CAUTION: Use only the guide downloaded from the Oracle Technology Network (OTN) (http://www.oracle.com/technetwork/indexes/documentation/oracle-comms-tekelec-2136003.html). Before upgrading your system, access the My Oracle Support web portal (https://support.oracle.com) and review any Knowledge Alerts that may be related to the System Health Check or the Upgrade.
TABLE OF CONTENTS

1. INTRODUCTION .. 5
 1.1 Purpose and Scope .. 5
 1.2 References ... 5
 1.3 Acronyms .. 6

2. GENERAL DESCRIPTION ... 7
 2.1 Recommendations for Performing Health Check ... 7
 2.2 Health Check Record ... 7
 2.3 Health Check Type .. 8

3. PROCEDURES .. 9
 3.1 Pre-Health Check Requirements .. 9
 3.2 Health Check Preparation ... 10
 3.3 General System Status .. 14
 3.4 Report System Troubles ... 25
 3.5 Verifying Database Status ... 27
 3.6 Verifying GPLs .. 29
 3.7 Retrieving Obituaries .. 30
 3.8 Verifying STPLAN .. 31
 3.9 Verify SCCP Load .. 32
 3.10 Verifying LNP and LSMS .. 37
 3.11 Verifying SEAS ... 39
 3.12 Verifying optional features .. 40
 3.13 Verifying IP Signaling Status .. 44
 3.14 Verifying EROUTE ... 45
 3.15 Verifying IMT Status ... 49
 3.16 Retrieving Trouble Data ... 51
 3.17 Verifying Clock Status .. 52
 3.18 Verifying MPS ... 53
 3.19 Verify Source Database .. 54
 3.20 Verifying Fixed and Removable Media (Part 1) ... 62
 3.21 Testing IMT Status .. 64
 3.22 Verifying Fixed and Removable Media (Part 2) ... 66
 3.23 Table Capacity Status .. 71
 3.24 Health Check Conclusion ... 72

4. COMPLETION OF HEALTH CHECK ... 73

APPENDIX A. MY ORACLE SUPPORT .. 74
List of Tables

Table 1. Acronyms .. 6
Table 2. Health Check Record .. 8
Table 3. Health Check Type Procedures ... 8
Table 4. Pre-Health Check Requirements ... 9

List of Procedures

Procedure 1: Verifying Pre-Health Check Requirements ... 9
Procedure 2: Health Check Preparation .. 10
Procedure 3: Determining General System Status ... 14
Procedure 4: Reporting System Troubles .. 26
Procedure 5: Verifying Database Status ... 27
Procedure 6: Verifying GPLs ... 29
Procedure 7: Retrieving Obituaries .. 30
Procedure 8: Verifying STPLAN ... 31
Procedure 9: Verify SCCP Load .. 32
Procedure 10: Verifying LNP and LSMS ... 37
Procedure 11: Verifying SEAS ... 39
Procedure 12: Verifying optional features .. 40
Procedure 13: Verifying IP Signaling Status .. 44
Procedure 14: Verifying EROUTE .. 45
Procedure 15: Verifying IMT Status .. 49
Procedure 16: Retrieving Trouble Data .. 51
Procedure 17: Verifying Clock Status ... 52
Procedure 18: Verifying MPS ... 53
Procedure 19: Verify Source Database ... 54
Procedure 20: Verifying Fixed Disks Functions with TST-DSK ... 62
Procedure 21: Testing IMT Buses .. 64
Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK 66
Procedure 23: Collect Table Capacity Status ... 71
Procedure 24: Return the System to Former Configuration .. 72
1. INTRODUCTION

1.1 Purpose and Scope

This document describes Oracle’s recommended methods and procedures to be used to evaluate Site and STP data retrieved from in-service EAGLE STP. This document is intended for use for system running EAGLE releases 45.0 or later as well as system being upgrade to those releases. The intended audience for this document is EAGLE® Engineering, Documentation, Customer Service personnel and any craft person who has completed EAGLE training and is familiar with the EAGLE interface. The scope of this document is specifically to collect data to determine the health of an in-service EAGLE prior to a software upgrade or an extension shelf installation. In general, this document may be used for an instance where the health determination of the EAGLE is required (i.e., troubleshooting).

This document should be considered the next volume to 909-0656-001; see reference [2]. The former document covers EAGLE releases 31.6 to 44.0, where this document starts at release 45.0 and will continue for future releases. The initial content of this document is equivalent to the last version of that previous document with the additions of updates to support EAGLE Release 45.0. In release 45.0, the legacy GPSM/TDM hardware is no longer supported as the MASP, so this document does not have to support both hardware setup and removes complexity of several steps that had to support both platforms.

The document is written to support all customer configurations. All of the commands specified in the procedures should be executed unless explicitly stated otherwise in the individual procedure. Not doing so may result in a delay in the analysis performed by Oracle personnel.

Analysis of data captured during this procedure is out of the scope of this document. Analysis of the data is covered in reference [1].

1.2 References

[1] Health Check Analysis Work Instruction, WI005139, latest revision, Tekelec
[4] Recommended Ethernet Port Settings for EAGLE SM Cards and EPAP Switch Ports, KM Alert Doc 2275062.1, current revision
1.3 Acronyms

Table 1. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>Associate State for Maintenance</td>
</tr>
<tr>
<td>BITS</td>
<td>Building Integrated Timing System</td>
</tr>
<tr>
<td>DPC</td>
<td>Destination Point Code</td>
</tr>
<tr>
<td>DSM</td>
<td>Database Services Module</td>
</tr>
<tr>
<td>E5-OAM</td>
<td>EAGLE Operation, Admission, & Maintenance</td>
</tr>
<tr>
<td>E5-MASP</td>
<td>Dual-card HW assembly composed of E5-MCAP and E5-TDM</td>
</tr>
<tr>
<td>FOA</td>
<td>First Office Application</td>
</tr>
<tr>
<td>GPL</td>
<td>Generic Program Load</td>
</tr>
<tr>
<td>IMT</td>
<td>Interprocessor Message Transport</td>
</tr>
<tr>
<td>IS-ANR</td>
<td>In Service - Abnormal</td>
</tr>
<tr>
<td>IS-NR</td>
<td>In Service - Normal</td>
</tr>
<tr>
<td>KSR terminal</td>
<td>Keyboard Send Receive terminal</td>
</tr>
<tr>
<td>Legacy MASP</td>
<td>System using GPSM-II/TDM card set (obsolete in release 45.0)</td>
</tr>
<tr>
<td>MASP</td>
<td>Maintenance and Administration Subsystem Processor</td>
</tr>
<tr>
<td>MCP</td>
<td>Measurements Collector/Poller</td>
</tr>
<tr>
<td>PST</td>
<td>Primary State for Maintenance</td>
</tr>
<tr>
<td>SAK</td>
<td>Software Access Key</td>
</tr>
<tr>
<td>SCCP</td>
<td>Signaling Connection Control Part</td>
</tr>
<tr>
<td>SLIC</td>
<td>Service and Link Interface Card</td>
</tr>
<tr>
<td>UHC</td>
<td>Upgrade Health Check</td>
</tr>
</tbody>
</table>

For additional Acronyms; refer to internal references [3] in section 1.2
2. GENERAL DESCRIPTION
The health check is to be performed as directed to by software release upgrade procedures, extension shelf installation MOPs, or My Oracle Support personnel. It may also be utilized during FOA, hardware installations, or customer problem analysis. This document outlines a series of commands and procedures to be performed on the system. With each command, there is a description of the command, expected command output, and what problems may be detected with the command. If the desired goal/output is not obtained by executing the command, contact My Oracle Support (MOS) (https://support.oracle.com/) to investigate the deficiencies. The entire set of commands should be executed each time in order to obtain a complete system status and configuration. Some of the commands may not be supported on all EAGLE releases, resulting in a command rejection. These rejected commands will not harm the system in any way and will be verified during the analysis of the captured data. The goal of this health check procedure is to be non-intrusive. Only spare equipment swap-out and the IMT bus testing are intrusive and should be executed during a maintenance window. The procedures that are intrusive are highlighted in the table in Section 2.3.

2.1 Recommendations for Performing Health Check
The commands in this document should be executed during periods of FOA, new software or hardware installations, upgrades, or customer problems.

2.1.1 Frequency of Health Check
The frequency of executing these commands should be determined in upgrade execution procedures, extension shelf installation MOP, and the release FOA plan/strategy developed by Oracle. For software upgrade, three health checks are executed. The recommended time frames of these checks are the following: two weeks prior (UHC1), forty-eight hours prior (UHC2), and seventy-two hours following an upgrade (UHC3). For extension shelf, one health check is executed prior to installation. The exact time is based on availability of personnel and scheduled maintenance windows.

2.1.2 Data Capture
During the execution of this procedure, some method of data capture is necessary for proper analysis and for future reference. If a terminal emulation application is being used which supports capturing, the application should be enabled. A KSR or printer terminal may be selected as the capture terminal since output from the user terminal can be echoed to those terminal types. If no other method is available, input and output from the user terminal can be echoed to a configured printer. A capture file must be generated so a comparison can be made with other capture files from the same node to determine if any system degradation occurred between the two capture periods. Some of the procedures explicitly identify anomalies to be checked, if present, these occurrences should be noted. After conclusion of the Health Check procedures the capture file and any notes are to be sent to Oracle for review. If the Health Check is being performed in preparation for an upgrade, contact My Oracle Support upon completion to verify that the upgrade can be performed after analysis of the capture file.

2.1.3 Step Check-Off and Recording Configuration
All steps in this Health Check are to be initialed by the person performing the step. Blanks have been provided under each step number for recording the initials. Also certain steps request recording of data, which is specific to the configuration of the switch being checked.

Note that the Health Check may take several hours to complete depending on the size of the system, the part number and version of MASPs in use, and user experience.

2.2 Health Check Record
Each time the System Health Check has been completed, record the date, the reason for the health check (e.g., upgrade preparation, new installation, post-upgrade verification, etc.) and record which procedure passed/failed in Table 2.
Table 2. Health Check Record

<table>
<thead>
<tr>
<th>DATE</th>
<th>Reason for running health check</th>
<th>List any procedures that failed (Procedure number and name)</th>
<th>Technician Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upgrade HC #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upgrade HC #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upgrade HC #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extension Shelf HC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Health Check Type
The following table lists the procedures to be executed depending on the type of health check being performed.

Table 3. Health Check Type Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Non-Intrusive Upgrade (UHC1, UHC3)</th>
<th>Intrusive Upgrade (UHC2)</th>
<th>Extension Shelf, New Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Health Check Preparation</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.3 General System Status</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.4 Report System Troubles</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.5 Verifying Database Status</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.6 Verifying GPLs</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.7 Retrieving Obituaries</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.8 Verifying STPLAN</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.9 Verify SCCP Load</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.10 Verifying LNP and LSMS</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.11 Verifying SEAS</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.12 Verifying optional features</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.13 Verifying IP Signaling Status</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.14 Verifying EROUTE</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.15 Verifying IMT Status</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.16 Retrieving Trouble Data</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.17 Verifying Clock Status</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.18 Verifying MPS (See note 1)</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.19 Verify Source Database</td>
<td>n/a</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.20 Verifying Fixed and Removable Media (Part 1)</td>
<td>n/a</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.21 Testing IMT Status</td>
<td>n/a</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3.22 Verifying Fixed and Removable Media (Part 2)</td>
<td>n/a</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.23 Table Capacity Status</td>
<td>√</td>
<td>√</td>
<td>n/a</td>
</tr>
<tr>
<td>3.24 Health Check Conclusion</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Note 1: Intrusive procedures are shaded.
3. PROCEDURES

3.1 Pre-Health Check Requirements

Procedure 1: Verifying Pre-Health Check Requirements

This procedure verifies that all pre-healthcheck requirements have been met.

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

Should THIS PROCEDURE FAIL, Contact My Oracle Support AND ASK FOR HEALTHCHECK ASSISTANCE.

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Complete Pre-Health Check tasks</th>
<th>All applicable tasks in Table 4 must be completed before continuing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Pre-Health Check Requirements

<table>
<thead>
<tr>
<th>✓ Tasks to be completed prior to Health Check execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Health Check #2 - Verify that on-site personnel are available.</td>
</tr>
<tr>
<td>For Health Check #2 – Verify that Upgrade media is on-site or Upgrade target release has been downloaded to disk. Please reference Upgrade document Appendix B for these procedures.</td>
</tr>
<tr>
<td>Verify that all terminal and modem recourses are available for remote access.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Issue the command to display GPL status.</th>
<th>REPT- STAT- GPL: GPL=OAMHC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Response to GPL status command is displayed.</th>
<th>Eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE5 XX.x.x-YY.yy.y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If either 1113 or 1115 are not displayed, this procedure fails. Otherwise, continue to next procedure.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Command Compiled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>;</td>
</tr>
</tbody>
</table>

3.2 Health Check Preparation

Procedure 2: Health Check Preparation

This procedure starts capturing all commands and command output to a printer or other terminal configured to capture data. See Section 2.1.2 for recommendation on data capture.

1. Issue the command to log in to the EAGLE terminal.

   ```
   login:uid=XXXXXX
   ```

 (Where XXXXXX is your login ID)

2. Response to login command is displayed.

3. Issue the command to retrieve terminal status.

   ```
   rtrv-trm
   ```

4. Response to retrieve terminal command is displayed.

 Record the numbers that appear in the TRM column below corresponding to the terminal port being used to capture, SEAS terminals, and user terminal. In this example, terminal 12 is a printer, terminal 10 is the user’s terminal, and terminal 17 is the SEAS. Refer to Section 2.1.2 for information on how to set up terminals for data capture.

<table>
<thead>
<tr>
<th>TRM</th>
<th>TYPE</th>
<th>LOC</th>
<th>TMOUT</th>
<th>MXINV</th>
<th>DURAL</th>
<th>SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>NONE</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>VT320</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>VT320</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>DARWIN</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>13</td>
<td>DARWIN</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>14</td>
<td>DARWIN</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>15</td>
<td>DARWIN</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
<tr>
<td>16</td>
<td>DARWIN</td>
<td>9600 - 7-E-1 SW</td>
<td>30</td>
<td>5</td>
<td>00:01:00</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRM</th>
<th>TRAF</th>
<th>LINK</th>
<th>SA</th>
<th>SYS</th>
<th>PU</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>8</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>11</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>12</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>13</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>14</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>15</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>16</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>17</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

If not already activated, start mechanism to capture data. Refer to Section 2.1.2 for recommendation on data capture.

Record the initial output group configuration for the user’s and capture terminals. Also record user’s TMOUT value.

Verify that all terminal groups for the printers show YES. If so, go to step 7. If any groups show ‘NO’, continue to step 5.

5. Issue the command to change all terminal groups.

   ```
   chg-trm trm=P all=yes
   ```

 (Where P is the location of the capture terminal recorded in step 4)
Procedure 2: Health Check Preparation

6. Response to change terminal command is displayed.

```
eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE5 XX.x.x-YY.yy.y
chg-trm trm=P: all=yes
Command entered at terminal #X.
```

7. Issue the command to activate capture.

```
act-echo:trm=P
```

(Caution: loss of output may occur if too many terminals are echoed)

8. Issue the command to change the terminal groups to the optimal settings.

```
eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE5 XX.x.x-YY.yy.y
chg-trm trm=X: all=no: tmout=0: sa=yes: sys=yes: db=yes: dbg=yes
```

(Where X is the location of the user’s terminal recorded in step 4.)

9. Verify that the capture terminal is correctly collecting data.

```
eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE5 XX.x.x-YY.yy.y
Scroll Area Output will be echoed to Terminal X.
```

10. Issue the command to display optional features

```
rtrv-feat
```

11. Record the on/off status of the features in the following table.

```
<table>
<thead>
<tr>
<th>Feature</th>
<th>ON / OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT</td>
<td>on/off</td>
</tr>
<tr>
<td>X25G</td>
<td>on/off</td>
</tr>
<tr>
<td>SEAS</td>
<td>on/off</td>
</tr>
<tr>
<td>FAN</td>
<td>on/off</td>
</tr>
<tr>
<td>CNCF</td>
<td>on/off</td>
</tr>
<tr>
<td>MTPRS</td>
<td>on/off</td>
</tr>
<tr>
<td>SLSOCB</td>
<td>on/off</td>
</tr>
<tr>
<td>MPC</td>
<td>on/off</td>
</tr>
<tr>
<td>TSCSYNC</td>
<td>on/off</td>
</tr>
<tr>
<td>LAN</td>
<td>on/off</td>
</tr>
<tr>
<td>CRMD</td>
<td>on/off</td>
</tr>
<tr>
<td>LFS</td>
<td>on/off</td>
</tr>
<tr>
<td>DSTN5000</td>
<td>on/off</td>
</tr>
<tr>
<td>TLNP</td>
<td>on/off</td>
</tr>
<tr>
<td>SCCPCNV</td>
<td>on/off</td>
</tr>
<tr>
<td>IPISUP</td>
<td>on/off</td>
</tr>
<tr>
<td>ITUMTPRS</td>
<td>on/off</td>
</tr>
<tr>
<td>MEASPLAT</td>
<td>on/off</td>
</tr>
</tbody>
</table>
```

Note: The following table lists all possible feature bits. Feature bits differ between releases, so one may appear in this table that will not exist on a particular EAGLE.
Procedure 2: Health Check Preparation

13. Issue the command to display feature keys that have been enabled.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtrv-ctrl-feat</td>
</tr>
</tbody>
</table>

14. Response to the command is displayed.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtrv-ctrl-feat</td>
</tr>
<tr>
<td>Command entered at terminal #X</td>
</tr>
<tr>
<td>eagles tp YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x.x-YY.yy.y</td>
</tr>
<tr>
<td>The following features have been permanently enabled:</td>
</tr>
<tr>
<td>Feature Name</td>
</tr>
<tr>
<td>TPS</td>
</tr>
<tr>
<td>EAGLE Product</td>
</tr>
<tr>
<td>LNP ELAP Config</td>
</tr>
<tr>
<td>LNP ported TNs</td>
</tr>
<tr>
<td>EIR</td>
</tr>
<tr>
<td>HIPR2 High Rate Mode</td>
</tr>
<tr>
<td>G-Flex</td>
</tr>
<tr>
<td>EPAP Data Split</td>
</tr>
</tbody>
</table>

Record if LNP ported TN feature key and LNP ELAP Configuration is on and displayed as well as the current quantity. Also record whether the EIR feature is on:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP ported TN</td>
<td>ON</td>
<td>384000000</td>
</tr>
<tr>
<td>LNP ELAP Config</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>EIR</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

15. Issue the command to retrieve IP security feature key

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtrv-ctrl-feat</td>
</tr>
<tr>
<td>partnum=893400001</td>
</tr>
</tbody>
</table>

16. Response to retrieve command is displayed.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>eagles tp YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x.x-YY.yy.y</td>
</tr>
<tr>
<td>The following features have been enabled:</td>
</tr>
<tr>
<td>Feature Name</td>
</tr>
<tr>
<td>EAGLE OA&M IP Security</td>
</tr>
</tbody>
</table>

WARNING IP SECURITY ISSUE DETECTED

EAGLE OA&M IP Security FAK is not enabled and ON

The SECU_DFLT parameter SSH is set to OFF

If feature access key outputs "off" for status or does not appear in output the feature is OFF.

If the HIPR2-High-Rate-Mode feature (partnum=893020101) is not activated, then steps must be followed to ensure that the cables have been properly installed and operation of IMT buses at 2.5Gbps is verified. See "Cabling" in Hardware Reference and "Activating the HIPR2 High Rate Mode Feature" in Database Administration - System Management for more information. This activity needs to be performed during a maintenance window.

If the EAGLE is currently running release 46.2, then instruction on page http://www.oracle.com/us/support/licensecodes/tekelec/index.html can be followed to obtain the FAK for "HIPR2 High Rate Mode" (partnum=893020101) feature.
Procedure 2: Health Check Preparation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 18 | Response to retrieve command is displayed. | eaglestp YY-MM DD hh:mm:ss TTTT EAGLE XX.x.x.x YY.yy.y
System serial number = nt00001659
System serial number is locked. |
| 19 | All steps in this procedure were completed. | |
3.3 General System Status

Procedure 3: Determining General System Status

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to display IMT errors. <code>rept -imt -lv1: r=summary: sloc=1201: eloc=1115</code></td>
</tr>
</tbody>
</table>
| 2 | Response to IMT report command is displayed. If UHC2 is being executed, verify that large values are not displayed in any highlighted columns.
Summary Report: Totals accumulated from all requested cards
<table>
<thead>
<tr>
<th>Count</th>
<th>Bus A Value</th>
<th>Bus B Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Packet</td>
<td>0M</td>
<td>0M</td>
</tr>
<tr>
<td>Transmit Byte</td>
<td>0M</td>
<td>0M</td>
</tr>
<tr>
<td>Receive Packet</td>
<td>0M</td>
<td>0M</td>
</tr>
<tr>
<td>Receive Packet with CRC Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Receive Packet with Format Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Receive Packet with Invalid Length</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primary Control Receive Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primary Control Transmit Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primary Control Sanity Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Violation Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Receive FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Receive FIFO Half Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Receive FIFO Half Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMA Terminal Count Interrupt</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MSU Retransmitted</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MSU Safety Packet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ASU Safety Packet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSU Safety Packet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Receive FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSU Safety Packet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>[END OF REPORT]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Issue the status command for the MUX cards. <code>rept -stat -mux</code></td>
<td></td>
</tr>
</tbody>
</table>
| 4 | Response to MUX status command is displayed. Verify that all cards are IS-NR. Record the types of MUX cards displayed (circle all that are applicable):
HIPR HIPR2
If upgrade to Rel 46.4 or higher & the source release is 46.3 or prior, then all cards must show HIGH in the BITRATE (ACT) column. Otherwise, this procedure fails.

3 If the REPT-STAT-MUX shows BITRATE (ACT) as LOW, then steps must be followed to ensure that the cables have been properly installed and operation of IMT buses at 2.5Gbps is verified. See "Cabling" in Hardware Reference and "Activating the HIPR2 High Rate Mode Feature" in Database Administration - System Management for more information. This activity needs to be performed during a maintenance window.
Procedure 3: Determining General System Status

5. Issue the report IMT information command.
 Repeat for all MUX types recorded in Step 4.

   ```
   rept -imt-info:report=XXXXerr
   (where report=hiprerr if HIPR cards were detected in step 4;
   report=hipr2err is HIPR2 cards were detected in step 4.)
   ```

6. Response to report IMT information command is displayed.
 Note: Output abridged for brevity, Actual output varies based on software release and card type.

   ```
   eaglestp YY-MM-DD hh:mm:ss EST PPP XX.x.x
   XXXX Summary Report: Summed across all requested cards for each bucket
   XXXX Hourly Bucket Statistics
   
<table>
<thead>
<tr>
<th>Bucket Low Speed Statistic</th>
<th>BUS A Value</th>
<th>BUS B Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMT Rx Packet CRC Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Packet Format Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Violation Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Command Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Tx FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Tx FIFO Half Full</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Speed Statistic</th>
<th>BUS A Value</th>
<th>BUS B Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMT Rx Packet CRC Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Disparity Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Sync Lost Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx Code Word Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx FIFO Half Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx FIFO Empty Before SOM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx FIFO Empty Before EOM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx Packet SOM Before EOM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Rx Packet CRC Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMA terminal count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Tx Buffer EOB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Tx Buffer Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU Tx Buffer Half Full</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>IMT Bypass FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Bypass FIFO Half Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx FIFO Full</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMT Rx FIFO Half Full</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc Speed Statistic</th>
<th>BUS A Value</th>
<th>BUS B Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf ID UART Framing Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shelf ID UART Overrun Error</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
   ```

7. Issue the command to clear IMT errors.

   ```
   clr-imt-stats:all=yes
   ```

8. Response to clear IMT stats command is displayed.

   ```
   eaglestp YY-MM-DD hh:mm:ss EST PPP XX.x.x
   clr-imt-stats:all=yes
   Command entered at terminal #X.
   Clear IMT Statistics command(s) issued...
   ```
Procedure 3: Determining General System Status

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
</tr>
</thead>
</table>
| 9 | Issue the command to report system status.
rept-stat-sys |
| 10 | Response to system status command is displayed.
Record the Software Release: REL. _______
Record any card types that are not IS-NR.
Investigate and record cards whose status cannot be explained.
Card Type: _______
Card Type: _______
Record the number of IS-NR SS7IPGW and IPGWI cards.
Verify the IP System is not deploying both SS7IPGW and IPGWI Cards by ensuring either SS7IPGW or IPGWI has 0 cards IS-NR.
SS7IPGW Cards: _______
IPGWI Cards: _______
Command Completed. |
| 11 | Issue the command to report signaling link status.
rept-stat-slk |
| 12 | Response to report signaling links status command is displayed.
Command Completed. |
| 13 | Issue the command to retrieve card provisioning.
rtvr-card |

Command Completed.
Procedure 3: Determining General System Status

Response to retrieve command is displayed.

Response to retrieve command is displayed.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Card</th>
<th>Type</th>
<th>APPL</th>
<th>LSET NAME</th>
<th>LINK SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1102</td>
<td>TSM</td>
<td>GLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104</td>
<td>MCPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1106</td>
<td>LME</td>
<td>CS7TI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1107</td>
<td>DCM</td>
<td>PGW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1108</td>
<td>MCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>E5-MCAP</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>TDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>E5-MCAP</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>TDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>MXAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td>LI M1</td>
<td>SS7ANSI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>DCM</td>
<td>PLI M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212</td>
<td>MCPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1213</td>
<td>MI M1</td>
<td>CS7TI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>E5-MCAP</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>ENET</td>
<td>IPSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1217</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Issue the command to report card status.

```
rept-stat-card
```
Procedure 3: Determining General System Status

Response to card status command is displayed.

Look for the slot ID of any IS-ANR or OOS-MT status cards.
Ensure that any cards in this state can be explained.

Record the card locations of the MASPs:

Active MASP ______
Standby MASP ______

Repeat steps 17 – 18 for all cards that were IS-ANR or OOS-MT in step 16.

Issue the command to display the version of the GPLs running on the system.

rept-stat-gpl:display=all
Procedure 3: Determining General System Status

1. **Response to GPL status command.**
 - If the target release is 46.7 or higher and any card displayed is running SCCHC, SIPSHC, DEIRHC or ENUM HC GPL, this step fails. Continue with this health check to identify all failures. However, failure of this step will also cause Procedure 19 to fail with obsolete CARD/GPL.

 NOTE: Cards running those GPLs need to be converted to run corresponding 64 bits GPLs. Follow conversion procedure listed under GPL Management Procedures.

 "Database Administration - System Management User's Guide" document to convert cards to run 64 bit GPLs.

2. **Issue the command to retrieve the shelves**
 - `rtrv-shlf`

3. **Response to retrieve shelf command is displayed.**
 - `eaglestp YY-MM-DD hh:mm:ss EST PPP XX.x.x-YY.y.y SHELF & DISPLAY FRAME SHELF TYPE
 1 1 CONTROL
 1 2 EXTENSION

4. **Issue the command to retrieve STP.**
 - `rtrv-stp`

5. **Response to retrieve STP command is displayed.**
 - Note: output abridged for brevity. This output displays information for one frame only.

<table>
<thead>
<tr>
<th>Card</th>
<th>Part Number</th>
<th>Rev</th>
<th>Serial Number</th>
<th>Type</th>
<th>DB</th>
<th>APPL</th>
<th>GPL Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>870-2970-01</td>
<td>L</td>
<td>10214192225</td>
<td>LiME</td>
<td>2048M</td>
<td>SS7HC</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1102</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104</td>
<td>870-2971-01</td>
<td>TG</td>
<td>10217052393</td>
<td>IPSM</td>
<td>2048M</td>
<td>IPSHC</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1105</td>
<td>7094646</td>
<td>17</td>
<td>10217321344</td>
<td>IPSM</td>
<td>16384M</td>
<td>IPSHC</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1106</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1107</td>
<td>7094646</td>
<td>17</td>
<td>10217321344</td>
<td>SLMC</td>
<td>16384M</td>
<td>SFAPP</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1108</td>
<td>BIP Data Inv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1109</td>
<td>870-2872-02</td>
<td>F</td>
<td>10214372130</td>
<td>IPSM</td>
<td>145-025-000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>870-2872-02</td>
<td>F</td>
<td>10214372130</td>
<td>HIPR2</td>
<td>145-025-000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>7094646</td>
<td>17</td>
<td>10217321344</td>
<td>DSM</td>
<td>16384M</td>
<td>SCP64</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1112</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>870-2903-02</td>
<td>B</td>
<td>10212225164</td>
<td>ESMCAP</td>
<td>4096M</td>
<td>OAMHC69</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1114</td>
<td>TDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>870-2903-01</td>
<td>N</td>
<td>10208345081</td>
<td>ESMCAP</td>
<td>4096M</td>
<td>OAMHC69</td>
<td>145-025-000</td>
</tr>
<tr>
<td>1116</td>
<td>TDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>ESMODAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>870-3089-01</td>
<td>G</td>
<td>10214025308</td>
<td>MDPM</td>
<td>4096M</td>
<td>MCPHC69</td>
<td>145-025-000</td>
</tr>
</tbody>
</table>

System Health Check Guide 19 June 2019
Procedure 3: Determining General System Status

1202 7094646 7094646 17 10217221153 SLIC 16384M SFAPP 145-025-000

1203 7094646 19 10217442309 MOPM 16384M MOPC069 145-025-000

1204 870-2971-01 217322153 SLIC 16384M SFAPP 145-025-000

1205 Empty

1206 Empty

1207 BIP Data inv 1207 870-2971-01 TD 10216112120 ENETB 2048M IPSG 145-025-000

1208 870-2971-01 C 10210255063 ENETB 2048M IPSG 145-025-000

1209 870-2872-01 B 10209125128 HIPR2 145-002-000

1210 870-2872-02 F 10214372120 HIPR2 145-002-000

1211 7094646 17 10217322039 SLIC 16384M SCCP64 145-025-000

1212 Empty

1213 870-2971-01 M 10212465071 ENETB 2048M IPSG 145-025-000

1214 870-2971-01 N 10213145384 ENETB 2048M IPSG 145-025-000

1215 870-2971-01 N 10213415156 ENETB 2048M IPSG 145-025-000

1216 870-2971-01 C 10210255065 ENETB 2048M IPSG 145-025-000

1217 870-2971-01 TE 10216222178 ENETB 2048M IPSG 145-025-000

1218 870-2971-01 G 10211257067 ENETB 2048M IPSG 145-025-000

Issue the command to retrieve STP.

RTRV- STP: GPL=IPSHC

Response to retrieve STP command is displayed.

Note if upgrading to 46.5 or higher and any P/N displayed is 870-2877-xx. If so, at the end of this health check, contact the My Oracle Support.

eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x.x.x -YY.y.y

26 Issue the command to retrieve event log.

RTRV-LOG: dir=bkwd; num=100; mode=full; edate=yymmdd; type=alarm; slog=act

(Where yymmdd is yesterday’s date.)

Response to retrieve log command is displayed.

If report terminates without the “end of log reached” displayed, continue to next step. Otherwise, go to step 32.

UAM Report terminated - end of log reached

END OF LOG REPORT.

Issue the command to retrieve the next set of events.

RTRV-LOG: next=500
Response to retrieve log command is displayed.

31. If report terminates without the “end of log reached” display, the command can be repeated. If report terminates without the “end of log reached” display, the command can be repeated.4

4 The amount of alarms and UIMs during a 24-period can vary greatly depending on the size and how tightly configured and controlled the system is. Retrieving additional log entries may be beneficial.

32. Issue the command to retrieve the log for the standby.

```
  rtrv-log: dir=bkwd: num=100: mode=full: edate=yymmdd: type=alarm:slog=stb
```

(Where yymmdd is yesterday’s date.)

33. Issue the retrieve log command for the UIM log types.

```
```

(Where yymmdd is yesterday’s date.)

34. Issue the command to retrieve the STP power level.

```
  rtrv-stp: display=power
```

35. Response to retrieve power frame command is displayed.

```
  eaglestp Y:MM DD hh:mm:ss TTTT PPP XX.x.x-YY.y.y
  Frame    Power Threshold (Amps)    Power Consumption (Watts)
  -----    -----------------         -----------------
  CF00      45        2160          37.71       1810
  EF00      40        1920          33.99       1631
  EF01      35        1680          10.00        480
  EF04      +30       +1440          14.06        675
```

Command Completed.

36. Issue the command to retrieve the threshold alarm levels.

```
  rtrv-th-alm
```

37. Response to retrieve threshold alarm command is displayed.

```
  eaglestp Y:MM DD hh:mm:ss TTTT PPP XX.x.x-YY.y.y
  Thermal Alarm Level 1:                      92%
  Thermal Alarm Level 2:                      100%
  SCCP Threshold Method:                     N
  LNP TN DB Alarm Level 1:                   80%
  LNP TN DB Alarm Level 2:                   95%
  GTT SCCP Service Alarm Level 1:            10%
  GTT SCCP Service Alarm Level 2:            10%
  Non-GTT SCCP Service Alarm Level 1:        20%
  Non-GTT SCCP Service Alarm Level 2:        20%
  SCCP Service Alarm Level 1 Interval:       0
  SCCP Service Alarm Level 2 Interval:       0
  IMF Bus Combined Utilization Alarm Level 1: 70%
  IMF Bus Combined Utilization Alarm Level 2: 80%
  IMF Bus Congestion Alarm Level 1:           70%
  IMF Bus Congestion Alarm Level 2:           80%
  RTRV-TH-ALM MASP B - COMPLTD.
```

38. Issue the command to retrieve the site ID.

```
  rtrv-sid
```
Procedure 3: Determining General System Status

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Response to retrieve command is displayed.</td>
</tr>
<tr>
<td>40</td>
<td>Issue the command to retrieve SCTP associations.</td>
</tr>
<tr>
<td>41</td>
<td>The response to the retrieve command is displayed.</td>
</tr>
<tr>
<td>42</td>
<td>Issue the command to retrieve T1 ports.</td>
</tr>
<tr>
<td>43</td>
<td>The response to the retrieve command is displayed.</td>
</tr>
<tr>
<td>44</td>
<td>Issue the command to retrieve T1 ports.</td>
</tr>
<tr>
<td>45</td>
<td>The response to the retrieve command is displayed.</td>
</tr>
</tbody>
</table>

SCTP Associations

```
rtrv-assoc: display=all
```

T1 Ports

```
rtrv-t1
```

T1 Ports

```
rtrv-e1
```

Key:
- **ANAME**: CARD, IPLNK
- **LOC**: Location
- **PORT**: Port
- **ENCODE**: Encoding Type
- **E1TSEL**: E1 TSEL
- **SI**: Source Information
- **SN**: Source Number
- **CHANBRDG**: Channel Bridge
- **CLASS**: Class
- **RATE**: Rate
- **TPORT**: T-Port
- **RPORT**: R-Port
- **OPEN**: Open
- **ALW**: Alarm
- **CRC4**: CRC-4
- **CAS**: CAS
- **FRAME**: Frame
- **LG**: Line Group
- **CHANBROD**: Channel Bridge
- **LI**: Link
- **NI**: Node
- **MG**: Message Group
- **MSU**: Message Service Unit
Procedure 3: Determining General System Status

Issue the command to report IP TPS usage.
```
rept-stat-tpps
```

The response to the status command is displayed.
```
P IP TPS USAGE REPORT
THRESH CONFIG TPS PEAK PEAKTIMESTAMP
LSN lss2206i00 100% 2400 0 109 10-03-05 10:41:51
RCV: 0 0 00-00-00 00:00:00
TX: 0 2400 00-00-00 00:00:00
ls2206i01 100% 2400 0 84 10-03-05 10:41:51
RCV: 0 0 00-00-00 00:00:00
TX: 0 2400 00-00-00 00:00:00
ls2206i02 100% 2400 0 84 10-03-05 10:41:51
RCV: 0 0 00-00-00 00:00:00
TX: 0 2400 00-00-00 00:00:00
ls2206i03 100% 2400 0 84 10-03-05 10:41:51
RCV: 0 0 00-00-00 00:00:00
TX: 0 2400 00-00-00 00:00:00
lg1111a00 100% 13280 0 2883 10-03-08 15:26:06
RCV: 0 0 00-00-00 00:00:00
TX: 0 13280 00-00-00 00:00:00
lg1111a01 100% 13280 0 374 10-03-08 17:19:36
RCV: 0 0 00-00-00 00:00:00
TX: 0 13280 00-00-00 00:00:00
lg1111a02 100% 13280 0 2883 10-03-08 15:14:06
RCV: 0 0 00-00-00 00:00:00
TX: 0 13280 00-00-00 00:00:00
lg1111i01 100% 13280 0 2883 10-03-08 15:41:51
RCV: 0 0 00-00-00 00:00:00
TX: 0 13280 00-00-00 00:00:00
lg1315i00 100% 5000 0 9 10-03-12 20:10:36
RCV: 0 0 00-00-00 00:00:00
TX: 0 5000 00-00-00 00:00:00
lg5315i00 100% 380 0 0 00-00-00 00:00:00
RCV: 0 0 00-00-00 00:00:00
TX: 0 380 00-00-00 00:00:00
lg1111n02 100% 13280 0 2883 10-03-08 15:14:06
RCV: 0 0 00-00-00 00:00:00
TX: 0 13280 00-00-00 00:00:00
lg1316n00 100% 5000 0 9 10-03-12 20:10:36
RCV: 0 0 00-00-00 00:00:00
TX: 0 5000 00-00-00 00:00:00
sc1a221a 100% 3200 1 2883 10-03-08 15:26:06
RCV: 0 2820 10-03-08 18:09:21
TX: 1 3200 00-00-00 00:00:00
sc3a223a 100% 3200 1 2972 10-03-08 17:19:36
RCV: 0 2920 10-03-08 19:09:21
TX: 1 3200 00-00-00 00:00:00
sc3a030i 100% 3200 1 2724 10-03-08 17:17:06
RCV: 0 2724 10-03-08 16:44:21
TX: 1 3200 00-00-00 00:00:00
```

Issue the command to generate a measurements report.
```
rept-meas:enttype=stp:type=mtcd
```

If measurement collection is ON, the response to the report command is displayed.
```
P TYPE OF REPORT: DAILY MAINTENANCE MEASUREMENTS ON STP
REPORT PERIOD: LAST
REPORT INTERVAL:  YY-MM-DD, 00:00:00 THROUGH 23:59:59
STP-MTCD MEASUREMENTS
These measurements are from 10-03-15, 00:00:00 through 23:59:59.
CHG_SELECT = 228575718, TRM_SELECT = 204657972, THRSMSU = 167565746,
MTPRESTS = 0, DTAMSULOST = 0, MSINVDPC = 0, MSINVSIO = 0,
MSINVLNK = 0, MSINVSIF = 0, MSNACDPC = 78, MSSCCPFL = 0,
MSULOST1 = 0, MSULOST2 = 0, MSULOST3 = 0, MSULOST4 = 0,
MSULOST5 = 0, DRDCLFLR = 847928, DURLKOTG = 4207370,
CRSYSAL = 486, XLXTSPACE = 0, XLXTELEI = 0, TTMAPPF = 0,
OVSZMSG = 0, GFGTNOMCH = 0, GFGTNOLKUP = 0, MSUSCCPFLR = 0,
MSIDPNOMCH = 0, MSIDPMATCH = 0, MSULOST6 = 0,
SCCPLOOP = 0
```

If measurement collection is OFF, the response to the report command is displayed.
```
P Measurement data are not current.
```

Note: This parameter (chg-meas:collect) does not affect measurements collection and generation for the Measurements Platform. It only activates or
Procedure 3: Determining General System Status

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>All steps in this procedure were completed.</td>
</tr>
</tbody>
</table>

deactivates the reporting of scheduled measurements to the UI for the Measurements Platform.
3.4 Report System Troubles

This procedure examines non-network system troubles that should be corrected. Some examples of non-network troubles are:

- Terminal Failed
- Card has bad A or B system clock
- Card is not running approved GPL
- LIM denied SCCP service
- IMT Bus A failed

If there are any non-network troubles, which cannot be resolved, they should be documented. In some cases, non-network troubles may not be correctable. For example, a terminal port connected to a modem will report Terminal Failed if the modem is not dialed in.

The procedure will also examine the devices that have their alarms inhibited. In some cases, these alarm inhibits may need to be cleared.
Procedure 4: Reporting System Troubles

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
</table>
| **1** | Issue the command to report trouble status.
rept-stat-trbl:display=timestamp
eaglestp 98-03-09 14:09:29 EST Rel XX.X.X
Searching devices for alarms... |
| **2** | Response to trouble status command is displayed.
Record any non-network troubles.
Trouble _________
eaglestp 98-03-09 14:09:30 EST Rel XX.X.X
SEQN UAM AL DEVI CE ELE ME NT TROUBLE TEXT
5726.0048 * TERM NAL 14 Terminal failed
98-03-09 10:05:36
5730.0155 * DLK 1107,A STPLAN connection unavailable
98-03-09 13:57:40
5731.0013 ** CARD 1214,SSTANSI Card is isolated from the system
98-03-09 13:57:40
5604.0013 ** CARD 1111 SCCP Card is isolated from the system
98-03-09 13:57:40
5732.0236 ** SLK 1214,A lsn1214 REPT-LKF: not aligned
98-03-09 13:57:40
5733.0236 ** SLK 1214,B lsn1214 REPT-LKF: not aligned
98-03-09 13:57:40
5734.0236 ** SLK 1106,A lsnx1 REPT-LKF: not aligned
98-03-09 13:57:40
5735.0318 ** LSN lsn1214 REPT-LKSTO: link set prohibited
98-03-09 13:57:40
5736.0318 ** LSN lsnx1 REPT-LKSTO: link set prohibited
98-03-09 13:57:40 |
| **3** | Issue the command to report inhibited alarms
rept-stat-almdisplay=nhb
eaglestp 98-03-09 14:10:29 EST Rel XX.X.X
Command entered at terminal #4.
ALARM M O D E C R I T = AUDI B LE M NJ = S I L E N T
ALARM FRAME 1 CRIT = 2 MJ = 4 MN = 0
ALARM FRAME 2 CRIT = 2 MJ = 0 MN = 0
ALARM FRAME 3 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 4 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 5 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 6 CRIT = 0 MJ = 0 MN = 0
PERM INH ALARMS CRIT = 0 MJ = 0 MN = 0
TEMP INH ALARMS CRIT = 0 MJ = 0 MN = 0
ACTIVE ALARMS CRIT = 2 MJ = 4 MN = 0
TOTAL ALARMS CRIT = 2 MJ = 4 MN = 0
ALARM I NH BI T R E P O RT

DEVI CE ELE ME NT DURATI ON ALM I NH LVL CUR ALM LVL

CARD 1101 PERM M NR MJ R+
Command Compl eted. |
| **4** | Response to alarm status command is displayed.
rept-stat-almdisplay=nhb
eaglestp 98-03-09 14:10:29 EST Rel XX.X.X
Command entered at terminal #4.
ALARM M O D E C R I T = AUDI B LE M NJ = S I L E N T
ALARM FRAME 1 CRIT = 2 MJ = 4 MN = 0
ALARM FRAME 2 CRIT = 2 MJ = 0 MN = 0
ALARM FRAME 3 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 4 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 5 CRIT = 0 MJ = 0 MN = 0
ALARM FRAME 6 CRIT = 0 MJ = 0 MN = 0
PERM INH ALARMS CRIT = 0 MJ = 0 MN = 0
TEMP INH ALARMS CRIT = 0 MJ = 0 MN = 0
ACTIVE ALARMS CRIT = 2 MJ = 4 MN = 0
TOTAL ALARMS CRIT = 2 MJ = 4 MN = 0
ALARM I NH BI T R E P O RT

DEVI CE ELE ME NT DURATI ON ALM I NH LVL CUR ALM LVL

CARD 1101 PERM M NR MJ R+
Command Compl eted. |
| **5** | All steps in this procedure were completed. |
3.5 Verifying Database Status

Procedure 5: Verifying Database Status

This procedure verifies that your database is coherent, not in transition and that all cards are running at the same database level.

<table>
<thead>
<tr>
<th>Step #</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Perform this step only if on-site personnel are available. If no personnel are available then go to step 2.
Insert a current release system removable media into the system
For E5-MASP, insert a thumbdrive USB in the Active MASP’s latched USB port. |
| 2 | Issue the command to report database status.
rept-stat-db: display=all |
| 3 | Response to database command is displayed if running E5 MASP.
(OAM-USB status is only shown for the active MASP)
Examine the columns labeled C, T and LEVEL output by this command.
All entries in C should be coherent which is indicated by a Y.
Verify entries in column ‘T’ show ‘N’, which indicates that the database is not in transition except the OAM-RMV, OAM-USB, and TDM-BKUP, which show a dash.
All entries in LEVEL are numeric values. All entries in this column should be the same value except TDM-BKUP, OAM-RMV and OAM-USB. |
| 4 | Send a distributed network database (DDB) audit request to the active OAM.
aud-data:type=dxdb:display=all |
Procedure 5: Verifying Database Status

<table>
<thead>
<tr>
<th></th>
<th>Response to the aud-data command is displayed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Response to the aud-data command is displayed.</td>
</tr>
</tbody>
</table>

- **Response to the **aud-data** command is displayed.**

<table>
<thead>
<tr>
<th></th>
<th>All steps in this procedure were completed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>All steps in this procedure were completed.</td>
</tr>
</tbody>
</table>
3.6 Verifying GPLs

Procedure 6: Verifying GPLs

This procedure verifies that all GPLs are correctly distributed throughout the system, including fixed disks and removable media.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to display GPL status.</td>
</tr>
<tr>
<td>2</td>
<td>Response to retrieve GPL command is displayed. Verify that all GPLs in the APPROVED, TRIAL, and REMOVE TRIAL columns match those in the RELEASE column. Also verify that no GPL alarms exist. (Alarms are shown here as an example.) Verify that the removable media drive can be read and its GPL contents correspond to current Release GPLs.</td>
</tr>
<tr>
<td>3</td>
<td>Issue the command to display IPLHC GPL status.</td>
</tr>
<tr>
<td>4</td>
<td>Response to GPL status command is displayed. Note: if any IPLHC card is displayed, at the end of this health check, contact the My Oracle Support.</td>
</tr>
<tr>
<td>5</td>
<td>Issue the command to display IPGHC GPL status.</td>
</tr>
<tr>
<td>6</td>
<td>Response to GPL status command is displayed. Note: if any IPGHC card is displayed, at the end of this health check, contact the My Oracle Support.</td>
</tr>
<tr>
<td>7</td>
<td>All steps in this procedure were completed.</td>
</tr>
</tbody>
</table>
3.7 Retrieving Obituaries

Procedure 7: Retrieving Obituaries

<table>
<thead>
<tr>
<th>Step #</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to retrieve obits from MASP A</td>
<td><code>rtrv-obit:loc=1113</code></td>
</tr>
<tr>
<td>2</td>
<td>Respond to retrieve obit command is displayed.</td>
<td>Eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y NOTICE: Only 1 obit(s) to retrieve in the log.</td>
</tr>
<tr>
<td></td>
<td>Capture any obits that have been generated since the last system health check. If this is the first check, record any unexplained obits.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Issue the command to retrieve obits from MASP B.</td>
<td><code>rtrv-obit:loc=1115</code></td>
</tr>
<tr>
<td>4</td>
<td>Respond to retrieve obit command is displayed.</td>
<td>Eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y NOTICE: Only 3 obit(s) to retrieve in the log.</td>
</tr>
<tr>
<td></td>
<td>Capture any obits that have been generated since the last system health check. If this is the first check, record any unexplained obits.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>All steps in this procedure were completed.</td>
<td></td>
</tr>
</tbody>
</table>

This procedure retrieves all recently logged obituaries. These obituaries describe the status of the system just before a processor restarted due to a hardware or software failure. The data includes a register and stack dump of the processor, card location, reporting module number, software code location, and class of the fault detected.
3.8 Verifying STPLAN

Procedure 8: Verifying STPLAN

Perform procedure only if LAN feature is on, see Procedure 2, Step 12

This procedure displays STPLAN status. Verify that all cards that should be in service show a state of IS-NR. Record cards that do not show the expected status.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to display SLAN status.</td>
<td><code>rept-stat-slan</code></td>
</tr>
<tr>
<td>2</td>
<td>Response to STP LAN status command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE</code></td>
</tr>
<tr>
<td></td>
<td>Verify that all SLAN-configured cards that should be in service are IS-NR.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Issue the command to display SLAN GPL status.</td>
<td><code>REPT-STAT- GPL:GPL=SLANHC</code></td>
</tr>
<tr>
<td>4</td>
<td>Response to GPL status command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE</code></td>
</tr>
<tr>
<td></td>
<td>Note: if any SLANHC card is displayed, at the end of this health check, contact the My Oracle Support.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>All steps in this procedure were completed.</td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE USAGE per HOST CAPACITY = 0%

AVERAGE USAGE per EAGLE CAPACITY = 0%

SLAN Subsystem Report OOS-MT Fault
SLAN Cards Configured= 1 Cards IS-NR= 1
CARD VERSI ON PST SST AST HOST EAGLE Cap Cap

1107 XXX-XXX-XXX IS-NR Active

SLAN Subsystem Report OOS-MT Fault
SLAN Cards Configured= 1 Cards IS-NR= 1
CARD VERSI ON PST SST AST HOST EAGLE Cap Cap

SLAN Cards Configured= 1 Cards IS-NR= 1
CARD VERSI ON PST SST AST HOST EAGLE Cap Cap

1107 XXX-XXX-XXX IS-NR Active

Command Completed.
3.9 Verify SCCP Load

Procedure 9: Verify SCCP Load

This procedure verifies that SCCP card loads are all below 40%. Verify that all cards that should be in service show PST - IS-NR. Record cards that do not show the expected status.

1. Issue the command to display SCCP status.
   ```
   rept-stat-sccp
   ```

2. Response to SCCP status command is displayed.
 Verify that the number in the column labeled MSU USAGE is below 40% for all cards. Record any card slots, which are above 40% for later use.

 SCCP
 SCCP
 SCCP

 E2374: SCCP not configured, displayed if no SCCP feature enabled.

3. Issue the command to display SCCP status.
   ```
   rept-stat-sccp:mode=perf
   ```

4. Response to SCCP status command is displayed.
System Health Check Guide

June 2019

AVERAGE CPU USAGE = 15%

TOTAL MSU RATE = 1003

STATISTICS FOR PAST 30 SECONDS

<table>
<thead>
<tr>
<th>TOTAL MSUS:</th>
<th>52737</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ERRORS:</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIGHEST 06 OVERALL DAILY PEAKS</th>
<th>LAST 06 DAILY PEAK SCCP LOADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 TPS 13-01-23 06:45:12</td>
<td>1200 TPS 13-01-23 06:45:12</td>
</tr>
<tr>
<td>1196 TPS 13-01-19 04:40:43</td>
<td>1197 TPS 13-01-21 06:23:04</td>
</tr>
</tbody>
</table>

Command Completed.

5. **If the EPAP Data Split feature was on in Procedure 2, Step 14, issue the command to display Split Data status. Otherwise, go to step 8.**

   ```
   rept-stat-sccp: data=dn
   ```

6. **Response to Split Data status is displayed.**

   ```
   eaglestop YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x yy
   SCCP DNSSUBSYSTEM REPORT IS-NR          Active     -----       0%    5%  DN
   SCCP ALARM STATUS = No Alarms
   SCCP Cards Configured= 1 Cards IS-NR= 1
   System Daily Peak SCCP Load 0 TPS 13-04-26 10:44:18
   System Overall Peak SCCP Load 1 TPS 13-04-23 10:44:18
   System Total SCCP Capacity 5000 TPS (5000 max SCCP Capacity)
   System SCCP Capacity Calc. Method (N)
   System TPS Alarm Threshold 1500 TPS (80% System N SCCP Capacity)
   CARD   VERSION      PST           SST        AST       MSU   CPU   DATA USAGE USAGE TYPE
   -----------------------------------------------------------------------
   1101 P 025-062-002  IS-NR         Active     -----       0%    5%  DN
   -----------------------------------------------------------------------
   AVERAGE MSU USAGE =   0%
   AVERAGE CPU USAGE =   5%
   TOTAL MSU RATE    =   0
   Command Completed.
   ```

7. **Repeat steps 5 – 6 for IMSI data.**

8. **Issue the command to display SCCP status.**

   ```
   rept-stat-sccp: data=epap
   ```

9. **Response to SCCP status is displayed.**

   ```
   eaglestop YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x yy
   SCCP SUBSYSTEM REPORT IS-NR          Active     -----       0%    2% EPAP
   SCCP ALARM STATUS = No Alarms
   SCCP Cards Configured= 3 Cards IS-NR= 3
   System Daily Peak SCCP Load 0 TPS 13-11-23 00:00:07
   System Overall Peak SCCP Load 21047 TPS 12-11-22 04:12:44
   System Total SCCP Capacity 40800 TPS (40800 max SCCP Capacity)
   System SCCP Capacity Calc. Method (N)
   System TPS Alarm Threshold 32640 TPS (80% System N SCCP Capacity)
   CARD   VERSION      PST           SST        AST       MSU   CPU   DATA USAGE USAGE TYPE
   --------------------------------------------------------------------------------
   2303 P 141-019-000  IS-NR         Active     -----       0%    1% EPAP
   4207 P 141-019-000  IS-NR         Active     -----       0%    3% EPAP
   5205 P 141-019-000  IS-NR         Active     -----       0%    2% EPAP
   --------------------------------------------------------------------------------
   AVERAGE MSU USAGE =   0%
   AVERAGE CPU USAGE =   2%
   TOTAL MSU RATE    =   0
   Command Completed.
   ```

E2400: Dual ExAP Config feature must be Enabled, displayed if Dual ExAP Config feature is not enabled.

5. **If the EPAP Data Split feature was on in Procedure 2, Step 14, issue the command to display Split Data status. Otherwise, go to step 8.**

   ```
   rept-stat-sccp: data=dn
   ```

6. **Response to Split Data status is displayed.**

   ```
   eaglestop YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x yy
   SCCP DNSSUBSYSTEM REPORT IS-NR          Active     -----       0%    5%  DN
   SCCP ALARM STATUS = No Alarms
   SCCP Cards Configured= 1 Cards IS-NR= 1
   System Daily Peak SCCP Load 0 TPS 13-04-26 10:44:18
   System Overall Peak SCCP Load 1 TPS 13-04-23 10:44:18
   System Total SCCP Capacity 5000 TPS (5000 max SCCP Capacity)
   System SCCP Capacity Calc. Method (N)
   System TPS Alarm Threshold 1500 TPS (80% System N SCCP Capacity)
   CARD   VERSION      PST           SST        AST       MSU   CPU   DATA USAGE USAGE TYPE
   -----------------------------------------------------------------------
   1101 P 027-062-002  IS-NR         Active     -----       0%    5%  DN
   -----------------------------------------------------------------------
   AVERAGE MSU USAGE =   0%
   AVERAGE CPU USAGE =   5%
   TOTAL MSU RATE    =   0
   Command Completed.
   ```

7. **Repeat steps 5 – 6 for IMSI data.**

8. **Issue the command to display SCCP status.**

   ```
   rept-stat-sccp: data=epap
   ```

9. **Response to SCCP status is displayed.**

   ```
   eaglestop YY-MM-DD hh:mm:ss TTTT EAGLE XX.x.x yy
   SCCP SUBSYSTEM REPORT IS-NR          Active     -----       0%    2% EPAP
   SCCP ALARM STATUS = No Alarms
   SCCP Cards Configured= 3 Cards IS-NR= 3
   System Daily Peak SCCP Load 0 TPS 13-11-23 00:00:07
   System Overall Peak SCCP Load 21047 TPS 12-11-22 04:12:44
   System Total SCCP Capacity 40800 TPS (40800 max SCCP Capacity)
   System SCCP Capacity Calc. Method (N)
   System TPS Alarm Threshold 32640 TPS (80% System N SCCP Capacity)
   CARD   VERSION      PST           SST        AST       MSU   CPU   DATA USAGE USAGE TYPE
   --------------------------------------------------------------------------------
   2303 P 141-019-000  IS-NR         Active     -----       0%    1% EPAP
   4207 P 141-019-000  IS-NR         Active     -----       0%    3% EPAP
   5205 P 141-019-000  IS-NR         Active     -----       0%    2% EPAP
   --------------------------------------------------------------------------------
   AVERAGE MSU USAGE =   0%
   AVERAGE CPU USAGE =   2%
   TOTAL MSU RATE    =   0
   Command Completed.
   ```
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Issue the command to display network status for the card.</td>
<td><code>pass:loc=xxxxx cmd="netstat -i"</code></td>
</tr>
</tbody>
</table>

(Where `xxxxx` is the slot ID of an SCCP card that is displayed in step 9.)
Response to NETSTAT command is displayed.

For each card, verify both ports are configured to 1Gig EPAP-to-EAGLE download speed (displayed as 1000MB). Note: See Reference [4] in Section 1.2 for further information on port configuration.

```
eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE xx.x.x-YY.y.y
PASS: Command sent to card

-eaglestp YY-MM-DD hh:mm:ss TTTT EAGLE xx.x.x-YY.y.y
SDS Shell Output

-> tklc_ifShow
lo (unit number 0):
  Flags: (0x48049) UP LOOPBACK MULTICAST TRAILERS ARP RUNNING INET_UP
  Type: SOFTWARE_LOOPBACK
  inet: 127.0.0.1
  Netmask 0xff000000 Subnetmask 0xff000000
  Metric is 0
  Maximum Transfer Unit size is 1536
  0 packets received; 1 packets sent
  0 multicast packets received
  0 multicast packets sent
  0 input errors; 0 output errors
  0 collisions; 0 dropped
  0 output queue drops

DPLend (unit number 0):
  Flags: (0x20043) UP BROADCAST ARP RUNNING INET_UP
  Type: ETHERNET_CSMACD
  Ethernet address is 00:00:00:00:00:00
  Metric is 0
  Maximum Transfer Unit size is 485
  0 octets received
  0 octets sent
  0 unicast packets received
  0 unicast packets sent
  0 non-unicast packets received
  0 non-unicast packets sent
  0 incoming packets discarded
  0 outgoing packets discarded
  0 incoming errors
  0 outgoing errors
  0 unknown protos
  0 collisions; 0 dropped
  0 output queue drops

gei (unit number 0):
  Flags: (0x78043) UP BROADCAST MULTICAST ARP RUNNING INET_UP
  PHY Flags: (0x12114) AUTONEG 1000MB FDX DIX
  Type: ETHERNET_CSMACD
  inet: 192.168.120.7
  Broadcast address: 192.168.120.255
  Netmask 0xffffff00 Subnetmask 0xffffff00
  Ethernet address is 00:00:17:0d:7f:8a
  Metric is 0
  Maximum Transfer Unit size is 1500
  2735878 octets received
  1208344 octets sent
  0 incoming packets discarded
  0 outgoing packets discarded
  0 incoming errors
  0 outgoing errors
  0 unknown protos
  0 collisions; 0 dropped
  0 output queue drops

gei (unit number 1):
  Flags: (0x78043) UP BROADCAST MULTICAST ARP RUNNING INET_UP
  PHY Flags: (0x12114) AUTONEG 1000MB FDX DIX
  Type: ETHERNET_CSMACD
  inet: 192.168.121.11
  Broadcast address: 192.168.121.255
  Netmask 0xffffff00 Subnetmask 0xffffff00
  Ethernet address is 00:00:17:0d:7f:8b
  Metric is 0
  Maximum Transfer Unit size is 1500
  922854278 octets received
  298665752 octets sent
  805755 unicast packets received
  3069745 unicast packets sent
  1536943 multicast packets received
  104 multicast packets sent
  760962 broadcast packets received
  985724 broadcast packets sent
  0 incoming packets discarded
  0 outgoing packets discarded
  0 incoming errors
  0 outgoing errors
  0 unknown protos
  0 collisions; 0 dropped
  0 output queue drops
  value = 26 = 0x1a

NETSTAT command complete
```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Repeat steps 10 - 11 for all SCCP cards that are displayed in step 9.</td>
</tr>
<tr>
<td>13</td>
<td>All steps in this procedure were completed.</td>
</tr>
</tbody>
</table>
Procedure 10: Verifying LNP and LSMS

Perform procedure only if LNP feature is on, see Procedure 2, Steps 14

This procedure displays LNP subsystem and LSMS statuses. Ensure that all cards that should be in service show PST - IS-NR. Record cards that do not show the expected status.

This procedure shall also evaluate the SCCP hardware to determine if an upgrade is valid.

<table>
<thead>
<tr>
<th>Step #</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to display LNP status.</td>
</tr>
<tr>
<td>2</td>
<td>Response to LNP status command is displayed.</td>
</tr>
<tr>
<td></td>
<td>Verify that cards that are supposed to be in service are IS-NR.</td>
</tr>
<tr>
<td></td>
<td>Verify that there are no errors.</td>
</tr>
</tbody>
</table>

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y
LNP SUBSYSTEM REPORT   IS-NR   Active    .....,
ASSUMING MATE’S LOAD,
LNP Cards Configured=15

<table>
<thead>
<tr>
<th>CARD</th>
<th>PST</th>
<th>SST</th>
<th>GTT STATUS</th>
<th>LNP STATUS</th>
<th>CPU USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1208</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1218</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1301</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1308</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>0%</td>
</tr>
<tr>
<td>1318</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>2108</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>2118</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>2208</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>2218</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>2308</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1101</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1102</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1103</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
<tr>
<td>1108</td>
<td>IS-NR</td>
<td>Active</td>
<td>ACT</td>
<td>ACT</td>
<td>1%</td>
</tr>
</tbody>
</table>

LNPQS:
- SSN STATUS = Allowed
- MATE SSN STATUS = Prohibited
- ACG: OVERLOAD LEVEL = 0
- MIC USAGE = 0%
- AVERAGE USAGE: GTT = 1% LNPDR = 1% LNPQS = 1%
- AVERAGE CPU USAGE = 1%
- TOTAL ERRORS:
  - GTT: 0 out of 1603
  - LNPDR: 0 out of 38
  - LNPQS: 0 out of 5406

Command Completed.
```
Procedure 10: Verifying LNP and LSMS

3. Issue the command to display card status.

   ```
   rept-stat-card:mode=full:loc=XXXX
   (Where XXXX is the location of each SCCP card displayed in Procedure 3.10 Step 2)
   ```

4. Response to card status command is displayed.

 Verify that all cards have at least 4096MB of daughterboard memory.

5. If LNP is ON as recorded in Procedure 2 Step 12 then issue the command to retrieve LNP options. Otherwise, go to next procedure.

6. Response to LNP options command is displayed.

 Record audit status:

 AUD: _____________

 If LNP auditing is on, go to next procedure.

7. If LNP ported TN is 48000000 or higher or the LNP ELAP Configuration feature key is ON, go to next procedure. Otherwise, issue the command to turn LNP Audit on.

8. Response to LNP options command is displayed.

9. For UHC#2, the LNP Audit must be allowed to run for at least 24 hours.

10. All steps in this procedure were completed.
3.11 Verifying SEAS

Procedure 11: Verifying SEAS

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Issue the command to display SEAS status.</th>
<th>rept-stat-seas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Response to SEAS status command is displayed if SEAS over IP feature is turned on.</td>
<td>eagl estp YY-MM-DD hh:mm:ss TTTT PPPPP X x.x-YY.y.y SEAS SYSTEM PST SST AST IS-NR Avail -----</td>
</tr>
<tr>
<td></td>
<td>Verify that all entries are “IS-NR” and there are no alarms.</td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td>2</td>
<td>All steps in this procedure were completed.</td>
<td>TERM I PADDR PORT PST SST AST IS-NR Active -----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18 120.30.10.11 15 IS-NR Active -----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 128.30.15.12 16 IS-NR Active -----</td>
</tr>
</tbody>
</table>

Perform procedure only if SEAS feature is on, see Procedure 2, Step 12

This procedure verifies that SEAS feature is available. Ensure that all interfaces that should be in service show PST - IS-NR. Record interfaces that do not show the expected status.
3.12 Verifying optional features

Procedure 12: Verifying optional features

This procedure displays information on which optional features have been enabled.

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to retrieve STP options.</td>
</tr>
<tr>
<td>2</td>
<td>Response to the command is displayed. Record whether the following options are turned on:</td>
</tr>
<tr>
<td></td>
<td>DSMAUD: ON / OFF / CCC</td>
</tr>
<tr>
<td></td>
<td>Note: DSMAUD only displayed with certain features enabled (e.g. GFLEX, INP, GPORT)</td>
</tr>
<tr>
<td></td>
<td>Verify the GBSUSNMINM option status:</td>
</tr>
<tr>
<td></td>
<td>GBSUSNMINM: ON / OFF</td>
</tr>
<tr>
<td></td>
<td>If upgrading to 46.2 and beyond, MFC must be on. If MFC is set to off, this procedure fails.</td>
</tr>
<tr>
<td>3</td>
<td>If E5IS feature is recorded as on in Procedure 2, Step 12 then issue the retrieve command. Otherwise, go to step 7.</td>
</tr>
<tr>
<td>4</td>
<td>Response to the command is displayed. Record the value of EISCOPY & FCMODE values:</td>
</tr>
<tr>
<td></td>
<td>EISCOPY: ON / OFF</td>
</tr>
<tr>
<td></td>
<td>FCMODE: STC/OFF/FCOPY</td>
</tr>
<tr>
<td>5</td>
<td>Issue the command to retrieve user-specified options for the IP networks used by the EAGLE.</td>
</tr>
<tr>
<td>6</td>
<td>Response to the command is displayed.</td>
</tr>
</tbody>
</table>
Procedure 12: Verifying optional features

Record the value of PVN, PVNMASK, FCNA, FCNAMASK, FCNB and FCNBMASK.

<table>
<thead>
<tr>
<th>Procedure 12: Verifying optional features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record the value of PVN, PVNMASK, FCNA, FCNAMASK, FCNB and FCNBMASK.</td>
</tr>
<tr>
<td>FCNB = 172.22.48.0</td>
</tr>
<tr>
<td>FCNBMASK = 255.255.254.0</td>
</tr>
<tr>
<td>7 Issue the command to retrieve measurement options.</td>
</tr>
<tr>
<td>rtrv-measopts</td>
</tr>
<tr>
<td>8 Response to the measurement options command is displayed.</td>
</tr>
<tr>
<td>rtrv-measopts</td>
</tr>
<tr>
<td>9 Issue the command to retrieve user-specified options for the SCCP application.</td>
</tr>
<tr>
<td>rtrv-sccpopts</td>
</tr>
<tr>
<td>10 Response to the command is displayed.</td>
</tr>
<tr>
<td>rtrv-sccpopts</td>
</tr>
<tr>
<td>11 Issue the command to retrieve user-specified options for the GSM.</td>
</tr>
<tr>
<td>rtrv-gsmopts</td>
</tr>
<tr>
<td>12 Response to the command is displayed.</td>
</tr>
<tr>
<td>rtrv-gsmopts</td>
</tr>
</tbody>
</table>
Procedure 12: Verifying optional features

SPORTTYPE = NONE DFLTRN = NONE
EI RGRSP = OFF EI RSRTYPE = TYPE1
EI R MI CHK = OFF
ENCODELUG = OFF ENCODENPS = ON
ENCODNPSPNONE = OFF ENCODPSDNNOTFOUND= OFF

G- Flex MLR OPTIONS :
GFLEXMAPLAYERRTG = NONE

REGSS = OFF ACTSS = OFF DACTSS = OFF
INTSS = OFF AUTHFAILRPT = OFF RSTDATA = OFF
PROCUNSTRQT = OFF RDYFORSM = OFF PURGMOBSS = OFF
SRILOC = OFF;

13 Issue the command to retrieve user-specified options for IS41 GSM Migration.

rtrv-is41opts

14 Response to the options command is displayed.

15 If SNMP Feature was on in Procedure 2, Step 14 then issue the retrieve option command. Otherwise, go to step 19.

rtrv-snmpopts

16 Response to the command is displayed.

17 Issue the retrieve IP Host command for SNMP.

rtrv-snmp-host

18 Response to the retrieve command is displayed.

19 If SIP NP Feature was on in Procedure 2, Step 14 then issue the retrieve

rtrv-sipopts
Procedure 12: Verifying optional features

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 18 | Issue the report SIP status command.
 | `rept-stat-sip` |
| 19 | Response to the status command is displayed if configured, else “E2688 Cmd Rej: SIP not Configured” is displayed.
 | `eaglestp YY-MM-DD hh:mm:ss YYYY:MM:DD HH:MM:SS XX.x.x-YY.y.y` |
| | SIP ALARM STATUS = ** 0625 SIP capacity normal, card(s) abnormal |
| | CARD Cards Configured= 3 Cards IS-NR= 1 |
| | CARD VERSION PST SST TPS TTPS PTIMESTAMP |
| | 1101 004-061-004 IS-ANR MPS Unavl 0 0 00-00-00 00:00:00 |
| | 1103 004-062-000 IS-NR Active 100 100 02-01-08 10:55:23 |
| | 1105 ----------- OOS-MT Isolated 0 0 00-00-00 00:00:00 |
| | TOTAL SERVICE STATISTICS: |
| | SERVICE SUCCESS ERROR WARN NGS BYPASS TOTAL |
| | SIP NP: 0 0 0 0 0 |
| 20 | Command Completed. |
| 21 | Issue the report DEIR status command.
 | `rept-stat-deir` |
| 22 | Response to the status command is displayed if configured, else “E2791 Cmd Rej: DEIR not Configured” is displayed.
 | `eaglestp YY-MM-DD hh:mm:ss YYYY:MM:DD HH:MM:SS XX.x.x-YY.y.y` |
| | DEIR ALARM STATUS = No Alarms |
| | DEIR Cards Configured= 1 Cards IS-NR= 1 |
| | Average CPU Usage = 1% |
| | CARD VERSION PST SST AST TPS PTPS |
| | 1107 P 135-016-000 IS-NR Active ----- 0 0 0 0 |
| | TOTAL DEIR SERVICE STATISTICS: |
| | SERVICE SUCCESS ERROR WARN NGS OVERFLOW TOTAL |
| | DEIR SRV: 0 0 0 0 0 |
| 23 | Command Completed. |
| 24 | Issue the report ENUM status command.
 | `rept-stat-enum` |
| 25 | Response to the status command is displayed if configured, else “E3188 Cmd Rej: ENUM not Configured” is displayed.
 | `eaglestp YY-MM-DD hh:mm:ss YYYY:MM:DD HH:MM:SS XX.x.x-YY.y.y` |
| | ENUM ALARM STATUS = No Alarms |
| | ENUM Cards Configured= 2 Cards IS-NR= 2 |
| | CARD VERSION PST SST AST TPS |
| | 2303 139-019-000 IS-NR Active ----- 4006 |
| | 1105 139-019-000 IS-NR Active ----- 1000 |
| | TOTAL SERVICE STATISTICS: |
| | SERVICE SUCCESS ERROR RECEIVED |
| | ENUM: 41495 78689 120178 |
| | SERVICE CODE1 CODE2 CODE3 CODE4 CODE5 TOTAL |
| | ENUM: 12 0 78136 541 0 78689 |
| 26 | Command Completed. |
| 27 | All steps in this procedure were completed. |
3.13 Verifying IP Signaling Status

Procedure 13: Verifying IP Signaling Status

This procedure displays the status of IP Signaling connections and Application Servers. Verify that all IP Signaling connections and Application Servers that should be in service show a state of IS-NR. Record connections or Application Servers that do not show the expected status.

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
<th>Command/Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to display SCTP Association status.</td>
<td><code>rept-stat-assoc</code></td>
</tr>
</tbody>
</table>
| 2 | Response to SCTP Association status command is displayed. | eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y
ASSOCIATION PST SST
ipgwa1 IS-NR ASP-ACTIVE
ipgwa2 IS-NR ASP-ACTIVE
iplima1 IS-NR ESTABLISHED
iplima2 IS-NR ESTABLISHED
Command Completed. |
| 3 | Issue the command to display Application Server status. | `rept-stat-as` |
| 4 | Response to Application Server status command is displayed. | eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y
AS PST SST
ipgwas1 IS-NR AS-ACTIVE
ipgwas2 IS-NR AS-ACTIVE
Command Completed. |
| 5 | All steps in this procedure were completed. | |
3.14 Verifying EROUTE

Procedure 14: Verifying EROUTE

This procedure displays the status of the STC cards, and also displays any cards that are denied EROUTE service. Record cards that are denied EROUTE service.

This procedure issues the “netstat” command to STC cards to determine if IP addresses have been associated with the card. Record cards that do not have IP addresses associated with them.

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Issue the command to display EROUTE status.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>rept -stat -mon: type=eroute</code></td>
</tr>
</tbody>
</table>

Response to EROUTE status command is displayed.

Verify that all cards listed are in IS-NR state.

Note: if any cards are denied eroute service, the text “CARDS DENIED EROUTE SERVICE:” will be displayed followed by the card locations.

<table>
<thead>
<tr>
<th>CARD</th>
<th>VERSI ON</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
<th>TVG USAGE</th>
<th>CPU USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1205</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>1211</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>1303</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>1311</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>1313</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>2211</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
<tr>
<td>2213</td>
<td>236-024-005</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
<td>35%</td>
<td>52%</td>
</tr>
</tbody>
</table>

ERROUTE Service Average TVG Capacity = 35% Average CPU Capacity = 52%

Command Completed.
Procedure 14: Verifying EROUTE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Issue the command to display network status for the card.</td>
<td>Pass: loc=xxxxx, cmd="netstat -1"
(where XXXX is the slot ID of an STC card that is IS-NR in step 2.)</td>
</tr>
</tbody>
</table>
Response to NETSTAT command is displayed.

Verify both Port A (Seq 0) and Port B (Seq 1) of the STC card have an associated IP address.

Note: For E5-ENET card, verify both Port A (GEI 2) and Port B (GEI 0) have associated IP addresses.

PASS: Command sent to card;
Procedure 14: Verifying EROUTE

<table>
<thead>
<tr>
<th>NETRIC is 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Transfer Unit size is 2000</td>
</tr>
<tr>
<td>0 octets received</td>
</tr>
<tr>
<td>0 octets sent</td>
</tr>
<tr>
<td>0 unicast packets received</td>
</tr>
<tr>
<td>0 unicast packets sent</td>
</tr>
<tr>
<td>0 multicast packets received</td>
</tr>
<tr>
<td>0 multicast packets sent</td>
</tr>
<tr>
<td>0 broadcast packets received</td>
</tr>
<tr>
<td>0 broadcast packets sent</td>
</tr>
<tr>
<td>0 incoming packets discarded</td>
</tr>
<tr>
<td>0 outgoing packets discarded</td>
</tr>
<tr>
<td>0 incoming errors</td>
</tr>
<tr>
<td>0 outgoing errors</td>
</tr>
<tr>
<td>0 unknown protos</td>
</tr>
<tr>
<td>0 collisions; 0 dropped</td>
</tr>
<tr>
<td>0 output queue drops</td>
</tr>
</tbody>
</table>

```
eagl estp YY-MM-DD hh:mm:ss TTTTT PPPPP XX.x.x-YY.y.y
```

NETSTAT command complete

| 5 | Repeat steps 3 - 4 for all STC cards that are IS-NR in step 2. |
| 6 | All steps in this procedure were completed. |

System Health Check Guide 48 June 2019
3.15 Verifying IMT Status

Procedure 15: Verifying IMT Status

This procedure verifies that the IMT Bus is free of errors. This procedure is run in correspondence with Procedure 3.

1. Issue the command to display IMT errors.
   ```
   rept -lt -lv 1: sl oc=1201: el oc=1115: r=summary
   ```

2. Response to IMT report command is displayed.
 Ensure that all highlighted columns contain zeroes.
   ```
   eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y
   SUMMARY REPORT: Totals accumulated from all requested cards
   Count                                  Bus A Value    Bus B Value
   Transmit Packet                       0M             0M
   Transmit Byte                         0M             0M
   Receive Packet                        0M             0M
   Receive Byte                          0M             0M
   Receive Packet with CRC Error         0              0
   Receive Packet with Format Error      0              0
   Receive Packet with Invalid Length    0              0
   Primary Control Receive Error         0              0
   Primary Control Transmit Error        0              0
   Primary Control Sanity Error          0              0
   Violation Error                       0              0
   CPU Receive FIFO Full                  0              0
   IMT Receive FIFO Full                  0              0
   CPU Receive FIFO Half Full             0              0
   IMT Receive FIFO Half Full             0              0
   DMA Terminal Count Interrupt          0              0
   MSU Retransmitted                     0              0
   MSU Safety Packet                     0              0
   ASU Safety Packet                     0              0
   TSU Safety Packet                     0              0
   IMT Receive FIFO Full                  0              0
   SSU Safety Packet                     0              0
   ; END OF REPORT
   ```

3. If non-zeros, the command to display IMT level 1 information.
   ```
   rept -lt -lv 1: sl oc=1201: el oc=1115: r=full
   ```

4. Response to MUX status command is displayed.
 Note: Output abridged for brevity,
   ```
   eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y
   FULL REPORT: Totals accumulated from all requested cards
   Count                                  Bus A Value    Bus B Value
   Transmit Packet                        0M             0M
   Transmit Byte                          0M             0M
   Receive Byte                           0M             0M
   Receive Packet                         0M             0M
   Receive Packet with CRC Error          0              0
   Receive Packet with Format Error       0              0
   Receive Packet with Invalid Length     0              0
   Primary Control Receive Error          0              0
   Primary Control Transmit Error         0              0
   Primary Control Sanity Error           0              0
   Violation Error                        0              0
   CPU Receive FIFO Full                   0              0
   IMT Receive FIFO Full                   0              0
   CPU Receive FIFO Half Full              0              0
   IMT Receive FIFO Half Full              0              0
   DMA Terminal Count Interrupt           0              0
   MSU Retransmitted                      0              0
   MSU Safety Packet                      0              0
   ASU Safety Packet                      0              0
   TSU Safety Packet                      0              0
   IMT Receive FIFO Full                   0              0
   SSU Safety Packet                      0              0
   ; END OF REPORT
   ```

5. Issue the status command for the MUX cards
   ```
   rept -stat -mux
   ```
Procedure 15: Verifying IMT Status

6. Response to MUX status command is displayed.
 - Verify that all cards are IS-NR.
 - Record the types of MUX cards displayed (circle all that are applicable):
 - HMUX
 - HIPR
 - HIPR2

7. Issue the report IMT information command.
 - Repeat for all MUX types recorded in Step 6.

8. Response to report IMT information command is displayed.
 - Note: Output abridged for brevity, actual output varies based on software release and card type.

9. All steps in this procedure were completed.
3.16 Retrieving Trouble Data

Procedure 16: Retrieving Trouble Data

This procedure retrieves the most recently logged troubles.

Estimated time for completion: 5 minutes

<table>
<thead>
<tr>
<th>Step #</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to retrieve troubles from MASP A.</td>
<td><code>rtrv-trbl:loc=1113:num=15</code></td>
</tr>
<tr>
<td>2</td>
<td>Response to retrieve trouble command is displayed. Troubles shown here are only examples.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y</code></td>
</tr>
<tr>
<td></td>
<td>Note any unexplained troubles. (The troubles shown are examples only, actual troubles - if any - may differ.)</td>
<td><code>rtrv-trbl:loc=1113:num=15</code></td>
</tr>
<tr>
<td>3</td>
<td>Issue the command to retrieve troubles from MASP B.</td>
<td><code>rtrv-trbl:loc=1115:num=15</code></td>
</tr>
<tr>
<td>4</td>
<td>Response to retrieve trouble command is displayed. Troubles shown here are only examples.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y</code></td>
</tr>
<tr>
<td></td>
<td>Note any unexplained troubles. (The troubles shown are examples only, actual troubles - if any - may differ.)</td>
<td><code>rtrv-trbl:loc=1115:num=15</code></td>
</tr>
<tr>
<td>5</td>
<td>If the amount of output displayed on the capture terminal is excessive, then issue the command to change the terminal output groups. Otherwise, go to step 7.</td>
<td><code>chg-trm:trm=P:all=no:sys=yes:sa=yes:db=yes</code></td>
</tr>
<tr>
<td></td>
<td>(Where P is the location of the capture terminal used in Proc 1, Step 5.)</td>
<td><code>chg-trm:all=no:sys=yes:sa=yes:db=yes</code></td>
</tr>
<tr>
<td>6</td>
<td>Response to change terminal command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>chg-trm:trm=P:all=no:sys=yes:sa=yes:db=yes</code></td>
</tr>
<tr>
<td>7</td>
<td>All steps in this procedure were completed.</td>
<td><code>CHG TRM MASP A - COMPLTD</code></td>
</tr>
</tbody>
</table>
3.17 Verifying Clock Status

Procedure 17: Verifying Clock Status

This procedure verifies your system clock status. Specifically, the primary and secondary composite clocks and the A and B clocks going to each card are examined. Both the Primary and Secondary composite clocks should be good (IDLE or ACTIVE) on both the active and standby MASP. There should be no cards reporting a bad A clock and no cards reporting a bad B clock in step 2.

1. Issue the command to report clock status.
   ```
   rept-stat-clk:mode=full
   ```
2. Response to clock status command is displayed.
 - Verify that both composite clocks are either in IDLE or ACTIVE state on both ACTIVE and STANDBY MASP.
 - All highlighted cards-with-bad-CLK values should equal zero.

   ```
   eaglestp YY-MM-DD hh:mm:ss EST PPP xx.x.xx-YY.yy
   COMPOSITE                     PST           SST       AST
   SYSTEM CLOCK                     IS-NR         Idle      -----
   ALARM STATUS = No Alarms.
   Primary Comp Clk 1114 (CLK A) IS-NR         Active
   Primary Comp Clk 1116 (CLK B) IS-NR         Active
   Secondary Comp Clk 1114 (CLK A) IS-NR         Idle
   Secondary Comp Clk 1116 (CLK B) IS-NR         Idle
   Clock      Using       Bad
   CLK A      173         0
   CLK B      2           0
   CLK I      0           --
   HIGH SPEED                     PST           SST       AST
   SYSTEM CLOCK                     IS-NR         Active    -----
   ALARM STATUS = No Alarms.
   Primary HS Clk 1114 (HS CLK A) IS-NR         Active
   Primary HS Clk 1116 (HS CLK B) IS-NR         Active
   Secondary HS Clk 1114 (HS CLK A) IS-NR         Idle
   Secondary HS Clk 1116 (HS CLK B) IS-NR         Idle
   HS CLK TYPE 1114 = RS422
   HS CLK TYPE 1116 = RS422
   HS CLK LI NELEN 1114 = -----
   HS CLK LI NELEN 1116 = ------
   Clock      Using       Bad
   HS CLK A     19         0
   HS CLK B     0           0
   HS CLK I     0           --
   Cards with bad clock source:
   CARD              CLK A       CLK B       HS CLK A    HS CLK B
   -----------------------------------------------------------------
   Command Completed.
   ```

3. Issue the command to retrieve the clock options.
   ```
   rtrv-clkopts
   ```
4. Response to retrieve command is displayed.
   ```
   eaglestp YY-MM-DD hh:mm:ss EST PPP xx.x.xx-YY.yy
   CLK OPTIONS
   -----------------------
   PRIMARY
   -----------------------
   HSCLKSRC          rs422
   HSCLKLL        longhaul
   SECONDARY
   -----------------------
   HSCLKSRC          rs422
   HSCLKLL        longhaul
   ```
5. All steps in this procedure were completed.
3.18 Verifying MPS

The purpose of this procedure is to determine the health of MPS.

Procedure 18: Verifying MPS

This procedure checks the status of the MPS.

1. Issue the command to display MPS status.

   ```
   rept-stat-mps
   ```

2. Response to MPS status command is displayed, if any of the features requires ELAP/EPAP.
 If the MTT error 4102 is output go to step 5.

 ![EagleSTP output](image)

3. If DSM Audit was recorded as being on in Procedure 3.12 Step 2, or is not displayed then go to step 5. Otherwise, if DSM Audit is off, then execute this step.

 Issue the command to change STP options.

   ```
   chg-stpopts:dsmaud=on
   ```

4. Response to the command is displayed

5. All steps in this procedure were completed.
3.19 Verify Source Database

Procedure 19: Verify Source Database

The purpose of this procedure is to determine the presence of unsupported or obsolete references in the system prior to doing an upgrade when performing the UHC#2 as described in section 2.3, table 3. Otherwise, go to Procedure 20.

Note: it is important that the target release has been downloaded to the fixed disk, and for target release 46.0 and higher that the system has been configured to use the recommended CHG-UPGRADE-CONFIG:THRESTYPE=SET upgrade method.\(^5\)

This procedure verifies the presence of the following:

- obsolete cards
- network address conflicts with the PVN and FCN network address

Note: this procedure is intrusive meaning the target OAM application must be loaded temporarily to complete this procedure. To ensure accuracy, it is strongly suggested that data capture be active during this procedure because the information produced by this procedure will be used to guide the change of hardware or the modification of the database so potential issues don’t affect successful complete of the upgrade.

The Software Access Key (SAK) for the upgrade target release is required for this procedure if upgrading to 45.0, 45.1 or 46.0.

1. If removable media is present, remove it from the system.

2. Issue the upgrade command to display the database status.

3. Response to the upgrade - database status command is displayed.

4. Issue the card status to verify the location of the active MASP slot

\(^5\) In the EAGLE Software Upgrade Procedure; see Appendix B: Preparations for Upgrade Execution on how to download the software release to the fixed disk for the applicable target release [B.1: Target Release Software Download] and on how to configure the system to use the card-set upgrade method [B2: Configuring Card-Set Network Conversion Method.]
Procedure 19: Verify Source Database

5 Response to the card status command is displayed.
 Record the card locations of both MASPs and the running GPL:
 Act MASP _____
 Stby MASP _____
 MASP GPL: ______
 For this sample output, cards 1113/1114 are standby and 1115/1116 are active.

6 Inhibit the standby MASP
 (Where XXXX is the location of the standby MASP slot recorded in step 5)

7 Response to the inhibit command is displayed
 Verify UAM 514 is displayed.

8 Download target release flash to the standby MASP.
 (Where XXXX is the location of the standby MASP slot recorded in step 5)

9 Response to flash initialization is shown.
 Verify UAM 0004 is displayed.

10 Retrieve the GPLs running on the card location.

11 Response to the card status command is displayed.
 Repeat the previous step if a valid version of the flash GPL is not displayed.\(^6\)

12 Run the target release GPL on the standby MASP
 (target release downloaded to inactive partition)
 (Where XXXX is the location of the standby MASP recorded in step 5)

\(^6\) Valid flash GPL for the MASP cards can be either BLMCAP or BLDC32 depending on the release. BLMCAP is valid for 46.6 and prior. BLDC32 is valid in 46.6 or later.
Procedure 19: Verify Source Database

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Response to command is shown.</td>
</tr>
<tr>
<td>14</td>
<td>Issue command to report the GPLs running on Standby MASP.</td>
</tr>
<tr>
<td>15</td>
<td>Verify that the standby MASP is running target release GPLs. The standby MASP will display ALM to indicate that the card is not running the approved version GPL. See footnote 6.</td>
</tr>
<tr>
<td>16</td>
<td>Issue command to report the GPLs running on the Active MASP.</td>
</tr>
<tr>
<td>17</td>
<td>Verify that the active MASP is running source release GPL. See footnote 6.</td>
</tr>
<tr>
<td>18</td>
<td>Perform an OAM role change by booting the active OAM.</td>
</tr>
<tr>
<td>19</td>
<td>Response to card initialization is shown.</td>
</tr>
<tr>
<td>20</td>
<td>Issue command to log back in to the system.</td>
</tr>
<tr>
<td>21</td>
<td>Response to login command is displayed.</td>
</tr>
<tr>
<td>22</td>
<td>Issue the command to activate capture.</td>
</tr>
<tr>
<td>23</td>
<td>Response to activate command is displayed.</td>
</tr>
<tr>
<td>24</td>
<td>Issue the card status to verify the location of the active MASP slot.</td>
</tr>
</tbody>
</table>
Procedure 19: Verify Source Database

25 Response to the card status command is displayed.

Record the card locations of both MASPs:

- Active MASP __________
- Standby MASP __________

For this sample output, 1113 is the active and 1115 is standby.

Note: GPL & PST display for the standby MASP can be ignored.

26 Inhibit the standby MASP

\texttt{inh-card:loc=YYYY}

(Where \texttt{YYYY} is the location of the standby MASP recorded in step 22)

27 Response to the inhibit command is displayed

Verify UAM 514 is displayed.

28 Download target release flash to the standby MASP.

\texttt{init-flash:loc=YYYY:code=trial}

(Where \texttt{YYYY} is the location of the standby MASP recorded in step 22)

29 Response to flash initialization is shown.

Wait for card to boot and return to the IMT bus.

30 Retrieve the GPLs running on the card location.

\texttt{rept-stat-gpl:loc=YYYY}

(Where \texttt{YYYY} is the location of the standby MASP slot recorded in step 22)

31 Response to the card status command is displayed.

Repeat the previous step if valid version of the flash GPL is not displayed. See footnote 6

May need to wait up to 15 minutes to see the GPL in trial and approved column.

32 Run the target release GPL on the standby MASP

\texttt{alw-card:loc=YYYY:code=inactiveprt}

(target release downloaded to inactive partition)

(Where \texttt{YYYY} is the location of the standby MASP recorded in step 22)

7 Dashes are displayed until GPL auditing has initialized after the activity has been switched, which may take up to two minutes.

8 The GPL of the standby may be blank or may show OAMHC based on the Source/Target releases. Regardless, this information has no impact on the completion of this step.
Procedure 19: Verify Source Database

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Response to allow card command is shown.</td>
</tr>
<tr>
<td>34</td>
<td>Issue the card status command to verify the target release GPL is running.</td>
</tr>
<tr>
<td>35</td>
<td>Response from the status command is displayed.</td>
</tr>
</tbody>
</table>
| | Verify that the GPL versions that are displayed in the “RUNNING” is the target release and different from versions displayed in the “APPROVED”.
 | Verify that both MASP cards are running the same GPL version.
 | If no cards are displayed, repeat step 34 where `gpl=oamhc`.
 | If not running the correct versions contact the My Oracle Support. |
| 36 | Issue the command to report card status to determine the active MASP. |

9 The “ALM” is displayed when the GPL auditing has completed a cycle. “ALM” does not have to be displayed to continue.

10 Dashes are displayed until GPL auditing has initialized after the activity has been switched, which may take up to two minutes.
Procedure 19: Verify Source Database

37 Typical response to a card status command.

- Determine if both MASPs are IS-NR. If not, pause until the LEDs indicate both MASP are back or wait 30 seconds and then execute the previous step again.

- Otherwise, determine the active MASP by finding which area of shaded text reports ‘active’.

 Record the active MASP location: -

 Note: any ‘isolated’ cards should be plugged into their slots if possible.

38 Issue the Send Message command that performs checks for obsolete cards.

- Response to the Send Message command is displayed. Verify the output for the following checks:

 - Verify the shaded text (shown) does not indicate any incorrect hardware is found. Unsupported/obsolete cards are indicated with ***. If obsolete cards are shown then this check fails until the target’s baseline hardware is installed.

 Record the count of obsolete cards: -

 Note: any ‘isolated’ cards should be plugged into their slots if possible.

39 Issue the Send Message command that checks for possible conflicts of IP addresses configured in the system.

- Response to the Send Message command is displayed. Verify the output for the following checks:

 - Verify the shaded text (shown) does not indicate any incorrect hardware is found. Unsupported/obsolete cards are indicated with ***. If obsolete cards are shown then this check fails until the target’s baseline hardware is installed.

 Note: It is important to correctly enter the active MASP location determined in step 35. Incorrect results could be displayed otherwise.

40 Issue the Send Message command that checks for possible conflicts of IP addresses configured in the system.

- Response to the Send Message command is displayed. Verify the output for the following checks:

 - Verify the shaded text (shown) does not indicate any incorrect hardware is found. Unsupported/obsolete cards are indicated with ***. If obsolete cards are shown then this check fails until the target’s baseline hardware is installed.

 Note: It is important to correctly enter the active MASP location determined in step 35. Incorrect results could be displayed otherwise.
Procedure 19: Verify Source Database

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Response to command is displayed. Verify that the IP Address Validation check passes if running the target release of 45.x. Or the check is not required in target release of 46.0 and beyond.</td>
</tr>
<tr>
<td>42</td>
<td>If the target release is 45.0, 45.1, or 46.0, issue the command to enter the software access key. Otherwise if target release is 46.1 or later, go to step 44.</td>
</tr>
<tr>
<td>43</td>
<td>Response to command is displayed. Verify the command completed successfully and the correct Upgrade target release is output.</td>
</tr>
<tr>
<td>44</td>
<td>Issue the command to retrieve the upgrade configuration.</td>
</tr>
<tr>
<td>45</td>
<td>Response to the retrieve-card command is displayed.</td>
</tr>
<tr>
<td>46</td>
<td>Issue the command to initialize the active and standby MASP cards so that they are running the source release software.</td>
</tr>
<tr>
<td>47</td>
<td>Response to the initialize-card command is displayed.</td>
</tr>
<tr>
<td>48</td>
<td>Issue command to log back in to the system.</td>
</tr>
</tbody>
</table>

In 45.x:
eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y Upg Phase 0
IP Address Validation Report
IP Address Validation Result: Pass.

In 46.0 and beyond:
eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP XX.x.x-YY.y.y Upg Phase 0
Health Check: This check is no longer necessary.

`chg-upgrade-config: sak=XXXXXXXXXXXXX: src= fixed`
(Where XXXXXXXXXXXXXX is the Software Access Key)

`rtrv-upgrade-config`

`init-card: appl = oam`

`login: uid= XXXXXXXX` (Where XXXXXXXX is a valid login ID)
Procedure 19: Verify Source Database

49. Response to login command is displayed.
 eaglestp YY-MM-DD hh:mm:ss TTTT PPPPPP XX.x.x-YY.yy.y
 User logged in on terminal X

50. Issue the command to activate capture.
 act-echo:trmP
 (Where P is a capture terminal port that was selected in Procedure 2, Step 4)

51. Response to activate command is displayed.
 eaglestp YY-MM-DD hh:mm:ss zzzz PPPPPP XX.x.x-YY.yy.y
 Scroll Area Output will be echoed to Terminal X.
 (Caution: loss of output may occur if too many terminals are echoed)

52. Verify that the capture terminal is correctly collecting data.

53. Issue the command to report card status.
 rept-stat-card
 Typical response to card status command.
 Note: Compare this output with the rept-stat-card done prior to booting the target MASP. The display should be the same.

54. Issue the command to report trouble status.
 rept-stat-trbl:display=timestamp

55. Response to trouble status command is displayed.
 eaglestp YY-MM-DD hh:mm:ss zzzz PPPPPP XX.x.x-YY.yy.y
 Searching devices for alarms...
 eaglestp YY-MM-DD hh:mm:ss EST PPP XX.x.x-YY.yy.y
 SEQN UAM AL DEVICE ELEMENT TROUBLE TEXT
 5728.0048 * TERMINAL 14 Terminal failed
 5729.0048 * TERMINAL 15 Terminal failed
 5730.0155 * DLK 1107,A STPLAN connection unavailable
 5731.0013 ** CARD 1214 SS7ANSI Card is isolated from the system
 5604.0013 ** CARD 1111 SCCP Card is isolated from the system
 5732.0236 ** SLK 1214,A lsn1214 REPT-LKF: not aligned
 5733.0236 ** SLK 1214,B lsn1214 REPT-LKF: not aligned
 5734.0236 ** SLK 1106,1 lsnx1 REPT-LKF: not aligned
 5735.0318 ** LSN lsn1214 REPT-LKST: link set prohibited
 5736.0318 ** LSN lsnx1 REPT-LKST: link set prohibited
 Command Completed.

56. All steps in this procedure were completed.
Procedure 20: Verifying Fixed Disks Functions with TST-DK

This procedure verifies that EAGLE fixed disks and removable drives are accessible and in proper working order. Disks/drives are exercised by issuing test disk and backup commands. If no on-site personnel are available and the removable drive is not inserted then this procedure needs to be rescheduled.

<table>
<thead>
<tr>
<th>S T E P #</th>
<th>Description</th>
<th>Command/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to backup to the fixed disk.</td>
<td><code>chg-db: action=backup</code></td>
</tr>
<tr>
<td>2</td>
<td>Response to backup command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss zzz PPPPP XX.x.x-YY.yy.y</code></td>
</tr>
<tr>
<td>3</td>
<td>If not already inserted, insert the source removable media drive into the system.</td>
<td>NOTE: The insertion of a removable drive is required to complete this procedure. If drive cannot be inserted, this procedure fails. After failing this procedure, go to Step 9 and to complete the check of the fixed disks.</td>
</tr>
<tr>
<td>4</td>
<td>Issue the command to backup to the removable. Otherwise, procedure needs to be rescheduled.</td>
<td><code>chg-db: action=backup:dest=remove</code></td>
</tr>
<tr>
<td>5</td>
<td>Response to backup command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss zzz PPPPP XX.x.x-YY.yy.y</code></td>
</tr>
<tr>
<td>6</td>
<td>Issue the command to copy GPLs from active TDM to removable drive.</td>
<td><code>copy-gpl:sloc=XXXX:drv=remove</code> (Where XXXX is the active TDM location (1114 or 1116) that corresponds to the MASP slot recorded in step 5)</td>
</tr>
<tr>
<td>7</td>
<td>Response to copy GPL command is displayed</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss zzz PPPPP XX.x.x-YY.yy.y</code></td>
</tr>
<tr>
<td>8</td>
<td>Remove the removable drive from the active MASP. Update the label with release and database level. Store in a safe place for later use.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Issue the commands to display disk directory of the fixed disk.</td>
<td><code>disp-disk-dir:loc=XXXX</code> (Where XXXX is the standby TDM)</td>
</tr>
<tr>
<td>10</td>
<td>Response to the display command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss zzz PPPPP XX.x.x-YY.yy.y</code></td>
</tr>
</tbody>
</table>
Procedure 20: Verifying Fixed Disks Functions with TST-DISK

- **Verify command completes successfully.**

 Note that the output data may vary from this example.

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbstat</td>
<td>47662</td>
</tr>
<tr>
<td>dbstat_t</td>
<td>47662</td>
</tr>
<tr>
<td>iPas</td>
<td>262090</td>
</tr>
<tr>
<td>mcfg</td>
<td>156</td>
</tr>
<tr>
<td>mcfg_t</td>
<td>156</td>
</tr>
<tr>
<td>(additional files listed ..)</td>
<td></td>
</tr>
<tr>
<td>File(s)</td>
<td>465</td>
</tr>
<tr>
<td>Bytes</td>
<td>1925810639</td>
</tr>
<tr>
<td>Disk Size (MB)</td>
<td>7515</td>
</tr>
</tbody>
</table>

- **Issue this command to test the fixed disk.**

```
tst-disk:loc=XXXX:partition=all
```

Where XXXX is the standby fixed disk.

- **Response to the test disk command is displayed.**

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPP  XX.x.x-YY.y.y
TST-DISK RESULTS:  
  Total clusters: 983290  
  Free Clusters: 983290  
  Bad Clusters: 0  
  Total Free Space: 3933160  
  Max. Contiguous Free Space: 3933160  
  Folders: 932  
  Bytes in Files: 3761348  
  Lost Chains: 0  
  Bytes in Lost Chains: 0  
```

- **Issue the command to initialize the active MASP.**

```
init-card:loc=XXXX
```

Where XXXX is the location of the active E5-MASP.

- **Response to initialize command is displayed.**

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPP  XX.x.x-YY.y.y
Card entered at terminal #10.  
** 6573.0013 ** CARD XXXX OAMHC         Card is isolated from the system  
ASSY SN: xxxxxxxxxxxx
```

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPP  XX.x.x-YY.y.y
6577.0014    CARD XXXX OAMHC         Card is present  
ASSY SN: xxxxxxxxxxxx
```

- **Issue the command to log in to the EAGLE terminal.**

```
login:uid=XXXXXX
```

Where XXXXXX is your login ID.

- **Response to login command is displayed.**

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPP  XX.x.x-YY.y.y
User logged in on terminal X
```

- **Issue the command to activate capture.**

```
act-echo:trm=P
```

Where P is a terminal port used in Procedure 3.2, Step 5.

- **Response to activate command is displayed.**

```
eaglestp YY-MM-DD hh:mm:ss TTTT PPP  XX.x.x-YY.y.y
Scroll Area Output will be echoed to Terminal X.
```

- **Repeat Steps 9-12 for the formerly-active TDM.**

- **All steps in this procedure were completed.**
3.21 Testing IMT Status

Procedure 21: Testing IMT Buses

This procedure tests that the IMT Buses are healthy.

This procedure should be executed in a maintenance window. If it cannot be done in a maintenance window, then this procedure needs to be rescheduled.

If no on-site personnel are available, then step 14 needs to be rescheduled.

1. Issue the command to report the status of the IMT buses.

 `rept-stat-imt:mode=full`

2. Response to report IMT status command is displayed.

   ```
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   `IMT PST SST AST`
   A IS-NR Active -----
   ALARM STATUS = No Alarms.
   B IS-NR Active -----
   ALARM STATUS = No Alarms.
   
   Command Completed.
   ```

3. If in a maintenance window, issue the command to inhibit the IMT bus.

 `inh-imt:bus=A`

4. Response to inhibit IMT bus command is displayed.

   ```
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   Inhibit IMT Bus A command issued
   ;
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   0401.0098 IMT BUS A IMT inhibited
   ;
   ```

5. Issue the command to test the IMT bus.

 `tst-imt:type=faulttest:bus=A`

6. Response to test IMT bus command is displayed.

   ```
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   IMT Fault Isolation Bus A
   Fault Location Probable Cause Failure(s)
   No Faults Found All Tests Passed
   ;
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   0403.0097 IMT BUS A IMT allowed
   ;
   ```

7. Issue the command to allow the IMT bus.

 `alw-imt:bus=A`

8. Response to allow IMT bus command is displayed.

   ```
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   Allow IMT Bus A command issued
   ;
   eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
   0403.0097 IMT BUS A IMT allowed
   ;
   ```


 `tst-imt:type=extbert:time=10:bus=A`

10. Response to test IMT bus command is displayed.

 Otherwise, error "E4765 Cmd Rej: Obsolete MUX cards detected in the system" is displayed when the hardware is invalid for this command.

    ```
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    Extended BERT: Command in progress...
    ;
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    Extended BERT: Target Bus A will be inhibited
    ;
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    5042.0098 IMT BUS A IMT inhibited
    ;
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    Extended BERT: Active MASP will be reconnected on Bus A
    ;
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    Extended BERT: Previous processing time required.
    ;
    eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
    Command Completed.
    ```
Procedure 21: Testing IMT Buses

- After 10 minutes:
 - "PASS" messages displayed in BERT Status column.
 - Eaglestp YY-MM-DD HH:MM:SS tzone Rel XX.X.X-YY.Y.Y
 - Extended Bit Error Rate Test Bus A
 - MAX ERROR = 20
 - TIME = 00:10:00
 - START TIME = 12:10:30
 - TEST STATUS = PASS
 - Card Type Serial Number BERT Status Bit Error Errored Sec Duration
 - 1110 HIPR2 10208345012 PASS 3 2 01:00:00
 - 1210 HIPR2 10208345031 PASS 2 1 01:00:00
 - 1310 HIPR2 10208345052 PASS 5 3 01:00:00

11 Issue the status command for the IMT buses.

12 Response to IMT bus status command is displayed.

13 Verify that bus has returned to IS-NR.

14 Repeat Steps 3 – 12 for IMT Bus B.

15 All steps in this procedure were completed.

11 If the correct cables are not installed, then steps must be followed to ensure that the cables have been properly installed and operation of IMT buses at 2.5Gbps is verified. See "Cabling" in Hardware Reference and "Activating the HIPR2 High Rate Mode Feature" in Database Administration - System Management for more information. This activity needs to be performed during a maintenance window.
3.22 Verifying Fixed and Removable Media (Part 2)

Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK

This procedure verifies that EAGLE fixed disks and removable media are accessible and in proper working order. Disks will be exercised by issuing test disk and backup commands. If no on-site personnel are available to insert the source release removable media then this procedure needs to be rescheduled. This procedure must be done in a maintenance window.

1. Verify that a source release removable media is inserted in the active MASP.
 If in a maintenance window, issue the command to display card status.
   ```
   rept-stat-card: appl =oam
   ```

2. Response to card status command is displayed.
 Determine which MASP is currently Standby by looking in the column labeled SST.
 Record the locations of the MASPs:
 - Active MASP
 - Standby MASP
   ```
   eaglestp YY-MM-DD hh:mm:ss EST XX.y.y
   CARD VERSION TYPE GPL PST SST AST
   1113 XXX-XXX-XXX E5MASP OAMHC IS-NR Standby -----  
   1115 XXX-XXX-XXX E5MASP OAMHC IS-NR Active -----  
   Command Compl et ed.
   ```

3. Remove Standby E5MASP from the system.
 Slide the MASP H/S switch (SW3) on the standby MASP up to the unlocked position (Wait for all drive LEDs to transition to a steady blue).
 Remove the standby E5MASP card determined in step 2

4. Issue the command to report clock status.
   ```
   rept-stat-clk: mode=full
   ```

5. Response to clock status command is displayed.
 Verify that all cards are using the clock on the other E5MASP.
   ```
   eaglestp YY-MM-DD hh:mm:ss EST XX.y.y
   COMPOSI TE PST SST AST
   SYSTEM CLOCK I S-ANR I dl e -----  
   ALARM STATUS = No Alarms.
   Primary Comp Clk 1114 (CLK A) IS-NR Active  
   Primary Comp Clk 1116 (CLK B) IS-NR I dl e  
   Secondary Comp Clk 1114 (CLK A) IS-NR I dl e  
   Secondary Comp Clk 1116 (CLK B) IS-NR I dl e  
   Clock Using Bad  
   CLK A 3 0  
   CLK B 0 3  
   Clock Using Bad  
   HIGH SPEED PST SST AST
   SYSTEM CLOCK I S-ANR I dl e -----  
   ALARM STATUS = No Alarms.
   Primary HS Clk 1114 (HS CLK A) IS-NR Active  
   Primary HS Clk 1116 (HS CLK B) IS-NR I dl e  
   Secondary HS Clk 1114(HS CLK A) IS-NR I dl e  
   Secondary HS Clk 1116(HS CLK B) IS-NR I dl e  
   HS CLK TYPE 1114 = RS422  
   HS CLK LI NELEN 1114 = -----  
   HS CLK TYPE 1116 = RS422  
   HS CLK LI NELEN 1116 = -----  
   Clock Using Bad  
   HS CLK A 0 0  
   HS CLK B 0 0  
   HS CLK I 0 --  
   Cards with bad clock source:
   ```
 Cards with bad clock source:
   ```
   Command Compl et ed.
Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK

6 Place spare E5MASP in system. 

7 Display database version information.

8 Verify that the standby TDM contains the same database version as the active.

If the database version on the standby disk is not the same as the active disk, stop the procedure and contact My Oracle Support.

9 Issue the command to verify the GPL versions.

10 Response to retrieve GPL command is displayed.

Verify the column between the Approved and Trial shows no alarms for the Standby TDM that was recorded in Step 2. If an alarm is found, go to step 11. Otherwise, go to Step 13.

11 Issue the command to copy GPLs.

Response to copy GPL command is displayed.

Verify command completes successfully.

12 Issue the command to repair the standby disk.

Response to repair command is displayed.

This command may take up to 45 minutes to complete.

13 Issue the commands to display disk directory of the standby MASP.

(Where XXXX is the standby MASP disk slot)
Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK

16. **Response to display disk directory command is displayed.**
   - eagles tep YY- MM DD hh:mm:ss TTT PPP XX.x-x-YY.y
   - Di SP- Di SK- Di R Loc=1114 Dev = F I(XED(Active)
   - Filename Ext Length
   - DM61024 CFG 32768
dbstat bkp 47662
dbstat tbl 47662
ipas tbl 262090
msfg bkp 156
msfg tbl 156
(Additional files listed...)
- File(s) : 465 Bytes : 1925810639
- Disk Size (MB) : 7515

17. **Issue this command to test the fixed disk.**
   - tst-disk:partition=all:loc=XXXX
   (Where XXXX is the standby MASP disk slot recorded in step 2)

18. **Response to the test disk command is displayed.**
   - eagles tep YY- MM DD hh:mm:ss TTTT PPP XX.x-x-YY.y
   - TST- Di SK RESULTS:
   - Total clusters: 149949
   - Free Clusters: 149949
   - Bad Clusters: 0
   - Total Free Space: 599796
   - Max. Contiguous Free Space: 517336
   - Files: 431
   - Folders: 0
   - Bytes in Files: 1323558
   - Bytes in Lost Chains: 0
   (Additional files listed...)
- File(s) : 465 Bytes : 1925810639
- Disk Size (MB) : 7515

19. **Issue the commands to display disk directory of the removable media.**
   - disp-disk-dir:loc=xxxx:src=remove
   (Where XXXX is the active MASP)

20. **Response to disp-disk-dir command is displayed.**
   - eagles tep YY- MM DD hh:mm:ss TTT PPP XX.x-x-YY.y
   - Di SP- Di SK- Di R Loc=1115 Dev = REMOVE
   - Filename Ext Length
   - DM61024 CFG 32768
   - TATMANSI ELF 3145728
   - TATMHC ELF 5242880
   - TATMITU ELF 3145728
   - TBLBEPM ELF 3145728
   - TBLBIOS ELF 3145728
   (Additional files listed...)
- File(s) : 182 Bytes : 511026520
- Disk Size (MB) : 1910

21. **Issue this command to test the removable media.**
   - tst-disk:disk=remove:loc=xxxx
   (Where XXXX is the active MASP)

22. **Response from the tst-disk command is displayed.**
   - eagles tep YY- MM DD hh:mm:ss TTT PPP XX.x-x-YY.y
   - TST- Di SK RESULTS:
   - Total clusters: 149949
   - Free Clusters: 149949
   - Bad Clusters: 0
   - Total Free Space: 599796
   - Max. Contiguous Free Space: 517336
   - Files: 431
   - Folders: 0
   - Bytes in Files: 1323558
   - Bytes in Lost Chains: 0
   (Additional files listed...)

23. **Remove the removable media from the system and place in a safe place.**

24. **Issue the initialize card command for the active MASP.**
   - init-card:loc=xxxx
   (Where for the first time executing this command, XXXX is the location of the active MASP recorded in step 2;
   Where for the second time executing this command, XXXX is the location of the standby MASP recorded in step 2)
### Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Response to the initialize command is displayed.</td>
</tr>
<tr>
<td>26</td>
<td>Issue the command to log in to the EAGLE terminal.</td>
</tr>
<tr>
<td>27</td>
<td>Response to login command is displayed.</td>
</tr>
<tr>
<td>28</td>
<td>Issue the command to activate capture. Refer to Section 2.1.2 for information on how to set up terminals for data capture.</td>
</tr>
<tr>
<td>29</td>
<td>Response to activate command is displayed.</td>
</tr>
<tr>
<td>30</td>
<td>Issue the command to report the status of the MDAL.</td>
</tr>
<tr>
<td>31</td>
<td>Response to the status command is displayed. Verify that status is IS-NR.</td>
</tr>
<tr>
<td>32</td>
<td>Repeat Steps 24 – 31. If second time executing this step, continue to next step.</td>
</tr>
<tr>
<td>33</td>
<td>Inhibit the standby MASP so that the spare MASP may be removed from the system.</td>
</tr>
<tr>
<td>34</td>
<td>Response to the inhibit command is displayed. Verify UAM 514 is displayed.</td>
</tr>
<tr>
<td>35</td>
<td>Remove Standby E5MASP from the system. Slide the MASP H/S switch (SW3) on the standby MASP up to the unlocked position (Wait for all drive LEDs to transition to a steady blue). Remove the standby E5MASP card; the location specified in Step 24. Insert the spare E5MASP card. Slide the MASP H/S switch (SW3) on the standby MASP down to the locked position (Wait for the MASP H/S LED to transition from blinking blue to off and the MASP to come up in standby mode).</td>
</tr>
</tbody>
</table>
**Procedure 22: Verifying Fixed Disks and Removable Media Function with TST-DISK**

### Issue the allow card to bring the standby MASP in service.

```plaintext
alw card: loc=xxxx
(Where XXXX is the location of the standby MASP specified in step 32)
```

### Response to allow card is displayed.

```plaintext
eaglestp YY-MM-DD hh:mm:ss TTTT PPP XX.x.x-YY.y.y
Card has been allowed.
```

```plaintext
eaglestp YY-MM-DD hh:mm:ss TTTT PPP XX.x.x-YY.y.y
1798.0014 CARD XXXX OAM Card is present
ASSY SN 10202081389
```

### Display database version information.

```plaintext
act-upgrade: action=dbname
```

### Verify that the standby MASP contains the same database version as the active.

If the database version on the standby disk is not the same as the active disk, first repeat previous step and then contact My Oracle Support.

If target release was downloaded, verify the version of the inactive partition is that of the upgrade target release, the database level is “1” and the coherency is “Y”. If otherwise, contact My Oracle Support.

### All steps in this procedure were completed.
3.23 Table Capacity Status

The following procedure is for data collection only. It does not have any pass fail criteria and does not include command response output.

Procedure 23: Collect Table Capacity Status

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the following command.</td>
<td><code>rtrv-ls</code></td>
</tr>
<tr>
<td>2</td>
<td>Issue the following command.</td>
<td><code>rtrv-tbl-capacity</code></td>
</tr>
<tr>
<td>3</td>
<td>Issue the following command.</td>
<td><code>rept-stat-sys</code></td>
</tr>
<tr>
<td>4</td>
<td>If EGTT feature is on, go to Step 6. If GTT feature is on (refer to Procedure 3.2, Step 12), issue the following command. Otherwise, go to the end of this procedure.</td>
<td><code>rtrv-tt</code></td>
</tr>
<tr>
<td>5</td>
<td>Issue the following command.</td>
<td><code>rtrv-gtt:type=XX</code> (Where XX is any Type displayed in step 4)</td>
</tr>
<tr>
<td>6</td>
<td>If any LNP feature is on, issue the following command.</td>
<td><code>rtrv-lnp-serv</code></td>
</tr>
<tr>
<td>7</td>
<td>Issue the following command.</td>
<td><code>rtrv-cspc</code></td>
</tr>
<tr>
<td>8</td>
<td>Issue the following command.</td>
<td><code>rtrv-npp-srs</code></td>
</tr>
</tbody>
</table>
**3.24 Health Check Conclusion**

### Procedure 24: Return the System to Former Configuration

<table>
<thead>
<tr>
<th>Step #</th>
<th>Description</th>
<th>Command/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue the command to change the user's terminal output group configuration.</td>
<td><code>chg-trm trm:trm=P:YYY=yes,ZZZ=no</code>&lt;br&gt;(Where <code>P</code> is the location of the printer terminal recorded in Procedure 3.2, Step 4.)&lt;br&gt;(<code>YYY</code> is an output group that was recorded in Procedure 3.2, Step 4.)&lt;br&gt;(<code>ZZZ</code> is another output group that was recorded in Procedure 3.2, Step 4.)</td>
</tr>
<tr>
<td>2</td>
<td>Response to change terminal command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP X.X.X-YY.Y.Y&lt;br&gt;chg-trm trm=P:YYY=yes,ZZZ=no</code>&lt;br&gt;Command entered at terminal #X.</td>
</tr>
<tr>
<td>3</td>
<td>Issue the command to change the user's terminal output group configuration.</td>
<td><code>chg-trm trm:X:YYY=yes,ZZZ=no:TMOUT=TTT</code>&lt;br&gt;(Where <code>X</code> is the location of the user's terminal recorded in Procedure 3.2, Step 4.)&lt;br&gt;(<code>YYY</code> is an output group that was recorded in Procedure 3.2, Step 4.)&lt;br&gt;(<code>ZZZ</code> is another output group that was recorded in Procedure 3.2, Step 4.)&lt;br&gt;(<code>TTT</code> is the timeout value that was recorded in Procedure 3.2, Step 4.)</td>
</tr>
<tr>
<td>4</td>
<td>Response to change terminal command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP X.X.X-YY.Y.Y&lt;br&gt;chg-trm trm=X:YYY=yes,ZZZ=no</code>&lt;br&gt;Command entered at terminal #X.</td>
</tr>
<tr>
<td>5</td>
<td>Issue the command to cancel capture.</td>
<td><code>canc-echo:trmP</code>&lt;br&gt;(Where <code>P</code> is a terminal port that was recorded in Procedure 3.2, Step 4)</td>
</tr>
<tr>
<td>6</td>
<td>Response to cancel command is displayed.</td>
<td><code>eaglestp YY-MM-DD hh:mm:ss TTTT PPPPP X.X.X-YY.Y.Y&lt;br&gt;canc-echo:trmP</code>&lt;br&gt;Command entered at terminal #X.</td>
</tr>
<tr>
<td>7</td>
<td>All steps in this procedure were completed.</td>
<td></td>
</tr>
</tbody>
</table>
4. COMPLETION OF HEALTH CHECK

When the System Health Check has been completed, record all procedures completed, data along with the date into Table 2. Health Check Record on page 8. Contact your local Oracle Global Customer Support Center (http://www.oracle.com/support/contact.html) if any failed procedures. Be prepared to identify your Release level, which procedures failed, and at what point each procedure failed.
APPENDIX A. MY ORACLE SUPPORT


Before upgrading your system, access the My Oracle Support web portal (https://support.oracle.com) and review any Knowledge Alerts that may be related to the System Health Check or the Upgrade.

Web portal (preferred option): My Oracle Support (MOS) (https://support.oracle.com)

Phone: Contact your local Oracle Global Customer Support Center (http://www.oracle.com/support/contact.html)

Make the following selections on the Support telephone menu:

1. Select ‘2’ for New Service Request
2. Select ‘3’ for Hardware, Networking and Solaris Operating System Support
3. Select ‘1’ for Technical Issues and when talking to the agent, please indicate that you are an existing Oracle customer