
Oracle® Fusion Middleware
Using Oracle GoldenGate for Oracle
Database

18c (18.1.0)
E95983-04
January 2019

Oracle Fusion Middleware Using Oracle GoldenGate for Oracle Database, 18c (18.1.0)

E95983-04

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corp.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Related Information xiv

Conventions xiv

1 Understanding What’s Supported

Summary of Supported Oracle Data Types and Objects Per Capture Mode 1-1

Details of Support for Oracle Data Types 1-5

ANYDATA Data Types 1-6

Limitations of Support — ANYDATA 1-6

Numeric Data Types 1-6

Limitations of Support — Numeric 1-7

Character Data Types 1-7

Limitations of Support — Character 1-7

Multi-byte Character Types 1-8

Limitations of Support — Multi-byte 1-8

Binary Data Types 1-8

Date and Timestamp Data Types 1-8

Limitations of Support — Dates 1-9

Large Object Data Types 1-9

Limitations of support — Large Object Classic Capture Mode 1-9

XML Data Types 1-10

Limitations of Support — Integrated and Classic Capture Modes 1-10

Limitations of Support — Integrated Capture Mode 1-11

Limitations of Support — XML Binary Classic Capture Mode 1-11

User Defined or Abstract Types 1-11

General Limitations of Support — Integrated and Classic Capture Modes 1-12

Limitations for Collection Types — Integrated and Classic Capture Modes 1-13

Limitations for Object Tables — Integrated and Classic Capture Modes 1-13

Limitations for Spatial Types — Integrated and Classic Capture Modes 1-14

Non-Supported Oracle Data Types 1-14

iii

Details of Support for Objects and Operations in Oracle DML 1-14

Multitenant Container Database 1-15

Tables, Views, and Materialized Views 1-15

Limitations of Support for Regular Tables 1-15

Limitations of Support for Index-Organized Tables 1-17

Limitations of Support for Views 1-17

Limitations of Support for Materialized Views 1-17

Limitations of Support for Clustered Tables 1-18

Sequences 1-18

Limitations of Support for Sequences 1-18

Non-supported Objects and Operations in Oracle DML 1-18

Details of Support for Objects and Operations in Oracle DDL 1-19

Supported Objects and Operations in Oracle DDL 1-19

Non-supported Objects and Operations in Oracle DDL 1-22

Excluded Objects 1-22

Other Non-supported DDL 1-23

Integrating Oracle GoldenGate into a Cluster 1-24

General Requirements in a Cluster 1-24

Adding Oracle GoldenGate as a Windows Cluster Resource 1-24

2 Preparing the Database for Oracle GoldenGate

Configuring Connections for Integrated Processes 2-1

Configuring Logging Properties 2-2

Enabling Minimum Database-level Supplemental Logging 2-4

Enabling Schema-level Supplemental Logging 2-5

Enabling Table-level Supplemental Logging 2-6

Enabling Oracle GoldenGate in the Database 2-8

Setting Flashback Query 2-8

Managing Server Resources 2-10

3 Establishing Oracle GoldenGate Credentials

Assigning Credentials to Oracle GoldenGate 3-1

Extract User 3-1

Replicat User 3-2

Other Oracle GoldenGate Users 3-2

Granting the Appropriate User Privileges 3-2

Oracle 11.2.0.4 or Later Database Privileges 3-2

Oracle 11.2.0.3 or Earlier Database Privileges 3-4

About the dbms_goldengate_auth.grant_admin_privilege Package 3-6

iv

Optional Grants for dbms_goldengate_auth.grant_admin_privilege 3-6

Securing the Oracle GoldenGate Credentials 3-8

4 Choosing Capture and Apply Modes

Overview of Oracle GoldenGate Capture and Apply Processes 4-1

Deciding Which Capture Method to Use 4-2

About Classic Capture 4-3

About Integrated Capture 4-3

Integrated Capture Supported Database Versions 4-5

Integrated Capture Deployment Options 4-5

Deciding Which Apply Method to Use 4-6

About Nonintegrated Replicat 4-6

About Integrated Replicat 4-7

Benefits of Integrated Replicat 4-9

Integrated Replicat Requirements 4-10

About Parallel Replicat 4-10

Parallel Replication Architecture 4-11

Using Different Capture and Apply Modes Together 4-12

Switching to a Different Process Mode 4-13

5 Configuring Oracle GoldenGate in a Multitenant Container
Database

Using Oracle GoldenGate with Pluggable Databases 5-1

Capturing from Pluggable Databases 5-1

Applying to Pluggable Databases 5-2

Excluding Objects from the Configuration 5-3

Other Requirements for Multitenant Container Databases 5-3

6 Configuring Capture in Integrated Mode

Prerequisites for Configuring Integrated Capture 6-1

What to Expect from these Instructions 6-2

Configuring the Primary Extract in Integrated Capture Mode 6-2

Configuring the Data Pump Extract 6-6

Next Steps 6-7

7 Configuring Capture in Classic Mode

Prerequisites for Configuring Classic Capture 7-1

What to Expect from these Instructions 7-2

v

Configuring the Primary Extract in Classic Capture Mode 7-2

Configuring the Data Pump Extract 7-4

Next Steps 7-5

8 Configuring Oracle GoldenGate Apply

Prerequisites for Configuring Replicat 8-1

What to Expect from these Instructions 8-2

Creating a Checkpoint Table (Non-Integrated Replicat Only) 8-2

Adding the Checkpoint Table to the Target Database 8-3

Specifying the Checkpoint Table in the Oracle GoldenGate Configuration 8-3

Disabling Default Asynchronous COMMIT to Checkpoint Table 8-3

Configuring Replicat 8-4

Next Steps 8-6

9 Additional Oracle GoldenGate Configuration Considerations

Ensuring Row Uniqueness in Source and Target Tables 9-1

Installing Support for Oracle Sequences 9-2

Handling Special Data Types 9-3

Multibyte Character Types 9-3

Oracle Spatial Objects 9-4

TIMESTAMP 9-5

Large Objects (LOB) 9-5

XML 9-5

User Defined Types 9-6

Handling Other Database Properties 9-6

Controlling the Checkpoint Frequency 9-7

Excluding Replicat Transactions 9-7

Advanced Configuration Options for Oracle GoldenGate 9-8

10

Additional Configuration Steps for Using Classic Capture

Configuring Oracle TDE Data in Classic Capture Mode 10-1

Overview of TDE Support in Classic Capture Mode 10-2

Requirements for Capturing TDE in Classic Capture Mode 10-2

Required Database Patches for TDE Support 10-3

Configuring Classic Capture for TDE Support 10-3

Agree on a Shared Secret that Meets Oracle Standards 10-3

Oracle DBA Tasks 10-3

Oracle Security Officer Tasks 10-4

Oracle GoldenGate Administrator Tasks 10-5

vi

Recommendations for Maintaining Data Security after Decryption 10-6

Performing DDL while TDE Capture is Active 10-6

Rekeying after a Database Upgrade 10-6

Updating the Oracle Shared Secret in the Parameter File 10-6

Using Classic Capture in an Oracle RAC Environment 10-8

Mining ASM-stored Logs in Classic Capture Mode 10-9

Accessing the Transaction Logs in ASM 10-9

Reading Transaction Logs Through the RDBMS 10-9

ASM Direct Connection 10-9

Ensuring ASM Connectivity 10-10

Ensuring Data Availability for Classic Capture 10-11

Log Retention Requirements per Extract Recovery Mode 10-11

Log Retention Options 10-12

Oracle Enterprise Edition 11g and Later 10-12

All Other Oracle Versions 10-13

Determining How Much Data to Retain 10-13

Purging Log Archives 10-13

Specifying the Archive Location 10-13

Mounting Logs that are Stored on Other Platforms 10-14

Configuring Classic Capture in Archived Log Only Mode 10-14

Limitations and Requirements for Using ALO Mode 10-14

Configuring Extract for ALO mode 10-15

Configuring Classic Capture in Oracle Active Data Guard Only Mode 10-16

Limitations and Requirements for Using ADG Mode 10-17

Configuring Classic Extract for ADG Mode 10-18

Migrating Classic Extract To and From an ADG Database 10-18

Handling Role Changes In an ADG Configuration 10-19

Avoiding Log-read Bottlenecks in Classic Capture 10-21

11

Additional Configuration Steps For Using Nonintegrated Replicat

Disabling Triggers and Referential Cascade Constraints on Target Tables 11-1

Deferring Constraint Checking on Target Tables 11-2

Handling Transient Primary-key Duplicates in Versions Earlier than 11.2.0.2 11-3

Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later 11-3

12

Configuring DDL Support

Prerequisites for Configuring DDL 12-2

Support for DDL Capture in Integrated Capture Mode 12-2

Support for DDL Capture in Classic Capture Mode 12-3

vii

Overview of DDL Synchronization 12-3

Limitations of Oracle GoldenGate DDL Support 12-3

DDL Statement Length 12-4

Supported Topologies 12-4

Filtering, Mapping, and Transformation 12-4

Renames 12-5

Interactions Between Fetches from a Table and DDL 12-5

Comments in SQL 12-6

Compilation Errors 12-6

Interval Partitioning 12-6

DML or DDL Performed Inside a DDL Trigger 12-6

LogMiner Data Dictionary Maintenance 12-6

Configuration Guidelines for DDL Support 12-6

Database Privileges 12-7

Parallel Processing 12-7

Object Names 12-7

Data Definitions 12-7

Truncates 12-8

Initial Synchronization 12-8

Data Continuity After CREATE or RENAME 12-8

Understanding DDL Scopes 12-9

Mapped Scope 12-9

Unmapped Scope 12-11

Other Scope 12-11

Correctly Identifying Unqualified Object Names in DDL 12-11

Enabling DDL Support 12-12

Filtering DDL Replication 12-12

Filtering with PL/SQL Code 12-13

Filtering With Built-in Filter Rules 12-15

DDLAUX.addRule() Function Definition 12-15

Parameters for DDLAUX.addRule() 12-16

Valid DDL Components for DDLAUX.addRule() 12-16

Examples of Rule-based Trigger Filtering 12-17

Dropping Filter Rules 12-18

Filtering with the DDL Parameter 12-18

Special Filter Cases 12-19

DDL EXCLUDE ALL 12-19

Implicit DDL 12-19

How Oracle GoldenGate Handles Derived Object Names 12-20

MAP Exists for Base Object, But Not Derived Object 12-21

MAP Exists for Base and Derived Objects 12-21

viii

MAP Exists for Derived Object, But Not Base Object 12-22

New Tables as Derived Objects 12-22

CREATE TABLE AS SELECT 12-22

RENAME and ALTER TABLE RENAME 12-24

Disabling the Mapping of Derived Objects 12-24

Using DDL String Substitution 12-25

Controlling the Propagation of DDL to Support Different Topologies 12-25

Propagating DDL in Active-Active (Bidirectional) Configurations 12-26

Propagating DDL in a Cascading Configuration 12-28

Adding Supplemental Log Groups Automatically 12-28

Removing Comments from Replicated DDL 12-29

Replicating an IDENTIFIED BY Password 12-29

How DDL is Evaluated for Processing 12-29

Viewing DDL Report Information 12-32

Viewing DDL Reporting in Replicat 12-32

Viewing DDL Reporting in Extract 12-33

Statistics in the Process Reports 12-34

Tracing DDL Processing 12-34

Using Tools that Support Trigger-Based DDL Capture 12-34

Tracing the DDL Trigger 12-34

Viewing Metadata in the DDL History Table 12-35

Handling DDL Trigger Errors 12-35

Using Edition-Based Redefinition 12-35

13

Creating Process Groups

Prerequisites 13-1

Registering Extract with the Mining Database 13-2

Add the Primary Extract 13-3

Add the Local Trail 13-5

Add the Data Pump Extract Group 13-5

Add the Remote Trail 13-5

Add the Replicat Group 13-6

14

Instantiating Oracle GoldenGate Replication

Overview of the Instantiation Process 14-1

Prerequisites for Instantiation 14-2

Configuring and Adding Change Synchronization Groups 14-2

Disabling DDL Processing 14-2

Adding Collision Handling 14-2

ix

Preparing the Target Tables 14-3

Configuring the Initial Load 14-3

Configuring a Load with an Oracle Data Pump 14-4

Configuring a Direct Bulk Load to SQL*Loader 14-4

Configuring a Load from an Input File to SQL*Loader 14-7

Performing the Target Instantiation 14-10

Performing Instantiation with Oracle Data Pump 14-10

Performing Instantiation with Direct Bulk Load to SQL*Loader 14-11

Performing Instantiation From an Input File to SQL*Loader 14-12

Monitoring and Controlling Processing After the Instantiation 14-13

Verifying Synchronization 14-14

Backing up the Oracle GoldenGate Environment 14-15

15

Managing the DDL Replication Environment

Disabling DDL Processing Temporarily 15-2

Enabling and Disabling the DDL Trigger 15-2

Maintaining the DDL Marker Table 15-2

Deleting the DDL Marker Table 15-3

Maintaining the DDL History Table 15-3

Deleting the DDL History Table 15-4

Purging the DDL Trace File 15-4

Applying Database Patches and Upgrades when DDL Support is Enabled 15-4

Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled 15-5

Restoring an Existing DDL Environment to a Clean State 15-6

Removing the DDL Objects from the System 15-8

16

Automatic Conflict Detection and Resolution

About Automatic Conflict Detection and Resolution 16-1

Automatic Conflict Detection and Resolution 16-2

Latest Timestamp Conflict Detection and Resolution 16-3

Delta Conflict Detection and Resolution 16-5

Column Groups 16-7

Configuring Automatic Conflict Detection and Resolution 16-9

Configuring Latest Timestamp Conflict Detection and Resolution 16-10

Configuring Delta Conflict Detection and Resolution 16-11

Managing Automatic Conflict Detection and Resolution 16-12

Altering Conflict Detection and Resolution for a Table 16-12

Altering a Column Group 16-12

Purging Tombstone Rows 16-13

x

Removing Conflict Detection and Resolution From a Table 16-13

Removing a Column Group 16-14

Removing Delta Conflict Detection and Resolution 16-14

Monitoring Automatic Conflict Detection and Resolution 16-15

Displaying Information About the Tables Configured for Conflicts 16-15

Displaying Information About Conflict Resolution Columns 16-16

Displaying Information About Column Groups 16-17

17

Using Parallel Replicat

Parallel Replication Architecture 17-1

Basic Parameters for Parallel Replicat 17-2

Creating a Parallel Replicat 17-3

18

Using Procedural Replication

Procedural Replication Process Overview 18-1

Enabling Procedural Replication 18-2

Determining Whether Procedural Replication Is On 18-2

Enabling and Disabling Supplemental Logging 18-3

Filtering Features for Procedural Replication 18-4

Handling Procedural Replication Errors 18-5

Procedural Replication Pragma Options 18-5

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication 18-38

Monitoring Oracle GoldenGate Procedural Replication 18-39

19

Replicating Data to the Autonomous Database

About Replicating Data to Autonomous Databases 19-1

Understanding What is Supported While Replicating to the Autonomous Database 19-2

How Do I Replicate Data to the Autonomous Database? 19-3

A Optional Parameters for Integrated Modes

Additional Parameter Options for Integrated Capture A-1

Additional Parameter Options for Integrated Replicat A-2

B Configuring a Downstream Mining Database

Evaluating Capture Options for a Downstream Deployment B-1

Preparing the Source Database for Downstream Deployment B-2

Creating the Source User Account B-2

xi

Configuring Redo Transport from Source to Downstream Mining Database B-2

Preparing the Downstream Mining Database B-4

Creating the Downstream Mining User Account B-4

Configuring the Mining Database to Archive Local Redo Log Files B-4

Preparing a Downstream Mining Database for Real-time Capture B-5

Create the Standby Redo Log Files B-6

Configure the Database to Archive Standby Redo Log Files Locally B-7

C Example Downstream Mining Configuration

Example 1: Capturing from One Source Database in Real-time Mode C-1

Prepare the Mining Database to Archive its Local Redo C-2

Prepare the Mining Database to Archive Redo Received in Standby Redo Logs
from the Source Database C-2

Prepare the Source Database to Send Redo to the Mining Database C-2

Set up Integrated Capture (ext1) on DBMSCAP C-3

Example 2: Capturing from Multiple Sources in Archive-log-only Mode C-4

Prepare the Mining Database to Archive its Local Redo C-4

Prepare the Mining Database to Archive Redo from the Source Database C-5

Prepare the First Source Database to Send Redo to the Mining Database C-5

Prepare the Second Source Database to Send Redo to the Mining Database C-5

Set up Extracts at Downstream Mining Database C-6

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-
only Mode C-6

Prepare the Mining Database to Archive its Local Redo C-7

Prepare the Mining Database to Accept Redo from the Source Databases C-7

Prepare the First Source Database to Send Redo to the Mining Database C-8

Prepare the Second Source Database to Send Redo to the Mining Database C-8

Prepare the Third Source Database to Send Redo to the Mining Database C-9

Set up Extracts at Downstream Mining Database C-9

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by
DBMS1 C-9

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by
DBMS2 C-10

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online
Logs Sent by DBMS3 C-10

D Installing Trigger-Based DDL Capture

When to Use Trigger-based DDL Capture D-1

Overview of the Objects that Support Trigger-based DDL Capture D-2

Installing the DDL Objects D-3

xii

E Supporting Changes to XML Schemas

Supporting RegisterSchema E-1

Supporting DeleteSchema E-1

Supporting CopyEvolve E-1

F Preparing DBFS for an Active-Active Configuration

Supported Operations and Prerequisites F-1

Applying the Required Patch F-2

Examples Used in these Procedures F-2

Partitioning the DBFS Sequence Numbers F-2

Configuring the DBFS file system F-3

Mapping Local and Remote Peers Correctly F-5

xiii

Preface

This guide helps you get started with using Oracle GoldenGate on Oracle Database.

Topics:

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
Using Oracle GoldenGate for Oracle Databases is intended for DBA and system
administrators who’re responsible for implementing Oracle Goldengate and managing
the organization’s Oracle databases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Conventions
The following text conventions are used in this document:

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xv

1
Understanding What’s Supported

This chapter contains support information for Oracle GoldenGate on Oracle Database.

Topics:

• Summary of Supported Oracle Data Types and Objects Per Capture Mode
This topic describes how Oracle GoldenGate supports the Oracle data types
according to the capture mode that you choose.

• Details of Support for Oracle Data Types
The following outlines details of Oracle data type support by Oracle GoldenGate.
Unless otherwise noted, the support applies to both classic and integrated capture
mode.

• Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

• Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

• Integrating Oracle GoldenGate into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to
integrate Oracle GoldenGate within the cluster solution.

Summary of Supported Oracle Data Types and Objects Per
Capture Mode

This topic describes how Oracle GoldenGate supports the Oracle data types according
to the capture mode that you choose.

To know more information about capture modes, see Deciding Which Capture Method
to Use..

Detailed support information for Oracle data types, objects, and operations starts with
Details of Support for Objects and Operations in Oracle DML.

Data type Classic capture Integrated capture

Scalar columns including
DATE and DATETIME
columns

Captured from redo. Captured from redo.

LONG VARCHAR Not supported. Captured from redo.

1-1

Data type Classic capture Integrated capture

BASICFILE LOB columns LOB modifications done using DML
(INSERT/UPDATE/DELETE) are captured
from redo.

LOB modifications done using DBMS_LOB
package are captured from the source
table by fetching values from the base
table.

Captured from redo.

SECUREFILE LOB columns Captured from redo, except for the
following cases where SECUREFILE LOBs
are fetched from the source table:

• LOB is encrypted
• LOB is compressed
• LOB is deduplicated
• LOB is stored in-line
• LOB is modified using DBMS_LOB

package
• NOLOGGING LOBs

Captured from redo, except for the
following cases where SECUREFILE LOBs
are fetched from the source table:

• LOBs is modified using
DBMS_LOB.FRAGMENT_*
procedures.

• NOLOGGING LOBs.
• Deduplicated LOBs when the source

Oracle Database release/binary is
less than 12.1.

Requires source database compatibility to
be set to 11.2.0.0.0 or higher

Index Organized Tables
(IOT)

Captured from redo with the following
restrictions:

• IOT with mapping table not
supported.

• Direct load inserts to IOT tables
cannot have the SORTED clause.

• IOT with prefix compression as
specified with COMPRESS clause is not
supported.

Captured from redo with the following
restriction:

• IOT with mapping table not
supported.

XML columns stored as
CLOB

Captured from redo. Captured from redo.

Requires source database compatibility to
be set to 11.0.0.0.0 or higher

XML columns stored as
Binary

Fetched from source table. Requires source database compatibility to
be set to 11.2.0.3.0 or higher.

Fetched from source table if compatibility
is less than 11.2.0.3.0.

XML columns stored as
Object-Relational

Not supported. Captured from redo.

Requires source database compatibility to
be set to 11.2.0.3.0 or higher.

XML Type Table Not supported. Captured from redo.

Chapter 1
Summary of Supported Oracle Data Types and Objects Per Capture Mode

1-2

Data type Classic capture Integrated capture

User Defined Type (UDT)
columns

Fetched from source table. Captured from redo with limitations.

Specify TRANLOGOPTIONS
USENATIVEOBJSUPPORT to enable the
capture from redo.

Use of Native Object Support requires
source database compatibility to be set to
12.0.0.0.0 or higher.

Fetched from source table when:

• USENATIVEOBJSUPPORT is not
specified

• If the redo compatibility is less than
12.0.0.0.0

• If the UDT contains Nested Table,
SDO_TOPO_GEOMETRY, or
SDO_GEORASTER types

Procedural supplemental logging
must be enabled at the source so that
TOPO and Georaster can be
supported.

Invisible Columns Not supported.

ANYDATA columns Fetched from source table with the
following data types only:

BINARY_DOUBLE

BINARY_FLOAT

CHAR

DATE

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

NCHAR

NUMBER

NVARCHAR2

RAW

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIMEZONE

UDTs

VARCHAR/VARCHAR2

Requires source database compatibility to
be set to 11.2.0.0.0 or higher.

Captured from redo with limitations.

Specify TRANLOGOPTIONS
USENATIVEOBJSUPPORT to enable the
capture from redo.

Use of Native Object Support requires
source database compatibility to be set to
12.0.0.0.0 or higher.

Fetched from source table when

• "USENATIVEOBJSUPPORT is not
specified

• If the redo compatibility is less than
12.0.0.0.0

Chapter 1
Summary of Supported Oracle Data Types and Objects Per Capture Mode

1-3

Data type Classic capture Integrated capture

Spatial Types columns Fetched from source table. Captured from redo with limitations.

Specify TRANLOGOPTIONS
USENATIVEOBJSUPPORT to enable the
capture from redo.

Use of Native Object Support requires
source database compatibility to be set to
12.2.0.1.0 or higher.

Fetched from source table when:

• USENATIVEOBJSUPPORT is not
specified

• If the redo compatibility is less than
12.0.0.0.0

• If SDO_TOPO_GEOMETRY or
SDO_GEORASTER (raster tables) are
used

Procedural supplemental logging must be
enabled at the source so that TOPO and
Georaster can be supported.

Collections columns
(VARRAYs)

Fetched from source table. Captured from redo for VARRAY attributes

VARRAY attributes of UDT types are
supported.

Specify TRANLOGOPTIONS
USENATIVEOBJSUPPORT to enable the
capture from redo.

Requires source database compatibility to
be set to 12.0.0.0.0 or higher.

Fetched from source table when

• USENATIVEOBJSUPPORT is not
specified

• the redo compatibility is less than
12.0.0.0.0

• If Top-level VARRAY columns are
used, and compatibility is less than
12.2.

Collections columns
(Nested Tables)

Fetched from source table with limitations.

See Details of Support for Objects and
Operations in Oracle DML.

Fetched from source table with limitations.

See Details of Support for Objects and
Operations in Oracle DML.

Chapter 1
Summary of Supported Oracle Data Types and Objects Per Capture Mode

1-4

Data type Classic capture Integrated capture

Object Table Fetched from source table. Captured from redo with limitations.

Specify TRANLOGOPTIONS
USENATIVEOBJSUPPORT to enable the
capture from redo.

Use of Native Object Support requires
source database compatibility to be set to
12.0.0.0.0 or higher.

Replication of DDL operations on an
object table is not supported.

Fetched from source table with additional
limitations when

• USENATIVEOBJSUPPORT is not
specified

• If the redo compatibility is less than
12.0.0.0.0

• If Nested Table,
SDO_TOPO_GEOMETRY or
SDO_GEORASTER (raster tables) are
used

Transparent Data
Encryption (Column
Encryption & Tablespace
Encryption)

Captured from redo. Captured from redo.

No additional setup is required for local
capture.

Requires source database compatibility to
be set to 11.0.0.0.0 or higher.

Basic Compression Not supported. Captured from redo.

OLTP-Compression Not supported. Captured from redo.

Exadata Hybrid Columnar
Compression

Not supported. Captured from redo.

XA on non-RAC database Captured from redo. Captured from redo.

XA on RAC database Not supported.

To get support, must make sure all
branches of XA goes to the same
instance.

Captured from redo.

Requires source database compatibility to
be set to 11.2.0.0.0 or higher.

PDML on non-RAC
database

Captured from redo. Captured from redo.

PDML on RAC database Not supported.

To get support, you must make sure child
transactions spawned from a PDML
transaction do not span multiple
instances.

Captured from redo.

Details of Support for Oracle Data Types
The following outlines details of Oracle data type support by Oracle GoldenGate.
Unless otherwise noted, the support applies to both classic and integrated capture
mode.

• ANYDATA Data Types

Chapter 1
Details of Support for Oracle Data Types

1-5

• Numeric Data Types

• Character Data Types

• Multi-byte Character Types

• Binary Data Types

• Date and Timestamp Data Types

• Large Object Data Types

• XML Data Types

• User Defined or Abstract Types

• Non-Supported Oracle Data Types

ANYDATA Data Types

The following ANYDATA data types are supported:

Fetched from source table with the following data types only:

• BINARY_DOUBLE

• BINARY_FLOAT

• CHAR

• DATEINTERVAL DAY TO SECOND

• INTERVAL YEAR TO MONTH

• NCHAR

• NUMBER

• NVARCHAR2

• RAW

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIMEZONE

• UDTs

• VARCHAR/VARCHAR2

• Limitations of Support — ANYDATA

Limitations of Support — ANYDATA
• Your source database compatibility must be set to 11.2.0.0.0 or higher. Support for

named collections and VARRAYs embedded within those data types.

Numeric Data Types
The following numeric data types are supported:

• NUMBER up to the maximum size permitted by Oracle

Chapter 1
Details of Support for Oracle Data Types

1-6

• BINARY FLOAT

• BINARY DOUBLE

• UROWID

• Limitations of Support — Numeric

Limitations of Support — Numeric
The support of the range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should
review the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

Character Data Types
The following character data types are supported:

• CHAR

• VARCHAR2

• LONG

• NCHAR

• NVARCHAR2

• Limitations of Support — Character

Limitations of Support — Character
• If an extended VARCHAR column is part of unique index or constraint, then direct

path inserts to this table may cause Replicat to abend with a warning. Verify that
the extended VARCHAR caused the abend by checking all_indexes/
all_ind_columns for a unique index or all_cons_columns/all_constraints for a
unique constraint. Once you determine that an extended VARCHAR, you can
temporarily drop the index or disable the constraint:

For Unique Index:
drop index t2u;

For Unique Constraint:
alter table v32ind modify constraint sys_c0010125 disable;

• Extended (32K) VARCHAR2 and NVARCHAR2 columns are supported when Extract is
in integrated capture mode. All modes of Replicat support 32K VARCHAR2 and
NVARCHAR2 columns. The following limitations apply:

– Oracle GoldenGate does not support 32K VARCHAR2 and NVARCHAR2 columns
as part of a key or unique index, nor as a column in a KEYCOLS clause of the
TABLE or MAP parameter. 32K columns cannot be used as row identifiers
because they are not supplementally logged even when part of a primary key.

– 32K columns are not supported as resolution columns in a CDR (conflict
resolution and detection) configuration nor as the basis for any other work that
requires a column value to be present in the transaction log.

Chapter 1
Details of Support for Oracle Data Types

1-7

– Oracle GoldenGate does not limit the number of 32K columns, but each trail
record has a length limit of 4MB for inline records. The number of 32K
columns that reaches this limit is approximately 160 columns, but the number
of columns also depends on the actual size of the extended VARCHAR2 column.

Multi-byte Character Types
Multi-byte characters are supported as part of a supported character set. If the
semantics setting of an Oracle source database is BYTE and the setting of an Oracle
target is CHAR, use the Replicat parameter SOURCEDEFS in your configuration, and place
a definitions file that is generated by the DEFGEN utility on the target. These steps are
required to support the difference in semantics, whether or not the source and target
data definitions are identical. Replicat refers to the definitions file to determine the
upper size limit for fixed-size character columns.

For more information about character-set support, see Administering Oracle
GoldenGate for Windows and UNIX.

For information about SOURCEDEFS and the DEFGEN utility, see Administering Oracle
GoldenGate.

• Limitations of Support — Multi-byte

Limitations of Support — Multi-byte
• For Oracle GoldenGate to support multi-byte character data, the source and target

databases must be logically identical in terms of schema definition for the tables
and sequences being replicated. Transformation, filtering, and other manipulation
are not supported. The character sets between the two databases must be one of
the following:

– Identical, for example SHIFT-JIS on the source and on the target.

– Equivalent, which is not the same character set but containing the same set of
characters, for example SHIFT-JIS and EUC-JP.

– Target is superset of the source: For example, UNICODE is a superset of all
character types, and therefore of any other character set.

• Multi-byte data is supported whether the length semantics are in bytes or
characters.

Binary Data Types
The following binary data types are supported:

• RAW

• LONG RAW

Date and Timestamp Data Types
The following date and time data types are supported:

• DATE

• TIMESTAMP (see Limitations of support)

Chapter 1
Details of Support for Oracle Data Types

1-8

• Limitations of Support — Dates

Limitations of Support — Dates
• Oracle GoldenGate does not support negative dates.

• INTERVAL DAY and INTERVAL YEAR are supported only if the size of the target
column is equal to, or greater than, that of the source.

• Oracle GoldenGate supports the capture and replication of TIMESTAMP WITH TIME
ZONE as a UTC offset (TIMESTAMP '2011-01-01 8:00:00 -8:00').

• TIMESTAMP WITH TIME ZONE as TZR (Region ID) is supported for the replication of
data changes, but not for initial loads, for SQLEXEC, or for operations where the
column must be fetched from the database. In these cases, the region ID is
converted to a time offset by the database when the column is selected. Replicat
replicates the timestamp as date and time data with a time offset value.

• Oracle GoldenGate supports timestamp data from 0001/01/03 00:00:00 to
9999/12/31 23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. Depending on the time zone,
conversion may add or subtract hours, which can cause the timestamp to exceed
the lower or upper supported limit.

• Oracle GoldenGate supports time offset values between +12:00 and -12:00.

To support TIMESTAMP WITH TIME ZONE specified as TZR properly, and also to handle
TIMESTAMP WITH LOCAL TIMEZONE properly.

Large Object Data Types
The following large object types are supported:

• CLOB

• NCLOB

• BLOB

• SECUREFILE and BASICFILE

To find out the limitations of supporting large objects in classic capture mode, see:

• Limitations of support — Large Object Classic Capture Mode

Limitations of support — Large Object Classic Capture Mode
• BASICFILE option LOBs are captured from the redo log, but are fetched from the

database in the following circumstances:

– Extract determines the LOB is invalid.

– The LOB data is not in the redo log, which occurs when the BASICFILE LOB is
created with the NOLOGGING option.

– The LOB is created with the CACHE option.

– The LOB is only partially updated. Oracle GoldenGate does not support partial
column data. Extract assumes LOB data to be incomplete if the LOB does not
start with a LOB reset record, or if the LOB does not start at the first byte and
does not end at the last byte, according to the new LOB length. Partial

Chapter 1
Details of Support for Oracle Data Types

1-9

updates can be generated by the following OCI calls: OCILOBWrite(),
OCILobAppend(), OCiLobCopy(), OCILobLoadFromFile(), OCILobTrim(), and
by updates made through procedures in the dbms_lob package.

– Extract detects an anomaly in the LOB data.

• SECUREFILE option LOBs are captured from the redo logs only when the update is
complete and the LOB is not transformed (the column is not compressed or
encrypted or deduplicated) and stored out-of-row. SECUREFILE LOBs are fetched
from the database in the following circumstances:

– The LOB is stored in-row.

– The LOB is transformed either with compression or encryption.

– The LOB is created with the CACHE attribute.

– Extract determines that a LOB instance is invalid.

– LOB data is missing from the redo log. This can occur if the LOB is created with
any of following options: DEDUPLICATE, NOLOGGING, FILESYSTEM_LIKE_LOGGNG.

– The LOB is updated using OCILOBWrite(), OCILobAppend(), OCiLobCopy(),
OCILobLoadFromFile(), OCILobTrim(), or through procedures in the dbms_lob
package.

– Any other anomalies as detected by Extract.

• When changing a SECUREFILE LOB from one storage to another (such as from
ENCRYPT to DECRYPT), Oracle updates the whole table, and Extract captures those
updates from the log. Therefore, it will appear as though Oracle updated all of the
data blocks that are associated with the table. This also can happen when an
ALTER TABLE command sets a DEFAULT value to a column that has null values.

• In a manage bundled agents (XAG) high availability environment that has tables
containing JavaScript Object Notation (JSON) columns, Extracts can extract this
data though the default Replicat mode cannot replicate the data. You must set the
DBOPTIONS NOSKIPTEMPLOB parameter to avoid Replicat abending.

XML Data Types
The following XML types are supported:

• In integrated capture mode, Oracle GoldenGate supports XMLType columns and
XMLType tables stored as XML CLOB, XML Object Relational, and XML Binary.

• In classic capture mode, Oracle GoldenGate supports XMLType columns stored as
XML CLOB and XML Binary.

• Limitations of Support — Integrated and Classic Capture Modes

• Limitations of Support — Integrated Capture Mode

• Limitations of Support — XML Binary Classic Capture Mode

Limitations of Support — Integrated and Classic Capture Modes
The following are not supported:

• Filtering and manipulation are not supported. You can map the XML
representation of an object to a character column by means of a COLMAP clause in
a TABLE or MAP statement.

Chapter 1
Details of Support for Oracle Data Types

1-10

• Oracle recommends the AL32UTF8 character set as the database character set
when working with XML data. This ensures the correct conversion by Oracle
GoldenGate from source to target.

• Hierarchy-enabled tables are managed by the Oracle XML database repository
and are supported with procedural logging.

• Assuming DDL support is enabled, Oracle GoldenGate replicates the CTAS
statement and allows it to select the data from the underlying target table(s). This
is controlled using the TRANSLOGOPTIONS GETCTASDML parameter and applies to all
typed tables. If the parameter is used, the OIDs are preserved. For XMLType tables,
the row object IDs must match between source and target, which cannot be
maintained when Replicat uses logical SQL statements. XMLType tables created by
an empty statement (that does not insert data in the new table) can be maintained
correctly.

• XMLType tables with primary key-based object identifiers (OID)

• Relational tables with a single XML column

• SQL* Loader direct-path insert for XML Binary and XML Object Relational

• XML Schema-based XMLType are supported, but changes made to XML Schemas
are not replicated and must be registered on both source and target databases
with the DBMS_XMLSCHEMA package.

• Tables that contain XMLType columns must have at least one unique key constraint
that is made up of scalar columns, or the combination of all scalar columns must
guarantee uniqueness. Extract or Replicat cannot use unique or primary key
constraints made up of XML attributes for row identification purposes.

Limitations of Support — Integrated Capture Mode
• XML OR and XML Binary, for native capture. XML binary/OR will be fetched if

compatible with releases greater than 11.2.0.3.

• XML CLOB, source database compatibility is with releases greater than 11.0.0.0.0.

• The maximum length for the entire SET value of an update to an XMLType is 32K,
including the new content plus other operators and XQuery bind values.

Limitations of Support — XML Binary Classic Capture Mode
• For XML Binary, Oracle GoldenGate fetches additional row data from the source

database. Because the fetched data may not part of the original transaction, it may
lead to inconsistency.

• XML Object Relational is not supported in classic capture mode.

User Defined or Abstract Types
Oracle GoldenGate supports User Defined types (UDT) or Abstract Data Types (ADT)
when the source and target objects have the same structure. The schema names can
be different.

• General Limitations of Support — Integrated and Classic Capture Modes

• Limitations for Collection Types — Integrated and Classic Capture Modes

• Limitations for Object Tables — Integrated and Classic Capture Modes

Chapter 1
Details of Support for Oracle Data Types

1-11

• Limitations for Spatial Types — Integrated and Classic Capture Modes

General Limitations of Support — Integrated and Classic Capture Modes
• Redo-based supports most attribute types, but falls back to fetching from source

table when UDT contains:

– Nested Table

– SDO_TOPO_GEOMETRY

– SDO_GEORASTER

• Fetch-based does not support UDT that contains:

– ANYDATA

– TIMESTAMP WITH TIMEZONE

– TIMESTAMP WITH LOCAL TIMEZONE

– INTERVAL YEAR TO MONTH

– INTERVAL DAY TO SECOND

– BINARY FLOAT

– BINARY DOUBLE

– BFILE

• Oracle GoldenGate does not support UDTs that contain:

– CFILE

– OPAQUE (with exception of XMLType

• A table that contains a UDT must have one of the following: a primary key,
column(s) with a unique constraint, or a unique index.

• Object or relational tables where the key contains a UDT, or where a UDT is the
only column, are not supported.

• The RMTTASK parameter does not support UDT.

• CHAR and VARCHAR attributes that contain binary or unprintable characters are not
supported.

• UDTs, including values inside object columns or rows, cannot be used within
filtering criteria in TABLE or MAP statements, or as input or output for the Oracle
GoldenGate column-conversion functions, SQLEXEC, or other built-in data-
manipulation tools. Support is only provided for like-to-like Oracle source and
targets.

• UDT and nested tables are supported with the following limitations:

– Nested table UDTs cannot contain CHAR, NVARCHAR2, or NCLOB attributes.

– Nested tables are not supported if there are extended (32k) VARCHAR2 or RAW
attributes in UDTs.

– Nested tables are not supported if there are CLOB or BLOB attributes in UDTs.

– Nested table columns/attributes that are part of any other UDT are not
supported.

Chapter 1
Details of Support for Oracle Data Types

1-12

Limitations for Collection Types — Integrated and Classic Capture Modes
• When data in a nested table is updated, the row that contains the nested table

must be updated at the same time.

• When VARRAYS and nested tables are fetched, the entire contents of the column
are fetched each time, not just the changes.

Limitations for Object Tables — Integrated and Classic Capture Modes

Integrated Capture Only (Redo-based)

• Redo-based captures object tables from redo when compatible with Oracle
Database 12.2 and greater, but falls back to fetching from source table when an
object table contains the following attributes:

Nested table
SDO_TOPO_GEOMETRY

SDO_GEORASTER

These objects are only fetched if they are compatible with Oracle GoldenGate
12.2.x.

• To fully support object tables created with CREATE TABLE as SELECT (CTAS)
statement, Integrated Capture must be configured to capture DML from the CTAS
statement. For more information about CTAS, see CREATE TABLE AS SELECT.

• An Oracle object table can be mapped to a non-Oracle object table in a supported
target database.

Classic and Integrated Capture (Fetch-based)

• Fetch-based fetches all leaf-level attributes, as well as, root-level LOB, XML, UDT,
ANYDATA, and collection attributes.

• Fetch-based does not support object tables that contain the following leaf-level
attributes:

ANYDATA

TIMESTAMP WITH TIMEZONE

TIMESTAMP WITH LOCAL TIMEZONE

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

BINARY FLOAT

BINARY DOUBLE

• Oracle GoldenGate supports object tables in uni-directional and active-active
configurations. Object tables are captured from the redo log, but certain data types
that are fetched from the database when in regular relational tables, such as LOBs
and collection types, are also fetched when in object tables. Similarly, current
limitations that apply to collection types when in regular tables also apply to these
types when in object tables.

• A primary key must be defined on the root-level object attributes of the object
table, and cannot include leaf-level attributes. If no key is defined, Oracle
GoldenGate will use all useable columns as a pseudo-key.

Chapter 1
Details of Support for Oracle Data Types

1-13

• Oracle GoldenGate does not support the replication of DDL operations for an
object table. This limitation includes the database object versioning that is
associated with ALTERs of object tables.

• Synonyms are not supported for object tables or object types that contain object
tables.

Limitations for Spatial Types — Integrated and Classic Capture Modes
Oracle GoldenGate supports SDO_GEOMETRY, SDO_TOPO_GEOMETRY, and SDO_GEORASTER
(raster tables).

Non-Supported Oracle Data Types
Oracle GoldenGate does not support the following data types.

• ANYDATA fetch-based column

If you want to capture from an Advanced Queue (AQ) object, do not use normal
table replication for that AQ object. Instead use the Procedural Replication
functionality, see Procedural Replication Process Overview.

The ANYDATA support is limited to normal table objects, not AQ objects.

• ANYDATASET

• ANYTYPE

• MLSLABEL

• ORDDICOM

• TIMEZONE_ABBR

• URITYPE

• UDT containing an unsupported Oracle data type

See additional exclusions in Summary of Supported Oracle Data Types and Objects
Per Capture Mode.

Details of Support for Objects and Operations in Oracle
DML

This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Identity Columns are supported.

• Multitenant Container Database

• Tables, Views, and Materialized Views

• Sequences

• Non-supported Objects and Operations in Oracle DML

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-14

Multitenant Container Database
Oracle GoldenGate captures from, and delivers to, a multitenant container
database, see Configuring Oracle GoldenGate in a Multitenant Container Database .

Tables, Views, and Materialized Views
Oracle GoldenGate supports the following DML operations made to regular tables,
index-organized tables, clustered tables, and materialized views.

• INSERT

• UPDATE

• DELETE

• Associated transaction control operations

Tip:

You can use the DBA_GOLDENGATE_SUPPORT_MODE data dictionary view to
display information about the level of Oracle GoldenGate capture process
support for the tables in your database. The PLSQL value of
DBA_GOLDENGATE_SUPPORT_MODE indicates that the table is supported natively,
but requires procedural supplemental logging. For more information, see the
DBA_GOLDENGATE_SUPPORT_MODE. If you need to display all tables that have no
primary and no non-null unique indexes, you can use the
DBA_GOLDENGATE_NOT_UNIQUE. For more information, see
DBA_GOLDENGATE_NOT_UNIQUE.

• Limitations of Support for Regular Tables

• Limitations of Support for Index-Organized Tables

• Limitations of Support for Views

• Limitations of Support for Materialized Views

• Limitations of Support for Clustered Tables

Limitations of Support for Regular Tables
These limitations apply to integrated and classic capture modes.

• Oracle GoldenGate supports tables that contain any number of rows.

• A row can be up to 4 MB in length. If Oracle GoldenGate is configured to include
both the before and after image of a column in its processing scope, the 4 MB
maximum length applies to the total length of the full before image plus the length
of the after image. For example, if there are UPDATE operations on columns that
are being used as a row identifier, the before and after images are processed and
cannot exceed 4 MB in total. Before and after images are also required for
columns that are not row identifiers but are used as comparison columns in conflict
detection and resolution (CDR). Character columns that allow for more than 4 KB
of data, such as a CLOB, only have the first 4 KB of data stored in-row and

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-15

contribute to the 4MB maximum row length. Binary columns that allow for more
than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and
contributes to the 4MB maximum row length.

• Oracle GoldenGate supports the maximum number of columns per table that is
supported by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the
database.

• Oracle GoldenGate supports tables that contain only one column, except when the
column contains one of the following data types:

– LOB

– LONG

– LONG VARCHAR

– Nested table

– User Defined Type (UDT)

– VARRAY

– XMLType

• Set DBOPTIONS ALLOWUNUSEDCOLUMN before you replicate from and to tables with
unused columns.

• Oracle GoldenGate supports tables with these partitioning attributes:

– Range partitioning

– Hash Partitioning Interval Partitioning

– Composite Partitioning

– Virtual Column-Based Partitioning

– Reference Partitioning

– List Partitioning

• Oracle GoldenGate supports tables with virtual columns, but does not capture
change data for these columns or apply change data to them: The database does
not write virtual columns to the transaction log, and the Oracle Database does not
permit DML on virtual columns. For the same reason, initial load data cannot be
applied to a virtual column. You can map the data from virtual columns to non-
virtual target columns.

• Oracle GoldenGate will not consider unique/index with virtual columns.

• Oracle GoldenGate supports replication to and from Oracle Exadata. To support
Exadata Hybrid Columnar Compression, Extract must operate in integrated
capture mode. To support Exadata Hybrid Columnar Compression, the source
database compatibility must be set to 11.2.0.0.0 or higher.

• Oracle GoldenGate supports Transparent Data Encryption (TDE).

– Extract supports TDE column encryption and TDE table space encryption
without setup requirements in integrated capture mode. For integrated
capture, the source database must be Oracle version 11.1.0 with compatibility
setting of 11.0.0.0 or higher.

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-16

– In classic capture mode, Extract supports column encryption for all versions of
Oracle 11.1 and later. Tablespace encryption is supported for all versions of
Oracle 11.2.0.1 and later. TDE in classic capture mode requires some setup.

• Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication
support, or as standalone functionality that is independent of the DDL support.

• Oracle GoldenGate supports the capture of direct-load INSERT, with the exception
of SQL*Loader direct-path insert for XML Binary and XML Object Relational as
described in Limitations of Support — Integrated and Classic Capture Modes.
Supplemental logging must be enabled, and the database must be in archive log
mode. The following direct-load methods are supported.

– /*+ APPEND */ hint

– /*+ PARALLEL */ hint (Not supported for RAC in classic capture mode)

– SQLLDR with DIRECT=TRUE

• Oracle GoldenGate fully supports capture from compressed objects when Extract
is in integrated capture mode. The source database version must be 11.2.0.0 or
higher if capturing from a downstream mining database or 11.2.0.3 if the source
database is the mining database. Extract in classic capture mode does not support
compressed objects.

• Oracle GoldenGate supports XA and PDML distributed transactions in integrated
capture mode. Extract in classic capture mode does not support PDML or XA on
RAC.

• Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCHIVE
enabled. However, Oracle GoldenGate does not support DDL that creates tables
with the FLASHBACK ARCHIVE clause or DDL that creates, alters, or deletes the
flashback data archive itself.

Limitations of Support for Index-Organized Tables
These limitations apply to classic capture mode.

• IOT with key compression enabled (indicated by the COMPRESS keyword in the
key_compression clause) is not supported in classic capture mode, but is
supported in integrated capture mode.

Limitations of Support for Views
These limitations apply to integrated and classic capture modes.

• Oracle GoldenGate supports capture from a view when Extract is in initial-load
mode (capturing directly from the source view, not the redo log).

• Oracle GoldenGate does not capture change data from a view, but it supports
capture from the underlying tables of a view.

• Oracle GoldenGate can replicate to a view as long as the view is inherently
updateable. The structures of the source tables and a target view must be
identical.

Limitations of Support for Materialized Views
Materialized views are supported by Extract in classic and integrated modes with the
following limitations.

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-17

• Materialized views created WITH ROWID are not supported.

• The materialized view log can be created WITH ROWID.

• The source table must have a primary key.

• Truncates of materialized views are not supported. You can use a DELETE FROM
statement.

• DML (but not DDL) from a full refresh of a materialized view is supported. If DDL
support for this feature is required, open an Oracle GoldenGate support case.

• For Replicat the Create MV command must include the FOR UPDATE clause

• Either materialized views can be replicated or the underlying base table(s), but not
both.

Limitations of Support for Clustered Tables
Indexed clusters are supported in both integrated and classic capture modes while
hash clusters are not supported in either modes. In classic capture mode the following
limitations apply:

• Encrypted and compressed clustered tables are not supported in classic capture.

• Extract in classic capture mode captures DML changes made to index clustered
tables if the cluster size remains the same. Any DDL that causes the cluster size
to increase or decrease may cause Extract to capture subsequent DML on that
table incorrectly.

Sequences
• Oracle GoldenGate supports the replication of sequence values in a uni-directional

and active-passive high-availability configuration.

• Oracle GoldenGate ensures that the target sequence values will always be higher
than those of the source (or equal to them, if the cache is zero).

• Limitations of Support for Sequences

Limitations of Support for Sequences
These limitations apply to integrated and classic capture modes.

• Oracle GoldenGate does not support the replication of sequence values in an
active-active bi-directional configuration.

• The cache size and the increment interval of the source and target sequences
must be identical. The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target
databases must be set the same way.

• Tables with default sequence columns are excluded from replication for
Coordinated Extract.

Non-supported Objects and Operations in Oracle DML
The following are additional Oracle objects or operations that are not supported by
Extract in either classic or integrated capture mode:

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-18

• REF are supported natively for compatibility with Oracle Database 12.2, but not
primary-key based REFs (PKREFs)

• Sequence values in an active-active bi-directional configuration

• Database Replay

• Tables created as EXTERNAL

The following are not supported in classic capture mode:

• Exadata Hybrid Columnar Compression

• Capture from tables with OLTP table compression

• Capture from tablespaces and tables created or altered with COMPRESS

• Capture from encrypted and compressed clustered tables

• Invisible column

• Distributed transactions. In Oracle versions 11.1.0.6 and higher, you can capture
these transactions if you make them non-distributed by using the following
command, which requires the database to be restarted.

alter system set _CLUSTERWIDE_GLOBAL_TRANSACTIONS=FALSE;

• RAC distributed XA and PDML distributed transactions

• Version enabled-tables

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

Trigger-based capture is required for Oracle releases that are earlier than version
11.2.0.4. If Extract will run in integrated mode against a version 11.2.0.4 or later of
Oracle Database, then the DDL trigger and supporting objects are not required.

• Supported Objects and Operations in Oracle DDL

• Non-supported Objects and Operations in Oracle DDL

Supported Objects and Operations in Oracle DDL
When the source database is Oracle 11.2.0.4 or later and Extract operates in
integrated mode, DDL capture support is integrated into the database logmining server
and does not require the use of a DDL trigger. You must set the database parameter
compatibility to 11.2.0.4.0. In integrated capture mode, Extract supports DDL that
includes password-based column encryption, such as:

• CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY
my_password);

• ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY
my_password;

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-19

Note:

Password-based column encryption in DDL is not supported in classic
capture mode.

The following additional statements apply to both integrated and classic capture
modes with respect to DDL support.

• All Oracle GoldenGate topology configurations are supported for Oracle DDL
replication.

• Replication of In Database Row Archival is supported from Oracle GoldenGate
18c (18.1.0.0) onward. However, update and delete on archived rows is not
supported.

• Active-active (bi-directional) replication of Oracle DDL is supported between two
(and only two) databases that contain identical metadata.

• Oracle GoldenGate supports DDL on the following objects:

– clusters

– directories

– functions

– indexes

– packages

– procedure

– tables

– tablespaces

– roles

– sequences

– synonyms

– triggers

– types

– views

– materialized views

– users

– invisible columns

• Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is
supported for integrated Extract for the following Oracle Database objects:

– functions

– library

– packages (specification and body)

– procedure

– synonyms

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-20

– types (specification and body)

– views

EBR does not support use of DDL triggers.

• Oracle GoldenGate supports DDL operations of up to 4 MB in size. Oracle
GoldenGate measures the size of DDL statement in bytes, not in characters. This
size limitation includes packages, procedures, and functions. The actual size limit
of the DDL support is approximate, because the size not only includes the
statement text, but also Oracle GoldenGate maintenance overhead that depends
on the length of the object name, the DDL type, and other characteristics of
keeping a DDL record internally.

• Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to
be visible to Extract so that they can be replicated. You must set the DDLOPTIONS
parameter to enable this operation because it is not set by default.

• Oracle GoldenGate supports Integrated Dictionary for use with NOUSERID and
TRANLOGOPTIONS GETCTASDML. This means that Extract will be obtaining object
metadata from the LogMiner dictionary instead of the DDL trigger and without
querying the dictionary objects. Oracle GoldenGate uses Integrated Dictionary
automatically when the source database compatibility parameter is greater than or
equal to 11.2.0.4 and Integrated Extract is used.

The Integrated Dictionary feature is not supported with classic Extract.

When using Integrated Dictionary and trail format in the Oracle GoldenGate
release 12.2.x, Integrated Capture requires the Logminer patch to be applied on
the mining database if the Oracle Database release is earlier than 12.1.0.2.

• Oracle GoldenGate supports replication of invisible columns in Integrated Capture
mode. Trail format release 12.2 is required. Replicat must specify the
MAPINVISIBLECOLUMNS parameter or explicitly map to invisible columns in the
COLMAP clause of the MAP parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for
Oracle tables must be compatible with the trail format. Metadata format 12.2 is
compatible with trail format 12.2, and metadata format earlier than 12.2 is
compatible with trail format earlier than 12.2. To specify the metadata format of a
definition file, use the FORMAT RELEASE option of the DEFSFILE parameter when the
definition file is generated in DEFGEN.

• DDL statements to create a namespace context (CREATE CONTEXT) are captured by
Extract and applied by Replicat.

• Extract in pump mode supports the following DDL options:

– DDL INCLUDE ALL

– DDL EXCLUDE ALL

– DDL EXCLUDE OBJNAME

The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE
OBJNAME is specified and the object owner is does not match an exclusion rule,
then it is written to the trail.

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-21

Non-supported Objects and Operations in Oracle DDL
These statements apply to integrated and classic capture modes.

• Excluded Objects

• Other Non-supported DDL

Excluded Objects
The following names or name prefixes are considered Oracle-reserved and must be
excluded from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will
ignore objects that contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user
 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM
 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema
 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",
 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration
 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-22

 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index
 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views
 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL
Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) When
using Integrated Dictionary you can replicate ALTER DATABASE DEFAULT EDITION
and ALTER PLUGGABLE DATABASE DEFAULT EDITION. All other ALTER [PLUGABLE]
DATABASE commands are ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates,
alters, or deletes the flashback data archive itself. DML on tables with FLASHBACK
ARCHIVE is supported.

• Classic capture mode does not support DDL that includes password-based
column encryption, such as:

– CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY
my_password);

– ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY
my_password;

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-23

Integrating Oracle GoldenGate into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to integrate
Oracle GoldenGate within the cluster solution.

For more information about installing and using Oracle GoldenGate in a cluster, see
the Oracle GoldenGate with Oracle Real Application Clusters Configuration white
paper.

• General Requirements in a Cluster

• Adding Oracle GoldenGate as a Windows Cluster Resource

General Requirements in a Cluster
1. Configure the Oracle Grid Infrastructure Bundled Agent (XAG) to automatically

manage the GoldenGate processes on the cluster nodes. Using the XAG will
make sure the required cluster file system is mounted before the GoldenGate
processes are started. If an application virtual IP (VIP) is used in the cluster the
bundled agent will also ensure the VIP is started on the correct node.

2. Configure the Oracle GoldenGate Manager process with the AUTOSTART and
AUTORESTART parameters so that Manager starts the replication processes
automatically.

3. Mount the shared drive on one node only. This prevents processes from being
started on another node. Use the same mount point on all nodes. If you are using
the Oracle Grid Infrastructure Bundled Agent, the mounting of the required file
systems are automatically carried out.

4. Ensure that all database instances in the cluster have the same COMPATIBLE
parameter setting.

5. Configure Oracle GoldenGate as directed in this documentation.

Adding Oracle GoldenGate as a Windows Cluster Resource
When installing Oracle GoldenGate in a Windows cluster, follow these instructions to
establish Oracle GoldenGate as a cluster resource and configure the Manager service
correctly on all nodes.

• In the cluster administrator, add the Manager process to the group that contains
the database instance to which Oracle GoldenGate will connect.

• Make sure all nodes on which Oracle GoldenGate will run are selected as possible
owners of the resource.

• Make certain the Manager Windows service has the following dependencies (can
be configured from the Services control panel):

– The database resource

– The disk resource that contains the Oracle GoldenGate directory

– The disk resource that contains the database transaction log files

– The disk resource that contains the database transaction log backup files

Chapter 1
Integrating Oracle GoldenGate into a Cluster

1-24

http://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

2
Preparing the Database for Oracle
GoldenGate

Learn how to prepare your database for Oracle GoldenGate, including how to
configure connections and logging, how to enable Oracle GoldenGate in your
database, how to set the flashback query, and how to manage server resources.

Topics:

• Configuring Connections for Integrated Processes
If you will be using integrated capture and integrated Replicat, each requires a
dedicated server connection in the tnsnames.ora file.

• Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to
replicate source transactions. The Oracle redo logs on the source system must be
configured properly before you start Oracle GoldenGate processing.

• Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply
must be enabled explicitly for an Oracle 11.2.0.4 or greater database.

• Setting Flashback Query
To process certain update records, Extract fetches additional row data from the
source database.

• Managing Server Resources
In integrated mode, Extract interacts with an underlying logmining server in the
source database and Replicat interacts with an inbound server in the target
database. This section provides guidelines for managing the shared memory
consumed by the these servers.

Configuring Connections for Integrated Processes
If you will be using integrated capture and integrated Replicat, each requires a
dedicated server connection in the tnsnames.ora file.

You direct the processes to use these connections with the USERID or USERIDALIAS
parameter in the Extract and Replicat parameter files when you configure those
processes.

The following is an example of the dedicated connection required for integrated
capture (Extract) and integrated Replicat.

TEST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = test2)(PORT = 1521))
)
(CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = test)

2-1

)
)

The following are the security options for specifying the connection string in the Extract
or Replicat parameter file.

Password encryption method:

USERID intext@test, PASSWORD mypassword

Credential store method:

USERIDALIAS ext

In the case of USERIDALIAS, the alias ext is stored in the Oracle GoldenGate credential
store with the actual connection string, as in the following example:

GGSCI> INFO CREDENTIALSTORE DOMAIN support
Domain: Support
 Alias: ext
 Userid: intext@test

For more information about specifying database connection information in the
parameter file, see Administering Oracle GoldenGate.

Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate
source transactions. The Oracle redo logs on the source system must be configured
properly before you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate.
Which logging level that you use is dependent on the Oracle GoldenGate feature or
features that you are using.

Note:

Redo volume is increased as the result of this required logging. You can wait
until you are ready to start Oracle GoldenGate processing to enable the
logging.

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option GGSCI command What it does Use case

Forced logging mode None; enable through
the database.

Forces the logging of
all transactions and
loads.

Strongly
recommended for all
Oracle GoldenGate
use cases.

Minimum database-
level supplemental
logging

None; enable through
the database.

Enables minimal
supplemental logging
to add row-chaining
information to the redo
log.

Required for all Oracle
GoldenGate use
cases

Chapter 2
Configuring Logging Properties

2-2

Logging option GGSCI command What it does Use case

Schema-level
supplemental logging,
default setting

See Enabling
Schema-level
Supplemental
Logging.

ADD
SCHEMATRANDATA

Enables unconditional
supplemental logging
of the primary key and
conditional
supplemental logging
of unique key(s) and
foreign key(s) of all
tables in a schema. All
of these keys together
are known as the
scheduling columns.

Enables the logging
for all current and
future tables in the
schema. If the primary
key, unique key, and
foreign key columns
are not identical at
both source and
target, use ALLCOLS.
Required when using
DDL support.

Schema-level
supplemental logging
with unconditional
logging for all
supported columns.
(See Enabling
Schema-level
Supplemental Logging
for non-supported
column types.)

ADD
SCHEMATRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging
of all of the columns in
a table, for all of the
tables in a schema.

Used for bidirectional
and active-active
configurations where
all column values are
checked, not just the
changed columns,
when attempting to
perform an update or
delete. This takes
more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

It can also be used
when the source and
target primary, unique,
and foreign keys are
not the same or are
constantly changing
between source and
target.

Schema-level
supplemental logging,
minimal setting

ADD
SCHEMATRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging
of the primary key and
all valid unique
indexes of all tables in
a schema.

Use only for
nonintegrated
Replicat. This is the
minimum required
schema-level logging.

Table-level
supplemental logging
with built-in support for
integrated Replicat

See Enabling Table-
level Supplemental
Logging

ADD TRANDATA Enables unconditional
supplemental logging
of the primary key and
conditional
supplemental logging
of unique key(s) and
foreign key(s) of a
table. All of these keys
together are known as
the scheduling
columns.

Required for all Oracle
GoldenGate use
cases unless schema-
level supplemental
logging is used. If the
primary key, unique
key, and foreign key
columns are not
identical at both
source and target, use
ALLCOLS.

Chapter 2
Configuring Logging Properties

2-3

Logging option GGSCI command What it does Use case

Table-level
supplemental logging
with unconditional
logging for all
supported columns.
(See Enabling Table-
level Supplemental
Logging for non-
supported column
types.)

ADD TRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging
of all of the columns of
the table.

Used for bidirectional
and active-active
configurations where
all column values are
checked, not just the
changed columns,
when attempting to
perform an update or
delete. This takes
more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

It can also be used
when the source and
target primary, unique,
and foreign keys are
not the same or are
constantly changing
between source and
target.

Table-level
supplemental logging,
minimal setting

ADD TRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging
of the primary key and
all valid unique
indexes of a table.

Use only for
nonintegrated
Replicat. This is the
minimum required
table-level logging.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process
the log files.

• Enabling Minimum Database-level Supplemental Logging

• Enabling Schema-level Supplemental Logging

• Enabling Table-level Supplemental Logging

Enabling Minimum Database-level Supplemental Logging
Oracle strongly recommends putting the Oracle source database into forced logging
mode. Forced logging mode forces the logging of all transactions and loads, overriding
any user or storage settings to the contrary. This ensures that no source data in the
Extract configuration gets missed.

In addition, minimal supplemental logging, a database-level option, is required for an
Oracle source database when using Oracle GoldenGate. This adds row chaining
information, if any exists, to the redo log for update operations.

Chapter 2
Configuring Logging Properties

2-4

Note:

Database-level primary key (PK) and unique index (UI) logging is strongly
discouraged because of the excessive additional overhead it creates on
tables outside of replication. Unless those logging options are required for
business purposes, you only need to enable minimal supplemental logging at
the database level and force logging for Oracle GoldenGate.

Perform the following steps to verify and enable, if necessary, minimal supplemental
logging and forced logging.

1. Log in to SQL*Plus as a user with ALTER SYSTEM privilege.

2. Issue the following command to determine whether the database is in
supplemental logging mode and in forced logging mode. If the result is YES for both
queries, the database meets the Oracle GoldenGate requirement.

SELECT supplemental_log_data_min, force_logging FROM v$database;

3. If the result is NO for either or both properties, continue with these steps to enable
them as needed:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ALTER DATABASE FORCE LOGGING;

4. Issue the following command to verify that these properties are now enabled.

SELECT supplemental_log_data_min, force_logging FROM v$database;

The output of the query must be YES for both properties.

5. Switch the log files.

SQL> ALTER SYSTEM SWITCH LOGFILE;

Enabling Schema-level Supplemental Logging
Oracle GoldenGate supports schema-level supplemental logging. Schema-level
logging is required for an Oracle source database when using the Oracle GoldenGate
DDL replication feature. In all other use cases, it is optional, but then you must use
table-level logging instead (see Enabling Table-level Supplemental Logging).

By default, schema-level logging automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of all tables in a schema. Options enable you to alter the logging as
needed.

Note:

Oracle strongly recommends using schema-level logging rather than table-
level logging, because it ensures that any new tables added to a schema are
captured if they satisfy wildcard specifications.

Chapter 2
Configuring Logging Properties

2-5

Perform the following steps on the source system to enable schema-level
supplemental logging.

1. Apply Oracle Patch 13794550 to the source Oracle Database if the version is
earlier than 11.2.0.2.

2. Run GGSCI on the source system.

3. Issue the DBLOGIN command with the alias of a user in the credential store who
has privilege to enable schema-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGate for more information
about USERIDALIAS and additional options.

4. Issue the ADD SCHEMATRANDATA command for each schema for which you want to
capture data changes with Oracle GoldenGate.

ADD SCHEMATRANDATA schema [ALLCOLS | NOSCHEDULINGCOLS]

Where:

• Without options, ADD SCHEMATRANDATA schema enables the unconditional
supplemental logging on the source system of the primary key and the
conditional supplemental logging of all unique key(s) and foreign key(s) of all
current and future tables in the given schema. Unconditional logging forces the
primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat but is required to
support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies.
For more information about integrated Replicat, see Deciding Which Apply
Method to Use.

• ALLCOLS can be used to enable the unconditional supplemental logging of all
of the columns of a table and applies to all current and future tables in the
given schema. Use to support integrated Replicat when the source and target
tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

• NOSCHEDULINGCOLS logs only the values of the primary key and all valid unique
indexes for existing tables in the schema and new tables added later. This is
the minimal required level of schema-level logging and is valid only for
Replicat in nonintegrated mode.

In the following example, the command enables default supplemental logging for
the finance schema.

ADD SCHEMATRANDATA finance

In the following example, the command enables the supplemental logging only for
the primary key and valid unique indexes for the hr schema.

ADD SCHEMATRANDATA hr NOSCHEDULINGCOLS

Enabling Table-level Supplemental Logging
Enable table-level supplemental logging on the source system in the following cases:

Chapter 2
Configuring Logging Properties

2-6

• To enable the required level of logging when not using schema-level logging (see
Enabling Schema-level Supplemental Logging). Either schema-level or table-level
logging must be used. By default, table-level logging automatically enables
unconditional supplemental logging of the primary key and conditional
supplemental logging of unique key(s) and foreign key(s) of a table. Options
enable you to alter the logging as needed.

• To prevent the logging of the primary key for any given table.

• To log non-key column values at the table level to support specific Oracle
GoldenGate features, such as filtering and conflict detection and resolution logic.

Perform the following steps on the source system to enable table-level supplemental
logging or use the optional features of the command.

1. Run GGSCI on the source system.

2. Issue the DBLOGIN command using the alias of a user in the credential store who
has privilege to enable table-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGatefor more information
about DBLOGIN and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [container.]schema.table [, COLS (columns)] [, NOKEY] [,
ALLCOLS | NOSCHEDULINGCOLS]

Where:

• container is the name of the root container or pluggable database if the table
is in a multitenant container database.

• schema is the source schema that contains the table.

• table is the name of the table. See Specifying Object Names in Oracle
GoldenGate Input in Administering Oracle GoldenGate for instructions for
specifying object names.

• ADD TRANDATA without other options automatically enables unconditional
supplemental logging of the primary key and conditional supplemental logging
of unique key(s) and foreign key(s) of the table. Unconditional logging forces
the primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat (see also
NOSCHEDULINGCOLS) but is required to support integrated Replicat because
primary key, unique keys, and foreign keys must all be available to the
inbound server to compute dependencies. For more information about
integrated Replicat, see Deciding Which Apply Method to Use.

• ALLCOLS enables the unconditional supplemental logging of all of the columns
of the table. Use to support integrated Replicat when the source and target
tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

• NOSCHEDULINGCOLS is valid for Replicat in nonintegrated mode only. It issues
an ALTER TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS
clause that is appropriate for the type of unique constraint that is defined for
the table, or all columns in the absence of a unique constraint. This command

Chapter 2
Configuring Logging Properties

2-7

satisfies the basic table-level logging requirements of Oracle GoldenGate
when schema-level logging will not be used. See Ensuring Row Uniqueness in
Source and Target Tables for how Oracle GoldenGate selects a key or index.

• COLS columns logs non-key columns that are required for a KEYCOLS clause or
for filtering and manipulation. The parentheses are required. These columns
will be logged in addition to the primary key unless the NOKEY option is also
present.

• NOKEY prevents the logging of the primary key or unique key. Requires a
KEYCOLS clause in the TABLE and MAP parameters and a COLS clause in the ADD
TRANDATA command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those
columns on the target to optimize row retrieval. If you are logging those columns
as a substitute key for a KEYCOLS clause, make a note to add the KEYCOLS clause to
the TABLE and MAP statements when you configure the Oracle GoldenGate
processes.

Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply must
be enabled explicitly for an Oracle 11.2.0.4 or greater database.

The database services required to support Oracle GoldenGate capture and apply must
be enabled explicitly for an Oracle 11.2.0.4 or greater database. This is required for all
modes of Extract and Replicat.

To enable Oracle GoldenGate, set the following database initialization parameter. All
instances in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLICATION=true

For more information about this parameter, see Initialization Parameters.

Setting Flashback Query
To process certain update records, Extract fetches additional row data from the source
database.

Oracle GoldenGate fetches data for the following:

• User-defined types

• Nested tables

• XMLType objects

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the
undo (rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-
consistent row image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

1. Set a sufficient amount of redo retention by setting the Oracle initialization
parameters UNDO_MANAGEMENT and UNDO_RETENTION as follows (in seconds).

UNDO_MANAGEMENT=AUTO

Chapter 2
Enabling Oracle GoldenGate in the Database

2-8

UNDO_RETENTION=86400

UNDO_RETENTION can be adjusted upward in high-volume environments.

2. Calculate the space that is required in the undo tablespace by using the following
formula.

undo_space = UNDO_RETENTION * UPS + overhead

Where:

• undo_space is the number of undo blocks.

• UNDO_RETENTION is the value of the UNDO_RETENTION parameter (in seconds).

• UPS is the number of undo blocks for each second.

• overhead is the minimal overhead for metadata (transaction tables, etc.).

Use the system view V$UNDOSTAT to estimate UPS and overhead.

3. For tables that contain LOBs, do one of the following:

• Set the LOB storage clause to RETENTION. This is the default for tables that are
created when UNDO_MANAGEMENT is set to AUTO.

• If using PCTVERSION instead of RETENTION, set PCTVERSION to an initial value of
25. You can adjust it based on the fetch statistics that are reported with the
STATS EXTRACT command. If the value of the STAT_OPER_ROWFETCH
CURRENTBYROWID or STAT_OPER_ROWFETCH_CURRENTBYKEY field in these statistics
is high, increase PCTVERSION in increments of 10 until the statistics show low
values.

4. Grant either of the following privileges to the Oracle GoldenGate Extract user:

GRANT FLASHBACK ANY TABLE TO db_user

GRANT FLASHBACK ON schema.table TO db_user

Oracle GoldenGate provides the following parameters to manage fetching.

Parameter or Command Description

STATS EXTRACT
command with
REPORTFETCH option

Shows Extract fetch statistics on demand.

STATOPTIONS parameter
with REPORTFETCH option

Sets the STATS EXTRACT command so that it always shows fetch
statistics.

MAXFETCHSTATEMENTS
parameter

Controls the number of open cursors for prepared queries that
Extract maintains in the source database, and also for SQLEXEC
operations.

MAXFETCHSTATEMENTS
parameter

Controls the default fetch behavior of Extract: whether Extract
performs a flashback query or fetches the current image from the
table.

FETCHOPTIONS
parameter with the
USELATESTVERSION or
NOUSELATESTVERSION
option

Handles the failure of an Extract flashback query, such as if the
undo retention expired or the structure of a table changed. Extract
can fetch the current image from the table or ignore the failure.

Chapter 2
Setting Flashback Query

2-9

Parameter or Command Description

REPFETCHEDCOLOPTIONS
parameter

Controls the response by Replicat when it processes trail records
that include fetched data or column-missing conditions.

Managing Server Resources
In integrated mode, Extract interacts with an underlying logmining server in the source
database and Replicat interacts with an inbound server in the target database. This
section provides guidelines for managing the shared memory consumed by the these
servers.

The shared memory that is used by the servers comes from the Streams pool portion
of the System Global Area (SGA) in the database. Therefore, you must set the
database initialization parameter STREAMS_POOL_SIZE high enough to keep enough
memory available for the number of Extract and Replicat processes that you expect to
run in integrated mode. Note that Streams pool is also used by other components of
the database (like Oracle Streams, Advanced Queuing, and Datapump export/import),
so make certain to take them into account while sizing the Streams pool for Oracle
GoldenGate.

By default, one integrated capture Extract requests the logmining server to run with
MAX_SGA_SIZE of 1GB. Thus, if you are running three Extracts in integrated capture
mode in the same database instance, you need at least 3 GB of memory allocated to
the Streams pool. As a best practice, keep 25 percent of the Streams pool available.
For example, if there are 3 Extracts in integrated capture mode, set
STREAMS_POOL_SIZE for the database to the following value:

3 GB * 1.25 = 3.75 GB

Chapter 2
Managing Server Resources

2-10

3
Establishing Oracle GoldenGate
Credentials

Learn how to create database users for the processes that interacts with the database,
assign the correct privileges, and secure the credentials from unauthorized use.

Topics

• Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with
the correct database privileges for the database version, database configuration,
and Oracle GoldenGate features that you are using.

• Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate
processing accurately, do not permit other users, applications, or processes to log
on as, or operate as, an Oracle GoldenGate database user.

Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with the
correct database privileges for the database version, database configuration, and
Oracle GoldenGate features that you are using.

Create a source database user and a target database user, each one dedicated
toOracle GoldenGate on the source and target systems. The assigned user can be the
same user for all of the Oracle GoldenGate processes that must connect to a source
or target Oracle Database.

• Extract User

• Replicat User

• Other Oracle GoldenGate Users

• Granting the Appropriate User Privileges

Extract User

The Extract user performs metadata queries on the source database and fetches data
from the source tables when needed. In a local mining deployment of integrated
capture, this user also creates, alters, and connects to the logmining server and
receives logical change records (LCR) from it. (See Deciding Which Capture Method
to Use for more information about capture modes.)

If the source database is a multitenant container database, the Extract user must be a
common user and must log into the root container. See Configuring Oracle
GoldenGate in a Multitenant Container Database for more information.

3-1

You need to assign an additional user if Extract will be operating in integrated capture
mode and you are using a downstream mining database. This user will be the mining
user and is created in the downstream database. The mining user creates, alters, and
connects to the log mining server on the mining database, and it receives logical
change records (LCR) from it. This user can be the same as the source Extract user or
different. Choose the name of the mining user carefully. Once created by this user, the
database logmining server cannot be altered or used by another user. See Configuring
a Downstream Mining Database for more information about configuring downstream
mining.

Replicat User
The Replicat user creates the Replicat checkpoint table (if used) and applies DML and
DDL operations through Oracle Call Interface or through a database inbound server,
depending on the Replicat mode, see Deciding Which Apply Method to Use

Other Oracle GoldenGate Users
A user is required in the source database for the Manager process if you are using
Oracle GoldenGate DDL support. This user performs maintenance on the Oracle
GoldenGate database objects that support DDL capture.

A user is required in either the source or target database for the DEFGEN utility. The
location depends on where the data definition file is being generated. This user
performs local metadata queries to build a data-definitions file that supplies the
metadata to remote Oracle GoldenGate instances. For more information about the
data-definitions file, see Administering Oracle GoldenGate.

Additional users or privileges may be required to use the following features, if Extract
will run in classic capture mode:

• RMAN log retention, see Log Retention Options.

• TDE support, see Configuring Oracle TDE Data in Classic Capture Mode.

• ASM, see Mining ASM-stored Logs in Classic Capture Mode.

Granting the Appropriate User Privileges
The user privileges that are required for Oracle GoldenGate depend on the database
version and the Extract or Replicat process mode. For more information about process
modes, see Choosing Capture and Apply Modes.

• Oracle 11.2.0.4 or Later Database Privileges

• Oracle 11.2.0.3 or Earlier Database Privileges

• About the dbms_goldengate_auth.grant_admin_privilege Package

• Optional Grants for dbms_goldengate_auth.grant_admin_privilege

Oracle 11.2.0.4 or Later Database Privileges
The following privileges apply to Oracle versions 11.2.0.4 or later.

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-2

Table 3-1 Oracle GoldenGate Privileges, Version 11.2.0.4 or Later

Privilege Extract
Classic
Mode

Extract
Integrated
Mode

Replicat
All Modes

Purpose

CREATE SESSION X X X Connect to the database

CONNECT X X X For Replicat, required only if
Replicat owns target objects.
Alternatively, use CREATE object.

RESOURCE X X X Create objects

If RESOURCE cannot be granted to
Replicat, use:

ALTER USER user QUOTA {size
| UNLIMITED} ON tablespace;

ALTER ANY TABLE X X Required for Oracle 12.1.0.1 only
to issue the ADD TRANDATA
command.

ALTER SYSTEM X X Perform administrative changes,
such as enabling logging

ALTER USER
<GGADMIN> set
container_data=al
l
container=current
;

X X Required for multitenant
architecture and <GGADMIN>
should be a valid Oracle
GoldenGate administrator schema.

Privileges granted
through
dbms_goldengate_a
uth.grant_admin_p
rivilege

X X X (Extract) Grants privileges for both
classic and integrated Extract,
including the logmining server.
(Replicat) Grants privileges for
both nonintegrated and integrated
replicat, including the database
inbound server (Oracle 11.2.0.4 or
later).

Any or all of optional
privileges of
dbms_goldengate_a
uth.grant_admin_p
rivilege

X X X • Capture from Data Vault
• Capture from Virtual Private

Database
• Capture redacted data
See About the
dbms_goldengate_auth.grant_adm
in_privilege Package for more
information.

INSERT, UPDATE,
DELETE on target
tables

X Apply replicated DML to target
objects

CREATE TABLE X Create a checkpoint table in target
database

DDL privileges on
target objects (if
using DDL support)

X Issue replicated DDL on target
objects

DBA X X DDL and sequence support

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-3

Table 3-1 (Cont.) Oracle GoldenGate Privileges, Version 11.2.0.4 or Later

Privilege Extract
Classic
Mode

Extract
Integrated
Mode

Replicat
All Modes

Purpose

LOCK ANY TABLE X Lock target tables. Only required
for initial load using direct bulk load
to SQL*Loader.

SELECT ANY
DICTIONARY

X X X Allow all privileges to work properly
on dictionary tables.

SELECT ANY
TRANSACTION

X Use a newer Oracle ASM API. See
Mining ASM-stored Logs in Classic
Capture Mode.

Oracle 11.2.0.3 or Earlier Database Privileges
The following privileges apply to Oracle versions 11.2.0.3 or earlier.

Table 3-2 Oracle GoldenGate Privileges, Oracle 11.2.0.3 or Earlier

Privilege Extract
Classic
Mode

Extract
Integrate
d Mode

Replicat Manager Purpose

CREATE SESSION

and

ALTER SESSION

X X X Connect to the database

ALTER SYSTEM X X Perform administrative
changes, such as
enabling logging

RESOURCE X X X Create objects

If RESOURCE cannot be
granted to Replicat, use:

ALTER USER user QUOTA
{size | UNLIMITED} ON
tablespace;

CONNECT X X X For Replicat, required only
if Replicat owns target
objects. Alternatively, use
CREATE object.

SELECT ANY
DICTIONARY

X X X Query data dictionary
objects in the SYS
schema

FLASHBACK ANY
TABLE

or

FLASHBACK ON
schema.table

X X Make flashback queries

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-4

Table 3-2 (Cont.) Oracle GoldenGate Privileges, Oracle 11.2.0.3 or Earlier

Privilege Extract
Classic
Mode

Extract
Integrate
d Mode

Replicat Manager Purpose

SELECT ANY TABLE

or

SELECT on a
schema.table

X X X Perform queries on any
table

SELECT on
dba_clusters

X X

INSERT, UPDATE,
DELETE on target
tables

X Apply replicated DML to
target objects

CREATE TABLE X Create a checkpoint table
in target database

EXECUTE on
DBMS_FLASHBACK
package

X X Call
DBMS_FLASHBACK.GET_S
YSTEM_CHANGE_NUMBER

DDL privileges on
target objects (if
using DDL support)

X Issue replicated DDL on
target objects

GGS_GGSUSER_ROLE
(if using DDL
support)

X X DML privileges on Oracle
GoldenGate DDL objects.
Role is created by user
with SYSDBA privilege
during installation of DDL
objects.

DELETE on Oracle
GoldenGate DDL
objects

X Use parameters that
maintain Oracle
GoldenGate DDL objects

LOCK ANY TABLE X Lock target tables. Only
required for initial load
using direct bulk load to
SQL*Loader.

SELECT ANY
TRANSACTION

X Use a newer Oracle ASM
API. See Mining ASM-
stored Logs in Classic
Capture Mode.

Privileges granted
through
dbms_streams_aut
h.grant_admin_pr
ivilege

X Interact with database
logmining server

EXECUTE on
dbms_logmnr_d
package

X Issue the REGISTER
EXTRACT command

Required for Oracle
version >= 11.1.0.5 and
<= 11.2.0.1.

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-5

Table 3-2 (Cont.) Oracle GoldenGate Privileges, Oracle 11.2.0.3 or Earlier

Privilege Extract
Classic
Mode

Extract
Integrate
d Mode

Replicat Manager Purpose

SELECT FROM
sys.logmnr_build
log

X Issue the REGISTER
EXTRACT command

Required for Oracle
version >= 11.1.0.5 and
<= 11.2.0.1.

About the dbms_goldengate_auth.grant_admin_privilege Package
Most of the privileges that are needed for Extract and Replicat to operate in classic
and integrated mode are granted through the
dbms_goldengate_auth.grant_admin_privilege package.

• The following grants base privileges for Oracle 11.2.0.4 and later. The first
example is the default, which grants to both Extract and Replicat. The second
shows how to explicitly grant to either Extract or Replicat (in this case, Extract).

grant_admin_privilege('ggadm')
grant_admin_privilege('ggadm','capture');

• The following grants base privileges for Oracle 11.2.0.3. The first example is the
default, which grants to both Extract and Replicat. The second shows how to
explicitly grant to Extracte.

grant_admin_privilege('ggadm',grant_select_privileges=>true)
grant_admin_privilege('ggadm','capture',grant_select_privileges=>true)

The following example shows Extract on Oracle 12c Multitenant Database:

BEGIN
dbms_goldengate_auth.grant_admin_privilege
(grantee => 'C##GGADMIN', privilege_type => 'CAPTURE',
 grant_select_privileges => TRUE, do_grants => TRUE, container => 'ALL'
);
END;

Optional Grants for dbms_goldengate_auth.grant_admin_privilege
Additional grants can be added to dbms_goldengate_auth.grant_admin_privilege to
support the optional features.

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-6

Role/Privilege Extract
Classic
Mode

Extract
Integrated
Mode

Replicat Purpose

DV_GOLDENGATE_ADMIN X X X Capture or apply when Oracle
Data Vault is being used.

Grant the DV_ACCTMGR role to
create user accounts in an
Oracle Database Vault
environment.

Also, grant
DV_GOLDENGATE_REDO_ACCE
SS if using classic capture
with TRANLOGOPTIONS
DBLOGREADER on Oracle Data
Vault. See Mining ASM-stored
Logs in Classic Capture
Mode.

Also, grant Replicat the
privileges in
DBMS_MACADM.ADD_AUTH_TO
_REALM if applying to a realm.

EXEMPT ACCESS POLICY X X X Capture or apply when Oracle
Virtual Private Database is
being used.

EXEMPT REDACTION
POLICY

X X X Capture or apply redacted
data

One or more of these privileges can be granted as a comma-separated list to
'CAPTURE', 'APPLY', or '*'. The default is * (capture and apply).

• In the following example, the Extract (capture) user ggadm is being granted
DV_GOLDENGATE_ADMIN and EXEMPT REDACTION POLICY in addition to the privileges
needed for Extract.

dbms_goldengate_auth.grant_admin_privilege('ggadm','capture',
grant_optional_privilege=>'DV_GOLDENGATE_ADMIN,EXEMPT REDACTION POLICY')

• In the following example, the Extract (capture) user ggadm is being granted all
optional privileges in addition to the privileges needed for Extract:

dbms_goldengate_auth.grant_admin_privilege('ggadm','capture',
grant_optional_privileges=>'*')

• For Database Vault 12c environments with the Extract in integrated mode, the
Database Vault owner needs to grant additionally the following two privileges:

– BEGIN
 DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM
 (REALM_NAME => 'Oracle Default Component Protection Realm'
 ,GRANTEE => '<GGADMIN>'
 ,AUTH_OPTIONS => DBMS_MACUTL.G_REALM_AUTH_OWNER) ;
END ;
/

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-7

– BEGIN
 Exec dbms_macadm.authorize_ddl(‘GG_ADMIN’, ‘%’);
END;
/

• For Oracle Transparent Data Encryption (TDE) environments with the Extract in
classic mode, you have to additionally install the prvtclkm.plb package from the
ORACLE_HOME/rdbms/admin and, grant the execute privilege to the Oracle
GoldenGate administration user, GGADMIN:

grant execute on sys.dbms_internal_clkm to GGADMIN

• If you want to create a spatial index in a different schema, the Oracle GoldenGate
administration user, GGADMIN must have explicit CREATE TABLE, CREATE SEQUENCE,
select, and index on the table privileges granted to the user:

grant create table,create sequence to GGADMIN;

This a one-time action, which could be done it you want to use in spatial
replication. You could also use dbms_goldengate_auth.grant_admin_privilege
as described in this section.

The GGADMIN user must have select, and index on each table with an SDO
column that an index will be created on:

grant select, index on tklmob31.cola_markets1 to GGADMIN;

The table must exist on the target, and the you have to manually issue this grant
statement on the target, before issuing a Create index ... indextype is
MDSYS.SPATIAL_INDEX on the source. The grant statement can't be issued on the
source and replicated, because the applying the user GGADMIN can't grant itself
privileges.

For more information about dbms_goldengate_auth.grant_admin_privilege, see
Oracle Database PL/SQL Packages and Types Reference.

For more information about Data Vault requirements, see Oracle Database Vault
Administrator’s Guide.

Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or
operate as, an Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials
assigned to Oracle GoldenGate processes. The recommended option is to use a
credential store. You can create one credential store and store it in a shared location
where all installations of Oracle GoldenGate can access it, or you can create a
separate one on each system where Oracle GoldenGate is installed.

The credential store stores the user name and password for each of the assigned
Oracle GoldenGate users. A user ID is associated with one or more aliases, and it is
the alias that is supplied in commands and parameter files, not the actual user name
or password. The credential file can be partitioned into domains, allowing a standard
set of aliases to be used for the processes, while allowing the administrator on each
system to manage credentials locally.

Chapter 3
Securing the Oracle GoldenGate Credentials

3-8

See Administering Oracle GoldenGate for more information about creating a credential
store and adding user credentials.

Chapter 3
Securing the Oracle GoldenGate Credentials

3-9

4
Choosing Capture and Apply Modes

This chapter contains information that helps you determine the appropriate capture
and apply modes for your database environment.
Topics:

• Overview of Oracle GoldenGate Capture and Apply Processes
The Oracle GoldenGate capture process is known as Extract. Each instance of
an Extract process is known as a group, which includes the process itself and the
associated files that support it.

• Deciding Which Capture Method to Use
For an Oracle source database, you can run Extract in either classic capture or
integrated capture mode.

• Deciding Which Apply Method to Use
The Replicat process is responsible for the application of replicated data to an
Oracle target database.

• Using Different Capture and Apply Modes Together
You can use integrated capture and classic capture concurrently within the same
source Oracle GoldenGate instance, and you can use integrated Replicat and
nonintegrated Replicat concurrently within the same target Oracle GoldenGate
instance. This configuration requires careful placement of your objects within the
appropriate process group, because there is no coordination of DDL or DML
between classic and integrated capture modes, nor between nonintegrated and
integrated Replicat modes.

• Switching to a Different Process Mode
You can switch between process modes. For example, you can switch from
classic capture to integrated capture, or from integrated capture to classic capture.

Overview of Oracle GoldenGate Capture and Apply
Processes

The Oracle GoldenGate capture process is known as Extract. Each instance of an
Extract process is known as a group, which includes the process itself and the
associated files that support it.

An additional Extract process, known as a data pump, is recommended to be used on
the source system, so that captured data can be persisted locally to a series of files
known as a trail. The data pump does not capture data but rather reads the local trail
and propagates the data across the network to the target.

The Oracle GoldenGate apply process is known as Replicat. Each instance of a
Replicat process is known as a group, which includes the process itself and the
associated files that support it. Replicat reads data that is sent to local storage, known
as a trail, and applies it to the target database.

4-1

The following diagram illustrates the basic Oracle GoldenGate process configuration.
For more information about Oracle GoldenGate processes, see Administering Oracle
GoldenGate.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process
the log files.

Deciding Which Capture Method to Use
For an Oracle source database, you can run Extract in either classic capture or
integrated capture mode.

The method that you use determines how you configure the Oracle GoldenGate
processes and depends on such factors as:

• the data types involved

• the database configuration

• the version of the Oracle Database

The following explains these modes and the database versions that each mode
supports.

• About Classic Capture

• About Integrated Capture

Chapter 4
Deciding Which Capture Method to Use

4-2

About Classic Capture
In classic capture mode, the Oracle GoldenGate Extract process captures data
changes from the Oracle redo or archive log files on the source system or from
shipped archive logs on a standby system. The following diagram illustrates the
configuration of an Extract in classic capture mode.

Classic capture supports most Oracle data types fully, with restricted support for the
complex data types. Classic capture is the original Oracle GoldenGate capture
method. You can use classic capture for any source Oracle RDBMS that is supported
by Oracle GoldenGate, with the exception of the multitenant container database.

You can use classic capture to support the following:

• UDTs, VARRAYs, NOLOGGING LOBs with source database compatibility set below
11.2.0.0.0.

• Transparent Data Encryption support with source database compatibility set below
11.0.0.0.0.

• SECUREFILE LOB support with source database compatibility set below 11.2.0.0.0.

• NOLOGGING LOB support with source database compatibility set below 11.2.0.0.0.

For more information, see Summary of Supported Oracle Data Types and Objects Per
Capture Mode.

About Integrated Capture
In integrated capture mode, the Oracle GoldenGate Extract process interacts directly
with a database logmining server to receive data changes in the form of logical change
records (LCR). Figure 4-1 illustrates the configuration of Extract in integrated capture
mode.

Chapter 4
Deciding Which Capture Method to Use

4-3

Figure 4-1 Integrated Capture

Integrated capture supports more data and storage types as compared to classic
capture, and the support is more transparent. For more information, see Summary of
Supported Oracle Data Type and Objects Per Capture Mode.

The following are some additional benefits of integrated capture:

• Because integrated capture is fully integrated with the database, no additional
setup is required to work with Oracle RAC, ASM, and TDE.

• Integrated capture uses the database logmining server to access the Oracle redo
stream, with the benefit of being able to automatically switch between different
copies of archive logs or different mirrored versions of the online logs. Thus
integrated capture can transparently handle the absence of a log file caused by
disk corruption, hardware failure, or operator error, assuming that additional copies
of the archived and online logs are available

• Integrated capture enables faster filtering of tables.

• Integrated capture handles point-in-time recovery and RAC integration more
efficiently.

• Integrated capture features integrated log management. The Oracle Recovery
Manager (RMAN) automatically retains the archive logs that are needed by
Extract.

• Integrated capture is the only mode that supports capture from a multitenant
container database. One Extract can mine multiple pluggable databases within a
multitenant container database.

• For a release 11.2.0.4 source database and later (with source compatibility set to
11.2.0.4 or higher), the capture of DDL is performed by the logmining server
asynchronously and requires no special triggers, tables, or other database objects
to be installed. Oracle GoldenGate upgrades can be performed without stopping
user applications. The use of a DDL trigger and supporting objects is required
when Extract is in integrated mode with an Oracle 11g source database that is
earlier than version 11.2.0.4.

Chapter 4
Deciding Which Capture Method to Use

4-4

• Because integrated capture and integrated apply are both database objects, the
naming of the objects follow the same rules as other Oracle Database objects, see
Specifying Object Names in Oracle GoldenGate Input in Administering Oracle
GoldenGate.

• Integrated Capture Supported Database Versions

• Integrated Capture Deployment Options

Integrated Capture Supported Database Versions
The database version determines the data type support available through integrated
capture:

• Full support: To support all Oracle data and storage types, the compatibility
setting of the source database must be at least 11.2.0.3 with the 11.2.0.3
Database specific bundle patch for Integrated Extract 11.2.x (My Oracle Support
Document ID 1557031.1). To get this patch from My Oracle Support, go to:

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?
id=1557031.1

• To support DDL capture without installing DDL support objects, the source
database must be at least Oracle 11.2.0.4 or later. For earlier database versions,
DDL support objects are required, see Installing Trigger-Based DDL Capture.

• Limited support: You can use integrated capture on an 11.2.0.3 downstream
mining database for a source database with a compatibility less than 11.2.0.3, but
in this mode, SECUREFILE LOBs, XML columns, Transparent Data Encryption, and
UDTs have limited support based on database version and compatibility. The
downstream mining database must have the 11.2.0.3 Database specific bundle
patch for Integrated Extract 11.2.x (Doc ID 1557031.1) applied. See Integrated
Capture Deployment Options. The downstream mining database must be at the
same (or greater) database release (minimum 11.2.0.3) as the source database
release being mined.

To understand the differences in data type support among different RDBMS versions,
see Summary of Supported Oracle Data Types and Objects Per Capture Mode.

Integrated Capture Deployment Options
The deployment options for integrated capture are described in this section and
depend on where the mining database is deployed. The mining database is the one
where the logmining server is deployed.

• Local deployment: For a local deployment, the source database and the mining
database are the same. The source database is the database for which you want
to mine the redo stream to capture changes, and also where you deploy the
logmining server. Because integrated capture is fully integrated with the database,
this mode does not require any special database setup.

• Downstream deployment: In a downstream deployment, the source and mining
databases are different databases. You create the logmining server at the
downstream database. You configure redo transport at the source database to
ship the redo logs to the downstream mining database for capture at that location.
Using a downstream mining server for capture may be desirable to offload the
capture overhead and any other overhead from transformation or other processing
from the production server, but requires log shipping and other configuration.

Chapter 4
Deciding Which Capture Method to Use

4-5

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1557031.1
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1557031.1

When using a downstream mining configuration, the source database and mining
database must be of the same platform. For example, if the source database is
running on Windows 64-bit, the downstream database must also be on a Windows
64-bit platform. See Configuring a Downstream Mining Database and Example
Downstream Mining Configuration to configure a downstream mining database.

• Downstream Oracle Active DataGuard deployment: You can fetch from an
Oracle Active Data Guard (ADG) using the FETCHUSERID or FETCHUSERIDALIAS
parameters to configure userid/pwd@adg.

Note:

Performing the fetches from an ADG standby is not the same as
capturing from an ADG standby database. The actual Integrated Extract
components are required to run in a READ/WRITE database. These two
parameters only control which database the fetches are done from.

• Downstream sourceless Extract deployment: In the Extract parameter file,
replace the USERID parameter with NOUSERID. You must use TRANLOGOPTIONS
MININGUSER. This deployment requires that the source database redo is
compatible with Oracle GoldenGate releases greater than or equal to 11.2.0.4.
Extract obtains all required information from the downstream mining database.
Extract is not dependent on any connection to the source database. The source
database can be shutdown and restarted without affecting Extract.

Extract will abend if it encounters redo changes that require data to be fetched
from the source database.

This method can also be used with FETCHUSERID and FETCHUSERIDALIAS to fetch
from an ADG Standby.

Deciding Which Apply Method to Use
The Replicat process is responsible for the application of replicated data to an Oracle
target database.

For an Oracle target database, you can run Replicat in either nonintegrated or
integrated mode. The following explains these modes and the database versions that
each mode supports.

For more information about Oracle GoldenGate processes, see Administering Oracle
GoldenGate.

• About Nonintegrated Replicat
In nonintegrated mode, the Replicat process uses standard SQL to apply data
directly to the target tables.

• About Integrated Replicat

• About Parallel Replicat

About Nonintegrated Replicat
In nonintegrated mode, the Replicat process uses standard SQL to apply data directly
to the target tables.

Chapter 4
Deciding Which Apply Method to Use

4-6

In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

• Applies the SQL to the target through Oracle Call Interface (OCI).

The following diagram illustrates the configuration of Replicat in nonintegrated mode.

Use nonintegrated Replicat when:

• The target Oracle Database is a version earlier than Oracle 11.2.0.4.

• You want to make heavy use of features that are not supported in integrated
Replicat mode, see About Integrated Replicat.

You can apply transactions in parallel with a nonintegrated Replicat by using a
coordinated Replicat configuration.

About Integrated Replicat
In integrated mode, the Replicat process leverages the apply processing functionality
that is available within the Oracle Database. In this mode, Replicat operates as
follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML
transactions (in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database
inbound server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target
database.

The following figure illustrates the configuration of Replicat in integrated mode.

Chapter 4
Deciding Which Apply Method to Use

4-7

Within a single Replicat configuration, multiple inbound server child processes known
as apply servers apply transactions in parallel while preserving the original transaction
atomicity. You can increase this parallelism as much as your target system will support
when you configure the Replicat process or dynamically as needed. The following
diagram illustrates integrated Replicat configured with two parallel apply servers.

Integrated Replicat applies transactions asynchronously. Transactions that do not
have interdependencies can be safely executed and committed out of order to achieve
fast throughput. Transactions with dependencies are guaranteed to be applied in the
same order as on the source.

A reader process in the inbound server computes the dependencies among the
transactions in the workload based on the constraints defined at the target database
(primary key, unique, foreign key). Barrier transactions and DDL operations are
managed automatically, as well. A coordinator process coordinates multiple
transactions and maintains order among the apply servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete
transactions in its queue, and then applies the transaction to the database in direct

Chapter 4
Deciding Which Apply Method to Use

4-8

apply mode through OCI. Replicat resumes processing in integrated mode after
applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

• UDT Note, if the extract uses USENATIVEOBJSUPPORT to capture the UDT, then
integrated Replicat will apply it with the inbound server, otherwise it will be handled
by Replicat directly.

Because transactions are applied serially in direct apply mode, heavy use of such
operations may reduce the performance of the integrated Replicat mode. Integrated
Replicat performs best when most of the apply processing can be performed in
integrated mode, see Monitoring and Controlling Processing After the Instantiation.

Note:

User exits are executed in integrated mode. The user exit may produce
unexpected results, however, if the exit code depends on data in the
replication stream.

• Benefits of Integrated Replicat

• Integrated Replicat Requirements

Benefits of Integrated Replicat
The following are the benefits of using integrated Replicat versus nonintegrated
Replicat.

• Integrated Replicat enables heavy workloads to be partitioned automatically
among parallel apply processes that apply multiple transactions concurrently,
while preserving the integrity and atomicity of the source transaction. Both a
minimum and maximum number of apply processes can be configured with the
PARALLELISM and MAX_PARALLELISM parameters. Replicat automatically adds
additional servers when the workload increases, and then adjusts downward again
when the workload lightens.

• Integrated Replicat requires minimal work to configure. All work is configured
within one Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated Replicat by means of
a lightweight application programming interface (API) between Replicat and the
inbound server.

• Barrier transactions are coordinated by integrated Replicat among multiple server
apply processes.

• DDL operations are processed as direct transactions that force a barrier by waiting
for server processing to complete before the DDL execution.

Chapter 4
Deciding Which Apply Method to Use

4-9

• Transient duplicate primary key updates are handled by integrated Replicat in a
seamless manner.

• Integrated Replicat works with single or pluggable databases.

Integrated Replicat Requirements
To use integrated Replicat, the following must be true.

• The target Oracle Database must be Oracle 11.2.0.4 or later.

• Supplemental logging must be enabled on the source database to support the
computation of dependencies among tables and scheduling of concurrent
transactions on the target. Instructions for enabling the required logging are in
Configuring Logging Properties. This logging can be enabled at any time up to, but
before, you start the Oracle GoldenGate processes.

• Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

About Parallel Replicat

Parallel Replicat is a new variant of Replicat that applies transactions in parallel to
improve performance. It takes into account dependencies between transactions,
similar to Integrated Replicat. The dependency computation, parallelism of the
mapping and apply is performed outside the database so can be off-loaded to another
server. The transaction integrity is maintained in this process. In addition, parallel
replicat supports the parallel apply of large transactions by splitting a large transaction
into chunks and applying them in parallel.

Parallel Replicat supports all databases using the non-integrated option. Parallel
Replicat only supports replicating data from trails with full metadata, which requires the
classic trail format.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped
records to the Integrated Replicat LCR format, and send the LCRs to the Merger
for further processing. While one Mapper maps one set of transactions, the next
Mapper maps the next set of transactions. The the trail information is split and the
trail file is untouched because it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order for
dependency calculation. The Scheduler calculates dependencies between
transactions, groups transactions into independent batches, and sends the
batches to the Appliers to be applied to the target database.

• Appliers reorder records within a batch for array execution. It applies the batch to
the target database and performs error handling. It also tracks applied transactions
in checkpoint tables.

The following table lists the features supported by the respective Replicats.

Feature Classic
Replicat

Coordinated Replicat Integrated
Replicat

Parallel
Replicat

Batch
Processing

Yes Yes Yes Yes

Chapter 4
Deciding Which Apply Method to Use

4-10

Feature Classic
Replicat

Coordinated Replicat Integrated
Replicat

Parallel
Replicat

Barrier
Transactions

No Yes Yes Yes

Dependency
Computation

No No Yes Yes

Auto-
parallelism

No No Yes Yes

DML Handler No No Yes Yes1

Procedural
Replication

No No Yes Yes2

Auto CDR No No Yes Yes3

Dependency-
aware
Transaction
Split

No No No Yes

Cross-RAC-
node
Processing

No Yes No Yes

1 Integrated mode
2 used for integrated Parallel Replicat (iPR)
3 used by iPR only

To know more about using parallel Replicat, see Using Parallel Replicat.

• Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes, known
as apply servers, apply transactions in parallel while preserving the original transaction
atomicity.

The architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database.

Chapter 4
Deciding Which Apply Method to Use

4-11

The Mappers read the trail file and map records, forward the mapped records to the
Master. The batches are sent to the Appliers where they are applied to the target
database.

The Master process consists of two separate threads, Collater and Scheduler. The
Collater is responsible for managing and communicating with the Mappers, along with
receiving the mapped transactions and reordering them into a single in-order stream.
The Scheduler is responsible for managing and communicating with the Appliers,
along with reading transactions from the Collater, batching them, and scheduling them
to Appliers.

The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is
required for CDB mode for Oracle Database because it is responsible for aggregating
information pertaining to the different target PDBs and reporting a unified picture. The
Scheduler controller is created for simplicity and uniformity of implementation, even
when not in CDB mode. Every process reads the parameter file and shares a single
checkpoint file.

Using Different Capture and Apply Modes Together
You can use integrated capture and classic capture concurrently within the same
source Oracle GoldenGate instance, and you can use integrated Replicat and
nonintegrated Replicat concurrently within the same target Oracle GoldenGate
instance. This configuration requires careful placement of your objects within the
appropriate process group, because there is no coordination of DDL or DML between
classic and integrated capture modes, nor between nonintegrated and integrated
Replicat modes.

Each Extract group must process objects that are suited to the processing mode,
based on table data types and attributes. No objects in one Extract can have DML or
DDL dependencies on objects in the other Extract. The same type of segregation must
be applied to the Replicat configuration.

You can use the following capture and apply modes together:

• Classic capture (Oracle or non-Oracle source) and nonintegrated Replicat

Chapter 4
Using Different Capture and Apply Modes Together

4-12

• Classic capture (Oracle or non-Oracle source) and integrated Replicat

• Integrated capture and nonintegrated Replicat

• Integrated capture and integrated Replicat

The recommended Oracle GoldenGate configuration, when supported by the Oracle
version, is to use one integrated capture on an Oracle source and one integrated
Replicat per source database on an Oracle target. Integrated capture supports certain
data types more completely than classic capture. One integrated Replicat
configuration supports all Oracle data types either through the inbound server or by
switching to direct apply when necessary, and it preserves source transaction integrity.
You can adjust the parallelism settings to the desired apply performance level as
needed.

If the target database is an Oracle version that does not support integrated Replicat, or
if it is a non-Oracle Database, you can use a coordinated Replicat configuration. See
Administering Oracle GoldenGate for more information.

Switching to a Different Process Mode
You can switch between process modes. For example, you can switch from classic
capture to integrated capture, or from integrated capture to classic capture.

For instructions, see Performing Administrative Operations inAdministering Oracle
GoldenGate.

Chapter 4
Switching to a Different Process Mode

4-13

5
Configuring Oracle GoldenGate in a
Multitenant Container Database

This chapter contains additional configuration instructions when configuring Oracle
GoldenGate in a multitenant container database (CDB).
Topics:

• Using Oracle GoldenGate with Pluggable Databases
In most ways, Oracle GoldenGate operates in a multitenant container database
the same way that it operates in a regular Oracle Database.

• Other Requirements for Multitenant Container Databases
This topic describes the special requirements that apply to replication to and from
multitenant container databases.

Using Oracle GoldenGate with Pluggable Databases
In most ways, Oracle GoldenGate operates in a multitenant container database the
same way that it operates in a regular Oracle Database.

Consider the following instructions as the foundation for following the actual
configuration instructions in the following chapters:

Configuring Capture in Integrated Mode

Configuring Oracle GoldenGate Apply

Topics:

• Capturing from Pluggable Databases

• Applying to Pluggable Databases

• Excluding Objects from the Configuration

Capturing from Pluggable Databases
One Extract group can capture from multiple pluggable databases to a single trail. In
the parameter file, source objects must be specified in TABLE and SEQUENCE statements
with their fully qualified three-part names in the format of container.schema.object.

As an alternative to specifying three-part names, you can specify a default pluggable
database with the SOURCECATALOG parameter, and then specify only the schema.object
in subsequent TABLE or SEQUENCE parameters. You can use multiple instances of this
configuration to handle multiple source pluggable databases. For example:

SOURCECATALOG pdb1
TABLE schema*.tab*;
SEQUENCE schema*.seq*;
SOURCECATALOG pdb2
TABLE schema*.tab*;
SEQUENCE schema*.seq*;

5-1

Applying to Pluggable Databases
Replicat can only connect and apply to one pluggable database. To specify the correct
one, use a SQL*Net connect string for the database user that you specify with the
USERID or USERIDALIAS parameter. For example: GGADMIN@FINANCE. In the parameter
file, specify only the schema.object in the TARGET portion of the MAP statements. In the
MAP portion, identify source objects captured from more than one pluggable database
with their three-part names or use the SOURCECATALOG parameter with two-part names.
The following is an example of this configuration.

SOURCECATALOG pdb1
MAP schema*.tab*, TARGET *1.*;
MAP schema*.seq*, TARGET *1.*;
SOURCECATALOG pdb2
MAP schema*.tab*, TARGET *2.*;
MAP schema*.seq*, TARGET *2.*;

The following is an example without the use of SOURCECATALOG to identify the source
pluggable database. In this case, the source objects are specified with their three-part
names.

MAP pdb1.schema*.tab*, TARGET *1.*;
MAP pdb1.schema*.seq*, TARGET *1.*;

To configure replication from multiple source pluggable databases to multiple target
pluggable databases, you can configure parallel Extract and Replicat streams, each
handling data for one pluggable database. Alternatively, you can configure one Extract
capturing from multiple source pluggable databases, which writes to one trail that is
read by multiple Replicat groups, each applying to a different target pluggable
database. Yet another alternative is to use one Extract writing to multiple trails, each
trail read by a Replicat assigned to a specific target pluggable database :

Chapter 5
Using Oracle GoldenGate with Pluggable Databases

5-2

Excluding Objects from the Configuration
To exclude pluggable databases, schemas, and objects from the configuration, you
can use the CATALOGEXCLUDE, SCHEMAEXCLUDE, TABLEEXCLUDE, MAPEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY parameters. See Reference for Oracle GoldenGate for
more information.

Other Requirements for Multitenant Container Databases
This topic describes the special requirements that apply to replication to and from
multitenant container databases.

The requirements are:

• The different pluggable databases in the multitenant container database can have
different character sets. Oracle GoldenGate captures data from any multitenant
database with different character sets into one trail file and replicates the data
without corruption due to using different character sets.

• Extract must operate in integrated capture mode. See Deciding Which Capture
Method to Use for more information about Extract capture modes. Replicat can
operate in any of its modes.

• Extract must connect to the root container (cdb$root) as a common user in order
to interact with the logmining server. To specify the root container, use the
appropriate SQL*Net connect string for the database user that you specify with the
USERID or USERIDALIAS parameter. For example: C##GGADMIN@FINANCE. See
Establishing Oracle GoldenGate Credentials for how to create a user for the
Oracle GoldenGate processes and grant the correct privileges.

• To support source CDB 12.2, Extract must specify the trail format as release 12.3.

• The dbms_goldengate_auth.grant_admin_privilege package grants the
appropriate privileges for capture and apply within a multitenant container
database. This includes the container parameter, which must be set to ALL, as
shown in the following example:

dbms_goldengate_auth.grant_admin_privilege('C##GGADMIN',container=>'all')

Chapter 5
Other Requirements for Multitenant Container Databases

5-3

6
Configuring Capture in Integrated Mode

This chapter contains instructions for configuring the Oracle GoldenGate capture
process to capture transaction data in integrated mode.

Note:

To switch an active Extract configuration from classic to integrated mode,
perform these configuration steps and then see Administering Oracle
GoldenGate.

Topics:

• Prerequisites for Configuring Integrated Capture
You must adhere to the guidelines provided in this topic before configuring an
Extract in integrated mode.

• What to Expect from these Instructions
These instructions show you how to configure Extract parameter (configuration)
file for the primary Extract, which captures transaction data from the data source,
and for a data-pump Extract, which propagates captured data that is stored locally
in a trail from the source system to the target system.

• Configuring the Primary Extract in Integrated Capture Mode
The mining database, from which the primary Extract captures log change records
from the logmining server, can be either local or downstream from the source
database.

• Configuring the Data Pump Extract
A data pump can perform data filtering, mapping, and conversion, or it can be
configured in pass-through mode, where data is passively transferred as-is,
without manipulation.

• Next Steps
A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process. Oracle GoldenGate uses two types of parameter files: a
GLOBALS file and runtime parameter files.

Prerequisites for Configuring Integrated Capture
You must adhere to the guidelines provided in this topic before configuring an Extract
in integrated mode.

The guidelines for configuring an Extract in integrated mode are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Choosing Capture and Apply Modes.

6-1

4. Create the Oracle GoldenGate instance on the source system by configuring the
Manager process. See Administering Oracle GoldenGate.

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

What to Expect from these Instructions
These instructions show you how to configure Extract parameter (configuration) file for
the primary Extract, which captures transaction data from the data source, and for a
data-pump Extract, which propagates captured data that is stored locally in a trail from
the source system to the target system.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration files established.

• build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of them to make the creation of additional parameter files faster than
starting from scratch.

Configuring the Primary Extract in Integrated Capture Mode
The mining database, from which the primary Extract captures log change records
from the logmining server, can be either local or downstream from the source
database.

These steps configure the primary Extract to capture transaction data in integrated
mode from either location. See Configuring a Downstream Mining Database and
Example Downstream Mining Configuration for more information about capturing from
a downstream mining database.

Note:

One Extract group is generally sufficient to capture from a single database or
multiple pluggable databases within a multitenant container database. See
Configuring Oracle GoldenGate in a Multitenant Container Database .

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each
parameter statement. Examples are shown for a regular database and a
multitenant container database. The difference between the two is whether you
must use two-part or three-part object names in the TABLE and SEQUENCE
specifications. See the Basic Parameters for primary Extract (classic or integrated
mode) for more information and parameter descriptions.

Chapter 6
What to Expect from these Instructions

6-2

Basic parameters for Extract where mining database is a downstream
database and is a regular database. and is a regular database with source
ADG used for FETCH

EXTRACT financep
USERIDALIAS tiger1
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for Extract where mining database is a downstream
database and is a multitenant container database with source ADG used for
FETCH

EXTRACT financep
USERIDALIAS tiger1
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED SOURCECATALOG pdb1 INCLUDE MAPPED SOURCECATALOG pdb2
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Basic parameters for Extract where the mining database is a downstream
database and is a regular database

EXTRACT financep
USERIDALIAS tiger1
TRANLOGOPTIONS MININGUSERALIAS tiger2
TRANLOGOPTIONS INTEGRATEDPARAMS (MAX_SGA_SIZE 164, &
 DOWNSTREAM_REAL_TIME_MINE y)
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the primary Extract where the mining database is a
downstream database and is a multitenant container database

EXTRACT financep
USERIDALIAS tiger1
TRANLOGOPTIONS MININGUSERALIAS tiger2
TRANLOGOPTIONS INTEGRATEDPARAMS (MAX_SGA_SIZE 164, &
 DOWNSTREAM_REAL_TIME_MINE y)
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED SOURCECATALOG pdb1 INCLUDE MAPPED SOURCECATALOG pdb2

Chapter 6
Configuring the Primary Extract in Integrated Capture Mode

6-3

ENCRYPTTRAIL AES192EXTTRAIL /ggs/dirdat/lt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the Extract group. For more information, see
Reference for Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is
assigned to Extract. This credential must exist in the Oracle GoldenGate
credential store.

LOGALLSUPCOLS Writes all supplementally logged columns to the trail, including those
required for conflict detection and resolution and the scheduling columns
required to support integrated Replicat. (Scheduling columns are primary
key, unique index, and foreign key columns.) You configure the database to
log these columns with GGSCI commands. See Establishing Oracle
GoldenGate Credentials.

UPDATERECORDFORMAT COMPACT Combines the before and after images of an UPDATE operation into a single
record in the trail. This parameter is valid for Oracle Databases version 12c
and later to support Replicat in integrated mode. Although not a required
parameter, UPDATERECORDFORMAT COMPACT is a best practice and
significantly improves Replicat performance. See Reference for Oracle
GoldenGate for more information.

TRANLOGOPTIONS
MININGUSERALIAS alias

Specifies connection information for the logmining server at the downstream
mining database, if being used.

MININGUSERALIAS specifies the alias of the Extract user for the downstream
mining database. This is the user that you created in Configuring a
Downstream Mining Database . The credential for this user must be stored in
the Oracle GoldenGate credential store. See Administering Oracle
GoldenGate for more information.

Use MININGUSERALIAS only if the database logmining server is in a different
database from the source database; otherwise just use USERIDALIAS. When
using MININGUSERALIAS, use it in addition to USERIDALIAS, because
credentials are required for both databases.

TRANLOGOPTIONS
[INTEGRATEDPARAMS
(parameter[, ...])]

Optional, passes parameters to the Oracle Database that contains the
database logmining server. Use only to change logmining server parameters
from their default settings. See Additional Parameter Options for Integrated
Capture.

TRANLOGOPTIONS
CHECKPOINTRETENTIONTIME days

Optional, controls the number of days that Extract retains checkpoints before
purging them automatically. Partial days can be specified using decimal
values. For example, 8.25 specifies 8 days and 6 hours. For more
information, see Reference for Oracle GoldenGate.

DDL include_clause Required if replicating DDL operations. See Configuring DDL Support for
more information.

ENCRYPTTRAIL algorithm Encrypts the local trail. For more information about Oracle GoldenGate trail
encryption options, see Administering Oracle GoldenGate.

Chapter 6
Configuring the Primary Extract in Integrated Capture Mode

6-4

Parameter Description

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes
captured data. For more information, see Reference for Oracle GoldenGate

SOURCECATALOG container Use this parameter when the source database is a multitenant container
database. Specifies the name of a pluggable database that is to be used as
the default container for all subsequent TABLE and SEQUENCE parameters
that contain two-part names. This parameter enables you to use two-part
object names (schema.object) rather than three-part names
(container.schema.object). It remains in effect until another
SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered.

{TABLE | SEQUENCE}
[container.]schema.object;

Specifies the database object for which to capture data.

• TABLE specifies a table or a wildcarded set of tables.
• SEQUENCE specifies a sequence or a wildcarded set of sequences.
• container is the name of the pluggable database (PDB) that contains

the object, if this database is a multitenant container database. The
container part of the name is not required if this Extract group will only
process data from one PDB and the default PDB is specified with the
SOURCECATALOG parameter.

• schema is the schema name or a wildcarded set of schemas.
• object is the table or sequence name, or a wildcarded set of those

objects.
See Administering Oracle GoldenGate for information about how to specify
object names with and without wildcards.

Terminate the parameter statement with a semi-colon.

To exclude a name from a wildcard specification, use the CATALOGEXCLUDE,
SCHEMAEXCLUDE, TABLEEXCLUDE, and EXCLUDEWILDCARDOBJECTSONLY
parameters as appropriate.

For more information and for additional TABLE options that control data
filtering, mapping, and manipulation, see Reference for Oracle GoldenGate.

MAPINVISIBLECOLUMNS Controls whether or not Replicat includes invisible columns in Oracle target
tables for default column mapping. Configure the invisible columns in your
column mapping using SQL to explicitly specify column names. For example:

CREATE TABLE tab1 (id NUMBER, data CLOB INVISIBLE);
 INSERT INTO tab1 VALUES (1, 'a');ERROR: ORA-913
 INSERT INTO tab1 (id, data) VALUES (1, 'a'); OK

You can change the column visibility using ALTER TABLE. The invisible
column can be part of an index, including primary key and unique index.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI. For more information, see the Reference for
Oracle GoldenGate.

4. Save and close the file.

Chapter 6
Configuring the Primary Extract in Integrated Capture Mode

6-5

Configuring the Data Pump Extract
A data pump can perform data filtering, mapping, and conversion, or it can be
configured in pass-through mode, where data is passively transferred as-is, without
manipulation.

These steps configure the data pump that reads the local trail and sends the data
across the network to a remote trail. The data pump is optional, but recommended.

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where: name is the name of the data pump Extract.

2. Enter the data-pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different.

Basic parameters for the data-pump Extract group using two-part object
names:

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the data-pump Extract group using three-part object
names (including a pluggable database):

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract. For more information, see Reference for
Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.
• MGRPORT specifies the port number where Manager is running on the target.
• ENCRYPT specifies optional encryption of data across TCP/IP.
For additional options and encryption details, see Reference for Oracle GoldenGate.

Chapter 6
Configuring the Data Pump Extract

6-6

Parameter Description

RMTTRAIL pathname Specifies the path name of the remote trail. For more information, see Reference for
Oracle GoldenGate.

SOURCECATALOG
container

Use this parameter when the source database is a multitenant container database.
Specifies the name of a pluggable database that is to be used as the default container
for all subsequent TABLE and SEQUENCE parameters that contain two-part names.
This parameter enables you to use two-part object names (schema.object) rather
than three-part names (container.schema.object). It remains in effect until
another SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered. Use this parameter when the source
database is a multitenant container database. See Reference for Oracle GoldenGate
for more information about SOURCECATALOG.

{TABLE | SEQUENCE}
[container.]schema.ob
ject;

Specifies a table or sequence, or multiple objects specified with a wildcard. In most
cases, this listing will be the same as that in the primary Extract parameter file.

• TABLE specifies a table or a wildcarded set of tables.
• SEQUENCE specifies a sequence or a wildcarded set of sequences.
• container is the name of the root container or pluggable database that contains

the table or sequence, if this source database is a multitenant container
database. See the SOURCECATALOG description in this table.

• schema is the schema name or a wildcarded set of schemas.
• object is the name of a table or sequence, or a wildcarded set of those objects.
See Administering Oracle GoldenGate for information about how to specify object
names with and without wildcards.

Terminate this parameter statement with a semi-colon.

To exclude tables or sequences from a wildcard specification, use the TABLEEXCLUDE
or SEQUENCEEXCLUDE parameter after the TABLE statement.

For more information and for additional TABLE options that control data filtering,
mapping, and manipulation, see Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI.

4. Save and close the file.

Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate
process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file and
runtime parameter files.

Once you have created a basic parameter file for classic capture, see the following for
related configuration steps.

Configuring Oracle GoldenGate Apply

Configuring Oracle GoldenGate in a Multitenant Container Database

Additional Oracle GoldenGate Configuration Considerations

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Creating Process Groups (to use Oracle GoldenGate DDL support)

Chapter 6
Next Steps

6-7

Instantiating Oracle GoldenGate Replication

Optional Parameters for Integrated Modes

Configuring a Downstream Mining Database

Example Downstream Mining Configuration

Supporting Changes to XML Schemas

Chapter 6
Next Steps

6-8

7
Configuring Capture in Classic Mode

This chapter contains instructions for configuring the Oracle GoldenGate capture
process in classic mode.

Note:

To switch an active Extract configuration from integrated to classic mode,
perform these configuration steps and then see Administering Oracle
GoldenGate.

Topics:

• Prerequisites for Configuring Classic Capture
You must adhere to the guidelines in this topic before configuring an Extract in
classic mode.

• What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter
(configuration) file for the primary Extract, which captures transaction data from
the data source, and for a data-pump Extract, which propagates captured data that
is stored locally in a trail from the source system to the target system.

• Configuring the Primary Extract in Classic Capture Mode
You can set up a classic Extract process for intial loading of source data and
replicating it.

• Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data
across the network to a remote trail. The data pump is optional, but recommended.

• Next Steps
A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process to control the product functionality.

Prerequisites for Configuring Classic Capture
You must adhere to the guidelines in this topic before configuring an Extract in classic
mode.

The guidelines for configuring Extract in classic mode are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Choosing Capture and Apply Modes.

4. Create the Oracle GoldenGate instance on the source system by configuring the
Manager process. See Administering Oracle GoldenGate.

7-1

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter
(configuration) file for the primary Extract, which captures transaction data from the
data source, and for a data-pump Extract, which propagates captured data that is
stored locally in a trail from the source system to the target system.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration files established.

• build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of them to make the creation of additional parameter files faster than
starting from scratch.

Note:

These instructions do not configure Oracle GoldenGate to perform DDL
capture or replication. To support DDL, create the parameter files and then
see the following chapters:

Installing Trigger-Based DDL Capture

Configuring DDL Support

Configuring the Primary Extract in Classic Capture Mode
You can set up a classic Extract process for intial loading of source data and
replicating it.

These steps configure Extract to capture transaction data in classic mode.

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each
parameter statement. See #unique_129/unique_129_Connect_42_BABIIIDE for
more information and parameter descriptions.

Basic parameters for the primary Extract in classic capture mode

EXTRACT finance
USERIDALIAS tiger1
LOGALLSUPCOLS
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt

Chapter 7
What to Expect from these Instructions

7-2

SEQUENCE hr.employees_seq;
TABLE hr.*;

Parameter Description

EXTRACT group group is the name of the Extract group. For more information, see
Reference for Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is
assigned to Extract. This credential must exist in the Oracle GoldenGate
credential store, see Establishing Oracle GoldenGate Credentials.

LOGALLSUPCOLS Writes all supplementally logged columns to the trail, including those
required for conflict detection and resolution and the scheduling columns
required to support integrated Replicat. (Scheduling columns are primary
key, unique index, and foreign key columns.) You configure the database to
log these columns with GGSCI commands. See Configuring Logging
Properties.

UPDATERECORDFORMAT COMPACT Combines the before and after images of an UPDATE operation into a single
record in the trail. This parameter is valid for Oracle Databases version 12c
and later to support Replicat in integrated mode. Although not a required
parameter, UPDATERECORDFORMAT COMPACT is a best practice and
significantly improves Replicat performance. See Reference for Oracle
GoldenGate for more information.

ENCRYPTTRAIL algorithm Encrypts the local trail. For more information about Oracle GoldenGate trail
encryption options, see Administering Oracle GoldenGate.

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes
captured data. For more information, see Reference for Oracle GoldenGate

{TABLE | SEQUENCE}
schema.object;

Specifies the database object for which to capture data.

• TABLE specifies a table or a wildcarded set of tables.
• SEQUENCE specifies a sequence or a wildcarded set of sequences.
• schema is the schema name or a wildcarded set of schemas.
• object is the table or sequence name, or a wildcarded set of those

objects.
See Administering Oracle GoldenGate for information about how to specify
object names with and without wildcards.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE
parameter. See Reference for Oracle GoldenGate for more information about
usage and syntax.

For more information and for additional TABLE options that control data
filtering, mapping, and manipulation, see Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI. For more information, see the Reference for
Oracle GoldenGate.

4. Save and close the file.

Chapter 7
Configuring the Primary Extract in Classic Capture Mode

7-3

Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data
across the network to a remote trail. The data pump is optional, but recommended.

The steps to set up the data pump are:

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where: name is the name of the data pump Extract.

2. Enter the data-pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different. See Basic parameters
for the data-pump Extract for descriptions.

Basic parameters for the data-pump Extract group using two-part object
names:

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the data-pump Extract group using three-part object
names (including a pluggable database):

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract. For more information, see Reference for
Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store, see
Establishing Oracle GoldenGate Credentials.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.
• MGRPORT specifies the port number where Manager is running on the target.
• ENCRYPT specifies optional encryption of data across TCP/IP.
For additional options and encryption details, see Reference for Oracle GoldenGate.

Chapter 7
Configuring the Data Pump Extract

7-4

Parameter Description

RMTTRAIL pathname Specifies the path name of the remote trail. For more information, see Reference for
Oracle GoldenGate.

SOURCECATALOG
container

Use this parameter when the source database is a multitenant container database.
Specifies the name of a pluggable database that is to be used as the default container
for all subsequent TABLE and SEQUENCE parameters that contain two-part names.
This parameter enables you to use two-part object names (schema.object) rather
than three-part names (container.schema.object). It remains in effect until
another SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered. Use this parameter when the source
database is a multitenant container database. See Reference for Oracle GoldenGate
for more information about SOURCECATALOG.

{TABLE | SEQUENCE}
[container.]schema.ob
ject;

Specifies a table or sequence, or multiple objects specified with a wildcard. In most
cases, this listing will be the same as that in the primary Extract parameter file.

• TABLE specifies a table or a wildcarded set of tables.
• SEQUENCE specifies a sequence or a wildcarded set of sequences.
• container is the name of the root container or pluggable database that contains

the table or sequence, if this source database is a multitenant container
database. See the SOURCECATALOG description in this table.

• schema is the schema name or a wildcarded set of schemas.
• object is the name of a table or sequence, or a wildcarded set of those objects.
See Administering Oracle GoldenGate for information about how to specify object
names with and without wildcards.

Terminate this parameter statement with a semi-colon.

To exclude tables or sequences from a wildcard specification, use the TABLEEXCLUDE
or SEQUENCEEXCLUDE parameter after the TABLE statement.

For more information and for additional TABLE options that control data filtering,
mapping, and manipulation, see Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI. For more information, see the Reference for
Oracle GoldenGate and Optional Parameters for Integrated Modes for additional
configuration considerations..

4. Save and close the file.

Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate
process to control the product functionality.

Once you have created a basic parameter file for classic capture, see the following for
related configuration steps.

Configuring Oracle GoldenGate Apply

Additional Oracle GoldenGate Configuration Considerations

Additional Configuration Steps for Using Classic Capture

Installing Trigger-Based DDL Capture (to use Oracle GoldenGate DDL support)

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Chapter 7
Next Steps

7-5

Creating Process Groups

Instantiating Oracle GoldenGate Replication

Supporting Changes to XML Schemas

Chapter 7
Next Steps

7-6

8
Configuring Oracle GoldenGate Apply

This chapter contains instructions for configuring the Replicat apply process in either
nonintegrated or integrated mode.
Topics:

• Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Extract in integrated mode.

• What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter
(configuration) file.

• Creating a Checkpoint Table (Non-Integrated Replicat Only)
The checkpoint table is a required component of nonintegrated Replicat. It is not
required for integrated Replicat and is ignored during runtime if one is used.

• Configuring Replicat
Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

• Next Steps
Once you have created a basic parameter file for Replicat, see the following for
additional configuration steps.

Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Extract in integrated mode.

The guidelines to be satisfied before configuring Extract in integrated mode are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Choosing Capture and Apply Modes.

4. Create the Oracle GoldenGate instance on the target system by configuring the
Manager process. See Administering Oracle GoldenGate.

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

Note:

To switch an active Replicat configuration from one mode to the other,
perform these configuration steps and then see Administering Oracle
GoldenGate.

8-1

What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter
(configuration) file.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration file established.

• build upon it later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of it to make the creation of additional Replicat parameter files faster
than starting from scratch.

Note:

These instructions do not configure Replicat to apply DDL to the target. To
support DDL, create the basic Replicat parameter file and then see
Configuring DDL Support for configuration instructions.

Creating a Checkpoint Table (Non-Integrated Replicat Only)
The checkpoint table is a required component of nonintegrated Replicat. It is not
required for integrated Replicat and is ignored during runtime if one is used.

A nonintegrated Replicat maintains its recovery checkpoints in the checkpoint table,
which is stored in the target database. Checkpoints are written to the checkpoint table
within the Replicat transaction. Because a checkpoint either succeeds or fails with the
transaction, Replicat ensures that a transaction is only applied once, even if there is a
failure of the process or the database.

Note:

This procedure installs a default checkpoint table, which is sufficient in most
cases. More than one checkpoint table can be used, such as to use a
different one for each Replicat group. To use a non-default checkpoint table,
which overrides the default table, use the CHECKPOINTTABLE option of ADD
REPLICAT when you create Replicat processes in the steps in Instantiating
Oracle GoldenGate Replication. For details, see Reference for Oracle
GoldenGate.

• Adding the Checkpoint Table to the Target Database

• Specifying the Checkpoint Table in the Oracle GoldenGate Configuration

• Disabling Default Asynchronous COMMIT to Checkpoint Table

Chapter 8
What to Expect from these Instructions

8-2

Adding the Checkpoint Table to the Target Database
1. From the Oracle GoldenGate directory on the target, run GGSCI and issue the

DBLOGIN command to log into the target database.

DBLOGIN USERIDALIAS alias

Where:

• alias specifies the alias of the database login credential of a user that can
create tables in a schema that is accessible to Replicat. This credential must
exist in the Oracle GoldenGate credential store. For more information, see
Establishing Oracle GoldenGate Credentials.

2. In GGSCI, create the checkpoint table in a schema of your choice (ideally
dedicated to Oracle GoldenGate).

ADD CHECKPOINTTABLE [container.]schema.table

Where:

• container is the name of the container if schema.table is in a multitenant
container database. This container can be the root container or a pluggable
database that contains the table.

• schema.table are the schema and name of the table. See Administering
Oracle GoldenGate for instructions for specifying object names.

Specifying the Checkpoint Table in the Oracle GoldenGate
Configuration

To specify the checkpoint table in the Oracle GoldenGate configuration:

1. Create a GLOBALS file (or edit the existing one).

EDIT PARAMS ./GLOBALS

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT
PARAMS, it is saved with the name GLOBALS in upper case, without a file
extension. It must remain as such, and the file must remain in the root
Oracle GoldenGate directory.

2. In the GLOBALS file, enter the CHECKPOINTTABLE parameter.

CHECKPOINTTABLE [container.]schema.table

3. Save and close the GLOBALS file.

Disabling Default Asynchronous COMMIT to Checkpoint Table
When a nonintegrated Replicat uses a checkpoint table, it uses an asynchronous
COMMIT with the NOWAIT option to improve performance. Replicat can continue

Chapter 8
Creating a Checkpoint Table (Non-Integrated Replicat Only)

8-3

processing immediately after applying this COMMIT, while the database logs the
transaction in the background. You can disable the asynchronous COMMIT with NOWAIT
by using the DBOPTIONS parameter with the DISABLECOMMITNOWAIT option in the
Replicat parameter file.

Note:

When the configuration of a nonintegrated Replicat group does not include a
checkpoint table, the checkpoints are maintained in a file on disk. In this
case, Replicat uses COMMIT with WAIT to prevent inconsistencies in the event
of a database failure that causes the state of the transaction, as in the
checkpoint file, to be different than its state after the recovery.

Configuring Replicat
Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

These steps configure the Replicat process.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement. See Basic Parameters for Replicat for descriptions.

Basic parameters for the Replicat group in nonintegrated mode:

REPLICAT financer
USERIDALIAS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Basic parameters for the Replicat group in integrated Replicat mode:

REPLICAT financer
DBOPTIONS INTEGRATEDPARAMS(parallelism 6)
USERIDALIAS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

DBOPTIONS DEFERREFCONST Applies to Replicat in nonintegrated mode. DEFERREFCONST sets constraints
to DEFERRABLE to delay the enforcement of cascade constraints by the target
database until the Replicat transaction is committed. See Reference for Oracle
GoldenGate for additional important information.

Chapter 8
Configuring Replicat

8-4

Parameter Description

DBOPTIONS INTEGRATEDPARAMS
(parameter[, ...])

This parameter specification applies to Replicat in integrated mode. It
specifies optional parameters for the inbound server.

See Optional Parameters for Integrated Modesfor additional important
information about these DBOPTIONS options.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential
store. For more information, see Establishing Oracle GoldenGate Credentials

SOURCECATALOG container Use this parameter when the source database is a multitenant container
database. Specifies the name of a pluggable database that is to be used as
the default container for all subsequent MAP parameters that contain two-part
names. This parameter enables you to use two-part object names
(schema.object) rather than three-part names
(container.schema.object). It remains in effect until another
SOURCECATALOG parameter is encountered or a full three-part MAP
specification is encountered. See Reference for Oracle GoldenGate for more
information about SOURCECATALOG.

MAP
[container.]schema.object,
TARGET schema.object;

Specifies the relationship between a source table or sequence, or multiple
objects, and the corresponding target object or objects.

• MAP specifies the source table or sequence, or a wildcarded set of
objects.

• TARGET specifies the target table or sequence or a wildcarded set of
objects.

• container is the name of a container, if the source database is a
multitenant container database.

• schema is the schema name or a wildcarded set of schemas.
• object is the name of a table or sequence, or a wildcarded set of

objects.
Terminate this parameter statement with a semi-colon.

To exclude objects from a wildcard specification, use the MAPEXCLUDE
parameter.

For more information and for additional options that control data filtering,
mapping, and manipulation, see MAP in Reference for Oracle GoldenGate.

3. If using integrated Replicat, add the following parameters to the Extract parameter
file:

• LOGALLSUPCOLS: This parameter ensures the capture of the supplementally
logged columns in the before image. This parameter is valid for any source
database that is supported by Oracle GoldenGate. For Extract versions older
than 12c, you can use GETUPDATEBEFORES and NOCOMPRESSDELETES parameters
to satisfy the same requirement. The database must be configured to log the
before and after values of the primary key, unique indexes, and foreign keys.
See Reference for Oracle GoldenGate for more information about
LOGALLSUPCOLS.

• The UPDATERECORDFORMAT parameter set to COMPACT: This setting causes
Extract to combine the before and after images of an UPDATE operation into a
single record in the trail. This parameter is valid for Oracle Database versions
11.2.0.4 and later and improves the performance of an integrated Replicat.
See Reference for Oracle GoldenGate for more information.

Chapter 8
Configuring Replicat

8-5

4. Enter any optional Replicat parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command in GGSCI. For more information, see the Reference for
Oracle GoldenGate and Optional Parameters for Integrated Modes for additional
configuration considerations..

5. Save and close the file.

Note:

See Administering Oracle GoldenGate for important information about
making configuration changes to Replicat once processing is started, if using
integrated Replicat.

Next Steps
Once you have created a basic parameter file for Replicat, see the following for
additional configuration steps.

Configuring Capture in Classic Mode or Configuring Capture in Integrated Mode if you
have not configured capture yet.

Additional Configuration Steps For Using Nonintegrated Replicat (if using
nonintegrated Replicat)

Additional Oracle GoldenGate Configuration Considerations

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Creating Process Groups

Instantiating Oracle GoldenGate Replication

Chapter 8
Next Steps

8-6

9
Additional Oracle GoldenGate
Configuration Considerations

This chapter contains additional configuration considerations that may apply to your
database environment.
Topics:

• Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target
tables to locate the correct target rows for replicated updates and deletes.

• Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

• Handling Special Data Types
It addresses special configuration requirements for different Oracle data types

• Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate
and the parameters that you can use to resolve or work around the condition.

• Controlling the Checkpoint Frequency
The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls
the number of days that Extract in integrated mode retains checkpoints before
purging them automatically.

• Excluding Replicat Transactions
In a bidirectional configuration, Replicat must be configured to mark its
transactions, and Extract must be configured to exclude Replicat transactions so
that they do not propagate back to their source.

• Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target tables to
locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority, depending on the
number and type of constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/NVARCHAR2
columns. Primary key without invisible columns.

2. Unique key. Unique key without invisible columns.

In the case of a nonintegrated Replicat, the selection of the unique key is as
follows:

9-1

• First unique key alphanumerically with no virtual columns, no UDTs, no
function-based columns, no nullable columns, and no extended (32K)
VARCHAR2/NVARCHAR2 columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLOWINVISIBLEINDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

• First unique key alphanumerically with no virtual columns, no UDTs, no
extended (32K) VARCHAR2/NVARCHAR2 columns, or no function-based columns,
but can include nullable columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLOWINVISIBLEINDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

3. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding virtual
columns, UDTs, function-based columns, extended (32K) VARCHAR2/NVARCHAR2
columns, and any columns that are explicitly excluded from the Oracle
GoldenGate configuration by an Oracle GoldenGate user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are
allowed in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on
the table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of
Oracle GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to
be used, you can define a substitute key if the table has columns that always contain
unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will
override any existing primary or unique key that Oracle GoldenGate finds. For more
information, see Reference for Oracle GoldenGate.

Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

These procedures support the Oracle GoldenGate FLUSH SEQUENCE command, which
you issue immediately after you start the Oracle GoldenGate processes for the first
time (typically when you perform the initial data synchronization procedure).

To Install Oracle Sequence Objects

You will perform steps on the source and target systems.

1. In SQL*Plus, connect to the source and target Oracle systems as SYSDBA.

2. If you already assigned a database user to support the Oracle GoldenGate DDL
replication feature, you can skip this step. Otherwise, in SQL*Plus on both
systems create a database user that can also be the DDL user.

Chapter 9
Installing Support for Oracle Sequences

9-2

CREATE USER DDLuser IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, DBA TO DDLuser;

3. From the Oracle GoldenGate installation directory on each system, run GGSCI.

4. In GGSCI, issue the following command on each system.

EDIT PARAMS ./GLOBALS

5. In each GLOBALS file, enter the GGSCHEMA parameter and specify the schema of the
DDL user that you created earlier in this procedure.

GGSCHEMA schema

6. Save and close the files.

7. In SQL*Plus on both systems, run the sequence.sql script from the root of the
Oracle GoldenGate installation directory. This script creates some procedures for
use by Oracle GoldenGate processes. (Do not run them yourself.) You are
prompted for the user information that you created in the first step.

@sequence.sql

8. In SQL*Plus on the source system, grant EXECUTE privilege on the updateSequence
procedure to a database user that can be used to issue the DBLOGIN command.
Remember or record this user. You use DBLOGIN to log into the database prior to
issuing the FLUSH SEQUENCE command, which calls the procedure.

GRANT EXECUTE on DDLuser.updateSequence TO DBLOGINuser;

9. In SQL*Plus on the target system, grant EXECUTE privilege on the
replicateSequence procedure to the Replicat database user.

GRANT EXECUTE on DDLuser.replicateSequence TO Replicatuser;

10. In SQL*Plus on the source system, issue the following statement in SQL*Plus.

ALTER TABLE sys.seq$ ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

Handling Special Data Types
It addresses special configuration requirements for different Oracle data types

This section applies whether Extract operates in classic or integrated capture mode,
unless otherwise noted.

• Multibyte Character Types

• Oracle Spatial Objects

• TIMESTAMP

• Large Objects (LOB)

• XML

• User Defined Types

Multibyte Character Types
Multi-byte characters are supported as part of a supported character set. If the
semantics setting of an Oracle source database is BYTE and the setting of an Oracle
target is CHAR, use the Replicat parameter SOURCEDEFS in your configuration, and place

Chapter 9
Handling Special Data Types

9-3

a definitions file that is generated by the DEFGEN utility on the target. These steps are
required to support the difference in semantics, whether or not the source and target
data definitions are identical. Replicat refers to the definitions file to determine the
upper size limit for fixed-size character columns.

For more information about character-set support, see Administering Oracle
GoldenGate..

For information about SOURCEDEFS and the DEFGEN utility, see Administering Oracle
GoldenGate.

Oracle Spatial Objects
To replicate tables that contain one or more columns of SDO_GEORASTER object type
from an Oracle source to an Oracle target, follow these instructions to configure Oracle
GoldenGate to process them correctly.

1. Create a TABLE statement and a MAP statement for the georaster tables and also
for the related raster data tables.

2. If the METADATA attribute of the SDO_GEORASTER data type in any of the values
exceeds 1 MB, use the DBOPTIONS parameter with the XMLBUFSIZE option to
increase the size of the memory buffer that stores the embedded SYS.XMLTYPE
attribute of the SDO_GEORASTER data type. If the buffer is too small, Extract abends.
See XMLBUFSIZE in Reference for Oracle GoldenGate.

3. To ensure the integrity of the target georaster tables and the spatial data, keep the
trigger enabled on both source and target. Use the REPERROR option of the MAP
parameter to handle the "ORA-01403 No data found" error that occurs as a result
of keeping the trigger enabled on the target. It occurs when a row in the source
georaster table is deleted, and the trigger cascades the delete to the raster data
table. Both deletes are replicated. The replicated parent delete triggers the
cascaded (child) delete on the target. When the replicated child delete arrives, it is
redundant and generates the error. To use REPERROR, do the following:

• Use a REPERROR statement in each MAP statement that contains a raster data
table.

• Use Oracle error 1403 as the SQL error.

• Use any of the response options as the error handling.

A sufficient way to handle the errors on raster tables caused by active triggers on
target georaster tables is to use REPERROR with DISCARD to discard the cascaded delete
that triggers them. The trigger on the target georaster table performs the delete to the
raster data table, so the replicated one is not needed.

MAP geo.st_rdt, TARGET geo.st_rdt, REPERROR (-1403, DISCARD) ;

If you need to keep an audit trail of the error handling, use REPERROR with EXCEPTION to
invoke exceptions handling. For this, you create an exceptions table and map the
source raster data table twice:

• once to the actual target raster data table (with REPERROR handling the 1403
errors).

• again to the exceptions table, which captures the 1403 error and other relevant
information by means of a COLMAP clause.

Chapter 9
Handling Special Data Types

9-4

For more information about using an exceptions table, see Administering Oracle
GoldenGate for Windows and UNIX.

For more information about REPERROR options, see Reference for Oracle GoldenGate.

TIMESTAMP
To replicate timestamp data, follow these guidelines.

1. To prevent Oracle GoldenGate from abending on TIMESTAMP WITH TIME ZONE as
TZR, use the Extract parameter TRANLOGOPTIONS with one of the following:

• INCLUDEREGIONID to replicate TIMESTAMP WITH TIME ZONE as TZR from an
Oracle source to an Oracle target of the same version or later.

• INCLUDEREGIONIDWITHOFFSET to replicate TIMESTAMP WITH TIMEZONE as TZR
from an Oracle source that is at least v10g to an earlier Oracle target, or from
an Oracle source to a non-Oracle target.

These options allow replication to Oracle versions that do not support TIMESTAMP
WITH TIME ZONE as TZR and to database systems that only support time zone as a
UTC offset. .

2. Oracle Database normalizes TIMESTAMP WITH LOCAL TIME ZONE data to the local
time zone of the database that receives it, the target database in the case of
Oracle GoldenGate. To preserve the original time stamp of the data that it applies,
Replicat sets its session to the time zone of the source database. You can
override this default and supply a different time zone by using the SOURCETIMEZONE
parameter in the Replicat parameter file. To force Replicat to set its session to the
target time zone, use the PRESERVETARGETTIMEZONE parameter.

You can also use the SOURCETIMEZONE parameter to specify the source time zone
for data that is captured by an Extract that is earlier than version 12.1.2. Those
versions do not write the source time zone to the trail.

Large Objects (LOB)
The following are some configuration guidelines for LOBs in both classic capture and
integrated capture mode.

1. Store large objects out of row if possible.

2. (Applies only to integrated capture) Integrated capture captures LOBs from the
redo log. For UPDATE operations on a LOB document, only the changed portion of
the LOB is logged. To force whole LOB documents to be written to the trail when
only the changed portion is logged, use the TRANLOGOPTIONS parameter with the
FETCHPARTIALLOB option in the Extract parameter file. When Extract receives
partial LOB content from the logmining server, it fetches the full LOB image
instead of processing the partial LOB. Use this option when replicating to a non-
Oracle target or in other conditions where the full LOB image is required.

XML
The following are tools for working with XML within Oracle GoldenGate constraints.

• Although both classic and integrated capture modes do not support the capture of
changes made to an XML schema, you may be able to evolve the schemas and

Chapter 9
Handling Special Data Types

9-5

then resume replication of them without the need for a resynchronization, see
Supporting Changes to XML Schemas.

• (Applies only to integrated capture) Integrated capture captures XML from the redo
log. For UPDATE operations on an XML document, only the changed portion of the
XML is logged if it is stored as OBJECT RELATIONAL or BINARY. To force whole XML
documents to be written to the trail when only the changed portion is logged, use
the TRANLOGOPTIONS parameter with the FETCHPARTIALXML option in the Extract
parameter file. When Extract receives partial XML content from the logmining
server, it fetches the full XML document instead of processing the partial XML.
Use this option when replicating to a non-Oracle target or in other conditions
where the full XML image is required.

User Defined Types
If Oracle Database is compatible with releases greater than or equal to 12.0.0.0.0,
then integrated Extract captures data from redo (no fetch), see Setting Flashback
Query.

If replicating source data that contains user-defined types with the NCHAR, NVARCHAR2,
or NCLOB attribute to an Oracle target, use the HAVEUDTWITHNCHAR parameter in the
Replicat parameter file. When this type of data is encountered in the trail,
HAVEUDTWITHNCHAR causes Replicat to connect to the Oracle target in AL32UTF8, which
is required when a user-defined data type contains one of those attributes.
HAVEUDTWITHNCHAR is required even if NLS_LANG is set to AL32UTF8 on the target. By
default Replicat ignores NLS_LANG and connects to an Oracle Database in the native
character set of the database. Replicat uses the OCIString object of the Oracle Call
Interface, which does not support NCHAR, NVARCHAR2, or NCLOB attributes, so Replicat
must bind them as CHAR. Connecting to the target in AL32UTF8 prevents data loss in
this situation. HAVEUDTWITHNCHAR must appear before the USERID or USERIDALIAS
parameter in the parameter file.

Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate and
the parameters that you can use to resolve or work around the condition.

The following table lists the database properties and the associated concern/
resolution.

Database Property Concern/Resolution

Table with interval
partitioning

To support tables with interval partitioning, make certain that the WILDCARDRESOLVE
parameter remains at its default of DYNAMIC.

Table with virtual columns Virtual columns are not logged, and Oracle does not permit DML on virtual columns.
You can, however, capture this data and map it to a target column that is not a virtual
column by doing the following:

Include the table in the Extract TABLE statement and use the FETCHCOLS option of
TABLE to fetch the value from the virtual column in the database.

In the Replicat MAP statement, map the source virtual column to the non-virtual target
column.

Chapter 9
Handling Other Database Properties

9-6

Database Property Concern/Resolution

Table with inherently
updateable view

To replicate to an inherently updateable view, define a key on the unique columns in
the updateable view by using a KEYCOLS clause in the same MAP statement in which
the associated source and target tables are mapped.

Redo logs or archives in
different locations

The TRANLOGOPTIONS parameter contains options to handle environments where the
redo logs or archives are stored in a different location than the database default or on
a different platform from that on which Extract is running. These options may be
required when Extract operates in classic capture mode. For more information, see
Reference for Oracle GoldenGate.

TRUNCATE operations To replicate TRUNCATE operations, choose one of two options:

• Standalone TRUNCATE support by means of the GETTRUNCATES parameter
replicates TRUNCATE TABLE, but no other TRUNCATE options. Use only if not
using Oracle GoldenGate DDL support.

• The full DDL support replicates TRUNCATE TABLE, ALTER TABLE TRUNCATE
PARTITION, and other DDL. To install this support, see Installing Trigger-Based
DDL Capture..

Sequences To replicate DDL for sequences (CREATE, ALTER, DROP, RENAME), use Oracle
GoldenGate DDL support.

To replicate just sequence values, use the SEQUENCE parameter in the Extract
parameter file. This does not require the Oracle GoldenGate DDL support
environment. For more information, see Reference for Oracle GoldenGate.

Controlling the Checkpoint Frequency
The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls the
number of days that Extract in integrated mode retains checkpoints before purging
them automatically.

Partial days can be specified using decimal values. For example, 8.25 specifies 8 days
and 6 hours. The default is seven days. For more information about this parameter,
see Reference for Oracle GoldenGate.

Excluding Replicat Transactions
In a bidirectional configuration, Replicat must be configured to mark its transactions,
and Extract must be configured to exclude Replicat transactions so that they do not
propagate back to their source.

There are two methods to accomplish this as follows:

Method 1

Valid only for Oracle to Oracle implementations.

When Extract is in classic or integrated mode (Replicat can be in either integrated or
nonintegrated mode), use the following parameters:

• Use DBOPTIONS with the SETTAG option in the Replicat parameter file. The inbound
server tags the transactions of that Replicat with the specified value, which
identifies those transactions in the redo stream. The default value for SETTAG is 00.

Chapter 9
Controlling the Checkpoint Frequency

9-7

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in a classic or
integrated Extract parameter file. The logmining server associated with that Extract
excludes redo that is tagged with the SETTAG value. Multiple EXCLUDETAG
statements can be used to exclude different tag values, if desired.

For Oracle to Oracle, this is the recommended method.

Method 2

Valid for any implementation; Oracle or heterogeneous database configurations.

Alternatively, when Extract is in classic or integrated capture mode, you could also use
the Extract TRANLOGOPTIONS parameter with the EXCLUDEUSER or EXCLUDEUSERID option
to ignore Replicat the DDL and DML transactions based on its user name or ID.
Multiple EXCLUDEUSER statements can be used. The specified user is subject to the
rules of the GETREPLICATES or IGNOREREPLICATES parameter.

For more information, see Reference for Oracle GoldenGate.

Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

See the following:

• For additional configuration guidelines to achieve specific replication topologies,
see Administering Oracle GoldenGate. This guide includes instructions for the
following configurations:

– Using Oracle GoldenGate for live reporting

– Using Oracle GoldenGate for real-time data distribution

– Configuring Oracle GoldenGate for real-time data warehousing

– Using Oracle GoldenGate to maintain a live standby database

– Using Oracle GoldenGate for active-active high availability

That guide also contains information about:

– Oracle GoldenGate architecture

– Oracle GoldenGate commands

– Oracle GoldenGate initial load methods

– Configuring security

– Using customization features

– Configuring data filtering and manipulation

• If either the source or target database is non-Oracle, follow the installation and
configuration instructions in the Oracle GoldenGate installation and setup guide for
that database, and then refer to the Oracle GoldenGate administration and
reference documentation for further information.

Chapter 9
Advanced Configuration Options for Oracle GoldenGate

9-8

10
Additional Configuration Steps for Using
Classic Capture

This chapter contains additional configuration and preparation requirements that are
specific only to Extract when operating in classic capture mode.
These requirements supplement the basic configuration requirements documented in
Configuring Capture in Classic Mode.

Topics:

• Configuring Oracle TDE Data in Classic Capture Mode
This section does not apply to Extract in integrated capture mode.

• Using Classic Capture in an Oracle RAC Environment
The following general guidelines apply to Oracle RAC when Extract is operating in
classic capture mode.

• Mining ASM-stored Logs in Classic Capture Mode
This topic covers additional configuration requirements that apply when Oracle
GoldenGate mines transaction logs that are stored in Oracle Automatic Storage
Management (ASM).

• Ensuring Data Availability for Classic Capture
To ensure the continuity and integrity of capture processing when Extract operates
in classic capture mode, enable archive logging.

• Configuring Classic Capture in Archived Log Only Mode
You can configure Extract to read exclusively from the archived logs. This is
known as Archived Log Only (ALO) mode.

• Configuring Classic Capture in Oracle Active Data Guard Only Mode
You can configure Classic Extract to access both redo data and metadata in real-
time to successfully replicate source database activities using Oracle Active Data
Guard. This is known as Active Data Guard (ADG) mode.

• Avoiding Log-read Bottlenecks in Classic Capture
When Oracle GoldenGate captures data from the redo logs, I/O bottlenecks can
occur because Extract is reading the same files that are being written by the
database logging mechanism.

Configuring Oracle TDE Data in Classic Capture Mode
This section does not apply to Extract in integrated capture mode.

The following special configuration steps are required to support TDE when Extract is
in classic capture mode.

10-1

Note:

When in integrated mode, Extract leverages the database logging server and
supports TDE column encryption and TDE tablespace encryption without
special setup requirements or parameter settings. For more information
about integrated capture, see Choosing Capture and Apply Modes.

• Overview of TDE Support in Classic Capture Mode

• Requirements for Capturing TDE in Classic Capture Mode

• Required Database Patches for TDE Support

• Configuring Classic Capture for TDE Support

• Recommendations for Maintaining Data Security after Decryption

• Performing DDL while TDE Capture is Active

• Rekeying after a Database Upgrade

• Updating the Oracle Shared Secret in the Parameter File

Overview of TDE Support in Classic Capture Mode
TDE support when Extract is in classic capture mode requires the exchange of two
kinds of keys:

• The encrypted key can be a table key (column-level encryption), an encrypted
redo log key (tablespace-level encryption), or both. This key is shared between the
Oracle Database and Extract.

• The decryption key is named ORACLEGG and its password is known as the shared
secret. This key is stored securely in the Oracle and Oracle GoldenGate domains.
Only a party that has possession of the shared secret can decrypt the table and
redo log keys.

The encrypted keys are delivered to the Extract process by means of built-in PL/SQL
code. Extract uses the shared secret to decrypt the data. Extract never handles the
wallet master key itself, nor is it aware of the master key password. Those remain
within the Oracle Database security framework.

Extract never writes the decrypted data to any file other than a trail file, not even a
discard file (specified with the DISCARDFILE parameter). The word "ENCRYPTED" will be
written to any discard file that is in use.

The impact of this feature on Oracle GoldenGate performance should mirror that of the
impact of decryption on database performance. Other than a slight increase in Extract
startup time, there should be a minimal affect on performance from replicating TDE
data.

Requirements for Capturing TDE in Classic Capture Mode
The following are requirements for Extract to support TDE capture:

• To maintain high security standards, the Oracle GoldenGate Extract process
should run as part of the oracle user (the user that runs the Oracle Database).

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-2

That way, the keys are protected in memory by the same privileges as the oracle
user.

• The Extract process must run on the same machine as the database installation.

• Even if using TDE with a Hardware Security Module, you must use a software
wallet. Instructions are provided in Oracle Security Officer Tasks in the
configuration steps for moving from an HSM-only to an HSM-plus-wallet
configuration and configuring the sqlnet.ora file correctly.

• Whenever the source database is upgraded, you must rekey the master key.

Required Database Patches for TDE Support
To support TDE on Oracle 11.2.0.2, refer to article 1557031.1 on the My Oracle
Support website (https://support.oracle.com).

Configuring Classic Capture for TDE Support
The following outlines the steps that the Oracle Security Officer and the Oracle
GoldenGate Administrator take to establish communication between the Oracle server
and the Extract process.

• Agree on a Shared Secret that Meets Oracle Standards

• Oracle DBA Tasks

• Oracle Security Officer Tasks

• Oracle GoldenGate Administrator Tasks

Agree on a Shared Secret that Meets Oracle Standards
Agree on a shared secret password that meets or exceeds Oracle password
standards. This password must not be known by anyone else. For guidelines on
creating secure passwords, see Oracle Database Security Guide.

Oracle DBA Tasks
1. Log in to SQL*Plus as a user with the SYSDBA system privilege. For example:

sqlplus sys/as sysdba
Connected.
Enter password: password

2. Run the prvtclkm.plb file that is installed in the Oracle admin directory. The
prvtclkm.plb file creates the DBMS_INTERNAL_CLKM PL/SQL package, which
enables Oracle GoldenGate to extract encrypted data from an Oracle Database.

@?/app/oracle/product/orcl111/rdbms/admin/prvtclkm.plb

3. Grant EXEC privilege on DBMS_INTERNAL_CLKM PL/SQL package to the Extract
database user.

GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;

4. Exit SQL*Plus.

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-3

https://support.oracle.com

Oracle Security Officer Tasks
1. Oracle GoldenGate requires the use of a software wallet even with HSM. If you

are currently using HSM-only mode, move to HSM-plus-wallet mode by taking the
following steps:

a. Change the sqlnet.ora file configuration as shown in the following example,
where the wallet directory can be any location on disk that is accessible (rwx)
by the owner of the Oracle Database. This example shows a best-practice
location, where my_db is the $ORACLE_SID.

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=HSM)(METHOD_DATA=
 (DIRECTORY=/etc/oracle/wallets/my_db)))

b. Log in to orapki (or Wallet Manager) as the owner of the Oracle Database,
and create an auto-login wallet in the location that you specified in the
sqlnet.ora file. When prompted for the wallet password, specify the same
password as the HSM password (or HSM Connect String). These two
passwords must be identical.

cd /etc/oracle/wallets/my_db
orapki wallet create -wallet . -auto_login[_local]

Note:

The Oracle Database owner must have full operating system
privileges on the wallet.

c. Add the following entry to the empty wallet to enable an 'auto-open' HSM:

mkstore -wrl . -createEntry ORACLE.TDE.HSM.AUTOLOGIN non-empty-string

2. Create an entry named ORACLEGG in the wallet. ORACLEGG must be the name of
this key. The password for this key must be the agreed-upon shared secret, but
do not enter this password on the command line. Instead, wait to be prompted.

mkstore -wrl ./ -createEntry ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Your secret/Password is missing in the command line
Enter your secret/Password: sharedsecret
Re-enter your secret/Password: sharedsecret
Enter wallet password: hsm/wallet_password

3. Verify the ORACLEGG entry.

mkstore -wrl . -list
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Enter wallet password: hsm/wallet_password
Oracle Secret Store entries:
ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-4

SQL> alter system set encryption wallet close identified by "hsm/
wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/
wallet_password";
System altered.

This inserts the password into the auto-open wallet, so that no password is
required to access encrypted data with the TDE master encryption key stored in
HSM.

6. Switch log files.

alter system switch logfile;
System altered.

7. If this is an Oracle RAC environment and you are using copies of the wallet on
each node, make the copies now and then reopen each wallet.

Note:

Oracle recommends using one wallet in a shared location, with synchronized
access among all Oracle RAC nodes.

Oracle GoldenGate Administrator Tasks
1. Run GGSCI.

2. Issue the ENCRYPT PASSWORD command to encrypt the shared secret so that it is
obfuscated within the Extract parameter file. This is a security requirement.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.
Oracle GoldenGate uses this key to look up the actual key in the ENCKEYS file.
To create a key and ENCKEYS file, see Administering Oracle GoldenGate.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1

3. In the Extract parameter file, use the DBOPTIONS parameter with the
DECRYPTPASSWORD option. As input, supply the encrypted shared secret and the
decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-5

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY
mykey1

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/
wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/
wallet_password";
System altered.

Recommendations for Maintaining Data Security after Decryption
Extract decrypts the TDE data and writes it to the trail as clear text. To maintain data
security throughout the path to the target database, it is recommended that you also
deploy Oracle GoldenGate security features to:

• encrypt the data in the trails

• encrypt the data in transit across TCP/IP

For more information, see Administering Oracle GoldenGate.

Performing DDL while TDE Capture is Active
If DDL will ever be performed on a table that has column-level encryption, or if table
keys will ever be re-keyed, you must either quiesce the table while the DDL is
performed or enable Oracle GoldenGate DDL support. It is more practical to have the
DDL environment active so that it is ready, because a re-key usually is a response to a
security violation and must be performed immediately. To install the Oracle
GoldenGate DDL environment, see Installing Trigger-Based DDL Capture. To
configure Oracle GoldenGate DDL support, see Configuring DDL Support . For
tablespace-level encryption, the Oracle GoldenGate DDL support is not required.

Rekeying after a Database Upgrade
Whenever the source database is upgraded and Oracle GoldenGate is capturing TDE
data, you must rekey the master key, and then restart the database and Extract. The
commands to rekey the master key are:

alter system set encryption key identified by "mykey";

Updating the Oracle Shared Secret in the Parameter File
Use this procedure to update and encrypt the TDE shared secret within the Extract
parameter file.

1. Run GGSCI.

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-6

2. Stop the Extract process.

STOP EXTRACT group

3. Modify the ORACLEGG entry in the Oracle wallet. ORACLEGG must remain the name of
the key. For instructions, see Oracle Database Advanced Security Guide.

4. Issue the ENCRYPT PASSWORD command to encrypt the new shared secret.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1

5. In the Extract parameter file, use the DBOPTIONS parameter with the
DECRYPTPASSWORD option. As input, supply the encrypted shared secret and the
Oracle GoldenGate-generated or user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY
mykey1

6. Log in to SQL*Plus as a user with the SYSDBA system privilege.

7. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/
wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/
wallet_password";
System altered.

8. Start Extract.

START EXTRACT group

Chapter 10
Configuring Oracle TDE Data in Classic Capture Mode

10-7

Using Classic Capture in an Oracle RAC Environment
The following general guidelines apply to Oracle RAC when Extract is operating in
classic capture mode.

• During operations, if the primary database instance against which Oracle
GoldenGate is running stops or fails for any reason, Extract abends. To resume
processing, you can restart the instance or mount the Oracle GoldenGate binaries
to another node where the database is running and then restart the Oracle
GoldenGate processes. Stop the Manager process on the original node before
starting Oracle GoldenGate processes from another node.

• Whenever the number of redo threads changes, the Extract group must be
dropped and re-created. For the recommended procedure, see Administering
Oracle GoldenGate.

• Extract ensures that transactions are written to the trail file in commit order,
regardless of the RAC instance where the transaction originated. When Extract is
capturing in archived-log-only mode, where one or more RAC instances may be
idle, you may need to perform archive log switching on the idle nodes to ensure
that operations from the active instances are recorded in the trail file in a timely
manner. You can instruct the Oracle RDBMS to do this log archiving automatically
at a preset interval by setting the archive_lag_target parameter. For example, to
ensure that logs are archived every fifteen minutes, regardless of activity, you can
issue the following command in all instances of the RAC system:

SQL> alter system set archive_lag_target 900

• To process the last transaction in a RAC cluster before shutting down Extract,
insert a dummy record into a source table that Oracle GoldenGate is replicating,
and then switch log files on all nodes. This updates the Extract checkpoint and
confirms that all available archive logs can be read. It also confirms that all
transactions in those archive logs are captured and written to the trail in the correct
order.

The following table shows some Oracle GoldenGate parameters that are of specific
benefit in Oracle RAC.

Parameter Description

THREADOPTIONS parameter with the
INQUEUESIZE and OUTQUEUESIZE
options

Sets the amount of data that Extract queues in memory before sending it to
the target system. Tuning these parameters might increase Extract
performance on Oracle RAC.

TRANLOGOPTIONS parameter with the
PURGEORPHANEDTRANSACTIONS |
NOPURGEORPHANEDTRANSACTIONS
and TRANSCLEANUPFREQUENCY
options

Controls how Extract handles orphaned transactions, which can occur
when a node fails during a transaction and Extract cannot capture the
rollback. Although the database performs the rollback on the failover node,
the transaction would otherwise remain in the Extract transaction list
indefinitely and prevent further checkpointing for the Extract thread that
was processing the transaction. By default, Oracle GoldenGate purges
these transactions from its list after they are confirmed as orphaned. This
functionality can also be controlled on demand with the SEND EXTRACT
command in GGSCI.

Chapter 10
Using Classic Capture in an Oracle RAC Environment

10-8

Mining ASM-stored Logs in Classic Capture Mode
This topic covers additional configuration requirements that apply when Oracle
GoldenGate mines transaction logs that are stored in Oracle Automatic Storage
Management (ASM).

• Accessing the Transaction Logs in ASM

• Ensuring ASM Connectivity

Accessing the Transaction Logs in ASM
Extract must be configured to read logs that are stored in ASM. Depending on the
database version, the following options are available:

• Reading Transaction Logs Through the RDBMS

• ASM Direct Connection

Reading Transaction Logs Through the RDBMS
Use the TRANLOGOPTIONS parameter with the DBLOGREADER option in the Extract
parameter file if the RDBMS is Oracle 11.1.0.7 or Oracle 11.2.0.2 or later 11g R2
versions.

An API is available in those releases (but not in Oracle 11g R1 versions) that uses the
database server to access the redo and archive logs. When used, this API enables
Extract to use a read buffer size of up to 4 MB in size. A larger buffer may improve the
performance of Extract when redo rate is high. You can use the DBLOGREADERBUFSIZE
option of TRANLOGOPTIONS to specify a buffer size.

Note:

DBLOGREADER also can be used when the redo and archive logs are on
regular disk or on a raw device.

When using DBLOGREADER and using Oracle Data Vault, grant the
DV_GOLDENGATE_REDO_ACCESS Role to the Extract database user in addition to the
privileges that are listed in Establishing Oracle GoldenGate Credentials.

ASM Direct Connection
If the RDBMS version is not one of those listed in Reading Transaction Logs Through
the RDBMS, do the following:

1. Create a user for the Extract process to access the ASM instance directly. Assign
this user SYS or SYSDBA privileges in the ASM instance. Oracle GoldenGate does
not support using operating-system authentication for the ASM user.

Chapter 10
Mining ASM-stored Logs in Classic Capture Mode

10-9

Table 10-1 Extract Database Privileges — ASM Instance

ASM password configuration1 Permitted user

ASM instance and the database share a
password file

You can use the Oracle GoldenGate source
database user if you grant that user SYSDBA,
or you can use any other database user that
has SYSDBA privileges.

ASM instance and the source database
have separate password files

You can overwrite the ASM password file
with the source database password file,
understanding that this procedure changes
the SYS password in the ASM instance to
the value that is contained in the database
password file, and it also grants ASM
access to the other users in the database
password file. Save a copy of the ASM file
before overwriting it.

1 To view how the current ASM password file is configured, log on to the ASM instance and issue the
following command in SQL*Plus: SQL> SELECT name, value FROM v$parameter WHERE
name = 'remote_login_passwordfile';

2. Add the ASM user credentials to the Oracle GoldenGate credential store by
issuing the ALTER CREDENTIALSTORE command. See Reference for Oracle
GoldenGate for usage instructions and syntax.

3. Specify the ASM login alias in the Extract parameter file by including the
TRANLOGOPTIONS parameter with the ASMUSERALIAS option. For more information
about TRANLOGOPTIONS, see Reference for Oracle GoldenGate.

Ensuring ASM Connectivity
To ensure that the Oracle GoldenGate Extract process can connect to an ASM
instance, list the ASM instance in the tnsnames.ora file. The recommended method for
connecting to an ASM instance when Oracle GoldenGate is running on the database
host machine is to use a bequeath (BEQ) protocol. The BEQ protocol does not require
a listener. If you prefer to use the TCP/IP protocol, verify that the Oracle listener is
listening for new connections to the ASM instance. The listener.ora file must contain
an entry similar to the following.

SID_LIST_LISTENER_ASM =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = ASM)
 (ORACLE_HOME = /u01/app/grid)
 (SID_NAME = +ASM1)
)
)

Note:

A BEQ connection does not work when using a remote Extract configuration.
Use TNSNAMES with the TCP/IP protocol.

Chapter 10
Mining ASM-stored Logs in Classic Capture Mode

10-10

Ensuring Data Availability for Classic Capture
To ensure the continuity and integrity of capture processing when Extract operates in
classic capture mode, enable archive logging.

The archive logs provide a secondary data source should the online logs recycle
before Extract is finished with them. The archive logs for open transactions must be
retained on the system in case Extract needs to recapture data from them to perform a
recovery.

WARNING:

If you cannot enable archive logging, there is a high risk that you will need to
completely resynchronize the source and target objects and reinstantiate
replication should there be a failure that causes an Extract outage while
transactions are still active. If you must operate this way, configure the online
logs according to the following guidelines to retain enough data for Extract to
capture what it needs before the online logs recycle. Allow for Extract
backlogs caused by network outages and other external factors, as well as
long-running transactions.

In a RAC configuration, Extract must have access to the online and archived logs for
all nodes in the cluster, including the one where Oracle GoldenGate is installed.

• Log Retention Requirements per Extract Recovery Mode

• Log Retention Options

• Determining How Much Data to Retain

• Purging Log Archives

• Specifying the Archive Location

• Mounting Logs that are Stored on Other Platforms

Log Retention Requirements per Extract Recovery Mode
The following summarizes the different recovery modes that Extract might use and
their log-retention requirements:

• By default, the Bounded Recovery mode is in effect, and Extract requires access
to the logs only as far back as twice the Bounded Recovery interval that is set with
the BR parameter. This interval is an integral multiple of the standard Extract
checkpoint interval, as controlled by the CHECKPOINTSECS parameter. These two
parameters control the Oracle GoldenGate Bounded Recovery feature, which
ensures that Extract can recover in-memory captured data after a failure, no
matter how old the oldest open transaction was at the time of failure. For more
information about Bounded Recovery, see Reference for Oracle GoldenGate.

• In the unlikely event that the Bounded Recovery mechanism fails when Extract
attempts a recovery, Extract reverts to normal recovery mode and must have
access to the archived log that contains the beginning of the oldest open
transaction in memory at the time of failure and all logs thereafter.

Chapter 10
Ensuring Data Availability for Classic Capture

10-11

Log Retention Options
Depending on the version of Oracle, there are different options for ensuring that the
required logs are retained on the system.

• Oracle Enterprise Edition 11g and Later

• All Other Oracle Versions

Oracle Enterprise Edition 11g and Later
For these versions, Extract can be configured to work with Oracle Recovery Manager
(RMAN) to retain the logs that Extract needs for recovery. You enable this feature
when you issue the REGISTER EXTRACT command. See Creating Process Groups for
more information. To use this feature, the Extract database user must have the
following privileges, in addition to the basic privileges listed in Establishing Oracle
GoldenGate Credentials.

Oracle EE version Privileges

11.1 and 11.2.0.1 1. Run package to grant Oracle GoldenGate admin privilege.

exec dbms_streams_auth.grant_admin_privilege('user')

2. Grant the 'become user' privilege.

grant become user to user;

11.2.0.3 and later Run package to grant Oracle GoldenGate admin privilege.

exec dbms_goldengate_auth.grant_admin_privilege('user')

When log retention is enabled, Extract retains enough logs to perform a Bounded
Recovery, but you can configure Extract to retain enough logs through RMAN for a
normal recovery by using the TRANLOGOPTIONS parameter with the LOGRETENTION option
set to SR. There also is an option to disable the use of RMAN log retention. Review the
options of LOGRETENTION in the Reference for Oracle GoldenGate before you configure
Extract. If you set LOGRETENTION to DISABLED, see Determining How Much Data to
Retain,.

Note:

To support RMAN log retention on Oracle RAC for Oracle versions prior to
11.2.0.3, you must download and install the database patch that is provided
in BUGFIX 11879974 before you add the Extract groups.

The RMAN log retention feature creates an underlying (but non-functioning) Oracle
Streams Capture process for each Extract group. The name of the Capture is based
on the name of the associated Extract group. The log retention feature can operate
concurrently with other local Oracle Streams installations. When you create an Extract
group, the logs are retained from the current database SCN.

Chapter 10
Ensuring Data Availability for Classic Capture

10-12

Note:

If the storage area is full, RMAN purges the archive logs even when needed
by Extract. This limitation exists so that the requirements of Extract (and
other Oracle replication components) do not interfere with the availability of
redo to the database.

All Other Oracle Versions
For versions of Oracle other than Enterprise Edition, you must manage the log
retention process with your preferred administrative tools. Follow the directions in
Determining How Much Data to Retain.

Determining How Much Data to Retain
When managing log retention, try to ensure rapid access to the logs that Extract would
require to perform a normal recovery (not a Bounded Recovery). See Log Retention
Requirements per Extract Recovery Mode. If you must move the archives off the
database system, the TRANLOGOPTIONS parameter provides a way to specify an
alternate location. See Specifying the Archive Location.

The recommended retention period is at least 24 hours worth of transaction data,
including both online and archived logs. To determine the oldest log that Extract might
need at any given point, issue the SEND EXTRACT command with the SHOWTRANS option.
You might need to do some testing to determine the best retention time given your
data volume and business requirements.

If data that Extract needs during processing was not retained, either in online or
archived logs, one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available
(and accept possible data loss on the target).

• Resynchronize the source and target data, and then start the Oracle GoldenGate
environment over again.

Purging Log Archives
Make certain not to use backup or archive options that cause old archive files to be
overwritten by new backups. Ideally, new backups should be separate files with
different names from older ones. This ensures that if Extract looks for a particular log,
it will still exist, and it also ensures that the data is available in case it is needed for a
support case.

Specifying the Archive Location
If the archived logs reside somewhere other than the Oracle default directory, specify
that directory with the ALTARCHIVELOGDEST option of the TRANLOGOPTIONS parameter in
the Extract parameter file.

You might also need to use the ALTARCHIVEDLOGFORMAT option of TRANLOGOPTIONS if
the format that is specified with the Oracle parameter LOG_ARCHIVE_FORMAT contains
sub-directories. ALTARCHIVEDLOGFORMAT specifies an alternate format that removes the

Chapter 10
Ensuring Data Availability for Classic Capture

10-13

sub-directory from the path. For example, %T/log_%t_%s_%r.arc would be changed to
log_%t_%s_%r.arc. As an alternative to using ALTARCHIVEDLOGFORMAT, you can create
the sub-directory manually, and then move the log files to it.

Mounting Logs that are Stored on Other Platforms
If the online and archived redo logs are stored on a different platform from the one that
Extract is built for, do the following:

• NFS-mount the archive files.

• Map the file structure to the structure of the source system by using the LOGSOURCE
and PATHMAP options of the Extract parameter TRANLOGOPTIONS. For more
information, see Reference for Oracle GoldenGate.

Configuring Classic Capture in Archived Log Only Mode
You can configure Extract to read exclusively from the archived logs. This is known as
Archived Log Only (ALO) mode.

In this mode, Extract reads exclusively from archived logs that are stored in a specified
location. ALO mode enables Extract to use production logs that are shipped to a
secondary database (such as a standby) as the data source. The online logs are not
used at all. Oracle GoldenGate connects to the secondary database to get metadata
and other required data as needed. As an alternative, ALO mode is supported on the
production system.

Note:

ALO mode is not compatible with Extract operating in integrated capture
mode.

• Limitations and Requirements for Using ALO Mode

• Configuring Extract for ALO mode

Limitations and Requirements for Using ALO Mode
Observe the following limitations and requirements when using Extract in ALO mode.

• Log resets (RESETLOG) cannot be done on the source database after the standby
database is created.

• ALO cannot be used on a standby database if the production system is Oracle
RAC and the standby database is non-RAC. In addition to both systems being
Oracle RAC, the number of nodes on each system must be identical.

• ALO on Oracle RAC requires a dedicated connection to the source server. If that
connection is lost, Oracle GoldenGate processing will stop.

• It is a best practice to use separate archive log directories when using Oracle
GoldenGate for Oracle RAC in ALO mode. This will avoid any possibility of the
same file name showing up twice, which could result in Extract returning an "out of
order scn" error.

Chapter 10
Configuring Classic Capture in Archived Log Only Mode

10-14

• The LOGRETENTION parameter defaults to DISABLED when Extract is in ALO mode.
You can override this with a specific LOGRETENTION setting, if needed.

Configuring Extract for ALO mode
To configure Extract for ALO mode, follow these steps as part of the overall process
for configuring Oracle GoldenGate, as documented in Configuring Capture in Classic
Mode.

1. Enable supplemental logging at the table level and the database level for the
tables in the source database. (See Configuring Logging Properties.)

2. When Oracle GoldenGate is running on a different server from the source
database, make certain that SQL*Net is configured properly to connect to a
remote server, such as providing the correct entries in a TNSNAMES file. Extract
must have permission to maintain a SQL*Net connection to the source database.

3. Use a SQL*Net connect string for the name of the user in the credential store that
is assigned to the process. Specify the alias of this user in the following:

• The USERIDALIAS parameter in the parameter file of every Oracle GoldenGate
process that connects to that database.

• The USERIDALIAS portion of the DBLOGIN command in GGSCI.

Note:

If you have a standby server that is local to the server that Oracle
GoldenGate is running on, you do not need to use a connect string for
the user specified in USERIDALIAS. You can just supply the user login
name.

See Administering Oracle GoldenGate for more information about using a
credential store.

4. Use the Extract parameter TRANLOGOPTIONS with the ARCHIVEDLOGONLY option. This
option forces Extract to operate in ALO mode against a primary or logical standby
database, as determined by a value of PRIMARY or LOGICAL STANDBY in the db_role
column of the v$database view. The default is to read the online logs.
TRANLOGOPTIONS with ARCHIVEDLOGONLY is not needed if using ALO mode against a
physical standby database, as determined by a value of PHYSICAL STANDBY in the
db_role column of v$database. Extract automatically operates in ALO mode if it
detects that the database is a physical standby.

5. Other TRANLOGOPTIONS options might be required for your environment. For
example, depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

6. Use the MAP parameter for Extract to map the table names to the source object
IDs. For more information, see Reference for Oracle GoldenGate.

7. Add the Extract group by issuing the ADD EXTRACT command with a timestamp as
the BEGIN option, or by using ADD EXTRACT with the SEQNO and RBA options. It is
best to give Extract a known start point at which to begin extracting data, rather
than by using the NOW argument. The start time of NOW corresponds to the time of
the current online redo log, but an ALO Extract cannot read the online logs, so it

Chapter 10
Configuring Classic Capture in Archived Log Only Mode

10-15

must wait for that log to be archived when Oracle switches logs. The timing of the
switch depends on the size of the redo logs and the volume of database activity,
so there might be a lag between when you start Extract and when data starts
being captured. This can happen in both regular and RAC database
configurations.

Configuring Classic Capture in Oracle Active Data Guard
Only Mode

You can configure Classic Extract to access both redo data and metadata in real-time
to successfully replicate source database activities using Oracle Active Data Guard.
This is known as Active Data Guard (ADG) mode.

ADG mode enables Extract to use production logs that are shipped to a standby
database as the data source. The online logs are not used at all. Oracle GoldenGate
connects to the standby database to get metadata and other required data as needed.

This mode is useful in load sensitive environments where ADG is already in place or
can be implemented. It can also be used as cost effective method to implement high
availability using the ADG Broker role planned (switchover) and failover (unplanned)
changes. In an ADG configuration, switchover and failover are considered roles. When
either of the operations occur, it is considered a role change. For more information,
see Oracle Data Guard Concepts and Administration and Oracle Data Guard Broker.

You can configure Integrated Extract to fetch table data and metadata required for the
fetch from an ADG instead of the source database. This is possible because an ADG
is a physical replica of the source database. Fetching from an ADG using the
FETCHUSER parameter is supported by Extract in all configurations except when running
as Classic Extract. Classic Extract already has the ability to connect directly to an ADG
and mine its redo logs and fetch from it using standard connection information
supplied using the USERID parameter. The impact to the source database is minimized
because Extract gathers information from the source database at startup, including
compatibility level, database type, and source database validation checks, when
fetching from an ADG.

All previous fetch functionality and parameters are supported.

Note:

Integrated Extract cannot capture from a standby database because it
requires READ and WRITE access to the database, and an ADG standby only
provides READ ONLY access.

• Limitations and Requirements for Using ADG Mode

• Configuring Classic Extract for ADG Mode

• Migrating Classic Extract To and From an ADG Database

• Handling Role Changes In an ADG Configuration

Chapter 10
Configuring Classic Capture in Oracle Active Data Guard Only Mode

10-16

Limitations and Requirements for Using ADG Mode
Observe the following limitations and requirements when using Extract in ADG mode.

• Extract in ADG mode will only apply redo data that has been applied to the
standby database by the apply process. If Extract runs ahead of the standby
database, it will wait for the standby database to catch up.

• You must explicitly specify ADG mode in your classic Extract parameter file to run
extract on the standby database.

• You must specify the database user and password to connect to the ADG system
because fetch and other metadata resolution occurs in the database.

• The number of redo threads in the standby logs in the standby database must
match the number of nodes from the primary database.

• No new RAC instance can be added to the primary database after classic Extract
has been created on the standby database. If you do add new instances, the redo
data from the new thread will not be captured by classic Extract.

• Archived logs and standby redo logs accessed from the standby database will be
an exact duplicate of the primary database. The size and the contents will match,
including redo data, transactional data, and supplemental data. This is guaranteed
by a properly configured ADG deployment.

• ADG role changes are infrequent and require user intervention in both cases.

• With a switchover, there will be an indicator in the redo log file header (end of the
redo log or EOR marker) to indicate end of log stream so that classic Extract on
the standby can complete the RAC coordination successfully and ship all of the
committed transactions to the trail file.

• With a failover, a new incarnation is created on both the primary and the standby
databases with a new incarnation ID, RESETLOG sequence number, and SCN value.

• You must connect to the primary database from GGSCI to add TRANDATA or
SCHEMATRANDATA because this is done on the primary database.

• DDL triggers cannot be used on the standby database, in order to support DDL
replication (except ADDTRANDATA). You must install the Oracle GoldenGate DDL
package on the primary database.

• DDL ADDTRANDATA is not supported in ADG mode; you must use
ADDSCHEMATRANDATA for DDL replication.

• When adding extract on the standby database, you must specify the starting
position using a specific SCN value, timestamp, or log position. Relative
timestamp values, such as NOW, become ambiguous and may lead to data
inconsistency.

• When adding extract on the standby database, you must specify the number of
threads that will include all of the relevant threads from the primary database.

• During or after failover or switchover, no thread can be added or dropped from
either primary or standby databases.

• Classic Extract will only use one intervening RESETLOG operation.

• If you do not want to relocate your Oracle GoldenGate installation, then you must
position it in a shared space where the Oracle GoldenGate installation directory
can be accessed from both the primary and standby databases.

Chapter 10
Configuring Classic Capture in Oracle Active Data Guard Only Mode

10-17

• If you are moving capture off of an ADG standby database to a primary database,
then you must point your net alias to the primary database and you must remove
the TRANLOG options.

• Only Oracle Database releases that are running with compatibility setting of 10.2
or higher (10g Release 2) are supported.

• Classic Extract cannot use the DBLOGREADER option. Use ASMUSER (there is
approximately a 20gb/hr read limit) or move the online and archive logs outside of
the Application Security Manager on both the primary and the standby databases.

Configuring Classic Extract for ADG Mode
To configure Classic Extract for ADG mode, follow these steps as part of the overall
process for configuring Oracle GoldenGate, as documented in Configuring Capture in
Classic Mode.

1. Enable supplemental logging at the table level and the database level for the
tables in the primary database using the ADD SCHEMATRANDATA parameter. If
necessary, create a DDL capture. (See Configuring Logging Properties.)

2. When Oracle GoldenGate is running on a different server from the source
database, make certain that SQL*Net is configured properly to connect to a
remote server, such as providing the correct entries in a TNSNAMES file. Extract
must have permission to maintain a SQL*Net connection to the source database.

3. On the standby database, use the Extract parameter TRANLOGOPTIONS with the
MINEFROMACTIVEDG option. This option forces Extract to operate in ADG mode
against a standby database, as determined by a value of PRIMARY or LOGICAL
STANDBY in the db_role column of the v$database view.

Other TRANLOGOPTIONS options might be required for your environment. For
example, depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

4. On the standby database, add the Extract group by issuing the ADD EXTRACT
command specifying the number of threads active on the primary database at the
given SCN. The timing of the switch depends on the size of the redo logs and the
volume of database activity, so there might be a limited lag between when you
start Extract and when data starts being captured. This can happen in both regular
and RAC database configurations.

Migrating Classic Extract To and From an ADG Database
You must have your parameter files, checkpoint files, bounded recovery files, and trail
files stored in shared storage or copied to the ADG database before attempting to
migrate a classic Extract to or from an ADG database. Additionally, you must ensure
that there has not been any intervening role change or Extract will mine the same
branch of redo.

Use the following steps to move to an ADG database:

1. Edit the parameter file ext1.prm to add the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

2. Start Extract by issuing the START EXTRACT ext1 command.

Chapter 10
Configuring Classic Capture in Oracle Active Data Guard Only Mode

10-18

Use the following steps to move from an ADG database:

1. Edit the parameter file ext1.prm to remove the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

2. Start Extract by issuing the START EXTRACT ext1 command.

Handling Role Changes In an ADG Configuration
In a role change involving a standby database, all sessions in the primary and the
standby database are first disconnected including the connections used by Extract.
Then both databases are shut down, then the original primary is mounted as a standby
database, and the original standby is opened as the primary database.

The procedure for a role change is determined by the initial deployment of Classic
Extract and the deployment relation that you want, database or role. The following
table outlines the four possible role changes and is predicated on an ADG
configuration comprised of two databases, prisys and stansys. The prisys system
contains the primary database and the stansys system contains the standby
database; prisys has two redo threads active, whereas stansys has four redo threads
active.

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

Original Deployment:

ext1.prm
DBLOGIN USERID userid@prisys, PASSWORD
password

ext1.prm
DBLOGIN USERID userid@stansys, PASSWORD
password
TRANLOGOPTIONS MINEFROMACTIVEDG

Database Related:

Chapter 10
Configuring Classic Capture in Oracle Active Data Guard Only Mode

10-19

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to ADG

1. Edit the ext1.prm file to add:

TRANLOGOPTIONS MINEFROMACTIVEDG

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1

Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to
SCN s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS
USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where # is the SCN value from role
switch message.

6. Based on the thread counts, do one of
the following:

If the thread counts are same between
the databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1

ADD EXTRACT ext1 THREADS t BEGIN
SCN s

START EXTRACT ext1

After Role Transition: ADG to classic Extract

1. Edit ext1.prm and remove:

TRANLOGOPTIONS MINEFROMACTIVEDG

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1

Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to SCN
s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where # is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1

ADD EXTRACT ext1 THREADS t BEGIN
SCN s

START EXTRACT ext1

Role Related:

Chapter 10
Configuring Classic Capture in Oracle Active Data Guard Only Mode

10-20

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to
classic Extract

1. Edit ext1.prm to change the database
system to the standby system:

DBLOGIN USERID userid@stansys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1

Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to
SCN s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS
USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of
the following:

If the thread counts are same between
the databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1

ADD EXTRACT ext1 THREADS t BEGIN
SCN s

START EXTRACT ext1

After Role Transition: ADG to ADG

1. Edit ext1.prm to change the database
system to the primary system:

DBLOGIN USERID userid@prisys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1

Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to SCN
s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1

ADD EXTRACT ext1 THREADS t BEGIN
SCN s

START EXTRACT ext1

Avoiding Log-read Bottlenecks in Classic Capture
When Oracle GoldenGate captures data from the redo logs, I/O bottlenecks can occur
because Extract is reading the same files that are being written by the database
logging mechanism.

Performance degradation increases with the number of Extract processes that read
the same logs. You can:

• Try using faster drives and a faster controller. Both Extract and the database
logging mechanism will be faster on a faster I/O system.

Chapter 10
Avoiding Log-read Bottlenecks in Classic Capture

10-21

• Store the logs on RAID 0+1. Avoid RAID 5, which performs checksums on every
block written and is not a good choice for high levels of continuous I/O.

Chapter 10
Avoiding Log-read Bottlenecks in Classic Capture

10-22

11
Additional Configuration Steps For Using
Nonintegrated Replicat

This chapter contains instructions that are specific only to Replicat when operating in
nonintegrated mode. When Replicat operates in nonintegrated mode, triggers,
cascade constraints, and unique identifiers must be properly configured in an Oracle
GoldenGate environment.
This chapter is a supplement to the basic configuration requirements that are
documented in Configuring Oracle GoldenGate Apply.

Topics:

• Disabling Triggers and Referential Cascade Constraints on Target Tables
Triggers and cascade constraints must be disabled on Oracle target tables when
Replicat is in nonintegrated mode.

• Deferring Constraint Checking on Target Tables
When Replicat is in nonintegrated mode, you may need to defer constraint
checking on the target.

Disabling Triggers and Referential Cascade Constraints on
Target Tables

Triggers and cascade constraints must be disabled on Oracle target tables when
Replicat is in nonintegrated mode.

Oracle GoldenGate provides some options to handle triggers or cascade constraints
automatically, depending on the Oracle version:

• For Oracle 11.2.0.2 and later 11gR2 versions, Replicat automatically disables the
work performed by triggers during its session. It does not disable a trigger, but
instead prevents the trigger body from executing. The WHEN portion of the trigger
must still compile and execute correctly to avoid database errors. To enable
triggers to fire, or to disable them manually, use the NOSUPPRESSTRIGGERS option of
DBOPTIONS and place the statement after the USERIDALIAS parameter. To allow a
specific trigger to fire, you can use the following database procedure, where
trigger_owner is the owner of the trigger and trigger_name is the name of the
trigger. Once the procedure is called with FALSE for a particular trigger, it remains
set until the procedure is called with TRUE.

• dbms_ddl.set_trigger_firing_property(trigger_owner "trigger_name", FALSE)

• For Oracle 11.2.0.2 and later 11gR2 versions, you can use the DBOPTIONS
parameter with the DEFERREFCONST option to delay the checking and enforcement
of cascade update and cascade delete constraints until the Replicat transaction
commits.

• For other Oracle versions, you must disable triggers and integrity constraints or
alter them manually to ignore the Replicat database user.

11-1

Constraints must be disabled in nonintegrated Replicat mode because Oracle
GoldenGate replicates DML that results from the firing of a trigger or a cascade
constraint. If the same trigger or constraint gets activated on the target table, it
becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

Deferring Constraint Checking on Target Tables
When Replicat is in nonintegrated mode, you may need to defer constraint checking
on the target.

Perform the following steps to defer the constraints:

1. If constraints are DEFERRABLE on the source, the constraints on the target must
also be DEFERRABLE. You can use one of the following parameter statements to
defer constraint checking until a Replicat transaction commits:

• Use SQLEXEC at the root level of the Replicat parameter file to defer the
constraints for an entire Replicat session.

SQLEXEC ("alter session set constraint deferred")

• Use the Replicat parameter DBOPTIONS with the DEFERREFCONST option to delay
constraint checking for each Replicat transaction.

2. You might need to configure Replicat to overcome integrity errors caused by
transient primary-key duplicates. Transient primary-key duplicates are duplicates
that occur temporarily during the execution of a transaction, but are resolved by
transaction commit time. This kind of operation typically uses a SET x = x+n
formula or some other manipulation that shifts values so that a new value equals
an existing one.

The following illustrates a sequence of value changes that can cause a transient
primary-key duplicate if constraints are not deferred. The example assumes the
primary key column is CODE and the current key values (before the updates) are 1,
2, and 3.

update item set code = 2 where code = 1;
update item set code = 3 where code = 2;
update item set code = 4 where code = 3;

In this example, when Replicat applies the first update to the target, there is an
ORA-00001 (unique constraint) error because the key value of 2 already exists in the
table. The Replicat transaction returns constraint violation errors. By default, Replicat
does not handle these violations and abends.

• Handling Transient Primary-key Duplicates in Versions Earlier than 11.2.0.2

Chapter 11
Deferring Constraint Checking on Target Tables

11-2

• Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later

Handling Transient Primary-key Duplicates in Versions Earlier than
11.2.0.2

To handle transient primary-key duplicates in versions earlier than 11.2.0.2, use the
Replicat parameter HANDLETPKUPDATE. In this configuration, a nonintegrated Replicat
handles transient primary-key updates by temporarily deferring constraints. To support
this functionality, you must create or alter the constraints as DEFERRABLE INITIALLY
IMMEDIATE on the target tables. If the constraints are not DEFERRABLE, Replicat handles
the errors according to rules that are specified with the HANDLECOLLISIONS and
REPERROR parameters, if they exist, or else it abends.

Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later
For versions later than 11.2.0.2, a nonintegrated Replicat by default tries to resolve
transient primary-key duplicates automatically by using a workspace in Oracle
Workspace Manager. In this configuration, Replicat can defer the constraint checking
until commit time without requiring the constraints to be explicitly defined as
deferrable.

The requirements for automatic handling of transient primary-key duplicates are:

• Grant the Replicat database user access to the following Oracle function:

DBMS_XSTREAM_GG.ENABLE_TDUP_WORKSPACE()

• The target tables cannot have deferrable constraints; otherwise Replicat returns
an error and abends.

To handle tables with deferrable constraints, make certain the constraints are
DEFERRABLE INITIALLY IMMEDIATE, and use the HANDLETPKUPDATE parameter in the
MAP statement that maps that table. The HANDLETPKUPDATE parameter overrides the
default of handling the duplicates automatically.The use of a workspace affects the
following Oracle GoldenGate error handling parameters:

• HANDLECOLLISIONS

• REPERROR

When Replicat enables a workspace in Oracle Workspace Manager, it ignores the
error handling that is specified by Oracle GoldenGate parameters such as
HANDLECOLLISIONS and REPERROR. Instead, Replicat aborts its grouped transaction (if
BATCHSQL is enabled), and then retries the update in normal mode by using the active
workspace. If ORA-00001 occurs again, Replicat rolls back the transaction and then
retries the transaction with error-handling rules in effect again.

Note:

If Replicat encounters ORA-00001 for a non-update record, the error-
handling parameters such as HANDLECOLLISIONS and REPERROR handle it.

A workspace cannot be used if the operation that contains a transient primary-key
duplicate also has updates to any out-of-line columns, such as LOB and XMLType.

Chapter 11
Deferring Constraint Checking on Target Tables

11-3

Therefore, these cases are not supported, and any such cases can result in
undetected data corruption on the target. An example of this is:

update T set PK = PK + 1, C_LOB = 'ABC';

Chapter 11
Deferring Constraint Checking on Target Tables

11-4

12
Configuring DDL Support

This chapter contains information to help you understand and configure DDL support
in Oracle GoldenGate.
Topics:

• Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle Database through the
use of a special DDL trigger or natively through the Oracle logmining server.

• Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one
database to another.

• Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

• Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle
GoldenGate processes to support DDL replication.

• Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines
how DDL operations on an object are handled by Oracle GoldenGate.

• Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect
when a DDL operation is executed. The current container is also captured if the
source is a multitenant container database.

• Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

• Filtering DDL Replication
By default, all DDL is passed to Extract.

• Special Filter Cases
This topic describes the special cases that you must consider before creating your
DDL filters.

• How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

• Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by
Oracle GoldenGate.

• Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for
Extract to be able to identify the DDL that is performed by Oracle GoldenGate and
by other applications, such as the local business applications.

• Adding Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

12-1

• Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

• Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and
REPLICATEPASSWORD | NOREPLICATEPASSWORD options to control how the password
of a replicated {CREATE | ALTER} USER name IDENTIFIED BY password statement
is handled. These options must be used together.

• How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the
source and target systems.

• Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the
Extract and Replicat reports.

• Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might
be asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

• Using Tools that Support Trigger-Based DDL Capture
This section documents the additional tools available to support trigger-based
capture.

• Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with
Oracle Databases enabling you to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle Database through the use of
a special DDL trigger or natively through the Oracle logmining server.

Which of these methods you can use depends on the Extract capture mode and the
version of the source Oracle Database. This section describes the available support in
each capture mode, see Choosing Capture and Apply Modes.

• Support for DDL Capture in Integrated Capture Mode

• Support for DDL Capture in Classic Capture Mode

Support for DDL Capture in Integrated Capture Mode
The integrated capture mode of Extract supports two DDL capture methods:

• Oracle 11.2.0.4 or later: Oracle Databases that have the database COMPATIBLE
parameter set to 11.2.0.4 or higher support DDL capture through the database
logmining server. This method is known as native DDL capture (also known as
triggerless DDL capture). No trigger or installed supportive objects are required.
Native DDL capture is the only supported method for capturing DDL from a
multitenant container database. For downstream mining, the source database
must also have database COMPATIBLE set to 11.2.0.4 or higher to support DDL
capture through the database logmining server.

Chapter 12
Prerequisites for Configuring DDL

12-2

• Versions earlier than 11.2.0.4: Oracle Databases that have the COMPATIBLE
parameter set to anything earlier than 11.2.0.4 require the use of the Oracle
GoldenGate DDL trigger. To use trigger-based DDL capture, you must install the
DDL trigger and supporting database objects before you configure Extract for DDL
support.

Support for DDL Capture in Classic Capture Mode
Classic capture mode requires the use of the Oracle GoldenGate DDL trigger to
capture DDL from an Oracle Database. Native DDL capture is not supported by classic
capture mode.

DDL capture from a multitenant container database is not supported by classic capture
mode.

When you are using Classic capture mode and replicating a CREATE USER using the
DDL trigger, the trigger owner and the Extract login user must match to avoid a
privilege error when attempting to replicate the CREATE USER command.

To use trigger-based DDL capture, you must install the DDL trigger and supporting
database objects before you configure Extract for DDL support, see Installing Trigger-
Based DDL Capture.

Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one
database to another.

DDL synchronization can be active when:

• business applications are actively accessing and updating the source and target
objects.

• Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of
transactional data changes (DML) are independent of each other. Therefore, you can
synchronize:

• just DDL changes

• just DML changes

• both DDL and DML

For a list of supported objects and operations for DDL support for Oracle, see
Supported Objects and Operations in Oracle DDL.

Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

For any additional limitations that were found after this documentation was published,
see the Release Notes for Oracle GoldenGate.

• DDL Statement Length

• Supported Topologies

Chapter 12
Overview of DDL Synchronization

12-3

• Filtering, Mapping, and Transformation

• Renames

• Interactions Between Fetches from a Table and DDL

• Comments in SQL

• Compilation Errors

• Interval Partitioning

• DML or DDL Performed Inside a DDL Trigger

• LogMiner Data Dictionary Maintenance

DDL Statement Length
Oracle GoldenGate measures the length of a DDL statement in bytes, not in
characters. The supported length is approximately 4 MB, allowing for some internal
overhead that can vary in size depending on the name of the affected object and its
DDL type, among other characteristics. If the DDL is longer than the supported size,
Extract will issue a warning and ignore the DDL operation.

If Extract is capturing DDL by means of the DDL trigger, the ignored DDL is saved in
the marker table. You can capture Oracle DDL statements that are ignored, as well as
any other Oracle DDL statement, by using the ddl_ddl2file.sql script, which saves
the DDL operation to a text file in the USER_DUMP_DEST directory of Oracle. The script
prompts for the following input:

• The name of the schema that contains the Oracle GoldenGate DDL objects, which
is specified in the GLOBALS file.

• The Oracle GoldenGate marker sequence number, which is recorded in the
Extract report file when DDLOPTIONS with the REPORT option is used in the Extract
parameter file.

• A name for the output file.

Supported Topologies
Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration.
The source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported
between different databases, like Oracle to Teradata, or SQL Server to Oracle.

Oracle GoldenGatedoes not support DDL on a standby database.

Oracle GoldenGate supports DDL replication in all supported unidirectional
configurations, and in bidirectional configurations between two, and only two, systems.
For special considerations in an Oracle active-active configuration, see Propagating
DDL in Active-Active (Bidirectional) Configurations.

Filtering, Mapping, and Transformation
DDL operations cannot be transformed by any Oracle GoldenGate process. However,
source DDL can be mapped and filtered to a different target object by a primary
Extract or a Replicat process. Mapping or filtering of DDL by a data-pump Extract is
not permitted, and the DDL is passed as it was received from the primary Extract.

Chapter 12
Limitations of Oracle GoldenGate DDL Support

12-4

For example, ALTER TABLE TableA is processed by a data pump as ALTER TABLE
TableA. It cannot be mapped by that process as ALTER TABLE TableB, regardless of
any TABLE statements that specify otherwise.

Renames
RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME so
that a schema name can be included in the target DDL statement. For example RENAME
tab1 TO tab2 could be changed to ALTER TABLE schema.tab1 RENAME TO
schema.tab2. The conversion is reported in the Replicat process report file.

Interactions Between Fetches from a Table and DDL
Oracle GoldenGate supports some data types by identifying the modified row from the
redo stream and then querying the underlying table to fetch the changed columns. For
instance, in classic capture, partial updates on LOBs (modifications done via dbms_lob
package) are supported by identifying the modified row and the LOB column from the
redo log, and then querying for the LOB column value for the row from the base table.
A similar technique is employed to support UDT (both in classic and integrated
capture).

Note:

Integrated capture only requires fetch for UDT when not using native object
support.

Such fetch-based support is implemented by issuing a flashback query to the
database based on the SCN (System Change Number) at which the transaction
committed. The flashback query feature has certain limitations. Certain DDL
operations act as barriers such that flashback queries to get data prior to these DDLs
do not succeed. Examples of such DDL are ALTER TABLE MODIFY COLUMN and ALTER
TABLE DROP COLUMN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches
the current snapshot of the data for the modified column. There are several limitations
to this approach: First, the DDL could have modified the column that Extract needs to
fetch (for example, suppose the intervening DDL added a new attribute to the UDT
that is being captured). Second, the DDL could have modified one of the columns that
Extract uses as a logical row identifier. Third, the table could have been renamed
before Extract had a chance to fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions
while modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished,
issue the following command in GGSCI until you see a message that there is no
more data to process.

INFO REPLICAT group

Chapter 12
Limitations of Oracle GoldenGate DDL Support

12-5

3. Execute the DDL on the source.

4. Resume source DML operations.

Comments in SQL
If a source DDL statement contains a comment in the middle of an object name, that
comment will appear at the end of the object name in the target DDL statement. For
example:

Source:

CREATE TABLE hr./*comment*/emp ...

Target:

CREATE TABLE hr.emp /*comment*/ ...

This does not affect the integrity of DDL synchronization. Comments in any other area
of a DDL statement remain in place when replicated.

Compilation Errors
If a CREATE operation on a trigger, procedure, function, or package results in
compilation errors, Oracle GoldenGate executes the DDL operation on the target
anyway. Technically, the DDL operations themselves completed successfully and
should be propagated to allow dependencies to be executed on the target, for example
in recursive procedures.

Interval Partitioning
DDL replication is unaffected by interval partitioning, because the DDL is implicit.
However, this is system generated name so Replicat cannot convert this to the target.I
believe this is expected behavior. You must drop the partition on the source. For
example:

alter table t2 drop partition for (20);

DML or DDL Performed Inside a DDL Trigger
DML or DDL operations performed from within a DDL trigger are not captured.

LogMiner Data Dictionary Maintenance
Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL
activity on the database.

Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle GoldenGate
processes to support DDL replication.

• Database Privileges

Chapter 12
Configuration Guidelines for DDL Support

12-6

• Parallel Processing

• Object Names

• Data Definitions

• Truncates

• Initial Synchronization

• Data Continuity After CREATE or RENAME

Database Privileges
For database privileges that are required for Oracle GoldenGate to support DDL
capture and replication, see Establishing Oracle GoldenGate Credentials .

Parallel Processing
If using parallel Extract and/or Replicat processes, keep related DDL and DML
together in the same process stream to ensure data integrity. Configure the processes
so that:

• all DDL and DML for any given object are processed by the same Extract group
and by the same Replicat group.

• all objects that are relational to one another are processed by the same process
group.

For example, if ReplicatA processes DML for Table1, then it should also process the
DDL for Table1. If Table2 has a foreign key to Table1, then its DML and DDL
operations also should be processed by ReplicatA.

If an Extract group writes to multiple trails that are read by different Replicat groups,
Extract sends all of the DDL to all of the trails. Use each Replicat group to filter the
DDL by using the filter options of the DDL parameter in the Replicat parameter file.

Object Names
Oracle GoldenGate preserves the database-defined object name, case, and character
set. This support preserves single-byte and multibyte names, symbols, and accent
characters at all levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when
supplied as input to any parameters that support DDL synchronization. You can use
the question mark (?) and asterisk (*) wildcards to specify object names in
configuration parameters that support DDL synchronization, but the wildcard
specification also must be fully qualified as a two-part or three-part name. For more
information about support for wildcards, see Administering Oracle GoldenGate. To
process wildcards correctly, the WILDCARDRESOLVE parameter is set to DYNAMIC by
default. If WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process
that is processing DDL operations will abend and write the error to the process report.

Data Definitions
Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS
parameter must be used in the Replicat parameter file. Replicat will abend if objects

Chapter 12
Configuration Guidelines for DDL Support

12-7

are configured for DDL support and the SOURCEDEFS parameter is being used. For more
information about ASSUMETARGETDEFS, see Reference for Oracle GoldenGate.

For more information about using a definitions file, see Administering Oracle
GoldenGate.

Truncates
TRUNCATE statements can be supported as follows:

• As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE
TABLE, ALTER TABLE TRUNCATE PARTITION, and other DDL. This is controlled by
the DDL parameter (see Enabling DDL Support.)

• As standalone TRUNCATE support. This support enables you to replicate TRUNCATE
TABLE, but no other DDL. The GETTRUNCATES parameter controls the standalone
TRUNCATE feature. For more information, see Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at
the same time.

Initial Synchronization
To configure DDL replication, start with a target database that is synchronized with the
source database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

After initial synchronization of the source and target data, use all of the source
sequence values at least once with NEXTVAL before you run the source applications.
You can use a script that selects NEXTVAL from every sequence in the system. This
must be done while Extract is running.

Data Continuity After CREATE or RENAME
To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME
operation, the names of the new tables must be specified in TABLE and MAP statements
in the parameter files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into
that schema, the new user name must be specified in TABLE and MAP statements. To
create a new user fin2 and move new or renamed tables into that schema, the
parameter statements could look as follows, depending on whether you want the fin2
objects mapped to the same, or different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

MAP fin2.*, TARGET different_schema.*;

Chapter 12
Configuration Guidelines for DDL Support

12-8

Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how
DDL operations on an object are handled by Oracle GoldenGate.

The scopes are:

• MAPPED

• UNMAPPED

• OTHER

The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

• Mapped Scope

• Unmapped Scope

• Other Scope

Mapped Scope
Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction
and replication instructions in those statements apply to both data (DML) and DDL on
the specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following
table are supported.

Table 12-1 Objects That Can be Mapped in MAP and TABLE Statements

Operations On any of these Objects1

CREATE

ALTER

DROP

RENAME

COMMENT ON2

TABLE3

INDEX

TRIGGER

SEQUENCE

MATERIALIZED VIEW

VIEW

FUNCTION

PACKAGE

PROCEDURE

SYNONYM

PUBLIC SYNONYM4

GRANT

REVOKE

TABLE

SEQUENCE

MATERIALIZED VIEW

ANALYZE TABLE

INDEX

CLUSTER

Chapter 12
Understanding DDL Scopes

12-9

1 TABLE and MAP do not support some special characters that could be used in an object name affected
by these operations. Objects with non-supported special characters are supported by the scopes of
UNMAPPED and OTHER.

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN
3 Includes AS SELECT
4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the
instructions in the TABLE statement. For Replicat, MAPPED scope marks DDL for
replication and maps it to the object specified by the schema and name in the TARGET
clause of the MAP statement. To perform this mapping, Replicat issues ALTER SESSION
to set the schema of the Replicat session to the schema that is specified in the TARGET
clause. If the DDL contains unqualified objects, the schema that is assigned on the
target depends on circumstances described in Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

TABLE fin.expen;
TABLE hr.tab*;

Replicat (target)

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table fin.expen is in a MAP statement with a
TARGET clause that maps to a different schema and table name, the target DDL
statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second
set of TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Target:

CREATE TABLE hrBackup.bak_tabPayables ...;

When objects are of MAPPED scope, you can omit their names from the DDL
configuration parameters, unless you want to refine their DDL support further. If you
ever need to change the object names in TABLE and MAP statements, the changes will
apply automatically to the DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for
that object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Chapter 12
Understanding DDL Scopes

12-10

Unmapped Scope
If a DDL operation is supported for use in a TABLE or MAP statement, but its base object
name is not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE
statement), but of MAPPED scope on the target (in a Replicat MAP statement), or the
other way around. When Oracle DDL is of UNMAPPED scope in the Replicat
configuration, Replicat will by default do the following:

1. Set the current schema of the Replicat session to the schema of the source DDL
object.

2. Execute the DDL as that schema.

3. Restore Replicat as the current schema of the Replicat session.

See Understanding DDL Scopes.

Other Scope
DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER
scope in the Replicat configuration, it is applied to the target with the same schema
and object name as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific
reference, such as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;
CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

See Understanding DDL Scopes.

Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect
when a DDL operation is executed. The current container is also captured if the source
is a multitenant container database.

The container and schema are used to resolve unqualified object names in the DDL.

Consider the following example:

CONNECT SCOTT/TIGER
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT.TAB1
based on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the
current_schema for the session, as in the following example:

CONNECT SCOTT/TIGER
ALTER SESSION SET CURRENT_SCHEMA=SRC;

Chapter 12
Correctly Identifying Unqualified Object Names in DDL

12-11

CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SRC.TAB1
based on the current schema SRC that is in effect during the DDL execution.

In both classic and integrated capture modes, Extract captures the current schema
that is in effect during DDL execution, and it resolves the unqualified object names (if
any) by using the current schema. As a result, MAP statements specified for Replicat
work correctly for DDL with unqualified object names.

You can also map a source session schema to a different target session schema, if
that is required for the DDL to succeed on the target. This mapping is global and
overrides any other mappings that involve the same schema names. To map session
schemas, use the DDLOPTIONS parameter with the MAPSESSIONSCHEMA option. For more
information, see Reference for Oracle GoldenGate.

If the default or mapped session schema mapping fails, you can handle the error with
the following DDLERROR parameter statement, where error 1435 means that the schema
does not exist.

DDLERROR 1435 IGNORE INCLUDE OPTYPE ALTER OBJTYPE SESSION

Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

By default, the status of DDL replication support is as follows:

• On the source, Oracle GoldenGate DDL support is disabled by default. You must
configure Extract to capture DDL by using the DDL parameter.

• On the target, DDL support is enabled by default, to maintain the integrity of
transactional data that is replicated. By default, Replicat will process all DDL
operations that the trail contains. If needed, you can use the DDL parameter to
configure Replicat to ignore or filter DDL operations.

Filtering DDL Replication
By default, all DDL is passed to Extract.

You can use the following methods to filter DDL operations so that specific (or all) DDL
is applied to the target database according to your requirements.

• Filtering with PL/SQL Code: Valid only for trigger-based DDL capture. This method
makes use of an Oracle function that is called by the DDL trigger when a DDL
operation occurs, to compute whether or not to send the DDL to Extract. Filtering
with PL/SQL code should only be used to improve the performance of the source
database when the DDL trigger is in use. It can be combined with built-in rules and
DDL parameter filtering (see the following). Any DDL that is passed to Extract after
it is filtered by the DDL trigger or filter rules can be filtered further with the DDL
parameter to meet specific needs.

• Filtering with Built-In Filter Rules: Valid only for trigger-based DDL capture. This
method makes use of some procedures that you run to build filter rules into the
Oracle GoldenGate trigger logic. This method allows discreet control over the

Chapter 12
Enabling DDL Support

12-12

types of objects that are sent to Extract, and it allows the ordering of rule
evaluation. This method should only be used to improve the performance of the
source database when the DDL trigger is in use. You can combine built-in rules
with PL/SQL and DDL parameter filtering. Any DDL that is passed to Extract after
it is filtered by the DDL trigger or filter rules can be filtered further with the DDL
parameter to meet specific needs.

Note:

Filtering with PL/SQL or built-in filter rules is unnecessary for an Extract
that operates in integrated-capture mode. If Extract must operate in
classic mode and you use these filtering methods, the same filtering
must happen for any transactional data (DML) that is associated with the
filtered objects. For example, if you filter out the DDL that creates a table
named ACCOUNTS, make certain the ACCOUNTS table is not specified in any
TABLE or MAP statements, or use the appropriate exclusion parameter to
exclude it from wildcard resolution. See Reference for Oracle
GoldenGate for a list of wildcard exclusion parameters.

• Filtering with DDL Parameter:Valid for both trigger-based and native DDL capture.
This is the preferred method of filtering and is performed within Oracle
GoldenGate, and both Extract and Replicat can execute filter criteria. Extract can
perform filtering, or it can send all of the DDL to a trail, and then Replicat can
perform the filtering. Alternatively, you can filter in a combination of different
locations. The DDL parameter gives you control over where the filtering is
performed, and it also offers more filtering options than the trigger method,
including the ability to filter collectively based on the DDL scope (for example,
include all MAPPED scope).

Note:

If a DDL operation fails in the middle of a TRANSACTION, it forces a
commit, which means that the transaction spanning the DDL is split into
two. The first half is committed and the second half can be restarted. If a
recovery occurs, the second half of the transaction cannot be filtered
since the information contained in the header of the transaction is no
longer there.

• Filtering with PL/SQL Code

• Filtering With Built-in Filter Rules

• Filtering with the DDL Parameter

Filtering with PL/SQL Code
This method is only valid for trigger-based capture.

You can write PL/SQL code to pass information about the DDL to a function that
computes whether or not the DDL is passed to Extract. By sending fewer DDL
operations to Extract, you can improve capture performance.

Chapter 12
Filtering DDL Replication

12-13

1. Copy the ddl_filter.sql file that is in the Oracle GoldenGate installation
directory to a test machine where you can test the code that you will be writing.

2. Open the file for editing. It contains a PL/SQL function named filterDDL, which
you can modify to specify if/then filter criteria. The information that is passed to
this function includes:

• ora_owner: the schema of the DDL object

• ora_name: the defined name of the object

• ora_objtype: the type of object, such as TABLE or INDEX

• ora_optype: the operation type, such as CREATE or ALTER

• ora_login_user: The user that executed the DDL

• retVal: can be either INCLUDE to include the DDL, or EXCLUDE to exclude the
DDL from Extract processing.

In the location after the 'compute retVal here' comment, write filter code for
each type of DDL that you want to be filtered. The following is an example:

if ora_owner='SYS' then
retVal:='EXCLUDE';
end if;
if ora_objtype='USER' and ora_optype ='DROP' then
retVal:='EXCLUDE';
end if;
if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
end if;

In this example, the following DDL is excluded from being processed by the DDL
trigger:

• DDL for objects owned by SYS

• any DROP USER

• any DDL on JOE.TEMP%

3. (Optional) To trace the filtering, you can add the following syntax to each if/then
statement in the PL/SQL:

if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
if "&gg_user" .DDLReplication.trace_level >= 1 then
"&gg_user" .trace_put_line ('DDLFILTER', 'excluded JOE.TEMP%');
end if;

Where:

• &gg_user is the schema of the Oracle GoldenGate DDL support objects.

• .DDLReplication.trace_level is the level of DDL tracing. To use trigger
tracing, the TRACE or TRACE2 parameter must be used with the DDL or DDLONLY
option in the Extract parameter file. The .DDLReplication.trace_level
parameter must be set to >=1.

• trace_put_line is a user-defined text string that Extract writes to the trace file
that represents the type of DDL that was filtered.

4. Save the code.

Chapter 12
Filtering DDL Replication

12-14

5. Stop DDL activity on the test system.

6. In SQL*Plus, compile the ddl_filter.sql file as follows, where schema_name is
the schema where the Oracle GoldenGate DDL objects are installed.

@ddl_filter schema_name

7. Test in the test environment to make certain that the filtering works. It is important
to perform this testing, because any errors in the code could cause source and
target DDL to become out of synchronization.

8. After a successful test, copy the file to the Oracle GoldenGate installation directory
on the source production system.

9. Stop DDL activity on the source system.

10. Compile the ddl_filter.sql file as you did before.

@ddl_filter schema_name

11. Resume DDL activity on the source system.

Filtering With Built-in Filter Rules
This method is only valid for trigger-based capture.

You can add inclusion and exclusion rules to control the DDL operations that are sent
to Extract by the DDL trigger. By storing rules and sending fewer DDL operations to
Extract, you can improve capture performance.

1. Use the DDLAUX.addRule() function to define your rules according to the following
instructions. This function is installed in the Oracle GoldenGate DDL schema after
the DDL objects are installed with the ddl_setup.sql script.

2. To activate the rules, execute the function in SQL*Plus or enter a collection of
rules in a SQL file and execute that file in SQL*Plus.

• DDLAUX.addRule() Function Definition

• Parameters for DDLAUX.addRule()

• Valid DDL Components for DDLAUX.addRule()

• Examples of Rule-based Trigger Filtering

• Dropping Filter Rules

DDLAUX.addRule() Function Definition
FUNCTION addRule(obj_name IN VARCHAR2 DEFAULT NULL,
base_obj_name IN VARCHAR2 DEFAULT NULL,
owner_name IN VARCHAR2 DEFAULT NULL,
base_owner_name IN VARCHAR2 DEFAULT NULL,
base_obj_property IN NUMBER DEFAULT NULL,
obj_type IN NUMBER DEFAULT NULL,
command IN VARCHAR2 DEFAULT NULL,
inclusion IN boolean DEFAULT NULL ,
sno IN NUMBER DEFAULT NULL)
RETURN NUMBER;

Chapter 12
Filtering DDL Replication

12-15

Parameters for DDLAUX.addRule()
The information passed to this function are the following parameters, which correlate
to the attributes of an object. All parameters are optional, and more than one
parameter can be specified.

• sno: Specifies a serial number that identifies the rule. The order of evaluation of
rules is from the lowest serial number to the highest serial number, until a match is
found. The sno can be used to place inclusion rules ahead of an exclusion rule, so
as to make an exception to the exclusion rule. Because this is a function and not a
procedure, it returns the serial number of the rule, which should be used for the
drop rule specified with DDLAUX.dropRule(). The serial number is generated
automatically unless you specify one with this statement at the beginning of your
code: DECLARE sno NUMBER; BEGIN sno :=

For example:

DECLARE
 sno NUMBER;
BEGIN
 sno := tkggadmin..DDLAUX.ADDRULE(obj_name => 'GGS%' ,
 obj_type => TYPE_TABLE);
END;
/

• obj_name: Specifies the object name. If the name is case-sensitive, enclose it
within double quotes.

• owner_name: Specifies the name of the object schema

• base_obj_name: Specifies the base object name of the DDL object (such as the
base table if the object is an index). If the name is case-sensitive, enclose it within
double quotes.

• base_owner_name: Specifies the base object schema name.

• base_obj_property: Specifies the base object property.

• obj_type: Specifies the object type.

• command: Specifies the command.

• inclusion = TRUE: Indicates that the specified objects are to be captured by the
DDL trigger. If this parameter is not specified, the rule becomes an exclusion rule,
and the specified objects are not captured. You can specify both an exclusion rule
and an inclusion rule. If a DDL does not match any of the rules, it is included
(passed to Extract) by default. Calling DDLAUX.addRule() without any parameters
generates an empty rule that excludes all DDL on all the objects.

Valid DDL Components for DDLAUX.addRule()
The following are the defined DDL object types, base object properties, and DDL
commands that can be specified in the function code.

Valid object types are:

TYPE_INDEX

TYPE_TABLE

TYPE_VIEW

Chapter 12
Filtering DDL Replication

12-16

TYPE_SYNONYM

TYPE_SEQUENCE

TYPE_PROCEDURE

TYPE_FUNCTION

TYPE_PACKAGE

TYPE_TRIGGER

Valid base object properties are:

TB_IOT

TB_CLUSTER

TB_NESTED

TB_TEMP

TB_EXTERNAL

Valid commands are:

CMD_CREATE

CMD_DROP

CMD_TRUNCATE

CMD_ALTER

Examples of Rule-based Trigger Filtering
The following example excludes all temporary tables, except tables with names that
start with IMPTEMP.

1. DDLAUX.ADDRULE(obj_name => 'IMPTEMP%', base_obj_property => TB_TEMP, obj_type =>
TYPE_TABLE, INCLUSION => TRUE);
2. DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

Note:

Since the IMPTEMP% tables must be included, that rule should come first.

The following example excludes all tables with name 'GGS%'

DECLARE sno NUMBER; BEGIN sno := DDLAUX.ADDRULE(obj_name => 'GGS%' , obj_type =>
TYPE_TABLE); END

The following example excludes all temporary tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

The following example excludes all indexes on TEMP tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_INDEX);

The following example excludes all objects in schema TKGGADMIN.

DDLAUX.ADDRULE(owner_name => 'TKGGADMIN');

Chapter 12
Filtering DDL Replication

12-17

The following example excludes all objects in TRUNCATE operations made to TEMP
tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE, command =>
CMD_TRUNCATE)

Dropping Filter Rules
Use the DDLAUX.dropRule() function with the drop rule. This function is installed in the
Oracle GoldenGate DDL schema after the DDL objects are installed with the
ddl_setup.sql script. As input, specify the serial number of the rule that you want to
drop.

FUNCTION dropRule(sno IN NUMBER) RETURN BOOLEAN;

Filtering with the DDL Parameter
This method is valid for trigger-based and integrated capture modes.

The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within
the Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all
DDL operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are
generated on all supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle
GoldenGate trail and applies them to the target. This is the same as the default
behavior without this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or
exclude DDL operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the
required level.

• DDL filtering options are valid for a primary Extract that captures from the
transaction source, but not for a data-pump Extract.

• When combined, multiple filter option specifications are linked logically as AND
statements.

• All filter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

• When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

Chapter 12
Filtering DDL Replication

12-18

For DDL parameter syntax and additional usage guidelines, see Reference for Oracle
GoldenGate.

Note:

Before you configure DDL support, it might help to review How DDL is
Evaluated for Processing.

Special Filter Cases
This topic describes the special cases that you must consider before creating your
DDL filters.

The following are the special cases for creating filter conditions.

• DDL EXCLUDE ALL

• Implicit DDL

DDL EXCLUDE ALL
DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract
when using trigger-based DDL capture. DDL EXCLUDE ALL blocks the replication of
DDL operations, but ensures that Oracle GoldenGate continues to keep the object
metadata current. When Extract receives DDL directly from the logmining server
(triggerless DDL capture mode), current metadata is always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to
apply DDL to the target and you want Oracle GoldenGate to replicate data changes to
the target objects. It provides the current metadata to Oracle GoldenGate as objects
change, thus preventing the need to stop and start the Oracle GoldenGate processes.
The following special conditions apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to
IMMEDIATE to allow immediate DML resolution if required. For more information,
see Reference for Oracle GoldenGate.

To prevent all DDL metadata and operations from being replicated, omit the DDL
parameter entirely.

Implicit DDL
User-generated DDL operations can generate implicit DDL operations. For example,
the following statement generates two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address varchar2(75),
address2 varchar2(75), city varchar2(50), state (varchar2(2), zip number, contact
varchar2(50), areacode number(3), phone number(7), primary key (custID));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

Chapter 12
Special Filter Cases

12-19

The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates
the index for the primary key. This operation is generated by the database engine, not
a user application.

Guidelines for Filtering Implicit DDL

How to filter implicit DDL depends on the mechanism that you are using to filter DDL.
See Filtering DDL Replication for more information.

• When the DDL parameter is used to filter DDL operations, Oracle GoldenGate
filters out any implicit DDL by default, because the explicit DDL will generate the
implicit DDL on the target. For example, the target database will create the
appropriate index when the CREATE TABLE statement in the preceding example is
applied by Replicat.

• When the DDL trigger is being used to filter DDL operations, you must handle the
implicit DDL in your filter rules based on the following:

– If your filtering rules exclude the explicit DDL from being propagated, you must
also create a rule to exclude the implicit DDL. For example, if you exclude the
CREATE TABLE statement in the following example, but do not exclude the
implicit CREATE UNIQUE INDEX statement, the target database will try to create
the index on a non-existent table.

CREATE TABLE customers (custID number, name varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state (varchar2(2),
zip number, contact varchar2(50), areacode number(3), phone number(7),
primary key (custID));

– If your filtering rules permit the propagation of the explicit DDL, you do not
need to exclude the implicit DDL. It will be handled correctly by Oracle
GoldenGate and the target database.

How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits
some attributes of the base object to perform a function related to that object. DDL
statements that have both base and derived objects are:

• RENAME and ALTER RENAME

• CREATE and DROP on an index, synonym, or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name
and is subject to mapping with TABLE or MAP under the MAPPED scope. The derived
object is the index, and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that
of the base object. Or, you can use one MAP statement to handle both. In the case of
MAP, the conversion of derived object names on the target works as follows.

• MAP Exists for Base Object, But Not Derived Object

• MAP Exists for Base and Derived Objects

Chapter 12
How Oracle GoldenGate Handles Derived Object Names

12-20

• MAP Exists for Derived Object, But Not Base Object

• New Tables as Derived Objects

• Disabling the Mapping of Derived Objects

MAP Exists for Base Object, But Not Derived Object
If there is a MAP statement for the base object, but not for the derived object, the result
is a schema based on the mapping that matches the derived object name. Derived
objects are only mapped if the MAPDERIVED option is enabled, which is also the default
option.

For example, consider the following:

Extract (source)

Table hr.*;

Replicat (target)

MAP hr.*, TARGET hrBackup.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.Payroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrBackup.indexPayrollDate ON TABLE hrBackup.Payroll (payDate);

In this example, the mapping is such that it matches the derived object name because
of which the derived object schema is changed from hr to hrBackup.

Here’s another example, where there is no mapping that matches the derived object
name so the derived object name remains the same.

Extract (source)

Table hr.tab*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hr.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

MAP Exists for Base and Derived Objects
If there is a MAP statement for the base object and also one for the derived object, the
result is an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat
converts the schema and name of each object according to its own TARGET clause. For
example, assume the following:

Extract (source)

Chapter 12
How Oracle GoldenGate Handles Derived Object Names

12-21

TABLE hr.tab*; TABLE hr.index*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;MAP hr.index*, TARGET hrIndex.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

Use an explicit mapping when the index on the target must be owned by a different
schema from that of the base object, or when the name on the target must be different
from that of the source.

MAP Exists for Derived Object, But Not Base Object
If there is a MAP statement for the derived object, but not for the base object, Replicat
does not perform any name conversion for either object. The target DDL statement is
the same as that of the source. To map a derived object, the choices are:

• Use an explicit MAP statement for the base object.

• If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

• Create a MAP statement for each object, depending on how you want the names
converted.

New Tables as Derived Objects
The following explains how Oracle GoldenGate handles new tables that are created
from:

• RENAME and ALTER RENAME

• CREATE TABLE AS SELECT

• CREATE TABLE AS SELECT

• RENAME and ALTER TABLE RENAME

CREATE TABLE AS SELECT
The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and
INSERT statements that reference any number of underlying objects. By default, Oracle
GoldenGate obtains the data for the AS SELECT clause from the target database. You
can force the CTAS operation to preserve the original inserts using this parameter.

Chapter 12
How Oracle GoldenGate Handles Derived Object Names

12-22

Note:

For this reason, Oracle XMLType tables created from a CTAS (CREATE TABLE
AS SELECT) statement cannot be supported. For XMLType tables, the row
object IDs must match between source and target, which cannot be
maintained in this scenario. XMLType tables created by an empty CTAS
statement (that does not insert data in the new table) can be maintained
correctly.

In addition, you could use the GETCTASDML parameter that allows CTAS to
replay the inserts of the CTAS thus preserving OIDs during replication. This
parameter is only supported with Integrated Dictionary and any downstream
Replicat must be 12.1.2.1 or greater to consume the trail otherwise, there
may be divergence.

The objects in the AS SELECT clause must exist in the target database, and their
names must be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE
TABLE name) to the TARGET specification, but does not map the names of the underlying
objects from the AS SELECT clause. There could be dependencies on those objects that
could cause data inconsistencies if the names were converted to the TARGET
specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the
source and how it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the
source: tab2 (rather than xtab2).

To keep the data in the underlying objects consistent on source and target, you can
configure them for data replication by Oracle GoldenGate. In the preceding example,
you could use the following statements to accommodate this requirement:

Source

TABLE a.tab*;

Target

MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

Chapter 12
How Oracle GoldenGate Handles Derived Object Names

12-23

RENAME and ALTER TABLE RENAME
In RENAME and ALTER TABLE RENAME operations, the base object is always the new
table name. In the following example, the base object name is considered to be
index_paydate.

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is hr.indexPayrollDate.

Disabling the Mapping of Derived Objects
Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the
conversion of the name of a derived object according to a TARGET clause of a MAP
statement that includes it. NOMAPDERIVED overrides any explicit MAP statements that
contain the name of the base or derived object. Source DDL that contains derived
objects is replicated to the target with the same schema and object names as on the
source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED,
based on whether there is a MAP statement just for the base object, just for the derived
object, or for both.

Base Object Derived Object MAP/NOMAP
DERIVED?

Derived object
converted per a
MAP?

Derived object
gets schema of
base object?

mapped1 mapped MAPDERIVED yes no

mapped not mapped MAPDERIVED no yes

not mapped mapped MAPDERIVED no no

not mapped not mapped MAPDERIVED no no

mapped mapped NOMAPDERIVED no no

mapped not mapped NOMAPDERIVED no no

not mapped mapped NOMAPDERIVED no no

not mapped not mapped NOMAPDERIVED no no

1 Mapped means included in a MAP statement.

The following examples illustrate the results of MAPDERIVED as compared to
NOMAPDERIVED. In the following table, both trigger and table are owned by rpt on the
target because both base and derived names are converted by means of MAPDERIVED.

MAP statement Source DDL statement captured
by Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER rpt.act_trig
ON rpt.acct;

Chapter 12
How Oracle GoldenGate Handles Derived Object Names

12-24

In the following table, the trigger is owned by fin, because conversion is prevented by
means of NOMAPDERIVED.

MAP statement Source DDL statement captured
by Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER fin.act_trig
ON rpt.acct;

Note:

In the case of a RENAME statement, the new table name is considered to be
the base table name, and the old table name is considered to be the derived
table name.

Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate.

This feature provides a convenience for changing and mapping directory names,
comments, and other things that are not directly related to data structures. For
example, you could substitute one tablespace name for another, or substitute a string
within comments. String substitution is controlled by the DDLSUBST parameter. For
more information, see Reference for Oracle GoldenGate.

Note:

Before you create a DDLSUBST parameter statement, it might help to review
How DDL is Evaluated for Processing in this chapter.

Controlling the Propagation of DDL to Support Different
Topologies

To support bidirectional and cascading replication configurations, it is important for
Extract to be able to identify the DDL that is performed by Oracle GoldenGate and by
other applications, such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to
capture one or both of these sources of DDL on the local system.

Chapter 12
Using DDL String Substitution

12-25

Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by
Extract to create log groups and the DDL that is performed by Replicat to
replicate source DDL changes.

The following options of the DDLOPTIONS parameter control whether DDL on the local
system is captured by Extract and then sent to a remote system, assuming Oracle
GoldenGate DDL support is configured and enabled:

• The GETREPLICATES and IGNOREREPLICATES options control whether Extract
captures or ignores the DDL that is generated by Oracle GoldenGate. The default
is IGNOREREPLICATES, which does not propagate the DDL that is generated by
Oracle GoldenGate. To identify the DDL operations that are performed by Oracle
GoldenGate, the following comment is part of each Extract and Replicat DDL
statement:

/* GOLDENGATE_DDL_REPLICATION */

• The GETAPPLOPS and IGNOREAPPLOPS options control whether Extract captures or
ignores the DDL that is generated by applications other than Oracle GoldenGate.
The default is GETAPPLOPS, which propagates the DDL from local applications
(other than Oracle GoldenGate).

The result of these default settings is that Extract ignores its own DDL and the DDL
that is applied to the local database by a local Replicat, so that the DDL is not sent
back to its source, and Extract captures all other DDL that is configured for replication.
The following is the default DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

This behavior can be modified. See the following topics:

• Propagating DDL in Active-Active (Bidirectional) Configurations

• Propagating DDL in a Cascading Configuration

Propagating DDL in Active-Active (Bidirectional) Configurations
Oracle GoldenGate supports active-active DDL replication between two systems. For
an active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated
to the other system to maintain synchronization. To satisfy this requirement,
include the GETAPPLOPS option in the DDLOPTIONS statement in the Extract
parameter files on both systems.

2. DDL that is applied by Replicat on one system must be captured by the local
Extract and sent back to the other system. To satisfy this requirement, use the
GETREPLICATES option in the DDLOPTIONS statement in the Extract parameter files
on both systems.

Chapter 12
Controlling the Propagation of DDL to Support Different Topologies

12-26

Note:

An internal Oracle GoldenGate token will cause the actual Replicat DDL
statement itself to be ignored to prevent loopback. The purpose of
propagating Replicat DDL back to the original system is so that the
Replicat on that system can update its object metadata cache, in
preparation to receive incoming DML, which will have the new metadata.

3. Each Replicat must be configured to update its object metadata cache whenever
the remote Extract sends over a captured Replicat DDL statement. To satisfy this
requirement, use the UPDATEMETADATA option in the DDLOPTIONS statement in the
Replicat parameter files on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as the
original DDL, allow time for the original DDL to be replicated to the remote
system and then captured again by the Extract on that system. This will
ensure that the operations arrive in correct order to the Replicat on the
original system, to prevent DML errors caused by metadata inconsistencies.
See the following diagram for more information.

Chapter 12
Controlling the Propagation of DDL to Support Different Topologies

12-27

The labels in the diagrams imply the following:

• 1: ALTER TABLE Customer ADD Birth_Date date

• 2; New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

• 3: ALTER TABLE

• 4: New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

• 5: ALTER TABLE

• 6: DDLOPTIONS UPDATEMETADATA New metadata: First_Name varchar2(50),
Last_Name varchar2(50), Address varchar2(50), City varchar2(50), Country
varchar2(25), Birth_Date date

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate.

For more information about configuring a bidirectional configuration, see Administering
Oracle GoldenGate.

Propagating DDL in a Cascading Configuration
In a cascading configuration, use the following setting for DDLOPTIONS in the Extract
parameter file on each intermediary system. This configuration forces Extract to
capture the DDL from Replicat on an intermediary system and cascade it to the next
system downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate

For more information about configuring a cascading configuration, see Administering
Oracle GoldenGate for Windows and UNIX.

Adding Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

You can perform the following tasks using the DDLOPTIONS:

• Enable Oracle's supplemental logging automatically for new tables created with a
CREATE TABLE.

• Update Oracle's supplemental logging for tables affected by an ALTER TABLE to
add or drop columns.

• Update Oracle's supplemental logging for tables that are renamed.

• Update Oracle's supplemental logging for tables where unique or primary keys are
added or dropped.

To use DDLOPTIONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be
issued in GGSCI to enable schema-level supplemental logging.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the
target unless the GETREPLICATES parameter is in use.

Chapter 12
Adding Supplemental Log Groups Automatically

12-28

DDLOPTIONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

By default, comments are not removed, so that they can be used for string
substitution.

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate.

Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and
REPLICATEPASSWORD | NOREPLICATEPASSWORD options to control how the password of a
replicated {CREATE | ALTER} USER name IDENTIFIED BY password statement is
handled. These options must be used together.

See the USEPASSWORDVERIFIERLEVEL option of DDLOPTIONS for important information
about specifying the password verifier when Replicat operates against an Oracle 10g
or 11g database.

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on
both source/target(s) since DDL to SYS schema is excluded.

How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the source
and target systems.

It shows the order in which different criteria in the Oracle GoldenGate parameters are
processed, and it explains the differences between how Extract and Replicat each
process the DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if
Replicat produced this DDL on this system, Extract ignores the DDL statement.
(This example assumes no Replicat operations on this system.)

Chapter 12
Removing Comments from Replicated DDL

12-29

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is
flagged internally.

6. Extract gets the base object name and, if present, the derived object name.

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is
present, Extract removes the comments from the DDL statement, but stores them
in case there is a DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or
INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER:

• It is MAPPED if the operation and object types are supported for mapping, and
the base object name and/or derived object name (if RENAME) is in a TABLE
parameter.

• It is UNMAPPED if the operation and object types are not supported for mapping,
and the base object name and/or derived object name (if RENAME) is not in a
TABLE parameter.

• Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria in those clauses. All options must evaluate to
TRUE in order for the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement
and evaluates another DDL statement. In this case, the processing steps start
over.

• If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have
any INCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the
processing logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and
EXCLUDE clauses. If the criteria in those clauses add up to TRUE, Extract performs
string substitution. Extract evaluates the DDL statement against each DDLSUBST
parameter in the parameter file. For all true DDLSUBST specifications, Extract
performs string substitution in the order that the DDLSUBST parameters are listed in
the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS
AFTER parameter. If it is present, Extract removes the comments from the DDL
statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation
is CREATE TABLE, Extract issues the ALTER TABLE name ADD SUPPLEMENTAL LOG
GROUP command on the table.

14. Extract writes the DDL statement to the trail.

Replicat

1. Replicat reads the DDL statement from the trail.

2. Replicat separates comments, if any, from the main statement.

3. Replicat searches for DDLOPTIONS REMOVECOMMENTS BEFORE. If it is present,
Replicat removes the comments from the DDL statement.

Chapter 12
How DDL is Evaluated for Processing

12-30

4. Replicat evaluates the DDL synchronization scope to determine if the DDL
qualifies for name mapping. Anything else is of OTHER scope.

5. Replicat evaluates the MAP statements in the parameter file. If the source base
object name for this DDL (as read from the trail) appears in any of the MAP
statements, the operation is marked as MAPPED in scope. Otherwise it is marked as
UNMAPPED in scope.

6. Replicat replaces the source base object name with the base object name that is
specified in the TARGET clause of the MAP statement.

7. If there is a derived object, Replicat searches for DDLOPTIONS MAPDERIVED. If it is
present, Replicat replaces the source derived name with the target derived name
from the MAP statement.

8. Replicat checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria contained in them. All options must evaluate
to TRUE in order for the INCLUDE or EXCLUDE to evaluate to TRUE. The following
occurs:

• If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL statement
and starts evaluating another DDL statement. In this case, the processing
steps start over.

• If any INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have
any INCLUDE or EXCLUDE clauses, Replicat includes the DDL statement, and
the processing logic continues.

9. Replicat searches for the DDLSUBST parameter and evaluates the INCLUDE and
EXCLUDE clauses. If the options in those clauses add up to TRUE, Replicat performs
string substitution. Replicat evaluates the DDL statement against each DDLSUBST
parameter in the parameter file. For all true DDLSUBST specifications, Replicat
performs string substitution in the order that the DDLSUBST parameters are listed in
the file.

10. Now that DDLSUBT has been processed, Replicat searches for the REMOVECOMMENTS
AFTER parameter. If it is present, Replicat removes the comments from the DDL
statement.

11. Replicat executes the DDL statement on the target database.

12. If there are no errors, Replicat processes the next DDL statement. If there are
errors, Replicat performs the following steps.

13. Replicat analyzes the INCLUDE and EXCLUDE rules in the Replicat DDLERROR
parameters in the order that they appear in the parameter file. If Replicat finds a
rule for the error code, it applies the specified error handling; otherwise, it applies
DEFAULT handling.

14. If the error handling does not enable the DDL statement to succeed, Replicat does
one of the following: abends, ignores the operation, or discards it as specified in
the rules.

Note:

If there are multiple targets for the same source in a MAP statement, the
processing logic executes for each one.

Chapter 12
How DDL is Evaluated for Processing

12-31

Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the
Extract and Replicat reports.

To enable expanded DDL reporting, use the DDLOPTIONS parameter with the REPORT
option. Expanded reporting includes the following information about DDL processing:

• A step-by-step history of the DDL operations that were processed by Oracle
GoldenGate.

• The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be
useful in certain situations, such as for troubleshooting or to determine when an
ADDTRANDATA to add supplemental logging was applied.

To view a report, use the VIEW REPORT command in GGSCI.

VIEW REPORT group

• Viewing DDL Reporting in Replicat

• Viewing DDL Reporting in Extract

• Statistics in the Process Reports

Viewing DDL Reporting in Replicat
The Replicat report lists:

• The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking
purposes, especially when there are restores from backup and Replicat is
positioned backward in the trail.

• A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED,
OTHER) and how object names were mapped in the target DDL statement, if
applicable.

• Another entry that shows how processing criteria was applied.

• Additional entries that show whether the operation succeeded or failed, and
whether or not Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including
error handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop table
myTableTemp], Source SCN [1186713.0].
 2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after mapping new
operation [drop table "QATEST2"."MYTABLETEMP"].
 2011-01-20 15:11:45 GGS INFO 2100 DDL operation included [include objname
myTable*], optype [DROP], objtype [TABLE], objname [QATEST2.MYTABLETEMP].
 2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operation.
 2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table or
view does not exist], retry [1].
 2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation , trying again due
to RETRYOP parameter.

Chapter 12
Viewing DDL Report Information

12-32

 2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table or
view does not exist], retry [2].
 2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation, trying again due
to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table or
view does not exist], retry [3].
 2011-01-20 15:11:54 GGS INFO 2100 Executing DDL operation, trying again due
to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored: error code [942], filter
[include objname myTableTemp], error text [ORA-00942: table or view does not exist].

Viewing DDL Reporting in Extract
The Extract report lists the following:

• The entire syntax of each captured DDL operation, the start and end SCN, the
Oracle instance, the DDL sequence number (from the SEQNO column of the history
table), and the size of the operation in bytes.

• A subsequent entry that shows how processing criteria was applied to the
operation, for example string substitution or INCLUDE and EXCLUDE filtering.

• Another entry showing whether the operation was written to the trail or excluded.

The following, taken from an Extract report, shows an included operation and an
excluded operation. There is a report message for the included operation, but not for
the excluded one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create table myTable (
 myId number (10) not null,
 myNumber number,
 myString varchar2(100),
 myDate date,
 primary key (myId)
)], start SCN [1186754], commit SCN [1186772] instance [test11g (1)], DDL seqno
[4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE OBJNAME
myTable*], optype [CREATE], objtype [TABLE], objname [QATEST1.MYTABLE].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract trail file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA for table with
the key, table [QATEST1.MYTABLE], operation [ALTER TABLE "QATEST1"."MYTABLE" ADD
SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYID) ALWAYS /*
GOLDENGATE_DDL_REPLICATION */].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table
myTableTemp (
 vid varchar2(100),
 someDate date,
 primary key (vid)
)], start SCN [1186777], commit SCN [1186795] instance [test11g (1)], DDL seqno
[4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE OBJNAME
myTableTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE], objname
[QATEST1.MYTABLETEMP].

Chapter 12
Viewing DDL Report Information

12-33

Statistics in the Process Reports
You can send current statistics for DDL processing to the Extract and Replicat reports
by using the SEND command in GGSCI.

SEND {EXTRACT | REPLICAT} group REPORT

The statistics show totals for:

• All DDL operations

• Operations that are MAPPED in scope

• Operations that are UNMAPPED in scope

• Operations that are OTHER in scope

• Operations that were excluded (number of operations minus included ones)

• Errors (Replicat only)

• Retried errors (Replicat only)

• Discarded errors (Replicat only)

• Ignored operations (Replicat only)

Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might be
asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

See Reference for Oracle GoldenGate.

Using Tools that Support Trigger-Based DDL Capture
This section documents the additional tools available to support trigger-based capture.

• Tracing the DDL Trigger

• Viewing Metadata in the DDL History Table

• Handling DDL Trigger Errors

Tracing the DDL Trigger
To trace the activity of the Oracle GoldenGate DDL trigger, use the following tools.

• ggs_ddl_trace.log trace file: Oracle GoldenGate creates a trace file in the
USER_DUMP_DEST directory of Oracle. On RAC, each node has its own trace file that
captures DDL tracing for that node. You can query the trace file as follows:

select value from sys.v_$parameter where name = 'user_dump_dest';

• ddl_tracelevel script: Edit and run this script to set the trace level. A value of
None generates no DDL tracing, except for fatal errors and installation logging. The
default value of 0 generates minimal tracing information. A value of 1 or 2
generates a much larger amount of information in the trace file. Do not use 1 or 2

Chapter 12
Tracing DDL Processing

12-34

unless requested to do so by a Oracle GoldenGate Technical Support analyst as
part of a support case.

• ddl_cleartrace script: Run this script on a regular schedule to prevent the trace
file from consuming excessive disk space as it expands. It deletes the file, but
Oracle GoldenGate will create another one. The DDL trigger stops writing to the
trace file when the Oracle directory gets low on space, and then resumes writing
when space is available again. This script is in the Oracle GoldenGate directory.
Back up the trace file before running the script.

Viewing Metadata in the DDL History Table
Use the DUMPDDL command in GGSCI to view the information that is contained in the
DDL history table. This information is stored in proprietary format, but you can export it
in human-readable form to the screen or to a series of SQL tables that you can query.
The information in the DDL history table is the same as that used by the Extract
process.

Handling DDL Trigger Errors
Use the params.sql non-executable script to handle failures of the Oracle GoldenGate
DDL trigger in relation to whether the source DDL fails or succeeds. The params.sql
script is in the root Oracle GoldenGate directory. The parameters to use are the
following:

• ddl_fire_error_in_trigger: If set to TRUE, failures of the Oracle GoldenGate
DDL trigger are raised with a Oracle GoldenGate error message and a database
error message to the source end-user application. The source operations fails.

If set to FALSE, no errors are raised, and a message is written to the trigger trace
file in the Oracle GoldenGate directory. The source operation succeeds, but no
DDL is replicated. The target application will eventually fail if subsequent data
changes do not match the old target object structure. The default is FALSE.

• ddl_cause_error: If set to TRUE, tests the error response of the trigger by
deliberately causing an error. To generate the error, Oracle GoldenGate attempts
to SELECT zero rows without exception handling. Revert this flag to the default of
FALSE after testing is done.

Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with Oracle
Databases enabling you to upgrade the database component of an application while it
is in use, thereby minimizing or eliminating down time.

Editions are non-schema objects that Editioned objects belong to. Editions can be
thought of as owning editioned objects or as a namespace. Every database starts with
one edition named, ORA$BASE; this includes upgraded databases. More than one
edition can exist in a database and each can only have one child. For example, if you
create three editions in succession, edition1, edition2, edition3, then edition1 is the
parent of edition2 which is the parent of edition3. This is irrespective of the user or
database session that creates them or which edition was current when the new one is
created. When you create an edition, it inherits all the editioned objects of its parent.
To use editions with Oracle GoldenGate, you must create them. For more information
about creating and managing editions, see Oracle Database Administrator’s Guide .

Chapter 12
Using Edition-Based Redefinition

12-35

An object is considered editioned if it is an editionable type, it is created with the
EDITIONABLE attribute, and the schema is enabled for editioning of that object type.
When you create, alter, or drop an editioned object, the redo log will contain the name
of the edition in which it belongs. In a container database, editions belong to the
container and each container has its own default edition.

The CREATE | DROP EDITION DDLs are captured for all Extract configurations. They
fall into the OTHER category and assigned an OBJTYPE option value of EDITION. The
OBJTYPE option can be used for filtering, for example:

DDL EXCLUDE OBJTYPE EDITION
DDL EXCLUDE OBJTYPE EDITION OPTYPE CREATE
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP ALLOWEMPTYOWNER OBJNAME edition_name

You must use the following syntax to exclude an edition from Extract or Replicat:

EXCLUDE OBJTYPE EDITION, ALLOWEMPTYOWNER OBJNAME edition_name

Editions fall into the OTHER category so no mapping is performed on the edition name.
When applied, the USE permission is automatically granted to the Replicat user.
Replicat will also perform a grant use on edition name with grant option to the
original creating user if that user exists on the target database. Because editions are
not mappable operations, they do not have owners so the standard EXCLUDE statement
does not work.

The DDLs used to create or alter editions does not actually enable the user for
editions, rather they enable the schema for editions. This is an important distinction
because it means that the Replicat user does not need to be enabled for editions to
apply DDLs to editioned objects. When Replicat applies a CREATE EDITION DDL, it
grants the original creating user permission to USE it if the original user exists on the
target database. For any unreplicated CREATE EDITION statements, you must issue a
USE WITH GRANT OPTION grant to the Replicat user.

Whether or not an editionable objects becomes editioned is controlled by the schema
it is applied in. Replicat switches its current session Edition before applying a DDL if
the edition name attribute exists in the trail file and it is not empty.

Container database environments are supported for both Extract and Replicat. No
additional configuration is necessary. The Replicat user's schema can not be enabled
for editions if it is a common user. The Replicat user's schema does not need to be
enabled for editions when applying DDLs to editioned objects in other schemas.

Note:

EBR support is limited to Integrated Dictionary; it is not supported when
using a DDL trigger.

Chapter 12
Using Edition-Based Redefinition

12-36

13
Creating Process Groups

This chapter contains instructions for creating Oracle GoldenGate process groups,
collectively known as the "change-synchronization" processes. At minimum, you will
create one primary Extract, one data pump, and one Replicat process group.
Topics:

• Prerequisites
This chapter assumes you have installed Oracle GoldenGate, understand the
different processing options available to you, and have performed the following
prerequisite configuration steps before proceeding to configure Oracle
GoldenGate process groups.

• Registering Extract with the Mining Database
If you are using Extract in integrated mode, you need to create a database
logmining server to capture redo data. You do this from the GGSCI interface by
registering the primary Extract process with the mining database.

• Add the Primary Extract
The primary Extract writes to a trail.

• Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

• Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the
target.

• Add the Remote Trail
Although it is read by Replicat, this trail must be associated with the data pump, so
it must be added on the source system, not the target.

• Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the
data changes to the target Oracle Database.

Prerequisites
This chapter assumes you have installed Oracle GoldenGate, understand the different
processing options available to you, and have performed the following prerequisite
configuration steps before proceeding to configure Oracle GoldenGate process
groups.

• Establishing Oracle GoldenGate Credentials

• Preparing the Database for Oracle GoldenGate

• Configuring Capture in Integrated Mode

• Configuring Capture in Classic Mode

• Configuring Oracle GoldenGate Apply

• Configuring DDL Support (to use DDL support)

13-1

Registering Extract with the Mining Database
If you are using Extract in integrated mode, you need to create a database logmining
server to capture redo data. You do this from the GGSCI interface by registering the
primary Extract process with the mining database.

The creation of the logmining server extracts a snapshot of the source database in the
redo stream of the source database. In a source multitenant container database, you
register Extract with each of the pluggable databases that you want to include for
capture.

WARNING:

Make certain that you know the earliest SCN of the log stream at which you
want Extract to begin processing. Extract cannot have a starting SCN value
that is lower than the first SCN that is specified when the underlying
database capture process is created with the REGISTER EXTRACT command.
You can use the SCN option

1. Log into the mining database then use the commands appropriate to your
environment. The use of DBLOGIN always refers to the source database.

Command for source database deployment:

DBLOGIN USERIDALIAS alias

Command for downstream mining database deployment:

DBLOGIN USERIDALIAS alias
MININGDBLOGIN USERIDALIAS alias2

Where: alias specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials. For more
information about DBLOGIN, see Reference for Oracle GoldenGate. For more
information about MININGDBLOGIN, see Reference for Oracle GoldenGate.

2. Register the Extract process with the mining database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])] [SCN
system_change_number]

Where:

• group is the name of the Extract group.

• CONTAINER (container[, ...]) specifies a pluggable database (PDB) within
a multitenant container database, or a list of PDBs separated with commas.
The specified PDBs must exist before the REGISTER command is executed.
Extract will capture only from the PDBs that are listed in this command. For
example, the following command registers PDBs mypdb1 and mypdb4. Changes
from any other PDBs in the multitenant container database are ignored by
Oracle GoldenGate.

REGISTER EXTRACT myextract DATABASE CONTAINER (mypdb1, mypdb4, mydb5)

Chapter 13
Registering Extract with the Mining Database

13-2

You can add or drop pluggable databases at a later date by stopping Extract,
issuing a DBLOGIN command, and then issuing REGISTER EXTRACT with the
{ADD | DROP} CONTAINER option of DATABASE. See Reference for Oracle
GoldenGate for more information about REGISTER EXTRACT.

Note:

Adding CONTAINERs at particular SCN on an existing Extract is not
supported.

• Registers Extract to begin capture at a specific SCN in the past. Without this
option, capture begins from the time that REGISTER EXTRACT is issued. The
specified SCN must correspond to the begin SCN of a dictionary build
operation in a log file. You can issue the following query to find all valid SCN
values:

SELECT first_change#
 FROM v$archived_log
 WHERE dictionary_begin = 'YES' AND
 standby_dest = 'NO' AND
 name IS NOT NULL AND
 status = 'A';

3. To register additional Extracts with a downstream database for the same source
database, issue this REGISTER command.

If you want to have more than one extract per source database, you can do that
using the SHARE with REGISTER EXTRACT for better performance and metadata
management. The specified SCN must correspond to the SCN where mining should
begin in the archive logs.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])] [SCN
system_change_number] SHARE

Note:

The register process may take a few to several minutes to complete, even
though the REGISTER command returns immediately.

Add the Primary Extract
The primary Extract writes to a trail.

These steps add the primary Extract that captures change data.

1. If using downstream capture, set the RMAN archive log deletion policy to the
following value in the source database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY

This must be done before you add the primary Extract.

2. Run GGSCI.

Chapter 13
Add the Primary Extract

13-3

3. If using integrated capture, issue the DBLOGIN command.

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.

4. Issue the ADD EXTRACT command to add the primary Extract group.

ADD EXTRACT group name
{, TRANLOG | , INTEGRATED TRANLOG}
{, BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]} | SCN value}
[, THREADS n]

Where:

• group name is the name of the Extract group.

• TRANLOG specifies the transaction log as the data source; for classic capture
only. See Example 13-1.

• INTEGRATED TRANLOG specifies that Extract receives logical change records
through a database logmining server; for integrated capture only. See
Example 13-2. Before issuing ADD EXTRACT with this option, make certain you
logged in to the database with the DBLOGIN command and that you registered
this Extract with the database. See Registering Extract with the Mining
Database for more information.

• BEGIN specifies to begin capturing data as of a specific time:

– NOW starts at the first record that is time stamped at the same time that ADD
EXTRACT is issued.

– yyyy-mm-dd[hh:mi:[ss[.cccccc]]] starts at an explicit timestamp. Logs
from this timestamp must be available. For Extract in integrated mode, the
timestamp value must be greater than the timestamp at which the Extract
was registered with the database.

– SCN value starts Extract at the transaction in the redo log that has the
specified Oracle system change number (SCN). For Extract in integrated
mode, the SCN value must be greater than the SCN at which the Extract
was registered with the database. See Registering Extract with the Mining
Database for more information.

• THREADS n is required in classic capture mode for Oracle Real Application
Cluster (RAC), to specify the number of redo log threads being used by the
cluster. Extract reads and coordinates each thread to maintain transactional
consistency. Not required for integrated capture.

Note:

Additional options are available. See Reference for Oracle GoldenGate.

Example 13-1 Classic capture with timestamp start point

ADD EXTRACT finance, TRANLOG, BEGIN 2011-01-01 12:00:00.000000

Chapter 13
Add the Primary Extract

13-4

Example 13-2 Integrated capture with timestamp start point

DBLOGIN USERIDALIAS myalias
ADD EXTRACT finance, INTEGRATED TRANLOG, BEGIN NOW

Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

In GGSCI on the source system, issue the ADD EXTTRAIL command:

ADD EXTTRAIL pathname, EXTRACT group name

Where:

• EXTTRAIL specifies that the trail is to be created on the local system.

• pathname is the relative or fully qualified name of the trail, including the two-
character name.

• EXTRACT group name is the name of the primary Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 13-3

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT finance

Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the
target.

In GGSCI on the source system, issue the ADD EXTRACT command.

ADD EXTRACT group name, EXTTRAILSOURCE trail name

Where:

• group name is the name of the Extract group.

• EXTTRAILSOURCE trail name is the relative or fully qualified name of the local trail.

Example 13-4

ADD EXTRACT financep, EXTTRAILSOURCE c:\ggs\dirdat\lt

Add the Remote Trail
Although it is read by Replicat, this trail must be associated with the data pump, so it
must be added on the source system, not the target.

These steps add the remote trail:

Chapter 13
Add the Local Trail

13-5

In GGSCI on the source system, issue the following command:

ADD RMTTRAIL pathname, EXTRACT group name

Where:

• RMTTRAIL specifies that the trail is to be created on the target system.

• pathname is the relative or fully qualified name of the trail, including the two-
character name.

• EXTRACT group name is the name of the data-pump Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 13-5

ADD RMTTRAIL /ggs/dirdat/rt, EXTRACT financep

Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the data
changes to the target Oracle Database.

1. Run GGSCI on the target system.

2. If using integrated Replicat, issue the DBLOGIN command to log into the database
from GGSCI.

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials

3. Issue the ADD REPLICAT command with the following syntax.

ADD REPLICAT group name, [INTEGRATED,] EXTTRAIL pathname

Where:

• group name is the name of the Replicat group.

• INTEGRATED creates an integrated Replicat group.

• EXTTRAIL pathname is the relative or fully qualified name of the remote trail,
including the two-character name.

For more information, see Reference for Oracle GoldenGate.

Example 13-6 Adds a Nonintegrated Replicat

ADD REPLICAT financer, EXTTRAIL c:\ggs\dirdat\rt

Example 13-7 Adds an Integrated Replicat

ADD REPLICAT financer, INTEGRATED, EXTTRAIL c:\ggs\dirdat\rt

Chapter 13
Add the Replicat Group

13-6

14
Instantiating Oracle GoldenGate
Replication

This chapter contains instructions for configuring and performing an instantiation of the
replication environment to establish and maintain a synchronized state between two or
more databases. In a synchronized state, the source and target objects contain
identical or appropriately corresponding values, depending on whether any conversion
or transformation is performed on the data before applying it to the target objects.
Topics:

• Overview of the Instantiation Process
In the instantiation procedure, you make a copy of the source data and load the
copy to the target database.

• Prerequisites for Instantiation
The following steps must be taken before starting any Oracle GoldenGate
processes or native database load processes.

• Configuring the Initial Load
Oracle GoldenGate supports theses load methods in this section specifically for
Oracle Database.

• Performing the Target Instantiation
This procedure instantiates the target tables while Oracle GoldenGate captures
ongoing transactional changes on the source and stores them until they can be
applied on the target.

• Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control
processes and view the overall health of the replication environment.

• Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare
source and target data.

• Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is
critical to preserving the state of processing in the event of a failure. Unless the
Oracle GoldenGate working files can be restored, the entire replication
environment must be re-instantiated, complete with new initial loads.

Overview of the Instantiation Process
In the instantiation procedure, you make a copy of the source data and load the copy
to the target database.

The initial load captures a point-in-time snapshot of the data, while Oracle GoldenGate
maintains that consistency by applying transactional changes that occur while the
static data is being loaded. After instantiation is complete, Oracle GoldenGate
maintains the synchronized state throughout ongoing transactional changes.

14-1

When you instantiate Oracle GoldenGate processing, it is recommended that you do
so first in a test environment before deploying live on your production machines. This
is especially important in an active-active or high availability configuration, where
trusted source data may be touched by the replication processes. Testing enables you
to find and resolve any configuration mistakes or data issues without the need to
interrupt user activity for re-loads on the target or other troubleshooting activities.
Testing also ensures that your instantiation process is configured properly. Parameter
files can be copied to the production equipment after successful testing, and then you
can perform a predictable instantiation with production data.

Prerequisites for Instantiation
The following steps must be taken before starting any Oracle GoldenGate processes
or native database load processes.

• Configuring and Adding Change Synchronization Groups

• Disabling DDL Processing

• Adding Collision Handling

• Preparing the Target Tables

Configuring and Adding Change Synchronization Groups
To perform an instantiation of the target database and the replication environment, the
online change capture and apply groups must exist and be properly configured. See:

• Configuring Capture in Integrated Mode

• Configuring Capture in Classic Mode

• Configuring Oracle GoldenGate Apply

• Creating Process Groups

Disabling DDL Processing
You must disable DDL activities before performing an instantiation. You can resume
DDL after the instantiation is finished. See Disabling DDL Processing Temporarily for
instructions.

Adding Collision Handling
This prerequisite applies to the following instantiation methods:

• Configuring a Direct Bulk Load to SQL*Loader

• Configuring a Load from an Input File to SQL*Loader

This prerequisite does not apply to the instantiation method described in Configuring a
Load with an Oracle Data Pump.

If the source database will remain active during one of those initial load methods,
collision-handling logic must be added to the Replicat parameter file. This logic
handles conflicts that occur because static data is being loaded to the target tables
while Oracle GoldenGate replicates transactional changes to those tables.

Chapter 14
Prerequisites for Instantiation

14-2

To handle collisions, add the HANDLECOLLISIONS parameter to the Replicat parameter
file to resolve these collisions:

• INSERT operations for which the row already exists

• UPDATE and DELETE operations for which the row does not exist

HANDLECOLLISIONS should be removed from the Replicat parameter file at the end of
the instantiation steps (as prompted in the instructions). For more information about
HANDLECOLLISIONS, see Reference for Oracle GoldenGate.

To use the HANDLECOLLISIONS function to reconcile incremental data changes with the
load, each target table must have a primary or unique key. If you cannot create a key
through your application, use the KEYCOLS option of the TABLE and MAP parameters to
specify columns as a substitute key for Oracle GoldenGate to use. If you cannot create
keys, the affected source table must be quiesced for the load. See Reference for
Oracle GoldenGate for more information about KEYCOLS.

Preparing the Target Tables
The following are suggestions that can make the load go faster and help you to avoid
errors.

• Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being
loaded.

• Indexes: Remove indexes from the target tables. Indexes are not necessary for
the inserts performed by the initial load process and will slow it down. You can add
back the indexes after the load is finished.

Configuring the Initial Load
Oracle GoldenGate supports theses load methods in this section specifically for Oracle
Database.

Select a method and follow its configuration steps to create the load processes and
parameter files. To work with parameter files, see Using Oracle GoldenGate
Parameter Files in Administering Oracle GoldenGate.

• Configuring a Load with an Oracle Data Pump

• Configuring a Direct Bulk Load to SQL*Loader

• Configuring a Load from an Input File to SQL*Loader

Chapter 14
Configuring the Initial Load

14-3

Configuring a Load with an Oracle Data Pump

This method uses the Oracle Data Pump utility to establish the target data. You start
Extract, the data pumps, and Replicat at the SCN at which the copy stopped.
Transactions that were included in the copy are skipped to avoid collisions from
integrity violations. From the process start point, Oracle GoldenGate maintains data
synchronization.

No initial-load Oracle GoldenGate processes are required for this method.

Configuring a Direct Bulk Load to SQL*Loader
The following diagram shows configuring a direct bulk load to SQL*Loader.

Chapter 14
Configuring the Initial Load

14-4

With this method, you configure and run an Oracle GoldenGate initial-load Extract to
extract complete source records and send them directly to an initial-load Replicat task.
The initial-load Replicat task communicates with SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups that you configured in Configuring Capture in Integrated Mode or Configuring
Capture in Classic Mode and Configuring Oracle GoldenGate Apply replicate
incremental changes, which are then reconciled with the results of the load.

Limitations:

• This method does not support extraction of LOB or LONG data. As an alternative,
see Performing Instantiation From an Input File to SQL*Loader.

• This method does not support materialized views that contain LOBs, regardless of
their size. It also does not support data encryption.

To Configure a Direct Bulk Load to SQL*Loader

1. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle
Database.

2. On the source and target systems, run GGSCI.

3. Start Manager on both systems.

START MANAGER

4. On the source system, create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight
characters.

• SOURCEISTABLE directs Extract to read complete records directly from the
source tables.

5. On the source system, create the initial-load Extract parameter file.

EDIT PARAMS initial-load_Extract

6. Enter the initial-load Extract parameters in the order shown, starting a new line for
each parameter statement. This example shows a three-part table name
associated with a multitenant container database.

EXTRACT initext
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTASK replicat, GROUP initrep
TABLE hq.hr.*;

Parameter Description

EXTRACT initial-
load_Extract

Specifies the name of the initial-load Extract, as stated
with ADD EXTRACT. See Reference for Oracle
GoldenGate.

Chapter 14
Configuring the Initial Load

14-5

Parameter Description

USERIDALIAS alias Specifies the alias of the database login credential that
is assigned to Extract. This credential must exist in the
Oracle GoldenGate credential store. For more
information, see Establishing Oracle GoldenGate
Credentials

RMTHOST hostname, MGRPORT
portnumber[, ENCRYPT
algorithm KEYNAME
keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.
See Reference for Oracle GoldenGate.

RMTTASK REPLICAT, GROUP
initial-load_Replicat

Specifies the process type (must be REPLICAT) and the
name of the initial-load Replicat. Directs Manager on
the target system to dynamically start the initial-load
Replicat as a one-time task. See Reference for Oracle
GoldenGate.

TABLE
[container.]schema.table;

Specifies the tables to capture.

• container is the name of the pluggable database,
if this is a multitenant container database. You can
use the SOURCECATALOG parameter to specify a
default pluggable database instead of using three-
part names.

• schema is the schema name.
• table is the table name.
See Administering Oracle GoldenGate for important
information about specifying object names.

7. Save and close the file.

8. On the target system, create the initial-load Replicat.

ADD REPLICAT initial-load Replicat, SPECIALRUN

Where:

• initial-load Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time task, not a
continuous process.

9. On the target system, create the initial-load Replicat parameter file.

EDIT PARAMS initial-load Replicat

10. Enter the initial-load Replicat parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

REPLICAT initrep
USERIDALIAS tiger2
BULKLOAD
ASSUMETARGETDEFS
MAP hq.hr.*, TARGET hr2.*;

Parameter Description

REPLICAT initial-load
Replicat

Specifies the name of the initial-load Replicat task, as stated
with ADD REPLICAT. See Reference for Oracle GoldenGate.

Chapter 14
Configuring the Initial Load

14-6

Parameter Description

USERIDALIAS alias Specifies the alias of the database login credential that is
assigned to Replicat. This credential must exist in the Oracle
GoldenGate credential store. For more information, see
Establishing Oracle GoldenGate Credentials

BULKLOAD Directs Replicat to interface directly with the Oracle
SQL*Loader interface. See Reference for Oracle GoldenGate

ASSUMETARGETDEFS Assumes the source and target tables are identical, including
semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.
See Reference for Oracle GoldenGate.

For more information about data-definitions files, see
Administering Oracle GoldenGate.

MAP
[container.]schema.ta
ble, TARGET
schema.table;

Specifies a relationship between a source and target table or
tables.

• If the source is a multitenant container database,
container is the name of the pluggable database that
contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

• schema is the schema name.
• table is the table name.
See Administering Oracle GoldenGate for important
information about specifying object names.

Configuring a Load from an Input File to SQL*Loader

With this method, an initial-load Extract extracts source records from the source tables
and writes them to an extract file in external ASCII format. The files are read by
SQL*Loader. During the load, the change-synchronization groups that you configured

Chapter 14
Configuring the Initial Load

14-7

in Chapter 4 replicate incremental changes, which are then reconciled with the results
of the load. As part of the load procedure, Oracle GoldenGate uses the initial-load
Replicat to create run and control files required by the database utility. Any data
transformation must be performed by the initial-load Extract on the source system
because the control files are generated dynamically and cannot be pre-configured with
transformation rules.

To Configure a Load from File to SQL*Loader

1. On the source and target systems, run GGSCI.

2. Start Manager on both systems.

START MANAGER

3. On the source system, create the initial-load Extract parameter file.

EDIT PARAMS initial-load Extract

4. Enter the initial-load Extract parameters in the order shown, starting a new line for
each parameter statement. This example shows a three-part table name
associated with a multitenant container database.

SOURCEISTABLE
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
ENCRYPTTRAIL AES192
FORMATASCII, SQLLOADER
RMTFILE /ggs/dirdat/ie
TABLE hq.hr.*;

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process that extracts
records directly from the source tables, see Reference for
Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential that is
assigned to Extract. This credential must exist in the Oracle
GoldenGate credential store, see Establishing Oracle
GoldenGate Credentials

RMTHOST hostname,
MGRPORT portnumber[,
ENCRYPT algorithm
KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP, see
Reference for Oracle GoldenGate.

ENCRYPTTRAIL
algorithm

Encrypts the data in the remote file. For more information,
see Reference for Oracle GoldenGate.

FORMATASCII,
SQLLOADER

Produces a fixed-length, ASCII-formatted remote file that is
compatible with SQL*Loader. This parameter must be listed
before RMTFILE. See Reference for Oracle GoldenGate.

RMTFILE path Specifies the absolute or full path name of an extract file that
Extract creates and to which it writes the load data. See
Reference for Oracle GoldenGate.

Chapter 14
Configuring the Initial Load

14-8

Parameter Description

TABLE
[container.]schema.ta
ble;

Specifies the tables to capture.

• container is the name of the pluggable database, if this
is a multitenant container database. You can use the
SOURCECATALOG parameter to specify a default
pluggable database instead of using three-part names.

• schema is the schema name.
• table is the table name.
See Administering Oracle GoldenGate for important
information about specifying object names.

5. Save and close the parameter file.

6. On the target system, create the initial-load Replicat parameter file.

EDIT PARAMS initial-load Replicat

7. Enter the initial-load Replicat parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

GENLOADFILES sqlldr.tpl
USERIDALIAS tiger2
EXTFILE /ggs/dirdat/ie
ASSUMETARGETDEFS
MAP hq.hr.*, TARGET hr2.*;

Parameter Description

GENLOADFILES template Generates run and control files for the database utility. See
Reference for Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user
that is assigned to Replicat. This credential must exist in the
Oracle GoldenGate credential store, see Establishing Oracle
GoldenGate Credentials

EXTFILE path Specifies the extract file that you specified with the Extract
parameter RMTFILE. See Reference for Oracle GoldenGate.

ASSUMETARGETDEFS Assumes the source and target tables are identical, including
semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.
See Reference for Oracle GoldenGate.

For more information about data-definitions files, see
Administering Oracle GoldenGate.

Chapter 14
Configuring the Initial Load

14-9

Parameter Description

MAP
[container.]schema.ta
ble, TARGET
schema.table;

Specifies a relationship between a source and target table or
tables.

• If the source is a multitenant container database,
container is the name of the pluggable database that
contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

• schema is the schema name.
• table is the table name.
See Administering Oracle GoldenGate for important
information about specifying object names.

8. Save and close the parameter file.

Performing the Target Instantiation
This procedure instantiates the target tables while Oracle GoldenGate captures
ongoing transactional changes on the source and stores them until they can be
applied on the target.

By the time you perform the instantiation of the target tables, the entire Oracle
GoldenGate environment should be configured for change capture and delivery, as
should the initial-load processes if using Oracle GoldenGate as an initial-load utility.

Note:

The first time that Extract starts in a new Oracle GoldenGate configuration,
any open source transactions will be skipped. Only transactions that begin
after Extract starts are captured.

• Performing Instantiation with Oracle Data Pump

• Performing Instantiation with Direct Bulk Load to SQL*Loader

• Performing Instantiation From an Input File to SQL*Loader

Performing Instantiation with Oracle Data Pump
To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

1. Go to http://support.oracle.com.

2. Under Sign In, select your language and then log in with your Oracle Single Sign-
On (SSO).

3. On the Dashboard, expand the Knowledge Base heading.

4. Under Enter Search Terms, paste or type the document ID of 1276058.1 and then
click Search.

Chapter 14
Performing the Target Instantiation

14-10

http://support.oracle.com

5. In the search results, select Oracle GoldenGate Best Practices: Instantiation
from an Oracle Source Database [Article ID 1276058.1].

6. Click the link under Attachments to open the article.

Performing Instantiation with Direct Bulk Load to SQL*Loader
1. On the source system, run GGSCI.

2. Start the primary change-capture Extract group.

START EXTRACT group

3. Start the data-pump Extract group.

START EXTRACT data_pump

4. If replicating sequence values:

• Issue the DBLOGIN command with the alias of a user in the credential store who
has EXECUTE privilege on update.Sequence.

DBLOGIN USERIDALIAS alias

• Issue the following command to update each source sequence and generate
redo. From the redo, Replicat performs initial synchronization of the
sequences on the target. For more information about this command, see
Reference for Oracle GoldenGate.

FLUSH SEQUENCE [container.]schema.sequence

5. Start the initial-load Extract.

START EXTRACT initial-load_Extract

WARNING:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

6. On the target system, run GGSCI.

7. Issue the VIEW REPORT command to determine when the initial load to SQL*Loader
is finished.

VIEW REPORT initial-load_Extract

8. When the load is finished, start the change-data Replicat group.

START REPLICAT group

9. Issue the INFO REPLICAT command, and continue to issue it until it shows that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

INFO REPLICAT group

10. Turn off HANDLECOLLISIONS for the change-delivery Replicat to disable initial-load
error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

Chapter 14
Performing the Target Instantiation

14-11

11. Edit the change-delivery Replicat parameter file to remove the HANDLECOLLISIONS
parameter.

EDIT PARAMS group

12. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Performing Instantiation From an Input File to SQL*Loader

Note:

The SQL*Loader method is not recommended if the data has multibyte
characters, especially when the character set of the operating system is
different from the database character set.

1. On the source system, run GGSCI.

2. Start the primary change-capture Extract group.

START EXTRACT group

3. Start the data-pump Extract group.

START EXTRACT data_pump

4. If replicating sequence values:

• Issue the DBLOGIN command with the alias of a user in the credential store who
has EXECUTE privilege on update.Sequence.

DBLOGIN USERIDALIAS alias

• Issue the following command to update each source sequence and generate
redo. From the redo, Replicat performs initial synchronization of the
sequences on the target. For more information about this command, see
Reference for Oracle GoldenGate.

FLUSH SEQUENCE [container.]schema.sequence

5. From the Oracle GoldenGate installation directory on the source system, start the
initial-load Extract from the command line of the operating system (not GGSCI).

UNIX and Linux:

$ /OGG_directory/extract paramfile dirprm/initial-load_Extract.prm
reportfile path

Windows:

C:\> OGG_directory\extract paramfile dirprm\initial-load_Extract.prm
reportfile path

Where: initial-load_Extract is the name of the initial-load Extract and path is
the relative or fully qualified path where you want the Extract report file to be
created.

6. Wait until the initial extraction from the source is finished. Verify its progress and
results by viewing the Extract report file from the command line.

Chapter 14
Performing the Target Instantiation

14-12

7. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /OGG directory/replicat paramfile dirprm/initial-load_Replicat name.prm
reportfile path

Windows:

C:\> OGG directory\replicat paramfile dirprm\initial-load_Replicat.prm
reportfile path

Where: initial-load Extract is the name of the initial-load Replicat and path is
the relative or fully qualified path where you want the Replicat report file to be
created.

8. When the initial-load Replicat stops, verify its results by viewing the Replicat report
file from the command line.

9. Using the ASCII-formatted file and the run and control files that the initial-load
Replicat created, load the data with SQL*Loader.

10. When the load is finished, start the change-delivery Replicat group.

START REPLICAT group

11. Issue the INFO REPLICAT command, and continue to issue it until it shows that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

INFO REPLICAT group

12. Turn off HANDLECOLLISIONS for the change-delivery Replicat to disable initial-load
error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

13. Edit the change-delivery Replicat parameter file to remove the HANDLECOLLISIONS
parameter.

EDIT PARAMS group

14. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control processes
and view the overall health of the replication environment.

If you configured Replicat in integrated mode, you can use the STATS REPLICAT
command to view statistics on the number of transactions that are applied in integrated
mode as compared to those that are applied in direct apply mode.

STATS REPLICAT group

The output of this command shows the number of transactions applied, the number of
transactions that were redirected to direct apply, and the direct transaction ratio,
among other statistics. The statistics help you determine whether integrated Replicat is
performing as intended. If the environment is satisfactory and there is a high ratio of

Chapter 14
Monitoring and Controlling Processing After the Instantiation

14-13

direct apply operations, consider using nonintegrated Replicat. You can configure
parallelism with nonintegrated Replicat.

Note:

To ensure realistic statistics, view apply statistics only after you are certain
that the Oracle GoldenGate environment is well established, that
configuration errors are resolved, and that any anticipated processing errors
are being handled properly.

You can also view runtime statistics for integrated Replicat in the V$views for each of
the inbound server components, see Oracle Database Reference.

• The reader statistics are recorded in V$GG_APPLY_READER and include statistics on
number of messages read, memory used, and dependency counts.

• The apply coordinator statistics are recorded in V$GG_APPLY_COORDINATOR and
record statistics at the transaction level.

• The apply server statistics are recorded in V$GG_APPLY_SERVER. This view records
information for each of the apply server processes (controlled by parallelism and
max_parallelism parameters) as separate rows. The statistics for each apply
server are identified by the SERVER_ID column. If a SERVER_ID of 0 exists, this
represents an aggregate of any apply servers that exited because the workload
was reduced.

• Statistics about the number of messages received by the database from Replicat
are recorded in the V$GG_APPLY_RECEIVER table.

To control processes, see Controlling Oracle GoldenGate Processes in Administering
Oracle GoldenGate.

To ensure that all processes are running properly and that errors are being handled
according to your error handling rules, see Handling Processing Errors in
Administering Oracle GoldenGate. Oracle GoldenGate provides commands and logs
to view process status, lag, warnings, and other information.

To know more about querying the following views, see Oracle Database Reference.

• V$GOLDENGATE_TABLE_STATS to see statistics for DML and collisions that occurred
for each replicated table that the inbound server processed.

• V$GOLDENGATE_TRANSACTION to see information about transactions that are being
processed by Oracle GoldenGate inbound servers.

Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare source
and target data.

Chapter 14
Verifying Synchronization

14-14

Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is critical to
preserving the state of processing in the event of a failure. Unless the Oracle
GoldenGate working files can be restored, the entire replication environment must be
re-instantiated, complete with new initial loads.

As a best practice, include the entire Oracle GoldenGate home installation in your
backup routines. There are too many critical sub-directories, as well as files and
programs at the root of the directory, to keep track of separately. In any event, the
most critical files are those that consume the vast majority of backup space, and
therefore it makes sense just to back up the entire installation directory for fast, simple
recovery.

Chapter 14
Backing up the Oracle GoldenGate Environment

14-15

15
Managing the DDL Replication
Environment

This chapter contains instructions for making changes to the database environment or
the Oracle GoldenGate environment when the Oracle GoldenGate DDL trigger is
being used to support DDL replication. See Installing Trigger-Based DDL Capture for
more information about the DDL objects.
For instructions on configuring Oracle GoldenGate DDL support, see Configuring DDL
Support .

Note:

This chapter is only relevant for classic capture mode or integrated capture
mode in which trigger-based DDL capture is being used.

Topics:

• Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks,
if directed.

• Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without
making any configuration changes within Oracle GoldenGate.

• Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL
history.

• Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing
DDL.

• Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

• Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the
history table fails if the DDL trigger is enabled. This is a safety measure to prevent
the trigger from becoming invalid and missing DDL operations.

• Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the
ddl_cleartrace script on a regular basis.

• Applying Database Patches and Upgrades when DDL Support is Enabled
Database patches and upgrades usually invalidate the Oracle GoldenGate DDL
trigger and other Oracle GoldenGate DDL objects.

15-1

• Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
Use the following steps to apply a patch or upgrade to the DDL objects.

• Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle
GoldenGate DDL objects.

• Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that
maintains continuity between source and target DDL operations.

Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks, if
directed.

You can resume DDL processing after the task is finished.

1. Disable user DDL operations on the source database.

2. If there are previous DDL replication processes that are still active, make certain
that the last executed DDL operation was applied to the target before stopping
those processes, so that the load data is applied to objects that have the correct
metadata.

3. Comment out the DDL parameter in the Extract and Replicat parameter files that
you configured for the new Oracle GoldenGate environment. Comment out any
other parameters that support DDL.

4. Disable the Oracle GoldenGate DDL trigger, if one is in use. See Enabling and
Disabling the DDL Trigger.

Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without making
any configuration changes within Oracle GoldenGate.

The following scripts control the DDL trigger.

• ddl_disable: Disables the trigger. No further DDL operations are captured or
replicated after you disable the trigger.

• ddl_enable: Enables the trigger. When you enable the trigger, Oracle GoldenGate
starts capturing current DDL changes, but does not capture DDL that was
generated while the trigger was disabled.

Before running these scripts, disable all sessions that ever issued DDL, including
those of the Oracle GoldenGate processes, SQL*Plus, business applications, and any
other software that uses Oracle. Otherwise the database might generate an
ORA-04021 error. Do not use these scripts if you intend to maintain consistent DDL on
the source and target systems.

Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL history.

To purge the marker table, use the Manager parameter PURGEMARKERHISTORY.
Manager gets the name of the marker table from one of the following:

Chapter 15
Disabling DDL Processing Temporarily

15-2

1. The name given with the MARKERTABLE parameter in the GLOBALS file, if specified.

2. The default name of GGS_MARKER.

PURGEMARKERHISTORY provides options to specify maximum and minimum lengths of
time to keep a row, based on the last modification date. For more information, see
Reference for Oracle GoldenGate.

Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing
DDL.

The marker table and the DDL trigger are interdependent. An attempt to drop the
marker table fails if the DDL trigger is enabled. This is a safety measure to prevent the
trigger from becoming invalid and missing DDL operations. If you remove the marker
table, the following error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans
for the rest of the DDL environment. To choose the correct procedure, see one of the
following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

The DDL history table maintains the integrity of the DDL synchronization environment.
Purges to this table cannot be recovered through the Oracle GoldenGate interface.

1. To prevent any possibility of DDL history loss, make regular full backups of the
history table.

2. To ensure that purged DDL can be recovered, enable Oracle Flashback for the
history table. Set the flashback retention time well past the point where it could be
needed. For example, if your full backups are at most one week old, retain two
weeks of flashback. Oracle GoldenGate can be positioned backward into the
flashback for reprocessing.

3. If possible, purge the DDL history table manually to ensure that essential rows are
not purged accidentally. If you require an automated purging mechanism, use the
PURGEDDLHISTORY parameter in the Manager parameter file. You can specify
maximum and minimum lengths of time to keep a row. For more information, see
Reference for Oracle GoldenGate.

Chapter 15
Deleting the DDL Marker Table

15-3

Note:

Temporary tables created by Oracle GoldenGate to increase performance
might be purged at the same time as the DDL history table, according to the
same rules. The names of these tables are derived from the name of the
history table, and their purging is reported in the Manager report file. This is
normal behavior.

Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the
history table fails if the DDL trigger is enabled. This is a safety measure to prevent the
trigger from becoming invalid and missing DDL operations.

Do not delete the DDL history table unless you want to discontinue synchronizing
DDL. The history table contains a record of DDL operations that were issued. Once an
Extract switches from using the DDL trigger to not using the trigger, as when source
database redo compatibility is advanced to 11.2.0.4 or greater, these objects can be
deleted though not immediately. It is imperative that all mining of the redo generated
before the compatibility change be complete and that this redo not need to be mined
again.

If you remove the history table, the following error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans
for the rest of the DDL environment. To choose the correct procedure, see one of the
following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the
ddl_cleartrace script on a regular basis.

This script deletes the trace file, but Oracle GoldenGate will create it again.

The default name of the DDL trace file is ggs_ddl_trace.log. It is in the
USER_DUMP_DEST directory of Oracle. The ddl_cleartrace script is in the Oracle
GoldenGate directory.

Applying Database Patches and Upgrades when DDL
Support is Enabled

Database patches and upgrades usually invalidate the Oracle GoldenGate DDL trigger
and other Oracle GoldenGate DDL objects.

Before applying a database patch, do the following.

Chapter 15
Deleting the DDL History Table

15-4

1. Log in to SQL*Plus as a user that has SYSDBA privileges.

2. Disable the Oracle GoldenGate DDL trigger by running the ddl_disable script in
SQL*Plus.

3. Apply the patch.

4. Enable the DDL trigger by running the ddl_enable script in SQL*Plus.

Note:

Database upgrades and patches generally operate on Oracle objects.
Because Oracle GoldenGate filters out those objects automatically, DDL
from those procedures is not replicated when replication starts again.

To avoid recompile errors after the patch or upgrade, which are caused if the trigger is
not disabled before the procedure, consider adding calls to @ddl_disable and
@ddl_enable at the appropriate locations within your scripts.

Apply Oracle GoldenGate Patches and Upgrades when DDL
support is Enabled

Use the following steps to apply a patch or upgrade to the DDL objects.

This section explains how to apply Oracle GoldenGate patches and upgrades when
DDL support is enabled.

Note:

If the release notes or upgrade documentation for your Oracle GoldenGate
release contain instructions similar to those provided in this section, follow
those instructions instead the ones in this section. Do not use this procedure
for an upgrade from an Oracle GoldenGate version that does not support
DDL statements that are larger than 30K (pre-version 10.4). To upgrade in
that case, follow the instructions in Restoring an Existing DDL Environment
to a Clean State.

This procedure may or may not preserve the current DDL synchronization
configuration, depending on whether the new build requires a clean installation.

1. Run GGSCI. Keep the session open for the duration of this procedure.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group

3. Stop Replicat to stop DDL replication.

STOP REPLICAT group

4. Download or extract the patch or upgrade files according to the instructions
provided by Oracle GoldenGate.

Chapter 15
Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled

15-5

5. Change directories to the Oracle GoldenGate installation directory.

6. Log in to SQL*Plus as a user that has SYSDBA privileges.

7. Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

8. Run the ddl_disable script to disable the DDL trigger.

9. Run the ddl_setup script. You are prompted for the name of the Oracle
GoldenGate DDL schema. If you changed the schema name, use the new one.

10. Run the ddl_enable.sql script to enable the DDL trigger.

11. In GGSCI, start Extract to resume DDL capture.

START EXTRACT group

12. Start Replicat to start DDL replication.

START REPLICAT group

Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle GoldenGate
DDL objects.

This procedure creates a new DDL environment and removes any current DDL history.

Note:

Due to object interdependencies, all objects must be removed and reinstalled
in this procedure.

1. If you are performing this procedure in conjunction with the installation of a new
Oracle GoldenGate version, download and install the Oracle GoldenGate files, and
create or update process groups and parameter files as necessary.

2. (Optional) To preserve the continuity of source and target structures, stop DDL
activities and then make certain that Replicat finished processing all of the DDL
and DML data in the trail. To determine when Replicat is finished, issue the
following command until you see a message that there is no more data to process.

INFO REPLICAT group

Note:

Instead of using INFO REPLICAT, you can use the EVENTACTIONS option of
TABLE and MAP to stop the Extract and Replicat processes after the DDL
and DML has been processed.

3. Run GGSCI.

4. Stop Extract to stop DDL capture.

Chapter 15
Restoring an Existing DDL Environment to a Clean State

15-6

STOP EXTRACT group

5. Stop Replicat to stop DDL replication.

STOP REPLICAT group

6. Change directories to the Oracle GoldenGate installation directory.

7. Log in to SQL*Plus as a user that has SYSDBA privileges.

8. Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

9. Run the ddl_disable script to disable the DDL trigger.

10. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL
history and marker tables, and other associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt
file that logs environment settings in case they are needed for debugging.

11. Run the marker_remove script to remove the Oracle GoldenGate marker support
system. This script produces a marker_remove_spool.txt file that logs the script
output and a marker_remove_set.txt file that logs environment settings in case
they are needed for debugging.

12. If you are changing the DDL schema for this installation, grant the following
permission to the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;

13. If you are changing the DDL schema for this installation, the schema's default
tablespace must be dedicated to that schema; do not allow any other schema to
share it. AUTOEXTEND must be set to ON for this tablespace, and the tablespace
must be sized to accommodate the growth of the GGS_DDL_HIST and GGS_MARKER
tables. The GGS_DDL_HIST table, in particular, will grow in proportion to overall DDL
activity.

Note:

If the DDL tablespace fills up, Extract stops capturing DDL. To cause
user DDL activity to fail when that happens, edit the params.sql script
and set the ddl_fire_error_in_trigger parameter to TRUE. Stopping
user DDL gives you time to extend the tablespace size and prevent the
loss of DDL capture. Managing tablespace sizing this way, however,
requires frequent monitoring of the business applications and Extract to
avoid business disruptions. Instead, Oracle recommends that you size
the tablespace appropriately and set AUTOEXTEND to ON so that the
tablespace does not fill up.

WARNING:

Do not edit any other parameters in params.sql except if you need to
follow documented instructions to change certain object names.

Chapter 15
Restoring an Existing DDL Environment to a Clean State

15-7

14. If you are changing the DDL schema for this installation, edit the GLOBALS file and
specify the new schema name with the following parameter.

GGSCHEMA schema_name

15. Run the marker_setup script to reinstall the Oracle GoldenGate marker support
system. You are prompted for the name of the Oracle GoldenGate schema.

16. Run the ddl_setup script. You are prompted for the name of the Oracle
GoldenGate DDL schema.

17. Run the role_setup script to recreate the Oracle GoldenGate DDL role.

18. Grant the role to all Oracle GoldenGate users under which the following Oracle
GoldenGate processes run: Extract, Replicat, GGSCI, and Manager. You might
need to make multiple grants if the processes have different user names.

19. Run the ddl_enable.sql script to enable the DDL trigger.

Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that maintains
continuity between source and target DDL operations.

Note:

Due to object interdependencies, all objects must be removed.

1. Run GGSCI.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group

3. Stop Replicat to stop DDL replication.

STOP REPLICAT group

4. Change directories to the Oracle GoldenGate installation directory.

5. Run SQL*Plus and log in as a user that has SYSDBA privileges.

6. Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

7. Run the ddl_disable script to disable the DDL trigger.

8. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL
history and marker tables, and the associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt
file that logs current user environment settings in case they are needed for
debugging.

9. Run the marker_remove script to remove the Oracle GoldenGate marker support
system. This script produces a marker_remove_spool.txt file that logs the script
output and a marker_remove_set.txt file that logs environment settings in case
they are needed for debugging.

Chapter 15
Removing the DDL Objects from the System

15-8

16
Automatic Conflict Detection and
Resolution

You can configure Oracle GoldenGate to automatically detect and resolve conflicts
that occur when same data is updated concurrently at different sites.

Topics:

• About Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle Databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and
resolution in these databases. To do this, you must ensure that PL/SQL call is
done at the source and the target databases.

• Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution
in Oracle Database with the DBMS_GOLDENGATE_ADM package.

• Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

• Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in
an Oracle Database by querying data dictionary views.

About Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle Databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and resolution
in these databases. To do this, you must ensure that PL/SQL call is done at the source
and the target databases.

This feature is intended for use with bi-directional replication.

Note:

This chapter is for the automatic conflict detection and resolution feature that
is specific to Oracle GoldenGate 12c (12.3.0.1) and Oracle Database 12c
Release 2 (12.2) and later, which is configured in an Oracle Database. There
is also a general Oracle GoldenGate feature for conflict detection and
resolution, which is called Oracle GoldenGate conflict detection and
resolution (CDR). Oracle GoldenGate CDR is configured in the Replicat
parameter file.

You can configure only one of the following types of automatic conflict detection and
resolution for a single table:

16-1

• The automatic conflict detection and resolution feature that is specific to Oracle
Database 12c Release 2 (12.2)

• Oracle GoldenGate CDR

• Automatic Conflict Detection and Resolution

• Latest Timestamp Conflict Detection and Resolution

• Delta Conflict Detection and Resolution

• Column Groups

Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle Databases. To configure conflict
detection and resolution for a table, call the ADD_AUTO_CDR procedure in the
DBMS_GOLDENGATE_ADM package.

When Oracle GoldenGate captures changes that originated at an Oracle Database,
each change is encapsulated in a row logical change record (LCR). A row LCR is a
structured representation of a DML row change. Each row LCR includes the operation
type, old column values, and new column values. Multiple row LCRs can be part of a
single database transaction.

When more than one replica of a table allows changes to the table, a conflict can
occur when a change is made to the same row in two different databases at nearly the
same time. Oracle GoldenGate replicates changes using the row LCRs. It detects a
conflict by comparing the old values in the row LCR for the initial change from the
origin database with the current values of the corresponding table row at the
destination database identified by the key columns. If any column value does not
match, then there is a conflict.

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting
values in the row with some values from the row LCR, ignoring the values in the row
LCR, or computing a delta to update the row values.

Automatic conflict detection and resolution does not require application changes for
the following reasons:

• Oracle Database automatically creates and maintains invisible timestamp
columns.

• Inserts, updates, and deletes use the delete tombstone log table to determine if a
row was deleted.

• LOB column conflicts can be detected.

• Oracle Database automatically configures supplemental logging on required
columns.

Supplemental logging is required to ensure that each row LCR has the information
required to detect and resolve a conflict. Supplemental logging places additional
information in the redo log for the columns of a table when a DML operation is
performed on the table. When you configure a table for Oracle GoldenGate conflict
detection and resolution, supplemental logging is configured automatically for all of the
columns in the table. The additional information in the redo log is placed in an LCR
when a table change is replicated.

Chapter 16
About Automatic Conflict Detection and Resolution

16-2

See Also:

• Oracle Database Utilities for information about supplemental logging

Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to
configure a table for automatic Oracle GoldenGate conflict detection and resolution, a
hidden timestamp column is added to the table. This hidden timestamp column
records the time of a row change, and this information is used to detect and resolve
conflicts.

When a row LCR is applied, a conflict can occur for an INSERT, UPDATE, or DELETE
operation. The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

INSERT A conflict is detected when the
table has the same value for a
key column as the new value
in the row LCR.

If the timestamp of the row
LCR is later than the
timestamp in the table row,
then the values in the row
LCR replace the values in the
table.

If the timestamp of the row
LCR is earlier than the
timestamp in the table row,
then the row LCR is
discarded, and the table
values are retained.

Chapter 16
About Automatic Conflict Detection and Resolution

16-3

Operation Conflict Detection Conflict Resolution

UPDATE A conflict is detected in each
of the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of
the corresponding row in
the table.

• There is a mismatch
between an old value in a
column group in the row
LCR does not match the
column value in the
corresponding table row.
A column group is a
logical grouping of one or
more columns in a
replicated table.

• The table row does not
exist. If the row is in the
tombstone table, then this
is referred to as an
update-delete conflict.

If there is a value mismatch
and the timestamp of the row
LCR is later than the
timestamp in the table row,
then the values in the row
LCR replace the values in the
table.

If there is a value mismatch
and the timestamp of the row
LCR is earlier than the
timestamp in the table row,
then the row LCR is
discarded, and the table
values are retained.

If the table row does not exist
and the timestamp of the row
LCR is later than the
timestamp in the tombstone
table row, then the row LCR is
converted from an UPDATE
operation to an INSERT
operation and inserted into the
table.

If the table row does not exist
and the timestamp of the row
LCR is earlier than the
timestamp in the tombstone
table row, then the row LCR is
discarded.

If the table row does not exist
and there is no corresponding
row in the tombstone table,
then the row LCR is converted
from an UPDATE operation to
an INSERT operation and
inserted into the table.

DELETE A conflict is detected in each
of the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of
the corresponding row in
the table.

• The table row does not
exist.

If the timestamp of the row
LCR is later than the
timestamp in the table, then
delete the row from the table.

If the timestamp of the row
LCR is earlier than the
timestamp in the table, then
the row LCR is discarded, and
the table values are retained.

If the delete is successful,
then log the row LCR by
inserting it into the tombstone
table.

If the table row does not exist,
then log the row LCR by
inserting it into the tombstone
table.

Chapter 16
About Automatic Conflict Detection and Resolution

16-4

Delta Conflict Detection and Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of the
row LCR differs from the value for the corresponding row in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column.
With delta conflict resolution, the conflict is resolved by adding the difference between
the new and old values in the row LCR to the value in the table. This resolution
method is generally used for financial data such as an account balance. For example,
if a bank balance is updated at two sites concurrently, then the converged value
accounts for all debits and credits.

Chapter 16
About Automatic Conflict Detection and Resolution

16-5

Chapter 16
About Automatic Conflict Detection and Resolution

16-6

This example shows a row being replicated at database A and database B. The
Balance column is designated as the column on which delta conflict resolution is
performed, and the TS1 column is the invisible timestamp column to track the time of
each change to the Balance column. A change is made to the Balance value in the
row in both databases at nearly the same time (@T20 in database A and @T22 in
database B). These changes result in a conflict, and delta conflict resolution is used to
resolve the conflict in the following way:

• At database A, the value of Balance was changed from 100 to 110. Therefore, the
value was increased by 10.

• At database B, the value of Balance was changed from 100 to 120. Therefore, the
value was increased by 20.

• To resolve the conflict at database A, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 20 (120–100=20). Therefore, the current
value in the table (110) is increased by 20 so that the value after conflict resolution
is 130.

• To resolve the conflict at database B, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 10 (110–100=10). Therefore, the current
value in the table (120) is increased by 10 so that the value after conflict resolution
is 130.

After delta conflict resolution, the value of the Balance column is the same for the row
at database A and database B.

Column Groups
A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on the
columns in the column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution
with the ADD_AUTO_CDR procedure, all of the scalar columns in the table are added to a
default column group. To define other column groups for the table, run the
ADD_AUTO_CDR_COLUMN_GROUP procedure. Any columns in the table that are not part of
a user-defined column group remain in the default column group for the table.

Column groups enable different databases to update different columns in the same
row at nearly the same time without causing a conflict. When column groups are
configured for a table, conflicts can be avoided even if different databases update the
same row in the table. A conflict is not detected if the updates change the values of
columns in different column groups.

Chapter 16
About Automatic Conflict Detection and Resolution

16-7

Chapter 16
About Automatic Conflict Detection and Resolution

16-8

This example shows a row being replicated at database A and database B. The
following two column groups are configured for the replicated table at each database:

• One column group includes the Office column. The invisible timestamp column
for this column group is TS1.

• Another column group includes the Title and Salary columns. The invisible
timestamp column for this column group is TS2.

These column groups enable database A and database B to update the same row at
nearly the same time without causing a conflict. Specifically, the following changes are
made:

• At database A, the value of Office was changed from 1080 to 1030.

• At database B, the value of Title was changed from MTS1 to MTS2.

Because the Office column and the Title column are in different column groups, the
changes are replicated without a conflict being detected. The result is that values in
the row are same at both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRITE, LOB ERASE, and LOB TRIM is a
piecewise LOB update. When a table that contains LOB columns is configured for
conflict detection and resolution, each LOB column is placed in its own column group,
and the column group has its own hidden timestamp column. The timestamp column is
updated on the first piecewise LOB operation.

For a LOB column, a conflict is detected and resolved in the following ways:

• If the timestamp for the LOB’s column group is later than the corresponding LOB
column group in the row, then the piecewise LOB update is applied.

• If the timestamp for the LOB’s column group is earlier than the corresponding LOB
column group in the row, then the LOB in the table row is retained.

• If the row does not exist in the table, then an error occurs

Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

For the Replicat parameter file you need to add a MAP statement that includes the table
to be replicated and the MAPINVISIBLECOLUMNS parameter.

• Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures
latest timestamp conflict detection and resolution. The
ADD_AUTO_CDR_COLUMN_GROUP procedure adds optional column groups.

• Configuring Delta Conflict Detection and Resolution
The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

Chapter 16
Configuring Automatic Conflict Detection and Resolution

16-9

Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO_CDR_COLUMN_GROUP
procedure adds optional column groups.

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding
table row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is
discarded, and the table row is not changed. When you run the ADD_AUTO_CDR
procedure, it adds an invisible timestamp column for each row in the specified table
and configures timestamp conflict detection and resolution. When you use the
ADD_AUTO_CDR_COLUMN_GROUP procedure to add one or more column groups, it adds a
timestamp for the column group and configures timestamp conflict detection and
resolution for the column group.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Optional: Run the ADD_AUTO_CDR_COLUMN_GROUP procedure and specify one or
more column groups in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 16-1 Configuring the Latest Timestamp Conflict Detection and
Resolution for a Table

This example configures latest timestamp conflict detection and resolution for the
hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Example 16-2 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution
on the hr.employees table:

• The job_identifier_cg column group includes the job_id, department_id, and
manager_id columns.

• The compensation_cg column group includes the salary and commission_pct
columns.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',

Chapter 16
Configuring Automatic Conflict Detection and Resolution

16-10

 column_list => 'job_id,department_id,manager_id',
 column_group_name => 'job_identifier_cg');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_list => 'salary,commission_pct',
 column_group_name => 'compensation_cg');
END;
/

Configuring Delta Conflict Detection and Resolution
The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which
delta conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 16-3 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total
column in the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 schema_name => 'oe',
 table_name => 'orders');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 schema_name => 'oe',
 table_name => 'orders',
 column_name => 'order_total');
END;
/

Chapter 16
Configuring Automatic Conflict Detection and Resolution

16-11

Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

• Altering Conflict Detection and Resolution for a Table

• Altering a Column Group

• Purging Tombstone Rows

• Removing Conflict Detection and Resolution From a Table

• Removing a Column Group

• Removing Delta Conflict Detection and Resolution

Altering Conflict Detection and Resolution for a Table

The ALTER_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict
detection and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for
the table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 16-4 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the hr.employees table to
specify that delete conflicts are tracked in a tombstone table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees',
 tombstone_deletes => TRUE);
END;
/

Altering a Column Group
The ALTER_AUTO_CDR_COLUMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR_COLUMN_GROUP procedure and specify one or more
column groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Chapter 16
Managing Automatic Conflict Detection and Resolution

16-12

Example 16-5 Altering a Column Group

This example removes the manager_id column from the job_identifier_cg column
group for the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_group_name => 'job_identifier_cg',
 remove_column_list => 'manager_id');
END;
/

Note:

If there is more than one column, then use a comma-separated list.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before
a specified date and time. This procedure removes the tombstone rows for all tables
configured for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log
from growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Example 16-6 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December, 1,
2015 Eastern Standard Time. The timestamp must be entered in TIMESTAMP WITH
TIME ZONE format.

EXEC DBMS_GOLDENGATE_ADM.PURGE_TOMBSTONES('2015-12-01 15:00:00.000000
EST');

Removing Conflict Detection and Resolution From a Table
The REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package removes
automatic conflict detection and resolution from a table. This procedure also removes
any column groups and delta conflict detection and resolution configured for the table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Chapter 16
Managing Automatic Conflict Detection and Resolution

16-13

Example 16-7 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Removing a Column Group
The REMOVE_AUTO_CDR_COLUMN_GROUP procedure removes a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_COLUMN_GROUP procedure and specify the name of the
column group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 16-8 Removing a Column Group

This example removes the compensation_cg column group from the hr.employees
table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_group_name => 'compensation_cg');
END;
/

Removing Delta Conflict Detection and Resolution

The REMOVE_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
removes delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_DELTA_RES procedure and specify the column.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 16-9 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the order_total
column in the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_DELTA_RES(
 schema_name => 'oe',
 table_name => 'orders',

Chapter 16
Managing Automatic Conflict Detection and Resolution

16-14

 column_name => 'order_total');
END;
/

Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in an
Oracle Database by querying data dictionary views.

• Displaying Information About the Tables Configured for Conflicts

• Displaying Information About Conflict Resolution Columns

• Displaying Information About Column Groups

Displaying Information About the Tables Configured for Conflicts
The ALL_GG_AUTO_CDR_TABLES view displays information about the tables configured
for Oracle GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG_AUTO_CDR_TABLES view.

Example 16-10 Displaying Information About the Tables Configured for
Conflict Detection and Resolution

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner for each table.

• The table name for each table.

• The tombstone table used to store rows deleted for update-delete conflicts, if a
tombstone table is configured for the table.

• The hidden timestamp column used for conflict resolution for each table.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN TOMBSTONE_TABLE FORMAT A15
COLUMN ROW_RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 TOMBSTONE_TABLE,
 ROW_RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_TABLES
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNER TABLE_NAME TOMBSTONE_TABLE ROW_RESOLUTION_COLUMN
--------------- --------------- --------------- -------------------------

Chapter 16
Monitoring Automatic Conflict Detection and Resolution

16-15

HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
OE ORDERS DT$_ORDERS CDRTS$ROW

Displaying Information About Conflict Resolution Columns
The ALL_GG_AUTO_CDR_COLUMNS view displays information about the columns
configured for Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and
resolution. The columns can be configured for latest timestamp conflict resolution in a
column group. In addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMNS view.

Example 16-11 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner for each table.

• The table name for each table.

• If the column is in a column group, then the name of the column group.

• The column name.

• If the column is configured for latest timestamp conflict resolution, then the name
of the hidden timestamp column for the column.

COLUMN TABLE_OWNER FORMAT A10
COLUMN TABLE_NAME FORMAT A10
COLUMN COLUMN_GROUP_NAME FORMAT A17
COLUMN COLUMN_NAME FORMAT A15
COLUMN RESOLUTION_COLUMN FORMAT A23

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 COLUMN_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMNS
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNE TABLE_NAME COLUMN_GROUP_NAME COLUMN_NAME RESOLUTION_COLUMN
---------- ---------- ----------------- ---------------

HR EMPLOYEES COMPENSATION_CG COMMISSION_PCT
CDRTS$COMPENSATION_CG
HR EMPLOYEES COMPENSATION_CG SALARY
CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG MANAGER_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG JOB_ID

Chapter 16
Monitoring Automatic Conflict Detection and Resolution

16-16

CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG DEPARTMENT_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES IMPLICIT_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ LAST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ HIRE_DATE CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ FIRST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMAIL CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMPLOYEE_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_MODE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_DATE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ CUSTOMER_ID CDRTS$ROW
OE ORDERS DELTA$ ORDER_TOTAL
OE ORDERS IMPLICIT_COLUMNS$ PROMOTION_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_STATUS CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ SALES_REP_ID CDRTS$ROW

In this example, the columns with IMPLICIT_COLUMNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column
group. The columns with DELTA$ for the column group name are configured for delta
conflict detection and resolution, and these columns do not have a resolution column.

Displaying Information About Column Groups

The ALL_GG_AUTO_CDR_COLUMN_GROUPS view displays information about the column
groups configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution
using the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can
configure column groups using the ADD_AUTO_CDR_COLUMN_GROUP procedure in the
DBMS_GOLDENGATE_ADM package.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMN_GROUPS view.

Example 16-12 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner.

• The table name.

• The name of the column group.

• The hidden timestamp column used for conflict resolution for each column group.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN COLUMN_GROUP_NAME FORMAT A20
COLUMN RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,

Chapter 16
Monitoring Automatic Conflict Detection and Resolution

16-17

 COLUMN_GROUP_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMN_GROUPS
 ORDER BY TABLE_OWNER, TABLE_NAME;

The output looks similar to the following:

TABLE_OWNER TABLE_NAME COLUMN_GROUP_NAME RESOLUTION_COLUMN
--------------- --------------- --------------------

HR EMPLOYEES COMPENSATION_CG CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG
CDRTS$JOB_IDENTIFIER_CG

Chapter 16
Monitoring Automatic Conflict Detection and Resolution

16-18

17
Using Parallel Replicat

You can create (or add) and configure parallel replication in your environment. New
Parallel Replicat processes then process the information in all the internal stages, from
the beginning to the end in parallel. Components, such as Mappers, Master, and
Appliers are also explained.

To know more about parallel Replicat and the parallel replication architecture, see
About Parallel Replicat.

Topics:

• Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

• Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their
description.

• Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the
command line interfaces GGSCI and the Admin Client.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes, known
as apply servers, apply transactions in parallel while preserving the original transaction
atomicity.

The architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database.

17-1

The Mappers read the trail file and map records, forward the mapped records to the
Master. The batches are sent to the Appliers where they are applied to the target
database.

The Master process consists of two separate threads, Collater and Scheduler. The
Collater is responsible for managing and communicating with the Mappers, along with
receiving the mapped transactions and reordering them into a single in-order stream.
The Scheduler is responsible for managing and communicating with the Appliers,
along with reading transactions from the Collater, batching them, and scheduling them
to Appliers.

The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is
required for CDB mode for Oracle Database because it is responsible for aggregating
information pertaining to the different target PDBs and reporting a unified picture. The
Scheduler controller is created for simplicity and uniformity of implementation, even
when not in CDB mode. Every process reads the parameter file and shares a single
checkpoint file.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls
the number of threads used to read the trail
file. The minimum value is 1, maximum value
is 100 and the default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls
the number of connections in the target
database used to apply the changes. The
default value is four.

Chapter 17
Basic Parameters for Parallel Replicat

17-2

Parameter Description

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can
set a minimum and maximum value to define
the ranges in which the Replicat automatically
adjusts its parallelism. There are no defaults.
Do not use with APPLY_PARALLELISM at same
time.

SPLIT_TRANS_REC Specifies that large transactions should be
broken into pieces of specified size and
applied in parallel. Dependencies between
pieces are still honored. Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode,
which forces transactions to be committed in
trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks
when batching transactions. The default value
is 10000.

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction
larger than this size, it will serialize it, resulting
in decreased performance. However,
increasing this value will also increase the
amount of memory consumed by parallel
Replicat.

Example Parameter File

replicat repA
userid ggadmin, password ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
SPLIT_TRANS_RECS 1000
map *.*, target *.*;

Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the
command line interfaces GGSCI and the Admin Client.

A parallel Replicat requires a checkpoint table so both the Administration Server UI
and Admin Client issue an error when the parallel Replicat does not include a
checkpoint table.

Chapter 17
Creating a Parallel Replicat

17-3

Note:

Parallel replication does not support COMMIT_SERIALIZATION in Integrated
Mode. To use this apply process, use Integrated Replicat.

Creating a Non-Integrated Parallel Replication with the Administration Server

1. Open a browser and connect to the Service Manager that you created with the
Configuration Assistant:

https://server_name:service_manger_port/

For Example, https://localhost:9000/. In an non secured environment, use http
instead of https.

The Oracle GoldenGate Service Manager is displayed.

2. Enter the username and password you created and click Sign In.

In the Service Manager, you can see servers that are running.

3. In the Services section, click Administration Server, and then log in.

4. Click the Application Navigation icon to the left of the page title to expand the
navigation panel.

5. Create the checkpoint table by clicking Configuration in the right navigation
panel.

6. Ensure that you have a valid credential and log in to the database by clicking the
‘log in database’ icon under Action.

7. Click the + sign to add a checkpoint table.

8. Enter the schema.name of the checkpoint table that you would like to create, and
then click Submit.

9. Validate that the table was created correctly by logging out of the Credential Alias
using the log out database icon, and then log back in.

Once the log in is complete, your new checkpoint table is listed.

10. Click Overview to return to the main Administration Server page.

11. Click the + sign next to Replicats.

12. Select Nonintegrated Replicat then click Next.

13. Enter the required information making sure that you complete the Credential
Domain and Credential Alias fields before completing the Checkpoint Table field,
and then select your newly created Checkpoint Table from the list.

14. Click Next, and then click Create and Run to complete the Replicat creation.

Creating a Non-Integrated Parallel Replicat with the Admin Client

1. Go the bin directory of your Oracle GoldenGate installation directory.

cd $OGG_HOME/bin

2. Start the Admin Client.

./adminclient

Chapter 17
Creating a Parallel Replicat

17-4

The Admin Client command prompt is displayed.

OGG (not connected) 12>

3. Connect to the Service Manager deployment source:

connect http://localhost:9500 deployment Target1 as oggadmin password welcome1

You must use http or https in the connection string; this example is a non-SSL
connection.

4. Add the Parallel Replicat, which may take a few minutes to complete:

add replicat R1, parallel, exttrail bb checkpointtable ggadmin.ggcheckpoint

You could use just the two character trail name as part of the ADD REPLICAT or you
can use the full path, such as /u01/oggdeployments/target1/var/lib/data/bb.

5. Verify that the Replicat is running:

info replicat R1

Messages similar to the following are displayed:

REPLICAT R1 Initialized 2016-12-20 13:56 Status RUNNING
Parallel
Checkpoint Lag 00:00:00 (updated 00:00:22 ago)
Process ID 30007
Log Read
Checkpoint File ./ra000000000First Record RBA 0

Chapter 17
Creating a Parallel Replicat

17-5

18
Using Procedural Replication

Learn what procedural replication is and how you can configure it.

For procedural replication concepts, see About Procedural Replication.

Topics:

• Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

• Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the
TRANLOGOPTIONS option, ENABLE_PROCEDURAL_REPLICATION, to yes.

• Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM
package to determine whether Oracle GoldenGate procedural replication is on or
off.

• Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

• Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude
for procedure replication.

• Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of
Replicat when an procedural error occurs.

• Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and
NONE.

• Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

• Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate
procedural replication.

Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle
Database must have a built in mechanism to identify the procedures that are enabled
for this optimization.

18-1

PL/SQL pragmas are used to indicate which procedures can be replicated. When the
pragma is specified, a callback is made to Logminer on entry and exit from the routine.
The callback provides the name of the procedure call and arguments and indicates if
the procedure exited successfully or with an error. Logminer augments the redo
stream with the information from the callbacks. For supported procedures, the normal
redo generated by the procedure is suppressed, and only the procedure call is
replicated.

A new trail record is generated to identify procedural replication. This trail record
leverages existing trail column data format for arguments passed to PL/SQL
procedures. For LOBs, data is passed in chunks similar to existing trail format for
LOBs. This trail record has sufficient information to replay the procedure as-is on the
target.

When you enable procedural replication, it prevents writing of individual records
impacted by the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, the Replicat can replay
the entire PL/SQL procedure.

Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the
TRANLOGOPTIONS option, ENABLE_PROCEDURAL_REPLICATION, to yes.

Once you enable the procedural option for one Extract, it remains on and can not be
disabled.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle
Database Vault Administrator’s Guide.

To enable procedural replication:

1. Ensure that you are in triggerless mode, see Prerequisites for Configuring DDL.

2. Connect to the source database as an Oracle GoldenGate administrator with
dblogin.

3. Set the TRANLOGOPTIONS parameter option to yes.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)

Procedural replication is enabled for Extract.

Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package
to determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle
Database Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLICATION_ON function.

Chapter 18
Enabling Procedural Replication

18-2

Example 18-1 Running the GG_PROCEDURE_REPLICATION_ON Function

SET SERVEROUTPUT ON
DECLARE
 on_or_off NUMBER;
BEGIN
 on_or_off := DBMS_GOLDENGATE_ADM.GG_PROCEDURE_REPLICATION_ON;
 IF on_or_off=1 THEN
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is
ON.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is
OFF.');
 END IF;
END;
/

Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

To enable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw

DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Add supplemental logging for procedural replication.

ADD PROCEDURETRANDATA

INFO OGG-13005 PROCEDURETRANDATA supplemental logging has been
enabled.

Supplemental logging is enabled for procedure replication.

To disable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw

DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Remove supplemental logging for procedure replication.

DELETE PROCEDURETRANDATA

Supplemental logging is disabled for procedure replication.

To view information about supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

Chapter 18
Enabling and Disabling Supplemental Logging

18-3

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw

DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Display supplemental logging information for procedure replication.

INFO PROCEDURETRANDATA

Supplemental logging information for procedure replication is displayed.

Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for
procedure replication.

You group supported packages and procedures using feature groups. You use the
procedure parameter with the INCLUDE or EXCLUDE keyword to filter features for
procedure replication.

In the procedure parameter, INCLUDE or EXCLUDE specify the beginning of a filtering
clause. They specify the procedures to replicate (INCLUDE) or filter out (EXCLUDE). The
filtering clause must consist of the INCLUDE ALL_SUPPORTED or EXCLUDE
ALL_SUPPORTED keyword followed by any valid combination of the other filtering options
of the procedure parameter. The EXCLUDE filter takes precedence over any INCLUDE
filters that contain the same criteria.

Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you
must use the RULE option in your parameter file as follows:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED

or

PROCEDURE INCLUDE FEATURE AQ, RULE

Do not use PROCEDURE INCLUDE FEATURE AQ without the RULE option. See
Advanced Queue Concepts.

Including all system supplied packages at Extract:

1. Connect to Extract in the source database.

EXTRACT edba

USERIDALIAS admin_dbA DOMAIN ORADEV

2. Create a new trail file.

EXTTRAIL ea

3. Enable procedure replication, if not already done.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)

4. Include filter for procedure replication.

Chapter 18
Filtering Features for Procedural Replication

18-4

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED

You have successfully included all system supplied packages for procedure
replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.

REPLICAT rdba

USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS

You have successfully excluded specific packages for procedure replication.

Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat
when an procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the
following steps sets up error handling:

1. Connect to Replicat in the target database.

REPLICAT rdba

USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS

3. Specify error handling parameter, see REPERROR in Reference for Oracle
GoldenGate for other options.

REPERROR (PROCEDURE, DISCARD)

You have successfully handled errors for procedural replication.

Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and NONE.

PL/SQL enter and exit markers are logged for procedures with pragmas AUTO, MANUAL,
and UNSUPPORTED. The redo logs generated between the enter and exit markers are
grouped and discarded.

Following is a list of the packages and procedures that are pragma constructs for
replication. Any package or procedure not in this list is not considered a pragma
construct for PL/SQL replication and is equivalent to pragma NONE.

PL/SQL Procedures with Pragma are UNSUPPORTED

Procedures and packages with the pragma UNSUPPORTED stop apply at the point of
procedure invocation so that manual intervention can be taken. The following
procedures are pragma and UNSUPPORTED.

Chapter 18
Handling Procedural Replication Errors

18-5

Sche
ma

Package Procedure Pragma

SYS DBMS_REDEFINITI
ON

ABORT_UPDATE PRAGMA UNSUPPORTED

SYS DBMS_REDEFINITI
ON

EXECUTE_UPDATE PRAGMA UNSUPPORTED

XDB DBMS_XDBZ ADD_APPLICATION_P
RINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ CHANGE_APPLICATIO
N_MEMBERSHIP

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ DELETE_APPLICATIO
N_PRINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ SET_APPLICATION_P
RINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN CREATENONCEKEY PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN INSTALLDEFAULTWAL
LET

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN MOVEXDB_TABLESPAC
E

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN REBUILDHIERARCHIC
ALINDEX

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATION
MAPPING

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATION
METHOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG CLEARHTTPDIGESTS PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICAT
IONMAPPING

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICAT
IONMETHOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTMAPPIN
G

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMAUTHE
NTICATION

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMTRUST PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ENABLEDIGESTAUTHE
NTICATION

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ISGLOBALPORTENABL
ED

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETDYNAMICGROUPST
ORE

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETGLOBALPORTENAB
LED

PRAGMA UNSUPPORTED with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-6

Sche
ma

Package Procedure Pragma

XDB DBMS_XDB_CONFIG SETHTTPCONFIGREAL
M

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XMLINDEX DROPPARAMETER PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XMLINDEX MODIFYPARAMETER PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XMLINDEX REGISTERPARAMETER PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XMLSCHEMA COPYEVOLVE PRAGMA UNSUPPORTED with COMMIT

PL/SQL Procedures with Pragma AUTO

For the procedures and packages with the pragma AUTO, the top-level PL/SQL API is
called during apply.

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM ADD_AUTH_TO_REALM PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_CMD_RULE_TO_P
OLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_FACTOR_LINK PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_INDEX_FUNCTIO
N

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_NLS_DATA PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_OBJECT_TO_REA
LM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_OWNER_TO_POLI
CY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_POLICY_FACTOR PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_REALM_TO_POLI
CY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_RULE_TO_RULE_
SET

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DATAPUM
P_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DDL PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DIAGNOS
TIC_ADMIN

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_MAINTEN
ANCE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PREPROC
ESSOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PROXY_U
SER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_SCHEDUL
ER_USER

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-7

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM AUTHORIZE_TTS_USE
R

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CHANGE_IDENTITY_F
ACTOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CHANGE_IDENTITY_V
ALUE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_DOMAIN_IDE
NTITY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_FACTOR PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_FACTOR_TYP
E

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_IDENTITY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_IDENTITY_M
AP

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_MAC_POLICY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_POLICY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_POLICY_LAB
EL

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_REALM PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_ROLE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_RULE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_RULE_SET PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_SESSION_EV
ENT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_SESSION_EV
ENT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_AUTH_FROM_
REALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_CMD_RULE_F
ROM_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR_LIN
K

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR_TYP
E

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-8

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM DELETE_IDENTITY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_IDENTITY_M
AP

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_INDEX_FUNC
TION

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_MAC_POLICY
_CASCADE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OBJECT_FRO
M_REALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OWNER_FROM
_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_FAC
TOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_LAB
EL

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_REALM PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_REALM_CASC
ADE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_REALM_FROM
_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_ROLE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_RULE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_RULE_FROM_
RULE_SET

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_RULE_SET PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_SESSION_EV
ENT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_SYSTEM_EVE
NT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV_DICTIO
NARY_ACCTS

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV_PATCH_
ADMIN_AUDIT

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_ORADEBUG PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_DOMAIN_IDENT
ITY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_POLICY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_DV PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_DV_DICTION
ARY_ACCTS

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_DV_PATCH_A
DMIN_AUDIT

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-9

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM ENABLE_ORADEBUG PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_FACTOR PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_FACTOR_TYP
E

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_POLICY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_REALM PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_ROLE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_RULE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_RULE_SET PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_DATAP
UMP_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_DDL PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_DIAGN
OSTIC_ADMIN

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_MAINT
ENANCE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_PREPR
OCESSOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_PROXY
_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_SCHED
ULER_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_TTS_U
SER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_FACTOR PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_FACTOR_TYP
E

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_IDENTITY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_MAC_POLICY PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_POLICY_DES
CRIPTION

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_POLICY_STA
TE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_REALM PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_REALM_AUTH PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_ROLE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_RULE PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_RULE_SET PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-10

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM UPDATE_SESSION_EV
ENT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_SYSTEM_EVE
NT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_ADMIN_AUDI
T

PRAGMA AUTO

DVSYS DBMS_MACADM CREATE_MACOLS_CON
TEXTS

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_MACOLS_CONTE
XTS

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS AFTER_CREATE PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS AFTER_DROP PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS BEFORE_ALTER PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ADD_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ADD_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ALTER_COMPARTMENT
S

PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ALTER_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

CONFIGURE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

CREATE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DISABLE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_ALL_COMPARTM
ENTS

PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_ALL_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ENABLE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

INSERT_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SAVE_DEFAULT_LABE
LS

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-11

Sche
ma

Package Procedure Pragma

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_DEFAULT_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_LEVELS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_ROW_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_USER_LABELS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

STORE_LABEL_LIST PRAGMA AUTO

LBACS
YS

LBAC_POLICY_ADM
IN

ALTER_SCHEMA_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

APPLY_SCHEMA_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

APPLY_TABLE_POLIC
Y

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

DISABLE_SCHEMA_PO
LICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

DISABLE_TABLE_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

ENABLE_SCHEMA_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

ENABLE_TABLE_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

POLICY_SUBSCRIBE PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

POLICY_UNSUBSCRIB
E

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

REMOVE_SCHEMA_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

REMOVE_TABLE_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL_ENABL
ED

PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL_ENABL
ED_SQL

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-12

Sche
ma

Package Procedure Pragma

LBACS
YS

SA_AUDIT_ADMIN CREATE_VIEW PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN DROP_VIEW PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN NOAUDIT PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN NOAUDIT_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_COMPARTMEN
T

PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_GROUP PRAGMA AUTO

LBACS
YS

SA_COMPONENTS CREATE_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-13

Sche
ma

Package Procedure Pragma

LBACS
YS

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA ALTER_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA DISABLE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA DROP_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA ENABLE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN DROP_USER_ACCESS PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN SET_PROG_PRIVS PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN SET_USER_PRIVS PRAGMA AUTO with COMMIT

SYS DBMS_AQ AQ$_BACKGROUND_OP
ER

PRAGMA AUTO

SYS DBMS_AQ AQ$_DELETE_DIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_DELETE_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_DELETE_TIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_DIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_TIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_UPDATE_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_UPDATE_HIST_T
AB_EX

PRAGMA AUTO

SYS DBMS_AQ DEQUEUE_INTERNAL PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-14

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_SHARD
_JMS

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ REGISTRATION_REPL
ICATION

PRAGMA AUTO

SYS DBMS_AQADM ALTER_AQ_AGENT PRAGMA AUTO

SYS DBMS_AQADM CREATE_AQ_AGENT PRAGMA AUTO

SYS DBMS_AQADM DISABLE_DB_ACCESS PRAGMA AUTO

SYS DBMS_AQADM DROP_AQ_AGENT PRAGMA AUTO

SYS DBMS_AQADM ENABLE_DB_ACCESS PRAGMA AUTO

SYS DBMS_AQADM GRANT_SYSTEM_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_AQADM GRANT_TYPE_ACCESS PRAGMA AUTO

SYS DBMS_AQADM REVOKE_SYSTEM_PRI
VILEGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_QUEUE PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_SHARDED_QUE
UE

PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_
11G

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EVICTION_T
ABLE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EXCEPTION_
QUEUE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_NP_QUEUE_I
NT

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_QUEUE PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_QUEUE_TABL
E

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_SHARDED_QU
EUE

PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_EVICTION_TAB
LE

PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-15

Sche
ma

Package Procedure Pragma

SYS DBMS_AQADM_SYS DROP_QUEUE PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_SHARDED_QUEU
E_INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS ENABLE_JMS_TYPES_
INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVI
LEGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TAB
LE

PRAGMA AUTO

SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO

SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO

SYS DBMS_AQADM_SYS PSTUPD_CREATE_EVI
CTION_TABLE

PRAGMA AUTO

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE
_INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_I
NT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER
_11G_INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS START_QUEUE PRAGMA AUTO

SYS DBMS_AQADM_SYS STOP_QUEUE PRAGMA AUTO

SYS DBMS_AQELM SET_MAILHOST PRAGMA AUTO

SYS DBMS_AQELM SET_MAILPORT PRAGMA AUTO

SYS DBMS_AQELM SET_PROXY PRAGMA AUTO

SYS DBMS_AQELM SET_SENDFROM PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

BUMP_TID_SEQUENCE PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

CLEANUP_SCHEMA_IM
PORT

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_CMT_TIME_T
ABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_DEQUEUELOG
_TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_EXP_ENTRY PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_HISTORY_TA
BLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_INDEX_TABL
E

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-16

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QTAB_EXPDE
P

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_META PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_SEQ PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_SIGNATURE_
TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_SUBSCRIBER
_TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_TIMEMGR_TA
BLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_REBUILD_
IDX

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_SHARDED_
Q

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_WORK PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_WORK_REM
AINING

PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_MOUNT PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_MOUNTP PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_STORE PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

MOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

REGISTERSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

UNMOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

UNREGISTERSTORE_L
OG

PRAGMA AUTO

SYS DBMS_DBFS_SFS NORMALIZEFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_CONTE
NT_ADMIN

REORGANIZEFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_CONTE
NT_ADMIN

SHRINKFS PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-17

Sche
ma

Package Procedure Pragma

SYS DBMS_DBFS_SFS_A
DMIN

CREATEFILESYSTEM_
LOG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

DELETE_ORPHANS_LO
G

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

DROPFILESYSTEM_LO
G

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_ATTRV PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_FS PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_GRANTS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_SEQ PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_SNAP PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_TABP PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_TAB_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_VOL PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

INITFILESYSTEM_LO
G

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

PARTITION_SEQUENC
E_LOG

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

RECACHE_SEQUENCE_
LOG

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

REGISTERFILESYSTE
M_LOG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

SETFSPROPERTIES_L
OG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

UNREGISTERFILESYS
TEM_LOG

PRAGMA AUTO

SYS DBMS_DDL SET_TRIGGER_FIRIN
G_PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_DDL SET_TRIGGER_FIRIN
G_PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_FGA DISABLE_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_FGA DROP_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_FGA ENABLE_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_ADM_INT_I

ADD_AUTO_CDR_COLG
ROUP_INT

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-18

Sche
ma

Package Procedure Pragma

SYS DBMS_FGA ADD_AUTO_CDR_DELT
A_RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_AUTO_CDR_INT PRAGMA AUTO with COMMIT

SYS DBMS_FGA ALTER_AUTO_CDR_CO
LGROUP_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ALTER_AUTO_CDR_IN
T

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_C
OLGROUP_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_D
ELTA_RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_I
NT

PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_COLUMN PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_COLUMN_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_END PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_START PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_L
OGSTDBY

EDS_EVOLVE_DISABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_L
OGSTDBY

EDS_EVOLVE_ENABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_R
OLLING

DESTROY_META PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

INSERT_DGLRDDIR PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

INSERT_DGLRDEVT PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

SET_UPGRADE_FLAGS PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPDATE_DGLRDINS_P
ROGRESS

PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDCON PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDDAT PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDINS PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-19

Sche
ma

Package Procedure Pragma

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDPAR PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDSTA PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDSTS PRAGMA AUTO

SYS DBMS_ISCHED CREATE_CREDENTIAL PRAGMA AUTO with COMMIT

SYS DBMS_ISCHED EXEC_JOB_RUN_LSA PRAGMA AUTO

SYS DBMS_ISCHED SET_AGENT_REGISTR
ATION_PASS

PRAGMA AUTO with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE PRAGMA AUTO with COMMIT

SYS DBMS_PRVTAQIS ADD_DURABLE_SUB PRAGMA AUTO with COMMIT

SYS DBMS_PRVTAQIS ALTER_SUBSCRIBER_
12G

PRAGMA AUTO

SYS DBMS_PRVTAQIS REMOVE_SUBSCRIBER
_12G

PRAGMA AUTO

SYS DBMS_REDACT ADD_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_REDACT ALTER_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_REDACT APPLY_POLICY_EXPR
_TO_COL

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT CREATE_POLICY_EXP
RESSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT DISABLE_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_REDACT DROP_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_REDACT DROP_POLICY_EXPRE
SSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT ENABLE_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_REDACT FPM_MASK PRAGMA AUTO with COMMIT

SYS DBMS_REDACT FPM_UNMASK PRAGMA AUTO with COMMIT

SYS DBMS_REDACT UPDATE_FULL_REDAC
TION_VALUES

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT UPDATE_POLICY_EXP
RESSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

ABORT_REDEF_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

ABORT_ROLLBACK PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

COPY_TABLE_DEPEND
ENTS

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

FINISH_REDEF_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

REGISTER_DEPENDEN
T_OBJECT

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-20

Sche
ma

Package Procedure Pragma

SYS DBMS_REDEFINITI
ON

ROLLBACK PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

SET_PARAM PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

START_REDEF_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

SYNC_INTERIM_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

UNREGISTER_DEPEND
ENT_OBJECT

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ADD_GROUPED_POLIC
Y

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ADD_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ADD_POLICY_CONTEX
T

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ALTER_GROUPED_POL
ICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ALTER_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT CREATE_POLICY_GRO
UP

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DELETE_POLICY_GRO
UP

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DISABLE_GROUPED_P
OLICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_GROUPED_POLI
CY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_POLICY_CONTE
XT

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ENABLE_GROUPED_PO
LICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ENABLE_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT REFRESH_GROUPED_P
OLICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT REFRESH_POLICY PRAGMA AUTO with COMMIT

SYS DBMS_RULEADM_IN
TERNAL

ADD_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

ALTER_EVALUATION_
CONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

ALTER_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

CREATE_EVALUATION
_CONTEXT

PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-21

Sche
ma

Package Procedure Pragma

SYS DBMS_RULEADM_IN
TERNAL

CREATE_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

CREATE_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_EVALUATION_C
ONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

REMOVE_RULE PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_OBJECT_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_SYSTEM_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM REVOKE_OBJECT_PRI
VILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM REVOKE_SYSTEM_PRI
VILEGE

PRAGMA AUTO

SYS DBMS_SCHEDULER ADD_EVENT_QUEUE_S
UBSCRIBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_GROUP_MEMBER PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_JOB_EMAIL_NOT
IFICATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_TO_INCOMPATIB
ILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_WINDOW_GROUP_
MEMBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_RUNNING_CHA
IN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_RUNNING_CHA
IN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ANALYZE_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER AUTO_PURGE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CHECK_CREDENTIAL PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER COPY_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_DATABASE_D
ESTINATION

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-22

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER CREATE_EVENT_SCHE
DULE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_FILE_WATCH
ER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_INCOMPATIB
ILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB_CLASS PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_PROGRAM PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_RESOURCE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_SCHEDULE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_WINDOW_GRO
UP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_ANYDATA_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVEN
T_STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVEN
T_STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_RULE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_STEP PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_METADATA_A
RGUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DELETE_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DISABLE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DISABLE1_CALENDAR
_CHECK

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-23

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER DROP_AGENT_DESTIN
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CHAIN_RULE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CHAIN_STEP PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CREDENTIAL PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_DATABASE_DES
TINATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_FILE_WATCHER PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_INCOMPATIBIL
ITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_JOB PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_JOB_CLASS PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_PROGRAM PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_PROGRAM_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_PROGRAM_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_RESOURCE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_SCHEDULE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_WINDOW PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_WINDOW_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ENABLE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER END_DETACHED_JOB_
RUN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER EVALUATE_RUNNING_
CHAIN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_AGENT_INFO PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-24

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER GET_SCHEDULER_ATT
RIBUTE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PURGE_LOG PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_EVENT_QUEU
E_SUBSCRIBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_FROM_INCOM
PATIBILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_GROUP_MEMB
ER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_JOB_EMAIL_
NOTIFICATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_WINDOW_GRO
UP_MEMBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMEN
T_VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMEN
T_VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_ATTRIBUTE_NUL
L

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ANYDATA_V
ALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ANYDATA_V
ALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ATTRIBUTE
S

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_RESOURCE_CONS
TRAINT

PRAGMA AUTO with COMMIT

Chapter 18
Procedural Replication Pragma Options

18-25

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER SET_SCHEDULER_ATT
RIBUTE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SHOW_ERRORS PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

CLEAR_SQL_TRANSLA
TION_ERROR

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

CREATE_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DEREGISTER_ERROR_
TRANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DEREGISTER_SQL_TR
ANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DROP_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

ENABLE_ERROR_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

ENABLE_SQL_TRANSL
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

REGISTER_ERROR_TR
ANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

REGISTER_SQL_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_ERROR_TRANSLA
TION_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_SQL_TRANSLATI
ON_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_SQL_TRANSLATI
ON_MODULE

PRAGMA AUTO with COMMIT

SYS DBMS_XDS ALTER_STATIC_ACL_
REFRESH

PRAGMA AUTO

SYS DBMS_XDS DISABLE_OLAP_POLI
CY

PRAGMA AUTO

SYS DBMS_XDS DISABLE_XDS PRAGMA AUTO

SYS DBMS_XDS DROP_OLAP_POLICY PRAGMA AUTO

SYS DBMS_XDS DROP_XDS PRAGMA AUTO

SYS DBMS_XDS ENABLE_OLAP_POLIC
Y

PRAGMA AUTO

SYS DBMS_XDS ENABLE_XDS PRAGMA AUTO

SYS DBMS_XDS PURGE_ACL_REFRESH
_HISTORY

PRAGMA AUTO

SYS DBMS_XDS SCHEDULE_STATIC_A
CL_REFRESH

PRAGMA AUTO

SYS DBMS_XDS SET_TRACE_LEVEL PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-26

Sche
ma

Package Procedure Pragma

SYS DBMS_XDS XDS$REFRESH_STATI
C_ACL

PRAGMA AUTO

SYS LOGSTDBY_INTERN
AL

EDS_EVOLVE_TABLE_
I

PRAGMA AUTO with COMMIT

SYS LOGSTDBY_INTERN
AL

EDS_REMOVE_TABLE_
I

PRAGMA AUTO with COMMIT

SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO

SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO

SYS XS_ACL APPEND_ACES PRAGMA AUTO

SYS XS_ACL APPEND_ACES PRAGMA AUTO

SYS XS_ACL CREATE_ACL PRAGMA AUTO

SYS XS_ACL DELETE_ACL PRAGMA AUTO

SYS XS_ACL REMOVE_ACES PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAME
TERS

PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAME
TERS

PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAME
TERS

PRAGMA AUTO

SYS XS_ACL SET_DESCRIPTION PRAGMA AUTO

SYS XS_ACL SET_PARENT_ACL PRAGMA AUTO

SYS XS_ACL SET_SECURITY_CLAS
S

PRAGMA AUTO

SYS XS_ADMIN_UTIL GRANT_SYSTEM_PRIV
ILEGE

PRAGMA AUTO

SYS XS_ADMIN_UTIL REVOKE_SYSTEM_PRI
VILEGE

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ADD_COLUMN_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ADD_COLUMN_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPEND_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPEND_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPLY_OBJECT_POLI
CY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_ACL_PARAME
TER

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_POLICY PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DELETE_ACL_PARAME
TER

PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-27

Sche
ma

Package Procedure Pragma

SYS XS_DATA_SECURIT
Y

DELETE_POLICY PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DISABLE_OBJECT_PO
LICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ENABLE_OBJECT_POL
ICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_COLUMN_CON
STRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_OBJECT_POL
ICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_DESCRIPTION PRAGMA AUTO

SYS XS_NAMESPACE ADD_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ADD_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_TEMPLATE PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DELETE_TEMPLATE PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_DESCRIPTION PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_HANDLER PRAGMA AUTO

SYS XS_PRINCIPAL ADD_PROXY_TO_DBUS
ER

PRAGMA AUTO

SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO

SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO

SYS XS_PRINCIPAL CREATE_DYNAMIC_RO
LE

PRAGMA AUTO

SYS XS_PRINCIPAL CREATE_ROLE PRAGMA AUTO

SYS XS_PRINCIPAL CREATE_USER PRAGMA AUTO

SYS XS_PRINCIPAL DELETE_PRINCIPAL PRAGMA AUTO

SYS XS_PRINCIPAL ENABLE_BY_DEFAULT PRAGMA AUTO

SYS XS_PRINCIPAL ENABLE_ROLES_BY_D
EFAULT

PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-28

Sche
ma

Package Procedure Pragma

SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO

SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_FROM
_DBUSER

PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_USER
S

PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_USER
S

PRAGMA AUTO

SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO

SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO

SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO

SYS XS_PRINCIPAL SET_ACL PRAGMA AUTO

SYS XS_PRINCIPAL SET_DESCRIPTION PRAGMA AUTO

SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_
DURATION

PRAGMA AUTO

SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_
SCOPE

PRAGMA AUTO

SYS XS_PRINCIPAL SET_EFFECTIVE_DAT
ES

PRAGMA AUTO

SYS XS_PRINCIPAL SET_GUID PRAGMA AUTO

SYS XS_PRINCIPAL SET_PROFILE PRAGMA AUTO

SYS XS_PRINCIPAL SET_USER_SCHEMA PRAGMA AUTO

SYS XS_PRINCIPAL SET_USER_STATUS PRAGMA AUTO

SYS XS_PRINCIPAL_IN
T

SET_VERIFIER_HELP
ER

PRAGMA AUTO

SYS XS_ROLESET ADD_ROLES PRAGMA AUTO

SYS XS_ROLESET ADD_ROLES PRAGMA AUTO

SYS XS_ROLESET CREATE_ROLESET PRAGMA AUTO

SYS XS_ROLESET DELETE_ROLESET PRAGMA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO

SYS XS_ROLESET SET_DESCRIPTION PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_IMPLIED_PRIVI
LEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_IMPLIED_PRIVI
LEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PARENTS PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-29

Sche
ma

Package Procedure Pragma

SYS XS_SECURITY_CLA
SS

ADD_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

CREATE_SECURITY_C
LASS

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

DELETE_SECURITY_C
LASS

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

SET_DESCRIPTION PRAGMA AUTO

SYS DBMS_RESCONFIG ADDREPOSITORYRESC
ONFIG

PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG ADDRESCONFIG PRAGMA AUTO

SYS DBMS_RESCONFIG APPENDRESCONFIG PRAGMA AUTO

SYS DBMS_RESCONFIG DELETEREPOSITORYR
ESCONFIG

PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO

SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO

SYS DBMS_XDBZ DISABLE_HIERARCHY PRAGMA AUTO with COMMIT

SYS DBMS_XDBZ ENABLE_HIERARCHY PRAGMA AUTO with COMMIT

SYS DBMS_XDB_VERSIO
N

CHECKIN_INT PRAGMA AUTO

SYS DBMS_XDB_VERSIO
N

CHECKOUT PRAGMA AUTO

SYS DBMS_XDB_VERSIO
N

MAKEVERSIONED_INT PRAGMA AUTO

Chapter 18
Procedural Replication Pragma Options

18-30

Sche
ma

Package Procedure Pragma

SYS DBMS_XDB_VERSIO
N

UNCHECKOUT_INT PRAGMA AUTO

SYS DBMS_XLSB DELETERESOURCE PRAGMA AUTO

SYS DBMS_XLSB DELNAMELOCKS PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCE PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCENXO
B

PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCENXO
BCLOB

PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCEREF PRAGMA AUTO

SYS DBMS_XLSB INSERTTOHTABLE PRAGMA AUTO

SYS DBMS_XLSB INSERTTOUSERHTAB PRAGMA AUTO

SYS DBMS_XLSB LINKRESOURCE PRAGMA AUTO

SYS DBMS_XLSB SAVEACL PRAGMA AUTO

SYS DBMS_XLSB SETREFCOUNT PRAGMA AUTO

SYS DBMS_XLSB TOUCHOID PRAGMA AUTO

PL/SQL Procedures with Pragma MANUAL

For the procedures and packages pragma-ed MANUAL, the top-level PL/SQL API is not
called.

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ AQ$_BACKGROUND_OP
ER_PAS

PRAGMA MANUAL

SYS DBMS_AQ DEQUEUE_INTERNAL_
PAS

PRAGMA MANUAL

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED_PAS

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_PROPAGATION
_SCHEDULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_QUEUE_INT PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE
_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_
11G_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS CREATE_QUEUE_INT PRAGMA MANUAL

SYS DBMS_AQADM_SYS CREATE_QUEUE_TABL
E_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS DISABLE_PROP_SCHE
DULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS DROP_QUEUE_INT PRAGMA MANUAL

Chapter 18
Procedural Replication Pragma Options

18-31

Sche
ma

Package Procedure Pragma

SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE_
INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ENABLE_PROP_SCHED
ULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVI
LEGE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TAB
LE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE PRAGMA MANUAL

SYS DBMS_AQADM_SYS RECOVER_PROPAGATI
ON_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_N
R

PRAGMA MANUAL

SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER
_11G

PRAGMA MANUAL

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIV
ILEGE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS SCHEDULE_PROPAGAT
ION_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS START_QUEUE_INT PRAGMA MANUAL

SYS DBMS_AQADM_SYS STOP_QUEUE_INT PRAGMA MANUAL

SYS DBMS_AQADM_SYS UNSCHEDULE_PROPAG
ATION_INT

PRAGMA MANUAL

SYS DBMS_GOLDENGATE
_AUTH

GRANT_ADMIN_PRIVI
LEGE

PRAGMA MANUAL with COMMIT

SYS DBMS_GOLDENGATE
_AUTH

REVOKE_ADMIN_PRIV
ILEGE

PRAGMA MANUAL with COMMIT

SYS DBMS_INTERNAL_L
OGSTDBY

EDS_EVOLVE_TABLE_
START

PRAGMA MANUAL with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE_I
NT

PRAGMA MANUAL

SYS LOGSTDBY_INTERN
AL

EDS_ADD_TABLE_I PRAGMA MANUAL with COMMIT

SYS XS_ADMIN_UTIL DROP_SCHEMA_OBJEC
TS

PRAGMA MANUAL

XDB DBMS_XDBZ0 DISABLE_HIERARCHY
_INTERNAL

PRAGMA MANUAL

XDB DBMS_XDBZ0 ENABLE_HIERARCHY_
INTERNAL

PRAGMA MANUAL

PL/SQL Procedures with Pragma NONE

For the procedures and packages pragma-ed NONE, PL/SQL markers are not
generated and no grouping is performed. Redo logs generated by these procedures
are applied or skipped based on table level replication semantics.

Chapter 18
Procedural Replication Pragma Options

18-32

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM DISABLE_EVENT PRAGMA NONE

DVSYS DBMS_MACADM DV_SANITY_CHECK PRAGMA NONE

DVSYS DBMS_MACADM ENABLE_EVENT PRAGMA NONE

DVSYS DBMS_MACADM SET_PRESERVE_CASE PRAGMA NONE

DVSYS DBMS_MACADM INIT_SESSION PRAGMA NONE

DVSYS DBMS_MACADM UPDATE_POLICY_LAB
EL_CONTEXT

PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

LABEL_AUDIT_RAISE PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

RESTORE_DEFAULT_L
ABELS

PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

SET_POLICY_LABEL_
CONTEXT

PRAGMA NONE

DVSYS DBMS_MACOUT DISABLE PRAGMA NONE

DVSYS DBMS_MACOUT ENABLE PRAGMA NONE

DVSYS DBMS_MACOUT PL PRAGMA NONE

DVSYS DBMS_MACOUT PUT_LINE PRAGMA NONE

DVSYS DBMS_MACOUT SET_FACTOR PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

SET_ROLE PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE_TR PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE_WR PRAGMA NONE

DVSYS DBMS_MACUTL CHECK_DVSYS_DML_A
LLOWED

PRAGMA NONE

DVSYS DBMS_MACUTL RAISE_ERROR PRAGMA NONE

DVSYS DBMS_MACUTL RAISE_UNAUTHORIZE
D_OPERATION

PRAGMA NONE

DVSYS EVENT SET PRAGMA NONE

DVSYS EVENT SETDEFAULT PRAGMA NONE

DVSYS EVENT SET_C PRAGMA NONE

SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE

SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE

SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE

SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE

SYS DBMS_AQ BIND_AGENT PRAGMA NONE

SYS DBMS_AQ DEQUEUE PRAGMA NONE

SYS DBMS_AQ DEQUEUE PRAGMA NONE

SYS DBMS_AQ DEQUEUE PRAGMA NONE

Chapter 18
Procedural Replication Pragma Options

18-33

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ ENQUEUE PRAGMA NONE

SYS DBMS_AQ ENQUEUE PRAGMA NONE

SYS DBMS_AQ ENQUEUE PRAGMA NONE

SYS DBMS_AQ LISTEN PRAGMA NONE

SYS DBMS_AQ LISTEN PRAGMA NONE

SYS DBMS_AQ POST PRAGMA NONE

SYS DBMS_AQ REGISTER PRAGMA NONE

SYS DBMS_AQ UNBIND_AGENT PRAGMA NONE

SYS DBMS_AQ UNREGISTER PRAGMA NONE

SYS DBMS_AQADM ADD_ALIAS_TO_LDAP PRAGMA NONE

SYS DBMS_AQADM ADD_CONNECTION_TO
_LDAP

PRAGMA NONE

SYS DBMS_AQADM ADD_CONNECTION_TO
_LDAP

PRAGMA NONE

SYS DBMS_AQADM ADD_SUBSCRIBER PRAGMA NONE

SYS DBMS_AQADM ALTER_PROPAGATION
_SCHEDULE

PRAGMA NONE

SYS DBMS_AQADM ALTER_QUEUE PRAGMA NONE

SYS DBMS_AQADM ALTER_QUEUE_TABLE PRAGMA NONE

SYS DBMS_AQADM ALTER_SHARDED_QUE
UE

PRAGMA NONE

SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE

SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE

SYS DBMS_AQADM CREATE_EXCEPTION_
QUEUE

PRAGMA NONE

SYS DBMS_AQADM CREATE_NP_QUEUE PRAGMA NONE

SYS DBMS_AQADM CREATE_QUEUE PRAGMA NONE

SYS DBMS_AQADM CREATE_QUEUE_TABL
E

PRAGMA NONE

SYS DBMS_AQADM CREATE_SHARDED_QU
EUE

PRAGMA NONE

SYS DBMS_AQADM DEL_ALIAS_FROM_LD
AP

PRAGMA NONE

SYS DBMS_AQADM DEL_CONNECTION_FR
OM_LDAP

PRAGMA NONE

SYS DBMS_AQADM DISABLE_PROPAGATI
ON_SCHEDULE

PRAGMA NONE

SYS DBMS_AQADM DROP_QUEUE PRAGMA NONE

SYS DBMS_AQADM DROP_QUEUE_TABLE PRAGMA NONE

SYS DBMS_AQADM DROP_SHARDED_QUEU
E

PRAGMA NONE

SYS DBMS_AQADM ENABLE_JMS_TYPES PRAGMA NONE

Chapter 18
Procedural Replication Pragma Options

18-34

Sche
ma

Package Procedure Pragma

SYS DBMS_AQADM ENABLE_PROPAGATIO
N_SCHEDULE

PRAGMA NONE

SYS DBMS_AQADM GET_PROP_SEQNO PRAGMA NONE

SYS DBMS_AQADM GET_REPLAY_INFO PRAGMA NONE

SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE

SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE

SYS DBMS_AQADM GET_WATERMARK PRAGMA NONE

SYS DBMS_AQADM GRANT_QUEUE_PRIVI
LEGE

PRAGMA NONE

SYS DBMS_AQADM MIGRATE_QUEUE_TAB
LE

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_RECE
IVER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_RECE
IVER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_SEND
ER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_SEND
ER

PRAGMA NONE

SYS DBMS_AQADM PURGE_QUEUE_TABLE PRAGMA NONE

SYS DBMS_AQADM RECOVER_PROPAGATI
ON

PRAGMA NONE

SYS DBMS_AQADM REMOVE_SUBSCRIBER PRAGMA NONE

SYS DBMS_AQADM RESET_REPLAY_INFO PRAGMA NONE

SYS DBMS_AQADM REVOKE_QUEUE_PRIV
ILEGE

PRAGMA NONE

SYS DBMS_AQADM SCHEDULE_PROPAGAT
ION

PRAGMA NONE

SYS DBMS_AQADM SET_WATERMARK PRAGMA NONE

SYS DBMS_AQADM START_QUEUE PRAGMA NONE

SYS DBMS_AQADM START_TIME_MANAGE
R

PRAGMA NONE

SYS DBMS_AQADM STOP_QUEUE PRAGMA NONE

SYS DBMS_AQADM STOP_TIME_MANAGER PRAGMA NONE

SYS DBMS_AQADM UNSCHEDULE_PROPAG
ATION

PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S

PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S_GET_NRP

PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S_NO_QUEUE

PRAGMA NONE

SYS DBMS_AQELM GET_MAILHOST PRAGMA NONE

Chapter 18
Procedural Replication Pragma Options

18-35

Sche
ma

Package Procedure Pragma

SYS DBMS_AQELM GET_MAILPORT PRAGMA NONE

SYS DBMS_AQELM GET_PROXY PRAGMA NONE

SYS DBMS_AQELM GET_SENDFROM PRAGMA NONE

SYS DBMS_AQELM GET_TXTIMEOUT PRAGMA NONE

SYS DBMS_AQELM HTTP_SEND PRAGMA NONE

SYS DBMS_AQELM SEND_EMAIL PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE

SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_N
O_RECPL

PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_N
O_RECPL

PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_RAW PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_B
YTES_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_M
AP_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_O
BJECT_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_S
TREAM_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_T
EXT_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_LISTEN PRAGMA NONE

SYS DBMS_AQIN AQ$_QUEUE_SUBSCRI
BERS

PRAGMA NONE

SYS DBMS_AQIN SET_DEQ_SORT PRAGMA NONE

SYS DBMS_AQIN SET_MULTI_RETRY PRAGMA NONE

SYS DBMS_AQJMS AQ$_GET_PROP_STAT PRAGMA NONE

SYS DBMS_AQJMS AQ$_GET_TRANS_TYP
E

PRAGMA NONE

SYS DBMS_AQJMS AQ$_REGISTER PRAGMA NONE

SYS DBMS_AQJMS AQ$_UNREGISTER PRAGMA NONE

SYS DBMS_AQJMS AQ$_UPDATE_PROP_S
TAT_QNAME

PRAGMA NONE

Chapter 18
Procedural Replication Pragma Options

18-36

Sche
ma

Package Procedure Pragma

SYS DBMS_AQJMS CLEAR_DBSESSION_G
UID

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCL
NTDB_CTX_CLNT

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCL
NTDB_CTX_DB

PRAGMA NONE

SYS DBMS_AQJMS GET_DB_USERNAME_F
OR_AGENT

PRAGMA NONE

SYS DBMS_AQJMS SET_DBSESSION_GUI
D

PRAGMA NONE

SYS DBMS_AQJMS SET_GLOBAL_AQCLNT
DB_CTX

PRAGMA NONE

SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE

SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE

SYS DBMS_ISCHED GET_AGENT_PASS_VE
RIFIER

PRAGMA NONE

SYS DBMS_ISCHED OBFUSCATE_CREDENT
IAL_PASSWORD

PRAGMA NONE

SYS DBMS_REDEFINITI
ON

CAN_REDEF_TABLE PRAGMA NONE

SYS DBMS_REDEFINITI
ON

REDEF_TABLE PRAGMA NONE

SYS DBMS_SCHEDULER CHECK_SYS_PRIVS PRAGMA NONE

SYS DBMS_SCHEDULER CLOSE_WINDOW PRAGMA NONE

SYS DBMS_SCHEDULER CREATE_CALENDAR_S
TRING

PRAGMA NONE

SYS DBMS_SCHEDULER CREATE_CREDENTIAL PRAGMA NONE

SYS DBMS_SCHEDULER EVALUATE_CALENDAR
_STRING

PRAGMA NONE

SYS DBMS_SCHEDULER FILE_WATCH_FILTER PRAGMA NONE

SYS DBMS_SCHEDULER GENERATE_EVENT_LI
ST

PRAGMA NONE

SYS DBMS_SCHEDULER GENERATE_JOB_NAME PRAGMA NONE

SYS DBMS_SCHEDULER GET_AGENT_VERSION PRAGMA NONE

SYS DBMS_SCHEDULER GET_CHAIN_RULE_AC
TION

PRAGMA NONE

SYS DBMS_SCHEDULER GET_CHAIN_RULE_CO
NDITION

PRAGMA NONE

SYS DBMS_SCHEDULER GET_DEFAULT_VALUE PRAGMA NONE

SYS DBMS_SCHEDULER GET_JOB_STEP_CF PRAGMA NONE

SYS DBMS_SCHEDULER GET_SYS_TIME_ZONE
_NAME

PRAGMA NONE

Chapter 18
Procedural Replication Pragma Options

18-37

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER GET_VARCHAR2_VALU
E

PRAGMA NONE

SYS DBMS_SCHEDULER GET_VARCHAR2_VALU
E

PRAGMA NONE

SYS DBMS_SCHEDULER IS_SCHEDULER_CREA
TED_AGENT

PRAGMA NONE

SYS DBMS_SCHEDULER OPEN_WINDOW PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_
STRING

PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_
STRING

PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_NAME PRAGMA NONE

SYS DBMS_SCHEDULER RUN_JOB PRAGMA NONE

SYS DBMS_SCHEDULER SET_AGENT_REGISTR
ATION_PASS

PRAGMA NONE

SYS DBMS_SCHEDULER STIME PRAGMA NONE

SYS DBMS_SCHEDULER STOP_JOB PRAGMA NONE

SYS DBMS_SCHEDULER SUBMIT_REMOTE_EXT
ERNAL_JOB

PRAGMA NONE

SYS XS_PRINCIPAL SET_PASSWORD PRAGMA NONE

SYS XS_PRINCIPAL SET_VERIFIER PRAGMA NONE

Listing the Procedures Supported for Oracle GoldenGate
Procedural Replication

The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on,
calls to the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PROCEDURES view.

Example 18-2 Displaying Information About the Packages Supported for
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

• The owner of each package

• The name of each package

• The name of each procedure

• The minimum database release from which the procedure is supported

Chapter 18
Listing the Procedures Supported for Oracle GoldenGate Procedural Replication

18-38

• Whether there is an exclusion rule that prevents the procedure from being
replicated for some database objects

COLUMN OWNER FORMAT A10
COLUMN PACKAGE_NAME FORMAT A15
COLUMN PROCEDURE_NAME FORMAT A15
COLUMN MIN_DB_VERSION FORMAT A14
COLUMN EXCLUSION_RULE_EXISTS FORMAT A14

SELECT OWNER,
 PACKAGE_NAME,
 PROCEDURE_NAME,
 MIN_DB_VERSION,
 EXCLUSION_RULE_EXISTS
 FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OWNER PACKAGE_NAME PROCEDURE_NAME MIN_DB_VERSION EXCLUSION_RULE
---------- --------------- --------------- -------------- --------------
XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING 12.2 NO
CTXSYS CTX_DDL ALTER_INDEX 12.2 NO
SYS DBMS_FGA DROP_POLICY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO
.
.
.

Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls
to subprograms in the package are replicated.

DBA_GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

Chapter 18
Monitoring Oracle GoldenGate Procedural Replication

18-39

View Description

DBA_GG_PROC_OBJECT_EXCLUSION Provides details about all database objects
that are on the exclusion list for Oracle
GoldenGate procedural replication.

A database object is added to the exclusion
list using the
INSERT_PROCREP_EXCLUSION_OBJ
procedure in the DBMS_GOLDENGATE_ADM
package. When a database object is on the
exclusion list, execution of a subprogram n the
package is not replicated if the subprogram
operates on the excluded object.

1. Connect to the database as sys (sqlplus, sqlcl, or sqldeveloper) not as an
Oracle GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

Chapter 18
Monitoring Oracle GoldenGate Procedural Replication

18-40

19
Replicating Data to the Autonomous
Database

You can replicate data to Oracle Autonomous Data Warehouse Cloud and
Autonomous Transaction Processing using Oracle GoldenGate On Premises and
Oracle GoldenGate Cloud Service.

Topics:

• About Replicating Data to Autonomous Databases
You can configure the Autonomous Database instance as a target database for
Oracle GoldenGate On Premises.

• Understanding What is Supported While Replicating to the Autonomous Database
Review the supported data types and limitations before replicating data to the
Autonomous Database.

• How Do I Replicate Data to the Autonomous Database?
You need to configure non-integrated Replicats to deliver data to the Autonomous
Database.

About Replicating Data to Autonomous Databases
You can configure the Autonomous Database instance as a target database for
Oracle GoldenGate On Premises.

The source for replicating to Autonomous Databases can be:

• Oracle GoldenGate On Premises releases 12.3.0.1.2 and later are certified with
Oracle Autonomous Data Warehouse Cloud for remote delivery using the non-
integrated Replicats only.

However, any supported release of Oracle GoldenGate for any supported
database and operating system combination that can send trail data to Oracle
GoldenGate for Oracle Database release 12.3.0.1.2 and later, can be used as
source systems.

• Oracle Database Cloud Service on Oracle Cloud and Oracle Cloud at Customer

• Oracle Exadata Cloud Service on Oracle Cloud and Oracle Cloud at Customer

Note:

You can’t set up Oracle Autonomous Data Warehouse Cloud database as a
source database for Oracle GoldenGate On Premises.

19-1

Use Case for Replicating to the Autonomous Database with Oracle GoldenGate
On Premises

Use Oracle GoldenGate On Premises to replicate data to the Autonomous Database
for:

• Real-time data warehousing: Replicate on-premises data to the Autonomous
Database to set up a staging environment for downstream ETL or real-time data
warehousing.

• Operational reporting: Replicate real-time data from multiple on-premises data
sources and deliver to the Autonomous Database for creating reports.

Understanding What is Supported While Replicating to the
Autonomous Database

Review the supported data types and limitations before replicating data to the
Autonomous Database.

Understanding Limitations

Oracle Autonomous Data Warehouse Cloud is a fully-managed data warehouse
designed to support all standard SQL and business intelligence (BI) tools and deliver
scalable analytic query performance. Oracle Autonomous Data Warehouse Cloud
provides all of the performance of the market-leading Oracle Database in a fully-
managed environment that is tuned and optimized for data warehouse workloads.
Some data types, SQL commands, and database features are not available in Oracle
Autonomous Data Warehouse Cloud.

For a complete list of database initialization parameter restrictions, database features
restrictions, SQL commands restrictions, and data types restrictions, see Autonomous
Data Warehouse Cloud for Experienced Oracle Database Users.

For more information on Autonomous Transaction Processing, see Getting Started
wtih Autonomous Transaction Processing

The Oracle Database data types that are supported by Oracle GoldenGate can be
replicated to Oracle Autonomous Data Warehouse Cloud. For a complete list of
supported data types, see Details of Support for Oracle Data Types. The support
limitations mentioned for replicating data to Oracle Database using Oracle GoldenGate
apply to replicating data to Oracle Autonomous Data Warehouse Cloud too. There are
additional limitations when replicating data into Oracle Autonomous Data Warehouse
Cloud as listed in the following section.

Oracle GoldenGate Replicat Limitations for Oracle Autonomous Data Warehouse
Cloud

Currently, only non-integrated Replicats are supported with Oracle Autonomous Data
Warehouse Cloud.

For the best compression ratio in your target tables in Oracle Autonomous Data
Warehouse Cloud, Oracle recommends replicating changes (including updates and
deletes) from your source systems as inserts into staging tables and using in-database
batch operations to merge the changes into your target tables.

Data Type Limitations for DDL and DML Replication

Chapter 19
Understanding What is Supported While Replicating to the Autonomous Database

19-2

The following data types are not supported while replicating data to Oracle
Autonomous Data Warehouse Cloud:

• LONG

• LONG RAW

• XMLTYPE STORE AS OBJECT RELATIONAL

• XMLTYPE STORE AS BINARY

• BFILE

• MEDIA

• SPATIAL

The following data types are supported only when the trail file is generated through an
integrated Extract.

• ABSTRACT/USER DEFINED TYPE

• UROWID

• ANYDATA

Only Non-integrated Replicats are supported.

DDL replication is supported depending on the restrictions in Oracle Autonomous Data
Warehouse Cloud and Autonomous Transaction Processing.

How Do I Replicate Data to the Autonomous Database?
You need to configure non-integrated Replicats to deliver data to the Autonomous
Database.

Prerequisites:

You should have the following details available with you:

• Oracle GoldenGate On Premises instance details.

• Oracle Autonomous Data Warehouse Cloud or Autonomous Transaction
Processing) .

• Your source database with Oracle GoldenGate On Premises Extract processes
configured.

To deliver data to the Autonomous Database using Oracle GoldenGate On Premises,
perform the tasks as described in the following sections:

• Configure the Autonomous Database for Replication

– Unlock the pre-created Oracle GoldenGate database user ggadmin in the
Autonomous Database.

– Create schema and target tables for which DDL replication is not enabled. See
Understanding What is Supported While Replicating to the Autonomous
Database.

– Create new application user user_target.

• Obtain the Autonomous Database client credentials.

• Configure Oracle GoldenGate On Premises for replication.

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-3

– Transfer client credentials ZIP file that you downloaded from the Autonomous
Database.

– Configure sqlnet.ora file.

– Configure tnsnames.ora file.

– Create useridalias for the ggadmin user.

• Configure Oracle GoldenGate Manager and non-integrated Replicats to deliver to
the Autonomous Database.

Configure the Autonomous Database for Replication

The steps to complete the configuration tasks are:

1. The Autonomous Database has a pre-existing user created for Oracle GoldenGate
On Premises called ggadmin. The ggadmin user has been granted the right set of
privileges for Oracle GoldenGate On Premises Replicat to work. By default, this
user is locked. To unlock the ggadmin user, connect to your Oracle Autonomous
Data Warehouse Cloud database as the ADMIN user using any SQL client tool. See
About Connecting to Autonomous Data Warehouse Cloud.

2. Run the alter user command to unlock the ggadmin user and set the password
for it. See Creating Users with Autonomous Data Warehouse Cloud.

alter user ggadmin identified by password account unlock;

3. Create the new application user user_target.

create user user_target identified by password;
grant create session, resource, create view, create table to
user_target;

4. Connect to Oracle Autonomous Data Warehouse Cloud database as the
user_target user and create your replication tables.

Obtain Oracle Autonomous Data Warehouse Cloud Client Credentials

To establish connection to your the Autonomous Database, you download client
credentials files from the Autonomous Database service console. See Downloading
Client Credentials (Wallets).

Note:

If you do not have administrator access to the Autonomous Database you
should ask your service administrator to download and provide the
credentials files to you.

1. Log into your Oracle Autonomous Data Warehouse Cloud account.

2. From the Instance page, click the menu option for the Autonomous Database
instance and select Service Console.

3. Log into the service console using the admin username and its associated
password.

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-4

4. In the service console, click the Administration tab.

5. Click Download Client Credentials.

6. Enter a password to secure your credentials zip file and click Download.

7. Save the credentials ZIP file to your local system.

The credentials ZIP file contains the following files:

• cwallet.sso

• ewallet.p12

• keystore.jks

• ojdbc.properties

• sqlnet.ora

• tnsnames.ora

• truststore.jks

You refer to the sqlnet.ora and tnsnames.ora files while configuring Oracle
GoldenGate On Premises to work with the Autonomous Database.

Configure Oracle GoldenGate On Premises for Replication

In the Oracle GoldenGate On Premises instance, you need to complete the following:

1. Log into your Oracle GoldenGate On Premises Oracle Database.

2. Create a new Oracle GoldenGate On Premises user.

CREATE user user_src IDENTIFIED BY user_src_password;
grant dba, connect, resource to user_src;

3. Create your tables and primary key.

DROP TABLE user_src.dwcs_key;
CREATE TABLE user_src.dwcs_key (n number, vc varchar2(10),PRIMARY KEY
(n));
alter database add supplemental log data;

4. Create your Extract.

extract ext1
userid user_src, password user_src_password
exttrail ./dirdat/rs
table user_src.dwcs_key;

5. Create your Extract data pump.

extract ext1pump
userid user_src, password user_src_password
RMTHOST host_IP_address, MGRPORT manager_port, SOCKSPROXY
socksproxy_IP_address
rmttrail ./dirdat/rt
table user_src.dwcs_key;

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-5

6. Add your Extracts.

add extract ext1,tranlog begin now
add exttrail ./dirdat/rs,extract ext1
add extract ext1pump,exttrailsource ./dirdat/rs
add rmttrail ./dirdat/rt,extract ext1pump
dblogin user_src, password user_src_password
add trandata user_src.dwcs_key

7. Connect to your Oracle GoldenGate On Premises instance.

ssh -i private_key -v -f -N -D port opc@IP_address_of_your_instance

8. Once you are connected to your Oracle GoldenGate On Premises instance,
change user to oracle.

sudo su - oracle

9. Transfer the credentials ZIP file that you downloaded from Oracle Autonomous
Data Warehouse Cloud to your Oracle GoldenGate On Premises instance.

10. In the Oracle GoldenGate On Premises instance, unzip the credentials file into a
new directory /u02/data/adwc_credentials. This is your key directory.

11. To configure the connection details, open your tnsnames.ora file from the oracle
client location in the Oracle GoldenGate On Premises instance.

Note:

If your Oracle GoldenGate On Premises is associated with Oracle
Database Cloud Service, the tnsnames.ora file will exist. Otherwise, you
need to create the tnsnames.ora file and the network/admin directories
under /u02/data/oci.

cd /u02/data/oci/network/admin
ls
tnsnames.ora

12. Edit the tnsnames.ora file in the Oracle GoldenGate On Premises instance to
include the connection details that is available in the tnsnames.ora file in your key
directory (the directory where you unzipped the credentials ZIP file downloaded
from Oracle Autonomous Data Warehouse Cloud).

Sample Connection String
connection_name = (description= (address=(protocol=tcps)(port=TNS
Service port)(host=ADWC_IP))
(connect_data=(service_name=ADWC_Database_Name
(security=(ssl_server_cert_dn="ADWC SSL certification")))

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-6

Note:

The tnsnames.ora file provided with the credentials file contains three
database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

For Oracle GoldenGate replication, use ADWC_Database_Name_low. See
Predefined Database Service Names for Autonomous Data Warehouse
Cloud

13. To configure the wallet, create a sqlnet.ora file in the oracle client location in the
Oracle GoldenGate On Premises instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

14. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

15. To create a useridalias, start GGSCI.

cd $GGHOME
./ggsci

16. Create the Oracle GoldenGate wallet and add the useridalias to the credential
store.

GGSCI> Create Wallet
GGSCI> add credentialstore
GGSCI> Alter credentialstore ADD USER ggadmin@connection_name PASSWORD
password alias ggadmin_alias
GGSCI> DBLOGIN USERIDALIAS ggadmin_alias

Configure Oracle GoldenGate Manager and Classic Replicat to Deliver to Oracle
Autonomous Data Warehouse Cloud

1. If you are not already connected to your Oracle GoldenGate On Premises
instance, connect using the ssh command.

ssh -i private_key opc@IP_address_of_your_VM

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-7

2. Once you are connected to your Oracle GoldenGate On Premises instance,
change the user to oracle.

sudo su - oracle

3. From your Oracle GoldenGate On Premises instance, test the connection to your
the Autonomous Database instance using sqlplus.

sqlplus ggadmin/password@connection_name

4. Create a new user for replication.

drop user user_target cascade;
create user user_target identified by password_target;
alter user user_target;
grant create session, resource, create view, create table to
user_target;

5. Log in as your new replication user.

sqlplus user_target/password_target@databasename_low

6. Create your replication tables.

create table dwcs_keytest (n number, vc varchar2(10));
alter table dwcs_keytest add constraint pk_dwcs_key primary key (n);

7. Connect to GGSCI.

cd $GGHOME
./ggsci

8. To configure, Oracle GoldenGate manager, open the mgr parameter file to edit it.

GGSCI>edit param mgr

9. Ensure that the manager parameter file has the following information:

PORT port_number
Dynamicportlist port_1-port_n
ACCESSRULE, PROG COLLECTOR, IPADDR IP_Address_GGCS_host, ALLOW
PURGEOLDEXTRACTS path_to_the_trail_file, USECHECKPOINTS, MINKEEPHOURS n
hours MINKEEPFILES n files
AUTORESTART ER *, RETRIES n, WAITMINUTES n, RESETMINUTES n

10. Add GGSCHEMA ggadmin to your GLOBALS file.

11. Stop and start the manager and confirm that it started.

GGSCI>stop mgr
GGSCI>start mgr
GGSCI>info mgr

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-8

12. Configure your Replicat file. For a complete list of Replicat parameters, see Oracle
GoldenGate Parameters in Oracle GoldenGate Reference.

replicat repdwcs
USERIDALIAS ggadmin_databasename_low
 map user_src.dwcs_key, target user_target.dwcs_key;

13. Add your Replicat to create a Replicat group.

ADD CREDENTIALSTORE
ALTER CREDENTIALSTORE ADD USER ggadmin@databasename_low
 PASSWORD complex_password alias ggadmin_databasename_low

DBLOGIN USERIDALIAS ggadmin_databasename_low

add replicat repdwcs, exttrail ./dirdat/rt

See Understanding What is Supported While Replicating to the Autonomous
Database for nodbcheckpoint limitations.

You have successfully configured a classic Replicat. You can now start your
Replicat and test data replication to the Autonomous Database.

Note:

Oracle Autonomous Data Warehouse Cloud times out and disconnects
the Replicat when it is idle for more than 60 minutes. When Replicat tries
to apply changes (when it gets new changes) after being idle, it
encounters a database error and abends. Oracle recommends that you
configure Oracle GoldenGate On Premises with AUTORESTART to avoid
having to manually restart a Replicat when it times out.

14. Insert records into your source database, and then ensure that the data is
replicated into your Oracle Autonomous Data Warehouse Cloud table using the
stats REPDWCS command.

GGSCI> STATS REPDWCS

Sending STATS request to REPLICAT REPDWCS ...

Start of Statistics at 2018-01-18 07:21:26.

Replicating from user_src.dwcs_key to databasename
.user_target.DWCS_KEY:

*** Total statistics since 2018-01-18 06:28:30 ***
 Total inserts 3.00
 Total updates 0.00
 Total deletes 0.00
 Total discards 0.00
 Total operations 3.00

Chapter 19
How Do I Replicate Data to the Autonomous Database?

19-9

A
Optional Parameters for Integrated Modes

This appendix contains optional parameters that may be required when operating
Extract in integrated capture mode or Replicat in integrated Replicat mode.
Topics:

• Additional Parameter Options for Integrated Capture
This section contains additional parameters that may be required for your Extract
configuration.

• Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTIONS parameter with the
INTEGRATEDPARAMS option or dynamically by issuing the SEND REPLICAT command
with the INTEGRATEDPARAMS option in GGSCI.

Additional Parameter Options for Integrated Capture
This section contains additional parameters that may be required for your Extract
configuration.

Integrated capture uses a database logmining server in the mining database to mine
the redo stream of the source database. You can set parameters that are specific to
the logmining server by using the TRANLOGOPTIONS parameter with the
INTEGRATEDPARAMS option in the Extract parameter file.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_CAPTURE_ADM" section in Oracle Database PL/SQL Packages
and Types Reference.

The following parameters can be set with INTEGRATEDPARAMS:

• CAPTURE_IDKEY_OBJECTS: Controls the capture of objects that can be supported by
FETCH. The default for Oracle GoldenGate is Y (capture ID key logical change
records).

• DOWNSTREAM_REAL_TIME_MINE: Controls whether the logmining server operates as
a real-time downstream capture process or as an archived-log downstream
capture process. The default is N (archived-log mode). Specify this parameter to
use real-time capture in a downstream logmining server configuration. For more
information on establishing a downstream mining configuration, see Configuring a
Downstream Mining Database .

• INLINE_LOB_OPTIMIZATION: Controls whether LOBs that can be processed inline
(such as small LOBs) are included in the LCR directly, rather than sending LOB
chunk LCRs. The default for Oracle GoldenGate is Y (Yes).

A-1

• MAX_SGA_SIZE: Controls the amount of shared memory used by the logmining
server. The shared memory is obtained from the streams pool of the SGA. The
default is 1 GB.

• PARALLELISM: Controls the number of processes used by the logmining server. The
default is 2. For Oracle Standard Edition, this must be set to 1.

• TRACE_LEVEL: Controls the level of tracing for the Extract logmining server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

• WRITE_ALERT_LOG: Controls whether the Extract logmining server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (Yes).

See Managing Server Resources.

Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTIONS parameter with the
INTEGRATEDPARAMS option or dynamically by issuing the SEND REPLICAT command with
the INTEGRATEDPARAMS option in GGSCI.

The default Replicat configuration as directed in Configuring Oracle GoldenGate Apply
should be sufficient. However, if needed, you can set the following inbound server
parameters to support specific requirements.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_APPLY_ADM" section in Oracle Database PL/SQL Packages and
Types Reference.

See Reference for Oracle GoldenGate for more information about the
DBOPTIONS parameter.

• COMMIT_SERIALIZATION: Controls the order in which applied transactions are
committed and has 2 modes, DEPENDENT_TRANSACTIONS and FULL. The default
mode for Oracle GoldenGate is DEPENDENT_TRANSACTIONS where dependent
transactions are applied in the correct order though may not necessarily be
applied in source commit order. In FULL mode, the source commit order is
enforced when applying transactions.

• BATCHSQL_MODE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction
that has already been scheduled, but not completely executed. The default is
DEPENDENT. You can use following three modes:

DEPENDENT

Dependency aware scheduling without an early start. Batched transactions are
scheduled when there are no pending dependencies.

Appendix A
Additional Parameter Options for Integrated Replicat

A-2

DEPENDENT_EAGER

Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

SEQUENTIAL

Sequential batching. Transactions are batched by grouping the transactions
sequentially based on the original commit order.

• DISABLE_ON_ERROR: Determines whether the apply server is disabled or continues
on an unresolved error. The default for Oracle GoldenGate is N (continue on
errors), however, you can set the option to Y if you need to disable the apply
server when an error occurs.

• EAGER_SIZE: Sets a threshold for the size of a transaction (in number of LCRs)
after which Oracle GoldenGate starts applying data before the commit record is
received. The default for Oracle GoldenGate is 15100.

• ENABLE_XSTREAM_TABLE_STATS: Controls whether statistics on applied transactions
are recorded in the V$GOLDENGATE_TABLE_STATS view or not collected at all. The
default for Oracle GoldenGate is Y (collect statistics).

• MAX_PARALLELISM: Limits the number of apply servers that can be used when the
load is heavy. This number is reduced again when the workload subsides. The
automatic tuning of the number of apply servers is effective only if PARALLELISM is
greater than 1 and MAX_PARALLELISM is greater than PARALLELISM. If PARALLELISM
is equal to MAX_PARALLELISM, the number of apply servers remains constant during
the workload. The default for Oracle GoldenGate is 50.

• MAX_SGA_SIZE: Controls the amount of shared memory used by the inbound
server. The shared memory is obtained from the streams pool of the SGA. The
default for Oracle GoldenGate is INFINITE.

• MESSAGE_TRACKING_FREQUENCY: Controls how often LCRs are marked for high-level
LCR tracing through the apply processing. The default value is 2000000, meaning
that every 2 millionth LCR is traced. A value of zero (0) disables LCR tracing.

• PARALLELISM: Sets a minimum number of apply servers that can be used under
normal conditions. Setting PARALLELISM to 1 disables apply parallelism, and
transactions are applied with a single apply server process. The default for Oracle
GoldenGate is 4. For Oracle Standard Edition, this must be set to 1.

• PARALLELISM_INTERVAL: Sets the interval in seconds at which the current workload
activity is computed. Replicat calculates the mean throughput every 5 X
PARALLELISM_INTERVAL seconds. After each calculation, the apply component can
increase or decrease the number of apply servers to try to improve throughput. If
throughput is improved, the apply component keeps the new number of apply
servers. The parallelism interval is used only if PARALLELISM is set to a value
greater than one and the MAX_PARALLELISM value is greater than the PARALLELISM
value. The default is 5 seconds.

• PRESERVE_ENCRYPTION: Controls whether to preserve encryption for columns
encrypted using Transparent Data Encryption. The default for Oracle GoldenGate
is N (do not apply the data in encrypted form).

• OPTIMIZE_PROGRESS_TABLE: Integrated Delivery uses this table to track the
transactions that have been applied. It is used for duplicate avoidance in the event
of failure or restart. If it is set to N (the default), then the progress table is updated
synchronously with the apply of each replicated transaction. When set to Y, rather
than populating the progress table synchronously, markers are dropped into the

Appendix A
Additional Parameter Options for Integrated Replicat

A-3

redo stream so when the apply process starts up, it mines the redo logs for these
markers, and then updates the progress table for the previously applied
transactions.

• TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

• WRITE_ALERT_LOG: Controls whether the Replicat inbound server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (yes).

Appendix A
Additional Parameter Options for Integrated Replicat

A-4

B
Configuring a Downstream Mining
Database

This appendix contains instructions for preparing a downstream Oracle mining
database to support Extract in integrated capture mode.
For more information about integrated capture, see Deciding Which Capture Method to
Use.

For examples of the downstream mining configuration, see Example Downstream
Mining Configuration.

Topics:

• Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

• Preparing the Source Database for Downstream Deployment
The source database ships its redo logs to a downstream database, and Extract
uses the logmining server at the downstream database to mine the redo logs.

• Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo
logs from a source database.

Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

A downstream mining database can accept both archived logs and online redo logs
from a source database.

Multiple source databases can send their redo data to a single downstream database;
however the downstream mining database can accept online redo logs from only one
of those source databases. The rest of the source databases must ship archived logs.

When online logs are shipped to the downstream database, real-time capture by
Extract is possible. Changes are captured as though Extract is reading from the
source logs. In order to accept online redo logs from a source database, the
downstream mining database must have standby redo logs configured.

When using a downstream mining configuration, the source database and mining
database must be the same endian and same bitsize, which is 64 bits. For example, if
the source database was on Linux 64-bit, you can have the mining database run on
Windows 64-bit, because they have the same endian and bitsize.

B-1

Preparing the Source Database for Downstream
Deployment

The source database ships its redo logs to a downstream database, and Extract uses
the logmining server at the downstream database to mine the redo logs.

This section guides you in the process of:

• Creating the Source User Account

• Configuring Redo Transport from Source to Downstream Mining Database
To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

Creating the Source User Account
There must be an Extract user on the source database. Extract uses the credentials of
this user to do metadata queries and to fetch column values as needed from the
source database. The source user is specified by the USERIDALIAS parameter.

To assign the required privileges, follow the procedure in Establishing Oracle
GoldenGate Credentials

Configuring Redo Transport from Source to Downstream Mining
Database

To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a
single downstream mining database:

• Only one source database can be configured to send online redo to the standby
redo logs at the downstream mining database. The log_archive_dest_n setting
for this source database should not have a TEMPLATE clause.

• Source databases that are not sending online redo to the standby redo logs of the
downstream mining database must have a TEMPLATE clause specified in the
log_archive_dest_n parameter.

• Each of the source databases that sends redo to the downstream mining database
must have a unique DBID. You can select the DBID column from the v$database
view of these source databases to ensure that the DBIDs are unique.

• The FAL_SERVER value must be set to the downstream mining database.
FAL_SERVER specifies the FAL (fetch archive log) server for a standby database.
The value is a list of Oracle Net service names, which are assumed to be
configured properly on the standby database system to point to the desired FAL
servers. The list contains the net service name of any database that can
potentially ship redo to the downstream database.

Appendix B
Preparing the Source Database for Downstream Deployment

B-2

• When using redo transport, there could be a delay in processing redo due to
network latency. In case of Integrated Extract, this latency is monitored by
measuring the delay between LCRs received from source database and reporting
it. If the latency exceeds a threshold, a warning message appears in the report file
and a subsequent information message appears when the lag drops to normal
values. The default value for the threshold is 10 seconds.

Note:

The archived logs shipped from the source databases are called foreign
archived logs. You must not use the recovery area at the downstream mining
database to store foreign archived logs. Such a configuration is not
supported by Integrated Capture.

These instructions take into account the requirements to ship redo from multiple
sources, if required. You must configure an Extract process for each of those sources.

To Configure Redo Transport

1. Configure Oracle Net so that each source database can communicate with the
mining database. For instructions, see Oracle Database Net Services
Administrator's Guide.

2. Configure authentication at each source database and at the downstream mining
database to support the transfer of redo data. Redo transport sessions are
authenticated using either the Secure Sockets Layer (SSL) protocol or a remote
login password file. If a source database has a remote login password file, copy it
to the appropriate directory of the mining database system. The password file
must be the same at all source databases, and at the mining database. For more
information about authentication requirements for redo transport, see Preparing
the Primary Database for Standby Database Creation in Oracle Data Guard
Concepts and Administration.

3. At each source database, configure one LOG_ARCHIVE_DEST_n initialization
parameter to transmit redo data to the downstream mining database. Set the
attributes of this parameter as shown in one of the following examples, depending
on whether real-time or archived-log-only capture mode is to be used.

• Example for real-time capture at the downstream logmining server, where the
source database sends its online redo logs to the downstream database:

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap'

• Example for archived-log-only capture at the downstream logmining server:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='SERVICE=DMBSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
TEMPLATE=/usr/oracle/log_for_dbms1/dbms1_arch_%t_%s_%r.log
DB_UNIQUE_NAME=dbmscap'

Appendix B
Preparing the Source Database for Downstream Deployment

B-3

Note:

When using an archived-log-only downstream mining database, you
must specify a value for the TEMPLATE attribute. Oracle also recommends
that you use the TEMPLATE clause in the source databases so that the log
files from all remote source databases are kept separated from the local
database log files, and from each other.

4. At the source database, set a value of ENABLE for the LOG_ARCHIVE_DEST_STATE_n
initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter
that corresponds to the destination for the downstream mining database, as shown
in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

5. At the source database, and at the downstream mining database, set the
DG_CONFIG attribute of the LOG_ARCHIVE_CONFIG initialization parameter to include
the DB_UNIQUE_NAME of the source database and the downstream database, as
shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo logs
from a source database.

The following sections explain how to prepare the downstream mining database:

• Creating the Downstream Mining User Account

• Configuring the Mining Database to Archive Local Redo Log Files

• Preparing a Downstream Mining Database for Real-time Capture

Creating the Downstream Mining User Account
When using a downstream mining configuration, there must be an Extract mining user
on the downstream database. The mining Extract process uses the credentials of this
user to interact with the downstream logmining server. The downstream mining user is
specified by the TRANLOGOPTIONS parameter with the MININGUSERALIAS option. See
Establishing Oracle GoldenGate Credentials to assign the correct credentials for the
version of your database.

Configuring the Mining Database to Archive Local Redo Log Files
This procedure configures the downstream mining database to archive redo data in its
online redo logs. These are redo logs that are generated at the downstream mining
database.

Archiving must be enabled at the downstream mining database if you want to run
Extract in real-time integrated capture mode, but it is also recommended for archive-
log-only capture. Extract in integrated capture mode writes state information in the
database. Archiving and regular backups will enable you to recover this state

Appendix B
Preparing the Downstream Mining Database

B-4

information in case there are disk failures or corruption at the downstream mining
database.

To Archive Local Redo Log Files

1. Alter the downstream mining database to be in archive log mode. You can do this
by issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Alternatively, you can use a command like this example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION='USE_DB_RECOVERY_FILE_DEST'
valid_for=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Note:

The online redo logs generated by the downstream mining database can
be archived to a recovery area. However, you must not use the recovery
area of the downstream mining database to stage foreign archived logs
or to archive standby redo logs. For information about configuring a fast
recovery area, see Oracle Database Backup and Recovery User’s
Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

For more information about these initialization parameters, see Oracle Data Guard
Concepts and Administration.

Preparing a Downstream Mining Database for Real-time Capture
This procedure is only required if you want to use real-time capture at a downstream
mining database. It is not required to use archived-log-only capture mode. To use real-
time capture, it is assumed that the downstream database has already been
configured to archive its local redo data as shown in Configuring the Mining Database
to Archive Local Redo Log Files .

• Create the Standby Redo Log Files

• Configure the Database to Archive Standby Redo Log Files Locally

Appendix B
Preparing the Downstream Mining Database

B-5

Create the Standby Redo Log Files
The following steps outline the procedure for adding standby redo log files to the
downstream mining database. The following summarizes the rules for creating the
standby redo logs:

• Each standby redo log file must be at least as large as the largest redo log file of
the redo source database. For administrative ease, Oracle recommends that all
redo log files at source database and the standby redo log files at the downstream
mining database be of the same size.

• The standby redo log must have at least one more redo log group than the redo
log at the source database, for each redo thread at the source database.

The specific steps and SQL statements that are required to add standby redo log files
depend on your environment. See Oracle Data Guard Concepts and Administration
11g Release 2 (11.2) for detailed instructions about adding standby redo log files to a
database.

Note:

If there will be multiple source databases sending redo to a single
downstream mining database, only one of those sources can send redo to
the standby redo logs of the mining database. An Extract process that mines
the redo from this source database can run in real-time mode. All other
source databases must send only their archived logs to the downstream
mining database, and the Extracts that read this data must be configured to
run in archived-log-only mode.

To Create the Standby Redo Log Files

1. In SQL*Plus, connect to the source database as an administrative user.

2. Determine the size of the source log file. Make note of the results.

SELECT BYTES FROM V$LOG;

3. Determine the number of online log file groups that are configured on the source
database. Make note of the results.

SELECT COUNT(GROUP#) FROM V$LOG;

4. Connect to the downstream mining database as an administrative user.

5. Add the standby log file groups to the mining database. The standby log file size
must be at least the size of the source log file size. The number of standby log file
groups must be at least one more than the number of source online log file groups.
This applies to each instance (thread) in a RAC installation. So if you have "n"
threads at the source database, each having "m" redo log groups, you should
configure n*(m+1) redo log groups at the downstream mining database.

The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;

Appendix B
Preparing the Downstream Mining Database

B-6

ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

6. Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
FROM V$STANDBY_LOG;

The output should be similar to the following:

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

7. Ensure that log files from the source database are appearing in the location that is
specified in the LOCATION attribute of the local LOG_ARCHIVE_DEST_n that you set.
You might need to switch the log file at the source database to see files in the
directory.

Configure the Database to Archive Standby Redo Log Files Locally
This procedure configures the downstream mining database to archive the standby
redo logs that receive redo data from the online redo logs of the source database.
Keep in mind that foreign archived logs should not be archived in the recovery area of
the downstream mining database.

To Archive Standby Redo Logs Locally

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Oracle recommends that foreign archived logs (logs from remote source
databases) be kept separate from local mining database log files, and from each
other. You must not use the recovery area of the downstream mining database to
stage foreign archived logs..

2. Enable the LOG_ARCHIVE_DEST_2 parameter you set in the previous step as shown
in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Appendix B
Preparing the Downstream Mining Database

B-7

C
Example Downstream Mining Configuration

This appendix contains examples for preparing a downstream Oracle mining database
to support Extract in integrated capture mode.
Configuring a downstream mining database, see Configuring a Downstream Mining
Database .

Topics:

• Example 1: Capturing from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an
integrated capture session at a downstream mining database DBMSCAP.

• Example 2: Capturing from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by
deploying an integrated capture session at a downstream mining database
DBMSCAP.

• Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-
log-only Mode
The following example captures changes from database DBMS1, DBMS2 and
DBMS3 by deploying an integrated capture session at a downstream mining
database DBMSCAP.

Example 1: Capturing from One Source Database in Real-
time Mode

This example captures changes from source database DBMS1 by deploying an
integrated capture session at a downstream mining database DBMSCAP.

Note:

The example assumes that you created the necessary standby redo log files
as shown in Configuring a Downstream Mining Database .

This assumes that the following users exist:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. This user has the alias of ggadm1 in the Oracle
GoldenGate credential store and logs in as ggadm1@dbms1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the source database.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database DBMSCAP. This user has the alias of ggadmcap in the Oracle
GoldenGate credential store and logs in as ggadmcap@dbmscap. It is assumed that

C-1

the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to
grant appropriate privileges to this user at the mining database.

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo Received in Standby Redo Logs
from the Source Database

• Prepare the Source Database to Send Redo to the Mining Database

• Set up Integrated Capture (ext1) on DBMSCAP

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this
by issuing the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo Received in Standby
Redo Logs from the Source Database

To prepare the mining database to archive the redo received in standby redo logs from
the source database:

1. At the downstream mining database, set log_archive_dest_2 as shown in the
following example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable log_archive_dest_2 as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

3. Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Source Database to Send Redo to the Mining Database
To prepare the source database to send redo to the mining database:

1. Make sure that the source database is running with the required compatibility.

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

C-2

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.7.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at the source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)';

3. Set up redo transport at the source database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Integrated Capture (ext1) on DBMSCAP
To set up integrated capture (ext1) on DBMSCAP:

1. Register Extract with the downstream mining database. In the credential store, the
alias name of ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Create Extract at the downstream mining database.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

3. Edit Extract parameter file ext1.prm. The following lines must be present to take
advantage of real-time capture. In the credential store, the alias name of ggadm1 is
linked to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is
linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time integrated capture
mode in the downstream mining database, as long as they all are capturing
data from the same source database, such as capturing changes for
database DBMS1 in the preceding example.

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

C-3

Example 2: Capturing from Multiple Sources in Archive-log-
only Mode

The following example captures changes from database DBMS1 and DBMS2 by
deploying an integrated capture session at a downstream mining database
DBMSCAP.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and
metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo from the Source Database

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Set up Extracts at Downstream Mining Database

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this
by issuing the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C-4

Prepare the Mining Database to Archive Redo from the Source
Database

Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbms2, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining
Database

To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required
compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining
Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C-5

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

Example 3: Capturing from Multiple Sources with Mixed
Real-time and Archive-log-only Mode

The following example captures changes from database DBMS1, DBMS2 and DBMS3
by deploying an integrated capture session at a downstream mining database
DBMSCAP.

Note:

This example assumes that you created the necessary standby redo log files
as shown in Configuring a Downstream Mining Database .

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and
metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

• User GGADM3 in DBMS3 whose credentials Extract will use to fetch data and
metadata from DBMS3. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS3.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-6

This procedure also assumes that the downstream mining database is configured in
archive log mode.

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the
redo data sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Accept Redo from the Source Databases

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Prepare the Third Source Database to Send Redo to the Mining Database

• Set up Extracts at Downstream Mining Database

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this
by issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SETLOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/
localVALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Accept Redo from the Source
Databases

Because redo data is being accepted in the standby redo logs of the downstream
mining database, the appropriate number of correctly sized standby redo logs must
exist. If you did not configure the standby logs, see Configuring a Downstream Mining
Database .

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.
This is needed to handle archive standby redo logs.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms3
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable the LOG_ARCHIVE_DEST_STATE_2 initialization parameter that corresponds
with the LOG_ARCHIVE_DEST_2 parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

3. Set DG_CONFIG at the downstream mining database to accept redo data from all of
the source databases.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-7

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbms2, dbms3, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining
Database

To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required
compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining
Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-8

TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Third Source Database to Send Redo to the Mining
Database

To prepare the third source database to send redo to the mining database:

1. Make sure that DBMS3 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS3 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms3, dbmscap)';

3. Set up redo transport at DBMS3 source database. Because DBMS3 is the source
that will send its online redo logs to the standby redo logs at the downstream
mining database, do not specify a TEMPLATE clause.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

• Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1

• Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2

• Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with DBMSCAP for the DBMS1 source database. In the credential
store, the alias name of ggadm1 is linked to a user connect string of
ggadm1@dbms1.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-9

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Add Extract at the mining database DBMSCAP.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

3. Edit the Extract parameter file ext1.prm. In the credential store, the alias name of
ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

GGSCI> START EXTRACT ext1

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with the mining database for source database DBMS2. In the
credential store, the alias name of ggadm2 is linked to a user connect string of
ggadm2@dbms2.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm2
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext2 DATABASE

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext2 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext2.prm. In the credential store, the alias name of
ggadm2 is linked to a user connect string of ggadm2@dbms2.The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm2
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

GGSCI> START EXTRACT ext2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with the mining database for source database DBMS3. In the
credential store, the alias name of ggadm3 is linked to a user connect string of
ggadm3@dbms3.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

GGSCI> DBLOGIN USERID ggadm3
GGSCI> MININGDBLOGIN USERID ggadmcap
GGSCI> REGISTER EXTRACT ext3 DATABASE

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-10

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext3 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext3.prm. To enable real-time mining, you must
specify downstream_real_time_mine. In the credential store, the alias name of
ggadm3 is linked to a user connect string of ggadm3@dbms3.The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm3
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext3

Note:

You can create multiple Extracts running in real-time integrated capture
mode in the downstream mining database, as long as they all are capturing
data from the same source database, such as all capturing for database
DBMS3 in the preceding example.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-11

D
Installing Trigger-Based DDL Capture

This appendix contains instructions for installing the objects that support the trigger-
based method of Oracle GoldenGate DDL support.
To configure Oracle GoldenGate to capture and replicate DDL, see Configuring DDL
Support .

Note:

DDL support for sequences (CREATE, ALTER, DROP, RENAME) is compatible with,
but not required for, replicating the sequence values themselves. To replicate
just sequence values, you do not need to install the Oracle GoldenGate DDL
support environment. You can just use the SEQUENCE parameter in the Extract
configuration.

Topics:

• When to Use Trigger-based DDL Capture
This topic describes the configuration where you must use trigger-based DDL
Extract.

• Overview of the Objects that Support Trigger-based DDL Capture
This topic lists the requirements for installing Oracle GoldenGate trigger-based
DDL environment.

• Installing the DDL Objects
To install DDL objects, you need scripts to perform various tasks during the
installation.

When to Use Trigger-based DDL Capture
This topic describes the configuration where you must use trigger-based DDL Extract.

You must use trigger-based DDL capture when Extract will operate in the following
configurations:

• Extract operates in classic capture mode against any version of Oracle Database.

• Extract operates in integrated mode against an Oracle Database version 11.2.0.3
or earlier.

If Extract will run in integrated mode against a version 11.2.0.4 or later Oracle
Database, the DDL trigger is not required. By default, DDL capture is handled
transparently through the database logmining server.

If Extract will capture from a multitenant container database, integrated capture mode
must be used with the native DDL capture method.

See Choosing Capture and Apply Modes for more information about capture modes.

D-1

See Configuring DDL Support for more information about configuring DDL support.

Overview of the Objects that Support Trigger-based DDL
Capture

This topic lists the requirements for installing Oracle GoldenGate trigger-based DDL
environment.

To install the Oracle GoldenGate trigger-based DDL environment, you will be installing
the database objects listed in the following table.

Object Purpose Default name

DDL marker table Stores DDL information. This
table only receives inserts.

GGS_MARKER

Sequence on marker
table

Used for a column in the marker
table.

GGS_DDL_SEQ

DDL history table Stores object metadata history.
This table receives inserts,
updates, deletes.

GGS_DDL_HIST

Object ID history table Contains object IDs of configured
objects.

GGS_DDL_HIST_ALT

DDL trigger Fires on DDL operations. Writes
information about the operation to
the marker and history tables.
Installed with the trigger are
some packages.

GGS_DDL_TRIGGER_BEFORE

DDL schema Contains the DDL
synchronization objects.

None; must be specified during
installation and in the GLOBALS
file.

User role Establishes the role needed to
execute DDL operations.

GGS_GGSUSER_ROLE

Internal setup table Database table for internal use
only.

GGS_SETUP

ddl_pin Pins DDL tracing, the DDL
package, and the DDL trigger for
performance improvements.

ddl_pin

ddl_cleartrace.sql Removes the DDL trace file. ddl_cleartrace.sql

ddl_status.sql Verifies that the Oracle
GoldenGate DDL objects are
installed

ddl_status.sql

marker_status.sql Verifies that the marker table is
installed.

marker_status.sql

ddl_tracelevel.sql Sets the level for DDL tracing. ddl_tracelevel.sql

Appendix D
Overview of the Objects that Support Trigger-based DDL Capture

D-2

Installing the DDL Objects
To install DDL objects, you need scripts to perform various tasks during the
installation.

These scripts are located in the installation directory of Oracle GoldenGate
Microservices Architecture. The specific location is: oggma_install_home/lib/sql/
legacy.

Follow these steps to install the database objects that support Oracle GoldenGate
DDL capture.

Note:

When using Extract in classic mode to capture in an Active Data Guard
environment, the DDL objects must be installed on the source database, not
the standby.

1. Choose a schema that can contain the Oracle GoldenGate DDL objects. This
schema cannot be case-sensitive.

2. Grant the following permission to the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;

3. Create a default tablespace for the Oracle GoldenGate DDL schema. This
tablespace must be dedicated to the DDL schema; do not allow any other schema
to share it.

4. Set AUTOEXTEND to ON for the DDL tablespace, and size it to accommodate the
growth of the GGS_DDL_HIST and GGS_MARKER tables. The GGS_DDL_HIST table, in
particular, will grow in proportion to overall DDL activity.

5. (Optional) To cause user DDL activity to fail when the DDL tablespace fills up, edit
the params.sql script and set the ddl_fire_error_in_trigger parameter to TRUE.
Extract cannot capture DDL if the tablespace fills up, so stopping the DDL gives
you time to extend the tablespace size and prevent the loss of DDL capture.
Managing tablespace sizing this way, however, requires frequent monitoring of the
business applications and Extract to avoid business disruptions. As a best
practice, make certain to size the tablespace appropriately in the first place, and
set AUTOEXTEND to ON so that the tablespace does not fill up.

WARNING:

Make a backup of the params.sql script before you edit it to preserve its
original state.

6. Create a GLOBALS file (or edit it, if one exists).

EDIT PARAMS ./GLOBALS

Appendix D
Installing the DDL Objects

D-3

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT
PARAMS, it is saved with the name GLOBALS in upper case, without a file
extension, at the root of the Oracle GoldenGate directory. Do not alter
the file name or location.

7. In the GLOBALS file, specify the name of the DDL schema by adding the following
parameter to the GLOBALS file.

GGSCHEMA schema_name

8. (Optional) To change the names of other objects listed in DDL synchronization
objects, the changes must be made now, before proceeding with the rest of the
installation. Otherwise, you will need to stop Oracle GoldenGate DDL processing
and reinstall the DDL objects. It is recommended that you accept the default
names of the database objects. To change any database object name (except the
schema), do one or both of the following:

• Record all name changes in the params.sql script. Edit this script and change
the appropriate parameters. Do not run this script.

• List the names shown in Table D-1 in the GLOBALS file. The correct parameters
to use are listed in the Parameter column of the table.

Table D-1 GLOBALS Parameters for Changing DDL Object Names

Object Parameter

Marker table MARKERTABLE new_table_name1

History table DDLTABLE new_table_name

1 Do not qualify the name of any of these tables. The schema name for these table must be
either the one that is specified with GGSCHEMA or the schema of the current user, if
GGSCHEMA is not specified in GLOBALS.

9. To enable trigger-based DDL replication to recognize Oracle invisible indexes as
unique identifiers, set the following parameter to TRUE in the params.sql script:

define allow_invisible_index_keys = 'TRUE'

10. Save and close the GLOBALS file and the params.sql file.

11. Change directories to the Oracle GoldenGate installation directory.

12. Exit all Oracle sessions, including those of SQL*Plus, those of business
applications, those of the Oracle GoldenGate processes, and those of any other
software that uses Oracle. Prevent the start of any new sessions.

13. Run SQL*Plus and log in as a user that has SYSDBA privilege. This privilege is
required to install the DDL trigger in the SYS schema, which is required by Oracle.
All other DDL objects are installed in the schema that you created in 1.

14. Run the marker_setup.sql script. Supply the name of the Oracle GoldenGate
schema when prompted, and then press Enter to execute the script. The script
installs support for the Oracle GoldenGate DDL marker system.

@marker_setup.sql

Appendix D
Installing the DDL Objects

D-4

15. Run the ddl_setup.sql script. You are prompted to specify the name of the DDL
schema that you configured in 1. (Note: ddl_setup.sql will fail if the tablespace
for this schema is shared by any other users. It will not fail, however, if the default
tablespace does not have AUTOEXTEND set to ON, the recommended setting.)

@ddl_setup.sql

16. Run the role_setup.sql script. At the prompt, supply the DDL schema name. The
script drops and creates the role that is needed for DDL synchronization, and it
grants DML permissions on the Oracle GoldenGate DDL objects.

@role_setup.sql

17. Grant the role that was created (default name is GGS_GGSUSER_ROLE) to all Oracle
GoldenGate Extract users. You may need to make multiple grants if the processes
have different user names.

GRANT role TO user;

18. Run the ddl_enable.sql script to enable the DDL trigger.

@ddl_enable.sql

To Install and Use the Optional Performance Tool

To improve the performance of the DDL trigger, make the ddl_pin script part of the
database startup. It must be invoked with the Oracle GoldenGate DDL user name, as
in:

@ddl_pin DDL_user

This script pins the PL/SQL package that is used by the trigger into memory. If
executing this script from SQL*Plus, connect as SYSDBA from the Oracle GoldenGate
installation directory. This script relies on the Oracle dmbs_shared_pool system
package, so install that package before using ddl_pin.

Appendix D
Installing the DDL Objects

D-5

E
Supporting Changes to XML Schemas

This appendix contains instructions for supporting changes to an XML schema. Both
classic and integrated capture modes do not support the capture of changes made to
an XML schema.
Topics:

• Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both
source and target databases before any table is created that references the XML
schema.

• Supporting DeleteSchema
Issue DeleteSchema on the source database first.

• Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables
by adding or removing columns.

Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both source
and target databases before any table is created that references the XML schema.

Supporting DeleteSchema
Issue DeleteSchema on the source database first.

Once Replicat is caught up with the changes made to the source database, issue the
DeleteSchema call on the target database.

Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables by
adding or removing columns.

The CopyEvolve procedure can also be used to change whether or not XML
documents are valid. Handling CopyEvolve requires more coordination. Use the
following procedure if you are issuing CopyEvolve on the source database.

1. Quiesce changes to dependent tables on the source database.

2. Execute the CopyEvolve on the primary or source database.

3. Wait for Replicat to finish applying all of the data from those tables to the target
database.

4. Stop Replicat.

5. Apply the CopyEvolve on the target database.

E-1

6. Restart Replicat.

Appendix E
Supporting CopyEvolve

E-2

F
Preparing DBFS for an Active-Active
Configuration

This appendix contains steps to configure Oracle GoldenGate to function within an
active-active bidirectional or multi-directional environment where Oracle Database File
System (DBFS) is in use on both (or all) systems.
Topics:

• Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

• Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

• Examples Used in these Procedures
The following procedures assume two systems and configure the environment so
that DBFS users on both systems see the same DBFS files, directories, and
contents that are kept in synchronization with Oracle GoldenGate.

• Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names
and unique IDs.

• Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

• Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated
internally and dynamically.

Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

Oracle GoldenGate for DBFS supports the following:

• Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE
statements on the DBFS objects. CREATE on DBFS must be excluded from the
configuration, as must any schemas that will hold the created DBFS objects. The
reason to exclude CREATES is that the metadata for DBFS must be properly
populated in the SYS dictionary tables (which itself is excluded from Oracle
GoldenGate capture by default).

• Capture and replication of DML on the tables that underlie the DBFS file system.

The procedures that follow assume that Oracle GoldenGate is configured properly to
support active-active configuration. This means that it must be:

• Installed according to the instructions in this guide.

• Configured according to the instructions in the Oracle GoldenGate Windows and
UNIX Administrator's Guide.

F-1

Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

To determine if the patch is installed, run the following query:

connect / as sysdba
select procedure_name
from dba_procedures
where object_name = 'DBMS_DBFS_SFS_ADMIN'
and procedure_name = 'PARTITION_SEQUENCE';

The query should return a single row. Anything else indicates that the proper patched
version of DBFS is not available on your database.

Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that
DBFS users on both systems see the same DBFS files, directories, and contents that
are kept in synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and
unique IDs.

These steps partition the sequences into distinct ranges to ensure that there are no
conflicts across the databases. After this is done, further DBFS operations (both
creation of new file systems and subsequent file system operations) can be performed
without conflicts of names, primary keys, or IDs during DML propagation.

1. Connect to each database as sysdba.

Issue the following query on each database.

select last_number
from dba_sequences
where sequence_owner = 'SYS'
and sequence_name = 'DBFS_SFS_$FSSEQ'

2. From this query, choose the maximum value of LAST_NUMBER across both systems,
or pick a high value that is significantly larger than the current value of the
sequence on either system.

3. Substitute this value ("maxval" is used here as a placeholder) in both of the
following procedures. These procedures logically index each system as myid=0
and myid=1.

Node1

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 0, newstart
=> :maxval);
commit;

Appendix F
Applying the Required Patch

F-2

end;
/

Node 2

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 1, newstart
=> :maxval);
commit;
end;
/

Note:

Notice the difference in the value specified for the myid parameter.
These are the different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

• Adjust the maximum value that is set for maxval upward appropriately, and
use that value on all nodes.

• Vary the value of myid in the procedure from 0 for the first node, 1 for the
second node, 2 for the third one, and so on.

4. (Recommended) After (and only after) the DBFS sequence generator is
partitioned, create a new DBFS file system on each system, and use only these
file systems for DML propagation with Oracle GoldenGate. See Configuring the
DBFS file system.

Note:

DBFS file systems that were created before the patch for bug-9651229 was
applied or before the DBFS sequence number was adjusted can be
configured for propagation, but that requires additional steps not described in
this document. If you must retain old file systems, open a service request
with Oracle Support.

Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

• Use matched pairs of identically structured tables.

• Allow each database to have write privileges to opposite tables in a set, and set
the other one in the set to read-only. For example:

– Node1 writes to local table t1 and these changes are replicated to t1 on
Node2.

Appendix F
Configuring the DBFS file system

F-3

– Node2 writes to local table t2 and these changes are replicated to t2 on
Node1.

– On Node1, t2 is read-only. On Node2, t1 is read-only.

DBFS file systems make this kind of table pairing simple because:

• The tables that underlie the DBFS file systems have the same structure.

• These tables are modified by simple, conventional DML during higher-level file
system operations.

• The DBFS ContentAPI provides a way of unifying the namespace of the individual
DBFS stores by means of mount points that can be qualified as read-write or read-
only.

The following steps create two DBFS file systems (in this case named FS1 and FS2)
and set them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store
names for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is read-
only, while on Node 2 the converse is true: store FS1 is read-only and store FS2 is
read-write.

Note also that the read-write store is mounted as local and the read-only store is
mounted as remote. This provides users on each system with an identical
namespace and identical semantics for read and write operations. Local path
names can be modified, but remote path names cannot.

Example F-1

declare
dbms_dbfs_sfs.createfile system('FS1');
dbms_dbfs_sfs.createfile system('FS2');

dbms_dbfs_content.registerStore('FS1',
'posix', 'DBMS_DBFS_SFS');
dbms_dbfs_content.registerStore('FS2',
'posix', 'DBMS_DBFS_SFS');
commit;
end;
/

Example F-2 Node 1

declare
dbms_dbfs_content.mountStore('FS1', 'local');
dbms_dbfs_content.mountStore('FS2', 'remote',
read_only => true);
commit;
end;
/

Example F-3 Node 2

declare
dbms_dbfs_content.mountStore('FS1', 'remote',
read_only => true);

Appendix F
Configuring the DBFS file system

F-4

dbms_dbfs_content.mountStore('FS2', 'local');
commit;
end;
/

Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally
and dynamically.

Continuing with the preceding example, there are:

• Two nodes (Node 1 and Node 2 in the example).

• Four stores: two on each node (FS1 and FS2 in the example).

• Eight underlying tables: two for each store (a table and a ptable). These tables
must be identified, specified in Extract TABLE statements, and mapped in Replicat
MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following
TABLE statements in the Extract parameter files. (Substitute your pluggable
database names, schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by
creating the following MAP statements in the Replicat parameter files. (Substitute
your pluggable database, schema and table names.)

This mapping captures and replicates local read-write source tables to remote
read-only peer tables:

• file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.

• file system changes made to FS2 on Node 2 propagate to FS2 on Node1.

Changes to the file systems can be made through the DBFS ContentAPI (package
DBMS_DBFS_CONTENT) of the database or through dbfs_client mounts and
conventional file systems tools.

All changes are propagated in both directions.

• A user at the virtual root of the DBFS namespace on each system sees
identical content.

• For mutable operations, users use the /local sub-directory on each system.

• For read operations, users can use either of the /local or /remote sub-
directories, depending on whether they want to see local or remote content.

Example F-4

select fs.store_name, tb.table_name, tb.ptable_name
from table(dbms_dbfs_sfs.listTables) tb,
table(dbms_dbfs_sfs.listfile systems) fs
where fs.schema_name = tb.schema_name
and fs.table_name = tb.table_name
and fs.store_name in ('FS1', 'FS2')
;

Appendix F
Mapping Local and Remote Peers Correctly

F-5

Example F-5 Example output: Node 1 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_100 SFS$_FSTP_100
FS2 SFS$_FST_118 SFS$_FSTP_118

Example F-6 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_101 SFS$_FSTP_101
FS2 SFS$_FST_119 SFS$_FSTP_119

Example F-7 Node1

TABLE [container.]schema.SFS$_FST_100
TABLE [container.]schema.SFS$_FSTP_100;

Example F-8 Node2

TABLE [container.]schema.SFS$_FST_119
TABLE [container.]schema.SFS$_FSTP_119;

Example F-9 Node1

MAP [container.]schema.SFS$_FST_119, TARGET [container.]schema.SFS$_FST_118;
MAP [container.]schema.SFS$_FSTP_119, TARGET [container.]schema.SFS$_FSTP_118

Example F-10 Node2

MAP [container.]schema.SFS$_FST_100, TARGET [container.]schema.SFS$_FST_101;MAP
[container.]schema.SFS$_FSTP_100, TARGET [container.]schema.SFS$_FSTP_101;

Appendix F
Mapping Local and Remote Peers Correctly

F-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Understanding What’s Supported
	Summary of Supported Oracle Data Types and Objects Per Capture Mode
	Details of Support for Oracle Data Types
	ANYDATA Data Types
	Limitations of Support — ANYDATA

	Numeric Data Types
	Limitations of Support — Numeric

	Character Data Types
	Limitations of Support — Character

	Multi-byte Character Types
	Limitations of Support — Multi-byte

	Binary Data Types
	Date and Timestamp Data Types
	Limitations of Support — Dates

	Large Object Data Types
	Limitations of support — Large Object Classic Capture Mode

	XML Data Types
	Limitations of Support — Integrated and Classic Capture Modes
	Limitations of Support — Integrated Capture Mode
	Limitations of Support — XML Binary Classic Capture Mode

	User Defined or Abstract Types
	General Limitations of Support — Integrated and Classic Capture Modes
	Limitations for Collection Types — Integrated and Classic Capture Modes
	Limitations for Object Tables — Integrated and Classic Capture Modes
	Limitations for Spatial Types — Integrated and Classic Capture Modes

	Non-Supported Oracle Data Types

	Details of Support for Objects and Operations in Oracle DML
	Multitenant Container Database
	Tables, Views, and Materialized Views
	Limitations of Support for Regular Tables
	Limitations of Support for Index-Organized Tables
	Limitations of Support for Views
	Limitations of Support for Materialized Views
	Limitations of Support for Clustered Tables

	Sequences
	Limitations of Support for Sequences

	Non-supported Objects and Operations in Oracle DML

	Details of Support for Objects and Operations in Oracle DDL
	Supported Objects and Operations in Oracle DDL
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	Integrating Oracle GoldenGate into a Cluster
	General Requirements in a Cluster
	Adding Oracle GoldenGate as a Windows Cluster Resource

	2 Preparing the Database for Oracle GoldenGate
	Configuring Connections for Integrated Processes
	Configuring Logging Properties
	Enabling Minimum Database-level Supplemental Logging
	Enabling Schema-level Supplemental Logging
	Enabling Table-level Supplemental Logging

	Enabling Oracle GoldenGate in the Database
	Setting Flashback Query
	Managing Server Resources

	3 Establishing Oracle GoldenGate Credentials
	Assigning Credentials to Oracle GoldenGate
	Extract User
	Replicat User
	Other Oracle GoldenGate Users
	Granting the Appropriate User Privileges
	Oracle 11.2.0.4 or Later Database Privileges
	Oracle 11.2.0.3 or Earlier Database Privileges
	About the dbms_goldengate_auth.grant_admin_privilege Package
	Optional Grants for dbms_goldengate_auth.grant_admin_privilege

	Securing the Oracle GoldenGate Credentials

	4 Choosing Capture and Apply Modes
	Overview of Oracle GoldenGate Capture and Apply Processes
	Deciding Which Capture Method to Use
	About Classic Capture
	About Integrated Capture
	Integrated Capture Supported Database Versions
	Integrated Capture Deployment Options

	Deciding Which Apply Method to Use
	About Nonintegrated Replicat
	About Integrated Replicat
	Benefits of Integrated Replicat
	Integrated Replicat Requirements

	About Parallel Replicat
	Parallel Replication Architecture

	Using Different Capture and Apply Modes Together
	Switching to a Different Process Mode

	5 Configuring Oracle GoldenGate in a Multitenant Container Database
	Using Oracle GoldenGate with Pluggable Databases
	Capturing from Pluggable Databases
	Applying to Pluggable Databases
	Excluding Objects from the Configuration

	Other Requirements for Multitenant Container Databases

	6 Configuring Capture in Integrated Mode
	Prerequisites for Configuring Integrated Capture
	What to Expect from these Instructions
	Configuring the Primary Extract in Integrated Capture Mode
	Configuring the Data Pump Extract
	Next Steps

	7 Configuring Capture in Classic Mode
	Prerequisites for Configuring Classic Capture
	What to Expect from these Instructions
	Configuring the Primary Extract in Classic Capture Mode
	Configuring the Data Pump Extract
	Next Steps

	8 Configuring Oracle GoldenGate Apply
	Prerequisites for Configuring Replicat
	What to Expect from these Instructions
	Creating a Checkpoint Table (Non-Integrated Replicat Only)
	Adding the Checkpoint Table to the Target Database
	Specifying the Checkpoint Table in the Oracle GoldenGate Configuration
	Disabling Default Asynchronous COMMIT to Checkpoint Table

	Configuring Replicat
	Next Steps

	9 Additional Oracle GoldenGate Configuration Considerations
	Ensuring Row Uniqueness in Source and Target Tables
	Installing Support for Oracle Sequences
	Handling Special Data Types
	Multibyte Character Types
	Oracle Spatial Objects
	TIMESTAMP
	Large Objects (LOB)
	XML
	User Defined Types

	Handling Other Database Properties
	Controlling the Checkpoint Frequency
	Excluding Replicat Transactions
	Advanced Configuration Options for Oracle GoldenGate

	10 Additional Configuration Steps for Using Classic Capture
	Configuring Oracle TDE Data in Classic Capture Mode
	Overview of TDE Support in Classic Capture Mode
	Requirements for Capturing TDE in Classic Capture Mode
	Required Database Patches for TDE Support
	Configuring Classic Capture for TDE Support
	Agree on a Shared Secret that Meets Oracle Standards
	Oracle DBA Tasks
	Oracle Security Officer Tasks
	Oracle GoldenGate Administrator Tasks

	Recommendations for Maintaining Data Security after Decryption
	Performing DDL while TDE Capture is Active
	Rekeying after a Database Upgrade
	Updating the Oracle Shared Secret in the Parameter File

	Using Classic Capture in an Oracle RAC Environment
	Mining ASM-stored Logs in Classic Capture Mode
	Accessing the Transaction Logs in ASM
	Reading Transaction Logs Through the RDBMS
	ASM Direct Connection

	Ensuring ASM Connectivity

	Ensuring Data Availability for Classic Capture
	Log Retention Requirements per Extract Recovery Mode
	Log Retention Options
	Oracle Enterprise Edition 11g and Later
	All Other Oracle Versions

	Determining How Much Data to Retain
	Purging Log Archives
	Specifying the Archive Location
	Mounting Logs that are Stored on Other Platforms

	Configuring Classic Capture in Archived Log Only Mode
	Limitations and Requirements for Using ALO Mode
	Configuring Extract for ALO mode

	Configuring Classic Capture in Oracle Active Data Guard Only Mode
	Limitations and Requirements for Using ADG Mode
	Configuring Classic Extract for ADG Mode
	Migrating Classic Extract To and From an ADG Database
	Handling Role Changes In an ADG Configuration

	Avoiding Log-read Bottlenecks in Classic Capture

	11 Additional Configuration Steps For Using Nonintegrated Replicat
	Disabling Triggers and Referential Cascade Constraints on Target Tables
	Deferring Constraint Checking on Target Tables
	Handling Transient Primary-key Duplicates in Versions Earlier than 11.2.0.2
	Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later

	12 Configuring DDL Support
	Prerequisites for Configuring DDL
	Support for DDL Capture in Integrated Capture Mode
	Support for DDL Capture in Classic Capture Mode

	Overview of DDL Synchronization
	Limitations of Oracle GoldenGate DDL Support
	DDL Statement Length
	Supported Topologies
	Filtering, Mapping, and Transformation
	Renames
	Interactions Between Fetches from a Table and DDL
	Comments in SQL
	Compilation Errors
	Interval Partitioning
	DML or DDL Performed Inside a DDL Trigger
	LogMiner Data Dictionary Maintenance

	Configuration Guidelines for DDL Support
	Database Privileges
	Parallel Processing
	Object Names
	Data Definitions
	Truncates
	Initial Synchronization
	Data Continuity After CREATE or RENAME

	Understanding DDL Scopes
	Mapped Scope
	Unmapped Scope
	Other Scope

	Correctly Identifying Unqualified Object Names in DDL
	Enabling DDL Support
	Filtering DDL Replication
	Filtering with PL/SQL Code
	Filtering With Built-in Filter Rules
	DDLAUX.addRule() Function Definition
	Parameters for DDLAUX.addRule()
	Valid DDL Components for DDLAUX.addRule()
	Examples of Rule-based Trigger Filtering
	Dropping Filter Rules

	Filtering with the DDL Parameter

	Special Filter Cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate Handles Derived Object Names
	MAP Exists for Base Object, But Not Derived Object
	MAP Exists for Base and Derived Objects
	MAP Exists for Derived Object, But Not Base Object
	New Tables as Derived Objects
	CREATE TABLE AS SELECT
	RENAME and ALTER TABLE RENAME

	Disabling the Mapping of Derived Objects

	Using DDL String Substitution
	Controlling the Propagation of DDL to Support Different Topologies
	Propagating DDL in Active-Active (Bidirectional) Configurations
	Propagating DDL in a Cascading Configuration

	Adding Supplemental Log Groups Automatically
	Removing Comments from Replicated DDL
	Replicating an IDENTIFIED BY Password
	How DDL is Evaluated for Processing
	Viewing DDL Report Information
	Viewing DDL Reporting in Replicat
	Viewing DDL Reporting in Extract
	Statistics in the Process Reports

	Tracing DDL Processing
	Using Tools that Support Trigger-Based DDL Capture
	Tracing the DDL Trigger
	Viewing Metadata in the DDL History Table
	Handling DDL Trigger Errors

	Using Edition-Based Redefinition

	13 Creating Process Groups
	Prerequisites
	Registering Extract with the Mining Database
	Add the Primary Extract
	Add the Local Trail
	Add the Data Pump Extract Group
	Add the Remote Trail
	Add the Replicat Group

	14 Instantiating Oracle GoldenGate Replication
	Overview of the Instantiation Process
	Prerequisites for Instantiation
	Configuring and Adding Change Synchronization Groups
	Disabling DDL Processing
	Adding Collision Handling
	Preparing the Target Tables

	Configuring the Initial Load
	Configuring a Load with an Oracle Data Pump
	Configuring a Direct Bulk Load to SQL*Loader
	Configuring a Load from an Input File to SQL*Loader

	Performing the Target Instantiation
	Performing Instantiation with Oracle Data Pump
	Performing Instantiation with Direct Bulk Load to SQL*Loader
	Performing Instantiation From an Input File to SQL*Loader

	Monitoring and Controlling Processing After the Instantiation
	Verifying Synchronization
	Backing up the Oracle GoldenGate Environment

	15 Managing the DDL Replication Environment
	Disabling DDL Processing Temporarily
	Enabling and Disabling the DDL Trigger
	Maintaining the DDL Marker Table
	Deleting the DDL Marker Table
	Maintaining the DDL History Table
	Deleting the DDL History Table
	Purging the DDL Trace File
	Applying Database Patches and Upgrades when DDL Support is Enabled
	Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
	Restoring an Existing DDL Environment to a Clean State
	Removing the DDL Objects from the System

	16 Automatic Conflict Detection and Resolution
	About Automatic Conflict Detection and Resolution
	Automatic Conflict Detection and Resolution
	Latest Timestamp Conflict Detection and Resolution
	Delta Conflict Detection and Resolution
	Column Groups

	Configuring Automatic Conflict Detection and Resolution
	Configuring Latest Timestamp Conflict Detection and Resolution
	Configuring Delta Conflict Detection and Resolution

	Managing Automatic Conflict Detection and Resolution
	Altering Conflict Detection and Resolution for a Table
	Altering a Column Group
	Purging Tombstone Rows
	Removing Conflict Detection and Resolution From a Table
	Removing a Column Group
	Removing Delta Conflict Detection and Resolution

	Monitoring Automatic Conflict Detection and Resolution
	Displaying Information About the Tables Configured for Conflicts
	Displaying Information About Conflict Resolution Columns
	Displaying Information About Column Groups

	17 Using Parallel Replicat
	Parallel Replication Architecture
	Basic Parameters for Parallel Replicat
	Creating a Parallel Replicat

	18 Using Procedural Replication
	Procedural Replication Process Overview
	Enabling Procedural Replication
	Determining Whether Procedural Replication Is On
	Enabling and Disabling Supplemental Logging
	Filtering Features for Procedural Replication
	Handling Procedural Replication Errors
	Procedural Replication Pragma Options
	Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	Monitoring Oracle GoldenGate Procedural Replication

	19 Replicating Data to the Autonomous Database
	About Replicating Data to Autonomous Databases
	Understanding What is Supported While Replicating to the Autonomous Database
	How Do I Replicate Data to the Autonomous Database?

	A Optional Parameters for Integrated Modes
	Additional Parameter Options for Integrated Capture
	Additional Parameter Options for Integrated Replicat

	B Configuring a Downstream Mining Database
	Evaluating Capture Options for a Downstream Deployment
	Preparing the Source Database for Downstream Deployment
	Creating the Source User Account
	Configuring Redo Transport from Source to Downstream Mining Database

	Preparing the Downstream Mining Database
	Creating the Downstream Mining User Account
	Configuring the Mining Database to Archive Local Redo Log Files
	Preparing a Downstream Mining Database for Real-time Capture
	Create the Standby Redo Log Files
	Configure the Database to Archive Standby Redo Log Files Locally

	C Example Downstream Mining Configuration
	Example 1: Capturing from One Source Database in Real-time Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	Prepare the Source Database to Send Redo to the Mining Database
	Set up Integrated Capture (ext1) on DBMSCAP

	Example 2: Capturing from Multiple Sources in Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo from the Source Database
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database

	Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Accept Redo from the Source Databases
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Third Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database
	Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	D Installing Trigger-Based DDL Capture
	When to Use Trigger-based DDL Capture
	Overview of the Objects that Support Trigger-based DDL Capture
	Installing the DDL Objects

	E Supporting Changes to XML Schemas
	Supporting RegisterSchema
	Supporting DeleteSchema
	Supporting CopyEvolve

	F Preparing DBFS for an Active-Active Configuration
	Supported Operations and Prerequisites
	Applying the Required Patch
	Examples Used in these Procedures
	Partitioning the DBFS Sequence Numbers
	Configuring the DBFS file system
	Mapping Local and Remote Peers Correctly

