
Oracle® Fusion Middleware
Using Oracle GoldenGate for Heterogeneous
Databases

18c (18.1.0)
E95982-04
October 2018

Oracle Fusion Middleware Using Oracle GoldenGate for Heterogeneous Databases, 18c (18.1.0)

E95982-04

Copyright © 2018, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corp.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Information viii

Conventions ix

Part I What is Oracle GoldenGate for Heterogeneous Databases?

Part II Using Oracle GoldenGate for DB2 LUW Databases

1 Understanding What's Supported for DB2 LUW

1.1 Supported DB2 LUW Data Types 1-1

1.2 Non-Supported DB2 LUW Data Types 1-2

1.3 Supported Objects and Operations for DB2 LUW 1-2

1.4 Non-Supported Objects and Operations for DB2 LUW 1-3

1.5 Supported Object Names 1-3

2 Preparing the System for Oracle GoldenGate

2.1 Configuring the Transaction Logs for Oracle GoldenGate 2-1

2.1.1 Retaining the Transaction Logs 2-1

2.1.2 Specifying the Archive Path 2-2

2.2 Preparing Tables for Processing 2-2

2.2.1 Disabling Triggers and Cascade Constraints 2-3

2.2.2 Assigning Row Identifiers 2-3

2.2.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to
Use 2-3

2.2.2.2 Using KEYCOLS to Specify a Custom Key 2-4

2.2.3 Preventing Key Changes 2-4

2.2.4 Enabling Change Capture 2-4

2.2.5 Maintaining Materialized Query Tables 2-5

iii

2.3 Setting the Session Character Set 2-5

2.4 Preparing for Initial Extraction 2-5

2.5 Specifying the DB2 LUW Database in Parameter Files 2-6

3 Configuring Oracle GoldenGate for DB2 LUW

3.1 What to Expect from these Instructions 3-1

3.2 Where to Get More Information 3-1

3.3 Configuring the Primary Extract 3-2

3.4 Configuring the Data Pump Extract 3-3

3.5 Configuring Replicat 3-4

3.5.1 Creating a Temporal Table 3-5

3.5.1.1 Support for Temporal Tables 3-5

3.5.1.2 Replicating with Temporal Tables 3-5

3.5.1.3 Converting 3-6

3.5.2 Creating a Checkpoint Table 3-10

3.5.3 Configuring the Replicat Parameter File 3-11

3.6 Next Steps in the Deployment 3-12

3.7 When to Start Replicating Transactional Changes 3-12

3.8 Testing Your Configuration 3-12

Part III Using Oracle GoldenGate for DB2 for z/OS

4 Understanding What's Supported for DB2 for z/OS

4.1 Supported DB2 for z/OS Data Types 4-1

4.2 Non-Supported DB2 for z/OS Data Types 4-2

4.3 Supported Objects and Operations for DB2 for z/OS 4-2

4.4 Non-Supported Objects and Operations for DB2 for z/OS 4-2

5 Preparing the DB2 for z/OS Database for Oracle GoldenGate

5.1 Preparing Tables for Processing 5-1

5.1.1 Disabling Triggers and Cascade Constraints 5-1

5.1.2 Assigning Row Identifiers 5-2

5.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to
Use 5-2

5.1.2.2 Using KEYCOLS to Specify a Custom Key 5-2

5.1.3 Handling ROWID Columns 5-2

5.2 Configuring a Database Connection 5-3

5.2.1 Setting Initialization Parameters 5-3

iv

5.2.2 Specifying the Path to the Initialization File 5-4

5.2.3 Ensuring ODBC Connection Compatibility 5-4

5.2.4 Specifying the Number of Connection Threads 5-4

5.3 Accessing Load Modules 5-5

5.4 Specifying Job Names and Owners 5-5

5.5 Assigning WLM Velocity Goals 5-5

5.6 Monitoring Processes 5-7

5.6.1 Viewing Oracle GoldenGate Messages 5-7

5.6.2 Identifying Oracle GoldenGate Processes 5-7

5.6.3 Interpreting Statistics for Update Operations 5-7

5.7 Supporting Globalization Functions 5-8

5.7.1 Replicating From a Source that Contains Both ASCII and EBCDIC 5-8

5.7.2 Specifying Multi-Byte Characters in Object Names 5-8

6 Preparing the DB2 for z/OS Transaction Logs for Oracle
GoldenGate

6.1 Making Transaction Data Available 6-1

6.1.1 Enabling Change Capture 6-1

6.1.2 Enabling Access to Log Records 6-1

6.1.3 Sizing and Retaining the Logs 6-2

6.1.4 Using Archive Logs on Tape 6-3

6.1.5 Controlling Log Flushes 6-3

Part IV Using Oracle GoldenGate with MySQL

7 Understanding What's Supported for MySQL

7.1 Character Sets in MySQL 7-1

7.2 Supported MySQL Data Types 7-2

7.2.1 Limitations and Clarifications 7-2

7.3 Supported Objects and Operations for MySQL 7-3

7.4 Non-Supported MySQL Data Types 7-4

8 Preparing and Configuring the System for Oracle GoldenGate

8.1 Ensuring Data Availability 8-1

8.2 Setting Logging Parameters 8-2

8.3 Adding Host Names 8-3

8.4 Setting the Session Character Set 8-4

8.5 Preparing Tables for Processing 8-4

v

8.5.1 Assigning Row Identifiers 8-4

8.5.1.1 How Oracle GoldenGate Determines the Kind of Row Identifier to
Use 8-4

8.5.1.2 Tables with a Primary Key Derived from a Unique Index 8-5

8.5.1.3 How to Specify Your Own Key for Oracle GoldenGate to Use 8-5

8.5.2 Limiting Row Changes in Tables That Do Not Have a Key 8-5

8.5.3 Disabling Triggers and Cascade Constraints 8-5

8.6 Changing the Log-Bin Location 8-6

8.7 Configuring Bi-Directional Replication 8-6

8.8 Oracle GoldenGate for MySQL: Remote Capture 8-7

8.9 Capturing using a MySQL Replication Slave 8-8

8.10 Other Oracle GoldenGate Parameters for MySQL 8-9

8.11 Positioning Extract to a Specific Start Point 8-10

9 Using DDL Replication

9.1 DDL Configuration Prerequisites and Considerations 9-1

9.2 Installing DDL Replication 9-2

9.3 Using the Metadata Server 9-3

9.4 Using DDL Filtering for Replication 9-3

9.5 Troubleshooting DDL Replication 9-5

9.6 Uninstalling DDL Replication 9-5

Part V Using Oracle GoldenGate for Teradata

10

Understanding What's Supported for Teradata

10.1 Supported Teradata Data Types 10-1

10.1.1 Limitations of Support for Numeric Data Types 10-2

10.1.2 Limitations of Support for Single-byte Character Data Types 10-3

10.1.3 Conditions and Limitations of Support for Multi-byte Character Data 10-3

10.1.4 Limitations of Support for Binary Data Types 10-3

10.1.5 Limitations of Support for Large Object Data Types 10-3

10.1.6 Limitations of Support for Date Data Types 10-3

10.1.7 Limitations of Support for IDENTITY Data Types 10-4

10.2 Supported Objects and Operations for Teradata 10-4

10.3 Non-Supported Operations for Teradata 10-4

vi

11

Preparing the System for Oracle GoldenGate

11.1 Preparing Tables for Processing 11-1

11.1.1 Disabling Triggers and Cascade Constraints 11-1

11.1.2 Assigning Row Identifiers 11-1

11.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier
to Use 11-2

11.1.2.2 Using KEYCOLS to Specify a Custom Key 11-2

12

Configuring Oracle GoldenGate

12.1 Configuring Oracle GoldenGate Replicat 12-1

12.2 Additional Oracle GoldenGate Configuration Guidelines 12-2

12.2.1 Handling Massive Update and Delete Operations 12-2

12.2.2 Preventing Multiple Connections 12-2

12.2.3 Performing Initial Synchronization 12-2

13

Common Maintenance Tasks

13.1 Modifying Columns of a Table 13-1

vii

Preface

This guide helps you get started with using Oracle GoldenGate on heterogeneous
database systems supported with this release.

Topics:

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
Using Oracle GoldenGate for Heterogeneous Databases is intended for DBA and
system administrators who are responsible for implementing Oracle GoldenGate and
managing the databases for an organization.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic
italic

Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by
pipe symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [option1 | option2].

Preface

ix

Part I
What is Oracle GoldenGate for
Heterogeneous Databases?

Oracle GoldenGate is a comprehensive software package for real-time data capture
and replication in heterogeneous IT environments.

The product set enables high availability solutions, real-time data integration,
transactional change data capture, data replication, transformations, and verification
between operational and analytical enterprise systems. Oracle GoldenGate 18c brings
extreme performance with simplified configuration and management, support for cloud
environments, expanded heterogeneity, and enhanced security.

You can use the following supported heterogeneous databases with Oracle
GoldenGate.

• DB2 LUW

•

• DB2 for z/OS

• MySQL

• Teradata

Note:

Oracle GoldenGate 18c (18.1.0) is not released for SQL Server and DB2 for
i. However, the documentation may include information associated with
these databases.

Each database that Oracle GoldenGate supports has it’s own requirements and
configuration. This book is divided into parts so that you can easily find information
that is relevant to your environment. See Installing Oracle GoldenGate for system
requirements and installation details for each of these databases.

Part II
Using Oracle GoldenGate for DB2 LUW
Databases

With Oracle GoldenGate for DB2 LUW, you can perform initial loads and capture
transactional data from supported DB2 LUW database versions and replicate the data
to a DB2 LUW database or other supported Oracle GoldenGate targets, such as an
Oracle Database.

Oracle GoldenGate for DB2 LUW supports data filtering, mapping, and
transformations unless noted otherwise in this documentation.

This part describes tasks for configuring and running Oracle GoldenGate for DB2
LUW.

• Understanding What's Supported for DB2 LUW
This chapter contains information on database and table features supported by
Oracle GoldenGate for DB2 LUW.

• Preparing the System for Oracle GoldenGate

• Configuring Oracle GoldenGate for DB2 LUW

1
Understanding What's Supported for DB2
LUW

This chapter contains information on database and table features supported by Oracle
GoldenGate for DB2 LUW.

Topics:

• Supported DB2 LUW Data Types

• Non-Supported DB2 LUW Data Types

• Supported Objects and Operations for DB2 LUW

• Non-Supported Objects and Operations for DB2 LUW

• Supported Object Names

1.1 Supported DB2 LUW Data Types
Oracle GoldenGate supports all DB2 LUW data types, except those listed in Non-
Supported DB2 LUW Data Types.

Limitations of Support

Oracle GoldenGate has the following limitations for supporting DB2 LUW data types:

• Oracle GoldenGate supports multi-byte character data types and multi-byte data
stored in character columns. Multi-byte data is only supported in a like-to-like
configuration. Transformation, filtering, and other types of manipulation are not
supported for multi-byte character data.

• BLOB and CLOB columns must have a LOGGED clause in their definitions.

• GRAPHIC and VARGRAPHIC columns must be in a database, where the character set
is UTF16. Any other character set causes the Oracle GoldenGate to abend.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you
should review the database documentation to determine the expected
approximations. Oracle GoldenGate rounds or truncates values that exceed the
supported precision.

• Extract fully supports the capture and apply of TIMESTAMP(0) through
TIMESTAMP(9). Extract also captures TIMESTAMP(10) through TIMESTAMP(12), but it
truncates the data to nanoseconds (maximum of nine digits of fractional time) and
issues a warning to the error log. Replicat truncates timestamp data from other
sources to nanoseconds when applying it to TIMESTAMP(10) through
TIMESTAMP(12) in a DB2 LUW target.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. Depending on the timezone,

1-1

conversion may add or subtract hours, which can cause the timestamp to exceed
the lower or upper supported limit.

• Oracle GoldenGate does not support the filtering, column mapping, or
manipulation of large objects that are larger than 4K. You can use the full Oracle
GoldenGate functionality for objects that are 4K or smaller.

• Replication of XML columns between source and target databases with the same
character set is supported. If the source and target database character sets are
different, then XML replication may fail with a database error because some
characters may not be recognized (or valid) in the target database character set.

1.2 Non-Supported DB2 LUW Data Types
The non-supported DB2 LUW data types are:

• XMLType

• DECFLOAT

• User-defined types

• Negative dates

1.3 Supported Objects and Operations for DB2 LUW
Object and operations that are supported for DB2 LUW are:

• Oracle GoldenGate Extract supports cross-endian capture where the database
and Oracle GoldenGate are running on different byte order servers. The byte order
is detected automatically for DB2 LUW version 10.5 or higher. If the DB2 database
auto-detection on the DB2 LUW 10.5 database is not required then you can
override it by specifying the TRANLOGOPTIONS MIXEDENDIAN [ON|OFF] parameter.
For DB2 LUW version 10.1, this parameter must be used in the Extract parameter
file for cross-endian capture. See TRANLOGOPTIONS in Reference for Oracle
GoldenGate.

• Oracle GoldenGate supports the maximum number of columns and column size
per table that is supported by the database.

• TRUNCATE TABLE for DB2 LUW version 9.7 and later.

• Multi Dimensional Clustered Tables (MDC) for DB2 LUW 9.5 and later.

• Materialized Query Tables. Oracle GoldenGate does not replicate the MQT itself,
but only the base tables. The target database automatically maintains the content
of the MQT based on the changes that are applied to the base tables by Replicat.

• Tables with ROW COMPRESSION. In DB2 LUW version 10.1 and later, COMPRESS YES
STATIC is supported and COMPRESS YES ADAPTIVE are supported.

• Extended row size feature is enabled by default. It is supported with a workaround
using FETCHCOLS. For any column values that are VARCHAR or VARGRAPHIC data
types and are stored out of row in the database, you must fetch these extended
rows by specifying these columns using the FETCHCOLS option in the TABLE
parameter in the extract parameter file. With this option set, when the column
values are out of row then Oracle GoldenGate will fetch its value. If the value is out
of and FETCHCOLS is not specified then Extract will abend to prevent any data loss.

Chapter 1
Non-Supported DB2 LUW Data Types

1-2

If you do not want to use this feature, set the extended_row_size parameter to
DISABLE.

• Temporal tables with DB2 LUW 10.1 FixPack 2 and greater are supported. This is
the default for Replicat.

• Limitations on Automatic Heartbeat Table support are as follows:

– Oracle GoldenGate heartbeat parameters frequency and purge frequency are
accepted in seconds and days. However, the DB2 LUW task scheduler
accepts its schedule only in cron format so the Oracle GoldenGate input value
to cron format may result in some loss of accuracy. For example:

ADD HEARTBEATTABLE, FREQUENCY 150, PURGE_FREQUENCY 20

This example sets the FREQUENCY to 150 seconds, which is converted to the
closest minute value of 2 minutes, so the heartbeat table is updated every 120
seconds instead of every 150 seconds. Setting PURGE_FREQUENCY to 20 means
that the history table is purged at midnight on every 20th day.

– The following are steps are necessary for the heartbeat scheduled tasks to
run:

1. Set the DB2_ATS_ENABLE registry variable to db2set DB2_ATS_ENABLE=YES.

2. Create the SYSTOOLSPACE tablespace if it does not already exist:

CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC
STORAGE
EXTENTSIZE 4

3. Ensure instance owner has Database administration authority (DBADM):

GRANT DBADM ON DATABASE TO instance_owner_name

1.4 Non-Supported Objects and Operations for DB2 LUW
Objects and operations for DB2 LUW that are not supported by Oracle GoldenGate
are:

• Schema, table or column names that have trailing spaces

• Multiple instances of a database

• Datalinks

• Extraction or replication of DDL (data definition language) operations

• Generated columns (GENERATE ALWAYS clause)

Note:

1.5 Supported Object Names
For a list of characters that are supported in object names, see Supported Database
Object Names in Administering Oracle GoldenGate.

Chapter 1
Non-Supported Objects and Operations for DB2 LUW

1-3

2
Preparing the System for Oracle
GoldenGate

This chapter describes how to prepare the environment to run Oracle GoldenGate on
DB2 LUW.
Topics:

• Configuring the Transaction Logs for Oracle GoldenGate

• Preparing Tables for Processing

• Setting the Session Character Set

• Preparing for Initial Extraction

• Specifying the DB2 LUW Database in Parameter Files

2.1 Configuring the Transaction Logs for Oracle GoldenGate
To capture DML operations, Oracle GoldenGatereads the DB2 LUW online logs by
default. However, it reads the archived logs if an online log is not available. To ensure
the continuity and integrity of Oracle GoldenGateprocessing, configure the logs as
follows.

• Retaining the Transaction Logs

• Specifying the Archive Path

2.1.1 Retaining the Transaction Logs
Configure the database to retain the transaction logs for roll forward recovery by
enabling one of the following parameter sets, depending on the database version.

• DB2 LUW 9.5 and later:

Set the LOGARCHMETH parameters as follows:

– Set LOGARCHMETH1 to LOGRETAIN.

– Set LOGARCHMETH2 to OFF.

Alternatively, you can use any other LOGARCHMETH options, as long as forward
recovery is enabled. For example, the following is valid:

– Set LOGARCHMETH1 to DISK.

– Set LOGARCHMETH2 to TSM.

To determine the log retention parameters:

1. Connect to the database.

db2 connect to database user username using password

2. Get the database name.

2-1

db2 list db directory

3. Get the database configuration for the database.

db2 get db cfg for database

The fields to view are:

Log retain for recovery status = RECOVERY
User exit for logging status = YES

To set the log retention parameters:

1. Issue one of the following commands.

To enable USEREXIT:

db2 update db cfg for database using USEREXIT ON

If not using USEREXIT, use this command:

db2 update db cfg for database using LOGRETAIN RECOVERY

To set LOGARCHMETH:

db2 update db cfg for database using LOGARCHMETH1 LOGRETAIN
db2 update db cfg for database using LOGARCHMETH2 OFF

2. Make a full backup of the database by issuing the following command.

db2 backup db database to device

3. Place the backup in a directory to which DB2 LUW has access rights. If you get
the following message, contact your systems administrator:

SQL2061N An attempt to access media "device" is denied.

2.1.2 Specifying the Archive Path
Set the DB2 LUW OVERFLOWLOGPATH parameter to the archive log directory. The node
attaches automatically to the path variable that you specify.

db2 connect to database
db2 update db cfg using overflowlogpath "path"

Exclude the node itself from the path. For example, if the full path to the archive log
directory is /sdb2logarch/oltpods1/archive/OLTPODS1/NODE0000, then the
OVERFLOWLOGPATH value should be specified as /sdb2logarch/oltpods1/archive/
OLTPODS1.

2.2 Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate
environment.

• Disabling Triggers and Cascade Constraints

• Assigning Row Identifiers

• Preventing Key Changes

• Enabling Change Capture

Chapter 2
Preparing Tables for Processing

2-2

• Maintaining Materialized Query Tables

2.2.1 Disabling Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on the
target tables, or alter them to ignore changes made by the Oracle GoldenGate
database user. Oracle GoldenGate replicates DML that results from a trigger or
cascade constraint. If the same trigger or constraint gets activated on the target table,
it becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

2.2.2 Assigning Row Identifiers
Oracle GoldenGate requires some form of unique row identifier on the source and
target tables to locate the correct target rows for replicated updates and deletes.

• How Oracle GoldenGate Determines the Kind of Row Identifier to Use

• Using KEYCOLS to Specify a Custom Key

2.2.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-
materialized computed column.

3. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding those that
are not supported by Oracle GoldenGate in a key or those that are excluded from
the Oracle GoldenGate configuration.

Chapter 2
Preparing Tables for Processing

2-3

Note:

If there are other, non-usable keys on a table or if there are no keys at all on
the table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of
Oracle GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

2.2.2.2 Using KEYCOLS to Specify a Custom Key
If a table does not have one of the preceding types of row identifiers, or if you prefer
those identifiers not to be used, you can define a substitute key if the table has
columns that always contain unique values. You define this substitute key by including
a KEYCOLS clause within the Extract TABLE parameter and the Replicat MAP parameter.
The specified key will override any existing primary or unique key that Oracle
GoldenGate finds.

2.2.3 Preventing Key Changes
Do not add columns to a key after Oracle GoldenGate starts extracting data from the
table. This rule applies to a primary key, a unique key, a KEYCOLS key, or an all-column
key. DB2 LUW does not supply a before image for columns that are added to a table.
If any columns in a key are updated on the source, Oracle GoldenGate needs a before
image to compare with the current values in the target table when it replicates the
update.

2.2.4 Enabling Change Capture
Configure DB2 to log data changes in the expanded format that is supplied by the DATA
CAPTURE CHANGES feature of the CREATE TABLE and ALTER TABLE commands. This
format provides Oracle GoldenGate with the entire before and after images of rows
that are changed by update statements. You can use GGSCI to issue the ALTER TABLE
command as follows.

To Enable Change Capture from GGSCI:

1. From the Oracle GoldenGate directory, run GGSCI.

2. Log on to DB2 from GGSCI as a user that has ALTER TABLE privileges. Specify the
data source name with SOURCEDB and specify the user login with USERID and
PASSWORD.

DBLOGIN SOURCEDB dsn, USERID user[, PASSWORD password]

3. Issue the following command. where owner.table is the fully qualified name of the
table. You can use a wildcard to specify multiple table names. Only the asterisk (*)
wildcard is supported for DB2 LUW.

ADD TRANDATA owner.table

ADD TRANDATA issues the following command, which includes logging the before
image of LONGVAR columns:

ALTER TABLE name DATA CAPTURE CHANGES INCLUDE LONGVAR COLUMNS;

Chapter 2
Preparing Tables for Processing

2-4

Example 2-1 To Exclude LONGVAR Logging:

To omit the INCLUDE LONGVAR COLUMNS clause from the ALTER TABLE command, use
ADD TRANDATA with the EXCLUDELONG option.

ADD TRANDATA owner.table, EXCLUDELONG

Note:

If LONGVAR columns are excluded from logging, the Oracle GoldenGate
features that require before images, such as the GETUPDATEBEFORES,
NOCOMPRESSUPDATES, and NOCOMPRESSDELETES parameters, might return
errors if tables contain those columns. For a workaround, see the
REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES
options of the TRANLOGOPTIONS parameter.

2.2.5 Maintaining Materialized Query Tables
To maintain parity between source and target materialized query tables (MQT), you
replicate the base tables, but not the MQTs. The target database maintains the MQTs
based on the changes that Replicat applies to the base tables.

The following are the rules for configuring these tables:

• Include the base tables in your TABLE and MAP statements.

• Do not include MQTs in the TABLE and MAP statements.

• Wildcards can be used in TABLE and MAP statements, even though they might
resolve MQT names along with regular table names. Oracle GoldenGate
automatically excludes MQTs from wildcarded table lists. However, any MQT that
is explicitly listed in an Extract TABLE statement by name will cause Extract to
abend.

2.3 Setting the Session Character Set
To support the conversion of character sets between the source and target databases,
make certain that the session character set is the same as the database character set.
You can set the session character set with the DB2CODEPAGE environment variable.

2.4 Preparing for Initial Extraction
During the initialization of the Oracle GoldenGate environment, you will be doing an
initial data synchronization and starting the Oracle GoldenGate processes for the first
time. In conjunction with those procedures, you will be creating process groups. To
create an Extract group, an initial start position must be established in the transaction
log. This initial read position is on a transaction boundary that is based on one of the
following:

• End of the transaction file

• A specific LRI value

The start point is specified with the BEGIN option of the ADD EXTRACT command.

Chapter 2
Setting the Session Character Set

2-5

When the Extract process starts for the first time, it captures all the transaction data
that it encounters after the specified start point, but none of the data that occurred
before that point. This can cause partial transactions to be captured if open
transactions span the start point.

To ensure initial transactional consistency:

To avoid the capture of partial transactions, initialize the Extract process at a point in
time when the database is in a paused state. DB2 LUW provides a QUIESCE command
for such a purpose. This is the only way to ensure transactional consistency.

Note:

After the Extract is past the initialization, subsequent restarts of the Extract
do not extract partial transactions, because the process uses recovery
checkpoints to mark its last read position.

To view open transactions:

IBM provides a utility called db2pd for monitoring DB2 databases and instances. You
can use it to view information about open transactions and to determine if any of them
span the start point. However, because DB2 LUW log records lack timestamps, it
might not be possible to make an accurate assessment. If possible, quiesce the
database prior to initialization of Oracle GoldenGate.

For more information on initializing the Oracle GoldenGate environment, see
Instantiating Oracle GoldenGate with an Initial Load in Administering Oracle
GoldenGate.

2.5 Specifying the DB2 LUW Database in Parameter Files
For an Oracle GoldenGate process to connect to the correct DB2 LUW database, you
must specify the name (not an alias) of the DB2 LUW database with the following
parameters:

• Specify the DB2 source database with the Extract parameter SOURCEDB.

• Specify the DB2 target database name with the Replicat parameter TARGETDB.

For more information about these parameters, see the Reference for Oracle
GoldenGate for Windows and UNIX.

Chapter 2
Specifying the DB2 LUW Database in Parameter Files

2-6

3
Configuring Oracle GoldenGate for DB2
LUW

This chapter provides an overview of the basic steps required to configure Oracle
GoldenGate for a DB2 LUW source and target database.
Topics:

• What to Expect from these Instructions

• Where to Get More Information

• Configuring the Primary Extract

• Configuring the Data Pump Extract

• Configuring Replicat

• Next Steps in the Deployment

• When to Start Replicating Transactional Changes

• Testing Your Configuration

3.1 What to Expect from these Instructions
These instructions show you how to configure basic parameter (configuration) files for
the following processes:

• A primary Extract (captures transaction data from the data source)

• A data-pump Extract (propagates the data from local storage to the target system)

• A Replicat (applies replicated data to the target database)

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• Get the basic configuration files established.

• Build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• Use copies of them to make the creation of additional parameter files faster than
starting from scratch.

3.2 Where to Get More Information
See Administering Oracle GoldenGate and Securing the Oracle GoldenGate
Environment for more information about:

• The processes and files that you are configuring

• Detailed configuration information

3-1

• Security options

• Data-integration options (filtering, mapping, conversion)

• Instructions for configuring complex topologies

• Steps to perform initial instantiation of the replication environment

3.3 Configuring the Primary Extract
These steps configure the primary Extract to capture transaction data from a source
DB2 LUW and write the data to a local trail for temporary storage.

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each
parameter statement.

Basic parameters for the primary Extract

EXTRACT finance
SOURCEDB mysource, USERIDALIAS myalias
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
TABLE hr.*;

Parameter Description

EXTRACT group group is the name of the Extract group.

SOURCEDB database,
USERIDALIAS alias

Specifies the real name of the source DB2 for i database (not an alias), plus the
alias of the database login credential of the user that is assigned to Extract. This
credential must exist in the Oracle GoldenGate credential store. For more
information, see Database User for Oracle GoldenGate Processes.

ENCRYPTTRAIL algorithm Encrypts the local trail.

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes
captured data for temporary storage.

TABLE schema.object; Specifies the database object for which to capture data.

• TABLE is a required keyword.
• schema is the schema name or a wildcarded set of schemas.
• object is the table name, or a wildcarded set of tables.
The question mark (?) wildcard is not supported for this database. Note that only
the asterisk (*) wildcard is supported for DB2 LUW.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE parameter.

For more information and for additional options that control data filtering, mapping,
and manipulation, see TABLE | MAP in Reference for Oracle GoldenGate.

Chapter 3
Configuring the Primary Extract

3-2

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI.

4. Save and close the file.

3.4 Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data
across the network to a remote trail on the target. The data pump is optional, but
recommended.

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where name is the name of the data-pump Extract.

2. Enter the data-pump Extract parameters in the order shown, starting a new line for
each parameter statement. Your input variables will be different.

Basic parameters for the data-pump Extract group:

EXTRACT extpump
SOURCEDB mypump, USERIDALIAS myalias
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE hr.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract.

SOURCEDB database,
USERIDALIAS alias

Specifies the real name of the source DB2 LUW database (not an alias), plus the alias
of the database login credential of the user that is assigned to Extract. This credential
must exist in the Oracle GoldenGate credential store.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.
• MGRPORT specifies the port number where Manager is running on the target.
• ENCRYPT specifies optional encryption of data across TCP/IP.

RMTTRAIL pathname Specifies the path name of the remote trail.

TABLE schema.object; Specifies a table or sequence, or multiple objects specified with a wildcard. In most
cases, this listing will be the same as that in the primary Extract parameter file.

• TABLE is a required keyword.
• schema is the schema name or a wildcarded set of schemas.
• object is the name of a table or a wildcarded set of tables.
Only the asterisk (*) wildcard is supported for DB2 LUW. The question mark (?)
wildcard is not supported for this database.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE parameter.

For more information and for additional TABLE options that control data filtering,
mapping, and manipulation, see TABLE | MAP in Reference for Oracle GoldenGate.

Chapter 3
Configuring the Data Pump Extract

3-3

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI.

4. Save and close the file.

3.5 Configuring Replicat
These steps configure the Replicat process in a basic way without any special
mapping or conversion of the data.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement.

REPLICAT financer
TARGETDB FINANCIAL USERID ogg, PASSWORD AACAAAAAAAAAAA, BLOWFISH ENCRYPTKEY mykey
ASSUMETARGETDEFS
-- Instead of ASSUMETARGETDEFS, use SOURCEDEFS if replicating from
-- DB2 LUW to a different database type, or from a DB2 DB2 LUW source
-- that is not identical in definitions to a target DB2 LUW database.
-- SOURCEDEFS /users/ogg/dirdef/defsfile
DISCARDFILE /users/ogg/disc
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

TARGETDB database
USERID user, PASSWORD
password, BLOWFISH
ENCRYPTKEY keyname

Specifies database connection information.

• SOURCEDB specifies the data source name (DSN) of the target DB2 LUW
database.

• USERID specifies the Replicat database user profile.
• PASSWORD specifies the user's password that was encrypted with the ENCRYPT

PASSWORD command. Enter or paste the encrypted password after the PASSWORD
keyword.

• BLOWFISH ENCRYPTKEY keyname specifies the name of the lookup key in the
local ENCKEYS file.

DECRYPTTRAIL BLOWFISH Decrypts the input trail.

SOURCEDEFS pathname |
ASSUMETARGETDEFS

Specifies how to interpret data definitions. Use SOURCEDEFS if the source and target
tables have different definitions, such as when replicating data between dissimilar IBM
databases or from an IBM database to an Oracle database. For pathname, specify
the source data-definitions file that you created with the DEFGEN utility. Use
ASSUMETARGETDEFS if the source and target tables are all DB2 LUW and have the
same definitions.

Chapter 3
Configuring Replicat

3-4

Parameter Description

MAP owner.table,
TARGET owner.table;

Specifies a relationship between a source and target table or tables. The MAP clause
specifies the source objects, and the TARGET clause specifies the target objects to
which the source objects are mapped.

• owner is the schema or library name.
• table is the name of a table or a wildcard definition for multiple tables.
Terminate the MAP statement with a semi-colon.

To exclude tables from a wildcard specification, use the MAPEXCLUDE parameter.

For more information and for additional options that control data filtering, mapping,
and manipulation, see MAP in Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended elsewhere in this
manual and any others shown in Summary of Extract Parameters.

4. Save and close the file.

• Creating a Temporal Table

• Creating a Checkpoint Table

• Configuring the Replicat Parameter File

3.5.1 Creating a Temporal Table
A temporal table is a table that maintains the history of its data and the time period
when its data are valid. Temporal tables are used in Oracle GoldenGate to keep track
of all the old rows that are deleted or updated in the table. Temporal tables are also
used to maintain the business validity of its rows and data. For example, Oracle
GoldenGate keeps track of the time period during which a row is valid. There are three
types of temporal tables, system-period, application-period, and bitemporal table.

• Support for Temporal Tables

• Replicating with Temporal Tables

• Converting

3.5.1.1 Support for Temporal Tables
• Replication between system-period temporal tables and application-period

temporal tables is not supported.

• Replication from a non-temporal table to a temporal table is not supported.

• Replication of temporal tables with the INSERTALLRECORDS parameter is not
supported.

• Bidirectional replication is supported only with the default replication.

• CDR in bidirectional replication is not supported.

• CDR in application-period temporal tables is supported.

3.5.1.2 Replicating with Temporal Tables
You can choose one of the following methods to replicate a system-period or a
bitemporal temporal table as follows:

Chapter 3
Configuring Replicat

3-5

• You can replicate a temporal table to another temporal table only; this is the
default behavior. Oracle GoldenGate will not replicate the SYSTEM_TIME period and
transaction id columns because these are automatically generated columns at the
apply side. The database manager populates the columns in the target temporal
table using the system clock time and with the default values. You can preserve
the original values these columns then use any of the following:

– Add extra timestamp columns in the target temporal table and map the
columns accordingly. The extra columns are automatically added to the
associated history table.

– Use a non-temporal table at the apply side and map the columns
appropriately. In this scenario, you will not be able to maintain the history
table.

– In a heterogeneous configuration where the source is DB2 LUW and the target
is a different database, you can either ignore the automatically generated
columns or use an appropriate column conversion function to convert the
columns value in the format that target database supports and map them to
target columns accordingly.

Or

• You can replicate a temporal table, with the associated history table, to a temporal
and history table respectively then you must specify the replicate parameter,
DBOPTIONS SUPPRESSTEMPORALUPDATES. You must specify both the temporal table
and history table to be captured in the Extract parameter file. Oracle GoldenGate
replicates the SYSTEM_TIME period and transactions id columns value. You must
ensure that the database instance has the execute permission to run the stored
procedure at the apply side.

Oracle GoldenGate cannot detect and resolve conflicts while using default replication
as SYSTEM_TIME period and transactionstart id columns remains auto generated.
These columns cannot be specified in set and where clause. If you use the
SUPPRESSTEMPORALUPDATES parameter, then Oracle GoldenGate supports CDR.

3.5.1.3 Converting
You can convert an already existing table into a temporal table, which changes the
structure of the table. This section describes how the structure of the tables changes.
The following sample existing table is converted into all three temporal tables types in
the examples in this section:.

Table policy_info
(
Policy_id char[4] not null primary key,
Coverage int not null
)
And the tables contains the following initial rows
 POLICY_ID COVERAGE
 ------------- -----------
 ABC 12000
 DEF 13000
 ERT 14000

Chapter 3
Configuring Replicat

3-6

Example 1 Converting an existing table into System-period temporal table.
You convert the sample existing table into a system-period temporal table by adding
SYSTEM_PERIOD, transaction id columns, and SYSTEM_TIME period as in the
following:

ALTER TABLE policy_info
 ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE policy_info
 ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE policy_info
 ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE policy_info ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

Then you create a history table for the new temporal table using one of the following
two methods:

• CREATE TABLE hist_policy_info
(
 policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL ,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
);
 ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;

• CREATE TABLE hist_policy_info LIKE policy_info with RESTRICT ON DROP;

The RESTRICT ON DROP clause will not allow the history table to get dropped while
dropping system-period temporal table. Otherwise the history table gets implicitly
dropped while dropping its associated temporal table. You can create a history
table without RESTRICT ON DROP. A history table cannot be explicitly dropped.

You should not use the GENERATED ALWAYS clause while creating a history table.
The primary key of the system-period temporal table also does not apply here as
there could be many updates for a particular row in the base table, which triggers
many inserts into the history table for the same set of primary keys. Apart from
these, the structure of a history table should be exactly same as its associated
system-period temporal table. The history table must have the same number and
order of columns as system-period temporal table. History table columns cannot
explicitly be added, dropped, or changed. You must associate a system-period
temporal table with its history table with the following statement:

 ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info.

The GENERATED ALWAYS columns of the table are the ones that are always
populated by the database manager so you do not have any control over these
columns. The database manager populates these columns based on the system
time.

The extra added SYSTEM_PERIOD and transaction id columns will have default
values for already existing rows as in the following:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID
--------- ----------- --------------------------------

Chapter 3
Configuring Replicat

3-7

ABC 12000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
DEF 13000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
ERT 14000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000

The associated history table is populated with the before images once you start
updating the temporal table.

Example 2 Converting an existing table into application-period temporal table.
You can convert the sample existing table into application-period temporal table by
adding time columns and a BUSINESS_TIME period as in the following:

ALTER TABLE policy_info ADD COLUMN bus_start DATE NOT NULL DEFAULT '10/10/2001'"
ALTER TABLE policy_info ADD COLUMN bus_end DATE NOT NULL DEFAULT '10/10/2002'
ALTER TABLE policy_info ADD PERIOD BUSINESS_TIME(bus_start, bus_end)

While adding time columns, you need to make sure that while entering business
validity time values of the existing time columns, the bus_start column always has
value lesser than bus_end because these columns specify the business validity of the
rows.
The new application-period temporal table will look similar to:

POLICY_ID COVERAGE BUS_START BUS_END
--------- ----------- ---------- -------------------------------
ERT 14000 10/10/2001 10/10/2002
DEF 13000 10/10/2001 10/10/2002
ABC 12000 10/10/2001 10/10/2002

Example 3 Converting an existing table into bitemporal table.
You can convert the sample existing table into bitemporal table by adding
SYSTEM_PERIOD, time columns along with the SYSTEM_TIME and BUSINESS_TIME period
as in the following:

ALTER TABLE policy_info
 ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE policy_info
 ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE policy_info
 ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE policy_info ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

ALTER TABLE policy_info ADD COLUMN bus_start DATE NOT NULL DEFAULT '10/10/2001'"
ALTER TABLE policy_info ADD COLUMN bus_end DATE NOT NULL DEFAULT '10/10/2002'
ALTER TABLE policy_info ADD PERIOD BUSINESS_TIME(bus_start, bus_end)

While adding the time columns, you must make sure that while entering business
validity time values of already existing time columns, the bus_start column always
has value lesser than bus_end because these columns specify the business validity of
the rows.
Then you create a history table for the new temporal table using one of the following
two methods:

Chapter 3
Configuring Replicat

3-8

• CREATE TABLE hist_policy_info
(
 policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL ,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
);
 ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;
CREATE TABLE hist_policy_info LIKE policy_info with RESTRICT ON DROP;

• The RESTRICT ON DROP clause will not allow the history table to get dropped while
dropping system-period temporal table. Otherwise the history table gets implicitly
dropped while dropping its associated temporal table. You can create a history
table without RESTRICT ON DROP. A history table cannot be explicitly dropped.

You should not use the GENERATED ALWAYS clause while creating a history table.
The primary key of the system-period temporal table also does not apply here as
there could be many updates for a particular row in the base table, which triggers
many inserts into the history table for the same set of primary keys. Apart from
these, the structure of a history table should be exactly same as its associated
system-period temporal table. The history table must have the same number and
order of columns as system-period temporal table. History table columns cannot
explicitly be added, dropped, or changed. You must associate a system-period
temporal table with its history table with the following statement:

 ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info.

The GENERATED ALWAYS columns of the table are the ones that are always
populated by the database manager so you do not have any control over these
columns. The database manager populates these columns based on the system
time.

The extra added SYSTEM_PERIOD and transaction id columns will have default
values for already existing rows as in the following:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID
--------- ----------- --------------------------------

ABC 12000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
DEF 13000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
ERT 14000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000

The associated history table is populated with the before images once you start
updating the temporal table.

The extra added SYSTEM_TIME period, transaction id and time columns will have
default values for already existing rows as in the following:

POLICY_ID COVERAGE SYS_START
SYS_END TS_ID BUS_START
BUS_END
--------- ----------- --------------------------------

Chapter 3
Configuring Replicat

3-9

-------------------------------- -------------------------------- ----------

ABC 12000 0001-01-01-00.00.00.000000000000 9999-12-30-00.00.00.000000000000
0001-01-01-00.00.00.000000000000 10/10/2001 10/10/2002
DEF 13000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000 10/10/2001
10/10/2002
ERT 14000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000 10/10/2001
10/10/2002

The history table is populated with the before images once user starts updating the
temporal table.

Example 4 Replication in Heterogeneous Environment.
In heterogeneous configuration in which you do not have temporal tables at the apply
side, you can only replicate the system-period and bitemporal tables though not the
associated history tables. While performing replication in this situation, you must take
care of the SYSTEM_PERIOD and transaction id columns value. These columns will have
some values that the target database might not support. You should first use the map
conversion functions to convert these values into the format that the target database
supports, and then map the columns accordingly.
For example, MySQL has a DATETIME range from 1000-01-01 00:00:00.000000 to
9999-12-31 23:59:59.999999. You cannot replicate a timestamp value of
0001-01-01-00.00.00.000000000000 to MySQL. To replicate such values, you must
convert this value into the MySQL DATETIME value 1000-01-01 00:00:00.000000, and
then map the columns. If you have the following row in the policy_info system-
period table:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID
--------- ----------- --------------------------------

ABC 12000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000

To replicate the row into MySQL, you would use the colmap() function:

map source_schema.policy_info, target target_schema.policy_info colmap
(policy_id=policy_id, coverage=coverage, sys_start= @IF((@NUMSTR(@STREXT(sys_
start,1,4))) > 1000, sys_start, '1000-01-01 00.00.00.000000'), sys_end=sys_end,
 ts_id= @IF((@NUMSTR(@STREXT(ts_id,1,4))) > 1000, ts_id, '1000-01-01
 00.00.00.000000'));

3.5.2 Creating a Checkpoint Table
The checkpoint table is a required component of Replicat.

Replicat maintains its recovery checkpoints in the checkpoint table, which is stored in
the target database. Checkpoints are written to the checkpoint table within the Replicat
transaction. Because a checkpoint either succeeds or fails with the transaction,
Replicat ensures that a transaction is only applied once, even if there is a failure of the
process or the database.

To configure a checkpoint table, see Creating a Checkpoint Table in Administering
Oracle GoldenGate.

Chapter 3
Configuring Replicat

3-10

3.5.3 Configuring the Replicat Parameter File
These steps configure the Replicat process. This process applies replicated data to a
DB2 LUW target database.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement.

Basic parameters for the Replicat group:

REPLICAT financer
TARGETDB mytarget, USERIDALIAS myalias
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

TARGETDB
database,
USERIDALIAS alias

Specifies the real name of the target DB2 LUW database (not an
alias), plus the alias of the database login credential of the user that
is assigned to Replicat. This credential must exist in the Oracle
GoldenGate credential store. For more information, see Database
User for Oracle GoldenGate Processes.

ASSUMETARGETDEFS Specifies how to interpret data definitions. ASSUMETARGETDEFS
assumes the source and target tables have identical definitions.
(This procedure assume identical definitions.)

Use the alternative SOURCEDEFS if the source and target tables have
different definitions, and create a source data-definitions file with the
DEFGEN utility.

MAP
schema.object,
TARGET
schema.object;

Specifies the relationship between a source table or multiple objects,
and the corresponding target object or objects.

• MAP specifies the source portion of the MAP statement and is a
required keyword. Specify the source objects in this clause.

• TARGET specifies the target portion of the MAP statement and is
a required keyword. Specify the target objects to which you are
mapping the source objects.

• schema is the schema name or a wildcarded set of schemas.
• object is the name of a table or a wildcarded set of objects.
Terminate this parameter statement with a semi-colon.

Note that only the asterisk (*) wildcard is supported for DB2 LUW.
The question mark (?) wildcard is not supported for this database. To
exclude objects from a wildcard specification, use the MAPEXCLUDE
parameter.

3. Enter any optional Replicat parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI.

Chapter 3
Configuring Replicat

3-11

4. Save and close the file.

3.6 Next Steps in the Deployment
Because of its flexibility, Oracle GoldenGate offers numerous features and options that
must be considered before you start any processes. To further configure Oracle
GoldenGate to suit your business needs, see the following:

• For additional configuration guidelines to achieve specific replication topologies,
see Administering Oracle GoldenGate. This guide also contains information about:

– Oracle GoldenGate architecture

– Oracle GoldenGate commands

– Oracle GoldenGate initial load methods

– Configuring security

– Using customization features

– Mapping columns that contain dissimilar data

– Data filtering and manipulation

• For syntax options and descriptions of Oracle GoldenGate GGSCI commands and
Oracle GoldenGate parameters shown in this guide, see Reference for Oracle
GoldenGate.

3.7 When to Start Replicating Transactional Changes
You must start replication when the source and target data is in a synchronized state,
where the corresponding rows in the source and target tables contain identical data
values. Unless you are starting with brand new source and target databases with no
current user activity, you will need to activate change capture and apply processes to
handle ongoing transactional changes while an initial load is being applied to the
target. This process is known as initial synchronization, or also as instantiation. The
initial load captures a point-in-time snapshot of the source data and applies it to the
target, while Oracle GoldenGate maintains any changes that are made after that point.

See Instantiating Oracle GoldenGate with an Initial Load in Administering Oracle
GoldenGate for instantiation options.

3.8 Testing Your Configuration
It is important to test your configuration in a test environment before deploying it live
on your production machines. This is especially important in an active-active or high
availability configuration, where trusted source data may be touched by the replication
processes. Testing enables you to find and resolve any configuration mistakes or data
issues without the need to interrupt user activity for re-loads on the target or other
troubleshooting activities.

Chapter 3
Next Steps in the Deployment

3-12

Part III
Using Oracle GoldenGate for DB2 for z/OS

With Oracle GoldenGate for DB2 for z/OS, you can perform initial loads and capture
transactional data from supported DB2 for z/OS versions and replicate the data to a
DB2 for z/OS database or other supported Oracle GoldenGate targets, such as an
Oracle Database.

Oracle GoldenGate for DB2 for z/OS is installed and runs remotely on Linux, zLinux,
or AIX.

Oracle GoldenGate for DB2 for z/OS supports data filtering, mapping, and
transformations unless noted otherwise in this documentation.

Topics:

• Understanding What's Supported for DB2 for z/OS
This chapter contains information on database and table features supported
byOracle GoldenGate for DB2 z/OS.

• Preparing the DB2 for z/OS Database for Oracle GoldenGate

• Preparing the DB2 for z/OS Transaction Logs for Oracle GoldenGate

4
Understanding What's Supported for DB2
for z/OS

This chapter contains information on database and table features supported byOracle
GoldenGate for DB2 z/OS.

Topics:

• Supported DB2 for z/OS Data Types

• Non-Supported DB2 for z/OS Data Types

• Supported Objects and Operations for DB2 for z/OS

• Non-Supported Objects and Operations for DB2 for z/OS

4.1 Supported DB2 for z/OS Data Types
This section lists the DB2 for z/OS data types that Oracle GoldenGate supports and
any limitations of this support.

• Oracle GoldenGate does not perform character set conversion for columns that
could contain multi-byte data. This includes GRAPHIC, VARGRAPHIC and DBCLOB data
types, as well as CHAR, VARCHAR, and CLOB for tables defined with ENCODING_SCHEME
of 'M' (multiple CCSID set or multiple encoding schemes) or 'U' (Unicode). Such
data is only supported if the source and target systems are the same CCSID.

• Oracle GoldenGate supports ASCII, EBCDIC, and Unicode data format. Oracle
GoldenGate converts between ASCII and EBCDIC data automatically. Unicode is
not converted.

• Oracle GoldenGate supports most DB2 data types except those listed in Non-
Supported DB2 for z/OS Data Types.

Limitations of Support

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you
should review the database documentation to determine the expected
approximations. Oracle GoldenGate rounds or truncates values that exceed the
supported precision.

• Oracle GoldenGate does not support the filtering, column mapping, or
manipulation of large objects greater than 4K in size. You can use the full Oracle
GoldenGate functionality for objects that are 4K or smaller.

• Oracle GoldenGate supports the default TIMESTAMP and the TIMESTAMP with
TIMEZONE to up to 9 digit fractional value, but no further.

4-1

4.2 Non-Supported DB2 for z/OS Data Types
This section lists DB2 for z/OS data types that Oracle GoldenGate does not support.
Data that is not supported may affect the integrity of the target data in relation to the
source data.

• XML

• User-defined types

• Negative dates

4.3 Supported Objects and Operations for DB2 for z/OS
This section lists the database objects and types of operations that Oracle GoldenGate
supports.

• Extraction and replication of DML operations on DB2 for z/OS tables that contain
rows of up to 512KB in length. This size exceeds the maximum row size of DB2.

• INSERT operations from the IBM LOAD utility are supported for change capture if the
utility is run with LOG YES and SHRLEVEL CHANGE, and the source tables that are
being loaded have DATA CAPTURE CHANGES enabled (required by Oracle
GoldenGate) and are specified in the Oracle GoldenGate Extract configuration.
Oracle GoldenGate also supports initial loads with the LOAD utility to instantiate
target tables during initial synchronization.

• Oracle GoldenGate supports the maximum number of columns per table, which is
supported by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the
database.

• Extraction and replication of data that is stored using DB2 data compression
(CREATE TABLESPACE COMPRESS YES).

• TRUNCATE TABLE is supported, but because this command issues row deletes to
perform the truncate, they are shown in Oracle GoldenGate statistics as such, and
not as a truncate operation. To replicate a TRUNCATE , the Replicat process uses a
DELETE operation without a WHERE clause.

• TRUNCATES are always captured from a DB2 for z/OS source, but can be ignored
by Replicat if the IGNORETRUNCATES parameter is used in the Replicat parameter
file.

• UNICODE columns in EBCDIC tables are supported.

4.4 Non-Supported Objects and Operations for DB2 for
z/OS

The following objects and operations are not supported by Oracle GoldenGate on DB2
for z/OS:

• Extraction or replication of DDL operations

• Clone tables

Chapter 4
Non-Supported DB2 for z/OS Data Types

4-2

• Data manipulation, including compression, that is performed within user-supplied
DB2 exit routines, such as:

– Date and time routines

– Edit routines (CREATE TABLE EDITPROC)

– Validation routines (CREATE TABLE VALIDPROC)

• Replicating with BATCHSQL is not fully functional for DB2 for z/OS. Non-insert
operations are not supported so any update or delete operations will cause
Replicat to drop temporarily out of BATCHSQL mode. The transactions will stop and
errors will occur.

Chapter 4
Non-Supported Objects and Operations for DB2 for z/OS

4-3

5
Preparing the DB2 for z/OS Database for
Oracle GoldenGate

Learn how to prepare your database and environment to support Oracle GoldenGate.
Topics:

• Preparing Tables for Processing

• Configuring a Database Connection

• Accessing Load Modules

• Specifying Job Names and Owners

• Assigning WLM Velocity Goals

• Monitoring Processes

• Supporting Globalization Functions

5.1 Preparing Tables for Processing
You must perform the following tasks to prepare your tables for use in an Oracle
GoldenGate environment.

• Disabling Triggers and Cascade Constraints

• Assigning Row Identifiers

• Handling ROWID Columns

5.1.1 Disabling Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on the
target tables, or alter them to ignore changes made by the Oracle GoldenGate
database user. Oracle GoldenGate replicates DML that results from a trigger or
cascade constraint. If the same trigger or constraint gets activated on the target table,
it becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

• A delete is issued for emp_src.

• It cascades a delete to salary_src.

• Oracle GoldenGate sends both deletes to the target.

• The parent delete arrives first and is applied to emp_targ.

• The parent delete cascades a delete to salary_targ.

• The cascaded delete from salary_src is applied to salary_targ.

• The row cannot be located because it was already deleted in step 5.

5-1

5.1.2 Assigning Row Identifiers
Oracle GoldenGate requires some form of unique row identifier on the source and
target tables to locate the correct target rows for replicated updates and deletes.

• How Oracle GoldenGate Determines the Kind of Row Identifier to Use

• Using KEYCOLS to Specify a Custom Key

5.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-
materialized computed column.

3. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding those that
are not supported by Oracle GoldenGate in a key or those that are excluded from
the Oracle GoldenGate configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on
the table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of
Oracle GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

5.1.2.2 Using KEYCOLS to Specify a Custom Key
If a table does not have one of the preceding types of row identifiers, or if you prefer
those identifiers not to be used, you can define a substitute key if the table has
columns that always contain unique values. You define this substitute key by including
a KEYCOLS clause within the Extract TABLE parameter and the Replicat MAP parameter.
The specified key will override any existing primary or unique key that Oracle
GoldenGate finds. For more information, see Reference for Oracle GoldenGate.

5.1.3 Handling ROWID Columns
Any attempt to insert into a target table that includes a column with a data type of
ROWID GENERATED ALWAYS (the default) will fail with the following ODBC error:

ODBC error: SQLSTATE 428C9 native database error -798. {DB2 FOR OS/390}{ODBC DRIVER}
{DSN08015} DSNT408I SQLCODE = -798, ERROR: YOU CANNOT INSERT A VALUE INTO A COLUMN
THAT IS DEFINED WITH THE OPTION GENERATED ALWAYS. COLUMN NAME ROWIDCOL.

You can do one of the following to prepare tables with ROWID columns to be processed
by Oracle GoldenGate:

Chapter 5
Preparing Tables for Processing

5-2

• Ensure that any ROWID columns in target tables are defined as GENERATED BY
DEFAULT.

• If it is not possible to change the table definition, you can work around it with the
following procedure.

To Work Around ROWID GENERATE ALWAYS:

1. For the source table, create an Extract TABLE statement, and use a COLSEXCEPT
clause in that statement that excludes the ROWID column. For example:

TABLE tab1, COLSEXCEPT (rowidcol);

The COLSEXCEPT clause excludes the ROWID column from being captured and
replicated to the target table.

2. For the target table, ensure that Replicat does not attempt to use the ROWID
column as the key. This can be done in one of the following ways:

• Specify a primary key in the target table definition.

• If a key cannot be created, create a Replicat MAP parameter for the table, and
use a KEYCOLS clause in that statement that contains any unique columns
except for the ROWID column. Replicat will use those columns as a key. For
example:

MAP tab1, TARGET tab1, KEYCOLS (num, ckey);

For more information about KEYCOLS, see Assigning Row Identifiers.

5.2 Configuring a Database Connection
This section contains instructions for setting up the Extract and Replicat connections to
a SQL Server database.

• Setting Initialization Parameters

• Specifying the Path to the Initialization File

• Ensuring ODBC Connection Compatibility

• Specifying the Number of Connection Threads

5.2.1 Setting Initialization Parameters
The following DB2 for z/OS initialization parameters apply to Oracle GoldenGate and
must be set correctly before starting Oracle GoldenGate processes.

• MVSDEFAULTSSID: set to the DB2 subsystem.

• LOCATION: set to the DB2 location name as stored in the DB2 Boot Strap Dataset.

• MVSATTACHTYPE: set to RRSAF (Recoverable Resource Manager Services
Attachment Facility) or CAF (Call Attachment Facility). IBM recommends using
RRSAF.

• MULTICONTEXT: set to 1 if using RRSAF.

• PLANNAME: set to the DB2 plan. The default plan name is DSNACLI.

Do not use the CURRENTAPPENSCH initialization parameter (keyword).

Chapter 5
Configuring a Database Connection

5-3

Note:

When using the CAF attachment type, you must use the Oracle GoldenGate
DBOPTIONS parameter with the NOCATALOGCONNECT option in the parameter file
of any Extract or Replicat process that connects to DB2. This parameter
disables the usual attempt by Oracle GoldenGate to obtain a second thread
for the DB2 catalog. Otherwise, you will receive error messages, such as:
ODBC operation failed: Couldn't connect to data source for catalog
queries.

5.2.2 Specifying the Path to the Initialization File
Specify the ODBC initialization file by setting the DSNAOINI environment variable in the
z/OS UNIX profile, as in the following example:

export DSNAOINI="/etc/odbc810.ini"

5.2.3 Ensuring ODBC Connection Compatibility
To ensure that you configure the DB2 ODBC initialization file correctly, follow the
guidelines in the DB2 UDB for z/OS ODBC Guide and Reference manual. One
important consideration is the coding of the open and close square brackets (the
[character and the] character). The square bracket characters are "variant"
characters that are encoded differently in different coded character set identifiers
(CCSID), but must be of the IBM-1047 CCSID in the ODBC initialization file. DB2
ODBC does not recognize brackets of any other CCSID. Note the following:

• The first (or open) bracket must use the hexadecimal characters X'AD' (0xAD).

• The second (or close) bracket must use the hexadecimal characters X'BD' (0xBD).

To set the correct code for square brackets, use any of the following methods.

• Use the hex command in OEDIT and change the hex code for each character
appropriately.

• Use the iconv utility to convert the ODBC initialization file. For example, to convert
from CCSID IBM-037 to IBM-1047, use the following command:

iconv -f IBM-037 -t IBM-1047 ODBC.ini > ODBC-1047.ini

mv ODBC-1047.ini ODBC.ini

• Change your terminal emulator or terminal configuration to use CCSID IBM-1047
when you create or alter the file.

5.2.4 Specifying the Number of Connection Threads
Every Oracle GoldenGate process makes a database connection. Depending on the
number of processes that you will be using and the number of other DB2 connections
that you expect, you might need to adjust the following DB2 system parameters on the
DSNTIPE DB2 Thread Management Panel:

• MAX USERS (macro DSN6SYSP CTHREAD)

Chapter 5
Configuring a Database Connection

5-4

• MAX TSO CONNECT (macro DSN6SYSP IDFORE)

• MAX BATCH CONNECT (macro DSN6SYSP IDBACK)

If using RRSAF, allow:

• Two DB2 threads per process for each of the following:

– Extract

– Replicat

– The GGSCI command DBLOGIN (logs into the database)

– DEFGEN utility (generates data definitions for column mapping)

• One extra DB2 thread for Extract for IFI calls.

• One extra DB2 thread for each SQLEXEC parameter statement that will be issued by
each Extract and Replicat process. For more information about SQLEXEC, see the
Reference for Oracle GoldenGate.

If using CAF, there can be only one thread per Oracle GoldenGate process.

5.3 Accessing Load Modules
Grant Oracle GoldenGate USS access to the SDSNLOAD system load library and to the
DSNHDECP load module. You can include the libraries in one of the following places:

• The z/OS system search order.

• The USS profile of the Oracle GoldenGate user. Use a UNIX command similar to
the following, where DSN810 is the user-assigned data set prefix from the DB2
installation.

export STEPLIB='DSN810.SDSNEXIT:DSN810.SDSNLOAD'

The preceding command will cause USS to allocate the equivalent of a STEPLIB DD
statement whenever it executes a shell command or Oracle GoldenGate process. If
using APF, all libraries in the STEPLIB concatenation must be APF-authorized.

5.4 Specifying Job Names and Owners
By default, USS sets the job name and owner of all Oracle GoldenGate processes to
that of the user who started them. You can change the job name or user by setting the
_BPX_JOBNAME and _BPX_USERID environment variables, or you can create z/OS jobs or
started-task procedures for the Oracle GoldenGate processes. To use the
environment variable _BPX_JOBNAME, at a minimum you should have read access to the
RACF FACILITY class and BPX.JOBNAME name. For more details, see Installing Oracle
GoldenGate and the IBM z/OS System Services Planning document.

5.5 Assigning WLM Velocity Goals
The user who starts the Manager process is typically the user by which other Oracle
GoldenGate processes run. Oracle GoldenGate work appears as forked child
processes of WLM subsystem type OMVS. Assign the Oracle GoldenGate processes
their Workload Manager (WLM) velocity goals based on the following guidelines.

Chapter 5
Accessing Load Modules

5-5

• Assign the Extract process that reads the transaction logs a medium velocity goal,
one that is below the velocity of the main DB2 address spaces, but above the
velocity of most online transactions, TSO/E sessions, and z/OS batch work. The
higher the velocity goal, the more processor power that Extract will receive, and
the less lag that it will experience.

• You can assign an initial-load Extract process a velocity goal, or you can treat it as
a typical DB2 batch job. For more information about the initial-load processes, see
Administering Oracle GoldenGate.

• You might need to assign the Replicat process a higher velocity goal. Although
Replicat is a typical DB2 batch application, it might require more processing power
to prevent backlogs and latency.

• You probably will run Oracle GoldenGate utilities, such as DEFGEN and LOGDUMP,
only occasionally, so you can let them perform like the other UNIX terminal-
oriented work.

• If executing stored procedures with the SQLEXEC command, make certain that they
do not become a bottleneck for Oracle GoldenGate. Their priority should be close
to that of the calling Extract or Replicat process. WLM executes them with that
priority, but the z/OS system executes them under the priority of a stored
procedure as defined by the DB2 and z/OS system programmers.

• If you run Oracle GoldenGate under the TSO/E OMVS command, the Oracle
GoldenGate processes are subject to the system and WLM limits of the TSO/E
user account, rather than those of the UNIX kernel. Very long TSO/E response
times (up to 20 seconds), often with little service consumption, can be recorded for
an OMVS user because of the way that OMVS polls for terminal input. This can
affect those WLM goals that are based on response time.

You can use multiple WLM service classes for the Oracle GoldenGate processes. The
following is an example of how to maintain relative priorities for Oracle GoldenGate
and other work, from highest priority to the lowest:

1. z/OS system processes, including the UNIX kernel and IRLM.

2. DB2 for z/OS address spaces for the primary Extract group.

3. Primary Extract group configured for online or batch change synchronization, and
any DB2 stored procedures that it calls.

4. z/OS transaction managers, such as CICS and IMS.

5. Collector (Server) for local Extract data pump, if used.

6. Local Extract data pump (reading from trail), if used.

7. Collector for remote trails (files received from a remote site). Such files include the
QSAM file created with the Extract RMTBATCH parameter on a NonStop system.

8. Online Replicat groups and any DB2 stored procedures that they call.

9. Manager process (required only for startup of Oracle GoldenGate processes and
trail cleanup).

10. GGSCI and other user UNIX and TSO/E terminal work.

11. Initial-load Extract and any DB2 stored procedures that it calls.

12. Initial-load Replicat and any DB2 stored procedures that it calls.

13. Other z/OS batch work.

Chapter 5
Assigning WLM Velocity Goals

5-6

5.6 Monitoring Processes
These sections provide information about monitoring Oracle GoldenGate with z/OS
system facilities.

• Viewing Oracle GoldenGate Messages

• Identifying Oracle GoldenGate Processes

• Interpreting Statistics for Update Operations

5.6.1 Viewing Oracle GoldenGate Messages
If the system log process (syslog daemon syslogd) is running, USS routes Oracle
GoldenGate messages to their configured destination by means of UNIX message
priority. For more information about configuring syslogd, see the z/OS IP configuration
documents and the UNIX System Services Planning document.

If syslogd is not running, Oracle GoldenGate writes its command output, status
information, and error messages to the system console. You can redirect console
messages to the Oracle GoldenGate USS session and to the Oracle GoldenGate
report files by using the following UNIX command:

export _BPXK_JOBLOG=STDERR

5.6.2 Identifying Oracle GoldenGate Processes
The system management facility (SMF) typically creates a separate accounting record
for each UNIX process, including Oracle GoldenGate processes. However, if a user
invokes the UNIX shell by using the OMVS command with the default SHAREAS option, or
if a user sets the environment variable _BPX_SHAREAS to YES , it could cause two or
more processes to run in the same address space. SMF provides process
identification only for the first process, but resource consumption is accumulated for all
processes that are running. For Oracle GoldenGate, this means that the work probably
will be recorded under the Manager process, which is named mgr.

If the DB2 accounting trace is also active to the SMF destination, DB2 will create an
SMF accounting record for each of the following Oracle GoldenGate processes:

• Extract

• Replicat

• Manager, if performing maintenance on Oracle GoldenGate tables. Examples of
Oracle GoldenGate tables are the marker table and the Replicat checkpoint table.

• GGSCI sessions that issue the Oracle GoldenGate DBLOGIN command to log into
the database.

5.6.3 Interpreting Statistics for Update Operations
The actual number of DML operations that are executed on the DB2 database might
not match the number of extracted DML operations that are reported by Oracle
GoldenGate. DB2 does not log update statements if they do not physically change a
row, so Oracle GoldenGate cannot detect them or include them in statistics.

Chapter 5
Monitoring Processes

5-7

5.7 Supporting Globalization Functions
Oracle GoldenGate provides globalization support and you should take into
consideration when using this support.

• Replicating From a Source that Contains Both ASCII and EBCDIC

• Specifying Multi-Byte Characters in Object Names

5.7.1 Replicating From a Source that Contains Both ASCII and
EBCDIC

When replicating to or from a DB2 source system to a target that has a different
character set, some consideration must be given to the encoding of the character data
on the DB2 source if it contains a mix of ASCII and EBCDIC data. Character set
conversion by any given Replicat requires source data to be in a single character set.

The source character set is specified in the trail header. Thus, the Oracle GoldenGate
trail can contain either ASCII or EBCDIC data, but not both. Unicode tables are
processed without any special configuration and are exempt from the one-character
set requirement.

With respect to a source that contains both character encoding types, you have the
following options:

• You can use one Extract for all of your tables, and have it write the character data
to the trail as either ASCII or as EBCDIC.

• You can use different Extracts: one Extract to write the ASCII character data to a
trail, and another Extract to write the EBCDIC character data to a different trail.
You then associate each trail with its own data pump process and Replicat
process, so that the two data streams are processed separately.

To output the correct character set in either of those scenarios, use the
TRAILCHARSETASCII and TRAILCHARSETEBCDIC parameters. The default is
TRAILCHARSETEBCDIC. Without these parameters, ASCII and EBCDIC data are written
to the trail as-is. When using these parameters, note the following:

• If used on a single-byte DB2 subsystem, these parameters cause Extract to
convert all of the character data to either the ASCII or EBCDIC single-byte CCSID
of the subsystem to which Extract is connected, depending on which parameter is
used (except for Unicode, which is processed as-is).

• If used on a multi-byte DB2 subsystem, these parameters cause Extract to capture
only ASCII or EBCDIC tables (and Unicode). Character data is written in either the
ASCII or EBCDIC mixed CCSID (depending on the parameter used) of the DB2
z/OS subsystem to which Extract is connected.

5.7.2 Specifying Multi-Byte Characters in Object Names
If the name of a schema, table, column, or stored procedure in a parameter file
contains a multi-byte character, the name must be double-quoted. For more
information about specifying object names, see Administering Oracle GoldenGate.

Chapter 5
Supporting Globalization Functions

5-8

6
Preparing the DB2 for z/OS Transaction
Logs for Oracle GoldenGate

Learn how to configure the DB2 transaction logging to support data capture by Oracle
GoldenGate Extract.
Topics:

• Making Transaction Data Available

6.1 Making Transaction Data Available
Oracle GoldenGate can extract DB2 transaction data from the active and archived
logs. Follow these guidelines to configure the logs so that Extract can capture data.

• Enabling Change Capture

• Enabling Access to Log Records

• Sizing and Retaining the Logs

• Using Archive Logs on Tape

• Controlling Log Flushes

6.1.1 Enabling Change Capture
Follow these steps to configure DB2 to log data changes in the expanded format that
is supplied by the DATA CAPTURE CHANGES feature of the CREATE TABLE and ALTER
TABLE commands. This format provides Oracle GoldenGate with the entire before and
after images of rows that are changed with update statements.

1. From the Oracle GoldenGate directory, run GGSCI.

2. Log on to DB2 from GGSCI as a user that has ALTER TABLE privileges.

DBLOGIN SOURCEDB DSN, USERID user[, PASSWORD password][, encryption_options]

3. Issue the following command. where table is the fully qualified name of the table.
You can use a wildcard to specify multiple table names but not owner names.

ADD TRANDATA table

By default, ADD TRANDATA issues the following command:

ALTER TABLE name DATA CAPTURE CHANGES;

6.1.2 Enabling Access to Log Records
Activate DB2 Monitor Trace Class 1 ("TRACE(MONITOR) CLASS(1) ") so that DB2 allows
Extract to read the active log. The default destination of OPX is sufficient, because
Oracle GoldenGate does not use a destination.

6-1

To Start the Trace Manually

1. Log on to DB2 as a DB2 user who has the TRACE privilege or at least SYSOPR
authority.

2. Issue the following command:

start trace(monitor) class(1) scope(group)

To Start the Trace Automatically When DB2 is Started

Do either of the following:

• Set MONITOR TRACE to "YES" on the DSNTIPN installation tracing panel.

• Set 'DSN6SYSP MON=YES ' in the DSNTIJUZ installation job, as described in the DB2
UDB Installation Guide.

Note:

The primary authorization ID, or one of the secondary authorization IDs, of
the ODBC plan executor also must have the MONITOR2 privilege.

6.1.3 Sizing and Retaining the Logs
When tables are defined with DATA CAPTURE CHANGES, more data is logged than when
they are defined with DATA CAPTURE NONE . If any of the following is true, you might
need to increase the number and size of the active and archived logs.

• Your applications generate large amounts of DB2 data.

• Your applications have infrequent commits.

• You expect to stop Extract for long periods of time.

• Your network is unreliable or slow.

To control log retention, use the DSN6LOGP MAXARCH system parameter in the DSNTIJUZ
installation job.

Retain enough log data so that Extract can start again from its checkpoints after you
stop it or after an unplanned outage. Extract must have access to the log that contains
the start of the oldest uncommitted unit of work, and all logs thereafter.

If data that Extract needs during processing was not retained, either in online or
archived logs, one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available
(and accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

Chapter 6
Making Transaction Data Available

6-2

Note:

The IBM documentation makes recommendations for improving the
performance of log reads. In particular, you can use large log output buffers,
large active logs, and make archives to disk.

6.1.4 Using Archive Logs on Tape
Oracle GoldenGate can read DB2 archive logs on tape, but it will degrade
performance. For example, DB2 reserves taped archives for a single recovery task.
Therefore, Extract would not be able to read an archive tape that is being used to
recover a table until the recovery is finished. You could use DFHSM or an equivalent
tools to move the archive logs in a seamless manner between online DASD storage
and tape, but Extract will have to wait until the transfer is finished. Delays in Extract
processing increase the latency between source and target data.

6.1.5 Controlling Log Flushes
When reading the transaction log, Extract does not process a transaction until it
captures the commit record. If the commit record is on a data block that is not full, it
cannot be captured until more log activity is generated to complete the block. The API
that is used by Extract to read the logs only retrieves full physical data blocks.

A delay in receiving blocks that contain commits can cause latency between the
source and target data. If the applications are not generating enough log records to fill
a block, Extract generates its own log records by issuing SAVEPOINT and COMMIT
statements, until the block fills up one way or the other and is released.

In a data sharing group, each API call causes DB2 to flush the data blocks of all active
members, eliminating the need for Extract to perform flushes.

To prevent Extract from performing flushes, use the Extract parameter
TRANLOGOPTIONS with the NOFLUSH option.

Chapter 6
Making Transaction Data Available

6-3

Part IV
Using Oracle GoldenGate with MySQL

Oracle GoldenGate for MySQL supports replication from a MySQL source database to
a MySQL target database or to a supported database of another type to perform an
initial load or change data replication.

This part describes tasks for configuring and running Oracle GoldenGate on a MySQL
database.

Topics:

• Understanding What's Supported for MySQL
This chapter contains information on database and table features supported by
Oracle GoldenGate.

• Preparing and Configuring the System for Oracle GoldenGate

• Using DDL Replication

7
Understanding What's Supported for
MySQL

This chapter contains information on database and table features supported by Oracle
GoldenGate.

Topics:

• Character Sets in MySQL

• Supported MySQL Data Types

• Supported Objects and Operations for MySQL

• Non-Supported MySQL Data Types

7.1 Character Sets in MySQL
MySQL provides a facility that allows users to specify different character sets at
different levels.

Level Example

Database
create database test charset utf8;

Table
create table test(id int, name char(100)) charset utf8;

Column
create table test (id int, name1 char(100) charset gbk, name2 char(100)
charset utf8));

Limitations of Support

• When you specify the character set of your database as utf8mb4/utf8, the default
collation is utf8mb4_unicode_ci/utf8_general_ci. If you specify
collation_server=utf8mb4_bin, the database interprets the data as binary. For
example, specifying the CHAR column length as four means that the byte length
returned is 16 (for utf8mb4) though when you try to insert data more than four
bytes the target database warns that the data is too long. This is the limitation of
database so Oracle GoldenGate does not support binary collation. To overcome
this issue, specify collation_server=utf8mb4_bin when the character set is
utf8mb4 and collation_server=utf8_bin for utf8.

• The following character sets are not supported:

armscii8

keybcs2

utf16le

geostd8

7-1

7.2 Supported MySQL Data Types
MySQL supports the following data types:

• CHAR

• VARCHAR

• INT

• TINYINT

• SMALL INT

• MEDIUM INT

• BIG INT

• DECIMAL

• FLOAT

• DOUBLE

• DATE

• TIME

• YEAR

• DATETIME

• TIMESTAMP

• BINARY

• VARBINARY

• TEXT

• TINYTEXT

• MEDIUMTEXT

• LONGTEXT

• BLOB

• TINYBLOB

• MEDIUMBLOB

• LONGBLOB

• ENUM

• BIT(M)

• Limitations and Clarifications

7.2.1 Limitations and Clarifications
When running Oracle GoldenGate for MySQL, be aware of the following:

• Oracle GoldenGate does not support BLOB or TEXT types when used as a primary
key.

Chapter 7
Supported MySQL Data Types

7-2

• Oracle GoldenGate supports UTF8 and UCS2 character sets. UTF8 data is
converted to UTF16 by Oracle GoldenGate before writing it to the trail.

• UTF32 is not supported by Oracle GoldenGate.

• Oracle GoldenGate supports a TIME type range from 00:00:00 to 23:59:59.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. Depending on the time zone,
conversion may add or subtract hours, which can cause the timestamp to exceed
the lower or upper supported limit.

• Oracle GoldenGate does not support negative dates.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you
should review the database documentation to determine the expected
approximations. Oracle GoldenGate rounds or truncates values that exceed the
supported precision.

• When you use ENUM type in non-strict sql_mode, the non-strict sql_mode does not
prevent you from entering an invalid ENUM value and an error will be returned. To
avoid this situation, do one of the following:

– Use sql_mode as STRICT and restart Extract. This prevents users from entering
invalid values for any of the data types. An IE user can only enter valid values
for those data types.

– Continue using non-strict sql_mode, but do not use ENUM data types.

– Continue using non-strict sql_mode and use ENUM data types with valid values
in the database. If you specify invalid values, the database will silently accept
them and Extract will abend.

• To preserve transaction boundaries for a MySQL target, create or alter the target
tables to the InnoDB transactional database engine instead of the MyISAM engine.
MyISAM will cause Replicat records to be applied as they are received, which
does not guarantee transaction integrity even with auto-commit turned off. You
cannot roll back a transaction with MyISAM.

• Extraction and replication from and to views is not supported.

• Transactions applied by the slave are logged into the relay logs and not into the
slave's binlog. If you want a slave to write transactions the binlog that it receives
from the master , you need to start the replication slave with the log slave-updates
option as 1 in my.cnf. This is in addition to the other binary logging parameters.
After the master's transactions are in the slave's binlog, you can then setup a
regular capture on the slave to capture and process the slave's binlog.

7.3 Supported Objects and Operations for MySQL
Oracle GoldenGate for MySQL supports the following objects and operations:

• Basic extraction and replication of DDL (data definition language) operations for
MySQL 5.7.10 and later. Only the CREATE TABLE, ALTER TABLE, and DROP TABLE
operations are supported.

• Oracle GoldenGate supports the extraction and replication of transactional tables.

Chapter 7
Supported Objects and Operations for MySQL

7-3

• Oracle GoldenGate supports transactional tables up to the full row size and
maximum number of columns that are supported by MySQL and the database
storage engine that is being used. InnoDB supports up to 1017 columns.

• Oracle GoldenGate supports the AUTO_INCREMENT column attribute. The increment
value is captured from the binary log by Extract and applied to the target table in a
Replicat insert operation.

• Oracle GoldenGate supports the following DML operations on source and target
database transactional tables:

– Insert operation

– Update operation (compressed included)

– Delete operation (compressed included); cascade delete queries result in the
deletion of the child of the parent operation

– Truncate operation

• Oracle GoldenGate can operate concurrently with MySQL native replication.

• Oracle GoldenGate supports the DYNSQL feature for MySQL.

Note:

XA transactions are not supported for capture and any XA transactions
logged in binlog cause Extract to abend. So, you must not use XA
transactions against a database that Extract is configured to capture.
If XA transactions are being used for databases that are not configured
for Oracle GoldenGate capture, then exclude those databases from
logging into MySQL binary logs by using the parameter binlog-ignore-
db in the MySQL server configuration file.

Limitations on Automatic Heartbeat Table support are as follows:

– Ensure that the database in which the heartbeat table is to be created already
exists to avoid errors when adding the heartbeat table.

– In the heartbeat history lag view, the information in fields like
heartbeat_received_ts, incoming_heartbeat_age, and
outgoing_heartbeat_age are shown with respect to the system time. You
should ensure that the operating system time is setup with the correct and
current time zone information.

7.4 Non-Supported MySQL Data Types
Oracle GoldenGate for MySQL does not support the following data types:

XML, SET, all spatial types (Geometry and so on), JSON, Interval.

Chapter 7
Non-Supported MySQL Data Types

7-4

Note:

Extract abends if it is configured to capture from tables that contain any of
the unsupported data types, so ensure that Extract is not configured to
capture from tables containing columns of unsupported data types.

Chapter 7
Non-Supported MySQL Data Types

7-5

8
Preparing and Configuring the System for
Oracle GoldenGate

Learn about how to prepare the system for running Oracle GoldenGate and how to
configure it with your MySQL database.
Topics:

• Ensuring Data Availability

• Setting Logging Parameters

• Adding Host Names

• Setting the Session Character Set

• Preparing Tables for Processing

• Changing the Log-Bin Location

• Configuring Bi-Directional Replication

• Oracle GoldenGate for MySQL: Remote Capture

• Capturing using a MySQL Replication Slave

• Other Oracle GoldenGate Parameters for MySQL

• Positioning Extract to a Specific Start Point

8.1 Ensuring Data Availability
Retain enough binary log data so that if you stop Extract or there is an unplanned
outage, Extract can start again from its checkpoints. Extract must have access to the
binary log that contains the start of the oldest uncommitted unit of work, and all binary
logs thereafter. The recommended retention period is at least 24 hours worth of
transaction data, including both active and archived information. You might need to do
some testing to determine the best retention time given your data volume and
business requirements.

If data that Extract needs during processing was not retained, either in active or
backup logs, one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which binary log data is
available (and accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

To determine where the Extract checkpoints are, use the INFO EXTRACT command. For
more information, see INFO EXTRACT in Reference for Oracle GoldenGate

8-1

8.2 Setting Logging Parameters
To capture from the MySQL transaction logs, the Oracle GoldenGate Extract process
must be able to find the index file. index file in turn contains the paths of all binary log
files.

Note:

Extract expects that all of the table columns are in the binary log. As a result,
only binlog_row_image set as full is supported and this is the default.
Other values of binlog_row_image are not supported.

In MySQL 5.7, the server_id option must be specified along with log-bin, otherwise
the server will not start. For MySQL 8.0, the server_id is enabled by default.

Extract checks the following parameter settings to get this index file path:

1. Extract TRANLOGOPTIONS parameter with the ALTLOGDEST option: If this parameter
specifies a location for the log index file, Extract accepts this location over any
default that is specified in the MySQL Server configuration file. When ALTLOGDEST
is used, the binary log index file must also be stored in the specified directory. This
parameter should be used if the MySQL configuration file does not specify the full
index file path name, specifies an incorrect location, or if there are multiple
installations of MySQL on the same machine

To specify the index file path with TRANLOGOPTIONS with ALTLOGDEST, use the
following command format on Windows:

TRANLOGOPTIONS ALTLOGDEST "C:\Program Files\MySQL\logs\binlog.index"

On Linux, use this format:

TRANLOGOPTIONS ALTLOGDEST "/mnt/rdbms/mysql/data/logs/binlog.index"

To capture from a remote server or in case of remote capture, you only need to
specify the REMOTE option instead of the index file path on the remote server. For
remote capture on both Windows and Linux, specify the following in the Extract
parameter file:

TRANLOGOPTIONS ALTLOGDEST REMOTE

2. The MySQL Server configuration file: The configuration file stores default startup
options for the MySQL server and clients. On Windows, the name of the
configuration file is my.ini. On other platforms, it is my.cnf. In the absence of
TRANLOGOPTIONS with ALTLOGDEST, Extract gets information about the location of
the log files from the configuration file. However, even with ALTLOGDEST, these
Extract parameters must be set correctly:

• binlog-ignore-db=oggddl: This prevents DDL logging history table entries in
the binlog and is set in the my.cnf or my.ini file.

• log-bin: This parameter is used to enable binary logging. This parameter also
specifies the location of the binary log index file and is a required parameter

Chapter 8
Setting Logging Parameters

8-2

for Oracle GoldenGate, even if ALTLOGDEST is used. If log-bin is not specified,
binary logging will be disabled and Extract returns an error.

• log-bin-index: This parameter specifies the location of the binary log index. If
it is not used, Extract assumes that the index file is in the same location as the
log files. If this parameter is used and specifies a different directory from the
one that contains the binary logs, the binary logs must not be moved once
Extract is started.

• max_binlog_size: This parameter specifies the size, in bytes, of the binary log
file.

Note:

The server creates a new binary log file automatically when the size
of the current log reaches the max_binlog_size value, unless it must
finish recording a transaction before rolling over to a new file.

• binlog_format: This parameter sets the format of the logs. It must be set to
the value of ROW, which directs the database to log DML statements in binary
format. Any other log format (MIXED or STATEMENT) causes Extract to abend.

Note:

MySQL binary logging does not allow logging to be enabled or
disabled for specific tables. It applies globally to all tables in the
database.

To locate the configuration file, Extract checks the MYSQL_HOME environment
variable: If MYSQL_HOME is set, Extract uses the configuration file in the specified
directory. If MYSQL_HOME is not set, Extract queries the
information_schema.global_variables table to determine the MySQL
installation directory. If a configuration file exists in that directory, Extract uses it.

3. For MariaDB version 10.2 and later, Oracle GoldenGate works in the same way as
for MySQL but a new variable needs to be configured in the my.cnf or my.ini file.
The variable that needs to be added is "binlog-annotate-row-events=OFF".
Restart MariaDB after configuring this variable and then start the Extract process.

8.3 Adding Host Names
Oracle GoldenGate gets the name of the database it is supposed to connect to from
the SOURCEDB parameter. A successful connection depends on the localhost entry
being properly configured in the system host file. To avoid issues that arise from
improper local host configuration, you can use SOURCEDB in the following format:

SOURCEDB dbname@hostname:port, USERID mysqluser, PASSWORD welcome

The dbname is the name of the MySQL instance,hostname is the name or IP address,
port is the port number of the MySQL instance. If using an unqualified host name, that
name must be properly configured in the DNS database. Otherwise, use the fully
qualified host name, for example myhost.company.com.

Chapter 8
Adding Host Names

8-3

8.4 Setting the Session Character Set
The GGSCI, Extract and Replicat processes use a session character set when
connecting to the database. For MySQL, the session character set is taken from the
SESSIONCHARSET option of SOURCEDB and TARGETDB. Make certain you specify a session
character set in one of these ways when you configure Oracle GoldenGate.

8.5 Preparing Tables for Processing
This section describes how to prepare the tables for processing. Table preparation
requires these tasks:

• Assigning Row Identifiers

• Limiting Row Changes in Tables That Do Not Have a Key

• Disabling Triggers and Cascade Constraints

8.5.1 Assigning Row Identifiers
Oracle GoldenGate requires some form of unique row identifier on the source and
target tables to locate the correct target rows for replicated updates and deletes.

• How Oracle GoldenGate Determines the Kind of Row Identifier to Use

• Tables with a Primary Key Derived from a Unique Index

• How to Specify Your Own Key for Oracle GoldenGate to Use

8.5.1.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-
materialized computed column.

3. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding those that
are not supported by Oracle GoldenGate in a key or those that are excluded from
the Oracle GoldenGate configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all
on the table, Oracle GoldenGate logs an appropriate message to the
report file. Constructing a key from all of the columns impedes the
performance of Oracle GoldenGate on the source system. On the target,
this key causes Replicat to use a larger, less efficient WHERE clause.

Chapter 8
Setting the Session Character Set

8-4

8.5.1.2 Tables with a Primary Key Derived from a Unique Index
In the absence of a primary key on a table, MySQL will promote a unique index to
primary key if the indexed column is NOT NULL. If there are more than one of these not-
null indexes, the first one that was created becomes the primary key. To avoid
Replicat errors, create these indexes in the same order on the source and target
tables.

For example, assume that source and target tables named ggvam.emp each have
columns named first, middle, and last, and all are defined as NOT NULL. If you create
unique indexes in the following order, Oracle GoldenGate will abend on the target
because the table definitions do not match.

Source:

mysql> create unique index uq1 on ggvam.emp(first);
mysql> create unique index uq2 on ggvam.emp(middle);
mysql> create unique index uq3 on ggvam.emp(last);

Target:

mysql> create unique index uq1 on ggvam.emp(last);
mysql> create unique index uq2 on ggvam.emp(first);
mysql> create unique index uq3 on ggvam.emp(middle);

The result of this sequence is that MySQL promotes the index on the source "first"
column to primary key, and it promotes the index on the target "last" column to primary
key. Oracle GoldenGate will select the primary keys as identifiers when it builds its
metadata record, and the metadata will not match. To avoid this error, decide which
column you want to promote to primary key, and create that index first on the source
and target.

8.5.1.3 How to Specify Your Own Key for Oracle GoldenGate to Use
If a table does not have one of the preceding types of row identifiers, or if you prefer
those identifiers not to be used, you can define a substitute key if the table has
columns that always contain unique values. You define this substitute key by including
a KEYCOLS clause within the Extract TABLE parameter and the Replicat MAP parameter.
The specified key will override any existing primary or unique key that Oracle
GoldenGate finds.

8.5.2 Limiting Row Changes in Tables That Do Not Have a Key
If a target table does not have a primary key or a unique key, duplicate rows can exist.
In this case, Oracle GoldenGate could update or delete too many target rows, causing
the source and target data to go out of synchronization without error messages to alert
you. To limit the number of rows that are updated, use the DBOPTIONS parameter with
the LIMITROWS option in the Replicat parameter file. LIMITROWS can increase the
performance of Oracle GoldenGate on the target system because only one row is
processed.

8.5.3 Disabling Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on the
target tables, or alter them to ignore changes made by the Oracle GoldenGate

Chapter 8
Preparing Tables for Processing

8-5

database user. Oracle GoldenGate replicates DML that results from a trigger or
cascade constraint. If the same trigger or constraint gets activated on the target table,
it becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

8.6 Changing the Log-Bin Location
Modifying the binary log location by using the log-bin variable in the MySQL
configuration file might result in two different path entries inside the index file, which
could result in errors. To avoid any potential errors, change the log-bin location by
doing the following:

1. Stop any new DML operations.

2. Let the extract finish processing all of the existing binary logs. You can verify this
by noting when the checkpoint position reaches the offset of the last log.

3. After Extract finishes processing the data, stop the Extract group and, if
necessary, back up the binary logs.

4. Stop the MySQL database.

5. Modify the log-bin path for the new location.

6. Start the MySQL database.

7. To clean the old log name entries from index file, use flush master or reset
master (based on your MySQL version).

8. Start Extract.

8.7 Configuring Bi-Directional Replication
In a bi-directional configuration, there are Extract and Replicat processes on both the
source and target systems to support the replication of transactional changes on each
system to the other system. To support this configuration, each Extract must be able to
filter the transactions applied by the local Replicat, so that they are not recaptured and
sent back to their source in a continuous loop. Additionally, AUTO_INCREMENT columns
must be set so that there is no conflict between the values on each system.

1. Configure Oracle GoldenGate for high availability or active-active replication
according to the instructions in the Overview of Replicat in Administering Oracle
GoldenGate

Chapter 8
Changing the Log-Bin Location

8-6

2. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the
following steps on each MySQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process See Overview of Replicat in
Administering Oracle GoldenGate.

• Specify the name of the checkpoint table with the FILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process
will ignore transactions that end with an operation to the specified table, which
should only be those of Replicat.

Note:

Although optional for other supported databases as a means of
enhancing recovery, the use of a checkpoint table is required for
MySQL when using bi-directional replication (and likewise, will
enhance recovery).

3. Edit the MySQL server configuration file to set the auto_increment_increment
and auto_increment_offset parameters to avoid discrepancies that could be
caused by the bi-directional operations. The following illustrates these parameters,
assuming two servers: ServerA and ServerB.

ServerA:

auto-increment-increment = 2
auto-increment-offset = 1

ServerB:

auto-increment-increment = 2
auto-increment-offset = 2

8.8 Oracle GoldenGate for MySQL: Remote Capture
Oracle GoldenGate’s remote capture for MySQL is used to capture transaction log
data from a MySQL database located remotely to the Oracle GoldenGate installation.

Database Server Configuration

For remote capture to work, configure the MySQL server as follows:

1. Grant access permissions to the Oracle GoldenGate remote capture user.

Run the following MySQL commands to create and grant permissions to the
remote user on MySQL Server.

mysql > CREATE USER 'username'@'host' IDENTIFIED BY '<Password>';
mysql > GRANT ALL PRIVILEGES ON *.* TO 'username'@'host’ WITH GRANT
OPTION;
mysql > FLUSH PRIVILEGES;

Chapter 8
Oracle GoldenGate for MySQL: Remote Capture

8-7

2. The server_id value of the remote MySQL Server should be greater than 0. This
value can be verified by issuing the following command on the MySQL remote
server:

mysql > show variables like ‘server_id’;

If the server_id value is 0, modify the my.cnf configuration file to set to a value
greater than 0.

Oracle GoldenGate Configuration

Oracle GoldenGate configuration has the following steps:

1. Provide remote MySQL server’s connection details in the connection parameters
of capture .prm file.

SOURCEDB remotedb@mysqlserver.company.com, USERID remote, PASSWORD
welcome

2. In the capture parameter file, specify the following:

TRANLOGOPTIONS ALTLOGDEST REMOTE

Limitations of Oracle GoldenGate Remote Capture for MySQL

Co-existence of Oracle GoldenGate for MySQL remote capture with the MySQL’s
native replication slave is supported with following conditions and limitations:

• The native replication slave should be assigned a different server_id than the
currently running slaves. The slave server_id values can be seen using the
following MySQL command on the master server.

mysql> show slave hosts;

– If the Oracle GoldenGate capture abends with error "A slave with the same
server_uuid or server_id as this slave has connected to the
master", then change the capture's name and restart the capture.

– If the native replication slave dies with the error "A slave with the same
server_uuid or server_id as this slave has connected to the
master", then change the native replication slave’s server_id and restart it.

• DDL replication is not supported for the remote capture.

• Remote capture is supported only on the Linux 64-bit platform and not on
Windows. But OGG remote capture on Linux can capture from the MySQL server
running on remote Windows machine.

8.9 Capturing using a MySQL Replication Slave
You can configure a MySQL replication slave to capture the master's binary log events
from the slave.

Typically, the transactions applied by the slave are logged into the relay logs and not
into the slave's binlog. For the slave to write transactions in its binlog, that it receives

Chapter 8
Capturing using a MySQL Replication Slave

8-8

from the master , you must start the replication slave with the log-slave-updates
option as 1 in my.cnf in conjunction with the other binary logging parameters for
Oracle GoldenGate. After the master's transactions are in the slave's binlog , you can
set up a regular Oracle GoldenGate capture on the slave to capture and process the
slave's binlog.

8.10 Other Oracle GoldenGate Parameters for MySQL
The following parameters may be of use in MySQL installations, and might be required
if non-default settings are used for the MySQL database. Other Oracle GoldenGate
parameters will be required in addition to these, depending on your intended business
use and configuration.

Parameter Description

DBOPTIONS with
CONNECTIONPORT
port_number

Required to specify to the VAM the TCP/IP connection port
number of the MySQL instance to which an Oracle GoldenGate
process must connect if MySQL is not running on the default of
3306.

DBOPTIONS CONNECTIONPORT 3307

DBOPTIONS with HOST
host_id

Specifies the DNS name or IP address of the system hosting
MySQL to which Replicat must connect.

DBOPTIONS with
ALLOWLOBDATATRUNCATE

Prevents Replicat from abending when replicated LOB data is
too large for a target MySQL CHAR, VARCHAR, BINARY or
VARBINARY column.

SOURCEDB with USERID
and PASSWORD

Specifies database connection information consisting of the
database, user name and password to use by an Oracle
GoldenGate process that connects to a MySQL database. If
MySQL is not running on the default port of 3306, you must
specify a complete connection string that includes the port
number: SOURCEDB dbname@hostname:port, USERID user,
PASSWORD password.Example:

SOURCEDB mydb@mymachine:3307, USERID myuser,
PASSWORD mypassword

If you are not running the MySQL database on port 3306, you
must also specify the connection port of the MySQL database in
the DBLOGIN command when issuing commands that affect the
database through GGSCI:

DBLOGIN SOURCEDB dbname@hostname:port, USERID user,
PASSWORD password

For example:

GGSCI> DBLOGIN SOURCEDB mydb@mymachine:3307, USERID
myuser, PASSWORD mypassword

Chapter 8
Other Oracle GoldenGate Parameters for MySQL

8-9

Parameter Description

SQLEXEC To enable Replicat to bypass the MySQL connection timeout,
configure the following command in a SQLEXEC statement in the
Replicat parameter file.

SQLEXEC "select CURRENT_TIME();" EVERY n MINUTES

Where: n is the maximum interval after which you want Replicat
to reconnect. The recommended connection timeout 31536000
seconds (365 days).

8.11 Positioning Extract to a Specific Start Point
You can position the ADD EXTRACT and ALTER EXTRACT commands to a specific start
point in the transaction logs with the following command.

{ADD | ALTER EXTRACT} group, VAM, LOGNUM log_num, LOGPOS log_pos

• group is the name of the Oracle GoldenGate Extract group for which the start
position is required.

• log_num is the log file number. For example, if the required log file name is test.
000034, this value is 34. Extract will search for this log file.

• log_pos is an event offset value within the log file that identifies a specific
transaction record. Event offset values are stored in the header section of a log
record. To position at the beginning of a binlog file, set the log_pos as 4. The
log_pos 0 or 1 are not valid offsets to start reading and processing.

In MySQL logs, an event offset value can be unique only within a given binary file. The
combination of the position value and a log number will uniquely identify a transaction
record and cannot exceed a length of 37. Transactional records available after this
position within the specified log will be captured by Extract. In addition, you can
position an Extract using a timestamp.

Chapter 8
Positioning Extract to a Specific Start Point

8-10

9
Using DDL Replication

Learn how to install, use, configure, and remove DDL replication.
Data Definition Language (DDL) statements (operations) are used to define MySQL
database structures or schema. You can use these DDL statements for data
replication between MySQL source and target databases. MySQL DDL specifics are
found in the MySQL documentation at https://dev.mysql.com/doc/.

Topics:

• DDL Configuration Prerequisites and Considerations

• Installing DDL Replication

• Using the Metadata Server

• Using DDL Filtering for Replication

• Troubleshooting DDL Replication

• Uninstalling DDL Replication

9.1 DDL Configuration Prerequisites and Considerations
The prerequisites for configuring DDL replication are as follows:

• DDL replication is supported for MySQL 5.7.10 and greater.

• Bidirectional filtering for DDL replication is not supported.

• Remote capture implementation doesn’t support DDL replication.

• Oracle GoldenGate DDL replication uses two plug-ins as a shared library,
ddl_rewriter and ddl_metadata, which must be installed on your MySQL server
before Oracle GoldenGate replication starts.

• The standalone application, Oracle GoldenGate metadata_server, must be
running to capture the DDL metadata.

• The history table under the new oggddl database (oggddl.history). This
metadata history table is used to store and retrieve the DDL metadata history. The
history table records must be ignored from being logged into the binary log so you
must specify binlog-ignore-db=oggddl in the my.cnf file.

• You should not manually drop the oggddl database or the history table because
all DDL statements that run after this event will be lost.

• You should not stop the metadata_server during DDL capture as all the DDL
statements that run after this event will be lost.

• You should not manually remove the ddl_rewriter and the ddl_metadata plugins
during DDL capture because all DDL statements that run after this event will be
lost.

9-1

https://dev.mysql.com/doc/

• DDL executed within the stored procedure is not supported. For example , a DDL
executed as in the following is not supported.

CREATE PROCEDURE atssrc.generate_data()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 800 DO
SET i = i + 1;
IF (i = 100) then
alter table atssrc.`ddl6` add col2 DATE after id;
ELSEIF (i = 200) then
alter table atssrc.`ddl6` add col3 DATETIME after datetime;
ELSEIF (i = 300) then
alter table atssrc.`ddl6` add `col4` timestamp NULL DEFAULT NULL after
channel;
ELSEIF (i = 400) then
alter table atssrc.`ddl6` add col5 YEAR after value;
END IF;
END WHILE;
END$$
DELIMITER ;
call atssrc.generate_data();

• By design, the heartbeat DDLs are ignored by the capture and you should create
the heartbeat tables manually at the target.

9.2 Installing DDL Replication
To install DDL replication, you run the installation script that is provided with Oracle
GoldenGate as the replication user. This user must have Create, Insert,Select,
Delete, Drop, and Truncate database privileges. Additionally, this user must have
write permission to copy the Oracle GoldenGate plugin in the MySQL plugin directory.
For example, the MySQL plugin are typically in /usr/lib64/mysql/plugin/.

The installation script options are install, uninstall, start, stop, and restart.

The command to install DDL replication uses the install option, user id, password, and
port number respectively:

bash-3.2$./ddl_install.sh install-option user-id password port-number

For example:

bash-3.2$./ddl_install.sh install root welcome 3306

The DDL replication installation script completes the following tasks:

1. Ensures that you have a supported MySQL server version installed. DDL
replication is supported for MySQL 5.7.10 and greater.

2. Locates the MySQL plugin directory.

3. Ensures that the ddl_rewriter, ddl_metadata plugins and the metadata_server
files exist. If these files are not found, then an error message appears and the
installation exits.

Chapter 9
Installing DDL Replication

9-2

4. Ensures that the plugins are already installed. If installed, the script exits with a
message requesting you to uninstall first and then reinstall.

5. Stops the metadata_server if it is running.

6. Deletes the oggddl.history table if it exists.

7. Starts the metadata_server as a daemon process.

8. Installs the ddl_rewriter and ddl_metadata plugins.

9.3 Using the Metadata Server
You can use the following options with the metadata server:

• You must have the Oracle GoldenGate metadata_server running to capture the
DDL metadata.

• Run the install script with start option to start the metadata server.

• Run the install script with stop option to stop the metadata server.

• Run the install script with restart option to stop the running metadata server and
start again.

• Oracle GoldenGate DDL replication uses two plugins as a shared library,
ddl_rewriter and ddl_metadata, both of which must be installed on your MySQL
server before Oracle GoldenGate replication starts.

• The oggddl.history metadata history table is used to store and retrieve the DDL
metadata history.

There is a single history table and metadata server for each MySQL server. If you
want to issue and capture DDLs from multiple instances of an Extract process on the
same database server at the same time, there is a possibility of conflict between
accessing and populating the metadata history table. Oracle recommends that you do
not run and capture DDLs using multiple Extract instances on the same MySQL
server.

9.4 Using DDL Filtering for Replication
The following options are supported for MySQL DDL replication:

Option Description

DDL INCLUDE OPTYPE CREATE OBJTYPE
TABLE;

Include create table.

DDL INCLUDE OBJNAME ggvam.* Include tables under the ggvamdatabase.

DDL EXCLUDE OBJNAME ggvam.emp*; Exclude all the tables under the ggvam
database and table name starting with the
empwildcard.

DDL INCLUDE INSTR ‘XYZ’ Include DDL that contains this string.

DDL EXCLUDE INSTR ‘WHY’ Excludes DDL that contains this string.

Chapter 9
Using the Metadata Server

9-3

Option Description

DDL INCLUDE MAPPED MySQL DDL uses this option and should be
used as the default for Oracle GoldenGate
MySQL DDL replication. DDL INCLUDE ALL
and DDL are not supported.

DDL EXCLUDE ALL Default option.

For a full list of options, see DDL in Reference for Oracle GoldenGate.

Using DDL Statements and Options

• INCLUDE (default) means include all objects that fit the rest of the description.
EXCLUDE means to omit items that fit the description. Exclude rules take
precedence over include rules.

• OPTYPE specifies the types of operations to be included or excluded. You can use
CREATE and ALTER. Multiple OPTYPE can be specified using parentheses. For
example, optype (create, alter). The asterisk (*) wildcard can be specified to
indicate all operation types, and this is the default.

• OBJTYPE specifies the TABLE operations to include or exclude. The wildcard can be
specified to indicate all object types, and this is the default.

• OBJNAME specifies the actual object names to include or exclude. For example,
eric.*. Wildcards are specified as in other cases where multiple tables are
specified. The default is *.

• String indicates that the rule is true if any of the strings in stringspec are present
(or false if excludestring is specified and the stringspec is present). If multiple
string entries are made, at least one entry in each stringspec must be present
to make the rule evaluate true.

For example:

ddlops string (“a”, “b”), string (“c”) evaluates true if string “a” OR
“b” is present, AND string “c” is present

• local is specified if you want the rule to apply only to the current Extract trail (the
Extract trail to which the rule applies must precede this ddlops specification).

• The semicolon is required to terminate the parameter entry.

For example:

ddl optype (create, drop), objname (eric.*);
ddl exclude objname (eric.tab*);
exttrail a;
exttrail b;
ddl optype (create), objname (joe.*), string (“abc”, “xyz”) local;
ddl optype (alter), objtype (index);

In this preceding example, the exttrail a gets creates and drops for all objects
that belong to eric, except for objects that start with tab, exttrail a also gets all
alter index statements, unless the index name begins with tab (the rule is global
even though it’s included in exttrail b). exttrail b gets the same objects as a,

Chapter 9
Using DDL Filtering for Replication

9-4

and it also gets all creates for objects that belong to joe when the string abcor xyz
is present in the DDL text. The ddlops.c module stores all DDL operation
parameters and executes related rules.

Additionally, you can use the DDLOPTIONS parameter to configure aspects of DDL
processing other than filtering and string substitution. You can use multiple
DDLOPTIONS statements and Oracle recommends using one. If you are using multiple
DDLOPTIONS statements, then make each of them unique so that one does not override
the other. Multiple DDLOPTIONS statements are executed in the order listed in the
parameter file.

See DDL and DDLOPTIONS.

9.5 Troubleshooting DDL Replication
DDL replication relies on a metadata history table and the metadata plugin and server.
To troubleshoot when DDL replication is enabled, the history table contents and the
metadata plugin server logs are required.

You can use the mysqldump command to generate the history table dump using one of
the following examples:

mysqldump [options] database [tables]
mysqldump [options] --databases [options] DB1 [DB2 DB3...]
mysqldump [options] --all-databases [options]

For example, bash-3.2$ mysqldump -uroot -pwelcome oggddl history > outfile

The metadata plugins and server logs are located in the MySQL and Oracle
GoldenGate installation directories respectively.

If you find an error in the log files, you need to ensure that the metadata server is
running.

9.6 Uninstalling DDL Replication
If you no longer want to capture the DDL events, then you can use the same install
script and select the uninstall option to disable the DDL setup. Also, any Extract with
DDL parameters should be removed or disabled. If you want to capture the DDL again,
you can run the install script again. You should take care when multiple instances of
the capture process is running on the same instance of your MySQL server. The DDL
setup should not be disturbed or uninstalled when multiple capture processes are
running and when at most one capture is designed to capture the DDL statement.

Use the installation script with the uninstall option to uninstall DDL Replication. For
example:

bash-3.2$./ddl_install.sh uninstall root welcome 3306

The script performs the following tasks:

1. Uninstalls the ddl_rewriter and ddl_metadata plugins.

2. Deletes the oggddl.history table if exists.

3. Removes the plugins from MySQL plugin directory.

Chapter 9
Troubleshooting DDL Replication

9-5

4. Stops the metadata_server if it is running.

Chapter 9
Uninstalling DDL Replication

9-6

Part V
Using Oracle GoldenGate for Teradata

With Oracle GoldenGate for Teradata, you can deliver initial load and transactional
data from other supported Oracle GoldenGate sources, such as an Oracle database.

Oracle GoldenGate for Teradata supports data filtering, mapping, and transformations
unless noted otherwise in this documentation.

This part describes tasks for configuring and running Oracle GoldenGate for Teradata.

Topics

• Overview of Oracle GoldenGate for Teradata
Oracle GoldenGate for Teradata supports the filtering, mapping, and
transformation of data unless noted otherwise in this documentation.

• Understanding What's Supported for Teradata
This chapter contains information on database and table features supported by
Oracle GoldenGate.

• Preparing the System for Oracle GoldenGate

• Configuring Oracle GoldenGate

• Common Maintenance Tasks

Overview of Oracle GoldenGate for
Teradata

Oracle GoldenGate for Teradata supports the filtering, mapping, and transformation of
data unless noted otherwise in this documentation.

High-speed Oracle GoldenGate replication can be used to refresh a Teradata cache
environment with minimal latency. In addition, with its heterogeneous support, Oracle
GoldenGate enables the Teradata data store to be used as a data integration point for
other data sources.

10
Understanding What's Supported for
Teradata

This chapter contains information on database and table features supported by Oracle
GoldenGate.

Topics:

• Supported Teradata Data Types

• Supported Objects and Operations for Teradata

• Non-Supported Operations for Teradata

10.1 Supported Teradata Data Types
The following table shows the Teradata data types that Oracle GoldenGate supports.
Any limitations or conditions that apply follow this table.

Data type v15.x v16.x

BLOB Yes Yes

BYTEINT Yes Yes

VARBYTE Yes Yes

BIGINT Yes Yes

BYTEINT Yes Yes

DATE Yes Yes

DECIMAL - 18 and under Yes Yes

DECIMAL - 19 to 38 Yes Yes

DOUBLE PRECISION Yes Yes

FLOAT Yes Yes

INTEGER Yes Yes

NUMERIC - 18 and under Yes Yes

NUMERIC - 19 to 38 Yes Yes

REAL Yes Yes

SMALLIINT Yes Yes

TIME Yes Yes

TIMESTAMP Yes Yes

INTERVAL Yes Yes

INTERVAL DAY Yes Yes

10-1

Data type v15.x v16.x

INTERVAL DAY TO HOUR Yes Yes

INTERVAL DAY TO MINUTE Yes Yes

INTERVAL DAY TO SECOND Yes Yes

INTERVAL HOUR Yes Yes

INTERVAL HOUR TO MINUTE Yes Yes

INTERVAL HOUR TO SECOND Yes Yes

INTERVAL MINUTE Yes Yes

INTERVAL MINUTE TO SECOND Yes Yes

INTERVAL MONTH Yes Yes

INTERVAL SECOND Yes Yes

INTERVAL YEAR Yes Yes

INTERVAL YEAR TO MONTH Yes Yes

CHAR Yes Yes

CLOB Yes Yes

CHAR VARYING Yes Yes

LONG VARCHAR Yes Yes

VARCHAR Yes Yes

GRAPHIC Yes Yes

LONG VARGRAPHIC Yes Yes

VARGRAPHIC Yes Yes

PERIOD (DATE) Yes Yes

PERIOD (TIME) Yes Yes

PERIOD (TIMESTAMP) Yes Yes

UDT Yes Yes

• Limitations of Support for Numeric Data Types

• Limitations of Support for Single-byte Character Data Types

• Conditions and Limitations of Support for Multi-byte Character Data

• Limitations of Support for Binary Data Types

• Limitations of Support for Large Object Data Types

• Limitations of Support for Date Data Types

• Limitations of Support for IDENTITY Data Types

10.1.1 Limitations of Support for Numeric Data Types
When replicating these data types from a different type of database to Teradata,
truncation can occur if the source database supports a higher precision that Teradata
does.

Chapter 10
Supported Teradata Data Types

10-2

The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should
review the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

10.1.2 Limitations of Support for Single-byte Character Data Types
Single-byte character types are fully supported within a single-byte Latin character set
between other databases and Teradata. A VARCHAR or CHAR column cannot have more
than 32k-1 bytes. If using UTF-16, this is 16k-2 characters.

10.1.3 Conditions and Limitations of Support for Multi-byte Character
Data

Conditions and limitations of support for multi-byte character data are as follows:

• Install Oracle GoldenGate on a Windows or Linux replication server.

• Use the Teradata ODBC driver version 12.0.0.x or later.

• Do not use filtering, mapping, and transformation for multi-byte data types.

• A CHAR or VARCHAR column cannot contain more than 32k-1 bytes. If using UTF-16,
these columns cannot contain more than 16k-2 characters.

• Set the ODBC driver to the UTF-16 character set in the initialization file.

• When creating Replicat groups, use the NODBCHECKPOINT option with the ADD
REPLICAT command. The Replicat database checkpointing feature does not
support an ODBC driver that is set to the UTF-16 character set. Checkpoints will
be maintained in the checkpoint file on disk.

10.1.4 Limitations of Support for Binary Data Types
No limitations. These data types are supported between other source databases and
Teradata targets.

10.1.5 Limitations of Support for Large Object Data Types
The following are limitations of support for large object data types.

• To replicate large objects from other databases to Teradata, use Teradata ODBC
driver version 12.0 or higher on the target system. The target must support large
objects that are delivered by ODBC.

• Enable the UseNativeLOBSupport flag in the ODBC configuration file. See the
Teradata ODBC documentation.

10.1.6 Limitations of Support for Date Data Types
The following are limitations of support for date data types:

• DATE, TIME, and TIMESTAMP are fully supported when replicated from a different
type of source database to Teradata.

Chapter 10
Supported Teradata Data Types

10-3

• TIME with TIMESZONE, TIMESTAMP with TIMEZONE, and INTERVAL are not
supported from a different type of source database to Teradata.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. Depending on the timezone,
conversion may add or subtract hours, which can cause the timestamp to exceed
the lower or upper supported limit.

• Oracle GoldenGate does not support negative dates.

10.1.7 Limitations of Support for IDENTITY Data Types
IDENTITY must be configured as GENERATED BY DEFAULT AS IDENTITY on the target to
enable the correct value to be inserted by Replicat.

10.2 Supported Objects and Operations for Teradata
This section lists the data operations and database objects that Oracle GoldenGate
supports.

• Oracle GoldenGate supports the maximum number of columns per table that is
supported by the database.

• Truncating operations are supported with the use of the GETTRUNCATES parameter
with Oracle GoldenGate 12.2.x and greater.

• Limitations on Automatic Heartbeat Table support are as follows:

– The ALTER HEARTBEATTABLE command is not supported and if used is ignored.

– The ADD HEARTBEATTABLE command with the FREQUENCY, PURGE_FREQUENCY, or
RETENTION_TIME option is not supported. When any of these options are
specified with the ADD HEARTBEATTABLE command, a warning is displayed that
the option is ignored.

– Since Teradata does not have any internal event/job schedulers, automatic
purging of heartbeat history data does not occur. You need to explicitly delete
or truncate records periodically from the heartbeat history table.

10.3 Non-Supported Operations for Teradata
This section lists the data operations that Oracle GoldenGate does not support.

• Extract (capture)

• DDL

Chapter 10
Supported Objects and Operations for Teradata

10-4

11
Preparing the System for Oracle
GoldenGate

This chapter contains guidelines for preparing the database and the system to support
Oracle GoldenGate. This chapter contains the following sections:
Topics:

• Preparing Tables for Processing

11.1 Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate
environment.

• Disabling Triggers and Cascade Constraints

• Assigning Row Identifiers

11.1.1 Disabling Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on target
Teradata tables. Oracle GoldenGate replicates DML that results from a trigger or
cascade constraint. If the same trigger or constraint gets activated on the target table,
it becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

11.1.2 Assigning Row Identifiers
Oracle GoldenGate requires unique row identifiers on the source and target tables to
locate the correct target rows for replicated updates and deletes. Source tables can
have any kind of key listed in How Oracle GoldenGate Determines the Kind of Row
Identifier to Use, except for tables of a SQL Server Standard Edition instance, which
require a primary key. If there is no primary key identified on a table that has fixed-
length columns, the length of one of the fixed-length columns must be below 3800
bytes.

11-1

• How Oracle GoldenGate Determines the Kind of Row Identifier to Use

• Using KEYCOLS to Specify a Custom Key

11.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority:

1. Primary key (required for tables of a Standard Edition instance).

2. First unique key alphanumerically that does not contain a timestamp or non-
materialized computed column.

3. If neither of these key types exist , Oracle GoldenGate constructs a pseudokey of
all columns that the database allows to be used in a unique key, excluding those
that are not supported by Oracle GoldenGate in a key or those that are excluded
from the Oracle GoldenGate configuration. For SQL Server, Oracle GoldenGate
requires the row data in target tables that do not have a primary key to be less
than 8000 bytes.

Note:

If there are types of keys on a table or if there are no keys at all on a
table, Oracle GoldenGate logs a message to the report file. Constructing
a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

11.1.2.2 Using KEYCOLS to Specify a Custom Key
If a table does not have an applicable row identifier, or if you prefer that identifiers are
not used, you can define a substitute key, providing that the table has columns that
always contain unique values. You define this substitute key by including a KEYCOLS
clause within the Extract TABLE parameter and the Replicat MAP parameter. The
specified key overrides any existing primary or unique key that Oracle GoldenGate
finds.

Chapter 11
Preparing Tables for Processing

11-2

12
Configuring Oracle GoldenGate

This chapter describes how to configure Oracle GoldenGate Replicat. This chapter
contains the following sections:
Topics:

• Configuring Oracle GoldenGate Replicat

• Additional Oracle GoldenGate Configuration Guidelines

12.1 Configuring Oracle GoldenGate Replicat
This section highlights the basic Replicat parameters that are required for most target
database types. Additional parameters may be required, see the Oracle GoldenGate
installation and configuration documentation for your target database and the
Reference for Oracle GoldenGate, .

Perform these steps on the target replication server or target database system.

1. Configure the Manager process according to the instructions in Administering
Oracle GoldenGate.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

3. Create a Replicat checkpoint table. There are multiple options for this purpose,
see Administering Oracle GoldenGate.

4. Create a Replicat group. For documentation purposes, this group is called rep.

ADD REPLICAT rep, EXTTRAIL remote_trail

Use the EXTTRAIL argument to link the Replicat group to the remote trail that you
specified for the data pump on the source server.

5. Use the EDIT PARAMS command to create a parameter file for the Replicat group.
Include the parameters shown in Example 12-1 plus any others that apply to your
database environment.

Example 12-1 Parameters for the Replicat Group

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn2,] [USERID user id[, PASSWORD pw]]
-- Specify error handling rules (See the NOTE following parameter file):
REPERROR (error, response)
-- Specify tables for delivery:
MAP owner.table, TARGET owner.table;

12-1

Note:

In a recovery situation, it is possible that Replicat could attempt to apply
some updates twice. If a multiset table is affected, this could result in
duplicate rows being created. Use the REPERROR parameter in the Replicat
parameter file so that Replicat ignores duplicate rows.

12.2 Additional Oracle GoldenGate Configuration Guidelines
The following are additional considerations to make once you have installed and
configured your Oracle GoldenGate environment.

• Handling Massive Update and Delete Operations

• Preventing Multiple Connections

• Performing Initial Synchronization

12.2.1 Handling Massive Update and Delete Operations
Operations that update or delete a large number of rows will generate discrete updates
and deletes for each row on the subscriber database. This could cause a lock
manager overflow on the Teradata subscriber system, and thus terminate the Replicat
process.

To avoid these errors, temporarily suspend replication for these operations and then
perform them manually on the source and target systems. To suspend replication, use
the following command, which suspends replication for that session only. The
operations of other sessions on that table are replicated normally.

set session override replication on;

commit;

12.2.2 Preventing Multiple Connections
By default, the Replicat processes create a new connection for catalog queries. You
can prevent this extra connection by using the DBOPTIONS parameter with the
NOCATALOGCONNECT option.

12.2.3 Performing Initial Synchronization
Perform an initial synchronization of the source and target data before using Oracle
GoldenGate to transmit transactional changes for the first time to configure an initial
load, see Administering Oracle GoldenGate.

Chapter 12
Additional Oracle GoldenGate Configuration Guidelines

12-2

13
Common Maintenance Tasks

This chapter contains instructions for performing some common maintenance tasks
when using the Oracle GoldenGate replication solution.
Topics:

• Modifying Columns of a Table

13.1 Modifying Columns of a Table
To modify columns of a table:

1. Suspend activity on the source database for all tables that are linked to Oracle
GoldenGate.

2. Start GGSCI.

3. In GGSCI, issue this command for the Replicat group:

INFO REPLICAT group

4. On the Checkpoint Lag line, verify whether there is any Replicat lag. If needed,
continue to issue INFO REPLICAT until lag is zero, which indicates that all of the
data in the trail has been processed.

5. Stop the Replicat group.

STOP REPLICAT group

6. Perform the table modifications on the target databases.

7. Start the Replicat process.

START REPLICAT group

8. Allow user activity to resume on all of the source tables that are linked to Oracle
GoldenGate.

13-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	Part I What is Oracle GoldenGate for Heterogeneous Databases?
	Part II Using Oracle GoldenGate for DB2 LUW Databases
	1 Understanding What's Supported for DB2 LUW
	1.1 Supported DB2 LUW Data Types
	1.2 Non-Supported DB2 LUW Data Types
	1.3 Supported Objects and Operations for DB2 LUW
	1.4 Non-Supported Objects and Operations for DB2 LUW
	1.5 Supported Object Names

	2 Preparing the System for Oracle GoldenGate
	2.1 Configuring the Transaction Logs for Oracle GoldenGate
	2.1.1 Retaining the Transaction Logs
	2.1.2 Specifying the Archive Path

	2.2 Preparing Tables for Processing
	2.2.1 Disabling Triggers and Cascade Constraints
	2.2.2 Assigning Row Identifiers
	2.2.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	2.2.2.2 Using KEYCOLS to Specify a Custom Key

	2.2.3 Preventing Key Changes
	2.2.4 Enabling Change Capture
	2.2.5 Maintaining Materialized Query Tables

	2.3 Setting the Session Character Set
	2.4 Preparing for Initial Extraction
	2.5 Specifying the DB2 LUW Database in Parameter Files

	3 Configuring Oracle GoldenGate for DB2 LUW
	3.1 What to Expect from these Instructions
	3.2 Where to Get More Information
	3.3 Configuring the Primary Extract
	3.4 Configuring the Data Pump Extract
	3.5 Configuring Replicat
	3.5.1 Creating a Temporal Table
	3.5.1.1 Support for Temporal Tables
	3.5.1.2 Replicating with Temporal Tables
	3.5.1.3 Converting

	3.5.2 Creating a Checkpoint Table
	3.5.3 Configuring the Replicat Parameter File

	3.6 Next Steps in the Deployment
	3.7 When to Start Replicating Transactional Changes
	3.8 Testing Your Configuration

	Part III Using Oracle GoldenGate for DB2 for z/OS
	4 Understanding What's Supported for DB2 for z/OS
	4.1 Supported DB2 for z/OS Data Types
	4.2 Non-Supported DB2 for z/OS Data Types
	4.3 Supported Objects and Operations for DB2 for z/OS
	4.4 Non-Supported Objects and Operations for DB2 for z/OS

	5 Preparing the DB2 for z/OS Database for Oracle GoldenGate
	5.1 Preparing Tables for Processing
	5.1.1 Disabling Triggers and Cascade Constraints
	5.1.2 Assigning Row Identifiers
	5.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	5.1.2.2 Using KEYCOLS to Specify a Custom Key

	5.1.3 Handling ROWID Columns

	5.2 Configuring a Database Connection
	5.2.1 Setting Initialization Parameters
	5.2.2 Specifying the Path to the Initialization File
	5.2.3 Ensuring ODBC Connection Compatibility
	5.2.4 Specifying the Number of Connection Threads

	5.3 Accessing Load Modules
	5.4 Specifying Job Names and Owners
	5.5 Assigning WLM Velocity Goals
	5.6 Monitoring Processes
	5.6.1 Viewing Oracle GoldenGate Messages
	5.6.2 Identifying Oracle GoldenGate Processes
	5.6.3 Interpreting Statistics for Update Operations

	5.7 Supporting Globalization Functions
	5.7.1 Replicating From a Source that Contains Both ASCII and EBCDIC
	5.7.2 Specifying Multi-Byte Characters in Object Names

	6 Preparing the DB2 for z/OS Transaction Logs for Oracle GoldenGate
	6.1 Making Transaction Data Available
	6.1.1 Enabling Change Capture
	6.1.2 Enabling Access to Log Records
	6.1.3 Sizing and Retaining the Logs
	6.1.4 Using Archive Logs on Tape
	6.1.5 Controlling Log Flushes

	Part IV Using Oracle GoldenGate with MySQL
	7 Understanding What's Supported for MySQL
	7.1 Character Sets in MySQL
	7.2 Supported MySQL Data Types
	7.2.1 Limitations and Clarifications

	7.3 Supported Objects and Operations for MySQL
	7.4 Non-Supported MySQL Data Types

	8 Preparing and Configuring the System for Oracle GoldenGate
	8.1 Ensuring Data Availability
	8.2 Setting Logging Parameters
	8.3 Adding Host Names
	8.4 Setting the Session Character Set
	8.5 Preparing Tables for Processing
	8.5.1 Assigning Row Identifiers
	8.5.1.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	8.5.1.2 Tables with a Primary Key Derived from a Unique Index
	8.5.1.3 How to Specify Your Own Key for Oracle GoldenGate to Use

	8.5.2 Limiting Row Changes in Tables That Do Not Have a Key
	8.5.3 Disabling Triggers and Cascade Constraints

	8.6 Changing the Log-Bin Location
	8.7 Configuring Bi-Directional Replication
	8.8 Oracle GoldenGate for MySQL: Remote Capture
	8.9 Capturing using a MySQL Replication Slave
	8.10 Other Oracle GoldenGate Parameters for MySQL
	8.11 Positioning Extract to a Specific Start Point

	9 Using DDL Replication
	9.1 DDL Configuration Prerequisites and Considerations
	9.2 Installing DDL Replication
	9.3 Using the Metadata Server
	9.4 Using DDL Filtering for Replication
	9.5 Troubleshooting DDL Replication
	9.6 Uninstalling DDL Replication

	Part V Using Oracle GoldenGate for Teradata
	Overview of Oracle GoldenGate for Teradata
	10 Understanding What's Supported for Teradata
	10.1 Supported Teradata Data Types
	10.1.1 Limitations of Support for Numeric Data Types
	10.1.2 Limitations of Support for Single-byte Character Data Types
	10.1.3 Conditions and Limitations of Support for Multi-byte Character Data
	10.1.4 Limitations of Support for Binary Data Types
	10.1.5 Limitations of Support for Large Object Data Types
	10.1.6 Limitations of Support for Date Data Types
	10.1.7 Limitations of Support for IDENTITY Data Types

	10.2 Supported Objects and Operations for Teradata
	10.3 Non-Supported Operations for Teradata

	11 Preparing the System for Oracle GoldenGate
	11.1 Preparing Tables for Processing
	11.1.1 Disabling Triggers and Cascade Constraints
	11.1.2 Assigning Row Identifiers
	11.1.2.1 How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	11.1.2.2 Using KEYCOLS to Specify a Custom Key

	12 Configuring Oracle GoldenGate
	12.1 Configuring Oracle GoldenGate Replicat
	12.2 Additional Oracle GoldenGate Configuration Guidelines
	12.2.1 Handling Massive Update and Delete Operations
	12.2.2 Preventing Multiple Connections
	12.2.3 Performing Initial Synchronization

	13 Common Maintenance Tasks
	13.1 Modifying Columns of a Table

