so that all the tiles that correspond to the same raster
are part of the same record. This RDD is saved as OHIF using the

Chi f Qut put For mat , which puts together all the information loaded by the executors
and stores the images into a special . ohi f format, which contains the resolution,
bands, offsets, and image data. In this way, the file offset containing each tile and
the node location is known. A special reading process is required to read the
image back and is included in the Spark SQL raster processor.

Each tile contains information for every band. This is helpful when there is a need to
process only a few tiles; then, only the corresponding blocks are loaded.

The loader can be configured by setting parameters on the command line or by using
the Spark API.

Input Parameters to the Spark Raster Loader

Expected Output of the Spark Raster Loader

2.8.1.1 Input Parameters to the Spark Raster Loader

ORACLE

The following example shows input parameters supplied using the spark-submit
command:

spar k- subni t

-class <DRI VER_CLASS>
--driver-nenory <DRI VER_JVM>
--driver-class-path <DRI VER_CLASSPATH>
--jars <EXECUTORS_JARS>
<DRI VER_JAR>
-files <SOURCE_| McS_PATH>
-out <HDFS_OUTPUT_FOLDER>
-gdal <GDAL_LIB_PATH>
-gdal Data <GDAL_DATA PATH>
[-overlap <OVERLAPPI NG Pl XELS>]
[-thumbnai | <THUVBNAI L_PATH>]
[-expand <fal se|true>]

Where:

DRI VER_CLASS is the class that has the driver code and that Spark will execute.
DRI VER_JVMis the memory to assign to driver’'s JVM.
DRI VER_CLASSPATH is the classpath for driver class, jars are separated by colon.

EXECUTOR _JARS is the classpath to be distributed to executors, jars are separated by
comma.

DRI VER JAR is the jar that contains the <DRIVER_CLASS> to execute by Spark.

SOURCE_I MGS_PATH is a path to the source raster(s) or folder(s). For multiple inputs
use a comma separator. This path must be accessible via NFS to all nodes in the
cluster.

2-32

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

* HDFS_QUTPUT_FOLDER is the HDFS output folder where the loaded images are stored.

e OVERLAPPI NG PI XELS is an optional number of overlapping pixels on the borders of
each tile, if this parameter is not specified a default of two overlapping pixels is
considered.

e GDAL_LIB_PATHis the path where GDAL libraries are located.

e GDAL_DATA PATHIis the path where GDAL data folder is located. This path must be
accessible through NFS to all nodes in the cluster.

* THUMBNAI L_PATHis an optional path to store a thumbnail of the loaded image(s).
This path must be accessible through NFS to all nodes in the cluster and must
have write access permission for yarn users.

e -expand controls whether the HDFS path of the loaded raster expands the source
path, including all directories. If you set this to f al se, the . ohi f file is stored directly
in the output directory (specified using the - o option) without including that
directory’s path in the raster.

Each tile contains information for every band. This is helpful when there is a need to
process only a few tiles; then, only the corresponding blocks are loaded.

The loader can be configured by setting parameters on the command line or by using
the Spark API.

2.8.1.2 Expected Output of the Spark Raster Loader

For each input image to the Spark raster loader, there are two output files per input
image.

* The .ohif file that concentrates all the tiles for the source image. Each tile (stored
as a HDFS block) may be processed as a separated instance by a processing
executor. The . ohi f file is stored in a user-specified folder with - out flag, under /
user/ <USER_EXECUTI NG JOB>/ OUT_FOLDER/ <PARENT DI RECTORI ES_OF SOURCE_RASTER> if
the flag —expand was not used. Otherwise, the . ohi f file will be located at / user/
<USER_EXECUTI NG_JOB>/ QUT_FOLDER/ , and the file can be identified as
original _filenane.ohif.

» Arelated metadata file that lists all the pieces of the image and the coordinates
that each one covers. This file is located in HDFS under the spatial _raster/
net adat a location, and its name is hash-generated using the name of the . ohi f file.
This file is for Oracle internal use only, and lists important metadata of the source
raster. Some example lines from a metadata file:

si ze: 3200, 2112

srid: 26904

datatype: 1

resol ution: 27. 90809458890406, - 27. 90809458890406
file:/user/hdfs/ohiftest/opt/shareddir/spatial/data/rasters/hawaii.tif.ohif
bands: 3

nbr: 532488. 7648166901, 4303164. 583549625, 582723. 3350767174, 4269619. 053853762
0, 532488. 7648166901, 4303164. 583549625, 582723. 3350767174, 4269619. 053853762

t hunbnai | pat h: / opt/ shareddi r/ spati al / t hunb/

If the -t hunbnai | flag was specified, a thumbnail of the source image is stored in the
related folder. This is a way to visualize a translation of the . ohi f file. Execution logs
can be accessed using the command yarn | ogs -applicationld <applicationld>.

ORACLE 2-33

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

2.8.2 Spark SQL Raster Processor

ORACLE

Once the images are loaded into HDFS, they can be processed using Spark SQL
Raster Processor. You specify the expected raster output features using the Mosaic
Definition XML Structure or the Spark API, and the mosaic UDF filters the tiles to fit
into that output and processes them. Raster algebra operations are also available in
UDF.

A custom | nput For mat , which is also used in the Hadoop raster processing framework,
loads specific blocks of data, based on the input (mosaic description or a single raster)
using raster SRID and coordinates, and selects only the bands and pixels that fit into
the final output before accepting processing operations:

» For a mosaic processing request, only the intersecting tiles are selected, and a
split is created for each one of them.

» For a single raster processing request, all the tiles are selected, and a split is
created for each one of them.

The Spark SQL Raster Processor allows you to filter the OHIF tiles based on input
catalog or raster into a Dataframe, with every row representing a tile, and to use
Spatial UDF Spark functions to process them.

A simplified pseudocode representation of Spark SQL raster processing is:

sql Context.udf ().register("local op", new

Local Operati onsFunction(), Dat aTypes. creat eStruct Type(Spati al Rast er JavaRDD. cr eat eSi npl
eTileStructFiel d(dataTypeO Ti | eToProcess)));

tileRows. regi sterTenpTabl e("tiles");

String query = "SELECT | ocal op(tilelnfo, userRequest, \"localnot\"), userRequest
FROM tiles";

Dat aFrane processedTiles = sql Context.sqgl (query);

The basic workflow if the Spark SQL raster processor is as follows.

1. The rasters to process are first loaded in tiles metadata as RDD. These tiles may
be filtered if the user set a configuration for mosaic operation. The RDD is later
converted to a Spark DataFrame of two complex rows: the first row is til el nf o,
which has all the metadata for the tiles, and the second row is the user Request ,
which has the user input configuration listing the expected features of the raster
output.

2. Once the DataFrame is created, the driver must register the “localop” UDF, and
also register the DataFrame as a table before executing a query to process. The
mosaic UDF can only be executed if the user configured all the required
parameters correctly. If no XML is used and the configuration is set using the API,
then by default a mosaic operation configuration is expected unless the
set Execut eMbsai ¢(f al se) method is set.

3. The mosaic operation selects from every tile only the pixels that fit into the output,
and makes the necessary resolution changes to add them in the mosaic output.

4. Once the query is executed, an executor loads the data corresponding tile,
conserving data locality, and the specified local raster algebra operation is
executed.

5. The row in the DataFrame is updated with the new pixel data and returned to the
driver for further processing if required.

2-34

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

Once the processing is done, the DataFrame is converted to a list of

| mageBandW i t abl e objects, which are the MapReduce representation of processed
tiles. These are input to the ProcessedRast er Cr eat or, where resulting bytes of local
raster algebra and/or mosaic operations are put together, and a final raster is
stored into HDFS or the regular file system depending on the user request.

Only images with same data type (pixel depth) as the user configuration input data
type (pixel depth) are considered. Only the tiles that intersect with coordinates
specified by the user for the mosaic output are included. For processing of a single
raster, the filter includes all the tiles of the input rasters, because the processing will be
executed on the complete images.

Input Parameters to the Spark SQL Raster Processor

Expected Output of the Spark SQL Raster Processor

2.8.2.1 Input Parameters to the Spark SQL Raster Processor

ORACLE

The following example shows input parameters supplied using the spark-submit
command:

spar k- subni t

-cl ass <DRI VER_CLASS>
--driver-menory <DRI VER JVW>
--driver-class-path <DRI VER_CLASSPATH>
--jars <EXECUTORS_JARS>
<DRI VER_JAR>
-config <MOSAI C_CONFI G_PATH>
-gdal <GDAL_LI BRARI ES_PATH>
-gdal Data <GDAL_DATA PATH>
[-catal og <I MAGE_CATALOG PATH>]
[-file <SINGLE_RASTER PATH>]

Where:

DRI VER_CLASS is the class that has the driver code and that Spark will execute.
DRI VER_JWMis the memory to assign to driver’'s JVM.
DRI VER_CLASSPATH is the classpath for driver class, jars are separated by colon.

EXECUTOR JARS is the classpath to be distributed to executors, jars are separated by
comma.

DRI VER_JARis the jar that contains the <DRIVER_CLASS> to execute by Spark.

MOSAI C_CONFI G_PATH is the path to the mosaic configuration XML, which defines the
features of the output.

GDAL_LI BRARI ES_PATH is the path where GDAL libraries are located.

GDAL_DATA_PATH is the path where the GDAL data folder is located. This path must
be accessible via NFS to all nodes in the cluster.

| MAGE_CATALQG PATH is the path to the catalog xml that lists the HDFS image(s) to
be processed. This is optional because you can also specify a single raster to
process using —file flag.

SI NGLE_RASTER PATH is an optional path to the .ohif file that will be processed by the
job. If this is set, you do not need to set a catalog.

The following example command will process all the files listed in the catalog file
i nput SPARK. xm using the mosaic output definition set in the test FS. xni file.

2-35

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

spark-subnit --class oracle.spatial.spark.raster.test.Spatial RasterTest --driver-
menory 2048m --driver-class-path /opt/oracle/oracle-spatial-graph/spatial/raster/
j1iblhadoop-raster-fwk-api.jar:/opt/oracle/oracle-spatial-graph/spatial/raster/jlib/
gdal .jar:/opt/oracle/oracl e-spatial -graph/spatial/raster/jlib/hadoop-

i magel oader. jar:/opt/oracle/oracl e-spatial -graph/spatial/raster/jlib/hadoop-

i mageprocessor.jar --jars /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/
hadoop- i magel oader.jar,/opt/oracl e/ oracl e-spati al - graph/ spatial /raster/jlib/hadoop-
i mageprocessor.jar,/opt/oracl el oracl e-spatial -graph/spatial/raster/jlib/

gdal .jar /opt/oraclel/oracle-spatial-graph/spatial/raster/jlib/spark-raster-fwk-
api.jar -taskType al gebra -catal og /opt/shareddir/spatial/data/xm s/input SPARK xm -
config /opt/shareddir/spatial/data/xms/testFS. xm -gdal /opt/oraclel/oracle-spatial-
graph/spatial /raster/gdal/lib —gdal Data /opt/shareddir/data

2.8.2.2 Expected Output of the Spark SQL Raster Processor

For Spark processing, only file system output is supported, which means that the
output generated is an image with the file name and type specified and is stored in a
regular FileSystem.

The job execution logs can be accessed using the command yarn | ogs -applicationld
<appl i cationl d>.

2.8.3 Using the Spark Raster Processing API

You can use the Spark raster API to load and process rasters by creating the driver
class.

Some example classes are provided under / opt/ or acl e/ or acl e- spati al - graph/ spati al /
raster/exanpl es/javal/src. The /opt/oracl e/ oracl e-spatial -graph/ spatial /raster/
exanpl es/ j ava/ cmd directory also contains scripts to execute these examples from
command line.

After executing the scripts and validated the results, you can modify the Java source
files to experiment on them and compile them using the provided script / opt / or acl e/
oracl e-spatial -graph/ spatial /raster/exanpl es/java/ bui | d. xni . Ensure that there is
write access on the / opt/oracl e/ oracl e-spati al - graph/ spati al /raster/jlib directory.

For GDAL to work properly, the libraries must be available
using $LD_LIBRARY_PATH. Make sure that the shared libraries path is set properly in
your shell window before executing a job. For example:

export LD LI BRARY_PATH=$ALLACCESSDI R/ gdal / nati ve

» Using the Spark Raster Loader API
» Configuring for Using the Spark SQL Processor API
* Creating the DataFrame

* Using the Spark SQL UDF for Raster Algebra Operations

2.8.3.1 Using the Spark Raster Loader API

ORACLE

To perform image loading, you must create a Spati al Rast er Loader object. This object is
used to set the necessary configuration information for the execution. There are two
ways of creating an instance:

* Send as a parameter the array of arguments received from the command line. For
example:

2-36

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

/largs is the String[] received from command |ine
Spati al Rast er Loader core = new Spati al Rast er Loader Core(args);

» Configure directly in the driver class using the API, which is the subject of this
topic

Using the Loader API, set the GDAL library path, since it will internally initialize the
Spar kCont ext and its corresponding Hadoop configuration. For example:

Spati al Rast er Loader core = new Spati al Rast er Loader();
core. set Gdal Li brary("/opt/sharedddir/spatial/gdal");
core.setFil esToLoad("/opt/shareddir/spatial/rasters");
core. set HDOFSQut put Di rect ory(" ohi f sparktest");

core. set Cdal Data("/ opt/shareddir/data");
core.setOverlap("20");

core. set Thunbnai I Directory("/opt/shareddir/spatial/");

You can optionally change the block size, depending on the most common size of
rasters involved. For example, if the cluster HDFS block size is by default too big (such
as 256 MB) and the average size of the user rasters is 64 MB in average, you should
avoid using HDFS space that contains no real data, because every tile occupies a
block in HDFS even if the pixels do not fill it. In this scenario, you can change the block
side to 64 MB, as in this example:

JavaSpar kCont ext sc = core. get Rast er SparkContext ();
core. get HadoopConfi guration(). set ("dfs. bl ocksi ze", "67108864");

To execute the loader, use the | oadRast ers method, which returns true if rasters were
loaded with success and f al se otherwise. For example:

if (core.loadRasters(sc, StorageLevel.D SK ONLY())) {
LOG info("Successfully | oaded raster files");

}

If the processing finished successfully, the OHIF files are in HDFS and the
corresponding thumbnails are in the specified directory for user validation.

2.8.3.2 Configuring for Using the Spark SQL Processor API

ORACLE

To execute a processor, you must create a Spat i al Rast er Processor object to set the
necessary configuration information for the execution. There are two ways to create an
instance:

e Send as a parameter the array of arguments received from the command line. For
example:

[largs is the String[] received fromcommand |ine
Spati al Rast er Processor processor = new Spati al Raster Processor(args);

« Configure directly in the driver class using the API, which is the subject of this
topic.

Using the Loader API, set the GDAL library path, because it will internally initialize the
Spar kCont ext and its corresponding Hadoop configuration. For example:

Spati al Rast er Processor processor = new Spati al Rast er Processor();
processor. set Gdal Li brary("/opt/sharedddir/spatial /gdal");
processor. set Gdal Dat a("/ opt/sharedddi r/spatial /data");

Specify the rasters that will be processed.

2-37

ORACLE

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

For adding a catalog of rasters to process, especially if a mosaic operation will be
performed, consider the following example:

String ohifPath = "ohifsparktest/opt/shareddir/spatial/data/rasters");
//Creates a catalog to list the rasters to process
Rast er Catal og catal og = new RasterCatal og();

//Creates a raster object for the catal og

Raster raster = new Raster();

[lraster of 3 bands

raster. setBands(3);

[/the tree bands will appear in order 1,2,3. You may list |ess bands here.
raster.setBandsOrder("1,2,3");

[Iraster data type is byte

raster.setDataType(1);

raster.set RasterLocation(ohifPath + "hawaii.tif.ohif");
/1 Add raster to catal og
[/ cat al og. addRast er ToCat al og(raster);

Rast er rasterKahool awe = new Raster();

rast er Kahool awe. set Bands(3) ;

rast er Kahool awe. set BandsOrder ("1, 2, 3");

rast er Kahool awe. set Dat aType(1);

rast er Kahool awe. set Rast er Locat i on(ohi fPath + "kahool awe. tif.ohif");
cat al og. addRast er ToCat al og(r ast er Kahool awe) ;

//Sets the catalog to the job
processor. set Cat al ogCbj ect (cat al og. get Conpact Cat al og());

For processing a single raster, consider the following example:

String ohifPath = "ohifsparktest/opt/shareddir/spatial/data/rasters");
//Set the file to process to the job
processor. set Fi | eToProcess(ohifPath + "NapaDEM tif.ohif");*/

Set the user configuration request, which defines details for the output raster.

If a mosaic operation will be performed, then all the features of the expected
output must be set in a MosaicConfiguration object, including the coordinates. the
following example creates a raster that includes both Hawaii rasters added to the
catalog previously:

Mbsai cConfi guration nosai ¢ = new Msai cConfiguration();
nosai ¢. set For mat (" GTI FF");

nosai c. set Bands(3);

nosai ¢. set Fi | eSyst en{ Rast er Processor Job. FS) ;

mosai c. set Di rectory("/ opt/shareddir/spatial/processtest");
nosai ¢. set Fi | eNanme(" Hawai i | sl ands");

nosai ¢. set Hei ght (986) ;

//value for pixels where there is no data, starts with # followed by
//two characters per band

nosai c. set NoDat a(" #FFFFFF") ;

//byte datatype

nosai c. set Pi xel Type("1");

[/width for pixels in X and Y

nosai ¢. set Pi xel XW dt h(280. 388143) ;

nosai c. set Pi xel YW dt h(-280. 388143) ;

nosai ¢. set Sri d("26904");

[l upper left coordinates

nosai c. set Upper Lef t X(556958. 985610) ;

nosai ¢. set Upper Lef t Y(2350324. 082505) ;

2-38

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

mosai c. set Wdt h(1600) ;

mosai ¢. set Order Al gori t hn(ProcessConst ants. ALGORI THM_FI LE_LENGTH) ;

mosai ¢. set Or der (Rast er Processor Job. DESC) ;

/I mosai ¢ configuration nust be set to the job

processor. set User Request Confi gur ati onCbj ect (mosai c. get Conpact Mosai c());

If a mosaic operation will not be performed, then a much simpler configuration is
required. For example:

Mbsai cConfi guration nmosai ¢ = new Msai cConfiguration();
mosai c. set Execut eMbsai c(fal se);

mosai c. set Bands(1);

mosai c. set Layers("1");

mosai c. set Directory("/opt/shareddir/spatial/processtest");
mosai c. set Fi | eSyst en{ Rast er Processor Job. FS);

mosai c. set NoDat a(" #00") ;

At this point, all required configuration is done. You can now start processing.

2.8.3.3 Creating the DataFrame

Before running queries against the rasters, you must load them into a DataFrame
where every row represents a split. The splits are created into a Spat i al JavaRDD of tiles,
which are then converted to a DataFrame. Depending on your available JVM runtime
memory, it is recommended that you cache the DataFrame in memory or on disk. For
disk caching, your Spark installation must have Kryo.

ORACLE

The DataFrame consists of two complex columns: ti | el nfo and user Request .

tilelnfo: Data for every tile, including not only pixel information but also metadata
details.

Table 2-2 tileinfo Column Data
__|
Column DataType Nullable Description
dstWidthSize Integer False Width
dstHeightSize Integer False Height
bands Integer False Number of bands
dType Integer False Data type
piece Integer False Piece number of total pieces in
source raster
offX Integer False Offset in X
offy Integer False Offsetin Y
sourceWidth Integer False Source raster width
sourceHeight Integer False Source raster height
bytesNumber Integer False Number of bytes
baseArray [[Pixel DataType]] False Array of pixels, one per band
basePaletteArray [[Integer]] True Array of palette interpretation, if
the raster has it, one per band
baseColorArray [Integer] False Array of colors, one per band
noDataArray [Double] False Array of NODATA value, one per
band
Overlap Integer False Number of overlapping pixels

2-39

ORACLE

Chapter 2

Oracle Big Data Spatial Raster Processing for Spark

Table 2-2 (Cont.) tileinfo Column Data
]

Column DataType Nullable Description
leftOv Byte False Flag to indicate if there are any
overlapping pixels on the left
rightOv Byte False Flag to indicate if there are any
overlapping pixels on the right
upOv Byte False Flag to indicate if there are any
overlapping pixels on the top
downOv Byte False Flag to indicate if there are any
overlapping pixels on the bottom
projectionRef String False Projection reference
geoTransform [Double] False Geo Transformation array
Metadata [String] False Location metadata
lastModified Long False Source raster last modification
date
imageLength Double False Source raster length
datalLength Integer True Number of bytes after mosaic
xCroplnit Integer True Pixel start in X after mosaic
yCroplnit Integer True Pixel start in Y after mosaic
xCropLast Integer True Pixel end in X after mosaic
yCropLast Integer True Pixel end in Y after mosaic
catalogOrder Integer False Order in the catalog
baseMountPoint String False Source raster path
sourceResolution String False Source raster resolution
extraFields [String] True Extra fields map, NA

user Request : User request configuration, where expected output raster features are

defined.

Table 2-3 userRequest Column Data

Column DataType Nullable Description

offset Long False Offset

piece Integer False Piece number

splitSize Long False Split size

bandsToAdd String False Bands to include in output
ie.“1,2,3"

upperLeftX Double True Coordinate of output in X
upper left, used when
mosaic is requested

upperLeftY Double True Coordinate of output in Y
upper left, used when
mosaic is requested

lowerRightX Double True Coordinate of output in X

lower right, used when
mosaic is requested

2-40

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

Table 2-3 (Cont.) userRequest Column Data

|
Column DataType Nullable Description

lowerRightY Double True Coordinate of outputin Y
lower right, used when
mosaic is requested

width Integer True Output width, used when
mosaic is requested

height Integer True Output height, used when
mosaic is requested

srid String True Output SRID, used when
mosaic is requested

order String True Output order , Ascendant or
Descendant, used when
mosaic is requested

format String True Output GDALformat, used
when mosaic is requested
noData String False Output NODATA value, a #

followed by two digits per
band, i.e. for 3 band output

“#000000”

pixelType String True Output GDAL Data type,
used when mosaic is
requested

Directory String False Output directory

pixelXWidth Double True Output pixel width, used
when mosaic is requested

pixelYWidth Double True Output pixel height, used
when mosaic is requested

wkt String False Source projection reference

mosaicWkt String True Output projection reference,
used when mosaic is
requested

processingClasses String True User processing classes to
execute, still not supported
in Spark

reducingClasses String True User reducing classes to
execute, still not supported
in Spark

tempOut String True Temporary output folder

when HDFS output is
requested, still not
supported in Spark

filename String False Output filename

contextld String False Execution context Id

sourceResolution String False Source raster resolution

catalogOrder Integer False Source raster order in
catalog

executeMosaic Boolean False Flag to indicate if mosaic

operation is requested or not

ORACLE 241

Chapter 2
Oracle Big Data Spatial Raster Processing for Spark

The following example creates a DataFrame and displays information about it:

JavaSpar kCont ext sc = processor. get Rast er Spar kCont ext () ;

Spati al Rast er JavaRDD<Cener al | nf oW it abl e> spati al RDD = processor. get ProcessSplits();
Hi veCont ext sgl Context = new Hi veContext(sc.sc());

DataFrane tileRows = spatial RDD. createSpatial Ti | eDat aFr ame(sql Cont ext,

St orageLevel . DI SK_ ONLY());

Row[] rows = tileRows.collect();

Systemout.printIn("First Tile info: ");
Systemout.printIn("Wdth " + rows[0].getStruct(0).getInt(0));
Systemout.printIn("Height " + rows[0].getStruct(0).getlnt(1));
Systemout.printIn("Total width " + rows[0].getStruct(0).getlnt(
Systemout. printIn("Total height " + rows[0].getStruct(0).getlnt
Systemout.printIn("File " + rows[0].getStruct(0).getString(30));

) .

7)),
(8));

Systemout.printIn("First Tile User request data: ");

Systemout.printIn("Bands to add " + rows[0].getStruct(1).getString(3));

2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations

ORACLE

A Spark UDF | ocal op allows the execution of the raster algebra operations described

in Map Algebra Operations for processing images using the Hadoop image processor.
The operation names and supported data types for the Spark SQL UDF are the same
as for Hadoop

Before any query is executed, the driver class must register the UDF and must register
the tiles' DataFrame as a temporary table. For example:

sqgl Context.udf ().register("local op", new Local OperationsFunction(),

Dat aTypes. creat eStruct Type(Spat i al Rast er JavaRDD. cr eat eSi npl eTi | eStruct Fi el d(dat aTypeO
fTil eToProcess)));
til eRows. regi sterTenmpTabl e("tiles");

Now that localop UDF is registered, it is ready to be used. This function accepts two
parameters:

e Atilelnforow

» A string with the raster algebra operations to execute. Multiple operations may be
executed in the same query, and they must be separated by a semicolon. For
operations that receive parameters, they must be separated by commas.

The function returns the ti | el nf o that was sent to query, but with the pixel data
updated based on the executed operations.

Following are some examples for the execution of different operations.

String query = "SELECT | ocal op(tilelnfo, \"local not\"),
user Request FROM tiles";

String query = "SELECT | ocal op(tilelnfo,\"local add, 456; | ocal di vi de, 2;
localif,>0,12;1ocal nultiply, 20;
| ocal pow, 2; | ocal substract, 4;
| ocal sqgrt; | ocal acos\"),
user Request FROM tiles";

String query = "SELECT | ocal op(tilelnfo,\"localnot;|ocal atan; | ocal cos;
| ocal asin; | ocal tan; | ocal cosh;
localtanh\"), userRequest FROMtiles";

2-42

Chapter 2
Oracle Big Data Spatial Vector Analysis

To execute the query, enter the following:

Dat aFrane cachedTil es = processor. quer yAndCache(query, sql Context);

This new DataFrame has the updated pixels. You can optionally save the content of a
specific tile as a TIF file, in which it will be stored in the configured output directory. For
example:

Row[] pRows = cachedTiles.collect();
processor. debugTi | eBySavi ngTi f (pRows[0] ,
processor. get HadoopConfi guration());

To execute the mosaic operation, first perform any raster algebra processing, and then
perform the mosaic operation. A new Spark UDF is used for the mosaic operation; it
receives the til el nf o and user Request columns, and returns the updated ti | el nf o that
fits in the mosaic. For example:

sql Context . udf (). register("nosaic", new MsaicFunction(),

Dat aTypes. creat eStruct Type(Spat i al Rast er JavaRDD. cr eat eSi npl eTi | eStruct Fi el d(dat aTypeO
fTil eToProcess)));
cachedTi | es. regi st er TenpTabl e(" processedTi | es");
String queryMsaic = "SELECT mosaic(tilelnfo, userRequest), userRequest
FROM processedTi | es";
Dat aFrame nosai cTil es = processor. queryAndCache(quer yMbsai c,
sqgl Context);

After the processing is done, you can put together the tiles into the output raster by
using ProcessedRast er Cr eat or , which receives a temporary HDFS directory for internal
work, the DataFrame to merge, and the Spark Context from the Hadoop configuration.
This will create the expected output raster in the specified output directory. For
example:

try {
ProcessedRast er Creator creator = new ProcessedRasterCreator();

creator.create(new Text("createQutput"), nosaicTiles,
sc. hadoopConfiguration());
LOG i nfo("Fi ni shed");
} catch (Exception e) {
LOG error("Failed processor job due to " + e.getMessage());
throw e;

2.9 Oracle Big Data Spatial Vector Analysis

ORACLE

Oracle Big Data Spatial Vector Analysis is a Spatial Vector Analysis API, which runs
as a Hadoop job and provides MapReduce components for spatial processing of data
stored in HDFS.

These components make use of the Spatial Java API to perform spatial analysis tasks.
There is a web console provided along with the API.

e Multiple Hadoop API Support

Spatial Indexing
* Using MVSuggest
e Spatial Filtering

2-43

Chapter 2
Oracle Big Data Spatial Vector Analysis

» Classifying Data Hierarchically

* Generating Buffers

e Spatial Binning

e Spatial Clustering

e Spatial Join

e Spatial Partitioning

* RecordinfoProvider

* Hierarchylnfo

* Using JGeometry in MapReduce Jobs
» Support for Different Data Sources
* Job Registry

* Tuning Performance Data of Job Running Times Using the Vector Analysis API

2 See Also:
See the following topics for understanding the implementation details:

e RecordInfoProvider
e Hierarchylnfo
e Using JGeometry in MapReduce Jobs

e Tuning Performance Data of Job Running Times Using the Vector
Analysis API

2.9.1 Multiple Hadoop API Support

Oracle Big Data Spatial Vector Analysis provides classes for both the old and new
(context objects) Hadoop APIs. In general, classes in the mapred package are used
with the old API, while classes in the mapreduce package are used with the new API

The examples in this guide use the old Hadoop API; however, all the old Hadoop
Vector API classes have equivalent classes in the new API. For example, the old class
oracl e. spati al . hadoop. vect or . mapred. j ob. Spati al | ndexi ng has the equivalent new
class named or acl e. spati al . hadoop. vect or . mapreduce. j ob. Spati al | ndexi ng. In general,
and unless stated otherwise, only the change from mapr ed to mapr educe is needed to
use the new Hadoop API Vector classes.

Classes such as oracl e. spati al . hadoop. vect or . Recor dI nf 0, which are not in the
mapred or mapreduce package, are compatible with both Hadoop APIs.

2.9.2 Spatial Indexing

ORACLE

A spatial index is in the form of a key/value pair and generated as a Hadoop MapFile.
Each MapFile entry contains a spatial index for one split of the original data. The key
and value pair contains the following information:

« Key: a split identifier in the form: path + start offset + length.

2-44

Chapter 2
Oracle Big Data Spatial Vector Analysis

* Value: a spatial index structure containing the actual indexed records.

The following figure depicts a spatial index in relation to the user data. The records are
represented as rl, r2, and so on. The records are grouped into splits (Split 1, Split 2,
Split 3, Split n). Each split has a Key-Value pair where the key identifies the split and
the value identifies an Rtree index on the records in that split.

User Data
rl r2 r3 rd rs5 ré r7 r8 r9
I | |' |
Split 1 Split 2 Split 3 Splitn
. . . .
| |
Key Value Key Value Key Value Key Value
Split 1 Rtree{rl,r2,3} Split 2 Rtree{rd,r5,r6} Split3 Rtree{r7,r8,r9} SplitN Rtree{rn-2,rn-1, rn}

Spatial Index

e Spatial Indexing Class Structure

e Configuration for Creating a Spatial Index

e Spatial Index Metadata

e Input Formats for a Spatial Index

e Support for GeoJSON and Shapefile Formats

¢ Removing a Spatial Index

2.9.2.1 Spatial Indexing Class Structure

ORACLE

Records in a spatial index are represented using the class

oracl e. spati al . hadoop. vect or. Recor dl nf o. A Recor dI nf o typically contains a subset of
the original record data and a way to locate the record in the file where it is stored. The
specific Recor dl nf o data depends on two things:

* |nputFormat used to read the data
e Recordl nfoProvi der implementation, which provides the record's data

The fields contained within a Recor dl nf o:

e Id: Text field with the record Id.
e Geometry: JGeonet ry field with the record geometry.

« Extra fields: Additional optional fields of the record can be added as hame-value
pairs. The values are always represented as text.

e Start offset: The position of the record in a file as a byte offset. This value depends
on the | nput For mat used to read the original data.

* Length: The original record length in bytes.

« Path: The file path can be added optionally. This is optional because the file path
can be known using the spatial index entry key. However, to add the path to the

2-45

Chapter 2
Oracle Big Data Spatial Vector Analysis

Recor dl nf o instances when a spatial index is created, the value of the configuration
property oracl e. spatial . recordl nfo.incl udePat hFi el d key is set to t rue.

2.9.2.2 Configuration for Creating a Spatial Index

ORACLE

A spatial index is created using a combination of Fi | eSplit | nput For mat ,

Spat i al | ndexi ngMapper , | nput For mat , and Recor dI nf oPr ovi der, where the last two are
provided by the user. The following code example shows part of the configuration
needed to run a job that creates a spatial index for the data located in the HDFS
folder / user/ dat a.

[l nput

conf. set| nput Format (Fi | eSplitlnput Format. cl ass);

Fi | eSplitlnputFormat. setlnputPaths(conf, new Path("/user/data"));

Fi | eSplitlnputFormat.setlnternal | nput Format O ass(conf, GeoJsonl nput Format. cl ass);
Fi | eSplitlnputFormat. set Recordl nf oProvi der d ass(conf,

GeoJsonRecor dI nf oProvi der. cl ass) ;

[/l out put

conf. set Qut put For mat (MapFi | eQut put For mat . cl ass);
Fi | eQut put For mat . set Qut put Pat h(conf, new Path("/user/data_spatial _i ndex"));

[| mapper

conf. set Mapper O ass(Spati al | ndexi ngMapper . cl ass) ;
conf. set Qut put Keyd ass(Text. cl ass);
conf. set Qut put Val ued ass(RTreeWi tabl e. cl ass);

In this example,

e TheFileSplitlnputFormat is set as the job I nput Format . Fi | eSplitInput Format is a
subclass of Conposi t el nput For mat (W apper | nput For mat in the new Hadoop API
version), an abstract class that uses another | nput For mat implementation
(i nt ernal I nput For mat) to read the data. The internal | nput For mrat and the
Recor dI nf oProvi der implementations are specified by the user and they are set to
GeoJsonl nput For mat and GeoJsonRecor dI nf oPr ovi der , respectively.

e The MapFi | eQut put For mat is set as the Qut put For mat in order to generate a MapFi | e

* The mapper is set to Spati al | ndexi ngMappper . The mapper output key and value
types are Text (splits identifiers) and RTreeWi t abl e (the actual spatial indexes).

* No reducer class is specified so it runs with the default reducer. The reduce phase
is needed to sort the output MapFile keys.

Alternatively, this configuration can be set easier by using the

oracl e. spatial . hadoop. vect or. mapred. j ob. Spati al | ndexi ng class. Spati al | ndexi ng is a
job driver that creates a spatial index. In the following example, a Spati al | ndexi ng
instance is created, set up, and used to add the settings to the job configuration by
calling the confi gure() method. Once the configuration has been set, the job is
launched.

Spati al I ndexi ng<LongWi tabl e, Text> spatial I ndexing = new
Spati al I ndexi ng<LongWitable, Text>();

[/path to input data

spati al I ndexi ng. set I nput ("/user/data");

2-46

Chapter 2
Oracle Big Data Spatial Vector Analysis

[Ipath of the spatial index to be generated

spati al | ndexi ng. set Qut put ("/ user/data_spatial _i ndex");

[linput format used to read the data

spati al | ndexi ng. set I nput For mat O ass(Text | nput For mat . ¢l ass);

[lrecord info provider used to extract records information

spati al I ndexi ng. set Recor dl nf oProvi der G ass(Twi tt er LogRecor dl nf oPr ovi der. cl ass) ;
//add the spatial indexing configuration to the job configuration

spati al | ndexi ng. confi gure(j obConf);

[lrun the job

Jobd i ent. runJob(jobConf);

2.9.2.3 Spatial Index Metadata

ORACLE

A metadata file is generated for every spatial index that is created. The spatial index
metadata can be used to quickly find information related to a spatial index, such as the
number of indexed records, the minimum bounding rectangle (MBR) of the indexed
data, and the paths of both the spatial index and the indexed source data. The spatial
index metadata can be retrieved using the spatial index name.

A spatial index metadata file contains the following information:

e Spatial index name

e Path to the spatial index

* Number of indexed records

* Number of local indexes

+ Extra fields contained in the indexed records

e Geometry layer information such as th SRID, dimensions, tolerance, dimension
boundaries, and whether the geometries are geodetic or not

e The following information for each of the local spatial index files: path to the
indexed data, path to the local index, and MBR of the indexed data

The following metadata proeprties can be set when creating a spatial index using the
Spat i al | ndexi ng class:

e indexNane: Name of the spatial index. If not set, the output folder name is used.
* netadataDir: Path to the directory where the metadata file will be stored.

— By default, it will be stored in the following path relative to the user directory:
oracl e_spatial /i ndex_met adat a. If the user is hdfs, it will be / user/ hdf s/
oracl e_spatial /i ndex_net adat a.

e overwiteMetadata: If settotrue, then when a spatial index metadata file already
exists for a spatial index with the same i ndexNane in the current et adat aDi r, the
spatial index metadata will be overwritten. If set to f al se and if a spatial index
metadata file already exists for a spatial index with the same i ndexNane in the
current net adat abi r, then an error is raised.

2-47

Chapter 2
Oracle Big Data Spatial Vector Analysis

The following example sets the metadata directory and spatial index name, and
specifies to overwrite any existing metadata if the index already exists:

spatial I ndexi ng. set Met adat aDi r ("/ user/ hdf s/ nyl ndexMet adatabDi r");
spati al I ndexi ng. set | ndexName("t est | ndex");
spati al I ndexi ng. set Overw i t eMet adat a(true);

An existing spatial index can be passed to other jobs by specifying only the i ndexName
and optionally the i ndexMet adat aDi r where the index metadata can be found. When the
index name is provided, there is no need to specify the spatial index path and the input
format.

The following job drivers accept the i ndexNane as a parameter:

° oracle.spatial.hadoop.vector. mapred.job. Categorization
e oracle.spatial.hadoop. vector. mapred.job. Spatial Filter
° oracle.spatial.hadoop. vector. mapred.job.Binning

e Any driver that accepts oracl e. spati al . hadoop. vect or . | nput Dat aSet , such as
Spatial Joi n and Parti tioni ng

If the index name is not found in the i ndexMet adat aDi r path, an error is thrown
indicating that the spatial index could not be found.

The following example shows a spatial index being set as the input data set for a
binning job:

Bi nni ng bi nning = new Binning();
bi nni ng. set | ndexName("i ndexExanpl e");
bi nni ng. set I ndexMet adat aDi r ("i ndexMet adatabDir");

2.9.2.4 Input Formats for a Spatial Index

ORACLE

An | nput For mat must meet the following requisites to be supported:

e It must be a subclass of Fi | el nput For mat .

e The get Splits() method must return either Fil eSplit or ConbineFileSplit split
types.

e For the old Hadoop API, the Recor dReader 's get Pos() method must return the
current position to track back a record in the spatial index to its original record in
the user file. If the current position is not returned, then the original record cannot
be found using the spatial index.

However, the spatial index still can be created and used in operations that do not
require the original record to be read. For example, additional fields can be added
as extra fields to avoid having to read the whole original record.

Note:

The spatial indexes are created for each split as returned by the

get Splits() method. When the spatial index is used for filtering (see
Spatial Filtering), it is recommended to use the same | nput For nat
implementation than the one used to create the spatial index to ensure
the splits indexes can be found.

2-48

Chapter 2
Oracle Big Data Spatial Vector Analysis

The get Pos() method has been removed from the Hadoop new API; however,
org. apache. hadoop. mapreduce. | i b. i nput . Text | nput For mat and Conbi neText | nput For mat
are supported, and it is still possible to get the record start offsets.

Other input formats from the new API are supported, but the record start offsets will
not be contained in the spatial index. Therefore, it is not possible to find the original
records. The requirements for a new API input format are the same as for the old API.
However, they must be translated to the new APIs Fi | el nput Format, Fil eSplit, and
Conbi neFi l eSplit.

2.9.2.5 Support for GeoJSON and Shapefile Formats

The Vector API comes with | nput For mat and Recor dI nf oPr ovi der implementations for
GeoJSON and Shapefile file formats.

The following I nput For mat / Recor di nf oPr ovi der pairs can be used to read and interpret
GeoJSON and ShapeFiles, respectively:

oracl e. spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat /
oracl e. spatial . hadoop. vect or. geoj son. GeoJsonRecor dI nf oPr ovi der

oracl e. spatial . hadoop. vect or. shapefi | e. mapred. ShapeFi | el nput For mat /
oracl e. spatial . hadoop. vect or. shapefi | e. ShapeFi | eRecor dI nf oPr ovi der

More information about the usage and properties is available in the Javadoc.

2.9.2.6 Removing a Spatial Index

A previously generated spatial index can be removed by executing the following.

oracl e. spatial . hadoop. vector. util.Tool s removeSpati al I ndex i ndexNanme=<I NDEX_NAME>
[i ndexMet adat aDi r =<PATH>] [renovel ndexFi | es=<true|fal se*>]

Where:

* indexNane: Name of a previously generated index.

e indexMetadataDir (optional): Path to the index metadata directory. If not specified,
the following path relative to the user directory will be used: oracle_spatial/
index_metadata

* renovel ndexFi | es (optional): true if generated index map files need to be removed
in addition to the index metadata file. By default, it is f al se.

2.9.3 Using MVSuggest

ORACLE

M/Suggest can be used at the time of spatial indexing to get an approximate location for
records that do not have geometry but have some text field. This text field can be used
to determine the record location. The geometry returned by MWSuggest is used to
include the record in the spatial index.

Because it is important to know the field containing the search text for every record,
the Recor dI nf oPr ovi der implementation must also implement

Local i zabl eRecor dI nf oProvi der . Alternatively, the configuration parameter
oracle.spatial.recordlnfo.locationFieldcan be set with the name of the field
containing the search text. For more information, see the Javadoc for

Local i zabl eRecor dl nf oProvi der .

2-49

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

A standalone version of M/Suggest is shipped with the Vector API and it can be used in
some jobs that accept the WSConfi g as an input parameter.

The following job drivers can work with WSuggest and all of them have the
set WSConfi g() method which accepts an instance of WSConfi g:

* oracle.spatial.hadoop.vector.mapred.job.Spatialindexing: has the option of using
MSuggest to get approximate spatial location for records which do not contain
geometry.

e oracle.spatial.hadoop.vector.mapred.job.Categorization: WSuggest can be used to
assign a record to a specific feature in a layer, for example, the feature California
in the USA states layer.

» oracle.spatial.hadoop.vector.mapred.job.SuggestService: A simple job that
generates a file containing a search text and its match per input record.

The MVSuggest configuration is passed to a job using the MVSConfig or the
LocalMVSConfig classes. The basic MVSuggest properties are:

e servicelocation: It is the minimum property required in order to use M/Suggest . It
contains the path or URL where the WSuggest directory is located or in the case of
a URL, where the WSuggest service is deployed.

e servicelnterfaceType: the type of M/Suggest implementation used. It can be
LOCAL (default) for a standalone version and WEB for the web service version.

e mtchLayers: an array of layer names used to perform the searches.

When using the standalone version of M/Suggest , you must specify an WSuggest
directory or repository as the servi ceLocati on. An WSuggest directory must have the
following structure:

mvsuggest _config.json

repository fol der
one or nore layer tenplate files in .json format
optionally, a _config_ directory
optionally, a _geonanes_ directory

The exanpl es folder comes with many layer template files and a _confi g_ directory with
the configuration for each template.

It is possible to set the repository folder (the one that contains the templates) as the
mvsLocation instead of the whole WSuggest directory. In order to do that, the class
Local WSConfi g can be used instead of WSConfi g and the reposi torylLocati on property
must be set to true as shown in the following example:

Local WSConfig | nwsConf = new Local WSConfig();

| mvsConf . set Servi ceLocation(“file:///home/user/nvs_dir/repository/”);
I mvsConf . set Reposi toryLocation(true);

| mvsConf . set Persi st ent Servi ceLocation(“/user/hdfs/hdfs_nvs_dir");
spati al | ndexi ngJoh. set MisConfi g(| mvsConf);

The preceding example sets a repository folder as the MVS service location.

set Reposi t oryLocati on is set to true to indicate that the service location is a repository
instead of the whole MW/Suggest directory. When the job runs, a whole MW/Suggest
directory will be created using the given repository location; the repository will be
indexed and will be placed in a temporary folder while the job finishes. The previously
indexed WSuggest directory can be persisted so it can be used later. The preceding
example saves the generated MWSuggest directory in the HDFS path / user/ hdf s/

hdf s_nvs_di r. Use the MVSDirectory if the WSuggest directory already exists.

2-50

Chapter 2
Oracle Big Data Spatial Vector Analysis

2.9.4 Spatial Filtering

ORACLE

Once the spatial index has been generated, it can be used to spatially filter the data.
The filtering is performed before the data reaches the mapper and while it is being
read. The following sample code example demonstrates how the

Spati al Fil terlnput Format is used to spatially filter the data.

//set input path and format

Fi | el nput For mat . set | nput Pat hs(conf, new Path("/user/data/"));
conf. set | nput For mat (Spati al Fil terlnput Format. cl ass);

//set internal input format

Spatial Fi |l terlnput Format.set!|nternal I nput Format O ass(conf, Text|nput Format. cl ass);
if(spatiallndexPath I'= null)
{

//set the path to the spatial index and put it in the distributed cache

bool ean useDi stributedCache = true;
Spatial Fil terlnput Format. set Spati al | ndexPat h(conf, spatial | ndexPat h,
useDi stri butedCache);

}

el se

{

//as no spatial index is used a Recordl nfoProvider is needed

Spatial Fi | terlnput Format. set Recor dl nf oProvi der C ass(conf,
Twi tt er LogRecor dI nf oProvi der. cl ass);

}

//set spatial operation used to filter the records

Spati al OperationConfig spatial QpConf = new Spati al OperationConfig();

spati al OpConf. set Operation(Spatial Operation. |slnside);

spati al OpConf. set JsonQuer yW ndow(" {\"type\":\"Pol ygon\", \"coordi nates\":
[[-106.64595, 25.83997, -106.64595, 36.50061, -93.51001, 36.50061, -93.51001,
25.83997 , -106.64595, 25.83997]1}");

spati al OpConf . set Sri d(8307);

spati al OpConf. set Tol erance(0.5);

spati al OpConf. set Geodetic(true);

Spatial Fi | terlnput For mat has to be set as the job's I nput For mat . The I nput For nat that
actually reads the data must be set as the internal | nput For mat . In this example, the
internal | nput For mat is Text | nput For mat .

If a spatial index is specified, it is used for filtering. Otherwise, a Recor dl nf oPr ovi der
must be specified in order to get the records geometries, in which case the filtering is
performed record by record.

As a final step, the spatial operation and query window to perform the spatial filter are
set. It is recommended to use the same internal | nput For mat implementation used
when the spatial index was created or, at least, an implementation that uses the same
criteria to generate the splits. For details see "Input Formats for a Spatial Index."

If a simple spatial filtering needs to be performed (that is, only retrieving records that
interact with a query window), the built-in job driver

2-51

Chapter 2
Oracle Big Data Spatial Vector Analysis

oracl e. spati al . hadoop. vect or. mapred. j ob. Spati al Fi | ter can be used instead. This job
driver accepts indexed or non-indexed input and a Spat i al Qper ati onConfi g to perform
the filtering.

Filtering Records

Filtering Using the Input Format

2.9.4.1 Filtering Records

The following steps are executed when records are filtered using the
Spati al Fi | terlnput For mat and a spatial index.

ORACLE

1.

Spatial Fil terlnput For mat get Recor dReader () method is called when the mapper
requests a Recor dReader for the current split.

The spatial index for the current split is retrieved.

A spatial query is performed over the records contained in it using the spatial
index.

As a result, the ranges in the split that contains records meeting the spatial filter
are known. For example, if a split goes from the file position 1000 to 2000, upon
executing the spatial filter it can be determined that records that fulfill the spatial
condition are in the ranges 1100-1200, 1500-1600 and 1800-1950. So the result of
performing the spatial filtering at this stage is a subset of the original filter
containing smaller splits.

An Internall nput For mat Recor dReader is requested for every small split from the
resulting split subset.

A RecordReader is returned to the caller mapper. The returned RecordReader is
actually a wrapper RecordReader with one or more RecordReaders returned by
the internal | nput For mat .

Every time the mapper calls the RecordReader, the call to next method to read a
record is delegated to the internal RecordReader.

These steps are shown in the following spatial filter interaction diagram.

2-52

Chapter 2

Oracle Big Data Spatial Vector Analysis

Mapper SpatialFilterlnputFormat

SpatialFilterlnputFormat’s
RecordReader

InternallnputFormat

RecordReader

1- getRecordReader(split)

_—

3 - Spatially filter the curri

2 — Get a spatial index for| the current split

Result: a split subset composed pf smaller splits

ent split using the spatial index

Loop ‘ For each smaller split from the split subset
4- getRecordReader(smallerSplit) ,| | newinstance (smallerSplit)
RecordReader | | @ S&—-———————— ‘[j
é 777777777777777777777777
5- new instance (internalRecordReader List, splitSubset)
>
RecordReader €———————————— L]

Loop | | While next record exists ‘

6- next(key, value)

N

next(key, value)

2.9.4.2 Filtering Using the Input Format

ORACLE

A previously generated Spatial Index can be read using the input format
implementation or acl e. spat i al . hadoop. vect or. mapr ed. i nput . Spati al | ndex!| nput For nat
(or its new Hadoop API equivalent with the mapr educe package instead of napr ed).
Spati al | ndexI nput For mat is used just like any other Fi | el nput For mat subclass in that it
takes an input path and it is set as the job’s input format. The key and values returned
are the id (Text) and record information (Recor di nf o) of the records stored in the

spatial index.

Aditionally, a spatial filter opertion can be performed by specifying a spatial operation
configuration to the input format, so that only the records matching some spatial
interaction will be returned to a mapper. The following example shows how to
configure a job to read a spatial index to retrieve all the records that are inside a

specific area.

JobConf conf = new JobConf ();
conf . set Mapper O ass(MyMapper . cl ass) ;

conf. set | nput For mat (Spati al | ndexI nput For mat . cl ass);
Spati al OperationConfig spatial OpConf = new Spati al OperationConfig();
spati al OpConf. set Qperation(Spatial Operation. |slnside);
spati al OpConf . set Quer yW ndow(JGeonet ry. cr eat eLi near Pol ygon(new doubl e[] {47. 70,

-124.28, 47.70,

-95.12, 35.45, -95.12, 35.45, -124.28, 47.70, -124.28}, 2, 8307));

Spati al I ndex| nput Format . set Fi | t er Spati al Operati onConfi g(spati al OpConf, conf);

The mapper in the preceding example can add a nonspatial filter by using the
Recor dI nf o extra fields, as shown in the following example.

2-53

InternallnputFormat’s

Chapter 2
Oracle Big Data Spatial Vector Analysis

public class MyMapper extends MapReduceBase inplenents Mapper<Text, Recordlnfo,
Text, Recordl nfo>{
@verride
public void map(Text key, Recordlnfo value, QutputCollector<Text, Recordlnfo>
output, Reporter reporter)
throws | CException {
if(Integer.valueCf (value.getField("followers_count")) > 0){
output. col | ect (key, val ue);

}
}

2.9.5 Classifying Data Hierarchically

ORACLE

The Vector Analysis API provides a way to classify the data into hierarchical entities.
For example, in a given set of catalogs with a defined level of administrative
boundaries such as continents, countries and states, it is possible to join a record of
the user data to a record of each level of the hierarchy data set. The following example
generates a summary count for each hierarchy level, containing the number of user
records per continent, country, and state or province:

Categorization catJob = new Categori zation();
//set a spatial index as the input

cat Job. set I ndexName("i ndexExanpl e");
//set the job's output
cat Job. set Qut put (" hi erarchy_count");

//set Herarchylnfo inplenentation which describes the world adninistrative
boundari es hierarchy

cat Job. set Hi erar chyl nf oCl ass(Wr | dDynaAdmi nHi erarchyl nfo.class);
/Ispecify the paths of the hierarchy data

Path[] hierarchyDataPaths = {

new Path("file:///home/user/catal ogs/world_continents.json"),

new Path("file:///home/user/catal ogs/world_countries.json"),

new Path("file:///home/user/catal ogs/world_states_provinces.json")};
cat Job. set Hi erar chyDat aPat hs(hi er ar chyDat aPat hs) ;

//set the path where the index for the previous hierarchy data will be generated
cat Job. set Hi erar chyl ndexPat h(new Pat h("/user/ hi erarchy_data_i ndex/"));

//setup the spatial operation which will be used to join records fromthe tw
datasets (spatial index and hierarchy data).

Spati al OperationConfig spatial OpConf = new Spati al OperationConfig();

spati al OpConf. set Operati on(Spatial Operation. |slnside);

spati al OpConf . set Sri d(8307);

spati al OpConf. set Tol erance(0.5);

spati al OpConf. set Geodetic(true);

cat Job. set Spati al Operati onConfi g(spati al OpConf);

//add the previous setup to the job configuration

cat Job. confi gure(conf);

2-54

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

[lrun the job
RunningJob rj = JobCient.runJob(conf);

The preceding example uses the Cat egori zati on job driver. The configuration can be
divided into the following categories:

* Input data: A previously generated spatial index (received as the job input).
* Output data: A folder that contains the summary counts for each hierarchy level.
* Hierarchy data configuration: This contains the following:

— H erarchylnfo class: This is an implementation of Hi er ar chyl nf o class in
charge of describing the current hierarchy data. It provides the number of
hierarchy levels, level names, and the data contained at each level.

— Hierarchy data paths: This is the path to each one of the hierarchy catalogs.
These catalogs are read by the Hi erar chyl nf o class.

— Hierarchy index path: This is the path where the hierarchy data index is stored.
Hierarchy data needs to be preprocessed to know the parent-child
relationships between hierarchy levels. This information is processed once
and saved at the hierarchy index, so it can be used later by the current job or
even by any other jobs.

» Spatial operation configuration: This is the spatial operation to be performed
between records of the user data and the hierarchy data in order to join both
datasets. The parameters to set here are the Spatial Operation type (IsInside),
SRID (8307), Tolerance (0.5 meters), and whether the geometries are Geodetic
(true).

Internally, the Cat egori zati on. confi gure() method sets the mapper and reducer to be
Spat i al Hi erar chi cal Count Mapper and Spati al Hi er ar chi cal Count Reducer , respectively. Spa
tial H erarchi cal Count Mapper's output key is a hierarchy entry identifier in the

form hi erarchy_l evel + hierarchy_entry_id. The mapper output value is a single count
for each output key. The reducer sums up all the counts for each key.

" Note:

The entire hierarchy data may be read into memory and hence the total size
of all the catalogs is expected to be significantly less than the user data. The
hierarchy data size should not be larger than a couple of gigabytes.

If you want another type of output instead of counts, for example, a list of user records
according to the hierarchy entry. In this case, the Spati al Hi erar chi cal Joi nMapper can
be used. The Spati al Hi erar chi cal Joi nMapper output value is a Recor dI nf o instance,
which can be gathered in a user-defined reducer to produce a different output. The
following user-defined reducer generates a MapFile for each hierarchy level using the
Ml ti pl eQut put s class. Each MapFile has the hierarchy entry ids as keys and
ArrayWitabl e instances containing the matching records for each hierarchy entry as
values. The following is an user-defined reducer that returns a list of records by
hierarchy entry:

public class HierarchyJoi nReducer extends MapReduceBase inpl ements Reducer <Text,
Recordlnfo, Text, ArrayWitable> {

private MiltipleCQutputs nmos = null;

2-55

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

private Text outKey = new Text();
private ArrayWitabl e outValue = new ArrayWitabl e(Recordlnfo.class);

@verride
public void configure(JobConf conf)

{

super. configure(conf);
//use MultipleQutputs to generate different outputs for each hierarchy |evel

mos = new Mil ti pl eQut put s(conf);

}
@verride
public void reduce(Text key, Iterator<Recordl nfo> val ues,
Qut put Col | ect or<Text, RecordlnfoArrayWitable> output,
Reporter reporter)

{

I1CGet the hierarchy level name and the hierarchy entry id fromthe key

throws | CException

String[] keyConponents =
H erar chyHel per. get MapRedQut put KeyConmponent s(key. toString());
String hierarchylLevel Nane = keyConponents[0] ;
String entryld = keyConponents[1];
Li st<Witabl e> records = new LinkedLi st<Witabl e>();

//1oad the values to nenory to fill output ArrayWitable
whi | e(val ues. hasNext ())
{

Recordinfo recordinfo = new Recordlnfo(values.next());
records. add(recordinfo);

}
if(!records.isEmty())

{
//set the hierarchy entry id as key
out Key. set (entryld);
[1list of records matching the hierarchy entry id
out Val ue. set (records.toArray(new Witable[]{}));
//get the nanmed output for the given hierarchy |evel
hi erarchyLevel Nanme = FileUtils.toVal i dMONanedQut put (hi erarchyLevel Nane) ;
Qut put Col | ect or<Text, ArrayWitable> mout =

mos. get Col | ect or (hi erarchyLevel Nane, reporter);
//Emt key and val ue
mout . col | ect (out Key, out Val ue);

}

@verride
public void close() throws |OException

{

nos. ¢l ose();

2-56

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

}

The same reducer can be used in a job with the following configuration to generate a
list of records according to the hierarchy levels:

JobConf conf = new JobConf (get Conf());

[linput path

Fi | el nput For mat . set | nput Pat hs(conf, new Path("/user/data_spatial _index/"));

[/ output path

Fi | eQut put For mat . set Qut put Pat h(conf, new Path("/user/records_per_hier_level /"));
[linput format used to read the spatial index

conf. set | nput Format (SequenceFi | el nput For mat . cl ass);

/loutput format: the real output format will be configured for each multiple output
| ater

conf. set Qut put For mat (Nul | Qut put For mat . cl ass) ;

| [mapper

conf. set Mapper 0 ass(Spati al Hi erarchi cal Joi nMapper. cl ass);
conf. set MapQut put Keyd ass(Text. cl ass);

conf . set MapQut put Val ued ass(Recor dl nf 0. cl ass) ;

I'reducer

conf. set Reducer 0 ass(Hi erarchyJoi nReducer. cl ass);

conf. set Qut put KeyC ass(Text. cl ass);

conf. set Qut put Val ued ass(ArrayWitabl e. cl ass);

PELEREEEE LR e e e
/' hierarchy data setup

//set Herarchylnfo class inplementation

conf. set O ass(Confi gPar ams. H ERARCHY_| NFO_CLASS, \Wr | dAdni nHi erar chyl nf o. cl ass,
Hi erar chyl nfo. cl ass);

//paths to hierarchical catalogs

Pat h[] hierarchyDataPaths = {

new Path("file:///home/ user/catal ogs/world_continents.json"),

new Path("file:///home/ user/catal ogs/world_countries.json"),

new Path("file:///home/ user/catal ogs/world_states_provinces.json")};
[/path to hierarchy index

Pat h hi erarchyDat al ndexPath = new Pat h("/user/hierarchy_data_index/");

/linstantiate the Herarchylnfo class to index the data if needed.

Hi erarchylnfo hierarchylnfo = new Wrl dAdm nHi erar chyl nfo();
hi erarchylnfo.initialize(conf);

2-57

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

//Create the hierarchy index if needed. If it already exists, it will only load the
hierarchy index to the distributed cache

Hi er ar chyHel per. set upHi er ar chyDat al ndex(hi er ar chyDat aPat hs, hi er ar chyDat al ndexPat h,
hi erarchylnfo, conf);

I i
[/setup the nultiple named outputs:

int levels = hierarchylnfo.get Nunber Of Level s();
for(int i=1; i<=levels; i++)
{

String | evel Nane = hierarchylnfo.getLevel Nane(i);
//the hierarchy level nane is used as the named out put

String namedQutput = FileUtils.toVali dMONamedQut put (I evel Nane);
Mul ti pl eCut put s. addNanedCQut put (conf, namedCut put, MapFileQut put Format. cl ass,
Text.class, ArrayWitable.class);

}

[/finally, setup the spatial operation

Spati al OperationConfig spatial OpConf = new Spatial OperationConfig();
spati al OpConf. set Operation(Spatial Operation. |slnside);

spati al OpConf . set Sri d(8307);

spati al OpConf. set Tol erance(0.5);

spati al OpConf. set Geodetic(true);

spatial OpConf. store(conf);

[/run job
Jobd i ent.runJob(conf);

Supposing the output value should be an array of record ids instead of an array of
Recor dl nf o instances, it would be enough to perform a couple of changes in the
previously defined reducer.

The line where out Val ue is declared, in the previous example, changes to:

private ArrayWitabl e outValue = new ArrayWitabl e(Text.cl ass);

The loop where the input values are retrieved, in the previous example, is changed.
Therefore, the record ids are got instead of the whole records:

whi | e(val ues. hasNext ())
{

}

records. add(new Text(val ues.next().getld()));

While only the record id is needed the mapper emits the whole Recor dI nf o instance.
Therefore, a better approach is to change the mappers output value. The mappers
output value can be changed by extending Abst ract Spat i al Joi nMapper . In the following
example, the mapper emits only the record ids instead of the whole Recor I nf 0 instance
every time a record matches some of the hierarchy entries:

public class IdSpatial Hi erarchical Mapper extends Abstract Spati al Hi erarchi cal Mapper <
Text >

{

2-58

Chapter 2
Oracle Big Data Spatial Vector Analysis

Text outVal ue = new Text();

@verride
protected Text getQutVal ue(Recordl nfo matchi ngRecordl nfo)

{

//the out value is the record's id

out Val ue. set (mat chi ngRecordi nfo. getld());
return out Val ue;

}

» Changing the Hierarchy Level Range
e Controlling the Search Hierarchy

» Using MVSuggest to Classify the Data

2.9.5.1 Changing the Hierarchy Level Range

By default, all the hierarchy levels defined in the Hi er ar chyl nf o implementation are
loaded when performing the hierarchy search. The range of hierarchy levels loaded is
from level 1 (parent level) to the level returned by Hi er ar chyl nf 0. get Nunber Of Level s()
method. The following example shows how to setup a job to only load the levels 2 and
3.

conf.setInt(ConfigParans. H ERARCHY_LOAD M N_LEVEL, 2);
conf.setlnt(ConfigParans. H ERARCHY_LOAD MAX_LEVEL, 3);

Note:

These parameters are useful when only a subset of the hierarchy levels is
required and when you do not want to modify the Hi er ar chyl nf o
implementation.

2.9.5.2 Controlling the Search Hierarchy

ORACLE

The search is always performed only at the bottom hierarchy level (the higher level
number). If a user record matches some hierarchy entry at this level, then the match is
propagated to the parent entry in upper levels. For example, if a user record matches
Los Angeles, then it also matches California, USA, and North America. If there are no
matches for a user record at the bottom level, then the search does not continue into
the upper levels.

This behavior can be modified by setting the configuration parameter

Conf i gPar ams. HI ERARCHY_SEARCH MULTI PLE_LEVELS to true. Therefore, if a search at the
bottom hierarchy level resulted in some unmatched user records, then search
continues into the upper levels until the top hierarchy level is reached or there are no
more user records to join. This behavior can be used when the geometries of parent
levels do not perfectly enclose the geometries of their child entries

2-59

Chapter 2
Oracle Big Data Spatial Vector Analysis

2.9.5.3 Using MVSuggest to Classify the Data

ORACLE

M/Suggest can be used instead of the spatial index to classify data. For this case, an
implementation of Local i zabl eRecor dlI nf oPr ovi der must be known and sent to
MVSuggest to perform the search. See the information about

Local i zabl eRecor dl nf oProvi der .

In the following example, the program option is changed from spatial to MVS. The
input is the path to the user data instead of the spatial index. The I nput For mat used to
read the user record and an implementation of Local i zabl eRecor dI nf oPr ovi der are
specified. The WSuggest service configuration is set. Notice that there is no spatial
operation configuration needed in this case.

Cat egori zati on<LongWi tabl e, Text> hierCount = new Categorization<LongWitable,
Text>();

/] the input path is the user's data

hi er Count . set I nput ("/user/data/");

/] set the job's output

hi er Count . set Qut put ("/user/ nvs_hi erarchy_count");

/] set Herarchylnfo inplenmentation which describes the world
/1 adm nistrative boundaries hierarchy

hi er Count . set Hi erar chyl nf oCl ass(\Wr | dDynaAdmi nHi er ar chyl nf 0. cl ass) ;
/] specify the paths of the hierarchy data

Path[] hierarchyDataPaths = { new Path("file:///hone/user/catal ogs/
wor | d_continents.json"),

new Path("file:///home/user/catal ogs/world_countries.json"),

new Path("file:///home/user/catal ogs/world_states_provinces.json") };
hi er Count . set Hi er ar chyDat aPat hs(hi er ar chyDat aPat hs) ;

/1 set the path where the index for the previous hierarchy data will be
/'l generated

hi er Count . set H er ar chyl ndexPat h(new Pat h("/user/ hi erarchy_data_i ndex/"));
/1 No spatial operation configuration is needed, Instead, specify the
/1 InputFormat used to read the user's data and the

/1 Local i zabl eRecordl nfoProvi der class.

hi er Count . set | nput For mat O ass(Text | nput For mat . cl ass);
hi er Count . set Recor dl nf oProvi der Cl ass(MyLocal i zabl eRecor dl nf oProvi der. cl ass) ;

/1 finally, set the M/Suggest configuration

Local M/SConfi g | nvsConf = new Local WSConfig();

I mvsConf . set Servi ceLocation("file:///home/user/nvs_dir/oracl emaps_pub");
I mvsConf . set Reposi toryLocation(true);

hi er Count . set MrsConf i g(| nvsConf);

/1 add the previous setup to the job configuration
hi er Count . confi gure(conf);

2-60

Chapter 2
Oracle Big Data Spatial Vector Analysis

[l run the job

Jobd i ent.runJob(conf);

Note:

When using MW/Suggest , the hierarchy data files must be the same as the layer
template files used by M/Suggest . The hierarchy level names returned by the
Hi erar chyl nf 0. get Level Names() method are used as the matching layers by
MWSuggest .

2.9.6 Generating Buffers

The API provides a mapper to generate a buffer around each record's geometry. The
following code sample shows how to run a job to generate a buffer for each record
geometry by using the Buf f er Mapper class.

[/ configure input

conf. set | nput For mat (Fi | eSplit|nput Format. cl ass);

Fi | eSplitlnput Format. set | nput Pat hs(conf, "/user/waterlines/");
Fi | eSplitlnput Format. set Recordl nf oProvi der G ass(conf,
GeoJsonRecor dI nf oPr ovi der . cl ass);

/I configure output
conf . set Qut put For mat (SequenceFi | eQut put For mat . cl ass);
SequenceFi | eQut put For mat . set Qut put Pat h(conf, new Path("/user/data_buffer/"));

//set the BufferMapper as the job nmapper

conf. set Mapper O ass(Buf f er Mapper . cl ass) ;

conf . set MapQut put KeyCl ass(Text. cl ass);

conf. set MapQut put Val ued ass(Recor dl nfo. cl ass);
conf. set Qut put KeyC ass(Text . cl ass);

conf. set Qut put Val ued ass(Recordl nfo. cl ass);

//set the width of the buffers to be generated
conf . set Doubl e(Confi gPar ams. BUFFER_W DTH, 0. 2);

[lrun the job
JobCient.runJob(conf);

Buf f er Mapper generates a buffer for each input record containing a geometry. The
output key and values are the record id and a Recor di nf o instance containing the
generated buffer. The resulting file is a Hadoop MapFi | e containing the mapper output
key and values. If necessary, the output format can be modified by implementing a
reducer that takes the mapper’s output keys and values, and outputs keys and values
of a different type.

Buf f er Mapper accepts the following parameters:

Parameter ConfigParam Type Description
constant

oracle.spatial.buffer.wi BUFFER_WIDTH double The buffer width

dth

ORACLE 2-61

Chapter 2
Oracle Big Data Spatial Vector Analysis

Parameter ConfigParam Type Description
constant

oracle.spatial.buffer.s BUFFER_SMA double The semi major axis

ma for the datum used in
the coordinate system
of the input

oracle.spatial.buffer.iFl BUFFER_IFLAT double The flattening value

at

oracle.spatial.buffer.ar BUFFER_ARCT double The arc tolerance

cT used for geodetic

densification

2.9.7 Spatial Binning

ORACLE

The Vector API provides the class oracl e. spat i al . hadoop. vect or . napr ed. j ob. Bi nni ng to
perform spatial binning over a spatial data set. The Bi nni ng class is a MapReduce job
driver that takes an input data set (which can be spatially indexed or not), assigns
each record to a bin, and generates a file containing all the bins (which contain one or
more records and optionally aggregated values).

A binning job can be configured as follows:

1. Specify the data set to be binned and the way it will be read and interpreted
(I nput For mat and Recor dI nf oPr ovi der), or, specify the name of an existing spatial
index.

Set the output path.
Set the grid MBR, that is, the rectangular area to be binned.
Set the shape of the bins: RECTANGLE or HEXAGON.

@ > @ D

Specify the bin (cell) size. For rectangles, specify the width and height. For
hexagon-shaped cells, specify the hexagon width. Each hexagon is always drawn
with only one of its vertices as the base.

6. Optionally, pass a list of numeric field names to be aggregated per bin.

The resulting output is a text file where each record is a bin (cell) in JSON format and
contains the following information:

¢ id: the binid

e geom: the bin geometry; always a polygon that is a rectangle or a hexagon
e count: the number of points contained in the bin

e aggregated fields: zero or more aggregated fields

The following example configures and runs a binning job:

[lcreate job driver

Bi nni ng<LongWitabl e, Text> binJob = new Binni ng<LongWitable, Text>();
[/setup input

bi nJob. set | nput ("/user/hdfs/input/part*");

bi nJob. set | nput For mat G ass(GeoJsonl nput For mat . cl ass);

bi nJob. set Recor dI nf oProvi der O ass(GeoJsonRecor dI nf oProvi der. cl ass) ;
//set binning output

bi nJob. set Qut put ("/ user/ hdf s/ out put/ bi nni ng");

//create a binning configuration to produce rectangul ar cells

2-62

Chapter 2
Oracle Big Data Spatial Vector Analysis

Bi nni ngConfi g bi nConf = new Bi nni ngConfig();
bi nConf . set Shape(Bi nShape. RECTANGLE) ;

//set the bin size

bi nConf . set Cel | Hei ght (0. 2);

bi nConf . set Cel | Wdt h(0.2);

/Ispecify the area to be binned

bi nConf . set Gi dMbr (new doubl e[]{-50, 10, 50, 40});
bi nJob. set Bi nConf (bi nConf);

//save configuration

bi nJob. confi gure(conf);

[/run job

Jobd i ent.runJob(conf);

2.9.8 Spatial Clustering

ORACLE

The job driver class oracl e. spati al . hadoop. mapr ed. KMeansQ ust eri ng can be used to
find spatial clusters in a data set. This class uses a distributed version of the K-means
algorithm.

Required parameters:

» Path to the input data set, the I nput For mat class used to read the input data set
and the Recor di nf oProvi der used to extract the spatial information from records.

* Path where the results will be stored.
e Number of clusters to be found.

Optional parameters:

e Maximum number of iterations before the algorithm finishes.

e Criterion function used to determine when the clusters converge. It is given as an
implementation of
oracl e. spatial . hadoop. vector. cl uster. knmeans. Cri teri onFunction. The Vector API
contains the following criterion function implementations:
Squar edError CriterionFunction and Eucl i deanDi st anceCriterionFuncti on.

e Animplementation of
oracl e. spati al . hadoop. vector. cl ust er. kneans. O ust er ShapeGener at or, which is
used to generate a geometry for each cluster. The default implementation is
ConvexHul | O ust er ShapeGener at or and generates a convex hull for each cluster. If
no cluster geometry is needed, the Dunmmyd ust er ShapeGener at or class can be used.

* The initial k cluster points as a sequence of x,y ordinates. For example:
x1,y1,x2,y2,...xk,yk

The result is a file named cl ust ers. j son, which contains an array of clusters called
features. Each cluster contains the following information:

e id: Clusterid
« memberCount: Number of elements in the cluster
e geom: Cluster geometry

The following example runs the Kveansd ust eri ng algorithm to find 5 clusters. By
default, the SquredError CriterionFunction and ConvexHul | O ust er ShapeGener at or are
used , so you do not need yo set these classes explicitly. Also note that
runlterations() is called to run the algorithm; internally, it launches one MapReduce
per iteration. In this example, the number 20 is passed to runl terations() as the
maximum number of iterations allowed.

2-63

Chapter 2
Oracle Big Data Spatial Vector Analysis

[lcreate the cluster job driver

KMeansd ust ering<LongWitabl e, Text> clusterJob = new KMeansQ ustering<LongWitabl e,
Text>();

//set input properties:

[linput dataset path

clusterJob. setlnput("/user/hdfs/input/part*");

[/ nput Format cl ass

cl usterJob. set | nput For mat G ass(GeoJsonl nput For mat . cl ass);

/I Recordl nf oProvi der inplenentation

cl ust er Job. set Recor dI nf oPr ovi der O ass(GeoJsonRecor dl nf oPr ovi der. cl ass) ;
//specify where the results will be saved

cl ust erJob. set Qut put ("/user/ hdf s/ out put/clusters");

/15 cluster will be found

cl usterJob. setK(5);

[/run the algorithm

success = clusterJob.runlterations(20, conf);

2.9.9 Spatial Join

ORACLE

The spatial join feature allows detecting spatial interactions between records of two
different large data sets.

The driver class oracl e. spati al . hadoop. vect or. mapr ed. j ob. Spati al Joi n can be used to
execute or configure a job to perform a spatial join between two data sets. The job
driver takes the following inputs:

* Input data sets: Two input data sets are expected. Each input data set is
represented using the class oracl e. spati al . hadoop. vect or. | nput Dat aSet , which
holds information about where to find and how to read a data set, such as path(s),
spatial index, input format, and record info provider used to interpret records from
the data set. It also accepts a spatial configuration for the data set.

e Spatial operation configuration: The spatial operation configuration defines the
spatial interaction used to determine if two records are related to each other. It
also defines the area to cover (MBR), that is, only records within or intersecting the
MBR will be considered in the search.

e Partitioning result file path: An optional parameter that points to a previously
generated partitioning result for both data sets. Data need to be partitioned in
order to distribute the work; if this parameter is not provided, a partitioning process
will be executed over the input data sets. (See Spatial Partitioning for more
information.)

e Output path: The path where the result file will be written.

The spatial join result is a text file where each line is a pair of records that meet the
spatial interaction defined in the spatial operation configuration.

The following table shows the currently supported spatial interactions for the spatial
join.

Spatial Operation Extra Parameters Type
Anylnteract None (NA)
Isinside None (N/A)
WithinDistance oracle.spatial.hadoop.vector.util. SpatialOperationConfig.PA double

RAM_WD_DISTANCE

2-64

Chapter 2
Oracle Big Data Spatial Vector Analysis

For a Wt hi nDi st ance operation, the distance parameter can be specified in the
Spat i al Qper ati onConfi g, as shown in the following example:

spati al OpConf. set Cperati on(Spati al Cperation. Wt hi nDi stance);
spati al OpConf . addPar am(Spat i al Cper ati onConfi g. PARAM WD DI STANCE, 5.0);

The following example runs a Spatial Join job for two input data sets. The first data
set, postal boundaries, is specified providing the name of its spatial index. For the
second data set, tweets, the path to the file, input format, and record info provider are
specified. The spatial interaction to detect is | sl nsi de, S0 only tweets (points) that are
inside a postal boundary (polygon) will appear in the result along with their containing
postal boundary.

Spatial Join spatial Join = new Spatial Join();
Li st <I nput Dat aSet > i nput Dat aSets = new ArrayLi st <l nput Dat aSet >(2);

/] set the spatial index of the 3-digit postal boundaries of the USA as the first
input data set

I nput Dat aSet pbl nput Dat aSet = new | nput Dat aSet ();

pbl nput Dat aSet . set | ndexName(" usa_pch3_i ndex");

/Ino input format or record info provider are required here as a spatial index is
provi ded
i nput Dat aSet s. add(pbl nput Dat aSet) ;

Il set the tweets data set in GeoJSON format as the second data set

I nput Dat aSet tweetsDataSet = new | nputDataSet ();

tweet sDat aSet . set Pat hs(new Pat h[]{new Pat h("/user/exanpl e/tweets.json")});
t weet sDat aSet . set | nput For mat Cl ass(GeoJsonl nput For mat . cl ass) ;

t weet sDat aSet . set Recor dI nf oPr ovi der O ass(GeoJsonRecor dl nf oPr ovi der. cl ass) ;
i nput Dat aSet s. add(t weet sDat aSet) ;

//set input data sets
spati al Joi n. set | nput Dat aSet s(i nput Dat aSet s) ;

/lspatial operation configuration

Spati al QperationConfig spatial OQpConf = new Spati al QperationConfig();
spati al OpConf. set Operation(Spati al Qperation. | sl nside);

spati al OpConf . set Boundari es(new doubl e[]{47.70, -124.28, 35.45, -95.12});
spati al OpConf . set Sri d(8307);

spati al OpConf. set Tol erance(0.5);

spati al OpConf. set Geodetic(true);

spati al Joi n. set Spati al Operati onConfi g(spatial GpConf);

//set output path
spati al Joi n. set Qut put ("/ user/ exanpl e/ spatialjoin");

/'l prepare job

JobConf jobConf = new JobConf (get Conf());

[Ipreprocess will partition both data sets as no partitioning result file was
speci fied

spati al Joi n. preprocess(j obConf);

spati al Joi n. confi gure(j obConf);
JobC i ent.runJob(jobConf);

2.9.10 Spatial Partitioning

The partitioning feature is used to spatially partition one or more data sets.

ORACLE 2-65

Chapter 2
Oracle Big Data Spatial Vector Analysis

Spatial partitioning consists of dividing the space into multiple rectangles, where each
rectangle is intended to contain approximately the same number of points. Eventually
these partitions can be used to distribute the work among reducers in other jobs, such
as Spatial Join.

The spatial partitioning process is run or configured using the
oracl e. spati al . hadoop. mapr ed. j ob. Parti ti oni ng driver class, which accepts the
following input parameters:

* Input data sets: One or more input data sets can be specified. Each input data set
is represented using the class oracl e. spati al . hadoop. vect or . I nput Dat aSet , which
holds information about where to find and how to read a data set, such as path(s),
spatial index, input format, and record info provider used to interpret records from
the data set. It also accepts a spatial configuration for the data set.

e Sampling ratio: Only a fraction of the entire data set or sets is used to perform the
partitioning. The sample ratio is the ratio of the sample size to the whole input data
set size. If it is not specified, 10 percent (0.1) of the input data set size is used.

e Spatial configuration: Defines the spatial properties of the input data sets, such as
the SRID. You must specify at least the dimensional boundaries.

e Output path: The path where the result file will be written.

The generated partitioning result file is in GeoJSON format and contains information
for each generated partition, including the partition’s geometry and the number of
points contained (from the sample).

The following example partitions a tweets data set. Because the sampling ratio is not
provided, 0.1 is used by default.

Partitioning partitioning = new Partitioning();
Li st <I nput Dat aSet > i nput Dat aSets = new ArrayLi st <l nput Dat aSet >(1);

//define the input data set

I nput Dat aSet dataSet = new | nput DataSet ();

dat aSet . set Pat hs(new Pat h[]{new Pat h("/user/exanpl e/ tweets.json")});
dat aSet . set | nput For mat O ass(GeoJsonl nput For mat . cl ass) ;

dat aSet . set Recor dl nf oProvi der O ass(GeoJsonRecor dI nf oPr ovi der . cl ass);
i nput Dat aSet s. add(dat aSet) ;

partitioning. setlnputDataSets(inputDataSets);

//spatial configuration

Spati al Config spatial Conf = new Spatial Config();

spati al Conf. set Srid(8307);

spati al Conf. set Boundari es(new doubl e[] {- 180, - 90, 180, 90}) ;
partitioning.setSpatial Config(spatial Conf);

//set out put
partitioning.setQutput("/user/exanpl e/tweets_partitions.json");

[lrun the partitioning process
partitioning.runFul | Partitioni ngProcess(new JobConf());

2.9.11 RecordInfoProvider

ORACLE

A record read by a MapReduce job from HDFS is represented in memory as a key-
value pair using a Java type (typically) Writable subclass, such as LongWritable, Text,
ArrayWritable or some user-defined type. For example, records read using
TextInputFormat are represented in memory as LongWritable, Text key-value pairs.

2-66

Chapter 2
Oracle Big Data Spatial Vector Analysis

Recor dl nf oProvi der is the component that interprets these memory record
representations and returns the data needed by the Vector Analysis API. Thus, the
APl is not tied to any specific format and memory representations.

The Recordl nf oProvi der interface has the following methods:

e void setCurrentRecord(K key, V value)

e String getld()

e JGeometry getGeometry()

e boolean getExtraFields(Map<String, String> extraFields)

There is always a Recor dI nf oProvi der instance per I nput For mat . The method

set Current Recor d() is called passing the current key-value pair retrieved from the

Recor dReader . The Recor dI nf oProvi der is then used to get the current record id,
geometry, and extra fields. None of these fields are required fields. Only those records
with a geometry participates in the spatial operations. The Id is useful for differentiating
records in operations such as categorization. The extra fields can be used to store any
record information that can be represented as text and which is desired to be quickly
accessed without reading the original record, or for operations where M/Suggest is
used.

Typically, the information returned by RecordInfoProvider is used to populate

Recor dI nf o instances. A RecordInfo can be thought as a light version of a record and
contains the information returned by the RecordInfoProvider plus information to locate
the original record in a file.

* Sample RecordInfoProvider Implementation

* LocalizableRecordInfoProvider

2.9.11.1 Sample RecordInfoProvider Implementation

ORACLE

This sample implementation, called JsonRecor di nf oPr ovi der , takes text records in
JSON format, which are read using Text | nput For mat . A sample record is shown here:

{ "_id":"ABCD1234", "location":" 119.31669, -31.21615", "locationText":"Boston, M",
"date":"03-18-2015", "time":"18:05", "device-type":"cellphone", "device-
nane":"i Phone"}

When a JsonRecordInfoProvider is instantiated, a JSON ObjectMapper is created. The
ObjectMapper is used to parse records values later when set Current Record() is called.
The record key is ignored. The record id, geometry, and one extra field are retrieved
from the _id, location and locationText JSON properties. The geometry is represented
as latitude-longitude pair and is used to create a point geometry using

JGeonetry. creat ePoi nt () method. The extra field (locationText) is added to the
extraFields map, which serves as an out parameter and true is returned indicating that
an extra field was added.

public class JsonRecordl nfoProvider inplenents Recordl nfoProvider<LongWitabl e,
Text> {

private Text value = null;

private Object Mapper jsonMapper = null;

private JsonNode recordNode = null;

publ i c JsonRecor dl nf oProvi der () {

/1json mapper used to parse all the records

2-67

Chapter 2
Oracle Big Data Spatial Vector Analysis

j sonMapper = new Obj ect Mapper () ;

}
@verride
public void setCurrentRecord(LongWitable key, Text value) throws Exception {
try{
/I parse the current val ue
recordNode = j sonMapper.readTree(val ue.toString());
}cat ch(Exception ex){
recordNode = nul|;
t hrow ex;
}
}
@verride
public String getld() {
String id = null;
if(recordNode !'= null){
id = recordNode. get (" _id").get Text Val ue();
}
return id;
}
@verride

public JGeonetry get Geonetry() {

JCGeonetry geom = null;

i f(recordNode! = nulI'){
//location is represented as a lat,lon pair
String location = recordNode. get ("l ocation"). get Text Val ue();
String[] | ocTokens = location.split(",");
doubl e I'at = Doubl e. parseDoubl e(| ocTokens[0]);
doubl e I on = Doubl e. par seDoubl e(l ocTokens[1]);
geom = JCeonetry. createPoi nt(new double[]{lon, lat}, 2, 8307);

}

return geom
}
@verride

public bool ean get ExtraFi el ds(Map<String, String> extraFields) {
bool ean extraFi el dsExi st = fal se;
if(recordNode !'= null) {
extraFiel ds.put("locationText",
recordNode. get ("l ocationText"). get Text Val ue());
extraFiel dsExi st = true;
}

return extraFi el dsExi st;
}
}

2.9.11.2 LocalizableRecordInfoProvider

ORACLE

This interface extends Recor dl nf oProvi der and is used to know the extra fields that can
be used as the search text, when M/Suggest is used.

The only method added by this interface is get Locat i onSer vi ceFi el d(), which returns
the name of the extra field that will be sent to MVSuggest.

2-68

Chapter 2
Oracle Big Data Spatial Vector Analysis

In addition, the following is an implementation based on "Sample RecordinfoProvider
Implementation." The name returned in this example is | ocat i onText , which is the
name of the extra field included in the parent class.

public class Localizabl eJsonRecordl nfoProvi der extends JsonRecordl nfoProvi der
i mpl enents Local i zabl eRecor dI nf oProvi der<LongWitabl e, Text> {

@wverride
public String getLocationServiceField() {
return "locationText";

}
}

An alternative to Local i zabl eRecor dI nf oProvi der is to set the configuration property
oracle.spatial.recordlnfo.locationFiel dwith the name of the search field, which
value should be sent to WSuggest . Example:

configuration.set(Locatizabl eRecordl nfoProvi der. CONF_RECORD | NFO_LOCATI ON_FI ELD,
“locationField")

2.9.12 Hierarchylnfo

The Hi erarchyl nf o interface is used to describe a hierarchical dataset. This
implementation of Hierarchylnfo is expected to provide the number, names, and the
entries of the hierarchy levels of the hierarchy it describes.

The root hierarchy level is always the hierarchy level 1. The entries in this level do not
have parent entries and this level is referred as the top hierarchy level. Children
hierarchy levels will have higher level values. For example: the levels for the hierarchy
conformed by continents, countries, and states are 1, 2 and 3 respectively. Entries in
the continent layer do not have a parent, but have children entries in the countries
layer. Entries at the bottom level, the states layer, do not have children.

A Hierarchylnfo implementation is provided out of the box with the Vector Analysis
API. The DynaAdmi nHi er ar chyl nf o implementation can be used to read and describe the
known hierarchy layers in GeoJSON format. A DynaAdminHierarchylnfo can be
instantiated and configured or can be subclassed. The hierarchy layers to be
contained are specified by calling the addLevel () method, which takes the following
parameters:

* The hierarchy level number

* The hierarchy level name, which must match the file name (without extension) of
the GeoJSON file that contains the data. For example, the hierarchy level name
for the file wor | d_cont i nent's. j son must be wor| d_conti nents, for
worl d_countries.jsonitisworld _countries, and so on.

e Children join field: This is a JSON property that is used to join entries of the
current level with child entries in the lower level. If a null is passed, then the entry
id is used.

» Parent join field: This is a JSON property used to join entries of the current level
with parent entries in the upper level. This value is not used for the top most level
without an upper level to join. If the value is set null for any other level greater than
1, an I sl nsi de spatial operation is performed to join parent and child entries. In this
scenario, it is supposed that an upper level geometry entry can contain lower level
entries.

ORACLE 2-69

Chapter 2
Oracle Big Data Spatial Vector Analysis

For example, let us assume a hierarchy containing the following levels from the
specified layers: 1- world_continents, 2 - world_countries and 3 -
world_states provinces. A sample entry from each layer would look like the following:

wor | d_continents:

{"type":"Feature"," _id":"NA", "geonetry": {"type":"MiltiPolygon", "coordinates":

[X, ¥, V¥, X, y] }"properties”:{"NAVE":"NORTH AVERI CA", "CONTI NENT_LONG LABEL": "North
America"}, "l abel _box":[-118. 07998, 32. 21006, - 86. 58515, 44. 71352] }

worl d_countries: {"type":"Feature","_id":"iso_CAN',"geonetry":
{"type": "Ml tiPol ygon", "coordinates":[x,y,X,y,X,y]}, "properties":
{"NAME": " CANADA", " CONTI NENT": " NA", "ALT_REG ON': "NA", " COUNTRY
CODE": "CAN'}, "l abel _box":[-124.28092, 49. 90408, - 94. 44878, 66. 89287] }

wor | d_st at es_provi nces:

{"type":"Feature"," _id":"6093943", "geonetry": {"type":"Polygon", "coordinates":
[x,y,%y,Xx,y]},"properties": {"COUNTRY": "Canada", "I1SO":"CAN',

" STATE_NAME": "Ontario"}, "l abel _box":[-91.84903, 49. 39557, - 82. 32462, 54. 98426] }

A DynaAdminHierarchylnfo can be configured to create a hierarchy with the above
layers in the following way:

DynaAdmi nHi erar chyl nfo dahi = new DynaAdmi nHi erarchyl nfo();

dahi . addLevel (1, "world_continents", null /*_id is used by default to join with
child entries*/, null /*not needed as there are not upper hierarchy |evels*/);

dahi . addLevel (2, "world_countries", "properties. COUNTRY CODE"/*field used to join
with child entries*/, "properties. CONTI NENT" /*the value "NA" will be used to find
Canada' s parent which is North Anerica and which _id field value is also "NA" */);

dahi . addLevel (3, "world_states_provinces", null /*not needed as not child entries
are expected*/, "properties.|SO'/*field used to join with parent entries. For
Ontario, it is the same value than the field properties. COUNTRY CODE specified for
Canada*/);

//save the previous configuration to the job configuration
dahi.initialize(conf);

A similar configuration can be used to create hierarchies from different layers, such as
countries, states and counties, or any other layers with a similar JSON format.

Alternatively, to avoid configuring a hierarchy every time a job is executed, the
hierarchy configuration can be enclosed in a DynaAdminHierarchylnfo subclass as in
the following example:

public class Wrl dDynaAdm nHi erarchyl nfo extends DynaAdni nHierarchylnfo \

{
publi ¢ Wrl dDynaAdm nHi erar chyl nfo()
{
super () ;
addLevel (1, "world_continents", null, null);
addLevel (2, "world_countries", "properties. COUNTRY CCDE",
"properties. CONTI NENT");
addLevel (3, "world_states_provinces", null, "properties.|SQ");
}
}

ORACLE 2-70

Chapter 2
Oracle Big Data Spatial Vector Analysis

e Sample Hierarchylnfo Implementation

2.9.12.1 Sample HierarchyInfo Implementation

The Hi erarchyl nf o interface contains the following methods, which must be
implemented to describe a hierarchy. The methods can be divided in to the following
three categories:

* Methods to describe the hierarchy
* Methods to load data
* Methods to supply data

Additionally there isaninitialize() method, which can be used to perform any
initialization and to save and read data both to and from the job configuration

void initialize(JobConf conf);
[/ methods to describe the hierarchy

String getlLevel Name(int |evel);
int getLevel Nunber (String | evel Nane);
int getNumber O Level s();

/Imethods to | oad data

voi d | oad(Path[] hierDataPaths, int fromevel, JobConf conf) throws Exception;
voi d | oadFrom ndex(Hi erarchyDat al ndexReader[] readers, int fronLevel, JobConf conf)
throws Excepti on;

[/ methods to supply data

Col l ection<String> getEntrieslds(int |evel);
JCeonetry getEntryCeonetry(int |evel, String entryld);
String getParentld(int childLevel, String childld);

The following is a sample Hierarchylnfo implementation, which takes the previously
mentioned world layers as the hierarchy levels. The first section contains the initialize
method and the methods used to describe the hierarchy. In this case, the initialize
method does nothing. The methods mentioned in the following example use the

hi erar chyLevel Nanes array to provide the hierarchy description. The instance variables
entriesGeons and entriesParent are arrays of j ava. util.Mp, which contains the entries
geometries and entries parents respectively. The entries ids are used as keys in both
cases. Since the arrays indices are zero-based and the hierarchy levels are one-
based, the array indices correlate to the hierarchy levels as array index + 1 = hierarchy
level.

public class Wrl dH erarchylnfo inplenments Hierarchylnfo

{

private String[] hierarchyLevel Nanmes = {"world_continents",
"world_countries", "world_states_provinces"};

private Map<String, JGeonetry>[] entriesCGeoms = new Map[3];

private Map<String, String>[] entriesParents = new Map[3];

@verride

public void initialize(JobConf conf)
{

//do nothing for this inplenentation

ORACLE 2-71

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

@verride
public int getNunberCf Level s()

{

return hierarchylLevel Names. | engt h;

@verride
public String getlLevel Nane(int |evel)

{
String level Nane = nul | ;
if(level >=1 && level <= hierarchylLevel Nanes. | engt h)

{

| evel Nane = hierarchyLevel Names[|evel - 1];

}

return | evel Name;

}

@verride
public int getLevel Nunber(String |evel Nane)

{

for(int i=0; i< hierarchyLevel Nanes.length; i++)

{

i f(hierarchyLevel Nanes. equal s(| evel Nane)) return i+1;

}

return -1,

}

The following example contains the methods that load the different hierarchy levels
data. The | oad() method reads the data from the source files wor| d_conti nents. j son,
wor | d_countries.json, and wor | d_states_provinces. j son. For the sake of simplicity, the
internally called | oadLevel () method is not specified, but it is supposed to parse and
read the JSON files.

The | oadFrom ndex() method only takes the information provided by the

Hi er ar chyl ndexReader instances passed as parameters. The | oad() method is
supposed to be executed only once and only if a hierarchy index has not been
created, in a job. Once the data is loaded, it is automatically indexed and

| oadFronl ndex() method is called every time the hierarchy data is loaded into the
memory.

@verride

public void |oad(Path[] hierDataPaths, int fronlievel, JobConf conf) throws
Exception {

int toLevel = fronlievel + hierDataPaths.length - 1;

int levels = getNunber O Level s();

for(int i=0, level=fronLevel; i<hierDataPaths.|length & | evel <=l evels; i++,
| evel +4)

{

I1l1oad current |evel fromthe current path

| oadLevel (I evel, hierDataPaths[i]);
}
}

@verride
public void | oadFron ndex(Hi erarchyDat al ndexReader[] readers, int fronlievel,

2-72

Chapter 2
Oracle Big Data Spatial Vector Analysis

JobConf conf)
throws Exception

{

Text parentld = new Text();
Recordl nfoArrayWitabl e records = new Recordl nfoArrayWitable();
int levels = getNumber Of Level s();

[literate through each reader to | oad each level's entries

for(int i=0, level=fronLevel; i<readers.length && |evel <=levels; i++ |evel++)

{

entriesGeonms[level - 1] = new Hashtable<String, JGeometry>();
entriesParents[level - 1] = new Hashtable<String, String>();

/leach entry is a parent record id (key) and a list of entries as Recordlnfo
(val ue)

whi | e(readers[i].nextParent Records(parentld, records))

{
String pld = null;

Ilentries with no parent will have the parent id UNDEFI NED PARENT_| D. Such
is the case of the first level entries

if(! UNDEFI NED_PARENT_I D. equal s(parentld.toString()))

{
pld = parentid.toString();

}

//add the current level's entries

for(oject obj : records.get())
{

Recordlnfo entry = (Recordl nfo) obj;
entriesGeons[level - 1].put(entry.getld(), entry.getGeonetry());
if(pld!=null)

entriesParents[level -1].put(entry.getld(), pld);

}/finishin loading current parent entries
}/finish reading single hierarchy level index
M /finish iterating index readers

}

Finally, the following code listing contains the methods used to provide information of
individual entries in each hierarchy level. The information provided is the ids of all the
entries contained in a hierarchy level, the geometry of each entry, and the parent of
each entry.

@verride
public Collection<String> getEntrieslds(int level)
{

Collection<String> ids = null;

if(level >= 1 & level <= getNunberOf Level s() && entriesCGeons[level - 1] I=
nul)

{

/lreturns the ids of all the entries fromthe given |evel

ids = entriesCeons[level - 1].keySet();

ORACLE 2-73

Chapter 2
Oracle Big Data Spatial Vector Analysis

}

return ids;

}

@verride
public JGeonetry getEntryGeonetry(int level, String entryld)

{

JCGeonetry geom = null;
if(level >=1 & level <= getNunberOfLevel s() && entriesCeons[level - 1] I=
nul)

{
Ilreturns the geonetry of the entry with the given id and |evel
geom = entriesCGeons[level - 1].get(entryld);

}

return geom

}
@verride
public String getParentld(int childLevel, String childld)
{
String parentid = null;
if(childLevel >= 1 && childLevel <= getNunberCf Level s() &&
entriesGeons[childLevel - 1] !'=null)

{
[lreturns the parent id of the entry with the given id and |evel
parent!d = entriesParents[childLevel - 1].get(childld);

}

return parentld;

}/lend of class

2.9.13 Using JGeometry in MapReduce Jobs

ORACLE

The Spatial Hadoop Vector Analysis only contains a small subset of the functionality
provided by the Spatial Java API, which can also be used in the MapReduce jobs. This
section provides some simple examples of how JGeometry can be used in Hadoop for
spatial processing. The following example contains a simple mapper that performs the
I sl nsi de test between a dataset and a query geometry using the JGeometry class.

In this example, the query geometry ordinates, srid, geodetic value and tolerance used
in the spatial operation are retrieved from the job configuration in the configure
method. The query geometry, which is a polygon, is preprocessed to quickly perform
the I sl nsi de operation.

The map method is where the spatial operation is executed. Each input record value is
tested against the query geometry and the id is returned, when the test succeeds.

public class IslnsideMapper extends MapReduceBase inplenments Mapper<LongWitabl e,
Text, NullWitable, Text>
{

private JGeonetry queryGeom = null;

private int srid = 0;

private double tolerance = 0.0;
private bool ean geodetic = fal se;
private Text outputValue = new Text();

private double[] locationPoint = new double[2];

2-74

Chapter 2
Oracle Big Data Spatial Vector Analysis

@verride
public void configure(JobConf conf)
{
super. configure(conf);
srid = conf.getInt("srid", 8307);
tol erance = conf. get Doubl e("tol erance", 0.0);
geodetic = conf. get Bool ean("geodetic", true);

/1 The ordinates are represented as a string of comma separated doubl e val ues
String[] ordsStr = conf.get("ordinates").split(",");
doubl e[] ordinates = new doubl e[ordsStr.|ength];

for(int i=0; i<ordsStr.length; i++)

ordinates[i] = Doubl e. parseDoubl e(ordsStr[i]);
}

[lcreate the query geonetry as two-di mensional polygon and the given srid
queryGeom = JCeonetry. creat eLi near Pol ygon(ordinates, 2, srid);

/I preprocess the query geonetry to nmake the Islnside operation run faster
try

{

quer yGeom preprocess(tol erance, geodetic,
Enuntet . of (Fast Op. | SINSI DE)) ;

iatch (Exception e)
{ e.printStackTrace();
}

1

@verride

public void map(LongWitable key, Text val ue,
Qut put Col | ect or<Nul | Witable, Text> output, Reporter reporter)
throws | CException

{

//the input value is a conma separated val ues text with the follow ng col ums:
id, x-ordinate, y-ordinate

String[] tokens = value.toString().split(",");

/lcreate a geonetry representation of the record s |ocation
| ocationPoint[0] = Doubl e. parseDoubl e(tokens[1]);//x ordinate
| ocationPoint[1] = Doubl e. parseDoubl e(tokens[2]);//y ordinate

JCGeonetry location = JGeonetry. createPoi nt (1 ocationPoint, 2, srid);

//performspatial test
try
{

if(location.islnside(queryGeom tolerance, geodetic)){

/lemt the record' s id

ORACLE 2-75

ORACLE

}
}

Chapter 2
Oracle Big Data Spatial Vector Analysis

out put Val ue. set (tokens[0]);
out put.col lect (Nul | Witable.get(), outputValue);
}

catch (Exception e)

{
e.printStackTrace();

}

A similar approach can be used to perform a spatial operation on the geometry itself.
For example, by creating a buffer. The following example uses the same text value
format and creates a buffer around each record location. The mapper output key and
value are the record id and the generated buffer, which is represented as a

JGeonet ryWitabl e. The JGeomet ryWi t abl e is a Writable implementation contained in
the Vector Analysis API that holds a JGeometry instance.

public class BufferMapper extends MapReduceBase i nplenents Mapper<LongWitabl e,
Text, Text, JCGeonmetryWitabl e>

{

private int srid = 0;

private double bufferWdth = 0.0;

private Text outputKey = new Text();

private JCGeonetryWitabl e outputVal ue = new JGeonetryWitable();
private double[] locationPoint = new double[?2];

@verride
public void configure(JobConf conf)
{
super. configure(conf);
srid = conf.getInt("srid", 8307);
//get the buffer width
buf ferWdth = conf. get Doubl e("buf ferWdth", 0.0);
}
@verride

public void map(LongWitable key, Text val ue,

Qut put Col | ect or <Text, JGeonetryWitabl e> output, Reporter reporter)
throws | CException

//the input value is a comm separated record with the following

colums: id, longitude, latitude

String[] tokens = value.toString().split(",");
/lcreate a geometry representation of the record s |ocation
| ocationPoint[0] = Doubl e. parseDoubl e(tokens[1]);

| ocationPoint[1] = Doubl e. parseDoubl e(tokens[2]);
JCGeonetry location = JGeonetry. createPoint (| ocationPoint, 2, srid);

try
{

//create the location's buffer

2-76

Chapter 2
Oracle Big Data Spatial Vector Analysis

JCGeonetry buffer = location. buffer(bufferWdth);
//lemt the record's id and the generated buffer
out put Key. set (tokens[0]);

out put Val ue. set Geonetry(buffer);

out put. col | ect (out put Key, out put Val ue);

}

catch (Exception e)

{
e.printStackTrace();
}

}

2.9.14 Support for Different Data Sources

ORACLE

In addition to file-based data sources (that is, a file or a set of files from a local or a
distributed file system), other types of data sources can be used as the input data for a
Vector API job.

Data sources are referenced as input data sets in the Vector API. All the input data
sets implement the interface oracl e. spati al . hadoop. vect or. dat a. Abst r act | nput Dat aSet .
Input data set properties can be set directly for a Vector job using the methods

set | nput For mat O ass(), set Recor dl nf oProvi der O ass(), and set Spati al Confi g(). More
information can be set, depending the type of input data set. For example, set I nput ()
can specify the input string for a file data source, or set | ndexNane() can be used for a
spatial index. The job determines the input data type source based on the properties
that are set.

Input data set information can also be set directly for a Vector API job using the job’s
method set | nput Dat aSet () . With this method, the input data source information is
encapsulated, you have more control, and it is easier to identify the type of data
source that is being used.

The Vector API provides the following implementations of Asbt ract | nput Dat aSet :

e Sinpl el nput Dat aSet : Contains the minimum information required by the Vector API
for an input data set. Typically, this type of input data set should be used for non-
file based input data sets, such as Apache Hbase, an Oracle database, or any
other non-file-based data source.

* FilelnputDataSet : Encapsulates file-based input data sets from local or distributed
file systems. It provides properties for setting the input path as an array of Path
instances or as a string that can be a regular expression for selecting paths.

e Spatial I ndexl nput Dat aSet : A subclass of Fi | el nput Dat aSet optimized for working
with spatial indexes generated by the Vector API. It is sufficient to specify the
index name for this type of input data set.

* NoSQLI nput Dat aSet : Specifies Oracle NoSQL data sources. It should be used in
conjunction with Vector NoSQL API. If the NoSQL KVI nput For mat or
Tabl el nput For mat classes need to be used, use Si npl el nput For mat instead.

* MiltilnputDataSet: Input data set that encapsulates two or more input data sets.

2-77

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

Multiple Input Data Sets

Most of the Hadoop jobs provided by the Vector API (except Categorization) are able
to manage more than one input data set by using the class
oracl e. spati al . hadoop. vector. data. Mil ti | nput Dat aSet .

To add more than one input data set to a job, follow these steps.

1. Create and configure two or more instances of Abstract | nput Dat aSet subclasses.
2. Create an instance of oracl e. spati al . hadoop. vect or. data. Mul ti | nput Dat aSet .

3. Add the input data sets created in step 1 to the Ml ti | nput Dat aSet instance.

4. SetMiltilnputDataSet instance as the job’s input data set.

The following code snippet shows how to set multiple input data sets to a Vector API.

[/file input data set

Fil el nput DataSet fil eDataSet = new Fil el nputDataSet();

fil eDataSet. set | nput For mat G ass(GeoJsonl nput For mat . cl ass);

fil eDat aSet. set Recordl nf oProvi der C ass(GeoJsonRecor dI nf oProvi der. cl ass);
fil eDataSet.setlnputString("/user/nyUser/geojson/*.json");

//spatial index input data set
Spati al I ndex| nput Dat aSet indexDataSet = new Spati al I ndex| nput Dat aSet () ;
i ndexDat aSet . set | ndexNane(" nyl ndex");

[lcreate multi input data set
Mul tilnput DataSet nultiDataSet = new MiltilnputDataSet();

//add the previously defined input data sets
mul ti Dat aSet . addl nput Dat aSet (fi | eDat aSet);
mul ti Dat aSet . addl nput Dat aSet (i ndexDat aSet) ;

Bi nni ng bi nni ngJob = new Bi nning();
//set multiple input data sets to the job
bi nni ngJob. set | nput Dat aSet (nul ti Dat aSet) ;

NoSQL Input Data Set

The Vector API provides classes to read data from Oracle NoSQL Database. The
Vector NoSQL components let you group multiple key-value pairs into single records,
which are passed to Hadoop mappers as Recor dlI nf o instances. They also let you map
NoSQL entries (key and value) to Hadoop records fields (Recordi nfo’s i d, geonetry,
and extra fields).

The NoSQL parameters are passed to a Vector job using the NoSQLI nput Dat aSet class.
You only need to fill and set a NoSQLConf i gurati on instance that contains the KV store,
hosts, parent key, and additional information for the NoSQL data source. | nput For mat
and Recor dI nf oProvi der classes do not need to be set because the default ones are
used.

The following example shows how to configure a job to use NoSQL as data source,
using the Vector NoSQL classes.

[/create NoSQL configuration

NoSQ.Conf i guration nsql Conf = new NoSQLConfiguration();

/1 set connection data

nsql Conf . set KvSt or eName(" mystore");

nsql Conf . set KvSt oreHost s(new String[] { "nyserver:5000" });

2-78

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

nsql Conf . set Par ent Key(Key. creat eKey("tweets"));

/1 set NoSQL entries to be included in the Hadoop records

/1 the entries with the follow ng mnor keys will be set as the

/'l Recordinfo's extra fields

nsql Conf . addTarget Entries(new String[] { "friendsCount", "followersCount" });
/1 add an entry processor to map the spatial entry to a Recordinfo's

/] geometry

nsql Conf . addTar get Entry("geometry", NoSQLJGeometryEntryProcessor. cl ass);
/lcreate and set the NoSQ input data set

NoSQLI nput Dat aSet nsql Dat aSet = new NoSQLI nput Dat aSet () ;

//set noSQL configuration

nsql Dat aSet . set NoSQ.Conf i g(nsql Conf);

//set spatial configuration

Spati al Config spatial Conf = new Spatial Config();

spati al Conf. set Srid(8307);

nsql Dat aSet . set Spati al Confi g(spatial Conf);

Target entries refer to the NoSQL entries that will be part of the Hadoop records and
are specified by the NoSQL minor keys. In the preceding example, the entries with the
minor keys friendsCount and fol | ower sCount will be part of a Hadoop record. These
NoSQL entries will be parsed as text values and assigned to the Hadoop Recordi nfo as
the extra fields called fri endsCount and f ol | ower sCount . By default, the major key is
used as record id. The entries that contain “geometry” as minor key are used to set the
Recor di nf o’s geonet ry field.

In the preceding example, the value type of the geometry NoSQL entries is JGeonetry,
S0 it is necessary to specify a class to parse the value and assign it to the Recordl nfo’s
geonet ry field. This requires setting an implementation of the NoSQLEnt r yPr ocessor
interface. In this case, the NoSQLJGeonet r yEnt ryProcessor class is used, and it reads the
value from the NoSQL entry and sets that value to the current Recor di nf o’s geonet ry
field. You can provide your own implementation of NoSQLEnt r yPr ocessor for parsing
specific entry formats.

By default, NoSQL entries sharing the same major key are grouped into the same
Hadoop record. This behavior can be changed by implementing the interface

oracl e. spati al . hadoop. nosql . NoSQLG ouper and setting the NoSQLConf i gur ati on property
ent ryG ouper C ass with the new grouper class.

The Oracle NoSQL library kvstore. jar is required when running Vector API jobs that
use NoSQL as the input data source.

Other Non-File-Based Data Sources

Other non-file-based data sources can be used with the Vector API, such as NoSQL
(using the Oracle NoSQL classes) and Apache HBase. Although the Vector API does
not provide specific classes to manage every type of data source, you can associate
the specific data source with the job configuration and specify the following information
to the Vector job:

e InputFormat: The I nput For mat implementation used to read data from the data
source.

e Recordl nfoProvi der: An implementation of Recor dl nf oPr ovi der to extract required
information such as i d, spatial information, and extra fields from the key-value
pairs returned by the current InputFormat.

» Spatial configuration: Describes the spatial properties of the input data, such as
the SRID and the dimension boundaries.

The following example shows how to use Apache HBase data in a Vector job.

2-79

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis

[lcreate job

Job job = Job. getlnstance(get Conf());
j ob. set JobNane(get Cl ass(). get Name());
job.setJarByd ass(get O ass());

/] Setup hbase paraneters

Scan scan = new Scan();

scan. set Cachi ng(500);

scan. set CacheBl ocks(fal se);

scan. addCol urm(Byt es. t oBytes("l ocation_data"), Bytes.toBytes("geonetry"));
scan. addCol urm(Byt es. t oBytes("other _data"), Bytes.toBytes("followers_count"));
scan. addCol urm(Byt es. t oByt es("ot her_data"), Bytes.toBytes("user_id"));

[linitialize job configuration with hbase paraneters
Tabl eMapReducelti | . i ni t Tabl eMapper Job(
"tweets_table",
scan,
null,
null,
null,
job);
[/ create binning job
Bi nni ng<I mut abl eByt esWitabl e, Result> binningJob = new
Bi nni ng<I mmut abl eBytesWitable, Result>();
[/setup the input data set
Si npl el nput Dat aSet i nput Dat aSet = new Si npl el nput Dat aSet () ;
/luse HBase's Tabl el nput For mat
i nput Dat aSet . set | nput For mat O ass(Tabl el nput For mat . cl ass);
/1 Set a Recordl nfoProvider which can extract information from HBase
Tabl el nput Format' s returned key and val ues
i nput Dat aSet . set Recor dl nf oPr ovi der O ass(HBaseRecor dI nf oProvi der. cl ass);
//set spatial configuration
Spati al Config spatial Conf = new Spatial Config();
spati al Conf. set Srid(8307);
i nput Dat aSet . set Spati al Confi g(spati al Conf);
bi nni ngJob. set | nput Dat aSet (i nput Dat aSet) ;

/1job output
bi nni ngJob. set Qut put (" hbase_exanpl e_out put");

//'binning configuration

Bi nni ngConfi g bi nConf = new Bi nni ngConfig();

bi nConf . set Gi dMbr (new doubl e[]{-180, -90, 180, 90});
bi nConf . set Cel | Hei ght (5);

bi nConf . set Cel | Wdt h(5);

bi nni ngJob. set Bi nConf (bi nConf);

//configure the job
bi nni ngJob. configure(job);

[/run
bool ean success = j ob. wait For Conpl etion(true);

The Recordl nf oProvi der class set in the preceding example is a custom implementation
called HBaseRecor dI nf oPr ovi der, the definition of which is as follows.

public class HBaseRecordl nfoProvider inplenents
Recor dl nf oProvi der <l nut abl eByt esWitabl e, Result>, Configurable{

private Result value = null;
private Configuration conf = null;

2-80

Chapter 2
Oracle Big Data Spatial Vector Analysis

private int srid = 0;

@verride
public void setCurrent Record(| mutabl eBytesWitabl e key, Result value) throws
Exception {
this.value = val ue;
}
@verride

public String getld() {
byte[] idb = val ue. get Val ue(Bytes. toBytes("other_data"),
Bytes.toBytes("user_id"));
String id =idb !=null ? Bytes.toString(idb) : null;
return id;

}

@verride
public JGeonetry getGeonetry() {
byte[] geonb = val ue. get Val ue(Bytes.toBytes("l ocation_data"),
Byt es.toBytes("geometry"));
String geonStr = geonb!=null ? Bytes.toString(geonb) : null;
JCGeonetry geom = null;
if(geonBtr !'= null){
String[] pointsStr = geonBtr.split(",");
geom = JGeonetry. creat ePoi nt (new doubl e[] { Doubl e. val ueCf (poi ntsStr[0]),
Doubl e. val ueCf (pointsStr[1])}, 2, srid);
}

return geom

}

@verride
public bool ean get ExtraFi el ds(Map<String, String> extraFields) {
byte[] fcb = val ue. getVal ue(Bytes.toBytes("other_data"),
Bytes.toBytes("fol | oners_count"));
if(fcb!=null){
extraFields. put("fol l owers_count", Bytes.toString(fch));

}

return fcb!=null;
}
@verride

public Configuration getConf() {
return conf;
}

@werride

public void setConf(Configuration conf) {
srid = conf.getlnt(ConfigParans.SRID, 0);

}

}
2.9.15 Job Registry

Every time a Vector API job is launched using the command line interface or the web
console, a registry file is created for that job. A job registry file contains the following
information about the job:

e Job name

ORACLE 2-81

Chapter 2
Oracle Big Data Spatial Vector Analysis

e JobID

» User that executed the job

e Start and finish time

e Parameters used to run the job

» Jobs launched by the first job (called child jobs). Child jobs contain the same fields
as the parent job.

A job registry file preserves the parameters used to run the job, which can be used as
an aid for running an identical job even when it was not initially run using the command
line interface.

By default, job registry files are created under the HDFS path relative to the user folder
oracl e_spatial /job_registry (for example, / user/ hdf s/ oracl e_spatial /j ob_registry for
the hdfs user).

Job registry files can be removed directly using HDFS commands or using the
following utility methods from class
oracl e. spatial . hadoop. comrmons. | oggi ng. regi stry. Regi stryManager :

° public static int removeJobRegistry(long beforeDate, Configuration conf):
Removes all the job registry files that were created before the specified time stamp
from the default job registry folder.

e public static int removeJobRegistry(Path jobRegDirPath, |ong beforeDate,
Configuration conf): Removes all the job registry files that were created before the
specified time stamp from a specified job registry folder.

2.9.16 Tuning Performance Data of Job Running Times Using the
Vector Analysis API

ORACLE

The table lists some running times for jobs built using the Vector Analysis API. The
jobs were executed using a 4-node cluster. The times may vary depending on the
characteristics of the cluster. The test dataset contains over One billion records and
the size is above 1 terabyte.

Table 2-4 Performance time for running jobs using Vector Analysis API

Job Type Time taken (approximate value)
Spatial Indexing 2 hours

Spatial Filter with Spatial Index 1 hour

Spatial Filter without Spatial Index 3 hours

Hierarchy count with Spatial Index 5 minutes

Hierarchy count without Spatial Index 3 hours

The time taken for the jobs can be decreased by increasing the maximum split size
using any of the following configuration parameters.

mapred. max. split.size
mapr educe. i nput. fileinputformat.split. maxsize

This results in more splits are being processed by each single mapper and improves
the execution time. This is done by using the Spati al Fi | t er | nput For mat (spatial

2-82

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

indexing) or Fi | eSpl it I nput Format (spatial hierarchical join, buffer). Also, the same
results can be achieved by using the implementation of Conbi neFi | el nput For mat as
internal | nput For mat .

2.10 Oracle Big Data Spatial Vector Analysis for Spark

Oracle Big Data Spatial Vector Analysis for Apache Spark is a spatial vector analysis
API for Java and Scala that provides spatially-enabled RDDs (Resilient Distributed
Datasets) that support spatial transformations and actions, spatial partitioning, and
indexing.

These components make use of the Spatial Java API to perform spatial analysis tasks.
The supported features include the following.

e Spatial RDD (Resilient Distributed Dataset)

e Spatial Transformations

e Spatial Actions (MBR and NearestNeighbors)
e Spatially Indexing a Spatial RDD

e Support for Common Spatial Formats

e Spatial Spark SQL API

e JDBC Data Sources for Spatial RDDs

2.10.1 Spatial RDD (Resilient Distributed Dataset)

ORACLE

A spatial RDD (Resilient Distributed Dataset) is a Spark RDD that allows you to
perform spatial transformations and actions.

The current spatial RDD implementation is the class

oracle.spatial .spark.vector.rdd. Spatial JavaRDD for Java and

oracl e. spatial . spark.vector.scal a.rdd. Spati al RDD for Scala. A spatial RDD
implementation can be created from an existing instance of RDD or JavaRDD, as
shown in the following examples:

Java:

//create a regular RDD

JavaRDD<String> rdd = sc.textFile("someFile.txt");

/lcreate a SparkRecordinfoProvider to extract spatial information fromthe source
RDD' s records

Spar kRecor dI nf oPr ovi der <String> recordl nf oProvi der = new MySpar kRecor dl nf oProvi der ();
//create a spatial RDD

Spati al JavaRDD<String> spatial RDD = Spati al JavaRDD. f romJavaRDD(r dd,

recordl nfoProvider, String.class));

Scala:

[/create a regular RDD

val rdd: RDD[String] = sc.textFile("soneFile.txt")

[/create a SparkRecordlnfoProvider to extract spatial information fromthe source
RDD' s records

val recordl nfoProvider: SparkRecordlnfoProvider[String] = new

My Spar kRecor dI nf oPr ovi der ()

//create a spatial RDD

val spatial RDD: Spatial RDOD[String] = Spatial ROD(rdd, recordl nfoProvider)

2-83

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

A spatial RDD takes an implementation of the interface
oracl e. spati al . spark. vect or. Spar kRecor dlI nf oPr ovi der, which is used for extracting
spatial information from each RDD element.

A regular RDD can be transformed into a spatial RDD of the same generic type, that
is, if the source RDD contains records of type String. The spatial RDD will also contain
String records.

You can also create a Spatial RDD with records of type

oracle. spatial.spark.vector. Spar kRecordl nfo. A Spar kRecor dl nf 0 is an abstraction of a
record from the source RDD; it holds the source record’s spatial information and may
contain a subset of the source record’s data.

The following examples show how to create an RDD of Spar kRecor dI nf o records.
Java:

[lcreate a regular RDD

JavaRDD<String> rdd = sc.textFile("someFile. txt");

[lcreate a SparkRecordlnfoProvider to extract spatial information fromthe source
RDD s records

Spar kRecor dI nf oProvi der <String> recordl nf oProvi der = new MySpar kRecor dl nf oProvi der ();
[lcreate a spatial RDD

Spat i al JavaRDD<Spar kRecor dl nf 0> spatial RDD = Spati al JavaRDD. f romJavaRDD(r dd,

recordl nfoProvider));

Scala:

//create a regular RDD

val rdd: RDD[String] = sc.textFile("soneFile.txt")

[/create a SparkRecordlnfoProvider to extract spatial information fromthe source
RDD s records

val recordl nfoProvider: SparkRecordlnfoProvider[String] = new

My Spar kRecor dI nf oPr ovi der ()

//create a spatial RDD

val spatial RDD: Spati al RDD[Spar kRecordl nfo] = Spati al RDD. f r onRDD(r dd,

recordl nf oProvi der))

A spatial RDD of Spar kRecor dI nf o records has the advantage that spatial information
does not need to be extracted from each record every time it is needed for a spatial
operation.

You can accelerate spatial searches by spatially indexing a spatial RDD. Spatial
indexing is described in section 1.4 Spatial Indexing.

The spatial RDD provides the following spatial transformations and actions, which are
described in the sections 1.2 Spatial Transformations and 1.3 Spatial Actions.

Spatial transformations:

o filter

o flatMap

* join (available when creating a spatial index)
Spatial Actions:

+ MBR

e nearestNeighbors

2-84

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Spatial Pair RDD

A pair version of the Java classSpat i al JavaRDD is provided and is implemented as the
class oracl e. spati al . spark. vector. rdd. Spati al JavaPai r RDD. A spatial pair RDD is
created from an existing pair RDD and contains the same spatial transformations and
actions as the single spatial RDD. A Spar kRecor dI nf oProvi der used for a spatial pair
RDD should receive records of type scal a. Tupl e2<K, V>, where K and V correspond to
the pair RDD key and value types, respectively.

Example 2-1 SparkRecordInfoProvider to Read Information from a CSV File

The following example shows how to implement a simple Spar kRecor dI nf oPr ovi der to
read information from a CSV file.

public class CSVRecordl nfoProvider inplenments SparkRecordl nfoProvider<String>{
private int srid = 8307;

//receives an RDD record and fills the given recordlnfo
public bool ean get Recordlinfo(String record, SparkRecordlnfo recordlnfo) {
try {
String[] tokens = record.split(",");
[/ expected records have the format: id, nane,last_nane, x,y where x and y

are optional
[loutput recordinfo will contain the fields id, |ast nane and geonetry
recordl nfo. addFi el d("id", tokens[0]);
recordl nfo. addFi el d("l ast _nanme", tokens[2]);
if (tokens.length == 5) {
recordl nfo. set Georet ry(JGeonet ry. creat ePoi nt (t okens[3], tokens[4],
2, srid));

} catch (Exception ex) {
[/return fal se when there is an error extracting data fromthe input
val ue
return fal se;

}

return true;

}

public void setSrid(int srid) {this.srid = srid;}
public int getSrid() {return srid;}
}

In this example, the record’s ID and last-name fields are extracted along with the
spatial information to be set to the Spar kRecor di nf 0 instance used as an out parameter.
Extracting additional information is only needed when the goal is to create a spatial
RDD containing Spar kRecor dI nf o elements and is necessary to preserve a subset of
the original records information. Otherwise, it is only necessary to extract the spatial
information.

The call to Spar kRecor dI nf oPr ovi der . get Recor dl nf o() should return true whenever the
record should be included in a transformation or considered in a search. If
Spar kRecor dI nf oProvi der . get Recor di nf o() returns f al se, the record is ignored.

2.10.2 Spatial Transformations

The transformations described in the following subtopics are available for spatial RDD,
spatial pair RDD, and the distributed spatial index unless stated otherwise (for
example, a join transformation is only available for a distributed spatial index).

ORACLE 2-85

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

» Filter Transformation

* FlatMap Transformation

* Join Transformation

e Controlling Spatial Evaluation

e Spatially Enabled Transformations

2.10.2.1 Filter Transformation

A filter transformation is a spatial version of the regular RDD'’s filter() transformation. In
addition to a user-provided filtering function, it takes an instance of

oracl e. spati al . hadoop. vector. util. Spati al Operati onConfi g, which is used to describe
the spatial operation used to filter spatial records. A Spati al Qper ati onConf i g contains a
qguery window which is the geometry used as reference and a spatial operation. The
spatial operation is executed in the form: (RDD record’ s geonmetry) (spatial operation)
(query window) . For example: (RDD record) Islnside (queryW ndow)

Spatial operations available are Anyl nteract, | sl nsi de, Cont ai ns, and Wt hi nDi st ance.

The following examples return an RDD containing only records that are inside the
given query window and with not null ID.

Java:

Spati al OperationConfig soc = new Spatial QperationConfig();

soc. set Operation(Spati al Operation.|slnside);

soc. set Quer yW ndow(JGeonet ry. creat eLi near Pol ygon(new double[] { 2.0, 1.0, 2.0, 3.0,
6.0, 3.0, 6.0, 1.0, 2.0, 1.0}, 2, srid));

Spat i al JavaRDD<Spar kRecor di nfo> filteredSpatial RDD = spatial RDD.filter(

(record) -> {

return record.getField(“id") !'=null;

}, soc);

Scala:

val soc = new Spati al OperationConfig()

soc. set Operat i on(Spati al Operation. | sl nsi de)

soc. set Quer yW ndow(JGeonet ry. creat eLi near Pol ygon(Array(2.0, 1.0, 2.0, 3.0, 6.0, 3.0,
6.0, 1.0, 2.0, 1.0), 2, srid))

val filteredSpatial RDD: Spatial RDD[SparkRecordlnfo] = spatial ROD.filter(

record => { record.getField(“id") !'=null }, soc)

2.10.2.2 FlatMap Transformation

ORACLE

A FlatMap transformation is a spatial version of the regular RDD’s f | at Map()
transformation. In addition to the user-provided function, it takes a
SpatialOperationConfig to perform a spatial filtering. It works like the Filter
Transformation, except that spatially filtered results are passed to the map function
and flattened.

The following examples create an RDD that contains only elements that interact with
the given query window and geometries that have been buffered.

Java:

Spati al OperationConfig soc = new Spatial CperationConfig();
soc. set Operation(Spatial Operation. Anylnteract);
soc. set Quer yW ndow(JGeonet ry. creat eLi near Pol ygon(new doubl e[] { 2.0, 1.0, 2.0, 3.0,

2-86

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

6.0, 3.0, 6.0, 1.0, 2.0, 1.0}, 2, srid));
JavaRDD<Spar kRecor dl nf 0> mappedRDD = spat i al RDD. f | at Map(
(record) -> {
JCGeonetry buffer = record. get Geonetry(). buffer(2.5);
record. set Geometry(buffer);
return Col | ections.singletonList(record);
}, soc);

Scala:

val soc = new Spati al OperationConfig()
soc. set Operation(Spati al Operation. Anyl nteract)
soc. set Quer yW ndow(JGeonet ry. creat eLi near Pol ygon(Array(2.0, 1.0, 2.0, 3.0, 6.0,
3.0, 6.0, 1.0, 2.0, 1.0), 2, srid))
val mappedRDD: RDD[Spar kRecordl nfo] = spatial RDD. | at Map(
record => {
val buffer: JGeonetry = record. get Geonetry().buffer(2.5)
record. set Geonetry(buffer)
record
}, soc)

" Note:

As of Spark 2, the Java class

or g. apache. spark. api . j ava. functi on. Fl at MapFunct i on received by the f | at Map
transformation returns an instance of java. util.Iterator instead of Iterabl e,
so the return line of the preceding f | at Map transformation Java example
changes for Spark 2 to: return

Col | ections. singl etonList(record).iterator();

2.10.2.3 Join Transformation

ORACLE

A join transformation joins two spatial RDDs based on a spatial relationship between
their records. In order to perform this transformation, one of the two RDDs must be
spatially indexed. (See Spatial Indexing for more information about indexing a spatial
RDD.)

The result type of a spatial join transformation is defined by a user-provided lambda
function that is called for each pair of joined records.

The following examples join all the records from both data sets that interact in any
way.

Java:

Di stributedSpatial I ndex index = DistributedSpatial | ndex. createl ndex(sparkCont ext,
spatial RDD1, new QuadTreeConfiguration());

Spat i al JavaRDD<Spar kRecor dl nf o> spatial RDD2 = Spati al JavaRDD. f romJavaRDD(rdd2, new
Regi onsRecor dI nf oProvi der (srid));

Satial OperationConfig soc = new Spatial OperationConfig();

soc. set Operation(Spati al Operation. Anylnteract);

JavaRDD<Tupl e2<Spar kRecor dl nfo, SparkRecordl nfo> joi nedRDD =

i ndex. spatial Joi n(spatial RDD2,

(recordRDD1, recordRDD2) -> {

return Collections.singletonList(new Tupl e2<>(recordRDD1, recordRDD2)).iterator());
}, soc);

2-87

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Scala:

val index: DistributedSpatiallndex[SparkRecordinfo] =

Di stributedSpatial I ndex. creat el ndex(spati al RDD1, new QuadTreeConfi guration())

val spatial RDD2: Spatial RDD[Spar kRecordlnfo] = Spatial RDD. fronRDD(rdd2, new

Regi onsRecor dl nf oProvi der (srid))

val soc = new Spati al OperationConfig()

soc. set Operation(Spatial Operation. Anyl nteract)

val joi nedRDD: RDD[(SparkRecordl nfo, SparkRecordinfo)] = index.join(spatial RDD2,
(recordRDDL, recordRDD2) => {Seq((recordRDDl, recordRDD2))}, soc)

2.10.2.4 Controlling Spatial Evaluation

When executing a filtering transformation or nearest neighbors action, by default the
spatial operation is executed before calling the user-defined filtering function; however,
you can change this behavior. Executing a user-defined filtering function before the
spatial operation can improve performance in scenarios where the spatial operation is
costly in comparison to the user-defined filtering function.

To set the user-defined function to be executed before the spatial operation, set the
following parameter to the Spati al Qperati onConfi g passed to either a filter
transformation or nearest neighbors action.

Spati al OperationConfig spatial OpConf = new

Spati al Operati onConfi g(Spatial Operation. Anylnteract, qryWndow, 0.05);

//set the spatial operation to be executed after the user-defined filtering function
spati al OpConf . addPar am(Spat i al Oper ati onConfi g. PARAM SPATI AL_EVAL_STAGE,

Spati al Operati onConfig. VAL_SPATI AL_EVAL_STAGE_POST) ;

spatial ROD. filter((r)->{ return r.getFol | owersCount ()>1000;}, spatial OpConf);

The preceding example applies to both spatial RDDs and a distributed spatial index.

2.10.2.5 Spatially Enabled Transformations

ORACLE

Spatial operations can be performed in regular transformations by creating a
Spat i al Transf or mat i onCont ext before executing any transformation.

After the Spati al Transfor mati onCont ext instance is in the transformation function, that
instance can be used to get the record’s geometry and apply spatial operations, as
shown in the following example, which transforms an RDD of String records into a pair
RDD where the key and value corresponds to the source record ID and a buffered
geometry.

Java:

Spati al JavaRDD<String> spatial RDD = Spati al JavaRDD. f romJavaRDD(rdd, new
CSVRecor dl nf oProvi der(srid), String.class);
Spati al Transformati onContext stCtx = spatial RDD. createSpati al Transf or mati onCont ext ();
JavaPai r RDD<String, JGeonetry> bufferedRDD = spati al RDD. mapToPai r (
(record) -> {
Spar kRecordI nfo recordlnfo = st Ctx. get Recordl nfo(record);
String id = (String) recordlnfo.getField("“id")
JCGeonetry geom = recordl nfo. get Geonetry(record);
JCGeonetry buffer = geom buffer(0.5);
return new Tupl e2(id, buffer);

1)

Scala:

2-88

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

val spatial RDD: Spatial RDOf String]= Spatial ROD. fromRDD(rdd, new
CSVRecor dI nf oPr ovi der (srid))
val stCtx: Spatial TransformationContext[String] =
spati al RDD. creat eSpati al Transf or mati onCont ext ()
val bufferedRDD: RDD{ (String, JGeonetry)] = spatial RDD. map(
record => {
val recordlnfo: SparkRecordlnfo = stCtx.getRecordl nfo(record)
val id: String = recordlinfo.getField(“id").aslnstanceCf[String]
val geom JGeonetry = recordl nfo.get Geonetry(record)
val buffer: JGeonetry = geom buffer(0.5)
(id, buffer)
1y

When working on a per-partition basis, you should use a stateful version of

Spati al Transf or mat i onCont ext , which avoids creating multiple instances of

Spar kRecor dI nf 0. The following pattern can be followed when working on a per-partition
basis:

val stCix: Spatial TransformationContext[String] =
spati al RDD. creat eSpat i al Transf or mati onCont ext ()
val bufferedRDD: RDD[(String, JGeonetry)] = spatial RDD. mapPartitions(
(records) => {
val sSTCtx = new Stateful Spatial Transf ormati onCont ext (st Ct x)
records. map(record=>{
val recordlnfo: SparkRecordlnfo = sSTCtx. get Recordl nfo(record)
val id: String = recordlinfo.getField(“id").aslnstanced[String]
val geom JGCeonetry = recordl nfo.get Geonetry(record)
val buffer: JGeometry = geom buffer(0.5)
(id, buffer)
)
}, true)

2.10.3 Spatial Actions (MBR and NearestNeighbors)

ORACLE

Spatial RDDs,spatial pair RDDs, and the distributed spatial index provide the following
spatial actions.

¢ MBR: Calculates the RDD’s minimum bounding rectangle (MBR). The MBR is only
calculated once and cached so the second time it is called, it will not be
recalculated. The following examples show how to get the MBR from a spatial
RDD. (This transformation is not available for Di st ri but edSpati al | ndex.)

Java:

doubl [] mbr = spatial RDD. get MBR();

Scala:
val nbr: Array[Double] = spatial RDD. get MBR()

* NearestNeighbors: Returns a list containing the K nearest elements from an RDD
or distributed spatial index to a given geometry. Additionally, a user-defined filter
lambda function can be passed, so that only the records that pass the filter will be
candidates to be part of the K nearest neighbors list. The following examples show
how to get the 5 records closest to the given point.

Java:

JCGeonetry qryWndow = JGeonetry. creat ePoint (new double[] { 2.0, 1.0}, 2, srid));
Spati al OperationConfig soc = new Spati al OperationConfi g(Spatial Operation. None,
qryW ndow, 0.05);

2-89

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Li st <Spar kRecor dl nf o> near est Nei ghbors = spati al RDD. near est Nei ghbor s(
(record)->{

return ((Integer)record. getField(“followers_count”))>1000;
}, 5, soc);

Scala:

val gqryWndow. JCeometry = JGeonetry.createPoint(Array(2.0, 1.0), 2, srid))
val soc: Spatial OperationConfig = new

Spati al Operati onConfi g(Spati al Gperation. None, qryWndow, 0.05)

val nearestNei ghbors: Seq[SparkRecordlnfo] = spatial RDD. near est Nei ghbor s(
record=>{ record.getField(“followers_count”).aslnstanceC[Int]>1000 }, 5, soc);

2.10.4 Spatially Indexing a Spatial RDD

ORACLE

A spatial RDD can be spatially indexed to speed up spatial searches when performing
spatial transformations.

A spatial index repartitions the spatial RDD so that each partition only contains records
on some specific area. This allows partitions that do not contain results in a spatial
search to be quickly discarded, making the search faster.

A spatial index is created through the Java abstract class

oracl e. spatial . spark.vector.index.DistributedSpatial I ndex or its Scala equivalent
oracle.spatial.spark.vector.scal a.index. Di stributedSpatial | ndex, both of which use
a specific implementation to create the actual spatial index. The following examples
show how to create a spatial index using a QuadTree-based spatial index
implementation.

Java:

Di stributedSpatial | ndex<String> index =
Di stributedSpatial I ndex. creat el ndex(spar kCont ext, spatial RDD1, new
QuadTreeConfiguration());

Scala:

val index: DistributedSpatiallndex[String] =
Di stributedSpatial I ndex. creat el ndex(spatial RDD1, new QuadTreeConfiguration())
(spar kCont ext)

The type of spatial index implementation is determined by the last parameter, which is
a subtype of oracl e. spati al . spark. vector. i ndex. Spati al Partitioni ngConfi guration.
Depending on the index implementation, the configuration parameter may accept
different settings for performing partitioning and indexing. Currently, the only
implementation of a spatial index is the class

oracle. spatial.spark.vector.index.quadtree. QuadTreeDi st | ndex, and it receives a
configuration of type

oracl e. spatial . spark. vector.index. quadtree. QuadTreeConfi gurati on.

The Di stribut edSpati al | ndex class currently supports the filter, flatMap, join, and
nearestNeighbors transformations, which are described in Spatial Transformations.

A spatial index can be persisted using the method Di st ri but edSpati al | ndex. save(),
which takes an existing Spar kCont ext and a path where the index will be stored. The
path may be in a local or a distributed (HDFS) file system. Similarly, a persisted spatial
index can be loaded by calling the method Di st ri but edSpat i al | ndex. | oad() , which also
takes an existing Spar kCont ext and the path where the index is stored.

2-90

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

e Spatial Partitioning of a Spatial RDD
* Local Spatial Indexing of a Spatial RDD

2.10.4.1 Spatial Partitioning of a Spatial RDD

A spatial RDD can be partitioned through an implementation of the class

oracl e. spatial . spark. vector.index. Spatial Partitioning. The Spatial Partitioning
class represents a spatial partitioning algorithm that transforms a spatial RDD into a
spatially partitioned spatial pair RDD whose keys point to a spatial partition.

A SpatialPartitioning algorithm is used internally by a spatial index, or it can be used
directly by creating a concrete class. Currently, there is a QuadTree-based
implementation called
oracle.spatial.spark.vector.index.quadtree.QuadTreePartitioning. The following
example shows how to spatially partition a spatial RDD.

QuadTreePartitioni ng<T> partitioning = new QuadTreePartitioni ng<>(sparkContext,
spatial RDD, new QuadTreeConfiguration());
Spati al JavaPai r RDD<PartitionKey, T> partRDD = partitioning.getPartitionedRDD();

2.10.4.2 Local Spatial Indexing of a Spatial RDD

A local spatial index can be created for each partition of a spatial RDD. Locally
partitioning the content of each partition helps to improve spatial searches when
working on a partition basis.

A local index can be created for each partition by setting the parameter useLocal | ndex
to true when creating a distributed spatial index. A spatially partitioned RDD can also
be transformed so each partition is locally indexed by calling the utility method

oracl e.spatial . spark. vector.index.|ocal.Local | ndex. createLocal | yl ndexedRDD(Spati al
JavaPai r RDD<PartitionKey, T> rdd).

2.10.5 Support for Common Spatial Formats

ORACLE

The Spark Vector API provides utilities to easily read data from common spatial
formats such as GeoJSON and ESRI ShapeFile.

The Java class oracl e. spati al . spark. vector. i 0. Spati al Sour ces and the Scala class
oracle. spatial.spark.vector.scala.io.Spatial Sources contain static methods to read
data from GeoJSON and ShapeFile formats by specifying the data path, the data
Spatial Reference System ID (SRID), and the list of non-spatial fields to be loaded.

The following examples show how to load data from a GeoJSON file. The records are
automatically transformed to instances of Spar kRecor dI nf o, which contain the spatial
information plus the _id and fol | owers_count fields. If all the fields need to be retrieved,
null can be passed instead of the whole list of fields. Both GeoJSON and Shapefile
read methods contain an overload that returns the original records as String and
MapWritable representations, respectively.

Java:

[11ist of GeoJSON field names to be | oaded for each feature
List<String> fiel dNanes = new ArraylList<String>();

fiel dNanes. add("_id");

fiel dNanes. add("fol | owers_count");

/lcreate a spatial RDD froma GeoJSON file

2-91

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Spat i al JavaRDD<Spar kRecor dl nf 0> spatial RDD =
Spati al Sour ces. readGeoJSONRecor dl nf o(geoJSONI nput Pat h, 8307, fi el dNanes,
spar kCont ext) ;

Scala:

/lcreate a spatial RDD froma GeoJSON file
val spatial RDD = Spati al Sources. readGeoJSONRecor dI nf o(geoJSONI nput Pat h, 8307,
Seq("_id","fol l owers_count")) (sparkContext)

Or, using implicit classes:

//create a spatial RDD froma GeoJSON file

import oracle.spatial.spark.vector.scal a.io.Spatial Sources. | nplicitSpatial Sources
val spatial RDD = sparkCont ext. readGeoJSONRecor dl nf o(geoJSONI nput Pat h, 8307,
Seq("_id","followers_count"))

2.10.6 Spatial Spark SQL API

ORACLE

The Spatial Spark SQL API supports Spark SQL DataFrame objects containing spatial
information in any format.

Oracle Big Data Spatial Vector Hive Analysis can be used with Spark SQL.
Example 2-2 Creating a Spatial DataFrame for Querying Tweets

The following example uses the Spark 1.x API to create a spatial DataFrame for
guerying tweets. Ithe data is loaded using a spatial RDD, then a DataFrame can be
created using the function Spat i al JavaRDD. cr eat eSpat i al Dat aFr ane.

//create HiveContext

H veCont ext sql Context = new Hi veCont ext (sparkCont ext.sc());

//get the spatial DataFrame fromthe Spatial RDD

[/the geonetries are in GeoJSON format

Dat aFrane spati al Dat aFrame = spatialRDD.createSpatialDataFrame(sglContext,
properties);

/1 Register the DataFrame as a table.

spati al Dat aFrane. regi st er TenpTabl e("tweets");

/Iregister UDFs

sqgl Context.sql ("create tenporary function ST_Pol ygon as

"oracl e. spatial . hadoop. vect or. hi ve. ST_Pol ygon'");

sql Context.sql ("create tenporary function ST_Point as

"oracl e. spatial . hadoop. vect or. hive. ST_Point"'");

sqgl Context.sql ("create tenporary function ST_Contains as

"oracl e.spatial . hadoop. vector. hi ve. function. ST_Contains'");

/1 SQL can be run over RDDs that have been registered as tables.
StringBuffer query = new StringBuffer();

query. append(" SELECT geonetry, friends_count, |ocation, followers_count FROMtweets
")

query. append("WHERE ST_Contains(");

query. append(” ST_Pol ygon(' {\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]1}", 8307) ");

query. append(" , ST_Point (geonetry, 8307) ");

query. append(" , 0.05)");

query. append(" and fol | owers_count > 50");

Dat aFranme results = sql Context.sql (query.toString());

[IFilter the tweets in a query w ndow (somewhere in the north of Mexico)
/1and with nore than 50 fol | owers.

/I Note that since the geonetries are in GeoJSON format it is possible to create the
ST Point like

[/ ST_Poi nt (geonetry, 8307)

2-92

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

/linstead of
/| ST_Poi nt (geonetry,
"oracl e. spatial . hadoop. vector. hi ve. json. GeoJsonH veRecor dl nf oProvi der")
List<String> filteredTweets = results.javaRDD().map(new Function<Row, String>() {
public String call (Row row) {
StringBuffer sb = new StringBuffer();
sh. append(" Geonetry: ");
sh. append(row. get String(0));

sh. append
sh. append
sh. append
sh. append

"\nFriends count: ");
row getString(1));
"\'nLocation: ");

row. getString(2));

sh. append("\ nFol | oners count: ");
sh. append(row. get String(3));
return sh.toString();

—_—__====

1
}).collect();
[lprint the filtered tweets
filteredTweets. forEach(tweet -> Systemout.println("Tweet: "+tweet));

e Spark 2 APl Enhancements
e Spatial Analysis Spark SQL UDFs

2.10.6.1 Spark 2 APl Enhancements

ORACLE

New Spark SQL capabilities have been added to the Spark 2 Vector API.

e Spatial DataSet/DataFrame
e Spatial UDFs
e Spatial Index

» Performance Considerations with a Spatial Index Over Spark 2 SQL

Spatial DataSet/DataFrame

Spatial RDDs can be transformed to DataSets/DataFrames using the functions
provided by the class oracl e. spati al . spark. vector. sql . Spati al JavaRDDConver si ons
(Java) and oracl e. spati al . spark. vector. scal a. sql . Spati al RDDConver si ons (Scala).
The latter provides an implicit class in order to make it possible to call the
transformation from the Spatial RDD instance. The following examples show how to
transform a Spatial RDD to a DataFrame.

Java:

List<String> fields = Arrays. asList(new String[]{("friends_count","location",
"foll owers_count"});

Dat aSet <Row> spati al Dat aFrane = Spati al JavaRDDConver si ons. t oDat aFr ane(spati al RDD,
fields, sparkSession);

Scala:

[lusing inplicit classes

i mport

oracl e.spatial .spark.vector.scal a.sql . Spati al RDDConver si ons. | npl i ci t Spati al RDDConver s
ions

val spatial DataFrame = spatial RDD. t oDat aFranme(Seq("friends_count”, "l ocation",

"fol | owers_count™")) (sparkSessi on)

2-93

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Spatial UDFs

The same set of Hive UDFs is available as Spark UDFs for the Spark 2 Vector API.
For details, see Spatial Analysis Spark SQL UDFs.

Spati al Envi ronnent . set up(spar kSessi on)

Spatial Index

An existing Spark Vector API's spatial index can be used from Spark 2 SQL to perform
faster spatial queries.

The following examples show how to transform an instance of a spatial index to a
DataFrame:

Java:

I/ Create a spatial RDD froma GeoJSON file

List<String> fiel dNames = Arrays. asList(new String[] {"id", "followers_count"});
Spat i al JavaRDD<Spar kRecor dI nf 0> spati al RDD =

Spati al Sour ces. readGeoJSONRecor di nfo(path, srid, fieldNanes, sparkContext);

//Create a spatial index

Di stributedSpati al | ndex<Spar kRecor dl nfo> i ndex =

Di stributedSpatial I ndex. creat el ndex(sparkCont ext, spatial RDD, new
QuadTreeConfiguration());

|/ Specify the colums as StructFields. The geonetry colum is always included by
def aul t
StructField[] fields = Schemaltils.toStringStructFields(fiel dNames);

/loptions can be null if there are no options to be passed

Map<String, Object> options = new HashMap<>();

/linclude the CRS to all the geonmetries to avoid using SDO <TYPE> wrappers in
spatial UDF's

options. put (QuadTr eel ndexRel ation. Opt I ncl udeCRS(), true);

[ltransformthe existing spatial index to DataFrame and register as a tenporal table
QuadTreelndexRelation.toDataFrame(index, SparkRecordInfo.class, fields, options,
sparkSession).createOrReplaceTempView(""tweets_index™);

Scala:

import oracle.spatial.spark.vector.scal a.io.Spatial Sources. I nplicitSpatial Sources
import oracle.spatial.spark.vector.scal a.sqgl.index.quadtree. QuadTr eel ndexRel ati on. _

i mport

oracl e. spatial .spark.vector.scal a.sql . Spati al RDDConver si ons. | npl i ci t Spati al RDDConver s
i ons

[IList of field nanes to be loaded fromthe GeoJSON file
val fieldNames = Seq("id", "followers_count")

[/create a spatial RDD
val spatial RDD = sparkCont ext.readGeoJSON(path, srid, fieldNames)

[/spatially index the spatial RDD
val index = DistributedSpatial | ndex. createl ndex(spatial RDD, new
QuadTreeConfiguration())(inplicitly, sparkContext)

[/transformthe existing spatial index to DataFrame and register as a tenporal table
[/fiel dNames are automatically transformed to an array of string StructFields thanks

2-94

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

to the //inport of QuadTreel ndexRel ation. _

//toDataFrane can be called fromthe index thanks to the inport of //

I npl i citSpatial RDDConver si ons

index.toDataFrame(fieldNames, Map(QuadTreelndexRelation.OptincludeCRS->true))
(sparkSession).createOrReplaceTempView("tweets_index')

It is also possible to load directly a persisted spatial index into a DataFrame, as the
following examples show.

Java:

/1 list of GeoJSON field names to be | oaded for each feature
List<String> fiel dNanes = Arrays. asList(new String[] { "id", "fol |l owers_count"});

/] Create the required schema for the index. In this case, the schem
/1 contains only fields of type StringType. A schema with other data
/1 types can be passed if needed.

Struct Type schema = Schemaltils. createStringFi el dsSchema(fi el dNanes);

/] read an existing spatial index and register it as table
spar kSessi on. read() . f or mat (QuadTr eel ndexRel ati on. Format ()). schema(schena). | oad(i ndexP
ath).createO Repl aceTenpVi ew("t weet s_i ndex");

Scala:

[/List of field names fromthe spatial index to be included as col ums.
val fieldNames = Seq("id", "followers_count")

//Create the required schema for the index.

[11n this case, the schema contains only fields of type StringType.
/1A schema with other data types can be passed if needed.

val schema = Schemaltils. createStringFiel dsSchema(fi el dNanes)

//read an existing spatial index and register it as a table
spar kSessi on. read. f or mat (QuadTr eel ndexRel ati on. Format). schema(schema) . | oad(i ndexPat h)
.creat eOr Repl aceTenpVi ew("t weet s_i ndex")

After a spatial index is transformed to a DataFrame, it can be used as any other spatial
DataFrame.

Performance Considerations with a Spatial Index Over Spark 2 SQL

A Spatial index performs faster when using only a spatial filter or a spatial filter and
AND conditions in the WHERE clause. The following queries take full advantage of a
spatial index as the spatial data is pre filtered before executing the SQL query:

SELECT * FROM tweets_i ndex WHERE ST_ANYI NTERACT(ST_POLYGON(' $pol ygonJSON , 8307),
ST_PO NT(geonetry, 8307), 0.05)

SELECT * FROM tweets_i ndex WHERE ST_CONTAI NS(ST_PCLYGON(' $pol ygonJSON , 8307),
ST_PO NT(geonetry, 8307), 0.05) AND fol | owers_count > 50

SELECT * FROM tweets_i ndex WHERE ST I NSI DE(ST_PO NT(geonetry, 8307),
ST_POLYGON(' $pol ygonJSON' , 8307), 0.05) AND fol | owers_count > 50 AND id != null

Using OR conditions avoids the spatial data to be pre filtered, however, some spatial
index optimizations are applied. The following query is an example of this case:

SELECT * FROM tweets_i ndex WHERE ST_CONTAI NS(ST_POLYGON(' $pol ygonJSON , 8307),
ST_PO NT(geonetry, 8307), 0.05) OR foll owers_count > 50

2-95

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

When using more than one spatial filter in a WHERE clause, no spatial index
optimizations are used and the query is performed as if there were no spatial index.
For example:

SELECT * FROM tweets_i ndex

VWHERE

ST_ANYI NTERACT(ST_POLYGON(' $pol ygonJSONL', 8307), ST_PO NT(georetry, 8307),
0.05)

AND

ST_CONTAINS(ST_POLYGON(" $pol ygonJSON2' , 8307), ST_PO NT(geonetry, 8307), 0.05)

2.10.6.2 Spatial Analysis Spark SQL UDFs

ORACLE

Spatial analysis functions are available as Spark 2 SQL UDFs (user-defined
functions).

The same set of Hive UDFs is available as Spark UDFs for the Spark 2 Vector API. In
order to start using the Spatial UDFs, the following method from class
oracle.spatial.spark.vector.scal a.sql.Spatial Envi ronnent needs to be executed
before calling any query containing a spatial UDF:

Spati al Envi ronnent . set up(spar kSessi on)

The input spatial data can be in GeoJSON, WKT, or WKB format. You can also use a
spatial index for faster processing.

In the queries, spatial geometry type constructors, such as ST_Polygon or ST_Point,
can be used to create a GeoJSON representation of the input geometry and to add a
SRID (coordinate system) for the geometry. Such constructors must be used if a
geometry is specified in the query, even if the geometry is already in GeoJSON format
— unless you use the spatial index option to set the SRID in the geometry, in which
case a spatial geometry type constructor is not needed; for example:

spark.read().formt(QuadTreel ndexRel ati on. Format ()). schema(schenm)
.option(QuadTreelndexRelation.OptincludeCRS(), true) //avoid using Type
Functi ons
.l oad(i ndexPat h) . creat eOr Repl aceTenpVi ew("t weet s_i ndex");

» Prerequisite Libraries for Spatial Analysis Spark SQL UDFs

» Using Spark SQL UDFs
* Using Spatial Indexes with Spark UDFs

Prerequisite Libraries for Spatial Analysis Spark SQL UDFs

The required libraries for Spatial Analysis Spark SQL UDFs are:

* sdohadoop-vector.jar
* sdospark2-vector.jar
° sdoutl.jar
e sdoapi.jar

e ojdbc8.jar

2-96

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Using Spark SQL UDFs

Spatial analysis Spark SQL UDFs are a series of Spark SQL user-defined functions
used to create geometries and perform spatial operations using one or two geometries
in creating a Spark SQL query.

Hive and Spark Spatial SQL Functions provides reference information for the available
spatial functions.

The following example returns the tweet records within a specific geographical polygon
and where there are more than 50 followers. The general steps for the example are:

1. Set up the spatial SQL environment.
2. Create a spatial RDD from geographical input.

3. Create a DataSet from the SpatialRDD. A spatial DataSet contains a column
called geometry whose values are in GeoJSON format.

4. Register the DataSet so it can be used within SQL statements as a table.
5. Create the query to filter the records.

6. Execute the filter.

Java Example:

inport java.util.Arrays;
inport java.util.List;

i mport org. apache. spark. api . j ava. JavaSpar kCont ext ;
i mport org. apache. spark. sql . Dat aset;

i mport org. apache. spark. sql . Row,

i nport org. apache. spark. sql . Spar kSessi on;

import oracle.spatial.spark.vector. SparkRecordl nf o;

inmport oracle.spatial.spark.vector.io.Spatial Sources;

inport oracle.spatial.spark.vector.rdd. Spatial JavaRDD;

inmport oracle.spatial.spark.vector.scal a.sql.Spatial Environnent;
inmport oracle.spatial.spark.vector.sql.Spatial JavaRDDConver si ons;

public class Spatial QueryExanple {
public static void main(String[] args) {

Spar kSessi on spark = SparkSessi on. bui | der (). appNane(" Spati al Ex").getOr Create();
//Setup spatial SQL environnent
Spati al Envi ronnent . set up(spark);
String geoJSONInput = args[0];
/1 The coordinate systemthe spatial data is expected to be
int srid = 8307;
Il list of GeoJSON field nanes to be |oaded for each feature
Li st<String> fiel dNanmes = Arrays. asLi st(new String[] {

"id", "followers_count", "friends_count", "location"});

/] Create a spatial RDD froma GeoJSON file

Spat i al JavaRDD<Spar kRecor dl nf 0> spatial RDD =
Spat i al Sour ces. readGeoJSONRecor dl nf o(geoJSONI nput, srid, fieldNames,

JavaSpar kCont ext . f r onSpar kCont ext (spar k. sparkContext ()));
/] Create a DataSet fromthe Spatial RDD.
Dat aset <Row> spatial DF = Spati al JavaRDDConver si ons. t oDat aFr amg(
spatial RDD, fiel dNanes, spark);

Il Register the dataset so it can be used within SQ statenments
spati al DF. creat eOr Repl aceTenpVi ew("sanpl e_tweets");

/I polygon used to spatially filter data

ORACLE 2-97

ORACLE

[-10

8307

}
}

Sca

i mpo
i mpo
i mpo
i mpo
orac
i ons
i mpo
i mpo

obj e
de

srid

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

String gqryWndow = "{\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
6,
30], [-104, 30], [-104, 25], [-106, 25]11}";

[l Filter the tweets within the query w ndow (somewhere in the north of Mexico)
StringBuil der query =new StringBuil der()
.append(" SELECT geonetry, friends_count, location, followers_count")

.append(" FROM sanpl e_tweets ")

. append(" VWHERE ")

.append(" ST_CONTAI NS(ST_POLYGON(' ") . append(gryW ndow) . append("",
),

ST_PO NT(geonetry, 8307), 0.05)")
.append(" AND fol | owers_count > 50 ");
/| Execute the query
spark. sql (query.toString()).show);

la Example:

rt org.apache. spark. sql . Spar kSessi on

rt oracle.spatial.spark.vector.sql.udf.function. FunctionExecut or

rt oracle.spatial.spark.vector.scala.io.Spatial Sources. |nplicitSpatial Sources

rt

| e.spatial.spark.vector.scal a.sql.Spatial RDDConver si ons. | npl i cit Spati al RDDConver s

rt scala.collection. nutable. StringBuil der
rt oracle.spatial.spark.vector.scal a.sql.Spatial Environnent

ct Spatial QueryExanpl e {
f main(args: Array[String]): Unit = {
val spark = SparkSession. buil der (). appName("Spati al Quer yExanpl e"). get Or Creat e()
I/ Setup spatial SQL environnent

Spati al Envi ronnent . set up(spark)

val geoJSONI nput = args(0)

/1 The coordinate systemthe spatial data is expected to be

val srid = 8307

Il list of GeoJSON field names to be |oaded for each feature

val fieldNanes = Seq("id", "followers_count", "friends_count", "location")

Il Create a spatial RDD froma GeoJSON file

val spatial RDD = spark. sparkCont ext . r eadGeoJSONRecor dI nf o(geoJSONI nput ,

fi el dNames)

Il Create a DataSet fromthe Spatial RDD.

val spatial DF = spatial RDD. t oDat aFrane(fi el dNanes) (spark)

Il Register the dataset so it can be used within SQL statements

spati al DF. creat eOr Repl aceTenpVi ew(" sanpl e_t weet s")

/1 polygon used to spatially filter data

val gryWndow = """{"type": "Polygon", "coordi nates":

[[[-106, 25], [-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}"""

Il Filter the tweets within the query window (somewhere in the north of Mexico)
val query =s""" SELECT geonetry, friends_count, |ocation, followers_count
| FROM sanpl e_t weets
| VHERE
| ST_CONTAI NS(ST_POLYGON(' $qr yW ndow , $srid),
ST_PO NT(geonetry, $srid), 0.05)
| AND fol |l owers_count > 50 """.stripMargin
/'l Execute the query
val results = spark.sql (query)
resul ts. show()

2-98

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

}
}

Using Spatial Indexes with Spark UDFs

Spatial Spark SQL UDFs can process indexed data sets. You can create an index on
the fly or you can use a persisted spatial index. For more information, see Spatially
Indexing a Spatial RDD.

The following example filters the tweet records that spatially interact with a specified
polygon or with fewer than 2 followers, and it uses the spatial index option to include
the SRID in the geometry column. In this scenario there is no need to wrap the
geometry in a Type function.

The general steps are:

1. Set up the spatial SQL environment.

2. Read a persisted index into a DataSet and register it as a table.
3. Create the query to filter the records.

4. Execute the filter.

Java Example:

i mport org. apache. spark. Spar kConf ;

i mport org. apache. spark. sql . Spar kSessi on;
import org. apache. spark. sql . types. Dat aTypes;
inport org.apache. spark. sql . types. Met adat a;
inport org.apache. spark. sql.types. StructField;
import org.apache. spark. sql . types. Struct Type;

inmport oracle.spatial.spark.vector.scal a.sqgl.Spatial Environnent;
inmport oracle.spatial.spark.vector.scal a.sql.index.quadtree. QuadTr eel ndexRel ati on;
import oracle.spatial.spark.vector.serialization.Spatial VectorKryoRegistrator;

public class IndexQOptionsAndSchenaTypesExanpl e {
public static void main(String[] args) {
Spar kConf conf = new SparkConf();
/1 the index is expected to have its partitions indexed with an R-Tree
/1 so the following line is required if Kryo is used
Spati al Vect or KryoRegi strator.register(conf);
Spar kSessi on
spar k=Spar kSessi on. bui | der (). config(conf).appName("1").getOrCreate();
/1 Setup spatial SQL environnent
Spati al Envi ronnent . set up(spark);
String indexPath = args[0];
//Create the required schema for the index.
Struct Type schema = new Struct Type(new StructField[]{
new StructFiel d("fol l owers_count”, DataTypes.|ntegerType, true,
Met adat a. empty()),
new StructField("friends_count", DataTypes.|ntegerType, true,
Met adat a. empty()),
new StructFiel d("location", DataTypes.StringType, true, Metadata.enpty())
D
//read an existing spatial index and register it as table called "tweets_index"
spark. read().format (QuadTreel ndexRel ati on. Format ()). schema(scheng)
.option(QuadTreel ndexRel ation. OptlncludeCRS(), true)//avoid using Type
Functi ons
.l oad(i ndexPat h) . creat eOr Repl aceTenpVi ew("t weet s_i ndex");

/I polygon used to spatially filter data

2-99

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

String gqryWndow = "{\"type\": \"Polygon\",\"coordinates\": [[[-106, 25],
[-106, 30], [-104, 30], [-104, 25], [-106, 25]1]}";

Il Retrieve all the tweets which spatially interact with the given
pol ygon
/1 Note that geometry colum is not surrounded by the ST_PO NT function
StringBuil der query =new StringBuil der()

.append(" SELECT geonetry, friends_count, location, followers_count")
.append(" FROM t weet s_i ndex ")

. append(" VWHERE ")

(H

. append ST_ANY!I NTERACT(
ST_POLYGON(' ") . append(qr yW ndow) . append("'
8307)
geonetry, 0.05)")
.append(" OR followers_count =2 ")
System out. println(query)
spark. sql (query.toString()).show();
1
}

Scala Example:

i mport org.apache. spark. sql . SparkSessi on

i mport oracle.spatial.spark.vector.sqgl.udf.function.FunctionExecutor

i mport oracle.spatial.spark.vector.scala.io.Spatial Sources.|nplicitSpatial Sources
i mport
oracle.spatial.spark.vector.scal a.sql . Spati al RDDConver si ons. | npl i ci t Spati al RDDConver s
i ons

i mport scal a. col | ection. nutabl e. StringBuil der

i mport org. apache. spark. Spar kConf

i mport oracle.spatial.spark.vector.serialization.Spatial VectorKryoRegi strator

i mport oracle.spatial.spark.vector.scal a.sql.Spatial Envi ronnent

i mport oracle.spatial.spark.vector.scal a.sql.index.quadtree. QuadTr eel ndexRel ati on
i mport oracle.spatial.spark.vector.scala.sqgl.util.Schemaltils

i mport org.apache. spark.sql .types. StructField

i mport oracle.spatial.spark.vector.scala.sqgl.util.Schemaltils

i mport org.apache. spark. sql . types. Struct Type

i mport org.apache. spark. sql.types.|nteger Type

i mport org.apache. spark. sql.types. Met adat a

i mport org.apache. spark. sql . types. StringType

obj ect 1ndexOptionsAndSchemaTypesExanpl e {
def main(args: Array[String]): Unit = {
val conf = new Spar kConf
//the index is expected to have its partitions indexed with an R-Tree
//so the following line is required if Kryo is used
Spati al Vect or KryoRegi strator. regi ster(conf)
val spark = SparkSession. buil der().config(conf).appNane("IndexEx").getOrCreate()
I/ Setup spatial SQL environnent
Spati al Envi ronnent . set up(spar k)
val indexPath = args(0)

//Create the required schema for the index
val schema = Struct Type(Array(
StructField("fol l owers_count", I nteger Type, true, Metadata.enpty)
StructField("friends_count”,|ntegerType, true, Metadata.enpty)
StructField("location", StringType, true, Metadata.enpty)))

/lread an existing spatial index and register it as table called "tweets_index"

spark. read. f or mat (QuadTr eel ndexRel ati on. For mat) . schema(schens)
.option(QuadTreel ndexRel ation. Opt I ncl udeCRS, true)//set to avoid using Type

2-100

Chapter 2
Oracle Big Data Spatial Vector Analysis for Spark

Functs
.l oad(i ndexPat h) . creat eOr Repl aceTenpVi ew("t weet s_i ndex")

/I polygon used to spatially filter the data

val polygonJSON = """{"type": "Polygon", "coordinates": [[[-106, 25], [-106,
30],
[-104, 30], [-104, 25], [-106, 25]]]}"""
[/ Spatial reference system|D of the data
val srid = 8307
//Retrieve tweets which spatially interact with the given polygon
[/ Note that geometry colum is not surrounded by the ST_PO NT function
val query = s"""SELECT geonetry, |ocation, friends_count, followers_count
| FROM tweets_i ndex
| WHERE
| ST_ANYI NTERACT(ST_POLYGON(' $pol ygonJSON' , $srid), geonetry, 0.05)
| ORfollowers_count =2 """.stripMargin
println(s"Executing: \n$query")
val results = spark.sql (query)
results. show()
1
}

2.10.7 JDBC Data Sources for Spatial RDDs

Oracle Database data can be used as the data source of a Spatial RDD by using the
Spark Vector Analysis API.

The class oracl e. spatial . spark. vector. util.JDBCUils (or

oracle.spatial . spark.vector.scala.util.JDBCUils for Scala) provides convenience
methods for creating a Spatial RDD from an Oracle database table or from a SQL
guery to an Oracle database. The table or SQL query should contain one column of
type SDO_GEOMETRY in order to create a Spatial RDD.

Both the from-table and from-query method versions require a connection to the
Oracle database, which is supplied by a lambda function defined by the template
oracl e.spatial .spark.vector.util.ConnectionSupplier (or
oracle.spatial.spark.vector.scala.util.ConnectionSupler for Scala).

The resulting Spatial RDD type parameter will always be Spar kRecor dI nf o, that is, the
resulting RDD will contain records of the type Spar kRecor di nf o, which will contain the
fields specified when querying the table or the columns in the SELECT section of the
SQL query. By default, the name and type of the columns retrieved are inferred using
the Resul t Set metadata; however, you can control the naming and type of the retrieved
fields by supplying an implementation of Spar kRecor dlI nf oPr ovi der

The following examples show how to create a Spatial RDD from a table and from a
SQL query respectively.

Example 2-3 Creating a Spatial RDD from a Database Table

Spat i al JavaRDD<Spar kRecor dI nf oPr ovi der> j dbcSpati al RDD =
JDBCUt i | s. creat eSpat i al RDDFr oniTabl e(
sparkCont ext, //spark context
()->{
Cl ass. forNane("oracle.jdbc.driver. Oracl eDriver");
return new DriverManager. get Connecti on(connURL, usr, pwd);
}, 1/ DB connection supplier |anbda
“VEH CLES’, //DB table
Arrays. asList(new String[]{"ID","DESC', "LOCATION'}), //list of fields to retrieve

ORACLE 2-101

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

nul | // SparkRecor dl nf oProvi der <Resul t Set, SparkRecordl ngo> (optional)
);

Example 2-4 Creating a Spatial RDD from a SQL Query to the Database

Spati al JavaRDD<Spar kRecor dI nf oPr ovi der > j dbcSpati al RDD =
JDBCUt i | 's. creat eSpati al RDDFr omQuer y(
sparkCont ext, //spark context
0->{
Cl ass. forName("oracl e.jdbc. driver.Oracl eDriver");
return new Driver Manager. get Connection(connURL, usr, pwd);
}, [/DB connection supplier |anbda
“SELECT * FROM VEH CLES WHERE category > 5", //SQL query
nul | // SparkRecor dl nf oProvi der <Resul t Set, Spar kRecor dl ngo> (optional)

)

In the preceding examples, data from the Oracle database is queried and partitioned
to create a Spark RDD. The number and size of the partitions is determined
automatically by the Spark Vector Analysis API.

You can also specify the desired number of database rows to be contained in a Spark
partition by calling a method overload that takes this number as a parameter. Manually
specifying the number of rows per partition can improve the performance of the Spatial
RDD creation.

2.11 Oracle Big Data Spatial Vector Hive Analysis

ORACLE

Oracle Big Data Spatial Vector Hive Analysis provides spatial functions to analyze the
data using Hive.

The spatial data can be in any Hive supported format. You can also use a spatial index
created with the Java analysis API (see Spatial Indexing) for fast processing.

The supported features include:
e Using the Hive Spatial API

e Using Spatial Indexes in Hive

See also HiveRecordInfoProvider for details about the implementation of these
features.

Hive and Spark Spatial SQL Functions provides reference information about the
available functions.

Prerequisite Libraries

The following libraries are required by the Spatial Vector Hive Analysis API.
e sdohadoop-vector-hive.jar

* sdohadoop-vector.jar

* sdoutil.jar

* sdoapi.jar

e ojdbc.jar

* HiveRecordInfoProvider

e Using the Hive Spatial API

2-102

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

* Using Spatial Indexes in Hive

2.11.1 HiveRecordInfoProvider

ORACLE

A record in a Hive table may contain a geometry field in any format like JSON, WKT,
or a user-specifiedformat. Geometry constructors like ST_Geometry can create a
geometry receiving the GeoJSON, WKT, or WKB representation of the geometry. If
the geometry is stored in another format, a HiveRecordInfoProvider can be used.

Hi veRecor dI nf oProvi der is a component that interprets the geometry field
representation and returns the geometry in a GeoJSON format.

The returned geometry must contain the geometry SRID, as in the following example
format:

{"type":<geonetry-type", "crs": {"type": "name", "properties": {"name": "EPSG
4326"}}"coordi nates":[cl,c2,....cn]}

The Hi veRecor di nf oPr ovi der interface has the following methods:

* void setCurrentRecord(Qbject record)
e String getGeonetry()

The method set Current Record() is called by passing the current geometry field
provided when creating a geometry in Hive. The Hi veRecor dI nf oPr ovi der is used then
to get the geometry or to return null if the record has no spatial information.

The information returned by the Hi veRecor dI nf oProvi der is used by the Hive Spatial
functions to create geometries (see Hive and Spark Spatial SQL Functions).

Sample HiveRecordIinfoProvider Implementation

This sample implementation, named Si npl eH veRecor dI nf oPr ovi der, takes text records
in JSON format. The following is a sample input record:

{"longi tude":-71.46, "latitude": 42. 35}

When Si npl eHi veRecor dI nf oProvi der is instantiated, a JSON Obj ect Mapper is created.
The uj ect Mapper is used to parse records values later when set Current Record() is
called. The geometry is represented as latitude-longitude pair, and is used to create a
point geometry using the JsonUil s. readGeonet ry() method. Then the GeoJSON
format to be returned is created using GeoJsonGen. asGeonet ry(), and the SRID is added
to the GeoJSON using JsonUti|'s. addSRI DToGeoJSON() .

public class SinpleH veRecordl nfoProvider inplements H veRecordl nfoProvi der{
private static final Log LOG =
LogFact ory. get Log(Si npl eHi veRecor dI nf oProvi der. cl ass. get Nane()) ;

private JsonNode recordNode = null;
private Chject Mapper jsonMapper = null;

public SinpleH veRecordl nfoProvider(){
j sonMapper = new Obj ect Mapper () ;
}

@verride
public void setCurrentRecord(Cbject record) throws Exception {

try{
if(record !'= null){

2-103

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

[/ parse the current val ue
recordNode = jsonMapper.readTree(record.toString());

}cat ch(Exception ex){
recordNode = nul | ;
LOG. war n(" Probl em readi ng JSON record
val ue: "+record.toString(), ex);
}

}

@verride
public String getGeonetry() {
i f(recordNode == null){
return null;

}

JCGeonetry geom = null;

tryf
geom = JsonUtils. readGeonetry(recordNode,
2, //dinensions
8307 //SRID
);
}cat ch(Exception ex){
recordNode = nul | ;
LOG. war n(" Probl em readi ng JSON record
geonetry: "+recordNode. toString(), ex);
}

if(geom!= null){
StringBuilder res = new StringBuilder();
//Get a GeoJSON representation of the JGeonetry
GeoJsonGen. asCGeonet ry(geom res);
String result =res.toString();
/1add SRID to GeoJSON and return the result
return JsonUils.addSRI DToGeoJSON(result, 8307);

return nul l;

}

2.11.2 Using the Hive Spatial AP!I

ORACLE

The Hive Spatial API consists of Oracle-supplied Hive User Defined Functions that can
be used to create geometries and perform operations using one or two geometries.

The functions can be grouped into logical categories: types, single-geometry, and two-
geometries. (Hive and Spark Spatial SQL Functions lists the functions in each
category and provides reference information about each function.)

Example 2-5 Hive Script

The following example script returns information about Twitter users in a data set who
are within a specified geographical polygon and who have more than 50 followers. It
does the following:

Adds the necessary jar files:

add jar
/opt/oracl el oracl e-spatial -graph/ spatial /vector/jlib/ojdbc8.jar

2-104

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

/opt/oracl e/ oracl e-spatial -graph/spatial/vector/jlib/sdoutl.jar

/opt/oracl e/ oracl e-spatial -graph/ spatial/vector/jlib/sdoapi.jar

/opt/oracl e/ oracl e-spatial -graph/ spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl e/ oracl e-spatial -graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar;

Creates the Hive user-defined functions that will be used:

create tenporary function ST _Point as

"oracl e. spatial . hadoop. vector. hive. ST _Point";

create tenporary function ST _Pol ygon as

"oracl e. spatial . hadoop. vect or. hi ve. ST_Pol ygon' ;

create tenporary function ST _Contains as

"oracl e.spatial.hadoop.vector. hive.function. ST Contains';

Creates a Hive table based on the files under the HDFS directory / user/ or acl e/
twitter. The I nput Format used in this case is

oracl e. spati al . hadoop. vect or . geoj son. mapr ed. GeoJsonl nput For rat and the Hive
SerDe is a user-provided SerDe

oracl e. spati al . hadoop. vect or. hi ve. j son. GeoJsonSer De.

CREATE EXTERNAL TABLE | F NOT EXI STS sanpl e_tweets (id STRING geometry STRING
foll owers_count STRING friends_count STRING |ocation STRING

ROW FORMAT SERDE ' oracl e. spati al . hadoop. vect or. hi ve. j son. GeoJsonSer De'

STORED AS | NPUTFORVAT

"oracl e. spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat '

QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl . i 0. Hi vel gnor eKeyText Qut put For mat'
LOCATION ' /user/oracle/twitter';

Runs a spatial query receiving an ST_Polygon query area and the ST_Point
tweets geometry, and using 0.5 as the tolerance value for the spatial operation.
The output will be information about Twitter users in the query area who have
more than 50 followers.

SELECT id, followers_count, friends_count, |ocation FROM sanple_tweets
VWHERE ST_Cont ai ns(
ST_Pol ygon(
"{"type": "Polygon",
"coordinates":
[[[-106, 25],[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}",
8307
),
ST_Poi nt (geonetry, 8307),
0.5

and fol | owers_count > 50;

The complete script is as follows:

add jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/ojdbc8.jar
/opt/oracl e/ oracl e-spati al -graph/spatial /vector/jlib/sdoutl.jar
/opt/oracl e/ oracl e-spati al -graph/spatial /vector/jlib/sdoapi.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar;

create tenporary function ST_Point as 'oracle.spatial.hadoop.vector.hive. ST _Point";
create tenporary function ST_Pol ygon as

"oracl e. spatial . hadoop. vect or. hi ve. ST_Pol ygon' ;

create tenporary function ST_Contains as

"oracl e. spatial . hadoop. vector. hi ve. function. ST_Contains';

CREATE EXTERNAL TABLE | F NOT EXI STS sanpl e_tweets (id STRING geonetry STRING
followers_count STRING friends_count STRING | ocation

2-105

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

STRING

ROW FORMAT SERDE ' oracl e. spati al . hadoop. vect or. hi ve. j son. GeoJsonSer De'
STORED AS | NPUTFORMAT

"oracl e. spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat '
QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl .i 0. H vel gnor eKeyText Qut put For mat "'
LOCATION '/user/oracle/twitter';

SELECT id, followers_count, friends_count, |ocation FROM sanple_tweets
WWHERE
ST_Cont ai ns(
ST_Pol ygon(
"{"type": "Polygon",
"coordinates":
[[[-106, 25],[-106, 30], [-104, 30], [-104, 25], [-106, 25]]]}",
8307
),
ST_Poi nt (geonetry, 8307),
0.5
)

and fol | owers_count > 50;

2.11.3 Using Spatial Indexes in Hive

ORACLE

Hive spatial queries can use a previously created spatial index, which you can create
using the Java API (see Spatial Indexing).

If you do not need to use the index in API functions that will access the original data,
you can specify i sMapFi | el ndex=f al se when you call

oracl e. spati al . hadoop. vect or. mapred. j ob. Spati al | ndexi ng, or you can use the function
set MapFi | el ndex(fal se) . In these cases, the index will have the following structure:

HDFSI ndexDi r ect or y/ part - XXxxx

And in these cases, when creating a Hive table, just provide the folder where you
created the index.

If you need to access the original data and you do not set the parameter
i sMapFi | el ndex=f al se, the index structure is as follows:

part - XXXXx
data
i ndex

In such cases, to create a Hive table, the data files of the index are needed. Copy the
dat a files into a new HDFS folder, with each data file having a different name, like
datal, data2,, and so on. The new folder will be used to create the Hive table.

The index contains the geometry records and extra fields. That data can be used when
creating the Hive table.

(Note that Spatial Indexing Class Structure describes the index structure, and
RecordInfoProvider provides an example of a Recor dI nf oPr ovi der adding extra fields.)

I nput For mat oracl e. spati al . hadoop. vect or. mapred. i nput. Spati al | ndexText | nput For mat
will be used to read the index. The output of this | nput For mat is GeoJSON.

Before running any query, you can specify a minimum bounding rectangle (MBR) that
will perform a first data filtering using Spat i al | ndexText | nput For mat ..

2-106

ORACLE

Chapter 2
Oracle Big Data Spatial Vector Hive Analysis

Example 2-6 Hive Script Using a Spatial Index

The following example script returns information about Twitter users in a data set who
are within a specified geographical polygon and who have more than 50 followers. It
does the following:

1.

Adds the necessary jar files:

add jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/ojdbc8.jar
/opt/oracl e/ oracl e-spati al -graph/spatial /vector/jlib/sdoutl.jar
/opt/oracl e/ oracl e-spati al -graph/ spatial /vector/jlib/sdoapi.jar
/opt/oracl e/ oracl e-spatial - graph/ spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar;

Creates the Hive user-defined functions that will be used:

create tenporary function ST_Point as

"oracl e. spatial . hadoop. vect or. hi ve. ST_Point";

create tenporary function ST_Pol ygon as

"oracl e. spatial . hadoop. vect or. hi ve. ST_Pol ygon' ;

create tenporary function ST_Contains as

"oracl e. spatial . hadoop. vector. hive. function. ST_Contains';

Sets the data maximum and minimum boundaries
(dim1Min,dim2Min,dim1Max,dim2Max):

set oracl e.spatial.boundari es=-180, - 90, 180, 90;

Sets the extra fields contained in the spatial index that will be included in the table
creation:

set
oracl e. spatial .index.includedExtraFi el ds=fol | owers_count, friends_count, | ocati on;

Creates a Hive table based on the files under the HDFS directory /user/oracle/
twitter. The | nput For mat used in this case is

oracl e. spati al . hadoop. vect or. mapred. i nput . Spati al | ndexText | nput For mat and the
Hive SerDe is a user-provided SerDe

oracl e. spati al . hadoop. vect or . hi ve. j son. GeoJsonSer De. (The code for

oracl e. spatial . hadoop. vect or. hi ve. j son. GeoJsonSer De is included with the Hive
examples.) The geometry of the tweets will be saved in the geometry column with
the format {"longitude™:n, "latitude":n} :

CREATE EXTERNAL TABLE | F NOT EXI STS sanpl e_tweets_index (id STRING geonetry
STRING followers_count STRING friends_count STRING |ocation

STRING)
ROW FORMAT SERDE

"oracl e. spatial . hadoop. vect or. hi ve. j son. GeoJsonSer De'

STORED AS | NPUTFORVAT

"oracle.spatial.hadoop. vector. mapred. i nput. Spati al | ndexText | nput For mat "'
OQUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl .i 0. H vel gnor eKeyText Qut put For mat "'
LOCATION '/user/oracle/twi tter/index';

Defines the minimum bounding rectangle (MBR) to filter in the

Spat i al | ndexText | nput For mat . Any spatial query will only have access to the data in
this MBR. If no MBR is specified, then the data boundaries will be used. This
setting is recommended to improve the performance.

set oracle.spatial.spatial QueryWndow={"type": "Polygon", "coordinates": [[[-107,
24], [-107, 31], [-103, 31], [-103, 24], [-107, 24]]1};

Runs a a spatial query receiving an ST_Polygon query area and the ST_Point
tweets geometry, and using 0.5 as the tolerance value for the spatial operation.

2-107

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

The tweet geometries are in GeoJSON format, and the ST_Point function is
usedspecifying the SRID as 8307.. The output will be information about Twitter
users in the query area who have more than 50 followers.

SELECT id, followers_count, friends_count, |ocation FROM sanple_tweets
VWHERE ST_Cont ai ns(

ST_Pol ygon(' {"type": "Polygon", "coordinates": [[[-106, 25], [-106, 30], [-104,
30], [-104, 25], [-106, 25]]]1}', 8307)

, ST_Poi nt (geonetry, 8307)

, 0.5)

and fol | owers_count > 50;

The complete script is as follows. (Differences between this script and the one in Using
the Hive Spatial APl are marked in bold; however, all of the steps are described in the
preceding list.)

add jar
lopt/oracl e/ oracl e-spatial -graph/spatial /vector/jlib/ojdbc8.jar
lopt/oracl e/ oracl e-spatial -graph/ spatial /vector/jlib/sdoutl.jar
I opt/oracl e/ oracl e-spatial - graph/ spatial /vector/jlib/sdoapi.jar
/opt/oracl e/ oracl e-spatial - graph/spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl el oracl e-spatial - graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar;

create tenporary function ST_Pol ygon as

"oracle.spatial.hadoop. vector. hi ve. ST_Pol ygon';

create tenporary function ST_Point as 'oracle.spatial.hadoop.vector. hive.ST_Point"';
create tenporary function ST_Contains as

"oracle.spatial . hadoop. vector. hi ve. function. ST_Contains';

set oracle.spatial.boundaries=-180,-90,180,90;
set oracle.spatial.index. includedExtraFields=followers_count,friends_count, location;

CREATE EXTERNAL TABLE |IF NOT EXI STS sanpl e_tweets_index (id STRING geonetry STRING
foll owers_count STRING friends_count STRING | ocation

STRING

ROW FORMAT SERDE ' oracl e. spati al . hadoop. vect or. hi ve. j son. GeoJsonSer De'

STORED AS | NPUTFORVAT

"oracle.spatial .hadoop.vector.mapred. input.Spatial IndexTextInputFormat*®
QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl . i 0. Hi vel gnor eKeyText Qut put For mat "'

LOCATION '/ user/oracl e/ twitter/ index";

set oracle.spatial.spatialQueryWindow={"type": "Polygon","coordinates": [[[-107,
241, [-107, 31], [-103, 31], [-103, 24], [-107, 24111};

SELECT id, followers_count, friends_count, |ocation FROM sanple_tweets
VWHERE ST_Cont ai ns(

ST_Pol ygon(' {"type": "Polygon", "coordinates": [[[-106, 25], [-106, 30], [-104,
30], [-104, 25], [-106, 25]]]}"', 8307)

, ST _Poi nt (geonetry, 8307)

, 0.5)

and fol | owers_count > 50;

2.12 Using the Oracle Big Data SpatialViewer Web
Application

You can use the Oracle Big Data SpatialViewer Web Application (SpatialViewer) to
perform a variety of tasks.

ORACLE 2-108

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

These include tasks related to spatial indexing, creating and showing thematic maps,
loading rasters into HDFS, visualizing uploaded rasters in the globe, selecting
individual or multiple footprints, performing raster algebra operations, dealing with
gaps and overlaps, combining selected footprints, generating a new image with the
specified file format from the selected footprints, and applying user-specific
processing.

» Creating a Hadoop Spatial Index Using SpatialViewer

» Exploring the Hadoop Indexed Spatial Data

e Creating a Spark Spatial Index Using SpatialViewer

* Exploring the Spark Indexed Spatial Data

* Running a Categorization Job Using SpatialViewer

* Viewing the Categorization Results

* Saving Categorization Results to a File

e Creating and Deleting Templates

* Configuring Templates

* Running a Clustering Job Using SpatialViewer

* Viewing the Clustering Results

e Saving Clustering Results to a File

* Running a Binning Job Using SpatialViewer

* Viewing the Binning Results

e Saving Binning Results to a File

* Running a Job to Create an Index Using the Command Line
* Running a Job to Create a Categorization Result

* Running a Job to Create a Clustering Result

* Running a Job to Create a Binning Result

* Running a Job to Perform Spatial Filtering

* Running a Job to Get Location Suggestions

* Running a Job to Perform a Spatial Join

* Running a Job to Perform Partitioning

e Using Multiple Inputs

* Loading Images from the Local Server to the HDFS Hadoop Cluster
e Visualizing Rasters in the Globe

» Processing a Raster or Multiple Rasters with the Same MBR
* Creating a Mosaic Directly from the Globe

* Adding Operations for Raster Processing

» Creating a Slope Image from the Globe

* Changing the Image File Format from the Globe

2-109

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2.12.1 Creating a Hadoop Spatial Index Using SpatialViewer

To create a Hadoop spatial index using SpatialViewer, follow these steps.

1. Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045/
spati al vi ewer/ ?r oot =vect or

2. Click Spatial Index.
3. Specify all the required details:
a. Index name.

b. Path of the file or files to index in HDFS. For example, / user/ or acl e/ bdsg/
tweets.json.

c. New index path: This is the job output path. For example: / user/ or acl e/ bdsg/
i ndex.

d. SRID of the geometries to be indexed. Example: 8307
e. Tolerance of the geometries to be indexed. Example: 0.05

f. Input Format class: The input format class. For example:
oracl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

g. Record Info Provider class: The class that provides the spatial information. For
example: oracl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dI nf oPr ovi der .

¢ Note:

If the I nput For mat class or the Recor dI nf oProvi der class is not in the
API, or in the hadoop API classes, then a jar with the user-defined
classes must be provided. To be able to use this jar, you must add it
in the / opt/ oracl e/ oracl e- spati al - graph/ spati al / web- server/

spati al vi ewer/ VEB- I NF/ | i b directory and restart the server.

h. Whether the the enrichment service (WSuggest) must be used or not. If the
geometry has to be found from a location string, then use the WSuggest
service. In this case the provided Recor dI nf oPr ovi der must implement the
interface oracl e. spati al . hadoop. vect or. Local i zabl eRecor dI nf oPr ovi der .

i. MVSuggest Templates (Optional): When using the MWSuggest service, you can
define the templates used to create the index.

4. Click Create.
A URL will be displayed to track the job.

2.12.2 Exploring the Hadoop Indexed Spatial Data

To explore Hadoop indexed spatial data, follow these steps.

1. Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045/
spati al vi ewer/ ?r oot =vect or

2. Click Explore Data.

For example, you can:

ORACLE 2-110

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

» Select the desired indexed data and use the rectangle tool to display the data in
the desired area.

» Change the background map style.

* Show data using a heat map.

2.12.3 Creating a Spark Spatial Index Using SpatialViewer

To create a Spark spatial index using SpatialViewer, follow these steps.

1. Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045/
spati al vi ewer/ ?r oot =vect or spar k

2. Click Spatial Index.

3. Specify all the required details:

a.

b.

Index name.

Path of the file or files to index in HDFS. For example, / user/ or acl e/ bdsg/
tweets.json.

New index path: This is the job output path. For example: / user/ or acl e/ bdsg/
i ndex.

SRID of the geometries to be indexed. Example: 8307
Tolerance of the geometries to be indexed. Example: 0.05

Input Format class (optional): The input format class. For example:
oracl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

Key class (required if an input format class is defined): Class of the input
format keys. For example: or g. apache. hadoop. i 0. LongWi t abl e

Value class (required if an input format class is defined): Class of the input
format values. For example: or g. apache. hadoop. i 0. Text

Record Info Provider class: The class that provides the spatial information. For
example:
oracl e.spatial . spark. vector.recordinfoprovi der. GeoJsonRecor dl nf oPr ovi der

¢ Note:

If the I nput For mat class or the Recor dI nf oProvi der class is not in the
API, or in the hadoop API classes, then a jar with the user-defined

classes must be provided. To be able to use this jar the user must

add it in the / opt/oracl e/ oracl e-spati al - graph/ spat i al / web- server/
spati al vi ewer/ VEB- I NF/ | i b directory and restart the server.

4. Click Create.

A URL will be displayed to track the job.

2.12.4 Exploring the Spark Indexed Spatial Data

To explore Spark indexed spatial data, follow these steps.

ORACLE

2-111

1.

2.

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Open the console:htt p: // <oracl e_bi g_dat a_spati al _vect or _consol e>: 8045/
spati al vi ewer/ ?r oot =vect or spark

Click Explore Data.

For example, you can:

Select the desired indexed data and use the rectangle tool to display the data in
the desired area.

Change the background map style.

2.12.5 Running a Categorization Job Using SpatialViewer

You can run a categorization job with or without the spatial index. Follow these steps.

ORACLE

1.

Open http://<oracl e_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
root =vector.

Click Categorization, then Categorization Job.

Select either With Index or Without Index and provide the following details, as
required:

With Index

a.

Index name

Without Index

a.

Path of the data: Provide the HDFS data path. For example, / user/ or acl e/
bdsg/ tweets. j son.

JAR with user classes (Optional): If the | nput For mat class or the

Recor dl nf oProvi der class is not in the API, or in the hadoop API classes,
then a jar with the user-defined classes must be provided. To be able to
use this jar the user must add it in the / opt / or acl e/ or acl e- spati al - gr aph/
spatial / web- server/spati al vi ewer/ VEB- | NF/ | i b directory and restart the
server.

Input Format class: The input format class. For example:
oracl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

Record Info Provider class: The class that will provide the spatial
information. For example:
oracl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dI nf oPr ovi der.

Whether the enrichment service WSuggest service must be used or not. If
the geometry must be found from a location string, then use the WSuggest
service. In this case the provided Recor dI nf oProvi der has to implement the
interface oracl e. spati al . hadoop. vect or. Local i zabl eRecor dlI nf oPr ovi der .

Templates: The templates to create the thematic maps.

Note:

If a template refers to point geometries (for example, cities), the
result returned is empty for that template, if WSuggest is not
used. This is because the spatial operations return results only
for polygons.

2-112

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Tip:

When using the WSuggest service the results will be more
accurate if all the templates that could match the results are
provided. For example, if the data can refer to any city, state,
country, or continent in the world, then the better choice of
templates to build results are World Continents, World Countries,
World State Provinces, and World Cities. On the other hand, if
the data is from the USA states and counties, then the suitable
templates are USA States and USA Counties. If an index that
was created using the MWSuggest service is selected, then select
the top hierarchy for an optimal result. For example, if it was
created using World Countries, World State Provinces, and
World Cities, then use World Countries as the template.

g. Output path: The Hadoop job output path. For example: / user/ oracl e/
bdsg/ cat out put

h. Result name: The result name. If a result exists for a template with the
same name, it is overwritten. For example, Tweets test.

Click Create. A URL will be displayed to track the job.

2.12.6 Viewing the Categorization Results

To view the categorization results, follow these steps.

1.

Open http://<oracl e_hi g_data_spatial _vector_consol e>: 8045/ spati al vi ewer/ ?
root =vect or.

Click Categorization, then Results.

Click any one of the Templates. For example, World Continents.
The World Continents template is displayed.

Click any one of the Results displayed.

Different continents appear with different patches of colors.
Click any continent from the map. For example, North America.

The template changes to World Countries and the focus changes to North America
with the results by country.

2.12.7 Saving Categorization Results to a File

You can save categorization results to a file (for example, the result file created with a
job executed from the command line) on the local system for possible future uploading
and use. The templates are located in the folder / opt/ or acl e/ or acl e- spat i al - gr aph/
spati al / web- server/spati al vi ener/ t enpl at es. The templates are GeoJSON files with
features and all the features have ids. For example, the first feature in the template
USA States starts with: {"type": "Feature"," i d":"WOMNG', ...

ORACLE

The results must be JSON files with the following format:
{"id":"JSONFeatureld","result":result}.

2-113

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

For example, if the template USA States is selected, then a valid result is a file
containing: {"i d":"WOM NG', "resul t":3232} {"id":"SOUTH DAKOTA", "resul t": 74968}

Click Categorization, then Results.

Select a Template .

Click the icon for saving the results.
Specify a Name.

Click Choose File to select the File location.
Click Save.

e g k w NP

The results can be located in the folder cl ustering_resul ts contained in the
SpatialViewer local working directory (see Configuring SpatialViewer on Oracle
Big Data Appliance).

2.12.8 Creating and Deleting Templates

To create new templates do the following:

1. Add the template JSON file in the folder / opt/ or acl e/ or acl e- spat i al - gr aph/
spatial / web-server/spatial vi ewer/tenpl ates/.

2. Add the template configuration file in the folder / opt/ or acl e/ or acl e- spat i al - gr aph/
spatial / web-server/spatial viewer/tenpl ates/_config_.

To delete the template, delete the JSON and configuration files added in steps 1 and
2.

2.12.9 Configuring Templates

ORACLE

Each template has a configuration file. The template configuration files are located in
the folder / opt/ oracl e/ or acl e- spati al - graph/ spati al / web- server/ spati al vi ewer/

tenpl ates/ _config_. The name of the configuration file is the same as the template files
suffixed with confi g.j son instead of . j son.For example, the configuration file name of
the template file usa_states. json is usa_states. confi g.j son. The configuration
parameters are:

* name: Name of the template to be shown on the console. For example, name: USA
States.

- display_attribute: When displaying a categorization result, a cursor move on the
top of a feature displays this property and result of the feature. For example,
display_attribute: STATE NAME.

* point_geometry: True, if the template contains point geometries and false, in case
of polygons. For example, poi nt _geonetry: fal se.

e child_templates (optional): The templates that can have several possible child
templates separated by a coma. For example, chil d_tenpl ates:
["worl d_states_provinces, usa_states(properties. COUNTRY
CCDE: properties. PARENT_REG ON)"].

If the child templates do not specify a linked field, it means that all the features
inside the parent features are considered as child features. In this case, the

wor | d_st at es_provi nces doesn't specify any fields. If the link between parent and
child is specified, then the spatial relationship doesn't apply and the feature
properties link are checked. In the above example, the relationship with the

2-114

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

usa_st at es is found with the property COUNTRY CCDE in the current template, and the
property PARENT_REG ON in the template file usa_states. j son.

srid: The SRID of the template's geometries. For example, srid: 8307.

back polygon_template_file_name (optional): A template with polygon geometries
to set as background when showing the defined template. For example,
back_pol ygon_tenmplate file_name: usa_states.

vectorLayers: Configuration specific to the M/Suggest service. For example:

{
"vectorLayers": [
{
"gni dCol utms": ["_GNID'],
"boost Val ues":[2.0,1.0,1.0,2.0]
}
]
}
Where:

— gnidColumns is the name of the column(s) within the Json file that represents
the Geoname ID. This value is used to support multiple languages with
M/Suggest . (See references of that value in the file t enpl at es/ _geonanes_/
al ternat eNanes. j son.) There is nodefault value for this property.

— boostValues is an array of float numbers that represent how important a
column is within the "properties” values for a given row. The higher the
number, the more important that field is. A value of zero means the field will be
ignored. When boostValues is not present, all fields receive a default value of
1.0, meaning they all are equally important properties. The M/Suggest service
may return different results depending on those values. For a Json file with the
following properties, the boost values might be as follows:

"properties”:{"Name":"New York GCity","State":"Ny","Country":"United
States","Country Code":"US", "Popul ation": 8491079, "Ti me Zone":"UTC 5"}
"boost Val ues":[3.0,2.0,1.0,1.0,0.0,0.0]

2.12.10 Running a Clustering Job Using SpatialViewer

To run a clustering job using SpatialViewer, follow these steps.

ORACLE

1.

Open: http://<oracl e_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
r oot =vect or

Click Clustering, then Clustering Job.
Provide the following details, as required:

a. Path of the data: Provide the HDFS data path. For example, / user/or acl e/
bdsg/ tweets. j son.

b. The SRID of the geometries. For example: 8307
c. The tolerance of the geometries. For example: 0.05

d. JAR with user classes (Optional): If the I nput For mat class or the
Recor dI nf oProvi der class is not in the API, or in the hadoop API classes, then
a jar with the user-defined classes must be provided. To be able to use this jar
the user must add it in the / opt/ oracl e/ or acl e- spati al - gr aph/ spat i al / web-
server/spatial vi ewer/ WEB- I NF/ | i b directory and restart the server.

2-115

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

e. Input Format class: The input format class. For example:
oracl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

f. Record Info Provider class: The class that will provide the spatial information.
For example:
oracl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dl nf oPr ovi der.

g. Number of clusters: The number of clusters to be found.

Output path: The Hadoop job output path. For example: / user/ or acl e/ bdsg/
cat out put

i. Result name: The result name. If a result exists for a template with the same
name, it is overwritten. For example, Tweets test.

4. Click Create.
A URL will be displayed to track the job.

2.12.11 Viewing the Clustering Results

To view the clustering results, follow these steps.

1. Openhttp://<oracle_big data spatial _vector_consol e>: 8045/ spati al vi ewer/ ?
root =vect or.

2. Click Clustering, then Results.
3. Click any one of the Results displayed.

2.12.12 Saving Clustering Results to a File

You can save clustering results to a file on your local system, for later uploading and
use. To save the clustering results to a file, follow these steps.

1. Openhttp://<oracle_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
root =vect or.

Click Clustering, then Results.

Click the icon for saving the results.

Specify a name.

Specify the SRID of the geometries. For example: 8307
Click Choose File and select the file location.

Click Save.

N o o kM w b

2.12.13 Running a Binning Job Using SpatialViewer

ORACLE

You can run a binning job with or without the spatial index. Follow these steps.

1. Openhttp://<oracle_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
root =vect or.

2. Click Binning, then Binning Job.

3. Select either With Index or Without Index and provide the following details, as
required:

e With Index

2-116

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

a. Index name
e Without Index

a. Path of the data: Provide the HDFS data path. For example, / user/oracl e/
bdsg/ tweets. json

b. The SRID of the geometries. For example: 8307
c. The tolerance of the geometries. For example: 0.05

d. JAR with user classes (Optional): If the | nput For mat class or the
Recor dI nf oProvi der class is not in the API, or in the hadoop API classes,
then a jar with the user-defined classes must be provided. To be able to
use this jar the user must add it in the / opt/ or acl e/ or acl e- spati al - gr aph/
spati al / web- server/spati al vi ewer/ VEB- | NF/ | i b directory and restart the
server.

e. Input Format class: The input format class. For example:
oracl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

f. Record Info Provider class: The class that will provide the spatial
information. For example:
oracl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dl nf oPr ovi der .

4. Binning grid minimum bounding rectangle (MBR). You can click the icon for seeing
the MBR on the map.

5. Binning shape: hexagon (specify the hexagon width) or rectangle (specify the
width and height).

6. Thematic attribute: If the job uses an index, double-click to see the possible
values, which are those returned by the function get Ext r aFi el ds of the
Recor dl nf oProvi der used when creating the index. If the job does not use an index,
then the field can be one of the fields returned by the function get Ext r aFi el ds of
the specified Recor dlI nf oProvi der class. In any case, the count attribute is always
available and specifies the number of records in the bin.

7. Output path: The Hadoop job output path. For example: / user/ or acl e/ bdsg/
bi nni ngQut put

8. Result name: The result name. If a result exists for a template with the same
name, it is overwritten. For example, Tweets test.

Click Create. A URL will be displayed to track the job.

2.12.14 Viewing the Binning Results

To view the binning results, follow these steps.

1. Openhttp://<oracle_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
root =vect or.

2. Click Binning, then Results.
3. Click any of the Results displayed.

2.12.15 Saving Binning Results to a File

You can save binning results to a file on your local system, for later uploading and use.
To save the binning results to a file, follow these steps.

ORACLE 2-117

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

1. Openhttp://<oracle_big_data_spatial _vector_consol e>: 8045/ spati al vi ewer/?
root =vect or.

Click Binning, then View Results.
Click the icon for saving the results.

Specify the SRID of the geometries. For example: 8307

g M w D

Specify the thematic attribute, which must be a property of the features in the
result. For example, the count attribute can be used to create results depending on
the number of results per bin.

Click Choose File and select the file location.
7. Click Save.

2.12.16 Running a Job to Create an Index Using the Command Line

ORACLE

To create a spatial index, use a command in the following format:

hadoop jar <HADOOP_LI B_PATH>/ sdohadoop- vector. j ar

oracl e. spati al . hadoop. vect or. mapr ed. j ob. Spati al | ndexi ng [generic options]

i nput =<pat h| comma_separ at ed_pat hs| pat h_pat t ern> out put =<pat h>

i nput For mat =<I nput For mat _subcl ass> recor dl nf oPr ovi der =<Recor dI nf oPr ovi der _subcl ass>
[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_val ue>]

[boundari es=<mi nX, m nY, maxX, maxY>] [indexName=<i ndex_nane>]

[i ndexMet adat aDi r =<path>] [overwritel ndexMet adata=<true|false>] [nwvsLocation=<path|
URL> [nvsMat chLayer s=<conmma_separ at ed_| ayer s>] [nvsMat chCount ry=<count ry_name>]

[mvsSpat i al Response=<[NONE, FEATURE_GEOMVETRY, FEATURE_CENTRO D] >]
[mvslnterfaceType=<LOCAL, WEB>][nvslsRepository=<true|false>][rebuil dWSI ndex=<true|
fal se>] [nwsPersi stent Locat i on=<hdf s_pat h>] [nvsOverwr it ePer si st ent Locat i on=<t r ue|

fal se>]]

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapr ed. j ob. Spati al | ndexi ng with
oracl e. spati al . hadoop. vect or . mapreduce. j ob. Spati al | ndexi ng.

Input/output arguments:

* input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

e inputFormat: the i nput For mat class implementation used to read the input data.

* recordl nfoProvi der: the recordl nf oProvi der implementation used to extract
information from the records read by the I nput For mat class.

e output: the path where the spatial index will be stored

Spatial arguments:

* srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

e geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

* tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

* boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxyY

2-118

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Spatial index metadata arguments:

* indexNane (optional, default=output folder name):The name of the index to be
generated.

* indexMetadatabDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata
will be stored.

e overwitel ndexMet adat a (optional, default=false) boolean argument that indicates
whether the index metadata can be overwritten if an index with the same name
already exists.

MWSuggest arguments:

* nvsLocation: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

* nvsMatchLayers (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

* nvsMat chCount ry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

e nvsSpatial Response (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

* nvslnterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

e nvsl sReposi tory (optional: default=false) (LOCAL only): boolean value which
specifies whether mvsLocation points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_ and _geonames__ folder.

* nvsRebui | dl ndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

e nvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

e nvslsOverwitePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing mvsPersistentLocation must be overwritten in case it
already exists.

Example: Create a spatial index called i ndexExanpl e. The index metadata will be
stored in the HDFS directory spat i al Met adat a.

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar

oracl e. spatial . hadoop. vect or. mapr ed. j ob. Spati al | ndexi ng i nput="/user/hdfs/
deno_vect or/tweet s/ part*" out put=/user/hdfs/demo_vector/tweets/spatial _i ndex

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. napr ed. GeoJsonl nput For mat

recordl nf oProvi der=or acl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dl nf oPr ovi der
srid=8307 geodetic=true tol erance=0.5 i ndexNane=i ndexExanpl e

i ndexMet adat aDi r =i ndexMet adat aDi r overwrit el ndexMet adat a=t r ue

Example: Create a spatial index using M/Suggest to assign a spatial location to records
that do not contain geometries.

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ |i b/ sdohadoop-vector.jar
oracl e. spatial . hadoop. vect or. mapr ed. j ob. Spati al | ndexi ng i nput="/user/hdfs/

2-119

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

denp_vect or/tweet s/ part*" out put=/user/hdfs/demo_vector/tweets/spatial _i ndex

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recor dl nf oProvi der =nypackage. Si npl e Locati onRecor dl nf oProvi der sri d=8307
geodetic=true tol erance=0.5 i ndexNane=i ndexExanpl e i ndexMet adat aDi r =i ndexMet adat abDi r
overwritel ndexMet adat a=true nvsLocation=file:///local _fol der/nvs_dir/oracl emaps_pub/
m/sReposi tory=true

2.12.17 Running a Job to Create a Categorization Result

ORACLE

To create a categorization result, use a command in one of the following formats.
With a Spatial Index

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector. | ar

oracl e. spati al . hadoop. vect or. mapr ed. j ob. Cat egori zati on [generic options]

(indexName=<indexName> [indexMetadataDir=<path>]) | (input=<path|

comre_separ at ed_pat hs| pat h_pattern> islnputlndex=true [srid=<integer_val ue>]

[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<ni n_x, mi n_y, max_x, max_y>]) out put=<pat h>

hi erar chyl ndex=<hdf s_hi erar chy_i ndex_pat h> hi erar chyl nf o=<Hi er ar chyl nf o_subcl ass>

[hi erarchyDat aPat hs=<I evel 1_pat h, | evel 2_path, , | evel N_pat h>] spati al Operati on=<[None,
I'slnside, Anylnteract]>

Without a Spatial Index

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector.jar

oracl e.spatial . hadoop. vect or. mapred. j ob. Cat egori zation [generic options] input=<path|
comre_separ at ed_pat hs| pat h_pat t ern> i nput For nmat =<I nput For mat _subcl ass>

recordl nf oProvi der =<Recor dl nf oPr ovi der _subcl ass> [sri d=<i nt eger_val ue>]
[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<m n_x, min_y, max_x, max_y>] out put =<pat h>

hi erar chyl ndex=<hdf s_hi erar chy_i ndex_pat h> hi erar chyl nf o=<Hi er ar chyl nf o_subcl ass>

hi erar chyDat aPat hs=<| evel 1_path, | evel 2_path,, | evel N_path>] spati al Operati on=<[None,
I'slnside, Anylnteract]>

Using MVSuggest

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop- vector.jar

oracle.spatial . hadoop. vect or. mapred. j ob. Cat egori zation [generic options]

(i ndexNanme=<i ndexName> [i ndexMet adat aDi r=<pat h>]) |

(

(i nput =<pat h| comma_separ at ed_pat hs| pat h_pattern> i sl nputlndex=true) | (input=<path|
comme_separ at ed_pat hs| pat h_pat t ern> i nput For mat =<I nput For mat _subcl ass>

recordl nf oProvi der =<Local i zabl eRecor dI nf oPr ovi der _subcl ass>)

[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_val ue>]

[boundari es=<m n_x, nin_y, max_x, max_y>]

) out put =<pat h>

mvsLocat i on=<pat h| URL> [nvsMat chLayer s=<comma_separ at ed_| ayer s>]

[mvsMat chCount ry=<country_nane>] [nvsSpati al Response=<[NONE, FEATURE GEOVETRY,
FEATURE_CENTROI D] >] [nvsl! nt erf aceType=<[UNDEFI NED, LOCAL, VEEB]>]

[mvsl sReposi tory=<true| fal se>] [nvsRebuil dl ndex=<true|fal se>]

[mvsPersi st ent Locat i on=<hdfs_path>] [mvsOverwritePersistentLocation=<true|fal se>]

[mvsMaxRequest Recor ds=<i nt eger _nunber>] hi erar chyl ndex=<hdf s_hi erar chy_i ndex_pat h>
hi erar chyl nf o=<Hi er ar chyl nf o_subcl ass>

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapr ed. j ob. Cat egori zat i on with
oracl e. spati al . hadoop. vect or . mapreduce. j ob. Cat egori zati on.

Input/output arguments:

2-120

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

i ndexNane: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument i nput is
ignored.

i ndexMet adat aDi r (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

i nput : the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if i ndexNane is specified.)

i nput For mat : the i nput For mat class implementation used to read the input data.
(Ignored if i ndexNare is specified.)

recor dl nf oProvi der : the recordl nf oProvi der implementation used to extract
information from the records read by the | nput For mat class. (Ignored if i ndexNane is
specified.)

out put : the path where the spatial index will be stored

Spatial arguments:

srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

geodet i ¢ (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

tol erance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

boundari es (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxyY

spati al Operati on: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are | sl nsi de and Anyl nteract .

Hierarchical data set arguments:

hi erar chyl ndex: the HDFS path of an existing hierarchical index or where it can be
stored if it needs to be generated.

hi erar chyl nf o: the fully qualified name of a Hi er ar chyl nf o subclass which is used
to describe the hierarchical data.

hi er ar chyDat aPat hs (optional, default=none): a comma separated list of paths of
the hierarchy data. The paths should be sorted in ascending way by hierarchy
level. If a hierarchy index path does not exist for the given hierarchy data, this
argument is required.

MWSuggest arguments:

nvsLocati on: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

nvshat chLayer s (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

nvsMat chCount ry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

2-121

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

* nvsSpatial Response (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

e nvslnterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

* nuslsRepository (optional: default=false) (LOCAL only): Boolean value that
specifies whether nvsLocat i on points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_and _geonanes_ folder.

e nvsRebui | dl ndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

e nvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

e nvslsOverwitePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing nvsPer si st ent Locat i on must be overwritten in case it
already exists.

Example: Run a Categorization job to create a summary containing the records
counts by continent, country, and state/provinces. The input is an existing spatial index
called i ndexExanpl e. The hierarchical data will be indexed and stored in HDFS at the
path hi er ar chyl ndex.

hadoop jar /opt/clouderal/parcel s/ CDH | i b/ hadoop/ | i b/ sdohadoop- vector. | ar

oracl e.spatial . hadoop. vect or. mapr ed. j ob. Cat egori zati on i ndexName= i ndexExanpl e
out put =/ user/ hdf s/ deno_vect or/ t weet s/ hi er _count _spati a

hi erar chyl nf o=vect or anal ysi s. cat egori zati on. Wr | dAdmi nHi erar chyl nfo

hi erar chyl ndex=hi erarchyl ndex hi erarchyDat aPat hs=file:///tenpl ates/

wor | d_continents.json,file:///tenplates/world_countries.json,file:///tenplates/
wor | d_st ates_provinces. json spatial Qperation=Islnside

Example: Run a Categorization job to create a summary of tweet counts per
continent, country, states/provinces, and cities using WSuggest .

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar

oracl e. spatial . hadoop. vect or. mapr ed. j ob. Cat egori zati on i nput ="/ user/ hdf s/ deno_vect or/
tweets/part*" inputFor mat =<I nput For mat _subcl ass>

recor dl nf oProvi der =<Local i zabl eRecor dI nf oProvi der _subcl ass> out put =/ user/ hdf s/
denp_vect or/tweet s/ hi er _count _nvs

hi erar chyl nf o=vect oranal ysi s. cat egori zati on. Wor | dAdni nHi erar chyl nfo

hi er ar chyl ndex=hi erar chyl ndex nvsLocation=file:///nvs_dir

mvsMat chLayer s=wor | d_continents, worl d_countries, world_states_provinces

spati al Operati on=l sl nsi de

2.12.18 Running a Job to Create a Clustering Result

ORACLE

To create a clustering result, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector. jar

oracl e. spati al . hadoop. vect or. mapr ed. j ob. KMeansCl ust ering [generic options]

i nput =<pat h| comma_separ at ed_pat hs| pat h_pat t ern> i nput For mat =<I nput For mat _subcl ass>
recor dl nf oProvi der =<Recor dI nf oPr ovi der _subcl ass> out put =<pat h>
[srid=<integer_val ue>] [geodetic=<true|false>] [tolerance=<doubl e_val ue>]

[boundari es=<m n_x, ni n_y, max_x, max_y>] k=<nunber _of _cl usters>

[cl ust ersPoi nt s=<comma_separ at ed_poi nts_ordi nates>] [del eteC usterFiles=<true

fal se>] [maxlterations=<integer_value> [critFunC ass=<CriterionFunction_subclass>]
[shapeGenCl ass=<0 ust er ShapeGener at or _subcl ass>] [maxMenber Di st ance=<doubl e_val ue>]

2-122

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapr ed. j ob. KMeansd ust eri ng with
oracl e. spatial . hadoop. vect or . mapreduce. j ob. KMeansCl ust eri ng.

Input/output arguments:

e input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

* inputFormat: the input For mat class implementation used to read the input data.

e recordl nfoProvider: the recordl nf oProvi der implementation used to extract
information from the records read by the | nput For mat class.

* output: the path where the spatial index will be stored

Spatial arguments:

e srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

* geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

* tol erance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

* boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxyY

e spatial Qperation: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are | sl nsi de and Anyl nteract .

Clustering arguments:

* k:the number of clusters to be found.

e clusterPoints (optional, default=none): the initial cluster centers as a comma-
separated list of point ordinates in the form: p1_x,pl_y,p2_x,p2_y,...,pk_X,pk_y

e deleted usterFiles (optional, default=true): Boolean arguments that specifies
whether the intermediate cluster files generated between iterations should be
deleted or not

* nmaxlterations (optional, default=calculated based on the number k): the maximum
number of iterations allowed before the job completes.

e critFund ass (optional, default=oracle.spatial.hadoop.vector.cluster.kmeans.
SquaredErrorCriterionFunction) a fully qualified name of a Cri teri onFuncti on
subclass.

e shapeGend ass (optional, default= oracle.spatial.hadoop.vector.cluster.kmeans.
ConvexHullClusterShapeGenerator) a fully qualified hame of a
O ust er ShapeGener at or subclass used to generate the geometry of the clusters.

e maxMenber Di st ance (optional, default=undefined): a double value that specifies the
maximum distance between a cluster center and a cluster member.

Example: Run a Clustering job to generate 5 clusters. The generated clusters
geometries will be the convex hull of all .

hadoop jar /opt/cloudera/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop- vector.jar
oracl e. spatial . hadoop. vect or . mapr ed. j ob. KMeansCl ust ering i nput="/user/ hdf s/
denmp_vect or/tweet s/ part*" output=/user/hdfs/dem_vector/tweets/result

2-123

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recordl nf oProvi der=oracl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dI nf oPr ovi der
srid=8307 geodetic=true tolerance=0.5 k=5

shapeGenC ass=or acl e. spati al . hadoop. vect or. cl ust er. kneans. ConvexHul | Cl ust er ShapeGener
ator

2.12.19 Running a Job to Create a Binning Result

ORACLE

To create a binning result, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector. | ar

oracl e. spati al . hadoop. vect or. mapred. j ob. Binning [generic options]

(i ndexName=<I NDEX_NAME> [i ndexMet adat aDi r =<| NDEX_METADATA_DI RECTCRY>]) |

(i nput =<DATA_PATH> i nput For mat =<I| NPUT_FCRVAT_CLASS>

recordl nf oProvi der =<RECORD_| NFO_PROVI DER_CLASS> [sri d=<SRI D>] [geodeti c=<GECDETI C]
[tol erance=<TOLERANCE>]) out put =<RESULT_PATH> cel | Si ze=<CELL_SI ZE>

gri dMor=<GRI D_MBR> [cel | Shape=<CELL_SHAPE>] [aggr Fi el ds=<EXTRA_FI ELDS>]

To use the new Hadoop API format, replace
oracl e. spati al . hadoop. vect or. mapr ed. j ob. Bi nni ng with
oracl e. spati al . hadoop. vect or . mapreduce. j ob. Bi nni ng.

Input/output arguments:

* indexNane: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument i nput is
ignored.

° indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

e input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

* inputFormat: the input For mat class implementation used to read the input data.

e recordl nfoProvider: the recordl nf oProvi der implementation used to extract
information from the records read by the | nput For mat class.

e output: the path where the spatial index will be stored

Spatial arguments:

e srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

* geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

* tol erance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

Binning arguments:
e cell Size: the size of the cells in the format: width,height

e gridMr : the minimum and maximum dimension values for the grid in the form:
minX,minY,maxX,maxyY

e cel | Shape (optional, default=RECTANGLE): the shape of the cells. It can be
RECTANGLE or HEXAGON

2-124

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

e aggrFiel ds (optional, default=none): a comma-separated list of field names that will
be aggregated.

Example: Run a spatial binning job to generate a grid of hexagonal cells and
aggregate the value of the field SALES..

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar
oracl e. spati al . hadoop. vect or. mapr ed. j ob. Bi nni ng i ndexNane=i ndexExanpl e
i ndexMet adat aDi r =i ndexMet adat aDi r out put =/ user/ hdf s/ deno_vect or/resul t
cel | Shape=HEXAGON cel | Si ze=5 gri dMbr=-175, -85, 175, 85 aggr Fi el ds=SALES

2.12.20 Running a Job to Perform Spatial Filtering

ORACLE

To perform spatial filtering, use a command in the following format:

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector.jar
oracl e. spatial . hadoop. vect or. mapred. job. Spatial Filter [generic options]
(i ndexName=<i ndexName> [indexMetadat aDi r=<path>]) |

(

(i nput =<pat h| comma_separ at ed_pat hs| pat h_pattern> i sl nputlndex=true) | (input=<path|
comme_separ at ed_pat hs| pat h_pat t ern> i nput For mat =<I nput For mat _subcl ass>

recordl nf oProvi der =<Recor dI nf oPr ovi der _subcl ass>)

[srid=<integer_value>] [geodetic=<true|false>] [tolerance=<double_val ue>]

[boundari es=<m n_x, ni n_y, max_x, max_y>]

) output=<path> spatial Operation=<[Islnside, Anylnteract]> queryW ndow=<j son-
geomet ry>

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapred. j ob. Spati al Fi | t er with
oracl e. spati al . hadoop. vect or. mapreduce. j ob. Spatial Filter.

Input/output arguments:

* indexNane: the name of an existing spatial index. The index information will be
looked at the path given by indexMetadataDir. When used, the argument i nput is
ignored.

* indexMetadataDir (optional, default=hdfs://server:port/user/<current_user>/
oracle_spatial/index_metadata/): the directory where the spatial index metadata is
located

e input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression.

* inputFormat: the input Format class implementation used to read the input data.

e recordi nfoProvi der: the recordl nf oProvi der implementation used to extract
information from the records read by the | nput For mat class.

e output: the path where the spatial index will be stored

Spatial arguments:

e srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

* geodetic (optional, default depends on the srid): Boolean value that indicates
whether the geometries are geodetic or not.

e tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

Binning arguments:

2-125

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

* cell Size: the size of the cells in the format: width,height

e gridmr :the minimum and maximum dimension values for the grid in the form:
minX,minY,maxX,maxyY

* cell Shape (optional, default=RECTANGLE): the shape of the cells. It can be
RECTANGLE or HEXAGON

e aggrFiel ds (optional, default=none): a comma-separated list of field names that will
be aggregated.

* boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minx,minY,maxX,maxyY

e spatial Qperation: the operation to be applied between the queryWindow and the
geometries from the input data set

e queryW ndow: the geometry used to filter the input dataset.
Example: Perform a spatial filtering operation.

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar

oracl e. spatial . hadoop. vect or. mapred. j ob. Spatial Fi | ter indexNane=i ndexExanpl e

i ndexMet adat aDi r =i ndexMet adat aDi r out put =/ user/ hdf s/ deno_vector/resul t

spati al Operation=lslnsi de queryWndow="'{"type":"Pol ygon", "coordinates":[[-106, 25,
-106, 30, -104, 30, -104, 25, -106, 25]]}'

2.12.21 Running a Job to Get Location Suggestions

ORACLE

To create a job to get location suggestions, use a command in the following format.

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector. | ar

oracl e. spati al . hadoop. vect or. mapr ed. j ob. Suggest Servi ce [generic options] input=<path|
conme_separ at ed_pat hs| pat h_pat t ern> i nput For mat =<I nput For mat _subcl ass>

recor dl nf oProvi der =<Recor dI nf oPr ovi der _subcl ass> out put =<pat h> mvsLocat i on=<pat h|
URL> [nvsMat chLayer s=<conmma_separ at ed_| ayers>] [nvsMat chCount ry=<country_nane>]

[mvsSpat i al Response=<[NONE, FEATURE_GEOMVETRY, FEATURE_CENTRO D >]

[mvsi nterfaceType=<[UNDEFI NED, LOCAL, WEB]>] [nvslsRepository=<true|false>]

[mvsRebui | dl ndex=<true| fal se>] [nvsPersistentLocation=<hdfs_path>]
[mvsOverwritePersistentLocation=<true|fal se> [m/sMaxRequestRecords=<integer_nunber >]

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapr ed. j ob. Suggest Ser vi ce with
oracl e. spati al . hadoop. vect or . mapreduce. j ob. Suggest Servi ce.

Input/output arguments:

e input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if i ndexNane is specified.)

* inputFormat: the i nput For mat class implementation used to read the input data.
(Ignored if i ndexNane is specified.)

» recordl nfoProvi der: the recordl nf oProvi der implementation used to extract
information from the records read by the I nput For mat class. (Ignored if i ndexNane is
specified.)

e output: the path where the spatial index will be stored

MWSuggest arguments:

2-126

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

* nmvslLocation: The path to the MVSuggest directory or repository for local
standalone instances of MVSuggest or the service URL when working with a
remote instance. This argument is required when working with MVSuggest.

e nvshMatchLayers (optional, default=all): comma separated list of layers. When
provided, MVSuggest will only use these layers to perform the search.

* nushat chCount ry (optional, default=none): a country name which MVSuggest will
give higher priority when performing matches.

e nvsSpatial Response (optional, default=CENTROID): the type of the spatial results
contained in each returned match. It can be one of the following values: NONE,
FEATURE_GEOMETRY, FEATURE_CENTROID.

* nvslnterfaceType (optional: default=LOCAL): the type of MVSuggest service used,
it can be LOCAL or WEB.

e sl sRepository (optional: default=false) (LOCAL only): Boolean value that
specifies whether nvsLocat i on points to a whole MVS directory(false) or only to a
repository(true). An MVS repository contains only JSON templates; it may or not
contain a _config_and _geonanes_ folder.

* nvsRebui | dl ndex (optional, default=false)(LOCAL only):boolean value specifying
whether the repository index should be rebuilt or not.

e nvsPersistentLocation (optional, default=none)(LOCAL only): an HDFS path where
the MVSuggest directory will be saved.

e nvslsOverwitePersistentLocation (optional, default=false): boolean argument that
indicates whether an existing mvsPer si st ent Locat i on must be overwritten in case it
already exists.

Example: Get suggestions based on location texts from the input data set..

hadoop jar /opt/clouderal/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar

oracl e. spatial . hadoop. vect or. mapr ed. j ob. Suggest Servi ce i nput="/user/hdf s/ deno_vect or/
tweet s/ part*" inputFormat =<I nput For mat _subcl ass>

recordl nf oProvi der =<Local i zabl eRecor dI nf oPr ovi der _subcl ass> out put =/ user/ hdf s/
denp_vect or/t weet s/ suggest _res nvsLocation=file:///mvs_dir

m/sMat chLayer s=wor | d_continents, worl d_countries, worl d_states_provinces

2.12.22 Running a Job to Perform a Spatial Join

ORACLE

To perform a spatial join operation on two data sets, use a command in the following
format.

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop-vector.jar
oracl e. spatial . hadoop. vect or. mapred.job. Spatial Join [generic options]
i nput Li st ={
{
(indexNane=<dat aset 1 _spatial _i ndex_name>
i ndexMet adat aDi r=<dat aset 1_spati al _i ndex_netadata_dir_path>)
I
(' i nput=<dataset1_path| comma_separ at ed_pat hs| pat h_patt ern>
i nput For mat =<dat aset 1_| nput For mat _subcl ass>
recordl nfoProvi der =<dat aset 1_Recor dl nf oPr ovi der _subcl ass>)
[boundari es=<mi n_x, m n_y, max_x, max_y>]
}
{
(i ndexName=<dat aset 2_spati al _i ndex_nane>
i ndexMet adat aDi r =<dat aset 2_spati al _i ndex_net adat a_di r _pat h>

)

2-127

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

I

(i nput=<dataset2_path| conma_separ at ed_pat hs| pat h_pat t ern>
i nput For mat =<dat aset 2_| nput For mat _subcl ass>
recordl nf oProvi der =<dat aset 2_Recor dl nf oPr ovi der _subcl ass>

)

[boundari es=<m n_x, m n_y, max_x, max_y>]
}
} out put =<pat h>[sri d=<i nt eger _val ue>] [geodetic=<true|fal se>]
[tol erance=<doubl e_val ue>] boundaries=<m n_x, n n_y, max_x, max_y>
spati al Operati on=<Anyl nteract||slnside| WthinDi stance> [di stance=<doubl e_val ue>]
[sanpl i ngRat i o=<deci mal _val ue_between_0_and_1> | partitioni ngResul t =<pat h>]

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapr ed. j ob. Spati al Joi n with
oracl e. spati al . hadoop. vect or. mapreduce. j ob. Spati al Joi n.

I nput Li st: A list of two input data sets. The list is enclosed by curly braces ({}). Each
list element is an input data set, which is enclosed by curly braces. An input data set
can contain the following information, depending on whether the data set is specified
as a spatial index.

If specified as a spatial index:

* indexNane: the name of an existing spatial index.
* indexMetadataDir : the directory where the spatial index metadata is located

If not specified as a spatial index:

* input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if i ndexNane is specified.)

* inputFormat: the input Format class implementation used to read the input data.
(Ignored if i ndexNane is specified.)

* recordl nfoProvi der: the recordl nf oProvi der implementation used to extract
information from the records read by the I nput For mat class. (Ignored if i ndexNane is
specified.)

out put : the path where the results will be stored
Spatial arguments:

» srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

* geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

e tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

* boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxyY

e spatial Qperation: the spatial operation to perform between the input data set and
the hierarchical data set. Allowed values are | sl nsi de and Anyl nt eract .

e distance: distance used for Wt hi nDi st ance operations.

Partitioning arguments:

2-128

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

» sanplingRatio (optional, default=0.1): ratio used to sample the data sets when
partitioning needs to be performed

e partitioningResult (optional, default=none): Path to a previously generated
partitioning result file

Example: Perform a spatial join on two data sets.

hadoop jar /opt/cloudera/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop- vector.jar

oracl e. spati al . hadoop. vect or. mapr ed. j ob. Spati al Joi n i nput Li st ="{{i nput =/ user/ hdf s/
denmp_vect or/wor | d_countries.json

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recordl nf oProvi der =or acl e. spati al . hadoop. vect or. geoj son. GeoJsonRecor dI nf oPr ovi der}
{input=file="/user/hdfs/denp_vector/tweets/part*”

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recordl nf oProvi der =or acl e. spati al . hadoop. vect or . geoj son. GeoJsonRecor dI nf oPr ovi der}}"
out put =/ user/ hdf s/ demp_vect or/spatial _join srid=8307 spati al Operati on=Anyl nteract
boundari es=- 180, - 90, 180, 90

2.12.23 Running a Job to Perform Partitioning

ORACLE

To perform a spatial partitioning, use a command in the following format.

hadoop jar <HADOOP_LIB_PATH >/ sdohadoop- vector. | ar
oracl e. spatial . hadoop. vect or. mapred. job. Spatial Join [generic options]
i nput Li st ={
{
(i ndexName=<dat aset 1_spati al _i ndex_name>
i ndexMet adat aDi r=<dat aset 1_spati al _i ndex_net adat a_di r_pat h>)
I
(i nput=<datasetl_path|coma_separat ed_pat hs| pat h_pattern>
i nput For mat =<dat aset 1_| nput For mat _subcl ass>
recordl nf oProvi der =<dat aset 1_Recor dl nf oPr ovi der _subcl ass>)
[boundari es=<mi n_x, m n_y, max_x, max_y>]
}
[
{
(i ndexName=<dat aset 2_spati al _i ndex_name>
i ndexMet adat aDi r =<dat aset 2_spati al _i ndex_net adat a_di r _pat h>
)
I
(i nput=<dataset2_pat h| conma_separ at ed_pat hs| pat h_pat t ern>
i nput For mat =<dat aset 2_| nput For mat _subcl ass>
recordl nf oProvi der =<dat aset 2_Recor dl nf oPr ovi der _subcl ass>
)
[boundari es=<mi n_x, m n_y, max_x, max_y>]

}
o

(i ndexName=<dat aset N_spati al _i ndex_nane>
i ndexMet adat aDi r =<dat aset N_spati al _i ndex_net adat a_di r _pat h>
)
I
(i nput=<datasetN_pat h| conma_separ at ed_pat hs| pat h_pat t ern>
i nput For mat =<dat aset N_| nput For mat _subcl ass>
recordl nf oProvi der =<dat aset N_Recor dl nf oProvi der _subcl ass>
)
[boundari es=<mi n_x, m n_y, max_x, max_y>]

}

2-129

ORACLE

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

] out put =<pat h>[sri d=<i nt eger _val ue>] [geodetic=<true|fal se>]
[tol erance=<doubl e_val ue>] boundaries=<m n_x, m n_y, max_x, max_y>
[sanpl i ngRat i o=<deci mal _val ue_bet ween_0_and_1>]

To use the new Hadoop API format, replace
oracl e. spatial . hadoop. vect or. mapred. j ob. Parti ti oni ng with
oracl e. spati al . hadoop. vect or. mapreduce. j ob. Parti ti oni ng.

I nput Li st: A list of two input data sets. The list is enclosed by curly braces ({}). Each
list element is an input data set, which is enclosed by curly braces. An input data set
can contain the following information, depending on whether the data set is specified
as a spatial index.

If specified as a spatial index:

e indexNane: the name of an existing spatial index.
* indexMetadataDir : the directory where the spatial index metadata is located

If not specified as a spatial index:

* input :the location of the input data. It can be expressed as a path, a comma
separated list of paths, or a regular expression. (Ignored if i ndexNane is specified.)

* inputFormat: the input Format class implementation used to read the input data.
(Ignored if i ndexNane is specified.)

* recordl nfoProvi der: the recordl nf oProvi der implementation used to extract
information from the records read by the I nput For mat class. (Ignored if i ndexNane is
specified.)

out put : the path where the results will be stored
Spatial arguments:

» srid (optional, default=0): the spatial reference system (coordinate system) ID of
the spatial data.

* geodetic (optional, default depends on the srid): boolean value that indicates
whether the geometries are geodetic or not.

e tolerance (optional, default=0.0): double value that represents the tolerance used
when performing spatial operations.

* boundaries (optional, default=unbounded): the minimum and maximum values for
each dimension, expressed as comma separated values in the form:
minX,minY,maxX,maxyY

Partitioning arguments:

* sanplingRatio (optional, default=0.1): ratio used to sample the data sets when
partitioning needs to be performed

Example: Partition two data sets.

hadoop jar /opt/cloudera/parcel s/ COH | i b/ hadoop/ | i b/ sdohadoop-vector.jar

oracl e. spati al . hadoop. vect or. mapred. j ob. Partitioning inputList="{{input=/user/hdfs/
denmo_vect or/wor | d_countries.json

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recordl nf oProvi der=or acl e. spati al . hadoop. vect or . geoj son. GeoJsonRecor dI nf oPr ovi der}
{input=file="/user/hdfs/denmo_vector/tweets/part*”

i nput For mat =or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat

recordl nf oProvi der =or acl e. spati al . hadoop. vect or . geoj son. GeoJsonRecor dI nf oProvi der}}"
out put =/ user/ hdf s/ demo_vect or/partitioning srid=8307 boundari es=-180, - 90, 180, 90

2-130

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

2.12.24 Using Multiple Inputs

Multiple input data sets can be specified to a Vector job through the command line
interface using the i nput Li st parameter. The i nput Li st parameter value is a group of
input data sets. The i nput Li st parameter format is as follows:

i nput Li st={ {input_data_set_1 parans} {input_data_set_2_ parans} ...
{input_data_set_N parans} }

Each individual input data set can be one of the following input data sets:

Non-file input data set: i nput For mat =<I nput For mat _subcl ass>

recor dl nf oProvi der =<Recor dl nf oPr ovi der _subcl ass> [sri d=<i nt eger _val ue>]
[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<mi n_x, m n_y, max_x, max_y>]

File input data set: i nput =<pat h| conma_separ at ed_pat hs| pat h_pat t er n>

i nput For mat =<Fi | el nput For mat _subcl ass>

recor dl nf oProvi der =<Recor dl nf oPr ovi der _subcl ass> [sri d=<i nt eger_val ue>]
[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<mi n_x, mi n_y, max_x, max_y>]

Spatial index input data set: ((i ndexNane=<<i ndexName>>

[i ndexMet adat aDi r=<<path>>]) | (islnputlndex=<true> input=<path|
comma_separ at ed_pat hs| path_pattern>)) [srid=<integer_val ue>]

[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<m n_x, m n_y, max_x, nax_y>]

NoSQL input data set: kvSt ore=<kv store nane> kvStoreHost s=<conma separ at ed
list of hosts> kvParent Key=<parent key> [kvConsi stency=<Absol ut e| NoneRequi r ed|
NoneRequi redNoMast er >] [kvBat chSi ze=<i nt eger val ue>] [kvDept h=<CH LDREN_ONLY|
DESCENDANTS_ONLY| PARENT_AND _CHI LDREN| PARENT_AND_DESCENDANTS>]

[kvFormatterd ass=<fully qualified class nanme>] [kvSecurity=<properties file
pat h>] [kvTi meQut =<l ong val ue>] [kvDefaul tEntryProcessor=<fully qualified
class nanme>] [kvEntryG ouper=<fully qualified class name>]

[kvResultEntries={ { minor key 1: a ninor key nane relative to the major key
[fully qualified class name: a subclass of NoSQLEntryProcessor class used to
process the entry with the given key] } * }] [srid=<integer_val ue>]

[geodetic=<true|fal se>] [tol erance=<doubl e_val ue>]

[boundari es=<mi n_x, m n_y, max_x, max_y>]

Notes:

A Categorization job does not support multiple input data sets.
A SpatialJoin job only supports two input data sets.
A Spatiallndexing job does not accept input data sets of type spatial index.

NoSQL input data sets can only be used when kvstore.jar is present in the
classpath.

2.12.25 Loading Images from the Local Server to the HDFS Hadoop

Cluster

1.

ORACLE

Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045.

2-131

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Click the Raster tab.

Click Select File or Path and browse to the demo folder that contains a set of
Hawaii images (/ opt/ shareddi r/ spati al / dat a/ r ast ers).

By default, Spark is selected. If you want to use Hadoop, click the Use Spark
button to change it to Use Hadoop.

Select the rast ers folder and click Load images.

You will receive a message about the job being accepted, with a tracking URL.
You can track the job status using that URL.

After the job finishes, you can see the uploaded images in the globe in the Viewer
tab.

" Note:

If you cannot find the raster files, you can copy them to the shared directory
folder created during the installation: check the Admin tab for the directory
location, then copy the raster files into it.

If you receive an error, check the Raster Configuration details. If GDAL
native library is not set-up correctly, much of the raster functionality of the
web application will not work.

2.12.26 Visualizing Rasters in the Globe

Before you can visualize the rasters in the globe, you must upload the raster files to
HDFS, as explained in Loading Images from the Local Server to the HDFS Hadoop

Cluster.

1. Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045.

2. Click the Raster tab.

3. Click the Hadoop Viewer tab.

4. Click Refresh Footprints to update the footprints in the globe, and wait until all

footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge

2.12.27 Processing a Raster or Multiple Rasters with the Same MBR

Before you can visualize the rasters in the globe, you must upload the raster files to
HDFS, as explained in Loading Images from the Local Server to the HDFS Hadoop
Cluster.

Before processing rasters with the same MBR (minimum bounding rectangle), you
must upload the raster files to HDFS, as explained in Loading Images from the Local
Server to the HDFS Hadoop Cluster, and visualize the rasters, as explained in
Visualizing Rasters in the Globe.

1.

ORACLE

Right click over a raster. If you select a raster with a red or yellow edge, a tooltip
with a list of rasters may appear.

2-132

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Click Process Rasters with Same MBR. You can exclude rasters from the
process by clicking the X button on the left side of every row. If single raster was
select, click Process Image (No Mosaic).

The Raster Process dialog box is displayed.

By default, Spark is selected to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

In the Raster Process dialog, scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

Optionally, download the result by clicking Download Full Size Image below the
result image.

2.12.28 Creating a Mosaic Directly from the Globe

Before you can create the mosaic image, you must upload the raster files to HDFS, as
explained in Loading Images from the Local Server to the HDFS Hadoop Cluster.

1.
2
3.
4

Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045.
Click the Raster tab.
Click the Hadoop Viewer tab.

Click Refresh Footprints to update the footprints in the globe, and wait until all
footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge
Click Select and crop coordinates of Footprints.

Draw a rectangle that wraps the rasters (at least one) and desired area, zooming
in or out as necessary.

Right-click on the map and select Generate Mosaic.
The raster process dialog is displayed.

By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

In the raster process dialog, scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

10. Optionally, download the result by clicking Download Full Size Image.

ORACLE

2-133

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Note:

Spark raster processing does not yet support all the options provided for
Hadoop raster processing. For Spark raster processing, you must specify
additional configuration parameters in the Spark Configuration section of the
Admin tab:

e spark.driver.extrad assPath, spark.executor.extrad assPath: Specify
your hive library installation using these keys. Example: /usr/li b/
hive/lib/*

e spark. kryoserializer.buffer.max: Enter a value to support the kryo
serialization. Example: 160m

2.12.29 Adding Operations for Raster Processing

Before you add algebra operations for raster processing or image mosaic creation,
follow the instructions in Processing a Raster or Multiple Rasters with the Same MBR
until you have the raster processing dialog displayed. Before clicking Create Mosaic,
perform these steps:

1.

ORACLE

Click Advanced options.
A group of new elements is displayed for adding add the advanced options.
Scroll down until you see the raster operations.

Choose a raster operation from the list. If you want to add a complex operation,
toggle the Hide Complex Operations checkbox.

Only one complex operation is allowed per raster processing action.

After you select an operation from the list on the left, add it to the process by
clicking the right arrow.

Some operations also require parameters.
Add more operations if you want.

To remove an operation, select it in the list on the right and click the left arrow.
You can also remove all operations in the list.

By default, Spark is selected to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

Click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

Optionally, download the result by clicking Download Full Size Image.

2-134

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Note:

For some raster process operations using spark, you need to supply memory
details to the spark drivers and executors, with the details depending of the
size and details of the rasters in the process. For Spark raster processing,
you must specify additional configuration parameters in the Spark
Configuration section of the Admin tab:

e spark.driver.extrad assPath, spark.executor.extrad assPath: Specify
your hive library installation using these keys. Example: /usr/li b/
hive/lib/*

e spark. kryoserializer.buffer.max: Enter a value to support the kryo
serialization. Example: 160m

2.12.30 Creating a Slope Image from the Globe

ORACLE

Before you can create the mosaic image, you must upload the raster files to HDFS, as
explained in Loading Images from the Local Server to the HDFS Hadoop Cluster.

1. Open the console: http://<oracl e_bi g_data_spatial _vector_consol e>: 8045.
2. Click the Raster tab.

3. Click the Hadoop Viewer tab.

4

Click Refresh Footprints to update the footprints in the globe, and wait until all
footprints are displayed on the globe.

Identical rasters are displayed with a yellow edge
5. Click Select and crop coordinates of Footprints.

6. Draw a rectangle that wraps the rasters (at least one) and desired area, zooming
in or out as necessary.

7. Right-click on the map and select Generate Mosaic.
The raster process dialog is displayed.

8. By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

9. Select the appropriate Pixel Type
Usually these images are Float 32 Bits.
10. Click Advanced Options.
You will see a group of new elements to add as advanced options.
11. Scroll down until you see the Process Classes controls.
12. Specify the Fully Qualified Class Name, then click Add.

The framework provides a default process class for slope:
oracl e. spatial . hadoop. i magepr ocessor. process. | mageS| ope

13. Click Create Mosaic
Wait until the raster processing is finished.

The result will displayed in the Result tab.

2-135

Chapter 2
Using the Oracle Big Data SpatialViewer Web Application

Note:

Spark raster processing does not yet support custom process classes.

2.12.31 Changing the Image File Format from the Globe

Before you can change the image file format, follow the instructions in Processing a
Raster or Multiple Rasters with the Same MBR until you have the raster processing
dialog displayed. Before clicking Create Mosaic, perform these steps:

1. Select the the desired image Output Format.

2. By default, Spark is select to process the job. To use Hadoop instead, click Use
Spark to toggle the button to Use Hadoop.

3. Scroll down and click Create Mosaic.

Wait until the raster processing is finished. The result will displayed in the Result
tab.

4. Optionally, download the result by clicking Download Full Size Image.

ORACLE 2-136

Integrating Big Data Spatial and Graph with
Oracle Database

You can use Oracle Big Data Connectors to facilitate spatial data access between Big
Data Spatial and Graph and Oracle Database.

This chapter assumes that you have a working knowledge of the following:

e Oracle SQL Connector for HDFS

For information, see Oracle SQL Connector for Hadoop Distributed File System.
e Oracle Loader for Hadoop

For information, see Oracle Loader for Hadoop
e Apache Hive

For information, see the Apache Hive documentation at https://cwiki.apache.org/
confluence/display/Hive/[Home#Home-UserDocumentation.

» Using Oracle SQL Connector for HDFS with Delimited Text Files
This topic is applicable when the files in HDFS are delimited text files (fields must
be delimited using single-character markers, such as commas or tabs) and the
spatial data is stored as GeoJSON or WKT format.

* Using Oracle SQL Connector for HDFS with Hive Tables
Oracle SQL Connector for HDFS (OSCH) directly supports HIVE tables defined on
HDFS.

* Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for
Hadoop
To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data
from HDFS to Oracle Database.

* Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL
You can use Oracle Big Data SQL to facilitate spatial data access between HDFS
and Oracle Database.

3.1 Using Oracle SQL Connector for HDFS with Delimited

Text Files

ORACLE

This topic is applicable when the files in HDFS are delimited text files (fields must be
delimited using single-character markers, such as commas or tabs) and the spatial
data is stored as GeoJSON or WKT format.

If such data is to be used by Big Data Spatial and Graph and is to be accessed from
an Oracle database using the Oracle SQL connection for HDFS, certain configuration
steps are needed.

3-1

https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation
https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation

ORACLE

Chapter 3
Using Oracle SQL Connector for HDFS with Delimited Text Files

For this example, assume that the files in HDFS contain records separated by new
lines, and the fields within each record are separated by tabs, such as in the following:

"“6703" 1 62 "Hong Kong" 3479846 POINT (114.18306 22.30693)
"6702" 57 166 "Singapore" 1765655 POINT (103.85387 1.29498)

1. Loginto a node of the Hadoop cluster.

2. Create the configuration file required by OSCH (Oracle SQL Connector for HDFS),

such as the following example:

<?xm version="1.0"?>
<configuration>
<property>
<nane>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>TWEETS_EXT_TAB_FI LE</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. ext t ab. sour ceType</ nane>
<val ue>t ext </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>/ user/scott/sinple_tweets_datal/*.|og</val ue>
</ property>
<property>
<nane>or acl e. hadoop. connect i on. url </ nane>
<val ue>j dbc: oracl e: thi n: @/ nyhost : 1521/ nyser vi cenane</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. connect i on. user </ nane>
<val ue>scott </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. exttab. fi el dTer m nat or </ nane>
<val ue>\ u0009</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. ext t ab. col umNames</ nane>
<val ue>| D, FOLLOWERS_COUNT, FRI ENDS_COUNT, LOCATI ON, USER | D, GEOVETRY</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ nane>
<val ue>TWEETS DT DI R</ val ue>
</ property>
</ confi guration>

3. Name the configuration file t weet s_t ext. xni .

4. On a node of the Hadoop cluster, execute the following command:

hadoop jar $OSCH HOVE/jlib/orahdfs.jar \
oracl e. hadoop. extt ab. Ext ernal Tabl e \
-conf /hone/oracle/tweets_text.xm \
-createTabl e

The command prompts for the database password .

You can either create the OSCH_HOME environment variable or replace
OSCH_HOME in the command syntax with the full path to the installation directory
for Oracle SQL Connector for HDFS. On Oracle Big Data Appliance, this directory
is: / opt/ oracl e/ or ahdf s- ver si on

3-2

3.2 Using

ORACLE

Chapter 3
Using Oracle SQL Connector for HDFS with Hive Tables

The table TWEETS_EXT_TAB_FILE is now ready to query. It can be queried like any
other table from the database. The database is the target database specified in the
configuration file in a previous step.. The following query selects the count of rows in
the table:

sel ect count(*) from TWEETS EXT_TAB_FI LE;

You can perform spatial operations on that table just like any other spatial table in the
database. The following example retrieves information about users that are tweeting
within in a quarter-mile (0.25 mile) radius of a specific movie theater:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO GEOMVETRY(tw. geonetry, 8307), 0.05,
"UNIT=M LE'), ci.nane, twuser_id

from CINEMA ci, TWEETS EXT_TAB FILE tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_GEOMETRY(tw. geonetry, 8307), 'DI STANCE=0.25 UNIT=M LE') = "'TRUE

Here the table CINEMA is a spatial table in the Oracle database, and the HDFS table
TWEETS_EXT_TAB_FILE can be used to query against this table. The data from the
tweets table is read in as WKT (well known text), and the WKT constructor of
SDO_GEOMETRY is used to materialize this data as a geometry in the database.

Note that the SRID of the geometries is 8307. Also ,if the spatial data is in GeoJSON
format, then the query should be as follows:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO UTI L. FROM GEQISON(tw. geonetry, "'
8307), 0.05, 'UNIT=MLE), ci.nane, tw user_id

from CINEMA ci, TWEETS_EXT_TAB FILE tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO UTI L. FROM GEQISON(t w. geonetry, '', 8307), ' DI STANCE=0.25 UNIT=MLE') = ' TRUE

Oracle SQL Connector for HDFS with Hive Tables

Oracle SQL Connector for HDFS (OSCH) directly supports HIVE tables defined on
HDFS.

The Hive tables must be nonpartitioned, and defined using ROW FORMAT
DELIMITED and FILE FORMAT TEXTFILE clauses. The spatial data must be in
GeoJSON or WKT format.

Both Hive-managed tables and Hive external tables are supported.

For example, the Hive command to create a table on the file described in Using Oracle
SQL Connector for HDFS with Delimited Text Files is as follows. It assumes that the
user already has a Hive table defined on HDFS data. The data in HDFS must be in the
supported format, and the spatial data must be in GeoJSON or WKT format.

CREATE EXTERNAL TABLE | F NOT EXI STS TWEETS_HI VE_TAB(
I D string,
FOLLOAERS_COUNT i nt,
FRI ENDS_COUNT i nt,
LOCATI ON stri ng,
USER ID int,
GEOVETRY string)
RON FORMAT DELI M TED
FI ELDS TERM NATED BY '\t'
STORED AS | NPUTFORVAT
' org. apache. hadoop. mapr ed. Text | nput For mat '
QUTPUTFORVAT
' or g. apache. hadoop. hi ve. gl . i 0. H vel gnor eKeyText Qut put For mat '
LOCATI ON
"luser/scott/sinple_tweets_data';

3-3

ORACLE

Chapter 3
Using Oracle SQL Connector for HDFS with Hive Tables

The following example queries the table.

select D, FOLLOWERS COUNT, FRIENDS COUNT, LOCATION, USER ID, GEOVETRY from
TWEETS HI VE_TAB linit 10;

The output looks as follow:

"6703" 1 62 "Hong Kong" 3479846 PO NT (114.18306 22.30693)
"6702" 57 166 " Si ngapor e" 1765655 PO NT (103.85387 1.29498)

1. Log into a node of the Hadoop cluster.

2. Create the configuration file required by OSCH (Oracle SQL Connector for HDFS),
such as the following example:

<?xm version="1.0"?>
<configuration>
<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>TWEETS_EXT_TAB_Hl VE</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. sour ceType</ nanme>
<val ue>hi ve</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. hi ve. t abl eNane</ nanme>
<val ue>TWEETS_HI VE_TAB</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. hi ve. dat abaseName</ nane>
<val ue>def aul t </ val ue>
</ property>
<property>
<name>or acl e. hadoop. connecti on. url </ name>
<val ue>j dbc: oracl e: thin: @/ nyhost: 1521/ nyservi cenanme</ val ue>
</ property>
<property>
<name>or acl e. hadoop. connecti on. user </ name>
<val ue>scot t </ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ name>
<val ue>TWEETS DT DI R</ val ue>
</ property>
</ configuration>

3. Name the configuration file tweets_text. xnl .
4. On anode of the Hadoop cluster, execute the following command:

Add H VE_HOVE/lib* to HADOOP_CLASSPATH.
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: $HI VE_HOME/ | i b/ *
hadoop jar $OSCH HOVE/jlib/orahdfs.jar \

oracl e. hadoop. extt ab. Ext ernal Tabl e \

-conf /hone/oracl e/ tweets_hive. xn \

-createTabl e

The command prompts for the database password . You can either create the
OSCH_HOME environment variable or replace OSCH_HOME in the command
syntax with the full path to the installation directory for Oracle SQL Connector for

3-4

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

HDFS. On Oracle Big Data Appliance, this directory is: / opt / or acl e/ or ahdf s-
version

Set the environment variable HIVE_HOME to point to the Hive installation
directory (for example, / usr/1i b/ hi ve).

The table TWEETS_EXT_TAB_FILE is now ready to query. It can be queried like any
other table from the database. The following query selects the count of rows in the
table:

sel ect count(*) from TWEETS_EXT_TAB_HI VE;;

You can perform spatial operations on that table just like any other spatial table in the
database. The following example retrieves information about users that are tweeting
within in a quarter-mile (0.25 mile) radius of a specific movie theater:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO GEOMETRY(tw. geonetry, 8307), 0.05,
"UNIT=M LE), ci.nane, tw. user_id

from CINEMA ci, TWEETS EXT _TAB HI VE tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_GEOMETRY(tw. geometry, 8307), ' DI STANCE=0.25 UNIT=M LE') = ' TRUE'

Here the table CINEMA is a spatial table in the Oracle database, and the HDFS table
TWEETS_EXT_TAB_FILE can be used to query against this table. The data from the
tweets table is read in as WKT (well known text), and the WKT constructor of
SDO_GEOMETRY is used to materialize this data as a geometry in the database.

Note that the SRID of the geometries is 8307. Also ,if the spatial data is in GeoJSON
format, then the query should be as follows:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO_UTI L. FROM GEQISON(tw. geonetry, "',
8307), 0.05, 'UNIT=MLE), ci.nane, twuser_id

from CINEMA ci, TWEETS_EXT_TAB_H VE tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_UTI L. FROM GEQISON(t w. geonetry, '', 8307), ' DI STANCE=0.25 UNIT=M LE') = ' TRUE

3.3 Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop

ORACLE

To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data from
HDFS to Oracle Database.

Modifications are required for moving Big Data Spatial and Graph spatial data into the
database. This solution generally applies for any kind of files in HDFS or any kind of
Hive data. The spatial information can be in a well known format or a custom format.

First, an example of how to create external tables from files in HDFS containing spatial
information in a user defined format. Assume that the files in HDFS have records the
following format:

{
"type":"Feature",
"id":"6703",
"foll owers_count": 1,
"friends_count": 62,
"l ocation":"Hong Kong",
"user_i d": 3479846,
"] ongi tude": 114. 18306,
"latitude":22.30693

3-5

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

"type":"Feature",
"id":"6702",

"foll owers_count": 57,
"friends_count": 166,

"l ocation":"Singapore",
"user_id": 1765655,

"l ongi tude": 103. 85387,
"latitude": 1.29498

}

The Hive command to create a table for those records is as follows:

add jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/ojdbc8.jar
/opt/oracl e/ oracl e-spatial -graph/ spatial /vector/jlib/sdoutl.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdoapi.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl e/ oracl e-spati al - graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar
.. (add here jars containing custom SerDe and/or InputFormats);
CREATE EXTERNAL TABLE | F NOT EXI STS CUST_TWEETS HI VE TAB (id STRING geometry
STRING followers_count STRING friends_count STRING |ocation STRING user_id
STRING
ROW FORMAT SERDE ' nypackage. Tweet sSer De'
STORED AS | NPUTFORMAT
"oracle.spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat'
QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl . i o. Hi vel gnor eKeyText Qut put For mat "'
LOCATI ON ' /user/scott/sinple_tweets_data';

The | nput For mat object

oracl e. spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat can read those
records even if they are not strict GeoJSON. Thus, the preceding example does not
need a custom | nput For mat specification. However, it does require a custom Hive
Serializer and Deserializer (SerDe) to transform the latitude and longitude into a WKT
or GeoJSON geometry. For that, the Spatial Java API can be used in the deserialize
function of the SerDe, as the following example

@verride

public Cbject deserialize(Witable w) throws SerDeException {
Text rowText = (Text) w
Li st<Text> row = new ArrayLi st <Text>(col unnNames. si ze());

//default all values to null

for(int i=0;i<col umNanmes. size();i++){
row. add(nul l);

1

[l Try parsing rowinto JSON object
JsonNode recordNode = nul | ;

try {
String txt = rowlext.toString().trim);

recordNode = jsonMapper.readTree(txt);
row. set (col umNanes. i ndexCf ("id"), new

Text (recor dNode. get ("i d"). get Text Val ue()));

row. set (col umNanes. i ndexCf ("fol | owers_count"), new
Text (recor dNode. get ("fol owers_count").toString()));

row. set (col umNanes. i ndexCf ("friends_count"), new
Text (recordNode. get ("friends_count").toString()));

row. set (col umNanes. i ndexCf ("l ocation"), new

ORACLE 3-6

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

Text (recor dNode. get ("1 ocation"). get Text Val ue()));
row. set (col umNanes. i ndexCf ("user _id"), new
Text (recordNode. get ("user_id").toString()));

Doubl e | ongitude = recordNode. get ("l ongitude"). get Doubl eVal ue();
Doubl e latitude = recordNode. get ("l atitude"). get Doubl eVal ue();

/luse the Spatial APl to create the geonetry
JCGeonetry geom = JGeonetry. creat ePoi nt (new doubl e[]{
| ongi t ude,
| atitude},
2, [//dinensions
8307 //SRID

[/ Transformthe JGeonetry to WKT

String geoWKT = new String(wkt.fromlGeonetry(geon);

row. set (col umNanes. i ndexCf (" geonetry"), new Text (geoVKT));
} catch (Exception e) {

t hrow new Ser DeException("Exception parsing JSON. " +e.get Message(), e€);
}

return row

}

In the preceding example, to return the geometries in GeoJSON format, replace the
following:

String geoVWKT = new String(wkt.fromlGeonetry(geon);
row. set (col ummNanes. i ndexCf ("geonetry"), new Text (geoVKT));

with this:

row. set (col umNanes. i ndexCf (" geonetry"), new Text (geom toGeoJson()));

More SerDe examples to transform data in GeoJSON, WKT, or ESRI Shapefiles with
the Spatial Java API are available in the folder: / opt/ oracl e/ or acl e- spati al - gr aph/
spatial /vector/ exanpl es/ hive/javal src/oracl e/ spati al / hadoop/ vect or/ hi ve/javal/ src/
serde

The following example queries the Hive table:

select |D, FOLLOAERS_COUNT, FRIENDS_COUNT, LOCATION, USER ID, GEOVETRY from
CUST TVEEETS H VE TAB linit 10;

The output looks like the following:

6703 1 62 Hong Kong 3479846 POINT (114.18306 22.30693)
6702 57 166 Singapore 1765655 POINT (103.85387 1.29498)

* Creating HDFS Data Pump Files or Delimited Text Files
» Creating the SQL Connector for HDFS

3.3.1 Creating HDFS Data Pump Files or Delimited Text Files

ORACLE

You can use the Hive table from Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop to create HDFS Data Pump files or delimited
text files.

1. Create a table in the Oracle database as follows:

3-7

ORACLE

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

CREATE TABLE tweets_t (id | NTEGER
PRI MARY KEY, geonetry VARCHAR2(4000), followers_count NUVBER
friends_count NUMBER, |ocation VARCHAR2(4000), user_id NUMBER);

This table will be used as the target table. Oracle Loader for Hadoop uses table
metadata from the Oracle database to identify the column names, data types,
partitions, and other information. For simplicity, create this table with the same
columns (fields) as the Hive table. After the external table is created, you can
remove this table or use it to insert the rows from the external table into the target
table. (For more information about target tables, see About the Target Table
Metadata.

Create the loader configuration file, as in the following example:

<?xm version="1.0" encodi ng="UTF-8" ?>
<configuration>
<l-- I nput settings -->
<property>
<nane>napr educe. i nput f or mat . cl ass</ nane>
<val ue>oracl e. hadoop. | oader. | i b.input. H veToAvr ol nput For nat </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . i nput . hi ve. dat abaseNane</ nane>
<val ue>def aul t </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader. i nput . hi ve. t abl eName</ name>
<val ue>CUST_TWEETS_HI VE_TAB</ val ue>
</ property>
<l-- Qut put settings -->
<property>
<name>napr educe. out put f or mat . cl ass</ name>
<val ue>or acl e. hadoop. | oader. | i b. out put . Dat aPunpQut put For mat </ val ue>
</ property>
<property>
<nanme>napr ed. out put . di r </ nane>
<val ue>/ user/scott/dat a_out put </ val ue>
</ property>
<l-- Tabl e information -->
<property>
<name>or acl e. hadoop. | oader. | oader Map. t ar get Tabl e</ nane>
<val ue>t weets_t </ val ue>
</ property>
<l-- Connection information -->
<property>
<nane>or acl e. hadoop. | oader . connecti on. url </ name>
<val ue>j dbc: oracl e: thin: @/ nyhost : 1521/ nyservi cenane</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader. connect i on. user </ nane>
<val ue>scot t </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader. connect i on. passwor d</ nane>
<val ue>vel conel</val ue>
<description> Having the password in cleartext is NOI RECOWENDED. Use
Oracle Wl let instead. </description>
</ property>
</ confi guration>

3-8

ORACLE

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

With this configuration, Data Pump files will be created in HDFS. If you want
delimited text files as the output, then replace th following:

oracl e. hadoop. | oader. |'i b. out put . Dat aPunpQut put For mat

with this:

oracl e. hadoop. | oader. |ib. output. Del i m tedText Qut put For mat
Name the configuration file t weet s_hi ve_t o_dat a_punp. xni .
Create the Data Pump files:

Add H VE_HOWE/ |ib* and the H ve configuration directory to HADOOP_CLASSPATH.
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: $HI VE_HOVE/ | i b/ *: $H VE_CONF_DI R

Add Oracle Spatial libraries to HADOOP_CLASSPATH.

export ORACLE SPATI AL_VECTCR LI B_PATH=/ opt/oracl e/ oracl e-spati al - graph/ spati al /
vector/jlib

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH. $ORACLE_SPATI AL_VECTOR_LI B_PATH
0j dbc8. j ar: SORACLE_SPATI AL_VECTOR LI B_PATH

sdout | . jar: $ORACLE_SPATI AL_VECTOR LI B_PATH

sdoapi . j ar: SORACLE_SPATI AL_VECTOR LI B_PATH sdohadoop-

vector.jar: $ORACLE_SPATI AL_VECTOR LI B_PATH sdohadoop- vect or - hi ve. j ar

The Oracle Spatial libraries need to be added to the libjars option as well.
export LI BJARS=$ORACLE_SPATI AL_VECTOR LI B_PATH

0j dbc8. j ar, $ORACLE_SPATI AL_VECTOR LI B_PATH

sdout | . j ar, $ORACLE_SPATI AL_VECTOR LI B_PATH

sdoapi . j ar, SORACLE_SPATI AL_VECTOR LI B_PATH sdohadoop-

vector.jar, $ORACLE_SPATI AL_VECTOR LI B_PATH sdohadoop- vect or - hi ve. j ar

And the following H VE jar files have to be added to the |ibjars option.
export LIBJARS=$LI BJARS, $H VE_HOVE/ | i b/ hi ve- exec-*.jar, $H VE_HOVE/ | i b/ hi ve-
metastore-*.jar, $H VE_HOVE/ | i b/ | i bf b303*. j ar

hadoop jar ${O.H HOME}/j!lib/oral oader.jar \
oracl e. hadoop. | oader. OraLoader \
-conf /honme/oracl e/ tweets_hive to_data_punp.xm \
-libjars $LI BJARS

For the preceding example:

Be sure that the environment variable OLH_HOME has to be set to the installation
directory.

Set the environment variable HIVE_HOME to point to the Hive installation
directory (for example, / usr/1i b/ hi ve).

Set the environment variable HIVE_CONF_DIR to point to the Hive configuration
directory (for example, / et ¢/ hi ve/ conf).

Add the following Hive jar files, in a comma-separated list, to the -1i bj ars option of
the hadoop command. Replace the asterisks (*) with the complete file names on
your system:

hi ve-exec-*.jar
hi ve- metastore-*.jar
I'ibfb303*.jar

If oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er is used to create the Hive
table (with the data coming from Oracle NoSQL Database), you must also add the
following jar file to the - 1i bj ars option of the hadoop command: $KVHOVE/ | i b/

3-9

Chapter 3
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop

kvclient.jar (where KVHOME is the directory where the Oracle NoSQL Database
is installed)

e If org. apache. hadoop. hi ve. hbase. HBaseSt or ageHand! er is used to create the Hive
table (with the data coming from Apache HBase), you must also add the following
JAR files, in a comma-separated list, to the -1i bj ars option of the hadoop
command:

$H VE_HOVE/ | i b/ hbase- server. j ar

$H VE_HOWE | i b/ hi ve- hbase-handl er. j ar
$H VE_HOVE/ | i b/ hbase- conmon. j ar

$H VE_HOVE/ | i b/ hbase-client.jar

$H VE_HOWE | i b/ hbase- hadoop2- conpat . j ar
$H VE_HOWE | i b/ hbase- hadoop- conpat . j ar
$H VE_HOVE/ | i b/ hbase- pr ot ocol . j ar

$H VE_HOVE/ | i b/ htrace-core.jar

3.3.2 Creating the SQL Connector for HDFS

ORACLE

To create the SQL Connector fo HDFS, follow the instructions in this topic.

1. Create the configuration file for the SQL Connector for HDFS), as in the following
example:

<?xm version="1.0"?>
<configuration>
<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>TWEETS_EXT_TAB_DP</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. sour ceType</ nane>
<val ue>dat apunp</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>/ user/scott/dat a_out put/ oral oader - 0000*. dat </ val ue>
</ property>
<property>
<nane>or acl e. hadoop. connect i on. url </ name>
<val ue>j dbc: oracl e: thin: @/ nyhost : 1521/ nyservi cenane</ val ue>
</ property>
<property>
<name>or acl e. hadoop. connecti on. user </ name>
<val ue>scot t </ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ name>
<val ue>TWEETS_DT_DI R</ val ue>
</ property>
</ confi guration>

If the files are delimited text files, follow the steps in Using Oracle SQL Connector
for HDFS with Delimited Text Files.

2. Name the configuration file t weet s_ext _from dp. xni .
3. Create the external table.

hadoop jar $OSCH HOWE jlib/orahdfs.jar \
oracl e. hadoop. extt ab. Ext ernal Tabl e \

3-10

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

-conf /home/oracl e/ tweets_ext _fromdp. xm\
-createTabl e

In the preceding command, you can either create the OSCH_HOME environment
variable, or replace OSCH_HOME in the command with the full path to the
installation directory for Oracle SQL Connector for HDFS. On Oracle Big Data
Appliance, this directory is: / opt/ or acl e/ or ahdf s- ver si on

The table TWEETS_EXT_TAB_DP is now ready to query. It can be queried like any
other table in the database. For example:

sel ect count(*) from TWEETS_EXT_TAB_DP;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO GEOMETRY(tw. geonetry, 8307), 0.5,
"UNIT=YARD), ci.nane, twuser_id

from CINEMA ci, TWEETS EXT_TAB DP tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_GEOMETRY(tw. geomet ry, 8307), ' DI STANCE=200 UNIT=M LE') = ' TRUE';

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO_UTI L. FROM GEQISON(tw. geonetry, "',
8307), 0.5, '"UNIT=YARD), ci.nane, tw user_id

from CI NEMA ci, TWEETS_EXT_TAB_DP tw where SDO W TH N_DI STANCE(ci . geonetry,
SDO_UTI L. FROM GEQISON(t w. georetry, "', 8307), 'DI STANCE=200 UNNT=M LE') = "'TRUE ;

3.4 Integrating HDFS Spatial Data with Oracle Database
Using Oracle Big Data SQL

ORACLE

You can use Oracle Big Data SQL to facilitate spatial data access between HDFS and
Oracle Database.

To enable the spatial features in Oracle Big Data SQL, update the file

bi gdat a. properti es to add the following lines at the end

(replacing $ORACLE_SPATIAL_VECTOR_LIB_PATH with the path to the Oracle
Spatial libraries):

j ava. cl asspat h. user =$ORACLE_SPATI AL_VECTOR_LI B_PATH oj dbc8. j ar:

$ORACLE_SPATI AL_VECTOR_LI B_PATH sdout | .jar: $ORACLE_SPATI AL_VECTOR LI B_PATH
sdoapi . j ar:

$ORACLE_SPATI AL_VECTOR_LI B_PATH sdohadoop-vector.jar:

$ORACLE_SPATI AL_VECTCOR LI B_PATH sdohadoop- vect or - hi ve. j ar

(Al'so add here jars containing custom SerDe and/or |nputFormat specifications.)

If the files are in HDFS, you can use the following solutions:
e Creating Oracle External Tables for HDFS Files with Big Data SQL
» Creating Oracle External Tables Using Hive Tables with Big Data SQL

If you are accessing spatial data from Oracle NoSQL Database or Apache HBase, you
can use the solution in Creating Oracle External Tables Using Hive Tables with Big
Data SQL.

3-11

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

To use Oracle SQL Connector for HDFS (OSCH) with files generated by Oracle
Loader for Hadoop (OLH), you must understand how OLH is used to move data from
HDFS to Oracle Database.

Modifications are required for moving Big Data Spatial and Graph spatial data into the
database. This solution generally applies for any kind of files in HDFS or any kind of
Hive data. The spatial information can be in a well known format or a custom format.

First, an example of how to create external tables from files in HDFS containing spatial
information in a user defined format. Assume that the files in HDFS have records the
following format:

{
"type":"Feature",
"id":"6703",
"foll owers_count": 1,
"friends_count": 62,
"l ocation":"Hong Kong",
"user_i d": 3479846,
"] ongi tude": 114. 18306,
"latitude":22. 30693

"type":"Feature",
"id":"6702",

"foll owers_count": 57,
"friends_count": 166,

"l ocation":"Singapore",
"user_id": 1765655,

"] ongi tude": 103. 85387,
"latitude":1.29498

}

The Hive command to create a table for those records is as follows:

add jar
/opt/oracl el oracl e-spatial -graph/ spatial/vector/jlib/ojdbc8.jar
/opt/oracl el oracl e-spatial -graph/ spatial/vector/jlib/sdoutl.jar
/opt/oracl el oracl e-spatial -graph/ spatial /vector/jlib/sdoapi.jar
/opt/oracl el oracl e-spati al -graph/ spatial /vector/jlib/sdohadoop-vector.jar
/opt/oracl el oracl e-spatial -graph/ spatial /vector/jlib/sdohadoop-vector-hive.jar
.. (add here jars containing custom SerDe and/or InputFormats);
CREATE EXTERNAL TABLE | F NOT EXI STS CUST TWEETS HI VE TAB (id STRING geonetry
STRING followers_count STRING friends_count STRING |ocation STRING user_id
STRING
ROW FORMAT SERDE ' nypackage. Tweet sSer De'
STORED AS | NPUTFORVAT
"oracl e. spatial . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput For mat '
QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl . i 0. Hi vel gnor eKeyText Qut put For mat '
LOCATION '/ user/scott/sinple_tweets data';

The | nput For mat object

oracl e. spati al . hadoop. vect or . geoj son. mapr ed. GeoJsonl nput For nat can read those
records even if they are not strict GeoJSON. Thus, the preceding example does not
need a custom | nput For mat specification. However, it does require a custom Hive
Serializer and Deserializer (SerDe) to transform the latitude and longitude into a WKT
or GeoJSON geometry. For that, the Spatial Java API can be used in the deserialize
function of the SerDe, as the following example

ORACLE 3-12

ORACLE

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

@verride
public Cbject deserialize(Witable w) throws SerDeException {

Text rowText = (Text) w
Li st<Text> row = new ArrayLi st <Text>(col unmmNames. si ze());

[/default all values to null
for(int i=0;i<columNanes. size();i++){
row. add(nul I');

}

[l Try parsing row into JSON object
JsonNode recordNode = nul | ;

try {
String txt = rowText.toString().trim();

recordNode = jsonMapper.readTree(txt);

I OW. set(col umNanes. i ndexOf ("id"), new
Text (recordNode. get ("id"). get Text Val ue()));

row. set (col umNanes. i ndexCf ("fol | owers_count"), new
Text (recor dNode. get ("fol owers_count").toString()));

row. set (col umNanes. i ndexCf ("friends_count"), new
Text (recordNode. get ("friends_count").toString()));

row. set (col umNanes. i ndexCf ("1 ocation"), new
Text (recor dNode. get ("1 ocation"). get Text Val ue()));

row. set (col umNanes. i ndexCf ("user _id"), new
Text (recordNode. get ("user_id").toString()));
Doubl e | ongitude = recordNode. get ("l ongitude"). get Doubl eVal ue();
Doubl e latitude = recordNode. get ("l atitude").getDoubl eVal ue();

/luse the Spatial APl to create the geonetry
JCGeonetry geom = JGeonetry. creat ePoi nt (new doubl e[]{
| ongi t ude,
| atitude},
2, [//dinensions
8307 //SRID

[/ Transformthe JGeonetry to WKT
String geoWKT = new String(wkt.fromlGeonetry(geon);
row. set (col umNanes. i ndexCf (" geonetry"), new Text (geoVKT));
} catch (Exception e) {
t hrow new Ser DeException("Exception parsing JSON. " +e.get Message(), e);

}

return row

}

In the preceding example, to return the geometries in GeoJSON format, replace the
following:

String geoVWKT = new String(wkt.fromlGeonetry(geon);
row. set (col ummNanes. i ndexCf ("geonetry"), new Text (geoVKT));

with this:

row. set (col umNanes. i ndexCf (" geonetry"), new Text (geom toGeoJson()));
More SerDe examples to transform data in GeoJSON, WKT, or ESRI Shapefiles with
the Spatial Java API are available in the folder: / opt/ oracl e/ or acl e- spati al - gr aph/

spatial /vect or/ exanpl es/ hive/javal src/oracl e/ spati al / hadoop/ vect or/ hi ve/ javal/ src/
serde

3-13

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

The following example queries the Hive table:

select D, FOLLOWERS COUNT, FRIENDS COUNT, LOCATION, USER ID, GEOVETRY from
CUST_TWEETS HI VE_TAB linit 10;

The output looks like the following:

6703 1 62 Hong Kong 3479846 PO NT (114.18306 22.30693)
6702 57 166 Si ngapor e 1765655 PO NT (103.85387 1.29498)

e Creating Oracle External Tables for HDFS Files with Big Data SQL
e Creating Oracle External Tables Using Hive Tables with Big Data SQL

3.4.1 Creating Oracle External Tables for HDFS Files with Big Data

SQL

ORACLE

You can create Oracle external tables for any kind of files in HDFS. The spatial
information can be in a well known format or a custom format.

If the geometry format is not WKT or GeoJSON, then use one of the provided SerDe
examples in the folder / opt/ or acl e/ or acl e- spati al - gr aph/ spati al / vect or / exanpl es/

hi veljaval src/oracl e/ spatial / hadoop/ vect or/ hi ve/j aval src/ serde, Or create a custom
SerDe as in the example in Using Oracle SQL Connector for HDFS with Files
Generated by Oracle Loader for Hadoop.

After that, create an Oracle external table, as in the following example:

CREATE TABLE SAMPLE TWEETS (id VARCHAR2(4000),

geometry VARCHAR2(4000),

fol | owers_count VARCHAR2(4000),

friends_count VARCHAR2(4000),

| ocation VARCHAR2(4000), user_id VARCHAR2(4000)) ORGANI ZATI ON EXTERNAL

(TYPE oracl e_hdfs DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (

com oracl e. bi gdata. rowf ormat: \
SERDE ' mypackage. Tweet sSer De'

comoracl e. bigdata.fileformat: \
| NPUTFORMAT ' or acl e. spati al . hadoop. vect or. geoj son. mapr ed. GeoJsonl nput Format " \
QUTPUTFORMAT ' or g. apache. hadoop. hi ve. gl .i 0. H vel gnor eKeyText Qut put Format" \

)
LOCATI ON (' /user/scott/sinple_tweets_data/*.10g"));

The table SAMPLE_TWEETS is now ready to query. It can be queried like any other
table in the database. For example:

sel ect count(*) from SAMPLE_TWEETS;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO GEOMETRY(tw. geonetry, 8307), 0.5,
"UNIT=YARD), ci.nane, twuser_id

from CINEMA ci, SAMPLE TWEETS tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_GEOMETRY(tw. geomet ry, 8307), ' DI STANCE=200 UNIT=M LE') = ' TRUE';

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

3-14

Chapter 3
Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO_UTI L. FROM GEQISON(tw. geonetry, "',
8307), 0.5, 'UNIT=YARD), ci.nane, tw user_id

from CI NEMA ci, SAMPLE TWEETS tw where SDO W TH N_DI STANCE(ci . geonetry,

SDO_UTI L. FROM GEQISON(t w. geometry, ‘', 8307), ' DI STANCE=200 UNIT=M LE') = ' TRUE ;

3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data

sQL

ORACLE

You can create Oracle external tables using Hive tables with Big Data SQL. The
spatial information can be in a well known format or a custom format.

A Hive table used to create an Oracle external table must be created as described in
Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for
Hadoop.

Create an Oracle external table that can be created using the Hive table. For example:

CREATE TABLE SAMPLE_TWEETS (id VARCHAR2(4000), geonetry VARCHAR2(4000),
fol | owers_count VARCHAR2(4000), friends_count VARCHAR2(4000), |ocation
VARCHAR2(4000), user_id VARCHAR2(4000)) ORGANI ZATI ON EXTERNAL

(TYPE ORACLE_HI VE

DEFAULT DI RECTORY DEFAULT _DIR

ACCESS PARAMETERS (

com oracl e. bi gdat a. cl ust er=cl uster

com oracl e. bi gdat a. t abl ename=def aul t . CUST_TWEETS_H VE_TAB)
) PARALLEL 2 REJECT LIMT UNLI M TED;

The table SAMPLE_TWEETS is now ready to query. It can be queried like any other
table in the database. For example:

sel ect count(*) from SAMPLE TVEETS;

You can perform spatial operations on that table, such as the following example to
retrieve the users that are tweeting in a quarter-mile radius of a cinema:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO GEOMVETRY(tw. geonetry, 8307), 0.5,
"UNIT=YARD), ci.nane, twuser_id

from CINEMA ci, SAMPLE_TWEETS tw where SDO W THI N_DI STANCE(ci . geonetry,
SDO_GEOMETRY(tw. geonetry, 8307), ' DI STANCE=200 UNIT=MLE') = 'TRUE ;

This information can be used further to customize advertising.

Note that the SRID of the geometries is 8307. Also, if the spatial data is in GeoJSON
format, then the query should be as follows:

sel ect sdo_geom SDO DI STANCE(ci . geonetry, SDO_UTI L. FROM GEQISON(tw. geonetry, '',
8307), 0.5, "UNIT=YARD), ci.nane, twuser_id

from CINEMA ci, SAMPLE_TWEETS tw where SDO W THI N_DI STANCE(ci . geonetry,

SDO UTI L. FROM GEQJSON(t w. geonetry, '', 8307), 'DI STANCE=200 UNIT=MLE') = ' TRUE ;

3-15

Configuring Property Graph Support

This chapter explains how to configure the support for property graphs in a Big Data
environment.

It assumes that you have already performed the installation on a Big Data Appliance
(see Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance),
an Apache Hadoop system (see Installing Property Graph Support on a CDH Cluster
or Other Hardware), or an Oracle NoSQL Database.

You might be able to improve the performance of property graph support by altering
the database and Java configuration settings. The suggestions provided are
guidelines, which you should follow only after carefully and thoroughly evaluating your
system.

e Tuning Apache HBase for Use with Property Graphs
Modifications to the default Apache HBase and Java Virtual Machine
configurations can improve performance.

* Tuning Oracle NoSQL Database for Use with Property Graphs
To obtain the best performance from Oracle NoSQL Database, do the following.

4.1 Tuning Apache HBase for Use with Property Graphs

Modifications to the default Apache HBase and Java Virtual Machine configurations
can improve performance.

» Modifying the Apache HBase Configuration
* Modifying the Java Memory Settings

4.1.1 Modifying the Apache HBase Configuration

ORACLE

To modify the Apache HBase configuration, follow the steps in this section for your
CDH release. (Note that specific steps might change from one CDH release to the
next.)

For CDH 5.2.x, CDH 5.3.x, and CDH 5.4.x:

1. Log into Cloudera Manager as the adni n user.

2. Onthe Home page, click HBase in the list of services on the left.
3. On the HBase page, click the Configuration tab.
4

In the Category panel on the left, expand Service-Wide, and then choose
Advanced.

5. Edit the value of HBase Service Advanced Configuration Snippet (Safety Valve)
for hbase-site. xnl as follows:

<property>
<nane>hbase. r egi onser ver. handl er. count </ name>
<val ue>32</ val ue>

</ property>

4-1

ORACLE

Chapter 4
Tuning Apache HBase for Use with Property Graphs

<property>
<nane>hbase. hregi on. max. fil esi ze</ name>
<val ue>1610612736</ val ue>
</ property>
<property>
<nane>hbase. hregi on. nenst or e. bl ock. mul ti pli er </ nane>
<val ue>4</ val ue>
</ property>
<property>
<nanme>hbase. hr egi on. menst ore. f | ush. si ze</ nane>
<val ue>134217728</ val ue>
</ property>
<property>
<nanme>hbase. hst or e. bl ocki ngSt or eFi | es</ nane>
<val ue>200</ val ue></ property>
<property>
<nanme>hbase. hstore. f| usher. count </ name>
<val ue>1</val ue>
</ property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation

For CDH 5.4.x:

1. Loginto Cloudera Manager as the adni n user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click HBase (Service-wide), scroll to the bottom of the page, and select Display
All Entries (not Display 25 Entries).

6. On this page, locate HBase Service Advanced Configuration Snippet (Safety

Valve) for hbase-site. xnl , and enter the following value for the <property>
element:

<property>
<name>hbase. r egi onser ver. handl er. count </ name>
<val ue>32</ val ue>
</ property>
<property>
<nanme>hbase. hr egi on. max. fi | esi ze</ nane>
<val ue>1610612736</ val ue>
</ property>
<property>
<nanme>hbase. hr egi on. menst or e. bl ock. mul ti pl i er </ nane>
<val ue>4</ val ue>
</ property>
<property>
<name>hbase. hr egi on. menst ore. f | ush. si ze</ name>
<val ue>134217728</ val ue>
</ property>
<property>
<nanme>hbase. hst or e. bl ocki ngSt or eFi | es</ nane>
<val ue>200</ val ue></ property>

4-2

Chapter 4
Tuning Apache HBase for Use with Property Graphs

<property>
<nane>hbase. hst ore. f| usher. count </ name>
<val ue>1</val ue>

</ property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.
Click Save Changes.

Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

4.1.2 Modifying the Java Memory Settings

To modify the Java memory settings, follow the steps in this section for your CDH
release. (Note that specific steps might change from one CDH release to the next.)

ORACLE

For CDH 5.2.x and CDH 5.3.x:

1. Log into Cloudera Manager as the adni n user.

2. Onthe Home page, click HBase in the list of services on the left.

3. Onthe HBase page, click the Configuration tab.

4. For RegionServer Group (default and others), click Advanced, and use the
following for Java Configuration Options for HBase RegionServer:
- Xm256m - XX: +UsePar NewGC - XX: +UseConcMar kSweepCC -
XX: CVBI ni tiatingQccupancyFraction=70 - XX: +UseCMBI ni ti ati ngGccupancyOnly

5. Click Resource Management, and enter an appropriate value (for example, 18G)
for Java Heap Size of HBase RegionServer.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart,
whichever option better suits your situation.

For CDH 5.4.x:

1. Loginto Cloudera Manager as the adni n user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click RegionServer, scroll to the bottom of the page, and select Display All
Entries (not Display 25 Entries).

6. On this page, for Java Configuration Options for HBase RegionServer, enter
the following value:
- Xm256m - XX: +UsePar NewGC - XX: +UseConcMar kSweepGC -
XX: CMBI ni tiatingCccupancyFraction=70 - XX: +UseCMBI ni tiati ngCccupancyOnly

7. For Java Heap Size of HBase RegionServer in Bytes, enter an appropriate
value (for example, 18G).

8. Click Save Changes.

9. Expand the Actions menu, and then choose Restart or Rolling Restart,

whichever option better suits your situation.

4-3

Chapter 4
Tuning Oracle NoSQL Database for Use with Property Graphs

¢ See Also:

For detailed information about Java garbage collection, see:
http://docs. oracl e. cont javase/ 8/ docs/t echnot es/ gui des/ v gct uni ng/
For descriptions of all settings, see the Java Tools Reference:

https://docs. oracl e. conij avase/ 8/ docs/t echnot es/ t ool s/ uni x/j ava. ht m

4.2 Tuning Oracle NoSQL Database for Use with Property

Graphs

To obtain the best performance from Oracle NoSQL Database, do the following.

ORACLE

Ensure that the replication groups (shards) are balanced.
Adjust the user process resource limit setting (ul i ni t). For example:
ulimt -u 131072

Set the heap size of the Java Virtual Machines (JVMSs) on the replication nodes to
enable the B-tree indexes to fit in memory.

To set the heap size, use either the - menory_nb option of the makebookconfi g
command or the nenory_nb parameter for the storage node.

Oracle NoSQL Database uses 85% of nenory_nb as the heap size for processes
running on the storage node. If the storage node hosts multiple replication nodes,
then the heap is divided equally among them. Each replication node uses a cache
that is 70% of the heap.

For example, if you set nenory_nb to 3000 MB on a storage node that hosts two
replication nodes, then each replication node has the following:

— 1275 MB heap, calculated as (3000 MB * .85)/2
— 892 MB cache, calculated as 1275 MB * .70

" See Also:
Oracle NoSQL Database FAQ at

http:// ww. oracl e. com t echnet wor k/ product s/ nosql db/ | ear nnor e/ nosql db-
fag-518364. ht M #HowdoesNoSQLDBbudget menor y

4-4

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory

Using Property Graphs in a Big Data
Environment

ORACLE

This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in a Big Data environment.

About Property Graphs

Property graphs allow an easy association of properties (key-value pairs) with
graph vertices and edges, and they enable analytical operations based on
relationships across a massive set of data.

About Property Graph Data Formats
The following graph formats are supported.

Getting Started with Property Graphs
To get started with property graphs, follow these main steps.

Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APlIs to create the property
graph and objects in it.

Managing Text Indexing for Property Graph Data

Indexes in Oracle Big Data Spatial and Graph allow fast retrieval of elements by a
particular key/value or key/text pair. These indexes are created based on an
element type (vertices or edges), a set of keys (and values), and an index type.

Querying Property Graph Data Using PGQL
Oracle Big Data Spatial and Graph supports a rich set of graph pattern matching
capabilities.

Using Apache Spark with Property Graph Data

Apache Spark lets you process large amounts of data efficiently, and it comes with
a set of libraries for processing data: SQL, MLIib, Spark Streaming,

and DataFrames, Apache Spark can read data from different sources, such as
HDFS, Oracle NoSQL Database, and Apache HBase.

Support for Secure Oracle NoSQL Database

Oracle Big Data Spatial and Graph property graph support works with both secure
and non-secure Oracle NoSQL Database installations. This topic provides
information about how to use property graph functions with a secure Oracle
NoSQL Database setup.

Implementing Security on Graphs Stored in Apache HBase
Kerberos authentication is recommended for Apache HBase to secure property
graphs in Oracle Big Data Spatial and Graph.

Using the Groovy Shell with Property Graph Data

The Oracle Big Data Spatial and Graph property graph support includes a built-in
Groovy shell (based on the original Gremlin Groovy shell script). With this
command-line shell interface, you can explore the Java APIs.

REST Support for Property Graph Data
A set of RESTful APIs exposes the Data Access Layer Java APIs through HTTP/
REST protocaols.

5-1

Chapter 5
About Property Graphs

» Exploring the Sample Programs
The software installation includes a directory of example programs, which you can
use to learn about creating and manipulating property graphs.

* Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

* Example Python User Interface
The Oracle Big Data Spatial and Graph support for property graphs includes an
example Python user interface. It can invoke a set of example Python scripts and
modules that perform a variety of property graph operations.

» Example iPython Notebooks User Interface
Support is provided for the following types of iPython Notebook shell interface to
major property graph functions.

5.1 About Property Graphs

Property graphs allow an easy association of properties (key-value pairs) with graph
vertices and edges, and they enable analytical operations based on relationships
across a massive set of data.

* What Are Property Graphs?
* What Is Big Data Support for Property Graphs?

5.1.1 What Are Property Graphs?

A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

* A set of outgoing edges

* A set of incoming edges

* A collection of properties

Each edge has a unique identifier and can have:

* An outgoing vertex

* Anincoming vertex

» Atext label that describes the relationship between the two vertices
* A collection of properties

Figure 5-1 illustrates a very simple property graph with two vertices and one edge. The
two vertices have identifiers 1 and 2. Both vertices have properties nane and age. The
edge is from the outgoing vertex 1 to the incoming vertex 2. The edge has a text label
knows and a property t ype identifying the type of relationship between vertices 1 and 2.

ORACLE 5-2

Chapter 5
About Property Graphs

Figure 5-1 Simple Property Graph Example

name:Alice name:Bob
age:31 age:27

1
knows

type:friends

Standards are not available for Big Data Spatial and Graph property graph data model,
but it is similar to the W3C standards-based Resource Description Framework (RDF)
graph data model. The property graph data model is simpler and much less precise
than RDF. These differences make it a good candidate for use cases such as these:

» ldentifying influencers in a social network
» Predicting trends and customer behavior
» Discovering relationships based on pattern matching

» Identifying clusters to customize campaigns

Note:

The property graph data model that Oracle supports at the database side
does not allow labels for vertices. However, you can treat the value of a
designated vertex property as one or more labels, as explained in Specifying
Labels for Vertices.

5.1.2 What Is Big Data Support for Property Graphs?

ORACLE

Property graphs are supported for Big Data in Hadoop and in Oracle NoSQL
Database. This support consists of a data access layer and an analytics layer. A
choice of databases in Hadoop provides scalable and persistent storage management.

Figure 5-2 provides an overview of the Oracle property graph architecture.

5-3

Figure 5-2 Oracle Property Graph Architecture

Graph Analytics
In-memory Parallel Graph Analytics

Chapter 5
About Property Graphs

h

r

Graph Data Access Layer
{Java APIls: Blueprints, Text Search, ...)

J

22198 4a/n f1STH

Database

Oracle NoSQL

Scalable and Persistent Storage

* In-Memory Analyst

* Data Access Layer

« Storage Management
* RESTful Web Services

5.1.2.1 In-Memory Analyst

The in-memory analyst layer enables you to analyze property graphs using parallel in-
memory execution. It provides over 35 analytic functions, including path calculation,

ranking, community detection, and recommendations.

5.1.2.2 Data Access Layer

The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges
using key-value pairs, create text indexes, and perform other manipulations. The Java
APIs include an implementation of TinkerPop Blueprints graph interfaces for the
property graph data model. The APIs also integrate with the Apache Lucene and
Apache SolrCloud, which are widely-adopted open-source text indexing and search

engines.

5.1.2.3 Storage Management

You can store your property graphs in either Oracle NoSQL Database or Apache
HBase. Both databases are mature and scalable, and support efficient navigation,

ORACLE

5-4

Chapter 5
About Property Graph Data Formats

guerying, and analytics. Both use tables to model the vertices and edges of property
graphs.

5.1.2.4 RESTful Web Services

You can also use RESTful web services to access the graph data and perform graph
operations. For example, you can use the Linux curl command to obtain vertices and
edges, and to add and remove graph elements.

5.2 About Property Graph Data Formats

The following graph formats are supported.

e GraphML Data Format
e GraphSON Data Format
* GML Data Format

e Oracle Flat File Format

5.2.1 GraphML Data Format

The GraphML file format uses XML to describe graphs. Example 5-1 shows a
GraphML description of the property graph shown in Figure 5-1.

¢ See Also:
"The GraphML File Format" at

http://graphm . graphdraw ng. or g/

Example 5-1 GraphML Description of a Simple Property Graph

<?xm version="1.0" encodi ng="UTF-8"?>
<graphm xm ns="http://graphn . graphdraw ng. or g/ xn ns">
<key id="nanme" for="node" attr.name="nane" attr.type="string"/>
<key id="age" for="node" attr.name="age" attr.type="int"/>
<key id="type" for="edge" attr.name="type" attr.type="string"/>
<graph i d="PG' edgedefaul t="directed">
<node id="1">
<data key="nane">Ali ce</dat a>
<data key="age">31</dat a>
</ node>
<node id="2">
<data key="nane">Bob</ dat a>
<data key="age">27</dat a>
</ node>
<edge id="3" source="1" target="2" |abel ="knows">
<data key="type">friends</dat a>
</ edge>
</ graph>
</ graphm >

ORACLE 5-5

http://graphml.graphdrawing.org/

Chapter 5
About Property Graph Data Formats

5.2.2 GraphSON Data Format

The GraphSON file format is based on JavaScript Object Notation (JSON) for
describing graphs. Example 5-2 shows a GraphSON description of the property graph
shown in Figure 5-1.

¢ See Also:
"GraphSON Reader and Writer Library" at

https://github. com tinkerpop/bl ueprints/w ki /G aphSON- Reader - and- Wi ter-
Li brary

Example 5-2 GraphSON Description of a Simple Property Graph

{
"graph": {
"mode": " NORMAL",
"vertices": [
{
"nane": "Alice",
"age": 31,
"oidt "1,
" _type": "vertex"
b
{
"nane": "Bob",
"age": 27,
"id' "2,
" _type": "vertex"
}
1
"edges": [
{
"type": "friends",
"id" "3,
" _type": "edge",
" outV': "1",
"inVv:o "2,
"_label": "knows"
}
]
}
}
5.2.3 GML Data Format

The Graph Modeling Language (GML) file format uses ASCII to describe graphs.
Example 5-3 shows a GML description of the property graph shown in Figure 5-1.

ORACLE 5-6

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

Chapter 5
About Property Graph Data Formats

" See Also:
"GML: A Portable Graph File Format" by Michael Himsolt at

http://ww. fimuni-passau.de/fileadnin/files/|ehrstuhl/brandenburg/
proj ekte/ gm /gnl -t echni cal -report. pdf

Example 5-3 GML Description of a Simple Property Graph

graph [
conment "Sinple property graph”
directed 1
| sPlanar 1
node [
id1
| abel "1"
name "Alice"
age 31
]
node [
id?2
| abel "2"
name "Bob"
age 27
]
edge [
source 1
target 2
| abel "knows"

type "friends"

]
]

5.2.4 Oracle Flat File Format

ORACLE

The Oracle flat file format exclusively describes property graphs. It is more concise
and provides better data type support than the other file formats. The Oracle flat file
format uses two files for a graph description, one for the vertices and one for edges.
Commas separate the fields of the records.

Example 5-4 shows the Oracle flat files that describe the property graph shown in
Figure 5-1.

" See Also:

"Oracle Flat File Format Definition"

Example 5-4 Oracle Flat File Description of a Simple Property Graph
Vertex file:

1,name, 1, Ali ce,
1, age, 2, , 31,

5-7

http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

Chapter 5
Getting Started with Property Graphs

2, nane, 1, Bob, ,
2,age, 2,, 27,

Edge file:

1,1, 2, knows, type, 1, friends,,

5.3 Getting Started with Property Graphs

To get started with property graphs, follow these main steps.

1.

The first time you use property graphs, ensure that the software is installed and
operational.

Create your Java programs, using the classes provided in the Java API.

See "Using Java APIs for Property Grsph Data".

5.4 Using Java APIs for Property Graph Data

Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

Overview of the Java APIs

Parallel Loading of Graph Data
A Java APl is provided for performing parallel loading of graph data.

Opening and Closing a Property Graph Instance

Creating Vertices

Creating Edges

Deleting Vertices and Edges

Reading a Graph from a Database into an Embedded In-Memory Analyst
Specifying Labels for Vertices

Building an In-Memory Graph

Dropping a Property Graph

5.4.1 Overview of the Java APIs

The Java APIs that you can use for property graphs include the following.

Oracle Big Data Spatial and Graph Java APIs
TinkerPop Blueprints Java APIs

Apache Hadoop Java APIs

Oracle NoSQL Database Java APIs

Apache HBase Java APIs

5.4.1.1 Oracle Big Data Spatial and Graph Java APIs

Oracle Big Data Spatial and Graph property graph support provides database-specific
APIs for Apache HBase and Oracle NoSQL Database. The data access layer API

ORACLE

5-8

Chapter 5
Using Java APIs for Property Graph Data

(oracl e. pg. *) implements TinkerPop Blueprints APIs, text search, and indexing for
property graphs stored in Oracle NoSQL Database and Apache HBase.

To use the Oracle Big Data Spatial and Graph API, import the classes into your Java
program:

inport oracle.pg.nosqgl.*; // or oracle.pg. hbase.*

inport oracle. pgx. config. *;
i nport oracl e. pgx. comon. types. *;

Also include TinkerPop Blueprints Java APIs.

¢ See Also:

Oracle Big Data Spatial and Graph Java API Reference

5.4.1.2 TinkerPop Blueprints Java APIs

TinkerPop Blueprints supports the property graph data model. The API provides
utilities for manipulating graphs, which you use primarily through the Big Data Spatial
and Graph data access layer Java APIs.

To use the Blueprints APIs, import the classes into your Java program:

i mport com tinkerpop. bl ueprints. Vertex;
i mport com tinkerpop. bl ueprints. Edge;

¢ See Also:
"Blueprints: A Property Graph Model Interface API" at

http://ww.tinkerpop. comf docs/javadocs/ bl ueprints/2.3.0/index. htm

5.4.1.3 Apache Hadoop Java APIs

The Apache Hadoop Java APIs enable you to write your Java code as a MapReduce
program that runs within the Hadoop distributed framework.

To use the Hadoop Java APIs, import the classes into your Java program. For
example:

i mport org. apache. hadoop. conf. Confi gurati on;

¢ See Also:
"Apache Hadoop Main 2.5.0-cdh5.3.2 API" at

http://archive. cl oudera. com cdh5/ cdh/ 5/ hadoop/ api /

ORACLE 5-9

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html
http://archive.cloudera.com/cdh5/cdh/5/hadoop/api/

Chapter 5
Using Java APIs for Property Graph Data

5.4.1.4 Oracle NoSQL Database Java APIs

The Oracle NoSQL Database APIs enable you to create and populate a key-value
(KV) store, and provide interfaces to Hadoop, Hive, and Oracle NoSQL Database.

To use Oracle NoSQL Database as the graph data store, import the classes into your
Java program. For example:

import oracle.kv.*;
i mport oracle.kv.tabl e. Tabl eCperation;

" See Also:
"Oracle NoSQL Database Java API Reference" at

http://docs. oracl e. com cd/ NOSQL/ ht nl / j avadoc/

5.4.1.5 Apache HBase Java APIs

The Apache HBase APIs enable you to create and manipulate key-value pairs.

To use HBase as the graph data store, import the classes into your Java program. For
example:

i mport org. apache. hadoop. hbase. *;

i mport org. apache. hadoop. hbase. client.*;

i mport org. apache. hadoop. hbase.filter.*;

i mport org. apache. hadoop. hbase. util.Bytes;

i mport org. apache. hadoop. conf. Confi gurati on;

¢ See Also:
"HBase 0.98.6-cdh5.3.2 API" at

http://archive. cl oudera. com cdh5/ cdh/ 5/ hbase/ api docs/ i ndex. ht m ?over vi ew
summary. ht ni

5.4.2 Parallel Loading of Graph Data

ORACLE

A Java APl is provided for performing parallel loading of graph data.

Given a set of vertex files (or input streams) and a set of edge files (or input streams),
they can be split into multiple chunks and loaded into database in parallel. The number
of chunks is determined by the degree of parallelism (DOP) specified by the user.

Parallelism is achieved with Splitter threads that split vertex and edge flat files into
multiple chunks and Loader threads that load each chunk into the database using
separate database connections. Java pipes are used to connect Splitter and Loader
threads -- Splitter: Pi pedQut put St r eamand Loader: Pi pedI nput St ream

5-10

http://docs.oracle.com/cd/NOSQL/html/javadoc/
http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html
http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html

Chapter 5
Using Java APIs for Property Graph Data

The simplest usage of data loading API is specifying a property graph instance, one
vertex file, one edge file, and a DOP.

The following example of the load process loads graph data stored in a vertices file
and an edges file of the optimized Oracle flat file format, and executes the load with 48
degrees of parallelism.

opgd| Oracl ePropert yG aphDat aLoader . get | nst ance() ;
vfile = "../../datalconnections.opv";

efile = "../../datalconnections.ope";

opgd! . | oadDat a(opg, vfile, efile, 48);

e Parallel Data Loading Using Partitions

e Parallel Data Loading Using Fine-Tuning

e Parallel Data Loading Using Multiple Files

e Parallel Retrieval of Graph Data

e Using an Element Filter Callback for Subgraph Extraction

e Using Optimization Flags on Reads over Property Graph Data
e Adding and Removing Attributes of a Property Graph Subgraph
e Getting Property Graph Metadata

5.4.2.1 Parallel Data Loading Using Partitions

ORACLE

The data loading API allows loading the data into database using multiple partitions.
This API requires the property graph, the vertex file, the edge file, the DOP, the total
number of partitions, and the partition offset (from 0 to total number of partitions - 1).
For example, to load the data using two patrtitions, the partition offsets should be 0 and
1. That is, there should be two data loading API calls to fully load the graph, and the
only difference between the two API calls is the partition offset (0 and 1).

The following code fragment loads the graph data using 4 partitions. Each call to the
data loader can be processed using a separate Java client, on a single system or from
multiple systems.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

int total Partitions = 4;
int dop= 32; // degree of parallelismfor each client.

String szOPVFile = "../../datalconnections. opv";

String szOPEFile = "../../datalconnections. ope";

Si npl eLogBasedDat aLoader Li stenerlnpl dll =

Si npl eLogBasedDat aLoader Li st ener | npl . get | nstance(100 /* frequency */,
true /* Continue on error */);

/1 Run the data loading using 4 partitions (Each call can be run froma
Il separate Java COient)

/1l Partition 1
Oracl ePropert yG aphDat aLoader opgdl P1 = Oracl ePropertyG aphDat aLoader . get | nst ance();
opgd! P1. loadData(opg, szOPVFile, szOPEFile, dop,

4 /* Total number of partitions, default 1 */,

0 /* Partition to load (from O to totalPartitions - 1, default 0 */,

din);

5-11

Chapter 5
Using Java APIs for Property Graph Data

[l Partition 2

Oracl ePropert yG aphDat aLoader opgdl P2 = Oracl ePropertyG aphDat aLoader. get | nstance();
opgdl P2. | oadDat a(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,

1/* Partition to load (fromO to total Partitions - 1, default 0 */, dll);

/1 Partition 3

Oracl ePropert yG aphDat aLoader opgdl P3 = Oracl ePropertyG aphDat aLoader. get | nstance();
opgd! P3. | oadDat a(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,

2 /* Partition to load (fromO to totalPartitions - 1, default 0 */, dll);

[l Partition 4

Oracl ePropert yG aphDat aLoader opgdl P4 = Oracl ePropertyG aphDat aLoader. get | nstance();
opgd! P4. 1 oadDat a(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,

3 /* Partitionto load (fromO to totalPartitions - 1, default 0 */, dil);

5.4.2.2 Parallel Data Loading Using Fine-Tuning

ORACLE

Data loading APIs also support fine-tuning those lines in the source vertex and edges
files that are to be loaded. You can specify the vertex (or edge) offset line number and
vertex (or edge) maximum line number. Data will be loaded from the offset line number
until the maximum line number. If the maximum line number is -1, the loading process
will scan the data until reaching the end of file.

The following code fragment loads the graph data using fine-tuning.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

int total Partitions = 4;
int dop= 32; // degree of parallelismfor each client.

String szOPVFile = "../../datalconnections.opv";

String szOPEFile = "../../datalconnections. ope";

Si npl eLogBasedDat aLoader Li stenerlnpl dll =

Si npl eLogBasedDat aLoader Li st ener | npl . get | nst ance(100 /* frequency */,
true /* Continue on error */);

/1 Run the data | oading using fine tuning
long | VertexCfifsetlines = 0;

long | EdgeCf fsetlines = 0;

I ong | VertexMaxlines = 100;

I ong | EdgeMax!ines = 100;

int total Partitions = 1;

int idPartition = 0;

Oracl ePropert yG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgdl . loadData(opg, szOPVFile, szOPEFile,

IVertexOffsetlines /* offset of lines to start loading

from partition, default 0%/,

IEdgeOffsetlines /* offset of lines to start loading

from partition, default 0%/,

IVertexMaxlines /7* maximum number of lines to start loading
from partition, default -1 (all lines in partition)*/,
IEdgeMaxlines /* maximun number of lines to start loading
from partition, default -1 (all lines in partition)*/,

dop,

5-12

Chapter 5
Using Java APIs for Property Graph Data

totalPartitions /* Total number of partitions, default 1 */,
idPartition /* Partition to load (from 0 to totalPartitions - 1,
default 0 */,

din;

5.4.2.3 Parallel Data Loading Using Multiple Files

Oracle Big Data Spatial and Graph also support loading multiple vertex files and
multiple edges files into database. The given multiple vertex files will be split into DOP
chunks and loaded into database in parallel using DOP threads. Similarly, the multiple
edge files will also be split and loaded in parallel.

The following code fragment loads multiple vertex fan and edge files using the parallel
data loading APIs. In the example, two string arrays szOPVFiles and szOPEFiles are
used to hold the input files; Although only one vertex file and one edge file is used in
this example, you can supply multiple vertex files and multiple edge files in these two
arrays.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

String[] szOPVFiles
String[] szOPEFiles

= new String[] {"../../datalconnections.opv"};
= new String[] {"../../datalconnections.ope"};
/1 Cear existing vertices/edges in the property graph

opg. cl ear Repository();

opg. set QueueSi ze(100); // 100 el ements

/1 This object will handle parallel data |oading over the property graph
Oracl ePropert yG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();

opgdl . loadData(opg, szOPVFiles, szOPEFiles, dop);

Systemout.printIn("Total vertices: " + opg.countVertices());
Systemout. printIn("Total edges: " + opg.countEdges());

5.4.2.4 Parallel Retrieval of Graph Data

ORACLE

The parallel property graph query provides a simple Java API to perform parallel scans
on vertices (or edges). Parallel retrieval is an optimized solution taking advantage of
the distribution of the data among splits with the back-end database, so each split is
gueried using separate database connections.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific split. The subset of shards queried will be separated by the
given start split ID and the size of the connections array provided. This way, the subset
will consider splits in the range of [start, start - 1 + size of connections array]. Note that
an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the vertex table
with N splits.

The following code loads a property graph using Apache HBase, opens an array of
connections, and executes a parallel query to retrieve all vertices and edges using the
opened connections. The number of calls to the get VerticesPartiti oned

(get EdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

5-13

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datalconnections.opv";
String szOPEFile = "../../datal connections. ope";

[l This object will handle parallel data Ioading
Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create connections used in parallel query
HConnection[] hConns= new HConnecti on[dop] ;

for (int i =0; i <dop; i++) {

Configuration conf_new =

HBaseConf i gurati on. creat e(opg. get Confi guration());
hConns[i] = HConnectionManager. creat eConnecti on(conf_new);

}

long | CountV = 0
Il lterate over all the vertices' splits to count all the vertices
for (int split = 0; split < opg.getVertexTabl eSplits()

split += dop) {

Iterabl e<Vertex>[] iterables

= opg.getVerticesPartitioned(hConns /* Connection array */,

true /* skip store to cache */,

split /* starting split */);

| CountV += consunel terabl es(iterables); /* consunme iterables using
threads */

}

/1 Count all vertices
Systemout. println("Vertices found using parallel query: " + |CountV);

long | CountE = 0
/] lterate over all the edges’ splits to count all the edges
for (int split =0; split < opg.getEdgeTabl eSplits()
split += dop) {
I terabl e<kEdge>[] iterables
= opg.getEdgesPartitioned(hConns /* Connection array */,
true /* skip store to cache */,
split /* starting split */);
| Count E += consunel terabl es(iterables); /* consunme iterables using
threads */

}

/1 Count all edges
Systemout. println("Edges found using parallel query: " + |CountE);

/1 Cose the connections to the database after conpleted
for (int idx = 0; idx < hConns.length; idx++) {

hConns[i dx] . cl ose();

}

To load a property graph using Oracle NoSQL Database connections instead of
Apache HBase, you should use the following code:

Il Create connections used in parallel query
hConns = new KVSt or eConfi g[dop];
kvsc = opg. get KVSt oreConfig();

5-14

Chapter 5
Using Java APIs for Property Graph Data

for (i =0; i <dop; i++) {hConns[i] = kvsc.clone(); }
opg. set NunSpl i ts(dop);

5.4.2.5 Using an Element Filter Callback for Subgraph Extraction

ORACLE

Oracle Big Data Spatial and Graph provides support for an easy subgraph extraction
using user-defined element filter callbacks. An element filter callback defines a set of
conditions that a vertex (or an edge) must meet in order to keep it in the subgraph.
Users can define their own element filtering by implementing the Vert exFi | t er Cal | back
and EdgeFi | ter Cal | back API interfaces.

The following code fragment implements a Vert exFi | t er Cal | back that validates if a
vertex does not have a political role and its origin is the United States.

/**

* VertexFilterCallback to retrieve a vertex fromthe United States

* that does not have a political role

*|

private static class NonPoliticianFilterCallback

i mpl enents VertexFilterCallback

{

@verride
public bool ean keepVertex(Oracl eVertexBase vertex)

{

String country = vertex.getProperty("country");
String role = vertex.getProperty("role");

if (country !'= null && country.equals("United States")) {

if (role ==null || 'role.toLowerCase().contains("political")) {
return true;

}

}

return fal se;

}

public static NonPoliticianFilterCallback getlnstance()
{

return new NonPoliticianFilterCallback();

}

}

The following code fragment implements an EdgeFi | t er Cal | back that uses the
VertexFi | terCal | back to keep only edges connected to the given input vertex, and
whose connections are not politicians and come from the United States.
/**
* EdgeFilterCallback to retrieve all edges connected to an input
* vertex with "collaborates" |abel, and whose vertex is fromthe
* United States with a role different than political
*|
private static class Col |l aboratorsFilterCallback
i mpl ement s EdgeFi | terCal | back
{

private VertexFilterCallback mvfc;
private Vertex mstartV,

public CollaboratorsFilterCallback(VertexFilterCallback vfc,
Vertex v)

{

5-15

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

mvfc = vfc;
mstartV = v,

}

@verride
public bool ean keepEdge(COracl eEdgeBase edge)

if ("collaborates".equal s(edge. getLabel ())) {

if (edge.getVertex(Direction.IN).equals(mstartV) &&
m vfc. keepVert ex((Oracl eVertex)

edge. get Vertex(Direction. QUT))) {

return true;

else if (edge.getVertex(Direction. QUT).equal s(mstartV) &&
m vfc. keepVertex((Oracl eVertex)

edge. get Vertex(Direction.IN))) {

return true;

}
}

return fal se;

}

public static CollaboratorsFilterCallback
getlnstance(VertexFilterCallback vfc, Vertex v)

{

return new Col | aborat orsFilterCal | back(vfc, v);

}
}

Using the filter callbacks previously defined, the following code fragment loads a
property graph, creates an instance of the filter callbacks and later gets all of Barack
Obama'’s collaborators who are not politicians and come from the United States.

O acl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(
args, szGaphNane);

/1 Oear existing vertices/edges in the property graph
opg. cl earRepository();

String szOPVFile = "../../datal connections. opv";
String szOPEFile = "../../datal connections. ope";

/1 This object will handle parallel data |oading
O acl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader. get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

Il VertexFilterCallback to retrieve all people fromthe United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getlnstance();

/1 Initial vertex: Barack Chama
Vertex v = opg.getVertices("name", "Barack Chama").iterator().next();

/| EdgeFilterCallback to retrieve all collaborators of Barack Chanma
/1 fromthe United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getlnstance(npvfc, v);

I terabl e<<Edge> obamaCol | abs = opg.getEdges((String[])null /* Match any
of the properties */,

5-16

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

cefc /* Match the
EdgeFilterCallback */
);

I terator<<Edge> iter = obamaCol | abs.iterator();

Systemout.printIn("\n\n-------- Col | aborators of Barack Cbama from" +
" the US and non-politician\in\in");

long countV = 0;

while (iter.hasNext()) {

Edge edge = iter.next(); // get the edge

/1 check if obama is the IN vertex

if (edge.getVertex(Direction.IN).equals(v)) {

Systemout. println(edge.getVertex(Direction. QUT) + "(Edge ID: " +
edge.getld() + ")"); // get out vertex

}

el se {

System out. println(edge. getVertex(Direction.IN+ "(Edge ID. " +
edge.getld() + ")"); // get in vertex

}

count V++;

}

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the filter callbacks associated with the property graph using the
methods opg. set Vert exFi | t er Cal | back(vfc) and opg. set EdgeFi | terCal | back(efc). If
there is no filter callback set, then all the vertices (or edges) and edges will be
retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

Il VertexFilterCallback to retrieve all people fromthe United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getlnstance();

/1 Initial vertex: Barack Chama
Vertex v = opg.getVertices("nane", "Barack Cbama").iterator().next();

/| EdgeFilterCallback to retrieve all collaborators of Barack Chama
/1 fromthe United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getinstance(npvfc, v);

opg.setkEdgeFilterCal Iback(cefc);

| terabl e<Edge> obamaCol | abs = opg.getEdges();
Iterator<Edge> iter = obamaCol | abs.iterator();

Systemout.printIn("\n\n-------- Col | aborators of Barack Cbama from" +
" the US and non-politician\in\in");

long countV = 0;

while (iter.hasNext()) {

Edge edge = iter.next(); // get the edge

/1 check if obama is the IN vertex

if (edge.getVertex(Direction.IN).equals(v)) {

Systemout. println(edge.getVertex(Direction. QUT) + "(Edge ID: " +
edge.getld() + ")"); // get out vertex

}

el se {

System out. println(edge. getVertex(Direction.IN+ "(Edge ID: " +
edge.getld() + ")"); // get in vertex

5-17

Chapter 5
Using Java APIs for Property Graph Data

}

count V++,

}

5.4.2.6 Using Optimization Flags on Reads over Property Graph Data

ORACLE

Optimization flags can improve graph iteration performance. Optimization flags allow
processing vertices or edges as objects with no or minimal information, such as ID,
label, and incoming/outgoing vertices. This way, the time required to process each
vertex or edge during iteration is reduced.

The following table shows the optimization flags available when processing vertices or
edges in a property graph.

Table 5-1 Optimization Flags for Processing Vertices or Edges in a Property
Graph

___|
Optimization Flag Description

DO_NOT_CREATE_O Use a predefined constant object when processing vertices or edges.
BJECT

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_ Construct edge objects with ID and label only when processing edges.
ID

JUST_LABEL_VERTE Construct edge objects with ID, label, and in/out vertex IDs only when
X_EDGE_ID processing edges

JUST_VERTEX_EDG Construct edge objects with just ID and in/out vertex IDs when

E_ID processing edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the IDs
from the vertices and edges in the property graph. The objects retrieved by reading all
vertices and edges will include only the IDs and no Key/Value properties or additional

information.

i mport oracl e. pg. conmon. Oracl ePropertyG aphBase. Opti ni zati onFl ag;
Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Repository();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

[/ This object will handle parallel data |oading

Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Optimization flag to retrieve only vertices |Ds
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ ID;

[/ Optimzation flag to retrieve only edges |Ds
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

/1 Print all vertices

5-18

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

Iterator<Vertex> vertices =
opg.getVertices((String[Pnull /* Match any of the
properties */,

null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

Systemout.printIn("----- Vertices IDs----");
I ong vCount = 0;

while (vertices.hasNext()) {
OacleVertex v = vertices.next();
Systemout. printin((Long) v.getld());
vCount ++;

}

Systemout.printIn("Vertices found: " + vCount);

[l Print all edges

I terator<Edge> edges =

opg.getEdges((String[1)null /* Match any of the properties */,
null /* Match the EdgeFilterCallback */,

optFlagEdge /* optimization flag */

).iterator();

Systemout. println("----- Edges ----");
I ong eCount = 0;

whil e (edges. hasNext()) {

Edge e = edges. next();

Systemout. println((Long) e.getld());
eCount ++;

}
Systemout. println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the optimization flag associated with the property graph using the
method opg. set Def aul t Vert exOpt Fl ag(opt Fl agVert ex) and

opg. set Def aul t EdgeOpt FI ag(opt Fl agEdge) . If the optimization flags for processing
vertices and edges are not defined, then all the information about the vertices and
edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

i mport oracl e. pg. conmon. Or acl ePropertyG aphBase. Opti mi zati onFl ag;

/1 Optimzation flag to retrieve only vertices |Ds
Optim zationFl ag opt Fl agVertex = Optim zati onFl ag. JUST_VERTEX_| D;

/1 Optimzation flag to retrieve only edges |Ds
Optim zationFl ag opt Fl agEdge = Opti ni zati onFl ag. JUST_EDGE_| D;

opg.setDefaul tVertexOptFlag(optFlagVertex);
opg.setDefaul tEdgeOptFlag(optFlagEdge);

Iterator<Vertex> vertices = opg. getVertlces() iterator();
System out. prlntln(----- Vertices IDs----");

I ong vCount = O;

while (vertices.hasNext()) {

Oracl eVertex v = vertices.next();

Systemout. println((Long) v.getld());

vCount ++;

}

5-19

Chapter 5
Using Java APIs for Property Graph Data

Systemout. printIn("Vertices found: " + vCount);

[l Print all edges

I terator<Edge> edges = opg.getEdges().iterator();
Systemout.printIn("----- Edges ----");

I ong eCount = 0;

whi | e (edges. hasNext()) {

Edge e = edges. next();

Systemout. println((Long) e.getld());

eCount ++;

}
Systemout. println("Edges found: " + eCount);

5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph

ORACLE

Oracle Big Data Spatial and Graph supports updating attributes (key/value pairs) to a
subgraph of vertices and/or edges by using a user-customized operation callback. An
operation callback defines a set of conditions that a vertex (or an edge) must meet in
order to update it (either add or remove the given attribute and value).

You can define your own attribute operations by implementing the Vert ex(pCal | back
and EdgeQpCal | back API interfaces. You must override the needOp method, which
defines the conditions to be satisfied by the vertices (or edges) to be included in the
update operation, as well as the get Att ri but eKeyNane and get At t ri but eKeyVal ue
methods, which return the key name and value, respectively, to be used when
updating the elements.

The following code fragment implements a Vert exOpCal | back that operates over the
obamaCol | abor at or attribute associated only with Barack Obama collaborators. The
value of this property is specified based on the role of the collaborators.

private static class Col | aboratorsVertex(pCal | back
implements VertexOpCal Iback

{

private O acl eVertexBase m obang;

private List<Vertex> mobamaCol | aborators;

public Col |l aboratorsVertexOpCal | back(COracl ePropertyG aph opg)

{
/] Get a list of Barack Cbhama' sCol | aborators

m obama = (Oracl eVertexBase) opg. getVertices("name",
"Barack Obama")
.iterator().next();

Iterabl e<Vertex> iter = mobama. getVertices(Direction. BOTH,
"col | aborates");
m obamaCol | aborators = Oracl ePropertyGaphUtils.listify(iter);

}

public static CollaboratorsVertexOpCal | back
get I nstance(Oracl ePropertyG aph opg)

{
return new Col | aborat or sVert exQpCal | back(opg);

}

/**

* Add attribute if and only if the vertex is a collaborator of Barack
* Chama

*|

@verride

5-20

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

public bool ean needOp(OracleVertexBase v)

{

return mobamaCol | aborators !'= null &&
m obamaCol | abor at ors. cont ai ns(v);

}
@verride
public String getAttributeKeyName(OracleVertexBase v)
{
return "obamaCol | aborator”;
}
/**
* Define the property's value based on the vertex role
*/
@verride
public Cbject getAttributeKeyValue(OracleVertexBase v)
{

String role = v.getProperty(“"role");
role = role.tolLower Case();

if (role.contains("political")) {
return "political";

else if (role.contains("actor") || role.contains("singer") ||
role.contains("actress") || role.contains("witer") ||

rol e.contai ns("producer") || role.contains("director")) {
return “arts";

else if (role.contains("player")) {
return "sports";

else if (role.contains("journalist")) {
return "journalisnt;

else if (role.contains("business") || role.contains("economst")) {
return "business";

else if (role.contains("philant")) {
return "philanthropy";

}

return " "

}
}

The following code fragment implements an EdgeOpCal | back that operates over the
obamaFeud attribute associated only with Barack Obama feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCal | back
implements EdgeOpCallback

{

private O acl eVertexBase m obang;
private List<Edge> m obanaFeuds;

public FeudsEdgeOpCal | back(Oracl ePropertyG aph opg)

{
/1l Get a list of Barack Chama's feuds

m obama = (Oracl eVertexBase) opg. getVertices("name",
"Barack Obama")
.iterator().next();

5-21

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

I terabl e<Edge> iter = m obama. get Edges(Direction. BOTH,

"feuds");

m obamaFeuds = Oracl ePropertyGaphUtils.listify(iter);

}

public static FeudsEdgeOpCal | back get|nstance(Oracl ePropertyG aph opg)
{

return new FeudsEdgeQpCal | back(opg);

}

/**

* Add attribute if and only if the edge is in the |ist of Barack Chama's
* feuds

*|

@verride

public bool ean needOp(OracleEdgeBase €e)

{

return mobamaFeuds != null && m obanaFeuds. contains(e);
}

@verride

public String getAttributeKeyName(OracleEdgeBase €)

{

return "obamaFeud";

}

/**

* Define the property's value based on the in/out vertex role
*|

@verride

public Cbject getAttributeKeyValue(OracleEdgeBase e)

{

O acl eVertexBase v = (Oracl eVertexBase) e.getVertex(Direction.IN);
if (mobama. equal s(v)) {

v = (Oracl eVertexBase) e.getVertex(Direction. QUT);

}

String role = v.getProperty("role");

role = role.tolLowerCase();

if (role.contains("political")) {
return "political";

else if (role.contains("actor") || role.contains("singer") ||
role.contains("actress") || role.contains("witer") ||

rol e.contai ns("producer") || role.contains("director")) {
return "arts";

else if (role.contains("journalist")) {
return "journalisnt;

else if (role.contains("player")) {
return "sports";

else if (role.contains("business") || role.contains("economst")) {
return "business";

else if (role.contains("philanthropist")) {
return "philanthropy";

}

return " "

5-22

ORACLE

Chapter 5
Using Java APIs for Property Graph Data

}
}

Using the operations callbacks defined previously, the following code fragment loads a
property graph, creates an instance of the operation callbacks, and later adds the
attributes into the pertinent vertices and edges using the addAt t ri but eToAl | Verti ces
and addAt t ri but eToAl | Edges methods in Oracl ePropert yG aph.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nst ance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/1 This object will handl e parallel data |oading
Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create the vertex operation callback
CollaboratorsVertexOpCal Iback cvoc = CollaboratorsVertexOpCallback.getlnstance(opg);

/1 Add attribute to all people collaborating with Cbama based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

/1 Look up for all collaborators of Cbhama

/1 The function getVerticesAsString prints the vertices in the given iterable
I'terabl e<Vertex> col | aborators = opg. get Vertices("obamaCol | aborator", "political");
Systemout.printIn("Political collaborators of Barack Chama " +

get VerticesAsString(col |l aborators));

col I aborators = opg. get Vertices("obamaCol | aborator”, "business");
Systemout. println("Business collaborators of Barack Chama " +
get VerticesAsString(col |l aborators));

/1 Add an attribute to all people having a feud with Barack Cbhama to set
/1 the type of relation they have

FeudsEdgeOpCal lback feoc = FeudsEdgeOpCal Iback.getInstance(opg);
opg.addAttributeToAl IEdges(feoc, true /** Skip store to Cache */, dop);

/1 Look up for all feuds of Cbama

/1 The function get EdgesAsString prints the edges in the given iterable

I terabl e<kEdge> feuds = opg. get Edges(" obamaFeud", "political");

Systemout. printIn("\n\nPolitical feuds of Barack Cbhama " + get EdgesAsString(feuds));

feuds = opg. get Edges("obamaFeud", "business");
Systemout. println("Business feuds of Barack Chama " +
get EdgesAsString(feuds));

The following code fragment defines an implementation of Vert exOpCal | back that can
be used to remove vertices having value philanthropy for attribute obanaCol | abor at or ,
then call the API renoveAttribut eFromal | Verti ces; It also defines an implementation of
EdgeOpCal | back that can be used to remove edges having value business for attribute
obamaFeud, then call the API renoveAt tri but eFromAl | Edges.

Systemout. println("\n\nRemove ' obamaCol | aborator' property fromall the" +
"phi | ant hropy col | aborators");

Phi | ant hr opyCol | abor at or sVert exOpCal | back pvoc =

Phi | ant hr opyCol | abor at or sVert exOpCal | back. get I nst ance();

5-23

Chapter 5
Using Java APIs for Property Graph Data

opg.removeAttributeFromAlIVertices(pvoc);

System out. println("\n\nRemove ' obamaFeud' property fromall the" + "business
feuds");
Busi nessFeudsEdgeQpCal | back beoc = Busi nessFeudsEdgeQpCal | back. get I nstance();

opg.removeAttributeFromAl IEdges(beoc);

/**
* |nplementation of a EdgeOpCal | back to renove the "obamaCol | aborators”
* property fromall people collaborating with Barack Chama that have a
* philanthropy role
*/
private static class PhilanthropyCollaboratorsVertexQpCal | back inpl ements
VertexOpCal | back

{
public static PhilanthropyCollaboratorsVertex(Cal | back getlnstance()
{
return new Phil anthropyCol | abor at or sVert exOpCal | back();
1
/**

* Renove attribute if and only if the property value for
* obamaCol | aborator is Philanthropy

*/

@verride

publ i c bool ean needOp(Oracl eVert exBase v)

{
String type = v.getProperty("obanmaCol | aborator");
return type !'= null && type.equal s("philanthropy");

}

@verride
public String getAttributeKeyName(Oracl eVertexBase v)

{

return "obamaCol | aborator";

}

/**

* Define the property's value. In this case can be enpty
*|

@verride

public Object getAttributeKeyVal ue(O acl eVertexBase v)

{

return " "

}
}

/**

* |nplenmentation of a EdgeOpCal | back to renove the "obanaFeud" property
* fromall connections in a feud with Barack Chama that have a business role

*
/
private static class BusinessFeudsEdgeQpCal | back inpl enents EdgeQpCal | back
{

public static BusinessFeudsEdgeOpCal | back getlnstance()

{

return new Busi nessFeudsEdgeOpCal | back();
1
/**

ORACLE 5-24

Chapter 5
Using Java APIs for Property Graph Data

* Renove attribute if and only if the property value for obamaFeud is
* busi ness
*|
@verride
publ i c bool ean needOp(Oracl eEdgeBase e)
{
String type = e.getProperty("obanaFeud");
return type !'= null && type.equal s("business");

}

@verride
public String getAttributeKeyName(Or acl eEdgeBase e)

{

return "obamaFeud";

}

/**
* Define the property's value. In this case can be enmpty
*|
@verride
public Object getAttributeKeyVal ue(O acl eEdgeBase e)
{
return " "
1
}

5.4.2.8 Getting Property Graph Metadata

ORACLE

You can get graph metadata and statistics, such as all graph names in the database;
for each graph, getting the minimum/maximum vertex ID, the minimum/maximum edge
ID, vertex property names, edge property names, number of splits in graph vertex, and
the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in the back-end database (either Oracle NoSQL Database or Apache
HBase). The arguments required vary for each database.

/1 Get all graph names in the database
Li st<String> graphNanmes = Oracl ePropertyG aphUtils. get G aphNames(dbArgs);

for (String graphName : graphNanes) {
Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args,
graphNane) ;

Systemerr.printIn("\n Gaph nane: " + graphNane);
Systemerr.printIn(" Total vertices: " +
opg.-countVertices(dop));

Systemerr.printIn(" MnimmVertex ID " +
opg.getMinVertexID(dop));

Systemerr.printIn(" MaximmVertex ID " +
opg.getMaxVertexID(dop));

/1 The function getPropertyNamesAsString prints the given set of properties
Set<String> propertyNamesV = new HashSet <String>();
opg.getVertexPropertyNames(dop, O /* timeout,0 no timeout */,
propertyNamesV);

Systemerr.printIn(" Vertices property names: " +
get Propert yNamesAsStri ng(propertyNanesV));

5-25

Chapter 5
Using Java APIs for Property Graph Data

Systemerr.printIn("\n\n Total edges: " + opg.countEdges(dop));
Systemerr.printIn(" MninmmEdge ID: " + opg-getMinEdgelD(dop));
Systemerr.printIn(" MaxinmumEdge ID: " + opg.-getMaxEdgelD(dop));

Set<String> propertyNamesE = new HashSet <String>();
opg.getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
propertyNamesE);

Systemerr.printIn(" Edge property names: " +
get PropertyNanesAsStri ng(propertyNanesE));

Systemerr.printIn("\n\n Table Information: ");
Systemerr.printIn("Vertex table number of splits: " +
(opg.getVertexTableSplits()));
Systemerr.println("Edge table nunber of splits:
(opg.getEdgeTableSplits()));

}

"oy

5.4.3 Opening and Closing a Property Graph Instance

When describing a property graph, use these Oracle Property Graph classes to open
and close the property graph instance properly:

* OaclePropertyG aph. get | nstance: Opens an instance of an Oracle property graph.
This method has two parameters, the connection information and the graph name.
The format of the connection information depends on whether you use HBase or
Oracle NoSQL Database as the backend database.

e Oracl ePropertyG aph. cl ear Reposi t ory: Removes all vertices and edges from the
property graph instance.

e Oacl ePropertyG aph. shut down: Closes the graph instance.

In addition, you must use the appropriate classes from the Oracle NoSQL Database or
HBase APIs.

* Using Oracle NoSQL Database
» Using Apache HBase

5.4.3.1 Using Oracle NoSQL Database

ORACLE

For Oracle NoSQL Database, the Oracl ePropertyG aph. get | nst ance method uses the
KV store name, host computer name, and port number for the connection:

String kvHostPort = "cl uster02: 5000";
String kvStoreNane = "kvstore";
String kvG aphNane = "nmy_graph”;

/1 Use NoSQ. Java API
KVSt oreConfig kvconfig = new KVSt oreConfi g(kvSt oreName, kvHostPort);

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(kvconfig, kvG aphNane);
opg. cl ear Reposi tory();

/11 .

11 . Gaph description
/11 .

/1 Oose the graph instance
opg. shut down() ;

5-26

Chapter 5
Using Java APIs for Property Graph Data

If the in-memory analyst functions are required for your application, then it is
recommended that you use G aphConfi gBui | der to create a graph confi g for Oracle
NoSQL Database, and instantiates Or acl ePr opert yG aph with the confi g as an
argument.

As an example, the following code snippet constructs a graph confi g, gets an
Or acl ePropert yG aph instance, loads some data into that graph, and gets an in-memory
analyst.

i nport oracle. pgx.config.*;
i nport oracl e. pgx. api . *;
i nport oracl e. pgx. common. types. *;

String[] hhosts = new String[1];
hhost s[0] "ny_host _nane: 5000"; // need custonization

String szStoreName = "kvstore"; /1 need custonization

String szG aphNane = "ny_graph";

int dop = 8

PgNosgl GraphConfi g cfg = G aphConfigBuil der.forPropertyG aphNosql ()
. set Narme(szGr aphNane)
. set Host s(Arrays. asLi st (hhosts))
. set St oreNane(szSt or eNane)

. addEdgeProperty("lbl",
PropertyType. STRING, "lbl")

. addEdgePr operty("wei ght",
PropertyType. DOUBLE, "1000000")

Cbuild();

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(cfg);

String szOPVFile
String szOPEFile

“..l../datal connections.opv";
“..l../datal connections.ope";

/] performa parallel data |oad
Oracl ePropert yG aphDat aLoader opgdl =
Oracl ePropert yG aphDat aLoader . get | nst ance() ;
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

PgxSessi on session = Pgx. createSession("session-id-1");
PgxGaph g = session.readG aphWthProperties(cfg);

Anal yst anal yst = session. createAnal yst();

5.4.3.2 Using Apache HBase

ORACLE

For Apache HBase, the O acl ePropert yG aph. get | nst ance method uses the Hadoop
nodes and the Apache HBase port number for the connection:

String hbQuorum = "bdaOlnode0Ol. exanpl e. com bdaOlnode02. exanpl e. com
bda01node03. exanpl e. coni';

String hbClientPort = "2181"

String hbG aphName = "ny_graph”;

/1 Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();

5-27

Chapter 5
Using Java APIs for Property Graph Data

conf. set ("hbase. zookeeper . quor unt, hbQuorun;
conf. set ("hbase. zookeper. property.clientPort", hbCientPort);
HConnection conn = HConnecti onManager . cr eat eConnecti on(conf);

/1 Open the property graph

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(conf, conn, hbG aphNane);
opg. cl ear Reposi tory();

/11 .

11 . Graph description
/11

/1 dose the graph instance
opg. shut down() ;

/1 Cose the HBase connection
conn. cl ose();

If the in-memory analyst functions are required for your application, then it is
recommended that you use G aphConfi gBui | der to create a graph confi g, and
instantiates O acl ePropert yG aph with the confi g as an argument.

As an example, the following code snippet sets the configuration for in memory
analytics, constructs a graph config for Apache HBase, instantiates an

Oracl ePropert yG aph instance, gets an in-memory analyst, and counts the number of
triangles in the graph.

conf Pgx = new HashMap<PgxConfi g. Fiel d, Ooject>();

conf Pgx. put (PgxConfi g. Fi el d. ENABLE_GM COWPI LER, fal se);

conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS | O, dop + 2);

conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS _ANALYSI S, 8); // <= # of physical cores
conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS _FAST _TRACK_ANALYSI S, 2);

conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_TASK_TI MEQUT_SECS, 0);// no tinmeout set
conf Pgx. put (PgxConfi g. Fi el d. SESSION I DLE_TI MEQUT_SECS, 0); // no timeout set
Serverlnstance instance = Pgx. getlnstance();

i nstance. start Engi ne(conf Pgx) ;

int iCientPort = Integer.parselnt(hbCientPort);
int splitsPerRegion = 2;

PgHbaseG aphConfig cfg = G aphConfi gBuil der. for PropertyG aphHbase()
. set Name(hbG aphNane)
. set ZkQuor un(hbQuor um
.setZkClientPort(iCientPort)
. set ZkSessi onTi meout (60000)
. set MaxNunConnect i ons(dop)
.set SplitsPerRegion(splitsPerRegion)
. addEdgeProperty("Ibl", PropertyType. STRING "lbl")
. addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000")
cbuild();

PgxSessi on sessi on = Pgx. creat eSessi on("session-id-1");
PgxG aph g = session.readG aphWthProperties(cfg);
Anal yst anal yst = session. createAnal yst();

long triangles = anal yst.countTriangl es(g, false);

5.4.4 Creating Vertices

To create a vertex, use these Oracle Property Graph methods:

e Oracl ePropertyG aph. addVert ex: Adds a vertex instance to a graph.

ORACLE 5-28

Chapter 5
Using Java APIs for Property Graph Data

* OacleVertex. set Property: Assigns a key-value property to a vertex.
e Oracl ePropertyG aph. comit : Saves all changes to the property graph instance.

The following code fragment creates two vertices named V1 and V2, with properties for
age, name, weight, height, and sex in the opg property graph instance. The v1
properties set the data types explicitly.

/1 Create vertex vl and assign it properties as key-value pairs
Vertex vl = opg.addVertex(1l);

vl. setProperty("age", Integer.valueOf(31));

vl. setProperty("nanme", "Aice");

vl. setProperty("weight", Float.valueCf(135.0f));

vl. setProperty("height", Double.valueCf (64.5d));

vl. setProperty("female", Bool ean. TRUE);

Vertex v2 = opg.addVertex(2l);
v2.setProperty("age", 27);
v2.setProperty("nane", "Bob");
v2.setProperty("weight", Float.val ueCf (156.0f));
v2.set Property("height", Double.valueC(69.5d));

("
("
("
v2.setProperty("femal e", Bool ean. FALSE);

5.4.5 Creating Edges

To create an edge, use these Oracle Property Graph methods:

* Oracl ePropertyG aph. addEdge: Adds an edge instance to a graph.
* Oacl eEdge. set Property: Assigns a key-value property to an edge.
The following code fragment creates two vertices (v1 and v2) and one edge (el).

/1 Add vertices vl and v2
Vertex vl = opg. addVertex(1l);
vl.set Property("nanme", "Aice");
vl.set Property("age", 31);

Vertex v2 = opg. addVertex(2l);
v2.set Property("nanme", "Bob");
v2.set Property("age", 27);

/1 Add edge el
Edge el = opg. addEdge(1l, v1, v2, "knows");
el.setProperty("type", "friends");

5.4.6 Deleting Vertices and Edges

ORACLE

You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

e Oacl ePropertyG aph. renoveEdge: Removes the specified edge from the graph.
e OaclePropertyG aph. renoveVert ex: Removes the specified vertex from the graph.

e Oacl ePropertyG aph. cl ear Reposi t ory: Removes all vertices and edges from the
property graph instance.

The following code fragment removes edge el and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This

5-29

Chapter 5
Using Java APIs for Property Graph Data

is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

/'l Remove edge el
opg. renoveEdge(el);

/'l Remove vertex vl
opg. renoveVertex(vl);

The O acl ePropertyG aph. cl ear Reposi t ory method can be used to remove all contents
from an Oracl ePropert yG aph instance. However, use it with care because this action
cannot be reversed.

5.4.7 Reading a Graph from a Database into an Embedded In-Memory

Analyst

ORACLE

You can read a graph from Apache HBase or Oracle NoSQL Database into an in-
memory analyst that is embedded in the same client Java application (a single JVM).
For the following Apache HBase example:

e Acorrectjava.io.tnpdir setting is required.

e dop + 2is aworkaround for a performance issue before Release 1.1.2. Effective
with Release 1.1.2, you can instead specify a dop value directly in the configuration
settings.

int dop = 8; /1 need custom zation

Map<PgxConfi g. Fi el d, Cbject> confPgx = new HashMap<PgxConfig.Field, Object>();
conf Pgx. put (PgxConfi g. Fi el d. ENABLE_GM COWPI LER, fal se);

conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS IO, dop + 2); // use dop directly with
release 1.1.2 or newer

conf Pgx. put (PgxConfi g. Fi el d. NUM_ WORKERS_ANALYSI S, dop); // <= # of physical cores
conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_FAST_TRACK_ANALYSI S, 2);

conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_TASK_TI MEQUT_SECS, 0); // no timeout set
conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_I DLE_TI MEQUT_SECS, 0); // no timeout set

— e~ o~ —

PgHbaseG aphConfig cfg = G aphConfi gBuil der.forPropertyG aphHbase()
. set Name(" nygraph")
. set ZkQuorun("l ocal host") // quorum need custom zation
.setZkd i ent Port (2181)
. addNodePr operty("nane", PropertyType. STRI NG
"def aul t _name")
cbuild();

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(cfg);
Serverlnstance |ocal Instance = Pgx. getlnstance();

| ocal I nst ance. st art Engi ne(conf Pgx) ;

PgxSessi on session = | ocal I nstance. createSessi on("session-id-1"); // Put your
session description here.

Anal yst anal yst = session. createAnal yst();

/1 The following call will trigger a read of graph data fromthe database
PgxG aph pgxG aph = session. readG aphWt hProperties(opg. getConfig());

long triangles = anal yst.countTriangl es(pgxG aph, false);
Systemout.printIn("triangles " + triangles);

/1 After reading a graph in menory, modifying the graph on the database side should
not affect in menory results:

5-30

Chapter 5
Using Java APIs for Property Graph Data

/1 Renobve edge el
opg. renoveEdge(el);

/'l Remove vertex vl
opg. renmoveVertex(vl);

5.4.8 Specifying Labels for Vertices

As explained in What Are Property Graphs?, the database and data access layer do
not provide labels for vertices. However, you can treat the value of a designated vertex
property as one or more labels. Such a transformation is relevant only to the in-
memory analyst.

In the following example, a property "count ry" is specified in a call to

set UseVer t exPr oper t yVal ueAsLabel (), and the comma delimiter ", " is specified in a call
to set PropertyVal ueDel i miter (). These two together imply that values of the country
vertex property will be treated as vertex labels separated by a comma. For example, if
vertex X has a string value "US" for its country property, then its vertex label will be US;
and if vertex Y has a string value " UK, CN', then it will have two labels: UK and CN.

G aphConfi gBui | der. f or PropertyG aph. ..
. set Name(" <your _graph_nanme>")

. set UseVert exPropertyVal ueAsLabel ("country")
.setPropertyVal ueDelimter(",")
cbuild();

5.4.9 Building an In-Memaory Graph

ORACLE

In addition to Reading Graph Data into Memory, you can create an in-memory graph
programmatically. This can simplify development when the size of graph is small or
when the content of the graph is highly dynamic. The key Java class is G aphBui | der,
which can accumulate a set of vertices and edges added with the addVert ex and
addEdge APls. After all changes are made, an in-memory graph instance (PgxG aph) can
be created by the G aphBui | der.

The following Java code snippet illustrates a graph construction flow. Note that there
are no explicit calls to addVert ex, because any vertex that does not already exist will be
added dynamically as its adjacent edges are created.

i mport oracle. pgx.api.*;

PgxSessi on sessi on = Pgx. creat eSessi on("exanpl e");
GraphBui | der<Integer> bui | der = sessi on. newG aphBui | der () ;

bui | der. addEdge(0
bui | der. addEdge(1,
bui | der. addEdge(2,
(3
(4

)
);
)
).
)

bui | der. addEdge
bui | der. addEdge

OO
N B DN

PgxG aph graph = buil der. build();

To construct a graph with vertex properties, you can use set Property against the
vertex objects created.

PgxSessi on sessi on = Pgx. creat eSessi on("exanpl e");
G aphBui | der<Integer> bui | der = sessi on. newG aphBui | der () ;

5-31

Chapter 5
Using Java APIs for Property Graph Data

bui | der. addVert ex
bui | der. addVert ex
bui | der. addVert ex
bui | der. addVert ex

set Property
set Property
set Property
set Property

"doubl e-prop", 0
"doubl e-prop", 2
"doubl e-prop", 0.
"doubl e-prop", 4

pagpalagyay
= — —
—_—— ==

1).
2).
3).
4).
bui | der. addEdge

(0
bui | der. addEdge(1,
bui | der. addEdge(2,
(3
(4

bui | der. addEdge
bui | der. addEdge

OO
N DB N
—_— T =

PgxG aph graph = buil der. build();
To use long integers as vertex and edge identifiers, specify | dType. LONG when getting a
new instance of G aphBui | der. For example:

i mport oracl e. pgx. conmon. types. | dType;
G aphBui | der <Long> bui | der = sessi on. newG aphBui | der (1 dType. LONG) ;

During edge construction, you can directly use vertex objects that were previously
created in a call to addEdge.

vl
v2

5)
0)

bui | der. addVertex(1l). setProperty("doubl e-prop", 0.
bui | der. addVertex(2l).setProperty("double-prop", 2.

bui | der. addEdge(0, vi1, v2)

As with vertices, edges can have properties. The following example sets the edge
label by using set Label :

bui | der. addEdge(4, v4, v2).setProperty("edge-prop",
"edge_prop_4_2").setLabel ("l abel ")

5.4.10 Dropping a Property Graph

To drop a property graph from the database, use the
Oracl ePropertyG aphUti | s. dropPropertyG aph method. This method has two
parameters, the connection information and the graph name.

The format of the connection information depends on whether you use HBase or
Oracle NoSQL Database as the backend database. It is the same as the connection
information you provide to Or acl ePropert yG aph. get I nst ance.

e Using Oracle NoSQL Database
* Using Apache HBase

5.4.10.1 Using Oracle NoSQL Database

ORACLE

For Oracle NoSQL Database, the Oracl ePropertyG aphUti | s. dr opPropertyG aph method
uses the KV store name, host computer name, and port number for the connection.
This code fragment deletes a graph named ny_graph from Oracle NoSQL Database.

String kvHostPort = "cl uster02: 5000";
String kvStoreNane = "kvstore";
String kvG aphNane = "ny_graph";

/1 Use NoSQ. Java API
KVSt oreConfi g kvconfig = new KVSt oreConfi g(kvSt oreNane, kvHostPort);

5-32

Chapter 5
Managing Text Indexing for Property Graph Data

/1 Drop the graph
Oracl ePropertyG aphUtils. dropPropertyG aph(kvconfig, kvG aphNane);

5.4.10.2 Using Apache HBase

For Apache HBase, the Oracl ePropertyG aphUti | s. dr opPropertyG aph method uses the
Hadoop nodes and the Apache HBase port number for the connection. This code
fragment deletes a graph named ny_graph from Apache HBase.

String hbQuorum = "bda0lnode0Ol. exanpl e. com bdaOlnode02. exanpl e. com
bda01node03. exanpl e. coni';

String hbClientPort = "2181";

String hbG aphNane = "ny_graph”;

/1 Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();
conf. set ("hbase. zookeeper. quorunt, hbQuorunj;
conf. set ("hbase. zookeper . property.clientPort”, hbCientPort);

/1 Drop the graph
Oracl ePropertyG aphUtils. dropPropertyG aph(conf, hbG aphNane);

5.5 Managing Text Indexing for Property Graph Data

ORACLE

Indexes in Oracle Big Data Spatial and Graph allow fast retrieval of elements by a
particular key/value or key/text pair. These indexes are created based on an element
type (vertices or edges), a set of keys (and values), and an index type.

Two types of indexing structures are supported by Oracle Big Data Spatial and Graph:
manual and automatic.

* Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices
and edges based on particular key/value pairs.

* Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go
into the index.

Oracle Big Data Spatial and Graph provides APIs to create manual and automatic text
indexes over property graphs for Oracle NoSQL Database and Apache HBase.
Indexes are managed using the available search engines, Apache Lucene and
SolrCloud. The rest of this section focuses on how to create text indexes using the
property graph capabilities of the Data Access Layer.

e Configuring a Text Index for Property Graph Data

» Using Automatic Indexes for Property Graph Data

e Using Manual Indexes for Property Graph Data

» Executing Search Queries Over Property Graph Text Indexes

e Handling Data Types

» Uploading a Collection's SolrCloud Configuration to Zookeeper

» Updating Configuration Settings on Text Indexes for Property Graph Data

e Using Parallel Query on Text Indexes for Property Graph Data

5-33

Chapter 5
Managing Text Indexing for Property Graph Data

* Using Native Query Objects on Text Indexes for Property Graph Data

* Using Native Query Results on Text Indexes for Property Graph Data

5.5.1 Configuring a Text Index for Property Graph Data

ORACLE

The configuration of a text index is defined using an O acl el ndexPar anet er s object. This
object includes information about the index, such as search engine, location, number
of directories (or shards) , and degree of parallelism.

By default, text indexes are configured based on the Oracl el ndexPar anet er s associated
with the property graph using the method opg. set Def aul t | ndexPar amet er s(i ndexPar ans) .
The initial creation of the automatic index delimits the configuration and text search
engine for future indexed keys.

Indexes can also be created by specifying a different set of parameters. The following
code fragment creates an automatic text index over an existing property graph using a
Lucene engine with a physical directory.

/] Create an Oraclel ndexParameters object to get Index configuration (search engine,
etc).
Oracl el ndexParanet ers indexParans = Oracl el ndexPar anet er s. bui | dFS(ar gs)

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex("nane", Vertex.class, indexParans.getParaneters());

If you want to modify the initial configuration of a text index, you may need first to drop
the existing graph and recreate the index using the new configuration.

* Configuring Text Indexes Using the Apache Lucene Search Engine

* Configuring Text Indexes using the SolrCloud Search Engine

Configuring Text Indexes Using the Apache Lucene Search Engine

A text index using Apache Lucene Search engine uses a Lucenel ndexPar anet er s
configuration object. The configuration parameters for indexes using a Lucene Search
engine include:

* Number of directories: Integer specifying the number of Apache Lucene
directories to use for the automatic index. Using multiple directories provides
storage and performance scalability. The default value is set to 1.

* Batch Size: Integer specifying the batch size to use for document batching in
Apache Lucene. The default batch size used is 10000.

Commit Batch Size: Integer specifying the number of document to add into the
Apache Lucene index before a commit operation is executed. The default commit
batch size used is 500000.

» Data type handling flag: Boolean specifying if Apache Lucene data types
handling is enabled. Enabling data types handling fasten up lookups over numeric
and date time data types.

« Directory names: String array specifying the base path location where the
Apache Lucene directories will be created.

The following code fragment creates the configuration for a text index using Apache
Lucene Search Engine with a physical directory.

5-34

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Oracl el ndexParanet ers i ndexParans =
Oracl el ndexParanet ers. bui | dFS(4, 4, 10000, 50000, true,
"/ home/ dat a/ t ext -i ndex");

Configuring Text Indexes using the SolrCloud Search Engine

A text index using SolrCloud Search engine uses a Sol r | ndexPar anet er s object behind
the scenes to identify the SolrCloud host name, the number of shards, and replication
factor used during the index construction. The configuration parameters for indexes
using a SolrCloud Search engine include:

* Configuration name: Name of the Apache Zookeeper directory where the
SolrCloud configuration files for Oracle Property Graph are stored. Example:
opgconfig. The configuration files include the required field’s schema
(schema.xml) and storage settings (solrconfig.xml).

e Server URL: the SolrCloud server URL used to connect to the SolrCloud service.
Example: http://localhost:2181/solr

* SolrCloud Node Set: Hostnames of the nodes in the SolrCloud service where the
collection’s shards will be stored. Example:
node01:8983_solr,node02:8983_solr,node03:8983_solr. If the value is set to null,
then the collection will be created using all the SolrCloud nodes available in the
service.

* Zookeeper Timeout: Positive integer representing the timeout (in seconds) used to
wait for a Zookeeper connection.

* Number of shards: Number of shards to create for the text index collection. If the
SolrCloud configuration is using an HDFS directory, the number of shards must
not exceed the number of SolrCloud nodes specified in the SolrCloud node set.

* Replication factor: Replication factor used in the SolrCloud collection. The
default value is set to 1.

* Maximum shards per node: Maximum number of shards that can be created on
each SolrCloud node. Note that this value must not be smaller than the number of
shards divided by the number of nodes in the SolrCloud Node set.

» DOP: Degree of parallelism to use when reading the vertices (or edges) from the
property graph and indexing the key/value pairs. The default value is set to 1.

» Batch Size: Integer specifying the batch size to use for document batching in
Apache SolrCloud. The default batch size used is 10000.

« Commit Batch Size: Integer specifying the number of documents to add into the
Apache SolrCloud index before a commit operation is executed. The default
commit batch size used is 500000 (five hundred thousand).

* Write timeout: Timeout (in seconds) used to wait for an index operation to be
completed. If the index operation was unsuccessful due to a communication error,
the operation will be tried repeatedly as needed until the timeout is reached or the
operation completes.

The following code fragment creates the configuration for a text index using SolrCloud.

String configNane = "opgconfig";

String solrServerUl = "nodea: 2181/solr"

String sol rNodeSet = "nodea: 8983_sol r, nodeb: 8983 solr," +
"nodec: 8983_sol r, noded: 8983 _sol r";

int zkTi meout
int nunBhards

15;
4,

5-35

Chapter 5
Managing Text Indexing for Property Graph Data

int replicationFactor = 1;
i nt maxShar dsPer Node = 1;

Oracl el ndexPar anet ers i ndexParans =
Oracl el ndexPar anet ers. bui | dSol r (confi gNane,

sol rServerUrl,
sol r NodeSet,
zkTi nmeout ,
nunthar ds,
replicationFactor,
max Shar dsPer Node,
4,
10000,
500000,
15);

When using SolrCloud, you must first load a collection's configuration for the text
indexes into Apache Zookeeper, as described in Uploading a Collection's SolrCloud
Configuration to Zookeeper.

5.5.2 Using Automatic Indexes for Property Graph Data

ORACLE

An automatic text index provides automatic indexing of vertices or edges by a set of
property keys. Its main purpose is to speed up lookups over vertices and edges based
on particular key/value pair. If an automatic index for the given key is enabled, then a
key/value pair lookup will be performed as a text search against the index instead of
executing a database lookup.

When describing an automatic index over a property graph, use these Oracle property
graph methods to create, remove, and manipulate an automatic index:

°* Oracl ePropertyG aph. createKeyl ndex(String key, Cass el enentC ass, Paraneter[]
par anet er s) : Creates an automatic index for all elements of type el enent G ass by
the given property key. The index is configured based on the specified
parameters.

e Oacl ePropertyG aph. createKeylndex(String[] keys, Cass el enmentd ass,
Parameter[] paraneters): Creates an automatic index for all elements of type
el enment d ass by using a set of property keys. The index is configured based on the
specified parameters.

e Oracl ePropertyG aph. dropKeyl ndex(String key, O ass el enentd ass): Drops the
automatic index for all elements of type el ement O ass for the given property key.

e Oacl ePropertyG aph. dropKeyl ndex(String[] keys, Cass el enentd ass): Drops the
automatic index for all elements of type el ement d ass for the given set of property
keys.

e Oacl ePropertyG aph. get Aut ol ndex(Cl ass el enent d ass) : Gets an index instance of
the automatic index for type el enent d ass.

e (OaclePropertyG aph. get I ndexedKeys(C ass el enent d ass) : Gets the set of indexed
keys currently used in an automatic index for all elements of type el enent O ass.

The supplied examples Exanpl eNoSQL6 and Exanpl eHBase6 create a property graph from
an input file, create an automatic text index on vertices, and execute some text search
gueries using Apache Lucene.

The following code fragment creates an automatic index over an existing property
graph's vertices with these property keys: name, role, religion, and country. The

5-36

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

automatic text index will be stored under four subdirectories under the / hone/ dat a/
text-index directory. Apache Lucene data types handling is enabled. This example
uses a DOP (parallelism) of 4 for re-indexing tasks.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nst ance(
args, szGaphName);

String szOPVFile
String szOPEFil e

= "../..ldatalconnections.opv";
= "../..ldatalconnections. ope";
/1 Do a parallel data |oading

Oracl ePropertyG aphDat aLoader opgdl =

Oracl ePropertyG aphDat aLoader . get | nst ance() ;
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create an automatic index using Apache Lucene engine.
/1 Specify Index Directory paranmeters (nunmber of directories,
/1 number of connections to database, batch size, conmt size,
/'l enabl e datatypes, |ocation)
Oracl el ndexParanet ers i ndexParans =

Oracl el ndexPar anet ers. bui | dFS(4, 4, 10000, 50000, true,

"/home/data/text-index ");

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

Il specify indexed keys
String[] indexedKeys = new String[4];

i ndexedKeys[0] = "nanme";

i ndexedKeys[1] = "role";

i ndexedKeys[2] = "religion";
i ndexedKeys[3] = "country";

/1 Create auto indexing on above properties for all vertices
opg. cr eat eKeyl ndex (i ndexedKeys, Vertex.class);

By default, indexes are configured based on the Oracl el ndexPar anet er s associated with
the property graph using the method opg. set Def aul t | ndexPar amet er s(i ndexPar ans).

Indexes can also be created by specifying a different set of parameters. This is shown
in the following code snippet.

/] Create an Oraclel ndexParameters object to get Index configuration (search engine,
etc).
Oracl el ndexParaneters indexParans = Oracl el ndexPar anet ers. bui | dFS(ar gs)

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex("nane", Vertex.class, indexParans. getParaneters());

The code fragment in the next example executes a query over all vertices to find all
matching vertices with the key/value pair name: Barack Chanma. This operation will
execute a lookup into the text index.

Additionally, wildcard searches are supported by specifying the parameter

useW | dCards in the get Verti ces API call. Wildcard search is only supported when
automatic indexes are enabled for the specified property key. For details on text
search syntax using Apache Lucene, see https://| ucene. apache. org/core/2_9 4/
quer ypar sersyntax. htnl .

/1 Find all vertices with name Barack Chana.
Iterator<Vertices> vertices = opg.getVertices("name", "Barack Cbhama").iterator();
Systemout.printIn("----- Vertices with name Barack Chama ----- ")
countV = 0;

5-37

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

Chapter 5
Managing Text Indexing for Property Graph Data

while (vertices.hasNext()) {
Systemout. println(vertices.next());
count V++;

}

Systemout.printIn("Vertices found: " + countV);

/1 Find all vertices with name including keyword "Chana"
[/ Wldcard searching is supported.
bool ean useW |l dcard = true;
Iterator<Vertices> vertices = opg.getVertices("name",
"*Chama*", useW | dcard).iterator();
Systemout.printIn("----- Vertices with name *Chama* ----- ");
countV = 0;
while (vertices.hasNext()) {
Systemout. println(vertices.next());
count V++;

}

Systemout. printIn("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with name Barack Cbama-----

Vertex ID 1 {nanme:str:Barack Chama, role:str:political authority, occupation:str:
44th president of United States of Anmerica, country:str:United States, political
party:str:Denocratic, religion:str:Christianity}

Vertices found: 1

----- Vertices with name *Cbama* -----

Vertex ID 1 {nanme:str:Barack Chama, role:str:political authority, occupation:str:
44th president of United States of Anmerica, country:str:United States, political
party:str:Denocratic, religion:str:Christianity}

Vertices found: 1

See Also:

e Executing Search Queries Over Property Graph Text Indexes

e Exploring the Sample Programs

5.5.3 Using Manual Indexes for Property Graph Data

ORACLE

Manual indexes provide support to define multiple indexes over the vertices and edges
of a property graph. A manual index requires you to manually put, get, and remove
elements from the index.

When describing a manual index over a property graph, use these Oracle property
graph methods to add, remove, and manipulate a manual index:

e OaclePropertyGaph.createlndex(String nane, C ass el enentC ass, Paraneter[]
par anet ers) : Creates a manual index with the specified name for all elements of
type elementClass.

e Oacl ePropertyG aph. dropl ndex(String nane) : Drops the given manual index.

e (OaclePropertyG aph. getlndex(String name, dass el enentC ass): Gets an index
instance of the given manual index for type elementClass.

5-38

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

* Oacl ePropertyG aph. get I ndi ces(): Gets an array of index instances for all manual
indexes created in the property graph.

The supplied examples Exanpl eNoSQL7 and Exanpl eHBase7 create a property graph from
an input file, create a manual text index on edges, put some data into the index, and
execute some text search queries using Apache SolrCloud.

When using SolrCloud, you must first load a collection's configuration for the text
indexes into Apache Zookeeper, as described in Uploading a Collection's SolrCloud
Configuration to Zookeeper.

The following code fragment creates a manual text index over an existing property
graph using four shards, one shard per node, and a replication factor of 1. The number
of shards corresponds to the number of nodes in the SolrCloud cluster.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args,
szG aphNane) ;

"..l..ldatalconnections.opv";
"..l..ldatal connections.ope";

String szOPVFile
String szOPEFil e

/1 Do a parallel data |oading

Oracl ePropertyG aphDat aLoader opgdl =

O acl ePropertyG aphDat aLoader . get | nst ance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Create a manual text index using SolrCoud// Specify Index Directory paraneters:
configuration name, Solr Server URL, Solr Node set,
/1 replication factor, zookeeper tineout (secs),
/1 maxi mum nunber of shards per node,
[l nunmber of connections to database, batch size, comit size,
Il wite timeout (in secs)

String configNanme = "opgconfig";

String solrServerUrl = "nodea: 2181/solr"

String sol rNodeSet = "nodea: 8983_sol r, nodeb: 8983 solr," +

"nodec: 8983_sol r, noded: 8983_sol r";

int zkTi meout = 15;
int nunBhards = 4;
int replicationFactor = 1;
int maxShardsPer Node = 1;

Oracl el ndexParanet ers i ndexParans =
Oracl el ndexPar anet ers. bui | dSol r (confi gNang,

sol rServerUrl,
sol rNodeSet ,
zkTi meout ,
nunBhar ds,
replicationFactor,
maxShar dsPer Node,
4,
10000,
500000,
15);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/1 Create manual indexing on above properties for all vertices
O acl el ndex<Edge> index = ((Oracl el ndex<Edge>) opg. creat el ndex("myl dx", Edge.class));

Vertex vl = opg.getVertices("nanme", "Barack Chama").iterator().next();

5-39

Chapter 5
Managing Text Indexing for Property Graph Data

| terator<Edge> edges
= vl. get Edges(Direction. QUT, "collaborates").iterator();

whi | e (edges. hasNext()) {
Edge edge = edges. next();
Vertex vin = edge. getVertex(Direction.IN);
i ndex. put ("col | aboratesWth", vln.getProperty("nane"), edge);

}

The next code fragment executes a query over the manual index to get all edges with
the key/value pair col | abor at esW't h: Beyonce. Additionally, wildcards search can be
supported by specifying the parameter useW | dCar ds in the get API call.

/1 Find all edges with collaboratesWth Beyonce.

/| Wl dcard searching is supported using true paraneter.
edges = index.get("collaboratesWth", "Beyonce").iterator();
Systemout.println("----- Edges with name Beyonce ----- ")
countkE = 0;
whil e (edges. hasNext()) {

Systemout. println(edges. next());
count E++;

}
Systemout. println("Edges found: "+ countE);

/1 Find all vertices with name including Bey*.
/] Wl dcard searching is supported using true paraneter.
edges = index.get("collaborateswWth", "*Bey*", true).iterator();
Systemout.println("----- Edges with col | aboratesWth Bey* ----- ")
countkE = 0;
whil e (edges. hasNext()) {
Systemout. println(edges. next());
count E++;

}

Systemout. println("Edges found: " + countE);

The preceding code example produces output like the following:

----- Edges with name Beyonce -----

Edge 1D 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Chamg,
occupation:str:44th president of United States of Anerica, political
party:str:Denocratic, religion:str:Christianity, role:str:political authority}

=[col | aborates]=> Vertex 1D 2 {country:str:United States, nusic genre:str:pop soul ,
nane: str: Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]

Edges found: 1

----- Edges with col | aboratesWth Bey* -----

Edge 1D 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Chamg,
occupation:str:44th president of United States of Anerica, political
party:str:Denocratic, religion:str:Christianity, role:str:political authority}

=[col | aborates]=> Vertex 1D 2 {country:str:United States, nusic genre:str:pop soul ,
nane: str: Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]

Edges found: 1

ORACLE 5-40

Chapter 5
Managing Text Indexing for Property Graph Data

" See Also:

e Executing Search Queries Over Property Graph Text Indexes

Exploring the Sample Programs

5.5.4 Executing Search Queries Over Property Graph Text Indexes

ORACLE

You can execute text search queries over automatic and manual text indexes. These
capabilities vary from querying based on a particular key/value pair, to executing a text
search over a single or multiple keys (with extended query options as wildcards, fuzzy
searches, and range queries).

» Executing Search Queries Over a Text Index Using Apache Lucene

* Executing Search Queries Over a Text Index Using SolrCloud

Executing Search Queries Over a Text Index Using Apache Lucene

The following code fragment creates an automatic index using Apache Lucene, and
executes a query over the text index by specifying a particular key/value pair.

/1 Do a parallel data |oading
Oracl ePropertyG aphDat aLoader opgdl =
Oracl ePropertyG aphDat aLoader . get | nst ance();

opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create an automatic index using Apache Lucene engine.
/1 Specify Index Directory paraneters (nunmber of directories,
/1 number of connections to database, batch size, conmt size,
/1 enabl e datatypes, |ocation)
Oracl el ndexParanet ers i ndexParans =
Oracl el ndexPar anet ers. bui | dFS(4, 4, 10000, 50000, true,
"I'home/ dat a/ t ext-i ndex ");
opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/1 Create manual indexing on above properties for all vertices
O acl el ndex<kdge> i ndex = ((Oracl el ndex<Edge>) opg. creat el ndex("nyl dx", Edge.class));

Vertex vl = opg.getVertices("name", "Barack Chama").iterator().next();

I terator<Edge> edges
= vl. get Edges(Direction. QJT, "collaborates").iterator();

whi | e (edges. hasNext()) {
Edge edge = edges. next();
Vertex vin = edge. getVertex(Direction.IN);
i ndex. put ("col | aboratesWth", vin.getProperty("nane"), edge);
i ndex. put ("country", vin.getProperty("country"), edge);

}

/1 Wl dcard searching is supported using true paraneter.

I terator<Edge> edges = index.get("country", "United States").iterator();
Systemout.println("----- Edges with query: " + queryExpr + " ----- ");

I ong countE = 0;

whi | e (edges. hasNext()) {

5-41

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Systemout. println(edges. next());
count E++;

}

Systemout. println("Edges found: "+ countE);

In this case, the text index will produce a search query out of the key and value
objects. Also note that if the useW | dcar ds flag is not specified or enabled, then results
retrieved will include only exact matches. If the value object is a numeric or date-time
value, the produced query will be an inclusive range query where the lower and upper
limit are defined by the value. Only numeric or date-time matches will be retrieved.

If the value is a string, then all matching key/value pairs will be retrieved regardless of

their data type. The resulting text query of this type of queries is a Boolean query with

a set of optional search terms, one for each supported data type. For more information
about data type handling, see Handling Data Types.

Thus, the previous code example produces a query expression country1:"United
States" OR country9:"United States" OR ... OR countryE:"United States"” (if Lucene's
data type handling is enabled), or country:"1United States" OR country:"2United
States” OR ... OR country:"EUnited States” (if Lucene's data type handling is
disabled).

If a String value object has wildcards enabled, the value must be written using Apache
Lucene Syntax. For information about text search syntax using Apache Lucene, see:
https://lucene.apache.org/core/2_9 4/queryparsersyntax.html

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index using a single key/value pair with String data type only. The following
code produces a query expression countryl:"United States" (if Lucene's data type
handling is enabled), or country:"1United States" (if Lucene's data type handling is
disabled).

/] Wl dcard searching is supported using true paraneter.
I terator<Edge> edges = index.get("country", "United States", true,
String.class).iterator();

Systemout.printin("----- Edges with query: " + queryExpr + " ----- ");
long countE = 0;
whi | e (edges. hasNext()) {

Systemout. println(edges. next());

count E++;

}

Systemout. println("Edges found: "+ countE);

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. Utilities are provided
to help users write their own Lucene text search queries using the query syntax and
data type identifiers required by the automatic and manual text indexes.

The method bui | dSear chTer n{key, val ue, dtC ass) in Lucenel ndex creates a query
expression of the form field:query_expr by adding the data type identifier to the key (or
value) and transforming the value into the required string representation based on the
given data type and Apache Lucene's data type handling configuration.

The following code fragment uses the bui | dSear chTer mmethod to produce a query
expression countryl:United* (if Lucene's data type handling is enabled), or country:
1United* (if Lucene's data type handling is disabled) used in the previous examples:

5-42

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

String szQueryStrCountry = index. bui |l dSearchTern{"country",
"United*", String.class);

To deal with the key and values as individual objects to construct a different Lucene
query like a W1 dcar dQuery, the methods appendDat at ypesSuf f i xToKey(key,

dt O ass) and appendDat at ypesSuf fi xToVal ue(val ue, dtd ass) in Lucenel ndex will append
the appropriate data type identifiers and transform the value into the required Lucene
string representation based on the given data type.

The following code fragment uses the appendDat at ypesSuf f i xToKey method to generate
the field name required in a Lucene text query. If Lucene’s data type handling is

enabled, the string returned will append the String data type identifier as a suffix of the
key (country1). In any other case, the retrieved string will be the original key (count ry).

String key = index.appendDat at ypesSuffi xToKey("country", String.class);

The next code fragment uses the appendDatatypesSuffixToValue method to generate
the query body expression required in a Lucene text query. If Lucene’s data type
handling is disabled, the string returned will append the String data type identifier as a
prefix of the key (1United*). In all other cases, the string returned will be the string
representation of the value (United*).

String val ue = index. appendDat at ypesSuf fi xToVal ue("United*", String.class);

Lucenel ndex also supports generating a Term object using the

method bui | dSear chTer n0bj ect (key, val ue, dtC ass). Term objects are commonly
used among different types of Lucene Query objects to constrain the fields and values
of the documents to be retrieved. The following code fragment shows how to create a
W | dcar dQuery object using the bui | dSear chTer mbbj ect method.

Term term = index. bui | dSear chTer mObj ect ("country", "United*", String.class);
Query query = new W dcardQuery(tern;

Executing Search Queries Over a Text Index Using SolrCloud

The following code fragment creates an automatic index using SolrCloud, and
executes a query over the text index by specifying a particular key/value pair.

/1 Create a manual text index using SolrC oud// Specify Index Directory paraneters:
configuration name, Solr Server URL, Solr Node set,
Il replication factor, zookeeper tineout (secs),
/1 maxi mum nunber of shards per node,
/1 number of connections to database, batch size, conmt size,
[l wite timeout (in secs)
String configNane = "opgconfig";
String solrServerU | = "nodea: 2181/solr"
String sol rNodeSet = "nodea: 8983_sol r, nodeb: 8983 _solr," +
"nodec: 8983 _sol r, noded: 8983 sol r";

int zkTi neout = 15;
int nunBhards = 4;
int replicationFactor = 1,
i nt maxShar dsPer Node = 1;

Oracl el ndexPar anet ers i ndexParans =
Oracl el ndexPar anet er s. bui | dSol r (confi gNane,
sol rServerUrl,
sol r NodeSet ,
zkTi nmeout ,
nunthar ds,

5-43

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

replicationFactor,
max Shar dsPer Node,
4,
10000,
500000,
15);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/'l specify indexed keys
String[] indexedKeys = new String[4];

i ndexedKeys[0] = "nane";

i ndexedKeys[1] = "role";

i ndexedKeys[2] = "religion";
i ndexedKeys[3] = "country";

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex(i ndexedKeys, Vertex.class);

/] Create manual indexing on above properties for all vertices
Oracl el ndex<Vertex> index = ((Oracl el ndex<Vertex>) opg. get Aut ol ndex(Vertex. cl ass);

Iterator<Vertex> vertices = index.get("country", "United States").iterator();
Systemout.printIn("----- Vertices with query: " + queryExpr + " ----- ");
countV = 0;
while (vertices.hasNext()) {

Systemout. println(vertices.next());

count V++;

}

Systemout. println("Vertices found: "+ countV);

In this case, the text index will produce a search out of the value object. Also note that
if the useW | dcar ds flag is not specified or enabled, then results retrieved will include
only exact matches. If the value object is a numeric or date time value, the produced
guery will be an inclusive range query where the lower and upper limit is defined by
the value. Only numeric or date-time matches will be retrieved.

If the value is a string, then all matching key/value pairs will be retrieved regardless of

their data type. The resulting text query of this type of queries is a Boolean query with

a set of optional search terms, one for each supported data type. For more information
about data type handling, see Handling Data Types.

Thus, the previous code example produces a query expression country_str:"United
States" OR country_ser:"United States” OR ... OR country_json:"United States".

Using a String value object with wildcards enabled requires that the value is written
using Apache Lucene Syntax. For information about text search syntax using Apache
Lucene, see Handling Data Types

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index using a single key/value pair with String data type only. The following
code produces a query expression country_str:"United States".

/1 Wl dcard searching is supported using true paraneter.
I terator<Edge> edges = index.get("country", "United States", true,
String.class).iterator();
Systemout.printIn("----- Edges with query: " + queryExpr + " ----- ")
countkE = 0;
whi | e (edges. hasNext()) {
Systemout. println(edges. next());

5-44

Chapter 5
Managing Text Indexing for Property Graph Data

count E++;

}

Systemout. println("Edges found: "+ countE);

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. A set of utilities is
provided to help users write their own SolrCloud text search queries using the query
syntax and data type identifiers required by the automatic and manual text indexes.

The method bui | dSear chTer n{ key, val ue, dtC ass) in Sol rlndex creates a query
expression of the form field:query_expr by adding the data type identifier to the key (or
value) and transforming the value into the required string representation using the data
type formats required by the index.

The following code fragment uses the bui | dSear chTer mmethod to produce a query
expression country_str:United* used in the previous example:

String szQueryStrCountry = index. bui | dSearchTern{"country",
"United*", String.class);

To deal with the key and values as individual objects to construct a different SolrClud
query like a Wl dcar dQuery, the methods appendDat at ypesSuf f i xToKey(key,

dt O ass) and appendDat at ypesSuf fi xToVal ue(val ue, dtC ass) in Sol rI ndex will append
the appropriate data type identifiers and transform the key and value into the required
SolrCloud string representation based on the given data type.

The following code fragment uses the appendDat at ypesSuf f i xToKey method to generate
the field name required in a SolrCloud text query. The retrieved string will append the
String data type identifier as a suffix of the key (country_str).

String key = index. appendDat at ypesSuffi xToKey("country", String.class);

The next code fragment uses the appendDat at ypesSuf fi xToVal ue method to generate
the query body expression required in a SolrCloud text query. The string returned will
be the string representation of the value (Uni t ed*).

String val ue = index. appendDat at ypesSuf fi xToVal ue("United*", String.class);

5.5.5 Handling Data Types

ORACLE

Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the key/
value pair age: 30, a query is executed over all age fields with a data type integer. If the
value is a query expression, you can also specify the data type class of the value to
find by calling the API get (String key, bject value, dass dtC ass, Bool ean

useW | dcards) . If no data type is specified, the query expression will be matched to all
possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. The following topics
describe how to append this prefix/suffix for Apache Lucene and SolrCloud.

* Appending Data Type Identifiers on Apache Lucene
* Appending Data Type Identifiers on SolrCloud

5-45

Chapter 5
Managing Text Indexing for Property Graph Data

5.5.5.1 Appending Data Type Identifiers on Apache Lucene

ORACLE

When Lucene's data types handling is enabled, you must append the proper data type
identifier as a suffix to the key in the query expression. This can be done by executing
a String. concat () operation to the key. If Lucene's data types handling is disabled, you
must insert the data type identifier as a prefix in the value String. Table 5-2 shows the
data type identifiers available for text indexing using Apache Lucene (see also the

Javadoc for Lucenel ndex).

Table 5-2 Apache Lucene Data Type Identifiers

Lucene Data Type ldentifier Description
TYPE_DT_STRING String
TYPE_DT_BOOL Boolean
TYPE_DT_DATE Date
TYPE_DT_FLOAT Float
TYPE_DT_DOUBLE Double
TYPE_DT_INTEGER Integer
TYPE_DT_LONG Long
TYPE_DT_CHAR Character
TYPE_DT_SHORT Short
TYPE_DT_BYTE Byte
TYPE_DT_SPATIAL Spatial
TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using Lucene's data
type handling, adds data, and later executes a query over the manual index to get all
edges with the key/value pair col | abor at esW t h: Beyonce AND count ryl: Uni t ed* using
wildcards.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(args,
szG aphNane) ;

String szOPVFile
String szOPEFile

“..l..ldatal connections.opv";
"..l..ldatal connections.ope";

/1 Do a parallel data |oading

Oracl ePropert yG aphDat aLoader opgdl =

O acl ePropertyG aphDat aLoader . get | nst ance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Specify Index Directory paraneters (nunber of directories,
/'l nunber of connections to database, batch size, comit size,
/1 enabl e datatypes, |ocation)
Oracl el ndexParanet ers indexParans =
Oracl el ndexPar anet ers. bui | dFS(4, 4, 10000, 50000, true,
"/home/data/text-index ");
opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;
/| Create manual indexing on above properties for all edges
O acl el ndex<Edge> index = ((Oracl el ndex<Edge>) opg. creat el ndex("nmyl dx", Edge.class));

Vertex vl = opg.getVertices("name", "Barack Chama").iterator().next();

5-46

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

| terator<Edge> edges
= vl. get Edges(Direction. QUT, "collaborates").iterator();

whi | e (edges. hasNext()) {
Edge edge = edges. next();
Vertex vin = edge. getVertex(Direction.IN);
i ndex. put ("col | aboratesWth", vln.getProperty("nane"), edge);
i ndex. put ("country", vin.getProperty("country"), edge);

}

/1 Wl dcard searching is supported using true paraneter.
String key = "country";
key =
key. concat (String. val ueCf (oracl e. pg. text. | ucene. Lucenel ndex. TYPE_DT_STRING)) ;

String queryExpr = "Beyonce AND " + key + ":United*";
edges = index.get("collaboratesWth", queryExpr, true /
UseW | dcard/).iterator();
Systemout. printIn("----- Edges with query: " + queryExpr + " ----- ")
countE = 0;
whi | e (edges. hasNext()) {
Systemout. println(edges. next());
count E++;

}

Systemout. println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with nanme Beyonce AND countryl: United* -----

Edge 1D 1000 from Vertex ID 1 {country:str:United States, nane:str:Barack Obana,
occupation:str:44th president of United States of America, political
party:str:Denocratic, religion:str:Christianity, role:str:political authority}

=[col | aborates]=> Vertex 1D 2 {country:str:United States, nusic genre:str:pop soul ,
name: str: Beyonce, role:str:singer actress} edgeKV[{weight:flo:1. 0}]

Edges found: 1

The following code fragment creates an automatic index on vertices, disables Lucene's
data type handling, adds data, and later executes a query over the manual index from
a previous example to get all vertices with the key/value pair country: Uni t ed* AND

rol e: 1*political * using wildcards.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args,
szG aphNane) ;

String szOPVFile
String szOPEFile

“..l../datal connections.opv";
"..l../datal connections.ope";

/1 Do a parallel data |oading

Oracl ePropert yG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nst ance() ;
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create an automatic index using Apache Lucene engine.
/1 Specify Index Directory parameters (nunmber of directories,
/1 nunber of connections to database, batch size, commit size,
/'l enabl e datatypes, |ocation)
Oracl el ndexParanet ers i ndexParans =
Oracl el ndexPar anet ers. bui | dFS(4, 4, 10000, 50000, false, "'/ home/data/text-
index ");
opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

5-47

Chapter 5
Managing Text Indexing for Property Graph Data

/1 specify indexed keys
String[] indexedKeys = new String[4];

i ndexedKeys[0] = "nane";

i ndexedKeys[1] = "role";

i ndexedKeys[2] = "religion";
i ndexedKeys[3] = "country";

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex(i ndexedKeys, Vertex.class);

/1 Wl dcard searching is supported using true paraneter.
String value = "*political*";
val ue = String.val ueO (Lucenel ndex. TYPE_DT_STRING + val ue;
String queryExpr = "United* AND role:" + val ue;

vertices = opg.getVertices("country", queryExpr, true /*useWldcard*/).iterator();
Systemout.printIn("----- Vertices with query: " + queryExpr + " ----- ");
countV = 0;
while (vertices.hasNext()) {
Systemout. printin(vertices.next());
count V++;

}

Systemout. printIn("Vertices found: " + countV);

The preceding code example might produce output like the following:

----- Vertices with query: United* and role:1*political* -----

Vertex ID 30 {nane:str:Jerry Brown, role:str:political authority, occupation:str:
34th and 39th governor of California, country:str:United States, political
party:str:Denocratic, religion:str:roman catholicisn}

Vertex |ID 24 {nane:str:Edward Snowden, role:str:political authority,
occupation:str:systemadmini strator, country:str:United States,
religion:str:buddhisn}

Vertex ID 22 {nane:str:John Kerry, role:str:political authority, country:str:United
States, political party:str:Denocratic, occupation:str:68th United States Secretary
of State, religion:str:Catholicisn}

Vertex ID 21 {nane:str:Hllary Clinton, role:str:political authority,
country:str:United States, political party:str:Denocratic, occupation:str:67th
United States Secretary of State, religion:str:Mthodisnt

Vertex ID 19 {nane:str:Kirsten Gllibrand, role:str:political authority,
country:str:United States, political party:str:Denocratic, occupation:str:junior
United States Senator from New York, religion:str:Mthodisn}

Vertex ID 13 {nane:str:Ertharin Cousin, role:str:political authority,
country:str:United States, political party:str:Denocratic}

Vertex ID 11 {nane:str:Eric Holder, role:str:political authority, country:str:United
States, political party:str:Denocratic, occupation:str:United States Deputy Attorney
General }

Vertex ID 1 {nanme:str:Barack Chama, role:str:political authority, occupation:str:
44th president of United States of Anmerica, country:str:United States, political
party:str:Denocratic, religion:str:Christianity}

Vertices found: 8

5.5.5.2 Appending Data Type Identifiers on SolrCloud

ORACLE

For Boolean operations on SolrCloud text indexes, you must append the proper data
type identifier as suffix to the key in the query expression. This can be done by
executing a String. concat () operation to the key. Table 5-3 shows the data type
identifiers available for text indexing using SolrCloud (see the Javadoc for Sol r | ndex).

5-48

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Table 5-3 SolrCloud Data Type Identifiers
|

Solr Data Type Identifier Description
TYPE_DT_STRING String
TYPE_DT_BOOL Boolean
TYPE_DT_DATE Date
TYPE_DT_FLOAT Float
TYPE_DT_DOUBLE Double
TYPE_DT_INTEGER Integer
TYPE_DT_LONG Long
TYPE_DT_CHAR Character
TYPE_DT_SHORT Short
TYPE_DT_BYTE Byte
TYPE_DT_SPATIAL Spatial
TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using SolrCloud, adds
data, and later executes a query over the manual index to get all edges with the key/
value pair col | abor at esW t h: Beyonce AND count ry1: Uni t ed* using wildcards.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args,
szG aphNane) ;

String szOPVFile
String szOPEFile

“..l../datal connections.opv";
“..l../datal connections.ope";

/1 Do a parallel data |oading

Oracl ePropert yG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nst ance() ;
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Create a manual text index using SolrC oud// Specify Index Directory paraneters:
configuration name, Solr Server URL, Solr Node set,
/1 replication factor, zookeeper timeout (secs),
/1 maxi mum nunber of shards per node,
/1 nunber of connections to database, batch size, conmt size,
[/ wite timeout (in secs)

String configName = "opgconfig";

String solrServerUrl = "nodea:2181/solr";

String sol rNodeSet = "nodea: 8983_sol r, nodeb: 8983 solr," +

"nodec: 8983_sol r, noded: 8983 _sol r";

int zkTi meout = 15;
int nunShards = 4;
int replicationFactor = 1;
i nt maxShar dsPer Node = 1;

Oracl el ndexPar anet ers i ndexParans =
Oracl el ndexPar anet er s. bui | dSol r (confi gNane,
sol rServerUrl,
sol r NodeSet
zkTi meout ,
nunthar ds,

5-49

Chapter 5
Managing Text Indexing for Property Graph Data

replicationFactor,
max Shar dsPer Node,
4,
10000,
500000,
15);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/1 Create manual indexing on above properties for all vertices
O acl el ndex<Edge> index = ((Oracl el ndex<Edge>) opg. creat el ndex("nmyl dx", Edge.class));

Vertex vl = opg.getVertices("name", "Barack Chama").iterator().next();

| terator<Edge> edges
= vl. get Edges(Direction. QUT, "collaborates").iterator();

whi | e (edges. hasNext()) {
Edge edge = edges. next();
Vertex vin = edge. getVertex(Direction.IN);
i ndex. put ("col | aboratesWth", vln.getProperty("nane"), edge);
i ndex. put ("country", vln.getProperty("country"), edge);

}

/1 Wl dcard searching is supported using true paraneter.
String key = "country";
key = key. concat (oracl e. pg.text.solr.Sol rlndex. TYPE_DT_STRI NG ;

String queryExpr = "Beyonce AND " + key + ":United*";
edges = index.get("collaboratesWth", queryExpr, true /**
UseW I dcard*/).iterator();
Systemout.printin("----- Edges with query: " + queryExpr + " ----- ")
countE = 0;
whi | e (edges. hasNext()) {
Systemout. println(edges. next());
count E++;

}

Systemout. println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with nane Beyonce AND country_str:United* -----

Edge 1D 1000 from Vertex ID 1 {country:str:United States, nane:str:Barack Obana,
occupation:str:44th president of United States of America, political
party:str:Denocratic, religion:str:Christianity, role:str:political authority}

=[col | aborates]=> Vertex 1D 2 {country:str:United States, nusic genre:str:pop soul ,
name: str: Beyonce, role:str:singer actress} edgeKV[{weight:flo:1. 0}]

Edges found: 1

5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper

ORACLE

Before using SolrCloud text indexes on Oracle Big Data Spatial and Graph property
graphs, you must upload a collection's configuration to Zookeeper. This can be done
using the ZKkCli tool from one of the SolrCloud cluster nodes.

A predefined collection configuration directory can be found in dal / opg- sol r-confi g
under the installation home. The following shows an example on how to upload the
PropertyGraph configuration directory.

1. Copy dal/opg-solr-config under the installation home into /tmp directory on one of
the Solr cluster nodes. For example:

5-50

Chapter 5
Managing Text Indexing for Property Graph Data

scp —r dal/opg-solr-config user@ol r-node:/tnp

2. Execute the following command line like the following example using the ZkCli tool
on the same node:

$SCLR_HOVE/ bi n/ zkel i . sh -zkhost 127.0.0.1:2181/solr -cmd upconfig —confnane
opgconfig -confdir /tnp/opg-solr-config

5.5.7 Updating Configuration Settings on Text Indexes for Property

Graph Data

ORACLE

Oracle's property graph support manages manual and automatic text indexes through
integration with Apache Lucene and SolrCloud. At creation time, you must create an
O acl el ndexPar anet er s object specifying the search engine and other configuration
settings to be used by the text index. After a text index for property graph is created,
these configuration settings cannot be changed. For automatic indexes, all vertex
index keys are managed by a single text index, and all edge index keys are managed
by a different text index using the configuration specified when the first vertex or edge
key is indexed.

If you need to change the configuration settings, you must first disable the current
index and create it again using a new O acl el ndexPar anet er s object. The following code
fragment creates two automatic Apache Lucene-based indexes (on vertices and
edges) over an existing property graph, disables them, and recreates them to use
SolrCloud.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

String szOPVFile
String szOPEFile

“..l..ldatal connections.opv";
"..l..ldatal connections.ope";

/1 Do parallel data |oading

Oracl ePropertyG aphDat aLoader opgdl =

O acl ePropertyG aphDat aLoader . get | nst ance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Create an automatic index using Apache Lucene.
/1 Specify Index Directory paraneters (nunber of directories,
/1 nunber of connections to database, batch size, commt size,
/] enabl e datatypes, |ocation)
Oracl el ndexPar anet ers | ucenel ndexParanms =
Oracl el ndexParanet ers. bui | dFS(4, 4, 10000, 50000, true,
"/ home/ oracl e/text-index ");

/1 Specify indexed keys
String[] indexedKeys = new String[4];

i ndexedKeys[0] = "nanme";

i ndexedKeys[1] = "role";

i ndexedKeys[2] = "religion";
i ndexedKeys[3] = "country";

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex(i ndexedKeys, Vertex.class, |ucenelndexParams. getParaneters());

/] Create auto indexing on weight for all edges
opg. creat eKeyl ndex("wei ght", Edge.class, |ucenel ndexParans. get Paraneters());

/1 Disable auto indexes to change paraneters

5-51

Chapter 5
Managing Text Indexing for Property Graph Data

opg. get Oracl el ndexManager () . di sabl eVert exAut ol ndexer ();
opg. get Oracl el ndexManager () . di sabl eEdgeAut ol ndexer () ;

/] Recreate text indexes using Solrd oud

/1 Specify Index Directory paraneters: configuration nane, Solr Server URL, Solr

Node set,

Il replication factor, zookeeper tineout (secs),

/1 maxi mum nunber of shards per node,

/'l nunber of connections to database, batch size, commt size,

/] wite timeout (in secs)

String configName = "opgconfig";

String solrServerUrl = "nodea: 2181/solr";

String sol rNodeSet = "nodea: 8983_sol r, nodeb: 8983 solr," +
"nodec: 8983_sol r, noded: 8983_sol r";

int zkTi meout = 15;
int nunBhards = 4;
int replicationFactor = 1;
i nt nmaxShardsPerNode = 1;

Oracl el ndexPar aneters sol rl ndexParans =

Oracl el ndexPar anet er s. bui | dSol r (confi gNane,
sol rServerUrl,
sol r NodeSet,
zkTi meout ,
nunthar ds,
replicationFactor,
max Shar dsPer Node,
4,
10000,
500000,
15);

/] Create auto indexing on above properties for all vertices
opg. creat eKeyl ndex(i ndexedKeys, Vertex.class, solrlndexParans. get Paraneters());

/] Create auto indexing on weight for all edges
opg. creat eKeyl ndex("wei ght", Edge.class, sol rlndexParans. get Paraneters());

5.5.8 Using Parallel Query on Text Indexes for Property Graph Data

ORACLE

Text indexes in Oracle Big Data Spatial and Graph allow executing text queries over
millions of vertices and edges by a particular key/value or key/text pair using parallel
guery execution.

Parallel text querying is an optimized solution taking advantage of the distribution of
the data in the index among shards in SolrCloud (or subdirectories in Apache Lucene),
so each one is queried using separate index connection. This involves multiple threads
and connections to SolrCloud (or Apache Lucene) search engines to increase
performance on read operations and retrieve multiple elements from the index. Note
that this approach will not rank the matching results based on their score.

Parallel text query will produce an array where each element holds all the vertices (or
edges) with an attribute matching the given K/V pair from a shard. The subset of
shards queried will be delimited by the given start sub-directory ID and the size of the
connections array provided. This way, the subset will consider shards in the range of
[start, start - 1 + size of connections array]. Note that an integer ID (in the range of [0,
N - 1]) is assigned to all the shards in index with N shards.

5-52

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Parallel Text Query Using Apache Lucene

You can use parallel text query using Apache Lucene by calling the method

get Partitioned in Lucenel ndex, specifying an array of connections to set of
subdirectories (Sear cher Manager objects), the key/value pair to search, and the starting
subdirectory ID. Each connection needs to be linked to the appropriate subdirectory,
as each subdirectory is independent of the rest of the subdirectories in the index.

The following code fragment generates an automatic text index using the Apache
Lucene Search engine, and executes a parallel text query. The number of calls to the
get Partiti oned method in the Lucenel ndex class is controlled by the total number of
subdirectories and the number of connections used.

O acl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl earRepository();

String szOPVFile = "../../datal connections. opv";
String szOPEFile = "../../datal connections. ope";

/1 This object will handle parallel data |oading
O acl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader. get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/] Create an automatic index

O acl el ndexPar anet ers i ndexPar ans

= Oracl el ndexParanmet ers. bui | dFS(dop /* nunber of directories */,
dop /* nunber of connections

used when indexing */,

10000 /* batch size before conmt*/,

500000 /* conmt size before Lucene commit*/,

true /* enabl e datatypes */,

"./lucene-index" /* index |ocation */);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

I/ Create auto indexing on nanme property for all vertices
Systemout. printIn("Create automatic index on nane for vertices");
opg. creat eKeyl ndex("nane", Vertex.class);

/1 Get the Lucenel ndex object
Sear cher Manager [] conns = new Sear cher Manager [dop] ;
Lucenel ndex<Vertex> index = (Lucenel ndex<Vertex>) opg. get Aut ol ndex(Vertex. class);

long | Count = 0;

for (int split = 0; split < index.getTotal Shards();

split += conns.length) {

/1 Gets a connection object fromsubdirectory split to
[/(split + conns.length)

for (int idx = 0; idx < conns.length; idx++) {

conns[idx] = index.getOracleSearcherManager(idx + split);

}

Il Gets elenents fromsplit to split + conns.length
[terabl e<Vertex>[] iterAr

= index.getPartitioned(conns /* connections */,
"name"/* key */,

5-53

Chapter 5
Managing Text Indexing for Property Graph Data

/> value */,
true /* wildcards */,
split /* start split ID */);

| Count = countFromterables(iterAr); /* Consune iterables in parallel */

/1 Do not close the connections to the subdirectories after conpletion,
/'l because those connections are used by the Lucenel ndex object itself.

}

/1 Count all vertices
Systemout.printIn("Vertices found using parallel query: " + |Count);

Parallel Text Search Using SolrCloud

You can use parallel text query using SolrCloud by calling the method get Parti ti oned
in Sol r I ndex, specifying an array of connections to SolrCloud (C oudSol r Server objects),
the key/value pair to search, and the starting shard ID.

The following code fragment generates an automatic text index using the SolrCloud
Search engine and executes a parallel text query. The number of calls to the

get Partiti oned method in the Sol r 1 ndex class is controlled by the total number of
shards in the index and the number of connections used.

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(
args, szGaphNane);

Il Cear existing vertices/edges in the property graph
opg. cl earReposi tory();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

[l This object will handle parallel data I oading
O acl ePropert yG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgdl! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

String configNane = "opgconfig";
String solrServerUrl = args[4];//"local host:2181/solr"
String sol rNodeSet = args[5]; //"local host: 8983 solr";

int zkTimeout = 15; // zookeeper timeout in seconds

int nunBhards = Integer.parselnt(args[6]); // nunber of shards in the index
int replicationFactor = 1; // replication factor

i nt maxShardsPer Node = 1; // maxi mum number of shards per node

/] Create an automatic index using Solrd oud

O acl el ndexPar anet ers i ndexParans =

Oracl el ndexPar anet er s. bui | dSol r (confi gNaneg,

sol rServer Url,

sol r NodeSet ,

zkTi meout /* zookeeper timeout in seconds */,
nunShards /* total nunmber of shards */,
replicationFactor /* Replication factor */,
maxShar dsPer Node /* maxi num nunber of shardsper node*/,
4 [* dop used for scan */,

10000 /* batch size before commit*/,

500000 /* commit size before SolrC oud commit*/,
15 /* wite timeout in seconds */);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

ORACLE 5-54

Chapter 5
Managing Text Indexing for Property Graph Data

/] Create auto indexing on nane property for all vertices
Systemout.printIn("Create automatic index on name for vertices")
opg. creat eKeyl ndex("nane", Vertex.class)

/1 Get the Solrlndex object
Sear cher Manager[] conns = new Sear cher Manager [dop]
Solrindex<Vertex> index = (Solrindex<Vertex>) opg.getAutolndex(Vertex.class);

/1 Open an array of connections to handle connections to Sol rC oud needed for
parallel text search
Cl oudSol r Server[] conns = new O oudSol r Server [dop]

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getCloudSolrServer(15 /* write timeout in

secs*/);

}

/] Iterate to cover all the shards in the index
long | Count =0

for (int split = 0; split < index.getTotal Shards()
split += conns.length) {
/1 CGets elenments fromsplit to split + conns.length
Iterabl e<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
"name"/* key */,
" f* value */,
true /* wildcards */,
split /* start split ID */);

| Count = countFromterables(iterAr); /* Consune iterables in parallel */

}

/1 Cose the connections to the subdirectories after conpleted
for (int idx = 0; idx < conns.length; idx+t) {
conns[i dx] . shut down() ;

}

/1 Count results
Systemout. printlIn("Vertices found using parallel query: " + | Count)

5.5.9 Using Native Query Objects on Text Indexes for Property Graph

Data

ORACLE

Using Query objects directly is for advanced users, enabling them to take full
advantage of the underlying query capabilities of the text search engine (Apache
Lucene or SolrCloud). For example, you can add constraints to text searches, such as
adding a boost to the matching scores and adding sorting clauses.

Using text searches with Query objects will produce an Iterable object holding all the
vertices (or edges) with an attribute (or set of attributes) matching the text query while
satisfying the constraints. This approach will automatically rank the results based on
their matching score.

To build the clauses in the query body, you may need to consider the data type used
by the key/value pair to be matched, as well as the configuration of the search engine
used. For more information about building a search term, see Handling Data Types.

5-55

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Using Native Query Objects with Apache Lucene

You can use native query objects using Apache Lucene by calling the method

get (Query) in Lucenel ndex. You can also use parallel text query with native query
objects by calling the method get Parti ti oned(Sear cher Manager[], Query, int) in
Lucenel ndex specifying an array of connections to a set of subdirectories

(Sear cher Manager objects), the Lucene query object, and the starting subdirectory ID.
Each connection must be linked to the appropriate subdirectory, because each
subdirectory is independent of the rest of the subdirectories in the index.

The following code fragment generates an automatic text index using Apache Lucene
Search engine, creates a Lucene Query, and executes a parallel text query. The
number of calls to the get Partiti oned method in the Lucenel ndex class is controlled by
the total number of subdirectories and the number of connections used.

import oracle. pg.text.|ucene. Lucenel ndex;
i mport org.apache. | ucene. search. *;
i mport org.apache. | ucene.index. *;

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nst ance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Repository();

String szOPVFile = "../../datalconnections. opv";
String szOPEFile = "../../datalconnections. ope";

/1 This object will handle parallel data |oading
Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/| Create an automatic index

Oracl el ndexParaneters indexParans = Oracl el ndexPar anet ers. bui | dFS(dop /* nunber of
directories */,

dop /* nunber of connections

used when indexing */,

10000 /* batch size before conmt*/,

500000 /* commt size before Lucene commt*/,

true /* enable datatypes */,

"./lucene-index" /* index location */);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/1 Create auto indexing on name and country properties for all vertices
Systemout. println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];

i ndexedKeys[0] =" nane";

i ndexedKeys[1] ="country";

opg. cr eat eKeyl ndex (i ndexedKeys, Vertex.class);

/1 Get the Lucenel ndex object
Lucenel ndex<Vert ex> index = (Lucenel ndex<Vertex>) opg.get Aut ol ndex(Vertex.class);

/1 Search first for Key name with property val ue Beyon* using only string

//data types
Term term = index. bui | dSear chTer mObj ect ("nanme", "Beyo*", String.class);

5-56

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Query queryBey = new W/ dcardQuery(term;

/1 Add another condition to query all the vertices whose country is

[/"United States"

String key = index. appendDat at ypesSuf fi xToKey("country", String.class);

String val ue = index. appendDat at ypesSuf fi xToVal ue("United States", String.class);

Query queryCountry = new PhraseQuery();
StringTokeni zer st = new StringTokeni zer(val ue);
whil e (st.hasMreTokens()) {

queryCount ry. add(new Tern{ key, st.nextToken()));
¥

/] Concat enat e queries

Bool eanQuery bQuery = new Bool eanQuery();

bQuery. add(queryBey, Bool eanC ause. Cccur. MJST);
bQuery. add(queryCountry, Bool eand ause. Cccur. MUST) ;

long | Count = O;

Sear cher Manager[] conns = new Sear cher Manager [dop] ;

for (int split = 0; split < index.getTotal Shards(); split += conns.length) {
I/ Gets a connection object fromsubdirectory split to
I/ (split + conns.length). Skip the cache so we clone the connection and
/1 avoid using the connection used by the index.

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getOracl eSearcher Manager (i dx + split,
true /* skip looking in the
cache*/
):
}

Il CGets elenments fromsplit to split + conns.length
Iterabl e<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,

bQuery,
split /* start split ID*/);

| Count = countFromterables(iterAr); /* Consune iterables in parallel */

/1 Do not close the connections to the sub-directories after conpleted,
Il as those connections are used by the index itself

}

/1 Count all vertices
Systemout. println("Vertices found using parallel query: " + |Count);

Using Native Query Objects withSolrCloud

You can directly use native query objects against SolrCloud by calling the method
get (Sol rQuery) in Sol rlndex. You can also use parallel text query with native query
objects by calling the method get Parti ti oned(C oudSol r Server[], Sol rQuery,int) in
Sol r I ndex specifying an array of connections to SolrCloud (C oudSol r Server objects),
the Sol r Query object, and the starting shard ID.

The following code fragment generates an automatic text index using the Apache
SolrCloud Search engine, creates a Sol r Query object, and executes a parallel text
query. The number of calls to the get Partiti oned method in the Sol r I ndex class is
controlled by the total number of subdirectories and the number of connections used.

i mport oracle.pg.text.solr.*;
import org.apache.solr.client.solrj.*;

5-57

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

Oracl ePropertyGaph opg = Oracl ePropertyG aph. get I nst ance(
args, szGaphNane);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();

String szOPVFile = "../../datalconnections.opv";
String szOPEFile = "../../datal connections. ope";

/1 This object will handl e parallel data I oading
Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

String configNane = "opgconfig";
String solrServerUl = args[4];//"local host:2181/solr"
String sol rNodeSet = args[5]; //"local host: 8983 solr";

int zkTimeout = 15; // zookeeper timeout in seconds

int nunBhards = Integer.parselnt(args[6]); // nunber of shards in the index
int replicationFactor = 1; // replication factor

i nt maxShardsPerNode = 1; // maxi mum nurmber of shards per node

/] Create an automatic index using Sol rd oud
Oracl el ndexParanet ers i ndexParans =

Oracl el ndexPar anet ers. bui | dSol r (confi gNane,
solrServerUrl,

sol r NodeSet
zkTi meout /* zookeeper timeout in seconds */,
nunthar ds /* total nunber of shards */,

replicationFactor /* Replication factor */,
maxShar dsPer Node /* maxi mum nunber of shardsper node*/,

4 /* dop used for scan */,

10000 /* batch size before commt*/,

500000 /* commt size before SolrC oud commit*/,
15 /* wite tinmeout in seconds */

)s

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/] Create auto indexing on nane property for all vertices
Systemout.println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];

i ndexedKeys[0] =" nane";

i ndexedKeys[1] ="country";

opg. creat eKeyl ndex(i ndexedKeys, Vertex.class);

/] Get the Solrlndex object
Sol rI ndex<Vertex> i ndex = (Sol rlndex<Vertex>) opg.getAutol ndex(Vertex.class);

Il Search first for Key name with property val ue Beyon* using only string

//data types

String szQueryStrBey = index. buil dSearchTern("nane", "Beyo*", String.class);
String key = index. appendDat at ypesSuf fi xToKey("country", String.class);

String val ue = index. appendDat at ypesSuf fi xToVal ue("United States", String.class);

String szQueryStrCountry = key + ":" + val ue;
Sol rquery query = new Sol rQuery(szQueryStrBey + " AND " + szQueryStrCountry);

/1 Query using get operation
i ndex. get (query);

5-58

Chapter 5
Managing Text Indexing for Property Graph Data

/1 Open an array of connections to handle connections to Sol rC oud needed
[l for parallel text search
C oudSol r Server[] conns = new C oudSol r Server[dop];

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getd oudSolrServer(15 /* wite tineout in
secs*/);

}

/1 Iterate to cover all the shards in the index

long | Count = O;

for (int split =0; split < index.getTotal Shards();

split += conns.length) {

/1 CGets elenents fromsplit to split + conns.length

Iterabl e<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
query,

split /* start split ID*/);

| Count = countFromterables(iterAr); /* Consune iterables in parallel */

}

/1 Cose the connections to Sol Cloud after conpletion
for (int idx = 0; idx < conns.length; idx++) {
conns[i dx] . shut down();

}

/1 Count results
Systemout.println("Vertices found using parallel query: " + |Count);

5.5.10 Using Native Query Results on Text Indexes for Property Graph

Data

ORACLE

Using native query results directly into property graph data enables users to take full
advantage of the querying capabilities of the text search engine (Apache Lucene or
SolrCloud). This way, users can execute different type of queries (like Faceted
gueries) on the text engine and parse the retrieved results into vertices (or edges)
objects.

Using text searches with Query results will produce an It er abl e object holding all the
vertices (or edges) from the given result object. This approach will automatically rank
the results based on their result set order.

To execute the search queries directly into Apache Lucene or SolrCloud index, you
may need to consider the data type used by the key/value pair to be matched, as well
as the configuration of the search engine used. For more information about building a
search term, see Handling Data Types.

e Using Native Query Results with Apache Lucene

e Using Native Query Results with SolrCloud

Using Native Query Results with Apache Lucene

You can use native query results using Apache Lucene by calling the
method get (TopDocs) in Lucenel ndex. A TopDocs object provides a set of Documents
matching a text search query over a specific Apache Lucene directory. Lucenel ndex will

5-59

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

produce an I terabl e object holding all the vertices (or edges) from the documents
found in the TopDocs object.

Oracle property graph text indexes using Apache Lucene are created using multiple
Apache Lucene directories. Indexed vertices and edges are spread among the
directories to enhance storage scalability and query performance. If you need to
execute a query against all the data in the property graph’s text index, execute the
guery against each Apache Lucene directory. You can easily get the | ndexSear cher
object associated to a directory by using the API get Oracl eSearcher in Lucenel ndex.

The following code fragment generates an automatic text index using the Apache
Lucene Search engine, creates a Lucene Query and executes it against an

I ndexSear cher object to get a TopDocs object. Later, an |t er abl e object of vertices is
created from the given result object.

import oracle. pg.text.|ucene. Lucenel ndex;
i mport org.apache. | ucene. search. *;
i mport org.apache. | ucene.index. *;

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(
)5

/]l Create an automatic index

Oracl el ndexParanet ers indexParans = Oracl el ndexPar anet ers. bui | dFS(dop /* nunber of
directories */,

dop /* nunber of connections

used when indexing */,

10000 /* batch size before conmt*/,

500000 /* commt size before Lucene commt*/,

true /* enable datatypes */,

"./lucene-index" /* index location */);

opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/] Create auto indexing on nanme and country properties for all vertices
Systemout. println("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];

i ndexedKeys[0] =" nane";

i ndexedKeys[1] ="country";

opg. cr eat eKeyl ndex (i ndexedKeys, Vertex.class);

/1 Get the Lucenel ndex object
Lucenel ndex<Vert ex> index = (Lucenel ndex<Vertex>) opg.get Aut ol ndex(Vertex.cl ass);

/1 Search first for Key name with property val ue Beyon* using only string
//data types

Term term = index. bui | dSear chTer mObj ect ("nane", "Beyo*", String.class);
Query queryBey = new W dcardQuery(tern;

/1 Add another condition to query all the vertices whose country is

[/"United States"

String key = index. appendDat at ypesSuf fi xToKey("country", String.class);

String val ue = index.appendDat at ypesSuf fixToVal ue("United States", String.class);

Query queryCountry = new PhraseQuery();
StringTokeni zer st = new StringTokeni zer(val ue);
whil e (st.hasMreTokens()) {

queryCount ry. add(new Ter m(key, st.nextToken()));

B

5-60

ORACLE

Chapter 5
Managing Text Indexing for Property Graph Data

/I Concat enat e queries

Bool eanQuery bQuery = new Bool eanQuery();

bQuery. add(queryBey, Bool eanC ause. Cccur. MJST);
bQuery. add(queryCountry, Bool eanC ause. Cccur. MUST) ;

Il Get the IndexSearcher object needed to execute the query.
/1 The index searcher object is mapped to a single Apache Lucene directory
SearcherManager searcherMgr =

index.getOracleSearcherManager(0, true /* skip looking in the cache*/);
IndexSearcher indexSearcher = searcherhMgr.acquire();
// search for the first 1000 results in the current index directory 0
TopDocs docs = index.search(bQuery, 1000);

long ICount = 0;
Iterable<Vertex> it = index.get(docs);

while (it.hasNext()) {
Systemout. printin(it.next());
| Count ++;

}

Systemout. println("Vertices found: "+ | Count);

Using Native Query Results with SolrCloud

You can use native query results using SolrCloud by calling the

method get (Quer yResponse) in Sol r 1 ndex. A Quer yResponse object provides a set of
Documents matching a text search query over a specific Sol r 0 oud collection.

Sol r I ndex will produce an |t er abl e object holding all the vertices (or edges) from the
documents found in the Quer yResponse object.

The following code fragment generates an automatic text index using the Apache
SolrCloud Search engine, creates a Sol r Query object, and executes it against a

C oudSol r Server object to get a Quer yResponse object. Later, an |t er abl e object of
vertices is created from the given result object.

inmport oracle.pg.text.solr.*;
import org.apache.solr.client.solrj.*;

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nstance(
)5

String configNane = "opgconfig";
String solrServerUrl = args[4];//"local host:2181/sol r"
String sol rNodeSet = args[5]; //"local host: 8983 solr";

int zkTimeout = 15; // zookeeper timeout in seconds

int nunShards = Integer.parselnt(args[6]); // nunber of shards in the index
int replicationFactor = 1; // replication factor

i nt maxShardsPerNode = 1; // maxi mum nunber of shards per node

/] Create an automatic index using Sol rd oud
Oracl el ndexParanet ers i ndexParans =
Oracl el ndexPar anet er s. bui | dSol r (confi gNane,
sol rServer Url,

sol r NodeSet
zkTi meout [* zookeeper timeout in seconds */,
nunthar ds [* total number of shards */,

replicationFactor /* Replication factor */,
maxShar dsPer Node /* maxi mum nunber of shardsper node*/,

5-61

Chapter 5
Querying Property Graph Data Using PGQL

4 /* dop used for scan */,
10000 /* batch size before commt*/,
500000 /* commt size before SolrC oud comit*/,

15 /* wite tinmeout in seconds */

);
opg. set Def aul t | ndexPar anet er s(i ndexPar ans) ;

/] Create auto indexing on nane property for all vertices
Systemout.printIn("Create automatic index on name and country for vertices");
String[] indexedKeys = new String[2];

i ndexedKeys[0] =" nane";

i ndexedKeys[1] ="country";

opg. creat eKeyl ndex(i ndexedKeys, Vertex.class);

/1 Get the Solrlndex object
Sol rI ndex<Vertex> i ndex = (Sol rlndex<Vertex>) opg.get Aut ol ndex(Vertex.class);

Il Search first for Key name with property val ue Beyon* using only string

//data types

String szQueryStrBey = index. buil dSearchTern("nane", "Beyo*", String.class);
String key = index. appendDat at ypesSuf fi xToKey("country", String.class);

String val ue = index. appendDat at ypesSuf fi xToVal ue("United States", String.class);

String szQueryStrCountry = key + ":" + val ue;
Sol rquery query = new Sol rQuery(szQueryStrBey + " AND " + szQueryStrCountry);

CloudSolrServer conn = index.getCloudSolrServer(15 /* write timeout in
secs*/);

//Query using get operation
QueryResponse qr = conn.query(query, SolrRequest.METHOD.POST);
Iterable<Vertex> it = index.get(qr);

long I Count = 0;
while (it.hasNext()) {

Systemout.printIn(it.next());
| Count ++;

}

Systemout.printIn("Vertices found: "+ | Count);

5.6 Querying Property Graph Data Using PGQL

ORACLE

Oracle Big Data Spatial and Graph supports a rich set of graph pattern matching
capabilities.

It provides a SQL-like declarative language called PGQL (Property Graph Query
Language), which allows you to express a graph query pattern that consists of vertices
and edges, and constraints on the properties of the vertices and edges. For detailed
information, see the following:

» PGQL specification: https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-
specification.html

An example property graph query is as follows. It defines a graph pattern inspired by
the famous ancient proverb: The enemy of my enemy is my friend. In this example,
variables x, y, z are used for vertices, and variables el, e2 are used for edges. There is

5-62

https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-specification.html
https://docs.oracle.com/cd/E56133_01/latest/reference/pgql-specification.html

Chapter 5
Querying Property Graph Data Using PGQL

a constraint on the edge label, and the query returns (projects) the value of the nane
property of vertices x and y.

SELECT x.name, z.name
VWHERE
X -[el:"feuds']->y,
y -[e2:"feuds']-> z

For the preceding query to run successfully, set the required flags to read the edge
labels, in addition to vertex/edge properties, when constructing the in-memory graph.
An example graph configuration for Oracle NoSQL Database is as follows:

cfg =
G aphConfi gBui | der. set Name(...) -hasEdgelLabel(true).setlLoadEdgeLabel(true)
. addEdgeProperty(...).build();

You can run the query either in a Groovy shell environment or from Java. For example,
to run the preceding query from the Groovy shell for Apache HBase or Oracle NoSQL
Database, you can first read the graph from the database into the in-memory analyst,
get an in-memory graph, and invoke the queryPgql function.

/1 Read graph data from a backend database into nemory

/1 Note that opg is an instance of Oracl ePropertyG aph class
opg- hbase> G = session. readG aphWt hProperti es(opg.getConfig());
opg- hbase>

resultSet = G queryPgql("SELECT x.nane, z.name WHERE x -[el WTH | abel = 'feuds']->
y, Yy -[e2 WTH label = '"feuds']-> z")

To get the type and variable name of the first projected variable in the result set, you
can enter the following:

opg- hbase> resul t El ement = resul t El enents. get (0)
opg- hbase> type = resul t El enent. get El ement Type() // STRING
opg- hbase> var Name = resul t El enent. get VarName() // x.nane

You can also iterate over the result set. For example:

opg- hbase> resul t Set. get Resul ts().each { \
/] the variable "it" is inplicitly declared to references each Pgql Resul t
i nstance

}

Finally, you can display (print) results. For example, to display the first 10 rows:

opg- hbase> result Set. print(10) // print the first 10 results

¢ See Also:

Using Pattern-Matching Queries with Graphs for examples of using PGQL to
issue pattern-matching queries against in-memory graphs

ORACLE 5-63

Chapter 5
Using Apache Spark with Property Graph Data

5.7 Using Apache Spark with Property Graph Data

Apache Spark lets you process large amounts of data efficiently, and it comes with a
set of libraries for processing data: SQL, MLIlib, Spark Streaming, and DataFrames,
Apache Spark can read data from different sources, such as HDFS, Oracle NoSQL
Database, and Apache HBase.

A set of helper methods is provided for running Apache Spark jobs against graph data
stored in Oracle NoSQL Database or Apache HBase. This way, you can easily load a

graph into an Apache Spark-based application in order to query the information using

Spark SQL or to run functions provided in MLIib.

The interface SparkUti | sBase provides a set of methods to gather all the information of
a vertex (or edge) stored in the vertex and edge tables. This information includes a
vertex (or edge) identifier, its property names and values, as well as label, incoming
and outgoing vertices for edges only. SparkUi | s uses Spark version 1.6 (included in
CDH 5.7 and 5.9).

Spar kUt i | sBase includes the following methods to transform the data from the backend
tables into graph information:

* get GraphEl enent Repr OnDB(dbhj) : Obtains the database representation of a vertex
(or an edge) stored in a backend database.

e getEl enent | D(Object graphEl ement Repr OnDB) : Obtains the graph element (vertex or
edge) ID.

e getPropertyVal ue(Obj ect graphEl ement Repr OnDB, String key): Gets the property
value of a graph element for a given property key.

e getPropertyNames(Qbj ect graphEl ement Repr OnDB) : Returns the set of property names
from a given graph element representation from the back-end database.

e isH enentForVertex(Object graphEl ement Repr OnDB): Verifies if the given graph
element object obtained from a database result is a representation of a vertex.

e isH enent For Edge(Obj ect graphEl ement Repr OnDB) : Verifies if the given graph element
object obtained from a database result is a representation of a vertex.

e getInVertexl D(Cbject graphEl ement Repr OnDB) : Obtains the incoming vertex ID from
database representation of an edge.

e getQutVertexl D(Object graphEl ement Repr OnDB) : Obtains the outgoing vertex ID from
database representation of an edge.

e get EdgelLabel (Obj ect graphEl ement Repr OnDB) : Obtains the edge label from database
representation of an edge.

* Using Apache Spark with Property Graph Data in Apache HBase

* Integrating Apache Spark with Property Graph Data Stored in Oracle NoSQL
Database

5.7.1 Using Apache Spark with Property Graph Data in Apache HBase

The oracl e. pg. hbase. SparkUt i | s class includes methods to gather the information
about a vertex (or an edge) represented as a row in the <graph_name>VT. (or
<graph_name>GE.) tables stored in Apache HBase. In Apache HBase, when

ORACLE 5-64

ORACLE

Chapter 5
Using Apache Spark with Property Graph Data

scanning a table, each row has a corresponding
or g. apache. hadoop. hbase. cli ent. Resul t object.

To use SparkUtils to run an Apache Spark job against a property graph, you must first
load the graph data into two Apache Spark RDD objects. This requires you to create
sc, a Spark context of your application. The following example creates a Spark context
object:

import org. apache. spark. SparkCont ext . *;

i mport org. apache. spark. Spar kConf;

import org.apache. spark. api . j ava. JavaPai r RDD;

i nport org. apache. spark. api . j ava. JavaRDD;

i nport org. apache. spark. api . j ava. JavaSpar kCont ext ;

import oracle. pg. hbase. SparkUtils;

i mport org. apache. hadoop. hbase. client. Resul t;

i mport org. apache. hadoop. hbase. i 0. | mmut abl eByt esWi t abl e;
i mport org. apache. hadoop. hbase. HBaseConfi gurati on;

i mport org. apache. hadoop. hbase. mapr educe. Tabl el nput For mat ;
i mport org. apache. hadoop. conf. Confi gurati on;

Spar kCont ext sc = new Spar kCont ext (new Spar kConf (). set AppNane(" Exanpl e")
.set Master ("spark://local host:
7077"));

Using this context, you can easily get an RDD out of a Hadoop file by invoking the
newAPl HadoopRDD method. To do so, you must first create the Hadoop Configuration
objects to access the vertices and edges tables stored in Apache HBase. A
Configuration object specifies the parameters used to connect to Apache HBase, such
as the Zookeeper quorum, Zookeper Client port, and table name. This Configuration
object is used by the newAPI HadoopRDD together with the | nput For rat and the classes of
its keys and values. The result of this method will be an RDD of type

RDD[(| nut abl eByt esWitable, Result)].

The following example creates a Configuration object to connect to Apache HBase

and read the vertex table of the graph. Assume that soci al Net VT. is the name of the
Apache HBase table containing information about the vertices of a graph. Later you
will use this configuration to get an RDD from the vertex table:

Configuration hBaseConfVertices = HBaseConfiguration.create();

hBaseConf Verti ces. set (Tabl el nput For mat . | NPUT_TABLE, "soci al Net VT.")
hBaseConf Verti ces. set ("hbase. zookeeper. quorunt’, "node041, node042, node043")
hBaseConf Verti ces. set ("hbase. zookeeper. port", "2181")

JavaPai r RDD<I mut abl eByt esWit abl e, Resul t > byt esResul t Vertices =
sc. newAPl HadoopRDD(hBaseConf Verti ces,
Tabl el nput For nat . cl ass,
| mut abl eByt esWi t abl e. cl ass,
Resul t. cl ass)

Similarly, the following example creates a Configuration object to connect to the edge
table stored in Apache HBase and get an RDD for the table's rows. Note that
socialNetGE. is the name of the table containing the edges definition.

Configuration hBaseConf Edges = HBaseConfiguration.create();

hBaseConf Edges. set (Tabl el nput For mat . | NPUT_TABLE, "soci al Net GE.")
hBaseConf Edges. set (" hbase. zookeeper . quoruni, "node041, node042, node043")
hBaseConf Edges. set ("hbase. zookeeper. port", "2181")

JavaPai r RDD<I mmut abl eByt esW it abl e, Resul t > byt esResul t Edges =
sc. newAPl HadoopRDD(hbaseConf Edges,

5-65

ORACLE

Chapter 5
Using Apache Spark with Property Graph Data

Tabl el nput For mat . cl ass,
| mut abl eByt esWi t abl e. cl ass,
Resul t. cl ass)

Each Result object contains the attributes of each node and edge of graph, so you
must apply some transformation to these RDDs in order to extract that information.
oracl e. pg. hbase. SparkU i | s implements several methods that help you define such
transformations.

For example, you can define transformations extracting each vertex attribute value
from a Result object to create an object instance of MyVert ex, a Java bean class storing
ID and name of a vertex. The following example defines method res2vertex that uses
Spar kUil s for extracting the identifier and name key/value pairs from a given Result
object representing a vertex.

public static M/Vertex res2vertex(Result res) throws Exception

{
SparkUils su = SparkUils. getlnstance();

oj ect dbRepr = su. get G aphEl ement Repr OnDB(r es) ;

long id = su.getEl ement!|d(dbRepr);

String name = (String)su.getPropertyVal ue(dbRepr, "nane");
return new M/Vertex(id, nane);

}

The method get G aphEl enet Repr OnDB returns a graph element representation stored in
Apache HBase and throws an |11 egal Argunent Except i on exception if its parameter is
null or a non-instance of corresponding class. This representation is database specific
(available only on Apache HBase) and the return value should only be consumed by
other APIs defined in the interface. For the case of Apache HBase, dbRepr is a non-null
instance of Resul t class. Once you have a database representation object, you can
pass it as a parameter of any of the other methods defined in the interface.

The method get El enent | d returns the ID of a vertex and method get Proper t yVval ue
retrieves attribute value nanme from object dbRepr. . Exceptions | OExcepti on and
java. text. ParseExcepti on are thrown if incorrect parameters are passed in.

The following example defines a method res2edge that uses SparkU i | s to extract the
identifier, label, and incoming/outgoing vertices from a given Result object
representing an edge.

public static MyEdge res2Edge(Result res) throws Exception
{
SparkUils su = SparkUils. getlnstance();
oj ect dbRepr = su. get GraphEl ement Repr OnDB(r es) ;
long row d su. get El enent | d(dbRepr);
String |abel (String)su.get EdgeLabel (dbRepr);
long inVertex = (long)su.getlnVertexld(dbRepr);
I ong outVertex = (Iong)su.getQutVertexld(dbRepr);
return new MyEdge(row d,inVertex, out Vertex, | abel);

}

Once you have these transformations, you can map them on the values set of
byt esResul t Verti ces and byt esResul t Edges. For example:

JavaRDD<Resul t> resul t Verti cesRDD = byt esResul t. val ues();

JavaRDD<Vert ex> nodesRDD = resul t VerticesRDD. map(result ->
MyConverters.res2vertex(result));

JavaRDD<Resul t > resul t EdgesRDD = byt esResul t Edges. val ues();

JavaRDD<Edge> edgesRDD = resul t EdgesRDD. map(result -> MyConverters.res2Edge(result));

5-66

Chapter 5
Using Apache Spark with Property Graph Data

In your Spark application, you can then start working on nodesRDD and edgesRDD.
For example, you can create corresponding data frames to execute a Spark SQL
guery. The following example creates a SQL Context, gets two data frames from the
nodesRDD and edgesRDD, and runs a query to get all friends of a vertex with ID 1:

SQ.Context sgl Ctx = new SQ.Context(sc);
Dat aFrane verticesDF = sql Ctx. creat eDat aFrane(verti cesRDD);
verticesDF.registerTenpTabl e(" VERTI CES_TABLE") ;

Dat aFrane edgesDF = sql Ct x. cr eat eDat aFr ane(edgesRDD) ;
edgesDF. regi st er TenpTabl e(" EDGES_TABLE") ;

sgl Gt x.sql ("sel ect nane from (select target from EDGES TABLE WHERE source = 1)
REACHABLE
left join VERTI CES_TABLE on VERTI CES TABLE.id = REACHABLE.target ").show();

Note that case classes MyVert ex and MyEdge play an important role here because Spark
uses them to find the data frame’s column names.

In addition to reading out graph data directly from Apache HBase and performing
operations on the graph in Apache Spark, you can use the in-memory analyst to
analyze graph data in Apache Spark, as explained in Using the In-Memory Analyst to
Analyze Graph Data in Apache Spark.

5.7.2 Integrating Apache Spark with Property Graph Data Stored in
Oracle NoSQL Database

ORACLE

The oracl e. pg. nosql . SparkUt i | s class includes methods to gather the information of a
vertex (or an edge) represented as a row in the <graph_name>VT_ (or
<graph_name>GE_) tables stored in Oracle NoSQL Database. In Oracle NoSQL
Database, when a table is scanned, each row in the table has a corresponding
oracle.kv.table.Row object.

To use SparkUtils to run an Apache Spark job against a property graph, you must first
load the graph data into two Apache Spark RDD objects. This requires you to create
sc, a Spark context of your application. The following example describes how to create
a Spark context object:

inport java.io.*;

i mport org. apache. spark. SparkCont ext . *;

i mport org. apache. spark. sgl . SQ.Cont ext ;

i mport org. apache. spark. Spar kConf ;

i mport org.apache. spark. api . j ava. JavaPai r RDD;

i mport org. apache. spark. api . j ava. JavaRDD;

i mport org. apache. spark. api . j ava. JavaSpar kCont ext ;
i mport org. apache. spark. sql . Dat aFr ane;

i mport oracl e. kv. hadoop. t abl e. Tabl el nput For mat ;
import oracle.kv.tabl e. PrimryKey;

import oracle.kv.tabl e. Row,

i mport org. apache. hadoop. conf. Confi gurati on;

Spar kConf sparkConf = new SparkConf (). set AppNanme(" Test i ng
SparkUtils").setMster(“local”);

JavaSpar kCont ext sc = new JavaSpar kCont ext (spar kConf) ;

Using this context, you can easily get an RDD out of a Hadoop file by invoking the
newAPl HadoopRDD method. To create RDDs, you must first create the Hadoop

5-67

ORACLE

Chapter 5
Using Apache Spark with Property Graph Data

Configuration objects to access the vertices and edges tables stored in Oracle NoSQL
Database. This Configuration object is used by the newAPI HadoopRDD together with the

I nput For mat and the classes of its keys and values. The result of this method will be an
RDD of type RO (Pri maryKey, Row)].

The following example creates a Configuration object to connect to Oracle NoSQL
Database and read the vertex table of the graph. Assume that soci al Net VT_is the
name of the table containing the vertices information of a graph. Later, you will use this
configuration to get an RDD from the vertex table.

Configuration noSQLNodeConf = new Configuration();
noSQ.NodeConf . set ("oracl e. kv. kvstore", "kvstore");
noSQ.NodeConf . set ("oracl e. kv. t abl eNane", “social NetVT_");
noSQ.NodeConf . set ("oracl e. kv. hosts", "l ocal host:5000");

Similarly, the following example creates a Configuration object to connect to the edge
table stored in Oracle NoSQL Database and get an RDD for the table's rows. Note that
soci al Net GE_ is the name of the table containing the edges data.

Configuration noSQLEdgeConf = new Configuration();
noSQLEdgeConf . set ("oracl e. kv. kvstore", "kvstore");
noSQLEdgeConf . set ("oracl e. kv. t abl eName", “social NetGE_");
noSQLEdgeConf . set ("oracl e. kv. hosts", "l ocal host:5000");

JavaPai r RDD<Pri mar yKey, Row> byt esResul t Vertices = sc. newAPl HadoopRDD(noSQ.NodeConf ,
oracl e. kv. hadoop. t abl e. Tabl el nput For mat . cl ass, Pri maryKey. cl ass,
Row. cl ass);

JavaPai r RDD<Pri mar yKey, Row> byt esResul t Edges = sc. newAPl HadoopRDD(noSQLEdgeConf ,
oracl e. kv. hadoop. t abl e. Tabl el nput For mat . cl ass,
Pri maryKey. cl ass, Row.cl ass);

Because a Row object may contain one or multiple attributes of a vertex or an edge of
the graph, you must apply some transformations to these RDDs in order to get the
relevant information out. oracl e. pg. nosql . SparkU il s implements several methods that
help you define such transformations.

For example, you can define a transformation that extracts vertex property values from
a Result object and creates an object instance of MyVert ex, a Java bean class storing
the ID and name of a vertex. The following example defines the method res2vert ex
that uses SparkU i | s for extracting the identifier and name key/value pairs from a given
Row object representing a vertex.

public static M/Vertex res2vertex(Row res) throws Exception

{
SparkUils su = SparkUtils. getlnstance();
(oj ect dbRepr = su. get G aphEl ement Repr OnDB(r es) ;
long id = su.getEl enent!d(dbRepr);
String name = (String)su.getPropertyVal ue(dbRepr, "nane");
return new MyVertex(id, name);
}

The method get G aphEl emet Repr OnDB returns a graph element representation stored in
Oracle NoSQL Database and throws an |1 | egal Argunent Except i on exception in case its
parameter is null or a non-instance of a corresponding class. This representation is
database-specific, and the return value should only be consumed by other APIs
defined in the interface. For Oracle NoSQL Database, dbRepr is a non-null instance of
the Row class. After you have a database representation object, you can pass it as a
parameter of any of the other methods defined in the interface.

5-68

Chapter 5
Support for Secure Oracle NoSQL Database

The method get El enent | d returns the ID of a vertex, and the method get Propert yVval ue
retrieves attribute value “name” from object dbRepr. Exceptions | CExcepti on and
java. text. ParseExcepti on are thrown when incorrect parameters are passed in.

Similarly, you can define a transformation to create an object instance of MEdge from a
Row object, using a Java bean class that stores the ID, label, and incoming/outgoing
vertices ID values. The following example defines a method r es2edge that uses

Spar kUil s to extract the identifier, label and in/out vertex IDs from a given Row object
representing an edge.

public static MyEdge res2Edge(Row res) throws Exception

{
SparkUils su = SparkUils.getlnstance();
oj ect dbRepr = su. get GraphEl ement Repr OnDB(r es) ;
long row d = su. get El enent | d(dbRepr);
String label = (String)su.getEdgelLabel (dbRepr);
long inVertex = (long)su.getlnVertexld(dbRepr);
I ong outVertex = (Iong)su.getQutVertexld(dbRepr);
return new MyEdge(row d,inVertex, out Vertex, | abel);
}

After you have these transformations, you can map them on the values set of
byt esResul t Verti ces and byt esResul t Edges:

JavaRDD<Row> resul t VerticesRDD = bytesResul t.val ues();

JavaRDD<Vert ex> nodesRDD = resul t Verti cesRDD. map(result ->
MyConverters.res2vertex(result));

JavaRDD<Row> resul t EdgesRDD = byt esResul t Edges. val ues();

JavaRDD<Edge> edgesRDD = resul t EdgesRDD. map(result -> MyConverters.res2Edge(result));

After the preceding steps, you can start working on nodesRDD and edgesRDD. For
example, you can create corresponding data frames to execute Spark SQL queries.
The following example creates a SQL Context, gets two data frames from the nodesRDD
and edgesRDD, and runs a query to get all friends of a vertex with ID 1:

SQ Context sgl Gt x = new SQ.Cont ext (sc);
Dat aFrane verticesDF = sql Ctx. creat eDat aFrame(verti cesRDD);
verticesDF. register TenpTabl e(" VERTI CES_TABLE");

Dat aFrane edgesDF = sql Ct x. cr eat eDat aFr ame(edgesRDD) ;
edgesDF. regi st er TenpTabl e(" EDGES_TABLE");

sql Ctx.sql ("select name from (select target from EDGES TABLE WHERE source = 1)
REACHABLE
left join VERTI CES _TABLE on VERTI CES TABLE.id = REACHABLE.target ").show();

Note that case classes MyVert ex and MyEdge play an important role here, because
Spark uses them in order to determine the data frame’s column names.

In addition to reading out graph data directly from Oracle NoSQL Database and
performing operations on the graph in Apache Spark, you can use the in-memory
analyst to analyze graph data in Apache Spark, as explained in Using the In-Memory
Analyst to Analyze Graph Data in Apache Spark.

5.8 Support for Secure Oracle NoSQL Database

Oracle Big Data Spatial and Graph property graph support works with both secure and
non-secure Oracle NoSQL Database installations. This topic provides information

ORACLE 5-69

ORACLE

Chapter 5
Support for Secure Oracle NoSQL Database

about how to use property graph functions with a secure Oracle NoSQL Database
setup.

It assumes that a secure Oracle NoSQL Database is already installed (a process
explained in "Performing a Secure Oracle NoSQL Database Installation” in the Oracle
NoSQL Database Security Guide at http://docs. oracl e. com cd/ NOSQL/ ht mi /
SecurityQui de/ secure_installation. htnl).

You must have the correct credentials to access the secure database. Create a user
such as the following:

kv-> plan create-user -nane nmyusername -admin -wait

Grant this user the readw it e and dbaadnmi n roles. For example:

kv-> plan grant -user nyusernane -role readwite -wait
kv-> plan grant -user nyusername -role dbadnmin -wait

When generating the | ogi n_properties. txt from the file client. security, make sure
the user name is correct. For example:

oracl e. kv. aut h. user name=nyuser nane

On Oracle property graph client side, you must have the security-related files and
libraries to interact with the secure Oracle NoSQL Database. First, copy these files (or
directories) from KVROOT/ security/ to the client side:

client.security
client.trust

| ogin.wallet/

| ogi n_properties.txt

If Oracle Walllet is used to hold passwords that are needed for accessing the secure
database, copy these three libraries to the client side and set the class path correctly:

oracl epki.jar
osdt _cert.jar
osdt _core.jar

After configuring the database and Oracle property graph client side correctly, you can
connect to a graph stored in Secure NoSQL Database using either one of the following
two approaches.

» Specify the login properties file, using a Java VM setting with the following format:

-Doracl e. kv. security=/<your-path>/1ogin_properties.txt

You can also set this Java VM property for applications deployed into a J2EE
container (including in-memory analytics). For example, before starting WebLogic
Server, you can set an environment variable in the following format to refer to the
login properties configuration file:

setenv JAVA OPTI ONS "-Doracl e. kv. securi ty=/ <your - pat h>/| ogi n_properties.txt"

Then you can call O acl ePropert yG aph. get | nst ance(kconfi g, szG aphNane) as
usual to create an Oracl ePropert yG aph instance.

e Call Oracl ePropertyG aph. get| nstance(kconfig, szG aphNane, usernanme, password,
truStoreFile), where user nane and passwor d are the correct credentials to access
secure Oracle NoSQL Database, and truSt or eFi | e is the path to the client side
trust store file client.trust.

5-70

http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html
http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

The following code fragment creates a property graph in a Secure Oracle NoSQL
Database, loads the data, and then counts how many vertices and edges in the
graph:

/1 This object will handle operations over the property graph
Oracl ePropertyG aph opg = Oracl ePropertyG aph. get I nst ance(kconfi g,
szG aphNane,

user nane,

passwor d,

truStoreFile);

/1 Cear existing vertices/edges in the property graph
opg. cl ear Reposi tory();
opg. set QueueSi ze(100); // 100 el ements

String szOPVFile = "../../datalconnections.opv";

String szOPEFile = "../../datal connections. ope";

/1 This object will handle parallel data |oading over the property graph
Systemout.printIn("Load data for graph " + szG aphNane);
Oracl ePropertyG aphDat aLoader opgdl =

Oracl ePropert yG aphDat aLoader . get | nst ance() ;

opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

/1 Count all vertices

long countV = 0;

Iterator<Vertex> vertices = opg.getVertices().iterator();
while (vertices.hasNext()) {

vertices.next();

count V++;

}

Systemout. printIn("Vertices found: " + countV);
/1 Count all edges

long countE = 0;

I terator<Edge> edges = opg. get Edges().iterator();
whi | e (edges. hasNext()) {

edges. next();

count E++;

}

Systemout. println("Edges found: " + countE);

5.9 Implementing Security on Graphs Stored in Apache

HBase

ORACLE

Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

Oracle's property graph support works with both secure and non-secure Cloudera
Hadoop (CDH) cluster installations. This topic provides information about secure
Apache HBase installations.

Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

This topic assumes that a secure Apache HBase is already configured with Kerberos,
that the client machine has the Kerberos libraries installed and that you have the
correct credentials. For detailed information, see "Configuring Kerberos Authentication
for HBase" at: htt p: // ww. cl ouder a. conf cont ent/ ¢l ouder a/ en/ docunent at i on/ cor e/

5-71

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html

ORACLE

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

| atest/topi cs/ cdh_sg_hbase_aut henti cation. ht m . For information about how to set up
your Kerberos cluster and clients, see the MIT Kerberos Documentation at http: //
web. m t. edu/ ker ber os/ kr b5-1 at est/doc/ i ndex. ht m .

On the client side, you must have a Kerberos credential to interact with the Kerberos-
enabled HDFS daemons. Additionally, you need to modify the Kerberos configuration
information (located in kr b5. conf) to include the realm and mappings of hostnames
onto Kerberos realms used in the Secure CDH Cluster.

The following code fragment shows the realm and hostname mapping used in a
Secure CDH cluster on BDA.COM:

[l'i bdefaul ts]

defaul t _real m = EXAMPLE. COM
dns_| ookup_real m = fal se
dns_| ookup_kdc = fal se
ticket _|ifetine = 24h

renew |ifetime = 7d
forwardabl e = yes

[real ns]

EXAVPLE. COM = {

kdc = host nanel. exanpl e. com 88

kdc = host nane2. exanpl e. com 88
adm n_server = hostnamel. exanpl e. com 749
defaul t _domai n = exanpl e. com

}

BDA.COM = {

kdc = hostnamel.bda.com:88

kdc = hostname2.bda.com:88
admin_server = hostnamel.bda.com:749
default_domain = bda.com

}

[domain_real nj

. exanpl e. com = EXAVPLE. COM
exanpl e. com = EXAMPLE. COM
.bda.com = BDA.COM

bda.com = BDA.COM

After modifying kr b5. conf, you can connect to a graph stored in Apache HBase by
using a Java Authentication and Authorization Service (JAAS) configuration file to
provide your credentials to the application. This provides the same capabilities of the
preceding example without having to modify a single line of your code in case you
already have an application that uses an insecure Apache HBase installation.

To use property graph support for for HBase with a JAAS configuration, create a file
with content in the following form, replacing the keyt ab and pri nci pal entries with your
own information:

Cient {

com sun. security. aut h. nodul e. Krb5Logi nMobdul e required

useKeyTab=t rue

useTi cket Cache=true

keyTab="/pat h/t o/ your/keyt ab/ user. keyt ab"

princi pal ="your-user/your.fully.qualified.domain. name@OUR. REALM';

b

The following code fragment shows an example JAAS file with the realm used in a
Secure CDH cluster on BDA.COM:

5-72

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html

ORACLE

Chapter 5
Implementing Security on Graphs Stored in Apache HBase

Cient {

com sun. security. auth. nodul e. Krb5Logi nMbdul e required
useKeyTab=t rue

useTi cket Cache=true

keyTab="/ pat h/ t o/ keyt ab/ user . keyt ab"

princi pal ="hbaseuser/ host name1@DA. COM';

¥

In order to run your Secure HBase application you must specify the JAAS
configuration file you created by using the java.security.auth.login.config flag. You can
run your application using a command in the following format:

java -Djava.security.auth.login.config=/path/to/your/jaas.conf/ -classpath ./
classes/:../../lib/"*" YourJavaApplication

Then, you can call O acl ePropertyG aph. get I nstance(conf, hconn, szG aphNane) as
usual to create an Oracle property graph.

Another option to use the Oracle Big Data Spatial and Graph property graph support
on a secure Apache HBase installation is to use a secure HBase configuration. The
following code fragment shows how to obtain a secure HBase configuration using
prepareSecureConfig(). This API requires the security authentication setting used in
Apache Hadoop and Apache HBase, as well as Kerberos credentials set to
authenticate and obtain an authorized ticket.

The following code fragment creates a property graph in a Secure Apache HBase,
loads the data, and then counts how many vertices and edges in the graph.

String szQuorunv "host nanel, host nane2, host nane3";
String szCiPort = "2181";
String szGaph = "SecureG aph";

String hbaseSecAuth="kerberos";

String hadoopSecAuth="kerberos";

String hmKerberosPrincipal="hbase/_HOST@BDA.COM";
String rsKerberosPrincipal="hbase/_HOST@BDA.COM";
String userPrincipal = "hbase/hostnamel@BDA.COM";
String keytab= "/path/to/your/keytab/hbase.keytab";
int dop= 8;

Configuration conf = HBaseConfiguration.create();
conf. set ("hbase. zookeeper. quorunt, szQuorunj;
conf. set ("hbase. zookeeper. property.clientPort", szCQiPort);

/'l Prepare the secure configuration providing the credentials in the keytab
conf = Oracl ePropertyG aph. prepareSecur eConfi g(conf,

hbaseSecAut h,

hadoopSecAut h,

hnKer ber osPri nci pal ,

r sKer ber osPri nci pal ,

user Princi pal ,

keyt ab);
HConnection hconn = HConnect i onManager . cr eat eConnect i on(conf);

Oracl ePropertyG aph opg=0racl ePropertyG aph. getl nstance(conf, hconn, szG aph);
opg. set I nitial NunmRegi ons(24);
opg. cl ear Repository();

String szOPVFile
String szOPEFile

“..l../datal connections.opv";
“..l../datal connections.ope";

5-73

Chapter 5
Using the Groovy Shell with Property Graph Data

/1 Do a parallel data |oading

Oracl ePropertyG aphDat aLoader opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
opgd! . | oadDat a(opg, szOPVFile, szOPEFile, dop);

opg. comit ();

5.10 Using the Groovy Shell with Property Graph Data

ORACLE

The Oracle Big Data Spatial and Graph property graph support includes a built-in
Groovy shell (based on the original Gremlin Groovy shell script). With this command-
line shell interface, you can explore the Java APIs.

To start the Groovy shell, go to the dal / groovy directory under the installation home
(/ opt/oracl e/ oracl e-spati al - graph/ property_graph by default). For example:

cd /opt/oracl e/ oracl e-spatial - graph/ property_graph/ dal / groovy/

Included are the scripts gren i n-opg- nosql . sh and greni i n- opg- hbase. sh, for connecting
to an Oracle NoSQL Database and an Apache HBase, respectively.

" Note:

To run some gremlin traversal examples, you must first do the following
import operation:

i mport comtinkerpop. pipes.util.structures.*;

The following example connects to an Oracle NoSQL Database, gets an instance of
Or acl ePropert yG aph with graph name nyG aph, loads some example graph data, and
gets the list of vertices and edges.

$./gremlin-opg-nosql.sh

opg- nosql >
opg- nosql > hhosts = new String[1];
==>nul |

opg- nosql > hhosts[0] = "bigdatalite:5000";
==>hi gdat al i t e: 5000

opg- nosql > cfg =

GraphConfi gBui | der. f or PropertyG aphNosql (). set Name(" nmyG aph") . set Host s(Arrays. asLi st (
hhosts)). set St oreNane(" nyst ore"). addedgeProperty("lbl", PropertyType. STRING

"I bl").addEdgeProperty("wei ght", PropertyType. DOUBLE, "1000000").build();

==>{"db_engi ne": "NOSQL", "l oading": {},"format": "pg", "name": "nyG aph", "error_handling":
{},"hosts":["bigdatalite:5000"],"node_props":[],"store_nanme":"nystore", "edge_props":
[{"type":"string","name":"Ibl", "default":"Ihbl"},

{"type": "doubl e", "nane": "wei ght", "defaul t":"1000000"}]}

opg- nosql > opg = Oracl ePropertyG aph. get I nstance(cfg);
==>or acl epropertygraph with name nmyG aph

opg- nosql > opgdl = Oracl ePropertyG aphDat aLoader. get | nstance();
==>or acl e. pg. nosql . Oracl ePropert yG aphDat aLoader @76f 1cad

opg- nosql > opgdl . | oadDat a(opg, new Fil el nputStreanm("../../data/connections.opv"),
new FilelnputStream("../../datal/connections.ope"), 1, 1, 0, null);

5-74

ORACLE

Chapter 5
Using the Groovy Shell with Property Graph Data

==>nul |

opg- nosql > opg. get Vertices();

==>Vertex ID 5 {country:str:Italy, name:str:Pope Francis, occupation:str:pope,
religion:str:Catholicism role:str:Catholic religion authority}

[... other output lines omtted for brevity ...]

opg-nosql > opg. get Edges();

==>Edge |1 D 1139 from Vertex ID 64 {country:str:United States, nane:str:Jeff Bezos,
occupation: str:business man} =[|eads]=> Vertex ID 37 {country:str:United States,
nane: str: Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]

[... other output lines omtted for brevity ...]

The following example customizes several configuration parameters for in-memory
analytics. It connects to an Apache HBase, gets an instance of O acl ePropert yG aph
with graph name nyG aph, loads some example graph data, gets the list of vertices and
edges, gets an in-memory analyst, and execute one of the built-in analytics, triangle
counting.

$./gremlin-opg-hbase.sh

opg- hbase>

opg- hbase> dop=2; // degree of parallelism

==>2

opg- hbase> conf Pgx = new HashMap<PgxConfi g. Field, Object>();

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. ENABLE_GM COVPI LER, fal se);
==>nul |

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_| O, dop + 2);
==>nul |

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_ANALYSI S, 3);
==>nul |

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. NUM WORKERS_FAST_TRACK_ANALYSI S, 2);
==>nul |

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_TASK_TI MEQUT_SECS, 0);
==>nul |

opg- hbase> conf Pgx. put (PgxConfi g. Fi el d. SESSI ON_| DLE_TI MEQUT_SECS, 0);
==>nul |

opg- hbase> instance = Pgx. getlnstance()

==>nul |

opg- hbase> instance. st art Engi ne(conf Pgx)

==>nul |

opg- hbase> cfg =

G aphConfi gBui | der. f or PropertyG aphHbase() .setNanme("nyG aph") .setzZkQuorun("bi gdat al
ite") .setzkClientPort(iCientPort) .setZzkSessionTimeout(60000) .setMaxNumConnection
s(dop) .setLoadEdgeLabel (true) .setSplitsPerRegion(1l) .addEdgeProperty("lbl",
PropertyType. STRING "I bl") .addEdgeProperty("weight", PropertyType. DOUBLE,
"1000000") . build();

==>{"splits_per_region":1, "mx_num connections": 2, "node_props":

[],"format":"pg","| oad_edge_| abel ":true, "name": "nyG aph","zk_client_port":

2181, " zk_quoruni: "bi gdatal i te", "edge_props":

[{"type":"string","default":"Ibl", "name":"[bl"},

{"type": "doubl e", "defaul t":"1000000", "nanme": "wei ght"}], "l oading":{}, "error_handling":
{},"zk_session_tineout": 60000, "db_engi ne": " HBASE"}

opg- hbase> opg = Oracl ePropertyG aph. get I nstance(cfg);
==>or acl epropertygraph with name nmyG aph

opg- hbase> opgdl = Oracl ePropertyG aphDat aLoader . get | nstance();
==>or acl e. pg. hbase. Or acl ePr opert yG aphDat aLoader @451289b

5-75

Chapter 5
REST Support for Property Graph Data

opg- hbase> opgdl . | oadData(opg, "../../datalconnections.opv", "../../datal
connections.ope", 1, 1, 0, null);
==>nul |

opg- hbase> opg. get Vertices();
==>\ertex ID 78 {country:str:United States, nane:str:Hosain Rahman,
occupation: str: CEO of Jawbone}

opg- hbase> opg. get Edges() ;

==>Edge |1 D 1139 from Vertex |ID 64 {country:str:United States, nane:str:Jeff Bezos,
occupation: str:business man} =[|eads]=> Vertex |D 37 {country:str:United States,
nane: str: Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]

[... other output lines omtted for brevity ...]

opg- hbase> session = Pgx. creat eSessi on("session-id-1");
opg- hbase> g = session.readG aphWthProperties(cfg);
opg- hbase> anal yst = sessi on. creat eAnal yst ();

opg- hbase> triangles = anal yst.countTriangl es(false).get();
==>22

For detailed information about the Java APls, see the Javadoc reference information in
doc/ dal / and doc/ pgx/ under the installation home (/ opt/ or acl e/ or acl e- spat i al - gr aph/
property_graph/ by default).

5.11 REST Support for Property Graph Data

A set of RESTful APIs exposes the Data Access Layer Java APIs through HTTP/
REST protocols.

These RESTful APIs provide support to create, update, query, and traverse a property
graph, as well as to execute text search queries, perform graph traversal queries using
gremlin, and handle graphs from multiple database back ends, such as Oracle NoSQL
Database and Apache HBase.

The following topics explain how to create a RESTful Web service for Oracle Big Data
Spatial and Graph property graph support using the REST APIs included in the Data
Access Layer (DAL). The service can later on be deployed either on Apache Tomcat
or Oracle WebLogic Server (12c Release 2 or later).

e Building the REST Web Application Archive (WAR) File
* Deploying the RESTful Property Graph Web Service
* Property Graph REST API Operations Information

5.11.1 Building the REST Web Application Archive (WAR) File

ORACLE

This topic describes how to create a Web Application Archive (WAR) file for Oracle Big
Data Spatial and Graph to use the RESTful APIs for property graphs.

1. Go to the webapp directory under the product home directory.
cd /opt/oracl e/ oracl e-spatial - graph/ property_graph/ dal / webapp

2. Setthe HTTP_PROXY environment variable (if required) in order to allow
downloading the third party libraries from the available maven repositories. For
example:

5-76

ORACLE

Chapter 5
REST Support for Property Graph Data

setenv HTTP_PROXY ww« nyproxy. com 80
export HTTP_PROXY=ww\ nypr oxy. com 80

Download the third party libraries required by the RESTful APIs by running the
script fetch_required_libraries. sh.

Specify the directory where the third party libraries will be stored. If the directory
does not exist, the directory will be created automatically. For example:

Pl ease enter the directory name where the REST third party libraries will be
stored (e.g. /tnp/extlib-unified-rest): /tmp/extlib-unified-rest

The script will list out a set of progress details when the directory is created and
each third party library is downloaded. At the end of the script, a message similar
to the following will be shown:

Done. The final downloaded jars are in the follow ng directory:

-rwr--r-- 1 user group 305001 Aug 21 2007 commons-httpclient-3.1.jar
-rwr--r-- 1 user group 46509 Mar 20 2013 gremin-java-2.3.0.jar

-rwr--r-- 1 user group 30226 Oct 13 2016 jackson-jaxrs-base-2.8.4.jar
-rwr--r-- 1 user group 15807 Cct 13 2016 jackson-jaxrs-json-
provider-2.8.4.jar

-rwr--r-- 1 user group 34589 Cct 13 2016 jackson-modul e-j axb-

annot ations-2.8.4.jar

-rwr--r-- 1 user group 69940 Jan 19 2017 jersey-entity-filtering-2.25.1.jar
-rwr--r-- 1 user group 21691 Jan 19 2017 jersey-nedia-json-
jackson-2.25.1.jar

-rwr--r-- 1 user group 67859 Jan 19 2017 jersey-nedia-multipart-2.25.1.jar
-rwr--r-- 1 user group 63977 Jul 17 2015 nminmepull-1.9.6.jar

-rwr--r-- 1 user group 41473 Mar 20 2013 rexster-core-2.3.0.jar

-rwr--r-- 1 user group 81352 Mar 20 2013 rexster-protocol-2.3.0.jar
-rwr--r-- 1 user group 712325 Mar 20 2013 rexster-server-2.3.0.jar

Create the RESTFul Web Application archive by running the script
assermbl e_unified rest. sh.

sh assenbl e_unified_rest.sh

Specify a temporary directory to be used to build the opg_uni fi ed. war. For
example:

Pl ease enter a tenporary work directory nanme (e.g. /tnp/work_unified): /tmp/
work_unified

The script will use this directory to create a temporary work directory using the
system’s current date (MMDDhhmmss) to hold all the intermediate files required to
build the RESTful web application archive. These include the RESTful APIs, third
party libraries, and REST configurations. Note that you must ensure that directory
can be created and be used to hold these intermediate files.

Is it OKto use /tnp/work_unified/ 0823150126 to hold sone internediate files?
(Yes| No): Yes

Specify the product home directory. For example:

Move on. ..

Pl ease enter the directory name to property graph directory (e.g. /opt/oracle/
oracl e-spati al - graph/ property_graph): /opt/oracle/oracle-spatial-graph/
property_graph

opt/oracl e/ oracl e-spatial - graph/ property_graph seens to be valid

Specify the directory holding the RESTful third party libraries.

5-77

Chapter 5
REST Support for Property Graph Data

This is the directory that you previously specified. For example: /tnp/ext!li b-
uni fied-rest

After setting up the required directories, the script will update the REST APIs and
configure the REST web application archive using Jersey. At the end of the
process, a message will be printed out with the final size and location of the
generated war file. For example:

assed sanity checking.

Updating rest |logic

Updating the web application

Done. The final web application is

-rwr--r-- 1 user group 108219486 Aug 24 08:59 /tmp/work_unified/0823150126/
opg_unified.war

Note that the timestamp-based temporary directory name (0823150126/ in this
example) that is created will be different when you perform the steps.

5.11.2 Deploying the RESTful Property Graph Web Service

ORACLE

This topic describes how to deploy the opg_uni fi ed. war file into Oracle WebLogic
12.2.0.1 or Apache Server Apache Tomcat.

1. Ensure that you have downloaded the REST third party libraries and created the
opg_unified.war REST Web Application Archive (WAR) file, as explained in
Building the REST Web Application Archive (WAR) file.

2. Extractthe rexster.xn file located in the opg_uni fi ed. war using the following
commands:

cd /tnp/work_uni fi ed/ <MvDDhhmrss>/
jar xf opg_unified. war WEB-INF/ classes/rexster.xm

3. Modify the REST configuration file (rexster. xm) to specify the default back-end,
additional list of back ends (if they exist), as well of a list of available graphs that
will be used when servicing property graph requests. For detailed information
about this file, see RESTful Property Graph Service Configuration File
(rexster.xml).

4. Rebuild opg_unified. war by updating the rexster. xnl file as follows:
jar uf opg_unified. war WEB-INF/ classes/rexster.xm
5. Deploy opg_uni fied. war into the selected J2EE container.

Deployment container options:

* Deployment Using Apache Tomcat

* Deployment Using Oracle WebLogic Server

Deployment Using Apache Tomcat

This section describes how to deploy the RESTful Property Graph web service using
Apache Tomcat 8.5.14 (or above). Apache Tomcat is an open source web server
implementing Java Servlet and JavaServer Pages (JSP) and providing an HTTP web
server environment to run web applications. For more information about Apache
Tomcat, see http://tomcat.apache.org/.

1. Download and install Apache Tomcat 8.5.14.

5-78

http://tomcat.apache.org/

ORACLE

Chapter 5
REST Support for Property Graph Data

Go to the web application directory of Apache Tomcat Server and copy the
opg_uni fied. war file as follows.

cd $CATALI NA_BASE
cp -f /tnp/work_unified/ <MVDDhhmss>/ opg_uni fied. war webapps

This operation will unpack the war file and deploy the web application. (For more
information about deploying web application in Apache Tomcat, see the Apache
Tomcat documentation.)

Verify your deployment by opening the following URL in your browser (assume
that the Web application is deployed at port 8080): htt p: / / <host name>: 8080/
opg_uni fied

You should see a page titled Welcome to the unified property graph REST
interface!

Deployment Using Oracle WebLogic Server

This section describes how to deploy the RESTful Property Graph endpoint using
Oracle WebLogic Server 12c¢ version 12.2.1.2.0. For more information about Oracle
WebLogic Server, see its product documentation.

1.
2.

Download and Install Oracle WebLogic Server 12¢ Release 2 (12.2.1.2.0).

Register the shared pre-built shared library for Jersey 2.5.1 (JAX-RS 2.0. RI)
included in your WebLogic Server installation. This library is required to run
applications based on Jersey 2.5.1, such as the RESTful web service for Big Data
Spatial and Graph Property Graph.

a. Log into the WebLogic Server Administration Console (http://1 ocal host: 7001/
consol e).

b. Select Deployments.
c. Click Install to install the shared library.

d. In the Path field, enter or navigate to the following directory: MW_HOME
\wlserver\common\deployable-libraries.

e. Select the jax-rs-2.0.war file, and click Next.
f. Select Install this deployment as a library.
g. Click Next.

h. Click Finish.

Modify opg_uni fi ed. war to remove the j ersey and hk2 third party libraries already
provided by WebLogic Server.

a. Create a temporary work directory under the work_unified directory where the
opg_uni fi ed. war was created. For example:

cd /tnp/work_uni fi ed/ <MVDDhhnrss>/
mkdi r wor k_webl ogi ¢
cd wor k_webl ogi ¢

b. Extract the opg_unified. war contents into the temporary directory: For
example:

jar xf ../opg_unified. war

c. Remove Jersey 2.25 third party libraries from the VEB- | NF/ | i b directory:

5-79

Chapter 5
REST Support for Property Graph Data

rm-rf VEB-INF/lib/jersey-client-2.25.1.jar

rm-rf VEB-INF/|ib/jersey-comon-2.25.1.jar

rm-rf VEB-INF/|ib/jersey-container-servlet-core-2.25.1.jar
rm-rf VEB-INF/lib/jersey-entity-filtering-2.25.1.jar
rm-rf VEB-INF/|ib/jersey-guava-2.25.1.jar

rm-rf VEB-INF/|ib/jersey-server-2.25.1.jar

rm—rf VEB-INF/ I|ib/hk2-api-2.5.0-b32.]ar

rm—rf WEB-INF/Iib/hk2-1ocator-2.5.0-b32.jar

rm—rf WEB-INF/Iib/hk2-utils-2.5.0-b32.jar

d. Rebuild opg_unified. war:
jar cfM../opg_unified. war *

Go to the aut odepl oy directory of the WebLogic Server installation and copy files.
For example:

cd <domai n_nane>/ aut odepl oy
cp -rf [tnp/work_unified/ <MvDDhhmrss>/ opg_uni fi ed. war <domai n_name>/ aut odepl oy

In the preceding example, <domain_name> is the name of a WebLogic Server
domain.

Note that although you can run a WebLogic Server domain in development or
production mode, only development mode allows you use the auto-deployment
feature.

Verify your deployment by opening the following URL in your browser (assume
that the Web application is deployed at port 7001): htt p: / / <host name>: 7001/
opg_unified

You should see a page titled Welcome to the unified property graph REST
interface!

RESTful Property Graph Service Configuration File (rexster.xml)

5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml)

ORACLE

Oracle Big Data Spatial and Graph extends Tinkerpop Rexster RESTful APIs to
provide RESTful capabilities over property graphs. To enable configuration of the
RESTful services, the opg_uni fied. war includes a rexster. xm file with the configuration
of the database back ends and graphs that should be set up and loaded when the
service is started.

The rexster. xnl file is an XML-based configuration file with at least four main sections
(or tags):

<script-engines>: The script engine used for running scripts over the property
graph. By default, grem i n- groovy is used.

<oracle-pool-size>: The number of concurrent connections allowed to a property
graph. By default, the configuration uses a pool size of 3.

<oracle-property-graph-backends>: The information about the database back
end(s) that should be used by the RESTful APIs. By default, at least one back-end
configuration with the <def aul t - backend>t r ue</ def aul t - backend> tag specified must
be defined. This configuration will be used as the default database connection for
all the RESTful API services.

5-80

ORACLE

Chapter 5
REST Support for Property Graph Data

» <graphs>: The list of available graphs to serve requests when the service is
started. Graphs defined in this list are created based on their associated database
configurations.

By default, rexster.xm must define at least one back-end configuration under the
<oracle-property-graph-backends> section. Each back end is identified by a
backend-name and a backend-type (either apache_hbase or or acl e_nosgl). Additional
database parameters must be specified as properties of the back end. In the case of
Apache HBase, these properties include the Zookeeper quorum and Zookeeper client
port. For Oracle NoSQL Database, these database parameters include the Database
Host and Port as well as the KV Store name.

A configuration file can include multiple back-end configurations belonging to the same
or different back-end types.

The following snippet shows the configuration of a rexster.xml with two back-ends: the
first one to an Apache HBase database and the second one to an Oracle NoSQL
Database.

<backend>
<backend- nanme>hbase_connecti on</ backend- name>
<backend-t ype>apache_hbase</ backend-t ype>
<def aul t - backend>t r ue</ def aul t - backend>
<properties>
<quor un®127. 0. 0. 1</ quor un»
<clientport>2181</clientport>
</ properties>
</ backend>

<backend>
<backend- nanme>nosql _connecti on</ backend- name>
<backend-t ype>or acl e_nosql </ backend-t ype>
<properties>
<host >127. 0. 0. 1</ host >
<port >5000</ port >
<st or eNanme>kvst or e</ st or eNane>
</ properties>
</ backend>

A default back end must be set up for the service, because this back end will be used
as the default database configuration for all property graph RESTful operations
executed over graphs that have not been previously defined in the graph section of the
rexster.xm file. In the preceding example, the back end named hbase_connections
will be set up as the default back end.

The <graphs> XML element identifies the list of property graphs that will be available
for user requests. Each graph is identified by a graph-name and a graph-type

(oracl e. pg. hbase or or acl e. pg. nosgl . Or acl ePropertyG aphConfi gurati on). Additional
database parameters must be specified as properties based on the type of the graph.
In the case of an hbase graph, these properties include the Zookeeper quorum and
Zookeeper client port. For a nosql graph, these database parameters include the
Database Host and Port as well as the KV Store name.

Additionally, you can specify if there are allowed extensions that can be run over the
graph, such as the capabilities to run gremlin queries, by using the allow tag with a
tp: gren i n value under the ext ensi ons subsection.

5-81

Chapter 5
REST Support for Property Graph Data

The following snippet shows the configuration of rexst er. xnl with two property graphs:
a connections graph using an Apache HBase database and a test graph using an
Oracle NoSQL database.

<graphs>
<gr aph>
<gr aph- name>connect i ons</ gr aph- nane>
<graph-type>oracl e. pg. hbase. O acl ePropertyG aphConfi gurati on</ graph-type>
<properties>
<quor un®127. 0. 0. 1</ quor une
<clientport>2181</clientport>
</ properties>
<ext ensi ons>
<al | ows>
<al | owst p: gremtin</al | ow>
</ al | ows>
</ extensi ons>
</ graph>
<graph>
<gr aph- name>connect i ons</ gr aph- nane>
<graph-type>oracl e. pg. nosql . O acl ePropertyG aphConfi guration</ graph-type>
<properties>
<st or eName>kvst or e</ st or eName>
<host>127. 0. 0. 1</ host >
<port >5000</ port >
</ properties>
<ext ensi ons>
<al | ows>
<al | owst p: gremtin</al | ow>
</ al | ows>
</ extensi ons>
</ graph>
</ graphs>

When an HTTP request (GET, POST, PUT, DELETE) operation is executed against a
given graph name, the service will look up for the graph database configuration
defined in the rexster. xm configuration file. If the graph is not included in the
configuration file, then the request will fail with a “graph cannot be found” error
message and the operation will not be completed.

You can dynamically add a new graph into the service to be used for subsequent
HTTP requests by executing an HTTP POST request over the create graph service.

5.11.3 Property Graph REST API Operations Information

This topic describes the operations of the property graph REST API.

* GET Operations (Property Graphs)

» POST Operations (Property Graphs)

* PUT Operations (Property Graphs)

* DELETE Operations (Property Graphs)

5.11.3.1 GET Operations (Property Graphs)

This topic describes the GET operations of the property graph REST API.

ORACLE 5-82

ORACLE

Chapter 5
REST Support for Property Graph Data

< Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

e [graphs/{graphname}/indices

e [graphs/{graphname}/indices/{indexName}

e /graphs/{graphname}/indices/{indexName}/count
e Igraphs/{graphname}/keyindices

e /graphs/{graphname}/keyindices/{class}

* /backends

* /backends/default

e /backends/{backendName}

e [graphs/{graphname}

e [graphs/{graphname}/edges

e /graphs/{graphname}/edges/{id}

e /graphs/{graphname}/vertices

e [graphs/{graphname}/vertices/{id}

e /graphs/{graphName}/vertices/{id}/{direction}
e [graphs/{graphname}/config

e [graphs/{graphname}/exportData

e /graphs/{graphname}/config

e /edges/{graphname}/textquery

e /edges/{graphname}/properties

e /vertices/{graphname}/textquery

Igraphs/{graphname}/indices

Description: Gets the name and class of all the manual indexes that have been
created for the specified graph.

Parameters
* graphnane:
The name of the property graph.

Usage Notes

This GET operation performs a call to the O acl ePropertyG aph. get I ndi ces() method.
Example

The following URL gets all the manual indexes for a graph named connect i ons:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connections/i ndi ces

5-83

ORACLE

The result may look like the following:

{
results: [
name: "nyldx",
class: "vertex"
1,
total Size: 1,
queryTime: 9.112078
1

Chapter 5
REST Support for Property Graph Data

Igraphs/{graphname}/indices/{indexName}?key=<key>&value=<value>

DescriptionGets the elements in the specified index having a certain key-value pair.

Parameters

gr aphnane:

The name of the property graph.

i ndexNane:
The name of the index.

<key>:

The key in the key-value pair.

<val ue>:

The value in the key-value pair.

Usage Notes

If no key-value pair is specified, then information about the specified manual index is
displayed. If the index does not exist, a “Could not find index” message is returned.

This GET operation performs a call to O acl el ndex. get (key, val ue) method.

Example

The following URL gets all vertices in the myldx index with the key-value pair nane-
Beyonce:

http:/ /1 ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/i ndi ces/ nyl dx?
key=nane&val ue=Beyonce

The result may look like the following:

{

"results": |

{

"country": {
"type": "string",
"value": "United States"
|3
"nusic genre": {
"type": "string",
"val ue": "pop soul "

¥
"role": {

"type": "string",

"val ue": "singer actress"
¥

5-84

ORACLE

Chapter 5
REST Support for Property Graph Data

"name": {
"type": "string",
"val ue": "Beyonce"
¥
"id"r 2,

" type": "vertex"
}
1,
"total Size": 1,
"queryTime": 79.910928
}

Igraphsil{graphname}/indices/{indexName}/count?key=<key>&value=<value>

Description: Gets the number of elements in the specified index having a certain key-
value pair.

Parameters
e graphnane:
The name of the property graph.
* indexName:
The name of the index.
o <key>:
The key in the key-value pair.
° <val ue>:
The value in the key-value pair.
Usage Notes
This GET operation performs a call to Oracl el ndex. count (key, val ue) method.

Example

The following URL gets the count of vertices with the key-value pair nane- Beyonce in the
nyl dx index of the connect i ons graph:

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connections/i ndi ces/ nyl dx/ count ?
key=nane&val ue=Beyonce

The result may look like the following:
{

total Size: 1,
queryTi me: 20.781228

1
Igraphs/{graphname}/keyindices

Description: Gets the information about all the automatic text indexes in the specified
graph. It provides the indexed keys currently used in automatic index.

Parameters
* graphnane:

The name of the property graph.

5-85

ORACLE

Chapter 5
REST Support for Property Graph Data

Usage Notes

This GET operation performs a call to Oracl ePropert yG aph. get | ndexedKeys(cl ass)
method for both Vert ex and Edge classes.

Example

The following URL gets informaiton about all the automatic indexes for the connect i ons
graph.

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ keyi ndi ces

The result may look like the following:

{
keys: {
edge: [],
vertex: [
"name"
]
¥
queryTime: 28.776229
}

Igraphsi/{graphname}/keyindices/{class}

Description: Gets the indexed keys currently used in automatic indexes for all
elements of the given type.

Parameters
e graphnane:
The name of the property graph.
* class:
The class type of the elements in the key index.

Usage Notes

This GET operation performs a call to the O acl ePropert yG aph. get | ndexedKeys(cl ass)
method.

Example
The following URL gets all the automatic indexes for the connecti ons graph:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ keyi ndi ces/ vertex/

The result may look like the following:

{
results: [
"nane"
1
queryTime: 28.776229
}
Ibackends

Description: Returns all the available back ends and their configuration information.

Parameters

5-86

ORACLE

Chapter 5
REST Support for Property Graph Data

(None.)

Usage Notes

(None.)

Example

The following URL gets all the configured back ends:
http://1ocal host: 7001/ opg_uni fi ed/ dal / backends/

The result may look like the following:

{
backends: [
{
backendName: "hbase_connection",
isDefault: false,
port: "2181",
backendType: "HBaseBackendConnection",
quorum " local host "
¥
{
host: "l ocal host",
backendName: "nosgl _connection",
isDefault: true,
store: "kvstore",
port: "5000",
backendType: "Oracl eNoSQLBackendConnecti on"
}
1,
queryTime: 0.219886,
upTime: "0[d]:02[h]:33[n:40[s]"
}
Ibackends/default

Description: Gets the default back end used by the graph.
Parameters

(None.)

Usage Notes

(None.)

Example

The following URL gets the default back end:

http://local host: 7001/ opg_uni fi ed/ dal / backends/ def aul t/

The result may look like the following:

{
def aul t Backend: {

host: "local host",

backendName: "nosgl _connection”,
isDefaul t: true,

store: "kvstore",

port: "5000",

5-87

ORACLE

Chapter 5
REST Support for Property Graph Data

backendType: "Oracl eNoSQLBackendConnection”

|3

queryTime: 0.219886,

upTime: "0[d]:02[h]:33[n:40[s]"
}

Ibackends/{backendName}
Description: Gets all the configuration information about the specified back end.
Parameters

e beckendNane:
The name of the back end.

Usage Notes

(None.)

Example

The following URL gets the configuration of the nosqgl _connecti on back end:

http://local host: 7001/ opg_uni fied/ dal / backends/ nosql _connecti on/

The result may look like the following:

{
backend: {
host: "local host",
backendName: "nosgl _connection”,
isDefault: true,
store: "kvstore",
port: "5000",
backendType: "Oracl eNoSQLBackendConnection”
¥
queryTi me: 0.219886,
upTime: "0[d]:02[h]:33[n:40[s]"
1
Igraphsi/{graphname}

Description: Gets information about the type and supported features of the specified
graph.

Parameters
e graphnane:
The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets information about the connecti ons graph:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/

The result may look like the following:

5-88

ORACLE

name: "connections",

Chapter 5
REST Support for Property Graph Data

graph: "oracl epropertygraph with name connections",

features:

{
i sWapper: fal se,
supportsVertexProperties: true,
support sMapProperty: true,
support sUni fornLi st Property: true,
supportslndices: true,
i gnoresSuppl i edl ds: fal se,
support sFl oat Property: true,

supportsPrimtiveArrayProperty: true,

suppor t sEdgel ndex: true,
suppor t sKeyl ndi ces: true,
suppor t sDoubl eProperty: true,
i SRDFModel : fal se,
i sPersistent: true,
supportsVertexlteration: true,
support sEdgeProperties: true,
supportsSel f Loops: fal se,
support sDupl i cat eEdges: true,
supportsSeri al i zabl eQbj ect Property:
supportsEdgel teration: true,
supportsVertexlndex: true,
supportslntegerProperty: true,
suppor t sBool eanProperty: true,
support sM xedLi st Property: true,
support sEdgeRetrieval : true,
supportsTransactions: true,
support sThreadedTransactions: true,
supportsStringProperty: true,
support sVert exKeyl ndex: true,
suppor t sEdgeKeyl ndex: true,
supportsLongProperty: true

¥

readOnly: fal se,

true,

type: "oracle.pg.nosql. O acl ePropertyG aph”,

queryTime: 1010. 203456,
upTime: "0[d]:19[h]:28[n:37[s]"
}

Igraphsi/{graphname}/edges

Description: Gets the information about edges of the specified graph.

Parameters
e graphnane:
The name of the property graph.

e opg. showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be

included in the response.

e opg. offset.start (query parameter):

Integer denoting the number of edges to skip when processing the request.

* opg.offset.linit (query parameter):

Maximum number of edges to retrieve from the graph..

5-89

ORACLE

Chapter 5
REST Support for Property Graph Data

e opg.ids=[<idl> <id2> <id3> ...] (query parameter):
List of edge IDs from which to choose the results.

Usage Notes
(None.)
Example

The following GET request gets information about all the edges of the connect i ons
graph:

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connect i ons/ edges

The result may look like the following:

{

results: [
{
wei ght: 1,
_id: 1001,
_type: "edge",
outV: 1,
_inV: 3,
_label: "collaborates"
1
{
wei ght: 1,
_id: 1002,
_type: "edge",
_outV: 1,
_inV: 4,
_label: "admires"
1
I,
total Size: 164,
queryTi me: 49.491961
}

The following GET request modifies the preceding one to request only the edges with
ID values 1001 and 1002 in the connecti ons graph:

http://1ocal host: 7001/ opg_uni fi ed/ dal / graphs/ connect i ons/ edges?opg. i ds=[1001, 1002]

The result may look like the following:

{
results: [

{
weight: 1,
_id: 1001,
_type: "edge",
_outV: 1,
_inVv: 3
_label: "col I aborat es"

1

{
wei ght: 1,
_id: 1002,
_type: "edge",
_outV: 1,

5-90

Chapter 5
REST Support for Property Graph Data

_inV. 4,
_label: "admires"

}
1,

total Size: 2,
queryTi me: 49.491961

}

The following GET request fetches one edge after skipping the first five edges of the
connect i ons graph:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ edges?
opg. of fset. start=5&opg. of fset.limt=1

The result may look like the following:

{
results: [
{
wei ght: 1,
_id: 1005,
_type: "edge",
_outVv: 1,
_inV. 7,
_label: "col | aborat es"
}
1,
total Size: 1,
queryTi me: 49.491961
}

Igraphsi/{graphname}/edges/{id}
Description: Gets the information about the edge with the specified ID from the graph.
Parameters
e graphnane:
The name of the property graph.
e id:
Edge ID of the edge to read.
e opg. showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

Usage Notes
(None.)
Example

The following GET request gets information about edge ID 1001 of the connect i ons
graph:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ edges/ 1001

The result may look like the following:

ORACLE 5-91

ORACLE

{
results:
{
wei ght :
{
type: "double",
value: 1
h
_id: 1001,
_type: "edge",
_outV: 1,
_inVv: 3,
_label: "col I aborat es"
h
queryTi me: 43. 720456
}

Chapter 5
REST Support for Property Graph Data

The following GET request shows the output of a failed request for edge 1, which does

not exist in the connect i ons graph.

http://1ocal host: 7001/ opg_unified/ dal / graphs/ connecti ons/ edges/ 1

The result may look like the following:

{

message: "Edge with name [1] cannot be found."

}

The following GET request fetches one edge after skipping the first five edges of the

connect i ons graph:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ edges?

opg. of fset. start=5&opg. of fset.limt=1

The result may look like the following:

{

results: [
{

wei ght: 1,
_id: 1005,
_type: "edge",
_outV: 1,
_inV. 7,
_label: "col | aborat es"

}
1

total Size: 1,
queryTime: 49.491961
}

Igraphsi/{graphname}/vertices

Description: Gets the information about vertices of the specified graph.

Parameters
e graphnane:
The name of the property graph.

e opg. showTypes (query parameter):

5-92

Chapter 5
REST Support for Property Graph Data

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

* opg.offset.start (Query parameter):

Integer denoting the number of vertices to skip when processing the request.
e opg. offset.lint (query parameter):

Maximum number of vertices to retrieve from the graph..
e opg.ids=[<idl> <id2> <id3> ...] (query parameter):

List of vertex IDs from which to choose the results.

Usage Notes
(None.)
Example

The following GET request gets information about all the vertices of the connecti ons
graph:

http://1ocal host: 7001/ opg_unified/ dal / graphs/ connections/vertices

The result may look like the following:

{

results: [
{
country: "Portugal ",
occupation: "Professional footballer",
nane: "Cristiano Ronal do",
_id: 63,
_type: "vertex"

country: "North Korea",
occupation: "Suprene |eader of North Korea",
role: "political authority",
nane: "KimJong Un",
political party: "Wrkers' Party of Korea",
religion: "atheisnt,
_id: 32,
_type: "vertex"
b
1,
total Size: 78,
queryTi me: 22. 345108

}

The following GET request modifies the preceding one to request only the vertices
with ID values 4 and 63 in the connecti ons graph:

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/vertices?opg. i ds=[4, 63]

The result may look like the following:

{

results: [

{
country: "United States",

ORACLE 5-93

ORACLE

Chapter 5
REST Support for Property Graph Data

role: " anmerican economst",
name: "Janet Yellen",
political party: "Denmocratic",
_id: 4,

_type: "vertex"

b
{
country: "Portugal ",
occupation: "Professional footballer",
name: "Cristiano Ronal do",
_id: 63,
_type: "vertex"
b
1
total Size: 2,

queryTime: 22.345108
}

The following GET request fetches one vertex after skipping the first five vertices of
the connecti ons graph:

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/vertices?
opg. of f set. start=5&opg. of fset.limt=1

The result may look like the following:

{
results: [
{
country: "United States",
occupation: "founder",
role: "philantropist",
name: "Tom Steyer",
conpany: "Farallon Capital Mnagement",
political party: "Denocratic",
_id: 20,
_type: "vertex"
}
1,
total Size: 1,
queryTi me: 65. 366488
}

Igraphsi/{graphname}/vertices/{id}

Description: Gets the information about the vertex with the specified ID from the
graph.

Parameters
e graphnane:
The name of the property graph.
e id:
Vertex ID of the vertex to read.
e opg. showTypes (query parameter):

Boolean value specifying whether the data type of each key-value pair should be
included in the response.

5-94

ORACLE

Chapter 5
REST Support for Property Graph Data

Usage Notes
(None.)
Example

The following GET request gets information about vertex ID 1 of the connecti ons
graph:

http://1 ocal host: 7001/ opg_uni fied/ dal / graphs/ connections/vertices/1

The result may look like the following:

{
results:
{
country: "United States",
occupation: "44th president of United States of Anerica",
role: "political authority",
name: "Barack Chama",
political party: "Democratic",
religion: "Christianity",
_idr 1,
_type: "vertex"
|3
queryTime: 13.95932
}

The following GET request modified the preceding one to include the data type of all
properties for vertex 1.

http:/ /1 ocal host: 7001/ opg_uni fied/ dal / graphs/ connections/vertices/ 1?
opg. showTypes=true

The result may look like the following:

{
results:
{
country:
{
type: "string",
val ue: "United States"
¥
occupat i on:
{
type: "string",
val ue: "44th president of United States of America"
¥
rol e:
{
type: "string",
value: "political authority"
¥
nane:
{
type: "string",
val ue: "Barack Cbama"
¥
political party:
{
type: "string",

5-95

ORACLE

Chapter 5
REST Support for Property Graph Data

val ue: "Denocratic"

¥
religion:
{
type: "string",
value: "Christianity"
¥
_id: 1,

_type: "vertex"

¥
queryTinme: 13.147989

}

The following GET request shows the output of a failed request for vertex 1000, which
does not exist in the connect i ons graph.

http://1 ocal host: 7001/ opg_uni fied/ dal / graphs/ connections/ vertices/ 1000

The result may look like the following:

{

message: "Vertex with nane [1000] cannot be found."

}
Igraphsi{graphName}/vertices/{id}/{direction}

Description: Gets the {in,out,both}-adjacent vertices of the vertex with the specified ID
value.

Parameters

e direction:

Can be i n for in-vertices, out for out-vertices, or bot h for in-vertices and out-
vertices.

Usage Notes

(None.)

Example

The following URL gets the out-vertices of the vertex with id 5:

http://local host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/vertices/ 5/ out/

The result may look like the following:

{

results: [

{

nane: "Omar Kobine Layama",
_id: 56,
_type: "vertex"

1

{
nane: "Di eudonne Nzapal ai nga",
_id: 57,
_type: "vertex"

1

{

nane: "Nicol as Guerekoyane Gohangou”,
_id: 58,

5-96

ORACLE

}

_type: "vertex"

},
{
country: "Ronme",
nanme: "The Vatican",
type: "state",
religion: "Catholicisnf
_id: 59,
_type: "vertex"
}
1,
total Size: 4,

queryTi me: 56. 044806

Igraphs/{graphname}/config

Chapter 5
REST Support for Property Graph Data

Description: Gets a representation (in JSON format) of the configuration of the
specified graph.

Parameters

e graphnane:

The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets a graph configuration for the connecti ons graph:

http://local host: 7001/ opg_uni fied/ graphs/ connections/config

The result may look like the following:

{

edge_props: [

{
nane. "weight",
type: "string"
}
1,
db_engi ne: "NOSQ.",
host s: [

"| ocal host : 5000"
1.

vertex_props: [
{
name: "name",
type: "string"
¥
{
name: "role",
type: "string"
¥
{

name: "country",
type: "string"

5-97

ORACLE

Chapter 5
REST Support for Property Graph Data

1,
format: "pg",
name: "connections",
store_name: "kvstore",
attributes: { },
max_num connections: 2,
error_handling: { },
| oadi ng: {

| oad_edge | abel: true

b

edge_l abel : true

}

Igraphs/{graphname}/exportData

Description: Downloads a .zip file containing the graph in Oracle Property Graph Flat
File format (. opv and . ope files).

Parameters
e graphnane:
The name of the property graph.
e dop (query parameter)
Degree or parallelism for the operation.
Usage Notes
(None.)
Example

The following URL exports the connecti ons graph using up to 4 parallel execution
threads:

http://local host: 7001/ opg_uni fi ed/ graphs/ connecti ons/ export Dat a?dop=4

It downloads a zip file containing an OPV (vertices) file and an OPE (edge) file with
contents similar to the following.

OPV file:

1, nane, 1, Bar ack%20Chans, ,

1,role, 1, political %20authority,,

1, occupat i on, 1, 44t h9%20pr esi dent %200f %20Uni t ed%20St at es%200f %20Aner i ca, ,
1, country, 1, Uni t ed%20St at es, ,

OPE file:

1000, 1, 2, col | abor at es, wei ght, 3,, 1.0,
1001, 1, 3, col | abor at es, wei ght, 3,,1.0
0
0

1002, 1, 4, admi res, wei ght, 3,, 1.0,
1003, 1,5, admi res, wei ght, 3,, 1.0,

ledges/{graphname}/properties
Description: Gets the set of property keys used by edges of the specified graph.

Parameters

5-98

ORACLE

Chapter 5
REST Support for Property Graph Data

e graphnane:
The name of the property graph.

Usage Notes

(None.)

Example

The following URL gets the edge property keys of the connecti ons graph:

http://1ocal host: 7001/ opg_uni fi ed/ edges/ connecti ons/ properties

The result may look like the following:

{

conpl ete: 1,

results: [

"wei ght"

1

total Size: 1,

queryTi me: 360. 491961
}

Ivertices/{graphname}/textquery

DescriptionGets the vertices of a graph that match certain key value pair criteria.
Performs a full text search against an existing index.

Parameters
e graphnane:

The name of the property graph.
* key (query parameter)

The property key that matching vertices must have.
e val ue (query parameter)

The propertyvalue that matching vertices must have.
e useW ! dCards (query parameter)

Boolean string specifying whether to perform an exact match search (f al se) or use
wildcards (t r ue).

Usage Notes

The returned result depends not only on the value of the parameters, but also on their
presence.

* If no query parameters are specified, then it behaves exactly the same as /graphs/
{graphname}/vertices. If only the key query parameter is specified, it returns only
the edges that have that property key, regardless of the value.

e If the key and val ue query parameters are specified, but the useW | dCar ds query
parameter does not equal true, it returns only the vertices that have an exact
match with that key-value pair, even if the value contains wildcard characters (*).

e Ifthe key and val ue query parameters are specified and the useW | dCar ds query
parameter is true, it uses the index to perform a text search and returns the
matching vertices.

5-99

ORACLE

Chapter 5
REST Support for Property Graph Data

If a wildcard search is requested and the requested index does not exist for the
specified key, an error is returned.

Example

The following URL gets the vertices that have a name key whose val ue starts with the
string Po in the connecti ons graph.

http://local host: 7001/ opg_uni fied/ vertices/connections/textquery?
key=nane&val ue=Po*&useW | dCar ds=t r ue

The returned JSON may look like the following:

{
results: [
{
country: "ltaly",
occupation: "pope",
role: "Catholic religion authority",
name: "Pope Francis",
religion: "Catholicisnt,
_id: 5,
_type: "vertex"
1
{
country: "China",
occupation: "business man",
name: "Pony Ma",
_idr 71,
_type: "vertex"
1
1,
total Size: 2,
queryTime: 49.491961
1

ledgesl{graphname}/textquery

Description: Gets the edges of a graph that match certain key value pair criteria.
Performs a full text search against an existing index.

Parameters
e graphnane:
The name of the property graph.
e key (query parameter)
The property key that matching edges must have.
* val ue (query parameter)
The value that matching edges must have.
e useW ! dCards (query parameter)

Boolean string specifying whether to perform an exact match search (falsef al se)
or use wildcards (t rue)..

Usage Notes

The returned result depends not only on the value of the parameters, but also on their
presence.

5-100

Chapter 5
REST Support for Property Graph Data

* If no query parameters are specified, then it behaves exactly the same as /graphs/
{graphname}/edges. If only the key query parameter is specified, it returns only the
edges that have that property key, regardless of the value.

e If the key and val ue query parameters are specified, but the useW | dCar ds query
parameter does not equal true, it returns the edges that have an exact match with
that key-value pair, even if the value contains wildcard characters (*).

e Ifthe key and val ue query parameters are specified and the useW | dCar ds query
parameter equals true, it uses the index to perform a text search and returns the
matching edges.

Example

The following URL gets the edges that have a t ype key whose value starts with the
string frien in the connecti ons graph.

http://1ocal host: 7001/ opg_uni fi ed/ edges/ connecti ons/t ext query?
key=t ype&val ue=frien*&useW | dCar ds=t r ue

The returned JSON may look like the following:
{

results: [

{
wei ght: 1,
type: "friends",
_id: 10000,
_type: "edge",
_outV: 1,
_inVv: 3,
_label: "col I aborat es"
}
1,
total Size: 1,

queryTi me: 49.491961
}

5.11.3.2 POST Operations (Property Graphs)

This topic describes the POST operations of the property graph REST API.

¢ Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

* [graphs/{graphname}/indices/{indexName}?class=<class>
* [graphs/{graphname}/keyindices/{class}/{keyName}

» graphs/connections/edges

e /csviedges

» graphs/connections/vertices

» [graphs/{graphname}/loadData

ORACLE 5-101

ORACLE

Chapter 5
REST Support for Property Graph Data

* /backends/{newBackendName}
» /edges/{graphname}/ids
» /edges/{graphname}/properties

Igraphs/{graphname}/indices/{indexName}?class=<class>
Description: Creates the specified manual index for the specified graph.
Parameters
e graphnane:
The name of the property graph.
* indexName:
The name of the manual index to be created.
* class:
Class of the index. It can be either vertex or edge edge.
Usage Notes

This POST operation performs a call to the
Or acl eProper t yGr aph. creat el ndex(nane, ¢l ass) method.

Example

The following POST operation creates the nyl dx index of class vertex in the
connect i ons property graph.

http:// local host: 7001/ opg_unified/dal /graphs/ connections/indi ces/nyl dx?cl ass=vertex

The result may look like the following:

{
"queryTime": 551.798547,

"resul ts":

{
llnarTell: "rTyI dX"l
"class": "vertex"

1
Igraphs/{graphname}/keyindices/{class}/{keyName}
Description: Creates an automatic key index in the specified graph.
Parameters
* graphnane:
The name of the property graph.
* class:
Class of the index. It can be either vert ex or edge.
* keyNane:
Name of the key index.

Usage Notes

5-102

ORACLE

Chapter 5
REST Support for Property Graph Data

This POST operation performs a call to the
Or acl eProper t yGr aph. cr eat eKeyl ndex(key, cl ass) method.

Example

The following POST operation creates the nyVKeyl dx automatic index of class vertex in
the connect i ons property graph.

http:// local host: 7001/ opg_unified/dal / graphs/ connections/keyi ndi ces/ vertex/ nyVKeyl dx

The result may look like the following:

{
"queryTime": 234.970874

}

Igraphsiconnections/edges

..edges?_out V=<i d>&_| abel =val ue& i nvV=<i d>
..edges/ <edgel d>?_out V=<i d>& | abel =val ue& i nvV=<i d>
..edges/ <edgel d>?<key>=val ue

Description: Creates a new edge between two vertices.
Parameters
e _outV:
The outgoing vertex.
e _inV:
The incoming vertex.
e _label:
The outgoing label of the edge.
* edgelD:
The ID of the edge to create.
° key:
The key value to create.
Usage Notes
(None.)
Example

The following POST operation creates an edge with the label fri end from vertex 29 to
vertex 26.

http://1ocal host: 8080/ graphs/ connecti ons/ edges_out V=29& | abel =fri end& i nV=26

The result may look like the following:

{"results": {"_id": 1810534020425227300," type": "edge","_outV': 29," inV":
26," label": "friend"},"queryTine": 36.635908}

Icsvledges

Description: Transforms an edge file from CSV format to OPE format.

5-103

Chapter 5
REST Support for Property Graph Data

Parameters

e fileNane:
The name of the edge file (CSV format).
e choxEdgel DCol Narre:
The key that should be used as edge ID.
* choxEdgeSVI DCol Nane:
The key that should be used as start vertex ID.
* choxEdgelLabel Col Nane:
The key that should be used as edge label.
* choxEdgeDVI DCol Nane:
The key that should be used as end vertex ID.

Usage Notes
For information about the file fiormat, see Oracle Flat File Format Definition.
Example

The following is an HTML form that can be used to perform a POST operation and
transform a CSV file into an OPE file.

<htnl >
<body>
<h1>CSV Exanpl e - Edges</hl>
<formid="nyForn action="http://local host: 7001/ opg_unified/dal/csv/edges"
met hod="POST" enctype="nultipart/formdata">
<p>Select a file for edges : <input type="file" name="fil eEdge"
size="45" [></p>
<p>Edge Id : <input type="text" name="choxEdgel DCol Nane" size="25" [></p>
<p>Start vertex Id : <input type="text" name="choxEdgeSVI DCol Nane"
size="25" [></p>
<p>Edge Label : <input type="text" name="choxEdgeLabel Col Nane"
size="25" [></p>
<p>End vertex Id : <input type="text" nane="choxEdgeDVI DCol Nane"
size="25" [></p>
<input type="button" onclick="myFunction()" val ue="Upl oad">
</form
<script>
function nyFunction() {
frm= docunent. get El ement Byl d("nmyFornt);
frmsubnit();
1
</script>
</ body>
</htm >

This is how the form might look in the browser:

ORACLE 5-104

Chapter 5
REST Support for Property Graph Data

& & | O locathost
CSV Example - Edges
Select a file for edges ;| Choose File | edges.csv
Edge Id : EDGE_ID
Start vertex Id : | START_ID
Edge Label : label
End vertex Id : END_ID
Upload

The contents of the input edge file (edges. csv) are the following:

EDGE_| D, START_| D: | ong, wei ght: fl oat, END_|I D: | ong, | abel : string
1,1,1.0, 2, knows

The contents of the output edge file (verti ces. ope) are the following:

1,1, 2, knows, wei ght, 3,,1.0

Icsvivertices
Description: Transforms a vertex file from CSV format to OPV format.
Parameters

o fileVertex:

The name of the vertex file (CSV format).
e choxVertexl DCol Nane:

The key that should be used as vertex ID.

Usage Notes
For information about the file fiormat, see Oracle Flat File Format Definition.
Example

The following is an HTML form that can be used to perform a POST operation and
transform a CSV file into an OPV file.

<htm >
<body>
<h1>CSV Exanpl e</ h1>
<formid="nyForn action="http://local host: 7001/ opg_unified/dal/csv/vertices"
met hod="POST" enctype="nul tipart/formdata">
<p>Select a file for vertices : <input type="file" nanme="fileVertex"
size="45" [></p>
<p>Vertex Id : <input type="text" nanme="choxVertex| DCol Name" size="25" /></p>
<input type="button" onclick="myFunction()" val ue="Upl oad">
</form
<script>
function nyFunction() {
frm= docunent. get El ement Byl d(" nyForni);
frmsubnit();

}

ORACLE 5-105

ORACLE

Chapter 5
REST Support for Property Graph Data

</script>
</ body>
</htm >

This is how the form might look in the browser:
< C | O localhost
CSV Example - Vertices
Select a file for vertices : | Choose File |vertices csv

Vertex Id : fid

Upload

The contents of the input vertex file (verti ces. csv) are the following:

i d, nane, country
1, Eros9%20Ranmazzotti, Italy
2, Moni ca%0Bel | ucci, Italy

The contents of the output vertex file (verti ces. opv) are the following:

1, nane, 1, Er os%®0Ramazzot ti, ,
1,country,1,Italy,,
2, nane, 1, Moni ca%0Bel | ucci , ,
2,country, 1, I1taly}

Igraphs/{graphname}/loadData

Description: Uploads OPV and OPE files to the server and imports the vertices and
edges into the graph. Returns graph metadata.

Parameters
° graphnane:
The name of the property graph.
* vertexFil e (Request Payload):
The vertex (. opv) file.
* edgeFil e (Request Payload):
The edge (. ope) file.
* clearRepository (Request Payload):

Boolean value indicating whether to clear the graph before starting the load
operation.

* dop (Request Payload):
Degree of parallelism for the operation.

Usage Notes

This operation enables you to post both the vertex and edge files in the same
operation.

Example

5-106

ORACLE

Chapter 5
REST Support for Property Graph Data

The following simple HTML form can be used to upload a pair of .OPV and .OPE files
to the server:

http:/ /1 ocal host: 7001/ opg_uni fied/ graphs/ connecti ons/ | oadDat a

<htm >
<body>
<hl>File Upload to OPG Unified</hl>
<p>
G aph nanme : <input type="text" name="graphTxt" id="graphTxt" size="45" />
</ p>

<formid="nyForn! action="http://local host: 7001/ opg_unified/graphs/"
met hod="POST" enctype="nul tipart/formdata">
<p>
Select a file for vertices : <input type="file" name="vertexFile"
size="45" [>
</ p>
<p>
Select a file for edges : <input type="file" name="edgeFile" size="45" />
</ p>
<p>
Clear graph ? : <input type="text" name="cl earRepository" size="25" />
</ p>

<input type="button" onclick="nyFunction()" val ue="Upl oad">
</form
<script>
function nyFunction() {
frm= docunent. get El ement Byl d("nmyForni);
frmaction = frmaction + graphTxt.value + '/l oadData';
frmsubmt();

}
</script>

</ body>

</htm >

The displayed form looks like the following:
File Upload to OPG Unified

Graph name -

Select a file for vertices ;| Choose File |MNo file chosen
Select a file for edges - | Choose File | No file chosen
Clear graph 7 -

Upload

The following are the contents of the OPV (vertices) file:

1, nane, 1, Bar ack%?00Chans, ,

1,role, 1, political %20authority,,

1, occupati on, 1, 44t h9%0pr esi dent %200f %20Uni t ed%20St at es9%200f %R20Aner i ca, ,
1, country, 1, Uni t ed%0St at es, ,

5-107

ORACLE

Chapter 5
REST Support for Property Graph Data

The following are the contents of the OPE (edgee) file:

1000, 1, 2, col | abor at es, wei ght, 3,, 1.0,
1001, 1, 3, col | abor at es, wei ght, 3,, 1.0
1002, 1, 4, adni res, wei ght, 3,, 1. 0,
1003, 1, 5, adni res, wei ght, 3,, 1. 0,

The returned JSON result may look like the following:

{

nane: "connections",

graph: "oracl epropertygraph with name connections",

features:

{
i sWapper: fal se,
supportsVertexProperties: true,
support sMapProperty: true,
support sUni f ornLi st Property: true,
supportslndices: true,
i gnoresSuppl i edl ds: fal se,
support sFl oat Property: true,
supportsPrimitiveArrayProperty: true,
suppor t sEdgel ndex: true,
suppor t sKeyl ndi ces: true,
suppor t sDoubl eProperty: true,
i SRDFModel : fal se,
i sPersistent: true,
supportsVertexlteration: true,
support sEdgeProperties: true,
supportsSel f Loops: fal se,
support sDupl i cat eEdges: true,
supportsSerial i zabl eQbj ect Property: true,
support sEdgel teration: true,
supportsVertexl ndex: true,
supportslntegerProperty: true,
suppor t sBool eanProperty: true,
support sM xedLi st Property: true,
support sEdgeRetrieval : true,
supportsTransactions: true,
support sThreadedTransactions: true,
supportsStringProperty: true,
support sVert exKeyl ndex: true,
suppor t sEdgeKeyl ndex: true,
supportsLongProperty: true

I3

readOnly: false,

type: "oracl e.pg. nosql.Oracl ePropertyG aph",

queryTi me: 1010. 203456,

upTime: "0[d]:19[h]:28[n:37[s]"

}

Ibackends/{newBackendName}
Description: Sets a new back end entry with the specified properties.
Parameters

e newBackendNane:

The name of the new back end to be supported.

5-108

Chapter 5
REST Support for Property Graph Data

Usage Notes
If the back end name does already exist, an error is generated

Any other parameters specified, such as i sDef aul t or backendType, are passed as part
of the payload.

Example
The following POST operation creates a new back end named hbase_connect i on2.
http://1ocal host: 7001/ opg_uni fi ed/ dal / backends/ hbase_connecti on2

Payload for example:

{"isDefault": false,"port": "2181","backendType": "HBaseBackendConnection", "quoruni:

"127.0.0.1"}

The result may look like the following:

{"backend": {"backendName": "hbase_connection2","isDefault": false, "port":
"2181", "backendType": "HBaseBackendConnection","quorunf: "127.0.0.1"},"queryTi ne":
49.904438, "upTime": "0[d]:00[h]:56[ni:14[s]"}

ledgesl{graphName}/ids
Description: Returns a set of edges.
Parameters
e graphnane:
The name of the property graph.
* ids (Request Payload):
A JSON array with the IDs of the requested edges.

Usage Notes

This API sends a JSON array with an IDs key and an array of integer ID values. It
returns an array matching the size of the input ids parameter

If an edge is not found, its corresponding value in the results array will be null.

It always returns an array of results even if none of the edges exists in the graph, in
which case returns an array full of null values but not a 404 HTTP code.

Example

The following command gets the edges with IDs 1001 and 1002 (if they exist) in the
connections graph..

curl -v -X POST "http://local host: 7001/ opg_uni fi ed/ edges/ connections/ids' -H
"Content-Type: application/json" -d '{"ids":[1001, 1002, 1]}

The returned JSON may look like the following:

{
results: [
{
wei ght: 1,
_id: 1001,
_type: "edge",

ORACLE 5-109

Chapter 5
REST Support for Property Graph Data

_outV: 1,

_inVv: 3,

_label: "col | aborat es"
1
{

wei ght: 1,

_id: 1002,

_type: "edge",

_outV: 1,

_inV. 4,

_label: "admires"

b

nul |

1,
total Size: 3,
queryTi me: 49.491961

}

ledges/{graphName}/properties
Description: Returns a specified property of specified edges.
Parameters
e graphnane:
The name of the property graph.
* ids (Request Payload):
A JSON array with the IDs of edges.
e propertyName (Request Payload):
A JSON string specifying the name of the property.
Usage Notes

This API sends a JSON array with an “ids” key and an array of integer ID values. It
returns an array matching the size of the input ids parameter

If an edge is not found, its corresponding value in the results array will be null.

It always returns an array of results even if none of the edges exists in the graph, in
which case returns an array full of null values but not a 404 HTTP code.

Example

The following command gets the wei ght values of the edges with IDs 1001, 1002, and
1003 (if they exist) in the connecti ons graph..

curl -v -X POST 'http://local host: 7001/ opg_uni fi ed/ edges/ connecti ons/ properties' -H
"Content-Type: application/json" -d '{"ids":
[1001, 1002, 1003], "propertyNane": "wei ght"}'

The returned JSON may look like the following:
{

results: [

_id: 1001,
weight: 1
1
{

ORACLE 5-110

Chapter 5
REST Support for Property Graph Data

_id: 1002,
wei ght: 1
H
{
_id: 1003,
wei ght: 1
}
1,
total Size: 3,

queryTime: 12.491961 }

5.11.3.3 PUT Operations (Property Graphs)

ORACLE

This topic describes the PUT operations of the property graph REST API.

" Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

* /backends/{backendNameNews}
» /graphs/connections/edges

» [graphs/{graphname}/indices/{indexName}}?key=<key>&value=<value>&id=<id>
Ibackends/{backendNameNew}

Description: Sets a new back end entry with the specified properties.

Parameters

* backendNameNew:

The name of the new back end to be supported.
* backendType:

The type of the new back end to be supported.
e (other):

(Other back end-specific properties.)
Usage Notes

If the back end name does already exist, an error is generated.

Any other parameters specified, such as i sDef aul t or backendType, are passed as part
of the payload.

Example
The following PUT operation creates a new back end named hbase_connecti on2.

http://1ocal host: 7001/ opg_unified/ dal / backends/ hbase_connecti on2

Payload for example:

5-111

ORACLE

Chapter 5
REST Support for Property Graph Data

{"isDefault": false,"port": "2182","backendType": "HBaseBackendConnection", "quoruni:
"127.0.0.1"}

The result may look like the following:

{"backend": {"backendName": "hbase_connection2","isDefault": false,"port":
"2182", "backendType": "HBaseBackendConnection","quorun': "127.0.0.1"},
"queryTime": 20.929009, "upTine": "0[d]:02[h]:22[ni:19[s]"}

Igraphsiconnections/edges

..edges?_out V=<i d>& | abel =val ue& i nv=<i d>
..edges/ <edgel d>?_out V=<i d>& | abel =val ue& i nvV=<i d>
..edges/ <edgel d>?<key>=val ue

Description: Creates a new edge between two vertices.
Parameters
e outV:
The outgoing vertex.
e inV:
The incoming vertex.
e _label:
The outgoing label of the edge.
* edgel D
The ID of the edge to create.
* key:
The key value to create.
Usage Notes
(None.)
Example

The following PUT operation creates an edge with the label fri end from vertex 29 to
vertex 26.

http://1ocal host: 8080/ graphs/ connecti ons/ edges_out V=29& | abel =fri end& i nV=26

The result may look like the following:

{"results": {"_id": 1810534020425227300," type": "edge"," outV': 29," inV':
26," label": "friend"},"queryTinme": 36.635908}

Igraphs/{graphname}/indices/{indexName}}?key=<key>&value=<value>&id=<id>

Description: Adds the specified vertex or edge to the key-value pair of the specified
manual index.

Parameters
* graphNane:
The name of the property graph.

5-112

Chapter 5
REST Support for Property Graph Data

* indexNane:
The name of the index.
o <key>:
The key for the key-value pair.
* <value>:
The value for the key-value pair.
e <jid>:
The ID value of the vertex or edge.
Usage Notes
This PUT operation performs a call to O acl el ndex. put (key, val ue, cl ass) method.
Example

The following example adds the key-value pair “nane” - “Beyonce” to the vertex with ID
2..

http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/i ndi ces/ nyl dx?
key=nane&val ue=Beyonceé&i d=2

If the PUT operation is successful, you may see a response like the following:

{
}

5.11.3.4 DELETE Operations (Property Graphs)

This topic describes the DELETE operations of the property graph REST API.

"queryTime": 39. 265613

Note:

For information about property graph indexes, see Using Automatic Indexes
for Property Graph Data and Using Manual Indexes for Property Graph Data,

* /backends/{backendName}

» [graphs/{graphName}/edges/<id>

» [graphs/{graphName}/indices/{IndexName}

» [graphs/{graphName}/keyindices/{class}/{keyName}
Ibackends/{backendName}

Description: Deletes the specified back end from the list of available back ends for
the graph server. It returns the information of the deleted back end.

Parameters

* backendNane:

The name of the back end.

ORACLE 5-113

ORACLE

Chapter 5
REST Support for Property Graph Data

Usage Notes
(None.)
Example

The following PUT operation

The result may look like the following:

{"backend":

{"backendNanme": "hbase_connection","isDefaul t":fal se, "port":"2181", "backendType": " HBas
eBackendConnection", "quorunt: "127.0.0.1"}, "queryTi me": 0. 207346, "upTi me": " 0[d] : 00[h]
18[nj: 40[s]"}

Igraphsi/{graphName}/edges/<id>
Description: Deletes from the specified graph the edge with the specified edge ID.
Parameters
e id:
ID of the edge to be deleted.
Usage Notes
This API returns the time taken for the operation.
Example
The following example deletes the edge with ID 1010..
http://1ocal host: 7001/ opg_uni fied/ dal / graphs/ connecti ons/ edges/ 1010
If the operation is successful, you may see a response like the following:

{
}

"queryTime": 10.925611

Igraphs/{graphName}/indices/{IndexName}
Description: Deletes from the specified graph the specified manual index.
Parameters
e graphNane:
The name of the property graph.
* indexNane:
The name of the mamual index to delete.

Usage Notes

This DELETE operation performs a call to O acl eProper t yG aph. dr opl ndex(nane)
method.

Example
The following example drops the manual index nyl dx from the connecti ons graph.

http:// local host: 7001/ opg_unified/ dal / graphs/ connections/indi ces/ nyl dx

5-114

Chapter 5
Exploring the Sample Programs

Igraphsi/{graphName}/keyindices/{class}/{keyName}
Description: Deletes from the specified graph the specified automatic index.
Parameters
e graphNane:
The name of the property graph.
* indexName:
The name of the automatic index to delete.
Usage Notes

This DELETE operation performs a call to
Or acl ePropert yG aph. dr opKeyl ndex(nane, cl ass) method.

Example

The following example drops the automatic index nyVKey! dx from the connecti ons
graph.

http:// local host: 7001/ opg_unified/dal/graphs/connections/keyi ndi ces/ vertex/ nyVKeyl dx

5.12 Exploring the Sample Programs

The software installation includes a directory of example programs, which you can use
to learn about creating and manipulating property graphs.

e About the Sample Programs

e Compiling and Running the Sample Programs

e About the Example Output

« Example: Creating a Property Graph

» Example: Dropping a Property Graph

» Examples: Adding and Dropping Vertices and Edges

5.12.1 About the Sample Programs

ORACLE

The sample programs are distributed in an installation subdirectory named exanpl es/
dal . The examples are replicated for HBase and Oracle NoSQL Database, so that you
can use the set of programs corresponding to your choice of backend database. The
following table describes the some of the programs.

Table 5-4 Property Graph Program Examples (Selected)

Program Name Description

ExampleNoSQL1 Creates a minimal property graph consisting of one vertex, sets

ExampleHBase1l properties with various data types on the vertex, and queries the
database for the saved graph description.

ExampleNoSQL2 Creates the same minimal property graph as Examplel, and then

ExampleHBase2 deletes it.

5-115

Chapter 5
Exploring the Sample Programs

Table 5-4 (Cont.) Property Graph Program Examples (Selected)

___|
Program Name Description

ExampleNoSQL3 Creates a graph with multiple vertices and edges. Deletes some vertices

ExampleHBase3 and edges explicitly, and other implicitly by deleting other, required
objects. This example queries the database repeatedly to show the
current list of objects.

5.12.2 Compiling and Running the Sample Programs

To compile and run the Java source files:
1. Change to the examples directory:

cd exanpl es/ dal
2. Use the Java compiler:

javac -classpath ../../lib/"*" filename.java

For example: javac -classpath ../../lib/'*" Exanpl eNoSQL1.java
3. Execute the compiled code:

java -classpath ../../1ib/"*":.] filename args

The arguments depend on whether you are using Oracle NoSQL Database or
Apache HBase to store the graph. The values are passed to
O acl ePropertyG aph. get | nst ance.

Apache HBase Argument Descriptions
Provide these arguments when using the HBase examples:

1. quorum: A comma-delimited list of names identifying the nodes where HBase
runs, such as "node01. exanpl e. com node02. exanpl e. com node03. exanpl e. cont'.

2. client_port: The HBase client port number, such as "2181".

3. graph_name: The name of the graph, such as "cust oner _graph".

Oracle NoSQL Database Argument Descriptions
Provide these arguments when using the NoSQL examples:

1. host_name: The cluster name and port number for Oracle NoSQL Database
registration, such as "cl ust er 02: 5000".

2. store_name: The name of the key-value store, such as "kvstore"

3. graph_name: The name of the graph, such as "cust oner _graph".

5.12.3 About the Example Output

The example programs use Systemout. println to retrieve the property graph
descriptions from the database where it is stored, either Oracle NoSQL Database or
Apache HBase. The key name, data type, and value are delimited by colons. For

ORACLE 5-116

Chapter 5
Exploring the Sample Programs

example, wei ght : f| o: 30. 0 indicates that the key name is wei ght , the data type is fl oat ,
and the value is 30. 0.

Table 5-5 identifies the data type abbreviations used in the output.

Table 5-5 Property Graph Data Type Abbreviations
|

Abbreviation Data Type
bol Boolean
dat date

dbl double

flo float

int integer

ser serializable
str string

5.12.4 Example: Creating a Property Graph

ORACLE

Exanpl eNoSQL1 and Exanpl eHBasel create a minimal property graph consisting of one
vertex. The code fragment in Example 5-5 creates a vertex named v1 and sets
properties with various data types. It then queries the database for the saved graph
description.

Example 5-5 Creating a Property Graph

/] Create a property graph instance naned opg
Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args);

[l Cear all vertices and edges from opg
opg. cl earReposi tory();

/] Create vertex vl and assign it properties as key-value pairs
Vertex vl = opg.addVertex(1l);
vl.setProperty("age", Integer.valueO(18));
vl. setProperty("nane", "Nane");
vl. set Property("weight", Float.valueCf(30.0f));
vl1. set Property("height", Double.valueO(1.70d));
vl. setProperty("female", Boolean. TRUE);
/] Save the graph in the database
opg. comit (),

/] Display the stored vertex description
Systemout.printIn("Fetch 1 vertex: " + opg.getVertices().iterator().next());

/1 Oose the graph instance
opg. shut down() ;

The O acl ePropertyG aph. get | nst ance arguments (args) depend on whether you are
using Oracle NoSQL Database or Apache HBase to store the graph. See "Compiling
and Running the Sample Programs".

System out. print | n displays the following output:

5-117

Chapter 5
Exploring the Sample Programs

Fetch 1 vertex: Vertex ID 1 {age:int:18, nane:str:Nane, weight:flo:30.0, height:dbl:
1.7, female:bol:true}

See the property graph support Javadoc (/ opt / or acl e/ or acl e- spati al - gr aph/
property_graph/ doc/ pgx by default) for the following:

Oracl ePropertyG aph. addVert ex

Oracl ePropertyG aph. cl ear Reposi tory
Oracl ePropertyG aph. get I nstance
Oracl ePropertyG aph. get Vertices
Oracl ePropertyG aph. shut down
Vertex.setProperty

5.12.5 Example: Dropping a Property Graph

ExampleNoSQL2 and ExampleHBase2 create a graph like the one in "Example:
Creating a Property Graph", and then drop it from the database.

The code fragment in Example 5-6 drops the graph. See "Compiling and Running the
Sample Programs" for descriptions of the Oracl ePropertyG aphUti|'s. dr opPropertyG aph
arguments.

Example 5-6 Dropping a Property Graph

/1 Drop the property graph fromthe database
Oracl ePropertyG aphUtils. dropPropertyG aph(args);

/] Display confirmation that the graph was dropped
Systemout.printin("Gaph " + graph_name + " dropped. ");

System out. print | n displays the following output:

G aph graph_nane dropped.

See the Javadoc for Oracl ePropertyG aphUti | s. dropPropertyG aph.

5.12.6 Examples: Adding and Dropping Vertices and Edges

ORACLE

ExampleNoSQL3 and ExampleHBase3 add and drop both vertices and edges.
Example 5-7 Creating the Vertices

The code fragment in Example 5-7 creates three vertices. It is a simple variation of
Example 5-5.

/] Create a property graph instance naned opg
Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(args);

/] Cear all vertices and edges from opg
opg. cl ear Reposi tory();

/1 Add vertices a, b, and ¢
Vertex a = opg.addVertex(1l);
a.setProperty("name", "Alice");
a.setProperty("age", 31);

Vertex b = opg.addVertex(2l);

b. set Property("name", "Bob");
b. set Property("age", 27);

5-118

ORACLE

Chapter 5
Exploring the Sample Programs

Vertex ¢ = opg.addVertex(3l);
c.setProperty("name", "Chris");
c.setProperty("age", 33);

Example 5-8 Creating the Edges
The code fragment in Example 5-8 uses vertices a, b, and c to create the edges.

/1 Add edges el, e2, and e3
Edge el = opg. addEdge(1l, a, b, "knows");
el.setProperty("type", "partners");

Edge e2 = opg. addEdge(2l, a, c, "knows");
e2.setProperty("type", "friends");

Edge e3 = opg. addEdge(3l, b, ¢, "knows");
e3.setProperty("type", "colleagues");

Example 5-9 Deleting Edges and Vertices

The code fragment in Example 5-9 explicitly deletes edge e3 and vertex b. It implicitly
deletes edge el, which was connected to vertex b.

/1 Renove edge e3
opg. renoveEdge(e3);

/1 Renobve vertex b and all related edges
opg. renmoveVertex(b);

Example 5-10 Querying for Vertices and Edges

This example queries the database to show when objects are added and dropped. The
code fragment in Example 5-10 shows the method used.

[l Print all vertices
vertices = opg.getVertices().iterator();
Systemout.printIn("----- Vertices ----");
vCount = 0;
while (vertices.hasNext()) {
Systemout. println(vertices.next());
vCount ++;

}

Systemout.printIn("Vertices found: " + vCount);

[l Print all edges
edges = opg. get Edges().iterator();
Systemout.printIn("----- Edges ----");
eCount = 0;
whi | e (edges. hasNext()) {
Systemout. println(edges. next());
eCount ++;

}
Systemout. println("Edges found: " + eCount);

The examples in this topic may produce output like the following:

----- Vertices ----

Vertex ID 3 {name:str:Chris, age:int:33}
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex 1D 2 {name:str:Bob, age:int:27}
Vertices found: 3

----- Edges ----

5-119

Chapter 5
Oracle Flat File Format Definition

Edge ID 2 from Vertex ID 1 {nane:str:Aice, age:int:31} =[knows]=> Vertex ID 3
{nane:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 3 from Vertex ID 2 {nane:str:Bob, age:int:27} =[knows]=> Vertex 1D 3
{nane:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
Edge ID 1 from Vertex ID 1 {nane:str:Aice, age:int:31} =[knows]=> Vertex ID 2
{nane: str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 3
Remove edge Edge 1D 3 from Vertex ID 2 {nane:str:Bob, age:int:27} =[knows]=> Vertex
ID 3 {nane:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
----- Vertices ----
Vertex ID 1 {nanme:str:Alice, age:int:31}
Vertex | D 2 {nane:str:Bob, age:int:27}
Vertex ID 3 {nanme:str:Chris, age:int:33}
Vertices found: 3
----- Edges ----
Edge ID 2 from Vertex ID 1 {nane:str:Aice, age:int:31} =[knows]=> Vertex ID 3
{nane:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 1 from Vertex ID 1 {nane:str:Aice, age:int:31} =[knows]=> Vertex ID 2
{nane: str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 2
Remove vertex Vertex |D 2 {name:str:Bob, age:int:27}
----- Vertices ----
Vertex ID 1 {nanme:str:Alice, age:int:31}
Vertex ID 3 {nanme:str:Chris, age:int:33}
Vertices found: 2
----- Edges ----
Edge ID 2 from Vertex ID 1 {nane:str:Aice, age:int:31} =[knows]=> Vertex ID 3
{nane:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edges found: 1

5.13 Oracle Flat File Format Definition

A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

e About the Property Graph Description Files

* Vertex File

* Edge File

» Encoding Special Characters

* Example Property Graph in Oracle Flat File Format

* Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat
File

* Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph
Flat Files

5.13.1 About the Property Graph Description Files

ORACLE

A pair of files describe a property graph:

e Vertex file: Describes the vertices of the property graph. This file has an . opv file
name extension.

- Edge file: Describes the edges of the property graph. This file has an . ope file
name extension.

5-120

Chapter 5
Oracle Flat File Format Definition

It is recommended that these two files share the same base name. For example,
si npl e. opv and si npl e. ope define a property graph.

5.13.2 Vertex File

Each line in a vertex file is a record that describes a vertex of the property graph. A
record can describe one key-value property of a vertex, thus multiple records/lines are
used to describe a vertex with multiple properties.

A record contains six fields separated by commas. Each record must contain five
commas to delimit all fields, whether or not they have values:

vertex_ID, key _name, value_type, value, value, value

Table 5-6 describes the fields composing a vertex file record.

Table 5-6 Vertex File Record Format
]

Field Name Description

Number

1 vertex_ID An integer that uniquely identifies the vertex
2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(920). This example describes vertex 1 with no
properties:

1,%0,,,,

3 value_type An integer that represents the data type of the value in
the key-value pair:

1 String

2 Integer

3 Float

4 Double

5 Timestamp (date)
6 Boolean

7 Long integer

8 Short integer

9 Byte

10 Char

20 Spatial data, which can be geospatial
coordinates, lines, polygons, or Well-Known Text
(WKT) literals

101 Serializable Java object

4 value The encoded, nonnull value of key _name when it is
neither numeric nor timestamp (date)

5 value The encoded, nonnull value of key_name when it is
numeric

ORACLE 5-121

ORACLE

Chapter 5
Oracle Flat File Format Definition

Table 5-6 (Cont.) Vertex File Record Format
|

Field Name Description
Number
6 value The encoded, nonnull value of key_name when itis a

timestamp (date)

Use the Java Si npl eDat eFor mat class to identify the
format of the date. This example describes the date
format of 2015- 03- 26T00: 00: 00. 000- 05: 00:

Si npl eDat eFor mat sdf = new

Si npl eDat eFor mat ("yyyy- M

dd' T' HH: mm ss. SSSXXX") ;

encode(sdf.format ((java.util.Date) value));

Required Grouping of Vertices: A vertex can have multiple properties, and the
vertex file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records for
other vertices. You can accomplish this any way you want, but a convenient way is to
sort the vertex file records in ascending (or descending) order by vertex ID. (Note,
however, a vertex file is not required to have all records sorted by vertex ID; this is
merely one way to achieve the grouping requirement.)

When building a vertex file in Oracle flat file format, it is important to verify that the
vertex property name and value fields are correctly encoded (see especially Encoding
Special Characters). To simplify the encoding, you can use the

Oracl ePropertyG aphUtils. escape Java API.

You can use the Oracl ePropertyG aphUtils. out put Vert exRecord(os, vid, key, value)
utility method to serialize a vertex record directly in Oracle flat file format. With this
method, you no longer need to worry about encoding of special characters. The
method writes a new line of text in the given output stream describing the key/value
property of the given vertex identified by vid.

Example 5-11 Using OraclePropertyGraphUtils.outputVertexRecord

This example uses Oracl ePropertyG aphUi | s. out put Vert exRecor d to write two new lines
for vertex 1.

String opv = "./exanpl e.opv";

Qut put Stream os = new Fi | eQut put St reanm(opv) ;

int birthYear = 1961;

long vid = 1;

Oracl ePropertyG aphUtils. out put Vert exRecord(os, vid, "name", "Barack Chama");
Oracl ePropertyG aphUtils. out put VertexRecord(os, vid, "birth year", birthYear);
os. flush();

0s.close();

The first line in the generated output file describes the property name with value
"Barack Obama", and the second line describes his birth year of 1961.

% cat exanpl e. opv
1, nane, Bar ack%20Chanm, ,
1, bi rt h%20year, 2, , 1961,

5-122

Chapter 5
Oracle Flat File Format Definition

5.13.3 Edge File

ORACLE

Each line in an edge file is a record that describes an edge of the property graph. A
record can describe one key-value property of an edge, thus multiple records are used
to describe an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight
commas to delimit all fields, whether or not they have values:

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key name,
value_type, value, value, value

Table 5-7 describes the fields composing an edge file record.

Table 5-7 Edge File Record Format
|

Field Name Description

Number

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the

relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

If the edge has no properties, then enter a space
(920). This example describes edge 100 with no
properties:

100, 1, 2, I i kes, %20, , , ,

6 value_type An integer that represents the data type of the value
in the key-value pair:

1 String

2 Integer

3 Float

4 Double
5Ttimestamp (date)
6 Boolean

7 Long integer

8 Short integer

9 Byte

10 Char

101 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

8 value The encoded, nonnull value of key _name when it is
numeric

5-123

ORACLE

Chapter 5
Oracle Flat File Format Definition

Table 5-7 (Cont.) Edge File Record Format
|

Field Name Description
Number
9 value The encoded, nonnull value of key_name when it is

a timestamp (date)

Use the Java Si npl eDat eFor mat class to identify the
format of the date. This example describes the date
format of 2015- 03- 26Th00: 00: 00. 000- 05: 00:

Si npl eDat eFor mat sdf = new

Si npl eDat eFor mat (" yyyy- M

dd' Th' HH: nm ss. SSSXXX") ;

encode(sdf. format ((java.util.Date) value));

Required Grouping of Edges: An edge can have multiple properties, and the edge
file includes a record (represented by a single line of text in the flat file) for each
combination of an edge ID and a property for that edge. In the edge file, all records for
each edge must be grouped together (that is, not have any intervening records for
other edges. You can accomplish this any way you want, but a convenient way is to
sort the edge file records in ascending (or descending) order by edge ID. (Note,
however, an edge file is not required to have all records sorted by edge ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify that the
edge property name and value fields are correctly encoded (see especially Encoding
Special Characters). To simplify the encoding, you can use the

Oracl ePropertyGraphUtil s. escape Java API.

You can use the Oracl ePropertyG aphUti | s. out put EdgeRecord(os, eid, svid, dvid,

| abel , key, value) utility method to serialize an edge record directly in Oracle flat file
format. With this method, you no longer need to worry about encoding of special
characters. The method writes a new line of text in the given output stream describing
the keylvalue property of the given edge identified by eid.

Example 5-12 Using OraclePropertyGraphUtils.outputEdgeRecord

This example uses Oracl ePropertyG aphUti | s. out put EdgeRecor d to write two new lines
for edge 100 between vertices 1 and 2 with label fri endCf .

String ope = "./exanpl e. ope";
Qut put Stream os = new Fi | eQut put St r ean(ope) ;
int sinceYear = 2009;

long eid = 100;
long svid = 1,
long dvid = 2;

Oracl ePropertyG aphUtils. out put EdgeRecord(os, eid, svid, dvid, "friendO", "since
(year)", sinceYear);

Oracl ePropertyG aphUtils. out put EdgeRecord(os, eid, svid, dvid, "friend0f", "weight",
1);

os. flush();

0s.close();

The first line in the generated output file describes the property “since (year)" with
value 2009, and the second line and the next line sets the edge weight to 1

5-124

Chapter 5
Oracle Flat File Format Definition

% cat exanpl e. ope
100, 1, 2, fri endOX, si nce%®20(year), 2, , 2009,
100, 1, 2, friendOf, wei ght, 2,, 1,

5.13.4 Encoding Special Characters

The encoding is UTF-8 for the vertex and edge files. Table 5-8 lists the special
characters that must be encoded as strings when they appear in a vertex or edge
property (key-value pair) or an edge label. No other characters require encoding.

Table 5-8 Special Character Codes in the Oracle Flat File Format

Special Character String Encoding Description
% 925 Percent
\t %09 Tab
90 Space
\n 9%0A New line
\r %D Return
, %C Comma

5.13.5 Example Property Graph in Oracle Flat File Format

An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a
friend of Mary.

Y%at sinple. opv
1, age, 2, , 10,

1, nane, 1, John, ,

2, nang, 1, Mary, ,

2, hobby, 1, soccer, ,

Y%at sinple.ope
100, 1, 2, friendOf, %R0, , , ,

5.13.6 Converting an Oracle Database Table to an Oracle-Defined
Property Graph Flat File

ORACLE

You can convert Oracle Database tables that represent the vertices and edges of a
graph into an Oracle-defined flat file format (. opv and . ope file extensions).

If you have graph data stored in Oracle Database tables, you can use Java API
methods to convert that data into flat files, and later load the tables into Oracle
Database as a property graph. This eliminates the need to take some other manual
approach to generating the flat files from existing Oracle Database tables.

Converting a Table Storing Graph Vertices to an .opv File

You can convert an Oracle Database table that contains entities (that can be
represented as vertices of a graph) to a property graph flat file in . opv format.

5-125

Chapter 5
Oracle Flat File Format Definition

For example, assume the following relational table: Enpl oyeeTab (enmpl D i nteger not
nul'l, hasNane varchar(255), hasAge integer, hasSal ary nunber)

Assume that this table has the following data:

101, Jean, 20, 120.0
102, Mary, 21, 50.0
103, Jack, 22, 110.0

Each employee can be viewed as a vertex in the graph. The vertex ID could be the
value of employeelD or an ID generated using some heuristics like hashing. The
columns hasName, hasAge, and hasSalary can be viewed as attributes.

The Java method O acl ePropertyG aphUti | s. conver t RDBMSTabl e20PV and its Javadoc
information are as follows:

/**

* conn: is an connect instance to the Oracle rel ational database

* rdbmsTabl eNane: nane of the RDBMS table to be converted

* vidCol Name is the nane of an colum in RDBVS table to be treated as vertex ID
* [VIDOfFfset is the offset will be applied to the vertex ID

* ctans defines howto map colums in the RDBMVS table to the attributes

*

dop degree of parallelism

* dcl an instance of DataConverterlListener to report the progress and control the
behavi or when errors happen

*|

Oracl ePropertyG aphUtils. convert RDBMSTabl e20PV(
Connection conn,

String rdbnsTabl eNane,

String vidCol Nane,

long | VIDO f set,

Col urmToAt t r Mappi ng[] ct ans,

int dop,

Qut put Stream opvCS,

Dat aConverterListener dcl);

The following code snippet converts this table into an Oracle-defined vertex file (. opv):

/1 location of the output file

String opv = "./Enpl oyeeTab. opv";

Qut put St ream opvCS = new Fi | eQut put Strean(opv);

/1 an array of Col utmToAttrMapping objects; each object defines howto map a col um
inthe RDBVS table to an attribute of the vertex in an Oracle Property G aph.

Col utmToAt t r Mappi ng[] ctanms = new Col uimToAt t r Mappi ng[3] ;

/1 map colum "hasName" to attribute "name" of type String

ctams[0] = Col umToAtt r Mappi ng. get | nst ance("hasNane", "nane", String.class);

/1 map colum "hasAge" to attribute "age" of type Integer

ctams[1] = Col umToAt t r Mappi ng. get | nst ance("hasAge", "age", |nteger.class);

/1 map colum "hasSal ary" to attribute "salary" of type Doubl e

ctams[2] = Col umToAttr Mappi ng. get I nstance("hasSal ary", "sal ary", Doubl e. cl ass);

/1 convert RDBMS table "Enpl oyeeTab" into opv file "./Enpl oyeeTab. opv", colum
"enpl D' is the vertex ID colum, offset 10001 will be applied to vertex ID, use
ctams to map RDBMS colums to attributes, set DOP to 8

Oracl ePropertyG aphUtils. convert RDOBMSTabl e20PV(conn, "Enpl oyeeTab", "enpl D', 1000l
ctams, 8, opvCS, (DataConverterlListener) null);

ORACLE 5-126

ORACLE

Chapter 5
Oracle Flat File Format Definition

Note:

The lowercase letter "I" as the last character in the offset value 10001 denotes
that the value before it is a long integer.

The conversion result is as follows:

1101, nane, 1, Jean, ,
1101, age, 2, , 20,

1101, sal ary, 4,, 120. 0,
1102, nane, 1, Mary, ,
1102, age, 2, , 21,

1102, sal ary, 4, , 50. 0,
1103, nane, 1, Jack, ,
1103, age, 2, , 22,

1103, sal ary, 4,, 110. 0,

In this case, each row in table EmployeeTab is converted to one vertex with three
attributes. For example, the row with data "101, Jean, 20, 120.0" is converted to a
vertex with ID 1101 with attributes name/"Jean", age/20, salary/120.0. There is an
offset between original emplD 101 and vertex ID 1101 because an offset 1000l is
applied. An offset is useful to avoid collision in ID values of graph elements.

Converting a Table Storing Graph Edges to an .ope File

You can convert an Oracle Database table that contains entity relationships (that can
be represented as edges of a graph) to a property graph flat filein . ope format.

For example, assume the following relational table: EnpRel ati onTab (rel ationl D
integer not null, source integer not null, destination integer not null,
rel ati onType varchar (255), startDate date)

Assume that this table has the following data:

90001, 101, 102, manage, 10- May-2015
90002, 101, 103, manage, 11-Jan-2015
90003, 102, 103, colleague, 11-Jan-2015

Each relation (row) can be viewed as an edge in a graph. Specifically, edge ID could
be the same as relationID or an ID generated using some heuristics like hashing. The
column relationType can be used to define edge labels, and the column startDate can
be treated as an edge attribute.

The Java method O acl ePropertyG aphUti | s. conver t RDBMSTabl e20PE and its Javadoc
information are as follows:

/**

* conn: is an connect instance to the Oracle rel ational database

* rdbmsTabl eNane: nane of the RDBMS table to be converted

* ei dCol Name is the nanme of an colum in RDBVS table to be treated as edge ID

* |EIDOfFfset is the offset will be applied to the edge ID

* svidCol Nane is the nane of an colum in RDBMS table to be treated as source vertex
ID of the edge

* dvidCol Nane is the nane of an colum in RDBMS table to be treated as destination
vertex ID of the edge

* [VIDOfFfset is the offset will be applied to the vertex ID

5-127

ORACLE

Chapter 5
Oracle Flat File Format Definition

* bHasEdgelLabel Col a Bool ean flag represents if the given RDBVS table has a col um
for edge labels; if true, use value of colum el Col Nane as the edge |abel;
ot herwi se, use the constant string el Col Name as the edge | abel
* el Col Nane is the name of an colum in RDBVS table to be treated as edge |abels
* ctans defines howto map colums in the RDBVS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control the
behavi or when errors happen
*|
Oracl ePropertyG aphUtils. convert RDBMSTabl e2 OPE(
Connection conn,
String rdbnsTabl eNane,
String eidCol Nane,
long | EIDOFf set,
String svidCol Nane,
String dvi dCol Nane,
long | VIDO f set,
bool ean bHasEdgeLabel Col ,
String el Col Nane,
Col urmToAt t r Mappi ng[] ct ans,
int dop,
Qut put St ream opeGCs,
Dat aConverterListener dcl);

The following code snippet converts this table into an Oracle-defined edge file (. ope):

/'l location of the output file

String ope = "./EnpRel ationTab. ope";

Qut put St ream opeCS = new Fi | eQut put Strean{ ope) ;

/1 an array of Col utmToAttrMapping objects; each object defines howto map a col um
inthe RDBVS table to an attribute of the edge in an Oracle Property G aph.

Col utmToAt t r Mappi ng[] ctanms = new Col umToAt t r Mappi ng[1] ;

/1 map colum "startDate" to attribute "since" of type Date

ctams[0] = Col umToAttr Mappi ng. get I nstance(“startDate", “since", Date.class);

/1 convert RDBMS table “EnpRelationTab" into ope file “./EnmpRel ationTab.opv", colum
“relationlD' is the edge ID colum, offset 100001 will be applied to edge ID, the
source and destination vertices of the edge are defined by colums “source" and
“destination", offset 10001 will be applied to vertex ID, the RDBVS table has an
colum “relationType" to be treated as edge |abels, use ctams to map RDBMS col ums
to edge attributes, set DOP to 8

Oracl ePropertyG aphUtils. convert RDOBMSTabl e20PE(conn, “EnpRel ationTab", “relationl D',
100001, “source", “destination", 1000, true, “relationType", ctams, 8, opeCS,
(DataConverterListener) null);

Note:

The lowercase letter “I" as the last character in the offset value 10000l
denotes that the value before it is a long integer.

The conversion result is as follows:

100001, 1101, 1102, manage, si nce, 5, , , 2015- 05- 10T00: 00: 00. 000- 07: 00
100002, 1101, 1103, manage, si nce, 5, ,, 2015- 01- 11T00: 00: 00. 000- 07: 00
100003, 1102, 1103, col | eague, si nce, 5, ,, 2015- 01- 11T00: 00: 00. 000- 07: 00

In this case, each row in table EmpRelationTab is converted to a distinct edge with the
attribute si nce. For example, the row with data “90001, 101, 102, manage, 10-

5-128

Chapter 5
Oracle Flat File Format Definition

May-2015" is converted to an edge with ID 100001 linking vertex 1101 to vertex 1102.
This edge has attribute since/“2015-05-10T00:00:00.000-07:00". There is an offset
between original relationID “90001" and edge ID “100001" because an offset 10000l is
applied. Similarly, an offset 1000l is applied to the source and destination vertex IDs.

5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files

Some applications use CSV (comma-separated value) format to encode vertices and
edges of a graph. In this format, each record of the CSV file represents a single vertex
or edge, with all its properties. You can convert a CSV file representing the vertices of
a graph to Oracle-defined flat file format definition (. opv for vertices, . ope for edges).

The CSV file to be converted may include a header line specifying the column name
and the type of the attribute that the column represents. If the header includes only the
attribute names, then the converter will assume that the data type of the values will be
String.

The Java APIs to convert CSV to OPV or OPE receive an | nput St reamfrom which they
read the vertices or edges (from CSV), and write them in the . opv or . ope format to an
Qut put Stream The converter APIs also allow customization of the conversion process.

The following subtopics provide instructions for converting vertices and edges. The
instructions for the first two are very similar, but with differences specific to vertices
and edges.

* Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)
e Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

* Vertices and Edges: Converting a Single CSV File Containing Both Vertices and
Edges Data into a Pair of Graph Flat Files

5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File Format

(-opv)

ORACLE

If the CSV file does not include a header, you must specify a Col umToAt t r Mappi ng array
describing all the attribute names (mapped to its values data types) in the same order
in which they appear in the CSV file. Additionally, the entire columns from the CSV file
must be described in the array, including special columns such as the ID for the
vertices. If you want to specify the headers for the column in the first line of the same
CSV file, then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convert CSV20PV
APIs. The simplest of these APIs requires:

e Annput Streamto read vertices from a CSV file

e The name of the column that is representing the vertex ID (this column must
appear in the CSV file)

e Aninteger offset to add to the VID (an offset is useful to avoid collision in ID values
of graph elements)

e A Col umToAt t r Mappi ng array (which must be null if the headers are specified in the
file)

* Degree of parallelism (DOP)

5-129

Chapter 5
Oracle Flat File Format Definition

* Aninteger denoting offset (number of vertex records to skip) before converting
* An Qut put Streamin which the vertex flat file (.opv) will be written

e An optional Dat aConvert er Li st ener that can be used to keep track of the
conversion progress and decide what to do if an error occurs

Additional parameters can be used to specify a different format of the CSV file:

» The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

* The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

— "™Hello, world"™, the screen showed..."

— "But Vader replied: \"No, | am your father.\

* The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified if the
CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

- "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

- "MM/dd/yyyy HH:mm:ss"

— "ddd, dd MMM yyyy HH":'mm"'ss 'GMT"'
— "dddd, dd MMMM yyyy hh:mm:ss"

- "yyyy-MM-dd"

- "MM/ddlyyyy"

» Aflag indicating if the CSV file contains String values with new line characters. If
this parameter is set to true, all the Strings in the file that contain new lines or
guotation characters as values must be quoted.

— "The first lines of Don Quixote are:"In a village of La Mancha, the name of

which | have no desire to call to mind™.

The following code fragment shows how to create a Col umToAt t r Mappi ng array and use
the API to convert a CSV file into an . opv file.

String input CSV
String output OPV
Col utmToAt t r Mappi ng[] ctans

"/ pat h/ mygraph-vertices. csv";
"/ pat h/ mygr aph. opv";
new Col umToAt t r Mappi ng[4] ;

ctans[0] Col umToAt t r Mappi ng. get I nst ance("VI D",
Long. cl ass);

ctans[1] = Col utmToAt t r Mappi ng. get | nst ance(" name",
String.class);

ctanms[2] = Col umToAt t r Mappi ng. get I nst ance("score",
Doubl e. cl ass) ;

ctans[3] = Col umToAt t r Mappi ng. get | nst ance("age",
I nteger.class);

String vidCol um = "VID";

i SCSV = new Fi | el nput Strean(i nput CSV);
0sOPV = new Fi | eQut put Strean(new Fi | e(out put OPV));

ORACLE 5-130

ORACLE

Chapter 5
Oracle Flat File Format Definition

/| Convert Vertices

Oracl ePropertyG aphUti | sBase. convert CSV20PV(i sCSV, vidColum, 0, ctanms, 1, 0,
0osCPV, null);

i sSOPV. cl ose();

0sOPV. cl ose();

In this example, the CSV file to be converted must not include the header and contain
four columns (the vertex ID, name, score, and age). An example CVS is as follows:

1,John, 4.2, 30

2, Mary, 4. 3,32

, " Skywal ker, Anakin",5.0, 46
"Darth Vader",5.0, 46

" Skywal ker, Luke", 5.0, 53

w

4,
5,

The resulting . opv file is as follows:

1, naneg, 1, John, ,

1,score, 4,,4.2,

1, age, 2, , 30,

2, nang, 1, Mary, ,

2,score, 4,,4.3,

2,age, 2, , 32,

3, nane, 1, Skywal ker 9%2C%20Anaki n, ,
3,score, 4,,5.0,

3, age, 2, , 46,

4, nane, 1, Dart h9%20Vader , ,
4,score, 4,,5.0,

4, age, 2, , 46,

5, nane, 1, Skywal ker 9%2C%20Luke, ,
5,score, 4,,5.0,

5, age, 2, , 53,

Another way to convert a CSV file containing vertices data is to use the
convert CSV2CPV APIs that take a CSV20PVConf i g object as one of the following input
arguments:

* An I nput Streamto read vertices from a CSV file
e A CSV20PVConfi g object that specifies the configuration
* An Qut put St reamto write the vertex flat file (.opv) to

The CSV20PVConfi g class has different members, which can be set according to the
desired tuning; this is equivalent to call the convert CSV20PV API with all the different
configuration parameters.

The following code fragment shows how to create a CSV20PVConf i g object and use the
API to convert a CSV file into an . opv file.

String inputCSV
String out put OPV

"/ pat h/ mygraph-vertices. csv";
"I pat h/ mygraph. opv";

Col utmToAt t r Mappi ng[] ctanms = new Col uimToAt t r Mappi ng[4] ;

ctans[0] Col urmToAt t r Mappi ng. get | nst ance("VI D",
Long. cl ass);

ctans[1] = Col umToAt t r Mappi ng. get | nst ance(" name",
String.class);

ctans[2] = Col umToAt t r Mappi ng. get | nst ance("score”,
Doubl e. cl ass);

ctans[3] = Col umToAt t r Mappi ng. get | nst ance("age",

I nteger.class);

5-131

Chapter 5
Oracle Flat File Format Definition

I nput Stream i sCSV = new Fi | el nput Strean(i nput CSV) ;

Qut put Stream osOPV = new Fi | eQut put Strean(new Fi | e(out put OPV));
CSV20PVConfi g config = (CSV20PVConfig) new CSV20PVConfi g()

. set Vi dCol umNane("VID")

.set Ctans(ct ans)

.set Al | owExt raFi el ds(fal se)

.setDelimterChar(',")

.setQuotationChar('"");

/'l Convert vertices

O acl ePropertyG aphCSVConvert er. conver t CSV20PV(i sCSV, config, osOPV);
i sCSV. cl ose();

0sOPV. cl ose();

If the CSV20PVConfi g includes a Col umToAt t r Mappi ng array, then the input CSV must not
include a header, because the mappings have already been defined in the

Col umToAt t r Mappi ng array. Additionally, because the set Al | owExt r aFi el ds flag is set to
fal se in the CSV20PVConf i g, the number of columns in the CSV file must match the
length of the Col uimToAt t r Mappi ng array (in the example, one for the vertex ID, the
second one for name, third one for score, and the last one for age). An example CSV
is:

1, John, 4.2, 30

2, Mary, 4.3, 32

3, " Skywal ker, Anakin",5.0, 46
,"Darth Vader", 5.0, 46

, " Skywal ker, Luke",5.0,53

(SIS

The resulting . opv file is as follows:

1, nane, 1, John, ,

1,score, 4,,4.2,

1, age, 2, , 30,

2, name, 1, Mary, ,

2,score, 4,,4.3,

2,age, 2, , 32,

3, nang, 1, Skywal ker 9%2C%20Anaki n, ,
3,score, 4,,5.0,

3,age, 2, , 46,

4, nane, 1, Dart h920Vader, ,
4,score, 4,,5.0,

4, age, 2, , 46,

5, nane, 1, Skywal ker %2C%0Luke, ,
5,score, 4,,5.0,

5, age, 2, , 53,

5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format

(-ope)

ORACLE

If the CSV file does not include a header, you must specify a Col umToAt t r Mappi ng array
describing all the attribute names (mapped to its values data types) in the same order
in which they appear in the CSV file. Additionally, the entire columns from the CSV file
must be described in the array, including special columns such as the ID for the edges
if it applies, and the START_ID, END_ID, and TYPE, which are required. If you want to
specify the headers for the column in the first line of the same CSV file, then this
parameter must be set to null.

5-132

ORACLE

Chapter 5
Oracle Flat File Format Definition

To convert a CSV file representing vertices, you can use one of the conver t CSV20PE
APIs. The simplest of these APlIs requires:

An | nput St reamto read vertices from a CSV file

The name of the column that is representing the edge ID (this is optional in the
CSV file; if it is not present, the line number will be used as the ID)

An integer offset to add to the EID (an offset is useful to avoid collision in ID values
of graph elements)

Name of the column that is representing the source vertex ID (this column must
appear in the CSV file)

Name of the column that is representing the destination vertex ID (this column
must appear in the CSV file)

Offset to the VID (I O f set VI D). This offset will be added on top of the original SVID
and DVID values. (A variation of this API takes in two arguments (I O f set SVI D and
| Of f set DVI D): one offset for SVID, the other offset for DVID.)

A boolean flag indicating if the edge label column is present in the CSV file.

Name of the column that is representing the edge label (if this column is not
present in the CSV file, then this parameter will be used as a constant for all edge
labels)

A Col urmToAt t r Mappi ng array (which must be null if the headers are specified in the
file)

Degree of parallelism (DOP)
An integer denoting offset (number of edge records to skip) before converting
An Qut put St reamin which the edge flat file (.ope) will be written

An optional Dat aConverterLi st ener that can be used to keep track of the
conversion progress and decide what to do if an error occurs.

Additional parameters can be used to specify a different format of the CSV file:

The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',

The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

— "™Hello, world™, the screen showed..."

— "But Vader replied: \"No, | am your father.\

The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified if the
CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

- "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

- "MM/dd/yyyy HH:mm:ss"

— "ddd, dd MMM yyyy HH:'mm"'ss 'GMT"
— "dddd, dd MMMM yyyy hh:mm:ss"

5-133

ORACLE

Chapter 5
Oracle Flat File Format Definition

- "yyyy-MM-dd"
— "MM/ddlyyyy"

* Aflag indicating if the CSV file contains String values with new line characters. If
this parameter is set to true, all the Strings in the file that contain new lines or
guotation characters as values must be quoted.

— "The first lines of Don Quixote are:""In a village of La Mancha, the name of

which | have no desire to call to mind™.

The following code fragment shows how to use the API to convert a CSV file into
an . ope file with a null Col uimToAt t r Mappi ng array.

String input OPE
String out put OPE

"/ pat h/ mygr aph- edges. csv";
"/ pat h/ mygr aph. ope";

String ei dCol um null; /] null inplies that an integer sequence
will be used

String svidColum = "START_ID';

String dvidColum = "END_ID";

bool ean hasLabel = true;

String I abel Col um = "TYPE";

i SOPE = new Fi | el nput Strean(i nput OPE);
0SOPE = new Fi | eQut put Stream new Fi | e(out put OPE));

/] Convert Edges
Oracl ePropertyG aphUti | sBase. convert CSV20PE(i sOPE, ei dCol um, 0, svidCol um,
dvi dCol umm, hasLabel , |abel Colum, null, 1, 0, osOPE, null);

An input CSV that uses the former example to be converted should include the header
specifying the columns name and their type. An example CSV file is as follows.

START_| D: 1 ong, wei ght: fl oat, END_I D: | ong, : TYPE
.0,2,1oves

.0,5,adnires

.9,1,loves

5,3, likes

0,4,!ikes

.0,5,is the dad of

0,4,turns to

0,3,saves fromthe dark side

PP PrOoOOORR

gw NP NPE P

The resulting .ope file is as follows.

, 1,2, loves, weight, 3,, 1.0,
, 1,5, adm res, wei ght, 3,, 1.0,
2,1,1oves, wei ght, 3,,0.9,
1,3, likes, weight, 3,,0.5,
, 2,4, 1ikes, weight,3,,0.0,
, 4,5, s%0t he920dad%200f , wei ght, 3, , 1. 0,
, 3,4, turns%0t o, wei ght, 3, , 1. 0,
, 5, 3, saves%20f r on?20t he%20dar k%20si de, wei ght, 3, , 1. 0,

Another way to convert a CSV file containing edges data is to use the
conver t CSV2CPE APIs that take a CSV20PEConf i g object as one of the following input
arguments:

* Anlnput Streamto read edges from a CSV file
* A CSV20PVConfi g object that specifies the configuration
e An Qut put Streamto write the edge flat file (.opv) to

5-134

Chapter 5
Oracle Flat File Format Definition

The CSV20PEConf i g class has different members, which can be set according to the
desired tuning; this is equivalent to call the convert CSV20PE API with all the different
configuration parameters.

The following code fragment shows how to create a CSV20PEConfi g object and use the
API to convert a CSV file into an . ope file.

String input OPE
String output OPE

"/ pat h/ mygr aph- edges. csv";
"/ pat h/ mygr aph. ope";

String eidCol um null; /1 null inplies that an integer sequence
will be used

String svidColum = "START_ID';

String dvidColum = "END |D";

bool ean hasLabel = true;

String |abel Col um = "TYPE";

I nput Stream i sCSV = new Fi | el nput Strean(i nput OPE) ;

Qut put St ream osOPE = new Fi | eQut put Stream(new Fi | e(out put OPE));
CSV20PEConfi g config = (CSV20PEConfig) new CSV2OPEConfi g()

. set Ei dCol utmmNane(ei dCol um)

. set Svi dCol urmNane(svi dCol unm)

. set Dvi dCol urmNane(dvi dCol unm)

. set HasEdgeLabel Col utm(hasLabel)

. set El Col umNane(| abel Col umm)

.setCtans(null)

.setDelimterChar(',")

.setQuotationChar('"");

/] Convert Edges

O acl ePropertyG aphCSVConvert er. conver t CSV20PE(i sCSV, config, 0SOPE);
i sCSV. cl ose();

0SOPE. cl ose();

If the CSV20PEConf i g does not include a Col umToAt t r Mappi ng array or if this array is set
to null, then the input CSV must include a header specifying the column names and
data type. An example CSYV file is:

START_| D: | ong, wei ght: f1 oat, END_| D: | ong, : TYPE
.0,2,1oves

.0,5,adnmires

.9,1, 1 oves

.5,3,likes

0,4,1ikes

.0,5,is the dad of

0,4,turns to

0, 3,saves fromthe dark side

PR POOORE

GGwhr~rNNEFENRE P

The resulting . ope file is as follows:

, 1,2, loves, weight, 3,,1.0,
1,5, adni res, wei ght, 3,, 1.0,
2,1,1oves, wei ght, 3,,0.9,
1,3, likes, weight,3,,0.5,
, 2,4, 1ikes, weight,3,,0.0,
, 4,5, s%0t he920dad%200f , wei ght, 3, , 1. 0,
, 3,4, turns%0t o, wei ght, 3, , 1. 0,
, 5, 3, saves%20f r on?20t he%®20dar k%20si de, wei ght, 3, , 1. 0,

ORACLE 5-135

Chapter 5
Oracle Flat File Format Definition

5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing Both
Vertices and Edges Data into a Pair of Graph Flat Files

The property graph support also provides an option to convert a single CSV file
containing both vertices and edges data, into a pair of graph flat files. One can use the
convertCSV20PG APIs to make this conversion and the input parameters are as
follows:

An | nput St reamto read vertices and edges from a CSV file
A CSV20PGConf i g object that specifies the configuration
An Qut put St reamto write the vertex flat file (. opv) to

An Qut put St reamto write the edge flat file (. ope) to

The following code fragment shows how to create a CSV20PGConf i g object and use the
API to convert a single CSV file into . opv and . ope files.

String inputCSV
String output OPV
String output OPE

"/ pat h/ mygraph. csv";
"/ pat h/ mygraph. opv";
"/ pat h/ mygr aph. ope";

String eidColum = null; /1 null inplies that an integer sequence
will be used

String svidColum = "START_ID';

String dvidColum = "END_ID";

bool ean hasLabel = true;

String I abel Col um = "TYPE";

String[] vertexNames = new String [2];
vertexNanes[0] = svi dCol um;
vertexNanes[1] = dvi dCol um;

I nput Stream i sCSV = new Fi | el nput Strean{i nput OPE) ;
Qut put Stream osOPV = new Fi | eQut put Strean(new Fi | e(out put OPV));
Qut put St ream osOPE = new Fi | eQut put Streanm(new Fi | e(out put OPE));

CSV20PGConf i g config = (CSV20PGConfig) new CSV20PGConfi g()
. set Vi dCol unmNanes(vert exNames)
. set KeepOri gi nal I D(true)
.setOriginall DNane("nyld")
. set Ei dCol utmNane(ei dCol um)
. set Svi dCol urmNane(svi dCol unm)
. set Dvi dCol urmNane(dvi dCol unm)
. set HasEdgeLabel Col utm(hasLabel)
. set El Col umNane(| abel Col umm)
.setCtans(null)
.setDelimterChar(',")
.setQuotationChar('"");

/1 Convert Gaph

O acl ePropertyG aphCSVConvert er. convert CSV20PE i sCSV, config, 0osOPV, 0sOPE);
i sCSV. cl ose();

0sOPV. cl ose();

0sOPE. cl ose();

If the CSV20PEConf i g does not include a Col urmToAt t r Mappi ng array or this array is set to
null, then the input CSV must include a header specifying the column names and data
type. An example CSV file is:

ORACLE

5-136

Chapter 5
Example Python User Interface

START_I D: | ong, wei ght: fl oat, END_I D: | ong, : TYPE

John, 1. 0, Mary, | oves

John, 1. 0, " Skywal ker, Luke", adnires

Mary, 0.9, John, | oves

John, 0. 5, " Skywal ker, Anakin",|ikes

Mary, 0.0, "Darth Vader",Ilikes

"Darth Vader", 1.0, "Skywal ker, Luke",is the dad of

"Skywal ker, Anakin",1.0,"Darth Vader",turns to

"Skywal ker, Luke", 1.0, "Skywal ker, Anakin",saves fromthe dark side

The resulting .opv file is as follows:

-4984830045544402721, nyl d, 1, John, ,
6010046165116255926, nyl d, 1, Mary, ,
-5861570303285508288, nyl d, 1, Skywal ker %2C%20Anaki n, ,
-6450119557041804291, nyl d, 1, Dar t h%R0Vader, ,
3941046021651468440, nyl d, 1, Skywal ker 92C%20Luke, ,

The resulting .ope file is as follows:

1, - 4984830045544402721, 6010046165116255926, | oves, wei ght, 3, , 1. 0,
2,-4984830045544402721, 3941046021651468440, admi res, wei ght, 3,, 1.0
3,6010046165116255926, - 4984830045544402721, | oves, wei ght, 3,,0.9

4, -4984830045544402721, - 5861570303285508288, | i kes, wei ght, 3,,0.5
5,6010046165116255926, - 6450119557041804291, | i kes, wei ght, 3,,0.0

, - 6450119557041804291, 3941046021651468440, i s%20t he%®20dad%200f , wei ght, 3,, 1. 0

, -5861570303285508288, - 6450119557041804291, t ur ns%20t o, wei ght, 3,, 1.0

, 3941046021651468440, - 5861570303285508288, saves¥20f r on?20t he%20dar k%&20si de, wei ght
3,,1.0,

o ~N o

5.14 Example Python User Interface

ORACLE

The Oracle Big Data Spatial and Graph support for property graphs includes an
example Python user interface. It can invoke a set of example Python scripts and
modules that perform a variety of property graph operations.

Instructions for installing the example Python user interface are in the / property_graph/
exanpl es/ pyopg/ README file under the installation home (/ opt/ or acl e/ or acl e- spati al -
graph by default).

The example Python scripts in / property_graph/ exanpl es/ pyopg/ can be used with
Oracle Spatial and Graph Property Graph, and you may want to change and enhance
them (or copies of them) to suit your needs.

To invoke the user interface to run the examples, use the script pyopg. sh.
The examples include the following:

* Example 1: Connect to an Oracle NoSQL Database and perform a simple check of
number of vertices and edges. To run it:

cd /opt/oracl e/ oracl e-spatial -graph/ property_graph/ exanpl es/ pyopg
./ pyopg. sh

connect ONDB(" nygraph", "kvstore", "local host:5000")

print "vertices", countV()
print "edges", countE()

In the preceding example, nygr aph is the name of the graph stored in the Oracle
NoSQL Database, kvst ore and | ocal host : 5000 are the connection information to

5-137

ORACLE

Chapter 5
Example Python User Interface

access the Oracle NoSQL Database. They must be customized for your
environment.

Example 2: Connect to an Apache HBase and perform a simple check of number
of vertices and edges. To run it:

cd /opt/oracl e/ oracl e-spatial -graph/ property_graph/ exanpl es/ pyopg
./ pyopg. sh

connect HBase("nygraph", "local host", "2181")
print "vertices", countV()
print "edges", countE()

In the preceding example, nygr aph is the name of the graph stored in the Apache
HBase, and | ocal host and 2181 are the connection information to access the
Apache HBase. They must be customized for your environment.

Example 3: Connect to an Oracle NoSQL Database and run a few analytical
functions. To run it:

cd /opt/oracl e/ oracl e-spatial -graph/ property_graph/ exanpl es/ pyopg
./ pyopg. sh

connect ONDB(" nygraph”, "kvstore", "local host:5000")
print "vertices", countV()
print "edges", countE()

i mport pprint

anal yzer = anal yst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"conmid":i.getNane(),"size":i.size()} for i in
anal yzer. communities().iterator()]

i nport pandas as pd
i nport numpy as np

community_frame = pd. Dat aFranme(graph_communi ties)
community_frang[: 5]

inport matplotlib as npl
inmport matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frane["size"].plot(kind="bar", title="Comunities and Sizes")
ax.set_xtickl abel s(comunity_frane.index);

plt.show()

The preceding example connects to an Oracle NoSQL Database, prints basic
information about the vertices and edges, get an in memory analyst, computes the
number of triangles, performs community detection, and finally plots out in a bar
chart communities and their sizes.

Example 4: Connect to an Apache HBase and run a few analytical functions. To
run it:

cd /opt/oracl e/ oracl e-spatial -graph/ property_graph/ exanpl es/ pyopg
./ pyopg. sh

connect HBase("nygraph", "local host", "2181")
print "vertices", countV()

5-138

Chapter 5
Example iPython Notebooks User Interface

print "edges", countE()

i mport pprint

anal yzer = anal yst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"conmmi d":i.getNane(),"size":i.size()} for i in
anal yzer. communities().iterator()]

i nport pandas as pd

i mport nunpy as np

community_frame = pd. Dat aFranme(graph_comuni ties)

community_frang[: 5]

inport matplotlib as npl
inport matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncol s=1, figsize=(16,12));
comunity_franme["size"].plot(kind="bar", title="Communities and Sizes")
ax.set_xtickl abel s(comunity_frane.index);

plt.show()

The preceding example connects to an Apache HBase, prints basic information
about the vertices and edges, gets an in-memory analyst, computes the number of
triangles, performs community detection, and finally plots out in a bar chart
communities and their sizes.

For detailed information about this example Python interface, see the following
directory under the installation home:

property_graph/ exanpl es/ pyopg/ doc/

5.15 Example iPython Notebooks User Interface

Support is provided for the following types of iPython Notebook shell interface to major
property graph functions.

ORACLE

iPython Notebook is a convenient tool for building a workflow or demo based on a
property graph. This topic explains how to add visualization to an iPython Notebook-
based property graph workflow.

Instructions for installing iPython Notebook are in the / property_graph/ exanpl es/ pyopg/
README file under the installation home (/ opt/ or acl e/ or acl e- spat i al - gr aph by default).

After you have installed iPython Notebook, you can copy and paste the code snippets
into an iPython notebook.

Follow these steps to get started.

1.

Specify a few necessary libraries and imports. For example:

inport matplotlib as npl

inport matplotlib.pyplot as plt
i mport sys
defaul t _st dout
defaul t _stderr
rel oad(sys)
sys. set def aul t encodi ng("utf-8")
sys. stdout = default_stdout
sys.stderr = default_stderr

sys. st dout
sys. stderr

5-139

ORACLE

Chapter 5
Example iPython Notebooks User Interface

from pyopg. core inport *

pgx_config = JPackage(' oracl e. pgx. config")
pgx_types = JPackage(' oracl e. pgx. cormon. t ypes')
pgx_control = JPackage(' oracle. pgx.api"')

hbase = JPackage(' oracl e. pg. hbase')

Create a graph configuration. For example:

graph_bui | der = pgx_confi g. GraphConfi gBui | der. f or PropertyG aphHbase() \

. set Name("ny_graph") . set ZkQuor un(" host nanmel") . set ZkCl i ent Port (2181) \

. set ZkSessi onTi neout (120000) . set I ni ti al EdgeNunRegi ons(3) \

.setlnitial VertexNunRegi ons(3).set SplitsPerRegion(1)

graph_bui | der. addEdgePr operty("wei ght", pgx_types. PropertyType. DOUBLE, "1000000")

Read the graph into the in-memory analyst. For example:

opg = hbase. Oracl ePropertyG aph. get | nstance(graph_buil der. build())
pgx_param = JC ass("java. util.HashMap") ()

instance = JC ass("oracl e. pgx. api . Pgx"). getlnstance()

if not instance.isEngineRunning():instance.startEngine(pgx_param
sessi on = instance. createSession("my_recommender _sessionl")

anal yst = session. creat eAnal yst()

pgxGaph = session. readG aphWthProperties(opg. get Config(), True)
pgxG aph. get NunEdges()

(optional) Read out a few vertices. For example:

for element in range(1,10,1):
vertex = opg. get Vertex(el enent)
print 'Vertex ID ' + str(element) + ' - Name: ' + vertex.getProperty("name")
#Vertex ID: 1 - Nane: Barack Chama
#Vertex ID: 2 - Nanme: Beyonce
#..

Create JSON objects (nodes, links) out of edges (and vertices) that you want to
visualize. For example:

Get Edges

edges = opg. get Edges().iterator();
edge = edges. next ()

Dictiony for Nodes and Links

nodes = []
links =[]
names = []
sources =[]
targets =[]
val ues =[]
CGet Nodes

for count in range(1,20,1):

Vertex Val ues

out VertexNanme = edge. get Qut Vertex(). get Property("nange")

out VertexRol e = edge. get Qut Vertex(). get Property("country")

i nVert exNane = edge. get | nVertex().getProperty("nane")

inVertexRol e = edge. getlnVertex().getProperty("country")

Add out Vertex

if {"nane": outVertexNane, "group": outVertexRole} not in nodes:
nodes. append({"name": outVertexNane, "group": outVertexRol e})
nanes. append(out Ver t exNane)

Add in Vertex

if {"nane": inVertexNane, "group": inVertexRole} not in nodes:
nodes. append({"name": inVertexNane, "group": inVertexRole})
names. append(i nVert exNane)

Edge Information

sour ces. append(out Vert exNane)

5-140

ORACLE

Chapter 5
Example iPython Notebooks User Interface

targets. append(i nVertexNane)
val ues. append(edge. get Label ())
Next Edge
edge = edges. next ()
Get Links
for count in range(0,19,1)
Vertex Val ues
out VertexName = sources[count]
i nVertexNane = targets[count]
Edge Val ues
source = nanes. i ndex(out Vert exNane)
target = nanes.index(inVertexNane)
val ue = val ues[count]
I'inks. append({"source": source, "target": target, "value": value})

from | Python. display inport Javascri pt

i mport json
Transformthe graph into a JSON graph
data = {"nodes":nodes, "links":links}

jsonG aph = json.dunps(data, indent=4)
Send to Javascript
Javascript ("""wi ndow. j sonG aph={};""".format(j sonG aph))

Set up a <div>...</div> for graph plotting. For example:

%Mt m

<div id="d3-exanpl e"></div>

<style>

.node {stroke: #ff; stroke-width: 1.5px;}
.link {stroke: #999; stroke-opacity: 5.6;}
</style>

Perform graph processing with D3 Force-directed layout. For example:

984 avascri pt
/] We load the d3.js library fromthe Web.
require.config({paths: {d3: "http://d3js.org/d3.v3.nmn"}});
require(["d3"], function(d3) {
/1 The code in this block is executed when the
/1 d3.js library has been | oaded.
Il First, we specify the size of the canvas containing
/1 the visualization (size of the <div> elenent).
var width = 800, height = 600;
/] W create a color scale.
var color = d3.scal e. category20();
/1 W create a force-directed dynam ¢ graph |ayout.
var force = d3.layout.force().charge(-300).1inkDi stance(100).size([w dth,
hei ght]);
/1 In the <div> elenent, we create a <svg> graphic
/1 that will contain our interactive visualization.
var svg = d3.sel ect ("#d3-exanple").sel ect("svg")
if (svg.emty()) {
svg = d3. sel ect ("#d3-exanpl e"). append("svg").attr("w dth",
width).attr("height", height)
}
/1 We load the JSON graph we generated fromiPython input
var graph = wi ndow. j sonG aph;
pl ot Graph(graph);
[l Graph Plot function
function plotGaph(graph) {
/1 W load the nodes and links in the force-directed graph.
force. nodes(graph. nodes).links(graph.links).start();
/] We create a <line> SVG el enent for each link in the graph.

5-141

Chapter 5
Example iPython Notebooks User Interface

var link =
svg.select ALl (".1ink").data(graph.links).enter().append("line").attr("class",
"link").attr("stroke-width", 7)
/1 Link Val ue
I'ink.append("title").text(function(d) {
return d.val ue;
D
I/ W create a <circle> SVG element for each node
/1 in the graph, and we specify a few attributes.
var node =
svg. sel ect ALl (". node"). dat a(graph. nodes).enter().append("circle").attr("class",
"node").attr("r", 16) //radius
.style("fill", function(d) {
/1 The node col or depends on the club.
return col or(d.group);
}).call(force.drag);
/1 The nanme of each node is the node nunber.
node. append("title").text(function(d) {
var info = "Name: " + d.name + "\n" + "Country: " + d.group;

return info;
1)
/1 Text Over Nodes
var text =

svg. append("g").selectAll ("text").data(force.nodes()).enter().append("text").att
r("x", function(d) {
return -10
}).attr("y", 0).style("font-size","10px").text(function(d) {
if (d.name.length > 15) {
return d. nane. substring(0, 15) + "
}

return d. name;
oK
/1 W bind the positions of the SVG el enents
/1 to the positions of the dynamic force-directed graph,
[/ at each time step.
force.on("tick", function() {
link.attr("x1", function(d) {
return d.source.x;
}).attr("yl", function(d) {
return d.source.y;
}).attr("x2", function(d) {
return d.target.x;
}).attr("y2", function(d) {
return d.target.y;

IOk
node.attr("cx", function(d) {
return d.x;
}).attr("cy", function(d) {
return d.y;
IOk
text.attr("transfornt, function(d) {
return "translate(" +d.x +"," +dy +")";
IOk

1
}
1

If you performed all the preceding steps, an image like the following should appear in
your HTML area.

ORACLE 5-142

Chapter 5
Example iPython Notebooks User Interface

Figure 5-3 Image Resulting from iPython Notebooks Example

o/ .
s :

/.-nm .“ & @
0=-0&".70\<-

."’"

o o

ORACLE 5-143

Using the In-Memory Analyst (PGX)

ORACLE

The in-memory analyst feature of Oracle Spatial and Graph supports a set of analytical
functions.

This chapter provides examples using the in-memory analyst (also referred to as
Property Graph In-Memory Analytics, and often abbreviated as PGX in the Javadoc,
command line, path descriptions, error messages, and examples). It contains the
following major topics.

* Reading a Graph into Memory
This topic provides an example of reading graph interactively into memory using
the shell interface.

* Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

* Reading Custom Graph Data
You can read your own custom graph data. This example creates a graph, alters
it, and shows how to read it properly.

e Storing Graph Data on Disk
After reading a graph into memory using either Java or the Shell, you can store it
on disk in different formats. You can then use the stored graph data as input to the
in-memory analyst at a later time.

* Executing Built-in Algorithms
The in-memory analyst contains a set of built-in algorithms that are available as
Java APIs.

e Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory.

* Using Pattern-Matching Queries with Graphs
You can issue a pattern-matching query against an in-memory graph, and then
work with the results of that query.

e Starting the In-Memory Analyst Server
Big Data Spatial and Graph bundles a preconfigured version of Apache Tomcat
that allows you to start the in-memory analyst server by running a script.

* Deploying to Jetty
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a
web application with Eclipse Jetty.

* Deploying to Apache Tomcat
You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy the in-memory analyst as a web
application with Apache Tomcat.

6-1

Chapter 6
Reading a Graph into Memory

Deploying to Oracle WebLogic Server

You can deploy the in-memory analysts to Eclipse Jetty, Apache Tomcat, or
Oracle WebLogic Server. This example shows how to deploy the in-memory
analyst as a web application with Oracle WebLogic Server.

Connecting to the In-Memory Analyst Server

After the property graph in-memory analyst is deployed as a server, and installed
in a Hadoop cluster -- or on a client system without Hadoop as a web application
on Eclipse Jetty, Apache Tomcat, or Oracle WebLogic Server -- you can connect
to the in-memory analyst server.

Using the In-Memory Analyst in Distributed Mode
The in-memory analyst can be run in shared memory mode or distributed mode.

Reading and Storing Data in HDFS

The in-memory analyst supports the Hadoop Distributed File System (HDFS). This
example shows how to read and access graph data in HDFS using the in-memory
analyst APIs.

Running the In-Memory Analyst as a YARN Application

In this example you will learn how to start, stop and monitor in-memory analyst
servers on a Hadoop cluster via Hadoop NextGen MapReduce (YARN)
scheduling.

Using Oracle Two-Tables Relational Format

When using a relational data model, graph data can be represented with two
relational tables. One table is for nodes and their properties; the other table is for
edges and their properties.

Using the In-Memory Analyst to Analyze Graph Data in Apache Spark
The property graph feature in Oracle Big Data Spatial and Graph enables
integration of in-memory analytics and Apache Spark.

Using the In-Memory Analyst Zeppelin Interpreter

The in-memory analyst provides an interpreter implementation for Apache
Zeppelin. This tutorial topic explains how to install the in-memory analyst
interpreter into your local Zeppelin installation and to perform some simple
operations.

Using the In-Memory Analyst Enterprise Scheduler
The in-memory analyst enterprise scheduler provides advanced scheduling
features.

6.1 Reading a Graph into Memory

This topic provides an example of reading graph interactively into memory using the
shell interface.

ORACLE

These are the major steps:

Connecting to an In-Memory Analyst Server Instance
Using the Shell Help
Providing Graph Metadata in a Configuration File

Reading Graph Data into Memory

6-2

Chapter 6
Reading a Graph into Memory

6.1.1 Connecting to an In-Memory Analyst Server Instance

To start the in-memory analyst:

1. Open aterminal session on the system where property graph support is installed.

2. Inthe shell, enter the following commands, but select only one of the commands
to start or connect to the desired type of instance:

cd $PGX_HOME
.Ibin/pgx --help
.I'bin/pgx --version

start enbedded shel |
. 1'bi n/ pgx

start renote shell
.Ibin/pgx --base_url http://ny-server.com 8080/ pgx

For the embedded shell, the output should be similar to the following:

10: 43: 46,666 [main] INFO Ctrl$2 - >>> PGX engine running.
pgx>

3. Optionally, show the predefined variables:

pgx> i nstance

==> Server | nstance[embedded=tr ue]

pgx> session

==> PgxSessi on[| D=ah9bdc1d- 3401- 460c- blcf - 5ef 97ec5c5f 9, sour ce=pgxShel |]
pgx> anal yst

==> NanedAr gunent Anal yst [sessi on=ab9bdc1d- 3401- 460c- blcf - 5ef 97ec5c5f 9]

pgx>

Examples in some other topics assume that the instance and session variables
have been set as shown here.

If the in-memory analyst software is installed correctly, you will see an engine-running
log message and the in-memory analyst shell prompt (pgx>):

The variables i nst ance, sessi on, and anal yst are ready to use.

In the preceding example in this topic, the shell started a local instance because the
pgx command did not specify a remote URL.

6.1.2 Using the Shell Help

The in-memory analyst shell provides a help system, which you access using the : hel p
command.

6.1.3 Providing Graph Metadata in a Configuration File

ORACLE

An example graph is included in the installation directory, under / opt/ or acl e/ or acl e-
spati al - graph/ property_graph/ exanpl es/ pgx/ gr aphs/ . It uses a configuration file that
describes how the in-memory analyst reads the graph.

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj.json

6-3

Chapter 6
Reading a Graph into Memory

"uri": "sanple.adj",

“format": "adj _list",

"node_props": [{
“name": "prop",
"type": "integer"

H,

"edge_props": [{
"name": "cost",
"type": "double"

H,

"separator": " "

}

The uri field provides the location of the graph data. This path resolves relative to the
parent directory of the configuration file. When the in-memory analyst loads the graph,
it searches the exanpl es/ gr aphs directory for a file named sanpl e. adj .

The other fields indicate that the graph data is provided in adjacency list format, and
consists of one node property of type i nt eger and one edge property of type doubl e.

This is the graph data in adjacency list format:

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj

===> 128 10 1908 27.03 99 8.51

99 2 333 338.0

1908 889

333 6 128 51.09

Figure 6-1 shows a property graph created from the data:

Figure 6-1 Property Graph Rendered by sample.adj Data

cost: 27.03 id: 1908
prop: 889

id: 128
prop: 10

cost: 51.09

cost: 338.0

6.1.4 Reading Graph Data into Memory

To read a graph into memory, you must pass the following information:

ORACLE 6-4

ORACLE

Chapter 6
Reading a Graph into Memory

* The path to the graph configuration file that specifies the graph metadata
* Aunique alphanumeric name that you can use to reference the graph
An error results if you previously loaded a different graph with the same name.

To specify the path to the file:
» If the vertices and edges are specified in one file, use uri :
{ "uri":

* To specify multiple files (for example, ADJ_LIST, EDGE_LIST), use uri s:

"path/to/file . format", ...}

{ "uris": ["filel.format", "file2.format"] ...}
Note that most plain-text formats can be parsed in parallel by thee in-memory
analyst.

« If the file format is different depending on whether it contains vertices or edges (for
example, FLAT_FILE, TWO_TABLES), use vertex_uris and edge_uris:

{ "vertex_uris": ["verticesl.format", "vertices2.format"], "edge_uris":
["edgesl.format", "edges2.format"] ...}

Supported File Systems

The in-memory analyst supports loading from graph configuration files and graph data
files over various protocols and virtual file systems. The type of file system or protocol
is determined by the scheme of the uniform resource identifier (URI):

e Local file system (fil e:). This is also the default if the given URI does not contain
any scheme.

e classpath (cl asspath: orres:)

¢ HDFS (hdfs:)

e HTTP (http: orhttps:)

e Various archive formats (zi p:,jar:, tar:, tgz:, thz2:, gz:, and bz2:)

The URI format is scheme: //arch-fil e-uri[!absol ute-path]. For example:
jar:../libl/classes.jar!/META-I NF/ graph.json

Paths may be nested. For example: tar: gz: http://anyhost/dir/nytar.tar.gz!/
mytar.tar!/path/in/tar/graph. data

To use the exclamation point (!) as a literal file-name character, it must be
escaped using: %21,

Note that relative paths are always resolved relative to the parent directory of the
configuration file.

Example: Using the Shell to Read a Graph

pgx> graph = session.readG aphWthProperties("/opt/oracl el oracl e-spatial - graph/
property_graph/ exanpl es/ pgx/ graphs/ sanpl e. adj . j son", "sanple");

==> PgxG aph[name=sanpl e, N=4, E=4, cr eat ed=1476225669037]

pgx> graph. get Nunertices()
=>4

Example: Using Java to Read a Graph

i mport oracl e. pgx.api.*;

6-5

Chapter 6
Reading a Graph into Memory

Serverlnstance instance = Pgx. get|nstance(Pgx. EMBEDDED URL);

/'l Serverlnstance instance = Pgx.getlnstance("http://ny-server:7007"); // remote

i nstance

PgxSessi on session = instance. createSessi on("nmy-session");

PgxGraph graph = session.readG aphWthProperties("/opt/oracle/oracle-spatial-graph/
property_graph/ exanpl es/ pgx/ gr aphs/ sanpl e. adj . j son");

Example: Using JavaScript to Read a Graph

const pgx = require('oracle-pgx-client');
let p = pgx.connect ("http://my-server:7007");
let json = {
"uri": "sanple.adj",
"format": "adj _list",
"node_props": [{
“nane": "prop",
"type": "integer"
.
"edge_props": [{
"nane": "cost",
"type": "double"
.

"separator": " "

}

p. then(function(session) {
return session.readG aphWthProperties(json);
}).then(function(graph) {
/1 do sonething with graph
D

The following topics contain additional examples of reading a property graph into
memory.

e Read a Graph Stored in Apache HBase into Memory
e Read a Graph Stored in Oracle NoSQL Database into Memory

e Read a Graph Stored in the Local File System into Memory

6.1.4.1 Read a Graph Stored in Apache HBase into Memory

ORACLE

To read a property graph stored in Apache HBase, you can create a JSON based
configuration file as follows. Note that the quorum, client port, graph name, and other
information must be customized for your own setup.

% cat /tnp/ny_graph_hbase.json
{
“format": "pg",
"db_engine": "hbase",
"zk_quoruni: "scaj 31bda07, scaj 31bda08, scaj 31bda09",
"zk_client_port": 2181,
"name": "connections",
"node_props": [{
"name": "country",
"type": "string"
H,

"edge_props": [{

"name": "l abel",
"type": "string"

6-6

Chapter 6
Reading a Graph into Memory

boA
"name": "weight",
"type": "float"
H,
"l oading": {
"l oad_edge_| abel ": true
1
}
ECF

With the following command, the property graph connect i ons will be read into memory:

pgx> sessi on. readG aphWt hProperties("/tnp/ my_graph_hbase.json", "connections")
==> PGX Graph named connections ...

Note that when dealing with a large graph, it may become necessary to tune
parameters like number of IO workers, number of workers for analysis, task timeout,
and others. See Configuring the In-Memory Analyst.

6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory

To read a property graph stored in Oracle NoSQL Database, you can create a JSON
based configuration file as follows. Note that the hosts, store name, graph name, and
other information must be customized for your own setup.

% cat /tnp/ny_graph_nosql.json

{
“format": "pg",
"db_engine": "nosql",
"hosts": [

"zat hras01: 5000"
]

tore_nane": "kvstore",
"name": "connections",
"node_props": [{
“name": “country",

"type": "string"
H,
"l oading": {
"l oad_edge_| abel ": true
1
"edge_props": [{
"nane": "label",
"type": "string"
hoA
"name": "weight",
"type": "float"

H
}

Then, read the configuration file into memory. The following example snippet read the
file into memory, generates an undirected graph (hamed U) from the original data, and
counts the number of triangles.

pgx> g = session.readG aphWthProperties("/tnp/ny_graph_nosql.json", "connections")

pgx> anal yst.count Triangl es(g, false)
==> §

ORACLE .

Chapter 6
Configuring the In-Memory Analyst

6.1.4.3 Read a Graph Stored in the Local File System into Memory

The following command uses the configuration file from "Providing Graph Metadata in
a Configuration File" and the name ny- gr aph:

pgx> g = session.readG aphWthProperties("/opt/oracl e/ oracl e-spatial - graph/
property_graph/ exanpl es/ pgx/ gr aphs/ sanpl e. adj . j son", "ny-graph")

6.2 Configuring the In-Memory Analyst

You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

This file can include the parameters shown in the following table. Some examples
follow the table.

To specify the specify the configuration file, see Specifying the Configuration File to
the In-Memory Analyst.

Note:

e Relative paths in parameter values are always resolved relative to the
configuration file in which they are specified. For example, if the
configuration file is / pgx/ conf/ pgx. conf and if a file in a parameter value
is specified as graph- confi gs/ ny-graph. bin. j son, then the file path is
resolved to / pgx/ conf / gr aph- confi gs/ my- gr aph. bi n. j son.

e The parameter default values are optimized to deliver the best
performance across a wide set of algorithms. Depending on your
workload. you may be able to improve performance further by
experimenting with different strategies, sizes, and thresholds.

Table 6-1 Configuration Parameters for the In-Memory Analyst
|

Parameter Type Description Default
admin_request_cache_ti integer After how many seconds 60
meout admin request results get

removed from the cache.
Requests which are not
done or not yet consumed
are excluded from this
timeout. Note: this is only
relevant if PGX is deployed

as a webapp.
allow_idle_timeout_over boolean If true, sessions can true
write overwrite the default idle

timeout.

ORACLE 6-8

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter

Type

Description Default

allow_local_filesystem

allow_task_timeout_over
write

allow_user_auto_refresh

bfs_iterate_que_task_si
ze

bfs_threshold_read_bas
ed

bfs_threshold_single_thr
eaded

cctrace

cctrace_out

character_set

cni_diff_factor_default

cni_small_default

ORACLE

boolean

boolean

boolean

integer

integer

integer

boolean

string

string

integer

integer

(This flag reduces security, false
enable it only if you know
what you're doing!) Allow
loading from local
filesystem, if in client/server
mode. WARNING: This
should only be enabled if
you want to explicitly allow
users of the PGX remote
interface to access files on
the local file system.

If true, sessions can true
overwrite the default task

timeout

If true, users may enable false

auto refresh for graphs they
load. If false, only graphs
mentioned in graphs can
have auto refresh enabled.

Task size for BFS iterate 128
QUE phase.

Threshold of BFS traversal 1024
level items to switch to read-
based visiting strategy.

Until what number of BFS 128
traversal level items vertices
are visited single-threaded.

If true, log every call to a false
Control or Core interface.

[relevant for cctrace] When null
cctrace is enabled, specifies

a path to a file where

cctrace should log to.

If null, it will log to stderr. If it

is the special value :log: it

will use the default PGX

logging facility

Standard character set to utf-8
use throughout PGX. UTF-8

is the default. Note: Some

formats may not be

compatible.

Default diff factor value used 8
in the common neighbor
iterator implementations.

Default value used in the 128
common neighbor iterator
implementations, to indicate
below which threshold a

subarray is considered

small.

6-9

ORACLE

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type

Description Default

cni_stop_recursion_defa integer
ult

dfs_threshold_large integer

enable_csrf_token_chec boolean
ks

enable_solaris_studio_la boolean
beling

explicit_spin_locks boolean

graphs array of string

max_active_sessions integer

Default value used in the 96
common neighbor iterator
implementations, to indicate

the minimum size where the
binary search approach is
applied.

Value that determines at 4096
which number of visited

vertices the DFS

implementation will switch to

data structures that are

optimized for larger numbers

of vertices.

If true, the PGX webapp will true
verify the Cross-Site

Request Forgery (CSRF)

token cookie and request
parameters sent by the

client exist and match. This

is to prevent CSRF attacks.

[relevant when profiling false
with solaris studio] When

enabled, label experiments

using the 'er_label'

command.

true means spin explicitly in true
a loop until lock becomes
available. false means using

JDK locks which rely on the

JVM to decide whether to

context switch or spin.

Setting this value to true

usually results in better
performance.

List of paths to graph 1]
configurations to be
registered at startup.

Maximum number of 1024
sessions allowed to be
active at a time.

6-10

ORACLE

Parameter Type

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst
|

Description Default

max_off_heap_size integer

max_queue_size_per_s
ession

integer

max_snapshot_count integer

memory_cleanup_interv
al

integer

ms_bfs_frontier_type_str enum[auto_grow,
ategy short, int]

num_spin_locks integer

num_workers_analysis integer

<available-
physical-memory>

Maximum amount of off-
heap memory (in
megabytes) that PGX is
allowed to allocate before an
OutOfMemoryError will be
thrown. Note: this limit is not
guaranteed to never be
exceeded, because of
rounding and
synchronization trade-offs. It
only serves as threshold
when PGX starts to reject
new memory allocation
requests.

The maximum number of -1
pending tasks allowed to be

in the queue, per session. If

a session reaches the
maximum, new incoming
requests of that sesssion get
rejected. A negative value
means no limit.

Number of snapshots that 0
may be loaded in the engine
at the same time. New
snapshots can be created
via auto or forced update. If
the number of snapshots of
a graph reaches this
threshold, no more auto-
updates will be performed,
and a forced update will
result in an exception until
one or more snapshots are
removed from memory. A
value of zero indicates to
support an unlimited amount
of snapshots.

Memory cleanup interval in 600
seconds.

The type strategy to use for
MS-BFS frontiers.

auto_grow

Number of spin locks each 1024
generated app will create at
instantiation. Trade-off: a

small number implies less

memory consumption; a

large number implies faster
execution (if algorithm uses

spin locks).

Number of worker threads to <no-of-cpus>
use for analysis tasks.

6-11

ORACLE

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default
num_workers_fast_track integer Number of worker threads to 1
_analysis use for fast-track analysis
tasks.
num_workers_io integer Number of worker threads to <no-of-cpus>

pattern_matching_sema enum[isomorphis
ntic m,
homomorphism]

parallelization_strategy enum[segmented,
task_stealing,
task_stealing_cou

nted, rts]

random_generator_strat
egy

enum[non_determ
inistic,
deterministic]

random_seed long

use for 1/O tasks (load/
refresh/write from/to disk).
This value will not affect file-
based loaders, because
they are always single-
threaded. Database loaders
will open a new connection
for each 1/0 worker.

The graph pattern-matching
semantic, which is either
homomorphism or isomorphi
sm.

homomorphism

Parallelization strategy to
use: segmented = split work
into segments, use 1 thread
per segment;

task_stealing = F/J pool
using recursive actions;
task_stealing_counted = F/J
pool using counted
completers to reduce joins;
rts = experimental run-time
system.

task_stealing_cou
nted

Mmethod of generating
random numbers in the in-
memory analyst.

non_deterministic

-24466691093057
031

[relevant

for deterministic random
number generator

only] Seed for the
deterministic random
number generator used in
the in-memory analyst. The
default is
-24466691093057031.

6-12

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst
|

Parameter Type Description Default
release_memory_thresh number Threshold percentage 0.85
old (decimal fraction) of used

memory after which the
engine starts freeing unused
graphs. Examples: A value
of 0.0 means graphs get
freed as soon as their
reference count becomes
zero. That is, all sessions
which loaded that graph
were destroyed/timed out. A
value of 1.0 means graphs
never get freed, and the
engine will throw
OutOfMemoryErrors as
soon as a graph is needed
which does not fit in memory
anymore. A value of 0.7
means the engine keeps all
graphs in memory as long
as total memory
consumption is below 70%
of total available memory,
even if there is currently no
session using them. When
consumption exceeds 70%
and another graph needs to
get loaded, unused graphs
get freed until memory
consumption is below 70%

again.
session_idle_timeout_se integer Timeout of idling sessions in 0
cs seconds. Zero (0) means no

timeout
session_task_timeout_s integer Timeout in seconds to 0
ecs interrupt long-running tasks

submitted by sessions
(algorithms, 1/O tasks). Zero
(0) means no timeout.

small_task_length integer Task length if the total 128
amount of work is smaller
than default task length
(only relevant for task-
stealing strategies).

spark_streams_interface string The name of an interface null
will be used for spark data
communication.

ORACLE 6-13

ORACLE

Chapter 6
Configuring the In-Memory Analyst

Table 6-1 (Cont.) Configuration Parameters for the In-Memory Analyst

__|
Parameter Type Description Default

strict_mode boolean If true, exceptions are true
thrown and logged
with ERROR level whenever
the engine encounters
configuration problems,
such as invalid keys,
mismatches, and other
potential errors. If false, the
engine logs problems with
ERROR/WARN level
(depending on severity) and
makes best guesses and
uses sensible defaults
instead of throwing
exceptions.

task_length integer Default task length (only 4096
relevant for task-stealing
strategies). Should be
between 100 and 10000.
Trade-off: a small number
implies more fine-grained
tasks are generated, higher
stealing throughput; a large
number implies less memory
consumption and GC
activity.

tmp_dir string Temporary directory to store <system-tmp-dir>
compilation artifacts and
other temporary data. If set
to <system-tmp-dir>, uses
the standard tmp directory of
the underlying system (/
tmp on Linux).

use_string_pool boolean If true, the in-memory true
analyst will store string
properties in a pool in order
to consume less memory on
string properties.

Example 6-1 Minimal In-Memory Analyst Configuration

The following example causes the in-memory analyst to initialize its analysis thread
pool with 32 workers. (Default values are used for all other parameters.)

{ "numworkers_anal ysis": 32 }
Example 6-2 In-Memory Analyst Configuration with Two Fixed Graphs

The following example specifies additional parameters, including the graphs parameter
to load two fixed graphs into memory during in-memory analyst startup. This feature
helps to avoid redundancy when you need the same graph configuration pre-loaded
and for standalone use later to reference the graph.

6-14

Chapter 6
Configuring the In-Memory Analyst

“num wor kers_anal ysi s": 32,

"num wor kers_fast_track_anal ysis": 32,

"menory_cl eanup_interval": 600,

"max_active_sessions": 1,

"rel ease_nenory_threshol d": 0.2,

"graphs": ["graph-configs/my-graph.bin.json", "graph-configs/my-other-
graph.adj.json"]
}

Example 6-3 In-Memory Analyst Configuration with Non-Default Run-Time
Values

The following example specifies some parameters to configure in-memory analyst run-
time behavior.

{
“num wor kers_anal ysis": 32,
“num spin_|l ocks": 128,
"task_l ength": 1024,
"array_factory_strategy": "java_arrays"

}

e Specifying the Configuration File to the In-Memory Analyst

6.2.1 Specifying the Configuration File to the In-Memory Analyst

ORACLE

The in-memory analyst configuration file is parsed by the in-memory analyst at startup-
time whenever Ser ver | nst ance#st ar t Engi ne (or any of its variants) is called. You can
write the path to your configuration file to the in-memory analyst or specify it
programmatically. This topic identifies several ways to specify the file

Programmatically

All configuration fields exist as Java enums. Example:

Map<PgxConfi g. Fi el d, Object> pgxCfg = new HashMap<>();
pgxCf g. put (PgxConfi g. Fi el d. NUM WORKERS_ANALYSI S, 32);

Serverlnstance instance = ...
i nstance. start Engi ne(pgxCf g);

All parameters not explicitly set will get default values.

Explicitly Using a File

Instead of a map, you can write the path to an in-memory analyst configuration JSON
file. Example:

i nstance. start Engi ne("path/to/ pgx.conf"); // file on local file system

i nstance. start Engi ne("hdfs:/path/to/pgx.conf"); // file on HDFS

(required $HADOOP_CONF_DIR on the cl asspat h)

i nstance. start Engi ne("cl asspath:/path/to/pgx.conf"); // file on current classpath

For all other protocols, you can write directly in the input stream to a JSON file.
Example:

InputStreamis = ...
i nstance. startEngine(is);

6-15

Chapter 6
Reading Custom Graph Data

Implicitly Using a File

If start Engi ne() is called without an argument, the in-memory analyst looks for a
configuration file at the following places, stopping when it finds the file:

* File path found in the Java system property pgx_conf. Example: j ava -
Dpgx_conf =conf/ ny. pgx. config.json ...

* Afile named pgx. conf in the root directory of the current classpath

e Afile named pgx. conf in the root directory relative to the
current Syst em get Property("user.dir") directory

Note: Providing a configuration is optional. A default value for each field will be used if
the field cannot be found in the given configuration file, or if no configuration file is
provided.

Using the Local Shell

To change how the shell configures the local in-memory analyst instance,
edit $PGX_HOVE/ conf / pgx. conf . Changes will be reflected the next time you
invoke $PGX_HOME/ bi n/ pgx.

You can also change the location of the configuration file as in the following example:

.I'bin/pgx --pgx_conf path/tolnylother/pgx. conf

Setting System Properties

Any parameter can be set using Java system properties by writing -

Dpgx. <Fl ELD>=<VALUE> arguments to the JVM that the in-memory analyst is running on.
Note that setting system properties will overwrite any other configuration. The following
example sets the maximum off-heap size to 256 GB, regardless of what any other
configuration says:

java -Dpgx. max_of f _heap_si ze=256000 ...

Setting Environment Variables

Any parameter can also be set using environment variables by adding 'PGX_' to the
environment variable for the JVM in which the in-memory analyst is executed. Note
that setting environment variables will overwrite any other configuration; but if a
system property and an environment variable are set for the same parameter, the
system property value is used. The following example sets the maximum off-heap size
to 256 GB using an environment variable:

PGX_MAX_OFF_HEAP_S| ZE=256000 j ava ...

6.3 Reading Custom Graph Data

ORACLE

You can read your own custom graph data. This example creates a graph, alters it,
and shows how to read it properly.

This graph uses the adjacency list format, but the in-memory analyst supports several
graph formats.

The main steps are the following.

* Creating a Simple Graph File

6-16

Chapter 6
Reading Custom Graph Data

* Adding a Vertex Property
» Using Strings as Vertex Identifiers

* Adding an Edge Property

6.3.1 Creating a Simple Graph File

ORACLE

This example creates a small, simple graph in adjacency list format with no vertex or
edge properties. Each line contains the vertex (node) ID, followed by the vertex IDs to
which its outgoing edges point:

BN
N BN

In this list, a single space separates the individual tokens. The in-memory analyst
supports other separators, which you can specify in the graph configuration file.

Figure 6-2 shows the data rendered as a property graph with 4 vertices and 5 edges.
(There are two edges between vertex 2 and vertex 4, each pointing in a direction
opposite form the other.)

Figure 6-2 Simple Custom Property Graph

Reading a graph into the in-memory analyst requires a graph configuration. You can
provide the graph configuration using either of these methods:

* Write the configuration settings in JSON format into a file
* Using a Java G aphConfi gBui | der object.

The following examples show both methods.

JSON Configuration

{
"uri": "graph.adj",
"format":"adj _list",
"separator":" "

}

6-17

Chapter 6
Reading Custom Graph Data

Java Configuration

i mport oracle. pgx. config. Fi |l eG aphConfi g;
i mport oracle. pgx. config. Fornat;
i mport oracle. pgx. confi g. G aphConfi gBui | der;
Fi | eGraphConfig config = G aphConfi gBuil der
.forFil eFormat (Format.ADJ_LI ST)
.setUri("graph.adj")
.setSeparator(" ")
cbuild();

6.3.2 Adding a Vertex Property

ORACLE

The graph in "Creating a Simple Graph File" consists of vertices and edges, without
vertex or edge properties. Vertex properties are positioned directly after the source
vertex ID in each line. The graph data would look like this if you added a doubl e vertex
(node) property with values 0.1, 2.0, 0.3, and 4.56789 to the graph:

2
34

4
6789 2

g1 w o

B 0N -
B~ O DN O

Note:

The in-memory analyst supports only homogeneous graphs, in which all
vertices have the same number and type of properties.

For the in-memory analyst to read the modified data file, you must add a vertex (hode)
property in the configuration file or the builder code. The following examples provide a
descriptive name for the property and set the type to doubl e.

JSON Configuration

{
“uri": "graph.adj",
“format":"adj _list",
"separator":" ",
"node_props": [{
"name": "doubl e- prop",
"type":"doubl e"
H
}

Java Configuration

i mport oracl e. pgx. conmon. t ypes. PropertyType;
i mport oracl e. pgx. config. Fi|l eG aphConfi g;

i mport oracle. pgx. config. Format;

i mport oracle. pgx. config. G aphConfi gBui | der;

Fi | eGraphConfig config = G aphConfi gBuil der.forFil eFormat (Format. ADJ_LI ST)

.setUri("graph.adj")
.setSeparator(" ")

6-18

Chapter 6
Reading Custom Graph Data

. addNodePr operty("doubl e- prop", PropertyType. DOUBLE)
cbuild();

6.3.3 Using Strings as Vertex Identifiers

The previous examples used i nteger vertex (node) IDs. The default in In-Memory
Analytics is i nt eger vertex IDs, but you can define a graph to use string vertex IDs
instead.

This data file uses "node 1", "node 2", and so forth instead of just the digit:

"node 1" 0.1 "node 2"

"node 2" 2.0 "node 3" "node 4"
"node 3" 0.3 "node 4"

"node 4" 4.56789 "node 2"

Again, you must modify the graph configuration to match the data file:

JSON Configuration

{
"uri": "graph.adj",
"format":"adj _list",
"separator":" ",
"node_props": [{
"name": "doubl e- prop",
"type": "doubl "
H,
"node_i d_type":"string"

}

Java Configuration

i mport oracl e. pgx. common. types. | dType;

i nport oracl e. pgx. conmon. t ypes. PropertyType;
i mport oracl e. pgx. config. Fil eG aphConfig;

i mport oracl e. pgx. config. Format;

i mport oracl e. pgx. config. GaphConfi gBui | der;

Fi | eGaphConfig config = G aphConfi gBuil der.forFileFormat (Format.ADJ_LI ST)
.setUri("graph.adj")
.setSeparator(" ")
. addNodePr operty("doubl e- prop", PropertyType. DOUBLE)
. set Nodel dType(| dType. STRI NG
cbuild();

< Note:
string vertex IDs consume much more memory than i nt eger vertex IDs.

Any single or double quotes inside the string must be escaped with a
backslash (V).

Newlines (\n) inside strings are not supported.

ORACLE 6-19

Chapter 6
Storing Graph Data on Disk

6.3.4 Adding an Edge Property

This example adds an edge property of type string to the graph. The edge properties
are positioned after the destination vertex (node) ID.

ORACLE

"nodel"
"node2"
"node3"
"node4"

0.1 "node2" "edge prop_1_2"

2.0 "node3" "edge_prop_2_3" "node4" "edge_prop_2_4"
0.3 "node4" "edge_prop_3_4"

4.56789 "node2" "edge_prop_4_2"

The graph configuration must match the data file:

JSON Configuration

{

"uri": "graph.adj",

"format":
"separator":

adj _

list",

"node_props":[{
"name": "doubl e- prop",
"type":"doubl e"

H,

"node_i d_type

:"string",

"edge_props": [{

H
}

"name
"type

: "edge- prop",
2"string”

Java Configuration

i mport
i mport
i mport
i mport
i mport

oracle
oracle
oracle
oracle
oracle

. POX.
. POX.
. POX.
. POX.
. POX.

common. types. | dType;
comon. types. PropertyType;
config. Fi |l eGaphConfig;
config. Fornat;

config. G- aphConfi gBui | der;

Fi | eGraphConfig config = G aphConfi gBuil der.forFileFormat (Format.ADJ_LI ST)
.setUri("graph.adj")
.setSeparator(" ")
. addNodePr operty("doubl e- prop", PropertyType. DOUBLE)
. set Nodel dType(| dType. STRI NG
. addEdgeProperty("edge-prop", PropertyType. STRI NG
cbuild();

6.4 Storing Graph Data on Disk

After reading a graph into memory using either Java or the Shell, you can store it on
disk in different formats. You can then use the stored graph data as input to the in-
memory analyst at a later time.

Storing graphs over HTTP/REST is currently not supported.

The options include the following.

e Storing the Results of Analysis in a Vertex Property

e Storing a Graph in Edge-List Format on Disk

6-20

Chapter 6
Storing Graph Data on Disk

6.4.1 Storing the Results of Analysis in a Vertex Property

These examples read a graph into memory and analyze it using the Pagerank
algorithm. This analysis creates a new vertex property to store the PageRank values.

Using the Shell to Run PageRank

pgx> g = session.readG aphWthProperties("/opt/oracle/oracl e-spatial -graph/
property_graph/ exanpl es/ pgx/ gr aphs/ sanpl e. adj . j son", "ny-graph")

==> .

pgx> rank = anal yst. pagerank(g, 0.001, 0.85, 100)

Using Java to Run PageRank

PgxG aph g = session.readG aphWthProperties("/opt/oracleloracl e-spatial -graph/
property_graph/ exanpl es/ pgx/ graphs/ sanpl e. adj . j son", "ny-graph");

Vert exProperty<lnteger, Double> rank = session. createAnal yst(). pagerank(g, 0.001,
0.85, 100);

Using JavaScript to Run PageRank

et p = pgx.connect(url, options);
p. then(function(session) {
return session. readG aphWthProperties(jsonContent);
}).then(function(graph) {
return graph. session. anal yst. pager ank(graph);

D

6.4.2 Storing a Graph in Edge-List Format on Disk

ORACLE

This example stores the graph, the result of the Pagerank analysis, and all original
edge properties as a file in edge-list format on disk.

To store a graph, you must specify:

e The graph format
e A path where the file will be stored

* The properties to be stored. Specify VertexProperty.ALL or EdgeProperty.ALL to
store all properties, or VertexProperty.NONE or EdgePropery.NONE to store no
properties. To specify individual properties, pass in the VertexProperty or
EdgeProperty objects you want to store.

* Aflag that indicates whether to overwrite an existing file with the same name

The following examples store the graph data in / t np/ sanpl e_pager ank. el i st , with
the / t np/ sanpl e_pager ank. el i st. j son configuration file. The return value is the graph
configuration for the stored file. You can use it to read the graph again.

Using the Shell to Store a Graph

pgx> config = g.store(Format. EDGE_LI ST, "/tnp/sanpl e_pagerank.elist", [rank],
EdgeProperty. ALL, fal se)

==> {"uri":"/tnp/sanpl e_pagerank.elist","edge_props":

[{"type": "doubl e", "name":"cost"}],"vertex_id_type":"integer", "l oadi ng":
{},"format":"edge_list", "attributes":{},"vertex_props":

[{"type": "doubl e", "name":"pagerank"}],"error_handling":{}}

6-21

Chapter 6
Executing Built-in Algorithms

Using Java to Store a Graph

i mport oracle. pgx. api . *;
i mport oracle. pgx. config.*;

Fil eGraphConfig config = g.store(Fornmat. EDGE_LI ST, "/tnp/sanpl e_pagerank.elist",
Col | ections. singl etonList(rank), EdgeProperty.ALL, false);

Using JavaScript to Store a Graph

let p = graph.store({format: 'EDGE_LIST', targetPath: '/tnp/sanple_pagerank.elist'});

6.5 Executing Built-in Algorithms

The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs.

This topic describes the use of the in-memory analyst using Triangle Counting and
Pagerank analytics as examples.

e About the In-Memory Analyst
* Running the Triangle Counting Algorithm
* Running the Pagerank Algorithm

6.5.1 About the In-Memory Analyst

The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs. The details of the APIs are documented in the Javadoc that is included in the
product documentation library. Specifically, see the Anal yst class Method Summary for
a list of the supported in-memory analyst methods.

For example, this is the Pagerank procedure signature:
/**

* Classic pagerank algorithm Tinme complexity: QCE * K) with E = nunber of edges,
a given constant (max
iterations)

K i

@ar am graph
graph

S
*
*
*
*
* @arame
* maxi mumerror for termnating the iteration
* @aramd
* danpi ng factor
* @aram nax
* maxi mum nunber of iterations
* @eturn Vertex Property holding the result as a double
public <ID> VertexProperty<ID, Double> pagerank(PgxG aph graph, double e, double
d, int max);

6.5.2 Running the Triangle Counting Algorithm

For triangle counting, the sort ByDegr ee boolean parameter of count Tri angl es() allows
you to control whether the graph should first be sorted by degree (true) or not (f al se).

ORACLE 6-22

Chapter 6
Executing Built-in Algorithms

If t rue, more memory will be used, but the algorithm will run faster; however, if your
graph is very large, you might want to turn this optimization off to avoid running out of
memory.

Using the Shell to Run Triangle Counting

pgx> anal yst. count Tri angl es(graph, true)
=>1

Using Java to Run Triangle Counting
i mport oracle. pgx. api . *;

Anal yst anal yst = session. creat eAnal yst();
long triangles = anal yst.countTriangl es(graph, true);

Using JavaScript to Run Triangle Counting

p.then(function(graph) {
return graph. session. anal yst.count Tri angl es(graph, true);

)

The algorithm finds one triangle in the sample graph.

Tip:

When using the in-memory analyst shell, you can increase the amount of log
output during execution by changing the logging level. See information about
the : 1 ogl evel command with : h :1ogl evel .

6.5.3 Running the Pagerank Algorithm

ORACLE

Pagerank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a doubl e property. The algorithm therefore creates a vertex
property of type doubl e for the output.

In the in-memory analyst, there are two types of vertex and edge properties:

» Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

» Transient Properties: Values can only be written to transient properties, which
are session private. You can create transient properties by calling
creat eVertexProperty and creat eEdgeProperty on PgxG aph objects.

This example obtains the top three vertices with the highest Pagerank values. It uses a
transient vertex property of type doubl e to hold the computed Pagerank values. The
Pagerank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001, damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run Pagerank

pgx> rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
==> ..

pgx> rank. get TopKVal ues(3)

6-23

Chapter 6
Creating Subgraphs

==> 128=0. 1402019732468347
==> 333=0. 12002296283541904
==> 99=0. 09708583862990475

Using Java to Run Pagerank

inport java.util.Mp.Entry;
i mport oracle. pgx. api . *;

Anal yst anal yst = session. createAnal yst();

Vert exProperty<lnteger, Double> rank = anal yst. pagerank(graph, 0.001, 0.85, 100);
for (Entry<integer, Double> entry : rank.get TopKVal ues(3)) {
Systemout.printin(entry.getKey() + "=" + entry.getValue());

}

Using JavaScript to Run Pagerank

p. then(function(graph) {
return graph. session. anal yst. pagerank(graph, {e: 0.001, d: 0.85, max: 100});
IOk

6.6 Creating Subgraphs

You can create subgraphs based on a graph that has been loaded into memory.

You can use filter expressions or create bipartite subgraphs based on a vertex (node)
collection that specifies the left set of the bipartite graph.

For information about reading a graph into memory, see Reading Graph Data into
Memory.

* About Filter Expressions

» Using a Simple Edge Filter to Create a Subgraph

e Using a Simple Vertex Filter to Create a Subgraph

* Using a Complex Filter to Create a Subgraph

e Combining Expression Filters

» Using an Expression Filter to Create a Set of Vertices or Edges

* Using a Vertex Set to Create a Bipartite Subgraph

6.6.1 About Filter Expressions

Filter expressions are expressions that are evaluated for either each vertex or each
edge. The expression can define predicates that an edge must fulfill to be contained in
the result, in this case a subgraph.

Consider the graph in Figure 6-1, which consists of four vertices (nodes) and four
edges. For an edge to match the filter expression src. propl == 10, the source vertex
prop property must equal 10. Two edges match that filter expression, as shown in
Figure 6-3.

ORACLE 6-24

ORACLE

Chapter 6
Creating Subgraphs

Figure 6-3 Sample Graph

id: 128 cost: 27.03 id: 1908

prop1: 10

prop1; 889

cost: 51.09

cost; 338.0

The following edge filter expression:
src.propl == 10
specifies that each edge where the source vertex’'s property named propl has the

value 10 will match the filter expression. In this case the following edges match the
expression:

* The edge across the top (cost : 27.03) from vertex i d: 128 to vertex i d: 1908
* The edge on the left (cost : 8.51) from vertex i d: 128 to vertexid: 99

Figure 6-4 shows the subgraph that results when the preceding filter expression is
applied. This subgraph includes the vertex with id: 128, the left and top edges, and the
destination vertex of each edge (vertices with i d: 1908 and i d: 99).

6-25

Chapter 6
Creating Subgraphs

Figure 6-4 Subgraph Created by the Simple Edge Filter

id: 128 cost: 27.03 id: 1908

prnpty prop1; 889

cost: 8.51

The following vertex filter expression:
vertex.propl < 10
specifies that each vertex where the property named propl has a value less than 10

will match the filter expression. In this case the following edge matches the
expression:

* The edge across the bottom (cost : 338.0) from vertex i d: 99 to vertexid: 333

Filter Expression Examples

* Date. The following expression accesses the property dat e of an edge and checks
if it is equal to 03/ 27/ 2007 06: 00.

edge. date = date('2007-03-27 06:00:00")

* In/out degree. i nDegree() returns the number of incoming edges of a vertex, while
out Degree() returns the number of outgoing edges of the vertex. In the following
examples, src denotes the source (out) vertex of the current edge, while dst
denotes the destination (in) vertex.

src.inDegree() > 3
dst.outDegree() <5

* Label. hasLabel returns true if a vertex has a particular label. The following returns
true if a vertex has a city label and if its population is greater than 10000.

vertex. hasLabel (' city') && (vertex. population > 10000)

* Label. I abel returns the label of an edge. The following example returns t rue if an
edge label is either fri end_of or clicked_by.

edge.label () = "friend_of" || edge.label () = 'clicked_by'

ORACLE 6-26

Chapter 6
Creating Subgraphs

* Type Conversion: The following example converts the value of the cost property of
the source vertex to an integer.

(int) src.cost

* Arithmetic Support: The following examples show arithmetic expressions that can
be used in filter expressions.

1+5

-vertex. degree()

edge.cost * 2 > 5
5 =

src.value * 2. (dst.inDegree() + 5) / dst.outDegree()

6.6.2 Using a Simple Edge Filter to Create a Subgraph

The following examples create the first subgraph described in About Filter
Expressions.

Using the Shell to Create a Subgraph
subgraph = graph.filter(new EdgeFilter("src.propl == 10"))

Using Java to Create a Subgraph

i mport oracle. pgx. api . *;
inport oracle.pgx.api.filter.*;

PgxGraph graph = session.readG aphWthProperties(...);
PgxGraph subgraph = graph.filter(new EdgeFilter("src.propl == 10"));

Using JavaScript to create a Subgraph

return graph.filter(pgx.createEdgeFilter("src.propl == 10"));

6.6.3 Using a Simple Vertex Filter to Create a Subgraph

The following examples create the second subgraph described in About Filter
Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.propl < 10"))

Using Java to Create a Subgraph

i mport oracle. pgx. api . *;
inmport oracle.pgx.api.filter.*;

PgxG aph graph = session.readG aphWthProperties(...);
PgxG aph subgraph = graph.filter(new VertexFilter("src.propl < 10"));

Using JavaScript to create a Subgraph

return graph.filter(pgx.createVertexFilter("vertex.propl < 10"));

6.6.4 Using a Complex Filter to Create a Subgraph

This example uses a slightly more complex filter. It uses the out Degr ee function, which
calculates the number of outgoing edges for an identifier (source src or destination

ORACLE 6-27

Chapter 6
Creating Subgraphs

dst). The following filter expression matches all edges with a cost property value
greater than 50 and a destination vertex (node) with an out Degr ee greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in Figure 6-5.

Figure 6-5 Edges Matching the outDegree Filter

id: 128 cost: 27.03 id: 1908

pmpy P prop: 869

cost: 8.51

cost: 51.09

cost: 338.0 id: 333

Figure 6-6 shows the graph that results when the filter is applied. The filter excludes
the edges associated with vertixes 99 and 1908, and so excludes those vertices also.

Figure 6-6 Graph Created by the outDegree Filter

cost: 51.09

ORACLE 6-28

6.6.5 Combining Expression Filters

ORACLE

You can combine vertex filters with edge filters.

Chapter 6
Creating Subgraphs

Both filters are evaluated separately and afterwards merged by creating either of the

following:

* A union of the results

* Anintersection of the results
Creating a Union of Two Filters

If you perform a union of the edge filter:
src.propl == 10

and the vertex filter:

vertex.propl < 10

Then the result is shown in the following graph.

Figure 6-7 Union of Two Filters

id: 128 cost: 27.03 id: 1908

prnp“l’:y prop1: 889

cost; 8.51

cost: 338.0

Shell Example:

edgeFilter = new EdgeFilter("src.propl == 10")
vertexFilter = new VertexFilter("vertex.propl < 10")
filter = edgeFilter.union(vertexFilter)

subgraph = g.filter(filter)

Java Example:

6-29

ORACLE

Chapter 6
Creating Subgraphs

i mport oracle.pgx.api.filter.*;

EdgeFil ter edgeFilter = new EdgeFilter("src.propl == 10");
VertexFilter vertexFilter = new VertexFilter("vertex.propl < 10");
GaphFilter filter = edgeFilter.union(vertexFilter);

PgxG aph subgraph = g.filter(filter);

JavaScript Example:

return p.then(function(graph) {
l et edgeFilter = pgx.createEdgeFilter("src.propl == 10");
let vertexFilter = pgx.createVertexFilter("vertex.propl < 10");
let filter = edgeFilter.union(vertexFilter);

return graph.filter(filter);

D

Creating an Intersection of Two Filters

Creating the intersection of the filters mentioned in the union example will result in the
following graph, which consists only of a single vertex.

Figure 6-8 Intersection of Two Filters

Shell Example:

edgeFilter = new EdgeFilter("src.propl == 10")
vertexFilter = new VertexFilter("vertex.propl < 10")
filter = edgeFilter.intersect(vertexFilter)
subgraph = g.filter(filter)

Java Example:

inmport oracle.pgx.filter.expressions.*;

EdgeFil ter edgeFilter = new EdgeFilter("src.propl == 10");
VertexFilter vertexFilter = new VertexFilter("vertex.propl < 10");
GaphFilter filter = edgeFilter.intersect(vertexFilter);

PgxG aph subgraph = g.filter(filter);

JavaScript Example:

return p.then(function(graph) {
l et edgeFilter = pgx.createEdgeFilter("src.propl == 10");
let vertexFilter = pgx.createVertexFilter("vertex.propl < 10");
let filter = edgeFilter.intersect(vertexFilter);

return graph.filter(filter);

b

6-30

Chapter 6
Creating Subgraphs

6.6.6 Using an Expression Filter to Create a Set of Vertices or Edges

In addition to using expression filters to create a subgraph (discussed in other topics),
you can use them to select just a set of vertices or edges from a graph.

For example, you can create a vertex set on the sample graph from About Filter
Expressions using the following vertex filter expression:

vertex.propl < 10

This yields the following set: vertices with ID values 99 and 333.
Example 6-4 Creating a Vertex Set
Shell Example:

vertices = g.getVertices(new VertexFilter("vertex.propl < 10"))
==> PgxVertex with 1D 99
==> PgxVertex with 1D 333

Java Example:

i mport oracl e. pgx. api.*;
import oracle.pgx.filter.expressions.*;

VertexSet<Integer> = g.getVertices(new VertexFilter("vertex.propl < 10"));

Example 6-5 Creating an EdgeSet
Shell Example:
edges = @.get Edges(new EdgeFilter("src.propl == 10"))

==> PgxEdge with 1D 0
==> PgxEdge with 1D 1

Java Example:

i mport oracle. pgx.api.*;
import oracle.pgx.filter.expressions.*;

EdgeSet = g.get Edges(new EdgeFilter("src.propl == 10"));

6.6.7 Using a Vertex Set to Create a Bipartite Subgraph

You can create a bipartite subgraph by specifying a set of vertices (nodes), which are
used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory analyst, vertices that are isolated
because all incoming and outgoing edges were deleted are not part of the bipartite
subgraph.

The following figure shows a bipartite subgraph. No properties are shown.

ORACLE 6-31

ORACLE

Chapter 6
Creating Subgraphs

Left set of nodes Right set of nodes

The following examples create a bipartite subgraph from the simple graph created in
Figure 6-1. They create a vertex collection and fill it with the vertices for the left side.

Using the Shell to Create a Bipartite Subgraph

pgx> s = graph. createVertexSet()

==> ..

pgx> s.addAl | ([graph. get Vertex(333), graph.getVertex(99)])
==> ..

pgx> s. si ze()

==> 2

pgx> bG aph = graph. bi partiteSubG aphFronLeft Set (s)

==> PGX Bipartite Gaph named sanpl e- sub- graph-4

Using Java to Create a Bipartite Subgraph

i mport oracle. pgx. api . *;

VertexSet<Integer> s = graph.createVertexSet();
s. addAl | (graph. get Vertex(333), graph.getVertex(99));
Bi partiteGaph bGaph = graph. bi partiteSubG aphFronieftSet(s);

When you create a subgraph, the in-memory analyst automatically creates a Boolean
vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unique name for the property.

The resulting bipartite subgraph looks like this:

6-32

6.7 Using

Chapter 6
Using Pattern-Matching Queries with Graphs

id: 99
prop: 2
isLeft: true

cost: 8.51
id: 128
prop: 10
isLeft: false

cost: 51.09

id: 333
prop: 6
isLeft: true

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed also.

Pattern-Matching Queries with Graphs

You can issue a pattern-matching query against an in-memory graph, and then work
with the results of that query.

Data Sets for the Pattern-Matching Query Examples
The pattern-matching examples use two different data sets:

» Relationships between politicians, athletes, celebrities, and companies

* An electrical network with devices, connections and switches

Submitting the Pattern-Matching Queries Using PGQL

You can submit a graph pattern-matching query in the Property Graph Suery
Language (PGQL), a SQL-like declarative language that allows you to express a
pattern consisting of vertices and edges, plus constraints on the properties of the
vertices and edges.

To submit a query to the in-memory analyst, you can use the queryPggl () Java method
of PgxG aph (the type of object you get when you load a graph using the sessi on), or
you can use the equivalent JavaScript function. Java example:

The following topics use pattern matching in queries.

e Example: The Enemy of My Enemy is My Friend
e Example: Top 10 Most Collaborative People

e Example: Transitive Connectivity Between Electrical Devices

6.7.1 Example: The Enemy of My Enemy is My Friend

ORACLE

The example in this topic describes a graph pattern inspired by the famous ancient
proverb, The enemy of my enemy is my friend. Specifically, the graph includes two
entities that are connected by two edges of the feuds edge label. Vertices represent

6-33

ORACLE

Chapter 6
Using Pattern-Matching Queries with Graphs

people or clans or countries. A pair of vertices that are feuding with each other will
have an edge with the f euds edge label.

Such a query is written in PGQL as follows:

SELECT x.nane, z.nane
WHERE
(x) -[el:feuds]-> (y),
(y) -[e2:feuds]-> (z),

X I= y
ORDER BY x. Z. nane

Note that in the preceding query, the results are ordered by x. nane and then z. nane.
Submit the query to PGX:
Shell Example:

pgx> resultSet = connectionsG aph. queryPgql (" SELECT x. name, z.name WHERE (Xx) -
[el:feuds]-> (y), (y) -[e2:feuds]-> (z), x !=z ORDER BY x.nane, z.name")

Java Example:

i mport oracl e. pgx. api.*;

Pgal Resul t Set resul t Set = connectionsG aph. queryPgql (" SELECT x. name, z.name WHERE
(x) -[el:feuds]-> (y), (y) -[e2:feuds]-> (z), x !=z ORDER BY x.nane, z.nane");

JavaScript Example:

return p.then(function(graph) {
return graph. queryPgql (" SELECT x. name, z.name WHERE (x) -[el:feuds]-> (y), (y) -
[e2:feuds]-> (z), x != z ORDER BY x.nanme, z.nanme");

1

Pgql Resul t Set manages a result set of a query. A result set contains multiple results
(such a query may match many sub-graphs). Each result consists of a list of result
elements. The order of result elements follows the order of variables in

the SELECT clause of a query.

Iterating over a query results means iterating over a set
of Pgql Resul t El enent instances. A Pgql Resul t El enent maintains the type and variable
name of a result element.

You can get the list of Pggl Resul t El enent instances as follows:
Shell Example:

pgx> resul t El ements = result Set. get Pgql Resul t El ement s()

Java Example:

i mport oracle. pgx. api.*;
import java.util.List;

Li st <Pgql Resul t El ement > resul t El enents = resul t Set. get Pgql Resul t El enent s();

JavaScript Example:

6-34

ORACLE

Chapter 6
Using Pattern-Matching Queries with Graphs

return p.then(function(resultSet) {
consol e. | og(result Set.resul tEl enents);

}:

Get the type and variable name of the first result element:
Shell Example:

pgx> resul t El ement = resul t El ements. get (0)
pgx> type = resul t El ement. get El enent Type() // STRING
pgx> varNanme = resul t El enent. get VarName() // x.nane

Java Example:

i mport oracl e. pgx. api.*;

Pgql Resul t El ement resul t El ement = resul t El enents. get(0);
Pqgl Resul t El ement . Type = resul t El enent . get El enent Type(); // STRING
String varName = resul t El enent. get VarNane(); // x.nane

JavaScript Example:

return p.then(function(resultSet) {
consol e. | og(resul t Set. resul t El enent s[0] . var Nane) ;
consol e. | og(resul t Set. resul t El enents[0]. el ement Type) ;

D

Iterate over a result set using the for-each style for loop. In the loop, you get
a Pgql Resul t instance that contains a query result.

Shell Example:

pgx> resul t Set. get Resul ts().each { \
[/ the variable "it' is inplicitly declared to references each Pggl Resul t
i nstance

}

Java Example:

i mport oracle. pgx. api . *;

for (Pggl Result result : resultSet.getResults()) {

}...

JavaScript Example:

return p.then(function(resultSet) {
return resultSet.iterate(function(row {

consol e. | og(row);

s

IOk

In the shell, you can conveniently print out the result set in textual format
using print method of Pqgl Resul t Set .

pgx> resul tSet.print(10) // print the first 10 results

6-35

Chapter 6
Using Pattern-Matching Queries with Graphs

You will see the following results:

x.nane	z.nane
ABC	CBS
ABC	NBC
Alibaba	Beyonce
Alibaba	Google
Alibaba	eBay
Amazon	Carl lcahn
Amazon	Facebook
Amazon	Tencent
Angela Merkel	Barack Chama
Angela Merkel	John Kerry

You can also get a handle of individual Pggl Resul t instances or their elements.
By the index of the result element:

pgx> naneXx
pgx> naneZ

= it.getString(0)
=it.getString(1)

By the variable name of the result element:

pgx> nanmeX
pgx> nanmeZ

it.getString("x.name")
it.getString("z.name")

You can also get a result element without knowing its type:

pgx> naneX = it.get(0)
Il or
pgx> naneX = it.get("x.name")

In JavaScript, you can access result elements by the variable name like this:

return p.then(function(resultSet) {
return resultSet.iterate(function(row {
console.log(row'n']);
consol e. | og(row ' n. pagerank']);
D
b

6.7.2 Example: Top 10 Most Collaborative People

ORACLE

This example finds the top 10 most collaborative people in the graph in a decreasing
order of the number of collaborators. Such a query exploits various features of PGQL,
which include grouping, aggregating, ordering, and limiting the graph patterns found in
the WHERE clause. The following query string expresses a user's inquiry in PGQL.

pgx> resul t Set = connectionsG aph. queryPgql (" SELECT x. name, COUNT(*) AS
num col | aborators WHERE (x) -[:col |l aborates]-> () GROUP BY x ORDER BY
DESC(num col | aborators) LIMT 10")

The preceding query does the following:

1. Find all collaboration relationship patterns from the graph by matching the
“collaborates' edge label.

2. Group the found patterns by its source vertex.

6-36

Chapter 6
Using Pattern-Matching Queries with Graphs

3. Apply the count aggregation to each group to find the number of collaborators.
4. Order the groups by the number of collaborators in a decreasing order.
5. Take only the first 10 results.

The print () method shows the name and the number of collaborators of the top 10
collaborative people in the graph.

pgx> resul tSet. print()

You will see the following results.

o

| Barack Chama |
| Charlie Rose |
| Omar Kobine Layama |
| Dieudonne Nzapal ai nga |
| Nicolas Guerekoyame Ghangou |
| NBC |
| Pope Francis |
| Beyonce |
| Eric Hol der |
| Tom Steyer |

NN WWWWWRE

6.7.3 Example: Transitive Connectivity Between Electrical Devices

This example tests for reachability between vertices. It uses the electrical network
graph in the following figure.

ORACLE 6-37

ORACLE

Chapter 6
Using Pattern-Matching Queries with Graphs

Figure 6-9 Electrical Network Graph

Source Device

Connection

Switch

The example seeks to determine whether every Devi ce in the graph is transitively
connected to every other Devi ce. Note that devices are connected
by Connecti on vertices and Swi t ch vertices.

First, find out how many devices there are in the graph by submitting the following
PGQL query:

SELECT COUNT(*) AS nunDevi ces
VHERE (n: Devi ce)

The result is 6031:

For each device, count the number of devices that can be reached by following zero or
more Connect i on Or Swi t ch vertices (and necessary edges). This query can be
expressed in PGQL as follows:

PATH connects_to := () <- (/*:Connection|Switch*/) -> ()
SELECT n. ni cknanme AS device, count(nm) AS reachabilityCount

6-38

Chapter 6
Starting the In-Memory Analyst Server

VWHERE (n: Device) -/:connects_to*/-> (m Device)
GROUP BY n
ORDER BY COUNT(m), n.nicknanme

In the preceding query, express connectivity between two neighboring devices/
connections is expressed using a path pattern connects_t o. A Kleene star (*)
expresses that the path pattern may repeatedly match zero or more times, with the
goal of determining transitive connectivity. (The labels in the path pattern are
commented out because the in-memory analyst does not yet support this feature.)

The query uses GROUP BY to make a group for each of the source devices n, and then
counts the number of reachable destination devices m The first 20 results are as
follows:

| device | reachabilityCount
190- 7361- ML089120 6031
190- 8581- D5587291- 3_I NT 6031
190- 8593- D5860423- 3_I NT 6031
196- 29518- L3122816 6031
196- 29519- L3066815 6031
196- 29520- L3160109 6031
196- 29521- N1136355 6031
196- 31070- D5861005- 2_I NT | 6031
196- 35541- ML108317 6031
196- 35813- N1140519 6031

196-36167-L3011298	6031

198-5320- 221- 311359 6031
221-240988- 13141411 6031
221-240991- 13066817 6031
221-242079-13011293 6031
221-282818-N1230123 6031
221-282819-N1230122 6031
221-306686- L2970258 6031
221-306687-L2916625 6031
221-308718- 12803199 6031

Because the results are sorted by increasing reachabi | i t yCount and because even the
first device in the results transitively connects to every device in the graph

(reachabi l i tyCount = 6031), you now know that all the devices in the graph are fully
reachable from each other.

6.8 Starting the In-Memory Analyst Server

ORACLE

Big Data Spatial and Graph bundles a preconfigured version of Apache Tomcat that
allows you to start the in-memory analyst server by running a script.

If you need to configure the server before starting it, see Configuring the In-Memory
Analyst Server.

You can start the server by running the following script: / opt/ or acl e/ or acl e- spati al -
graph/ property_graph/ pgx/ bin/start-server

* Configuring the In-Memory Analyst Server

6-39

Chapter 6
Starting the In-Memory Analyst Server

6.8.1 Configuring the In-Memory Analyst Server

ORACLE

You can configure the in-memory analyst server by modifying the /opt/oracle/oracle-
spatial-graph/property _graph/pgx/conf/server.conf file. The following table shows the
valid configuration options, which can be specified in JSON format:

Table 6-2 Configuration Options for In-Memory Analyst Server
|

Option Type Description Default
authorization string File that maps clients to server.auth.conf
roles for authorization.
ca_certs array List of trusted certificates [See information after this
of (PEM format). If table.]

string 'enable_tls' is set to false,
this option has no effect.

enable_client_authentic boolea If true, the client is true
ation n authenticated during TLS
handshake. See the TLS
protocol for details. This
flag does not have any
effect if 'enable_tls' is false.

enable_tls boolea If true, the server enables true
n transport layer security
(TLS).
port integer Port that the PGX server 7007

should listen on

server_cert string The path to the server null
certificate to be presented
to TLS clients (PEM
format). If 'enable_tls' is set
to false, this option has no
effect

server_private_key string the private key of the null
server (PKCS#8, PEM
format). If 'enable_tls' is set
to false, this option has no
effect

The in-memory analyst web server enables two-way SSL/TLS (Transport Layer
Security) by default. The server enforces TLS 1.2 and disables certain cipher suites
known to be vulnerable to attacks. Upon a TLS handshake, both the server and the
client present certificates to each other, which are used to validate the authenticity of
the other party. Client certificates are also used to authorize client applications.

The following is an example server. conf configuration file:

{
"port": 7007,
"server_cert": "certificates/server_certificate.penf,
"server_private_key": "certificates/server_key.pent,
"ca_certs": ["certificates/ca_certificate.pent],
"aut horization": "auth/server.auth.conf",
"enable_tls": true,

6-40

Chapter 6
Deploying to Jetty

"enabl e_client_authentication": true

}

The following is an example server. aut h. conf configuration file: mapping client
(applications) identified by their certificate DN string to roles:

{
“authorization": [{
"dn": "CN=Client, OU=Devel opnent, O=Oracle, L=Belnont, ST=California, C=US',
"admn": false

boA
"dn": "CN=Admi n, OU=Devel opnent, O=Cracle, L=Belnont, ST=California, C=US",

"adm n": true
H
}

You can turn off client-side authentication or SSL/TLS authentication entirely in the
server configuration. However, we recommend having two-way SSL/TLS enabled for
any production usage.

6.9 Deploying to Jetty

ORACLE

You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a web
application with Eclipse Jetty.

Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure Jetty to enforce proper
authentication and authorization, store the credentials securely, and only
allow connections over HTTPS.

1. Copy the in-memory analyst web application archive (WAR) file into the Jetty
webapps directory (replace <VERSI ON> with the actual version number):

cp $PGX_HOVE server/ shar ed- nenf pgx- webapp- <VERSI ON>. war . war $JETTY_HOVE/ webapps/
pgx. war

2. Ensure that port 8080 is not already in use, and then start Jetty:

cd $JETTY_HOME
java -jar start.jar

3. Verify that Jetty is working:

cd $PGX_HOME
.Ibin/pgx --base_url http://1ocal host: 8080/ pgx

4. (Optional) Modify the in-memory analyst configuration files.

The configuration file (pgx. conf) and the logging parameters (I og4j . xn) for the in-
memory analyst engine are in the WAR file under WEB- | NF/ cl asses.

After you make any changes, restart the server to enable the changes.

6-41

Chapter 6
Deploying to Apache Tomcat

" See Also:

The Jetty documentation for configuration and use at http: //ecl i pse. or g/
j etty/docunent ati on/

6.10 Deploying to Apache Tomcat

You can deploy the in-memory analyst to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy the in-memory analyst as a web
application with Apache Tomcat.

Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure Apache Tomcat to enforce proper
authentication and authorization, store the credentials securely, and only
allow connections over HTTPS.

1. Copy the in-memory analyst WAR file into the Tomcat webapps directory. For
example (and replace <VERSION> with the actual version number):

cp $PGX_HOVE/ server/ shar ed- mem pgx- webapp- <VERSI ON>. war $CATALI NA_HOVE/ webapps/
pgx. war

2. Ensure that port 8080 is not already in use, and then start Tomcat:

cd $CATALI NA_HOVE
.I'bin/startup.sh

3. Verify that Tomcat is working.

cd $PGX_HOME
.I'bin/pgx --base_url http://Iocal host: 8080/ pgx

" See Also:
The Tomcat documentation at

http://tontat. apache. org/tonctat- 7. 0- doc/

6.11 Deploying to Oracle WebLogic Server

You can deploy the in-memory analysts to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy the in-memory analyst as a web
application with Oracle WebLogic Server.

ORACLE 6-42

http://eclipse.org/jetty/documentation/
http://eclipse.org/jetty/documentation/
http://tomcat.apache.org/tomcat-7.0-doc/

Chapter 6
Connecting to the In-Memory Analyst Server

< Note:

These steps are meant only for testing the in-memory analyst. For any
serious deployment, you should configure WebLogic Server to enforce
proper authentication and authorization, store the credentials securely, and
only allow connections over HTTPS.

e Installing Oracle WebLogic Server
e Deploying the In-Memory Analyst
e Verifying That the Server Works

6.11.1 Installing Oracle WebLogic Server

To download and install the latest version of Oracle WebLogic Server, see

http:// ww. oracl e. conf t echnet wor k/ m ddl ewar e/ webl ogi ¢/ docunent ati on/ i ndex. ht m

6.11.2 Deploying the In-Memory Analyst

To deploy the in-memory analyst to Oracle WebLogic, use commands like the
following. Substitute your administrative credentials and WAR file for the values shown
in this example:

. $MW HOWE/ user _pr oj ect s/ domai ns/ nydomai n/ bi n/ set Donmai nEnv. sh

. $MW HOVE/ W server/ server/ bin/ set W.SEnv. sh

java webl ogi c. Depl oyer -adminurl http://1ocal host: 7001 -usernane usernane -password
password -depl oy -source $PGX_HOVE/ server/ pgx- webapp-w s. war

If the script runs successfully, you will see a message like this one:

Target state: deploy conpleted on Server nyserver

6.11.3 Verifying That the Server Works

Verify that you can connect to the server.

$PGX_HOVE bi n/ pgx --base_url http://1ocal host: 7001/ pgx

6.12 Connecting to the In-Memory Analyst Server

After the property graph in-memory analyst is deployed as a server, and installed in a
Hadoop cluster -- or on a client system without Hadoop as a web application on
Eclipse Jetty, Apache Tomcat, or Oracle WebLogic Server -- you can connect to the
in-memory analyst server.

* Connecting with the In-Memory Analyst Shell
» Connecting with Java

» Connecting with JavaScript

ORACLE 6-43

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 6
Connecting to the In-Memory Analyst Server

6.12.1 Connecting with the In-Memory Analyst Shell

The simplest way to connect to an in-memory analyst instance is to specify the base
URL of the server.

You can use the --base_url command line argument to connect to a server running on
that base URL. For example, if the server has SSL/TLS disabled, does not require any
authentication, and is running on htt p: / /1 ocal host : 8080/ pgx, you can connect to it
using PGX shell by entering the following:

cd $PGX_HOME
.I'bin/pgx --base_url http://scott:<password>@ ocal host: 8080/ pgx

You can connect to a remote instance the same way.

If the server requires BASIC auth, you can specify the username and password as in
the following example:

.I'bin/pgx --base_url http://local host: 8080/ pgx --username scott --password <password-
for-scott>

If the server has SSL/TLS enabled, you can specify the path to the trust store (in JKS
format) which is used to validate the server certificate with the - -t rust st or e option.

.Ibin/pgx --base_url https://local host:8080/pgx --truststore path/to/truststore.jks

If the server has two-way SSL/TLS enabled, you can specify the keystore file
containing the client certificate and the keystore password with the - - keyst ore and —-
passwor d options.

.Ibin/pgx --base_url https://local host:8080/pgx --truststore path/to/truststore.jks
--keystore path/to/ keystore.jks --password <password>

e About Logging HTTP Requests

6.12.1.1 About Logging HTTP Requests

ORACLE

The in-memory analyst shell suppresses all debugging messages by default. To see
which HTTP requests are executed, set the log level for or acl e. pgx to DEBUG, as shown
in this example:

pgx> :loglevel oracle.pgx DEBUG

===> | og | evel of oracle.pgx |ogger set to DEBUG

pgx> session.readGraphWithProperties(“sample_http.adj.json™, "sample™)

10: 24: 25,056 [main] DEBUG Renoteltils - Requesting POST http://

scott: <passwor d>@ ocal host : 8080/ pgx/ cor e/ sessi on/ sessi on-shel | - 6nggbdd/ graph HTTP/
1.1 with payload {"graphName": "sanpl e", "graphConfig":{"uri":"http://
path.to.sone. server/pgx/sanmpl e.adj ", "separator":" ", "edge_props":

[{"type":"doubl e", "name":"cost"}], "node_props":

[{"type":"integer", "name":"prop"}],"format":"adj _list"}}

10: 24: 25,088 [main] DEBUG Renoteltils - received HTTP status 201

10: 24: 25,089 [main] DEBUG RenpteUtils - {"futureld":"87d54bed- bdf 9- 4601- 98b7-

ef 632ce31463"}

10: 24: 25,091 [pool - 1-thread- 3] DEBUG PgxRenot eFut ure$l - Requesting GET http://
scott: <passwor d>@ ocal host : 8080/ pgx/ f ut ur e/ sessi on/ sessi on-shel | - 6nqg5dd/ resul t/
87d54bed- bdf 9- 4601- 98b7- ef 632ce31463 HITP/ 1. 1

10: 24: 25,300 [pool -1-thread-3] DEBUG Remoteltils - received HTTP status 200

10: 24: 25,301 [pool -1-thread-3] DEBUG Remoteltils - {"stats":{"loadingTimeMI|lis":

6-44

Chapter 6
Using the In-Memory Analyst in Distributed Mode

0, "esti mat edMenor yMegabyt es": 0, "nunEdges”: 4, " nunNodes" :
4}, "graphNanme": "sanpl ", "nodeProperties":{"prop":"integer"}, "edgeProperties":
{"cost":"doubl e"}}

6.12.2 Connecting with Java

You can specify the base URL when you initialize the in-memory analyst using Java.
An example is as follows. A URL to an in-memory analyst server is provided to the
get I nstance API call.

i mport oracle. pg.nosql.*;
i mport oracle. pgx. api.*;

PgNosql GraphConfig cfg =

GraphConfi gBui | der. forNosql (). set Name("mygraph").setHosts(...).build();

Oracl ePropertyG aph opg = Oracl ePropertyG aph. get | nstance(cfg);

Serverlnstance renotel nstance = Pgx. getlnstance("http://scott:tiger@ostnane: port/
pgx");

PgxSessi on session = renot el nstance. creat eSessi on("nmy-session");

PgxG aph graph = session.readG aphWt hProperties(opg. get Config());

To specify the trust store, key store, and keystore password when connecting with
Java, you must set the j avax. net. ssl . trust Store, j avax. net. ssl . keySt ore, and
javax. net.ssl . keySt or ePasswor d system properties, respectively.

6.12.3 Connecting with JavaScript

You can specify the base URL when you initialize the in-memory analyst using
JavaScript. An example is as follows. A URL to an in-memory analyst server is
provided to the connect API call.

const pgx = require('oracle-pgx-client'); // oracle-pgx-client npm package
const fs =require('fs');
/] options to connect to pgx server
et options = {
clientKey: fs.readFileSync('client_key.pen),
clientCert: fs.readFileSync('client_cert.pen),
caCert: fs.readFileSync('ca_cert.pen),
passphrase: 'passphrase',
|3
/] connect to pgx server
et p = pgx.connect(url, options).then(function(session) {
return session.readG aphWthProperties(.); // load graph from pgx server
}). then(function(graph) {
return graph. session. anal yst. pagerank(graph); // run pagerank al gorithmin pgx
server
}).catch(function(err) {
consol e.log("error: "

Ok

6.13 Using the In-Memory Analyst in Distributed Mode

The in-memory analyst can be run in shared memory mode or distributed mode.

+oerr);

e Shared memory mode

ORACLE 6-45

ORACLE

Chapter 6
Using the In-Memory Analyst in Distributed Mode

Multiple threads work in parallel on in-memory graph data stored in a single node
(a single, shared memory space). In shared memory mode, the size of the graph is
constrained by the physical memory size and by other applications running on the
same node.

e Distributed mode

To overcome the limitations of shared memory mode, you can run the in-memory
analyst in distributed mode, in which multiple nodes (computers) form a cluster,
partition a large property graph across distributed memory, and work together to
provide efficient and scalable graph analytics.

For using the in-memory analyst feature in distributed mode, the following
requirements apply to each node in the cluster:

* GNU Compiler Collection (GCC) 4.8.2 or later
C++ standard libraries built upon 3.4.20 of the GNU C++ API are needed.
e Ability to open a TCP port

Distributed in-memory analyst requires a designated TCP port to be open for initial
handshaking. The default port number is 7777, but you can set it using the run-
time parameter pgx_si de_channel _port.

e Ability to use InfiniBand or UDP on Ethernet

Data communication among nodes mainly uses InfiniBand (1B) or UDP on
Ethernet. When using Ethernet, the machines in the cluster need to accept UDP
packets from other computers.

 JDKS8 or later

To start the in-memory analyst in distributed mode, do the following. (For this example,
assume that four nodes (computers) have been allocated for this purpose, and that
they have the host names host nane0, host nanel, host name2, and host name3.)

On each of the nodes, log in and perform the following operations (modifying the
details for your actual environment):

export PGX_HOMVE=/ opt/oracl e/ oracl e-spati al - graph/ property_graph/ pgx
export LD LI BRARY_PATH=$PGX_HOME/ server/distributed/|ib: $JAVA HOWE jrellib/ ami64/
server: $LD LI BRARY_PATH

cd $PGX_HOWE/ server/distributed
.I'bin/node ./package/ mai n/ G usterHost.js -server_config=./package/ options.json -
pgx_host names=host nane0, host nanel, host nane2, host nane3

After the operations have successfully completed on all four nodes. you can see a log
message similar to the following:

17:11: 42,709 [host name0] | NFO pgx. dist.cluster_host - PGX. D Server listening on
http: //host nane0: 8023/ pgx

The distributed in-memory analyst in now up and running. It provides service through
the following endpoint: htt p: // host name0: 8023/ pgx

This endpoint can be consumed in the same manner as a remotely deployed shared-
memory analyst. You can use Java APIs, Groovy shells, and the PGX shell. An
example of using the PGX shell is as follows:

cd $PGX_HOME
.I'bin/pgx --base_url=http://host name0: 8023/ pgx

6-46

Chapter 6
Reading and Storing Data in HDFS

The following example uses the service from a Groovy shell for Oracle NoSQL
Database:

0pg- nosql > sessi on=Pgx. cr eat eSessi on("http://host name0: 8023/ pgx", "session-id-123");
opg- nosql > anal yst =sessi on. cr eat eAnal yst () ;
opg- nosql > pgxG aph = sessi on. readG aphW t hProperties(opg. get Config());

The following is an example opti ons. j son file:

$ cat ./package/ options.json

{
"pgx_use_infiniband": 1,
"pgx_conmand_queue_path": ".",
"pgx_builtins_path": "./lib",
"pgx_executabl e_path": "./bin/pgxd",
"java_class_path": "./jlib/*",
"pgx_httpserver _port": 8023,
"pgx_httpserver_enable_csrf_token": 1,
"pgx_httpserver_enable_ssl": 0,
"pgx_httpserver _client_auth": 1,
"pgx_httpserver _key": "<INSERT_VALUE HERE>/ server _key. penf,
"pgx_httpserver _cert": "<INSERT_VALUE HERE>/ server _cert. pent,
"pgx_httpserver _ca": "<INSERT_VALUE HERE>/ server _cert. penf,
"pgx_httpserver _auth": "<INSERT_VALUE HERE>/ server.auth.json",
"pgx_l og_configure": "./package/log4j.xm",
"pgx_ranki ng_query_max_cache_si ze": 1048576,
"zookeeper _tineout": 10000,
"pgx_partitioning_strategy": "out_in",
"pgx_partitioning_ignore_ghostnodes": false,
"pgx_ghost _mi n_nei ghbors": 5000,
"pgx_ghost _nmax_node_counts": 40000,
"pgx_use_bul k_comuni cation": true,
"pgx_num wor ker _threads": 28

}

6.14 Reading and Storing Data in HDFS

The in-memory analyst supports the Hadoop Distributed File System (HDFS). This
example shows how to read and access graph data in HDFS using the in-memory
analyst APIs.

Graph configuration files are parsed on the client side. The graph data and
configuration files must be stored in HDFS. You must install a Hadoop client on the
same computer as In-Memory Analytics. See Oracle Big Data Appliance Software
User's Guide.

Note:

The in-memory analyst engine runs in memory on one node of the Hadoop
cluster only.

e Reading Data from HDFS
e Storing Graph Snapshots in HDFS

e Compiling and Running a Java Application in Hadoop

ORACLE 6-47

Chapter 6
Reading and Storing Data in HDFS

6.14.1 Reading Data from HDFS

This example copies the sanpl e. adj graph data and its configuration file into HDFS,
and then reads it into memory.

1. Copy the graph data into HDFS:

cd $PGX_HOME
hadoop fs -nkdir -p /user/pgx
hadoop fs -copyFronLocal ../exanples/pgx/graphs/sanple.adj /user/pgx

2. Editthe uri field of the graph configuration file sanpl e. adj . j son to point to an
HDFS resource:

{
"uri": "hdfs:/user/pgx/sanple.adj",
“format": "adj_list",
"node_props": [{
“name": "prop",
"type": "integer"
H,
"edge_props": [{
“name": "cost",
"type": "double"

.

"separator": " "

}
3. Copy the configuration file into HDFS:

cd $PGX_HOME
hadoop fs -copyFronLocal ../exanples/pgx/graphs/sanple. adj.json /user/pgx

4. Read the sample graph from HDFS into the in-memory analyst, as shown in the
following examples.

Using the Shell to Read the Graph from HDFS

g = session.readG aphWthProperties("hdfs:/user/pgx/sanple.adj.json");
===> PgxG aph[name=sanpl e, N=4, E=4, cr eat ed=1475525438479]

Using Java to Read the Graph from HDFS

i mport oracle. pgx. api . *;
PgxG aph g = session.readG aphWthProperties("hdfs:/user/pgx/sanple.adj.json");

6.14.2 Storing Graph Snapshots in HDFS

ORACLE

The in-memory analyst binary format (. pgb) is a proprietary binary graph format for the
in-memory analyst. Fundamentally, a . pgb file is a binary dump of a graph and its
property data, and it is efficient for in-memory analyst operations. You can use this
format to quickly serialize a graph snapshot to disk and later read it back into memory.

You should not alter an existing . pgb file.

The following examples store the sample graph, currently in memory, in PGB format in
HDFS.

6-48

Chapter 6
Reading and Storing Data in HDFS

Using the Shell to Store a Graph in HDFS

g.store(Format. PGB, "hdfs:/user/pgx/sanmple.pgb", VertexProperty.ALL,
EdgeProperty. ALL, true)

Using Java to Store a Graph in HDFS

i mport oracle. pgx. config. G aphConfi g;
i mport oracle. pgx. api . *;

GraphConfig pghGaphConfig = g.store(Format. PGB, "hdfs:/user/pgx/sanple.pgh",
VertexProperty. ALL, EdgeProperty.ALL, true);

To verify that the PGB file was created, list the files in the / user/ pgx HDFS directory:

hadoop fs -1s /user/pgx

6.14.3 Compiling and Running a Java Application in Hadoop

The following is the Hdf sDeno Java class for the previous examples:

i mport oracl e. pgx. api . Pgx;

i mport oracl e. pgx. api . PgxG aph;

i mport oracl e. pgx. api . PgxSessi on;

i mport oracl e. pgx. api . Serverlnstance;

i mport oracl e. pgx. config. Format;

i mport oracl e. pgx. config. GaphConfi g;

i mport oracl e. pgx. config. GraphConfi gFactory;

public class Hdf sDeno {
public static void main(String[] mainArgs) throws Exception {

Server|nstance instance = Pgx.get|nstance(Pgx. EMBEDDED_URL);

i nstance. start Engi ne();

PgxSessi on session = Pgx. creat eSessi on("ny-session");

G aphConfig adj Config = GaphConfigFactory.forAnyFormat().fronPath("hdfs:/
user/ pgx/ sanpl e. adj . j son");

PgxG aph graphl = session.readG aphWthProperties(adj Config);

G aphConfig pghConfig = graphl.store(Format. PGB, "hdfs:/user/pgx/sanple.pgh");

PgxG aph graph2 = sessi on. readG aphWt hProperties(pghConfig);

Systemout.printIn("graphl N =" + graphl.getNunVertices() +" E=" +
graphl. get Nunkdges());

Systemout.printin("graph2 N =" + graphl.getNunVertices() +" E=" +
graph2. get Nunkdges());

}

These commands compile the Hdf sDeno class:

cd $PGX_HOME
mkdir cl asses
javac -cp ../lib/"*" HdfsDeno.java -d classes

This command runs the Hdf sExanpl e class:

java -cp ../lib/*:conf:classes: $HADOOP_CONF_DI R Hdf sDeno

ORACLE 6-49

Chapter 6
Running the In-Memory Analyst as a YARN Application

6.15 Running the In-Memory Analyst as a YARN Application

In this example you will learn how to start, stop and monitor in-memory analyst servers
on a Hadoop cluster via Hadoop NextGen MapReduce (YARN) scheduling.

e Starting and Stopping In-Memory Analyst Services
e Connecting to In-Memory Analyst Services

* Monitoring In-Memory Analyst Services

6.15.1 Starting and Stopping In-Memory Analyst Services

Before you can start the in-memory analyst as a YARN application, you must configure
the in-memory analyst YARN client.

* Configuring the In-Memory Analyst YARN Client
e Starting a New In-Memory Analyst Service
e About Long-Running In-Memory Analyst Services

e Stopping In-Memory Analyst Services

6.15.1.1 Configuring the In-Memory Analyst YARN Client

The in-memory analyst distribution contains an example YARN client configuration file
in $PGX_HOVE/ conf/yar n. conf .

Ensure that all the required fields are set properly. The specified paths must exist in
HDFS, and zookeeper _connect _st ri ng must point to a running ZooKeeper port of the
CDH cluster.

6.15.1.2 Starting a New In-Memory Analyst Service

To start a new in-memory analyst service on the Hadoop cluster, use the following
command (replace <VERSION> with the actual version humber):

yarn jar $PGX_HOVE yar n/ pgx- yar n- <VERSI ON>. j ar

To use a YARN client configuration file other than $PGX_HOME/ conf/ yar n. conf, provide
the file path (replace <VERSION> with the actual version number, and /path/to/
different/ with the actual path):

yarn jar $PGX_HOVE yar n/ pgx-yarn- <VERSI ON>. jar /path/to/ different/yarn. conf

When the service starts, the host name and port of the Hadoop node where the in-
memory analyst service launched are displayed.

6.15.1.3 About Long-Running In-Memory Analyst Services

The in-memory analyst YARN applications are configured by default to time out after a
specified period. If you disable the time out by setting pgx_server _ti neout _secs to 0, the
in-memory analyst server keeps running until you or Hadoop explicitly stop it.

ORACLE 6-50

Chapter 6
Using Oracle Two-Tables Relational Format

6.15.1.4 Stopping In-Memory Analyst Services

To stop a running in-memory analyst service:
yarn application -kill appld
In this syntax, appld is the application ID displayed when the service started.

To inspect the logs of a terminated in-memory analyst service:

yarn |l ogs -applicationld appld

6.15.2 Connecting to In-Memory Analyst Services

You can connect to in-memory analyst services in YARN the same way you connect to
any in-memory analyst server. For example, to connect the Shell interface with the in-
memory analyst service, use a command like this one:

$PGX_HOVE/ bi n/ pgx --base_url usernane: passwor d@ost nane: port

In this syntax, username and password match those specified in the YARN
configuration.

6.15.3 Monitoring In-Memory Analyst Services

To monitor in-memory analyst services, click the corresponding YARN application in
the Resource Manager Web Ul. By default, the Web Ul is located at

http://resource- nanager - host nane: 8088/ cl ust er

6.16 Using Oracle Two-Tables Relational Format

ORACLE

When using a relational data model, graph data can be represented with two relational
tables. One table is for nodes and their properties; the other table is for edges and
their properties.

The in-memory analyst allows graphs to be read from such a relational graph
representation: two relational (RDBMS) tables representing nodes and edges. All you
need to do is specify the following additional fields in the graph confi g object.

Table 6-3 Additional Fields for Two-Tables Format

Field Type Description Default
edges_key_column string Name of primary key column in edges table eid
edges_table_name string Name of edges table null
from_nid_column string Column name for source node svid
insert_batch_size integer Batch size of the rows to be inserted 10000
max_prefetched_ro integer Maximum number or rows prefetched during 10000
ws each round trip (result set - the database)
nodes_key_column string Name of primary key column in nodes table vid
nodes_table_name string Name of nodes table null

6-51

ORACLE

Chapter 6
Using Oracle Two-Tables Relational Format

Table 6-3 (Cont.) Additional Fields for Two-Tables Format
|

Field Type Description Default

num_connections integer Number of connections to read/write data <no-of-
from/to two tables cpus>

schema string Schema where the tables are going to be null
written

tablespace string Tablespace where the tables are going to be users
written

to_nid_column string Column name for destination node dvid

vertex_id_type enum[long, Type of the vertex id long

string]
" Note:

To read data from Oracle Database using the two-tables format directly into
the Oracle Big Data Spatial and Graph in-memory analyst, you must have
the following license or licenses:

e Oracle Big Data Spatial and Graph license on an Oracle Big Data
Appliance, OR

* Oracle Big Data Spatial and Graph license on another supported
configuration, and a license for the Oracle Spatial and Graph option on
the Oracle Database Enterprise Edition system.

See Big Data Appliance Licensing Information User Manual for details on
licensing Oracle Big Data Spatial and Graph.

e Example of Using Two-Tables Format

How Null Values Are Handled

Example of Using Two-Tables Format

The following example reads graph data from two relational tables (NODES and
EDGES), using the values shown in the following tables.

Table 6-4 NODES Table Values for Two-Tables Example

nid NP1 NP2 NP3
1829107 “hello” 06/06/2012 0.30
1829179 “world” 06/08/2012 0.999

Table 6-5 EDGES Table Values for Two-Tables Example

|
eid from_nid to_nid EP1 EP2 EP3

21123 1829107 1829179 “alpha” 06/06/2012 10.5

ORACLE

Chapter 6
Using Oracle Two-Tables Relational Format

Table 6-5 (Cont.) EDGES Table Values for Two-Tables Example
|

eid from_nid to_nid EP1 EP2 EP3
48180 1788817 1829179 “beta” 06/08/2012 22.3
{
“jdbc_url": "jdbc:oracle:thin: @ydatabaseserver: 1521/ dbNange",
“format": "two_tables",
"datastore": "rdbns",
"username": "dbUser",
"password": "dbPassword",
"nodes_t abl e_nanme": "nodes",
"edges_tabl e_nanme": "edges",
"node_props": [{
"nane": "NP1",
"type": "string"
A
"nane": "NP2",
"type": "date"
A
"nane": "NP3",
"type": "double"
H,
"edge_props": [{
"nane": "EP1",
"type": "string"
A
"nane": "EP2",
"type": "date"
A
"nane": "EP3",
"type": "float"
H
}

For additional examples of using the two-tables format, see Using the In-Memory
Analyst to Analyze Graph Data in Apache Spark.

How Null Values Are Handled

For the in-memory analyst, property values in the nodes or edges cannot be null. So
whenever a property value in the nodes or edges table is set to null, a default value

will be assigned instead. If not specified in the confi g object, the default value is the

Java default value for the property type (for example, 0.0 for doubl e).

However, you can specify a different default value in the confi g object, as shown in the
following example.

{
"name": " NPL",
"type": "double",
"default": 1.0
}

6-53

Chapter 6
Using the In-Memory Analyst to Analyze Graph Data in Apache Spark

6.17 Using the In-Memory Analyst to Analyze Graph Data in
Apache Spark

ORACLE

The property graph feature in Oracle Big Data Spatial and Graph enables integration
of in-memory analytics and Apache Spark.

The following examples create a Spark context, load a graph in two-tables format
(vertices/nodes table and edges table) as a Spark DataFrame, read from this
DataFrame into an in-memory analyst, and finally build an in-memaory graph. For
simplicity, only the Java APlIs are illustrated.

(For an explanation of the two-tables format, see Using Oracle Two-Tables Relational
Format.)

See Also: Controlling the Degree of Parallelism in Apache Spark
Example 6-6 Create Spark Context

/1 inport classes required by Apache Spark and PGX
i mport org. apache. spark. Spar kConf ;

i mport org. apache. spark. api . java. *;

i mport oracle. pgx. api . *;

i mport org. apache. spark. sql . *;

i mport org. apache. spark. sql . types.*;

String sparkMaster = "spark://..."; [/ the access point for your Spark cluster
String sparkAppName = "My Spark App ..."; // the name of this application

String [] appJarPaths = new String[] {"/your/jar/path" }; // a file path to your jar
file

/] create a Spark configuration and a context

Spar kConf sparkConf = new

Spar kConf (). set Mast er (spar kMast er) . set AppName(spar kAppNane) . set Jar s(appJar Pat hs) ;
JavaSpar kCont ext sc = new JavaSpar kCont ext (spar kConf) ;

SQ.Cont ext sgl Context = new SQLCont ext (sc);

Example 6-7 Build Spark DataFrame from a Graph in Two-Tables Format

This example assumes that the vertex CSV file ("vertex table") has, in each row, an ID
of long integer type, VProp1l of integer type, and VProf2 of double type. It also
assumes that the edge CSV file ("edge table") has, in each row, an SRCID of long
integer type, DSTID of long integer type, EProp1 of integer type, and EProp2 of double

type.

JavaRDD<String> vLi nes
JavaRDD<String> eli nes

sc.textFile("<path>/test_graph_nodes_table.csv", 2)
sc.textFile("<path>/test _graph_edges_table.csv", 2)

JavaRDD<Row> vVRowRdd =

vLines. map(_.split(",")). map(p=>Row(p(0).toLong, p(1).tolnt,p(2).toDouble));
Struct Type vDat af raneScheme = new Struct Type().add("1D", LongType).add("VPropl",
I nt eger Type) . add(" VProp2", Doubl eType);

Dat af rane vDataframe = sql c. creat eDat aFr ane(vRowRdd, vDat af rameSchene) ;

JavaRDD<Row> eRowRdd =

eLines. map(_.split(",")). mp(p=>Row(p(0).toLong, p(1).toLong, p(2).tolnt,p(3).toDouble)
);

Struct Type eDat af raneScheme = new Struct Type().add("SRCI D', LongType). add("DSTID',
LongType) . add("EPropl", IntegerType).add("EProp2", Doubl eType);

Dat af rane eDataframe = sql c. creat eDat aFr ane(eRowRdd, eDat af rameSchene) ;

6-54

Chapter 6
Using the In-Memory Analyst to Analyze Graph Data in Apache Spark

Example 6-8 Read Spark DataFrame into In-Memory Analyst (1)

This example creates a PgxSessi on and a PgxSpar kCont ext , and uses the
PgxSpar kCont ext to read and build an in-memory graph out of the two Spark
DataFrames.

String pgxServer = "http://..."; [/ the access point for a PGX server

/1 create a PGX session and a context

PgxSessi on pgxSession = Pgx. get | nstance(pgxServer). createSession("spark-session");
PgxSpar kCont ext pgxCont ext = new PgxSpar kCont ext (spar kCont ext, pgxSession);

/1 load into PGX
PgxG aph g = pgxContext.read(vDat aframe, eDataframe, "spark-test-graph");

After an instance of PgxG aph is created, all existing analytical functions can be used.
Example 6-9 Read Spark DataFrame into In-Memory Analyst (2)

The following example stores the already loaded in-memaory graph g back into Apache
Spark by creating a pair of two Spark DztaFrames. The elements of the pair store
vertex and edge information, respectively.

/1 store graph "spark-test-graph" into Apache Spark
Pai r <Dat aFr ane, DataFrane> datafranmePair =
pgxCont ext . wri t eToDat af rames(vert exDat aFranme, eDat af rameScheme, "spark-test-graph");

e Controlling the Degree of Parallelism in Apache Spark

6.17.1 Controlling the Degree of Parallelism in Apache Spark

The degree of parallelism of a graph read job in Apache Spark is determined by the
number of partitions of the vertex and edge RDD / Dataframe objects. If the total
number of partitions of vertex and edge RDD / Dataframe objects is larger than the
total number of available workers in your Apache Spark cluster, the

PgxSpar kCont ext : : r ead function will throw an exception.

In this situation, you must adjust the degree of parallelism by reducing the number of
partitions in the RDD / Dataframe objects. You can use the coal esce API.

For example, assume that your Spark cluster has 15 available workers, and that the
graph to be read into the in-memory analyst has 500,000 vertices and 1,000,000 (1
million) edges. Given the 15 workers, the sum of the vertex and edge data frame
partitions must not exceed 15, because otherwise you would be requesting more
parallelism than is available in the cluster.

Because you have twice as many edges as vertices, it is best to have 1/3 (one-third) of
the available workers assigned to the vertices and 2/3 (two-thirds) assigned to the
edges. To use all 15 workers in those proportions, then, create 5 vertex partitions and
10 edge partitions. For example:

var newVertexDat aFrame = vertexDat aFrane. coal esce(5);
var newkdgeDat aFranme = edgeDat aFr ane. coal esce(10);

ORACLE 6-55

Chapter 6
Using the In-Memory Analyst Zeppelin Interpreter

6.18 Using the In-Memory Analyst Zeppelin Interpreter

ORACLE

The in-memory analyst provides an interpreter implementation for Apache Zeppelin.
This tutorial topic explains how to install the in-memory analyst interpreter into your
local Zeppelin installation and to perform some simple operations.

Installing the Interpreter

The following steps were tested with Zeppelin version 0.7.0, and might have to be
modified with newer versions.

1. If you have not already done so, download and install Apache Zeppelin.

2. Locate the in-memory analyst interpreter package: /opt/oracle/oracle-spatial-
graph/property_graph/pgx/client/pgx-<version>-zeppelin-interpreter.zip

3. Follow the official interpreter installation steps.

a. Unzip the in-memory analyst interpreter package into $ZEPPELI N_HOVE/
i nterpreter/pgx.

b. Edit $ZEPPELI N_HOVE/ conf/ zeppel i n-site. xm and add the in-memory analyst
Zeppelin interpreter class naneor acl e. pgx. zeppel i n. Pgxl nter pret er to
the zeppel i n.interpreters property field.

c. Clear the CLASSPATH setting before the next step (restarting Zeppelin). On a
Linux system, execute unset CLASSPATH in the shell.

d. Restart Zeppelin.

e. Inthe Zeppelin interpreter page, click the +Create button to add a new
interpreter of interpreter group pgx.

4. Configure the new in-memory analyst interpreter.
a. Choose an option for interpreter for note:

» Shared: All notes will share the same in-memory analyst session (not
recommended).

* Scoped: Every note gets its own in-memory analyst session but shares
the same process (recommended).

* Isolated: Every note gets its own in-memory client shell process. This is
the highest level of isolation, but might consume unnecessary resources
on the system running the Zeppelin interpreters.

b. For pgx.baseUrl, specify at least the base URL at which the in-memory
analyst server is running, because the in-memory analyst interpreter acts like
a client that talks to a remote in-memory analyst server.

Using the Interpreter

If you hamed the in-memory analyst interpreter pgx, you can send paragraphs to the
in-memory analyst interpreter by starting the paragraphs with the %gxdirective, just as
with any other interpreter.

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid in-
memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

6-56

http://zeppelin.apache.org/download.html
https://zeppelin.apache.org/docs/latest/development/writingzeppelininterpreter.html#install-your-interpreter-binary

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

Y%gx

g_brands = session.readG aphWthProperties("/opt/datal/ exomerce/brand_cat.json")
g_brands. get NunMerti ces()

rank = anal yst. pagerank(g_brands, 0.001, 0.85, 100)

rank. get TopKval ues(10)

The following figure shows the results of that query after you click the icon to execute
it.

ID

Cell Phones & Accessories
Cases
Basic Cases

Accessories

As you can see in the preceding figure, the in-memory analyst Zeppelin interpreter
automatically renders the values returned by rank. get TopKval ues(10) as a Zeppelin
table, to make it more convenient for you to browse results.

Besides property values (get TopKval ues(), get BottonKval ues() and get Val ues()), the
following return types are automatically rendered as table also if they are returned
from a paragraph:

* Pggl Resul t Set - the object returned by the queryPgql (*...") method of
the PgxG aph class

e Maplterabl e - the object returned by the entries() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory
analyst shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

6.19 Using the In-Memory Analyst Enterprise Scheduler

ORACLE

The in-memory analyst enterprise scheduler provides advanced scheduling features.

" Note:

The advanced scheduling features are currently only available for Linux
(x86_64), Mac OS X (x86_64), and Solaris (x86_64, SPARC).

6-57

value

0.101072
0.060593
0.058782

0.056578°

https://zeppelin.apache.org/

ORACLE

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

This tutorial topic shows how you can use the advanced scheduling features of the in-
memory analyst enterprise scheduler. It shows:

* How to enable the advanced scheduling features by configuring the in-memory
analyst server

* How to retrieve and inspect the execution environment

* How to modify the execution environment and run tasks with it

Enabling Advanced Scheduling Features

To enable the advanced scheduling features, set the flag
al | ow override_schedul i ng_i nf or mati on of the in-memory analyst instance
configuration to t r ue.

{
}

“al | ow_override_schedul ing_i nformation": true

Retrieving and Inspecting the Execution Environment

Execution environments are bound to a session. To retrieve the execution
environment for a session, call get Execut i onEnvi ronnent () on a PgxSessi on.

pgx> execEnv = session. get Executi onEnvironnent ()
==> Execut i onEnvi ronment [sessi on=576af 1f d- 73aa- 4866- abf 0- 00a71757d75b]

An execution environment is split into three sub-environments, one for each task type:

e The IO environment: for 1O tasks

* The Analysis environment: for CPU bound analytics tasks

* The Fast Analysis environment: for lightweight, but CPU bound analytics tasks
To query the current state of the execution environment call the get Val ues() method.

pgx> execEnv. get Val ues()

==> j 0-pool . num t hreads_per _t ask=72

==> anal ysi s- pool . max_num t hr eads=72

==> anal ysi s- pool . wei ght =72

==> anal ysi s- pool . pri ority=MEDI UM

==> fast-track-anal ysi s-pool . max_num t hr eads=72
==> fast-track-anal ysi s-pool . wei ght =1

==> fast-track-anal ysis-pool.priority=H GH

To retrieve the sub-environments use

the get | oEnvi ronnent (), get Anal ysi sEnvi ronnent (), and get Fast Anal ysi sEnvi r onnent ()
methods: Each sub-environment has itx own get Val ues() method for retrieving the
configuration of the sub-environment.

pgx> i oEnv = execEnv. get | oEnvi ronnent ()
==> | oEnvi r onnent [pool =i 0- pool]

pgx> i oEnv. get Val ues()

==> num t hreads_per _task=72

pgx> anal ysi sEnv = execEnv. get Anal ysi sEnvi ronnent ()
==> CpuEnvi ronnent [pool =anal ysi s- pool]

pgx> anal ysi sEnv. get Val ues()

==> max_numt hr eads=72

==> wei ght =72

==> priority=MEDI UM

6-58

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

pgx> fast Anal ysi sEnv = execEnv. get Fast Anal ysi sEnvi ronment ()
==> CpuEnvi ronnent [pool =f ast - t r ack- anal ysi s- pool]

pgx> fast Anal ysi sEnv. get Val ues()

==> max_num t hr eads=72

==> wei ght =1

==> priority=H GH

Modifying the Execution Environment and Submitting Tasks Under the Updated
Environment

You can modify the number of threads for I/O environments by using the
set NunfThr eadsPer Task() method of I oEnvi ronment . The value is updated immediately,
and all tasks that are submitted after the update are executed with the updated value.

pgx> i oEnv. set NuniThr eadsPer Task(8)

==> §

pgx> g = session.readG aphWthProperties(...)
==> PgxG aph[name=gr aph, N=3, E=6, cr eat ed=0]

To reset an environment to its initial values, call the reset () method.

pgx> i oEnv. reset ()
==> nul

For CPU environments, the weight, priority and maximum number of threads can be
modified using the setWeight(), setPriority()and setMaxThreads() methods.

pgx> anal ysi sEnv. set Wi ght (50)

==> 50

pgx> fast Anal ysi sEnv. set MaxThr eads(1)

=> 1

pgx> rank = anal yst. pagerank(g)

==> Vert exProperty[name=pager ank, t ype=doubl e, gr aph=gr aph]

You can reset all environments at once by calling reset () on the Executi onEnvi ronnent .

pgx> execEnv. reset ()
==> nul |

* Using Lambda Syntax with Execution Environments

6.19.1 Using Lambda Syntax with Execution Environments

ORACLE

You can use lambda syntax to combine steps used with execution environments.
Typically, the environment is used in the following way.

1. Set up execution environment
2. Execute task
3. Reset execution environment

To make these three steps easier, there is a method that combines these three steps:
For each set method there is a method using the with prefix that takes the updated
value and a lambda that should be executed using the updated value. For example,
instead of setNumThreadsPerTask() there is a method

called withNumThreadsPerTask(), which can be invoked like this:

e In an Java application, using Java 8 lambdas:

6-59

Chapter 6
Using the In-Memory Analyst Enterprise Scheduler

i mport oracl e. pgx. api.*;
i mport oracl e. pgx. api . executi onenvi ronment. *;

PgxGraph g = ioEnv.w t hNuniThr eadsPer Task(8, () ->
session. readG aphW t hProperti esAsync(...));

* Inthe in-memory analyst shell, using Groovy closures:

pgx> g = i oEnv. wi t hNuniThr eadsPer Task(8,
{ session.readG aphWthPropertiesAsync(...) })
==> PgxG aph[name=gr aph, N=3, E=6, cr eat ed=0]

Both of the preceding are equivalent to the following sequence of actions:

ol dval ue = i oEnv. get NunThr eadsPer Task()

i oEnv. set NuniThr eadsPer Task(current Val ue)
g = session.readG aphWthProperties(...)
i oOEnv. set NuniThr eadsPer Task(ol dval ue)

ORACLE 6-60

Using Multimedia Analytics

You can use the multimedia analytics framework in a Big Data environment to perform
facial recognition in videos and images.

" Note:

The multimedia analytics feature of Big Data Spatial and Graph is
deprecated in Big Data Spatial and Graph Release 2.5 and may be
desupported in a future release. There is no replacement for the multimedia
analytics features.

About Multimedia Analytics
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop.

Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics
Framework

The multimedia analytics framework processes video and image data stored in
HDFS using MapReduce.

Processing Streaming Video Using the Multimedia Analytics Framework
The multimedia analytics framework processes streaming video from RTSP and
HTTP servers using Apache Spark.

Face Recognition Using the Multimedia Analytics Framework
The multimedia analytics feature is configured to perform face recognition with
OpenCV libraries. These OpenCYV libraries are available with the product.

Configuration Properties for Multimedia Analytics
The multimedia analytics framework uses the standard methods for specifying
configuration properties in the hadooop command.

Using the Multimedia Analytics Framework with Third-Party Software
You can implement and install custom modules for multimedia decoding and
processing.

Displaying Images in Output

If the output is displayed as images, or acl e. or d. hadoop. Or dPl ayl mages can be used
to display all the images in the output HDFS directory.

7.1 About Multimedia Analytics

ORACLE

The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop.

The framework enables distributed processing of video and image data. Features of
the framework include:

APIs to process and analyze video and image data in Apache Hadoop

7-1

Chapter 7
Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics Framework

— APIs to process and analyze video and image data in batch using MapReduce
(input data can be in HDFS, Oracle NoSQL Database, or Apache HBase)

— APIs to process and analyze streaming video in real-time using Apache Spark
» Scalable, high speed processing, leveraging the parallelism of Apache Hadoop
* Built-in face recognition using OpenCV

* Ability to install and implement custom video/image processing (for example,
license plate recognition) to use the framework to run in Apache Hadoop

The video analysis framework is installed on Oracle Big Data Appliance if Oracle
Spatial and Graph is licensed, and you can install it on other Hadoop clusters.

7.2 Processing Video and Image Data Stored in HDFS
Using the Multimedia Analytics Framework

The multimedia analytics framework processes video and image data stored in HDFS
using MapReduce.

Face recognition using OpenCYV is integrated with the framework and available with
the product. Third party processing code can also be integrated into the framework for
a variety of use cases, such as face recognition, license plate recognition, and object
recognition.

Video and image data processing involves the following

1. Input data comes from HDFS, Oracle NoSQL Database, or Apache HBase.

* Video input data can be stored in HDFS, or decoded frames can be stored in
Oracle NoSQL Database or Apache HBase.

* Image input data can be stored in HDFS, Oracle NoSQL Database, or Apache
HBase.

2. The data is split into a set of images or video frames.

3. The Images or video frames are processed on each node, using OpenCV or third
party code.

4. The output of processing is stored in HDFS or Apache HBase.

7.3 Processing Streaming Video Using the Multimedia
Analytics Framework

ORACLE

The multimedia analytics framework processes streaming video from RTSP and HTTP
servers using Apache Spark.

Face detection and face recognition using OpenCV is integrated with the framework
and available with the product. Third party processing code can be integrated into the
framework for a variety of use cases, such as face recognition, license plate
recognition, and object recognition.

Streaming video is processed by an Apache Spark job. The Spark job processes each
frame and outputs the result into HDFS, or to specialized output locations using
custom implementations to write output. Sample implementations of custom writers to

7-2

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

write to the local file system and send data to a demo image player are available with
the product.

Streaming video processing involves the following

1. Input data comes from RTSP or HTTP streaming servers or from HDFS. The
framework can also read video streaming into HDFS.

2. Streaming video is decoded into frames.
3. Video frames are processed by Apache Spark.

4. Results of the processing can be written to HDFS or to specialized locations, such
as an image player using custom plugins. Sample plugins are available for:

e Writing JSON, CSV, and/or image data to the local file system

e Sending the image data to an image player, enabling the results to be viewed
in real time. (A demo image player is included with the product.)

7.4 Face Recognition Using the Multimedia Analytics
Framework

The multimedia analytics feature is configured to perform face recognition with
OpenCV libraries. These OpenCYV libraries are available with the product.

This topic describes using this face recognition functionality with MapReduce to
process video and images stored in HDFS. Face recognition has two steps:

1. “Training” a model with face images. This step can be run in any Hadoop client or
node.

2. Recognizing faces from input video or images using the training model. This step
is a MapReduce job that runs in a Hadoop cluster.

The training process creates a model stored in a file. This file is used as input for face
recognition from videos or images.

e Training to Detect Faces

e Selecting Faces to be Used for Training
e Detecting Faces in Videos

e Detecting Faces in Images

e Working with Oracle NoSQL Database
e Working with Apache HBase

e Examples and Training Materials for Detecting Faces

7.4.1 Training to Detect Faces

ORACLE

Training is done using the Java program O dFaceTr ai ner, which is part of
ordhadoop_nul ti medi a_anal yti cs. j ar. Inputs to this program are a set of images and a
label mapping file that maps images to labels. The output is a training model that is
written to a file. (You must not edit this file.)

To train the multimedia analytics feature to detect (recognize) faces, follow these
steps.

7-3

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

1. Create a parent directory and subdirectories to store images that are to be
recognized.

Each subdirectory should contain one or more images of one person. A person
can have images in multiple subdirectories, but a subdirectory can have images of
only one person. For example, assume that a parent directory named i nages exists
where one subdirectory (d1) contains images of a person named Andrew, and two
subdirectories (d2 and d3) contain images of a person named Betty (such as
pictures taken at two different times in two different locations). In this example, the
directories and their contents might be as follows:

* imges/ 1 contains five images of Andrew.
* imges/ 2 contains two images of Betty.
e imges/ 3 contains four images of Betty.
2. Create a mapping file that maps image subdirectories to labels.

A “label” is a numeric ID value to be associated with a person who has images for
recognition. For example, Andrew might be assigned the label value 100, and
Betty might be assigned the label value 101. Each record (line) in the mapping file
must have the following structure:

<subdirectory>, <l abel -i d>, <l abel -text>

For example:

1, 100, Andr ew
2,101, Betty
3,101, Betty

3. Set the required configuration properties:

oracl e. ord. hadoop. or df acemodel

oracl e. ord. hadoop. or df acer eader

oracl e. ord. hadoop. or dsi npl ef acer eader . di r map
oracl e. ord. hadoop. or dsi npl ef acer eader . i magedi r

For information about the available properties, see Configuration Properties for
Multimedia Analytics.

4. Create the training model. Enter a command in the following general form:

hadoop jar ${MVA HOME}/Ii b/ or dhadoop- mul ti medi a- anal yti cs-exanpl e. j ar
faceTrai ner <training_config file.xn>

" Note:

$MVA_HOMVE/ exanpl e has a set of sample files. It includes scripts for setting the
Java CLASSPATH. You can edit the example as needed to create a training
model.

7.4.2 Selecting Faces to be Used for Training

Images used to create the training model should contain only the face, with as little
extra detail around the face as possible. The following are some examples, showing
four images of the same man’s face with different facial expressions.

ORACLE 7-4

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

\ i

The selection of images for training is important for accurate matching. The following
guidelines apply:

The set of images should contain faces with all possible positions and facial
movements, for example, closed eyes, smiles, and so on.

The images should have the same size.
The images should have good resolution and good pixel quality.
Try to avoid including images that are very similar.

If it is necessary to recognize a person with several backgrounds and light
conditions, include images with these backgrounds.

The number of images to include depends on the variety of movements and
backgrounds expected in the input data.

An example to process images in a set of images and create good training images is
available in: $MvA_HOVE/ exanpl e/ f acet r ai n/ runFaceTr ai nUl Exanpl e. sh

7.4.3 Detecting Faces in Videos

To detect (recognize) faces in videos, you have the following options for video
processing software to transcode video data:

ORACLE

Use Or dopenCVFaceRecogni zer Mil ti as the frame processor, along with any of the
frontal face cascade classifiers available with OpenCV.

Haar cascade_frontal face_alt2.xm is a good place to start. You can experiment
with the different cascade classifiers to identify a good fit for your requirements.

Use third-party face recognition software.

To perform recognition, follow these steps:

1.

Copy the video files (containing video in which you want to recognize faces) to
HDFS.

Copy these required files to a shared location accessible by all nodes in the
cluster:

e Generated training model

e Mapping file that maps image subdirectories to labels
+ Cascade classifier XML file

Create the configuration file.

Required configuration parameters:

e oracle. ord. hadoop. i nput t ype: Type if input data (vi deo or i mage).

7-5

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

e oracl e. ord. hadoop. out put t ypes: Format of generated results (JSON t ext/ | mage).

e oracle.ord. hadoop. or df ranegr abber : Get a video frame from the video data.
You can use the Java classes available with the product or you can provide an
implementation for the abstraction.

— OrdJCodecFrameGrabber is available with the product. This class can be
used without any additional steps. See www.jcodec.org for more details on
JCodec.

— OrdFFMPEGFrameGrabber is available with the product. This class
requires installation of FFMPEG libraries. See www.ffmpeg.org for more
details

e oracle.ord. hadoop. or df ranepr ocessor : Processor to use on the video frame to
recognize faces. You can use the Java classes available with the product or
you can provide an implementation for the abstraction. The classes available
with the product are:

— oracle. ord. hadoop. mapr educe. Or dOpenCVFaceRecogni ze for face recognition.
— oracl e. ord. hadoop. deno. Or dFaceDet ect i onSanpl e for face detection.
e oracle. ord. hadoop. recogni zer. cl assi fi er : Cascade classifier XML file.

e oracle. ord. hadoop. recogni zer. | abel nanefi | e: Mapping file that maps image
subdirectories to labels.

Optional configuration parameters:

e oracle. ord. hadoop. franei nt erval : Time interval (humber of seconds) between
frames that are processed. Default: 1.

e oracle. ord. hadoop. nunof spl i t s: Number of splits of the video file on the
Hadoop cluster, with one split analyzed on each node of the Hadoop cluster.
Default: 1.

e oracle.ord. hadoop. recogni zer. cascadecl assi fi er. scal ef act or : Scale factor to
be used for matching images used in training with faces identified in video
frames or images. Default: 1.1 (no scaling)

e oracle.ord. hadoop. recogni zer. cascadecl assi fi er. m nnei ghbor : Determines size
of the sliding window to detect face in video frame or image. Default: 1.

e oracle. ord. hadoop. recogni zer. cascadecl assi fi er. f| ags: Determines type of
face detection.

e oracle. ord. hadoop. recogni zer. cascadecl assi fi er. mi nsi ze: Smallest bounding
box used to detect a face.

* oracle.ord. hadoop. recogni zer. cascadecl assi fi er. maxsi ze: Largest bounding
box used to detect a face.

e oracle.ord. hadoop. recogni zer. cascadecl assi fi er. maxconf i dence: Maximum
allowable distance between the detected face and a face in the model.

e oracle. ord. hadoop. or df ranepr ocessor . k2: Key class for the implemented class
for Or dFr amePr ocessor .

e oracle. ord. hadoop. or df ranepr ocessor . v2: Value class for the implemented
class for Or dFr anePr ocessor .

4. Run the Hadoop job to recognize faces. Enter a command in the following format:

ORACLE 7-6

http://www.jcodec.org
http://www.ffmpeg.org

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

$ hadoop jar $MVA HOVE/ | i b/ or hadoop- nul ti medi a-anal ytics.jar -conf <conf file>
<hdfs_i nput _di rect ory_cont ai ni ng_vi deo_dat a>
<hdfs_output _directory_to wite_results>

Be sure that the configuration file specifies the
oracl e. ord. hadoop. or df ranepr ocessor property with the desired value.

The accuracy of detecting faces depends on a variety of factors, including lighting,
brightness, orientation of the face, distance of the face from the camera, and clarity of
the video or image. You should experiment with the configuration properties to
determine the best set of values for your use case. Note that it is always possible to
have false positives (identifing objects that are not faces as faces) and false
recognitions (wrongly labeling a face).

Note:

$MVA_HOME/ exanpl e has a set of sample files. It includes scripts for setting the
Java CLASSPATH. You can edit as needed to submit a job to detect faces.

7.4.4 Detecting Faces in Images

To detect faces in images, copy the images to HDFS. Specify the following property:

<property>
<name>or acl e. or d. hadoop. i nput t ype</ name>
<val ue>i mge</ val ue>

</ property>

7.4.5 Working with Oracle NoSQL Database

ORACLE

Oracle NoSQL Database providesperformance improvements when working with small
objects such as images. Images can be stored in Oracle NoSQL Database and
accessed by the multimedia analytics framework. If input data is video, then the video
must be decoded into frames and the frames stored in Oracle NoSQL Database.
HDFS or HBase can be used to store the output of multimedia processing.

Starting with Oracle NoSQL Database Release 4.3, user authentication is enabled by
default. If you use Oracle NoSQL Database, you must set up a mechanism for
authenticating user access. Instructions for configuring demos in $MA_HOVE/ exanpl e/
kvlite are available in $MVA_HOME/ exanpl e/ README. t xt .

The following properties are required when the input is in an Oracle NoSQL database:

e oracle. ord. hadoop. dat asour ce — Storage option for input data. Specify kvst or e if
input data is in Oracle NoSQL Database. Default is HDFS.

e oracle.ord. kvstore.input.name — Name of NoSQL Database storage.
e oracle.ord. kvstore.input.tabl e — Name of the NoSQL Database table.
e oracle.ord. kvstore.input.hosts — Hostname and port.

e oracle.ord. kvstore.input.primrykey — Primary key for accessing records in a
table.

e oracle.ord. hadoop. dat asi nk — Storage option for the output of multimedia analysis.
Default is HDFS. Specify HBase to use an HBase table to store the output.

7-7

Chapter 7
Face Recognition Using the Multimedia Analytics Framework

Related Topics
* Blog post: "Oracle NoSQL Database Keeps Your Data Secure”
* Oracle NoSQL Database Security Guide

e Oracle NoSQL Database documentation

7.4.6 Working with Apache HBase

Apache provides performance improvements when working with small objects such as
images. Images can be stored in an HBase table and accessed by the multimedia
analytics framework. If input data is video, then the video must be decoded into frames
and the frames stored in an HBase table.

The following properties are used when the input or output is an HBase table:

e oracle. ord. hadoop. dat asour ce — Storage option for input data. Specify HBase if
input data is in an HBase table. Default is HDFS.

e oracle.ord. hbase.input.tabl e — Name of the HBase table containing the input
data.

e oracle.ord. hbase. i nput.col umfani | y — Name of the HBase column family
containing the input data.

e oracle.ord. hbase. i nput. col uymm — Name of the HBase column containing the input
data.

e oracl e. ord. hadoop. dat asi nk — Storage option for the output of multimedia analysis.
Specify HBase to use an HBase table to store the output. Default is HDFS.

e oracle. ord. hbase. out put. col umf am | y — Name of the HBase column family in the
output HBase table.

7.4.7 Examples and Training Materials for Detecting Faces

ORACLE

Several examples and training materials are provided to help you get started detecting
faces.

$MMA_HOME contains these directories:

video/ (contains a sanple video file in np4 and avi formats)
facetrain/
anal ytics/

facetrain/ contains an example for training, facetrai n/ confi g/ contains the sample
configuration files, and f acet rai n/ f aces/ contains images to create the training model
and the mapping file that maps labels to images.

runFaceTr ai nExanpl e. sh is a bash example script to run the training step.
You can create the training model as follows:

$./runFaceTrai nExanpl e. sh

The training model will be written to or df acenodel _bi gdat a. dat .

For detecting faces in videos, anal yti cs/ contains an example for running a Hadoop
job to detect faces in the input video file. This directory contains conf/ with
configuration files for the example.

7-8

https://blogs.oracle.com/nosql/oracle-nosql-database-keeps-your-data-secure
http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/index.html
https://docs.oracle.com/cd/NOSQL/html/index.html

Chapter 7
Configuration Properties for Multimedia Analytics

You can run the job as follows (includes copying the video file to HDFS directory
vi nput)

$. /runFaceDet ecti onExanpl e. sh

The output of the job will be in the HDFS directory vout put .

For recognizing faces in videos, anal ytics/ contains an example for running a Hadoop
job to recognize faces in the input video file. This directory contains conf/ with
configuration files for the example. You can run the job as follows (includes copying
the video file to the HDFS directory vi nput):

$./runFaceRecogni zer Exanpl e. sh

After the face recognition job, you can display the output images:

$./runPl ayl magesExanpl e. sh

7.5 Configuration Properties for Multimedia Analytics

The multimedia analytics framework uses the standard methods for specifying
configuration properties in the hadooop command.

You can use the —conf option to identify configuration files, and the - D option to specify
individual properties.

This topic presents reference information about the configuration properties, grouped
into the following subtopics:

» Configuration Properties for Processing Stored Videos and Images
» Configuration Properties for Processing Streaming Video

» Configuration Properties for Training Images for Face Recognition

7.5.1 Configuration Properties for Processing Stored Videos and

Images

ORACLE

This category of multimedia analytics framework configuration properties applies to the
processing of stored videos and images.

These property names all start with oracl e. or d. They can be grouped into two
subcategories:

* Generic Framework Properties
» Face Recognition Properties (contain the string r ecogni zer)

Within each subcategory, the available configuration properties are listed in
alphabetical order. For each property the property name is listed, then information
about the property.

Generic Framework Properties

oracle.ord.hadoop.datasink
String. Storage option for the output of multimedia analysis: HBase to use an HBase
table to store the output; otherwise, HDFS. Default value: HDFS. Example:

7-9

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

<property>
<name>or acl e. or d. hadoop. dat asi nk</ nane>
<val ue>hbase</ val ue>

</ property>

oracle.ord.hadoop.datasource

String. Storage option for input data: HBase if the input data is in an HBase database;
kvst or e if the input data is in an Oracle NoSQL Database; otherwise, HDFS. Default
value: HDFS: Example:

<property>
<name>or acl e. or d. hadoop. dat asour ce</ name>
<val ue>hbase</ val ue>

</ property>

oracle.ord.hadoop.frameinterval
String. Timestamp interval (in seconds) to extract frames for processing. Allowable
values: positive integers and floating point numbers. Default value: 1. Example:

<property>
<name>or acl e. or d. hadoop. f r anei nt er val </ nanme>
<val ue>1</ val ue>

</ property>

oracle.ord.hadoop.inputformat

Sring. The I nput For mat class name in the framework, which represents the input file
type in the framework. Default value: or acl e. or d. hadoop. Or dVi deol nput For nat .
Example:

<property>

<nane>or acl e. or d. hadoop. i nput f or mat </ name>

<val ue>oracl e. or d. hadoop. O dVi deol nput For mat </ val ue>
</ property>

oracle.ord.hadoop.inputtype
String. Type of input data: vi deo or i rage. Example:

<property>
<name>or acl e. or d. hadoop. i nput t ype</ nanme>
<val ue>vi deo</ val ue>

</ property>

oracle.ord.hadoop.numofsplits

Positive integer. Number of the splits of the video files on the Hadoop cluster, with
one split able to be analyzed in each node of the Hadoop cluster. Recommended
value: the number of nodes/processors in the cluster. Default value: 1. Example:

<property>
<nane>or acl e. or d. hadoop. numof spl i t s</ name>
<val ue>1</val ue>

</ property>

oracle.ord.hadoop.ordfacemodel
String. Name of the file that stores the model created by the training. Example:

<property>
<name> oracl e. ord. hadoop. or df acenodel </ name>
<val ue>or df acenodel _bi gdat a. dat </ val ue>

</ property>

7-10

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

oracle.ord.hadoop.ordfacereader
String. Name of the Java class that reads images used for training the face
recognition model. Example:

<property>

<name> oracl e. ord. hadoop. or df acer eader </ name>

<val ue> oracl e. ord. hadoop. O dSi npl eFaceReader </val ue>
</ property>

oracle.ord.hadoop.ordfacereaderconfig
String. File containing additional configuration properties for the specific application.
Example:

<property>
<name> oracl e. ord. hadoop. or df acer eader confi g </ nane>
<val ue>confi g/ or dsi npl ef acer eader _bi gdat a. xm </ val ue>
</ property>

oracle.ord.hadoop.ordframegrabber

String. Name of the Java class that decodes a video file. This is the implemented
class for OrdFrameG abber, and it is used by the mapper to decode the video file.
Available installed implementations with the product:

oracl e. ord. hadoop. Or dJCodecFr aneG abber (the default) and

oracl e. or d. hadoop. Or dFFMPEGFT aneG abber (when FFMPEG is installed by the user).
You can add custom implementations. Example:

<property>

<name>or acl e. or d. hadoop. or df r anegr abber </ nane>

<val ue>oracl e. or d. hadoop. O dJCodecFr anmeGr abber </ val ue>
</ property>

oracle.ord.hadoop.ordframeprocessor

String. Name of the implemented Java class of interface OrdFrameProcessor, which
is used by the mapper to process the frame and recognize the object of interest.
Default value: oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognizerMulti.
Example:

<property>

<name>or acl e. or d. hadoop. or df ramepr ocessor </ name>

<val ue>or acl e. or d. hadoop. mapr educe. O dOpenCVFaceRecogni zer Mul ti </ val ue>
</ property>

oracle.ord.hadoop.ordframeprocessor.k2
String. Java class name, output key class of the implemented class of interface
O dFranePr ocessor . Default value: or g. apache. hadoop. i 0. Text . Example:

<property>
<nanme>or acl e. or d. hadoop. or df r anepr ocessor . k2</ nane>
<val ue>or g. apache. hadoop. i 0. Text </ val ue>

</ property>

oracle.ord.hadoop.ordframeprocessor.v2

String. Java class name, output value class of the implemented class of interface
O dFr aneProcessor . Default value: oracl e. or d. hadoop. mapr educe. Or dl mageWi t abl e.
Example:

<property>

<nane>or acl e. or d. hadoop. or df r amepr ocessor. v2 </ nane>

<val ue>oracl e. or d. hadoop. mapr educe. Or dl mageWi t abl e</ val ue>
</ property>

7-11

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

oracle.ord.hadoop.ordoutputprocessor

String. Only only relevant for custom (user-specified) plug-ins: name of the
implemented Java class of interface Or dQut put Processor that processes the key-value
pair from the map output in the reduce phase. Example:

<property>
<name>or acl e. or d. hadoop. or df r amepr ocessor </ nanme>
<val ue>mypackage. MyQut put Processor Cl ass</ val ue>
</ property>

oracle.ord.hadoop.ordsimplefacereader.dirmap
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
<name> oracl e. ord. hadoop. or dsi npl ef acer eader . di rmap </ name>
<val ue>f aces/ hi gdat a/ di r map. t xt </ val ue>

</ property>

oracle.ord.hadoop.ordsimplefacereader.imagedir
String. File system directory containing faces used to create a model. This is typically
in a local file system. Example:

<property>
<name> oracl e. ord. hadoop. or dsi npl ef acer eader . i magedi r </ nane>
<val ue>f aces/ bi gdat a</ val ue>

</ property>

oracle.ord.hadoop.outputformat

String. Name of the OutputFormat class, which represents the output file type in the
framework. Default value: or g. apache. hadoop. mapr educe. | i b. out put . Text Qut put For mat .
Example:

<property>

<name>or acl e. or d. hadoop. out put f or mat </ nane>

<val ue> org. apache. hadoop. mapr educe. | i b. out put . Text Qut put For mat; </val ue>
</ property>

oracle.ord.hadoop.outputtype
String. Format of output that contains face labels of identified faces with the time
stamp, location, and confidence of the match: must be j son, i mage, or text . Example:

<property>
<nane>or acl e. or d. hadoop. out put t ype</ nane>
<val ue>j son</ val ue>

</ property>

oracle.ord.hadoop.parameterfile
String. File containing additional configuration properties for the specific job. Example:

<property>

<name>or acl e. or d. hadoop. paraneterfile </ name>

<val ue>oracl e_nul ti medi a_f ace_recogni tion. xm </ val ue>
</ property>

oracle.ord.hadoop.recognizer.cascadeclassifier.flags

String. Use this property to select the type of object detection. Must be
CASCADE_DO_CANNY_PRUNI NG, CASCADE_SCALE_| MAGE, CASCADE_FI ND_BI GGEST_OBJECT (look
only for the largest face), or CASCADE_DO ROUGH_SEARCH. . Default: CASCADE_SCALE_| MAGE |
CASCADE_DO ROUGH SEARCH. Example:

7-12

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. f| ags</ name>
<val ue>CASCADE_SCALE_| MAGE</ val ue>

</ property>

oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence

Floating point value. Specifies how large the distance (difference) between a face in
the model and a face in the input data can be. Larger valuse will give more matches
but might be less accurate (more false positives). Smaller values will give fewer
matches, but be more accurate. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. maxconf i dence</ nane>
<val ue>200. 0</ val ue>

</ property

oracle.ord.hbase.input.column
String. Name of the HBase column containing the input data. Example:

<property>
<nane>or acl e. or d. hbase. i nput . col um</ nane>
<val ue>bi nary_dat a</ val ue>

</ property>

oracle.ord.hbase.input.columnfamily
String. Name of the HBase column family containing the input data. Example:

<property>
<name>or acl e. or d. hbase. i nput . col utmf ani | y</ nanme>
<val ue>i mage_dat a</ val ue>

</ property>

oracle.ord.hbase.input.table
String. Name of the HBase table containing the input data. Example:

<property>
<name>or acl e. or d. hbase. i nput . t abl e</ name>
<val ue>i mges</ val ue>

</ property>

oracle.ord.hbase.output.columnfamily
String. Name of the HBase column family in the output HBase table. Example:

<property>
<nane>or acl e. or d. hbase. out put . col ummf ami | y</ nane>
<val ue>f ace_dat a</ val ue>

</ property>

oracle.ord.hbase.output.table
String. Name of the HBase table for output data. Example:

<property>
<name>or acl e. or d. hbase. out put . t abl e</ name>
<val ue>resul t s</val ue>

</ property>

oracle.ord.kvstore.get.consistency

String. Defines the consistency constraints during read. Read operations can be
serviced at a Master or Replica node. The default value of ABSOLUTE ensures the read
operation is serviced at the Master node. Example:

7-13

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

<property>
<name>or acl e. ord. kvst ore. get. consi st ency</ nane>
<val ue>absol ut e</ val ue>

</ property>

oracle.ord.kvstore.get.timeout

Number. Upper bound on the time interval for retrieving a chunk of the large object or
its associated metadata. A best effort is made not to exceed the specified limit. If zero,
the KVSt or eConf i g. get LOBTi meout (j ava. util.concurrent. Ti neUnit) value is used.
Default value is 5. Example:

<property>
<name>or acl e. ord. kvstore. get.ti neout </ nane>
<val ue>5</ val ue>

</ property>

oracle.ord.kvstore.get.timeunit
String. Unit of the ti neout parameter, can be NULL only if ti neout is zero. Default
value is seconds. Example:

<property>
<name>or acl e. ord. kvstore. get.ti meunit </ name>
<val ue>seconds</ val ue>

</ property>

oracle.ord.kvstore.input.hosts
String. Host and port of an active node in Oracle NoSQL Database store. Example:

<property>
<name>or acl e. ord. kvst ore. i nput . host s</ nane>
<val ue>| ocal host : 5000</ val ue>

</ property>

oracle.ord.kvstore.input.lob.prefix and oracle.ord.kvstore.input.lob.suffix
Oracle NoSQL Database uses these to construct the keys used to load and retrieve
large objects (LOBs). Default value for oracl e. ord. kvstore. i nput. | ob. prefix is

| obprefix. Default value for oracl e. ord. kvstore. i nput.|ob. suffix is|obsuffix.!|ob.
Example:

<property>
<name>or acl e. ord. kvstore. | ob. prefix</ nane>
<val ue>| obpref i x</ val ue>

</ property>

<property>
<nane>or acl e. ord. kvst ore. | ob. suf fi x</ nane>
<val ue>| obsuf fix. | ob</val ue>

</ property>

oracle.ord.kvstore.input.name
String. Name of Oracle NoSQL Database store. The name provided here must be
identical to the name used when the store was installed. Example:

<property>
<name>or acl e. ord. kvst ore. i nput . name</ nane>
<val ue>kvst or e</ val ue>

</ property>

oracle.ord.kvstore.input.primarykey
String. Primary key of the Oracle NoSQL Database table. Example:

7-14

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

<property>
<name>or acl e. ord. kvstore. i nput. pri mar ykey</ name>
<val ue>fil enane</ val ue>

</ property>

oracle.ord.kvstore.input.table
String. Name of the Oracle NoSQL Database table containing the input data.
Example:

<property>
<name>or acl e. ord. kvstore. i nput. t abl e</ name>
<val ue>i mages</ val ue>

</ property>

Face Recognition Properties (contain the string recognizer)

oracle.ord.hadoop.recognizer.cascadeclassifier.flags

String. Use this property to select the type of object detection. Must be
CASCADE_DO_CANNY_PRUNI NG, CASCADE_SCALE_| MAGE, CASCADE_FI ND_BI GGEST_OBJECT (look
only for the largest face), or CASCADE_DO ROUGH_SEARCH. . Default: CASCADE_SCALE | MAGE |
CASCADE_DO ROUGH_SEARCH. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. f| ags</ name>
<val ue>CASCADE_SCALE_| MAGE</ val ue>

</ property>

oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence

Floating point value. Specifies how large the distance (difference) between a face in
the model and a face in the input data can be. Larger valuse will give more matches
but might be less accurate (more false positives). Smaller values will give fewer
matches, but be more accurate. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. maxconf i dence</ nane>
<val ue>200. 0</ val ue>

</ property

oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize

String, specifically a pair of values. Specifies the maximum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the
object is far away, like faces on a beach, the bounding box is smaller. Objects with a
larger bounding box than the maximum size are ignored. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. maxsi ze</ nane>
<val ue>(500, 500) </ val ue>

</ property>

oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor

Integer. Determines the size of the sliding window used to detect the object in the
input data. Higher values will detect fewer objects but with higher quality. Default
value: 1. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. ni nnei ghbor </ name>
<val ue>1</val ue>

</ property>

7-15

Chapter 7
Configuration Properties for Multimedia Analytics

oracle.ord.hadoop.recognizer.cascadeclassifier.minsize

String, specifically a pair of values. Specifies the minimum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the
object is far away, like faces on a beach, the bounding box is smaller. Objects with a
smaller bounding box than the minimum size are ignored. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. m nsi ze</ nane>
<val ue>(100, 100) </ val ue>

</ property>

oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor

Floating pointnumber. Scale factor to be used with the mapping file that maps face
labels to directory names and face images. A value of 1.1 means to perform no
scaling before comparing faces in the run-time input with images stored in
subdirectories during the training process. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. cascadecl assi fi er. scal ef act or </ name>
<val ue>1. 1</ val ue>

</ property>

oracle.ord.hadoop.recognizer.classifier
String. XML file containing classifiers for face. The feature can be used with any of the
frontal face pre-trained classifiers available with OpenCV. Example:

<property>
<nane> oracl e. ord. hadoop. recogni zer. cl assi fi er </ name>
<val ue>haar cascade_frontal face_al t2. xn </ val ue>

</ property>

oracle.ord.hadoop.recognizer.labelnamefile
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
<nane> oracl e. ord. hadoop. recogni zer. | abel namefi | er </ name>
<val ue>haar cascade_frontal face_al t 2. xn </ val ue>

</ property>

oracle.ord.hadoop.recognizer.modelfile
String. File containing the model generated in the training step. The file must be in a
shared location, accessible by all cluster nodes. Example:

<property>
<name> oracl e. ord. hadoop. recogni zer. nodel fi | e</ nane>
<val ue>nyface_nodel . dat </ val ue>

</ property>

7.5.2 Configuration Properties for Processing Streaming Video

ORACLE

This category of multimedia analytics framework configuration properties applies to the
processing of streaming video.

These property names all start with spark. oracl e. ord. They can be grouped into two
subcategories:

* Generic Framework Properties

* Face Recognition and Face Detection Properties (contain the string r ecogni zer)

7-16

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

Within each subcategory, the available configuration properties are listed in
alphabetical order. For each property the property name is listed, then information
about the property.

Generic Framework Properties

spark.oracle.ord.demo.imageplayer.framerate

String. Frame rate when the sample image player displays the results as frames
containing the results of the processing. The player will show a new frame each n
seconds. Default is 1.

Example:

spark. oracl e. ord. deno. i magepl ayer . f ramer at e=1

spark.oracle.ord.demo.localfswriter.outputcsvpath
String. Local file system directory that receives the CSV output of video frame
processing. Example:

spark. oracl e. ord. deno. | ocal f swriter. out putcsvpat h=/ hone/ or acl e/ exanpl e/ spark/
facerecogni zer/ out put/csv

spark.oracle.ord.demo.localfswriter.outputimagepath
String. Local file system directory that receives the image output of video frame
processing. Example:

spark. oracl e. ord. deno. | ocal fswriter. out puti magepat h=/ home/ or acl e/ exanpl e/ spar k/
facerecogni zer/ out put/i mage

spark.oracle.ord.demo.localfswriter.outputjsonpath
String. Local file system directory that receives the JSON output of video frame
processing. Example:

spark. oracl e.ord. deno. | ocal fswriter. outputjsonpath=/hone/ oracl e/ exanpl e/ spark/
facerecogni zer/out put/json

spark.oracle.ord.inputdirectory
String. HDFS directory that receives video frames from the Spark streaming adapter.
Example:

spark. oracl e.ord. i nputdirectory=spark_i nput

spark.oracle.ord.demo.localfswriter.outputimagepath
String. Local file system directory that receives the image output of video frame
processing. Example:

spark. oracl e. ord. deno. | ocal fswriter. out puti magepat h=/ home/ or acl e/ exanpl e/ spar k/
facerecogni zer/ out put/i mage

spark.oracle.ord.demo.localfswriter.outputjsonpath
String. Local file system directory that receives the JSON output of video frame
processing. Example:

spark. oracl e.ord. deno. | ocal fswriter. outputjsonpath=/hone/ oracl e/ exanpl e/ spark/
facerecogni zer/out put/json

spark.oracle.ord.ordsparkframeprocessor
String. Processor to use to process the video frame. You can use the Java classes
available with the product for face detection and recognition, or you can provide an
implementation for the abstraction. Examples:

7-17

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

* spark.oracl e.ord. ordsparkf rameprocessor =oracl e. ord. spark. demo. Or dSpar kFaceDet e
ctor detects that there is a face in a video frame.

* spark.
oracl e. ord. ordsparkf raneprocessor =or acl e. or d. spar k. demo. Or dSpar kFaceRecogni zer
recognizes the face using the training model.

Or dSpar kFaceDet ect or and Or dSpar kFaceRecogni zer are available with the product as
sample implementations for use with spark. oracl e. or d. or dspar kf r amepr ocessor .

spark.oracle.ord.ordsparkresultwriter
String. Name of the class that implements an image player that plays the video
frames. Example:

spark. oracl e. ord. ordsparkresul twiter=oracl e. ord. spark. deno. Or dSpar kil mageP| ayer

spark.oracle.ord.outputdirectory
String. HDFS directory that receives the output of video frame processing. Example:

spark. oracl e. ord. out put di rect or y=spar k_out put

spark.oracle.ord.outputtypes
String. Format of generated results (JSONCSV/i mage). Example:

spark. oracl e. ord. out put t ypes=JSON

spark.oracle.ord.streamingduration
Number. The time interval that determines the set of frames processed as a batch.
The unit is milliseconds. Default is 5. Example:

spark. oracl e. ord. streanm ngduration=5

spark.oracle.ord.streamsink

String. Output of the Spark job process. By default the output is written to HDFS, but
custom writers can be implemented. The product includes a custom writer for writing
to the local file system and an image player. Example:

spark. oracl e. ord. streansi nk=HDFS

spark.oracle.ord.streamsource
Input data for the Spark job. This can be HTTP or RTSP streaming servers, or HDFS.
Default is HDFS. Example:

spark. oracl e. ord. st reansour ce=HDFS
Face Recognition and Face Detection Properties (contain the string recognizer)

spark.oracle.ord.recognizer.classifier
String. XML file containing classifiers for face. The feature can be used with any of the
frontal face pre-trained classifiers available with OpenCV. Example:

spark. oracl e. ord. recogni zer. cl assi fi er=haar cascade_front al face_al t 2_opencv3. 0. xn

spark.oracle.ord.recognizer.flags

String. Use this property to select the type of object detection. Must

be CASCADE_DO CANNY_PRUNI NG, CASCADE_SCALE_| MAGE, CASCADE_FI ND_BI GGEST_OBJECT (look
only for the largest face), or CASCADE_DO ROUGH_SEARCH. Default: CASCADE_SCALE | MAGE |
CASCADE_DO ROUGH_SEARCH. Example:

spark. oracl e. ord. recogni zer. f| ags=CASCADE_SCALE_| MAGE| CASCADE_DO_ROUGH_SEARCH

7-18

ORACLE

Chapter 7
Configuration Properties for Multimedia Analytics

spark.oracle.ord.recognizer.gridx

Number. The number of grid cells on the X axis used in each frame to extract
histograms. A typical value is 8. The greater the value, higher will be the
dimensionality of the resulting feature vector. Example:

spark. oracl e. ord. recogni zer. gri dx=8

spark.oracle.ord.recognizer.gridy
Number. The number of grid cells on the Y axis used in each frame to extract
histograms. A typical value is 8 .Example:

spark. oracl e.ord. recogni zer. gri dy=8

spark.oracle.ord.recognizer.labelfilepath
String. Mapping file that maps face labels to directory names and face images.
Example:

spark. oracl e. ord. recogni zer. | abel fi | epat h=f aces/ bi gdat a/ di r map. t xt

spark.oracle.ord.recognizer.maxsize

String. Specifies the maximum size of the bounding box (in number of pixels on the X
and Y axis) for the object detected.. If the object is nearby, the bounding box is larger;
if the object is far away, such as faces on a beach, the bounding box is smaller.
Objects with a larger bounding box than the maximum size are ignored. Example:

spark. oracl e. ord. recogni zer. maxsi ze=500

spark.oracle.ord.recognizer.minneighbors

Integer. Available options are 1, 2, or 3. 1 will recognize more faces, but might also
recognize objects that are not faces. 3 is the most accurate, but might miss some
faces. . Example:

spark. oracl e. ord. recogni zer. m nnei ghbor s=1

spark.oracle.ord.recognizer.minsize

String. Specifies the minimum size of the bounding box (in number of pixels on the X
and Y axis) for the object detected. If the object is nearby, the bounding box is larger;
if the object is far away, such as faces on a beach, the bounding box is smaller.
Objects with a smaller bounding box than the minimum size are ignored. Example:

spark. oracl e. ord. recogni zer. m nsi ze=100

spark.oracle.ord.recognizer.neighbors
Number. Number of sample points to build a circular local binary pattern. Example:

spark. oracl e. ord. recogni zer. nei ghbor s=8

spark.oracle.ord.recognizer.scalefactor

Floating point number. Specifies how quickly the algorithm should increase the scale
as it makes multiple passes over an image. Setting this higher makes the detector run
faster (since it results in fewer passes), but a very high value might miss information
as it jumps to a new scale. The default is 1.1, which means the scale increases by
10% in each pass. This parameter can have value 1.1, 1.2, 1.3, or 1.4. Example:

spark. oracl e. ord. recogni zer. scal efactor=1.1

spark.oracle.ord.recognizer.threshold
Number. The value that determines whether a face is matched or not. If the output
value when comparing a face with a face in the video is higher than this value, the

7-19

Chapter 7
Configuration Properties for Multimedia Analytics

face is considered not a match. Otherwise it is considered a match.. Default is 130.
Example:

spark. oracl e. ord. recogni zer. t hreshol d=130

spark.oracle.ord.recognizer.trainingmodelpath
String. Name of the file that stores the model created by the training. Example:

spark. oracl e. ord. recogni zer. trai ni ngnodel pat h=or df acenodel _bi gdat a. data

7.5.3 Configuration Properties for Training Images for Face

Recognition

ORACLE

This category of multimedia analytics framework configuration properties applies to the
training of images for face recognition.

These properties contain the string f ace, and they are listed in alphabetical order. For
each property the property name is listed, then information about the property.

oracle.ord.hadoop.ordfacemodel
String. Name of the file that stores the model created by the training. Example:

<property>
<name> oracl e. ord. hadoop. or df acenodel </ name>
<val ue>or df acenodel _bi gdat a. dat </ val ue>

</ property>

oracle.ord.hadoop.ordfacereader
String. Name of the Java class that reads images used for training the face
recognition model. Example:

<property>

<name> oracl e. ord. hadoop. or df acer eader </ name>

<val ue> oracl e. ord. hadoop. O dSi npl eFaceReader </val ue>
</ property>

oracle.ord.hadoop.ordfacereaderconfig
String. File containing additional configuration properties for the specific application.
Example:

<property>
<name> oracl e. ord. hadoop. or df acer eader confi g </ nane>
<val ue>confi g/ or dsi npl ef acer eader _hi gdat a. xni </ val ue>
</ property>

oracle.ord.hadoop.ordsimplefacereader.dirmap
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
<name> oracl e. ord. hadoop. or dsi npl ef acer eader. di rmap </ name>
<val ue>f aces/ bi gdat a/ di r map. t xt </ val ue>

</ property>

oracle.ord.hadoop.ordsimplefacereader.imagedir
String. File system directory containing faces used to create a model. This is typically
in a local file system. Example:

7-20

Chapter 7
Using the Multimedia Analytics Framework with Third-Party Software

<property>
<name> oracl e. ord. hadoop. or dsi npl ef acer eader . i magedi r </ nane>
<val ue>f aces/ bi gdat a</ val ue>

</ property>

7.6 Using the Multimedia Analytics Framework with Third-
Party Software

You can implement and install custom modules for multimedia decoding and
processing.

You can use a custom video decoder in the framework by implementing the abstract
class oracl e. ord. hadoop. decoder . Or dFr ameG abber . See the Javadoc for additional
details. The product includes two implementations of the video decoder that extend
O dFraneG abber for JCodec and FFMPEG (requires a separate installation of
FFMPEG).

You can use custom multimedia analysis in the framework by implementing two
abstract classes.

e oracle. ord. hadoop. mapreduce. Or dFr amePr ocessor <K1, V1, K2, V2>. The extended class
of Or dFr amePr ocessor is used in the map phase of the MapReduce job that
processes the video frames or images. (K1, V1) is the input key-value pair types
and (K2, V2) is the output key-value pair type. See the Javadoc for additional
details. The product includes an implementation using OpenCV.

oracl e. ord. hadoop. mapr educe. Or dQut put Processor <K1, V1, K2, V2>. The extended
class of O dFranePr ocessor is used in the reducer phase of the MapReduce job that
processes the video frames or images. (K1, V1) is the input key-value pair types
and (K2, V2) is the output key-value pair type. See the Javadoc for additional
details. Most implementations do not require implementing this class.

An example of framework configuration parameters is available in $MVA_HOVE/ exanpl e/
anal ytics/conf/oracle_nul timedi a_anal ysis_framework. xn .

(.7 Displaying Images in Output
If the output is displayed as images, or acl e. or d. hadoop. Or dPl ayl nrages can be used to
display all the images in the output HDFS directory.
This will display the image frames marked with labels for identified faces. For example:

$ java oracle. ord. hadoop. deno. Or dPl ayl mages —hadoop_conf _dir $HADOOP_CONF DI R -
i mge_file_dir voutput

ORACLE 7-21

Third-Party Licenses for Bundled Software

ORACLE

Oracle Big Data Spatial and Graph installs several third-party products. This appendix

lists information that applies to all Apache licensed code, and then it lists license
information for the installed third-party products.

Apache Licensed Code
ANTLR 3

AOP Alliance

Apache Commons CLI
Apache Commons Codec
Apache Commons Collections
Apache Commons Configuration
Apache Commons 10

Apache Commons Lang
Apache Commons Logging
Apache Commons VFS
Apache fluent

Apache Groovy

Apache htrace

Apache HTTP Client

Apache HTTPComponents Core
Apache Jena

Apache Log4j

Apache Lucene

Apache Tomcat

Apache Xerces2

Apache xml-commons
Argparsed;j

check-types

Cloudera CDH

cookie

Fastultil

functionaljava

GeoNames Data

A-1

Geospatial Data Abstraction Library (GDAL)
Google Guava
Google Guice
Google protobuf
int64-native

Jackson

Jansi

JCodec

Jettison

JLine

Javassist
json-bignum

Jung

Log4js
MessagePack

Netty

Node.js
node-zookeeper-client
OpenCV

rxjava-core

Slf4j

Spoofax

Tinkerpop Blueprints
Tinkerpop Gremlin

Tinkerpop Pipes

A.1 Apache Licensed Code

ORACLE

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

A copy of the license is also reproduced below.

Appendix A
Apache Licensed Code

The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

A-2

ORACLE

Appendix A
Apache Licensed Code

See the License for the specific language governing permissions and limitations under
the License.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions

"License” shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or otherwise, or (i)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright
owner. For the purposes of this definition, "submitted" means any form of electronic,
verbal, or written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by the
copyright owner as "Not a Contribution."

A-3

ORACLE

Appendix A
Apache Licensed Code

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within
the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses granted
to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that you meet the following conditions:

a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b) You must cause any modified files to carry prominent notices stating that You
changed the files; and

¢) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d) If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not pertain
to any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions
stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the Licensor

A-4

ORACLE

Appendix A
Apache Licensed Code

shall be under the terms and conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS I1S" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law (such
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your
own behalf and on Your sole responsibility, not on behalf of any other Contributor, and
only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information. (Do
not include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http:// ww. apache. org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

A-5

http://www.apache.org/licenses/LICENSE-2.0

Appendix A
ANTLR 3

CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation (http://
www.apache.org/Opens a new window) (listed below):

A.2 ANTLR 3

This product was build using ANTLR, which was provided to Oracle under the
following terms:Copyright (c) 2010 Terence ParrAll rights reserved.Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:Redistributions of source code must retain the
above copyright notice, this list of conditions and the following
disclaimer.Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.Neither the name of the author nor the names
of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY
THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.3 AOP Alliance

LICENCE: all the source code provided by AOP Alliance is Public Domain.

A.4 Apache Commons CLI

Copyright 2001-2009 The Apache Software FoundationThis product includes software
developed by The Apache Software Foundation (htt p: //ww. apache. org/).

A.5 Apache Commons Codec

ORACLE

Copyright 2002-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

src/test/org/apache/commons/codec/language/DoubleMetaphoneTest.java contains
test data from http://aspell.sourceforge.net/test/batch0.tab.

Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org). Verbatim copying and
distribution of this entire article is permitted in any medium, provided this notice is
preserved.

A-6

http://www.apache.org/
http://www.apache.org/

Appendix A
Apache Commons Collections

A.6 Apache Commons Collections

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

Apache Commons Collections Copyright 2001-2008 The Apache Software Foundation

A.7 Apache Commons Configuration

This product includes software developed by The Apache Software Foundation
(http:// ww. apache. org/).

Apache Commons Configuration Copyright 2001-2014 The Apache Software
Foundation

A.8 Apache Commons IO

Copyright 2002-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.9 Apache Commons Lang

Copyright 2001-2010 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.10 Apache Commons Logging

Copyright 2003-2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http: //ww. apache. org/).

A.11 Apache Commons VFS

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

ORACLE A7

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

Appendix A
Apache fluent

A.12 Apache fluent

Copyright © 2011-2014 The Apache Software Foundation. All rights reserved.

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.13 Apache Groovy

Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.14 Apache htrace

Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.15 Apache HTTP Client

Copyright 1999-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.16 Apache HTTPComponents Core

Copyright 2005-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http: // vww. apache. org/).

This project contains annotations derived from JCIP-ANNOTATIONS

Copyright (c) 2005 Brian Goetz and Tim Peierls. See http://www.jcip.net

A.17 Apache Jena

ORACLE

Copyright 2011, 2012, 2013, 2014 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

Portions of this software were originally based on the following:

- Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Hewlett-Packard
Development Company, LP

- Copyright 2010, 2011 Epimorphics Ltd.

A-8

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

Appendix A
Apache Log4j

- Copyright 2010, 2011 Talis Systems Ltd.
These have been licensed to the Apache Software Foundation under a software grant.

This product includes software developed by Pluggedin Software under a BSD
license.

This product includes software developed by Mort Bay Consulting Pty. Ltd.
Copyright (c) 2004-2009 Mort Bay Consulting Pty. Ltd.

A.18 Apache Log4j

Copyright 2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.19 Apache Lucene

Copyright 2011-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

A.20 Apache Tomcat

Copyright 1999-2014 The Apache Software Foundation

This product includes software developed at The Apache Software Foundation (http://
www.apache.org/).

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

The Windows Installer is built with the Nullsoft Scriptable Install Sysem (NSIS), which
is open source software. The original software and related information is available at
http://nsis.sourceforge.net.

Java compilation software for JSP pages is provided by Eclipse, which is open source
software. The original software and related information is available at

http://www.eclipse.org.

A.21 Apache Xerces2

Copyright 1999-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://vww. apache. org/).

ORACLE A-9

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.eclipse.org
http://www.apache.org/

Appendix A
Apache xml-commons

A.22 Apache xml-commons

Apache XML Commons XML APIs
Copyright 1999-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/).

Portions of this software were originally based on the following:
- software copyright (c) 1999, IBM Corporation., http://www.ibm.com.
- software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

- software copyright (c) 2000 World Wide Web Consortium, http://www.w3.org

A.23 Argparsedj

Copyright (C) 2011, 2014, 2015 Tatsuhiro Tsujikawa

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE

SOFTWARE.

A.24 check-types

ORACLE

Copyright © 2012, 2013, 2014, 2015 Phil Booth

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in allcopies or
substantial portions of the Software.

A-10

http://www.apache.org/

Appendix A
Cloudera CDH

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.25 Cloudera CDH

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

A.26 cookie

Copyright (c) 2012-2014 Roman Shtylman <shtylman@gmail.com>
Copyright (c) 2015 Douglas Christopher Wilson <doug@somethingdoug.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the 'Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.27 Fastutll

Fastutil is available under the Apache License, Version 2.0.

ORACLE A-11

Appendix A
functionaljava

A.28 functionaljava

Copyright (c) 2008-2011, Tony Morris, Runar Bjarnason, Tom Adams, Brad Clow,
Ricky Clarkson, Jason Zaugg All rights reserved.

Redistribution and use in source and binary forms, with or withoutmodification, are
permitted provided that the following conditionsare met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR TAS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

A.29 GeoNames Data

ORACLE

This distribution includes and/or the service uses a modified version of the GeoNames
geographical database, for distributions which may be found in a set of files with
names in the form world_xxxxx.json: one file for cities, one for counties, one for states,
and one for countries. And there is another file with alternate names called
db_alternate_names.txt. All of these files are generated from the GeoNames
database. The original GeoNames database is available at www.geonames.org under
the license set forth below.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT
CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS
PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS
MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND
DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

A-12

ORACLE

Appendix A
GeoNames Data

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

"Adaptation" means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably derived from the
original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation for
the purpose of this License.

"Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject
matter other than works listed in Section 1(f) below, which, by reason of the selection
and arrangement of their contents, constitute intellectual creations, in which the Work
is included in its entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this License.

"Distribute” means to make available to the public the original and copies of the Work
or Adaptation, as appropriate, through sale or other transfer of ownership.

“"Licensor" means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

"Original Author" means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in
the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

"Work" means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or other work of the
same nature; a dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work

A-13

ORACLE

Appendix A
GeoNames Data

performed by a variety or circus performer to the extent it is not otherwise considered
a literary or artistic work.

"You" means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

"Publicly Perform" means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the performances of
the Work, including by public digital performance; to broadcast and rebroadcast the
Work by any means including signs, sounds or images.

"Reproduce" means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or exceptions that are
provided for in connection with the copyright protection under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in the Work as stated below:

to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

to create and Reproduce Adaptations provided that any such Adaptation, including any
translation in any medium, takes reasonable steps to clearly label, demarcate or
otherwise identify that changes were made to the original Work. For example, a
translation could be marked "The original work was translated from English to
Spanish,"” or a modification could indicate "The original work has been modified.";

to Distribute and Publicly Perform the Work including as incorporated in Collections;
and, to Distribute and Publicly Perform Adaptations.

For the avoidance of doubt:

Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

Waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor waives the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License; and,

Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of
the rights granted under this License.

A-14

ORACLE

Appendix A
GeoNames Data

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as
are technically necessary to exercise the rights in other media and formats. Subject to
Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to
and limited by the following restrictions:

You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms of
the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection apart from the
Work itself to be made subject to the terms of this License. If You create a Collection,
upon naotice from any Licensor You must, to the extent practicable, remove from the
Collection any credit as required by Section 4(b), as requested. If You create an
Adaptation, upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor's copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with
the Work, unless such URI does not refer to the copyright notice or licensing
information for the Work; and (iv) , consistent with Section 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French
translation of the Work by Original Author," or "Screenplay based on original Work by
Original Author"). The credit required by this Section 4 (b) may be implemented in any
reasonable manner; provided, however, that in the case of a Adaptation or Collection,
at a minimum such credit will appear, if a credit for all contributing authors of the
Adaptation or Collection appears, then as part of these credits and in a manner at
least as prominent as the credits for the other contributing authors. For the avoidance
of doubt, You may only use the credit required by this Section for the purpose of
attribution in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Original Author, Licensor and/or Attribution Parties.

Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work
either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would be
prejudicial to the Original Author's honor or reputation. Licensor agrees that in those

A-15

ORACLE

Appendix A
GeoNames Data

jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of
this License (the right to make Adaptations) would be deemed to be a distortion,
mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this
Section, to the fullest extent permitted by the applicable national law, to enable You to
reasonably exercise Your right under Section 3(b) of this License (right to make
Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to be,
granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the
license granted to You under this License.

If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement, such provision shall be

A-16

Appendix A
Geospatial Data Abstraction Library (GDAL)

reformed to the minimum extent necessary to make such provision valid and
enforceable.

No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be
charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Literary
and Artistic Works (as amended on September 28, 1979), the Rome Convention of
1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant jurisdiction in which the
License terms are sought to be enforced according to the corresponding provisions of
the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional
rights not granted under this License, such additional rights are deemed to be included
in the License; this License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever
in connection with the Work. Creative Commons will not be liable to You or any party
on any legal theory for any damages whatsoever, including without limitation any
general, special, incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of the
trademark "Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use
will be in compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made available upon
request from time to time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

A.30 Geospatial Data Abstraction Library (GDAL)

GDAL/OGR General

In general GDAL/OGR is licensed under an MIT/X style license with the

following terms:

ORACLE A-17

ORACLE

Appendix A
Geospatial Data Abstraction Library (GDAL)

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESSOR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

gdal/frmts/gtiff/tif_float.c

Copyright (c) 2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Industrial Light & Magic nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/hdf4/hdf-eos/*

Copyright (C) 1996 Hughes and Applied Research Corporation

Permission to use, modify, and distribute this software and its documentation

A-18

ORACLE

Appendix A
Geospatial Data Abstraction Library (GDAL)

for any purpose without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation.

gdal/frmts/pcraster/libcsf

Copyright (c) 1997-2003, Utrecht University

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Utrecht University nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/grib/degrib/*

The degrib and g2clib source code are modified versions of code produced by NOAA
NWS and are in the public domain subject to the following restrictions:

http://www.weather.gov/im/softa.htm

DISCLAIMER The United States Government makes no warranty, expressed or
implied, as to the usefulness of the software and documentation for any purpose. The
U.S. Government, its instrumentalities, officers, employees, and agents assumes no
responsibility (1) for the use of the software and documentation listed below, or (2) to
provide technical support to users.

http://lwww.weather.gov/disclaimer.php

A-19

ORACLE

Appendix A
Geospatial Data Abstraction Library (GDAL)

The information on government servers are in the public domain, unless specifically
annotated otherwise, and may be used freely by the public so long as you do not 1)
claim it is your own (e.g. by claiming copyright for NWS information -- see below), 2)
use it in a manner that implies an endorsement or affiliation with NOAA/NWS, or 3)
modify it in content and then present it as official government material. You also
cannot present information of your own in a way that makes it appear to be official
government information.

The user assumes the entire risk related to its use of this data. NWS is providing this
data "as is," and NWS disclaims any and all warranties, whether express or implied,

including (without limitation) any implied warranties of merchantability or fithess for a
particular purpose. In no event will NWS be liable to you or to any third party for any

direct, indirect, incidental, consequential, special or exemplary damages or lost profit
resulting from any use or misuse of this data.

As required by 17 U.S.C. 403, third parties producing copyrighted works consisting
predominantly of the material appearing in NWS Web pages must provide notice with
such work(s) identifying the NWS material incorporated and stating that such material
is not subject to copyright protection.

port/cpl_minizip*

This is version 2005-Feb-10 of the Info-ZIP copyright and license.

The definitive version of this document should be available at
ftp://ftp.info-zip.org/publ/infozip/license.html indefinitely.

Copyright (c) 1990-2005 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, "Info-ZIP" is defined as

the following set of individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
Jean-loup Gailly, Hunter Goatley, Ed Gordon, lan Gorman, Chris Herborth,
Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz,
David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko,
Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,
Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M. Schweda,
Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren,

Rich Wales, Mike White

This software is provided "as is," without warranty of any kind, express or implied. In
no event shall Info-ZIP or its contributors be held liable for any direct, indirect,
incidental, special or consequential damages arising out of the use of or inability to use
this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

A-20

ORACLE

Appendix A
Geospatial Data Abstraction Library (GDAL)

1. Redistributions of source code must retain the above copyright notice, definition,
disclaimer, and this list of conditions.

2. Redistributions in binary form (compiled executables) must reproduce the above
copyright notice, definition, disclaimer, and this list of conditions in documentation
and/or other materials provided with the distribution. The sole exception to this
condition is redistribution of a standard UnZipSFX binary (including SFXWiz) as part of
a self-extracting archive; that is permitted without inclusion of this license, as long as
the normal SFX banner has not been removed from the binary or disabled.

3. Altered versions--including, but not limited to, ports to new operating systems,
existing ports with new graphical interfaces, and dynamic, shared, or static library
versions--must be plainly marked as such and must not be misrepresented as being
the original source. Such altered versions also must not be misrepresented as being
Info-ZIP releases--including, but not limited to, labeling of the altered versions with the
names "Info-ZIP" (or any variation thereof, including, but not limited to, different
capitalizations), "Pocket UnZip," "WiZ" or "MacZip" without the explicit permission of
Info-ZIP. Such altered versions are further prohibited from misrepresentative use of
the Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(S).

4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip," "UnZipSFX,"
"WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and binary
releases.

gdal/ogr/ogrsf_frmts/dxf/intronurbs.cpp

This code is derived from the code associated with the book "An Introduction to
NURBS" by David F. Rogers. More information on the book and the code is available
at:

http://www.nar-associates.com/nurbs/
Copyright (c) 2009, David F. Rogers
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the David F. Rogers nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

A-21

Appendix A
Google Guava

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.31 Google Guava

Guava is licensed under the Apache License, Version 2.0

Copyright 2006 - 2011 Google, Inc. All rights reserved.

A.32 Google Guice

Guice is licensed under the Apache License, Version 2.0

Copyright 2006 — 2011 Google, Inc. All rights reserved.

A.33 Google protobuf

Copyright 2008, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.34 int64-native

Copyright (¢) 2014 Robert Kieffer

ORACLE A-22

Appendix A
Jackson

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

A.35 Jackson

Copyright 2009 FasterXML, LLC

Jackson is available under the Apache License, Version 2.0.

A.36 Jansi

Copyright (C) 2009, Progress Software Corporation and/or its subsidiaries or affiliates.

Jansi is available under the Apache License, Version 2.0.

A.37 JCodec

ORACLE

This software is based in part on the work of the Independent JPEG Group.
All files except two are available under the FreeBSD license:
http://www.jcodec.org/lic.html

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

A-23

ORACLE

Appendix A
JCodec

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1 file (StringUtils.java) is "borrowed from Apache". This file is from Apache Commons
Lang which is licensed under Apache 2.0

http://www.apache.org/licenses/LICENSE-2.0

1 file (VP8DCT .java) refers to Independent JPEG Group) which has the following
license (note - the configuration scripts and GIF code mentioned by the license are not
included):

The authors make NO WARRANTY or representation, either express or implied, with
respect to this software, its quality, accuracy, merchantability, or fithess for a particular
purpose. This software is provided "AS IS", and you, its user, assume the entire risk as
to its quality and accuracy.

This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this software (or
portions thereof) for any purpose, without fee, subject to these conditions:

(1) If any part of the source code for this software is distributed, then this README file
must be included, with this copyright and no-warranty notice unaltered; and any
additions, deletions, or changes to the original files must be clearly indicated in
accompanying documentation.

(2) If only executable code is distributed, then the accompanying documentation must
state that "this software is based in part on the work of the Independent JPEG Group".

(3) Permission for use of this software is granted only if the user accepts full
responsibility for any undesirable consequences; the authors accept NO LIABILITY for
damages of any kind.

These conditions apply to any software derived from or based on the 1JG code, not
just to the unmodified library. If you use our work, you ought to acknowledge us.

Permission is NOT granted for the use of any 1JG author's name or company name in
advertising or publicity relating to this software or products derived from it. This
software may be referred to only as "the Independent JPEG Group's software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are assumed by the
product vendor.

The Unix configuration script "configure” was produced with GNU Autoconf.

It is copyright by the Free Software Foundation but is freely distributable.

A-24

Appendix A
Jettison

The same holds for its supporting scripts (config.guess, config.sub, Itmain.sh). Another
support script, install-sh, is copyright by X Consortium but is also freely distributable.

The 1JG distribution formerly included code to read and write GIF files. To avoid
entanglement with the Unisys LZW patent (now expired), GIF reading support has
been removed altogether, and the GIF writer has been simplified to produce
"uncompressed GIFs". This technique does not use the LZW algorithm; the resulting
GIF files are larger than usual, but are readable by all standard GIF decoders.

We are required to state that "The Graphics Interchange Format(c) is the Copyright
property of CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated.”

A.38 Jettison

Copyright 2006 Envoi Solutions LLC.

Jettison is available under the Apache License, Version 2.0.

A.39 JLine

Copyright (c) 2002-2006, Marc Prud’hommeaux <mwpl@cornell.edu>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of JLine nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.40 Javassist

Copyright 1999-2015 by Shigeru Chiba.

ORACLE A-25

Appendix A
json-bignum

the contents of this software may be used under the terms of the Apache License
Version 2.0.

A.41 json-bignum

A.42 Jung

ORACLE

Copyright (c) 2012-2013 Datalanche, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

THE JUNG LICENSE

Copyright (c) 2003-2004, Regents of the University of California and the JUNG Project
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the University of California nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

A-26

Appendix A
Logdjs

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.43 Logdjs

ORACLE

This product includes software developed by the Apache Software Foundation (http://
www.apache.org).

Copyright 2015 Gareth Jones (with contributions from many other people)

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

SEMVER 4.3.6 license:
The ISC License
Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

readable-stream 1.0.33 license:

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

A-27

ORACLE

Appendix A
Log4js

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

core-util-is 1.0.2 license:
Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

inherits 2.0.1 license:
The ISC License
Copyright (c) Isaac Z. Schlueter

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

isarray 0.0.1 license:
(MIT)
Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>

A-28

Appendix A
MessagePack

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

string_decoder 0.10.31 license
Copyright Joyent, Inc. and other Node contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the

following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS I1S", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.44 MessagePack

ORACLE

Copyright (C) 2008-2010 FURUHASHI Sadayuki

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

A-29

Appendix A
Netty

License for the specific language governing permissions and limitations under the
License.

A.45 Netty

ORACLE

The Netty Project

Please visit the Netty web site for more information:
http://netty.io/
Copyright 2011 The Netty Project

The Netty Project licenses this file to you under the Apache License, version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Also, please refer to each LICENSE.<component>.txt file, which is located in the
'license' directory of the distribution file, for the license terms of the components that
this product depends on.

This product contains the extensions to Java Collections Framework which has been
derived from the works by JSR-166 EG, Doug Lea, and Jason T. Greene:

* LICENSE:

* license/LICENSE.jsr166y.txt (Public Domain)

* HOMEPAGE:

* http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/

* http://viewvc.jboss.org/cgi-bin/viewvc.cgi/jbosscache/experimental/jsr166/

This product contains a modified version of Robert Harder's Public Domain Base64
Encoder and Decoder, which can be obtained at:

* LICENSE:

* license/LICENSE.base64.txt (Public Domain)

* HOMEPAGE:

* http://iharder.sourceforge.net/current/java/base64/

This product contains a modified version of 'JZlib', a re-implementation of zlib in pure
Java, which can be obtained at:

* LICENSE:
* license/LICENSE.jzlib.txt (BSD Style License)

A-30

ORACLE

Appendix A
Netty

* HOMEPAGE:

* http://www.jcraft.com/jzlib/

Copyright (c) 2000-2011 ymnk, JCraft,Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED TAS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS TO
THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This product optionally depends on 'Protocol Buffers', Google's data interchange
format, which can be obtained at:

* LICENSE:

* license/LICENSE.protobuf.txt (New BSD License)
* HOMEPAGE:

* http://code.google.com/p/protobuf/

This product optionally depends on 'SLF4J', a simple logging facade for Java, which
can be obtained at:

* LICENSE:

* license/LICENSE.slf4j.txt (MIT License)
* HOMEPAGE:

* http://www.slf4j.org/

This product optionally depends on 'Apache Commons Logging', a logging framework,
which can be obtained at:

* LICENSE:

A-31

Appendix A
Node.js

* license/LICENSE.commons-logging.txt (Apache License 2.0)
* HOMEPAGE:
* http://commons.apache.org/logging/

This product optionally depends on 'Apache Log4J', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.log4j.txt (Apache License 2.0)
* HOMEPAGE:

* http://logging.apache.org/log4j/

This product optionally depends on 'JBoss Logging', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.jboss-logging.txt (GNU LGPL 2.1)

* HOMEPAGE:

* http://anonsvn.jboss.org/repos/common/common-logging-spi/

This product optionally depends on 'Apache Felix', an open source OSGi framework
implementation, which can be obtained at:

* LICENSE:

* license/LICENSE .felix.txt (Apache License 2.0)
* HOMEPAGE:

* http://felix.apache.org/

This product optionally depends on 'Webbit', a Java event based WebSocket and
HTTP server:

* LICENSE:
* license/LICENSE.webbit.txt (BSD License)
* HOMEPAGE:

* https://github.com/joewalnes/webbit

A.46 Node.|s

ORACLE

Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

A-32

ORACLE

Appendix A
Node.js

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

*kkkkkk

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

*kkkkkkkk

Node.js also includes a number of externally maintained third-party dependencies,
including the following:

--c-ares v '1.10.1-DEV'
--http-parser v '2.5.2'
--libuv v '1.8.0'
----tree.h

----inet_pton, inet_ntop
----stdint-msvc2008
----pthread-fixes.hs
----android-ifaddrs.h, android-ifaddrs.c
--OpenSSL v '1.0.2¢g'
--Punnycode.js

--v8v '4.5.103.35'
----PCRE test suite

A-33

ORACLE

Appendix A
Node.js

----Layout tests

----Strongtalk assembler
----Valgrind client AP| header
--zlib v '1.2.8'

The following licensees apply to these externally maintained dependencies:

- c-ares is licensed as follows:

Copyright 1998 by the Massachusetts Institute of Technology.
Copyright (C) 2007-2013 by Daniel Stenberg

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.L.T. not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. M.I.T. makes no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.

- HTTP Parser is licensed as follows:

http_parser.c is based on src/http/ngx_http_parse.c from NGINX copyright Igor
Sysoev.

Additional changes are licensed under the same terms as NGINX and copyright
Joyent, Inc. and other Node contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

- libuv is licensed as follows:

A-34

ORACLE

Appendix A
Node.js

libuv is part of the Node project: http://nodejs.org/

libuv may be distributed alone under Node's license:

Copyright Joyent, Inc. and other Node contributors. All rights reserved. Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

This license applies to all parts of libuv that are not externally maintained libraries.
The externally maintained libraries used by libuv are:
- tree.h (from FreeBSD), copyright Niels Provos. Two clause BSD license.

- inet_pton and inet_ntop implementations, contained in src/inet.c, are copyright the
Internet Systems Consortium, Inc., and licensed under the ISC license.

- stdint-msvc2008.h (from msinttypes), copyright Alexander Chemeris. Three clause
BSD license.

- pthread-fixes.h, pthread-fixes.c, copyright Google Inc. and Sony Mobile
Communications AB. Three clause BSD license.

- android-ifaddrs.h, android-ifaddrs.c, copyright Berkeley Software Design Inc,
Kenneth MacKay and Emergya (Cloud4all, FP7/2007-2013, grant agreement n°
289016). Three clause BSD license.

- OpenSSL, located at deps/openssl, is licensed as follows:

/*

* Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

A-35

ORACLE

Appendix A
Node.js

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT TAS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR

A-36

ORACLE

Appendix A
Node.js

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
*ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
*NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*

*[

- Punycode.js, located at lib/punycode.js, is licensed as follows:
Copyright Mathias Bynens <https://mathiasbynens.be/>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

- V8, located at deps/v8, is licensed as follows:

A-37

ORACLE

Appendix A
Node.js

This license applies to all parts of V8 that are not externally maintained libraries. The
externally maintained libraries used by V8 are:

- PCRE test suite, located in test/mjsunit/third_party/regexp-pcre/regexp-pcre.js. This
is based on the test suite from PCRE-7.3, which is copyrighted by the University of
Cambridge and Google, Inc. The copyright notice and license are embedded in
regexp-pcre.js.

(/ PCRE LICENCE

1

/I PCRE is a library of functions to support regular expressions whose syntax
/I and semantics are as close as possible to those of the Perl 5 language.

1

/I Release 7 of PCRE is distributed under the terms of the "BSD" licence, as
/I specified below. The documentation for PCRE, supplied in the "doc"

/Il directory, is distributed under the same terms as the software itself.

1

/I The basic library functions are written in C and are freestanding. Also
/l'included in the distribution is a set of C++ wrapper functions.)

- Layout tests, located in test/mjsunit/third_party/object-keys. These are based on
layout tests from webkit.org which are copyrighted by Apple Computer, Inc. and
released under a 3-clause BSD license.

- Strongtalk assembler, the basis of the files assembler-arm-inl.h, assembler-arm.cc,
assembler-arm.h, assembler-ia32-inl.h, assembler-ia32.cc, assembler-ia32.h,
assembler-x64-inl.h, assembler-x64.cc, assembler-x64.h, assembler-mips-inl.h,
assembler-mips.cc, assembler-mips.h, assembler.cc and assembler.h. This code is
copyrighted by Sun Microsystems Inc. and released under a 3-clause BSD license.

- Valgrind client API header, located at third_party/valgrind/valgrind.h This is release
under the BSD license.

These libraries have their own licenses; we recommend you read them, as their terms
may differ from the terms below.

Further license information can be found in LICENSE files located in sub-directories.
Copyright 2014, the V8 project authors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

A-38

ORACLE

Appendix A
Node.js

* Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

- zlib, located at deps/zlib, is licensed as follows:

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April
28th, 2013

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

ISC lisence for inet-pton and inet-ntop:

ISC License (ISC)

Copyright (c) 4-digit year, Company or Person's Name <E-mail address>

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

A-39

Appendix A
node-zookeeper-client

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

A.47 node-zookeeper-client

ORACLE

note-zookeeper-client, version 0.2.2, is licensed under the following terms:
Copyright (c) 2013 Yahoo! Inc. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

node-zokeeper-client also comes with two related components, async v0.2.10 and
underscore v1.4.4.

License for async v0.2.10:
Copyright (c) 2010-2016 Caolan McMahon

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

A-40

Appendix A
OpenCV

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

License for underscore v1.4.4:
Copyright (c) 2009-2016 Jeremy Ashkenas, DocumentCloud and Investigative
Reporters & Editors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.48 OpenCV

ORACLE

IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR
USING.

By downloading, copying, installing or using the software you agree to this license. If
you do not agree to this license, do not download, install, copy or use the software.

License Agreement

For Open Source Computer Vision Library

Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* The name of the copyright holders may not be used to endorse or promote products
derived from this software without specific prior written permission.

A-41

Appendix A
rxjava-core

This software is provided by the copyright holders and contributors "as is" and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed.

In no event shall the Intel Corporation or contributors be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any way out of the use of
this software, even if advised of the possibility of such damage.

A.49 rxjava-core

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced in this document.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

A.50 SIf4]

Copyright (c) 2004-2011 QOS.ch
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.51 Spoofax

Copyright 2016 Delft University of Technology

ORACLE A-42

Appendix A
Tinkerpop Blueprints

This project includes software developed at the Programming Languages Group at
Delft University of Technology (http://www.tudelft.nl).

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

A.52 Tinkerpop Blueprints

Copyright (¢) 2009-2012, TinkerPop [http://tinkerpop.com]
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.53 Tinkerpop Gremlin

ORACLE

Copyright (¢) 2009-2012, TinkerPop [http://tinkerpop.com]
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

A-43

http://www.tudelft.nl

Appendix A
Tinkerpop Pipes

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.54 Tinkerpop Pipes

Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ORACLE A-44

Hive and Spark Spatial SQL Functions

This appendix provides reference information about the Hive and Spark spatial SQL
functions.

To use these functions, you must understand the concepts and techniques described
in whichever of the following apply to your needs:

e Oracle Big Data Spatial Vector Hive Analysis, especially Using the Hive Spatial
API,

» Oracle Big Data Spatial Vector Analysis for Spark, especially Spatial Analysis
Spark SQL UDFs

The functions are presented alphabetically. However, they can be grouped into the
following logical categories: geometry constructors, single-geometry functions, and
two-geometry functions.

Geometry constructors:
e ST_Geometry

e ST_LineString

e ST_MultiLineString
e ST_MultiPoint

e ST_MultiPolygon

e ST _Point

ST _Polygon
Single-geometry functions:
e ST_Area

« ST _AsWKB

¢ ST_ASWKT

e ST_Buffer

e ST_ConvexHull

* ST_Envelope

¢ ST_Length

e ST_Simplify

e ST_SimplifyVW

e ST Volume
Two-geometry functions:
e ST_Anyinteract

e ST _Contains

e ST _Distance

ORACLE B-1

Appendix B
ST_AnyInteract

e ST_Inside

e ST_Anylinteract
e ST_Area

« ST _AsWKB

¢ ST_ASWKT

e ST _Buffer

e ST Contains

e ST_ConvexHull
e ST Distance

* ST_Envelope

e ST_Geometry

e ST Inside

¢ ST_Length

e ST_LineString

e ST_MultiLineString
* ST_MultiPoint

e ST_MultiPolygon
e ST _Point

e« ST _Polygon

e ST_Simplify

e ST_SimplifyVW
e ST Volume

B.1 ST_Anylnteract

ORACLE

Format

ST_Anyl nteract (

geonetryl ST Ceonetry,

geonetryl ST Ceonetry,

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Determines if geonet ryl has any spatial interaction with geonet ry2, returning true or
fal se.

Parameters

geometryl
A 2D or 3D geometry object.

B-2

Appendix B
ST Area

geometry2
Another 2D or 3D geometry object.

tolerance
Tolerance at which geomet ry2 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Anylnteract (
ST Point('{ "type": "Point", "coordinates": [2, 3]}", 8307),
ST_Pol ygon(' {"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
(1 2]]]}", 8307))
fromhivetable LIMT 1;
- return true

B.2 ST Area

ORACLE

Format

ST_Area(

geonetry ST _Ceonetry

tol erance NUMVBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Returns the area of a polygon or multipolygon geometry.

Parameters

geometry
An ST_Geometry object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Area(ST_Polygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5,

7, 0% 7, (1 2111, 0)
fromhivetable LIMT 1; -- return 20

B-3

Appendix B
ST_AsWKB

B.3 ST_AsSWKB

Format

ST_AsVKB(
geonetry ST_Geonetry);

Description

Returns the well-known binary (WKB) representation of the geometry.

Parameters

geometry
An ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST _AsVKB(ST Point('{ "type": "Point", "coordinates": [0, 5]}', 8307))
fromhivetable LIMT 1;

B.4 ST_ASWKT

Format

ST_ASVKT(
geonetry ST _Geonetry);

Description
Returns the well-known text (WKT) representation of the geometry.
Parameters

geometry
An ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_AsWKT(ST Point('{ "type": "Point", "coordinates": [0, 5]}', 8307))
fromhivetable LIMT 1;

ORACLE B-4

Appendix B
ST _Buffer

B.5 ST Buffer

Format

ST_Buf fer(

geonetry ST_Ceonetry,

buf ferWdth NUMBER,

arcTol NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Generates a new ST_Geometry object that is the buffered version of the input
geometry.

Parameters

geometry

Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and buf f er Wdth and tol erance
are interpreted as meters.

bufferWidth
The distance value used for the buffer.

arcTol
Tolerance used for geodetic arc densification. (Ignored for nongeodetic geometries.)

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

select ST Buffer(ST Point('{ "type": "Point", "coordinates": [0, 5]}', 0), 3)
fromhivetable LIMT 1,

- return {"type":"Polygon", "coordinates": [[[-3,5],[-2.8977774789, 4. 2235428647],
2.5980762114, 3. 5], [-2. 1213203436, 2. 8786796564] , [- 1. 5, 2. 4019237886] ,
0.7764571353, 2. 1022225211],[0, 2], [0. 7764571353, 2. 1022225211] , [1. 5, 2. 4019237886] ,
2.1213203436, 2. 8786796564] , [2. 5980762114, 3. 5], [2. 8977774789, 4. 2235428647],[3, 5] ,
2.8977774789, 5. 7764571353], [2. 5980762114, 6. 5], [2. 1213203436, 7. 1213203436] ,
1.5,7.5980762114] , [0. 7764571353, 7. 8977774789] , [0, 8], [- 0. 7764571353, 7. 8977774789 ,
[-1.5,7.5980762114],[-2.1213203436, 7. 1213203436] , [- 2. 5980762114, 6. 5] ,
[-2.8977774789, 5. 7764571353] ,[-3,5]]],"crs": {"type": "nanme", "properties":
{"name":"EPSG 0"}}}

[
[
[
[
[

B.6 ST Contains

ORACLE

Format

ST_Cont ai ns(

geonetryl ST Ceonetry,

geonetryl ST Ceonetry,

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

B-5

Appendix B
ST_ConvexHull

Description

Determines if geonet ryl contains geonet ry2, returning true or f al se.

Parameters

geometryl
A polygon or solid geometry object.

geometry2
Another 2D or 3D geometry object.

tolerance
Tolerance at which geomet ry2 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Cont ai ns(
ST_Pol ygon(' {"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
(1 2]]]}", 8307),
ST_Point('{ "type": "Point", "coordinates": [2, 3]}', 8307))
fromhivetable LIMT 1;
- return true

B.7 ST_ConvexHull

ORACLE

Format

ST_ConvexHul | (
geonetry ST _Geonetry);

Description

Returns the convex hull of the input geometry as an ST_Geometry object.
Parameters

geometry
A 2D ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_ConvexHul | (
ST_MultiPoint(" { "type": "MultiPoint","coordinates": [[1, 2], [-1, -2], [5,
6111}, 0)

B-6

Appendix B
ST Distance

fromhivetable LIMT 1;
- return {"type":"Polygon", "coordinates":[[[5,6],[1,2],[-1,-2],[5,6]]],"crs":
{"type": "nanme", "properties":{"name":"EPSG 0"}}}

B.8 ST Distance

Format

ST_Di stance(

geonetryl ST _Geonetry,

geonetryl ST _Geonetry,

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Determines the distance between two 2D geometries.

Parameters

geometryl
A 2D geometry object.

geometry2
A 2D geometry object.

tolerance
Tolerance at which geonet ry2 is valid.

Usage Notes

This function returns thedistance between the two given geometries. For projected
data, the distance is in the same unit as the unit of projection. For geodetic data, the
distance is in meters.

If an error occurs, the function returns -1.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples
sel ect ST_Distance(
ST Point('{ "type": "Point", "coordinates": [0, O
ST Point('{ "type": "Point", "coordinates": [6
fromhivetable LIMT 1;
- return 10.0

B.9 ST_Envelope

Format

ST_Envel ope(
geonetry ST_Geonetry);

ORACLE B-7

Appendix B
ST_Geometry

Description

Returns the envelope (bounding polygon) of the input geometry as an ST_Geometry
object.

Parameters

geometry
A 2D ST_Geometry object.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Envel ope(

ST_MultiPoint(" { "type": "MultiPoint","coordinates": [[1, 2], [-1, -2], [5,
611, 0)
fromhivetable LIMT 1;

- return {"type":"Polygon", "coordinates":[[[-1,-2],[5,-2],[5,6],[-1,6],
[-1,-2]]],"crs":{"type": "nane", "properties":{"name": "EPSG 0"}}}

B.10 ST_Geometry

ORACLE

Format

ST_GEOMVETRY(
geonetry STRI NG
srid INT);

or

ST_GEOMVETRY(
geonetry Bl NARY
srid INT);

or

ST_GEOMETRY(
geonmetry (bj ect
hi veRecor dl nf oProvi der STRING ;

Description

Creates a GeoJSON string representation of the geometry, and returns a GeoJSON
string representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

B-8

Appendix B
ST Inside

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dl nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a point using GeoJSON

sel ect ST_Ceonetry (' { "type": "Point", "coordinates": [100.0, 0.0]}', 8307) from
hivetable LIMT 1;

- creates a point using VKT

sel ect ST_Geonetry ('point(100.0 0.0)', 8307) fromhivetable LIMT 1,

- creates the geometries using a H veRecordl nfoProvider

sel ect ST_Ceonetry (geoCol umm, * hive. sanpl es. Sanpl eHi veRecor dl nf oProvi derlnpl’) from
hi vet abl e;

B.11 ST Inside

ORACLE

Format
ST_I nsi de(
geonmetryl ST _Ceonetry,
geonmetryl ST _Ceonetry,

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description
Determines if geonet ry1 is inside geonet ry2, returning true or f al se.
Parameters

geometryl
A 2D or 3D geometry object.

geometry2
A polygon or solid geometry object.

tolerance
Tolerance at which geomet ry1 is valid.

Usage Notes

Both geometries must have the same number of dimensions (2 or 3) and the same
spatial reference system (SRID, or coordinate system).

B-9

Appendix B
ST_Length

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Inside(
ST Point('{ "type": "Point", "coordinates": [2, 3]}", 8307),
ST_Pol ygon(' {"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5, 6], [1, 6],
[1, 2]]]}", 8307))
fromhivetable LIMT 1,
- return true

B.12 ST_Length

Format
ST_Lengt h(
geonetry ST _Ceonetry

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Returns the length of a line or polygon geometry.
Parameters

geometry
An ST_Geometry object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Length(ST_Pol ygon('{"type": "Polygon","coordinates": [[[1, 2], [5, 2], [5,

6], [1 6], [1 2]]]}', 0))
fromhivetable LIMT 1; -- return 16

B.13 ST _LineString

ORACLE

Format

ST_LineString(
geonetry STRI NG
srid INT);

or

ST_LineString(
geometry Bl NARY
srid INT);

B-10

Appendix B
ST_MultiLineString

or

ST_LineString(
geonetry Obj ect
hi veRecor dl nf oProvi der STRING);

Description

Creates a line string geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dI nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a line using GeoJSON

select ST LineString (' { "type": "LineString","coordinates": [[100.0, 0.0],
[101.0, 1.0]]} ', 8307) fromhivetable LIMT 1;

- creates a line using VKT

select ST LineString (' linestring(1l 1, 55, 10 10, 20 20)', 8307) from hivetable
LIMT 1,

- creates the lines using a H veRecordl nfoProvider

select ST_LineString (geoCol um, ‘nypackage. hiveRecordl nfoProviderinpl’) from

hi vet abl e;

B.14 ST_MultiLineString

ORACLE

Format

ST_Mul tiLineString(
geonetry STRI NG
srid INT);

or

B-11

Appendix B
ST_MultiLineString

ST_Mil tiLineString(
geonetry Bl NARY
srid INT);

or

ST_Mil tiLineString(
geonetry Obj ect
hi veRecor dI nf oProvi der STRING);

Description

Creates a multiline string geometry in GeoJSON format, and returns a GeoJSON
string representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dI nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a MiltiLineString using GeoJSON
select ST_ MiltilineString (' { "type": "MiltiLineString","coordinates": [[[100.0,
0.0], [101.0, 1.0]], [[102.0, 2.0], [103.0, 3.0]]] }', 8307) fromhivetable LIMT
1
- creates a MiltiLineString using VKT
select ST_ MiltiLineString ('multilinestring ((10 10, 20 20, 10 40),

(40 40, 30 30, 40 20, 30 10))', 8307) fromhivetable LIMT 1;

- creates MiltiLineStrings using a H veRecordl nfoProvider

select ST_ MiltilLineString (geoCol um, *‘nypackage. hi veRecordl nfoProviderinpl’) from
hi vet abl e;

ORACLE B-12

Appendix B
ST_MultiPoint

B.15 ST MultiPoint

ORACLE

Format

ST_Mil ti Poi nt (
geonetry STRI NG
srid INT);

or

ST_Mul ti Poi nt (
geometry Bl NARY
srid INT);

or

ST_Mul ti Poi nt (
geonetry Obj ect
hi veRecor dl nf oProvi der STRING ;

Description

Creates a multipoint geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dl nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a Ml tiPoint using GeoJSON

select ST_MultiPoint (" { "type": "MiltiPoint","coordinates": [[100.0, 0.0],
[101.0, 1.0]] }', 8307) fromhivetable LIMT 1,

- creates a MiltiPoint using WKT

select ST_ MultiPoint ('multipoint ((10 40), (40 30), (20 20), (30 10))', 8307) from

B-13

Appendix B
ST_MultiPolygon

hivetable LIMT 1;

- creates MiltiPoints using a H veRecordl nfoProvider

sel ect ST_ MultiPoint (geoColum, ‘nypackage. hiveRecordl nfoProviderlinpl’) from
hi vet abl e;

B.16 ST_MultiPolygon

ORACLE

Format

ST_Mul ti Pol ygon(
geonetry STRI NG
srid INT);

or

ST_Mul ti Pol ygon(
geometry Bl NARY
srid INT);

or

ST_Mul ti Pol ygon(
geonetry Ohj ect
hi veRecor dl nf oProvi der STRING ;

Description

Creates a multipolygon geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dl nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

B-14

Appendix B
ST Point

Examples

- creates a MiltiPol ygon using GeoJSON

select ST_ MultiPolygon (" { "type": "MiltiPolygon", "coordinates": [[[[102.0, 2.0],
[103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]], [[[100.0, 0.0], [101.0,
0.0], [1017.0, 1.0], [100.0, 1.0], [100.0, 0.0]], [[100.2, 0.2], [100.8, 0.2],
[100.8, 0.8], [100.2, 0.8], [100.2, 0.2]11 1 }', 8307) fromhivetable LIMT 1,

- creates a Ml tiPol ygon using WKT

select ST_ MultiPolygon (" nmultipolygon(((30 20, 45 40, 10 40, 30 20)),

((15 5, 40 10, 10 20, 5 10, 15 5)))', 8307) fromhivetable LIMT 1

- creates MiltiPolygons using a H veRecordl nfoProvider

sel ect ST_ MultiPol ygon (geoCol umm, ‘nypackage. hi veRecordl nfoProviderinpl’) from
hi vet abl e;

B.17 ST_Point

ORACLE

Format

ST_Poi nt (
geonetry STRI NG
srid INT);

or

ST_Poi nt (
geometry Bl NARY
srid INT);

or

ST_Poi nt (
geonetry Chj ect
hi veRecor dl nf oProvi der STRING ;

Description

Creates a point geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dI nf oPr ovi der to extract the geometry in
GeoJSON format.

B-15

Appendix B
ST_Polygon

The format with the hi veRecor dI nf oPr ovi der parameter does not apply to Spark spatial
SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a point using GeoJSON

select ST_Point (' { "type": "Point", "coordinates": [100.0, 0.0]}', 8307) from
hivetable LIMT 1;

- creates a point using VKT
sel ect ST_Point ('point(100.0 0.0)', 8307) fromhivetable LIMT 1;

- creates the points using a H veRecordl nfoProvider
sel ect ST_Point (geoCol umm, *‘hive. sanpl es. Sanpl eHi veRecor dl nf oProvi derlnpl’) from
hi vet abl e;

B.18 ST Polygon

Format

ST_Pol ygon(
geonetry STRING
srid INT);

or

ST_Pol ygon(
geonetry Bl NARY
srid INT);

or

ST_Pol ygon(
geonetry (oj ect
hi veRecor dl nf oProvi der STRING ;

Description

Creates a polygon geometry in GeoJSON format, and returns a GeoJSON string
representation of the geometry.

Parameters

geometry

To create a geometry from a GeoJSON or WKT string (first format): Geometry
definition in GeoJSON or WKT format.

To create a geometry from a WKB object (second format): Geometry definition in
WKB format.

To create a geometry using a Hive object (third format): Geometry definition in any
Hive supported type.

srid
Spatial reference system (coordinate system) identifier.

ORACLE B-16

Appendix B
ST_Simplify

hiveRecordinfoProvider

The fully qualified name of an implementation of the interface

oracl e. spati al . hadoop. vect or . hi ve. H veRecor dlI nf oPr ovi der to extract the geometry in
GeoJSON format.

The function format with the hi veRecor dI nf oPr ovi der parameter does not apply to
Spark spatial SQL functions.

Usage Notes

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

- creates a polygon using GeoJSON

sel ect ST_Polygon (' { "type": "Polygon","coordinates": [[[100.0, 0.0], [101.0,
0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]] }', 8307) fromhivetable LIMT 1;
- creates a polygon using WKT

sel ect ST_ Polygon ('polygon((0 0, 10 0, 10 10, 0 0))', 8307) fromhivetable LIMT 1;
- creates the polygons using a HiveRecordl nfoProvider

sel ect ST_ Pol ygon (geoCol um, ‘nypackage. hi veRecordl nfoProviderlnpl’') from

hi vet abl e;

B.19 ST _Simplify

ORACLE

Format

ST_Si npl i fy(
geonmetry ST _Geonetry,
threshold NUMBER);

Description

Generates a new ST_Geometry object by simplifying the input geometry using the
Douglas-Peucker algorithm.

Parameters

geometry

Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and buf f er Wdth and tol erance
are interpreted as meters.

threshold

Threshold value to be used for the geometry simplification. Should be a positive
number. (Zero causes the input geometry to be returned.) If the input geometry is
geodetic, the value is the number of meters; if the input geometry is non-geodetic, the
value is the number of units associated with the data.

As the threshold value is decreased, the generated geometry is likely to be closer to
the input geometry; as the threshold value is increased, fewer vertices are likely to be
in the returned geometry.

Usage Notes

Depending on the threshold value, a polygon can simplify into a line or a point, and a
line can simplify into a point. Therefore, the output object should be checked for type,
because the output geometry type might be different from the input geometry type.

B-17

Appendix B
ST_SimplifyVW

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples
select ST_Sinplify(

ST_POLYGON(' {"type": "Polygon","coordinates": [[[1, 2], [1.01, 2.01], [5, 2], [5,
6],)[l, 61, [1, 2111}, 0),

1

fromhivetable LIMT 1;
- return {"type":"Pol ygon", "coordinates":[[[1,2],[5,2],[56],[1,6],[1,2]]],"crs":
{"type": "nanme", "properties":{"name":"EPSG 0"}}}

B.20 ST_SimplifyVW

ORACLE

Format

ST_SinplifyVW
geonetry ST_Ceonetry,
threshold NUVBER);

Description

Generates a new ST_Geometry object by simplifying the input geometry using the
Visvalingham-Whyatt algorithm.

Parameters

geometry

Any 2D geometry object. If the geometry is geodetic, it is interpreted as longitude/
latitude values in the WGS84 spatial reference system, and buf f er Wdth and tol erance
are interpreted as meters.

threshold

Threshold value to be used for the geometry simplification. Should be a positive
number. (Zero causes the input geometry to be returned.) If the input geometry is
geodetic, the value is the number of meters; if the input geometry is non-geodetic, the
value is the number of units associated with the data.

As the threshold value is decreased, the generated geometry is likely to be closer to
the input geometry; as the threshold value is increased, fewer vertices are likely to be
in the returned geometry.

Usage Notes

Depending on the threshold value, a polygon can simplify into a line or a point, and a
line can simplify into a point. Therefore, the output object should be checked for type,
because the output geometry type might be different from the input geometry type.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples
select ST_SinplifyVW

ST_POLYGON(' {"type": "Polygon","coordinates": [[[1, 2], [1.01, 2.01], [5, 2], [5,
6], gl, 61, [1, 2111}, 0),

50

fromhivetable LIMT 1;

B-18

Appendix B
ST Volume

- return {"type":"Polygon", "coordinates":[[[1,2],[5,6],[1,6],[1,2]]],"crs":
{"type": "nanme", "properties":{"name": "EPSG 0"}}}

B.21 ST Volume

Format

ST_Vol ume(

mul ti pol ygon ST_Muil ti Pol ygon,

tol erance NUMBER DEFAULT 0 (nongeodetic geonetries) or 0.05 (geodetic
geonetries));

Description

Returns the area of a multipolygon 3D geometry. The multipolygon is handled as a
solid.

Parameters

multipolygon
An ST_Multipolygon object.

tolerance
Value reflecting the distance that two points can be apart and still be considered the
same.

Usage Notes

For projected data, the volume is in the same unit as the unit of projection. For
geodetic data, the volume is in cubic meters.

Returns -1 in case of an error.

See also Oracle Big Data Spatial Vector Hive Analysis and Oracle Big Data Spatial
Vector Analysis for Spark for conceptual and usage information.

Examples

sel ect ST_Vol ume(
ST_MultiPolygon (" { "type": "MiltiPolygon", "coordinates":
[o, o, 0], [0, O, 1], [O, 1, 1], [O, 1, O], [O, O, O

([11]
[fro, o, o1, [o, 1, 01, [1, 1, O], [1, O, O], [O, O, O]]],
[fro, o, o1, 1, o, 01, [1, O, 1], [O, O, 1], [O, O, O]]],
[rra, 1, 01, [, 1, 1y, [1, O, 1], [1, O, O], [1, 1, O]1],
[rro, 1, o1, [o, 1, 1y, [1, 1, 1], [1, 1, O], [O, 1, O]]],
gggo o, 1], 1, o, 1], [1, 1, 1], [O, 1, 1], [O, O, 1]]111}",

fromhivetable LIMT 1; -- return 1.0

ORACLE B-19

Index

A

Apache HBase
using Apache Spark with property graph
data, 5-64
Apache Spark
using with property graph data, 5-64

H

NoSQL (continued)
using Apache Spark with property graph
data, 5-67

P

Hive spatial functions
ST_Anyinteract, B-2
ST_Area, B-3
ST_AsWKB, B-4
ST_AsWKT, B-4
ST_Buffer, B-5
ST_Contains, B-5
ST_ConvexHull, B-6
ST _Distance, B-7
ST_Envelope, B-7
ST_Geometry, B-8
ST _Inside, B-9
ST _Length, B-10
ST_LineString, B-10
ST_MultiLineString, B-11
ST_MultiPoint, B-13
ST_MultiPolygon, B-14
ST_Point, B-15
ST_Polygon, B-16
ST_Simplify, B-17
ST_SimplifyVW, B-18
ST _Volume, B-19

PGQL (Property Graph Query Language), 5-62
Property Graph Query Language (PGQL), 5-62

S

NoSQL

ORACLE

Spark

using with property graph data, 5-64
ST_Anyinteract function, B-2
ST_Area function, B-3
ST_AsWKB function, B-4
ST_AsWKT function, B-4
ST_Buffer function, B-5
ST_Contains function, B-5
ST_ConvexHull function, B-6
ST_Distance function, B-7
ST_Envelope function, B-7
ST_Geometry function, B-8
ST_Inside function, B-9
ST_Length function, B-10
ST_LineString function, B-10
ST_MultiLineString function, B-11
ST_MultiPoint function, B-13
ST_MultiPolygon function, B-14
ST_Point function, B-15
ST_Polygon function, B-16
ST_Simplify function, B-17
ST_SimplifyVW function, B-18
ST_Volume function, B-19

Index-1

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Big Data Spatial and Graph
	Changes for Release 2.5
	Spark Vector API Changes for Release 2.5
	Multimedia Analytics Feature Deprecated

	Changes for Release 2.4
	In-Memory Analyst (PGX) - Related Changes
	New PGX Built-in Algorithms for Cycle Detection
	Temporal Data Types Support in PGX
	PGX Java API Improvements
	New Features in PGQL
	PGX Loader Improvements
	PGX Distributed Engine Improvements
	PGX Deprecations

	Spark Vector API Changes for Release 2.4
	Vector REST API Additions
	SpatialViewer Changes

	1 Big Data Spatial and Graph Overview
	1.1 About Big Data Spatial and Graph
	1.2 Spatial Features
	1.3 Property Graph Features
	1.3.1 Property Graph Sizing Recommendations

	1.4 Multimedia Analytics Features
	1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
	1.6 Installing and Configuring the Big Data Spatial Image Processing Framework
	1.6.1 Getting and Compiling the Cartographic Projections Library
	1.6.2 Installing the Image Processing Framework for Oracle Big Data Appliance Distribution
	1.6.3 Installing the Image Processing Framework for Other Distributions (Not Oracle Big Data Appliance)
	1.6.3.1 Prerequisites for Installing the Image Processing Framework for Other Distributions
	1.6.3.2 Installing the Image Processing Framework for Other Distributions

	1.6.4 Post-installation Verification of the Image Processing Framework
	1.6.4.1 Image Loading Test Script
	1.6.4.2 Image Processor Test Script (Mosaicking)
	1.6.4.3 Single-Image Processor Test Script
	1.6.4.4 Image Processor DEM Test Script
	1.6.4.5 Multiple Raster Operation Test Script

	1.7 Installing the Oracle Big Data SpatialViewer Web Application
	1.7.1 Assumptions for SpatialViewer
	1.7.2 Installing SpatialViewer on Oracle Big Data Appliance
	1.7.3 Installing SpatialViewer for Other Systems (Not Big Data Appliance)
	1.7.4 Configuring SpatialViewer on Oracle Big Data Appliance
	1.7.5 Configuring SpatialViewer for Other Systems (Not Big Data Appliance)

	1.8 Installing Property Graph Support on a CDH Cluster or Other Hardware
	1.8.1 Apache HBase Prerequisites
	1.8.2 Property Graph Installation Steps
	1.8.3 About the Property Graph Installation Directory
	1.8.4 Optional Installation Task for In-Memory Analyst Use
	1.8.4.1 Installing and Configuring Hadoop
	1.8.4.2 Running the In-Memory Analyst on Hadoop

	1.9 Installing and Configuring Multimedia Analytics Support
	1.9.1 Assumptions and Libraries for Multimedia Analytics
	1.9.2 Transcoding Software (Options)

	2 Using Big Data Spatial and Graph with Spatial Data
	2.1 About Big Data Spatial and Graph Support for Spatial Data
	2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?
	2.1.2 Advantages of Oracle Big Data Spatial and Graph
	2.1.3 Oracle Big Data Spatial Features and Functions
	2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements

	2.2 Oracle Big Data Vector and Raster Data Processing
	2.2.1 Oracle Big Data Spatial Raster Data Processing
	2.2.2 Oracle Big Data Spatial Vector Data Processing

	2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing
	2.3.1 Image Loader
	2.3.2 Image Processor

	2.4 Loading an Image to Hadoop Using the Image Loader
	2.4.1 Image Loading Job
	2.4.2 Input Parameters
	2.4.3 Output Parameters

	2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor
	2.5.1 Image Processing Job
	2.5.1.1 Default Image Processing Job Flow
	2.5.1.2 Multiple Raster Image Processing Job Flow

	2.5.2 Input Parameters
	2.5.2.1 Catalog XML Structure
	2.5.2.2 Mosaic Definition XML Structure

	2.5.3 Job Execution
	2.5.4 Processing Classes and ImageBandWritable
	2.5.4.1 Location of the Classes and Jar Files

	2.5.5 Map Algebra Operations
	2.5.6 Multiple Raster Algebra Operations
	2.5.6.1 Basic Multiple Raster Algebra Operations
	2.5.6.2 Complex Multiple Raster Algebra Operations

	2.5.7 Pyramids
	2.5.8 Output

	2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API
	2.7 Using the Oracle Spatial Hadoop Raster Simulator Framework to Test Raster Processing
	2.8 Oracle Big Data Spatial Raster Processing for Spark
	2.8.1 Spark Raster Loader
	2.8.1.1 Input Parameters to the Spark Raster Loader
	2.8.1.2 Expected Output of the Spark Raster Loader

	2.8.2 Spark SQL Raster Processor
	2.8.2.1 Input Parameters to the Spark SQL Raster Processor
	2.8.2.2 Expected Output of the Spark SQL Raster Processor

	2.8.3 Using the Spark Raster Processing API
	2.8.3.1 Using the Spark Raster Loader API
	2.8.3.2 Configuring for Using the Spark SQL Processor API
	2.8.3.3 Creating the DataFrame
	2.8.3.4 Using the Spark SQL UDF for Raster Algebra Operations

	2.9 Oracle Big Data Spatial Vector Analysis
	2.9.1 Multiple Hadoop API Support
	2.9.2 Spatial Indexing
	2.9.2.1 Spatial Indexing Class Structure
	2.9.2.2 Configuration for Creating a Spatial Index
	2.9.2.3 Spatial Index Metadata
	2.9.2.4 Input Formats for a Spatial Index
	2.9.2.5 Support for GeoJSON and Shapefile Formats
	2.9.2.6 Removing a Spatial Index

	2.9.3 Using MVSuggest
	2.9.4 Spatial Filtering
	2.9.4.1 Filtering Records
	2.9.4.2 Filtering Using the Input Format

	2.9.5 Classifying Data Hierarchically
	2.9.5.1 Changing the Hierarchy Level Range
	2.9.5.2 Controlling the Search Hierarchy
	2.9.5.3 Using MVSuggest to Classify the Data

	2.9.6 Generating Buffers
	2.9.7 Spatial Binning
	2.9.8 Spatial Clustering
	2.9.9 Spatial Join
	2.9.10 Spatial Partitioning
	2.9.11 RecordInfoProvider
	2.9.11.1 Sample RecordInfoProvider Implementation
	2.9.11.2 LocalizableRecordInfoProvider

	2.9.12 HierarchyInfo
	2.9.12.1 Sample HierarchyInfo Implementation

	2.9.13 Using JGeometry in MapReduce Jobs
	2.9.14 Support for Different Data Sources
	2.9.15 Job Registry
	2.9.16 Tuning Performance Data of Job Running Times Using the Vector Analysis API

	2.10 Oracle Big Data Spatial Vector Analysis for Spark
	2.10.1 Spatial RDD (Resilient Distributed Dataset)
	2.10.2 Spatial Transformations
	2.10.2.1 Filter Transformation
	2.10.2.2 FlatMap Transformation
	2.10.2.3 Join Transformation
	2.10.2.4 Controlling Spatial Evaluation
	2.10.2.5 Spatially Enabled Transformations

	2.10.3 Spatial Actions (MBR and NearestNeighbors)
	2.10.4 Spatially Indexing a Spatial RDD
	2.10.4.1 Spatial Partitioning of a Spatial RDD
	2.10.4.2 Local Spatial Indexing of a Spatial RDD

	2.10.5 Support for Common Spatial Formats
	2.10.6 Spatial Spark SQL API
	2.10.6.1 Spark 2 API Enhancements
	2.10.6.2 Spatial Analysis Spark SQL UDFs

	2.10.7 JDBC Data Sources for Spatial RDDs

	2.11 Oracle Big Data Spatial Vector Hive Analysis
	2.11.1 HiveRecordInfoProvider
	2.11.2 Using the Hive Spatial API
	2.11.3 Using Spatial Indexes in Hive

	2.12 Using the Oracle Big Data SpatialViewer Web Application
	2.12.1 Creating a Hadoop Spatial Index Using SpatialViewer
	2.12.2 Exploring the Hadoop Indexed Spatial Data
	2.12.3 Creating a Spark Spatial Index Using SpatialViewer
	2.12.4 Exploring the Spark Indexed Spatial Data
	2.12.5 Running a Categorization Job Using SpatialViewer
	2.12.6 Viewing the Categorization Results
	2.12.7 Saving Categorization Results to a File
	2.12.8 Creating and Deleting Templates
	2.12.9 Configuring Templates
	2.12.10 Running a Clustering Job Using SpatialViewer
	2.12.11 Viewing the Clustering Results
	2.12.12 Saving Clustering Results to a File
	2.12.13 Running a Binning Job Using SpatialViewer
	2.12.14 Viewing the Binning Results
	2.12.15 Saving Binning Results to a File
	2.12.16 Running a Job to Create an Index Using the Command Line
	2.12.17 Running a Job to Create a Categorization Result
	2.12.18 Running a Job to Create a Clustering Result
	2.12.19 Running a Job to Create a Binning Result
	2.12.20 Running a Job to Perform Spatial Filtering
	2.12.21 Running a Job to Get Location Suggestions
	2.12.22 Running a Job to Perform a Spatial Join
	2.12.23 Running a Job to Perform Partitioning
	2.12.24 Using Multiple Inputs
	2.12.25 Loading Images from the Local Server to the HDFS Hadoop Cluster
	2.12.26 Visualizing Rasters in the Globe
	2.12.27 Processing a Raster or Multiple Rasters with the Same MBR
	2.12.28 Creating a Mosaic Directly from the Globe
	2.12.29 Adding Operations for Raster Processing
	2.12.30 Creating a Slope Image from the Globe
	2.12.31 Changing the Image File Format from the Globe

	3 Integrating Big Data Spatial and Graph with Oracle Database
	3.1 Using Oracle SQL Connector for HDFS with Delimited Text Files
	3.2 Using Oracle SQL Connector for HDFS with Hive Tables
	3.3 Using Oracle SQL Connector for HDFS with Files Generated by Oracle Loader for Hadoop
	3.3.1 Creating HDFS Data Pump Files or Delimited Text Files
	3.3.2 Creating the SQL Connector for HDFS

	3.4 Integrating HDFS Spatial Data with Oracle Database Using Oracle Big Data SQL
	3.4.1 Creating Oracle External Tables for HDFS Files with Big Data SQL
	3.4.2 Creating Oracle External Tables Using Hive Tables with Big Data SQL

	4 Configuring Property Graph Support
	4.1 Tuning Apache HBase for Use with Property Graphs
	4.1.1 Modifying the Apache HBase Configuration
	4.1.2 Modifying the Java Memory Settings

	4.2 Tuning Oracle NoSQL Database for Use with Property Graphs

	5 Using Property Graphs in a Big Data Environment
	5.1 About Property Graphs
	5.1.1 What Are Property Graphs?
	5.1.2 What Is Big Data Support for Property Graphs?
	5.1.2.1 In-Memory Analyst
	5.1.2.2 Data Access Layer
	5.1.2.3 Storage Management
	5.1.2.4 RESTful Web Services

	5.2 About Property Graph Data Formats
	5.2.1 GraphML Data Format
	5.2.2 GraphSON Data Format
	5.2.3 GML Data Format
	5.2.4 Oracle Flat File Format

	5.3 Getting Started with Property Graphs
	5.4 Using Java APIs for Property Graph Data
	5.4.1 Overview of the Java APIs
	5.4.1.1 Oracle Big Data Spatial and Graph Java APIs
	5.4.1.2 TinkerPop Blueprints Java APIs
	5.4.1.3 Apache Hadoop Java APIs
	5.4.1.4 Oracle NoSQL Database Java APIs
	5.4.1.5 Apache HBase Java APIs

	5.4.2 Parallel Loading of Graph Data
	5.4.2.1 Parallel Data Loading Using Partitions
	5.4.2.2 Parallel Data Loading Using Fine-Tuning
	5.4.2.3 Parallel Data Loading Using Multiple Files
	5.4.2.4 Parallel Retrieval of Graph Data
	5.4.2.5 Using an Element Filter Callback for Subgraph Extraction
	5.4.2.6 Using Optimization Flags on Reads over Property Graph Data
	5.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph
	5.4.2.8 Getting Property Graph Metadata

	5.4.3 Opening and Closing a Property Graph Instance
	5.4.3.1 Using Oracle NoSQL Database
	5.4.3.2 Using Apache HBase

	5.4.4 Creating Vertices
	5.4.5 Creating Edges
	5.4.6 Deleting Vertices and Edges
	5.4.7 Reading a Graph from a Database into an Embedded In-Memory Analyst
	5.4.8 Specifying Labels for Vertices
	5.4.9 Building an In-Memory Graph
	5.4.10 Dropping a Property Graph
	5.4.10.1 Using Oracle NoSQL Database
	5.4.10.2 Using Apache HBase

	5.5 Managing Text Indexing for Property Graph Data
	5.5.1 Configuring a Text Index for Property Graph Data
	5.5.2 Using Automatic Indexes for Property Graph Data
	5.5.3 Using Manual Indexes for Property Graph Data
	5.5.4 Executing Search Queries Over Property Graph Text Indexes
	5.5.5 Handling Data Types
	5.5.5.1 Appending Data Type Identifiers on Apache Lucene
	5.5.5.2 Appending Data Type Identifiers on SolrCloud

	5.5.6 Uploading a Collection's SolrCloud Configuration to Zookeeper
	5.5.7 Updating Configuration Settings on Text Indexes for Property Graph Data
	5.5.8 Using Parallel Query on Text Indexes for Property Graph Data
	5.5.9 Using Native Query Objects on Text Indexes for Property Graph Data
	5.5.10 Using Native Query Results on Text Indexes for Property Graph Data

	5.6 Querying Property Graph Data Using PGQL
	5.7 Using Apache Spark with Property Graph Data
	5.7.1 Using Apache Spark with Property Graph Data in Apache HBase
	5.7.2 Integrating Apache Spark with Property Graph Data Stored in Oracle NoSQL Database

	5.8 Support for Secure Oracle NoSQL Database
	5.9 Implementing Security on Graphs Stored in Apache HBase
	5.10 Using the Groovy Shell with Property Graph Data
	5.11 REST Support for Property Graph Data
	5.11.1 Building the REST Web Application Archive (WAR) File
	5.11.2 Deploying the RESTful Property Graph Web Service
	5.11.2.1 RESTful Property Graph Service Configuration File (rexster.xml)

	5.11.3 Property Graph REST API Operations Information
	5.11.3.1 GET Operations (Property Graphs)
	5.11.3.2 POST Operations (Property Graphs)
	5.11.3.3 PUT Operations (Property Graphs)
	5.11.3.4 DELETE Operations (Property Graphs)

	5.12 Exploring the Sample Programs
	5.12.1 About the Sample Programs
	5.12.2 Compiling and Running the Sample Programs
	5.12.3 About the Example Output
	5.12.4 Example: Creating a Property Graph
	5.12.5 Example: Dropping a Property Graph
	5.12.6 Examples: Adding and Dropping Vertices and Edges

	5.13 Oracle Flat File Format Definition
	5.13.1 About the Property Graph Description Files
	5.13.2 Vertex File
	5.13.3 Edge File
	5.13.4 Encoding Special Characters
	5.13.5 Example Property Graph in Oracle Flat File Format
	5.13.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File
	5.13.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files
	5.13.7.1 Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)
	5.13.7.2 Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)
	5.13.7.3 Vertices and Edges: Converting a Single CSV File Containing Both Vertices and Edges Data into a Pair of Graph Flat Files

	5.14 Example Python User Interface
	5.15 Example iPython Notebooks User Interface

	6 Using the In-Memory Analyst (PGX)
	6.1 Reading a Graph into Memory
	6.1.1 Connecting to an In-Memory Analyst Server Instance
	6.1.2 Using the Shell Help
	6.1.3 Providing Graph Metadata in a Configuration File
	6.1.4 Reading Graph Data into Memory
	6.1.4.1 Read a Graph Stored in Apache HBase into Memory
	6.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory
	6.1.4.3 Read a Graph Stored in the Local File System into Memory

	6.2 Configuring the In-Memory Analyst
	6.2.1 Specifying the Configuration File to the In-Memory Analyst

	6.3 Reading Custom Graph Data
	6.3.1 Creating a Simple Graph File
	6.3.2 Adding a Vertex Property
	6.3.3 Using Strings as Vertex Identifiers
	6.3.4 Adding an Edge Property

	6.4 Storing Graph Data on Disk
	6.4.1 Storing the Results of Analysis in a Vertex Property
	6.4.2 Storing a Graph in Edge-List Format on Disk

	6.5 Executing Built-in Algorithms
	6.5.1 About the In-Memory Analyst
	6.5.2 Running the Triangle Counting Algorithm
	6.5.3 Running the Pagerank Algorithm

	6.6 Creating Subgraphs
	6.6.1 About Filter Expressions
	6.6.2 Using a Simple Edge Filter to Create a Subgraph
	6.6.3 Using a Simple Vertex Filter to Create a Subgraph
	6.6.4 Using a Complex Filter to Create a Subgraph
	6.6.5 Combining Expression Filters
	6.6.6 Using an Expression Filter to Create a Set of Vertices or Edges
	6.6.7 Using a Vertex Set to Create a Bipartite Subgraph

	6.7 Using Pattern-Matching Queries with Graphs
	6.7.1 Example: The Enemy of My Enemy is My Friend
	6.7.2 Example: Top 10 Most Collaborative People
	6.7.3 Example: Transitive Connectivity Between Electrical Devices

	6.8 Starting the In-Memory Analyst Server
	6.8.1 Configuring the In-Memory Analyst Server

	6.9 Deploying to Jetty
	6.10 Deploying to Apache Tomcat
	6.11 Deploying to Oracle WebLogic Server
	6.11.1 Installing Oracle WebLogic Server
	6.11.2 Deploying the In-Memory Analyst
	6.11.3 Verifying That the Server Works

	6.12 Connecting to the In-Memory Analyst Server
	6.12.1 Connecting with the In-Memory Analyst Shell
	6.12.1.1 About Logging HTTP Requests

	6.12.2 Connecting with Java
	6.12.3 Connecting with JavaScript

	6.13 Using the In-Memory Analyst in Distributed Mode
	6.14 Reading and Storing Data in HDFS
	6.14.1 Reading Data from HDFS
	6.14.2 Storing Graph Snapshots in HDFS
	6.14.3 Compiling and Running a Java Application in Hadoop

	6.15 Running the In-Memory Analyst as a YARN Application
	6.15.1 Starting and Stopping In-Memory Analyst Services
	6.15.1.1 Configuring the In-Memory Analyst YARN Client
	6.15.1.2 Starting a New In-Memory Analyst Service
	6.15.1.3 About Long-Running In-Memory Analyst Services
	6.15.1.4 Stopping In-Memory Analyst Services

	6.15.2 Connecting to In-Memory Analyst Services
	6.15.3 Monitoring In-Memory Analyst Services

	6.16 Using Oracle Two-Tables Relational Format
	6.17 Using the In-Memory Analyst to Analyze Graph Data in Apache Spark
	6.17.1 Controlling the Degree of Parallelism in Apache Spark

	6.18 Using the In-Memory Analyst Zeppelin Interpreter
	6.19 Using the In-Memory Analyst Enterprise Scheduler
	6.19.1 Using Lambda Syntax with Execution Environments

	7 Using Multimedia Analytics
	7.1 About Multimedia Analytics
	7.2 Processing Video and Image Data Stored in HDFS Using the Multimedia Analytics Framework
	7.3 Processing Streaming Video Using the Multimedia Analytics Framework
	7.4 Face Recognition Using the Multimedia Analytics Framework
	7.4.1 Training to Detect Faces
	7.4.2 Selecting Faces to be Used for Training
	7.4.3 Detecting Faces in Videos
	7.4.4 Detecting Faces in Images
	7.4.5 Working with Oracle NoSQL Database
	7.4.6 Working with Apache HBase
	7.4.7 Examples and Training Materials for Detecting Faces

	7.5 Configuration Properties for Multimedia Analytics
	7.5.1 Configuration Properties for Processing Stored Videos and Images
	7.5.2 Configuration Properties for Processing Streaming Video
	7.5.3 Configuration Properties for Training Images for Face Recognition

	7.6 Using the Multimedia Analytics Framework with Third-Party Software
	7.7 Displaying Images in Output

	A Third-Party Licenses for Bundled Software
	A.1 Apache Licensed Code
	A.2 ANTLR 3
	A.3 AOP Alliance
	A.4 Apache Commons CLI
	A.5 Apache Commons Codec
	A.6 Apache Commons Collections
	A.7 Apache Commons Configuration
	A.8 Apache Commons IO
	A.9 Apache Commons Lang
	A.10 Apache Commons Logging
	A.11 Apache Commons VFS
	A.12 Apache fluent
	A.13 Apache Groovy
	A.14 Apache htrace
	A.15 Apache HTTP Client
	A.16 Apache HTTPComponents Core
	A.17 Apache Jena
	A.18 Apache Log4j
	A.19 Apache Lucene
	A.20 Apache Tomcat
	A.21 Apache Xerces2
	A.22 Apache xml-commons
	A.23 Argparse4j
	A.24 check-types
	A.25 Cloudera CDH
	A.26 cookie
	A.27 Fastutil
	A.28 functionaljava
	A.29 GeoNames Data
	A.30 Geospatial Data Abstraction Library (GDAL)
	A.31 Google Guava
	A.32 Google Guice
	A.33 Google protobuf
	A.34 int64-native
	A.35 Jackson
	A.36 Jansi
	A.37 JCodec
	A.38 Jettison
	A.39 JLine
	A.40 Javassist
	A.41 json-bignum
	A.42 Jung
	A.43 Log4js
	A.44 MessagePack
	A.45 Netty
	A.46 Node.js
	A.47 node-zookeeper-client
	A.48 OpenCV
	A.49 rxjava-core
	A.50 Slf4j
	A.51 Spoofax
	A.52 Tinkerpop Blueprints
	A.53 Tinkerpop Gremlin
	A.54 Tinkerpop Pipes

	B Hive and Spark Spatial SQL Functions
	B.1 ST_AnyInteract
	B.2 ST_Area
	B.3 ST_AsWKB
	B.4 ST_AsWKT
	B.5 ST_Buffer
	B.6 ST_Contains
	B.7 ST_ConvexHull
	B.8 ST_Distance
	B.9 ST_Envelope
	B.10 ST_Geometry
	B.11 ST_Inside
	B.12 ST_Length
	B.13 ST_LineString
	B.14 ST_MultiLineString
	B.15 ST_MultiPoint
	B.16 ST_MultiPolygon
	B.17 ST_Point
	B.18 ST_Polygon
	B.19 ST_Simplify
	B.20 ST_SimplifyVW
	B.21 ST_Volume

	Index

