

Oracle Utilities Mobile Workforce

Management
Hybrid Mobile Application Implementation and
Development Guide

Release 2.3.0.3.0

F11038-01

November 2018

Oracle Utilities Mobile Workforce Management Hybrid Mobile Application Implementation and Development
Guide, Release 2.3.0.3.0

F11038-01

Copyright © 2000, 2018 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If

you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on

behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,

any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are

"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-

specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the

programs, including any operating system, integrated software, any programs installed on the hardware, and/or

documentation, shall be subject to license terms and license restrictions applicable to the programs. No other

rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It

is not developed or intended for use in any inherently dangerous applications, including applications that may

create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.

Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or

hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of

their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are

used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,

the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro

Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,

and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly

disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise

set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be

responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services, except as set forth in an applicable agreement between you and Oracle.

Preface-vii

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Preface

Audience

The target audience of this guide is implementers and system administrators responsible for

implementation and deployment of mobile applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

or

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

Installation, Configuration, and Release Notes
• Oracle Utilities Mobile Workforce Management Release Notes

• Oracle Utilities Mobile Workforce Management Quick Install Guide

• Oracle Utilities Mobile Workforce Management Server Application Installation Guide

• Oracle Utilities Mobile Workforce Management DBA Guide

• Oracle Utilities Mobile Workforce Management Hybrid Mobile Application Installation and Deployment Guide

• Oracle Utilities Mobile Workforce Management GEOCODE Data Source Configuration Guide

• Oracle Utilities Mobile Workforce Management JMS Setup Guide

User Guides

• Oracle Utilities Mobile Workforce Management Administrative User Guide

• Oracle Utilities Mobile Workforce Management Business User Guide

• Oracle Utilities Mobile Workforce Management Mobile Application User’s Guide (Java-based)

• Oracle Utilities Mobile Workforce Management Hybrid Mobile Application User’s Guide

• Oracle Utilities Mobile Workforce Management Hybrid Mobile Contractor Application User’s Guide

http://www.oracle.com/pls/topic/lookup
http://www.oracle.com/pls/topic/lookup
http://www.oracle.com/pls/topic/lookup

Preface-viii

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Preface

Implementation and Development
• Oracle Utilities Mobile Workforce Management Hybrid Mobile Application Implementation and Development

Guide

Map Editor Installation and User Guides

• Oracle Utilities Mobile Workforce Management Map Editor User’s Guide

• Oracle Utilities Mobile Workforce Management Map Editor Installation Guide

Supplemental Documents

• Oracle Utilities Mobile Workforce Management Server Administration Guide

• Oracle Utilities Mobile Workforce Management Security Guide

Overview 1-1

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Chapter 1

Overview

This guide provides development and configuration details for the Oracle Utilities Mobile Workforce

Management Mobile Application including Oracle Utilities Mobile Library, APIs, development

environment setup, customization, and extension methodology.

This section provides a general overview and information about the mobile application components

and architecture.

Overview 1-2

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Architecture

Architecture

Oracle Utilities Mobile Workforce Management simplifies and optimizes the scheduling, dispatching,

and tracking of mobile service crews and field activities.

The mobile application consists of the Oracle Utilities Mobile library and application layers responsible

for specific business functionality. It uses HTML5 and JavaScript to implement business logic, render

the user interface and interact with mobile device services. Web services facilitate communication

between the mobile application and the application server.

Oracle Utilities Mobile Library (OUML)

The Oracle Utilities Mobile Workforce Management Mobile Application is based on the Oracle

Utilities Mobile Library (OUML) optimized to work with Oracle Utilities Application Framework

(OUAF) based services, configurations and metadata. The Oracle Utilities Mobile Library provides a

foundation layer and APIs for application development including offline storage, encryption,

communication, logging, configuration, UI rendering/navigation, customization, deployment and so

on. The Oracle Utilities Mobile Library makes use of third party libraries that are either bundled with

the application or listed as pre-requisites.

Overview 1-3

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Architecture

Please reference Chapter 3: Oracle Utilities Mobile Library for more information on working with the

Oracle Utilities Mobile Library.

Deployment Models

The mobile application can be packaged and deployed in the format native to one of the supported

runtime platforms. Alternately, it can be packaged as a web application and deployed to an application

server to be accessed on the mobile device via a web browser.

Please note that certain device specific features are not available when the application is deployed as a

web application and accessed via web browser.

The following table lists the features supported by application mode.

Feature Compiled Browser Based

GPS

Capture Picture X

Capture Signature X

Capture Sound X X

Barcode Scanning/Reading X

Download Attachments from MDT

(All File Types)

 X

Upload Attachment from MDT to Server

(Only Captured Picture and Signature)

 X

Maps

Overview 1-4

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Architecture

Inbound and Outbound Communication

Inbound and Outbound communication between MWM mobile and server applications is based on

RESTFul services and JSON payload. In situations where device is offline at the time of making

outbound HTTP request communication modules of MWM Mobile application ensure that delivery of

the message when device is back online and communication with server is reestablished.

Please reference Mobile Components for more details on communication between mobile and server

applications.

Development Environment Setup 2-1

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Chapter 2

Development Environment Setup

This section provides information needed to setup the development environment for the mobile

application. Implementers can use this environment to add new features and test their code locally or

on devices using the steps provided in this section.

Prior to setting up the development environment, you must have completed general server side

configuration. Please reference the Oracle Utilities Mobile Workforce ManagementServer Administration

Guide for information.

Installing Prerequisite Software
Please reference the chapter on installing prerequisite software in the Oracle Utilities Mobile

Workforce Management Mobile Application Installation and Deployment Guide for information.

Source Code

Required libraries and source code for development and customization in the local environment

can be copied from the <PRODUCT_HOME> directory of the shared build environment that is

created as part of the initial install. Please refer to the Oracle Utilities Mobile Workforce

Management Mobile Application Installation and Deployment Guide for information on the initial install.

The <PRODUCT_HOME>/source/www folder in the shared build environment contains the

source files which could be linked to a version control system to enable code contributions from

multiple local development environments.

The www directory needs to be copied over or linked to the local Apache Cordova project. This

project can be used to locally build native applications.

Apache Cordova Project
The same Apache Cordova project can be used to create native applications for different mobile

operating systems.

Complete the following steps to create an Apache Cordova project:

1. Install Cordova.

Please reference the installation instructions delivered with the Cordova product. The section

on “The Command-Line Interface” includes steps to install the CLI tool information about

Cordova project commands.

2. Use the Cordova Windows 10 project for building Windows 10 Runtime.

https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.git

Development Environment Setup 2-2

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Device Plugins

Plugin Installation
Note: The following Cordova instructions apply only to Windows 10.

Cordova includes a set of "core plugins" which are used by the mobile application to access native

device features such as the file system, camera, geolocation and so on. Aside from using the Cordova

core plugins, implementers can also develop their own plugins or use other available plugins. These

plugins are described in the Apache Cordova documentation.

Use the CLI tool to installing/uninstalling plugins. This is done by using the “plugin add” command:

Example:

cordova plugin add <path to plugin>

Note: Please reference the Oracle Utilities Mobile Workforce Management Installation and Deployment

Guide in the “Plugin Configurations” section for the list of required plugins for the mobile application

including the actual paths for the plugins with the release versions being used. The following section

provides an overview of the plugin functions.

Device Plugins
This section provides a high level description of the device plugins used with the Oracle Utilities

Mobile Workforce Management.

Device - The Cordova Device plugin defines a global device object, which describes the device's

hardware and software.

Camera - The Cordova Camera plugin provides an API for taking pictures and for choosing images

from the system's image library.

File - The Cordova File plugin implements a File API allowing read/write access to files residing on

the device.

Geolocation - The Cordova Geolocation plugin provides information about the device's location,

such as latitude and longitude. Common sources of location information include Global Positioning

System (GPS) and location inferred from network signals such as IP address, RFID, WiFi and

Bluetooth MAC addresses, and GSM/CDMA cell IDs.

InAppBrowser - The Cordova InAppBrowser plugin provides a web browser view that displays when

calling window.open().

Network Information - The Cordova InAppBrowser plugin provides an implementation of an old

version of the Network Information API. It provides information about the device's cellular and wifi

connection, and whether the device has an internet connection.

Barcode Scanner - This is an external Barcode scanner plugin for Cordova which is optional and can

be used with the application. The plugin provides implementation for scanning barcodes and provides

the type and the barcode for a scanned item.

SQLite - This is an external SQLite plugin for Cordova which is optional and can be used with the

application. The plugin provides implementation for using SQLite Database on the device. The plugin

uses the same API as the HTML5 WEBSQL database.

Signature Capture - This is an external signature capture plugin for jQuery. This is a Javascript only

plugin and does not require installation using the Cordova add plugin command. The plugin file needs

to be included in the www/libs/jSignature folder. It provides a JavaScript widget for simplifying the

creation of a signature capture field in a browser window, allowing a user to draw a signature using

mouse, pen or finger.

Development Environment Setup 2-3

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Building and Deploying the Mobile Application

Encryption

The encryption plugin is only used on devices running Android or Windows 10 platforms to:

• Store passwords encrypted on devices

• Store transaction data encrypted on devices (BO, Inbound, Outbound records)

For iOS, encryption is handled with native device encryption. If the Oracle Utilities Mobile Workforce

Management Mobile Application is deployed as a web application and is being accessed on the device

via web browser, the encryption module is not used, but rather, transaction data is stored in plain text

format in offline database. The web application is designed to be used for non-production use cases

such as development/testing.

The encryption module is implemented entirely on the device side and there is no associated server

side counterpart.

Transaction data generated by the application is securely stored in a non readable encrypted format

accessible only to the authenticated user. User credentials are securely stored in private storage of the

application in encrypted format for offline authentication. A Symmetric Key for Encryption is

generated on the server. This key changes every time a new user session is started.

Encryption features can be enabled or disabled per specific mobile device. They can also be enabled

system-wide via Feature Configuration by setting the Encryption value as “Default”.

Local Testing

The HTML5 code added to the www directory can be tested locally using a Google Chrome browser.

For device-specific features, such as a camera and/or barcode scanner, the testing must be done using

native applications.

Use these steps to test the application in non-production mode:

1. If not already installed, install the Google Chrome desktop browser.

2. Create a shortcut to the executable on your desktop.

3. Right-click the shortcut and choose Properties, then append the following to the Target

property:

--user-data-dir="C:/Chrome dev session" --disable-web-security

to disable cross-domain JavaScript security.

4. Start Chrome via the shortcut and load the mobile application (location: www/index.html in

your local system).

5. If the login page does not appear or does not work correctly, reopen the Chrome shortcut

properties, correct the path specified in the user-data-dir parameter (to specify the

Chrome location), then reopen Chrome and retry the login.

Alternatively (instead of modifying the shortcut Target property), you can open a command window

and enter:

chrome.exe --user-data-dir="C:/Chrome dev session" --disable-web-security

As with the shortcut, if the login page is not displayed properly, correct the path specified in the user-

data-dir parameter in the command and rerun it.

Building and Deploying the Mobile Application
This section provides information on how to deploy the Oracle Utilities Mobile Workforce

Management Mobile Application on various device types. Please refer to the Oracle Utilities Mobile

Workforce Management Mobile Application Installation and Deployment Guide in the chapter titled

Development Environment Setup 2-4

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Building and Deploying the Mobile Application

“Deploying the Mobile Applications” for steps on deploying the mobile client application as a web

application.

Oracle Utilities Mobile Library 3-1

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Chapter 3

Oracle Utilities Mobile Library

This section describes the key modules and APIs that are available for implementing new user interface

pages and application features.

Device Communication
This section provides information on communication between the server application and mobile

devices. Although we have two categories of messages, inbound and outbound, they are both

transferred via HTTP requests initiated by device.

Device Inbound Messages

Configuration

MDT type uses the ASYNC_INTERVAL (seconds) property to configure the interval at which a

REST service(M1-SyncData) will be invoked by client. Inbound message is processed by a script which

is specified on incoming message (SCRIPT column). Inbound scripts should be mapped to the

inboundMsgFiles property in the Product Configuration mobile component.

Message Storage

Messages received are stored in F1_INBOUND intermediate table on device DB. Please reference the

Database Schema section for more information.

Inbound Message Event API

Once a message is downloaded and saved to intermediate table it is handed over to inbound processing

script. This processing script should be implemented as follows:

Processing Script Code Structure
ouml.Inbound["M1-MCPDpAsgn"] = (function (ouml){

function process(msgEvent) {

}

return {

process: process

};

})(ouml);

Oracle Utilities Mobile Library 3-2

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Device Communication

M1-MCPDPAsgn is an example script code. This should be replaced with your actual script name.

This script needs to implement a process method that is required to be exposed as public method of

this module.

The Oracle Utilities Mobile Library invokes a process method with an event object with the following

structure.

• msgEvent.message – inbound message in JSON format (format of this message is as

defined on server, specific to a script)

• msgEvent.error(ouml.ClientError) – this method should be called in case an error occurs

in processing this message. An instance of ouml.Error should be passed to it. This error

message is saved to F1_INBOUND table’s error column.

• msgEvent.complete(transaction) – this method should be called on successful message

processing. Transaction used, if any, should be passed to this method and same will be used

by the Oracle Utilities Mobile Library to update the F1_INBOUND’S PROC column. If no

transaction is passed then a new transaction is created.

Message Acknowledgements

On successful download and save to the intermediate table, a message delivery acknowledgement is

sent back with very next REST service call. This only indicates the delivery part, not the processing.

On successful message processing another acknowledgment is sent with a flag to indicate whether or

not the processing was successful. If during message processing an error occurs, the same error is also

sent back to the server.

The Input to the REST service contains following payload:

{

"msgId": msg_id column value from F1_INBOUND,

"isProc": true/flase (true when PROC column value is Y)

"errorData": {error object}, error column value}

}

Device Outbound Messages

An outbound message is essentially a RESTful service invocation initiated by client which delivers a

message (JSON payload) to that service on server. There are two types of outbound RESTful

invocations modes from client:

Online Mode

A service invocation where response from the service is required to proceed further with the business

flow. For this type of outbound call, client has to be connected to network as if device is offline we

cannot proceed further.:

Online Mode API Parameters Description

ouml.AJAX.invokeService service – service to be executed

args – {onSuccess: <callback>,

onFailure: <callback>, method:

<GET or POST>, contentType:

<content type header>, headers:

{<all headers passed as is to ajax

call>}

}

payload - JSON Data

Invokes a service immediately

(device has to be connected

to network) and returns the

results via an asynchronous

callback.

This API adds mandatory

headers required for

authentication and

connecting to server.

Oracle Utilities Mobile Library 3-3

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Server Communication

Offline Mode

A message is posted to a service however the actual call to service would be made only when the device

is connected. Such outbound messages (service calls) are delivered to server as and when the device is

connected and client business flow is not dependent on response from server. However it is ensured

that no message will be lost and it will be delivered to server eventually. Client ensures that message

sent via this outbound module are stored in offline storage and delivered in same sequence they were

posted. Application crash or network connectivity should not result into any message loss.

Offline Mode API Parameters Description

ouml.OutboundWorker.queueOutbound args –

{

transaction:<tx object>,

onSuccess: <callback>,

onFailure: <callback>,

input: { service: <service

name>, payload: <JSON

data>}

}

Message posted via this

API will be saved to

F1_OUTBOUND table

using passed transaction

else a new transaction

will be used. Transaction

object will be returned

via success callback so

that same can be used to

execute the next

transaction in case of

multiple commits.

Whenever device comes

online the payload will be

delivered to the specified

service.

Server Communication
This section describes the outbound and inbound messaging used by the system.

Server Outbound Messages

This section refers to messages that are outbound from the server and inbound to the mobile device.

Outbound messages are maintained through the M1-MessageToDevice business object. The different

states that the outbound message can transition to are defined and managed by the business object's

lifecycle.

For data synchronization the device sends:

• Device ID

• A list of acknowledgements. Includes Remote Message ID, PROC_SW Y/N (whether it’s

been processed yet), and optional error details.

The device receives:

• A list of new messages to be processed.

This includes Remote Message ID, business object, message name, payload, priority.

• Ordered by priority (with high-priority messages first) and then in Created Date-Time order.

• Number of messages is based on bucket size.

The following “rules” apply for client applications that process outbound messages:

• Valid MDT_ID

Defined in the server application.

Oracle Utilities Mobile Library 3-4

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Server Communication

• Number of messages received is based on bucket size defined on the MDT Type.

There may be more or less messages than what is received, however the bucket size limits the

number of messages received at one time. The system continues to send the messages in

batches until the queue is empty.

• If the device does not acknowledge receipt of the message, the same message will be sent

again.

It is possible to set “callback” settings to cancel messages so that they aren’t continually sent.

• If the device does acknowledge receipt, the message must be processed.

Messages should be processed in order, high-priority first.

• Error details are provided in the outbound message.

If the caller wants to work with the output message IDs from M1-InvokeRSIScript or M1-

GetRSIIdsByContext , it could be an RSI_ID (30 chars) OR a REMOTE_MSG_ID (14 chars).

All Callback and Error scripts, ditto. The existing element <rsiMessageId> may be 30 chars or 14

chars.

Callbacks are done only for messages that have not been delivered. If a message is delivered but never

processed, it will remain in Queued status forever, unless some other process handles it. You may want

a Monitor for that.

Output RSI ID for Various Business Services, Service Scripts, etc.

• Business Services: Invoke Remote Script (M1-InvokeRSIScript) and Get Remote Script

Invocation By Context (M1-GetRSIIdsByContext)

• Output message IDs can now be either an RSI ID (30 characters long) or a Remote Message

ID (14 characters long).

• Callback and Error Scripts

• Existing schema message IDs can now be either an RSI ID (30 characters long) or a Remote

Message ID (14 characters long).

Callback Logic

Callbacks are done only for messages that have not been delivered. If a message is delivered but never

processed, it will remain in Queued status forever, unless some other process handles it.

Call back is configured, in seconds, under Master Configuration > Global Configuration, field:

Remote Script Call Back Seconds.

This indicates the number of seconds that should pass (from the message’s creation date time) before the

callback is executed. This works when the Remote Message monitor batch process triggers the remote

message’s monitor algorithm (which executes callback scripts when applicable).

Remote Message Batch Monitor

The remote message monitor, a timed monitor batch process, can be set to monitor the rules associated

with the current state of messages that go between the server application and mobile devices. It is

recommended that you set this monitor to run very frequently such as every 5 minutes so that processed

messages can be transitioned to a non-queued state (to improve performance on queries for unprocessed

messages).

Server Inbound Messages

This section refers to messages that are outbound from the mobile device and inbound to the server.

As described in Client side outbound messages section above, these messages to server are delivered by

invoking specific services as per the given context or business logic, e.g., Get Shift, update shift, update

task, etc.

Oracle Utilities Mobile Library 3-5

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Logging

Guaranteed Delivery

A special kind of inbound messaging called Guaranteed Delivery ensures that messages from a

device are stored in the application database first, and then processed afterwards. This ensures

that even though the message cannot be processed immediately because of other factors, the

message is at least guaranteed to be delivered to the server.

Guaranteed Delivery Algorithm
The remote message guaranteed delivery algorithm, M1-REMMSG-GD, processes guaranteed delivery

requests through remote message creation (through the business object M1-CrewMessage) and state

transition. Your implementation must configure the base algorithm on Installation Options/

Guaranteed Delivery. This is configured by navigating to Installation Options > Algorithms, System

Event: Guaranteed Delivery.

Remote Message

The Remote Message table uses a Device Message ID field that stores a unique ID sent from the

mobile device to distinguish inbound messages sent from the server application. This field is later used

by the Guaranteed Delivery (M1-REMMSG-GD) algorithm to verify whether or not an inbound

message already exists in the Remote Message table before creating a new record (to avoid duplicate

entries for inbound messages).

Logging

System logs are sometimes needed to diagnose how the server application is communicating with

devices, investigate errors, or for other troubleshooting or informational purposes.

Mobile log files can be accessed in the MDT portal under the Log tab.

Changing Log Settings from a Device

Device users can change log settings from the Oracle Utilities Mobile Workforce Management Mobile

Application Settings page. This includes turning logging on or off, as allowed by the user’s

permissions, setting the log level, and setting appenders.

Log Appenders

The logging module supports the following types of appenders to display logging messages:

• Console Appender (CONSOLE): Writes log messages on the web console.

• File Appender (FILE): Writes log messages in a local file on the client. The log files in the

client are then sent to the server when requested.

• Remote Appender (AJAX): Sends log messages (json/xml/text) to the server with an

asynchronous HTTP request.

• Popup Window Appender (POPUP): Opens a new window/sub window in the browser

and writes log messages in real time.

Users can enable more than one appenders at the same time to write logs from setting page of

application

Log Message Format

Log entries use the following format.

[Unique Prefix] - Date Time Log-Level Log Message (Origin Module Line Number)

Log API

The Oracle Utilities Mobile Library Logging module exposes the APIs required by your

implementation to facilitate system logging. Any application module that requires logging uses this

Oracle Utilities Mobile Library 3-6

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Offline Database

module with the single log instance maintained for the complete application. Logs get the appropriate

instance from ouml.JSLogger and use the exposed API.

For example to log an info message your implementation would use:

• ouml.JSLogger.info('Your message ');

• Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or

parent business object)

• mdtdebug(message): The module that needs to log a framework level debug

message calls this method.

Passes the log message arguments to the methods.

• debug(message): The module that needs to log a debug message calls this method.

Passes the log message arguments to the methods.

• info(message): The module that needs to log an info message calls this method.

Passes the log message arguments to the methods.

• warn(message): The module that needs to log a warn message calls this method.

Passes the log message arguments to the methods.

• error(message): The module that needs to log an error message calls this method.

Passes the log message arguments to the methods.

• perf(message): The module that needs to log a perf message calls this method.

Passes the log message arguments to the methods

• fatal(message): The module that needs to log a fatal message calls this method.

Passes the log message arguments to the methods

• setLevel(level): These methods set the logging level of the logger instance that the

application has acquired initially. The level that is to be set should be within the set of

levels supported by Logger. Else default logging level will be used

• syncLogFile() : This method synchronizes the log files to the server.

Offline Database
This section provides information regarding client side offline database tables and APIs available to

interact with the offline database.

A WebSQL database is used for local data storage if the application is opened in a web browser. If the

application is installed as a native app on a device and "sqliteDB" property is set in the Product

Configuration mobile component, then the SQLite DB on the device is used. The database is

initialized with an initial size of 5MB.

Database Schema
API

getHandle - Returns the DB handle object. This returns a singleton instance of an object that should

be used for any DB transactions.

Tables
At application launch, the tables indicated below are created in the browser database or in SQLite if

they do not already exist. You can reference this schema and browse the database during development

or debugging.

Oracle Utilities Mobile Library 3-7

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Offline Database

F1_BIZOBJ
This table stores both deployment and transaction data for all business objects. GEN_COL1 to

GEN_COL10 can be used to store specific fields that can be used to query the business object.

Offline Field Description

BO_KEY combination of business objects PK1-PK5

(pk1^pk2^pk3^pk4^pk5)

BO_CODE Business object code

MO_CODE Maintenance object code

DATA JSON data for a business object

TYPE Type of data (DEPLOYMENT or TRANSACTION).

DATE_UPDATED Timestamp(local) when the data was modified.

VERSION Version of the record.

GEN_COL1 - GEN_COL10 Generic columns for storing business object attributes used in

search and application logic. The default value for the number

of columns is set to 10 in the OUML Product Configuration

via the property bizObjGenColumns.

F1-Inbound
This table supports inbound messages.

Offline Field Description

MSG_ID Unique message ID for the inbound message.

PAYLOAD JSON Data received in a message.

SCRIPT Script code (message processing script).

PRIORITY Priority of the message.

ACK_REQUESTED Flag to indicate whether acknowledgement is requested.

ACK Flag to indicate whether acknowledgement was returned.

PROC Flag to indicate whether the message is processed.

PROC_ACK Flag to indicate whether processing acknowledgement was sent.

ERROR Error message received during processing, if any.

F1-Outbound
This business object supports outbound messages.

Offline Field Description

ID Unique message ID of the outbound message.

SERVICE Service name.

Oracle Utilities Mobile Library 3-8

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Product Configuration

PAYLOAD Service input payload.

Product Configuration
Each application layer has its own Product Configuration mobile component in which a new property

can be added. A property defined in the lower layer can also be overwritten by defining a new property

with the same name.

Some of the properties that are of type array cannot be overridden completely but values from each

layer are merged. Please reference the description of each property.

API -ouml.Config

• restServerURL - OUAF REST API URL.

• mobileAppURL - Mobile app URL.

• DEFAULT_MDT_URL - DEFAULT MDT URL.

• DEFAULT_DEPLOYMENT_ID - DEFAULT_DEPLOYMENT_ID.

• mainMenu - menu items that should be available on every page menu.

• applicationFolder - A folder name used to store the files on local device filesystem.

• getConfig - Returns the value of a property (the property available in topmost app).

• boFiles – list all the files required by a business object. If the only file that a business object requires

is same file as the name of business object and is available in scripts/bo folder then no need to

include that. In case of CM config, files are assumed to be present in scripts/bo folder.

• getBOFiles - Returns the JS file names required by a business object. This API is internally

used by ouml.Loader.loadBO so implementers will not have to ever use this. This property

returns the value of boFiles variable after merging it from all layers.

• pageFiles – list all the files required by a UI page (business object or non-business object). If the

page id (div having data-role =page) is same as file name then no need to include that file. provide

absolute path starting from product folder (e.g. cm/taskList.js).

• getPageFiles - Returns the JS file names required by a Page(bo pages too) UI. This API is

internally used by ouml.Loader.loadPage API so implementers will not have to ever use this.

This property returns the value of pageFiles variable after merging it from all layers.

• commonJSfiles – List all JS files that should be loaded on successful login. This property is used

by login module and it loads all the files defined at different layer, after merging it from all

layers. Common JS files like plugins.js or common.js which hosts common APIs not specific

to a business object or a Page should be declared in this property. File should contain the path

starting from product folder name (e.g. m1/scripts/plugins/plugins.js).

• inboundMsgFiles – List mapping between an inbound script and corresponding file containing

the script. File MUST be present in scripts/inbound folder. CM can override base.

• getInboundMsgFiles - Returns the inbound message handler file names for a given script

code.This API reads the value from inboundMsgFiles variable in the Product Configuration

mobile component of each app layer and returns the files from appropriate layer. This API is

internally used by the Oracle Utilities Mobile Library and implementers will not have to use

this.

• capabilitiesMapping – define a mapping between a capability type (defined on server) and

corresponding script to be executed on client for a given capability. These scripts should be

defined in common.js (e.g. cm/ui/common.js) or some JS file that is loaded via

commonJSFiles so that whenever a capability request (e.g. scan barcode) is made this file

should be already loaded.

Oracle Utilities Mobile Library 3-9

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Encryption APIs

• oracleMapProperties- Used to configure the Oracle MapViewer properties. The

serverConfig property is very important. This is the name of the Feature Configuration

created for the Oracle MapViewer on the server. The client gets all the MapViewer

information like URL, Datasource, Tile Layer etc using the Feature configuration. Besides the

serverConfig the images for activities can be changed here. The style for the information

window which pops up on clicking an activity marker can also be modified here.

• sqliteDB – Set to false by default out of the box. If set to true the SQLite plugin is used to

create a SQLite database on the client devices instead of using the HTML5 WEBSQL

database. This flag can be set to true only if the SQLite plugin is installed for the Cordova

project used to build the native application.

Encryption APIs
For android devices, encryption is provided by a cordova plugin. However, instead of using cordova

plugin APIs directly, you should use the APIs indicated in the table below in the ouml.Crypto module.

The Oracle Utilities Mobile Library uses these APIs internally to store data to the F1_BIZOBJ table if

the encryption is enabled for devices. Please reference Chapter 2: Encryption for more information.

These APIs return the original input as is if the encryption is not enabled for this device. Callers of the

APIs can check the output in success callback to confirm if the data was indeed encrypted (or

decrypted).

API Parameters Description

ouml.Crypto.encrypt args = {onSuccess: <success

callback>,

onFailure:<failure

callback>, input: {data:

<text string or an array

of text strings>},

encryptionKey : <optional, key to be

used>}

ouml.Crypto.decrypt args = {onSuccess: <success

callback>,

onFailure:<failure

callback>, input: {data:

<text string or an array

of text strings>},

encryptionKey : <optional, key to be

used>}

Encrypted input data will be returned

via success callback as {output:

<encrypted text>, encrypted:

<true|false>}. If the input was an

array then output will be an array e.g.

{output: []} with each array element

corresponding to input array element.

Encryption key is not required unless

you have to use a different encryption

key than what is configured on server.

Encrypted property is set to false if no

encryption was done in case of iOS

device or encryption not enabled for

this devce.

Decrypted input data will be returned

via success callback as {output:

<decrypted text>, decrypted:

<true|false>}. If the input was an

array then output will be an array e.g.

{output: []} with each array element

corresponding to input array element.

Encryption key is not required unless

you have to use a different decryption

key than what is configured on server.

Decrypted property is set to false if no

decryption was done in case of iOS

device or encryption not enabled for

this devce.

Oracle Utilities Mobile Library 3-1010

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Cordova Encryption Plugin APIs

Cordova Encryption Plugin APIs
The plugin call takes the following parameters:

1. success: Function name of the function to be called on successful execution of the

plugin. This function is called with a string parameter depending upon the value of the

action parameter.

2. failure: Function name of the function to be called on execution failure of the plugin.

This function is also called with a string parameter containing the error message of the

error which occurred while executing the plugin leading to failure.

3. “Crypto”: The plugin identifier.

4. action: The action parameter passed to the plugin. This includes one of the following

values:

a. encrypt

For this action, the plugin will return the encrypted string of the input text on

success. The encryption key will be passed along with the input text as parameter to

the plugin in json format.

b. decrypt

For this action, the plugin will return the decrypted string of the input encrypted

text on success. The encryption key will be passed along with the input text as

parameter to the plugin in json format

c. hash

For this action, the plugin will return the hashed value of the input string on success.

5. json: The input parameter to plugin in json format. It will contain the input string to be

encrypted along with the symmetric encryption key to be used for encryption.

Process Details

1. Users log in to the system in online mode. The user credentials are stored in persistent storage

using the hashed value obtained from custom Cordova plugin for offline authentication.

2. After login the following device options are fetched from server in online mode and are

stored in local storage:

a. MDT_ENCRYPTION_FLAG

b. MDT_ENCRYPTION_KEY

If the user logs in offline mode then the last stored values of these device options are

used in the application.

If transaction data exists on the device then the new values obtained from the server for

these device options are not overwritten in the local storage. Thus the

MDT_ENCRYPTION_FLAG and MDT_ENCRYPTION_KEY device options values

on the device cannot be changed after transaction data is generated on the device.

3. Using the MDT_ENCRYPTION_FLAG device option the encryption module can be turned

on (‘M1ON’) or off (‘M1OF) for a particular device using the MDT portal page.

4. If MDT_ENCRYPTION_FLAG set to ‘M1ON’ then the transaction data generated on the

hybrid client is stored in encrypted format in local storage and its decrypted after reading

from local storage to get the original form before use. If MDT_ENCRYPTION_FLAG is

‘M1OF’ then all transaction data on device is stored in readable text format.

If the value is set to is M1DF (default), then the value is fetched as per the Master Global

Configuration.

Oracle Utilities Mobile Library 3-1111

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Deployment

5. The MDT_ENCRYPTION_KEY is stored in local storage in encrypted format. It is

encrypted using the base64 encoding value of username:password as encryption key and

using the same encryption algorithm which is used to encrypt transaction data.

Deployment data is not encrypted on the device as it is not transactional data.

Deployment

The application consists of code and metadata:

• Code is installed (for native apps) or deployed (for webapp) as an application.

• Metadata that is required for the application to work properly, is downloaded on a successful

logon in JSON format and stored in the offline database. Deployment metadata is stored in

F1_BIZOBJ table with DEPLOYMENT as value in "type" column. The Oracle Utilities

Mobile Library provides various APIs to access deployment metadata in simple format Data

consist of various Oracle Utilities Application Framework objects including:

• Labels

• Lookups and Extended Lookups

• Messages

• Business Object Lifecycle

• Business Objects Data (non transactional objects)

These objects can be configured on the server. Please reference the Oracle Utilities Mobile Workforce

Management Server Administration Guide for more details.

API (module - ouml.Metadata)

API Parameters Description

getLabel Label/field Id Returns the label description (should

be used instead of hardcoding text

strings on UI). Check ViewModel

wrapper API for usage on HTML

pages.

getLookup Lookup ID Returns an array of items containing

lookup value and description in the

format [{lookupValue: “”,

description:””},] Check ViewModel

wrapper API for usage on HTML

pages.

getLookupDesc Lookup, lookupValue Returns the description for a specific

lookup value of a lookup. Check

ViewModel wrapper API for usage on

HTML pages.

getExtLookup Extended Lookup BO Name Returns an array containing lookup

value and description in the format

[{lookupValue: “”, description:””},]

Check ViewModel wrapper API for

usage on HTML pages.

getExtLookupDesc Extended lookup BO Name,

lookup Value

Returns the description for a specific

lookup value of a extended lookup

BO Check ViewModel wrapper API

for usage on HTML pages.

Oracle Utilities Mobile Library 3-1212

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Deployment

API Parameters Description

getMessage Message category,

message Id

Returns the message. (To get

formatted message with parameters,

use ouml.ClientError API)

getNextBOStates Bo name, bo status Returns a list of next valid states which

the business object can transition to

from a given state. It returns an array

of objects with this format

{boNextStatusLabel, boStatus, role}

getStatusReasons Bo Name, status Returns an array containing the status

reasons valid for a given state. Format

of the output is [{description: “”,

selectability:, “”, statusReasonCd:

“”},{}]

isFinalBOState Bo Name, Status Returns true if there are no next valid

states for a given business object and

state, otherwise returns false.

getBOInfo Bo Name Returns all information(metadata)

about a BO. A JSON object with

description, owner code, each valid

states and related info.

getAncestors Bo Name Returns an array of items with

business object information for all

business objects in the hierarchy. At

0th index is the top most parent and

given business object at the end of the

array.

getAncestorNames Bo Name Returns an array of business object

names for all business objects in the

hierarchy. At 0th index is the top most

parent and given business object at the

end of the array.

To read the value of a Business Object in deployment, you can use BOEntity APIs.

Oracle Utilities Mobile Library 3-1313

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Date and Time APIs

Date and Time APIs

API (module ouml.DateTimeUtil

Sr

No
API Parameter Description

1 getFormattedDate Base date time

object

2 getFormattedTime Base date time

object

Converts and returns local

device date string value from

base date time object ,

formatted as per DATE

DISPLAY Format

configured for MDT

Converts and returns local

device time string value

from base date time object ,

formatted as per Time

Format configured for the

MDT User on the Display

profile.

3 getFormattedTimeFromSeconds Time in seconds Returns the formatted time

value in format HH:mm:ss

4 Time Base date time

object

5 getBaseDttmFromLocalDttm Local device

Time in

milliseconds

6 getStdBaseDttmFromLocalDttm Local device

Time in

milliseconds

Converts and returns local

device date time string value

from base date time object,

formatted as per DATE

DISPLAY TIME Format

configured for the MDT

User on the Display profile.

Converts and returns a base

date time string value from

local device time in YYYY-

MM-DD-HH.MM.SS

format. If no local device

time is passed the current

device time value is used

Converts and returns a base

date time string value from

local device time in YYYY-

MM-DD-HH.MM.SS

format. If no local device

time is passed the current

device time value is used

Same as

getBaseDttmFromLocalDtt

m()

7 getBaseDttm Converts and returns a base

date time string value in

YYYY-MM-DD-

HH.MM.SS format from

current local date time.

Oracle Utilities Mobile Library 3-1414

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Date and Time APIs

Sr

No

API

Parameter

Description

8 getLocalDttmFromBaseDttm Base date time Converts and returns local

 String value date time Object from base

 date time String value.

 Returns a Date Object.

9 getStdLocalDttmFromBaseDttm Base date time Converts and returns local

 String value date time string value from

 base date time string value in

 YYYY-MM-DD-

 HH.MM.SS format

10 getLocalDttm Returns current device date

 time string value in YYYY-

 MM-DD-HH.MM.SS

 format

11 getISOFormattedDateTime Base date time Converts and returns local

 String value date time string value from

 base date time string value in

 ISO Format (YYYY-MM-

 DDTHH:mm:ss.sssZ)

12 getBaseDttmFromISOFormattedDateTime Local date time Converts and returns base

 string value in date time string value from

 ISO Format local date time string value

 in YYYY-MM-DD-

 HH.MM.SS format

13 getCurrentDate Returns current device date

 string value in yyyy-MM-dd

 format.

 Use this instead of new

 Date(). It gives correct value

 even if the device clock is

 out of the sync with the

 device’s time zone. It does

 so by internally applying

 device date time correction.

14 getBaseDate Local device Converts and returns the

 Time in base date object from local

 milliseconds date object. If no local

 device time is passed the

 current device time value is

 used

15 getCurrentDttm Returns current device date

 time string value in yyyy-

 MM-dd-HH.mm.ss format

16 getCurrentDeviceDate Returns current device date

 time object

Oracle Utilities Mobile Library 3-1515

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Business Objects

Sr

No
API Parameter Description

17 getCurrentStdDttm Converts and returns a base

date time string value in

YYYY-MM-DD-

HH.MM.SS format from

current local date time.

18 calculateDttm Operation

“F1AT” or

“F1DT”, source

date time string

value,

destination date

time string

value, n no of

seconds value.

Calculates and returns a date

time string value in YYYY-

MM-DD-HH.MM.SS

format after performing add

or subtract by number n

operation

Properties

The following properties are downloaded at login.

• Properties

• KeyValue

• sessionId

• decimalSeparator

• API - ouml.Properties

Business Objects
Please reference the Oracle Utilities Application Framework documentation for details of server

side implementation and metadata associated with business objects.

Mobile client implementation of a business object includes the following content:

• JavaScript – A JavaScript class which can be instantiated to invoke BO APIs (save, update, or

change BO state).

• HTML – HTML content for the BO UI. This is mostly used as a template in include UI

sections.

• UI JavaScript – JavaScript content, Knockout ViewModel.

• boFiles – Product Configuration property for the BO JS files. This is only specified if the

business object name and the JavaScript name are not the same, or if this layer is adding a

customization and does not own the BO.

• pageFiles – Product Configuration property for the UI JS files. This is only specified if the

file name is not same as the Page ID, or if this layer is adding a customization and does not

own the BO.

Refer to the base product Business Object and Product Configuration mobile components for

examples.

Business object data is received by the Inbound Service and processed by inbound scripts. See the

Device Inbound Messages section for more information.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

Oracle Utilities Mobile Library 3-1616

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Business Objects

Javascript in the Oracle Utilities Mobile Library uses revealing module pattern or prototype pattern or

a combination of both where prototype is wrapped in revealing module. Every JavaScript class/

module is attached to a namespace that starts with “ouml”.

Please make yourself comfortable with Object Oriented Programming in JavaScript which is a pre-

requisite for writing new BO classes. (https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Introduction_to_Object-Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model)

Business Object JavaScript (JavaScript)

Every BO JS must extend the GenericBusinessObject class, if there is no parent to this business object.

Otherwise, it must extend the parent class. The OUMLTools generates the template code for new

content.

GenericBusinessObject APIs

API Parameters Description

<constructor> Data – BO JSON

data (optional).

Version – offline

data version.

Data – If BO JSON data is provided it will be set

to this.data property of this instance. To create a

new BO instance you should use

ouml.BusinessObjectFactory.getBusinessObject

Version – The default value is 0 for a new BO

record to be added to the offline DB.

getData JSON path of a file Returns the value of a JSON path on BO data.

Directly accessing a value in a nested JSON

structure might result into “undefined is not a

function” error so to avoid that use this API.

hasUndefinedOr

EmptyField

JSON path of a

field

Returns true if the field is undefined or is empty.

setData Field, Data When supplied with only one argument, it

should be the BO JSON data. If you need to set

the value of a specific field pass both field and

data.

setFieldData Field,Data Set the value of a specific field to given data.

BO Plugins

BO Enter and PostProcessing plugins are defined as JSON object inside a BO class in a private variable

named plugins (you can name it anything).

var plugins = {

"POSTPROCESS": {

"active": [

{"sequence": 10, "plugin": "M1-MCPTSUpd", "params": {}},

{"sequence": 20, "plugin": "M1-MCPSndCmp", "params": {}},

{"sequence": 30, "plugin": "M1-MCPTsLnIn", "params": {}}

],

"inactive": ["M1-TaskUpd"]

},

"states": {

"ENROUTE": {

"ENTER": {

"active": [

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

Oracle Utilities Mobile Library 3-1717

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Business Objects

{"sequence": 10,"plugin": "M1-MCPPRCSTL","params": {"key":

"value"}},

{"sequence": 20,"plugin": "M1-MCPSTVal","params": {"key":

"value"}},

{"sequence": 30,"plugin": "M1-MCPSHSSv","params": {"status":

"IN-SVC"}}

],

"inactive": []

}

},

"DISPATCHED": {

"ENTER": {

"active": [],

"inactive": []

}

}

}

}

If there are no Post Processing plugins on a BO, active and inactive nodes should both have an empty

array ([]), but you must define the JSON path for easy addition of a new plugin later (the OUML

assumes that the JSON path is present, whether there are any plugins or not).

For state-specific plugins: If your specific state has no plugins the complete node for that state can be

deleted, or active/inactive should have an empty array. For example, in the above JSON code, this BO

might have other states as well (in addition to ENROUTE and DISPATCHED). If that’s the case,

OUML will assume that those states have no plugins.

Definition of a Plugin

An active plugin defines its sequence, the plugin script name, and any parameters that will be passed

when executing the plugin script.

{

“sequence": 10,

"plugin": "M1-MCPPRCSTL",

"params": {"key": "value"}

},

All inactive plugins are stored as an array of plugin script names (an array of strings).

The plugins are called for a specific enter or post processing event, top down in the BO hierarchy, and

within each BO they are performed in the sequence order.

BO Instance – Implementers APIs

The following APIs (getter methods) must be implemented by each BO class in a BO prototype chain.

Each of these methods must return a reference to a module private variable.

getBOName() – BO API (override)

A local private variable, var boName, should be defined in the encapsulating module (before the

definition of BO constructor) and returned by this method.

var boName = “M1-Assignment”

If the BO class is a customization (the BO class, not the owner of the BO), then this method and the

variable is not required, since the BO name is the same for a customization class. It is just adding few

extra plugins or is used to override other APIs for the base-provided BOs (without creating a child

BO).

Oracle Utilities Mobile Library 3-1818

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Business Objects

getParent() – BO API (override)

A local private variable, var parent, must be defined in the encapsulating module (before the definition

of BO constructor) and returned by this method.

var parent = ouml.BOHelper.getPrototypeFor(boName);

getPlugins() – BO API (override)

A local private variable, var plugins, should be defined in the encapsulating module (before the

definition of BO constructor) and returned by this method. This variable is the same as described in

BO Plugins.

BO Instance – OUML APIs

Important: The following are the only two APIs that execute

plugins attached to a BO or BO state. Every other APIs available

on a BO instance use raw data and perform insert/update actions

on the database without plugin execution. Thus, additional care is

advised when you use APIs other than the two described below.

executeStateChange (args) – BO API

This API transitions the BO to the next state and then saves the data to offline. It will invoke the

getPlugins implementation of a BO to get Enter and PostProcessing plugins and execute all the plugins

in a single transaction.

args is an object {} with the following properties:

• onSuccess – Success callback that is invoked on a successful state transition.

• onFailure – Failure callback to be invoked on any error.

• transaction – If an existing transaction is to be used, otherwise a new transaction is created.

• input – Input that is passed to every plugin script.

• input.verControl – Set the value to OVERRIDE or NOVERSION if default behavior is not

required. (See the next sections of this document for more information on version control.)

The BO reference is attached to the “input” and is also passed along to each plugin script. Similarly,

params on a plugin sequence are also attached to “input” and passed to the respective plugin script.

This API will first execute ENTER plugins, and when successful will execute POSTPROCESS plugins

by executing the executeSave API.

executeSave (args) – BO API

This API first executes the POST Processing plugins and then saves the BO data to offline storage.

Arguments for this API are the same as executeStateChange. Thus, this API can be executed without a

state transition as well, wherein no ENTER plugins are executed but data will be saved to offline.

Business Object Helper APIs (ouml.BOHelper)

ouml.BOHelper.getPrototypeFor(boName, owner)

This API returns the prototype that a JavaScript class must extend. This API accepts two arguments:

• boName – BO name.

Oracle Utilities Mobile Library 3-1919

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Business Objects

• owner – Owner code must be provided when writing a customization class for another’s BO (BO

not owned by this owner). Otherwise do not specify (as shown in the diagram above for a BO

hierarchy, all green boxes need not specify the owner).

ouml.BOHelper.getViewModelPrototypeFor(boName, owner)

This API returns the prototype that a UI JavaScript class must extend. This API accepts two

arguments:

• boName – BO name.

• owner – Owner code must be provided when writing a customization class for another’s BO (BO

not owned by this owner). Otherwise do not specify (as shown in the diagram above for a BO

hierarchy, all green boxes need not specify the owner).

Offline Data Storage and Query APIs

The following APIs are supported for offline storage and retrieval of the BO data on the device.

ouml.BOHelper.getMOQueryFields(moName)

This is a BO helper API. For a given MO name it returns a list of query fields, defined on this MO, in

the same sequence as returned by deployment data. This API will not return the associated data types.

ouml.BOHelper.getBOQueryFields(boName)

This is a BO helper API. For a given BO name it returns a list of query fields, defined on this BO. This

API will not return the associated data types.

ouml.BOHelper.getQueryFieldTypes(moName)

This is a BO helper API. For a given MO name it returns a dictionary of key value pairs, where key is

the query field name and value is the respective data type, as defined on this MO.

getMOQueryFields() – BO API

This is a BO API. It will use the MO name of the current BO to invoke the corresponding BO helper

API, and return the query fields defined on the MO.

getBOQueryFields() – BO API

This is a BO API. It will use the BO name of the current BO to invoke the corresponding BO helper

API and return the query fields defined on the BO.

getMOQueryFieldTypes() – BO API

This is a BO API. It will use the MO of the current BO to invoke the corresponding BO helper API

and return the query field types as defined on the MO.

getPKs() – BO API

This is a BO API. It will return the PKs defined on the BO.

getDTO – BO API for Offline Data Storage

This API will be invoked by OUML when saving (add/update) a BO to offline storage. Query fields

defined at the MO will be used to save the specific BO data fields to generic columns (gen_col1 –

gen_col10). Query field at index 1 in “queryFields” on the MO will be saved to gen_col1, and so on.

However, if a given query field on the MO level is not present on the BO that is being saved, then the

same will be ignored. For instance, if a “boStatus” query field is present on MO “queryFields” but is

Business Objects

Oracle Utilities Mobile Library 3-2020

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

missing in BO “queryFields”, then it will not be saved to an offline generic column, although it is

mapped to gen_col1.

ouml.BOHelper.loadBOData – API to Query Offline BO Data

This is an async BO Helper API. Signature of this API is similar to other async APIs.

This API will accept the input in the format shown in the following code, and return the BO data via a

success callback.

{

"onSucess": "<success callback function>",

"onFailure": "<failure callback function>",

"transaction": "<existing transaction handle>",

"input": {

"moCode": "M1-TASK",

“fetchRowCount”: true,

"offset": "1",

"limit": "3",

"queryFields": [

{

"field": "boStatus",

"value": "COMPLETED"

},

{

"field": "scheduleDetails.workSequence",

"value": "0"

}

],

"orderBy": [

{

"column": "bo_key",

"order": "DESC"

},

{

"column": "type"

}

]

}

}

• moCode – MO code is mandatory argument.

• fetchRowCount – default is false; when set to true, the total number of records will be returned as

“totalCount” in the callback response.

• offset – default is 0 when not specified – skip first few records as set by this value.

• limit – default is read from config.js – bOQueryLimit (number of records to be returned).

• queryFields – list of query fields to filter the BOs.

• field – JSON path of the field.

• value – string value to be compared against.

• operator – default is ‘=’ when not specified.

• oolumn – specify a db column name (e.g. bo_code or type; even gen_col1 will work).

Note: When a column is defined, field will be ignored and db column name will be used.

• orderBy – list of query fields to sort the data.

• field – json path of the field.

• order – default is ASC when not specified.

Business Objects

Oracle Utilities Mobile Library 3-2121

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

• oolumn – specify a db column name (use only when to be ordered on non query fields).

BO data will be returned in this format. (a list of BOs):

{

“totalCount”: <total number of record, without any limit>

"output": [

{

"bo": "<BO_NAME>",

“version”: “<BO RECORD VERSION>”

"data": "<BO_JSON_DATA>"

}

]

}

BO Versioning

OUML’s F1_BIZOBJ table has a version column that stores the current version of BO data. This

version starts from 1, and by default is incremented with every edit.

When BO data is read on the device via an OUML API, the current version of the BO record is also

returned. Every BO instance (JavaScript) is set to store this version number in it. When the BO API to

change the BO state or save the BO changes is invoked, this version number is compared against the

current version of the BO record in the offline DB. These APIs can accept an argument to control the

default behavior of the API. The following options are supported:

• Default behavior - If versions are mismatched, the update command will fail with the appropriate

error. If they are same, the version will be incremented by 1 and data will be saved successfully.

• “OVERRIDE” – When this option is set, even if there is a version mismatch, the new BO

changes will be saved and it will overwrite he data in offline with a new copy of the BO data.

• “NOVERSION” – Same behavior as default when version mismatches are present. If the version

is the same, data will be saved, but the version will not be incremented.

There are different use cases where one can use these extra options to control the BO save operation.

For example, the “OVERRIDE” option can be used when saving user changes from the UI so that any

important and time-consuming edits on the UI are given preference over any server side updates.

Similarly, “NOVERSION” can be used when saving server-side low-importance updates on a BO; this

change will not update the version, so the default behavior of the BO to save APIs will overwrite these

server-side low-priority edits when a UI edit is occurring in parallel.

Business Object UI (HTML and JavaScript)

Every BO has a top-level UI page (UI Map/HTML file), which is the main landing page when you use

the navigateToBOPage API. This page usually has list of sections, with each section pointing to a

<DIV> element in either same HTML file or other HTML fragments (files) included via an

overridden API (loadPageFragments). The HTML file name must match the BO name and the top-

level DIV (which has data-role=page) should have the BO name as the value for the div’s id attribute.

For exmaple, for the M1-Assignment BO, file name would be M1-Assignment.html and the top level

div in that page would be:

<div data-role="page" id="M1-Assignment">

<script src="M1-Assignment.js"></script>

For a non-BO Page the div Id should also uniquely identify a page, and if the JS file name, HTML file,

and the div id all are same, the Oracle Utilities Mobile Library can load the JS file automatically without

any script include.

As shown in the above example, a script is included inside the div element. This is important because,

with jQuery mobile, you cannot expect any script outside the page div to be loaded. Thus, if you ever

need to load a JS file for any page (BO or non-BO), it should be included inside the page div.

Business Objects

Oracle Utilities Mobile Library 3-2222

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Note: If the JS file name is same as the BO name or the id of the page div (for non-business objects),

you need not include this file in the HTML code, since the Oracle Utilities Mobile Library

automatically includes a file with this name in the same directory as the page.

Page View Model

Every UI JS must extend the BaseViewModel class if there is no parent to this BO; otherwise, it must

extend the parent class (see ouml.BOHelper.getViewModelPrototypeFor(boName, owner) for details).

Code for every UI page (bo/non bo) should be attached to a specific namespace (ouml.ViewModel) as

shown in this example BO class:

ouml.ViewModel["M1-Assignment"] = (function(ouml) {

function m1Assignment() {

ouml.ViewModel["M1-Common"].call(this);

model = this;

};

//set the prototype to parent BO, so we extend the parent's

functions.

m1Assignment.prototype = Object.create(ouml.ViewModel["M1-

Common"].prototype);

//point the constructor property to this key (in case we need to

make use of it later)

m1Assignment.prototype.constructor = m1Assignment;

return m1Assignment;

})(ouml);

Note: In this example we have a common parent for all business

objects, which extends BaseViewModel hence we are extending

M1-Common here.

This is the basic minimum code that every business object (nonBO) UI must have.

BaseViewModel API Properties

LABELS A reference to all labels, can be used in HTML as:

<span data-bind="text: LABELS.M1_SITE_ADDRESS" id="siteAddress-

label">

LOOKUPS A reference to all Lookups. usage:

<select class="ui-select" id="keepWithCrew" data-role="none" data-

bind="value:stateSpecificFields.keepWithCrew, options:

LOOKUPS.M1_SAME_CREW_FLG, optionsText: 'description', optionsValue:

'lookupValue', optionsCaption: 'Select One ...'"></select>

EXTLOOKUPS A reference to all Extended lookups. Usage:

<select id="customerContactType" data-bind="options: EXTLOOKUPS['M1-

CustomerContactType'], optionsText: 'description', optionsValue: 'lookupValue',

value: completionInfo.customerContactDetails.customerContactType,

optionsCaption: ''"data-role="none"></select>

pageTitle This is a knockout observable array, so anytime value is changed it will

automatically reflect on UI title.

model.pageTitle(model.LABELS.M1_SHIFT_LBL)

pageButtons This is a knockout observable array, all page buttons are stored here. Please

reference the setPageButtons API under Page View Model for more information.

Business Objects

Oracle Utilities Mobile Library 3-2323

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

pageMenuItems This is a knockout observable array containing all menu items.

pageIndicators This is a knockout observable array containing all page indicators.

API Parameters Description

showBackButton Boolean(true|false) Sets the visibility of back button on a page. Visible

when set to true.

showPanicButton Boolean(true|false) Sets the visibility of Panic Alert button on a page.

Visible when set to true.

showMapButton Boolean(true|false) Sets the visibility of Map button on a page. Visible

when set to true.

loadPageFragments This API when implemented by a page will be invoked

before displaying the page content. This API must

return an array of HTML file names. The content of

each file will be appended to the currently active mobile

page’s content..Use this API to create a UI from

multiple HTML files, and reuse same HTMl file in

multiple pages. Each HTML file should contain divs

which can be navigated to by showSection API. All the

Divs should have visibility of none, otherwise they will

appear on UI as soon as a fragment (an html file) is

loaded. Please reference the UI Layout and Navigation

section for more details.

load args =

{onSuccess:<callba

ck>}

This API when implemented by a page will be invoked

just after page HTML/JS files are loaded. Implementer

must invoke args.onSuccess() on completion of the

work of this method. It is assumed that something

asynchronous can happen in this overridden method

hence the onSuccess callback is provide to indicate the

completion of that work. E.g. loading appropriate data

from DB and binding the UI via KO.

setPageButtons Applicable only for business object pages. This API

when implemented by a business object page will be

invoked during page load process to allow the page to

customize the page specific buttons. Overridden

method must set pageButtonList property to an array

of buttons, each button object should match this

structure: {buttonLabel : <string value>, buttonAction:

<click handler function on viewModel >}. Default

Oracle Utilities Mobile Library implementation of this

method adds next valid states of current BO’s state to

pageButtonList, and set the state name as handler

function name, which means for every state the BO UI

JS file (ViewModel) should have a corresponding

method.

Business Objects

Oracle Utilities Mobile Library 3-2424

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

API Parameters Description

onInboundMessage {inboundMsg } –

inbound message

received from

server

navigateToBOPage bo – Name of the

BO

args = {inputArgs:

{key:value},

inputData: {key:

value}}

navigateToPage bo – Name of the

BO

args = {inputArgs:

{key:value},

inputData: {key:

value}suppressUnsa

vedAlert: true/

false}

showSection args = {id:<id of

the div>, title:

<string for title>,

processAction:

{icon:< data-icon

attribute to be set>,

handler:<method in

current viewModel

to be invoked>}}

This method will be invoked every time a new message

is received via InboundWorker. Message received from

server will be passed as an argument

(inboundMsg.msgData). (each inbound message

processing script decides whether or not to notify the

current page)

Loads the BO JS files, BO UI page/html and BO UI JS

files in that order. Even if your HTML file for a

business object has no JS included via script tag it will

load the matching file (same name as the BO) in the

same folder as the main html file. It also loads the

pageFiles specified in the product configuration mobile

component for a given pageID (div’s id).

Same as navigateToBOPage except that this can be

used to load any non business object page UI html files.

So no BO JS files are loaded.

The user must mention when the unsaved alert has to

be suppressed. When a user sets this property into the

args input, the alert is skipped.

This API doesn’t switch the currently loaded page

however hides currently active section and displays the

requested one. Left side icon will be a back button and

right side icon will be set accordingly only if

processAction is set. On click of right side icon handler

will be invoked

goBack Use this API to back to either previous section or to a

previous page. Whatever was displayed before this UI.

showError error – an instance

of ouml.ClientError

sectionId –

optional, div ID of a

section that should

be displayed to

show this error on

setDefaultSection sectionId- div id of

a section that is

displayed by default

when page loads

Displays an inline error message in RED color at the

top of either currently displayed section or displays the

section with given ID first to show the error

This API must be implemented in order for

showSection to work. Default section is the Div that is

displayed by default when page is loaded.

showDefaultSection Show the default section and cleans the page’s section

history stack. So that using goBack on main page

should not go back to previously displayed section of

that page but previous page in history.

dialNumber

Business Objects

Oracle Utilities Mobile Library 3-2525

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

API Parameters Description

getFormattedDate date – date to be

formatted

getFormattedTime dateTime –

datetime to be

formatted

Converts a base date to device date and formats it to a

user specific format. Useful for displaying business

object data in the UI.

Converts a base datetime to device datetime and

formats it to a user specific format. Useful for

displaying business object data in the UI.

getFormattedDateT

ime

dateTime –

datetime to be

formatted

Converts a base datetime to device date time and

formats it to a user specific format. Useful for

displaying business object data in the UI.

setPageMenuItems Implement and override this method to add page

specific menu items. Oracle Utilities Mobile Library

calls it at appropriate time to render the page menus.

Please reference addMenuItem under Page View Model

for more details.

addMenuItem menuItem – a menu

item object

,

ouml.MenuItem({in

dex:<index of

item>,title: <label>,

action:<callback

function on

viewModel>,

active:<true|false>
});

setPageMenuItems method if overridden must add

individual menu items using this API. A Menu item

object should be passed to this method. Please

reference the Menu section for more details.

Buttons

The Page Buttons API automatically generates life cycle buttons for a BO User Interface. User can

override this default behavior by overriding setPageButtons API of the Base View Model present in

Oracle Utilities Mobile Library.

For automatically generation of Life Cycle buttons for a Bo UI, page specific model needs to extends

ouml.BaseViewModel.

For generation of buttons for a Non BO UI developer needs to override setPageButtons API and

either call addButton function of base view model or directly push button JSON into pagebUttons

observable array.

JSON for Buttons

{

buttonLabel: “Button Label”,

buttonAction: function

}

Menu API has been added as part of the Base View Model and will be available in child view model at

different application layers if child view model extends base view model.

1. setPageButton

Description

Need to override in page specific view model to add page buttons.

Specified by

setPageButton in ouml. BaseViewMode()

Business Objects

Oracle Utilities Mobile Library 3-2626

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Parameters

none

Returns

none

Sample Uses

cmModel.prototype.setPageButtons = function(){

var sample = {

buttonLabel: ‘Sample’,

buttonAction: this.sampleAction

};

this.addButton(sample);

}

2. addButton (json)

Description

Returns a ouml.MenuItem object. This API will help developer/Cm to write there custom

API for menu

Specified by

addButton in ouml. BaseViewMode()

Parameters

json: plain json object

Returns

none

Sample Uses Var

button = {

buttonLabel: ‘Sample’,

buttonAction: this.sampleAction

}

this.addButton(button);

Page Level Buttons
To add page level Buttons for a non BO UI, override setPageButtons() API of ouml.BaseViewModel.

cmModel.prototype.setPageButtons = function(){

var sample = {

buttonLabel: ‘Sample’,

buttonAction: this.sampleAction

};

this.addButton(sample);

}

Oracle Utilities Mobile Library 3-2727

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Property Names

Properties

Properties are used to represent configurable values such as Date formats, Sync Interval, Log File Size.

These properties are fetched via a REST call to the server every time in online mode. Some of these

properties can be set and retrieved at execution time too.

API - ouml.PropertyEntity

Public APIs

• getMDTProperty – Fetch the value against the key/name property.

This is a synchronous call for all the properties except for “PurgeOnNextLogon”. This takes in

an input of Property name and an optional callback function which is only used in the case of

Property Name = ‘PurgeOnNextLogon’.

Method Signature - function getMDTProperty(key, callbackFunc) {}

• setMDTProperty – Set the value against the key/name property.

This is a synchronous call for all the properties except for “PurgeOnNextLogon”. The

parameters callbackFunc, errorFunc, transaction are optional for properties that aren’t stored in

the DB.

Method Signature – function setMDTProperty(key, value , callbackFunc, errorFunc ,

transaction) {}

• removeMDTProperty – Delete a given property from the Property cache. This is a

synchronous call for all the properties except for “PurgeOnNextLogon”.

Method Signature - function removeMDTProperty(key , onSuccess ,onFailure ,transaction) {}

Property Names

• ASYNC_INTERVAL – Defines the time interval (in seconds) between Device to Server data

sync.

• ATTACHMENT_STORAGE_SIZE – Maximum (Sum of all the attachments) attachment

storage size possible for the current MDT>

• BASE_TIMEZONE_OFFSET – Fetches the base time offset against GMT.

• CURRENCY_CODE – Preferred currency code as fetched from the user’s ‘Display Profile’

• DATE_DISPLAY_FORMAT – Preferred date display format as fetched from the user’s

‘Display Profile’

• DECIMAL_SEPARATOR - Decimal separator as fetched from the user’s ‘Display Profile’

(Un-used right now)

• DISPLAY_OPTION – Display option set for the current MDT’s MDT Type. This is not

used in this framework as the screens are built responsive to deal with both Mobile and

Laptop.

• GPS_LOG_INTERVAL – Time interval for capturing the device’s current location.

• GPS_SUPPORTED – GPS Enabled or Disabled on the MDT Type.

• GPS_SYNC_INTERVAL – Logged GPS records will be synced across to the server at this

time interval (in mins).

• INITIAL_SERVICE_SCRIPT – Not used right now but will have the initial script name to

be executed. At the moment, the ouml.Config.getConfig(“initScript”) property.

Oracle Utilities Mobile Library 3-2828

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

UI Layout and Navigation

• IP_UPDATE_INTERVAL – IP Address update interval. This is not used in the

implementation yet as there is no server to device push communication (Only Device to

server pull calls are supported).

• LOG_ARCHIVE_DAYS – Un-used – remove.

• LOG_FILE_COUNT - Number of active log files to keep before archival.

• LOG_FILE_SIZE - The maximal size in kilobytes of a log file. After the log file reaches this

size, it’s rolled over into a new file.

• M1_CAPABILITY – Stores the JSON format of all the capabilities defined on the MDT

Type. Value should first be JSON Parsed before use. For using Capabilities use -

ouml.Capabilities

• MDT_ENCRYPTION_KEY – Data encryption key is used to encrypt any transactional

data on the device. The Key itself is encrypted with the user entered - user name and

password.

• MDT_LOG_LEVEL – MDT’s logging framework uses this Log level to conditionally log

only selective log statements.

• MDT_SESSION_ID – Counter incremented each time a device is registered. This will be

used for BO primary generation to ensure unique keys.

• MONEY_DECIMAL_DIGITS – Number of allowed decimal digits for Money fields. (Un-

used right now)

• MONEY_FORMAT – Money format as fetched from the user’s display profile. (Un-used

right now)

• NUMBER_FORMAT – Number format as fetched from the user’s display profile.

• NUMBER_GROUP_SEPARATOR – Number group separator symbol.

• TIME_FORMAT – Time format as defined in the user’s display profile.

UI Layout and Navigation
The Oracle Utilities Mobile Library uses jQuery and Knockout APIs for UI Pages. Each UI page is

either a single HTML file or a set of files (page fragments) combined together and displayed as one.

Oracle Utilities Mobile Library uses jQuery ajax APIs to load HTML and JS content. Knockout is used

to bind the JSON data to UI elements. All layout and navigation specific APIs are part of

BaseViewModel class and are made available to a page specific ViewModel when it inherits the

BaseViewModel.

HTML Content

Each HTML file that can be navigated by a direct link on the menu, an href in html, or via the

navigateToPage API should follow standard jQuery page structure:

<div data-role="page" id="M1-BreakTask" >

<div data-role="header">...</div>

<div role="main" class="ui-content">...</div>

<div data-role="footer">...</div>

</div>

• The ID of the page div should match to the business object name if it is a BO UI otherwise it

should be same as the html filename excluding the file extension.

• Each HTML file cannot have more than one div with data-role=page.

• Oracle Utilities Mobile Library uses a single page template structure of jQuery.

Oracle Utilities Mobile Library 3-2929

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

UI Layout and Navigation

Headers

Header elements are automatically injected from the generic header.html on each page load. This

forms the content of the jQuery Mobile page header (data-role="header");

If the SDK detects empty header DIVs with data-role=”header” and only injects the header.html

content, otherwise individual pages can define their own header html that remains untouched by the

SDK.

It’s advised to use the system headers on most screens with the following APIs to selectively show/

hide them on specific screens.

Contents

The following buttons that appear on the header (from left to right):

• Back Button - Displays a back button

• Maps Button - Toggles between the Timeline view and the MapView

• Panic Alert - Triggers a Panic Alert from a new UI screen

• Indicator Bar - Please reference the Indicators section for more information

• Menu Bar - Please reference to the Menu section for more information

Public APIs (via ouml.BaseViewModel)

• showBackButton – This is a knockout observable object. The default value is set to True.

The value changes when in different UI screens.

Home Page (Shift Start/Task List) Invisible

Task List Page Shift Page Visible

Task List Page (Invisible) Assignment Main Page (Visible) -> Assignment Details

Section -(Visible)

Back button is visible when the Stack Size is > 2 (Current page occupies a place too)

This method should be called by over-riding determinePageHeaderButtons() in your UI’s

ViewModel class.

Example – model.showBackButton(false); // Would set it to false.

• showPanicButton – Controls the visibility of the Panic button. Default value is true. This is

a KO Observable object. This button would be displayed on all the UI screens except for the

Login screen.

Example – model.showPanicButton(false); // hides it.

• showMapButton – Controls the visibility of the Map button. Default value is false. This

button is only displayed on the Task List page in the application. Any UI requiring this

method will have to toggle it ON in the determinePageHeaderButtons API.

• determinePageHeaderButtons – API that can be used to control the visibility of the

header buttons. This API gets called even when coming out of the section pages using the

back button. This is different than the ouml.ViewModel.load() method that is used for the

first time initialization. This API can be optionally over-ridden by the child ViewModel UI

screens.

UI Layout and Navigation

Oracle Utilities Mobile Library 3-3030

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

API

APIs are covered in the BaseViewModel API section.

Menu

One popup menu appears on each page. Each contains the following two types of menu items:

• Application Level Menu items

• Page Level Menu item.

For menu item we have one observableArray pageMenuItems in BaseViewModel. By default it will be

populated with Application Level menu items once View Model is loaded, and it can be extended or

appended from child ViewModel with page specific menu items.

Application Level menu items are generated from configuration file of the application and page

specific menu will be implemented by the developer in the page specific models.

Menu Items (ouml.MenuItem)

This is menu item object. Create one object for each menu item.

Constructor

ouml.MenuItem({

// Integer a unique id. It’s also determines position of menu

item in menu.

It’s a required filed

index;

// Label of menu that will appear for menu item on UI. It’s a

required property

title;

// Icon if we want an icon for menu item optional

icon;

// java script method or a URL optional

Action;

// Set active true or false if user you want to show hide the

menu item -> It’s

required

Active;

})

UI Layout and Navigation

Oracle Utilities Mobile Library 3-3131

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Menu API
Menu API is part of the Base View Model and will be available in the child view model at different

application layers if the child view model extends the base view model.

API Parameters Description

ouml. BaseViewModel.getMenuItem index: an Integer value Returns a ouml.MenuItem object.

This API will help write there custom API for

menus.

ouml. BaseViewModel.addMenuItem menuItem : an object

of ouml.MenuItms

ouml. BaseViewModel. updateMenuItem menuItem : an object

of ouml.MenuItm

ouml. BaseViewModel. showMenuItem item : an object of

ouml.MenuItem or

index – index of menu

item

ouml. BaseViewModel. hideMenuItem item : an object of

ouml.MenuItem or

index – index of menu

item

Return an object of ouml.MenuItem or undefined

var menuItem = this.getMenuItem(201);

Add menu item in the menu.

This API checks for the menu item with the same

index value. If menu Item exits its replace the menu

items fields’ value with new one otherwise add it to

the list.

Update menu item values example: Label, action

handler and visibility.

This API checks for the menu item with the same

index value. If menu Item exits its update the menu

items fields’ value with new one. Print an error log

input parameter is not a valid ouml.MenuItem

object.

Display a hidden menu item dynamically

e.g. this.showMenuItem(201);

Hide a visible menu item from menu dynamically.

e.g. this.hideMenuItem(201);

Application/SDK-Level Menu Items
To add application-level menu items the Developer/CM need to add ouml.MenuItem object in

mainMenu Array List of the product configuration mobile component of the application.

var mainMenu = [

new ouml.MenuItem({

index:102, title: "Settings",

action: "ouml/ui/settings.html", active:true}),

];

Page-Level Menu Item
To add page-level menu items the Developer/CM need to override setPageMenuItems() API of

ouml.BaseViewModel().

cmModel.prototype.setPageMenuItems = function(){

var sample = new ouml.MenuItem({

index:201,

UI Layout and Navigation

Oracle Utilities Mobile Library 3-3232

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

title: ‘Sample Menu Item’,

action: this.sample,

active:true

});

this.addMenuItem(sample);

}

Indicators

An indicator bar is displayed on the screen header as a popup. This bar displays various indicators to

present device, server, network, user and activities states.

API (module - ouml.BaseViewModel)

API Parameters Description

ouml.Indicator.addIndicator lookusValue|count:

integer valueto

represent counter if any

Add an indicator in the indicator list.

Also sets a counter for this indicator.

ouml.Indicator.addIndicator(‘M1NCCON’);
ouml.Indicator.addIndicator(‘M1NR’ , 5);

ouml.Indicator.removeIndicator lookusValue. Removes an indicator from the indicator list.

ouml.Indicator.removeIndicator(‘M1NCCON’);

ouml.Indicator.addUpdateIndicator lookusValue

count: integer valueto

represent counter if any

ouml.Indicator.setCounter lookusValue

count: integer value to

represent counter

Description

Updates an indicator if it exists,

otherwise adds an indicator in the same position.

ouml.Indicator.addUpdateIndicator(‘M1NCCON’);

ouml.Indicator.addUpdateIndicator(‘M1NR’ , 5);

Sets count value for an Indicator in Indicator list.

Example:
ouml.Indicator.setCounter(‘M1NR’ , 5);

ouml.Indicator.getCounter lookusValue Returns count value for an Indicator in Indicator

list.

Example:

var mailCount =
ouml.Indicator.getCounter(‘M1NR’);

Executing a single Javascript Asynchronous function is easy, however executing multiple asynchronous

functions (one after another on success of previous one) requires a bit of extra code to manage the

callbacks. The extra code is required to prevent recursive callbacks.

The AsyncWorker module can accept a list of functions to be executed. It returns (invokes your

callback function) when the last function in the list is executed successfully or any one function fails. To

be able to execute any functions using this AsyncWorker module you must follow the pattern below

when executing your asynchronous functions:

Oracle Utilities Mobile Library 3-3333

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Asynchronous Functions Pattern

Asynchronous Functions Pattern
Any method that can do ASYNC work has to accept arguments as a single obj/args ({key: value,…})

instead of fixed arguments. See Business Object JavaScript (JavaScript) or Business Object Helper APIs

(ouml.BOHelper) for examples.

• Transaction, input, onSuccess, and onFailure are required keys on this object and will be same

for all ASYNC methods.

Real input required by business logic of the function will be part of “input” , each function

can decide what should be in it.

• onSuccess will always be called with a single argument obj (again {key: value,…})

• transaction, output are required keys on this obj.

• output can contain the real response that caller is expecting in as JSON.

• onFailure will alwas be called with a single argument ouml.ClientError

• Each such ASYNC API should have its own set of onSuccess and onFailure

implementation to intercept the async response of API called by it.

So that lower-level APIs async response should be first intercepted by your API and

formatted in a format that caller of your API can understand

• AsyncWorker can be used to execute N number of such methods in sequence.

• Each method will use transaction returned by (via onSucess callback) previous

method

Methods that are guaranteed to be executed SYNChronously need not follow the above approach.

Oracle Utilities Mobile Library 3-3434

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Asynchronous Functions Pattern

AsyncWorker API

BO Plugins

new Ouml.AsyncWorker Constructor to create an instance of
AsyncWorker

addWork args = {obj: <a reference of

object on which a method will be

executed>, method: <method

name>, args: <arguments to be

passed when executing a method

on obj instance>}

execute args = {onSuccess:<Success

callback >, onFailure:< failure

callback >, transaction:

<transaction to be used to execute

all functions>}

Use this API to queue an async

function to be executed. Function

will not be executed right away, this

API just collects the data required

to execute a function later.

This API must be called to start the

execution of queued async

functions. On successful execution

of 1st function AsyncWorker will

execute 2nd function and so on. On

Failure of any function in queue the

onFailure callback of this function

(execute) will be invoked and error

object returned by failing function

will be passed as argument. On

successful completion of all

functions onSuccess callback of this

function will be invoked.

Plugins approach of the Oracle Utilities Mobile Library is just a convention that is recommended

approach to write client side equivalent of server side Enter and PostProcessing plugin scripts.

Enter and PostProcessing algorithms on a BO are written in JavaScript for execution on client. Each

plugin is written as a Javascript Class attached to ouml.plugins namespace.<script-code>. This class

should implement a process method.

Refer to the various base MCP Enter Plugin and MCP Post Processing Plugin base mobile components for

examples.

Structure of a plugin script:

ouml.plugins["M1-MCPTSUpd"] = (function (ouml){

var m1SendTaskUpdate = function () {

};

m1SendTaskUpdate.prototype.constructor = m1SendTaskUpdate;

m1SendTaskUpdate.prototype.process = function(args) {

}

return m1SendTaskUpdate;

})(ouml);

Process method should accept an object as argument with following

atributes:

transaction- transaction to be used for any DB operations

onSuccess – callback for successful execution of plugin

onFailure – callback for failure in execution, any exception or error

scenario

input – {bo: <BO instance reference>, action: <ADD/REPLACE>}

onFailure callback should be called with ouml.ClientError instance

Oracle Utilities Mobile Library 3-3535

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Mobile Device APIs

Mobile Device APIs
The following sections describe APIs used to access various objects and modules of the mobile application.

File

The file object is a wrapper for the Apache Cordova File. This object is used for read/write access

to files residing on the device. It also has some other helper functions for file access/read/write.

API (module - ouml.File)

API Parameters Description

openLocalFile url Opens the local file from the device

file system in native device viewer.

The url passed in as the parameter is

the complete path of the file to be

opened.

base64ToArrayBuffer base64String Creates bytes buffer for a given

base64 String

getFilesFromDirectory Directory name, success callback

and failure callback

createDirectoryStructure Directory path, success callback

and failure callback

writeFileData filename, directory path for the

file, success callback, failure

callback, original callback, file

data, appendEOF flag

deleteFile Filepath including file name,

success callback and failure

callback

getFileSize Filepath including file name,

success callback and failure

callback

readLogsFile filename, directory path for the

file, success callback, failure

callback

deleteFolder directory path with directory

name, success callback, failure

callback

Fetches list of files for a given

directory and its sub directories on

the device

Creates the structure for given

directory on the device. It creates all

the directories passed as part of the

directory path.

Writes data to a given file on the

Device. A file is created on the

device file system and the data

passed is written to the file. If

original callback is passed it will

supersede the success callback. The

file url is passed as a parameter to the

callback function. If appendEOF

flag is passed then the data is

appended to the file if the file exists.

Deletes given file on the device. The

file path is used to locate the file and

delete it

Returns the size of a given file on the

device in the callback function. The

file size is returned in bytes.

Reads log data from given file on the

device

Deletes given folder on the device

fileFailure error Default file failure callback. Used if

no failure callback is passed as input

to the other API functions

Oracle Utilities Mobile Library 3-3636

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Logging

Barcoding

The BaseBarCode object is a wrapper for the Apache Cordova Barcode scanner. This object can be

used to get the barcode and barcode type for an item.

API (module - ouml.BaseBarcode)

API Parameters Description

scan Success callback, failure callback This returns the barcode result which has the

barcode type and barcode in the success

callback

Barcode Support
The application supports the following barcode types on supported Android, iOS, and Windows*

devices:

• QR-Code

• Code 128

• Data Matrix ECC200 (* Android and iOS only)

• ITF-14

• UPC-A

• UPC-E

Note: All 12 numbers were returned in UPC-A testing on

Android devices.

UI Theme

The UI Theme defines the color scheme used in the mobile application. Please reference Chapter 5:

Customization and Extension Methodology for information on working with UI Themes and the

JQuery Mobile Theme Editor.

Logging

The Oracle Utilities Mobile Library Logging module exposes the APIs required by your

implementation to facilitate system logging. Any application module that requires logging uses this

module with the single log instance maintained for the complete application. Logs get the appropriate

instance from ouml.JSLogger and use the exposed API.

For example to log an info message your implementation would use:

ouml.JSLogger.info('Your message ');

Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or Parent

business object).

• mdtdebug(message): The module that needs to log a framework level debug message

calls this method.

Passes the log message arguments to the methods.

• debug(message): The module that needs to log a debug message calls this method.

Passes the log message arguments to the methods.

Oracle Utilities Mobile Library 3-3737

Oracle Utilities Mobile Workforce Management Mobile ApplicationImplementation and Development Guide

Error Handling

• info(message): The module that needs to log an info message calls this method.

Passes the log message arguments to the methods.

• warn(message): The module that needs to log a warn message calls this method.

Passes the log message arguments to the methods.

• error(message): The module that needs to log an error message calls this method.

Passes the log message arguments to the methods.

• perf(message): The module that needs to log a perf message calls this method.

Passes the log message arguments to the methods

• fatal(message): The module that needs to log a fatal message calls this method.

Passes the log message arguments to the methods

• setLevel(level): These methods set the logging level of the logger instance that the

application has acquired initially. The level that is to be set should be within the set of levels

supported by Logger. Else default logging level will be used

• syncLogFile() : This method synchronizes the log files to the server.

Error Handling
All error messages that gets displayed to user on UI must be created as Message object on server side

and downloaded to client as deployment. Any error situation that occurs on client has to create an

instance of ouml.ClientError. Please reference the API description below for more information.

All onFailure/error callbacks should return an instance of ouml.ClientError. The Oracle Utilities

Mobile Library includes API to display an error on UI in two forms as described in API description

below.

API Parameters Description

new ouml.ClientError args = {msgCat:<message

category>, msgId:<message

id>,params:<parameters to be set

on message>}

ouml.ViewModel.showError error – an instance of

ouml.ClientError

sectionId – optional, div ID of a

section that should be displayed to

show this error on

ouml.Notification.showAlert ouml.ClientError – an instance of

this class

Create a new instance by

passing the message

category, id and parameters

Displays an inline error

message in RED color at the

top of either currently

displayed section or displays

the section with given ID

first to show the error

Displays the closeable error

on a popup at the top of

current UI page.

Mobile Components 4-1

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Chapter 4

Mobile Components

The mobile application consists of various types of components, for example

• Standalone pages, for example Task List

• Business objects

• Reusable components

• BO Status Enter and Post Processing plugins

• Common services

• UI sections

• A library of common functions

• Inbound messages

• Product configuration settings

• Themes and style configuration

The following sections describe how mobile components are implemented and used.

Mobile Component Portal
Mobile components are implemented using a browser-based editor. Use the Mobile Component portal

on the Admin menu to author custom mobile components as well as extend base components.

Mobile components are system-owned records stored in a designated maintenance object.

Component functionality includes:

• Only the component’s owner is allowed to change/delete the component.

• Some types of components allow custom extensions. Custom content may be added to base

components, similar to adding BO options to base BOs.

• Components support the ability to work with revision control.

You may search for all available components using the mobile component query portal.

Packaged by a Batch Process
The source of mobile components is stored in the database and as such can me migrated from one

environment to another using standard tools such as Bundling and CMA.

You need to run the “Build Mobile Component Package” (M1-BMCOM) batch process to generate

files based on mobile component records and package them into an application bundle file.

Mobile Components 4-2

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Packaged by a Batch Process

The following illustration shows how mobile components are converted to files and packaged along

with the OUML components into the applicable bundle used by the mobile device.

The following table describes how mobile component content is converted to files.

Component

Type
Content

Type
File Comment

BO JS scripts\bo\<mobile component name>.JS File name =

BO name.

UI JS ui\bo\<mobile component name>.JS File name =

BO name

HTML ui\bo\<mobile component name>.HTML File name =

BO name

UI Page UI JS ui\page\<mobile component name>.JS

HTML ui\page\<mobile component name>.HTML

UI Section HTML ui\library\<mobile component name>.HTML

MCP Enter JS scripts\plugins\BOStatusEnter\plugins.JS All plugin

functions are

stored in this

file.

MCP Post

Processing

Inbound

Message

JS scripts\plugins\BOPostProcessing\plugins.JS All plugin

functions are

stored in this

file.

JS scripts\inbound\<mobile component name>.JS File Name =

Message Name

Mobile Components 4-3

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Testing

Service JS scripts\services\services.JS All service

functions are

stored in this

file.

Common

Library

JS common\<mobile component name>.JS

Themes CSS ui\themes\<mobile component name>.CSS

Product

Configuration

JSON Config.JS The file is

config.js

regardless of

mobile

component

name,

There must be

a product

configuration

record for a

product owner

if it contributes

mobile

component

content.

Testing

To simplify browser-based testing in a shared application server, content changes made via the portal

editor are also automatically synced to the corresponding file in the shared file system. The following

illustration describes this process.

Customization and Extension Methodology 5-1

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Chapter 5

Customization and Extension Methodology

This chapter provides information on extending the Oracle Utilities Mobile Workforce Management

Mobile Application.

Make sure you run the “Build Mobile Component Package (M1-BMCOM)” batch process so that it

creates the cm folder under www before you begin customization. You need to run the batch process

again when you are done with your customizations to include them in a new mobile application bundle

file.

Use the Mobile Component portal to introduce your custom mobile components. Al references in this

chapter assume changes are made via this portal only. Refer to Chapter 4 in this document for more

information.

CSS and Images
The following sections describe how to change custom themes and images.

Setting Custom Swatch

Oracle’s swatch is defined in the www/ouml/themes/theme-ouml.css file.

In your product configuration mobile component, you can set the default swatch as follows: uiTheme:

“a”

You can create your own custom swatch using JQuery Mobile Theme Roller (http://

themeroller.jquerymobile.com/) as follows:

• Either import the theme-ouml.css file in JQuery Mobile Theme Roller and modify it, or create

your own.

• You will need to create a new Theme Mobile Component and then copy/paste the swatch css into

the component content.

Overriding Icons

You can override icon properties in Theme Mobile Components as shown in the following examples.

Example 1:

To specify a custom image for the paperclip icon used in Item level Attachment in the Depot Related

Assignment screen:

.ui-icon-paperclip {

background-image: url("images/example.png");

}

Customization and Extension Methodology 5-2

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Extending Navigation

Example 2:

To override the logon banner:

/* DeskTop version */

#bannerImage {

content:url('images/OracleBanner.png');

}

/* Mobile version */

@media all and (max-width:500px) {

#bannerImage {

content:url('images/OracleBanner_mobile.png');

}

}

Changing Map Markers

Map markers are defined as part of a configurable property called oracleMapProperties in the product

configuration mobile component.

This property can be overridden in your custom the product configuration mobile component to define

custom properties for Oracle Map, including images.

Extending Navigation

Application-Level Menu Items

Application level menu items which is shown in all the screens are defined through the mainMenu

property in the product configuration mobile component. Default menu items include, for example,

Settings, Exit, etc.

This property can be extended by adding new application-level menu items to your CM Product

Configuration mobile component:

var mainMenu = [

new ouml.MenuItem({"CM_CONTACT_US", index:104, title:

"CM_CONTACT_US_LBL", action: "CM/ui/ContactUs.html", active:true})

];

Note: For details on creating a CM-ContactUs.html/JS, see the

Creating a Custom Page Not Related to a Business Object

section.

Application-level menu items can be removed from individual pages by overriding setPageMenuItems

in each page JS. Please reference the example in the next section for more information.

Page-Level Menu Items

Menu items for a particular screen are set in the UI JavaScript by overriding the setPageMenuItems

function.

In the following example we will hide the “Decline Activity” menu option and introduce a new menu

item called “New Function” in the M1-DepotTaskAssignment screen, by extending the UI JavaScript

for the M1-DepotTaskAssignment business Object mobile component.

mailto:@media

Customization and Extension Methodology 5-3

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Extending Existing Screens and Functions

Using the Mobile Component tool, select the M1-DepotTaskAssignment Business Object component.

Right click on UI JavaScript and select Add to create CM mobile component. The logic should be as

follows:

ouml.ViewModel['M1-DepotTaskAssignment'].CM = (function(ouml) {

var boName = 'M1-DepotTaskAssignment';

var parent = ouml.BOHelper.getViewModelPrototypeFor(boName,

'CM');

var model = undefined;

function cmm1DepotTaskAssignment() {

parent.call(this);

model = this;

model.boData = {};

};

cmm1DepotTaskAssignment.prototype =

Object.create(parent.prototype);

cmm1DepotTaskAssignment.prototype.constructor =

'cmm1DepotTaskAssignment';

cmm1DepotTaskAssignment.prototype.newFunc = function()

{

ouml.Utilities.log("New Function");

//Custom code for the new function

}

cmm1DepotTaskAssignment.prototype.setPageMenuItems = function(){

parent.prototype.setPageMenuItems.call(this);

// To hide menu item

model.hideMenuItem(203);

// To add new menu item

var newDTMenuItem = new ouml.MenuItem({index:201,title: 'New

Function', action:model.newFunc,active:true});

model.addMenuItem(newDTMenuItem);

}

return cmm1DepotTaskAssignment;

})(ouml);

Extending Existing Screens and Functions

Hiding Menu Items and Overriding Functionality

Depot-Related Assignments have attachments which are shown at page level on the menu and at item

level within the item section. Attachments are shown based on a positive check for Cordova.

In the following example we will add a capability check. The showAttachments functionality is also

overridden.

Using the Mobile Component tool, select the M1-DepotTaskAssignment Business Object component,

then click on CM UI JavaScript so you can edit the CM UI JavaScript created in the previous step. The

logic should be as follows:

ouml.ViewModel['M1-DepotTaskAssignment'].CM = (function(ouml) {

var boName = 'M1-DepotTaskAssignment';

Customization and Extension Methodology 5-4

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Extending Existing Screens and Functions

var parent = ouml.BOHelper.getViewModelPrototypeFor(boName, 'CM');

var model = undefined;

function cmm1DepotTaskAssignment() {

parent.call(this);

model = this;

model.boData = {};

if(cmm1EnableAttachmentSupport())

model.showAttachmentIcon(true);

else

model.showAttachmentIcon(false);

};

cmm1DepotTaskAssignment.prototype = Object.create(parent.prototype);

cmm1DepotTaskAssignment.prototype.constructor =

'cmm1DepotTaskAssignment';

cmm1DepotTaskAssignment.prototype.newFunc = function()

{

ouml.Utilities.log("New Function");

//Custom code for the new function

}

cmm1DepotTaskAssignment.prototype.setPageMenuItems = function(){

parent.prototype.setPageMenuItems.call(this);

// To hide menu item

model.hideMenuItem(203);

// To add new menu item

var newDTMenuItem = new ouml.MenuItem({index:201,title: 'New

Function', action:model.newFunc,active:true});

model.addMenuItem(newDTMenuItem);

var input = {pkValue : ouml.App.getPageContext().inputArgs['taskId']};

var attachmentsMenuItem = new ouml.MenuItem({index:301,title:

model.LABELS.M1_ATTACHMENT,

action:model.showAttachments.bind(this,input), active:true});

if(enableAttachmentSupport())

model.addMenuItem(attachmentsMenuItem);

};

}

cmm1DepotTaskAssignment.prototype.showAttachments = function (keys) {

// Custom Attachment logic goes here.

};

return cmm1DepotTaskAssignment;

})(ouml);

Extending HTML Pages

User Interface components for a particular business object are set in the BO JavaScript by the

userInterface function.

In the following example we will override the userInterface() function to replace the base Activity

Information map fragment with a custom version, by extending the backend BO JavaScript for the M1-

Assignment business Object mobile component.

Customization and Extension Methodology 5-5

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Extending Existing Screens and Functions

Using the Mobile Component tool, select the M1-Assignment Business Object component. Right click

on JavaScript and select Add to create CM mobile component. The logic should be as follows:

ouml.BusinessObject['M1-Assignment'].CM = (function (ouml) {

var boName = 'M1-Assignment';

var parent = ouml.BOHelper.getPrototypeFor(boName, 'CM');

var util = ouml.Utilities;

var plugins = {

'POSTPROCESS': {

'active': [],

'inactive': []

},

'states': {}

};

var cmm1Assignment = function(data, version) {

this.bo = boName;

parent.call(this, data, version);

};

cmm1Assignment.prototype = Object.create(parent.prototype);

cmm1Assignment.prototype.constructor = cmm1Assignment;

cmm1Assignment.prototype.getBOName = function() {

return boName;

};

cmm1Assignment.prototype.getParent = function() {

return parent;

};

cmm1Assignment.prototype.getPlugins = function() {

return plugins;

};

cmm1Assignment.prototype.userInterface = function() {

var uiConfig = {};

// Starting in position 0, remove 1 entry and add the custom

entry

uiConfig.m1AssignmentOnsite.leftSide.splice(0, 1, {

id:'cmActivityInfo' });

return uiConfig;

}

return cmm1Assignment;

})(ouml);

Creating Custom Plugins

You can create custom plugins mobile components to validate data or to perform other custom

functionality.

In the following example we will create a custom plugin mobile component that will validate that at

least one remark type is selected. We will add this plugin to the M1-Assignment so it is performed for

all assignments.

1. Using the Mobile Component tool, Add a mobile component. In this example, the

component type will be a MCP Enter Plugin. After the component has been added, right click

on JavaScript and select Add to create CM mobile component. The logic should be as follows

ouml.plugins['CM-RemTypeVal'] = (function (ouml) {

var cMComplVal = function () {

};

cMRemTypeVal.prototype.constructor = cMRemTypeVal;

Customization and Extension Methodology 5-6

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Extending Existing Screens and Functions

cMRemTypeVal.prototype.process = function(args) {

var boData = args.input.bo.data;

if (boData.completionInformation/remarkTypes/

remarkTypesList.length == 0) {

return args.onFailure(new ouml.ClientError({

"msgCat" : 90000,

"msgId" : 20008,

"params":[]

}));

}

args.onSuccess(args);

};

return cMRemTypeVal;

})(ouml);

2. Add the plug-in to the COMPLETED state in the CM M1-Assignment BO JavaScript mobile

component. Using the Mobile Component tool, select M1-Assignment business object

mobile component. Click on CM JavaScript, so you can edit the CM JavaScript created in a

previous step. The logic should be as follows:

ouml.BusinessObject['M1-Assignment'].CM = (function (ouml) {

var boName = 'M1-Assignment';

var parent = ouml.BOHelper.getPrototypeFor(boName, 'CM');

var util = ouml.Utilities;

var plugins = {

'POSTPROCESS': {

'active': [],

'inactive': []

},

'states': {

"COMPLETED": {

"ENTER": {

"active": [

{'sequence': 10, 'plugin': 'CM-RemTypeVal', params: {}}

],

"inactive": []

}

}

}

};

var cmm1Assignment = function(data, version) {

this.bo = boName;

parent.call(this, data, version);

};

cmm1Assignment.prototype = Object.create(parent.prototype);

cmm1Assignment.prototype.constructor = cmm1Assignment;

cmm1Assignment.prototype.getBOName = function() {

return boName;

};

cmm1Assignment.prototype.getParent = function() {

return parent;

};

cmm1Assignment.prototype.getPlugins = function() {

return plugins;

};

cmm1Assignment.prototype.userInterface = function() {

var uiConfig = {};

// Starting in position 0, remove 1 entry and add the custom

entry

Customization and Extension Methodology 5-7

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Custom Screens and Functions

uiConfig.m1AssignmentOnsite.leftSide.splice(0, 1, {

id:'cmActivityInfo' });

return uiConfig;

}

return cmm1Assignment;

})(ouml);

Defining a New Initial JS Function

The Initial JS Function is the function executed on the Hybrid MCP after the user has logged on. In

the base function, it checks for a current shift and if none, will request the shift from the server.

Some customers might have some other functionality that they want to perform once the user has

logged on. They can do this by creating their own custom initial function. Note: The custom initial

function MUST call the base initial function in order for the shift check to be performed.

Once created, you need to create a new deployment type and specify your new custom function as the

Initial JS Function.

1. Create a mobile component for your custom initial function. Using the Mobile Component

tool, Add a new component with a component type of ‘Service’ and enter appropriate component

name (CM-InitialFunction), description, and click Save. After the component has been added, right

click on JavaScript and select Add to create CM mobile component. The logic should be

similar to the following:

ouml.services['CM-InitialFunction'] = (function (ouml) {

var cMInitialFunction = function () {

};

cMInitialFunction.prototype.constructor = cMInitialFunction;

cMInitialFunction.prototype.process = function(args) {

// Add custom processing here

// Call base initial function to check for shift

new ouml.services["M1-LoadInitialPage"]().process(args);

};

return cMInitialFunction;

})(ouml);

2. Duplicate the existing deployment type that is being used and change the Initial JS Function

to your new Initial JS function just created.

Note: You will need to generate the deployment and download it

to your device.

Custom Screens and Functions

Creating a New Custom Child Business Object

In the following example we will create a child assignment BO (which has a new activity details field), for

the parent M1-Assignment BO. We will create a new HTML UI section to display the new activity

details element.

Customization and Extension Methodology 5-8

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Custom Screens and Functions

Note: There are no product configuration changes required

when adding a new custom business object.

1. Create a child BO (CM-ApplInspAssignment)on the server side with the required changes

and the corresponding changes in the deployment necessary to receive the BO on the client

side.

2. Create a mobile component for your HTML UI section to display the new element. Using

the Mobile Component tool, Add a new component with a component type of ‘UI Section’

and enter appropriate component name (cmApplInspDtls), description, and click Save.

After the component has been added, right click on HTML and select Add to create CM

mobile component. The HTML should be as follows:

<div id='cmApplInspDtls' style='display: none' data-inset='true'>

<div data-role='collapsible' data-bind='ouml_collapse:

isNarrow()' style='width:99%; margin: auto;' data-collapsed-

icon='carat-d' data-expanded-icon='carat-u'>

<h3>

<span for="cmApplInspDtls"

data-bind="text: $root.LABELS.CM_APPLIANCE_DETAILS_LBL"

id="cmApplInspDtls-lbl">

</h3>

<ul data-role="listview" data-inset="false" data-filter="false"

data-bind="refresh:true">

<li data-icon="false">

<h2>

<span data-bind="text: $root.LABELS.CM_APPLIANCE_NAME"

id="cmAIDApplianceName-lbl">

</h2>

<aside class="ui-li-aside">

<span data-bind="text:

boData.cmApplianceInspDetails.applianceName"

id="cmAIDApplianceName">

</aside>

</div>

</div>

3. Create the backend BO JavaScript mobile component for your BO. Using the Mobile

Component tool, Add a new component with a component type of ‘Business Object’ and

search for your BO in the Related Business Object field. Enter appropriate description and

Save. After the component has been added, right click on JavaScript and select Add to create

CM mobile component. We need to change the userInterface() function to display our new

UI Section. The logic should be as follows:

ouml.BusinessObject['CM-ApplianceInspAssignment'] = (function

(ouml) {

var boName = 'CM-ApplianceInspAssignment';

var parent = ouml.BOHelper.getPrototypeFor(boName);

var util = ouml.Utilities;

var plugins = {

"POSTPROCESS": {

"active": [

],

Customization and Extension Methodology 5-9

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Custom Screens and Functions

"inactive": []

},

"states": {}

};

var cMApplianceInspAssignment = function(data, version) {

this.bo = boName;

parent.call(this, data, version);

};

cMApplianceInspAssignment.prototype =

Object.create(parent.prototype);

cMApplianceInspAssignment.prototype.constructor =

cMApplianceInspAssignment;

cMApplianceInspAssignment.prototype.getBOName = function() {

return boName;

};

cMApplianceInspAssignment.prototype.getParent = function() {

return parent;

};

cMApplianceInspAssignment.prototype.getPlugins = function() {

return plugins;

};

cMApplianceInspAssignment.prototype.userInterface = function() {

// Get parent list of section htmls to be used

var uiConfig = parent.prototype.userInterface.call (this);

});

// Add sections specific for this BO

uiConfig.m1AssignmentOnsite.leftSide.push({ id:'cmApplInspDtls'

return uiConfig;

}

return cMApplianceInspAssignment;

})(ouml);

//# sourceURL=cm/scripts/bo/CM-ApplInspAssignment.js

4. Create the UI JavaScript mobile component for your BO. Using the Mobile Component

tool, select your business object component for your new custom BO. Right click on UI

JavaScript and select Add to create CM mobile component. No additional changes are

required for this component. The logic should be as follows:

ouml.ViewModel['CM-ApplianceInspAssignment'] = (function(ouml) {

var boName = 'CM-ApplianceInspAssignment';

var parent = ouml.BOHelper.getViewModelPrototypeFor(boName);

var model = undefined;

function cMApplianceInspAssignment() {

parent.call(this);

model = this;

model.boData = {};

};

cMApplianceInspAssignment.prototype =

Object.create(parent.prototype);

Custom Screens and Functions

Customization and Extension Methodology 5-
1010

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

cMApplianceInspAssignment.prototype.constructor =

'cMApplianceInspAssignment';

return cMApplInspAssignment;

})(ouml);

//# sourceURL=cm/ui/bo/CM-ApplInspAssignment.js

Creating a Custom Page Not Related to a Business Object

To create a custom page mobile component not related to a BO and using Oracle Utilities Mobile

Library APIs, create your HTML and the corresponding js file as shown in the following examples.

In the following example we will create mobile components for our custom “Contact Us” page. This page

is not related to any BO. We will create a new HTML UI page to display our custom contact

information.

Note: There are no product configuration changes required

when adding a new custom non-BO UI Page.

1. Create a mobile component for your HTML UI page to display our custom contact

information. Using the Mobile Component tool, Add a new component with a component

type of ‘UI Page’ and enter appropriate component name (CM-ContactUs), description, and click Save. After

the component has been added, right click on HTML and select Add to create CM mobile

component. The HTML should be as follows:

<!DOCTYPE html>

<html>

<head></head>

<body>

<div data-role='page' data-theme='a' id='CM-ContactUs'>

<script src="CM-ContactUs.js"></script>

<div data-role='header' data-position='fixed'></div>

<div data-role='content' id='content'>

<div id='cMContactUsSections' data-bind='refresh: true'>

<p>Contact help desk at 1-888-888-HELP</p>

</div>

</div>

</div>

</body>

</html>

2. Create the UI JavaScript mobile component for you non-BO UI Page. Using the Mobile Component

tool, select your UI Page component just created. Right click on UI JavaScript and select Add

to create CM mobile component. The logic should be as follows:

ouml.ViewModel['CM-ContactUs'] = (function(ouml) {

var model = undefined;

function cMContactUs() {

model = this;

ouml.ViewModel['CM-ContactUs'].call(this);

};

cMContactUs.prototype = Object.create(ouml.ViewModel['CM-

ContactUs'].prototype);

cMContactUs.prototype.constructor = cMContactUs;

Customization and Extension Methodology 5-
1111

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Customizable Indicators

cMContactUs.prototype.load = function(inputArgs){

model.pageTitle(model.LABELS.M1_CONTACT_US_LBL);

this.setDefaultSection("cMContactUsSections");

inputArgs.onSuccess();

}

return cMContactUs;

})(ouml);

Device Plugins
Device plugins can be overridden by implementing custom Service mobile component and mapping

them to the appropriate capability in your custom Product Configuration mobile component. Refer to

existing base capabilities and their services for an example.

Customizable Indicators
We can add a new indicator and show that inside indicator bar visible at header section of the page. List

of indicators shown inside indicator bar is maintained as Extendable Lookup in Oracle Utilities

Application Framework. Please follow the steps below to add/hide an indicator in indicator bar.

The following examples are for demonstration purpose only and applicable for manipulation of

indicators in indicator bar during state transition. These changes will not be persisted. Customization

approach may differ based on actual requirement, even though the API for handling indicators in

indicator bar will remain the same.

Adding a Custom Indicator

1. Login to Oracle Utilities Application Framework with a CM system user ID and navigate to

list of Extendable Lookups following the path:

Menu -> Admin Menu -> E -> Extendable Lookup

2. Search for the business object M1-MCPIndicator.

3. Select the extendable lookup from search result.

This lookup contains indicator information for those which need to be added to indicator

bar.

4. Add new indicators that you want to show in indicator bar.

For example:

a. Click the Add link on the Extendable Lookup Value List section.

b. Add an indicator for showing Crew Onsite.

Customization and Extension Methodology 5-
1212

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Customizable Indicators

The indicator code must start with ‘CM’, which designates these indicators as custom.

c. Add a second (similar) indicator for showing Crew Enroute.

5. Add the new indicator icons in the path <base _dir>\m1Mobile\www\cm\images.

The position of the indicator (with respect to the other indicators) depends on the value of: M1-

MCPIndicator -> businessObjectDataArea -> position.

6. Call the API to add the indicator in the indicator list:

ouml.Indicator.addUpdateIndicator(extendable_lookup_value);

//e.g. ouml.Indicator.addUpdateIndicator("CMCRENR");

The code for indicator bar customization should be added within the CM layer.

For example, you may want to show the ‘Crew Enroute’ indicator when crew is working in an

Assignment and is in Enroute state. To implement that, you must first extend the UI

JavaScript content of the M1- Assignment business object mobile component (already done earlier),

followed by overriding the method ‘ENROUTE’.

Within the overridden ENROUTE function, invoke the API to add this indicator in indicator

bar.

cmm1Assignment.prototype.ENROUTE = function () {

ouml.Indicator.addUpdateIndicator("CMCRENR");

parent.prototype.ENROUTE.call(this);

}

Now the indicator is added to the indicator bar.

Switching Between Indicators

We can switch between indicators based on specific condition. We need to add the indicators first as

specified in the section above before we can perform switch. Please note that all the indicators should

have the same ‘position’ value to enable them to switch between themselves.

In this example, we will extend the previous example to switch between the indicators for ‘Crew

Onsite’ and ‘Crew Enroute’.

Customization and Extension Methodology 5-
1313

Oracle Utilities Mobile Workforce Management Mobile Application Implementation and Development Guide

Customizable Indicators

To show the indicator for ‘Crew Onsite’, we need to override the ONSITE state transition UI function

in the same way we overrode the ENROUTE method in the previous section.

1. Within the overridden ONSITE function, add the API to add indicator for ‘Crew Onsite’.

cmm1Assignment.prototype.ONSITE = function () {

ouml.Indicator.addUpdateIndicator("CMCRONS");

parent.prototype.ONSITE.call(this);

}

2. Since both ‘Crew Enroute’ and ‘Crew Onsite’ share same value in ‘position’, they will replace

each other based on the state of the assignment.

Removing an Indicator

You also have the option to remove an indicator. For example, you can hide the ‘Network connected /

disconnected’ indicator.

• To remove an indicator, call the API to remove an indicator from indicator bar:

ouml.Indicator.removeIndicator("extendable_lookup_value ")

• To remove the network indicator while the crew is enroute, override the ENROUTE state

transition method as follows:

cmm1Assignment.prototype.ENROUTE = function () {

ouml.Indicator.addUpdateIndicator("CMCRENR");

ouml.Indicator.removeIndicator("M1NCCON");

ouml.Indicator.removeIndicator("M1NCDSCN");

parent.prototype.ENROUTE.call(this);

}

• Indicators can also be removed from indicator bar by changing the ‘Usage Flag’ of this

extendable lookup to ‘Inactive’.

