

[1] Oracle® AutoVue
API and ABV Developer’s Guide
Release 21.0.2.9
F10652-02

March 2024

Oracle AutoVue API and ABV Developer's Guide, Release 21.0.2.9

F10652-02

Copyright © 1999-2024, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial
computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

iii

Contents

Preface .. vii

Part I Java API Guide

1 Introduction – Java API

2 AutoVue API Packages
2.1 VueBean Package .. 2-1
2.1.1 Event Package... 2-2
2.1.1.1 VueEvent ... 2-3
2.1.1.2 VueModelEvent... 2-3
2.1.1.3 VueEventBroadcaster .. 2-4
2.1.1.4 VueFileListener ... 2-4
2.1.1.5 VueMarkupListener... 2-4
2.1.1.6 VueViewListener... 2-4
2.1.1.7 VueStateListener ... 2-4
2.1.1.8 VueModelListener ... 2-4
2.1.2 MarkupBean Package ... 2-4
2.1.2.1 Markup .. 2-5
2.1.2.2 MarkupLayer ... 2-5
2.1.2.3 MarkupEntity... 2-5
2.2 Server Control.. 2-6
2.3 VueAction Package.. 2-7
2.3.1 AbstractVueAction ... 2-7
2.3.2 VueAction... 2-7
2.3.2.1 Create an action that performs a single function ... 2-7
2.3.2.2 Create an action that performs multiple functions .. 2-8

3 Sample Cases
3.1 Building an AutoVue API Application.. 3-1
3.2 Custom VueAction... 3-4
3.2.1 Action that Performs a Single Function.. 3-4
3.2.2 Action that Performs Multiple Functions ... 3-6
3.3 Directly Invoking VueActions... 3-9
3.4 Markups ... 3-9

iv

3.4.1 Entering Markup Mode... 3-9
3.4.2 Checking Whether Markup Mode is Enabled .. 3-9
3.4.3 Exiting Markup Mode... 3-9
3.4.4 Adding an Entity to an Active Markup/Layer ... 3-10
3.4.5 Enumerating Entities ... 3-10
3.4.6 Getting Entity Specification of a Given Entity.. 3-10
3.4.7 Changing Specification of an Existing Entity Programmatically.. 3-10
3.4.8 Adding a Text Box Entity.. 3-10
3.4.9 Open Existing Markup... 3-11
3.4.10 Saving Markups to a DMS/PLM ... 3-11
3.4.11 Adding a Markup Listener to Your Application.. 3-12
3.5 Converting Files.. 3-13
3.5.1 Making a Call to a Convert Method .. 3-13
3.5.2 Converting to JPEG (Custom Conversion).. 3-13
3.5.3 Converting to PDF... 3-14
3.6 Printing a File to 11x17 Paper .. 3-15
3.7 Monitoring Event Notifications .. 3-15
3.8 Retrieving the Dimension and Units of a File .. 3-16

4 FAQs
4.1 MarkupBean... 4-1
4.2 Printing... 4-2
4.3 Upgrading .. 4-2
4.4 General... 4-2

Part II JavaScript API

5 Introduction – JavaScript API

6 Architecture

7 AutoVue Client Launch
7.1 AutoVue Client Launch from Java Web Start ... 7-1
7.1.1 Include AutoVue JavaScript API.. 7-1
7.1.2 Instantiate an AutoVue JavaScript Object .. 7-1
7.1.3 Start AutoVue Client .. 7-4

8 AutoVue Advanced Scripting
8.1 Advanced Scripting.. 8-1
8.2 Applet API vs. New API.. 8-11

Part III ABV Guide

v

9 Introduction – ABV Guide

10 Hotspots
10.1 Creating a Visual Dashboard .. 10-1
10.2 Creating a Visual Action... 10-2
10.3 Hotspot Features ... 10-2
10.3.1 Tooltips .. 10-2
10.3.2 Triggering Actions... 10-3
10.4 3D Hotspots .. 10-3
10.4.1 Defining a 3D Hotspot... 10-3
10.5 Text Hotspots in 2D and EDA Documents... 10-4
10.5.1 Defining a Text Hotspot .. 10-4
10.6 Regional Hotspots... 10-5
10.6.1 Defining Page-Specific Regional Hotspots ... 10-6
10.6.2 Defining Coordinates of a Box/Polygon.. 10-6
10.6.3 Defining a Box Hotspot ... 10-6
10.6.4 Defining a Polygon Hotspot .. 10-6
10.6.5 Invoking performHotspot().. 10-7
10.7 Web CGM Hotspots.. 10-7

11 AutoVue Hotspot API
11.1 Hotspot INI Options.. 11-1
11.1.1 PDF Text Hotspot .. 11-1
11.1.2 PDF Text Hotspot INI Options.. 11-2
11.2 Define Hotspots .. 11-2
11.2.1 Hotspot Definition Types .. 11-2
11.2.2 Hotspot Definition Parameters .. 11-2
11.2.2.1 Common Definition Parameters ... 11-2
11.2.2.2 Text Definition Parameters... 11-3
11.2.2.3 3D Definition Parameters ... 11-3
11.2.2.4 Regional Definition Parameters ... 11-4
11.2.3 Perform an Action on a Hotspot .. 11-4
11.2.3.1 Hotspot Actions .. 11-5
11.3 AutoVue API for ABV Integration... 11-5
11.4 Interactions with Hotspots from JavaScript.. 11-6

12 Hotspot Samples
12.1 Adding a Hotspot .. 12-1
12.2 3D Hotspot .. 12-3
12.3 Box Hotspot .. 12-3
12.4 Polygon Hotspot ... 12-4
12.5 Text Hotspot.. 12-4
12.6 Text Hotspot with Visual Actions and Visual Dashboard .. 12-4
12.7 3D Hotspot with Visual Actions and Visual Dashboard .. 12-5

vi

13 VueAction Sample
13.1 Running the VueAction Sample ... 13-2
13.2 Customizing the VueAction Sample... 13-2

14 ABV Design and Security Recommendations

A Feedback
A.1 General AutoVue Information .. A-1
A.2 Oracle Customer Support.. A-1
A.3 My Oracle Support AutoVue Community.. A-1
A.4 Sales Inquiries... A-1

vii

Preface

This document has two parts:

� The first part of this document - AutoVue API Developer’s Guide provides detailed
technical information on the AutoVue API concepts introduced in Oracle AutoVue
Integration Guide.

� The second part covers information about AutoVue JavaScript API allowing integration of
AutoVue application into Web context.

� The third part of this guide discusses Augmented Business Visualization (ABV) solution
that connects portion of documents to business data found in enterprise applications.

For the most up-to-date version of this document, go to the AutoVue Documentation Web
site on the Oracle Technology Network at

https://www.oracle.com/technetwork/documentation/autovue-091442.html

Audience
The first part of this document is intended for Oracle partners and third-party developers (such
as integrators) who want to implement their own integration with AutoVue. Note that these
developers are expected to have a good understanding of JAVA programming. The instructions
in the first part of the guide serves as a good starting point for developers and professional
services to become more familiar with the AutoVue API.

The second part of this document is intended for system integrators and developers looking to
create links between objects in AutoVue's data model and objects in an external system.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents on OTN:

� Oracle AutoVue Integration Guide

https://www.oracle.com/technetwork/documentation/autovue-091442.html

viii

� Oracle AutoVue Installation and Configuration Guide

� Oracle AutoVue Planning Guide

� Oracle AutoVue Integration SDK Overview and Installation Guide

� Oracle AutoVue Web Services Installation and Developer’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Part I
Part I Java API Guide

This part includes information on the AutoVue API, its fundamental packages and classes, as
well as sample code for building your own integration.

Part I contains the following chapters:

� Introduction – Java API

� AutoVue API Packages

� Sample Cases

� FAQs

1

Introduction – Java API 1-1

1Introduction – Java API

The AutoVue Application Programming Interface (API) is a Java-based toolset that provides
tools to modify the functionality of Oracle's AutoVue client, and allows you to create your own
customized Java applications based on AutoVue API components.

This document presents the technical application of the AutoVue Java API and its packages and
classes. Additionally, basic and advanced applications of the AutoVue Java API are provided
along with their source code.

Note: For a more general introduction to the AutoVue API, refer to the
"AutoVue API Solution" section of the Oracle AutoVue Integration Guide.
For detailed information on the packages and classes included in the
AutoVue API, refer to the VueBean and jVueApp Javadocs.

1-2 Oracle AutoVue API and ABV Developer's Guide

2

AutoVue API Packages 2-1

2AutoVue API Packages

The chapter provides an overview of common classes and interfaces that are used to create a
solution based on the AutoVue API.

2.1 VueBean Package
The VueBean component is central to the AutoVue client architecture. An application can
embed the VueBean component and use its API to provide comprehensive support for file
viewing, markup, real-time collaboration, and so on. The Figure 2–1 provides a graphical
overview of how the VueBean can be used when developing your own application.

Figure 2–1 VueBean overview

Note: For more information on classes/packages, refer to the VueBean
Javadocs located in the <AutoVue Installation>\docs directory.

Note: It is possible to have multiple instances of the VueBean class. For
example, when AutoVue is in Compare mode there are three instances of the
VueBean class.

VueBean Package

2-2 Oracle AutoVue API and ABV Developer's Guide

A typical VueBean usage scenario is as follows:

1. Create a VueBean Object.

2. Create a server control or use the default one obtained from the VueBean.

3. Use the server control to connect to the server and open a session on it.

4. View a file by invoking the VueBean.setFile(DocID) method.

The following file types are supported by the VueBean:

� Vector files (2D and 3D)

� Raster files

� Document files (MS Word, and so on)

� Spreadsheet files

� Archive files

The file type can be queried through the VueBean.getFileType() method and file information
can be retrieved through the VueBean.getFileInfo() method.

You may have to convert a file to another file type. To do so, use the VueBean.convert()
method.

In its various modes, such as viewing and markup, the VueBean manages the representation of
a file including the management of overlays, layers, and external references to other files or
resources upon which the file depends. Use the VueBean.getResourceInfoState() method to
query for resources that are attached to a file.

To search for a particular string in the file use the VueBean.search(PAN_CtlSearchInfo)
method. The following is an example of how to build the PAN_CtlSearchInfo object.

// Construct the search object with arguments (Search String, Search Multiple
// Occurrences, Search Downwards, Wrapped Search, Match Case, Whole Word),
// in this example we search for the word "line".
PAN_CtlSearchInfo searchInfo = new PAN_CtlSearchInfo("line", true, true,
 true, false, true);

2.1.1 Event Package
com.cimmetry.vuebean.event

For VueBean-specific events, the event delegation model of the VueBean is slightly different
from the standard Java one. Listeners such as VueViewListener, VueFileListener,
VueMarkupListener, or VueStateListener should register to the VueBean's
VueEventBroadcaster object instead of the VueBean itself.

For example: vueBean.getVueEventBroadcaster().addFileListener(listener).

Note: Running VueBean from a server (for example, Servlet or application
running from a server) is not a supported use case.

Note: Since the VueBean is only a client-side component, the connection to
the AutoVue server must be established before any operation can be
performed on the VueBean. Refer to Server Control for more information.

VueBean Package

AutoVue API Packages 2-3

This package provides interfaces and classes for VueBean event broadcasting. Every VueBean
object has an event broadcaster. Depending on the operation type, the broadcaster notifies
listeners using an instance of VueEvent or VueModelEvent. The following types of events are
supported:

� File events

� View events

� Markup events

� State events

� Model events

Every event type has a corresponding event listener interface which is registered to the
broadcaster. Objects that are responsible for handling of events should implement one or more
of the listener interfaces.

The following code sample defines and registers an event handler:

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;
.
.
.
final VueBean vueBean = getVueBean();// Get the valid active VueBean
if (vueBean != null) {
 VueFileListener eventHandler = new VueFileListener() {
 public void onFileEvent(VueEvent ev) {
 switch (ev.getType()) {
 case VueEvent.ONSETFILE:
 System.out.println("Set file: " + vueBean.getFile());
 break;
 case VueEvent.ONSETPAGE:
 System.out.println("Set page: " + vueBean.getPage());
 break;
 }
 }
 };
 vueBean.getVueEventBroadcaster().addFileListener(eventHandler);
}
.
.
.

2.1.1.1 VueEvent
com.cimmetry.vuebean.event.VueEvent

VueEvent object encapsulates information for all notifications sent by VueBean and is
generated for the VueFileListener, VueViewListener, VueMarkupListener and
VueStateListener interfaces. The event type is used to differentiate between a view event, file
event, markup event or state event.

2.1.1.2 VueModelEvent
com.cimmetry.vuebean.event.VueModelEvent

The VueModelEvent class handles all notifications for model-related events such as entity
attributes, 3D transformation, and so on. It is generated for objects implementing
VueModelListener interface.

VueBean Package

2-4 Oracle AutoVue API and ABV Developer's Guide

2.1.1.3 VueEventBroadcaster
com.cimmetry.vuebean.event.VueEventBroadcaster

VueEventBroadcaster is used to manage the event delegation model for the VueBean. Each
listener has to register to a VueEventBroadcaster to be notified of events in the VueBean. By
design, each VueBean owns its own VueEventBroadcaster. However, you may find it useful to
use only one VueEventBroadcaster for all beans by using the
VueBean.setVueEventBroadcaster method.

2.1.1.4 VueFileListener
com.cimmetry.vuebean.event.VueFileListener

Objects implementing this interface listen for file event notifications (such as setting file,
setting page, and so on).

2.1.1.5 VueMarkupListener
com.cimmetry.vuebean.event.VueMarkupListener

Objects implementing this interface listen for markup event notifications (such as entering or
exiting markup mode).

2.1.1.6 VueViewListener
com.cimmetry.vuebean.event.VueViewListener

Objects implementing this interface listen for view event notifications (such as zoom, begin and
end paint, and so on).

2.1.1.7 VueStateListener
com.cimmetry.vuebean.event.VueStateListener

Objects implementing this interface listen for state event notifications (such as server error, file
error, and so on).

2.1.1.8 VueModelListener
com.cimmetry.vuebean.event.VueModelListener

Objects implementing this interface listen for model event notifications (such as model
attribute, selection, transformation changes, and so on).

2.1.2 MarkupBean Package
com.cimmetry.markupbean

The top-level class for the com.cimmetry.markupbean package is the MarkupBean class.
MarkupBean represents the Markup functionality in the VueBean API. Each VueBean instance
can contain only one MarkupBean instance, represented by a private member variable. Through
the MarkupBean class, you can add/modify/remove Markup Files, Markup Layers, and Markup
Entities, as well as open and save Markup Files.

The following diagram displays how the architecture of a Markup is structured into four
separate levels: Section 2.1.2.1, "Markup," Section 2.1.2.2, "MarkupLayer," Section 2.1.2.3,
"MarkupEntity," and Section 2.1.2.3.1, "MarkupEntitySpec."

VueBean Package

AutoVue API Packages 2-5

Figure 2–2 Markup architecture

2.1.2.1 Markup
com.cimmetry.markupbean.Markup

This interface represents an individual Markup file. The key functionalities are as follows:

� Get/set information regarding the Markup files, such as:

� Name

� Visibility

� Whether Markup is modified

� Whether Markup is read-only

� Get information regarding the base file

� Get the layers in the Markup

2.1.2.2 MarkupLayer
com.cimmetry.markupbean.MarkupLayer

This interface represents an individual Markup layer. The key functionalities are as follows:

� Get/set information regarding the specific layer, such as:

� Name

� Color

� Visibility

� Line type and width

� Get the entities in the Markup layer

2.1.2.3 MarkupEntity
com.cimmetry.markupbean.MarkupEntity

This interface represents an individual Markup entity. The key functionalities are as follows:

� Get/set information regarding the specific Markup entity, such as:

Server Control

2-6 Oracle AutoVue API and ABV Developer's Guide

– Name

– Author

– Date modified

– Color

– Line type and width

– Tooltip text

– Visibility

– Selection state

� Get children entities of the specific entity

� Perform actions when user double-clicks on entity

2.1.2.3.1 MarkupEntitySpec

com.cimmetry.markupbean.MarkupEntitySpec

This class represents an entity's specification. Each entity has its own specification class that is
derived from this class that defines the attributes specific to that entity's context.

For example, the specification for a rectangle entity includes attributes for the XY coordinates
of all four corners, while the specification for a text entity includes attributes for the contained
text as well as its alignment.

2.2 Server Control
com.cimmetry.vueconnection.ServerControl

The ServerControl class handles the server connection object and the user session. Prior to
using the VueBean, you must first set its ServerControl properties, connect to the server via the
connect() method, and then open a session via the sessionOpen() method.

For example:

import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;
…
VueBean bean = new VueBean();
ServerControl control = bean.getServerControl();
try {
 control.setHost(<SERVER URL>);
 control.connect();
 control.setUser("scarlati");
 control.sessionOpen();
} catch (Exception e) {
 System.out.println("Failed to connect to AutoVue Server.");
}
…

For example, http://<HostName>:5098/servlet/VueServlet

Note: Set the server URL to the VueServlet URL.

VueAction Package

AutoVue API Packages 2-7

2.3 VueAction Package
com.cimmetry.vueaction

This package provides a hierarchy of classes implementing the AutoVue action API. It can be
used to add graphical user interface (GUI) elements to different contexts (such as menu bar,
toolbar, status bar, and so on). For example, when a menu option is selected in the GUI, a
VueAction is triggered.

To add a new action to the AutoVue client, create a new action class by extending VueAction.

Use the methods in this package to:

� Specify resources for an action. For example, menu item text, an icon, tooltip text, and so
on.

� Specify which resource bundle (a properties file with resource mappings) to search in for
the action's resources.

� Specify sub-actions (for example, Zoom In, Zoom Out, Zoom Previous, and so on) for the
action if it can perform more than one function.

� Receive a message signifying that the action should be performed. If the action has
sub-actions, the sub-action to perform is specified.

� Specify the display properties of the action or its sub-actions that appear in the GUI in the
menu bars, toolbars, and popup menus. For example, specify whether the action can be
selected (behaves as a checkbox) and/or whether it is enabled.

� Specify groups of sub-actions (if the action includes sub-actions) in which selection is
exclusive (that is, in which only one sub-action can be selected at a time).

2.3.1 AbstractVueAction
com.cimmetry.vueaction.AbstractVueAction

The abstract class AbstractVueAction is the super class of all action classes. All actions
performed on the session must be derived from this class or a descendent of this class.

2.3.2 VueAction
com.cimmetry.vueaction.VueAction

VueAction is an abstract class that extends VueActionMultiMenu. It provides a simple yet
powerful interface for creating actions.

To create a new action class, you must extend this class. There are two ways to do this
depending on whether your action performs a single function or multiple functions. The
following sections describe both scenarios.

2.3.2.1 Create an action that performs a single function
1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.

VueAction Package

2-8 Oracle AutoVue API and ABV Developer's Guide

3. Implement a perform() method to override the one in VueAction.

4. Implement event handlers onFileEvent and onViewEvent to ensure that your action is
enabled or disabled when appropriate. For example, if no base file has been loaded yet,
your action will be disabled. However, once a file has been reloaded, your action must be
enabled.

5. Create one or more resource files (one resource file per language your action supports)
containing the resource keys and their values needed by your action. Together with any
icon files used by your action, these files are referred to as a resource bundle. For an
example of a resource file, refer to VueFrame_en.properties.

6. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location.

To view an example of implementing an action that performs a single function, refer to Action
that Performs a Single Function.

2.3.2.2 Create an action that performs multiple functions
1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.

3. After you call the super constructor, call defineSubAction() to define each sub-action your
action can perform.

4. Implement a performSubAction(String) method to override the one in VueAction.

Note: Since your action performs only one function, the super constructor
takes the two String arguments: resource key and resource bundle. The
resource bundle identifies the set of text files (one for each locale your action
supports) containing the resources identified by the resource key for your
action.

Note: This method is called when your action has been fired. In this
method, enter your action's code.

Note: Since your action performs multiple functions, the super constructor
takes one String argument: the resource bundle name. The resource bundle
name identifies the set of text files (one for each language your action
supports) containing the resources for your action.

Note: In each case, specify the name by which you want to refer to the
sub-action and its resource key. The resource key identifies where to find the
resources for your action (for example, menu item text, icon, tooltip text and
so on) in your resource bundle. Optionally, you can call
defineExclusiveGroup() to define a subset of your sub-actions that form an
exclusive group. That is, sub-actions that are selectable where only one can
be selected at a time.

VueAction Package

AutoVue API Packages 2-9

5. Implement event handlers onFileEvent and onViewEvent to ensure that your sub-actions
are enabled or disabled when appropriate. For example, if no base file has been loaded,
your sub-action will be disabled. However, once a file has been reloaded, your sub-actions
must be enabled.

6. Create one or more resource files (one resource file per language that your action supports)
containing the keys and values needed by your action.

7. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location. You must also specify the appropriate sub-actions.

To view an example of implementing an action that performs multiple functions, refer to
Action that Performs Multiple Functions.

Note: This method is called when your action's sub-action has been fired.
The method is passed the name of the sub-action fired, so that you will know
which one to perform. In this method, enter your sub-action's code.

Note: Together with any icon files used by your action, these files are
referred to as a resource bundle.

Note: When deploying VueAction jar on the web, you have to properly
sign the jar. Refer to how to Configure and Run the AutoVue
VueActionSample (Doc ID 1677471.1)

VueAction Package

2-10 Oracle AutoVue API and ABV Developer's Guide

3

Sample Cases 3-1

3Sample Cases

This chapter provides information on typical use cases you may come upon when creating an
AutoVue API application or adding enhanced functionality to the AutoVue client. Refer to the
VueBean and jVueApp Javadocs for more information.

3.1 Building an AutoVue API Application
A good starting point with the AutoVue API is to create an application that opens and displays
a file.

This section provides detailed steps for creating a file open application using the AutoVue API.

1. Import required packages.

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import com.cimmetry.util.Messages;

import com.cimmetry.core.*;
import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;

2. Create a Java class, ApplicationSample, that can be run as a stand-alone application, and
declare all external parameters and internal data members.

public class ApplicationSample {
 private String m_host = "http://<HostName>:5098/servlet/VueServlet";
 private String m_user = "guest";

Important: When executing a task in sequence you must make sure the
previous task is completed before starting a new one. For example, when
opening a file, the process should listen for the file event
VueEvent.ONPAGELOADED to be notified. In the event of a file error, the
state even VueEvent.ONFILEERROR is notified. When loading markups,
listen and wait for the markup event MarkupEvent.ONMARKUPLOADED
to be notified.

Note: Throughout this document, m_vueBean is used as a valid active
VueBean object and m_JVue as a valid JVueApp object. This is done
assuming that the methods or segments of code that use objects have access
to a class which owns them.

Building an AutoVue API Application

3-2 Oracle AutoVue API and ABV Developer's Guide

 private String m_fileName = null;
 private String m_verbose = null;
 private String m_format = "AUTO";
 // Internal data members
 private VueBean m_vueBean = null;
 private ServerControl m_control = null;
 private static JFrame m_frame = null;
 private JMenu m_fileMenu = null;
}

3. Create stand-alone application support.

public static void main(final String args[]) {
 ApplicationSample app = new ApplicationSample();
 app.init(args);
}
public void init(final String[] args) {
 switch (args.length) {
 case 4:
 m_verbose = args[3];
 case 3:
 m_fileName = args[2];
 case 2:
 m_user = args[1];
 case 1:
 m_host = args[0];
 default:
 break;
 }
 init();
}

4. Initialize the application.

public void init() {
 // Setup verbosity
 if (m_verbose != null && m_verbose.length() > 0) {
 Messages.setVerbosity(m_verbose);
 }
…

5. Establish a connection with the server.

m_control = new ServerControl();
try {
 m_control.setHost(m_host);
 m_control.connect();
} catch (Exception e) {
 System.out.println("Unable to connect to:"+m_host);
 e.printStackTrace();
 return;
}

6. Open the session.

try {
 m_control.setUser(m_user);
 m_control.sessionOpen();

Note: The init() method continues until step 13.

Building an AutoVue API Application

Sample Cases 3-3

} catch (Exception e) {
 System.out.println("Unable to open session for " + m_user);
 e.printStackTrace();
 return;
}

7. Initialize the frame.

m_frame = new JFrame("VueBean Sample");
m_frame.setBounds(100, 100, 640, 480);
m_frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 destroy();
 }
});

8. Set the menus and actions.

setMenuBar();

9. Create the bean.

m_vueBean = new VueBean(m_format);
m_vueBean.setServerControl(m_control);
m_vueBean.setBackground(Color.lightGray);

10. Add the VueBean to the frame.

m_frame.getContentPane().add(m_vueBean);

11. Display the frame.

m_frame.setVisible(true);

12. Show the file.

updateFile();
}// Closing bracket for init() method

13. Close the session.

public void destroy() {
 try {
 m_control.sessionClose();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 m_frame.setVisible(false);
 m_frame.dispose();
 System.exit(0);
}

14. Get the attached VueBean.

public VueBean getVueBean() {
 return m_vueBean;
}

15. Get the attached frame.

public JFrame getFrame() {

Note: This step marks the end of the init() method.

Custom VueAction

3-4 Oracle AutoVue API and ABV Developer's Guide

 return m_frame;
}

16. Get the file menu.

protected JMenu getFileMenu() {
 return m_fileMenu;
}

17. Get the frame. The following method sets the client’s menu bar to File Open, Print, and
Exit.

public void setMenuBar() {
 m_fileMenu = new JMenu("File");
 JMenuItem menuItem;
 // File open menu item
 menuItem = m_fileMenu.add(new JMenuItem("Open"));
 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showFile();
 }
 });
 // set the client’s menu bar
 JMenuBar menu_bar = new JMenuBar();
 m_frame.setJMenuBar(menu_bar);
 menu_bar.add(m_fileMenu);
}

18. Load the file.

public void updateFile() {
 // Set the vuebean's file
 if (m_fileName != null && !m_fileName.equals("")) {
 m_vueBean.setFile(new DocID(m_fileName));
 m_vueBean.setBackground(Color.lightGray);
 }
}

19. Display the client-side (upload) File Open dialog and set the selected file in the bean.

public void showFile() {
 FileDialog openDlg = new FileDialog(m_frame, "File Open", FileDialog.LOAD);
 openDlg.setVisible(true);
 m_fileName = "upload://"+openDlg.getDirectory() + openDlg.getFile();
 openDlg.dispose();
 updateFile();
}
}//end of class

3.2 Custom VueAction
This section presents examples implementing a custom VueAction class.

3.2.1 Action that Performs a Single Function
The following example shows how to implement a custom action for AutoVue that performs a
single function. That is, when a user double-clicks on a hotspot, a dialog appears and lists all
components of a drawing that are represented by the hotspot.

Note: End of class ApplicationSample. In order to run the application
properly, an AutoVue server needs to be running on either a local or remote
host that is specified through command line arguments. Refer to step 3 for the
definition of each argument.

Custom VueAction

Sample Cases 3-5

For information on AutoVue’s hotspot capabilities, refer to the ABV Guide.

1. Import all required packages.

import java.awt.*;
import java.util.Vector;
import com.cimmetry.vuebean.*;
import java.awt.event.*;
import com.cimmetry.vuebean.event.*;
import com.cimmetry.vueframe.*;
import com.cimmetry.vueframe.hotspot.*;
import com.cimmetry.core.*;
import com.cimmetry.dialogs.VueBasicDialog;
import com.cimmetry.vueaction.VueAction;
import com.cimmetry.gui.*;

2. Make your class extend VueAction.

public class PartListAction extends VueAction { …}

3. In the constructor of your class, call the appropriate super constructor. Since this action
only performs a single function, a call to the super-constructor of VueAction takes this
action's resource key as well as its resource bundle name.

public PartListAction() {
 super("LIST_PARTS",RESOURCE_BUNDLE_NAME);
 setViewListener(true);
}

4. Implement a perform method for this action.

public void perform() {
 PartInfo[] parts = new PartInfo[m_cart.size()];
 m_cart.copyInto(parts);
 PartListDialog dialog = new PartListDialog(getFrame(), parts);
 dialog.show();
}

5. Implement the event handlers onFileEvent and onViewEvent to notify when a file has
changed and to update the user-interface.

public void onFileEvent(VueEvent e) {
 switch (e.getEvent()) {
 case VueEvent.ONPAGELOADED:
 setEnabledByCurrentState();
 break;
 }
}
public void onViewEvent(VueEvent e) {

Note: The following are segments of the source code of the VueAction
example to illustrate the essential steps of creating a custom action, it may
not compile if you just copy and paste the code here. For the complete source
code, refer to PartListAction.java.

Note: The resource bundle name here is the common part of resource
bundle files for different languages. The actual name of a resource bundle file
should include the language suffix and file extension. For example,
PartListAction_en.properties is the resource bundle file for English.

Custom VueAction

3-6 Oracle AutoVue API and ABV Developer's Guide

 switch(e.getEvent()) {
 case VueEvent.ONLINKCLICKED:
 Object[] params = (Object[]) e.getParameter();
 MouseEvent me = (MouseEvent) params[0];
 if (me.getClickCount() == 2) {
 Object link = params[1];
 if (link instanceof HotSpot) {
 HotSpot hotspot = (HotSpot) link;
 PartInfo part = getPartInfo(hotspot);
 m_cart.addElement(part);
 }
 }
 break;
 default:
 super.onViewEvent(e);
 break;
 }
}

6. The dialog that lists all components of a drawing extends VueBasicDialog. You must
implement your own constructor that calls the super-constructor and over-rides
buildDialog() and buttonAction(int).

public static class PartListDialog
extends
 VueBasicDialog
implements
 ActionListener (…)
protected void buildDialog() {

 super.buildDialog();
…
}
protected void buttonAction(int index){…}

7. You must define a model for the table that represents the displayed product parts list.

public static class PartListModel implements CTableModel { …}

8. Close the PartListDialog() method.

9. Get a PartInfo associated with a given hotspot.

private PartInfo getPartInfo (HotSpot hotspot) {
 return new PartInfo(hotspot.getDefinitionKey(),
 hotspot.getHotSpotKey(),
 hotspot.getProperty(HotSpot.PROPERTY_DESCRIPTION));
)

3.2.2 Action that Performs Multiple Functions
The following example shows how to implement a custom action for AutoVue that performs
multiple tasks. The custom action consists of several related sub-actions that access information
about parts of a model. One sub-action permits the user to order a part, another permits the user
to display part information, and another sub-action displays a list of all the model's parts.

Note: The following are segments of the source code of the VueAction
example to illustrate the essential steps of creating a custom action, it may
not compile if you just copy and paste the code here. For the complete source
code, refer to PartCatalogueAction.java.

Custom VueAction

Sample Cases 3-7

1. Make your class extend VueAction.

public class PartCatalogueAction extends VueAction {
 private static final String RESOURCE_BUNDLE_NAME ="/PartCatalogueAction";

 // Names of the sub-actions used in *.gui file
 private static final String ORDER_SUBACTION = "Order";
 private static final String LIST_PARTS_SUBACTION = "ListParts";
 private static final String SHOW_INFO_SUBACTION = "ShowInfo";
 …
}

2. In the constructor of your class, call the appropriate super constructor.

public PartCatalogueAction() {
 super(RESOURCE_BUNDLE_NAME);
 defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");

3. Call defineSubAction to define each sub-action your action can perform.

defineSubAction(ORDER_SUBACTION,"ORDER_PART");
defineSubAction(LIST_PARTS_SUBACTION,"LIST_PARTS");
defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");
}

4. Implement a performSubAction(String) method to override the one in VueAction.

public void performSubAction(String subActionName) {
 if (subActionName.equals(ORDER_SUBACTION)) {
 //Code for performing the "Order" subaction
 …
 } else if (subActionName.equals(LIST_PARTS_SUBACTION)) {
 //Code for performing the "List Parts" subaction
 …
 }
…
}

5. Implement the event handlers onFileEvent and onViewEvent to ensure that your
sub-actions are enabled or disabled when appropriate.

public void onFileEvent(VueEvent e) {
 switch (e.getEvent()) {
 case VueEvent.ONSETFILE:
 //Code for handling ONSETFILE event
 …
 case VueEvent.ONPAGELOADED:
 //Code for handling ONPAGELOADED event
 setEnabledByCurrentState();
 …
 break;
 }
 }
public void onViewEvent(VueEvent e) {
 switch(e.getEvent()) {
 case VueEvent.ONVIEWCHANGED:
 //Code for handling ONVIEWCHANGED event
 setEnabledByCurrentState();

Note: The resource bundle name used here is the common part of resource
bundle files for different languages. The actual name of a resource bundle file
should include the language suffix and file extension. For example,
PartCatalogueAction_en.properties is the resource bundle file for English.

Custom VueAction

3-8 Oracle AutoVue API and ABV Developer's Guide

 …
 break;
 case VueEvent.ONOPTIONSCHANGED:
 //Code for handling ONOPTIONSCHANGED event
 …
 break;
 }
 }

6. Create one or more resource files, one per language your action supports, containing the
keys and values needed by your action. For example:

…
FILE_MARKUP_NEW_MARKUP=&New Markup, 32_new_markup_red.png, New Markup
FILE_MARKUP_OPEN=&Open..., 57_markup_red.png, Open Markup(s)
FILE_MARKUP_SMALL= &Markup, 57_markup_red_small.png, Markup
FILE_MRU=Recent Files
FILE_NOTFOUND=File not found.
FILE_NOTSUPPORTED=This file format is not supported by your server.
FILE_NOTUPLOADED=Failed to upload file.
FILE_OPEN=&Open...\\tCTrL+O, 59_open.png, Open File
FILE_OPEN_SERVER=Open from &Server..., , Open a file from the server
…
Similarly, in our resource bundle file for English language PartCatalogueAction_
en.properties, it should contain the resource keys for the PartCatalogueAction shown in the
following:

…
ORDER_PART = &Order Part, order_part.png, Order a part
LIST_PARTS = &List Parts, list_parts.png, List product parts
SHOW_INFO_SUBACTION = &Show Part Info, show_info.png, Show part information
…

7. Make a copy of AutoVue's default.gui file located in the <AutoVue Installation Root>\bin
directory, and insert the name of your new action in the appropriate locations of your GUI
file. Note that for an action that performs multiple tasks, you must also specify the
appropriate sub-actions.

8. To allow the custom action to take effect, you may need to create a JAR file with your
custom VueAction classes and all resource files they depend on. For example, for the
resource bundle files for different languages and icon files, if any, place your JAR file
under AutoVue's bin directory or its web root directory and include your JAR file in the
classpath of the stand-alone AutoVue (JVueApp) application.

Note: Each resource key has three entries separated by a comma ",". The
first entry (for example, &Order Part) is the text displayed on the GUI item
(such as a menu item or toolbar button) and the ampersand "&" defines a
shortcut key. The second entry (for example, order_part.png) is the file of the
icon displayed on its GUI item. The third entry is the tooltip text for the GUI
item. The second and third entries are optional. You should get the icon files
ready if needed and add them to the JAR file for your custom action.

Note: For information on how PartCatalogueAction sub-actions are
inserted into a menu bar, tool bar, and custom pop-up menu, refer to
default.gui and the custom.gui file located in the <AutoVue Installation
Root>\examples\VueActionSample\ directory.

Markups

Sample Cases 3-9

9. You must specify the name of the modified GUI file through INIT_PARAMS parameters
or Command line parameters. For more information, refer to the "Customizing the GUI"
section of the Oracle AutoVue Installation and Configuration Guide.

3.3 Directly Invoking VueActions
You can develop your own customized user interface in an HTML page that incorporates
AutoVue functionality. To do so, you must call invokeAction() of the AutoVue JavaScript
Object from the HTML page (see JavaScript API for more details). This call to the action can
be done purely through JavaScript. For a list of actions/subactions, refer to the default.gui file
located in <AutoVue Install Root>\bin directory.

Example 3–1 invokeAction()
invokeAction(VueActionFileOpen) //Displays the File Open dialog

3.4 Markups
The following sections describes some ways to execute common Markup actions.

3.4.1 Entering Markup Mode
VueBean.setMarkupModeEnabled(true)

Checks whether the MarkupBean member is null, and if so:

� Instantiates a new MarkupBean object

� Gets the markup settings from the user's profile

� Sets the markup-specific mouse listeners

� Points the VueBean's MarkupBean member to the new instance

� Broadcasts VueEvent.ONENTERMARKUPMODE

3.4.2 Checking Whether Markup Mode is Enabled
VueBean.isMarkupModeEnabled()

Checks whether the MarkupBean member is enabled.

3.4.3 Exiting Markup Mode
VueBean.setMarkupModeEnabled(false)

Checks whether the MarkupBean member is null, and if not:

� Sets the MarkupBean member to null

� Removes markup-specific mouse listeners

� Saves markup settings into the user's profile

� Broadcasts VueEvent.ONEXITMARKUPMODE

Note: Various MarkupBean functionalities (and various functionalities
throughout the AutoVue API) require the use of the Property class. This class
is used to define various property hierarchies for other classes in the API.

Markups

3-10 Oracle AutoVue API and ABV Developer's Guide

3.4.4 Adding an Entity to an Active Markup/Layer
MarkupBean.setMarkupEntityClass(<class name of desired markup entity>)
MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

Adds a new markup entity to the active layer in an active Markup (based on the class name
provided) through user input from the GUI. To programmatically add a markup entity, you
must call: MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

3.4.5 Enumerating Entities
MarkupLayer.getEntities()
or

MarkupBean.getMarkupEntities(MarkupLayer layer)

Returns an array of MarkupEntity objects in a markup layer.

3.4.6 Getting Entity Specification of a Given Entity
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent)

You must pass in the specific entity for MarkupBean to return its specification.

3.4.7 Changing Specification of an Existing Entity Programmatically
MarkupBean.exchangeMarkupEntity(MarkupEntity a, MarkupEntity b)

Allows you to dynamically change the properties of an existing entity. That is, it replaces
markup entity a with markup entity b. Some properties can be directly changed via the
following set methods of MarkupEntitySpec inherited from the MarkupGraphicSpec parent
class:

� setColor

� setFillColor

� setFilled

� setFilltype

� setFont

� setLineType

� setLineWidth

For other properties, such as the entity position, entity size, entity text content, and so on, there
are no set methods directly on the specification. As a result, you must do the following:

1. Create a new specification instance (with the new properties).

2. Create a new entity instance (with the new specification).

3. Use exchangeMarkupEntity to replace the existing entity.

4. Make a call to MarkupBean.repaint().

3.4.8 Adding a Text Box Entity
The following code shows how to add a text box entity programmatically.

import com.cimmetry.markupbean.*;
import com.cimmetry.gui.*;

Markups

Sample Cases 3-11

.

.

.
public void addTextBox(String text){

 m_vueBean.setMarkupModeEnabled(true);

 CTextPane textPane = GUIFactory.createTextPane();
 textPane.setText(text);
 byte[] textRTF = textPane.getRTF();
 PAN_CtlRange rect = new PAN_CtlRange(m_vueBean.getViewExtents());
 rect.scale(0.2);
 TextBoxSpec spec = new
 TextBoxSpec(m_vueBean.getMarkupBean().getMarkupEntitySpec(),
 rect.min, textRTF, rect.max,TextBoxSpec.MRK_ALIGN_BOTTOMCENTER);
 m_vueBean.getMarkupBean().setMarkupEntityClass(spec.getEntityClassName());
 m_vueBean.getMarkupBean().addMarkupEntity(spec);
}

3.4.9 Open Existing Markup
MarkupBean.readMarkup(InputStream is)

InputStream can be relative to the client (for example, a locally-saved Markup), relative to the
AutoVue server (for example, managed by AutoVue's markups.map file) or from a
DMS/PLM/ERP.

To read a Markup from the AutoVue server, you first must get the InputStream by reading the
Markup Property from the VueBean, and then choose a child property (that represents a
Markup file) you want to read into the stream. The following code illustrates how to create a
markup, save it, and then read it into the MarkupBean.

import com.cimmetry.markupbean.*;
.
.
Property[] name = {new Property(Property.PROP_DOC_NAME, <your Markup name>)};
Property prop = new Property(Property.PROP_MARKUP, name);
ByteArrayOutputStream os = new ByteArrayOutputStream();
m_markupBean.writeMarkup(os);
m_vueBean.writeMarkup(prop, os);
Property masterMarkup = m_vueBean.getMarkupProperty();
Property[] listMarkups = masterMarkup.getChildrenWithName(Property.PROP_MARKUP);
Property aMarkup = listMarkup[0];
InputStream is = m_vueBean.readMarkup(aMarkup);
m_markupBean.readMarkup(is);
…

3.4.10 Saving Markups to a DMS/PLM
Note: This example is not applicable if you are building an ISDK-based application.

The following example uses the same concept as saving a Markup back to the AutoVue server;
you must set the appropriate Property and build the OutputStream. In order to build the Markup
property, you need to first read the CSI_Markups property so that you can retrieve the values
that the user sets in the Markup Save dialog.

private void saveMarkupToDMS() {
 // Gets the master markup property for the current file, that is,
 // the property containing the GUI and the markup list
 Property propMaster = m_vueBean.getMarkupProperty();

Markups

3-12 Oracle AutoVue API and ABV Developer's Guide

 // If none, the an output appears stating "Could not get master markup property"
 if (propMaster == null) {
 System.out.println("Could not get master markup property!");
 return;
 } else {
 // Get the GUI child property under master markup property
 Property[] listGuiProp =propMaster.getChildrenWithName(Property.PROP_GUI);
 if (listGuiProp == null || listGuiProp.length != 1) {
 System.out.println("No valid GUI property!");
 return;
 }
 Property propGui = listGuiProp[0];
 // Get the user field (Edit) child property under GUI property
 Property[] listEditProp =propGui.getChildrenWithName(Property.PROP_GUI_
 EDIT);
 if (listEditProp == null || listEditProp.length != 1) {
 System.out.println("No valid GUI edit property!");
 return;
 }
 Property propGuiEdit = listEditProp[0];
 // Get the list of user fields from save dialog all children items under GUI
 // edit property
 Property [] itemsEdit = propGuiEdit.getChildren();
 // ToDo: Use the list of edit items (GUI element) to construct a
 // save dialog to get user input for properties under PROP_GUI_EDIT.
 // Assume the input for attribute "CSI_DocName" we got from the dialog
 // is "myMarkup" and the input for attribute "CSI_MarkupType" is
 // "Normal", now the following code using the inputs to construct
 // the markup property contains these two attributes. In reality
 // there can be more than two attributes.
 Property [] listProp = {
 new Property("CSI_DocName", "myMarkup"),
 new Property("CSI_MarkupType", "Normal")
 };
 // Create a Markup property with the specified name & type properties
 Property propMarkup = new Property(Property.PROP_MARKUP, listProp);
 // Save the Markup
 try {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 m_vueBean.getMarkupBean().writeMarkup(os);
 m_vueBean.writeMarkup(propMarkup, os);
 } catch (MarkupIOException e) {
 System.out.println("Markup IO Exception!");
 }
 }
}

3.4.11 Adding a Markup Listener to Your Application
MarkupBean.getMarkupBroadcaster().addMarkupEventListener(MarkupEventListener mel);

A Markup listener listens for Markup events related to creating/saving/deleting Markups,
Markup entities, Markup file information, fonts, Markup status, and so on. Note that you must
implement the com.cimmetry.MarkupBean.event.MarkupEventListener interface (thereby
implementing the onMarkupEvent method).

Converting Files

Sample Cases 3-13

3.5 Converting Files
The following sections discuss how to execute common Conversion actions such as making a
call to convert, converting an image to a JPEG using a custom conversion, and converting a
vector file to a PDF. In some cases, there are additional methods to achieve the same
functionality. Refer to the VueBean Javadocs for more information.

The class hierarchy for conversion is as follows:

Figure 3–1 Conversion class hierarchy

3.5.1 Making a Call to a Convert Method
com.cimmetry.vuebean.VueBean.convert(ConvertOptions opts)

or

com.cimmetry.jvue.JVueApp.convertFile

Once the convert options are defined, you must call one of the methods to convert.

3.5.2 Converting to JPEG (Custom Conversion)
To convert an image to a JPEG, you must use the encode() method that Java provides as part of
the com.sun.image.coded.jpeg.JPEGImageEncoder interface. This method encodes buffers of
the image data in JPEG data streams. To use this interface, you must provide the image data in
raster format or a BufferedImage. The following example illustrates how to use this interface
with the AutoVue API:

import java.io.*;

Note: Conversion of 3D files or pages containing 3D data is no longer
supported.

Note: The classes represent the format which you are converting a file to.
For example, if you are converting to a vector format, you should define a
VectorConvertOptions and pass it into the conversion method.

Note: When making a call from the VueBean you must call
VueBean.convert. When making a call from the JVueApp layer, you must
call JVueApp.convertFile.

Converting Files

3-14 Oracle AutoVue API and ABV Developer's Guide

import java.awt.*;
import java.awt.image.*
import com.cimmetry.core.*;
import com.sun.image.codec.jpeg.*;
…

double scaling=0.5; BufferedImage bi = new BufferedImage(
 (int)(m_vueBean.getWidth()*scaling),(int)(m_vueBean.getHeight()*scaling),
 BufferedImage.TYPE_INT_RGB);

//Create or get Graphics and RenderOptions object here
Graphics2D g = bi.createGraphics();
RenderOptions optsRender = new RenderOptions();
//TODO: Initialize the Graphics object and RenderOptions object properly such
//as setting the source and destination.
try {
 m_vueBean.renderOntoGraphics(g,optsRender);
 FileOutputStream out = new FileOutputStream("c:\\temp\\my.jpeg");
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
 JPEGEncodeParam param = encoder.getDefaultJPEGEncodeParam(bi);
 //TODO: Use the JPEGEncodeParam Interface to set the encoder parameters.
 encoder.encode(bi, param);
 out.flush();
 out.close();
} catch (Exception e) {
 System.out.println("Exception while converting to JPEG ");
 return;
}
…

3.5.3 Converting to PDF
To convert a vector file to a PDF you must perform the following steps:

� Create new VectorConvertOptions() object

� Set all appropriate convert options

� Call VueBean.convert and pass in the convert options

The following convertToPDF() method converts a vector file to a PDF.

public void convertToPDF() {
 VectorConvertOptions opts = new VectorConvertOptions();

 opts.setStepsPerInch(1);
 PAN_CtlFileInfo fi = m_vueBean.getFileInfo();
 PAN_CtlRange ps = m_vueBean.getPageSizeEx();

 if (fi.getType() == fi.PAN_DocumentFile) {
 ps = fi.getPageSize();
 }
 opts.setInputRange(ps);
 opts.setArea(ConvertOptions2D.AREA_EXTENTS);
 opts.setScaleFactor(100);
 opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
 opts.setUnits(Constants.UNITS_INCH);
 opts.setPages(ConvertOptions2D.PAGES_ALL);
 opts.setFromPage(1);
 opts.setToPage(fi.getPagesNumber());
 opts.setFormat("PCVC_PDF");
 opts.setSubFormatID(0);

Monitoring Event Notifications

Sample Cases 3-15

 opts.setFileName("c:\\output.pdf");

 //Uploads all currently loaded markups to the AutoVue server
 Property[] p = m_ vueBean.uploadMarkups();

 opts.setProperties(p);
 m_ vueBean.convert(opts);
}

3.6 Printing a File to 11x17 Paper
The following code prints a file to 11x17 paper size using the
com.cimmerty.common.PrintProperties and com.cimmetry.common.PrintOptions classes.

import com.cimmetry.common.PrintProperties;
import com.cimmetry.common.PrintOptions;
public void printFile() {
 PrintProperties paramPrintProperties = new PrintProperties();
 PrintOptions po = new PrintOptions();
 po.setPrinter("AutoVue Document Converter");
 po.setPaperSize(po.PAPER_11X17);
 paramPrintProperties.setOptions(po);
 // The second parameter will enable the bypass of the Windows dialog
 m_ JVue.printFile(paramPrintProperties, true);
}

3.7 Monitoring Event Notifications
com.cimmetry.vuebean.event

If you have a requirement to programmatically execute specific file actions (such as rotation,
zooming, and so on) as soon as a file has finished loading, you must monitor for the appropriate
event notifications. If you do not check for file load completion, you might call a file action too
early which may lead to errors.

The VueBean includes a set of notifications known as VueEvents. You can set up a listener to
catch VueEvents, and catch the specific events that represent the completion of a file loading.
In order to catch file loading completion, you must use a file listener, with the VueFileListener
interface.

The steps are as follows:

1. Implement your own VueFileListener.

2. In the onFileEvent method, check for occurrence of the Vue.Event.ONPAGELOADED
event.

3. Implement your code to be executed when the Vue.Event.ONPAGELOADED event is
detected.

4. Add your file listener to the VueBean.

5. Add this to your application.

Note: Print through Amyuni driver is not supported. Amyuni driver is
licensed for conversion only.

Retrieving the Dimension and Units of a File

3-16 Oracle AutoVue API and ABV Developer's Guide

3.8 Retrieving the Dimension and Units of a File
The following sample code shows how to get the dimensions and units of a file.

PAN_CtlDimensions pctlDim = m_vueBean.getFileInfo().getDimensions();
double height = pctlDim.getHeight();
double width = pctlDim.getWidth();
double depth = pctlDim.getDepth();
int units = m_vueBean.getFileInfo().getInsertion().units;

4

FAQs 4-1

4FAQs

The following sections provide frequently asked questions regarding the AutoVue API.

4.1 MarkupBean
Q: How do you determine the layer that a given entity is in?

A: Get the entity's specification and then get the layer from the specification.

Q: Do I have to implement the entire text editing dialog for the Text/Leader/Note entity?

A: No. The text editing dialog is inherent to these entities.

Q: An entity specification is tied to a given entity. Why was it decided to have an entity
specification tied to the MarkupBean?

A: The entity specification on the MarkupBean was designed to be a reference to the most
recent specification settings. When you create a new Markup entity, it defaults much of its
specification attributes to the current specification in the MarkupBean. To retrieve the most
recent specification settings, you can call MarkupBean.getMarkupEntitySpec().

Q: What is the difference between MarkupGraphicSpec and MarkupEntitySpec? Why are the
specs such as ArcSpec subclass not derived directly from MarkupGraphicSpec?

A: The MarkupGraphicSpec is a top-level specification that manages visual attributes such as
color, fill type, and so on. The MarkupEntitySpec is a top-level specification that has access to
the overall structure such as the MarkupBean, Markups, layers, pages, and so on. Since
MarkupEntitySpec extends MarkupGraphicSpec, and this is the base class for all markup
entities, the ArcSpec subclass is derived from MarkupEntitySpec.

Q: Can you work with MarkupBean independent of VueBean?

A: In theory it is possible to instantiate and work with MarkupBean without having a VueBean.
However, there are not many use cases or practical reasons where this would be valuable.

Q: Are the Markup tree and Markup toolbars from the AutoVue client accessible if I am
building a custom application from VueBean/MarkupBean?

A: No. The UI such as toolbars and Markup tree are part of the "JVueApp" class. If you build
your solution using the JVueApp class you can use or customize this UI. However, if you build
your solution directly from VueBean you need to implement your own UI.

Note: The other two methods
MarkupBean.getMarkupEntitySpec(MarkupEntity ent) and
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent) are for when you
need to get the specification of a specific entity.

Printing

4-2 Oracle AutoVue API and ABV Developer's Guide

Q: Is it possible to add AutoVue markup capabilities to a third-party application?

A: Yes. There are two primary ways to add markup entities using MarkupBean:

� With user input, using MarkupBean.setActionMode(MarkupBean.ACTION_MODE_
ADD)

� Programmatically, using MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

4.2 Printing
Q: What is the purpose of com.cimmetry.core.PrintInfo class?

A: It is used to pass information between the client and server.

4.3 Upgrading
Q: Will my custom code still work when I perform an AutoVue upgrade?

A: Yes. You must recompile your custom code against the latest release and update the path to
the new jvue.jar.

4.4 General
Q: Can I perform file type-dependent operations?

A: Yes. You can do so by using the getFileInfo() method. The PAN_CtlFileInfo object that is
returned can be queried to determine file format (such as vector, raster, spreadsheet, document,
archive, or a database file).

Q: Can I delete server-side Markups when using the VueBean API?

A: No. It is not currently possible to programmatically delete server-managed Markups
(referenced in the markups.map file on the server) using the VueBean API.

Part II
Part II JavaScript API

This part covers information about AutoVue JavaScript API allowing integration of AutoVue
application into Web context, in a simple way.

Part II contains the following chapters:

� Introduction – JavaScript API

� Architecture

� AutoVue Client Launch

� AutoVue Advanced Scripting

Note: This part applies only to the Oracle AutoVue Client/Server
Deployment product.

5

Introduction – JavaScript API 5-1

5Introduction – JavaScript API

The AutoVue JavaScript API is wrapped into a JavaScript Object allowing launching an
AutoVue client from a WEB context. It supports a scripting API that the browser can use to
interact with AutoVue, and allows you to write your own customized HTML client interfacing
with AutoVue.

This document presents the technical application of AutoVue JavaScript API and its scripting
commands. Additionally, basic applications of the AutoVue JavaScript API are provided along
with their source code.

5-2 Oracle AutoVue API and ABV Developer's Guide

6

Architecture 6-1

6Architecture

AutoVue Client is a Java application that can be started through Java Web Start framework.
This framework requires a JNLP file to start the application. An integration solution requires
that the server generate a JNLP file to be used by Java Web Start framework to launch
AutoVue client. The servlet – VueJNLPServlet, provided with AutoVue is designed to
generate the required JNLP file.

AutoVue client supports a scripting API and proposes to the HTML client two methods to
invoke it: Loopback connection through a free localhost port or a Rendezvous communication
through a Rendezvous servlet. AutoVue provides a JavaScript Object named AutoVue and
implemented in the file autovue.js. This object supports both communication approaches and
simplifies the integration of AutoVue into a WEB context. It provides a JavaScript method for
each scripting API supported by AutoVue.

Loopback Connection
AutoVue client starts a socket listening to XML HTTP requests invoking this API. The socket
is deployed on an embedded application server and listens to a localhost port suggested by the
integration solution.

Note: For more information about the required VueJNLPServlet, JNLP file
specifications and its generation, refer to the "Deploying JNLP Components"
section of the Oracle AutoVue Client/Server Deployment Installation and
Configuration Guide.

6-2 Oracle AutoVue API and ABV Developer's Guide

Figure 6–1 Architecture - Loopback Connection

Rendezvous Communication
The HTML client and AutoVue Client communicate together through a "Rendez-Vous" servlet
named VueRDVServlet, deployed on server side. They share a common "Rendez-Vous" ID
used by the Rendezvous servlet to link them together.

Table 6–1 Loopback Connection

Advantages Disadvantages

Direct localhost connection provides
efficiency and privacy.

The loopback connection requires some setup that could make
it heavy to use in some customers' contexts:

� The integration solution must provide a set of candidate
localhost port ranges to try by AutoVue in order to find a
free one for the direct connection between AutoVue and
the HTML client.

� As described in the section "Integrating in an SSL
Environment" of the Oracle AutoVue Security Guide,
users need to import a localhost SSL certificate to run this
solution under HTTPS protocol.

Architecture 6-3

Figure 6–2 Architecture - Rendezvous Communication

Table 6–2 Rendezvous Communication

Advantages Disadvantages

After you deploy the
Rendezvous servlet on the
server side, the solution works
out of the box and does not
require any additional setup on
the client side.

This approach introduces Client/Server traffic, which results in the
following drawbacks.

� Eventually, less efficient than a loopback connection approach.
For example, a saturated Rendezvous server may slowdown all
the clients scripting. However, the client load on the Rendezvous
servlet is so small that it is most unlikely to overload a protected
Rendezvous servlet.

� The solution is slightly more vulnerable in terms of security
than the loopback approach.

Note: The Rendezvous servlet supports two formats for the contents type of
the HTTP requests sent to it:

� application/json: This is the format used by default. It conforms with
the one used by JSON-RPC third party engine that AutoVue uses to
service the script commands sent by the HTML client. It is also the one
used by the loopback connection protocol. The Rendezvous servlet reads
the content as a raw data using the method
request.getReader().readLine().

� application/x-www-form-urlencoded: This format encodes the requests
as a URL form extending drastically the size of the requests. However, it
is useful for some integration solutions that implement filters consuming
the requests streams by calling the method request.getParameter, for
example. To enable this format, you need to set AutoVue client
initialization parameter RDVFORMAT to this format. See Table 7–1 in
Instantiate an AutoVue JavaScript Object for more information about
how to pass AutoVue client initialization parameters (INIT_PARAMS)
in this guide. For an exhaustive list of client parameters is available in
Table H-1 in "AutoVue Client parameters" section of the Oracle
AutoVue Installation and Configuration Guide.

6-4 Oracle AutoVue API and ABV Developer's Guide

A typical usage scenario of AutoVue JavaScript API is as follows:

1. Include the source of AutoVue JavaScript API into an HTML page.

2. Instantiate an AutoVue JavaScript Object.

3. Invoke the start API of the AutoVue JavaScript Object to launch AutoVue client.

4. Invoke the public methods of the AutoVue JavaScript Object to interact with AutoVue.

Note: If you want to send XML HTTP requests using your own approach
or scripting language, then look at the methods initScriptService and
processScriptMethod of the file autovue.js. These methods show you how to
build these XML HTTP requests.

7

AutoVue Client Launch 7-1

7AutoVue Client Launch

This chapter provides the procedure of how to start AutoVue Client using the new Java Web
Start technology.

7.1 AutoVue Client Launch from Java Web Start
In order to launch AutoVue Client using the Java Web Start technology, do the following:

1. Include AutoVue JavaScript API

2. Instantiate an AutoVue JavaScript Object

3. Start AutoVue Client

7.1.1 Include AutoVue JavaScript API
The first step would be to include the source of AutoVue JavaScript API into an HTML page as
shown in Example 7–1:

Example 7–1 Code to include AutoVue JavaScript API
 <script type="text/javascript" src="autovue.js"></script>

7.1.2 Instantiate an AutoVue JavaScript Object
Then, you must instantiate an AutoVue Object into a JavaScript block within your HTML code
as shown in Example 7–2:

Example 7–2 Code to instantiate AutoVue JavaScript Object
<script>
 var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST, CLIENT_PORTS,
 INIT_PARAMS, ENCRYPT_COOKIES, VERBOSITY,
 STARTUP_DELAY)
</script>

The parameters required by AutoVue JavaScript Object Constructor are described in Table 7–1.

Table 7–1 Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

JNLP_HOST Specifies the URL on your Web/application server, to a
host returning the JNLP File required by Java Web Start
to run AutoVue client.

No default. This
parameter is
required

AutoVue Client Launch from Java Web Start

7-2 Oracle AutoVue API and ABV Developer's Guide

CODEBASE_HOST Specifies the location URL of AutoVue client files
(jvue.jar, jogl.jar, gluegen-rt.jar, jsonrpc.jar,
gluegen-rt-natives-macosx-universal.jar,
jogl-natives-macosx-universal.jar,
gluegen-rt-natives-windows-amd64.jar,
jogl-natives-windows-amd64.jar,
gluegen-rt-natives-linux-amd64.jar,
jogl-natives-linux-amd64.jar,
jogl-natives-windows-i586.jar,
gluegen-rt-natives-windows-i586.jar) on your
Web/application server.

No default. This
parameter is
required

CLIENT_PORTS Specify a list of localhost ports for communication
between the browser and AutoVue client, in the case of
loopback connection. The expected format is a vector of
port values or port intervals.

Example:[2345, [7500, 7510], [8500, 8510], 8888]

No default. The
default value
could also be null.

INIT_PARAMS Specify the client parameters to pass at the start-up of
AutoVue client. The expected format is a JSON format
of an object where the parameter/value fields are the
names/values pairs of AutoVue client parameters.

Example:

{'JVUESERVER':

'http://AutoVueServer:ServletPort

/servlet/VueServlet','VERBOSE':'debug','RDVSERVLET
':'http://AutoVueServer:ServletPort

/servlet/VueRDVServlet',
'RDVFORMAT':'application/json'}

Note: For a complete list of the client parameters, refer
to the Table H-1 in "AutoVue Client parameters" section
of the Oracle AutoVue Installation and Configuration
Guide.

null

Table 7–1 (Cont.) Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

AutoVue Client Launch from Java Web Start

AutoVue Client Launch 7-3

ENCRYPT_
COOKIES

Toggle On/Off the encryption of the cookies passed from
the browser to AutoVue Client, by the JNLP file
generator, on Server side (typically; VueJNLPServlet).
When the parameter is set to "true", then you must
provide encryption key-pair using the JavaScript method
setEncryptionKeyPair, otherwise; for security reasons,
the cookies won't be sent:

myAvApp.setEncryptionKeyPair(public_key,
private_key)

The public and private key values above are expected to
be encoded using base64 and serialized into HEX format.
The servlet VueKeyPairServlet provided with AutoVue
produces them into this format. If you decide to use it
then you must include its URL in the HTML page
instantiating AutoVue object; as illustrated in the sample
av_jnlp.html.

<script type="text/javascript"
src="graphics/VueKeyPairServlet"></script>

Note: For more information about the cookies encryption
and VueKeyPairServlet, refer to "Deploying JNLP
Components" section of the Oracle AutoVue Installation
and Configuration Guide.

Note:

1. When the cookies are encrypted, the HTML client
needs to communicate the private encryption key to
AutoVue through a safe channel. This is possible
through loopback connection but not through
Rendez-Vous communication. Therefore, Cookies
encryption is only supported under loopback
connection protocol. An exception will be thrown if
it is enabled under Rendez-Vous communication
protocol.

2. For more information about the cookies encryption
and VueKeyPairServlet, refer to Deploying JNLP
Components section of the Oracle AutoVue
Installation and Configuration Guide.

true

VERBOSITY Specify how the browser should output error messages
related to its connection with AutoVue client. The
expected value should be one of the following:

0: No output

1: Output connection errors on the browser console

2: Output connection errors as alerts to the user

3: Output connection errors on the browser console and
also as alerts

1

STARTUP_DELAY The start-up process can take some time to complete
since the java classes (jars) have to be downloaded to the
client machine and the browser may prompt the user
before starting any download. At the same time,
AutoVue JavaScript Object tries to establish
communication with AutoVue client to detect when it is
ready to handle scripting calls. This parameter specifies
the required delay before assuming a start-up failure of
AutoVue client.

30

Table 7–1 (Cont.) Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

AutoVue Client Launch from Java Web Start

7-4 Oracle AutoVue API and ABV Developer's Guide

Depending on the arguments passed to this Constructor, AutoVue JavaScript Object will set up
the communication protocol with AutoVue client as described in the following table:

7.1.3 Start AutoVue Client
In order to start an AutoVue client, you need to invoke the start API of AutoVue JavaScript
Object as shown in Example 7–3.

Example 7–3 Code to start AutoVue Client
<script>
 myAvApp.start(onInit, onFail, user_data)
</script>

This API performs the following actions:

1. Connects to the JNLP file generator used to start AutoVue through Java Web Start, given
by its URL in the argument JNLP_HOST of AutoVue JavaScript Object Constructor.

2. Sends the client parameters required at start-up stage:

� Ticket

� Cookies

� Ports or VueRDVServlet host for the communication with the HTML client

Then, it establishes the communication with AutoVue sending the rest of initialization
parameters to complete the initialization stage.

The method takes the following optional parameters:

� user_data: Custom object that will be sent within the arguments of the onFail callback.

� onInit: JavaScript Callback method invoked when the custom client connects to AutoVue
and the scripting API is ready for use.

� onFail: JavaScript Callback method invoked when the custom client fails to connect to
AutoVue. It must follow the prototype above:

function onFail(xmlhttp_request, error_msg, user_data)

where:

� xmlhttp_request is the last XML HTTP request object used to communicate with
AutoVue.

Table 7–2 Communication Protocol

Rendezvous Servlet Host

Provided Not Provided

lo
ca

lh
os

t p
or

t r
an

ge
s

Provided Use loopback connection under
HTTP protocol, but use the
Rendezvous approach under
HTTPS protocol

Always loopback connection

Not Provided Always use the Rendezvous
communication

In this case, you cannot
communicate with AutoVue,
hence no scripting is needed.
Inform the user and start AutoVue
in standalone mode (do not send a
ticket).

AutoVue Client Launch from Java Web Start

AutoVue Client Launch 7-5

� error_msg is a text string describing the error preventing the connection to AutoVue.

� user_data Custom object sent among the argument of this start API.

AutoVue Client Launch from Java Web Start

7-6 Oracle AutoVue API and ABV Developer's Guide

8

AutoVue Advanced Scripting 8-1

8AutoVue Advanced Scripting

This chapter discusses the public scripting API that has been provided within the interface of
the AutoVue JavaScript Object to integrate with the AutoVue client in dynamic Web pages.

8.1 Advanced Scripting
When integrating the AutoVue client in dynamic Web pages, a public scripting API is provided
within the interface of the AutoVue JavaScript Object. Most of the API methods (except start,
connect, setEventListener and closeAutoVue) do take a parameter called frameID which is
set by default to null. This parameter is provided by the caller to identify the AutoVue frame
that he wants to invoke the API on. When this parameter is null, the API will be invoked on the
main frame. However, if it has another value, it will be invoked on the frame that was created
initially with the given frameID. If such frame was never created before (or closed in between),
then it will be created dynamically and the API invoked on it. For example, if the caller wants
to create a secondary empty frame with a frameID "foo", then he can do it making the
following call:

myAvApp.setFile(null, 'foo');

Afterwards, the caller can invoke any API on this frame using the identifier "foo" for the
frameID parameter:

Advanced Scripting

8-2 Oracle AutoVue API and ABV Developer's Guide

Table 8–1 Methods of AutoVue Advanced Scripting

Method Description

start(onInit, onFail,
user_data)

Start AutoVue Client through Java Web Start and connects to it for further scripting commands.

� onInit

JavaScript Callback to invoke when AutoVue finished starting and is ready for scripting.

� onFail

JavaScript Callback to invoke if AutoVue failed to start-up. An example that notifies the
server administrator by e-mail is provided in the av_jnlp.html HTML sample shipped with
AutoVue.

� user_data

User Data to retrieve within failure notification if the browser fails to communicate with
AutoVue.

connect(onInit, onFail,
user_data)

Connects to AutoVue Client. It assumes that AutoVue start-up process was already launched and
waiting for the custom client connection to complete the initialization stage. The method
establishes the communication with AutoVue sending the initialization parameters to complete
the initialization stage. It is called for instance by the "start" method above after launching
AutoVue start-up process through Java Web Start.

To be authenticated, the browser must use the same AutoVue JavaScript Object to connect to
AutoVue as the one used to start it, otherwise; the connection will be rejected by AutoVue to
prevent illicit communication cross independent AutoVue sessions.

The method takes the same optional parameters as the start method.

setFile(file, frameID) Open a file in AutoVue. It takes the following parameters:

� file

URL of the file to load. If it is null or an empty string then no action will be performed.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

setPage(page, frameID) Switch the document to a given page. It takes the following parameters:

� page

Index of the page to set (Number, 1-based).

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

setGUI(guiFile,
frameID)

Customize AutoVue User Interface by providing a UI configuration file. It takes the following
parameters:

� guiFile

UI configuration file identifier AutoVue needs to run with. The GUI files must be deployed
on the server side (Profiles folder).

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Advanced Scripting

AutoVue Advanced Scripting 8-3

openMarkup(markup,
frameID)

Open a Markup. It takes the following parameters:

� markup

Optional, semicolon (;) separated key-value list (name1=value1; name2= value2; ...) holding
the markup attributes. If not provided, AutoVue will simply start a new empty markup.

Example: 'CSI_DocID=mmMarkupID;CSI_DocName=mmMarkupName'

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

saveActiveMarkup(mar
kup, frameID)

Save the active markup with the given property, on the target frame.

� markup

Optional. Semicolon (;) separated key-value list (name1=value1;name2=value2) holding the
markup attributes.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

saveModifiedMarkups(
mayCancel, frameID)

In the event that the user has modified markups since the last save, it will prompt the user whether
he wants to save the markups or not. It takes the following parameters:

� mayCancel

Specify whether the user can cancel the operation or not.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

checkModifiedMarkups
(frameID)

Check whether there are modified markups to save. This method is synchronous.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

� return

Whether there are modified markups to save.

� throw

An error if called asynchronously. It is supported only in synchronous mode, under loopback
protocol.

setCompareFile(file,
frameID)

Compare a given file with the current one. It takes the following parameters:

� file

URL of the file to compare with.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-4 Oracle AutoVue API and ABV Developer's Guide

import3DFile(file,
transform, frameID)

Import a 3D file in the current 3D model (DMU). It takes the following parameters:

� file

URL of the file to compare with.

� transform

Specify a 4x4 transformation matrix (HMatrix). The API expects a four-sized JavaScript
array containing the rows of the matrix. So each entry of this array is itself expected to be
four-sized array of floats.

Example: [[1,-1,0,0],[1,1,0,0.1],[0,0,1.414,0],[0,0,0,1]]

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

addOverlay(file,
frameID)

Overlay a file onto the current one (2D). It takes the following parameters:

� file

URL of the file to overlay.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

crossProbe(file,
frameID)

Load an EDA file in cross-probe mode to cross-probe with the current EDA file. It takes the
following parameters:

� file

URL of the file to cross-probe.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

invokeAction(actionClas
sStr, frameID)

Invoke a VueAction. For example, the VueActionOptionsConfiguration will trigger AutoVue
Configuration dialog. It takes the following parameters:

� actionClassStr

VueAction string name. The names of the supported VueAction are listed in the AutoVue
Viewing and Configuration Guide.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-5

printFile(printOptions,
useDefaultPrinter,
frameID)

Print the current file. It takes the following parameters:

� printOptions

Printing options used during printing. The API expects a JavaScript object wrapping the
following fields in the following hierarchy:

� printer: Name of the printer to output to

� forceToBlack: Whether to apply "Force to Black"
rendering in the print out (Default: false)

� pages: Sub-object holding information about the pages to
print. It has the following attributes:

* choice: 0: All, 1: Current, 2: Range

* from: First page to print. Used only with when
printOptions.pages.choice = 2 (Range)

* to: Last page to print. Used only with when
printOptions.pages.choice = 2 (Range)

� scale Sub-object holding information about the paper to
use. It holds the attributes below:

* value: Scaling type, value could be "FIT", a string
"<percentage>%" indicates a scale or a string
"<factor>" indicates scaling to a factor (Default:
"FIT")

* units: Scaling Units (1: in, 2: mm)

� paper Sub-object holding info about the paper to use. It has
the following attributes:

* choice: See AutoVue Documentation about supported
paper sizes

* orientation: 0: Portrait, 1: Landscape, 2: Auto

� margins Sub-object holding the print margins to set. It has
the following attributes:

* top:float

* bottom:float

* left:float

* right:float

* units: Units in which the margin values above are
given (1: in, 2: mm)

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-6 Oracle AutoVue API and ABV Developer's Guide

� printoptions (continued)

� headers Sub-object holding additional information about
the headers to add to the output. It holds the attributes
below:

* lh: Left header text

* ch: Center header text

* rh: Right header text

* lf: Left footer text

* cf: Center footer text

* rf: Right footer text

� pen_settings

Sub-object holding pen settings to apply in the print
operation. It has the following attributes:

* pens: JSon object holding the list of pens and their
respective thicknesses settings where the fields are the
names of the pens and the values are the pen
thicknesses settings {pen1:value1,pen2:value2,...}. The
values are themselves JSon objects where the fields are
the color indices and the values are the associated
thicknesses to apply during the print operation
{color1:thickness1, color2:thickness2,...}. The color
indices are integers between and 0 and 255.

* selected: name of the selected pen.

Example: pens['selected'] = 'myPen2'

The print options sample have been provided in the following example:

 {"printer":"PrimoPDF",
 "forceToBlack":"true",
 "pages":{"choice":"2", "from":"1", "to":"1"},
 "scale":{"value":"75%"},
 "paper":{"choice":"1", "orientation":"0"},
 "margins":{ "top":".25", "bottom":".21",
 "left":".25", "right":".25",
 "units":"1"},
 "headers":{ "lh":"Left-Header",
 "ch":"Center-Header",
 "rh":"Right-Header",
 "lf":"Left-Footer",
 "cf":"Center-Footer",
 "rf":"Right-Footer" }
 "pen_settings":{"pens":{"pen1":{"2":".1", "3":".2", "7":".1"},
 "pen2":{"1":".1", "6":".2", "7":".1"},
 "pen3":{"3":".2", "4":".3"} },
 "selected":"pen2"} }

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-7

� useDefaultPrinter

Specify whether to apply directly the given Print-Options as they are or allow user to change
them. If this parameter is false, AutoVue will popup the print configuration dialog allowing
user to modify the printer and printing parameters.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Note: The API initiates the print options from INI and overrides them with the ones given
within the API parameters.

batchPrint(fileList,
printOptions,
openAllMarkups,
useDefaultPrinter,
frameID)

Print a list of files. It takes the following parameters:

� fileList

List of URLs of the files to print provided into a JavaScript array.

� printOptions

Printing options to apply during the printing operation (same structure defined in printFile
API).

� openAllMarkups

This takes a Boolean value, and determines whether to include all associated markups during
the printing operation.

� useDefaultPrinter

Specify whether to apply directly the given Print-Options as they are or allow user to change
them. If this parameter is false, AutoVue will popup the print configuration dialog allowing
user to modify the printer and printing parameters.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

collaborationInit
(session, frameID)

Initiates a collaboration session. It takes the following parameters:

� session

Property string describing collaboration session in the following format:

CSI_ClbSessionID=987654321;CSI_ClbDMS=dmsIndex;CSI_
ClbSessionData=123456789;CSI_ClbSessionSubject=Subject;CSI_
ClbSessionType=public|private;CSI_ClbUsers=user1,user2,x;

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

collaborationJoin
(session, frameID)

Joins a collaboration session. It takes the following parameters:

� session

Property string describing collaboration session in the following format:

CSI_ClbSessionID=987654321;CSI_ClbDMS=dmsIndex;CSI_
ClbSessionData=123456789;

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-8 Oracle AutoVue API and ABV Developer's Guide

convertFile(convertOpti
ons, frameID)

Convert the current file to a given format. It takes the following parameters:

� convertOptions

Conversion options to use in the conversion operation. The API expects a JavaScript object
wrapping the following fields in the following hierarchy:

� file: Mandatory. Sub-object holding information about the
conversion file. It has the following attributes:

* format: 'PCRS_BMP' or 'PCRS_TIF' or 'PCVC_PDF'

* subFormat: Format flavour: Specific to Tif (Currently
ignored for the others)

PCRS_TIF => 0: Uncompressed, 1: PackBits, 2: Fax
III, 3: Fax IV)

* filePath: Path of the destination file

� pages: Sub-object holding information about the pages to
convert. Used in multi-page formats (PCRS_TIF, PCVC_
PDF). It has the following attributes:

* choice: 0 – All, 1– Range, 2 – Current

* from: First page to convert. Used only when
printOptions.pages.choice = 1 (Range)

* to: Last page to convert. Used only when
printOptions.pages.choice = 1 (Range)

� Output: Sub-object holding information about conversion
output settings, with the following attributes:

* colorDepth: Color depth

* fgColor: Foreground color (in windows RGB)

* stepsPerInch: Steps per inch value. For rasters this
will contain DPI value

Example: { 'file':{ 'format': 'PCVC_PDF',
'subFormat':0,
'filePath':'C:/temp/converted.pdf'},
'pages':{'choice':1, 'from':2, 'to':3},
'output':{ 'colorDepth':-1,
'fgColor':0,
'stepsPerInch':1016 } }

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-9

setHotSpotHandler(
definitionType,
definitionKey, definition,
frameID, caller)

Sets the hotspot handler for the given hotspot definition. This method should be called before the
file session. It will initialize the hotspots in the file of AutoVue based on external application data.
It takes the following parameters:

� definitionType

Hotspot definition type (Native WebCGM, Text Search, Attribute search...).

Note: See Hotspot Definition Types for more information about the definition types
supported for Hotspots.

� definitionKey

Hotspot definition key string, used to refer to this definition later.

� definition

Semicolon (";") separated key-value string specifying hotspot definition parameters:

param1=value1;param2=value2,…;paramN=valueN

Note: See Hotspot Definition Parameters for more information about the supported
parameters and values of this argument.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

� caller

Parent object of the callback function mentioned in the definition (E.g.: window).

performHotSpot
(definitionKey,
hotspotKey, action,
params, frameID)

Performs a hotspot action on the given hotspot. This method should only be called during the file
session when the hotspots have been already initialized. It takes the following parameters:

� definitionKey

Hotspot definition key string provided at the creation.

� hotspotKey

Hotspot property key string identifying the hotspot instance, to interpret based on the
definition key.

� action

Action to perform on the hotspot. The supported actions are: 'highlight', 'zoomTo',
'zoomNext' and 'zoomPrev'.

� params

Semicolon (";") separated key-value string specifying hotspot action parameters:

param1=value1;param2=value2,Ã¢Â�Â¦;paramN=valueN

Note: See Hotspot Actions for more information about the arguments supported for each hot
spot action.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-10 Oracle AutoVue API and ABV Developer's Guide

getInfo(info, callback,
frameID, caller)

Get the requested information asynchronously. It takes the following parameters:

� info

Identifies the requested info. Currently only 'Custom Properties' is supported.

� callback

JavaScript Callback to invoke when the requested information is ready.

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame will
be created dynamically if it does not exist. If this parameter is null, then the method will be
invoked on the main frame.

� caller

Parent object of the callback parameter (E.g.: window).

setEventListener(listene
r, filter, caller)

Enable event notifications by registering a listener to AutoVue frame events. It takes the
following parameters:

� listener

Name of the JavaScript Callback to invoke when an event is fired and caught by AutoVue
Frame. The callback should have the following signature:

function onEvent(type, event, frameID)

where:

� type is the type of the event (Model Event, Markup Event,
or Print Event)

� event us a JavaScript Object wrapping the event
information

� frameID is the frame ID used initially to generate the frame
issuing this event

If the listener is set to null, then event notifications are disabled (Default behaviour).

� filter

Hotspot definition key string, used to refer to this definition later.

Specifies the type of events that caller wants to receive. Here are the types supported:

� AutoVue.EVENTFILTER_FILE: File Events (Page switch,
Loading progress, etc)

� AutoVue.EVENTFILTER_MARKUP: Markup Events
(Enter/Exit Markup mode)

� AutoVue.EVENTFILTER_PRINT: Print Events (Start /
Finish / Cancel Printing)

� caller

Parent object of the listener callback (E.g.: window).

closeDocument(frameID
)

Close the current document. It takes the following parameters:

� frameID

User identifier of the secondary frame on which this API method will be invoked. The frame
will be created dynamically if it does not exist. If this parameter is null, then the method will
be invoked on the main frame.

closeAutoVue() Close AutoVue Client exiting AutoVue JNLP process.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Applet API vs. New API

AutoVue Advanced Scripting 8-11

8.2 Applet API vs. New API
The JavaScript API provided by the Java Web Start client was based on the API that was
supported by the AutoVue applet. For developers who used the applet's JavaScript capabilities,
note the following differences:

� The functions printFile, batchPrint and convertFile were ported with trimmed options.
The function invokeAction was ported but without the second parameter referring to
sub-action. Additional options and parameters may be included in the future based on
customer needs. However, the Java classes options that were earlier sent through the applet
are now initialized from the INI options on AutoVue side before applying the options sent
through the new API.

� The following functions were removed and merged to other functions available in the new
API:

– setFileInNewWindow: Call setFile and set its second argument (bNewWindow) to
true. By default this argument is set to false.

– setMarkupMode: Call openMarkup without arguments. Notice that even though the
applet function setMarkupMode expects a boolean argument, it ignores it and always
enables the markup mode.

� The following functions are not ported to the new API:

– setFileThreaded

– isPrinting

– saveActiveMarkup

– importMarkup

– exportMarkup

– getActiveVueBean

– getClass

– createMobilePack

– syncMobilePack

– getDMSInfo

– collaborationJoin

– collaborationEnd

– waitForLastMethod

– SetStatusListener

Applet API vs. New API

8-12 Oracle AutoVue API and ABV Developer's Guide

Part III
Part III ABV Guide

The Augmented Business Visualization (ABV) is a visualization framework which provides
rich and actionable visual decision making environments by connecting portions of documents
to business data found in enterprise applications.

Part II contains the following chapters:

� Introduction – ABV Guide

� Hotspots

� AutoVue Hotspot API

� Hotspot Samples

� VueAction Sample

� ABV Design and Security Recommendations

Note: The content in the ABV Guide is applicable to the Client/Server
Deployment of AutoVue only.

9

Introduction – ABV Guide 9-1

9Introduction – ABV Guide

The Augmented Business Visualization (ABV) is a visualization framework which provides
rich and actionable visual decision making environments by connecting portions of documents
to business data found in enterprise applications. ABV's hotspot capabilities allow you to create
links between objects in AutoVue's data model and objects in an external system. With this
hotspot feature, an ABV solution can be built that integrates AutoVue tightly into other
applications. By clicking an area of a document in AutoVue, a visual action is triggered and/or
information displays in other applications. With visual dashboards, you can expose data from
enterprise systems visually by changing the hotspot color.

This document provides the technical details of the ABV architecture, ABV sample code, and
guidelines on how to create visual dashboards and visual actions using ABV’s hotspot
capability.

Note: For a general overview of ABV and its features, refer to the Oracle
AutoVue Integration Guide.

9-2 Oracle AutoVue API and ABV Developer's Guide

10

Hotspots 10-1

10Hotspots

AutoVue’s hotspot capabilities allow system integrators to create links between objects in
AutoVue's data model and objects in an external system. With this hotspot feature, an ABV
solution can be built that integrates AutoVue tightly into other applications. By clicking on an
area of a document in AutoVue, a visual action is triggered and/or information displays in other
applications. With visual dashboards, you can expose data from enterprise systems visually by
changing the hotspot color.

This chapter provides information on how to create visual dashboards and actions, and how to
define text, 3D, regional and Web CGM hotspots.

10.1 Creating a Visual Dashboard
Figure 10–1 Visual dashboard

Your enterprise application can highlight hotspots in your document based on its Enterprise
Resource Planning (ERP) data, creating a visual dashboard. The visual dashboard displays
structured data (enterprise application data) on top of a drawing by using color-coded hotspots
based on the business data of a document.

Note: For an overview of ABV’s hotspot capabilities, refer to the Oracle
AutoVue Integration Guide.

Creating a Visual Action

10-2 Oracle AutoVue API and ABV Developer's Guide

To create a visual dashboard, you can highlight various hotspot entities in specific colors:

� Hotspots of all types can be highlighted by providing the hotspot definition key, the
appropriate hotspot key, and the desired color.

� Each hotspot entity must be mapped to the appropriate color by the ABV integration.

10.2 Creating a Visual Action
A visual action is a hotspot that triggers actions in your enterprise application. These actions
can include highlighting an area of the document, zooming into a component, opening a browse
dialog, and so on.

Actions can be defined for the following:

� Single-Click

� Double-Click

� Selecting a named action from the RMB menu.

Action handlers can be defined to retrieve the appropriate information as follows:

� Definition key for the hotspot definition used.

� Hotspot key to identify the hotspot element being acted upon.

� The action to perform.

� Any modifiers keys (Shift, Alt, and so on) that are active when the action is started.

10.3 Hotspot Features
AutoVue supports the following user interactions with hotspots:

� Tooltips

� Triggering Actions

10.3.1 Tooltips
An active hotspot highlights to indicate that it has an action when a mouse cursor hovers over
it. Additionally, a tooltip appears describing the hotspot’s functionality.

In the event there are multiple layers of tooltips (markup, measurement, hotspot, and so on) that
are associated to an object in the drawing, only one tooltip appears. Which tooltip appears
depends on the tooltip’s priority ranking in the stack of tooltips.

� Markup tooltip

� Measurement tooltip

� Hotspot tooltip

� EDA entity information tooltip

� Hyperlink tooltip

Note: The markup tooltip has top priority.

3D Hotspots

Hotspots 10-3

10.3.2 Triggering Actions
When a user clicks on a hotspot, a notification is fired to the ABV integration with the
information identifying the clicked hotspot and the mouse action--single-click, double-click,
and right mouse button (RMB) action--as well as keyboard modifiers (Ctrl, Shift, Alt).

As with tooltips, when triggering an action the following precedence rules are used:

� Markup: Consumes the mouse action.

� Measurement: Consumes the mouse action.

� Hotspot: Notifies the external application but does not consume the mouse action and
allows the subsequent layers to process the mouse clicks as well.

� Hyperlink: Does not consume the mouse action.

� EDA Entity selection, 3D Entity selection, Entity properties on double-click, and so on.

10.4 3D Hotspots
In 3D files, hotspots are defined by the attribute name. Optionally, an attribute value can be
defined. If no attribute value is provided, then AutoVue identifies all parts with the attribute
name as a hotspot. That is, the attribute value is used by AutoVue as a key to identify the
hotspot attached to the owner part.

Figure 10–2 3D Hotspot

3D hotspots can be used to connect a 3D model to unstructured data such as order status,
delivery dates, and so on. By setting up a visual dashboard in the 3D model, all this information
can be pulled from an ERP and displayed in real-time.

The following sections describe how to initialize a 3D hotspot and design recommendations.

10.4.1 Defining a 3D Hotspot
Consider the following when defining 3D hotspots:

� Hotspots are not supported on 3D PMI entities.

Note: The markup entity has top priority.

Text Hotspots in 2D and EDA Documents

10-4 Oracle AutoVue API and ABV Developer's Guide

� 3D hotspot definitions cannot contain regular expressions in attribute names or values.
Additionally, leading or trailing spaces are not permitted in attribute names/values and
should exactly match the attribute names/values in the model.

� AutoVue supports attribute names/values that contain a semi-colon (;). You must precede
the semi-colon with a backslash (\).

� Internal attributes that AutoVue displays in 3D models (for example, Mesh Resolution,
Transparency, and Layers) should not be used when defining hotspots.

� To prevent conflicts in highlight color, it is recommended to use the Bounding Box
Highlight for a 3D selection (default AutoVue setting) instead of the Entity Highlight.

� If a hotspot is defined with density as an attribute, then the specified density value must be
the same value saved in the native file without measurement units.

� It is not recommended to define hotspots with attributes that the user can modify after the
model loads (for example, Color, Transparency, Display/Render Mode, Visibility,
Highlight Color, and Bounding Box Color). If these attributes are used and changed by the
user during the file session, then the hotspots may behave inconsistently.

10.5 Text Hotspots in 2D and EDA Documents
Text hotspots are supported in 2D and EDA documents. They are based on regular expressions
filtering graphical text strings based on AutoVue’s text search. You can use regular expressions
in the hotspot definition.

Figure 10–3 Text Hotspot

Text hotspot can be used to trigger actions such as Create Work Order or Open Detailed Parts
Diagram from assets in piping and instrumentation diagrams. These hotspots can be clicked to
retrieve and display asset information such as failure and repair history, working status, and so
on.

The following sections describe how to define a text-based hotspot, what types of text and file
formats are supported, and design recommendations.

10.5.1 Defining a Text Hotspot
You must use regular expressions in the hotspot definition in order to search for text in the
document. Since AutoVue uses the Java library, it relies on Java’s regular expression
guidelines. For more information, refer to the following Java regular expression guidelines:

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

https://docs.oracle.com/javase/tutorial/essential/regex/index.html

Consider the following when defining text hotspots:

� Text hotspot support is not available for raster formats, archive formats, Microsoft Word,
Excel, RTF, and Outlook formats.

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

https://docs.oracle.com/javase/tutorial/essential/regex/index.html

Regional Hotspots

Hotspots 10-5

� Since text hotspots can only be detected on searchable text, text stored in Windows
Metafiles (WMF/EMF) cannot be used for hotspotting.

� If there are multiple occurrences of a text, then they are all handled as valid hotspots.

� To be recognized as a text hotspot, characters in a string must share the same baseline. For
example, a string with a normal text and a superscript text cannot be recognized as a single
hotspot as they have different baselines. Alternately, regional hotspots can be applied.

� For PDF text with large spacing between characters, it is recommended to use the
ADVANCEGAP INI option. For more information, refer to Section 11.1.1, "PDF Text
Hotspot."

� Strings that include curved text (curved baseline) cannot be used as a text hotspot.
Alternately, regional hotspots can be applied to include the curved text.

10.6 Regional Hotspots
Regional hotspots can be defined in 2D, EDA, and Raster files. The hotspots can either be
drawn as a box or a polygon. The dimensions/extents for the hotspots are based on the
coordinates displayed in the AutoVue status bar. Optionally, a user key can be used by
AutoVue as an identifying key for the hotspot. If the user key is not provided, then an empty
(string) key is used.

Figure 10–4 Box Hotspot

Note: Support for Outlook format is deprecated in Release 21.0.1.

Note: PDF documents generated through OCR are not supported for
hotspots.

Regional Hotspots

10-6 Oracle AutoVue API and ABV Developer's Guide

Figure 10–5 Polygon Hotspot

Consider the following when defining regional hotspots:

� Regional hotspots are not supported for archive formats, Microsoft Word, Microsoft Excel,
and RTF formats.

� Vector files and raster files do not use the same World Coordinate System in AutoVue.
Vector files use the bottom-left corner of the client area as the origin and the Y-axis
oriented bottom-top, while the raster files use the Top-Left corner as the origin and the
Y-axis oriented bottom-top. This mismatch is already exposed in AutoVue with the current
user interface (UI) because the mouse position is reported in World Coordinates System on
the Status Bar of the UI. Since regional hotspots are provided relative to World Coordinate
System, the regional definitions need to consider this difference between raster and vector
files.

10.6.1 Defining Page-Specific Regional Hotspots
When working with multi-page documents, it may be required to define page-specific regional
hotspots. For example, a floor plan of interest may be on the second or third page of PDF. As a
result, a new parameter allows the administrator to specify the pages where to apply the defined
regional hotspot. Refer to AutoVue Hotspot API for information on the DEFINITION_PAGE
parameter.

10.6.2 Defining Coordinates of a Box/Polygon
To define the coordinates of a box/polygon in a drawing, you can outline the box/polygon with
a markup entity and then dump the coordinates to the regional hotspot definition. The status bar
displays the world coordinates of the mouse position. The box/polygon hotspot can be
manually defined to use these coordinates. For more information, refer to Polygon Hotspot for
an example of using a markup entity to create a polygon hotspot.

10.6.3 Defining a Box Hotspot
A box hotspot is defined by minimum and maximum points. Where {X1, Y1} and {X2, Y2}
are the coordinates of the box minimum and maximum points, respectively. Refer to AutoVue
Hotspot API for information on the DEFINITION_BOX parameter.

10.6.4 Defining a Polygon Hotspot
A polygon hotspot can include an arbitrary number of sides.You can define as many sides as
required for a polygon hotspot: (x1, y1), (x2, y2),..., (xn, yn). Where n is the number of sides of
the polygon. Refer to AutoVue Hotspot API for information on the DEFINITION_POLYGON
parameter.

Web CGM Hotspots

Hotspots 10-7

10.6.5 Invoking performHotspot()
To perform an action on a regional hotspot, the definition key and hotspot key parameters must
be defined for performHotspot(). The hotspot key for regional hotspots is the user key. If the
user key is not provided then an empty (string) key is used. For more information, refer to
Perform an Action on a Hotspot.

10.7 Web CGM Hotspots
In Web CGM files, hotspots are defined in the native file. The hotspot information contains
three attributes:

� Name

� ID

� URI

External systems can interact with these hotspots using the AutoVue ABV API with a given
name. AutoVue matches the name to the ID property of the hotspot. If this fails, AutoVue
matches the name to the Name property in order to highlight a specific hotspot. The definition
key is always provided by the user (as with all hotspot definitions). The Web CGM hotspots
include a hotspot key and definition key, and are handled in the same manner as all other
hotspots.

Web CGM Hotspots

10-8 Oracle AutoVue API and ABV Developer's Guide

11

AutoVue Hotspot API 11-1

11AutoVue Hotspot API

The AutoVue Application Programming Interface (API) is a Java-based toolset that provides
tools to modify the functionality of Oracle's AutoVue client, and allows you to create your own
customized Java applications based on AutoVue API components. For more information on the
AutoVue API, refer to the Java API Guide.

The AutoVue API’s jVueApp class includes two methods that handle hotspots:

� setHotSpotHandler(): Defines a hotspot.

� performHotSpot(): Performs an action on a hotspot.

11.1 Hotspot INI Options
When working with 2D, EDA, PDF and graphic documents, through the use of the Augmented
Business Visualization (ABV) integration framework, you can add AutoVue’s hotspot
capabilities to create links between objects in AutoVue’s data model and objects in an external
system.

The following sections list the configuration options for hotspots provided by AutoVue:

� Section 11.1.1, "PDF Text Hotspot"

� Section 11.1.2, "PDF Text Hotspot INI Options"

11.1.1 PDF Text Hotspot
Syntax and additional information for the option described here is in section Section 11.1.2,
"PDF Text Hotspot INI Options."

AutoVue provides ADVANCEGAP INI option to recognize PDF text with large spacing
between characters as a single hotspot. The value of the option should be less than the
maximum number of spaces between consecutive strings. That is, if the gap between two
consecutive strings is less then the ADVANCEGAP value, then the strings are recognized as a
single hotspot. However, if the gap between the two strings is larger than the value specified,
they are not recognized as a single hotspot.

For more information on available INI options, refer to the Oracle AutoVue Viewing
Configuration Guide.

Note: It is possible to extend the AutoVue client using the VueAction()
method to implement a hotspot action. Refer to Custom VueAction for a
VueAction() hotspot example.

Define Hotspots

11-2 Oracle AutoVue API and ABV Developer's Guide

11.1.2 PDF Text Hotspot INI Options
The following option should be placed in the [HOTSPOTS] header of the INI file.

11.2 Define Hotspots
setHotSpotHandler (final String definitionType, final String
definitionKey, final String Definition)

This method sets the hotspot handler for a given hotspot definition. This should typically be
called before opening the file. It initializes hotspots in the files opened in AutoVue based on
external application data.

11.2.1 Hotspot Definition Types
Hotspot definition types supported in setHotSpotHandler():

11.2.2 Hotspot Definition Parameters
The following are hotspot definition parameters supported in the key-value string parameter
(definition) of the method setHotSpotHandler().

11.2.2.1 Common Definition Parameters
The following are definition parameters that are common for all hotspots.

Table 11–1 PDF Text Hotpsot INI Options

Parameter Description Default

ADVANCEGAP =[integer] Specify the maximum number of spaces between
consecutive text strings.

3

Table 11–2 Parameters in seHotSpotHandler

Parameter Description

definitionType The hotspot definition type. Specify if the hotspot is a WebCGM hotspot, text
search hotspot, box/polygon hotspot, or a 3D hotspot.

definitionKey The hotspot definition key. This is the identifier for the hotspot.

definition A string separated by semicolons specifying hotspot definition parameters. For
example: name1 = value1; name2 = value2.

Table 11–3 Hotspot Definition Types

Parameter Description

DEFINITION_TYPE_NATIVE Native Web CGM hotspot.

DEFINITION_TYPE_TEXT Text search hotspot.

DEFINITION_TYPE_BOX Box hotspot.

DEFINITION_TYPE_POLYGON Polygon hotspot.

DEFINITION_TYPE_3D_ATTRIBUTE 3D entity hotspot.

Table 11–4 Common Definition Parameters for Hotspot

Parameters Description

DEFINITION_TOOLTIP The tooltip that displays when a mouse cursor hovers over a
hotspot defined by the handler.

Define Hotspots

AutoVue Hotspot API 11-3

11.2.2.2 Text Definition Parameters
The following are definition parameters for text hotspots.

11.2.2.3 3D Definition Parameters
The following are definition parameters for 3D hotspots

DEFINITION_ONINIT The JavaScript method to call when page is loaded and ready to
interact.

DEFINITION_FUNCTION The JavaScript function to call when user performs an action on
the hotspot.

DEFINITION_ACTIONS Popup actions to show when user right-clicks on a hotspot.

DEFINITION_COLOR The highlight color to use when user hovers the mouse cursor
over a hotspot. Note that AutoVue parses the RGBA value as a
string.

Example: (R, G, B, [A])

Refer to the 3D and Box hotspots examples in Chapter 12,
"Hotspot Samples" for more information.

Note that integer-based colors (for example, 1627283) can are
also supported.

Table 11–5 Text Definition Parameters

Parameters Description

DEFINITION_REGEX Regular expression to use only in Text Search Hotspot handlers.

For more information, refer to the following Java regular
expression guidelines.

Pattern Class: Pattern Class Guidelines

Java Tutorial: Regular Expression Guidelines

DEFINITION_MATCHCASE Specify whether to handle case sensitivity.

Syntax: DEFINITION_MATCHCASE=[TRUE|FALSE]

DEFINITION_SCALE Specify the scaling bounds for text hotspots.

Possible values:

� 1: No effect.

� 1.1: The text hotspot bounds is 10% larger.

� 2: The text hotspot bounds is 2 times larger.

� x: The text hotspot bounds is x times larger.

Table 11–6 Parameters for 3D Hotspots

Parameters Description

DEFINITION_ATTRIB_NAME The attribute name assigned to a 3D entity on the model.

DEFINITION_ATTRIB_VALUE The attribute value assigned to a 3D entity on the model.
(Optional)

If this parameter is not specified, then all parts with an attribute
of the specified name will be made into a hotspot.

Table 11–4 (Cont.) Common Definition Parameters for Hotspot

Parameters Description

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/tutorial/essential/regex/index.html

https://docs.oracle.com/javase/tutorial/essential/regex/index.html
https://docs.oracle.com/javase/tutorial/essential/regex/index.html

Define Hotspots

11-4 Oracle AutoVue API and ABV Developer's Guide

11.2.2.4 Regional Definition Parameters
The following are definition parameters for box and polygon hotspots.

11.2.3 Perform an Action on a Hotspot
performHotSpot (final String definitionKey, final String hotspotKey, final String
action, final String params)

DEFINITION_MATCHCASE Whether to handle case sensitivity when searching name and
value attributes assigned to 3D entities.

Syntax: DEFINITION_MATCHCASE=[TRUE|FALSE]

Table 11–7 Definition Parameters for Box and Polygon Hotpsots

Parameters Description

DEFINITION_BOX Define the bounds of the rectangular box given the minimum and
maximum points. Where {X1, Y1} and {X2, Y2} are the
coordinates of the box minimum and maximum points.

Note that the points are based on the world-coordinates of the
page.

Syntax:

DEFINITION_BOX=#X1#Y1#X2#Y2

Example:

_boxDef = "DEFINITION_BOX=#0 #0 #100 #100;
DEFINITION_USER_KEY=box1; DEFINITION_PAGE=1"

DEFINITION_PAGE Restricts box and polygon hotspot definitions to the page
specified by this parameter. If no page is specified, then the
hotspots apply to all pages. The following example defines the
hotspot on page 2.

Example:

DEFINITION_PAGE = 2

DEFINITION_POLYGON Define the bounds of the polygon as a set of points in the world
coordinates in the following format:

#(x1, y1) #(x2, y2)...#(xn, yn) where n is the number of points.

Note that the minimum number of points for a polygon is 3 and
that it is treated as a closed polygon (do not have to repeat the
final point).

Example:

_defPoly = "DEFINITION_POLYGON=#(0,0) #(50, -50) #(150,
-50) #(200, 0) #(150, 50) #(50, 50)" ; "DEFINITION_USER_
KEY=box; DEFINITION_PAGE=1"

DEFINITION_USER_KEY Define a user key for the box/polygon. This user key allows you
to link multiple boxes with various definitions to the same
external object. This is the hotspot key used for the hotspot.
(Optional)

If the user key is not defined, then the hotspot key is an empty
string.

Syntax:

DEFINITION_USER_KEY=box1

Table 11–6 (Cont.) Parameters for 3D Hotspots

Parameters Description

AutoVue API for ABV Integration

AutoVue Hotspot API 11-5

The method performs a hotspot action on the given hotspot. This method should be called
during the file session when the hotspots have been already initialized (only after the external
application is notified that hotspots have been initialized in the file).

11.2.3.1 Hotspot Actions
The hotspot actions supported in performHotSpot() and their arguments are as follows:

11.3 AutoVue API for ABV Integration
The ABV integration can call the AutoVue API for manipulating hotspots from the following
user actions:

� Highlight (Multiple Selection, Add/Remove)

– Text Highlight as used in text search.

– 2D Entity Highlight for Web CGM format.

– 3D Entity Highlight for 3D formats.

– Regional Highlight for regional hotspots.

� Zoom to a hotspot, or the hotspots associated with a specific external object.

� Browse the hotspots associated with a specific external object using Zoom Previous/Zoom
Next.

Table 11–8 Parameters for Hotspot Actions

Parameters Description

definitionKey The hotspot definition key (the hotspot identifier) provided at
creation.

hotspotKey The hotspot property key string found based on the definition
key.

action The action to perform on the hotspot. Refer to Section 11.2.3.1,
"Hotspot Actions."

params A string separated by semicolons specifying hotspot action
parameters. For example: name1 = value1; name2 = value2.

Table 11–9 Hotspot Actions

Action Name Description Arguments

HIGHLIGHT Perform a highlight action. HOTSPOT_COLOR: The color for a
highlight to add (RGBA Format). If this
argument is not provided, the action is
interpreted as a Highlight Removal.

ZOOMTO Zoom to all hotspot instances.

ZOOMNEXT Zoom to the next hotspot instance.

ZOOMPREV Zoom to the previous hotspot
instance.

Note: When a user selects a hotspot, all hotspots associated with the same
ABV integration may be selected by using the highlight mechanism provided
above.

Interactions with Hotspots from JavaScript

11-6 Oracle AutoVue API and ABV Developer's Guide

11.4 Interactions with Hotspots from JavaScript
The following is a code prototype for a custom JavaScript function call to initialize hotspots
when the file/page loads:

initialization_script(String definitionKey)

The following is a code prototype for a custom JavaScript function call when a user interacts
with hotspots:

notification_script(String definitionKey, String hotspotKey, String action, int
keyModifiers, String properties)

keyModifiers describes the status of the Shift, Alt and Ctrl keys.

action may be a custom action sent during the definition of the hotspot handler (RMB actions)
or one of these two predefined actions:

properties that could be sent to the external application notification script are as follows:

Table 11–10 Predefined Actions

OnHotSpotClicked To send when user clicks on the hotspot.

OnHotSpotDoubleClicked To send when user double-clicks on the hotspot.

Table 11–11 Properties

PROPERTY_ID Property ID.

PROPERTY_NAME Name of native WebCGM hotspots.

PROPERTY_URI URI of native WebCGM hotspots.

12

Hotspot Samples 12-1

12Hotspot Samples

This chapter provide sample code on how to implement AutoVue’s hotspot capability for your
enterprise application.

For a detailed ABV integration example, refer to Doc ID 1472899.1 in the Oracle Customer
Support knowledge base:
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=147
2899.1

12.1 Adding a Hotspot
The following hotspot example shows how the setHotSpotHandler() and
performHotSpot() methods are implemented to add hotspot capability to AutoVue. Note that
this example only adds one definition, but it is possible to add multiple definitions.

1. In the html file where the AutoVue JavaScript Object is instantiated:

<script>
 var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST, CLIENT_PORTS,
 INIT_PARAMS, ENCRYPT_COOKIES, VERBOSITY, STARTUP_DELAY)
</script>

Initialize the hotspots with the onInit parameter of the start API invoked to launch the
client:

<script>
 myAvApp.start(onInit, ...);
</script>

This parameter is a JavaScript callback invoked when AutoVue client is started, has been
initialized and has started to listen to scripting commands.

<script>
function onInit() {
 var handlerStr = "DEFINITION_REGEX=AutoVue;
 DEFINITION_TOOLTIP=AutoVue 2D Professional";
 // The following function is called once when AutoVue is ready to
 // interact with a hotspot.
 handlerStr += ";DEFINITION_ONINIT=onHotSpotInit";
 // The following function is called each time a hotspot is fired.
 handlerStr += ";DEFINITION_FUNCTION=onHotSpot;
 DEFINITION_ACTIONS=Menu1, Menu2";

Note: If a newly added definition key already exists, then the existing
definition is replaced by the new one.

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1472899.1
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1472899.1

Adding a Hotspot

12-2 Oracle AutoVue API and ABV Developer's Guide

 color = "(0,0,255,128)";
 handlerStr += ";DEFINITION_COLOR=" + color;

 //The following call sets up the hotspot definition.

 myAvApp.setHotSpotHandler("DEFINITION
 _TYPE_TEXT", "AV2D", handlerStr);
}
</script>

2. Method onHotSpotInit() is called for each definition when the current page is loaded
and ready for hotspot interactions.

Note that the method name should be exactly the same as the one specified in the hotspot
definition DEFINITION_ONINIT in step 1.

function onHotSpotInit(hotspotDefinitionKey) {
 alert("HotSpot definition initialized: " + hotspotDefinitionKey);
}

3. The following onHotSpot() method is invoked when a hotspot is fired when the user
either clicks on the hotspot or by selecting one of the Hotspot menu items defined in
variable DEFINITION_ACTION in step 1.

function onHotSpot(hotspotDefinitionKey, hotspotKey, action, modifiers,
properties) {
 if (equalsIgnoreCase(action, "onHotSpotClicked")) {
 alert("User clicked on hotspot: " + hotspotKey);
 } else if (equalsIgnoreCase(action, "onHotSpotDoubleClicked")) {
 alert("User double clicked on hotspot: " + hotspotKey);
 } else if (equalsIgnoreCase(action, "Menu1")) {
 alert("User Peformed Menu1 action: " + hotspotKey);
 } else if (equalsIgnoreCase(action, "Menu2")) {
 alert("User Peformed Menu2 action: " + hotspotKey);
 }
}

4. The following code performs specific actions on the clicked hotspot such as Highlight,
Zoom, and so on.

// Highlight the "AutoVue" hotspot, "AV2D" is the definition key.
// Color : (R,G,B,A)
// myAvApp refers to the AutoVue JavaScript Object created in item 1
params = "HOTSPOT_COLOR=" + (((128 & 0xFF) << 24) | ((255 & 0xFF) << 16) |
((255 & 0xFF) << 8) | ((0 & 0xFF) << 0));
myAvApp.performHotSpot("AV2D", "AutoVue", "Highlight", params);

// To clear the hotspot highlight simply set the params (color) to null.
myAvApp.performHotSpot("AV2D", "AutoVue", "Highlight", null);

// To clear the definition highlights, set the hotspot key to null.
myAvApp.performHotSpot("Highlight", "AV2D", null, null);

// To clear all hotspot highlights, set the definition key to null.

Note: The method name should be exactly the same as the one specified in
the hotspot definition DEFINITION_FUNCTION in step 2. The
onHotSpotClicked() and onHotSpotDoubleClicked() methods are
predefined keys when the user clicks on the hotspot.

Box Hotspot

Hotspot Samples 12-3

myAvApp.performHotSpot(null, null, "Highlight", null);

// Zoom to the next "AutoVue" hotspot.
myAvApp.performHotSpot("AV2D", "AutoVue", "ZoomNext", null);

// Zoom to the previous "AutoVue" hotspot.
myAvApp.performHotSpot("AV2D", "AutoVue", "ZoomPrev", null);

12.2 3D Hotspot
The following example defines a 3D hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced Scripting.

2. Define a 3D hotspot. The following code snippet defines a hotspot matching a part number
in a 3D unigraphics assembly file. The sample file is included with the AutoVue
Client/Server Deployment installation: <AutoVue Installation
Folder>/samples/3D/Unigraphics/3DUnigraphics_iLearn-Assy.prt.

//Turn the part with PART_NUMBER = ITEM-UG-00003 into a hotspot. You can leave
//out the ATTRIB_VALUE if you want to highlight everything with the PART_NUMBER
//attribute
item00003Def = "DEFINITION_ATTRIB_NAME=PART_NUMBER; DEFINITION_ATTRIB_
VALUE=ITEM-UG-00003;"
 + "DEFINITION_TOOLTIP=Board;"
 + "DEFINITION_ONINIT=onHotSpotInit;"
 + "DEFINITION_FUNCTION=onHotSpot;"
 + "DEFINITION_ACTIONS=Add Part, Remove Part;"
 + "DEFINITION_COLOR=(255, 0, 0)";

3. Set the 3D hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_3D_ATTRIBUTE", "item00003",
item00003Def);

12.3 Box Hotspot
The following example details how to define a box hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced Scripting.

2. Define a box hotspot. The following code snippet defines a box hotspot that encloses the
Oracle logo from the PDF sample file included with the AutoVue Client/Server
Deployment installation: <AutoVue Installation Folder>/samples/Desktop-Office/Basell_
Autovue_Case_Study.pdf.

oracleDef = "DEFINITION_BOX=#6.4 #0.7 #8.1 #0.4; DEFINITION_USER_KEY=oracle;"
 + "DEFINITION_TOOLTIP=www.oracle.com;"
 + "DEFINITION_ONINIT=onHotSpotInit;"
 + "DEFINITION_FUNCTION=onHotSpot;"
 + "DEFINITION_ACTIONS=Open Link;"
 + "DEFINITION_COLOR=(0, 0, 255, 64)";

Note: The box coordinates are defined by #minX #minY #maxX #maxY.
Each coordinate must be preceded by a hash (#).

Polygon Hotspot

12-4 Oracle AutoVue API and ABV Developer's Guide

3. Set the box hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_BOX", "oracleBox", oracleDef);

12.4 Polygon Hotspot
1. Define a polygon hotspot. The code snippet provided in Example 12–1 defines a polygon

hotspot that encloses the complete drawing on top right corner case from the DGN sample
file included with the AutoVue Client/Server Deployment installation: <AutoVue
Installation Folder>/samples/2D/MicroStation.dgn.

Example 12–1 Code Snippet that defines Polygon Hotspot
drawingDef="DEFINITION_POLYGON=#(666.120514,309.60045)#(928.817686,469.33385)
 + #(1115.035505,167.614443)#(852.338328,7.881023);"
 + "DEFINITION_USER_KEY=fullDrawing;"
 + "DEFINITION_TOOLTIP=The complete drawing;"
 + "DEFINITION_ONINIT=onHotSpotInit;"
 + "DEFINITION_FUNCTION=onHotSpot;"
 + "DEFINITION_ACTIONS=zoomNext;"
 + "DEFINITION_COLOR=(0,0,255,64)";

2. Set the polygon hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_POLYGON","FullDrawingPoly",
drawingDef);

12.5 Text Hotspot
The example details how to define a text hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced Scripting.

2. Define a text hotspot. The following example defines a text hotspot (regular expression)
matching the AutoVue string. The PDF sample from Polygon Hotspot includes the
AutoVue string in multiple locations.

autovueDef = "DEFINITION_REGEX=AutoVue; DEFINITION_MATCHCASE=false;"
 + "DEFINITION_TOOLTIP=AutoVue Professional;"
 + "DEFINITION_ONINIT=onHotSpotInit;"
 + "DEFINITION_FUNCTION=onHotSpot;"
 + "DEFINITION_ACTIONS=AutoVue 2D, AutoVue 3D, AutoVue EDA,
 AutoVue Electro-Mechanical;"
 + "DEFINITION_COLOR=(0, 255, 0, 128)";

3. Set the text hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_TEXT", "AutoVue", autovueDef);

12.6 Text Hotspot with Visual Actions and Visual Dashboard
This example details how to define a text hotspot that utilizes the visual action and visual
dashboard features.

Note: The polygon is defined by the coordinates of its points
#(pt1.X,pt1.Y)#(pt2.X,pt2.Y)… #(ptN.X,ptN.Y). Each point coordinates
must be preceded by a hash (#).

3D Hotspot with Visual Actions and Visual Dashboard

Hotspot Samples 12-5

1. Define the text hotspot.

//Turn strings starting with CV into a Control Valve hotspot
handlerStr = "DEFINITION_REGEX=CV.*;";
handlerStr += "DEFINITION_MATCHCASE=false;";
handlerStr += "DEFINITION_TOOLTIP=Control Valve;";
handlerStr += "DEFINITION_ONINIT=onHotSpotInit;";
//Actions are handled by JavaScript function OnHotSpot
handlerStr += "DEFINITION_FUNCTION=onHotSpot;";
//When a hotspot is right-clicked, a menu appears with the following options:
//View Detailed Parts Diagram, Create Work Order and View Safety Information
handlerStr += "DEFINITION_ACTIONS=View Detailed Parts Diagram, Create Work
Order, View Safety Information;";
//Color : (R,G,B,A). When a mouse hovers over a hotspots, //they are
highlighted in 50% transparent blue
color = "(0,0,255,128)";
handlerStr += "DEFINITION_COLOR=" + color;
myAvApp.setHotSpotHandler("DEFINITION_TYPE_TEXT", definitionKey, handlerStr);

2. Create the hotspot actions.

//Variable hotspotKey contains the identifier for the hotspot entity that
//triggers the action when click.
function onHotSpot(defKey, hotspotKey, action, modifiers, properties) {
//If the hotspot entity is clicked, the side panel updates with information on
//the entity.
 if (equals (action, "onHotSpotClicked")) {
 updateSidePanel(defKey, hotspotKey, modifiers);
//Otherwise, if the RMB is clicked, an action can be selected from the menu.
 } else if (equals (action, "Create Work Order")) {
 createWorkOrder(defKey, hotspotKey);
 } else if (equals (action, "View Detailed Parts Diagram")) {
 showDetailsPartsPage(defKey, hotspotKey);
 } else if (equals (action, "View Safety Information")) {
 showSafetyInfo(defKey, hotspotKey);
 }
}

Note that each function must know how to retrieve the appropriate information and/or to trigger
the appropriate actions in the backend systems.

3. Define the highlighted hotspots for the visual dashboard. The ABV integration identifies
which entities need to be highlighted and their specified color. Each entity is then passed to
performHotspot() to highlight the entity appropriately.

function showHighlights{
 data = getData(); // returns array of JSON objects
 for (i=0 ; i < data.length() ; i++) {
 entity= data[i];
 myAvApp.performHotSpot("Highlight", entity.defKey, entity.hotspotKey,
entity.color);
 }
}

12.7 3D Hotspot with Visual Actions and Visual Dashboard
This example details how to define a 3D hotspot that utilizes the visual action and visual
dashboard features.

1. Define the 3D hotspots.

3D Hotspot with Visual Actions and Visual Dashboard

12-6 Oracle AutoVue API and ABV Developer's Guide

//Turn 3D parts with ASSET_ID attribute into hotspots.
handlerStr = "DEFINITION_ATTRIB_NAME=ASSET_ID;";
handlerStr += "DEFINITION_TOOLTIP=ASSET;";
handlerStr += "DEFINITION_ONINIT=onHotSpotInit;";
//Actions are handled by JavaScript funtion onHotSpot.
handlerStr += "DEFINITION_FUNCTION=onHotSpot;";
//When a hotspot is right-clicked, a menu appears with the following options:
//View Detailed Parts Diagram, Create Work Order and View Safety Information
handlerStr += "DEFINITION_ACTIONS=View Detailed Parts Diagram, Create Work
Order, View Safety Information;";
//Color : (R,G,B,A). When a mouse hovers over a hotspots, they are highlighted
//in 50% transparent blue
color = "(0,0,255,128)";
handlerStr += ";DEFINITION_COLOR=" + color;
myAvApp.setHotSpotHandler(
 "DEFINITION_TYPE_3D_ATTRIBUTE", definitionKey, handlerStr);

2. Create the 3D hotspot actions.

//Variable hotspotKey contains the identifier for the hotspot entity that
//triggers the action when click.
function onHotSpot(defKey, hotspotKey, action, modifiers, properties) {
//If the hotspot entity is clicked, the side panel updates with information on
//the entity.
 if (equals (action, "onHotSpotClicked")) {
 updateSidePanel(defKey, hotspotKey, modifiers);
//Otherwise, if the RMB is clicked, an action can be selected from the menu.
 } else if (equals (action, "Create Work Order")) {
 createWorkOrder(defKey, hotspotKey);
 } else if (equals (action, "View Detailed Parts Diagram")) {
 showDetailsPartsPage(defKey, hotspotKey);
 } else if (equals (action, "View Safety Information")) {
 showSafetyInfo(defKey, hotspotKey);
 }
}

3. Define the highlighted hotspots for the visual dashboard. The ABV integration identifies
which entities need to be highlighted and their specified color. Each entity is then passed to
performHotspot() to highlight the entity appropriately.

function showHighlights{
 data = getData(); // returns array of JSON objects
 for (i=0 ; i < data.length() ; i++) {
 entity= data[i];
 myAvApp.performHotSpot("Highlight", entity.defKey, entity.hotspotKey,
 entity.color);
 }
}

Note: Each function must know how to retrieve the appropriate information
and/or to trigger the appropriate actions in the backend systems.

13

VueAction Sample 13-1

13VueAction Sample

The VueAction sample included with the AutoVue installation illustrates how to implement a
custom hotspot action in Java. This sample is ready to be tested out of the box, but has limited
application as it is not integrated with an enterprise visualization system. It is presented solely
as a skeleton framework to show how hostspots can be applied.

The sample includes the following files:

Table 13–1 Files in VueAction Sample

File Description

PartCatalogueAction.java This is an example of how to write a custom action for
AutoVue. This example illustrates implementation of an action
that does more than one thing. It consists of several related
sub-actions that access information about parts of a product.
This action is added to two components to the AutoVue GUI:
AutoVue toolbar buttons and hotspot RMB menu items.

AutoVue toolbar buttons:

� None: Disables mouse detection over hotspots.

� Description: Enables mouse detection over hotspots and
displays hotspot description as a tooltip.

� ID: Enables mouse detection over hotspots and display
hotspot ID as a tooltip.

Hotspot RMB menu items:

� Order Part: Displays a dialog that includes part
information and a quantity order field.
Note that this dialog does not actually retrieve any part
information. It is only used to display possible RMB menu
actions.

� Show Part Information: Displays part name and ID.

PartListAction.java This is an example of how to write a custom action for
AutoVue. This action performs a single task and is added to the
List Product Parts option of the Analysis menu:

� List Product Parts: Lists the hotspots that user
double-clicked.

PartInfo.java This class provides product part information. It contains the
catalog ID, part ID and part description.

VueActionSample.jar JAR file for the VueAction sample.

JavaDocs Provides detailed information on the classes included in the
sample.

Running the VueAction Sample

13-2 Oracle AutoVue API and ABV Developer's Guide

13.1 Running the VueAction Sample
The following steps detail how to test the VueAction sample.

1. Double-click customjvue.bat.
AutoVue launches and populates the toolbar with the None, Description and ID buttons.

2. To test the hotspot implementation, open the hotspot sample file, Basell_AutoVue_Case_
Study.pdf.

3. Click Description to allow hotspot detection and to view tooltips. Alternately, you can
click ID to allow hotspot detection for the hotspot ID.

The following regular expressions are defined in hotspots.txt: AutoVue.* and Document.
That is, when you hover the mouse cursor over AutoVue, the string along with any inline
text that follows it is highlighted and a AutoVue 2D Professional tooltip appears. For the
Document string, the string is highlighted and the Basell Document tooltip appears.

13.2 Customizing the VueAction Sample
The VueAction sample can be customized to be used with a different file and with data from
enterprise visualization systems. Take note that all hotspots are defined in hotspots.txt. In this
file, you can specify the definition key, regular expression, whether the text search should
match case, define a tooltip, and so on. For more information on defining hotspots, refer to
Hotspot Definition Parameters.

custom.gui Defines the custom user interface of AutoVue. It adds
PartCatalogueActions to the AutoVue toolbar and Hotspot
RMB menu and the PartListAction to the Analysis menu.

hotspots.txt Contains the hotspot definitions. For information on how to
define hotspots, refer to Chapter 10, "Hotspots."

customjvue.bat Batch file that runs the sample. Note that the file illustrates
how to bundle the custom action with the custom user
interface.

Basell_AutoVue_Case_Study.pdf Sample file to be used with the VueAction sample. It is located
in <AutoVue Installation>\html\samples\Desktop-Office
directory.

PartCatalogueAction_de.properties German resource files.

PartCatalogueAction_en.properties English resource files.

PartCatalogueAction_fr.properties French resource files.

Note: For detailed information on PartCatalogueAction.java, PartInfo.java
or PartListAction.java, refer to the Javadocs included with the VueAction
sample.

Note: The hotspot definition file, hotspots.txt, is configured for Basell_
AutoVue_Case_Study.pdf. If you want to load another file, you must update
the hotspot definitions in hotspots.txt.

Table 13–1 (Cont.) Files in VueAction Sample

File Description

Customizing the VueAction Sample

VueAction Sample 13-3

The following steps describe how to update the VueAction sample with a customized
hotspots.txt:

1. Updated hotspot definitions in hotspots.txt.

2. Save hotspots.txt.

3. Extract the files from VueActionSample.jar.

4. From the extracted JAR file, replace hotspots.txt with your customized file.

5. Create a new JAR file, VueActionSample.jar.

6. Run the batch file, customjvue.bat.

Customizing the VueAction Sample

13-4 Oracle AutoVue API and ABV Developer's Guide

14

ABV Design and Security Recommendations 14-1

14ABV Design and Security Recommendations

This chapter provides design and security recommendations for ABV.

� Store hotspot definitions in a database and set them dynamically rather than hard-coding in
the html.

� Use JSON or XML and XMLHttpRequest to pass visual dashboard information from ABV
server component to ABV client components.

� Be aware that if using regional hotspots, the hotspots may need to be updated when the
drawing changes

� Ensure JavaScript and Java logging is on - need to set VERBOSE=true in client
parameters.

� If you are using custom GUIFILEs - ensure VueActionHotspots is included in all
GUIFILES.

� Be aware that performHotSpot() method does not generate errors if given an invalid
hotspotKey—ensure that your hotspotKey is correct if things are not working.

14-2 Oracle AutoVue API and ABV Developer's Guide

A

Feedback A-1

AFeedback

If you have any questions or require support for AutoVue please contact your system
administrator.

If at any time you have questions or concerns regarding AutoVue, please contact us.

A.1 General AutoVue Information

A.2 Oracle Customer Support

A.3 My Oracle Support AutoVue Community

A.4 Sales Inquiries

Web Site https://www.oracle.com/applications/autovue/

Web Site https://www.oracle.com/support/

Web Site https://community.oracle.com/hub/

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

A-2 Oracle AutoVue API and ABV Developer's Guide

	Contents
	Preface
	Part I Java API Guide
	1 Introduction – Java API
	2 AutoVue API Packages
	2.1 VueBean Package
	2.1.1 Event Package
	2.1.1.1 VueEvent
	2.1.1.2 VueModelEvent
	2.1.1.3 VueEventBroadcaster
	2.1.1.4 VueFileListener
	2.1.1.5 VueMarkupListener
	2.1.1.6 VueViewListener
	2.1.1.7 VueStateListener
	2.1.1.8 VueModelListener

	2.1.2 MarkupBean Package
	2.1.2.1 Markup
	2.1.2.2 MarkupLayer
	2.1.2.3 MarkupEntity

	2.2 Server Control
	2.3 VueAction Package
	2.3.1 AbstractVueAction
	2.3.2 VueAction
	2.3.2.1 Create an action that performs a single function
	2.3.2.2 Create an action that performs multiple functions

	3 Sample Cases
	3.1 Building an AutoVue API Application
	3.2 Custom VueAction
	3.2.1 Action that Performs a Single Function
	3.2.2 Action that Performs Multiple Functions

	3.3 Directly Invoking VueActions
	3.4 Markups
	3.4.1 Entering Markup Mode
	3.4.2 Checking Whether Markup Mode is Enabled
	3.4.3 Exiting Markup Mode
	3.4.4 Adding an Entity to an Active Markup/Layer
	3.4.5 Enumerating Entities
	3.4.6 Getting Entity Specification of a Given Entity
	3.4.7 Changing Specification of an Existing Entity Programmatically
	3.4.8 Adding a Text Box Entity
	3.4.9 Open Existing Markup
	3.4.10 Saving Markups to a DMS/PLM
	3.4.11 Adding a Markup Listener to Your Application

	3.5 Converting Files
	3.5.1 Making a Call to a Convert Method
	3.5.2 Converting to JPEG (Custom Conversion)
	3.5.3 Converting to PDF

	3.6 Printing a File to 11x17 Paper
	3.7 Monitoring Event Notifications
	3.8 Retrieving the Dimension and Units of a File

	4 FAQs
	4.1 MarkupBean
	4.2 Printing
	4.3 Upgrading
	4.4 General

	Part II JavaScript API
	5 Introduction – JavaScript API
	6 Architecture
	7 AutoVue Client Launch
	7.1 AutoVue Client Launch from Java Web Start
	7.1.1 Include AutoVue JavaScript API
	7.1.2 Instantiate an AutoVue JavaScript Object
	7.1.3 Start AutoVue Client

	8 AutoVue Advanced Scripting
	8.1 Advanced Scripting
	8.2 Applet API vs. New API

	Part III ABV Guide
	9 Introduction – ABV Guide
	10 Hotspots
	10.1 Creating a Visual Dashboard
	10.2 Creating a Visual Action
	10.3 Hotspot Features
	10.3.1 Tooltips
	10.3.2 Triggering Actions

	10.4 3D Hotspots
	10.4.1 Defining a 3D Hotspot

	10.5 Text Hotspots in 2D and EDA Documents
	10.5.1 Defining a Text Hotspot

	10.6 Regional Hotspots
	10.6.1 Defining Page-Specific Regional Hotspots
	10.6.2 Defining Coordinates of a Box/Polygon
	10.6.3 Defining a Box Hotspot
	10.6.4 Defining a Polygon Hotspot
	10.6.5 Invoking performHotspot()

	10.7 Web CGM Hotspots

	11 AutoVue Hotspot API
	11.1 Hotspot INI Options
	11.1.1 PDF Text Hotspot
	11.1.2 PDF Text Hotspot INI Options

	11.2 Define Hotspots
	11.2.1 Hotspot Definition Types
	11.2.2 Hotspot Definition Parameters
	11.2.2.1 Common Definition Parameters
	11.2.2.2 Text Definition Parameters
	11.2.2.3 3D Definition Parameters
	11.2.2.4 Regional Definition Parameters

	11.2.3 Perform an Action on a Hotspot
	11.2.3.1 Hotspot Actions

	11.3 AutoVue API for ABV Integration
	11.4 Interactions with Hotspots from JavaScript

	12 Hotspot Samples
	12.1 Adding a Hotspot
	12.2 3D Hotspot
	12.3 Box Hotspot
	12.4 Polygon Hotspot
	12.5 Text Hotspot
	12.6 Text Hotspot with Visual Actions and Visual Dashboard
	12.7 3D Hotspot with Visual Actions and Visual Dashboard

	13 VueAction Sample
	13.1 Running the VueAction Sample
	13.2 Customizing the VueAction Sample

	14 ABV Design and Security Recommendations
	A Feedback
	A.1 General AutoVue Information
	A.2 Oracle Customer Support
	A.3 My Oracle Support AutoVue Community
	A.4 Sales Inquiries

