

[1] Oracle® AutoVue Web Services
Installation and Developer’s Guide
Release 21.0.2.9
F10656-02

March 2024

Oracle® AutoVue Web Services Installation and Developer's Guides, Release 21.0.2.9

F10656-02

Copyright © 1999, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

iii

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents .. v
Conventions... vi

1 Introduction

2 Installation Prerequisites

3 System Requirements

4 Installing and Configuring AutoVue Web Services
4.1 Installing AutoVue Web Services.. 4-1
4.2 Configuring AutoVue Web Services web.xml .. 4-1
4.3 Configuring VueServlet web.xml .. 4-3
4.4 Configuring DMS Integration Properties... 4-3
4.4.1 VueLink for Documentum.. 4-4
4.4.2 VueLink for Oracle UCM/WCC .. 4-4
4.4.3 Third-Party Integrations.. 4-4
4.5 Configuring Web Services over HTTPS/SSL.. 4-5
4.6 Creating and Deploying the WAR File.. 4-5
4.7 Modifying AutoVue Web Services Configuration After Deployment .. 4-6
4.8 Verification .. 4-6

5 Uninstalling AutoVue Web Services

6 Upgrading AutoVue Server

7 Configuring Oracle Web Services Manager to Secure AutoVue Web Services

8 AutoVue Web Services
8.1 Getting Started ... 8-1
8.2 DMS Integration .. 8-2
8.3 Overview of Components .. 8-3
8.3.1 AutoVue Web Services Module ... 8-3
8.3.1.1 AutoVueWS.jar ... 8-3
8.3.1.2 AutoVue Components ... 8-3
8.3.1.3 Third-Party Libraries ... 8-3
8.3.1.4 Batch Utility .. 8-4
8.3.2 List of AutoVue Web Services ... 8-4
8.4 How AutoVue Web Services Works ... 8-4

iv

9 Using AutoVue Web Services
9.1 How to use AutoVue Web Services... 9-1
9.1.1 Java Client Proxy.. 9-1
9.1.1.1 Generating Client Proxy Using WSimport.. 9-1
9.1.1.2 Importing and Using Client Proxy .. 9-1
9.1.2 .NET Client Proxy .. 9-2
9.1.2.1 Generating Client Proxy using WSDL.. 9-2
9.1.2.2 Importing and Using Client Proxy in Microsoft Visual Studio....................................... 9-3
9.1.3 HTTPS/SSL .. 9-5

10 AutoVue Web Services and DMS Integration
10.1 VueLink for Oracle UCM/WCC... 10-2
10.2 VueLink for Documentum.. 10-2
10.3 Third-Party Integration ... 10-3
10.3.1 AutoVue ISDK Integration Example... 10-3

11 Oracle Web Services Manager

12 Testing AutoVue Web Services
12.1 AutoVue Web Services Methods.. 12-2
12.2 AutoVue Web Services API ... 12-6

A Appendix A - Sample Client Code in Java
A.1 Web Services Sample Client Code for Printing.. A-2
A.2 Packet Printing .. A-3

B Deploying AutoVue Web Services on Managed Server of Oracle WebLogic

C Troubleshooting

D Feedback
D.1 General AutoVue Information .. D-1
D.2 Oracle Customer Support.. D-1
D.3 My Oracle Support AutoVue Community.. D-1
D.4 Sales Inquiries... D-1

v

Preface

The AutoVue Web Services Installation and Developer’s Guide is in two parts. The Installation
Manual part of the guide describes the installation of AutoVue Web Services on the Windows
and Linux platforms and how to configure AutoVue Web Services for a connection with a
Document Management System (DMS) repository.

The Developer’s Guide describes how to create a Web service client stub for the AutoVue Web
Services package, how to use the generated code inside your application, and how to call
AutoVue Web Services methods from inside your code.

For the most up-to-date version of this document, go to the AutoVue Documentation Web site
on the Oracle Technology Network (OTN) at
https://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for third-party developers (for example integrators) who want to
integrate Oracle AutoVue with other application suites and legacy systems.

It is also intended for third-party developers who want to implement SOAP-based integration
with AutoVue.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle AutoVue Web Services
documentation set on OTN:

� Oracle AutoVue Web Services Release Notes

vi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Part I
Part I Installation and Configuration Manual

This part describes the installation of AutoVue Web Services and how to configure AutoVue
Web Services for a connection with a DMS repository.

Part I contains the following chapters:

� Introduction

� Installation Prerequisites

� System Requirements

� Installing and Configuring AutoVue Web Services

� Uninstalling AutoVue Web Services

� Configuring Oracle Web Services Manager to Secure AutoVue Web Services

1

Introduction 1-1

1Introduction

Oracle AutoVue Web Services provides a standard interface that allows for easy integration of
Oracle AutoVue with other application suites and legacy systems. With AutoVue Web
Services, developers can easily integrate AutoVue's best-in-class enterprise visualization
capabilities where they are most needed in the enterprise, regardless of platforms or
programming languages. Teams can use AutoVue functionality in a completely transparent way
to view and collaborate on business and technical information directly from other applications
and enterprise systems, and perform their tasks in a more efficient manner.

AutoVue Web Services represents many AutoVue functionalities such as print, convert, text
extraction, and more in the structure defined by Web Service Description Language (WSDL).

The AutoVue Web Services package acts as a wrapper around Oracle AutoVue client. It
exposes certain AutoVue functionalities as Web methods, and translates AutoVue Web
Services requests to and from AutoVue (for example, AutoVue messages to AutoVue Web
Services responses). Additionally, AutoVue Web Services enables AutoVue to communicate
with any third-party application that wants to invoke AutoVue in a Service Oriented
Environment (SOE).

The AutoVue Web Services package is designed to work seamlessly with Document
Management Systems (DMS) through various DMS integrations. It can also work with local
files and Uniform Resource Identifiers (URIs) that are accessible to the host machine.

The following diagram displays the communication process for AutoVue Web Services:

Note: Not all of AutoVue's functionalities are represented in the AutoVue
Web Services package. This is because many of the functionalities require
user interaction (for example, online collaboration, digital mockup, and so
on) and are not suitable for application-to-application communication; which
is the main objective of AutoVue Web Services

1-2 Oracle® AutoVue Web Services Installation and Developer's Guides

Figure 1–1 Communication Process for AutoVue Web Services

AutoVue Web Services can also invoke operations on files inside Document Management
Systems (DMS) repositories. To access the DMS repository, a DMS integration interface is
required between the DMS server, AutoVue Web Services, and Oracle AutoVue. This interface
enables you to add powerful viewing and markup capabilities to your DMS via a Web browser
in an intranet or the Internet.

The following image displays the relationship between Web Services client, AutoVue Web
Services, and AutoVue Server:

Figure 1–2 Flow Diagram

2

Installation Prerequisites 2-1

2Installation Prerequisites

Before installing AutoVue Web Services, ensure that AutoVue Server and your J2EE certified
Application Server are properly installed and configured on your system according to the
manufacturer's instructions.

To run the Web Services installer in graphical mode on Linux, the libXp package must be
installed on the machine.

Note: It is recommended to test both your Application Server and AutoVue
Server independently to verify that the installation was successful and that all
functionalities are available and produce the expected results.

2-2 Oracle® AutoVue Web Services Installation and Developer's Guides

3

System Requirements 3-1

3System Requirements

� Oracle AutoVue 21.0.2

� Server Operating Systems

– Windows Server 2008 R2

* 64-bit (AutoVue running in 32-bit mode)

– Windows Server 2012 R2

* 64-bit (AutoVue running in 32-bit mode)

– Windows Server 2016

* 64-bit (AutoVue running in 32-bit mode)

– Oracle Linux 6.X (x86_64), and 7.X (x86_64)

* 64-bit (AutoVue running in 32-bit mode)

– Red Hat Enterprise Linux 6.X (x86_64), and 7.X (x86_64)

* 64-bit (AutoVue running in 32-bit mode)

� A J2EE 7 or later Application Server

– Oracle AutoVue Web Services is certified with Oracle WebLogic 12cR2.

– AutoVue Web Services uses Java annotation and other features introduced in Java
Platform, Enterprise Edition (Java EE) 5 or later. As a result, AutoVue Web Services
can only be deployed on a Java EE certified application server.

� The following VueLinks have been validated with AutoVue Web Services:

– VueLink 19.3.2 for Documentum/WebTop 6.8 SP2

– VueLink 20.1 for Oracle UCM/WCC 11.1.1.8

� To test AutoVue Web Services without writing any code, you can use the following:

– Oracle Web Services Manager (either standalone or part of SOA)

– SoapUI

– Oracle JDeveloper that has built-in tools for testing Web Services

3-2 Oracle® AutoVue Web Services Installation and Developer's Guides

Note: If Web Services is installed on a Linux machine, the Linux machine
must start at level 5: X11 which is level 3 + display manager.

If you would like to connect to a Linux machine through the X window
system (for example, Xming), you must use the one with Mesa 3D capability
(for example, Xming-mesa) in order to print a file that contains 3D pages.

AutoVue Web Services has the same dependency as the AutoVue client in
terms of the third-party libraries (for example, libGL.so and libGLU.so on
Linux). For more information refer to the Oracle AutoVue Client/Server
Installation and Configuration Guide.

4

Installing and Configuring AutoVue Web Services 4-1

4Installing and Configuring AutoVue Web
Services

This chapter describes the installation and configuration steps for AutoVue Web Services.

To install, run the installer to extract all necessary files and then manually configure AutoVue
Web Services. If you are using a DMS integration, you must configure its properties file. Once
configuration is complete, create and deploy the AutoVue Web Services WAR file with your
application server.

4.1 Installing AutoVue Web Services
The two folders that are included in the AutoVue Media package under the WebServices
directory: win32 and linux. Each of these folders contain the AutoVue Web Services installer
for the corresponding platform:

� For Windows, go to the win32 folder and launch the setupwin32.exe file.

� For Linux, go to the linux folder and launch the setuplinux.bin file.

4.2 Configuring AutoVue Web Services web.xml
1. From the <AutoVue Web Services Installation Directory>\autovue_

webservices\AutoVueWS\WEB-INF directory, open web.xml in a text editor.

2. On Windows operating systems, if the default directory (C:\Oracle\AutoVueWS) is
selected during installation, proceed to step 3. If a different installation path is selected, do
the following:

a. Locate the following line of code:

<env-entry-value>C:/Oracle/AutoVueWS/autovue_webservices/sample_
config/log4j.properties</env-entry-value>

b. Replace C:/Oracle/AutoVueWS/autovue_webservices/sample_config/log4j.properties
with the actual full file path for the log4j.properties file.

Note: It is recommended to install AutoVue Web Services in the default
installation directory: C:\Oracle\AutoVueWS on Windows.

Note: On Linux, you have to follow the same procedure as provided in
steps a and b.

Configuring AutoVue Web Services web.xml

4-2 Oracle® AutoVue Web Services Installation and Developer's Guides

3. If you want AutoVue Web Services to access a DMS repository (for example, files inside
Oracle WebCenter Content or a third-party integration), the value for the environment
entry name vuelinkProtocol must be specified.

a. Locate the following code:

<env-entry>
<env-entry-name>vuelinkProtocol</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value></env-entry-value>
<injection-target>
<injection-target-class>com.oracle.autovue.services.VueBeanWS</injection-ta
rget-class>
<injection-target-name>vuelinkProtocol</injection-target-name>
</injection-target>
</env-entry>

b. Enter a semicolon (;) separated list of DMS integration protocols between the
<env-entry-value></env-entry-value> tags. For example:

<env-entry-value>
DMS_Integration_1;DMS_Integration_2;...;DMS_Integration_n
</env-entry-value>

Where DMS_Integration_1 to DMS_Integration_n represent protocols for different
DMS integrations. Possible DMS integration protocols are as follows:

For information on configuring DMS integrations, refer to Configuring DMS Integration
Properties

4. Verify that value for vuelinkPropsDir points to the directory that contains the DMS
connection properties files: DMS_Integration_1.properties, DMS_Integration_2.properties,
and so on. To do so, locate the following line of code:

<env-entry-value>C:/Oracle/AutoVueWS/autovue_webservices/sample_
config/</env-entry-value>

If different, replace C:/Oracle/AutoVueWS/autovue_webservices/sample_config/ with the
correct full directory path.

5. Specify the value for the environment entry name destinationDIR. The destinationDIR
directory is the destination location where AutoVue Web Services stores temporary files
on the server. All temporary files are deleted when they are no longer required by AutoVue
Web Services.

a. Locate the following line of code:

<env-entry-value>full path to output directory</env-entry-value>

Table 4–1 DMS integration protocols

Protocol Examples Description

vuelinkUCM Represents the protocol of VueLink for Oracle UCM/WCC

vuelinkDCMT Represents the protocol of VueLink for Documentum

Third_Party_Name Represents the protocol of a third-party integration

Note: Ensure AutoVue Web Services has the proper write accesses for the
destinationDIR directory.

Configuring DMS Integration Properties

Installing and Configuring AutoVue Web Services 4-3

b. Replace full path to output directory with the location that the converted files are
stored in the Web services server machine (for example, C:/temp).

6. Specify the value for the environment entry name initialJVueServer.

a. Locate the following line of code:

<env-entry-value>http://hostname:port/context/servlet/VueServlet</env-entry
-value>

b. Replace http://hostname:port/context/servlet/VueServlet with the URL that points to
the AutoVue VueServlet that is deployed on your application server. The default is
http://localhost:7003/VueServlet/servlet/VueServlet.

7. If you want Web Services to be able to address more requests simultaneously, you can
increase the value for the environment entry maxPoolSize. The default value is 1.

8. When there is no VueBean object in the pool, no new request can be processed until one of
the VueBean objects becomes available. In such case a new request will be put on hold for
a certain period of time, waiting for a VueBean object to be available in the pool. The
value for the environment entry maxWait specifies the period of time. The default value is
7200 seconds.

9. The value for the environment entry maxParallelPrintJob specifies the maximum allowed
number of parallel print jobs per printer. The default value is 1.

10. The value for the environment entry name maxPrinterJobBuffer specifies the maximum
allowed number of jobs in the buffer per printer. This means that the Web Services tries not
to overload the printer buffer by sending all jobs to the printer without any feedback from
the print buffer. The default value is 5.

11. The value for the environment entry name minMemory specifies the minimum amount of
memory in MB required before a VueBean is allowed to open a document. The default
value is 128MB.

12. The value for the environment entry name isUploadProtocolEnabled specifies whether
Web Services allows upload protocol or not. For security purposes, the default value is
FALSE.

4.3 Configuring VueServlet web.xml
1. From the <AutoVue Web Services Installation>\autovue_

webservices\VueServlet\WEB-INF directory open web.xml in a text editor.

2. Update the default location of AutoVue server "localhost:5099". You must replace
localhost with the host name/IP address of the machine that is running the AutoVue server,
and replace 5099 with the socket port number that the AutoVue server is listening to
(default is 5099).

4.4 Configuring DMS Integration Properties
If you specified the DMS integration protocols in Configuring AutoVue Web Services web.xml
then the connection properties files with the same name must be created and configured in the
location specified by the environment entry vuelinkPropsDir in web.xml. The connection

Note: To add multiple AutoVue servers, add them as semi-colon separated
list (;).

Configuring DMS Integration Properties

4-4 Oracle® AutoVue Web Services Installation and Developer's Guides

properties files in this location are responsible for the connection between AutoVue Web
Services and the DMS integration.

The following sections explain how to configure the connection properties files for:

� VueLink for Documentum

� VueLink for Oracle UCM/WCC

� Third-party integrations

4.4.1 VueLink for Documentum
1. Verify that the DMS connection properties file, vuelinkDCMT.properties, is in the location

specified by the environment entry vuelinkPropsDir block in Web Services web.xml file.

2. Open the vuelinkDCMT.properties file in a text editor.

3. Locate the following line of code:

DMS=http://appserver:port/context/com.cimmetry.vuelink.documentum.DMS

4. Replace appserver:port with the host and port of the application server that deploys
VueLink for Documentum.

5. Replace context with the context name of VueLink for Documentum in the application
server (for example, webtop).

6. Save the vuelinkDCMT.properties file.

4.4.2 VueLink for Oracle UCM/WCC

1. Verify that the DMS connection properties file, vuelinkUCM.properties, is in the location
specified by the environment entry name vuelinkPropsDir block in Web Services web.xml
file.

2. Open the vuelinkUCM.properties file in a text editor.

3. Locate the following line of code:

DMS=http://appserver:port/context/DMS

4. Replace appserver:port with the host and port of the application server that deploys
VueLink for Oracle UCM/WCC.

5. Replace context with the context name of VueLink for Oracle UCM/WCC in the
application server (for example, vuelink).

6. Save the vuelinkUCM.properties file.

4.4.3 Third-Party Integrations
With AutoVue Web Services, you can use a third party integration based on AutoVue ISDK
between AutoVue and your own DMS repository (for example, Third_Party_Name DMS).

The following steps explain how to invoke AutoVue Web Services for files stored inside the
Third_Party_Name DMS repository.

Note: Oracle UCM has been renamed as Oracle WebCenter Content
(WCC).

Creating and Deploying the WAR File

Installing and Configuring AutoVue Web Services 4-5

1. In the <AutoVue Web Services Installation Directory>\autovue_webservices\sample_
config directory, create a file named "Third_Party_Name.properties".

2. Verify that Third_Party_Name DMS integration protocol is defined in the environment
entry name vuelinkProtocol block in web.xml. Refer to Configuring AutoVue Web
Services web.xml.

3. Open the connection properties file in a text editor, and assign the DMS value the URL that
points to the third-party DMS integration servlet that is based on AutoVue ISDK. For
example, assuming that the application server is on port 8080 of the appSrv1 machine and
the path to the DMS servlet is /Third_Party_Name/DMS, enter the following line of code:

DMS=http://appSrv1:8080/Third_Party_Name/DMS

4. If used by the Third_Party_Name DMS repository, set the DMS arguments (DMSArgs).
For example:

DMSArgs=Arg1;Arg2
Arg1=value
Arg2=value

AutoVue Web Services passes these DMSArgs to your Third_Party_Name DMS servlet.

5. Save the Third_Party_Name.properties file.

4.5 Configuring Web Services over HTTPS/SSL
We recommend that you configure your application server to allow HTTP connections over
Secure Socket Layer (SSL). For more information on how to set up AutoVue Web Services to
run in a SSL environment, refer to HTTPS/SSL in the Developer’s Guide.

4.6 Creating and Deploying the WAR File
1. From the <AutoVue Web Services Installation>\autovue_webservices\ directory, run the

createWarfile.bat/createWARfile.sh file.

The AutoVue Web Services WAR file, AutoVueWS.war, and VueServlet WAR file,
VueServlet.war, are created in the <AutoVue Web Services Installation>\autovue_
webservices\ directory.

2. Deploy the WAR file with your application server.

If you are using Oracle WebLogic, refer to Deploying AutoVue Web Services on Managed
Server of Oracle WebLogic.

If you are using another application server, refer to your application server's documentation
for information on deploying a WAR file.

3. Verify the deployment. For more information, refer to Verification.

Note: If you choose not to run AutoVue Web Services over SSL, any data
(including any user credentials) sent to AutoVue Web Services will be in
clear text and not encrypted. It is recommended to use SSL for secure
communication.

Note: If you wish to modify the AutoVue Web Services configuration after
it is deployed, refer to Modifying AutoVue Web Services Configuration
After Deployment.

Modifying AutoVue Web Services Configuration After Deployment

4-6 Oracle® AutoVue Web Services Installation and Developer's Guides

4.7 Modifying AutoVue Web Services Configuration After
Deployment

If you want to modify web.xml after you deploy AutoVue Web Services to the application
server, do the following:

1. Undeploy AutoVue Web Services.

2. Restart your application server.

3. Modify web.xml.

4. Create the WAR file.

5. Deploy the WAR file to your application server.

4.8 Verification
To verify that AutoVue Web Services is running properly, launch your Web browser and enter
the URL pointing to index.jsp. To verify that the VueServlet is running properly, launch your
Web browser and enter the URL pointing to the VueServlet. The following examples show how
to verify that AutoVue Web Services and VueServlet are running properly.

Example 4–1 Verify AutoVue Web Services deployment with URL pointing to index.jsp
1. Enter the following URL in the Web browser: http://[host:port]/AutoVueWS/index.jsp The

Java Environment System Properties are displayed.

2. Select Click here to view WSDL. The formatted XML for WSDL displays.

The Figure 4–1 displays a sample indicating that AutoVue Web Services is running
properly. If you do not receive a similar response, refer to the chapter – Installing and
Configuring AutoVue Web Services.

Verification

Installing and Configuring AutoVue Web Services 4-7

Figure 4–1 AutoVue Web Services sample

Example 4–2 Verify AutoVue Web Services deployment with URL pointing to the
VueServlet
1. Start the AutoVue server.

2. Enter the following URL in the Web browser:
http://[host:port]/VueServlet/servlet/VueServlet The following screenshot displays a
sample indicating that the VueServlet is running properly. If you do not receive a similar
response, refer to the chapter – Installing and Configuring AutoVue Web Services.

Verification

4-8 Oracle® AutoVue Web Services Installation and Developer's Guides

Figure 4–2 VueServlet sample

5

Uninstalling AutoVue Web Services 5-1

5Uninstalling AutoVue Web Services

To uninstall AutoVue Web Services, perform the following steps:

1. Manually delete the AutoVueWS.war and VueServlet.war files.

2. From the <AutoVue Web Services Installation Directory>_uninst directory, run
uninstaller.exe/uninstaller.bin to delete the installation folder.

3. Undeploy the WAR files from the application server.

4. Undeploy AutoVue Web Services and VueServlet from the application server.

5. If applicable, delete the previous manually copied log4j.properties and DMS integration
connection properties files.

5-2 Oracle® AutoVue Web Services Installation and Developer's Guides

6

Upgrading AutoVue Server 6-1

6Upgrading AutoVue Server

If there is an upgrade for AutoVue server, you must also update the jvue.jar, jogl.jar,
gluegen-rt.jar, jsonrpc.jar, gluegen-rt-natives-macosx-universal.jar,
jogl-natives-macosx-universal.jar, gluegen-rt-natives-windows-amd64.jar,
jogl-natives-windows-amd64.jar, gluegen-rt-natives-linux-amd64.jar,
jogl-natives-linux-amd64.jar, jogl-natives-windows-i586.jar, and
gluegen-rt-natives-windows-i586.jar. To do so:

1. Replace your old versions of jvue.jar, jogl.jar, jsonrpc4j.jar and gluegen-rt.jar located in
the <AutoVue Web Services Installation Directory>\autovue_
webservices\AutoVueWS\WEB-INF\lib directory with the new release from the patch.
Replace your old version of vueservlet.jar located in the <AutoVue Web Services
Installation Directory>\autovue_webservices\ VueServlet \WEB-INF\lib directory with the
new release from the patch.

2. From the <AutoVue Web Services Installation Directory>\autovue_webservices\ directory
run the createWarfile.bat/createWARfile.sh to create new WAR files.

3. Deploy the WAR files to the application server.

For information on deploying the war file, refer to Creating and Deploying the WAR File.

6-2 Oracle® AutoVue Web Services Installation and Developer's Guides

7

Configuring Oracle Web Services Manager to Secure AutoVue Web Services 7-1

7Configuring Oracle Web Services Manager to
Secure AutoVue Web Services

Oracle Web Services Manager can be configured to provide security for AutoVue Web
Services. For configuration information, refer to the Oracle Web Services Manager
documentation on the Oracle Technology Network (OTN):

https://docs.oracle.com/middleware/1212/owsm/index.html

7-2 Oracle® AutoVue Web Services Installation and Developer's Guides

Part II
Part II Developer’s Guide

This part of the AutoVue Web Services Installation and Developer’s Guide describes how to
create a Web service client stub for the AutoVue Web Services package, how to use the
generated code inside your application, and how to call AutoVue Web Services methods from
inside your code. This manual also serves as a good starting point for developers and
professional services to become more familiar with the technical details of this package.

AutoVue Web Services is intended for system integrators or developers who want to integrate
Oracle AutoVue with their applications. AutoVue Web Services is written in Java and based on
Java API for XML Web Services (JAX-WS). Clients that consume AutoVue Web Services can
be written in any language such as Java or .NET as long as they understand WSDL and
communicate using Simple Object Access Protocol (SOAP).

Part II contains the following chapters:

� AutoVue Web Services

� Using AutoVue Web Services

� AutoVue Web Services and DMS Integration

� Oracle Web Services Manager

� Testing AutoVue Web Services

� Appendix A - Sample Client Code in Java

� Deploying AutoVue Web Services on Managed Server of Oracle WebLogic

� Troubleshooting

8

AutoVue Web Services 8-1

8AutoVue Web Services

With AutoVue Web Services, developers can easily integrate AutoVue's best-in-class enterprise
visualization capabilities where they are most needed in the enterprise, regardless of platforms
or programming languages.

8.1 Getting Started
After you run the installer for AutoVue Web Services on your machine, several folders are
created. The following screenshot displays the folder structure that is created when installed in
the default installation directory (C:\Oracle\AutoVueWS) on Windows:

Figure 8–1 Folder Structure of AutoVue Web Services

The readme.html file acts as an entry point to the remaining documentation for AutoVue Web
Services. To view the contents of the file, open it from a Web browser.

The following is a brief description of what is contained in each folder after the installation of
AutoVue Web Services:

� The /docs folder contains the JavaDocs. All other documentation can be found on the
Oracle Technology Network (OTN)
https://www.oracle.com/technetwork/documentation/autovue-091442.html.

� The /Javadocs folder contains JavaDocs for Oracle AutoVue Web services.

� The /autovue_webservices folder contains files needed to generate AutoVueWS.war for
deployment into J2EE application server:

– AutoVueWS: A staging folder for generating AutoVueWS.war file.

– sample_config: Contains configuration files used by AutoVueWS.war.

– createWARfile.bat: Batch file which generates AutoVueWS.war and VueServlet.war
on Windows OSes.

– VueServlet: Staging folder for generating VueServlet.war.

DMS Integration

8-2 Oracle® AutoVue Web Services Installation and Developer's Guides

– createWARfile.sh: Shell scripting which generates AutoVueWS.war and
VueServlet.war on Linux OSes.

An optional folder – sample_client is also created in the <Av Web Services Install Dir> if you
select the AutoVue Web Services Sample Client Code check box during installation of Web
Services.

� sample_client: Contains sample AutoVue Web Services client code which demonstrates a
persistent retry as long as the server is busy or when there is not enough memory.

� The /etc folder contains the following files:

� version.txt: Version information

� fileslist.txt: List of files and folders structure contained in this release

� 3rdParty: This folder contains licenses of the included software components
developed by 3rd party companies. It has the following subfolders:

– apache: This folder contains licenses of the included software developed by the
Apache Software Foundation (http://www.apache.org/)

– jogamp: This folder contains licenses of the included JOGL software developed
by jogamp community (http://jogamp.org/)

� The /_jvm and /_uninst folders are used for uninstalling AutoVue Web Services.

Initially, you must generate the AutoVueWS.war Web application module and deploy it into
your Application Server.

You also need to ensure that you have all prerequisite software installed before you start
deployment. For a complete list specific to your platform, refer to the chapter – System
Requirements.

Once you have successfully deployed the AutoVueWS.war Web application, you should
familiarize yourself with the available Web services. For more information on the features and
functionalities provided by each Web service, refer to the chapter – Using AutoVue Web
Services.

To test AutoVue Web Services without writing any code, you can use Oracle Web Services
Manager. For version information refer to System Requirements.

You can also create your own Web services proxy client that consumes AutoVue Web
Services. For more information refer to Generating Client Proxy Using WSimport.

8.2 DMS Integration
Through a document management system (DMS) integration, AutoVue Web Services can
invoke operations on files located in DMS repositories (such as Oracle WebCenter Content,
third-party integrations, and so on). Each DMS integration is associated to a connection
properties file that manages the interaction between AutoVue Web Services and the DMS
integration.

Note that each DMS integration has an associated properties file. For example:

� VueLink for Oracle UCM/WCC is assigned vuelinkUCM.properties

� VueLink for Documentum is assigned vuelinkDCMT.properties

� A third-party application is assigned vuelinkTHIRD_PARTY.properties

For more information on DMS integration and configuring connection properties files, refer to
Configuring DMS Integration Properties.

Overview of Components

AutoVue Web Services 8-3

8.3 Overview of Components
AutoVue Web Services contains two main components: JavaDocs and AutoVue Web Services
Module.

8.3.1 AutoVue Web Services Module
AutoVue Web Services Module consists of the following components: AutoVueWS.jar,
AutoVue components, third-party libraries, and batch utility.

8.3.1.1 AutoVueWS.jar
This is the main library that is used as the end point for AutoVue Web Services. It is
responsible for processing all incoming Simple Object Access Protocol (SOAP) messages and
building responses to AutoVue Web Services clients.

� AutoVue Web Services uses standard Web descriptor file (web.xml) for storing
configuration parameters and log4j for logging messages into an output log file. You can
specify the location and filename of the logs file in property.logpath and
appender.rolling.fileName, respectively, in the log4j.properties file

8.3.1.2 AutoVue Components
AutoVue Web Services is built as a wrapper around the AutoVue client. The following
component of Oracle AutoVue is bundled with AutoVue Web Services:

� AutoVue Client (jvue.jar)

� AutoVue Web Services does not bundle the AutoVue server. As a result, you must
download it separately.

8.3.1.3 Third-Party Libraries
AutoVue Web Services bundles the following third-party open source libraries:

� Commons-pool-1.5.4.jar

� Log4j-api.jar

� Log4j-core.jar

� Jogl.jar

� Gluegen-rt.jar

� jsonrpc4j.jar

� gluegen-rt-natives-macosx-universal.jar

� jogl-natives-macosx-universal.jar

� gluegen-rt-natives-windows-amd64.jar

� jogl-natives-windows-amd64.jar

� gluegen-rt-natives-linux-amd64.jar

� jogl-natives-linux-amd64.jar

� jogl-natives-windows-i586.jar

� gluegen-rt-natives-windows-i586.jar

How AutoVue Web Services Works

8-4 Oracle® AutoVue Web Services Installation and Developer's Guides

8.3.1.4 Batch Utility
CreateWARfile.bat/createWARfile.sh is a batch utility file that generates a Web Archive
(WAR) file for easy deployment into your Application Server. Before running this utility,
ensure that your settings inside various configuration files (web.xml, log4j.properties, and so
on) are correct.

8.3.2 List of AutoVue Web Services
The Table 8–1 is a summary of methods provided by AutoVue Web Services. For more
information, see AutoVue Web Services Methods.

8.4 How AutoVue Web Services Works
After the AutoVue Web Services package is deployed, the VueBeanWS.wsdl (AutoVue's
WSDL interface) provides the required gateway to client applications. The client applications
can identify the available Web methods and their input/output parameters through the WSDL,
and generate the required communication proxy. Next, automatically generate the Web Services

Table 8–1 Summary of Methods

Web Services Description

getText This text extraction Web method returns visible text inside a given
document. This method is not supported for 3D formats. Metadata is not
included by this method (for example, EDA entity information, layer and
block names, and so on).

getProperties This file level metadata extraction Web method returns metadata and
properties for a given file.

From the Operation list, select getProperties and wait for the page to
refresh.

This method only needs a valid URI. Authorization is needed only if the
URI cannot be accessed without it.

getXRefs This External References (XRefs) Web method returns a list of XRefs
associated to a given file.

getPartTree This part tree extraction Web method returns a list of parts contained in a
given file. This method is only supported for 3D formats.

For example, in the case of a 3D assembly, this Web service returns a list
of parts and sub-assemblies referenced by the 3D assembly.

getPartProperties This part level metadata extraction Web method returns metadata for a
given part in a given file. This method is only supported for 3D formats.

For example, in the case of a 3D assembly, this Web service returns
properties of a particular part referenced by the 3D assembly.

print This printing Web method sends a given file to a printer for printing.

packetPrint Prints a group of documents (known as packet) one at a time, along with
the auto-generated cover page and summary page.

convert This conversion Web method converts a given file into another format
such as BMP, PDF, or TIFF.

getLayerInfo This Web method returns a list of all available layers of a given
document.

getPrinterNameList This utility Web method returns a list of available printers.

getPaperList This utility Web method returns a list of different papers supported by a
given printer.

How AutoVue Web Services Works

AutoVue Web Services 8-5

client stub for AutoVue from the tools provided by the programming languages (all AutoVue
Web Services methods are defined in a single WSDL).

Once the client stub is created in a specific programming language it can be reused by
applications in that language and a few lines of code are needed to call any AutoVue Web
Services method through the client proxy.

Several AutoVue Web Services methods accept options (for example, print and convert) as an
optional input parameter. The structures of these options are defined in a XML Schema
Definition (XSD) that is linked to the WSDL and are generated in the client stub code
automatically. The client application instantiates these options and sets their variables to desired
values and invokes the AutoVue Web Services method.

A successful call to an AutoVue Web Services method returns the desired output. An error
message is displayed if there is an issue with the input parameters.

Note: The output types of AutoVue Web Services methods vary from one
to another. Regardless, all custom output structures are defined in the XSD
and are generated automatically once the client stub is generated.

How AutoVue Web Services Works

8-6 Oracle® AutoVue Web Services Installation and Developer's Guides

9

Using AutoVue Web Services 9-1

9Using AutoVue Web Services

This chapter discusses how to use AutoVue Web Services and the steps involved to create
client proxy.

9.1 How to use AutoVue Web Services
The first step in using AutoVue Web Services is to create a client proxy in your desired
language. Then, after installation and deployment of AutoVue Web Services, look for the URL
that points to the WSDL (for example, http://host:port/AutoVueWS/VueBeanWS?wsdl). This
URL is needed for any utility that you use to create your client stub.

9.1.1 Java Client Proxy
There are two steps in generating a Java client proxy:

1. Generating Client Proxy Using WSimport

2. Importing and Using Client Proxy

9.1.1.1 Generating Client Proxy Using WSimport
To generate the Java client proxy, you can simply call wsimport, which is bundled with JDK,
from the command line with the -keep option and pass the WSDL's URL.

For example:

wsimport -keep http://host:port/AutVueWS/VueBeanWS?wsdl

This will provide the following output:

parsing WSDL...
generating code...
compiling code...

After returning back to the command line, a new Java package is created in the current location.

The directory structure of the package should be com\oracle\autovue\services. All client proxy
codes are generated inside this directory.

For detailed information regarding available wsimport options refer to the following link:

https://docs.oracle.com/javase/7/docs/technotes/tools/share/wsimport.html

9.1.1.2 Importing and Using Client Proxy
The next step is to import and instantiate the generated package inside your client code.The
following code demonstrates how to call an AutoVue Web Services method:

http://docs.oracle.com/javase/7/docs/technotes/tools/share/wsimport.html

How to use AutoVue Web Services

9-2 Oracle® AutoVue Web Services Installation and Developer's Guides

import com.oracle.autovue.services.*;

public class AutoVueWSClient {

 public static void main(String[] args) throws Exception {

 //create service
 VueBeanWS_Service service = new VueBeanWS_Service();

 //create proxy
 VueBeanWS proxy = service.getVueBeanWSPort();

 //call autovue ping Web method
 System.out.print (proxy.ping("Hello from Java"));
 }
}

The first line, import com.oracle.autovue.services.*; imports the AutoVue client stub
package generated by the wsimport tool. To call a Web method, you need to first instantiate the
VueBeanWS_Service object. From this object, instantiate the VueBeanWS class which is the
proxy for calling all AutoVue Web Services methods.

The simplest AutoVue Web Services method to run--which is also a good method for
testing--is the ping method. It verifies that AutoVue Web Services is running and responding
correctly.

After running the above code, you should receive an output similar to the following:

Server Date/Time: //some number showing current time at the server side
AutoVue Client Build Number: //...
AutoVue Client Build Date: //...

For a detailed description on calling AutoVue Web Services methods, refer to Testing AutoVue
Web Services.

9.1.2 .NET Client Proxy
This section contains the following:

� Generating Client Proxy using WSDL

� Importing and Using Client Proxy in Microsoft Visual Studio

9.1.2.1 Generating Client Proxy using WSDL
The .NET environment also provides a tool for creating an AutoVue Web Services client proxy,
wsdl.exe. To generate the AutoVue Web Services client proxy, from the command line, you can
simply pass WSDL's URL to wsdl.exe.

For example:

wsdl.exe http://host:port/AutoVueWS/VueBeanWS?wsdl

The tool generates a file, VueBeanWS.cs, in the same location as VueBeanWS?wsdl.

Note: Optionally, you can pass a string value to the ping method.

How to use AutoVue Web Services

Using AutoVue Web Services 9-3

Since Microsoft Visual Studio is the primary IDE for .NET development, you can also use it to
create and use the AutoVue Web Services client proxy. For more information on using
Microsoft Visual Studio for generating a client proxy, depending on your environment, refer to
Importing and Using Client Proxy in Microsoft Visual Studio.

9.1.2.2 Importing and Using Client Proxy in Microsoft Visual Studio
You can generate the AutoVue Web Services client proxy without using the command line in
Visual Studio.

1. After starting Visual Studio, create a new console application (optionally choose the name
AutoVueWSClient). As shown in the following figure, C# is the preferred coding
language.

Figure 9–1 AutoVueWSClient

2. In the newly created project, from the Solutions Explorer window, right-click on
References, and then select Add Service References.

The Add Service Reference window appears.

3. Enter the AutoVue WSDL's URL in the URL field, then click Go. The VueBeanWS Web
service and its Web methods are displayed in the Add Service Reference window.

Note: If you want the information being sent between a client and AutoVue
Web Services to be secure, you should enter the HTTPS protocol in the URL
instead of HTTP. For more information, refer to HTTPS/SSL.

How to use AutoVue Web Services

9-4 Oracle® AutoVue Web Services Installation and Developer's Guides

Figure 9–2 Add Service Reference

4. Optionally, provide a new Namespace (for example, AutoVueWS), and then click OK. The
proxy code is generated and added to your project.

5. On the Solution Explorer window double-click on the app.config file to be opened for
editing.

6. Inside the file, locate messageEncoding="Text" which is part of the attributes for this
binding: <binding name="VueBeanWSPortBinding" under the <basicHttpBinding> .

7. Change the value of the attribute to Mtom. That is, messageEncoding="Mtom"

8. Optionally, increase the values of the maxBufferSize and the
maxReceivedMessageSize. This is useful when using the convert() method for
converting large files, because the conversion result is returned in binary format attached to
the response. At this point, you can import the proxy to your application (for example,
Program.cs) and call the AutoVue Web Services methods. The following code
demonstrates a sample C# code that calls the ping Web method:

using System;
using AutoVueWSCSClient.AutoVueWS;
namespace AutoVueWSCSClient
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 VueBeanWSClient vuebean = new VueBeanWSClient();
 Console.Write(vuebean.ping("Hello from C#"));
 }
 catch (Exception e)
 {
 Console.Write(e);
 }
 }
 }
}

As with the ping Web method, you can call all other VueBeanWS Web methods by passing
them input parameters.

For more information on input/output parameters, refer to the AutoVue Web Services methods
descriptions in Testing AutoVue Web Services.

How to use AutoVue Web Services

Using AutoVue Web Services 9-5

9.1.3 HTTPS/SSL
Security plays an important role in communication between applications. When it comes to
Web services, this issue is even more critical. As a result, it is highly recommend to only use
HTTPS protocols to call AutoVue Web Services.

To run and use AutoVue Web Services over SSL, you must first deploy AutoVue Web Services
on a secure server, import the server certificate to your client environment, and then generate
and use the client proxy in the same manner as described in Importing and Using Client Proxy.
Additionally, for SSL, you must use a secure connection over HTTPS to generate and use the
client code (for example, https://host:port/AutVueWS/VueBeanWS?wsdl).

If you are using Oracle Weblogic to deploy AutoVue Web Services, you can use the self-signed
certificate that comes with the application server out of the box:

1. Export the certificate from Oracle Weblogic into a file. You can do so through a Web
browser.

2. Import the certificate into your client machine.

3. Follow the instructions in Importing and Using Client Proxy to generate and use the client
proxy.

Note: Make sure you provide the HTTPS address of the WSDL.

How to use AutoVue Web Services

9-6 Oracle® AutoVue Web Services Installation and Developer's Guides

10

AutoVue Web Services and DMS Integration 10-1

10AutoVue Web Services and DMS Integration

In addition to standard protocols supported by AutoVue Server (such as http:// and ftp://)
AutoVue Web Services architecture allows flexible communication with DMS integrations in
the same way as passing a URI. As a result, the client can send information about a document
that is inside a DMS repository to AutoVue Web Services. Additionally, if an existing DMS
integration is already set up, AutoVue Web Services can communicate with the DMS
integration and access the document in order to process the client's request.

As with standard protocols such as http and ftp, the AutoVue Web Services administrator
defines a custom protocol for each DMS integration and assigns a properties file on the
AutoVue Web Services server that contains connection information for that specific DMS
integration.

For example, if a DMS integration protocol is defined with the name DMS_Integration_1, then
a DMS_Integration_1.properties file contains the location information and any other static data
that is needed to communicate with an existing DMS instance. Client code can easily call
AutoVue Web Services and pass a valid DMS document ID, as well as use the term DMS_
Integration_1 as prefix (for example, DMS_Integration_1://dID=12345). Once AutoVue Web
Services finds a match between the DMS integration protocol name in the request and a defined
custom protocol (in this case, DMS_Integration_1), it treats the rest of the string as a document
ID and passes it to the DMS instance.

Because each DMS integration and related DMS repository follow different standards of
addressing documents, the structure of the document ID varies from one DMS integration to
another. It is important to follow the string representation of document IDs that are defined in
this section.

The following sections demonstrate string representations of the document ID for these
supported DMS integrations (assuming a custom DMS integration protocol is setup and
registered with AutoVue Web Services by the server administrator):

Note: The name of the DMS integration protocol is arbitrary and can be
configured in AutoVue Web Services. However, both associated properties
files on the server and client code must use the same name.

Note: It is important for the administrator to use meaningful names for
DMS Integration protocols to avoid any confusion on the client side. For
example, vuelinkUCM://, and so on. Additionally, if more than one instance
of the same DMS integration is setup with AutoVue Web Services, a
numbering scheme is suggested. For example, vuelinkUCM1://,
vuelinkUCM2://, and so on.

VueLink for Oracle UCM/WCC

10-2 Oracle® AutoVue Web Services Installation and Developer's Guides

� VueLink for Oracle UCM/WCC

� VueLink for Documentum

� Third-Party Integration

� AutoVue ISDK Integration Example

10.1 VueLink for Oracle UCM/WCC
The string representation of a document ID in VueLink for Oracle WCC is as follows:

dID=some_id_number[&Markup_BasedID=some_id_number][&Format=some_format]
[&Extension=some file ext]

Where:

dID: The valid document ID of the desired document.

Markup_BasedID: The valid document ID of the base document (only meaningful and needed
when the document ID belongs to an AutoVue Markup).

Format: The format of the document according to what is defined inside the Oracle WCC
(optional, but it is needed when the document ID belongs to an XRef folio).

Extension: The filename extension of the document according to what is defined inside the
Oracle WCC (optional, but needed when the document ID belongs to an XRef folio and Format
is not included).

The following are examples of URI values when invoking AutoVue Web Services for an
Oracle WCC document (assuming protocol name is vuelinkWCC):

vuelinkWCC://dID=227&Markup_BasedID=228
vuelinkWCC://dID=350&Extension=slddrw
vuelinkWCC://dID=270&Format=Application/dwg&Extension=dwg
vuelinkWCC://dID=253&Extension=xcsr

10.2 VueLink for Documentum
The string representation of a document ID in VueLink for Documentum is as follows:

WebTopURL?userName=some_name&docbase=some_docbase_name&sessionid=webtop_seession_
id&objectid=some_object_id&rendition=some_file_format

WebTopURL: The URL for webtop.

userName: A valid webtop UserName.

docbase: A valid docbase name.

sessionid: A valid webtop session ID.

objectid: A valid ID of an object in the above docbase.

rendition: A valid Documentum format.

The following are examples of URI values when invoking AutoVue Web Services for a
Documentum document (assuming protocol name is vuelinkDocumentum):

vuelinkDocumentum://http://[host:name]/Webtop6?userName=Administrator&docbase=demo
&sessionid=s7&objectid=0901869f80002565&rendition=unknown

Third-Party Integration

AutoVue Web Services and DMS Integration 10-3

10.3 Third-Party Integration
You must construct a document ID for a file stored inside Third_Party_Name DMS using the
Third_Party_Name protocol.

For example: Third_Party_Name://Third_Party_NameDocID=123&Format=dwg

10.3.1 AutoVue ISDK Integration Example
The string representation of document ID in AutoVue ISDK (filesys) is as follows:

RootURL/some_repository/some_file_name/some_file_name(some_version)/ some_file_
name

RootURL: The value defined for parameter RootURL in web.xml of ISDK (filesys).

some_repository: A valid repository name which the file belongs to.

some_file_name: A valid file name that exists in the repository.

some_version: A valid version number for the file.

The following are examples of a URI value when invoking AutoVue Web Services for an
ISDK document (assuming that the protocol name is vuelinkISDK):

vuelinkISDK://http://localhost/filesysRepository/2D/AutoCAD.dwg/AutoCAD.dwg(1)/Aut
oCAD.dwg
vuelinkISDK://http://localhost/filesysRepository/3D/Hard Drive.CATProduct/Hard
Drive.CATProduct(1)/Hard Drive.CATProduct

Note:

� The prefix used in your document ID must match your properties
filename (in this case, Third_Party_Name).

� To properly access files stored inside your Third_Party_Name DMS
repository, the syntax of your document ID should match one that is
understood by your DMS integration servlet.

� Invoke AutoVue Web Services on the document ID.

For example: getXrefs()/getText()

Note:

� It is important that the prefix used in your document ID matches your
properties filename (in this case, vuelinkISDK).

� No authentication is required in order to access files in AutoVue ISDK
(filesys).

� Invoke AutoVue Web Services on the document ID.

For example: getXrefs()/getText()

Third-Party Integration

10-4 Oracle® AutoVue Web Services Installation and Developer's Guides

11

Oracle Web Services Manager 11-1

11Oracle Web Services Manager

Oracle Web Services Manager (OWSM) is a component of the Oracle SOA suite. It can be
used as a proxy for your AutoVue Web Services, and you can assign it different policies and
rules to access AutoVue Web Services. Additionally, you can monitor accesses to your
AutoVue Web Services and review different statistics and logs that are provided by OWSM.

OWSM can also be used to perform a simple test of AutoVue Web Services. It can generate an
input from any AutoVue Web Services methods and invoke them through a Web browser.
AutoVue Web Services can be easily tested using the Oracle Web Services Manager Test tool.

For more information about Oracle Web Services Manager, refer to the following URL:
https://docs.oracle.com/middleware/1212/owsm/index.html

https://docs.oracle.com/middleware/1212/owsm/index.html

11-2 Oracle® AutoVue Web Services Installation and Developer's Guides

12

Testing AutoVue Web Services 12-1

12Testing AutoVue Web Services

Oracle SOA Suite is used to test AutoVue Web Services.

1. Start Oracle SOA Suite.

2. As shown in the following screen shot, from the Web Services Manager Control page,
click Tools, and then click Test Page.

Figure 12–1 Oracle Enterprise Manager - Tools

3. Enter the AutoVue Web Services WSDL's URL in the Enter wsdl url text box. For
example, http://AVWSHost:7011/AutoVueWS/VueBeanWS?wsdl

4. Click Submit Query.

As shown below, the Test Web Service page reloads with an input form that is ready to
invoke one of the AutoVue Web Services methods.

AutoVue Web Services Methods

12-2 Oracle® AutoVue Web Services Installation and Developer's Guides

Figure 12–2 Oracle Web Services Manager

5. From the Operation list, select a Web method.

For information on the available Web methods, refer to AutoVue Web Services Methods.

12.1 AutoVue Web Services Methods
The following table provides a summary of the available AutoVue Web Services methods.
After selecting the method and entering the required information, click Invoke to send the
request to the Web Services provider.

Note: If the method calls a file from inside the DMS repository that
requires authentication, you must provide the required credentials.

AutoVue Web Services Methods

Testing AutoVue Web Services 12-3

Table 12–1 Web Methods

Web Method Description

getPartTree This part tree extraction Web method returns a list of parts contained in a
given file. This is applicable only for 3D formats.

For example, in case of 3D assembly, this Web service returns a list of parts
and sub-assemblies referenced by the 3D assembly.

From the Operation list, select getPartTree and wait for the page to refresh.

1. To invoke this service, enter a valid URI in the URI text box.

2. If the URI is a VueLink DocID, or an address that needs authentication,
you should also enter the username/password and/or cookie depending on
what is required.

3. In the pageNumber field, enter a value less or equal to the number
returned by getProperties.

Note: The dmsArguments section is optional and is only needed if required by
a VueLink. To add more DMS arguments, click the plus symbol.

print This printing Web method sends a given file to a printer for printing.

From the Operation list, select print and wait for the page to refresh.

The print options for the print Web method are divided into three groups:

WSPrintOptions

This option provides the following options:

� Specify page range.

� Choose one of the available paper sizes on the target printer. These values
can be retrieved by calling getPaperList and passing the printer name.

� Select printOrientation {ORIENTATION_PORTRAIT, ORIENTATION_
LANDSCAPE, ORIENTATION_AUTO}

� Select printPageType {PAGES_ALL, PAGES_CURRENT, PAGES_
RANGE}

� Specify printer name. The available values can be retrieved by calling
getPrinterNameList.

� Flag indicating whether the blank pages should be skipped.

� Flag indicating whether force all colors to black.

� Specify the layers to print for specified pages. Page number, layer id and
layer name are mandatory. If no layer information is provided, then the
file's default layer settings define which layers to print.

WSPrintHeader

This option allows you to specify the position of the text to be added to the
header and footer of the printed page (left, right, and/or center).

WSPrintWaterMark

This option provides the following options:

� Specify the text to be added as watermark to the printed page.

� Select the orientation of the watermark {DIAGONAL, HORIZONTAL,
VERTICAL}

openAllMarkups

A boolean flag that indicates if the markups of the document must be printed
with the document.

AutoVue Web Services Methods

12-4 Oracle® AutoVue Web Services Installation and Developer's Guides

packetPrint Prints a group of documents (known as packets) one at a time, along with the
auto-generated cover page and summary page.

From the Operation list, select packetPrint and wait for the page to refresh.

The following is the list of packetPrint input parameters:

URIs

A list of URIs that belong to same packet. (mandatory)

PacketID

A string representing the ID of the packet. (mandatory)

PacketIDLocation

One of the six possible locations for packetID to appear on every page. From
the printoutLocation enum, it is a combination of (top/bottom) +
(left/center/right).

It is an optional input. The PacketID is printed on the cover page and summary
page regardless.

FileIDLocation

One of the six possible locations for File ID (file number in the packet) to
appear on every page. From the printoutLocation enum, it is a combination of
(top/bottom) + (left/center/right). It is an optional input.

WSPacketPrintOptions

This option applies to all documents in the packet. It is an optional parameter
and provides the following:

� Choose one of the available paper sizes on the target printer. These values
can be retrieved by calling getPaperList and passing the printer name.

� Select printOrientation {ORIENTATION_LANDSCAPE,
ORIENTATION_AUTO, ORIENTATION_PORTRAIT}

� Specify printer name. The available values can be retrieved by calling
getPrinterNameList. If this option is not specified, then the default printer
is used.

� Flag indicating whether to force all colors to black (grayscaled).

� Specify the layers to print for specified pages. Page number, layer id and
layer name are mandatory.

WSPrintHeader

This option allows you to specify the text to be added to the header and footer
of the printed page.

WSPrintWaterMark

This option provides the following options:

� Specify the text to be added as watermark to the printed page.

� Select the orientation of the watermark {DIAGONAL, HORIZONTAL,
VERTICAL}

openAllMarkups

A boolean flag that indicates if the markups of the document must be printed
with the document.

getXrefs This External References (XRefs) Web method returns a list of XRefs
associated to a given file.

From the Operation list, select getXrefs and wait for the page to refresh.

This method only requires a valid URI. Authorization is needed only if the
URI cannot be accessed without it.

Table 12–1 (Cont.) Web Methods

Web Method Description

AutoVue Web Services Methods

Testing AutoVue Web Services 12-5

getLayerInfo This Web service allows a user to obtain information about all available layers
of a given document.

From the Operation list, select getLayerInfo and wait for the page to refresh.

This method only needs a valid URI. Authorization is needed only if the URI
cannot be accessed without it.

getPartProperties This part level metadata extraction Web method returns a list of all metadata
for a given part in a given document. This method is only supported for 3D
formats.

For example, in the case of a 3D assembly, this Web method returns properties
of a particular part referenced by the 3D assembly.

1. From the Operation list, select getPartProperties and wait for the page
to refresh.

2. This method needs a valid URI and a valid entityID. The valid entityIDs
are retrieved by calling the getPartTree method and passing the same
URI. Authorization is needed only if the URI cannot be accessed without
it.

3. In the pageNumber field, enter a value less or equal to the number
returned by getProperties.

getText This text extraction Web method returns visible text inside a given document.
This method is not supported for 3D formats. Metadata is not included by this
method (for example, EDA entity information, layer and block names, and so
on).

From the Operation list, select getText and wait for the page to refresh.

This method only needs a valid URI. Authorization is needed only if the URI
cannot be accessed without it.

getPaperList This utility Web method returns the paper sizes for a given printer that are
available to AutoVue.

From the Operation list, select getPaperList and wait for the page to refresh.

This method only needs a valid printer name. Valid printer names can be
retrieved by calling getPrinterNameList.

getPrinterNameList This utility Web method returns a list of available printers.

From the Operation list, select getPrinterNameList and wait for the page to
refresh.

This method does not need an input parameter.

Table 12–1 (Cont.) Web Methods

Web Method Description

AutoVue Web Services API

12-6 Oracle® AutoVue Web Services Installation and Developer's Guides

12.2 AutoVue Web Services API
The JavaDoc index (located in AutoVue webservices default installation directory
C:\Oracle\AutoVueWS\docs) provides a complete reference to all classes and APIs inside the
AutoVue Web Services package. The com.oracle.autovue.services package contains all
classes and sub-packages of AutoVue Web Services. All the AutoVue Web methods are
defined inside the VueBeanWS class of this package.

The sub-package com.oracle.autovue.services.options includes all classes that represent
custom input options for different AutoVue Web methods such as convert and print.

The sub-package com.oracle.autovue.services.types includes all classes that represent custom
outputs for different AutoVue Web methods such as getText, getXrefs, and so on.

The sub-package com.oracle.autovue.services.pool includes pooling mechanisms used inside
the AutoVue Web Services package.

convert This conversion Web method converts a given file into another format such as
BMP, PDF, or TIFF. It only supports one page at a time.

From the Operation list, select convert and wait for the page to refresh.

This method can be called without including the option section. In this case,
the default options use the bitmap version of the document in its original size.

If you set openAllMarkups to TRUE, Web Services retrieves all markups and
includes them in the converted output. In a non-integrated these markups are
retrieved from the Markups folder of the AutoVue server. When integrated
with a DMS, all markups returned by the DMS are included in the converted
output.

If you include convertOption, you can:

� Specify the color depth value.

� Select the output format {BMP, PDF, TIFF}

� Specify the page (only one page at a time is supported). Note that with
PDF format, regardless of the page setting, all pages are converted
together.

� Select the convert scale {TYPE_SIZE, TYPE_SCALE}

� Specify the height and width in pixels (if TYPE_SIZE Scale is selected).

� Specify the scaleFactor and stepsPerInch (if TYPE_SCALE is selected).

� Specify if it is a rendition to be saved back to the repository. If set to
TRUE, then no convert data is returned to the caller and it is sent to the
repository.

getProperties This file level metadata extraction Web method returns metadata and
properties for a given file.

From the Operation list, select getProperties and wait for the page to refresh.

This method only needs a valid URI. Authorization is needed only if the URI
cannot be accessed without it.

Table 12–1 (Cont.) Web Methods

Web Method Description

A

Appendix A - Sample Client Code in Java A-1

AAppendix A - Sample Client Code in Java

The following sample client code in Java calls all of the AutoVue Web methods with a
predefined URL.

import java.io.FileOutputStream;
import java.util.List;
import com.oracle.autovue.services.*;

public class AutoVueWSClient
{
public static void main(String[] args) throws Exception{
 //Create Service
 VueBeanWS_Service service = new VueBeanWS_Service();

 //Create proxy
 VueBeanWS proxy = service.getVueBeanWSPort();

 //Call AutoVue ping Web method.
 System.out.print (proxy.ping("hello"));

 String URL =
"https://www.oracle.com/us/products/applications/autoVue/057065.pdf";
 //Call the convert Web method.
 try{
ConvertOption option = new ConvertOption();
option.setFormat(Format.BMP);
option.setPage(1);
option.setScaleType(ScaleType.TYPE_SIZE);
option.setHeight(600);
option.setWidth(800);
byte[] file = proxy.convert(URI, option, null, false);
FileOutputStream fos = new FileOutputStream("c:/temp/output1.bmp");
fos.write(file);
fos.close();
 }
 catch(Exception e){
 e.printStackTrace();
}
//Call the getPrinterNameList Web method.
List<String> printers = proxy.getPrinterNameList();
for (String printer : printers) {
System.out.println("Printer Name: "+printer);
System.out.println("Available Papers on this Printer");
//Call the getPaperList Web method
List<String> papers = proxy.getPaperList(printer);
for (String paper : papers) {

Web Services Sample Client Code for Printing

A-2 Oracle® AutoVue Web Services Installation and Developer's Guides

 System.out.println("Paper Name: "+paper);
 }
 //Call the getProperties Web method.
List<MetaProperty> properties = proxy.getProperties(URI, null);
for (MetaProperty prop : properties) {
System.out.println(prop.getName() + "=" +prop.getValue());
//Call the getText Web method.
List<SearchText> texts = proxy.getText(URI, null);
for (SearchText text : texts) {
System.out.println("\nPage Number:"+ text.getPageNumber());
List<String> txts = text.getTexts();
for (String txt : txts) {
System.out.print(txt);
}
}
//Call the getXrefs Web method
List<XrefsInfo> xrefs = proxy.getXrefs(URI, null);
for (XrefsInfo xref : xrefs) {
System.out.println("Name:"+xref.getDocName() + " " + "docID:" + xref.ge
DocID());
}
//Assuming URI is a 3D document. Call the getPartTree Web method.
int pageNum = 4;
PartTreeResult parts = proxy.getPartTree(URI,pageNum,null);
//Call getParts Web method.
List<PartInfo> info = parts.getParts();
for (PartInfo part : info) {
System.out.println("Part Name :"+part.getName() + " - Part ID:" +
part.getID()+" - Part Type:" + part.getType());
List<PartMetaProperty> metaProps = proxy.getPartProperties(URI, pageNum,
part.getID(), null);
for (PartMetaProperty meta : metaProps) {
System.out.println(meta.getName() + "=" meta.getValue());
 }
 }
}

A.1 Web Services Sample Client Code for Printing
AutoVue Web Services provides a sample Web Services client code, SampleClient.java, which
demonstrates how to call Web Services' print() method. It is located under the <AutoVue Web
Services Installation Directory>\autovue_webservices\sample_client directory. You can make
the following modification according to your needs:

� Specify the username and password if the file has restricted access. For example, this is
needed when storing a file in DMS.

� Specify more print options, watermark options, and header/footer options.

� If an error message containing the string ERROR_00 appears when the client calls the Web
Services print() method, then the Web Services cannot process the request due to following
reasons:

– Server is too busy. No VueBean is available to process the request.

– Not enough memory is available for a VueBean to open a file.

To resolve this issue, the client must call the print() method later. In the
SampleClient.java file, the client waits for one minute (60000 milliseconds) to call
again.

Packet Printing

Appendix A - Sample Client Code in Java A-3

� The following error messages appear when layer information is invalid:

– ERROR_005: The page specified in LayersInfo object does not have layer.

– ERROR_006: The layer information specified in LayersInfo object is not correct.

– ERROR_007: There is no layer information in LayersInfo object for the specified
page number.

A.2 Packet Printing
AutoVue Web Services provides a sample Web Services client code,
SamplePacketPrintClient.java, which demonstrates how to call Web Services' packetPrint()
method. The sample client code is located under <AutoVue Web Services Installation
Directory>\autovue_webservices directory.

If no packet print option is defined or if no printer is set in that object, then the default printer
on the AutoVue Web Services machine is used automatically.

The output of the packetPrint() method includes an auto-generated cover page at the
beginning of the packet print out and a summary page at the end.The summary page includes
the success/fail status of each document in the packet. For this reason, the packetPrint()
method does not return until the last document in the packet is processed.

Note: In the packetPrint() method only the list of the documents and the
packet ID are mandatory. Other parameters are optional. If you want the
packetID to be printed on every page of all documents, then you must specify
a print out location. Same is true for file counter (the file ID of each
document in the packet is printed if a location is specified).

Packet Printing

A-4 Oracle® AutoVue Web Services Installation and Developer's Guides

B

Deploying AutoVue Web Services on Managed Server of Oracle WebLogic B-1

BDeploying AutoVue Web Services on Managed
Server of Oracle WebLogic

In order to achieve better performance, it is recommended to deploy AutoVue Web Services
and the VueServlet on different servers of the same WebLogic domain.

The following steps illustrate how to deploy AutoVue Web Services on a managed server of
Oracle WebLogic. It is assumed that you have already created managed servers for deploying
AutoVue Web Services and VueServlet before starting the following steps. For more
information on how to create a managed server, refer to Oracle WebLogic documentation.

1. Access the administration console of the Oracle WebLogic.

2. Enter the administration user name and password.

3. In the left pane, click Deployments.

4. If you already have AutoVue Web Services and VueServlet applications deployed,
undeploy them by selecting Delete.

5. To deploy the newly assembled AutoVue Web Services, click Install.

6. Select the WAR file for deployment by navigating to the <AutoVue Web Services
Installation Directory>\autovue_webservices\ directory and select AutoVueWS.war.

7. Click Next.

8. Select Install this deployment as an application.

9. Click Next.

10. Select which target server you want to deploy AutoVue Web Services on.

11. Click Next.

12. Modify the default value as you want, and then click Finish.

For more information on verifying the deployment of AutoVue Web Services, refer to
Verification

Repeat the steps 3 through 12 in order to deploy VueServlet.war on Oracle WebLogic.

B-2 Oracle® AutoVue Web Services Installation and Developer's Guides

C

Troubleshooting C-1

CTroubleshooting

This appendix contains information on how to troubleshoot common errors.

SoapUI Client Consumes AutoVue Web Services
If the soapUI client consumes AutoVue Web Services, you will receive the following error
message:

Error getting response; java.net.SocketTimeoutException:Read timed out

To resolve this issue, change the Socket Timeout setting:

1. From the File menu, select Preferences, select HttpSettings, and then select Socket
Timeout.

2. Assign a larger number to Socket Timeout value.

Error: "Failed to access the WSDL at: ..."
This error means either that the application server that hosts AutoVue Web Services is not
running or that the client code is not pointing to the right location. Make sure that the
application server is running and, if necessary, regenerate the client proxy code as described in
the Generating Client Proxy Using WSimport.

Error: "Internal object is null. Make sure AutoVue server is running."
If you encounter this error message, make sure AutoVue server is running and listening to the
correct port, and that any firewall between AutoVue server and AutoVue Web Services is
configured to allow communication. The AutoVue server host:port should match the value
defined in the web.xml file inside the AutoVue Web Services package ("initialJVueServer").

Error: "Cannot get file: File not found."
This error can occur in different scenarios:

� If an authentication is required to access the document, make sure they are defined in your
client code and bundled to your request.

� If a DMS integration protocol is involved, make sure the protocol name in the URI and the
one defined in the AutoVue Web Services configuration are exactly the same. Verify the
connection information inside the properties file that is associated with the DMS
integration is running and accessible from the Web Services package.

Additionally, ensure that the document ID is valid and that the user has permission to
access the document.

C-2 Oracle® AutoVue Web Services Installation and Developer's Guides

Error: "Cannot get metadata for entity" when calling getPartProperties() method
If you get the "Cannot get metadata for entity" message when entering the correct entity ID for
the getPartProperties() Web method, you must call the getPartTree() method to get a new entity
ID. This is because the first call to the getPartTree() method loads the file from the native file
and also triggers the generation of a streaming file. Additionally, when you call the
getPartProperties() method, the file is loaded from the streaming file. The entity IDs for files
that load from the native file are different from those that load from the streaming file.

Error: Installer Crash on Linux or Logs Errors
If the Linux installer crashes or creates error logs, verify that the environment variable LC_
ALL is set to en_US. If you cannot change the variable or if it does not resolve the problem,
then run the installer in console mode as an alternative.

For example: ./setupLinux.bin -console

D

Feedback D-1

DFeedback

If you have any questions or require support for AutoVue please contact your system
administrator.

If at any time you have questions or concerns regarding AutoVue, please contact us.

D.1 General AutoVue Information

D.2 Oracle Customer Support

D.3 My Oracle Support AutoVue Community

D.4 Sales Inquiries

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

Web Site http://www.oracle.com/support/index.html

Web Site https://communities.oracle.com/portal/server.pt

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

D-2 Oracle® AutoVue Web Services Installation and Developer's Guides

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Installation and Configuration Manual
	1 Introduction
	2 Installation Prerequisites
	3 System Requirements
	4 Installing and Configuring AutoVue Web Services
	4.1 Installing AutoVue Web Services
	4.2 Configuring AutoVue Web Services web.xml
	4.3 Configuring VueServlet web.xml
	4.4 Configuring DMS Integration Properties
	4.4.1 VueLink for Documentum
	4.4.2 VueLink for Oracle UCM/WCC
	4.4.3 Third-Party Integrations

	4.5 Configuring Web Services over HTTPS/SSL
	4.6 Creating and Deploying the WAR File
	4.7 Modifying AutoVue Web Services Configuration After Deployment
	4.8 Verification

	5 Uninstalling AutoVue Web Services
	6 Upgrading AutoVue Server
	7 Configuring Oracle Web Services Manager to Secure AutoVue Web Services
	Part II Developer’s Guide
	8 AutoVue Web Services
	8.1 Getting Started
	8.2 DMS Integration
	8.3 Overview of Components
	8.3.1 AutoVue Web Services Module
	8.3.1.1 AutoVueWS.jar
	8.3.1.2 AutoVue Components
	8.3.1.3 Third-Party Libraries
	8.3.1.4 Batch Utility

	8.3.2 List of AutoVue Web Services

	8.4 How AutoVue Web Services Works

	9 Using AutoVue Web Services
	9.1 How to use AutoVue Web Services
	9.1.1 Java Client Proxy
	9.1.1.1 Generating Client Proxy Using WSimport
	9.1.1.2 Importing and Using Client Proxy

	9.1.2 .NET Client Proxy
	9.1.2.1 Generating Client Proxy using WSDL
	9.1.2.2 Importing and Using Client Proxy in Microsoft Visual Studio

	9.1.3 HTTPS/SSL

	10 AutoVue Web Services and DMS Integration
	10.1 VueLink for Oracle UCM/WCC
	10.2 VueLink for Documentum
	10.3 Third-Party Integration
	10.3.1 AutoVue ISDK Integration Example

	11 Oracle Web Services Manager
	12 Testing AutoVue Web Services
	12.1 AutoVue Web Services Methods
	12.2 AutoVue Web Services API

	A Appendix A - Sample Client Code in Java
	A.1 Web Services Sample Client Code for Printing
	A.2 Packet Printing

	B Deploying AutoVue Web Services on Managed Server of Oracle WebLogic
	C Troubleshooting
	D Feedback
	D.1 General AutoVue Information
	D.2 Oracle Customer Support
	D.3 My Oracle Support AutoVue Community
	D.4 Sales Inquiries

