
Siebel
Transports and Interfaces: Siebel
Enterprise Application Integration

July 2019

Siebel
Transports and Interfaces: Siebel Enterprise Application Integration

July 2019

Part Number: F12806-02

Copyright © 2019, Oracle and/or its affiliates. All rights reserved

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to
us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating
system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in
any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement
between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Contents

Preface .. i

1 What's New in This Release 1
What’s New in Transports and Interfaces: Siebel Enterprise Application Integration Guide, Siebel CRM 19.7 Update ... 1

What’s New in Transports and Interfaces: Siebel Enterprise Application Integration Guide, Siebel CRM 19.1 Update ... 1

What’s New in Transports and Interfaces: Siebel Enterprise Application Integration, Siebel 2018 1

2 EAI Transports and Interfaces Overview 3
EAI Transports and Interfaces Overview ... 3

About EAI Transports ... 3

About EAI Transport Methods .. 4

Using Named Subsystems for Transport Parameters ... 5

About Object Interfaces and EAI .. 8

Database-Level Interfacing ... 8

3 EAI MQSeries Server Transport 9
EAI MQSeries Server Transport .. 9

About the EAI MQSeries Server Transport Business Service .. 9

Using the SendReceive Method with MQSeries ... 15

Dispatch Error Handling for the EAI MQSeries Server Transport ... 15

Increasing the Maximum Message Length on IBM WebSphere MQ ... 16

Using the EAI MQSeries Server Transport on AIX .. 16

About EAI MQSeries Transport Re-Entrance .. 17

About Message ID Tracking for an Inbound Message .. 18

Invoking a Workflow Using MQSeries Server Receiver ... 18

4 EAI MSMQ Transport 21
EAI MSMQ Transport ... 21

About Microsoft Message Queuing (MSMQ) ... 21

Configuring the EAI MSMQ Transport Servers ... 23

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Configuring EAI MSMQ Transport for Various Send and Receive Scenarios ... 24

5 EAI Java Business Service 35
EAI Java Business Service ... 35

About the EAI Java Business Service ... 35

Requirements for Implementing a Java Business Service ... 35

Creating a Java Business Service .. 42

About the Lifecycle of a 32-bit Java Business Service ... 43

Example of a Java Business Service .. 43

About the Lifecycle of a 64-bit Java Business Service ... 44

Restrictions for Implementing a Java Business Service .. 44

Troubleshooting the Java Business Service .. 44

6 EAI JMS Transport 47
EAI JMS Transport ... 47

About the EAI JMS Transport Business Service ... 47

About Synchronous and Asynchronous Invocation ... 48

About the JMS Publish-and-Subscribe Model .. 48

About Operations (Methods) of the EAI JMS Transport .. 49

Features Not Supported for Use with the Siebel JMS Transport .. 49

About JMS Message Types ... 50

About Sending and Receiving XML .. 50

About Multistep Operations Within a JMS Session ... 51

About Undeliverable Messages in JMS Transport .. 51

Detailed Input and Output Specifications for the EAI JMS Transport .. 51

Configuring the EAI JMS Transport .. 57

Sending and Receiving JMS Messages ... 62

Receiving, Dispatching, and Sending JMS Messages .. 65

Sending and Receiving Custom JMS Properties .. 68

Enabling Authentication and Authorization for the EAI JMS Transport .. 70

Troubleshooting for the JMS Transport .. 74

About Logging for the JMS Transport .. 75

About Caching for the JMS Transport ... 75

7 EAI HTTP Transport 77
EAI HTTP Transport ... 77

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

About the EAI HTTP Transport .. 77

Using POST and GET .. 78

EAI HTTP Transport Named Subsystems ... 79

EAI HTTP Transport Method Arguments .. 79

Sending a Message Using the EAI HTTP Transport ... 82

Using the EAI HTTP Transport for Inbound Integration ... 84

Process of Using the EAI HTTP Transport for Inbound Messages .. 90

Handling EAI HTTP Transport Business Service Errors ... 93

Processing and Sending Outbound XML Documents ... 93

Sending and Receiving Messages with the EAI HTTP Transport .. 95

Examples Using HTTP Request ... 97

Creating Custom Headers for the EAI HTTP Transport Service .. 100

About Sending and Receiving Messages Through HTTP .. 100

About Transport Headers and HTTP Response Headers ... 101

8 Integrating Siebel Business Applications with Java Applications 103
Integrating Siebel Business Applications with Java Applications ... 103

About Siebel Business Applications and Java Applications ... 103

About the JDB Business Service API ... 104

About the Siebel Code Generator .. 105

About Running the Java Data Bean ... 111

About the Siebel Resource Adapter ... 116

9 EAI DLL and EAI File Transports 123
EAI DLL and EAI File Transports .. 123

About the EAI DLL Transport ... 123

About the EAI File Transport .. 126

10 Transcode Service Business Service 131
Transcode Service Business Service .. 131

About the Transcode Service Business Service .. 131

Transcode Service Business Service Methods ... 132

Transcode Service Business Service Examples .. 134

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Preface

Preface

This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at http://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an e-mail to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Preface

ii

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 1
What's New in This Release

1 What's New in This Release

What’s New in Transports and Interfaces: Siebel Enterprise
Application Integration Guide, Siebel CRM 19.7 Update
The following information lists the changes described in this version of the documentation to support this release of the
software.

Note: Siebel 2019 is a continuation of the Siebel 8.1/8.2 release.

Topic Description

About the JMS Publish-and-Subscribe
Model

Input Argument Values

Modified Topics. Revised documentation with input value argument.

What’s New in Transports and Interfaces: Siebel Enterprise
Application Integration Guide, Siebel CRM 19.1 Update
No new features have been added to this guide for this release. This guide has been updated to reflect only product name
changes.

Note: Siebel 2019 is a continuation of the Siebel 8.1/8.2 release.

What’s New in Transports and Interfaces: Siebel
Enterprise Application Integration , Siebel 2018
No new features have been added to this guide for this release. This guide has been updated to reflect only product name
changes.

Note: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release.

1

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 1
What's New in This Release

2

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

2 EAI Transports and Interfaces Overview

EAI Transports and Interfaces Overview
Siebel Enterprise Application Integration (EAI) provides mechanisms for exchanging data between Siebel Business
Applications and external systems.

This chapter includes the following topics on these mechanisms:

• About EAI Transports

• About EAI Transport Methods

• Using Named Subsystems for Transport Parameters

• About Object Interfaces and EAI

• Database-Level Interfacing

About EAI Transports
Transports allow Siebel Business Applications to exchange data with external applications using standard technologies for
both synchronous and asynchronous communication protocols.

Transports handle all data as binary data (bytes) because the IsTextData parameter that was available in previous releases
is no longer supported. If you want to use character conversion on the transport, then you use the CharSetConversion
parameter. Handling the data as binary defers any character set conversion until needed and avoids conversion at the
transport level to prevent data corruption. For example, treating a UTF-8 encoded Extensible Markup Language (XML)
document as text when the conversion executes leads to an XML string in the local code page, while its header still describes
UTF-8. It is best to treat all self-describing data, including XML, as binary.

Character conversion is available in a number of business services. These business services are:

• EAI Transport business services (MQ Series, MSMQ, JMS, HTTP, DLL, File)

• XML Converter business services

• Transcode Service business service

When business services are invoked from a workflow, the valid set of encodings is controlled by a picklist. If the business
services are invoked through scripting or similar mechanisms, then the character set name is supplied textually.

Note: For data validation or conversion from one encoding to another, you can use the Transcode Service
business service. For information about the Transcode Service business service, see Transcode Service
Business Service

Transports provide connectivity to virtually any communication protocol that can represent data as text or binary messages,
including MQSeries from IBM, MSMQ from Microsoft, Java Message Service (JMS), and HTTP. EAI Transports allow Siebel
Business Applications to integrate with Web-based applications as well as legacy systems that are encapsulated using
middleware. Transports are interchangeable. If you change technologies at any point, then you can reuse existing workflows
and logic by switching the transport adapter.

3

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

Transports can:

• Support bidirectional exchange of messages.

• Run within the Siebel Application Object Manager.

• Invoke and be invoked by Workflow Process Manager and EAI Dispatch Service.

• Be invoked within an eScript or VBScript.

• Send and receive messages in XML format.

• Pass messages through, or convert messages into, property sets for XML and MIME messages.

Available transports include:

• EAI MQSeries Server Transport. For information about these transports, see EAI MQSeries Server Transport

• EAI MSMQ Transport. For information about this transport, see EAI MSMQ Transport

• EAI JMS Transport. For information about this transport, see EAI JMS Transport

• EAI HTTP Transport. For information about this transport, see EAI HTTP Transport

• EAI DLL Transport and EAI File Transport. For information about these transports, see EAI DLL and EAI File
Transports

Note: The transport business services are not re-entrant. This applies not only to receivers, but also to
nonreceiver mode because users can define scripts in the business service that invoke the same business
service. For more information about transport re-entrance, see About EAI MQSeries Transport Re-Entrance.

About EAI Transport Methods
The method on a transport adapter’s business service controls the action to be performed by the transport. There are two
outbound methods and three inbound methods available for EAI Transports. Not every method is available on every transport.
These methods are described in the following topics:

• Outbound Methods for a Transport Business Service

• Inbound Methods for a Transport Business Service

For each method, there are a number of common parameters, as shown in the second table in Common EAI Transport
Parameters, as well as transport-specific parameters that are discussed in the respective chapter for each transport.

Outbound Methods for a Transport Business Service
Available outbound methods depend on the transport business service in use, such as EAI MSMQ Transport. The business
service sends messages from the Siebel application using the appropriate communications protocol, such as MQSeries,
MSMQ, HTTP, and so on. There are two outbound methods that you use to send requests from a Siebel application to
another application:

• Send. Sends a message from a Siebel application when the Siebel application does not require a response. This is
an asynchronous request method (except for the EAI HTTP Transport, which expects a correct HTTP response),
because the Siebel application does not wait for a response before continuing with the process.

• Send and Receive (SendReceive). Sends a message from the Siebel application when the Siebel application requires
a response before continuing. This is a synchronous request and response method, because it must receive a
response before the Siebel application can continue.

4

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

Inbound Methods for a Transport Business Service
Available inbound methods depend on the transport business service in use, such as EAI MSMQ Transport. The inbound
methods monitor a specified queue and upon receipt of a message, dispatch it to another service.

There are three inbound methods that can be used to receive requests from another application:

• Receive. Receives an inbound request message and returns it to the caller of the transport.

• Receive and Execute (ReceiveDispatch). Receives an inbound request message and calls another service with the
inbound message as input. This called service is known as the Dispatch Service, and the method that is called is
known as the Dispatch Method.

• Receive, Execute, and Send (ReceiveDispatchSend). This is a request/response method. It receives an inbound
request message, calls another service with the inbound message as input, and then sends the output of the called
service as a response. To suppress the response, you can create an output property, on the dispatch service, of
type EmptyResponse and set it to True.

Note: To receive a message and send a reply using the ReceiveDispatchSend method, you must use the
<Value> process property in dispatched workflows to hold the message.

Note: There are server components (called receivers) on top of the inbound methods that run as Siebel
Server tasks. When running an EAI receiver such as MQSeries Server or MSMQ Receiver (using the methods
ReceiveDispatch or ReceiveDispatchSend), if the dispatch service has an error, then the receiver shuts down.
Check the Status column on the Component Tasks for details about the cause of the error.

Using Named Subsystems for Transport Parameters
Named subsystems are groupings of defined enterprise parameters that are stored in the Siebel Gateway. You use named
subsystems to specify methods and parameters for EAI Transports. Transport business services take two subsystem names
as parameters, which you define using the Siebel Server Manager:

• Transport Connection Subsystem (ConnectionSubsystem)

• Transport Data Handling Subsystem (DataHandlingSubsystem)

Values for parameters in a named subsystem are common to every user of the subsystem across the enterprise. Subsystem
names themselves are parameters for server components. You can logically group parameters into various subsystems.

For the two EAI Transport named subsystem parameters, ConnectionSubsystem and DataHandlingSubsystem, two
parameters exist for the EAI receivers: ReceiverConnectionSubsystem and ReceiverDataHandlingSubsystem. The EAI
Receiver looks up these parameters from the server component parameters and copies the corresponding properties
(ConnectionSubsystem and DataHandlingSubsystem) to the input property set of the transport business service.

Note: You must create named subsystems and specify the parameters for the subsystems. Then, you specify
the named subsystems you created, for example, as business service user properties in a workflow or through
scripting. You must specify named subsystem parameters by the values of their Alias fields in the Profile
Parameters list.

5

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

The following subtopics are discussed in this topic:

• Rules of Precedence for Parameter Specification

• Common EAI Transport Parameters

Rules of Precedence for Parameter Specification
You can specify the two named subsystem parameters, ConnectionSubsystem and DataHandlingSubsystem, as either
business service user properties or as run-time arguments. If you specify the parameters in both locations, then the business
service user property takes precedence over the run-time arguments.

Note: For additional information about named subsystems, see Siebel System Administration Guide .

You specify every other parameter in one of the two named subsystems or as run-time arguments. Siebel EAI looks for the
parameter in the ConnectionSubsystem or the DataHandlingSubsystem, depending on which parameter it is. If you specified
the appropriate named subsystem, then Siebel EAI always looks for the parameter there.

If you do not specify the parameter in this named subsystem, even if you specified it as a run-time argument, then the run-
time specification is ignored. Siebel EAI looks for the parameter in a run-time specification only if no appropriate named
subsystem is specified.

Common EAI Transport Parameters
To configure the EAI Transports, you create named subsystems for data handling and connection parameters, as presented
in the following table.

When You . . . Use This Parameter . . .

Call any Business Service

DispatchService. This parameter must be used in conjunction with DispatchMethod.

Call any Business Service

DispatchMethod. This parameter must be used in conjunction with DispatchService.

Call the Dispatch Rule Set Business
Service

DispatchRuleSet.

Call any Workflow

DispatchWorkflowProcess.

The data handling parameters are presented in the following table. These parameters are common to every transport method.
After you create the named subsystems, you then specify these named subsystems as parameters in the service method
argument or the business service user property.

Parameter Name Description

CharSetConversion

CharSetConversion specifies if and how a character set conversion needs to occur before or after
sending or receiving data from the external system. Legal values are None, UTF-8, and UTF-16.

6

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

Parameter Name Description

Default is None. Use the default value for this parameter for selfdescribing content such as XML and
MIME.

When used with a Receive method, CharSetConversion implies that the external data being read
is in whatever charset specified by this setting and must be converted to String. Therefore, the
output <Value> is a String whenever CharSetConversion is specified. If no CharSetConversion is
specified, then the output <Value> is in binary and retains its original encoding.

When used with a Send method, CharSetConversion defines the character set for the output data.
The data in <Value> is converted to the character set specified by CharSetConversion.

Depending on the value of this parameter, transport business services do implicit character set
conversions, if necessary. Note that same CharSetConversion is assumed for requests and
responses.

ConverterService

Default is EAI XML Converter. This is the name of the business service to use for serializing property
sets to a buffer and unserializing buffers to property sets. This parameter receives arguments
through business service user properties if the converter service can accept them.

Note: You cannot use an arbitrary service as a converter service.

DispatchMethod

DispatchMethod parameter specifies the dispatch method. Specification of DispatchService is
mutually exclusive with specification of a DispatchRuleSet or a DispatchWorkflowProcess. This
parameter is only applicable for the ReceiveDispatch and ReceiveDispatchSend methods.

DispatchRuleSet

DispatchRuleSet specifies the name of the dispatch rule set for the Dispatcher Service. Specification
of DispatchRuleSet is mutually exclusive with specification of DispatchWorkflowProcess or Dispatch
Service. This parameter is only applicable for the ReceiveDispatch and ReceiveDispatchSend
methods.

DispatchService

DispatchService specifies the dispatch service. Specification of DispatchService is mutually exclusive
with specification of a DispatchRuleSet or DispatchWorkflowProcess. This parameter is only
applicable for the ReceiveDispatch and ReceiveDispatchSend methods.

DispatchWorkflowProcess

DispatchWorkflowProcess specifies the name of the workflow to dispatch to. Specification of
DispatchWorkflowProcess is mutually exclusive with specification of DispatchRuleSet or Dispatch
Service. This parameter is only applicable for the ReceiveDispatch and ReceiveDispatchSend
methods.

IgnoreCharSetConvErrors

Default is False. This parameter specifies whether character set conversion errors are ignored. If
False, with any such errors, then the transport service propagates the error.

Impersonate

Default is False. This parameter indicates whether or not the receiver executes the incoming
request using the default credentials of the receiver or those provided in the incoming XML
document. If this parameter is set to True, then the receiver analyzes the incoming XML document
(<SiebelMessage> element) for the eaiusername and eaipassword credential attributes. If these
credentials are found, then the receiver attempts to relogin with the credential. If the Impersonate
parameter is set to True and the credentials are not found or are not a valid Siebel username or
password, then an error message is returned.

RollbackOnDispatchError

Default is True. This parameter indicates whether or not to roll back transport transaction if a
Dispatch Method fails. This parameter is only available for the transactional transports MQSeries
Server and MSMQ.

7

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 2
EAI Transports and Interfaces Overview

Parameter Name Description

SiebelTransactions

Default is True. This parameter indicates whether or not to nest the Siebel transaction within the
transport transaction. This parameter is only available for the transactional transports MQSeries
Server and MSMQ. If this parameter is set to False, then the transaction support is turned off at the
transport level. This setting means that if the transaction fails, then there is no rollback at the Siebel
transaction level.

About Object Interfaces and EAI
Object Interfaces allow integration between the Siebel application and external applications. Object Interfaces can be called
by eScripts and VB or used within a workflow. The workflow can use other business services and transports as needed.

Available object interface support includes Siebel Java Data Beans for integration with Java EE applications. For information,
see Integrating Siebel Business Applications with Java Applications.

Database-Level Interfacing
In addition to transports and object interfaces, Siebel Business Applications provide Enterprise Integration Manager (EIM) for
high-volume data exchange and batch loading. You use the set of interface tables that serve as intermediate tables between
your external data source and the Siebel Database.

Note: For more information about Siebel EIM and the interface tables, see Siebel Enterprise Integration
Manager Administration Guide .

8

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

3 EAI MQSeries Server Transport

EAI MQSeries Server Transport
This chapter discusses the EAI MQSeries Server Transport business service. It includes the following topics:

• About the EAI MQSeries Server Transport Business Service

• Using the SendReceive Method with MQSeries

• Dispatch Error Handling for the EAI MQSeries Server Transport

• Increasing the Maximum Message Length on IBM WebSphere MQ

• Using the EAI MQSeries Server Transport on AIX

• About EAI MQSeries Transport Re-Entrance

• About Message ID Tracking for an Inbound Message

• Invoking a Workflow Using MQSeries Server Receiver

This chapter assumes that you understand the architecture and operation of IBM WebSphere MQ (formerly known as IBM
MQSeries). For more information, consult the IBM WebSphere MQ documentation at: http://www.ibm.com/support.

About the EAI MQSeries Server Transport Business Service

The Siebel EAI MQSeries Server Transport provides a messaging solution to help you integrate data between Siebel Business
Applications and external applications that can interface with IBM WebSphere MQ. The EAI MQSeries Server Transport
business service transports messages to and from IBM WebSphere MQ queues. It uses the Message queuing API (MQI).

Note: The EAI MQSeries Server Transport can connect only to IBM WebSphere MQ Server software. The
IBM WebSphere MQ Server must be running on the same system as your Siebel Server. Before using the EAI
MQSeries Server Transport, you must install and configure the IBM WebSphere MQ software. Contact your IBM
sales representative for details.

The EAI MQSeries Server Transport supports the inbound and outbound methods described in Outbound Methods for
a Transport Business Service and Inbound Methods for a Transport Business Service. This topic includes the following
information:

• About the MQPMO_SYNCPOINT Option

• EAI MQSeries Server Transport Parameters

• Exposing MQMD Headers as Properties

• EAI MQSeries Server Transport Named Subsystem

9

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

About the MQPMO_SYNCPOINT Option
The EAI MQ Series Server Transport business service uses the MQPMO_SYNCPOINT option for sending messages to IBM
WebSphere MQ using the IBM MQ API.

MQPMO_SYNCPOINT sends the message with syncpoint control. A syncpoint is a logical point in the execution of a program
where changes made by the program can be saved. The message request operates within the unit of work: the message
is not visible outside the unit of work until the unit of work is saved. If the unit of work is rolled backed, then the message is
deleted. For more information about syncpoint options, consult the IBM WebSphere MQ documentation at:

http://www.ibm.com/support

EAI MQSeries Server Transport Parameters
In addition to supporting the common transport parameters presented in the second table in Common EAI Transport
Parameters, the EAI MQSeries Server Transport uses the parameters shown in the following table. These can be specified as
service method arguments, subsystem parameters, or user properties.

Note: To send to a model queue, the model queue must have a definition type of PERMANENT and the
following arguments must be supplied in the workflow: Model Queue, Physical Queue, Queue Manager, and
Message Text.

Argument Display Name Description

MqAcknowledgements

Receive Acknowledgements

Default is False. This parameter specifies whether or
not delivery and arrival acknowledgements are to be
received.

MqAckPhysicalQueueName

Acknowledgement Physical Queue
Name

If the MqAcknowledgements is set to True, then this
parameter contains the name of the physical queue
for acknowledgements to responses.

MqAckQueueManagerName

Acknowledgement Queue Manager
Name

Defaults to MqQueueManagerName if unspecified.
If MqAcknowledgements is set to True, then this
parameter contains the name of the queue manager
for acknowledgements to responses.

MqModelQueueName

Model Queue Name

Name of the MQSeries model queue.

MqPhysicalQueueName

Physical Queue Name

Name of the MQSeries physical queue. You can also
create an alias queue which points to a target queue
and use the alias queue name as the input argument
physical queue name and send messages to the
target queue.

Note: Using an alias queue works. However,
since the alias queue does not have a backout
queue defined, the receiver cannot roll back to
the backout queue.

10

http://www.ibm.com/support

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

Argument Display Name Description

MqQueueManagerName

Queue Manager Name

Name of the MQSeries queue manager. If this
parameter is not specified, then the default Queue
Manager Name, as specified in the MQSeries
configuration, is used. The Response Queue
Manager is the same as MqQueueManagerName.

MqRespModelQueueName

Response Model Queue Name

Name of model queue for response connection.

MqRespPhysicalQueueName

Response Physical Queue Name

Name of physical queue for response connection.

MqFormat

MQSeries Format

The format of the message from the Siebel
application to the outbound queue.

MqSleepTime

Sleep Time

Default is 20000 milliseconds. The timeout interval on
receive calls, in milliseconds.

In addition to the EAI MQSeries Server Transport, you can run the MQSeries Server Receiver, which is a server component
that periodically checks the MQSeries queues you specify, for inbound messages.

Note: The persistence of the message is the same as the persistence of the queue itself.

Exposing MQMD Headers as Properties
In the inbound direction, that is, when a message is received from a queue, the EAI MQSeries Server Transport feature
exposes the MQMD headers as properties of a property set. The supported headers are summarized in the last table, about
MQMD Message Headers, in this topic

In the outbound direction, that is, when a message is placed on a queue, the EAI MQ Server Transport supports the headers
shown in the following table to be set by the caller.

Header Value

CodedCharSetId

MQCCSI_Q_MGR, MQCCSI_INHERIT, MQCCSI_EMBEDDED, or any positive Long.

Encoding

MQENC_NATIVE or any positive Long.

Expiry

Any positive Long.

MsgType

Any nonnegative Long.

Persistence

MQPER_PERSISTENT, MQPER_NOT_PERSISTENT, or MQPER_PERSISTENCE_AS_Q_DEF.

Priority

MQPRI_PRIORITY_AS_Q_DEF or any nonnegative Long.

Report The only settable value is MQRO_NONE.

11

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

Header Value

ReplyToQ

Name of the reply queue, for example, myQueue.

ReplyToQ is set in the message header of an incoming MQ message by the sender application.
This sets dynamically the queue for the response sent by Siebel CRM. ReplyToQ is valid for the
ReceiveDispatchSend method.

Note: If the Response queue is specified using a static configuration, then the ReplyToQ
header of the incoming message is ignored. The static configuration overrides dynamic
queuing.

ReplyToQ can also be set by the Siebel application, as MQMD_S_In_ReplyToQ while using the Send
method, to specify the response parameters.

ReplyToQMgr

Name of the reply queue manager, for example, myQueueManager.

ReplyToQMgr is set in the message header of an incoming MQ message by the sender application.
This sets dynamically the queue manager for the response sent by Siebel CRM. ReplyToQMgr is
valid for the ReceiveDispatchSend method.

Note: If the Response queue is specified using a static configuration, then the
ReplyToQMgr header of the incoming message is ignored. The static configuration overrides
dynamic queuing.

ReplyToQMgr can also be set by the Siebel application, as MQMD_S_In_ReplyToQMgr while using
the Send method, to specify the response parameters.

You can set a MQMD message header for the Siebel application by specifying it as a property in a property set on the
outbound side. Whereas on the inbound side, the MQMD message header of the response is exposed to the user as a
property on the output property set.

On the inbound side, you can have the supported MQMD message headers as part of the output property set without having
to do extra steps to see these MQMD message headers.

On the outbound side, you can set the MQMD message headers using the EAI MQSeries Server Transport. To modify the
MQMD message headers on the outbound side, the property value for FullMQMDControl must be set to TRUE.

During the sending business service step (EAI MQSeries Server Transport.Send) within the workflow, input arguments are
added that can modify MQMD headers. Once the property FullMQMDControl is set to TRUE, you can modify other MQMD
headers as the examples show in the following table.

Note: In workflows and scripts, you set and get MQMD parameters using their full names, for example,
MQMD_S_In_Encoding.

Property Type Example Value

MQMD_S_In_CodedCharSetId

Literal

1208

MQMD_S_In_Encoding

Literal

MQENC_NATIVE

MQMD_S_In_Expiry Literal MQEI_UNLIMITED

12

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

Property Type Example Value

MQMD_S_In_MsgType

Literal

TestMsgHeader

MQMD_S_In_Persistence

Literal

MQPER_PERSISTENT

MQMD_S_In_Priority

Literal

MQPRI_PRIORITY_AS_Q_DEF

MQMD_S_In_ReplyToQ

Literal

MyQueue

MQMD_S_In_ReplyToQMgr

Literal

MyQueueManager

Note: When using the Message Type header (MQMD_S_In_MsgType), make sure that the message type set
makes sense in context. For example, if the Send method is used to send a message to MQSeries, then do
not set the MsgType to MQMT_REQUEST. If the SendReceive method is used to send and request a response
from MQSeries, then the MsgType of MQMT_REQUEST is applicable (this is automatically set by the Siebel
application). In the previous table, MsgType is set to TestMsgHeader.

The following table summarizes the MQMD message headers that are exposed as properties in a property set.

Field Data Type Description Input or Output Property?

AccountingToken

MQBYTE32

Accounting token

Output

ApplIdentityData

MQCHAR32

Application data relating to identity

Output

ApplOriginData

MQCHAR4

Application data relating to origin

Output

BackCount

MQLONG

Backout counter

Output

CodedCharSetId

MQLONG

Character set identifier of message

Input and Output

CorrelId

MQBYTE24

Correlation identifier

Output

Encoding

MQLONG

Numeric encoding of message data

Input and Output

Expiry

MQLONG

Message lifetime

Input and Output

Feedback

MQLONG

Feedback or reason code

Output

Format

MQCHAR8

Format name of message data

Input and Output

GroupId

MQBYTE24

Group Identifier

Output

13

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

Field Data Type Description Input or Output Property?

MsgFlags

MQLONG

Flags that specify attributes of the
message or control its processing

Output

MsgSeqNumber

MQLONG

Sequence number of logical message
within group

Output

MsgType

MQLONG

Message Type

Input and Output

Offset

MQLONG

Offset of data in physical message from
start of logical message

Output

OriginalLength

MQLONG

Length of original message

Output

Persistence

MQLONG

Message persistence

Input and Output

Priority

MQLONG

Message priority

Input and Output

PutApplName

MQCHAR28

Name of application that sent the
message

Output

PutApplType

MQLONG

Type of application that sent the

Output

PutDate

MQCHAR8

Date when message was sent

Output

PutTime

MQCHAR8

Time when message was sent

Output

ReplyToQ

MQCHAR48

Name of reply queue

Input and Output

ReplyToQMgr

MQCHAR48

Name of reply queue manager

Input

Report

MQLONG

Options for report messages

Output

UserIdentifier

MQLONG

User identifier

Output

Version

MQLONG

Structure version number

Output

EAI MQSeries Server Transport Named Subsystem
The EAI MQSeries Transport can read parameters from a named subsystem. For the EAI MQSeries Server Transport, the
named subsystem type is MqSeriesServerSubsys.

The following is an example of the EAI MQSeries Server Transport and the commands to create a named subsystem and
start a receiver:

14

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

create named subsystem MyMqSrvrSubsys for subsystem MQSeriesServerSubsys with
MqPhysicalQueueName=Receiver, MqRespPhysicalQueueName=Sender,
MqQueueManagerName=myQueueMgr

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys with
DispatchService="Workflow Utilities", DispatchMethod=ECHO

start task for comp MqSeriesSrvRcvr with
ReceiverConnectionSubsystem=MyMqSrvrSubsys,
ReceiverDataHandlingSubsystem=SiebelEcho, ReceiverMethodName=ReceiveDispatchSend

For a discussion of named subsystems for Siebel EAI, see . For more information about named subsystems, see Siebel
System Administration Guide .

Using the SendReceive Method with MQSeries
The SendReceive method on the EAI MQSeries Server Transport sends a message and waits for a response from the target
application on a response queue. This response message corresponds to the original message using the correlation ID in
MQSeries.

Note: It is the responsibility of the external application to set the correlation ID of the response to the Siebel
Business Application to the message ID of the original message.

Note: It is recommended that, when using the EAI MQSeries Server Transport business service with the
SendReceive method, you check the TimedOut process property. If you send a message and the MQ transport
times out waiting for a response, then the business service does not raise an error but the TimedOut value is
true.

Dispatch Error Handling for the EAI MQSeries Server
Transport
When using the ReceiveDispatch and ReceiveDispatchSend methods, certain MQSeries behavior might affect your
messages.

Note: The transaction does not end when the message is received from the queue because it waits for the
entire dispatch process to either complete successfully for commit or fail for rollback.

If all of the following conditions are met, then the message is sent to the Backout Requeue Queue of the current queue
manager:

• A dispatch error has occurred.

• The RollbackOnDispatchError property is set to TRUE.

• The message has been rolled back by a count exceeding the Backout Threshold of the queue.

15

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

Note: If the Backout Requeue Queue has not been specified for the Queue Manager, then the message is
sent to the Dead Letter Queue of the current queue manager. If there is no specified Dead Letter Queue for the
current queue manager, then the queue defaults to the SYSTEM.DEAD.LETTER.QUEUE.

Increasing the Maximum Message Length on IBM
WebSphere MQ
The MaxMsgLength queue manager attribute in the IBM WebSphere MQ software defines the maximum length of a message
that can be handled by a queue manager. The MaxMsgLength queue attribute is the maximum length of a message that can
be handled by a queue.

The default maximum message length on IBM WebSphere MQ is 4 MB. If the message is too large for the queue,
then MQRC_MSG_TOO_BIG_FOR_Q is returned. Similarly, if the message is too large for the queue manager, then
MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

If you are handling large messages, then you can change the MaxMsgLength queue manager and queue attributes
independently. You can set the queue manager attribute value between 32768 bytes and 100 MB; you can set the queue
attribute value between 0 and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications and channels to ensure that the
changes take effect. For more information, consult the IBM WebSphere MQ documentation at:

http://www.ibm.com/support

Using the EAI MQSeries Server Transport on AIX
When you use the EAI MQSeries Server Transport on AIX, the shared memory segment required by the EAI MQSeries Server
process can collide with the shared memory segment required by the queue manager. By default, the EAI MQSeries queue
manager attempts to use shared memory segment number 8. The EAI MQSeries Server Transport does not rely on any
specific number and uses whatever segment is given to the process by the AIX operating system.

However, if you are using the default configuration, then there is a possibility that the EAI MQSeries Server process gets
segment number 8 from the operating system first, and as a result the queue manager cannot get its segment. In this case,
the EAI MQSeries Server Transport service fails with an error code of 2059 because it cannot connect to the queue manager.

Fixing a Shared Memory Segment Conflict on AIX
You edit the mqs.ini file, found in the /var/mqm directory, to fix a shared memory segment conflict with the EAI MQSeries
Server Transport on AIX.

To fix a shared memory segment conflict with the EAI MQSeries Server Transport on AIX

1. Shut down any queue manager connected to the EAI MQSeries Transport.
2. Edit the /var/mqm/mqs.ini file.

16

http://www.ibm.com/support

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

In the QueueManager section for each queue manager of interest, add an additional line explicitly specifying the
shared memory segment to use. For example:
QueueManager:
Name=myQueueManager
Prefix=/var/mqm
Directory=myQueueManager
IPCCBaseAddress=12

3. Restart each queue manager.

Note: This example shows shared number 12 as the memory segment number. Valid values for the
IPCCBaseAddress are 4, 5, 8, 9, 10, 11, and 12, although 8 has been found to be problematic. It is possible
to get a shared memory segment conflict even with the number set to 12, if the operating system has allocated
segment 12 to the EAI MQSeries Server process ahead of the queue manager. If this is the case, then a different
segment number must be specified.

Configuring AIX to Run the Siebel Server with Less Memory
If the EAI MQSeries Server Transport business service on AIX continues to fail even after you have followed the previous
procedures, then you can configure the AIX environment to run Siebel Server with less memory using the environment
variable LDR_CNTRL. After you have finished, follow the procedures in the preceding topic. For more information about
setting parameters for AIX, see Siebel Performance Tuning Guide .

To configure the AIX environment to run the Siebel Server with less memory

1. Shut down the Siebel Server.
2. In the shell that you use to bring up the Siebel Server, set the environment variable LDR_CNTRL. Using csh:

setenv LDR_CNTRL MAXDATA=0x30000000

Note: You can save the setting in the siebenv.sh or siebenv.csh.

3. Restart the Siebel Server with this environment variable.

About EAI MQSeries Transport Re-Entrance
The EAI MQSeries Server Receiver uses the EAI MQSeries Server Transport business service but cannot dispatch to a
workflow that either uses this business service as one of its steps or dispatches directly to this business service.

While in-process re-entrance is not supported, you can indirectly invoke the EAI MQSeries Server Transport as one of the
steps out of process by calling the Synchronous Server Requests business service.

17

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

About Message ID Tracking for an Inbound Message
You can keep track of Message IDs of inbound messages by creating a process property, MsgId, of type String, and then
adding an output argument with the following configuration to the Send step of your process as shown in the following table.

Type Output Argument

Output Argument

MQSeries Message Identifier

This captures the Message IDs for the Queue Manager assigned to the messages in the MsgId process property.

Invoking a Workflow Using MQSeries Server Receiver
Following are examples of commands to create named subsystems and start a MQSeries Server Receiver to invoke a
workflow.

Note: If there is either an exception step or an error process in your workflow, then the workflow assumes that
the error step or the error process handles the error and the workflow does not send the error out. To capture
the error, insert a stop step into your workflow. Note that by adding a stop step, the caller gets the generic
workflow stop error and not the original error, but the original error is stored in the Error Code and Error Message
process properties.

Command to Create an EAI Transport Data Handling Subsystem
The following command creates an EAI Transport Data Handling Subsystem:

create named subsystem MYDataSubSys for subsystem EAITransportDataHandlingSubsys
with DispatchWorkflowProcess="MQ Inbound Workflow"

Command to Create an EAI Transport Connection Subsystem
The following command creates an EAI Transport Connection Subsystem:

create named subsystem MYSubSys for subsystem mqseriesserversubsys with
MQQueueManagerName=QueueMgr, MQPhysicalQueueName=LocalQueue

Command to Start an MQSeries Server Receiver
The following command starts an MQSeries Server Receiver:

start task for component MqSeriesSrvRcvr with ReceiverConnectionSubsystem=MYSubSys,

18

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

ReceiverDataHandlingSubsystem=MYDataSubSys, ReceiverMethodName=ReceiveDispatch

When calling your workflow by the MQSeries Server Receiver, it is not necessary to include a step to pull the messages off
the queue and pass them to the next step. The MQSeries Server Receiver automatically pulls the messages off the queue
and passes them on if:

• You have created a new process property of data type String and a default string of <Value>. This process property
stores the inbound message text picked up by the MqSeriesSrvRcvr.

• In your workflow step, where you handle the inbound messages from IBM WebSphere MQ, you insert an input
argument of <Value> with type Process Property. The Property Name is the name of the process property that you
created in the previous step.

Note: When you type in <Value>, the display name might change to Message Text or XML Document.

19

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 3
EAI MQSeries Server Transport

20

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

4 EAI MSMQ Transport

EAI MSMQ Transport
This chapter discusses Oracle’s implementation of Microsoft Message Queuing (MSMQ) support with the EAI MSMQ
Transport business service. It includes the following topics:

• About Microsoft Message Queuing (MSMQ)

• Configuring the EAI MSMQ Transport Servers

• Configuring EAI MSMQ Transport for Various Send and Receive Scenarios

About Microsoft Message Queuing (MSMQ)
Many large organizations are integrating various enterprise business applications into application networks. These networks
allow applications to communicate with each other and share data, either automatically or by request. Technologies such
as Microsoft Message Queuing (MSMQ) provide a messaging infrastructure for transporting data from one application to
another, without the need for programming.

MSMQ allows applications running at different times to communicate across heterogeneous networks and systems, even
when one or many of those systems are temporarily offline. Because applications send messages to queues and read
messages from queues, the messages are always available and remain in the queue for as long as required. For example,
the messages are still there when a system that was offline comes back online to retrieve them. Optionally, messages can
be sent to a dead letter queue after a predetermined amount of time has passed to help make sure that only timely, relevant
messages are received.

The following subtopics are described in this topic:

• About the EAI MSMQ Transport

• Methods for Sending and Receiving Messages

• EAI MSMQ Transport Named Subsystems

About the EAI MSMQ Transport
EAI MSMQ Transport is a Siebel business service that can be customized using Siebel Tools. With Siebel Tools, you define
integration objects to be transported across the EAI MSMQ Transport business service. EAI MSMQ Transport is responsible
for sending and receiving messages between a Siebel application and MSMQ queues. EAI MSMQ Transport allows you to:

• Send a message to an external system

• Send and receive synchronous messages between a Siebel application and an external system

• Receive a message and perform an action based on that message within a Siebel application

• Receive a message, perform an action within a Siebel application, and then send a synchronous response to the
external system

21

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Methods for Sending and Receiving Messages
EAI MSMQ Transport supports two transport modes: sending messages and receiving messages. The following methods are
supported:

• Send

• Send and Receive Response (SendReceive)

• Receive

• Receive and Execute Service (ReceiveDispatch)

• Receive, Execute, Send Response (ReceiveDispatchSend)

Messages from a Siebel Application to an External System
You configure EAI MSMQ Transport using the Siebel Business Process Designer, where you specify various parameters, such
as the queue where Siebel outbound messages are sent. You configure the message itself using the integration object feature
within Siebel Tools. The message can be in any text or binary format, including XML. The default format is XML, where the
integration object defines the XML Schema Definition (XSD) or the Document Type Definition (DTD) associated with the XML
document.

You configure the EAI MSMQ Transport at design time to specify the MSMQ queue computer name and the queue name.
You use the EAI MSMQ Transport along with the Siebel Business Process Designer Manager to model business processes
for sending messages to the external system.

You can configure the EAI MSMQ Transport to send messages to external systems when an event occurs in a Siebel
application. For example, suppose that one of your sales representatives enters a new opportunity for an account into
a Siebel application. This information needs to be sent to other business units that might or might not be using a Siebel
application. The message can be sent using EAI MSMQ Transport as the transport mechanism to inform these external
systems.

EAI MSMQ Transport can also be used synchronously to send a message and receive a response back from an external
system in a single session. For example, suppose that one of your customers calls your Call Center requesting information
on an account. The sales agent initiates a process to send a request with the account name from a Siebel application to an
external mainframe system using the EAI MSMQ Transport. In response, the sales agent then receives a list of transaction
details for that customer displayed within a Siebel application form.

Messages to a Siebel Application from an External System
External applications can send messages to a Siebel application using EAI MSMQ Transport. These messages are received
and routed by the EAI MSMQ Receiver in conjunction with the MSMQ system.

The EAI MSMQ Receiver is a Siebel Server component that waits for messages in a specified queue. If you select the
Receive, Execute, Send Response method, then the EAI MSMQ Receiver waits for a response from a Siebel application and
places the output into a response queue.

EAI MSMQ Transport Named Subsystems
The EAI MSMQ Transport can read parameters from a named subsystem. For this transport, the named subsystem type is
MSMQSubsys.

22

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

For a discussion of named subsystems for Siebel EAI, see EAI Transports and Interfaces Overview. For more information
about named subsystems, see Siebel System Administration Guide .

Configuring the EAI MSMQ Transport Servers
The instructions in this topic are for configuring the EAI MSMQ Transport servers. Use a two-server setup, configured as
listed in the following topic. However, you can implement a single server or multiple servers.

MSMQ Primary Enterprise Controller
You configure the MSMQ Primary Enterprise Controller with the following components:

• Windows Server (for supported versions, see the Certifications tab on My Oracle Support)

Note: For information about the Certifications application, see 1492194.1 (Article ID) on My Oracle
Support.

• MSMQ Server

• As many MSMQ queues as needed

• Relevant ODBC driver

• Siebel Server

• Siebel Gateway

• Siebel Web Client

• Siebel Tools

Regional Enterprise Server and MSMQ Client
You configure the Regional Enterprise Server and MSMQ Client with the following components:

• Windows Server (for supported versions, see the Certifications tab on My Oracle Support)

Note: For information about the Certifications application, see 1492194.1 (Article ID) on My Oracle
Support.

• MSMQ Client

• As many MSMQ queues as needed

• The relevant ODBC driver

• Siebel Server

• Siebel Gateway

• Siebel Web Client

23

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Note: The MSMQ Server can reside on either the MSMQ Primary Enterprise Controller or the Regional
Enterprise Server. This functionality is independent of the underlying database. You can use any supported
database, including IBM DB2, DB2 for z/OS, Oracle Database, and Microsoft SQL Server.

Configuring EAI MSMQ Transport for Various Send and
Receive Scenarios
The EAI MSMQ Transport and the Siebel Business Process Designer Manager work in tandem to transfer data using MSMQ
from one Siebel application to another Siebel application or to an external application. You can set up a workflow and choose
attributes and values to define the transport for a particular send or receive scenario.

The following topics are described:

• EAI MSMQ Transport Prerequisites

• EAI MSMQ Transport Parameters

• About Defining Integration Objects

• Sending Outbound Messages with EAI MSMQ Transport

• Receiving Inbound Messages with MSMQ Receiver

EAI MSMQ Transport Prerequisites
You must set up both Microsoft SQL Server and MSMQ before configuring the EAI MSMQ Transport. In addition, the Siebel
Business Process Designer Manager functionality must be available within Siebel Tools and Siebel Web Client.

EAI MSMQ Transport Parameters
The following information presents the parameters used for configuring the EAI MSMQ Transport.

Parameter Description

EndOfData

Set to True to indicate end of data.

MsmqPhysicalQueueName

Name of the MSMQ Queue. Can be used for both sending and receiving messages.

MsmqQueueMachineName

Computer that owns the queue specified by the physical queue name.

MsmqRespQueueMachineName

Computer that owns the queue specified by MsmqRespQueueName.

MsmqRespQueueName

Name of the response queue.

MsmqSleepTime

Default is 20000 milliseconds. The amount of time that the EAI MSMQ Transport business service
waits to receive a message.

24

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Parameter Description

TimedOut

If no message is received in seconds specified in SleepTime, then the TimedOut argument in the
Output Property set is set to True.

IgnoreCorrelationId

Default is False. Set to ignore Correlation Id value on the inbound messages. If this flag is True, then
the message is picked up from the queue regardless of the correlation Id on the message. This
parameter is ignored for the SendReceive Method because Correlation Id is required to match the
response with the original message.

LargeMessageSupport

Default is True. Set to enable or disable large-message (messages over 4 MB) support.

Set IgnoreCorrelationId to False for Large Message Support.

About Defining Integration Objects
Before you use the EAI MSMQ transport, you must define integration objects for use with the transport. The various methods
explained in the following pages assume that this integration object has already been defined. You define your Siebel
messages as integration objects using Siebel Tools. These messages correspond to the information that you want to
exchange between the Siebel application and an external application. An example of an integration object would be an order,
an account, a quote, or a contact.

After you have created an integration object, you can then send the message corresponding to this integration object through
the EAI MSMQ Transport, either as part of a workflow or as a custom business service.

For information about creating integration objects, see Integration Platform Technologies: Siebel Enterprise Application
Integration .

Sending Outbound Messages with EAI MSMQ Transport
With the Siebel application as the sender (outbound messaging), you design a workflow that queries for a record (such as a
contact) and then converts that record to an XML document. The XML document is then sent to an MSMQ queue.

Because MSMQ imposes a limit of four megabytes on the size of the messages it can handle, the EAI MSMQ Transport
separates outbound Siebel messages larger than four megabytes into smaller messages acceptable to MSMQ. The message
is then reassembled after it has left MSMQ and arrived at your partner’s system.

There are two methods for sending messages from a Siebel application to MSMQ:

• Send

• Send and Receive Response (SendReceive)

Sending Messages with EAI MSMQ Transport
The following procedure describes how to set up your system to send a message to an external system using the EAI MSMQ
Transport.

25

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

To send messages from a Siebel application to MSMQ

1. Access the Windows Computer Management tool by choosing the Start menu, Programs, Administrative Tools, and
then Computer Management.

2. Set up an MSMQ queue to receive messages from the Siebel application. Give the queue an easily identified name,
such as fromsiebel. The MSMQ queue you create (for example, fromsiebel) will appear in the list of queues.

3. Set the queue to be Transactional.

Note: This flag allows Siebel Business Applications to group a number of Send or Receive messages.
This is critical when large data sets are being used because it allows a commit or a rollback to be executed
without failure.

4. In Siebel Tools, set up a workflow for sending a message to MSMQ. Define the flow as shown in the following figure:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

5. Create the following process properties:

Name Data Type In/Out Value

Employee Message

Hierarchy

In/Out

Not applicable

Employee XML

Binary

In/Out

Not applicable

Error Code

String

In/Out

Not applicable

Error Message

String

In/Out

Not applicable

Object Id

String

In/Out

Row Id of an Employee record

Siebel Operation Object Id

String

In/Out

Not applicable

6. Set up the first step of the workflow, after Start, to use the EAI Siebel Adapter business service with the Query
method to query the information from the Siebel database using the following input and output arguments:

Input Argument Type Value Property Name

OutputIntObjectName

Literal

Sample Employee

Not applicable

PrimaryRowId

Process Property

Not applicable

Object Id

26

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Property Name Type Output Argument

Employee Message

Output Argument

SiebelMessage

7. Set up the second step to use the EAI XML Converter business service with the PropSetToXML method to convert
the data extracted from the Siebel Database to XML format using the following input and output arguments:

Input Argument Type Property Name

SiebelMessage

Process Property

Employee Message

Property Name Type Output Argument

Employee XML

Output Argument

<Value>

8. Set up the third step to use EAI MSMQ Transport with the Send method to send the information to the external
system, using the following input arguments:

Input Argument Type Value Property Name

<Value>

Process Property

Not applicable

Employee XML

MsmqPhysicalQueueName

Literal

private$\FromSiebel

Not applicable

MsmqQueueMachineName

Literal

SiebelServer

Computer name where the Siebel
MSMQ Transport is running.

Not applicable

9. Save the workflow and run it from the Workflow Simulator.

Confirm that a message was sent to the queue using the MSMQ Explorer. In this example, if the simulation is
successful, then a message is in the fromSiebel queue and contains an XML file with employee information.

Sending and Receiving Messages with EAI MSMQ Transport
The following procedure describes how to set up your system to send a message to an external system using the EAI MSMQ
Transport and receive a synchronous message back from the external system by the EAI MSMQ Transport.

To send a literal to MSMQ and receive a response

1. Access the Windows Computer Management tool by choosing the Start menu, Programs, Administrative Tools, and
then Computer Management.

2. Set up an MSMQ queue to receive messages from the Siebel application, and give the queue an easily identified
name, such as fromsiebel.

3. Set up another queue to send messages to the Siebel application, and give the queue an easily identified name,
such as tosiebel.

4. In Siebel Tools, set up a workflow for sending a message out and receiving a message in response using EAI MSMQ
Transport. Define the flow as shown in the following figure:

27

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

5. Create the following process properties:

Name Data Type In/Out

Test Message

Hierarchy

In/Out

Test XML

Binary

In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Object Id

String

In/Out

Siebel Operation Object Id

String

In/Out

6. Set up the first step of the workflow after Start to use EAI Siebel Adapter with the Query method to query the
information from the Siebel Database using the following input and output arguments:

Input Argument Type Value Property Name Property Data Type

OutputIntObjectName

Literal

Sample Employee

Not applicable

Not applicable

PrimaryRowId

Process Property

Not applicable

Object Id

String

Property Name Type Output Argument

Test Message

Output Argument

SiebelMessage

28

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

7. Set up the second step to use the EAI XML Converter business service with the IntObjHierToXMLDoc method to
convert the data extracted from the Siebel Database to XML format, using the following input and output arguments:

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Test Message

Hierarchy

Property Name Type Output Argument

Test XML

Output Argument

<Value>

8. Set up the third step of the workflow, after Start, to use the EAI MSMQ Transport business service with the
SendReceive method to receive the incoming XML message, using the following input and output arguments:

Input Argument Type Value Property Name Property Data
Type

<Value>

Process
Property

Not applicable

Test XML

Binary

MsmqPhysicalQueueName

Literal

fromsiebel

Not applicable

Not applicable

MsmqQueueMachineName

Literal

SiebelServer1

Computer name where the
Siebel MSMQ Transport is
running.

Not applicable

Not applicable

MsmqRespQueueMachineName

Literal

SiebelServer2

Not applicable

Not applicable

MsmqRespQueueName

Literal

tosiebel

Not applicable

Not applicable

Property Name Type Output Argument

Test XML

Output Argument

<Value>

9. Set up the fourth step to use the EAI XML Converter business service with the XMLDocToIntObjHier method to
convert the XML message to a Siebel Message using the following input and output arguments:

Input Argument Type Property Name Property Data Type

<Value>

Process Property

Test XML

Binary

Property Name Type Output Argument

Test Message

Output Argument

SiebelMessage

29

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

10. Set up the last step to use the EAI Siebel Adapter with the Upsert method to update the Siebel Database, using the
following input argument:

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Test Message

Hierarchy

11. Save the workflow and run a test using the Workflow Simulator.

The output property set must have a message in the Value field. Additionally, the EndOfData argument in the
property set must be set to True.

Note: To test this scenario adequately, you must have a partner application that can accept the message
and return a response. The correlation ID of the response message must be set to the message ID of the
message originally sent by the Siebel application.

Receiving Inbound Messages with MSMQ Receiver
With the Siebel application as the receiver (inbound messaging), you design a workflow that reads from the queue and
converts the XML messages found there into Siebel message format. Then, the EAI Siebel Adapter updates the appropriate
tables within the Siebel Database.

Note: MSMQ Receiver must run on the same computer where you have defined the receiving queue.

There are two methods for receiving messages for a Siebel application:

• Receive and Execute Service (ReceiveDispatch)

• Receive, Execute, Send Response (ReceiveDispatchSend)

Receiving and Dispatching MSMQ Messages with MSMQReceiver
The following procedure describes how to set up your system to receive an inbound message from MSMQ by MSMQ
Receiver, then perform an action based on that message within the Siebel application.

To receive and dispatch messages using the EAI MSMQ Transport (MSMQ Receiver)

1. Access the Windows Computer Management tool by choosing the Start menu, Programs, Administrative Tools, and
then Computer Management.

2. Set up a queue to send messages to the Siebel application:

a. Name the queue an easily identified name, such as toSiebel.
b. Create a message in the queue.

Note: To test this procedure adequately, you must have a partner application that can send a valid
message for the Siebel application to the queue.

3. Create a named subsystem for the MSMQ Receiver using the following lines:

30

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

create named subsystem MyMSMQSubsys for subsystem MSMQSubsys with
MsmqQueueMachineName=SiebelServer1, MsmqPhysicalQueueName=fromSiebel,
MsmqRespQueueMachineName=SiebelServer2, MsmqRespQueueName=toSiebel

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys
with DispatchService="Workflow Process Manager", DispatchMethod=RunProcess,
DispatchWorkflowProcess="MyMSMQWorkflow"

start task for comp MSMQRcvr with ReceiverConnectionSubsystem=MyMSMQSubsys,
ReceiverDataHandlingSubsystem=SiebelEcho, ReceiverMethodName=ReceiveDispatch

Note: The DispatchService and DispatchMethod parameters are optional.

4. In Siebel Tools, set up a workflow for receiving and dispatching a message from MSMQ as shown in the following
figure:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

5. Create the following process properties:

Name Data Type In/Out

Test Message

Hierarchy

In/Out

Test XML

Binary

In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Object Id

String

In/Out

Siebel Operation Object Id

String

In/Out

6. Set up the first step of the workflow after Start to use the EAI XML Converter business service with the
XMLDocToIntObjHier method to convert the XML message to a Siebel Message using the following input and output
arguments:

Input Argument Type Property Name Property Data Type

<Value>

Process Property

Test XML

Binary

31

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Property Name Type Output Argument

Test Message

Output Argument

SiebelMessage

7. Set up the second step to use the EAI Siebel Adapter with the Upsert method to update the Siebel Database, using
the following input arguments:

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Test Message

Hierarchy

Note: In order to test this scenario adequately, you must have a partner application that can send a valid
message for the Siebel application to the queue.

8. Save the workflow.

Receiving, Dispatching, and Sending MSMQ Messages with MSMQ Receiver
The following procedure shows you how to set up your system to receive an inbound message from MSMQ by MSMQ
Receiver, perform an action within a Siebel application based on that message, and then send a synchronous response back
to the external system.

To receive, dispatch, and send messages using the EAI MSMQ Transport (MSMQ Receiver)

1. Access the Windows Computer Management tool by choosing the Start menu, Programs, Administrative Tools, and
then Computer Management.

2. Set up an MSMQ queue to receive messages from the Siebel application.

Give the queue an easily identified name, such as fromSiebel.
3. Set up another queue to send messages to the Siebel application.

a. Name the queue an easily identified name, such as toSiebel.
b. Create a message in the queue.

Note: To test this procedure adequately, you must have a partner application that can send a valid
message for the Siebel application to the queue.

4. Create a named subsystem for the MSMQ Receiver using the following lines:

create named subsystem MyMSMQSubsys for subsystem MSMQSubsys with
MsmqQueueMachineName=SiebelServer1, MsmqPhysicalQueueName=fromSiebel,
MsmqRespQueueMachineName=SiebelServer2, MsmqRespQueueName=toSiebel

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys
with DispatchService="Workflow Process Manager", DispatchMethod=RunProcess,
DispatchWorkflowProcess="MyMSMQWorkflow"

start task for comp MSMQRcvr with ReceiverConnectionSubsystem=MyMSMQSubsys,
ReceiverDataHandlingSubsystem=SiebelEcho,
ReceiverMethodName=ReceiveDispatchSend

Note: The DispatchService and DispatchMethod parameters are optional.

32

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

5. In Siebel Tools, set up a workflow for receiving and dispatching a message from MSMQ as shown in the following
figure:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

6. Create the following process properties:

Name Data Type In/Out Value

Test Message

Hierarchy

In/Out

Not applicable

Test XML

Binary

In/Out

Test Message from Siebel Server

Error Code

String

In/Out

Not applicable

Error Message

String

In/Out

Not applicable

Object Id

String

In/Out

Not applicable

Siebel Operation Object Id

String

In/Out

Not applicable

7. Set up the first step of the workflow after Start to use the EAI XML Converter business service with the
XMLDocToIntObjHier method to convert the XML message to a Siebel Message using the following input and output
arguments:

Input Argument Type Property Name Property Data Type

<Value>

Process Property

Test XML

Binary

Property Name Type Output Argument

Test Message

Output Argument

SiebelMessage

8. Set up the second step to use the EAI Siebel Adapter with the Upsert method to update the Siebel Database, using
the following input arguments:

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Test Message

Hierarchy

33

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 4
EAI MSMQ Transport

Note: To test this scenario adequately, you must have a partner application that can send a valid
message for the Siebel application to the queue.

9. Save the workflow.

After running the workflow, confirm that the message is removed from the queue using the MSMQ Explorer. In this
example, the Siebel Database is updated with the message in the fromSiebel queue. Also, a response message is in
the queue specified by the MSMQRespQueueName and MSMQRespQueueMachineName arguments.

34

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

5 EAI Java Business Service

EAI Java Business Service
This chapter discusses the EAI Java Business Service. It includes the following topics:

• About the EAI Java Business Service

• Requirements for Implementing a Java Business Service

• Creating a Java Business Service

• About the Lifecycle of a 32-bit Java Business Service

• Example of a Java Business Service

• Restrictions for Implementing a Java Business Service

• Troubleshooting the Java Business Service

About the EAI Java Business Service
The EAI Java Business Service (JBS) is a service framework that allows custom business services to be implemented in Java
and run from a Siebel application. The framework consists of the following:

• A template business service, EAI Java Business Service, which is defined in the repository.

• An abstract Java class, com.siebel.eai.SiebelBusinessService, that defines the interface of the Java class that
implements the business service.

The EAI Java Business Service works in two different ways:

• 32-bit JVM. The EAI Java Business Service works by creating a 32-bit Java Virtual Machine (JVM) in-process with
the Siebel application and invoking Java implementations using Java Native Interface (JNI). Each Siebel process
(component) has at most one JVM. JVMs are not shared across components.

• 64-bit JVM. The EAI Java Business Service works by creating a 64-bit Java Virtual Machine (JVM) that runs in a
separate process from Siebel application and invokes Java implementations using HTTP.

Requirements for Implementing a Java Business Service
To implement a Java business service, the following software must be installed and properly configured on each Siebel Server
or Siebel Mobile and Developer Web Clients:

• A Java Runtime Environment (JRE)

• All necessary Java code

• A configured named subsystem of type:

◦ JVMSubSys for a 32-bit JRE or

35

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

◦ JavaContainerSubSys for a 64-bit JRE

The named 32-bit subsystem supplies the following parameters to the JBS: DLL, CLASSPATH, and VMOPTIONS. These
parameters are described as follows.

• DLL. The complete path of the JRE library, as shown in the following table.

• CLASSPATH. The classpath used by the JVM.

The classpath must include the following Siebel JAR files as well as all Java code implementing the desired business
service.

The required Siebel JAR files are:

◦ Siebel.jar

◦ SiebelJI_lang.jar (lang corresponds to the default language for your installation).

• VMOPTIONS. Java Virtual Machine options. On all platforms, except AIX, it is recommended that the option -
Xusealtsigs be used to make sure that the signal handlers used by the Siebel Server do not conflict with those of the
JVM.

Note: The -Xusealtsigs option is mandatory for use on the Oracle Solaris platform. The JVM options do
not load successfully into the Application Object Manager without this option.

Operating
System

JRE Library Typical Location on Server and Environment Variable Setting

AIX

libjvm.so

/usr/java/jre/lib/ppc/j9vm

You must include both /usr/java/jre/lib/ppc/ and /usr/java/jre/lib/ppc/j9vm in
the LIBPATH variable.

For example: siebenv.csh

setenv LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/
mw/lib:/siebel/siebsrvr/SYBSsa90/lib:/usr/lib:/siebel/
siebsrvr/lib:/oracle_client/app/oracle/OraHome_1/
lib32:/oracle_client/app/oracle/OraHome_1/lib:/usr/
java/jre/lib/ppc/:/usr/java/jre/lib/ppc/j9vm

For example: siebenv.sh

LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/mw/lib:/
siebel/siebsrvr/SYBSsa90/lib:/usr/lib:/siebel/siebsrvr/
lib:/oracle_client/app/oracle/OraHome_1/lib32:/
oracle_client/app/oracle/OraHome_1/lib:/usr/java/jre/
lib/ppc/:/usr/java/jre/lib/ppc/j9vm

HP-UX

libjvm.sl

/opt/java/jre/lib/PA_RISC2.0/server

Set the environment variable SHLIB_PATH to include the JVM’s jre and server directories.

Set LD_PRELOAD in the siebmtshw file located in /siebsrvr/bin. For example:

setenv SHLIB_PATH=${SHLIB_PATH}:/opt/java/jre/lib/
PA_RISC2.0; export SHLIB_PATH

In siebmtshw:

36

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

Operating
System

JRE Library Typical Location on Server and Environment Variable Setting

LD_PRELOAD=/opt/java/jre/lib/PA_RISC2.0/server/libjvm.sl
export LD_PRELOAD

Linux

libjvm.so

/usr/java/jdk/jre/lib/i386/server

Set the environment variable LD_LIBRARY_PATH to include the JVM’s server directory. For
example:

setenv LD_LIBRARY_PATH=/usr/java/jdk/jre/lib/i386/server:
/usr/java/jdk/jre/lib/i386

Windows

jvm.dll

JDK installation directory.

If using Java 7, then set the environment variable Path to include the JRE library. This is not
necessary for Java 5 or 6. For example:

<JRE_HOME>\jre7\bin\client\jvm.dll

Oracle Solaris

libjvm.so

/usr/jdk/instances/jdk/jre/lib/sparc/server

Set the environment variable LD_LIBRARY_PATH to include the JVM’s server directory. Add /
platform/SUNW,Sun-Fire-V440/lib to LD_LIBRARY_PATH.

For example: siebenv.csh:

setenv LD_LIBRARY_PATH=/usr/jdk/instances/jdk/jre/lib/
sparc/server:/platform/SUNW,Sun-Fire-V440/
lib:{LD_LIBRARY_PATH}

For example: siebenv.sh

LD_LIBRARY_PATH=/usr/jdk/instances/jdk/jre/lib/sparc/
server:/platform/SUNW,Sun-Fire-V440/
lib:{LD_LIBRARY_PATH};export LD_LIBRARY_PATH

The named 64-bit subsystem supplies the following parameters to the JBS: CONTAINERURL, CLASSPATH, and OPTIONS.
These parameters are described as follows.

• CONTAINERURL: The URL to the Java Web Container server for all the JBS requests.

• CLASSPATH: The classpath used by the JVM.

The classpath must include the location of the jndi.properties file.

Ensure that the file contains the file name of the jndi.properties file.

With Java 8, the required JAR files for the execution of JMS must reside on the Java Web Container server. The
Siebel.jar and SiebelJI_enu,jar are packaged within the war file. All other JMS Provider Jars depending on the usage
of customer must be placed in the lib directory of the Apache Tomcat server.

• OPTIONS: In the Java 64-bit subsystem, OPTIONS is not used. Therefore, OPTIONS must be set using the
CATALINA_OPTS option in the setenv.bat or setenv.sh file of the javacontainer based on the operating system. An
example is as follows:

Windows

javacontainerX\bin\setenv.bat

37

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

set CATALINA_OPTS=-Djava.compiler=NONE

non-Windows

File: javacontainerX/bin/setenv.sh
CATALINA_OPTS="-Djava.compiler=NONE"

The following topics are also discussed here:

• Creating a 32-bit Java Subsystem by Using the Siebel Server Manager

• Creating a 64-bit Java Subsystem by Using the Siebel Server Manager

• Creating a 32-bit Java Subsystem by Using the Siebel Web Client

• Creating a 64-bit Java Subsystem by Using the Siebel Web Client

• Creating a 32-bit Java Subsystem by Using the Siebel Dedicated Client

• Creating a 64-bit Java Subsystem by Using the Siebel Dedicated Client

• About Platform-Specific Configurations for the JVM

Creating a 32-bit Java Subsystem by Using the Siebel Server
Manager
The following example shows how to create a named 32-bit Java subsystem using the Siebel Server Manager:

create named subsystem JAVA for subsystem JVMSubSys with
DLL="D:\jdk\jre\bin\server\jvm.dll",
CLASSPATH="c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar;.",
VMOPTIONS="-Xrs -Djava.compiler=NONE"

Note: On Oracle Solaris, the create statement might be truncated. To avoid this, you can set CLASSPATH in
the create statement and DLL and VMOPTIONS in the Siebel application.

Alternatively, the parameters to the Java Business Service can be specified in the application configuration (CFG) file instead
of a named subsystem. This applies only to the Siebel Mobile and Developer Web Clients, and not the Siebel Server.

[JAVA]
DLL = D:\jdk\jre\bin\server\jvm.dll
CLASSPATH = c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar;.
VMOPTIONS = -Xrs -Djava.compiler=NONE

Creating a 64-bit Java Subsystem by Using the Siebel Server
Manager
The following example shows how to create a named 64-bit Java subsystem using the Siebel Server Manager:

create named subsystem JAVA64 for subsystem JavaContainerSubSys
change param CONTAINERURL=http://localhost:<Config Agent HTTP Port>/siebel/jbs for
named subsystem JAVA64
change param CLASSPATH=<JNDI file path> for named subsystem JAVA64
change param JVMSubsys= JAVA64 for comp sccobjmgr_enu

Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat server.

38

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

Note: In Innovation Pack 2017 Siebel Server, the JAVA64 subsystem is preconfigured with the required
CONTAINERURL, which eliminates the need for you to create the JAVA64 subsystem manually. However, you
can modify parameters such as CLASSPATH-based JNDI file path.

Creating a 32-bit Java Subsystem by Using the Siebel Web Client
The following is an alternative procedure for creating a Java subsystem by using the Siebel Web Client.

To create a Java subsystem by using the Siebel Web Client

1. In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises view.
2. In the first list applet, select the Enterprise Server that you want to configure.
3. In the middle applet, click the Profile Configuration tab.
4. Click New to create a new component profile and set the following parameters:

Name Value

Profile

JAVA

Alias

JAVA

Subsystem Type

JVMSubsys

5. In the Profile Parameters list applet (the last applet), set the following values:

a. Set the Value of the JVM Classpath parameter to one of the following:

- The location of the jndi.properties file (if using the JMS Transport).
- The JMS provider JAR files (if using the JMS Transport).
- The Siebel.jar and SiebelJI_enu.jar files. These files can be installed by using either Siebel Tools or the

Siebel Server. An example of these files for Microsoft Windows follows:

c:\Oracle\Middleware\wlserver_10.3\server\lib\weblogic.jar;c:\siebel\jndi;
c:\siebel\siebsrvr\CLASSES\Siebel.jar;
c:\siebel\siebsrvr\classes\SiebelJI_enu.jar

b. Set the Value of the JVM DLL Name parameter to the path where you have the jvm.dll file installed. For
example:

D:\jdk\jre\bin\server\jvm.dll

c. Set the Value of the JVM Options record to any JVM-specific options that you would like to enable, for
example:

-Djava.compiler=NONE

39

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

Creating a 64-bit Java Subsystem by Using the Siebel Web Client
The following is an alternative procedure for creating a 64-bit Java subsystem by using the Siebel Web Client.

To create a 64-bit Java subsystem by using the Siebel Web Client
1. In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises view.
2. In the first list applet, select the Enterprise Server that you want to configure.
3. In the middle applet, click the Profile Configuration tab.
4. Click New to create a new component profile and set the following parameters:

Name Value

Profile

JAVA64

Alias

JAVA64

Subsystem Type

JavaContainerSubSys

5. In the Profile Parameters list applet (the last applet), set the following values:

a. Set the Value of the JVM Classpath parameter to the following:

The location of the jndi.properties file (if using the JMS Transport).
b. Set CONTAINERURL to point to the java container. For example:

CONTAINERURL=http://localhost:<Config Agent HTTP Port>/siebel/jbs for named
subsystem JAVA64

c. Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat server.

Note: In Innovation Pack 2017 Siebel Server, the JAVA64 subsystem is preconfigured with the required
CONTAINERURL, which eliminates the need for you to create the JAVA64 subsystem manually. However, you
can modify parameters such as CLASSPATH-based JNDI file path.

Creating a 32-bit Java Subsystem by Using the Siebel Dedicated
Client
For dedicated client, define subsystem in the .cfg file with name JAVA.

Define the 32-bit subsystem as follows:

[JAVA]

DLL = “<jre Install Dir>\bin\server\jvm.dll#?

CLASSPATH = “c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar#?;

40

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

VMOPTIONS = “-Xrs -Djava.compiler=NONE#?

Creating a 64-bit Java Subsystem by Using the Siebel Dedicated
Client
For dedicated client, define subsystem in the .cfg file with name JAVA.

Define the 64-bit subsystem as follows:

[JAVA]
FullName = JAVA
Description = Generic
SubsysType = JavaContainerSubSys
CONTAINERURL = http://localhost:<Config Agent Port>/siebel/jbs
CLASSPATH = <JNDI file path>

Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat server.

Note: For dedicated client, the subsystem name is JAVA in both 32 bit and 64 bit subsystems.

About Platform-Specific Configurations for the JVM
Depending on the platform, it is necessary to set certain environment variables to load the JVM properly:

• AIX. Make sure that you have the environment variable LIBPATH set to include the JVM's shared libraries, /usr/
java/jre/lib/ppc/ and /usr/java/jre/lib/ppc/j9vm. For example:

setenv LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/mw/lib:/siebel/siebsrvr/
SYBSsa90/lib:/usr/lib:/siebel/siebsrvr/lib:/oracle_client/app/oracle/OraHome_1/
lib32:/oracle_client/app/oracle/OraHome_1/lib:/usr/java/jre/lib/ppc/:/usr/java/
jre/lib/ppc/j9vm

For more information about setting the LIBPATH environment variable, see the documentation for IBM SDK and Java
Runtime Environments (JREs) at:

http://www.ibm.com/support

• HP-UX. Make sure that you have the environment variable SHLIB_PATH set to include the JVM's jre and server
directories. For example:

setenv SHLIB_PATH /opt/java/jre/lib/PA_RISC2.0:/opt/java/jre/lib/PA_RISC2.0/
server:${SHLIB_PATH}

Set the variable LD_PRELOAD to the full path of the Java library.

• Oracle Solaris, Windows. No additional settings are needed.

When a Java business service is invoked on UNIX from a server component (for example, the JMS Receiver; see EAI JMS
Transport for more information), the necessary settings must be done in the script that creates the component.

For the receiver, the script is siebshw; for the Application Object Managers, it is siebmtshw. These scripts are present in the
bin directory where the Siebel Server is installed.

41

http://www.ibm.com/support

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

Creating a Java Business Service
The following topics describe how to create a Java business service:

• Defining a Business Service in Java

• About Implementing a Business Service in Java

• About Exception Handling for the Java Business Service

Defining a Business Service in Java
You define a business service in Java by:

• Defining a new business service in the repository using Siebel Tools.

• Specifying the necessary Java classes.

To define and specify a new Java business service in Siebel Tools

1. Copy the EAI Java Business Service (using the Copy Record command in Siebel Tools) and rename the copy.

Note: Checking the Cache column when you are creating the new Java business service causes the
same Java object to be reused by subsequent invocations within the same session. See About the
Lifecycle of a 32-bit Java Business Service.

2. Add a business service user property named @class, whose value is the fully qualified name of the Java class (for
example, com.example.siebelBusinessService.ImportCustomer).

About Implementing a Business Service in Java
Once the Java business service has been defined in Siebel Tools, the Java class must be implemented. The Java class
implementing the business service must extend com.siebel.eai.SiebelBusinessService.

SiebelBusinessService is an abstract Java class found in Siebel.jar. It declares three methods:

• destroy. This method is called when the Java object is released by the Siebel application. It has a default empty
implementation and can be overridden for the purpose of performing any cleanup.

• invokeMethod. This method contains a default implementation that calls doInvokeMethod and catches any
exceptions that are thrown by it. It does not declare any exceptions. It is invoked by means of JNI in the Siebel
application’s native process. This method is not intended to be overridden.

• doInvokeMethod. This method must be implemented by the subclass that implements the business service. It takes
as arguments the methodName, input property set, and output property set. The property sets are instances of
com.siebel.data.SiebelPropertySet. This method throws SiebelBusinessServiceException.

42

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

About Exception Handling for the Java Business Service
Errors are handled by throwing a com.siebel.eai.SiebelBusinessServiceException class. The constructor for this class takes
two String arguments, an error code and an error message. The error code can be used for programmatic handling in Siebel
eScript when the business service is called. Both the error code and the error message are displayed as an ordinary Siebel
error message.

It is strongly recommended that proper error handling be employed when implementing the Java Business Service class. By
invoking a SiebelBusinessServiceException, the standard Siebel error handling facilities are employed.

If any other exception is received from doInvokeMethod, then an error is produced with the details of the exception.

About the Lifecycle of a 32-bit Java Business Service
A JVM is created in-process with the Siebel process the first time a Java business service is invoked. Thereafter, the same
JVM is used for all invocations of any Java business services.

An instance of the Java class implementing a business service is created the first time that business service is invoked. This
instance is released through JNI when the native business service is destroyed. For business services that are not cached,
this occurs whenever the caller (workflow, script) releases the native business service. For business services that are cached,
this occurs when the session is destroyed (for example the user logs out). For a business service marked as cached in the
repository, repeated invocations by a user during a single session invoke methods on the same Java object.

Example of a Java Business Service
Following is an example of a Java class implementing a business service:

package com.example.jbs;
import com.siebel.data.SiebelPropertySet;
import com.siebel.eai.SiebelBusinessServiceException;
public class AddBusinessService extends com.siebel.eai.SiebelBusinessService {
public void doInvokeMethod(String methodName, SiebelPropertySet input,
 SiebelPropertySet output) throws SiebelBusinessServiceException {
 String X = input.getProperty("X");
 String Y = input.getProperty("Y");
 if (X == null || X.equals("") || (Y == null) || Y.equals(""))
 throw new SiebelBusinessServiceException("NO_PAR", "Missing param");
 if (!methodName.equals ("Add"))
 throw new SiebelBusinessServiceException("NO_SUCH_METHOD#?, "No such method");
 else {
 int x = 0;
 int y = 0;
 try {
 x = Integer.parseInt(X);
 y = Integer.parseInt(Y);
 }
 catch (NumberFormatException e) {
 throw new SiebelBusinessServiceException("NOT_INT", "Noninteger passed");
 }
 int z = x + y;

43

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

 output.setProperty("Z", new Integer(z).toString());
 }
 }
}

About the Lifecycle of a 64-bit Java Business Service
An instance of a Java class implementing a business service is created when it is invoked for the first time. This Java instance
is stored in the Object Pool that is maintained inside the Java Web Container server. The Java instance is released from the
Object Pool when the destroy method is called on the business service, or if the business service has been idle for more than
1800 seconds. During a single session, all repeated invocations by a user are invoked on the same Java Object. The Java
Object is borrowed from the Object Pool and is returned to the pool after execution of a request.

You can configure the Java Object idle time in the siebsrvr.properties file. For the 64-bit Java Business Service, the
following parameters have been added to the siebsrvr.properties file:

• Lang. This parameter defines the language for logging messages. The default value is enu.

• JBSLogLevel. This parameter defines the log level for the Java Business Service. The value of this parameter is an
integer between 0-5. The default value is 2.

• JBSSessKeepAlive. This parameter defines the idle time for a Java Business Service class object in the Object Pool.
The default values is 1800 seconds.

Restrictions for Implementing a Java Business Service
When implementing a Java business service, keep in mind the following recommendations and restrictions:

• Each business service method invocation is atomic and stateless.

• The explicit creation of threads is discouraged. It is not recommended that customers invoke a threaded component
from a Java business service.

• All data and context required to perform the necessary business functions must be provided as input to the class.
The external Java class cannot call back into the Siebel application to obtain additional context.

Troubleshooting the Java Business Service
A common source of errors is the Java CLASSPATH. Remember the following conventions of the Java CLASSPATH:

• On UNIX, CLASSPATH entries are separated by a colon (:); on Windows, by a semicolon (;).

• If .class files are to be used instead of .jar files, then the root directory (for example, the one containing the com folder)
must be listed in the CLASSPATH.

If the Java business service states that the com.siebel.data.SiebelPropertySet class is not found, then the Siebel.jar files are
not correctly specified in the CLASSPATH.

If the Java business service implementation cannot be found, then the .class or .jar file containing its code is not properly
specified in the CLASSPATH.

44

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

To help troubleshoot CLASSPATH errors, you can use one of the following utilities to see where the Application Object
Manager or Web client is looking for the .jar files:

• Windows: filemon. For more information about filemon, see:

http://www.microsoft.com

• UNIX: truss/strace

45

http://www.microsoft.com

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 5
EAI Java Business Service

46

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

6 EAI JMS Transport

EAI JMS Transport
This chapter discusses the EAI JMS Transport business service. It includes the following topics:

• About the EAI JMS Transport Business Service

• About Synchronous and Asynchronous Invocation

• About the JMS Publish-and-Subscribe Model

• About Operations (Methods) of the EAI JMS Transport

• Features Not Supported for Use with the Siebel JMS Transport

• About JMS Message Types

• About Sending and Receiving XML

• About Multistep Operations Within a JMS Session

• About Undeliverable Messages in JMS Transport

• Detailed Input and Output Specifications for the EAI JMS Transport

• Configuring the EAI JMS Transport

• Sending and Receiving JMS Messages

• Receiving, Dispatching, and Sending JMS Messages

• Sending and Receiving Custom JMS Properties

• Enabling Authentication and Authorization for the EAI JMS Transport

• Troubleshooting for the JMS Transport

• About Logging for the JMS Transport

• About Caching for the JMS Transport

About the EAI JMS Transport Business Service
The EAI JMS Transport business service is an API for accessing enterprise messaging systems. It supports the ability to
send and receive messages by way of Java Message Service (JMS) servers. JMS defines two messaging models: point-to-
point (by way of JMS queues) and publish-and-subscribe (by way of JMS topics). Both are supported by the Siebel EAI JMS
Transport.

JMS queues and topics are identified by their Java Naming and Directory Interface (JNDI) names. A JNDI naming service is
required to use the EAI JMS Transport. It contains entries for the queues and topics used.

Invoked Business Service methods read the JNDI properties in the Siebel application framework using the classpath defined
for a named subsystem and then pass the information using HTTP to the Java layer that resides in the Java Web Container
server.

The API of the EAI JMS Transport is very similar to other Siebel messaging APIs such as the EAI MQSeries Server Transport
and EAI MSMQ Transport.

47

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

The EAI JMS Transport is built using the Java Business Service and therefore inherits all the requirements of that business
service. This includes the independent installation of a Java Virtual Machine (JVM) and the configuration of the Siebel
application to identify and create the JVM.

Oracle supports integration, using the EAI JMS Transport, with any JMS provider that conforms to the JMS 1.0.2b standard.
The EAI JMS Transport provides support for basic integration with both queues and topics, with message types that are
specified in About JMS Message Types.

Oracle does not support any vendor extensions to the JMS standard except where specified enhanced functionality is
released and documented as part of a Siebel CRM release. The EAI JMS Transport provides basic JMS 1.0.2b functionality
as described in this chapter. This transport does not provide access to advanced capabilities, such as any capabilities of the
JMS 1.1 standard that are not backward-compatible with JMS 1.0.2b, or provide access to any other functionality that is not
described in the Siebel Bookshelf. For information about JMS standards, see:

http://www.oracle.com/technetwork/java/jms/index.html

About Synchronous and Asynchronous Invocation
Like the EAI MQSeries Server Transport, the EAI JMS Transport has two modes of execution: synchronous and
asynchronous. Synchronous execution involves invoking individual methods of the JMS Transport directly, just like any other
business service. Because the caller waits for the method to return, such invocation is synchronous. Asynchronous execution
means listening for messages arriving on a particular queue and taking action whenever one arrives. This involves the creation
of a separate Siebel component, called a JMS Receiver. Like the MQ Receiver, whenever a message arrives on the queue,
the JMS Receiver dispatches to a business service (or workflow) and optionally sends a reply message.

Note: The JMS Receiver uses the EAI JMS Transport business service but cannot dispatch to a workflow that
either uses this business service as one of its steps or dispatches directly to this business service. While in-
process re-entrance is not supported, you can indirectly invoke the EAI JMS Transport as one of the steps out of
process by calling the Synchronous Server Requests business service.

About the JMS Publish-and-Subscribe Model
The traditional message model, where a message is sent to a queue and later removed by a single receiver, is called point-
to-point messaging. In addition to this familiar model, JMS also supports the publish-and-subscribe messaging model.
Here, messages are published to topics, rather than sent to queues. Interested receivers subscribe to individual topics and
receive a copy of each message published to the topic. To subscribe, a subscriber registers with the topic, providing a unique
identifier.

For more information about the JMS publish-and-subscribe model, see:

http://www.oracle.com/technetwork/java/jms/index.html

JMS queues and topics are identified by their JNDI names. A JNDI naming service is required to use the JMS Transport. The
JNDI naming service contains entries for the JMS queues (implementers of javax.jms.Queue) and topics (implementers of
javax.jms.Topic) used, as well as the necessary JMS connection factories (implementers of either javax.jms.QueueFactory or
javax.jms.Topic).

48

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

All methods that receive messages automatically time out if no message is available. The timeout length is three seconds by
default and can be specified by the ReceiveTimeout argument.

CAUTION: The ReceiveTimeout must not be set to value less than or equal to 0.

Whether a call to Receive or Subscribe timed out is provided as the TimedOut property of the output property set.

Subscriptions to JMS topics are always durable subscriptions.

The term dispatch is used to refer to the operation of calling a business service or workflow, passing as input the content of a
newly received message.

About Operations (Methods) of the EAI JMS Transport
The following is a summary of supported operations for use with the EAI JMS Transport:

• Receive. Receive a message from a JMS queue.

• ReceiveDispatch. Receive a message from a JMS queue, then dispatch.

• ReceiveDispatchSend. Receive a message from a JMS queue, dispatch, and then send the result to a (possibly
different) JMS queue.

• Send. Send a message to a JMS queue.

• SendReceive. Send a message to a JMS queue then receive a message from a (possibly different) JMS queue.
The JMSCorrelationID header of the reply message must be equal to the JMSCorrelationID of the message sent,
unless it is null (if none was provided as an input to SendReceive), in which case it must be the JMSMessageID of
the message sent.

• Subscribe. Receive a message from a JMS topic. The subscriber identifier must be supplied as an input to this
method.

• SubscribeDispatch. Receive a message from a JMS topic, then dispatch. The subscriber identifier must be supplied
as an input to this method.

• Publish. Publish a message to a JMS topic.

The arguments to these methods and their exact semantics (along with valid values, default values, and so on) are described
in the topic Detailed Input and Output Specifications for the EAI JMS Transport. All methods require the JNDI name of JMS
ConnectionFactory and the JNDI name of the queue or topic.

Features Not Supported for Use with the Siebel JMS
Transport
The following features are not supported for use with the Siebel JMS Transport:

• Message Selection. JMS has a feature called Message Selection, by which a receiver or subscriber can filter the
messages it receives by specifying certain criteria. This feature is not supported by the Siebel JMS Transport.

• Concurrency with non-JMS messaging. It is not recommended that JMS messaging be used concurrently (for a
single queue) with non-JMS messaging. For example, it is not recommended that a message be sent by way of JMS

49

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

and later read using native tools. JMS vendors do not typically support such usage; it can result in the appearance of
additional headers or additional obscure data in the body of the message.

• Transport Layer Security (TLS). The Siebel JMS Transport is primarily designed to support message exchange with
external messaging systems (providers) using the JMS 1.0.2b standard. The JMS standard is not bound to transport
layers, such as TCP/IP, and does not address transport layer-specific features, such as securing TCP/IP socket
connections using TLS. For information about enabling and using TLS with the Siebel JMS Transport, contact the
vendor of your JMS system. For information about the JMS 1.0.2b standard, see:

http://www.oracle.com/technetwork/java/jms/index.html

About JMS Message Types
JMS defines five types of messages: TextMessage, BytesMessage, ObjectMessage, MapMessage, and StreamMessage.
The Siebel JMS Transport supports only the types TextMessage and BytesMessage. If the JMS Transport receives an
ObjectMessage, MapMessage, or StreamMessage from the JMS server, then the error Unsupported Message Type is
produced.

Like all Siebel business services, the output of any method is a property set. If a BytesMessage is received, then the value of
the property set has Binary type. If a TextMessage is received, then the value has String type.

Conversely, the input to any method is also a property set. For methods that involve sending or publishing a message, the
type of message sent or published depends on the type of the value of the input property set. If the type is Binary, then a
BytesMessage is sent and published. If the type is String, then a TextMessage is sent and published.

Note: The Siebel Business Service Simulator in Siebel Call Center always creates the input with a value type of
String.

About Sending and Receiving XML
Messages whose content is XML are generally best treated as binary data and sent as BytesMessages. For example, the
output of the Siebel business service EAI XML Converter is binary; therefore, if this is passed as the input to Send, then a
BytesMessage is sent.

If XML is sent as a TextMessage, then the characters are encoded as UTF-16. Therefore, the XML document declares its
encoding to be UTF-16.

Typically, when a message containing an XML document is received by the Siebel application, it is desirable to convert the
document to a property set representation before processing it. This is accomplished automatically during the Dispatch step
by specifying the ConverterService argument to be either XML Converter or EAI XML Converter. For more details about these
converter services see XML Reference: Siebel Enterprise Application Integration .

50

http://www.oracle.com/technetwork/java/jms/index.html

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

About Multistep Operations Within a JMS Session
All JMS operations are performed in the context of a transactional JMS QueueSession. If a send or receive operation throws
an exception, then the session is immediately rolled back. If the operation is successful, then the session is committed, unless
the operation is part of a larger multistep operation. In the case of multistep operations, the transaction is handled as follows:

• SendReceive. If the send operation succeeds, then the JMS session is committed and a receive operation is
performed. This is necessary because the receive operation might depend on a response to the first message.

• ReceiveDispatch. If the receive operation fails, then the JMS session is rolled back, and the dispatch operation is not
attempted. If the receive operation succeeds, then the dispatch operation is attempted. If the dispatch succeeds,
then the JMS session is committed; otherwise, both the Siebel transaction and the JMS session are rolled back.

• SubscribeDispatch. Same as ReceiveDispatch.

• ReceiveDispatchSend. If the receive operation fails, then the JMS session is rolled back, and further operations are
not attempted. If the receive operation succeeds, then the dispatch operation is attempted. If the dispatch operation
fails, then the JMS session and the Siebel transaction are rolled back; otherwise, the send operation is attempted.
If the send operation fails, then the JMS session and the Siebel transaction are rolled back; otherwise, both are
committed.

Each Dispatch operation is performed within a Siebel transaction.

Note: Do not attempt ReceiveDispatch and ReceiveDispatchSend operations from within an existing Siebel
transaction, as nested transactions are not supported.

Also, as with all Siebel EAI receivers, if an operation fails during the execution of the JMS Receiver, then the JMS Receiver
component terminates. (A timeout is not a failure.)

About Undeliverable Messages in JMS Transport
If a message is undeliverable, in the sense that repeated attempts by the Siebel JMS Transport to receive the message fail,
then the message must be removed from the queue. Most JMS vendors provide some mechanism for dealing with such
“poison messages” Oracle WebLogic, for example, can be configured to limit the number of times it attempts to deliver a
message before redirecting the message to an error queue or deleting the message altogether.

Detailed Input and Output Specifications for the EAI JMS
Transport
This topic provides detailed information about the exact semantics of all input arguments and output values for each method
of the EAI JMS Transport.

The following topics are discussed:

• JMS Headers and Properties

51

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

• Input Arguments Used by the Dispatch Step

• About the Output of the JMS Transport

JMS Headers and Properties
Every JMS message has a set of standard headers. Some of these headers can be specified as arguments to the methods
of the JMS Transport that involve sending or publishing, and some are available as properties of the output property set of
methods that involve receiving or subscribing. These are detailed in the tables in Input Arguments Used by the Dispatch
Step, Input Argument Values, and About the Output of the JMS Transport.

A JMS message can also be assigned properties. These might be user-defined properties specific to a particular application,
or JMS-defined properties (for example JMSXProducerTXID) that are optionally supported by the JMS vendor. A property can
be an instance of any Java class or any of the primitive Java types. All properties of a message received by the Siebel JMS
Transport are available as properties of the output property set.

The name of the property is the original name with the eleven characters SIEBEL_JMS: prefixed; the value is the string
obtained by converting the original value to a Java String. Conversely, when a message is sent, any property of the input
property set whose name begins with SIEBEL_JMS: is added to the message as a JMS Message string property with the
prefix SIEBEL_JMS: removed. For example, the property SIEBEL_JMS:foo is added to the message as the string property
foo.

Input Arguments Used by the Dispatch Step
The following table shows the options for each input argument of the JMS Transport methods, except the user-defined
properties and arguments used by the Dispatch step. R denotes a required argument; NR denotes an optional argument
(not required); and I denotes an argument that is ignored. Notes following the table provide further explanation for particular
values.

Input Argument Send Publish Send
Receive

Receive Subscribe Receive
Dispatch

Receive
Dispatch
Send

Subscribe
Dispatch

ConnectionFactory

R

R

R

R

R

R

R

R

ReceiveQueue

I

I

R

R

I

R

R

I

ReceiveTimeout

I

I

NR

NR

NR

NR

NR

NR

SendQueue

R

I

R

I

I

I

R

I

Topic

I

R

I

I

R

I

I

R

ConnectionUsername

NR

NR

NR

NR

NR

NR

NR

NR

ConnectionPassword

NR

NR

NR

NR

NR

NR

NR

NR

SendUsername

NR

I

NR

I

I

NR

I

I

52

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Input Argument Send Publish Send
Receive

Receive Subscribe Receive
Dispatch

Receive
Dispatch
Send

Subscribe
Dispatch

SendPassword

NR

I

NR

I

I

NR

I

I

ReceiveUsername

I

I

NR

I

I

I

NR

I

ReceivePassword

I

I

NR

I

I

I

NR

I

TopicUsername

I

NR

I

I

NR

I

I

NR

TopicPassword

I

NR

I

I

NR

I

I

NR

SubscriberIdentifier

I

I

I

I

R

I

I

R

JMS Headers

JMSPriority

NR

NR

NR

I

I

I

NR 2

I

JMSDeliveryMode

NR

NR

NR

I

I

I

NR 2

I

JMSExpiration

NR

NR

NR

I

I

I

NR 2

I

JMSReplyTo

NR

NR

I

I

I

I

NR 2

I

JMSType

NR

NR

NR

I

I

I

NR 2

I

JMSCorrelationID

NR

NR

NR

I

I

I

I

I

Dispatch

Connection Subsystem

NR

NR

NR

NR

NR

NR

NR

NR

DataHandling
Subsystem

I

I

I

I

I

NR

NR

NR

DispatchService

I

I

I

I

I

R

R

R

DispatchMethod

I

I

I

I

I

R

R

R

DispatchWorkflow
Process

I

I

I

I

I

R

R

R

DispatchRuleSet

I

I

I

I

I

R

R

R

ConverterService I I I I I NR NR NR

53

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Input Argument Send Publish Send
Receive

Receive Subscribe Receive
Dispatch

Receive
Dispatch
Send

Subscribe
Dispatch

Some special notes regarding particular values in the previous table:

• When the JMSReplyTo header is used, the SendQueue value is ignored.

• When the JMSPriority, JMSDeliveryMode, JMSExpiration, JMSReplyTo, or JMSType header is used, these values
are assigned to the reply message during the Send step.

• The JMSReplyTo header of the sent message is set to the value of the ReceiveQueue argument.

• The JMSCorrelationID header of the reply message cannot be set directly. The JMSCorrelationID of the reply
message is set to the JMSCorrelationID of the received message, unless empty, in which case it is set to its
JMSMessageID.

• For DispatchService, DispatchMethod, DispatchWorkflowProcess, and DispatchRuleSet method arguments, one of
the following three combinations is required:

◦ (DispatchService && DispatchMethod)

◦ DispatchWorkflowProcess

◦ DispatchRuleSet

• The ConnectionUsername and ConnectionPassword input parameters apply to IBM WebSphere MQ only.

Note: When sending messages to IBM WebSphere MQ, ConnectionUsername and ConnectionPassword
are required for the Windows 2012 Server platform and recommended for all other Windows platforms.

• The SendUsername, SendPassword, ReceiveUsername, ReceivePassword, TopicUsername, and TopicPassword
input parameters apply to Oracle WebLogic only.

• The JMSType and JMSCorrelationID input arguments can also be used as output arguments.

• For the ConnectionSubsystem input argument, a subsystem can be provided instead of the connection parameters.
However, it must contain the same required method arguments as used for the connection parameters.

• For the DataHandlingSubsystem input argument, a subsystem can be provided instead of the dispatch parameters.
However, it must contain the same required method arguments as used for the dispatch parameters.

• The ConverterService input argument is used to process the output of the received message before dispatching.

In place of providing the arguments individually, the single argument ConnectionSubsystem can be provided. Its value must
be the name of a valid named subsystem of type JMSSubsys, and it must include all of the arguments that are required by
the method to which it is passed. See About the JMS Receiver for more information about that named subsystem.

JMS message properties are also supported as input arguments (properties) as described in JMS Headers and Properties.

Input Argument Values
The following table provides details for each input argument about the allowable values, default values, and special values, as
well as the behavior if an invalid value is passed.

Input Default Allowable Values Special Values If Value Invalid

ConnectionFactory

NONE

JNDI connection factory
name

Not applicable

ERROR

54

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Input Default Allowable Values Special Values If Value Invalid

ReceiveQueue

NONE

JNDI queue name

Not applicable

ERROR

ReceiveTimeout

3000

Any integer greater than to
0

CAUTION: Be
careful NOT to set
the value less than or
equal to 0.

Not applicable

Noninteger defaults
to 3000

ConnectionUsername

NONE

Valid username

Not applicable

Not applicable

ConnectionPassword

NONE

Valid password

Not applicable

Not applicable

SendQueue

NONE

JNDI queue name

Not applicable

ERROR

SendUsername

NONE

Valid username

Not applicable

Not applicable

SendPassword

NONE

Valid password

Not applicable

Not applicable

ReceiveUsername

NONE

Valid username

Not applicable

Not applicable

ReceivePassword

NONE

Valid password

Not applicable

Not applicable

TopicUsername

NONE

Valid username

Not applicable

Not applicable

TopicPassword

NONE

Valid password

Not applicable

Not applicable

Topic

NONE

JNDI topic name

Not applicable

ERROR

SubscriberIdentifier

NONE

ANY STRING

Not applicable

Not applicable

JMS Headers

JMSCorrelationID

NOT SET

ANY STRING

Not applicable

Not applicable

JMSPriority

javax.jms.Message.
DEFAULT_PRIORITY (4)

Any integer from 0 to 9

(0 lowest; 9
highest)

DEFAULT

JMSDeliveryMode

javax.jms.Delivery
Mode.PERSISTENT

PERSISTENT,
NON_PERSISTENT

Not applicable

DEFAULT

JMSExpiration

javax.jms.Message.
DEFAULT_TIME_TO_ LIVE
(0)

Any nonnegative integer

0: Message
never expires

DEFAULT

55

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Input Default Allowable Values Special Values If Value Invalid

JMSReplyTo

NOT SET

JNDI queue name

Not applicable

ERROR

JMSType

SiebelJMSMessage

ANY STRING

Not applicable

Not applicable

Dispatch

ConnectionSubsystem

NONE

A JMSSubsys named
subsystem

Not applicable

ERROR

DataHandlingSub system

NONE

An EAITransportData
HandlingSubsys named
subsystem

Not applicable

ERROR

DispatchService

NONE

Business service name

Not applicable

ERROR

DispatchMethod

NONE

Business service method

Not applicable

ERROR

DispatchWorkflow Process

NONE

Workflow name

Not applicable

ERROR

DispatchRuleSet

NONE

Rule set name

Not applicable

ERROR

ConverterService

NONE

Business service name

Not applicable

ERROR

About the Output of the JMS Transport
The output of the JMS Transport methods includes the following parts:

• The content of the received message (if the method involves receiving a message). See the previous topic, Input
Arguments Used by the Dispatch Step, for details about typing.

• JMS properties of the received message (if the method involves receiving a message), as described in the topic JMS
Headers and Properties.

• Certain JMS headers of the message sent or received, as described in the following table.

• The special properties TimedOut (if the method involves receiving a message) and DispatchError (if the method
involves dispatching), as described in the following table. Each property is either True or False.

The following table enumerates for each method of JMS Transport the JMS headers and other distinguished properties that
appear as properties of the output property set of the method. Yes means the argument is present; No means the argument
is absent.

Output Send Publish Send
Receive

Receive Subscribe Receive
Dispatch

Receive
Dispatch
Send

Subscribe
Dispatch

TimedOut No No Yes Yes Yes Yes Yes Yes

56

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Output Send Publish Send
Receive

Receive Subscribe Receive
Dispatch

Receive
Dispatch
Send

Subscribe
Dispatch

JMSType +

No

No

Yes

Yes

Yes

Yes

No

Yes

JMSCorrelation ID
+

No

No

Yes

Yes

Yes

Yes

No

Yes

JMSRedelivered

No

No

Yes

Yes

Yes

Yes

No

Yes

JMSTimestamp

No

No

Yes

Yes

Yes

Yes

No

Yes

JMSMessageID

Yes 1

Yes 1

Yes 2

Yes 2

Yes 2

Yes

Yes 1

Yes

DispatchError

No

No

No

No

No

Yes

Yes

Yes

Some special notes regarding the information in this table:

• Yes1: JMSMessageID, the value assigned by the JMS server of the sent (or published) message.

• Yes2: JMSMessageID, the value assigned by the JMS server of the received (or subscribed) message.

• +: An output argument that can also be used as an input argument.

All other message properties (user-defined; not JMS headers) are provided as output properties with SIEBEL_JMS: prefixed
to the original property name, and the value is converted to a String.

For the multistep methods ReceiveDispatch, ReceiveDispatchSend, and SubscribeDispatch, properties are passed between
the individual steps according to the following rules:

• All outputs of the Receive (or Subscribe) step are passed as inputs to the subsequent Dispatch step.

• In the case of an error during the Dispatch step, its output is returned.

• The input to the Dispatch step includes all properties in the original input as well as properties returned by the
Receive (or Subscribe) step.

Configuring the EAI JMS Transport
The EAI JMS Transport is built using the Java Business Service and therefore inherits all the requirements of that business
service. This includes the independent installation of a Java Virtual Machine (JVM) and the configuration of the Siebel
application to identify and create the VM. Configuration of the Siebel application requires creating a named subsystem of
type JVMSubSys with the necessary properties. Refer to the Java Business Service documentation for instructions on how to
configure the JVM named subsystem.

The EAI JMS Transport requires that the CLASSPATH property of the JVM subsystem include the following packages or
classes:

• Siebel.jar

• SiebelJI_lang.jar (where lang corresponds to the default language for your installation)

• A directory containing the location of the jndi.properties file

57

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

The jndi.properties file contains the necessary name value pairs required to perform a JNDI lookup and bind to the
remote queue.

• Necessary classes and JAR files as required by the JMS provider.

Note: You can have only one JVM loaded in a process, and therefore only one JVM subsystem in a process. If
you try to load more than one JVM subsystem into a process, then an error occurs.

If you want multiple JVM subsystems, then you must configure additional components. For example, you can have
EAIObjMgr_WL pointing to a JVM subsystem called JAVA_WL and EAIObjMgr_ORACLE pointing to a JVM subsystem called
JAVA_ORACLE.

To verify that the CLASSPATH and jndi.properties are properly configured, see Troubleshooting for the JMS Transport.

The following JMS Transport configuration topics are also discussed here:

• About the JMSSubsys Named Subsystem

• About the JMS Receiver

• About Reconnecting to the External JMS Queue

• Creating a JMS Subsystem by Using the Siebel Web Client

About the JMSSubsys Named Subsystem
The arguments to any method of JMS Transport can be supplied individually as properties of the input property set or as
part of a named 32-bit subsystem of type JMSSubsys. When invoking the JMS Transport asynchronously by starting a JMS
Receiver component, the arguments must be supplied by way of a named subsystem.

This subsystem supplies all of the necessary parameters for any one of these three methods: ReceiveDispatch,
ReceiveDispatchSend, or SubscribeDispatch. The parameters for the three methods are ConnectionFactory, ReceiveQueue,
SendQueue, Topic, SubscriberIdentifier, ReceiveTimeout, JMSType, JMSPriority, JMSExpiration, and JMSDeliveryMode.

In addition, this subsystem has a property JVMSubsys, which can be given the name of the JVM subsystem instance to use.
The default value is JAVA. Therefore, if the property JVMSubsys is not explicitly given a value, then there must be a properly
configured instance of the type JVMSubSys named JAVA.

About the JavaContainerSubsys Named Subsystem
The arguments to any method of JMS Transport can be supplied individually as properties of the input property set or as part
of a named 64-bit subsystem of type JavaContainerSubsys. When invoking the JMS Transport asynchronously by starting a
JMS Receiver component, the arguments must be supplied by way of a named subsystem.

This subsystem supplies all of the necessary parameters for any one of these three methods: ReceiveDispatch,
ReceiveDispatchSend, or SubscribeDispatch. The parameters for the three methods are CONTAINERURL and CLASSPATH.

For more information about configuring the JavaContainerSubsys subsystem, see Creating a 64-bit Java Subsystem by
Using the Siebel Server Manager and Creating a 64-bit Java Subsystem by Using the Siebel Web Client.

58

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

About the JMS Receiver
The JMS Receiver (alias EAIJMSRcvr) is a Siebel Server component that makes it possible for the JMS Transport to be
invoked asynchronously. The JMS Receiver:

• Listens for messages arriving on a JMS queue or topic and takes action whenever a message arrives.

• Repeatedly invokes a single method of the JMS Transport: ReceiveDispatch, ReceiveDispatchSend, or
SubscribeDispatch.

• Takes a message from the queue and dispatches it to the corresponding workflow or business service for execution.
If execution is successful, then the message is committed to the queue. If there is an error, then the message is
rolled back to the queue.

• Uses AUTO_ACKNOWLEDGE mode. In AUTO_ACKNOWLEDGE mode, the session automatically acknowledges
the receipt of a message when it has either successfully returned from a call to receive or the message listener it has
called to process the message successfully returns.

About Multithreading in the JMS Receiver Component
The JMS Receiver is multithreaded and operates in batch mode. (In some previous versions, this component was single-
threaded and ran in the background.)

A task for the JMS Receiver component starts automatically when the Siebel Server is started, where Default Tasks (alias
DfltTasks) is set to 1. Otherwise, you must start tasks manually. For more information about DfltTasks, see Siebel System
Administration Guide .

When a JMS Receiver task is started, a main task and several worker threads are created, whose number depends on the
MinWorkQThreads and MaxWorkQThreads parameters listed in the following table.

After the worker threads are created, the main task thread starts calling the specified method on the EAI JMS Transport
business service in an infinite loop, until a shutdown component is signaled. At the same time, the worker threads start their
own infinite loop and perform the same duties as the main thread: they call the specified method on the EAI JMS Transport
business service.

In effect, the ReceiveDispatchSend operation (or any method specified) is now called by multiple threads in the same task.
Previously, a single sequential call to the ReceiveDispatchSend method was made in a single process. Now, the same
operation happens in parallel. The thread parallelism effectively increases scalability while limiting CPU load and memory
utilization.

Parameter Description

MaxTasks

Total number of tasks that can run concurrently on a Siebel Application Object Manager. For more
information about MaxTasks, see Siebel Performance Tuning Guide .

MaxMTServers

Maximum number of multithreaded processes that can run concurrently on a Siebel Application
Object Manager. For more information about MaxMTServers, see Siebel Performance Tuning
Guide .

MinMTServers

Minimum number of multithreaded processes that can run concurrently on a Siebel Application
Object Manager. For more information about MinMTServers, see Siebel Performance Tuning
Guide .

MaxWorkQThreads Maximum number of worker threads in a process. The default is 4.

59

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Parameter Description

MinWorkQThreads

Minimum number of worker threads in a process. The default is 4.

MaxWorkQLength

Maximum number of work items handled by a worker thread. The default is 20.

Considerations When Using Multithreading
Multithreading works best when messages are atomic; that is, their processing does not depend on the processing of other
messages. The messages can be processed in parallel without conflicts.

If one message is dependent on another, then the messages must be processed in the correct order. For example, you must
create an account before creating a service request for it, and create an order before adding an order line item.

You can use validation scripting to make sure that parents are created before children. However, creating a data architecture
that does not require additional scripting will deliver a performance benefit to the end-to-end solution.

About Configuring the JMS Receiver
An instance of the JMS Receiver is configured with the parameters of a JMSSubsys named subsystem, which specify the
queue or topic to listen to, and the action to be taken.

The JMSReceiver task has the following three parts:

• ReceiverConnectionSubsystem is the named subsystem.

• ReceiverDataHandlingSubsystem dispatches the message from the ReceiveQueue to the workflow previously
defined.

• ReceiverMethodName is the EAI JMS Transport business service method invoked.

The following is an example of how an instance of the JMS Receiver can be configured and run by using the Siebel Server
Manager command-line interface:

create named subsystem MyJMSConnSubsys_SR for subsystem JMSSubsys with
ConnectionFactory="weblogic.examples.jms.QueueConnectionFactory",
ReceiveQueue="weblogic.examples.jms.exampleQueueReceive",
SendQueue="weblogic.examples.jms.exampleQueueSend",
ReceiveTimeout=3000

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys with
DispatchService="Workflow Utilities",
DispatchMethod="ECHO"

start task for comp JMSReceiver with
ReceiverConnectionSubsystem=MyJMSConnSubsys_SR,
ReceiverDataHandlingSubsystem=SiebelEcho,
ReceiverMethodName=ReceiveDispatchSend

For a detailed workflow example using a JMS Receiver, see Receiving, Dispatching, and Sending JMS Messages. For a
discussion of named subsystems for Siebel EAI, see EAI Transports and Interfaces Overview For more information about
administering named subsystems, see Siebel System Administration Guide .

60

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

About Reconnecting to the External JMS Queue
If the external system is not ready to receive messages, then the JMS Receiver component fails when it attempts to connect.
To avoid this failure, two new parameters have been added to the JMS Receiver: CompMaxRetries and CompRetryInterval.
You can set these parameters as needed.

The reconnection parameters for the JMS Receiver are described in the following table.

Parameter Default Value Description

CompMaxRetries

10

Specifies the number of times the reconnection is attempted. Valid values are
positive integers.

CompRetryInterval

60

Specifies the interval in seconds between each retry. Valid values are positive
integers.

These parameters are used with the AutoRestart and NumRestart parameters. AutoRestart enables restart attempts when set
to TRUE. NumRestart determines how many attempts are made to restart the JMS Receiver task if it fails.

CompMaxRetries and CompRetryInterval control reconnection attempts to the JMS queue to avoid JMS Receiver failure.
AutoRestart and NumRestart are used when the JMS Receiver task ends with an error unrelated to losing the queue
connectivity. For more information about NumRestart and AutoRestart, see Siebel System Administration Guide .

Creating a JMS Subsystem by Using the Siebel Web Client
The following is an alternative procedure for creating a JMS Subsystem by using the Siebel Web Client and then configuring
the JMS Transport.

To configure the JMS Transport by using the Siebel Web Client

1. In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises view.
2. In the first list applet, select the Enterprise Server that you want to configure.
3. In the middle applet, click the Profile Configuration tab.
4. Click New to create a new component profile and set the following parameters:

Name Value

Profile

JMS_Q1ReceiveDispatchSend

Alias

JMS_Q1ReceiveDispatchSend

Subsystem Type

JMSSubsys

5. In the Profile Parameters list applet (the last applet), specify the parameters required for the type of operations the
subsystem will support (for example, Receive or ReceiveDispatchSend).

61

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

For example, if this subsystem needed to support the ReceiveDispatchSend operation, then at least the following
values must be set:

Name Value

ConnectionFactory

examples.jms.QueueConnectionFactory

JVM Subsystem

JAVA

ReceiveQueue

examples.jms.fromSiebel

SendQueue

examples.jms.toSiebel

Receive Timeout

1000

Sending and Receiving JMS Messages
The following procedure describes how to set up the Siebel application to send a message to an external system using the
EAI JMS Transport and receive a corresponding reply from the external system.

To send and receive messages with the JMS Transport
1. Set up a JMS queue to receive messages from the Siebel application and give the queue an easy-to-identify name,

such as fromSiebel.

Refer to your JMS provider documentation on how to administer, monitor, and define new persistent queues.
2. Set up a JMS queue to send messages to the Siebel application.

Refer to your JMS provider documentation on how to administer, monitor and define new persistent queues.

a. Give the queue an easy-to-identify name, such as toSiebel.
b. Create a message in the queue.

Note: To test this scenario adequately, you must have a partner application that can place a valid
message for the Siebel application into the queue.

3. In Siebel Tools, set up a workflow for sending a message out and receiving a message in response using the EAI
JMS Transport. Define the flow as shown in the following figure.

62

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

4. Create the following process properties:

Name Data Type In/Out Default String Comments

OrderXML

Binary

In

Not applicable

Not applicable

JMSConnectionFactory

String

In

examples.jms.
ConnectionFactory

JNDI name of the JMS
connection factory

JMSReceiveQueue

String

In

examples.jms.toSiebel

JNDI name of the queue

JMSSendQueue

String

In

examples.jms.fromSiebel

JNDI name of the queue

JMSReceiveTimeout

String

In

180000

Not applicable

Order Message

Integration Object

In

Not applicable

Not applicable

5. Set up the first step of the workflow to use the Siebel Order ASI with the QueryById method to query the information
from the Siebel database using the following input and output arguments:

Input Argument Type Property Name

PrimaryRowId

Process Property

Object Id

63

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Property Name Type Output Argument

Order Message

Output Argument

SiebelMessage

6. Set up the second step of the workflow to use the EAI XML Converter with the IntObjHierToXMLDoc method to
convert the data extracted from the Siebel database to XML using the following input and output arguments:

Input Argument Type Value Property Name

GenerateProcessingInstructions

Literal

False

Not applicable

SiebelMessage

Process Property

Not applicable

Order Message

Property Name Type Output Argument

OrderXML

Output Argument

<Value>

7. Set up the third step of the workflow, after Start, to use the EAI JMS Transport with the SendReceive method using
the following input and output arguments:

Input Argument Type Property Name

<Value>

Process Property

OrderXML

ConnectionFactory

Process Property

JMSConnectionFactory

ReceiveQueue

Process Property

JMSReceiveQueue

ReceiveTimeout

Process Property

JMSReceiveTimeout

SendQueue

Process Property

JMSSendQueue

Property Name Type Output Argument

OrderXML

Output Argument

<Value>

8. Set up the fourth step to use the EAI XML Converter with the XMLDocToIntObjHier method to convert the XML
message to an Integration Object using the following input and output arguments:

Input Argument Type Property Name

<Value>

Process Property

OrderXML

64

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Property Name Type Output Argument

Order Message

Output Argument

SiebelMessage

9. Set up the last step to use the Siebel Order ASI with the Synchronize message to update the Siebel database using
the following input and output arguments:

Input Argument Type Property Name

SiebelMessage

Process Property

Order Message

Property Name Type Output Argument

Order Message

Output Argument

SiebelMessage

10. Save and deploy the workflow.
It is recommended that the Workflow Simulator be used for testing purposes.

Note: To test this scenario adequately, you must have a partner application that can accept the message
and return a response. The correlation ID of the response message must be set to the message ID of the
message originally sent by the Siebel application.

Receiving, Dispatching, and Sending JMS Messages
The procedure in this section describes how to set up your system to receive inbound messages from JMS, perform an
action within the Siebel application based upon the message, and send a synchronous response back to the external system.

To receive, dispatch, and send messages using EAI JMS Transport
1. Set up a JMS queue to receive messages from the Siebel application and give the queue an easy to identify name,

such as fromSiebel.
Refer to your JMS provider documentation on how to administer, monitor, and define new persistent queues.

2. Set up a JMS queue to send messages to the Siebel application.
Refer to your JMS provider documentation on how to administer, monitor and define new persistent queues.

a. Give the queue an easy-to-identify name such as toSiebel.
b. Create a message in the queue.

Note: To test this scenario adequately, you must have a partner application that can place a valid
message for the Siebel application into the queue.

3. In Siebel Tools, set up a workflow to process the incoming XML request.

65

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

The following workflow receives the incoming XML document and converts it to an integration object, executes
a query using Siebel Order application service, and converts the response to an XML document as shown in the
following figure:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

4. Create the following process properties:

Name Data Type In/Out Default String Comments

<Value>

Binary

In/Out

<Value>

Order Integration Object

Order Message

Hierarchy

In/Out

Not applicable

XML representation of the
integration object

5. Set up the first step of the workflow, after Start, to use the EAI XML Converter with the XMLDocToIntObjHier
method.

This step converts the incoming XML document to an integration object representation using the following input and
output arguments:

Input Argument Type Property Name

<Value>

Process Property

<Value>

Property Name Type Output Argument

Order Message

Output Argument

SiebelMessage

6. Set up the second step to use the Siebel Order ASI with the QueryByExample method.

This step queries the Order business object based upon the provided XML document using the following input and
output arguments:

Input Argument Type Property Name

SiebelMessage

Process Property

Order Message

66

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Property Name Type Output Argument

Order Message

Output Argument

SiebelMessage

7. Set up the third step to use the EAI XML Converter with the IntObjHierToXMLDoc method.

This step converts the integration object to a well-formed XML document using the following input and output
arguments:

Input Argument Type Property Name

SiebelMessage

Process Property

Order Message

Property Name Type Output Argument

<Value>

Output Argument

<Value>

8. Save and deploy the workflow.

For details on deploying workflows, see Siebel Business Process Framework: Workflow Guide .
9. Define a JMS Connection subsystem using SrvrMgr (command line utility) or the Server Administration screen.

Note: Restart the Siebel Server to make the new subsystem available.

Following is an example using SrvrMgr:

Note: ConnectionFactory, ReceiveQueue and SendQueue require JNDI names, which varies depending
upon the JMS provider and your implementation.

create named subsystem JMSToFromSiebel for subsystem JMSSubsys with
ConnectionFactory="jndiName.ConnectionFactory",
ReceiveQueue="jndiName.toSiebel ",
SendQueue="jndiName.fromSiebel",
ReceiveTimeout=3000

10. Define a data handling subsystem to dispatch the message from the toSiebel queue to the workflow as previously
defined (JMS Query Order):

create named subsystem QueryOrder for subsystem EAITransportDataHandlingSubsys
with DispatchWorkflowProcess="JMS Query Order"

Note: The Siebel Server must be restarted in order for the data handling subsystem to be available.

11. After restarting the Siebel Server, start a new JMS Receiver from the SrvrMgr command line.

The following is an example that instructs the receiver to use the JMSToFromSiebel connection subsystem defined
in Step 9, the QueryOrder data handling subsystem defined in Step 10, and instructs the receiver to use the
ReceiveDispatchSend method of the EAI JMS Transport:

67

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

start task for comp JMSReceiver with
ReceiverConnectionSubsystem= JMSToFromSiebel,
ReceiverDataHandlingSubsystem=QueryOrder,
ReceiverMethodName=ReceiveDispatchSend

12. Place a message resembling the following on the toSiebel queue:

Note: A third-party product such as Hermes (available from Sourceforge.net) is required to place a
message on a queue. In the following sample document, the Siebel Order ASI queries for all orders
associated with the Hibbings Manufacturing account.

<?xml version="1.0" encoding="UTF-16"?>
<SiebelMessage IntObjectName="Order Interface">
 <ListOfOrderInterface>
 <Orders>
 <Account>Hibbings Manufacturing</Account>
 </Orders>
 </ListOfOrderInterface>
</SiebelMessage>

Sending and Receiving Custom JMS Properties
Properties can be assigned to a JMS message. A property can be an instance of any Java class or any of the primitive Java
types. All properties of a message received by the Siebel JMS Transport are available as properties of the output property set.
The Siebel EAI infrastructure can send and receive custom JMS properties without having to write custom code.

The name of a custom property is the original name with the eleven characters SIEBEL_JMS: prefixed; the value is the string
obtained by converting the original value to a Java String object. When sending a message, any property of the input property
set whose name begins with SIEBEL_JMS: is added to the message being sent as a JMS Message string property with the
prefix SIEBEL_JMS: removed. For example, the property SIEBEL_JMS:foo is added to the message as the string property foo.

Receiving Custom Properties in Inbound Messages
Inbound messages are received through the JMS Receiver component (ReceiveDispatchSend or ReceiveDispatch method).
This component is usually configured to dispatch the message to a workflow process.

To receive a custom JMS property in a workflow process

1. Create a workflow process property as follows:

Name Data Type In/Out

SIEBEL_JMS:name

String

In/Out

Note: There is no space between the colon and the custom property name.

2. Repeat the previous step for every custom JMS property that is expected to be received and processed.

68

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

At run time, the Siebel EAI infrastructure automatically copies the value of the correct JMS property from the received
message to the appropriate Workflow process property.

For example, to have two JMS properties called TLFXUserId and TLFXGroupId available to a workflow process, you
must define two process properties called SIEBEL_JMS:TLFXUserId and SIEBEL_JMS:TLFXGroupId.

The workflow process can also set the values of the JMS properties using a step that calls the Workflow Utilities
business service (Echo method) as shown in the following example:

Input Argument Type Value

SOV_Group

Expression

“SOV_Group”

SOV_User

Expression

“SOV_User”

Property Name Type Output Argument

SIEBEL_JMS:TLFXGroupId

Output Argument

SOV_Group

SIEBEL_JMS:TLFXUserId

Output Argument

SOV_User

An input argument (SOV_Group and SOV_User in the example) can be any string, with the requirement that the
same string must be used as the output argument.

Because the process properties are defined as In/Out, they are passed back to the caller (the JMS Receiver in this
case). The JMS Transport includes them in the output message as JMS properties.

For more information about creating workflow processes, see Siebel Business Process Framework: Workflow
Guide .

Sending Custom Properties in Outbound Messages
In the standard application, outbound messages are sent to the JMS queue using the EAI JMS Transport business service
(Send and SendReceive methods).

The standard BS though does not have the ability to set custom JMS properties, but it is extremely easy to create a new
clone of the EAI JMS Transport BS to handle those.

To set custom JMS properties in outbound messages

1. In Siebel Tools, create and open a workspace.
2. Copy the EAI JMS Transport business service, then give the copy a new name and display name, such as My EAI

JMS Clone.
3. In the new business service, add business service method arguments to the Send method as follows:

69

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Name Data Type Type

SIEBEL_JMS:name

String

Input

4. Repeat the previous step for the SendReceive method, but enter Input / Output for the Type property.

Using Input / Output as the Type is necessary if the external system modifies the JMS properties and the new values
are read into the Siebel application.

5. Deliver the workspace.

The new business service can be used in any workflow process. You can pick the custom JMS properties as input argument
names when defining workflow steps, and the custom JMS properties are added to the JMS message. For more information
about creating workflow processes, see Siebel Business Process Framework: Workflow Guide . For more information
about business services, see Integration Platform Technologies: Siebel Enterprise Application Integration .

Enabling Authentication and Authorization for the EAI JMS
Transport
Authentication and authorization can be configured on JMS servers to protect JMS destinations. Oracle supports the
following scenarios for use in the Siebel application:

• Require username and password to perform a JNDI lookup.

• Require username and password to create connections to the JMS server.

• Require username and password to send, receive, publish, subscribe from, or subscribe to JMS destinations that
have the authorization enforced by a JMS server.

The responsibility of the Siebel EAI JMS Transport business service as a JMS client is twofold:

• Provides configuration mechanism and read credentials from the Siebel application configuration file.

• Establishes proper security context for executing privileged operations.

The following authentication and authorization topics are also discussed:

• About JMS Credential Specification

• Configuring Credentials in JNDI

• Configuring Credentials in JMS

• Configuring Against Oracle WebLogic Server

• Configuring Against TIBCO Enterprise Message Service

• Configuring Against IBM WebSphere MQ

• About Security Configuration on the JMS Server

70

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

About JMS Credential Specification
The following method arguments are added to the EAI JMS Transport business service methods to use when completing the
JMS credential specification:

• ConnectionUsername and ConnectionPassword. The credentials used to create JMS connections (applicable for
use with IBM WebSphere MQ only, see Configuring Against IBM WebSphere MQ).

• SendUsername and SendPassword. The credentials used to send messages to SendQueue (applicable for use with
Oracle WebLogic only, see Configuring Against Oracle WebLogic Server).

• ReceiveUsername and ReceivePassword. The credentials used to receive messages from ReceiveQueue (applicable
for use with Oracle WebLogic only, see Configuring Against Oracle WebLogic Server).

• TopicUsername and TopicPassword. The credentials used to publish/subscribe to/from Topic (applicable for use
with Oracle WebLogic only, see Configuring Against Oracle WebLogic Server).

Send and receive credentials are specified separately because some JMS business service methods (SendReceive and
ReceiveDispatchSend) contain both send and receive operations, and it is possible that SendQueue and ReceiveQueue are
protected by different credentials.

Configuring Credentials in JNDI
JNDI credentials are specified in the jndi.properties file by setting java.naming.security.principal to the username and
java.naming.security.credentials to the password. For more details, refer to the JNDI specification. The construction of the
naming context automatically reads the credentials from the jndi.properties file and uses those credentials to connect to a
JNDI server if authentication is required to perform JNDI lookup.

For security reasons, Siebel CRM requires that the value of java.naming.security.credentials (representing the JNDI password)
in the jndi.properties file be encrypted. The JNDIEncryptionCheck parameter in the JMSSubsys named subsystem is
set to TRUE by default to enforce the encryption requirement. In this case, Siebel CRM decrypts the encrypted value of
java.naming.security.credentials.

Note: JNDIEncryptionCheck is TRUE in all newly created named subsystems based on JMSSubsys. For any
older subsystems in which JNDIEncryptionCheck is not set to TRUE, the java.naming.security.credentials value
in the jndi.properties file is not treated as an encrypted value.

Customers encrypt the value of java.naming.security.credentials in the jndi.properties file by using the following encryption
utilities:

• EncryptJndi.sh, found in the <SIEBEL_ROOT>/ses/siebsrvr/bin folder on UNIX

• EncryptJndi.bat, found in the <SIEBEL_ROOT>\ses\siebsrvr\bin folder on Windows

Configuring Credentials in JMS
JMS-related credentials (those listed in the JMS credential specification) are passed in through a Siebel application-defined
configuration mechanism. For configuring JMS-related credentials, see Configuring the EAI JMS Transport.

71

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

JMS Password Encryption
When passwords are provided through service input properties (ConnectionPassword, SendPassword, ReceivePassword, or
TopicPassword), they are encrypted manually using the Siebel encryptstring utility. The EAI JMS Transport business service
attempts to decrypt the password before using it. Passwords supplied using the name server have already been encrypted
by the server manager; therefore, it is not necessary to encrypt it again with encryptstring.

Note: The encryptstring utility is located in the BIN directory of your installation of the Siebel Server. For more
information, see Siebel Security Guide .

Configuring Against Oracle WebLogic Server
The following instructions let you configure the EAI JMS Transport business service against Oracle WebLogic Server.

Note: For detailed information relevant to client configuration tasks for similar products, such as Oracle SOA
Suite, see vendor documentation from Oracle.

To configure the EAI JMS Transport business service against Oracle WebLogic Server
1. Authorize a user to send from SendQueue using SendUsername and SendPassword.
2. Authorize a user to receive from ReceiveQueue using ReceiveUsername and ReceivePassword.
3. Authorize a user to publish and subscribe to and from Topic using TopicUsername and TopicPassword.

By default, the Oracle WebLogic server does not require a username or password to connect to or lookup JNDI
objects. If the server does require this, then configure the EAI JMS Transport business service following Step 4 and
Step 5.

4. ConnectionUsername and ConnectionPassword are set to a user who can connect to the JMS server, but the user
has no privileges for any JMS destinations.

ConnectionUsername and ConnectionPassword can also be left blank if the JMS server accepts anonymous
connections.

5. If JNDI lookup is protected, then the jndi.properties file contains the java.naming.security.principal and the
java.naming.security.credentials parameters that are used to perform the JNDI lookup.

Note: The JNDI principal and credentials are set to a user who can only perform the JNDI lookup, but has
no privileges for any JMS destinations.

Configuring Against TIBCO Enterprise Message Service
For the TIBCO Enterprise Message Service (EMS) client, no separate security context is needed for each operation. Once a
connection is established, with the proper credential, all requests sent through the same connection use the same connection
security context. This means that switching the security context requires switching connections.

For the ReceiveDispatchSend method, the implication is that the receive credentials must be the same as the send
credentials. Receive and send must be executed on the same session or connection to remain a single transaction.

72

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

To configure the EAI JMS Transport business service against TIBCO EMS

1. ConnectionUsername and ConnectionPassword are set to proper credentials for executing the JMS operations
specified by the JMS business service method.

For example, in the Send method, both ConnectionUsername and ConnectionPassword are set to the credentials
that are authorized to send messages to SendQueue.

In the ReceiveDispatchSend method, ConnectionUsername and ConnectionPassword are set to the credentials that
can both send to SendQueue and receive from ReceiveQueue.

2. Set the following input properties to empty:

◦ SendUsername

◦ SendPassword

◦ ReceiveUsername

◦ ReceivePassword

◦ TopicUsername

◦ TopicPassword

3. The jndi.properties file contains the java.naming.security.principal and java.naming.security.credentials properties that
are used to connect to the EMS server and to lookup JNDI objects.

However, the connection to the EMS server, and the ability to lookup JNDI objects, does not occur if anonymous
access is enabled by TIBCO EMS. For more information, see the TIBCO EMS documentation.

Note: These JNDI credentials are set separately from ConnectionUsername and ConnectionPassword.

Configuring Against IBM WebSphere MQ
For the IBM WebSphere MQ client, no separate security context is needed for each operation. Once a connection is
established, all requests sent through the same connection use the same connection context.

Note: The IBM WebSphere MQ server does not perform authentication by default. By default, passwords are
not validated. Setup authentication for IBM WebSphere MQ is a task for the IBM WebSphere MQ administrator,
not the Siebel application administrator.

For the ReceiveDispatchSend method, the implication is that the receive credentials must be the same as the send
credentials. Receive and send must be executed on the same session or connection to remain a single transaction.

To configure the EAI JMS Transport business service against IBM WebSphere MQ

1. Set the ConnectionUsername and ConnectionPassword to the proper credentials to execute the JMS operations
specified by the JMS business service method. For example, in the Send method, both ConnectionUsername and
ConnectionPassword must be set to the credentials that are authorized to send messages to SendQueue.

73

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

Note: ConnectionUsername and ConnectionPassword are required for the Windows 2012 Server
platform and recommended for all other Windows platforms.

2. In the ReceiveDispatchSend method, set the ConnectionUsername and ConnectionPassword to the credentials that
can both send to SendQueue and receive from ReceiveQueue.

3. Make sure the jndi.properties file contains the java.naming.security.principal and java.naming.security.credentials
properties that are used to connect to the EMS server and to look up JNDI objects.

Note: These JNDI credentials are set separately from ConnectionUsername and ConnectionPassword.

For more information about configuring the EAI JMS Transport business service against IBM WebSphere MQ, see 828113.1
(Article ID) on My Oracle Support.

About Security Configuration on the JMS Server
For information about how to protect JMS resources on the JMS server, see the specific vendor documentation.

Troubleshooting for the JMS Transport
Several diagnostic methods are present in the EAI JMS Transport to assist in troubleshooting CLASSPATH, JNDI, and
problems connecting to the JMS server:

• CheckClasspath. Iterates through the JVM’s classpath, checking for the existence of each directory in the file
system.

Note: The length of the classpath is limited to 1024 characters. However, it might be truncated when
displayed in the user interface and srvrmgr command-line interface. To see the entire classpath, examine
the log file. For information about logging, see About Logging for the JMS Transport.

• CheckJNDIContext. Creates a JNDI InitialContext based on parameters (context factory class, URL) in the
jndi.properties file.

Lists the parameters and the entries found in the context, as well as the names and classes of the administered
objects.

• CheckJNDIObjects. Retrieves administered objects (connection factory, queue, topic) from JNDI.

If CheckJNDIObjects finishes without errors, then JNDI binding is proper.

If CheckJNDIObjects finishes with errors, then it means that the JNDI binding has not been done properly. Rebind
the JNDI objects or check the jndi.properties file to see if the provider URL is pointing to the correct location.

• CheckJMSServer. Invokes JMS methods directly and simply. If SendQueue is specified, then CheckJMSServer
sends a message and then receives a message. If SendQueue is not specified and Topic is specified, then it creates
a durable subscriber, publishes a message, receives it, and then unsubscribes.

74

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

If CheckJMSServer finishes without errors, then both the queuing system and JMS are communicating properly.

If CheckJMSServer finishes with errors, then it means that the JMS queue in the queuing system is not functioning
properly. Check the corresponding queue in the queuing system.

• CheckAll. Executes all checks: CheckClasspath, CheckJNDIContext, CheckJNDIObjects, CheckJMSServer.

The following table contains more details on arguments used with some of the JMS Transport debugging methods. The
arguments listed are used by all three methods.

Method Argument Display Name Type Description

ConnectionFactory

Connection Factory

Input

JNDI name for the
JMSConnectionFactory

SendQueue

Send Queue

Input

JNDI name for the queue
(optional)

CheckJNDIObjects

CheckJMSServer

CheckAll

Topic

Topic

Input

JNDI name of the topic (optional)

About Logging for the JMS Transport
The JMS Transport logs messages to a file if the Java system property jms.log is set. This property is specified among the
VMOPTIONS in the JVM subsystem using the -Djms.log option.

The -Djms.log option must specify the path and file name but not the extension, because the JMS Transport automatically
adds the .txt extension plus some information about the PID and thread ID.

For example, by using:

VMOPTIONS="-Djms.log=C:\temp\mylog"

The log file generated is:

C:\temp\mylog_xxx_yyy.txt

For more information about JMS logging, refer to the JMS vendor’s documentation.

About Caching for the JMS Transport
JMS Receiver connections are cached in Siebel Business Applications. In Siebel CRM version 8.1 and later, JNDI objects are
also cached for performance and reliability. Caching eliminates the JNDI service as a point of failure.

JNDI object caching is active by default. To turn off caching (that is, to force JNDI lookup every time), use the
DisableJNDIObjectCache business service method argument for any EAI JMS Transport business service method (operation).
When DisableJNDIObjectCache is set to true, JNDI objects are not cached.

75

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 6
EAI JMS Transport

76

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

7 EAI HTTP Transport

EAI HTTP Transport
This chapter discusses EAI HTTP Transport, its methods, and workflow examples illustrating using EAI HTTP Transport with
different methods. This chapter includes the following topics:

• About the EAI HTTP Transport

• Using POST and GET

• EAI HTTP Transport Named Subsystems

• EAI HTTP Transport Method Arguments

• Sending a Message Using the EAI HTTP Transport

• Using the EAI HTTP Transport for Inbound Integration

• Process of Using the EAI HTTP Transport for Inbound Messages

• Handling EAI HTTP Transport Business Service Errors

• Processing and Sending Outbound XML Documents

• Sending and Receiving Messages with the EAI HTTP Transport

• Examples Using HTTP Request

• Creating Custom Headers for the EAI HTTP Transport Service

• About Sending and Receiving Messages Through HTTP

• About Transport Headers and HTTP Response Headers

About the EAI HTTP Transport
The use of the Internet protocols and technologies for business (such as HTTP, HTML, and XML) has created a requirement
for automatically sending Siebel data to external sites, either on the Internet or outside the enterprise firewall to external
Web sites. To meet this need, the technologies built into Siebel EAI provide a way to send and receive messages over
HTTP. Siebel EAI HTTP Transport business service lets you send XML messages over HTTP to a target URL (Web site). The
Siebel Application Interface (AI) serves as the transport to receive XML messages sent over the HTTP protocol to a Siebel
application.

The EAI HTTP Transport business service is based on the CSSHTTPTransService class. You can use one of the following two
methods with this transport:

• Send. This method supports outbound messages (XML documents sent from a Siebel application to an external
system). The Send method means that the response coming back from the external application is not interpreted by
the Siebel application, but the Web server returns a correct HTTP response.

• SendReceive. This method supports outbound messages (XML documents sent to a Siebel application from
an external system). This method is called Send and Receive a Response and the HTTP response body is the
response for the request.

Each method has its own arguments, techniques, and applications. The EAI HTTP Transport allows you to send messages
across the Internet using the standard HTTP protocol. Using this transport, you can send messages to any URL. The XML

77

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

document sent can then be acted upon by any Web-based application, including those written in Java, JavaScript, VBScript,
or any other Web-enabled technology.

Note: When using the EAI HTTP Transport with the Transport Layer Security (TLS) protocol, you might have to
install certificates on the Siebel Server. For more information, see Siebel Security Guide .

System Requirements for Using the EAI HTTP Transport
To use the EAI HTTP Transport, you must install and configure the following components of Siebel Business Applications,
and make sure that they are operational:

• Siebel Application Interface (AI). To provide the necessary HTTP listening services and invoke the requisite workflow
through a business service method.

• Workflows. To accept incoming XML documents and pass them through an integration object into the business
object to update Siebel data.

• Business services. To execute the necessary actions.

Selecting the Appropriate Business Service for HTTP
The business service required to process a given XML document that is received from an external system using the EAI HTTP
Transport depends on the processing you perform on the data. The way to approach this is to accept the output of the EAI
HTTP Transport and store it as a process property that you define, and process it later in the workflow based on the format of
the data.

For example, you could pass the string into a custom business service that you build to parse the input, query some data in
a Siebel application based on the data, and then update the appropriate field in the Siebel application. If the data is formatted
as a SiebelMessage, then you could use the EAI XML Converter business service with the XMLDocToIntObjHier method to
pass an integration object instance to the EAI Siebel Adapter for further processing.

Note: Do not use the Web Engine HTTP TXN business service for inbound HTTP transport sessions. This
business service is intended only for Siebel user interface sessions in the Siebel Web Client or Siebel Mobile Web
Client. It is not compatible with invocation from the EAI Application Object Manager task. For information about
the Web Engine HTTP TXN business service, see Siebel Portal Framework Guide .

Using POST and GET
The HTTP protocol supports the GET and POST methods. You might be familiar with these methods if you have ever built a
Web-based CGI form:

• GET. Requests a representation of the specified resource. GET is the most common method used on the Web
today.

• POST. Submits data to be processed, such as from an HTML form, to the identified resource. The data is included in
the body of the request. This might result in the creation of a new resource, updates to existing resources, or both.

The EAI HTTP Transport imposes certain restrictions on your use of transport features when using the POST or GET method.
The following table identifies restrictions on these HTTP methods.

78

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Method Restriction

Get

The HTTP Body has no significance when using GET. During a GET process, only the universal
resource locator (URL) is used for the request.

Note: Passing user credentials in the URL is not supported in Siebel CRM.

Post

The HTTP Body is relevant only when using POST. The HTTP Body is encoded with a default
mechanism used to encode URLs. The HTTP Content-Type application/xxx-form-
urlencoded is the default content type used for request bodies. The content is sent as it is without
any special content encoding, such as Base64.

EAI HTTP Transport Named Subsystems
The EAI HTTP Transport, like every other Siebel transport, reads required parameters from a named subsystem instead of
the configuration (.cfg) file. The eai.cfg file entries list the external service name and the name of the named subsystem to be
used. For example:

SiebelQuery = SiebelQueryDispatch

There is no [Properties] section for SiebelQueryDispatch in the .cfg file. The name is used to look up the named subsystem
list and dispatch accordingly. Use named subsystems for property specification. Predefined named subsystems have been
created for you already, such as:

• SiebelQueryDispatch

• SiebelExecuteDispatch

• SiebelUpsertDispatch

Note: You can create additional named subsystems as needed using Siebel Server Manager.

For a discussion of named subsystems for Siebel EAI, see EAI Transports and Interfaces Overview. For more information
about named subsystems, see Siebel System Administration Guide .

EAI HTTP Transport Method Arguments
In addition to the method arguments (data handling parameters) in Common EAI Transport Parameters, EAI HTTP Transport
methods take the arguments presented in the following table. Parameters are optional unless specified as required.

Parameter Display Name Description

<Value>

User-Defined Message
Text

Input and Output data passed as a string. This is the value
stored in the Value field of the property set, either input
or output. If you specify the HTTPRequestBodyTemplate,
then the <Value> parameter is ignored and the
HTTPRequestBodyTemplate parameter is used instead.

79

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Parameter Display Name Description

CharSetConversion

Character Set Conversion
for Text Data

Character set conversion from the external system. The default
is None.

ConnectionSubsystem

Connection Subsystem

Subsystem containing connection parameters.

ConverterService

Converter Service

Business service used to serialize and unserialize hierarchical
data to raw buffer and the reverse. Must implement the
DocToHier and HierToDoc methods. The default is EAI XML
Converter.

DataHandlingSubsystem

Data Handling Subsystem

Subsystem containing data handling parameters.

EndOfData

End of Data

Output parameter whose value is True if the end of the data has
been reached.

HTTPAccept

HTTP Accept

Default is text/*. The explicit value for the Accept: header to
override the default. Specifies the MIME types accepted by the
sender.

HTTPAllowCaching

Allow Caching

Default is N. By default, the responses for specific URL
addresses are not cached by the EAI HTTP Transport. Set this
flag to Y to enable caching.

Note that this can lead to undesirable side effects, as old data
from earlier requests can be exposed from the cache buffer.

HTTPAllowPersistentCookies

Allow Persistent Cookies

Default is N. A session cookie is used to tie requests and
logoff operations to the user session started at the login, when
communicating with any session-cookie-based system. Leaving
this flag set to N leaves the persistence of cookies in the control
of the EAI HTTP transport, which is the default behavior.

All session cookies persist in memory only as long as the current
session. Session cookies are not written to disk.

If you want to use persistent cookies, that is, if persistence
between logins is required and you want cookies to be written to
disk, then set the parameter to Y.

HTTPCertAuthority

HTTP Cert Authority

The name of the authority that issues the mutual authentication
certificate, in RDN (Relative Distinguished Name) format.

For example:

CN=ServerName123, OU=Department,
O=organization, L=Location, C=Country,
E=email@example.com

represents a certificate issued by Microsoft Certificate Authority
running on the server ServerName123. RDN notation is case
insensitive.

For information about configuring client TLS authentication, see
Siebel Security Guide .

80

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Parameter Display Name Description

HTTPCertSerialNo

HTTP Cert Serial No

The mutual authentication certificate serial number, in
hexadecimal format as a string without space characters in
between. For example, the serial number “19 8b 11 d1 3f
9a 8f fe 69 a0" must be provided as:

198b11d13f9a8ffe69a0

Serial numbers are case insensitive.

For information about configuring client TLS authentication, see
Siebel Security Guide .

HTTPContentType

HTTP Content Type

Default is application/xxx-form-urlencoded. The
explicit value for the Content-Type: header to override the
default. Specifies the type of data sent in the body of the
request.

HTTPImplicitCharsetDetection

Implicit Character Set
Detection

Default is False. This is the implicit character set detection
for incoming data. Do not set it to True for self-describing
documents such as XML. If set to True, then this overrides the
CharSetConversion parameter.

HTTPLoginBodyTemplate

Login Body Template

Specifies the HTTP request body that is used when
HTTPLoginURLMethod is POST. By putting login information
into the HTTP body (as opposed to putting it into the URL) for
sending, this method provides stronger security than sending
the login information in the URL. Generally, the login parameters
in a login query are specified in the body of the request that uses
the POST method.

Required for session mode only if the HTTPLoginMethod
parameter is set to POST.

HTTPLoginMethod

Login Method

HTTP method to be used for logging in. If no Login
Method is specified, then this parameter defaults to the
HTTPRequestMethod value.

Required for session mode.

HTTPLoginURLTemplate

Login URL Template

Template for the URL used for the login operation. This
operation is separate from the request operation and assumes
communication mode is session mode. If there is a separate
login, then one or more request and response messages are
expected.

Required for session mode.

HTTPLogoffMethod

Log Off Method

Defaults is HTTPLoginMethod. HTTP method to be used for
logging off.

Required for session mode.

HTTPLogoffURLTemplate

Log Off URL Template

Template for the URL that is used for the logoff operation. This
operation is separate from the request operation and assumes
that the mode of communication is session mode. If it is set,
then the logoff operation is completed. Otherwise, logoff is

81

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Parameter Display Name Description

skipped. The purpose of the logoff operation is to end a session
that was started with the corresponding login.

Required for session mode.

HTTPMaxIdleSeconds

Max Idle Seconds

Maximum number of seconds to allow connections to be idle.
After the elapsed max idle time, the connection is invalidated
and restarted.

HTTPNoAutoRedirect

No Auto Redirect

Default is N. This means auto-redirect is enabled. Setting this
parameter to Y disables auto-redirection of messages to other
URLs.

HTTPRequestBodyTemplate

Request Body Template

HTTP Body to use with the POST method. This overrides any
request body specified in the Value field of the input property
set.

HTTPRequestMethod

Request Method

HTTP method to use with the data request, such as POST or
GET.

Required for both session and sessionless modes.

HTTPRequestURLTemplate

Request URL Template

Template for the request URL, which is the address to which the
data is sent or from which a response is requested.

Required for both session and sessionless modes.

HTTPSleepTime

Sleep Time

Default is 120000 milliseconds. The timeout interval on login,
send, and logoff requests in milliseconds.

HTTPUserAgent

HTTP User Agent

Default is Mozilla/4.0. The explicit value for the User-Agent:
header to override the default. Specifies the name/version of the
client program.

IgnoreCharSetConvErrors

Ignore Character Set
Conversion Errors

Ignore character set conversion errors if True. Else, propagate
the errors to the caller (default behavior).

TimedOut

Timed Out

True if receive timed out and no data was available. False if
request completed.

Sending a Message Using the EAI HTTP Transport
The following procedure demonstrates how to send information from a Siebel application to another Web-based application
using the EAI HTTP Transport.

To send a message
1. Create an integration object in Siebel Tools based on a given business object.

82

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

2. Refine the integration object created in the previous step to specify just those business components and fields that
you want to exchange with the external application.

Note: For details about integration objects, see Integration Platform Technologies: Siebel Enterprise
Application Integration .

3. In Siebel Tools, set up a workflow to send this information to an external system as shown in the following figure:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

a. Create the following process properties:

Name Data Type In/Out Value

Account Message

Integration Object

In/Out

Not applicable

Account XML

Binary

In/Out

Not applicable

Error Code

String

In/Out

Not applicable

Error Message

String

In/Out

Not applicable

Object Id

String

In/Out

Row Id of an account

Siebel Operation Object Id

String

In/Out

Not applicable

b. Set up the first step of the workflow after Start to use the EAI Siebel Adapter with the Query method to query
the information from the Siebel Database, using the following input and output arguments:

Input Argument Type Value Property Name Property
Data Type

OutputIntObjectName

Literal

Sample Account

Not applicable

Not
applicable

PrimaryRowId

Process Property

Not applicable

Object Id

String

Property Name Type Output Argument

Account Message Output Argument SiebelMessage

83

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Property Name Type Output Argument

c. Set up the second step to use the EAI XML Converter with the IntObjHierToXMLDoc method to convert the
data extracted from the Siebel Database to XML format, using the following input and output arguments:

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Account Message

Integration Object

Property Name Type Output Argument

Account XML

Output Argument

<Value>

d. Set up the third step to use the EAI HTTP Transport with the Send method to send the information to the
external system, using the following input and output arguments:

Input Argument Type Value Property Name Property Data
Type

<Value>

Process
Property

Not applicable

Account XML

String

HTTPRequestMethod

Literal

POST

Not applicable

Not applicable

HTTPRequestURLTemplate

Literal

http://$web_address
$/$request_param$

Not applicable

Not applicable

Property Name Type Output Argument

Account XML

Output Argument

<Value>

e. Save the workflow and run it from the Workflow Simulator.
4. Specify how this workflow is invoked, using one of the following methods:

◦ Configure the RunTime Events to trigger the workflow.

◦ Create a button on the appropriate view in the Siebel application to call this workflow.

◦ Use workflow policies on the opportunity business object to trigger the workflow.

Using the EAI HTTP Transport for Inbound Integration
The EAI HTTP Transport uses the Siebel Application Interface (AI) to provide inbound messaging from an application that uses
HTTP. The EAI HTTP Transport can be used in session or sessionless mode.

84

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

The following topics are discussed:

• Preparing to Use the EAI HTTP Transport for Inbound Integration

• Specifying HTTP Parameters for Inbound Integration

• Using the EAI HTTP Transport in Session Mode

• Using the EAI HTTP Transport in Sessionless Mode

Preparing to Use the EAI HTTP Transport for Inbound Integration
To use the EAI HTTP Transport for inbound integration, you must perform certain tasks that might not be required when using
the EAI HTTP Transport for outbound integration:

1. Install and configure the Siebel Application Interface (AI), Siebel Gateway, and Siebel Server.
2. Start the Siebel Application Interface (AI), Siebel Gateway, and Siebel Server.
3. Start the Siebel Application Interface (AI) to be able to use the EAI HTTP Transport.
4. Configure AI to run the EAI HTTP Transport for inbound integration. See Specifying HTTP Parameters for Inbound

Integration.
5. Set certain configuration parameters for whatever Siebel Server you are using.

The server component you are running must be a Siebel Application Object Manager component.

Note: You can type http://Web_Server_Name/siebel/app/eai-/lang in a Web browser on any computer that
has connectivity to the Application Interface to check the connectivity between the computer issuing the URL (for
the EAI HTTP Transport) and AI. This URL brings up the login page of the Siebel application corresponding to
ObjectManager_lang, confirming the connectivity between AI and the URL-issuing computers.

Specifying HTTP Parameters for Inbound Integration
The EAI HTTP Transport is built into Siebel Application Interface (AI). To use it, you set certain configuration parameters of the
AI profile of the application interface. Your Siebel application installation includes a configuration file called AI profile. Review
the configuration file to make sure that the parameters are set properly. Use named subsystems to dispatch to a workflow as
described in Using Named Subsystems for Transport Parameters.

To configure AI to run the EAI HTTP Transport for inbound integration

Note: For instructions on how to create or modify the Application Interface (AI) profile, see Siebel Installation
Guide for the operating system you are using.

1. Launch Siebel Management Console (SMC).
2. Open the AI profile deployed to AI.
3. Look for the application eai (lang). Where lang is the three-letter language code for the language you are using,

such as enu for U.S. English.

If this application does not exist then add one with name as eai and Object Manager as EAIObjmgr_lang .
4. In the Basic Information section of the eai (lang) application, select Configure EAI HTTP Inbound Transport

parameter to enable the HTTP inbound transport.
5. Submit the AI profile.

85

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Using the EAI HTTP Transport in Session Mode
The session mode uses the HTTP session cookie to retain the session information between the HTTP requests. The session
mode can be viewed when a sequence of calls is supported from an HTTP application into the EAI HTTP Transport.

To use the EAI HTTP Transport in session mode

1. Log in to the Siebel application. If successful, then an HTTP session cookie named _sn is returned in an HTTP set-
cookie header.

2. Submit one or more subsequent requests.

Each request is intended as a call to a Siebel business service or workflow depending on the configuration of the
named subsystem in use. Requests must contain the session cookie (_sn) from the previous step in either the HTTP
cookie header or the URL string as a parameter.

3. Log off. The request must contain the session cookie from Step 1. The cookie refers to the session to be closed.

Note: For session mode inbound HTTP requests, the expiration date of the cookie sent to the client application
is not set, because it is expected that this cookie is used to send multiple requests within the same session.

Example Requests for the HTTP Protocol in Session Mode
HTTP protocol requests can be represented as URLs for HTTP GET, and as a combination of URL and request body for
HTTP POST. The following topics explain in detail how each of the session mode calls is configured.

The following table describes each of the Login HTTP Request variables for session mode.

Variable Description

webserver

URL of the Web server that has Siebel Application Interface (AI) installed, such as
www.myserver.com.

path

Virtual path on the server referring to the specific AI profile configuration. The default is /siebel/
app/eai/lang , where lang is the language in which you are running the applicable Siebel
Application Object Manager.

source

Named subsystem as specified in the [HTTP Services] section in the application configuration
(.cfg) file.

username

Siebel user name for the Application Object Manager login.

Note: Passing user credentials in the URL is not supported in Siebel CRM.

password

Password for the login user name.

86

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Login HTTP Request Example
In this example, if the call completes successfully, then it returns a session cookie:

• Using HTTP POST:
URL = http://webserver/path
HTTP Body =
SWEExtSource=source&SWEExtCmd=ExecuteLogin&UserName=username&Password=password

Example Login URL:

http://www.example.com/siebel/app/eai/enu

Note: Passing user credentials in the URL is not supported in Siebel CRM.

Data Exchange HTTP Request Example
In this example, for the call to complete successfully, it must include the session cookie from the login:

• Using HTTP GET:

URL = http://webserver/path?SWEExtData=data text

where data text is the business service input data. Most of the time, this is the text of an XML document that on the
server side is converted to a property set and passed to the business service.

With GET requests, the XML document is included in the URL. Therefore the XML document must be URL-encoded.
For example, the URL encoding for a space is %20.

To make sure that the decoded XML document passed to the XML Converter is valid, use an escape code for any
special characters (that is, use an ampersand, followed by the special character’s escape characters, followed by a
semi-colon) before encoding them for the URL. For more information, see the topic on special (escape) characters in
XML Reference: Siebel Enterprise Application Integration

• Using HTTP POST:

URL = http://webserver/path
HTTP Body = data text

where data text is the business service input data. Most of the time, this is the text of an XML document that on the
server side is converted to a PropertySet and passed to the business service.

Data that is sent as part of the URL must be in Unicode format before it is encoded for the URL. POST requests
can send the data without URL encoding but must include the Content-Type HTTP header. The Content-Type must
specify the character set of the incoming data, for example:

Content-Type=text/xml;charset="UTF-8"

87

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Note: For XML messages being received by way of the Inbound HTTP Transport, only a Unicode (UTF-8
or UTF-16) format (with accordant encoding XML-processing header attribute and encoded XML data) is
allowed. No ISO or Windows code pages are accepted.

• Example Request URL:

http://www.exampleserver.com/siebel/app/eai/enu?SWEExtData=<?xml version="1.0"
encoding="UTF-8"?>

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Sample Account">

<ListofSampleAccount>

 <Account>
 <Name>A. K. Parker Distribution</Name>
 <ListOfContact>
 <Contact>
 <FirstName>Stan</FirstName>
 <LastName>Graner</LastName>
 </Contact>
 </ListOfContact>
 </Account>

</ListofSampleAccount>

</SiebelMessage>

Logoff HTTP Request
This request must include the session cookie from the login request.

• Using HTTP GET:

URL = http://webserver/path?SWEExtCmd=Logoff

Note: Always use HTTP GET for the Logoff HTTP Request.

• Example Logoff URL:

http://www.example.com/siebel/app/eai/enu?SWEExtCmd=Logoff

Using the EAI HTTP Transport in Sessionless Mode
Using the EAI HTTP Transport in sessionless mode allows you to use one URL to perform Login, Request, and Logoff in a
single HTTP request. This mode does not use session cookies because there is no login session between the HTTP requests.
The disadvantage of this mode is the overhead incurred by the Application Object Manager needing to log in with every
request.

The following table describes each of the variables for sessionless mode.

88

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Variable Description

webserver

URL of the Web server that has Siebel Application Interface (AI) installed, such as
www.myserver.com.

path

Virtual path on the server referring to the specific AI profile configuration. The default is siebel/
app/eai/lang , where lang is the language in which you are running the applicable Siebel
Application Object Manager.

source

Named subsystem as specified in the [HTTP Services] section in the application configuration
(.cfg) file.

username

Siebel user name for the Siebel Application Object Manager login.

Note: Passing user credentials in the URL is not supported in Siebel CRM.

password

Password for the login user name.

data text

Business service input data. Most of the time, this is the text of an XML document that on the
server side is converted to a PropertySet and passed to the business service. For more information
about how to pass Properties and PropertySet to Business Services, see Siebel Business Process
Framework: Workflow Guide .

Example Request for the HTTP Protocol in Sessionless Mode
In this example using HTTP POST, the URL describes the parameters for the HTTP Inbound Transport call over HTTP. Unlike
session mode, the SWEExtCmd is Execute, not ExecuteLogin.

URL = http://webserver/path

HTTP Body = SWEExtSource=source&SWEExtCmd=Execute&UserName=username&Password=password&SWEExtData=data text

Note: When using sessionless mode with the POST method, the XML data text must be URL-encoded to
prevent any errors.

When using the sessionless mode with the POST method, the data text includes the login credentials as well as the XML
document. Therefore, it is recommended that the data text be URL-encoded and that the Content-Type header be set to
application/x-www-form-urlencoded without specifying the character set (for example, ;charset=UTF-8).

Use an escape code for any special characters (that is, use an ampersand, followed by the special character’s escape
characters, followed by a semi-colon) before encoding them for the URL. For more information, see the topic on special
(escape) characters in XML Reference: Siebel Enterprise Application Integration .

Example for Sessionless Mode
URL = http://www.example.com/siebel/app/eai/enu

HTTP Body =
SWEExtSource=SiebelQuery&SWEExtCmd=Execute&UserName=user1&Password=login123
&SWEExtData=<?xml version="1.0" encoding="UTF-8"?>

<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="Sample
Account">

89

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

<ListofSampleAccount>
 <Account>
 <Name>A. K. Parker Distribution</Name>
 <ListOfContact>
 <Contact>
 <FirstName>Stan</FirstName>
 <LastName>Graner</LastName>
 </Contact>
 </ListOfContact>
 </Account>
</ListofSampleAccount>

</SiebelMessage>

Process of Using the EAI HTTP Transport for Inbound
Messages
To use the EAI HTTP Transport for inbound messages, you complete two tasks:

1. Setting Up the Business Service
2. Creating the Workflow to Receive Messages

Both tasks are explained in this topic. This scenario assumes incoming XML. Your business requirements dictate whether and
how you adapt these steps to fit your needs.

Setting Up the Business Service
First you set up the business service for use in the workflow.

To set up the business service

1. Start Siebel Tools, connecting to the server.
2. Create or open a workspace.
3. Find the business service named Workflow Process Manager.
4. Copy this record and rename the copy EAITEST.
5. In the Business Service User Props list, add a new record:

a. Enter ProcessName in the Name column.
b. Enter EAITEST in the Value column, as shown in the following illustration.

90

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

6. Deliver the workspace.

Note: You can also deploy the business service to the run-time database to make it available. For more
information, see Integration Platform Technologies: Siebel Enterprise Application Integration .

7. Restart the Siebel Server.
8. Verify that the EAI Object Manager has started.

Creating the Workflow to Receive Messages
After you set up the business service, you create a workflow to receive messages.

To create the new workflow to receive messages
1. In Siebel Tools, set up a new workflow as shown here and give it a unique name, such as EAITEST.

For information about the Business Process Designer, see Siebel Business Process Framework: Workflow Guide .
2. Create the following process properties:

Name Data Type Default String In/Out Description

IncomingXML

Binary

<Value>

In/Out

By creating the IncomingXML process property,
anything that is sent as data is placed in this
variable. This allows you to then perform a given
action on that data. If the POST method was used,
then the data sent in the Body is stored in this
property. If the GET method was used, then the
data sent in the URL is stored in this property.

Account Message Hierarchy Not applicable In/Out This is hierarchy format of the incoming XML.

91

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Name Data Type Default String In/Out Description

<Value>

Binary

Not applicable

In/Out

Used to get the XML string that has been read or
converted.

Content-Type

String

text/html

Out

It indicates the content type of the response
body. If you want to see the response in the same
Web page, then you must set the Default String
parameter to text/html.

3. Set up the Incoming XML step to use the EAI XML Converter with the XMLDocToIntObjHier method. This step
converts the message, using the following input and output arguments:

Input Argument Type Property Name Property Data Type

<Value>

Process Property

IncomingXML

Hierarchy

Property Name Type Output Argument

Account Message

Output Argument

SiebelMessage

4. Set up the UpdateSiebel step to use the EAI Siebel Adapter with the Insert or the Update method and the following
input and output arguments to update the Siebel Database.

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Account Message

Hierarchy

Property Name Type Value Output Argument

<Value>

Literal

<h1>Update Completed</h1>

Not applicable

Note: The HTTP response for inbound requests is determined by looking at the <Value> portion of the
output property set. HTTP response headers can be set by setting properties on the output property
set. If the process properties are set as In/Out (the default), then the values appear as HTTP headers on
the HTTP response from the Siebel Server. Set each process property that you do not want as an HTTP
header to In or None (the latter if the process property is only for use inside the workflow).

5. Save your workflow and test it using the Workflow Simulator.

For information about the Workflow Simulator, see Siebel Business Process Framework: Workflow Guide .

92

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Handling EAI HTTP Transport Business Service Errors
A business service that is called by the EAI HTTP Transport might return an error when standard HTTP headers are used to
send error information back to the caller. Each of the headers has a sequence number at the end to support the return of
multiple errors. The text of each error message is captured in the Siebel-Error-Message header, and the Siebel error symbol is
set in the Siebel-Error-Symbol header as follows:

Siebel-Error-Message-1: Error: error message text
Siebel-Error-Symbol-1: ERR_SYMBOL
...
Siebel-Error-Message-n:
Siebel-Error-Symbol-n:

Inbound HTTP also returns HTTP Error 500 (Internal Server Error) to indicate that there was an error from a business service.
Examine the error headers for additional error information.

Note: To troubleshoot an Inbound HTTP request, run the Siebel Workflow Simulator or Business Service
Simulator. For information about the Workflow Simulator, see Siebel Business Process Framework: Workflow
Guide . For information about the Business Service Simulator, see Integration Platform Technologies: Siebel
Enterprise Application Integration .

Processing and Sending Outbound XML Documents
This topic explains how to use Siebel Tools and the Siebel application to set up the EAI HTTP Transport to process and
send outbound XML documents. When you want to send XML messages based on Siebel integration objects to an external
system across Internet-support protocols, you use the EAI HTTP Transport business service.

You can specify the parameters that control the behavior of transports in the following ways:

• Specifying Parameters as Business Service User Properties

• Specifying Parameters as Subsystem Parameters

• About Parameters as Run-Time Properties

• About Parameters in Parameter Templates

Specifying Parameters as Business Service User Properties
You specify parameters as business service user properties in Siebel Tools. These parameters go into effect after you
have delivered the changes or deployed the business service to the run-time database. When using this method, keep the
following in mind:

• These parameters stay in effect as long as you continue to use the same run-time business service and do not
create a newer specification for the business service parameters.

• If you define the same parameter as a subsystem parameter or as a run-time property, then the subsystem
parameter or run-time property overrides any values you have defined in Siebel Tools and delivered or deployed to
the run-time database.

93

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

For more information about deploying business services to the run-time database, see Integration Platform Technologies:
Siebel Enterprise Application Integration .

Specifying Parameters as Subsystem Parameters
You specify parameters in the Siebel client.

To specify the subsystem parameters

1. In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises view.
2. In the first list applet, select the Enterprise Server that you want to configure.
3. In the middle applet, click the Profile Configuration tab.
4. Click New to create a new component profile, then set the following parameters:

Name Value

Profile

HTTP_test

Alias

HTTP_test

Subsystem Type

HTTPSubSys

5. In the Profile Parameters list applet (the last applet), specify the parameters required for the type of operations the
subsystem supports:

Name Value

HTTPRequestURLTemplate

"http://www.example.com"

HTTPRequestMethod

"GET"

Then, in the workflow on the Siebel Web Client, you specify the Connection Subsystem input argument to the HTTP
Transport, and the value is the named subsystem that you created. For the case given here, it is HTTP_test. You can test the
workflow in the Workflow Simulator.

About Parameters as Run-Time Properties
You specify HTTP parameters as run-time properties by passing them as values in an input property set to the EAI HTTP
Transport business service. You can pass the values to the business service by way of a workflow or through a program that
calls the EAI HTTP Transport business service directly.

Note: Subsystem parameters take precedence over run-time parameters.

94

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

About Parameters in Parameter Templates
Parameter templates allow you more flexibility in specifying parameters. You can use variables to specify certain elements of a
given parameter value. The following example shows how to specify a variable for a login password, rather than hard-coding
a password into the parameter.

HTTPLoginURLTemplate = http://www.example.com/
login.jsp?Username=ronw&Password=PWD

where

PWD is 421ax7 (for example)

The business service, EAI HTTP Transport in this case, receives the parameter template. The token, shown here as PWD,
indicates that the business service looks for a parameter called PWD from a user property or run-time parameter. Dollar signs
($) delimit the token in the template definition. The token specifies the actual password variable. The token is case-sensitive:
Pwd is different from PWD or pwd.

The token must be defined as either a business service user property or as a run-time parameter in the input property set.
For example, you could specify the HTTPLoginURLTemplate as a user property of the business service, and username and
password as run-time properties. Any logins that specify the template always use the same template, but different users can
specify unique user names and passwords at run time.

Sending and Receiving Messages with the EAI HTTP
Transport
You can use the EAI HTTP Transport to send and receive messages. The following procedure illustrates how you can use EAI
HTTP Transport with the SendReceive method to query employee information from the Siebel Database, send it out, echo it
using the Workflow Utilities ECHO service, and send it back to the workflow to write the response back to a file.

To create a workflow to send and receive messages
1. Create a named subsystem HTTPsendreceive_conn for subsystem HTTPSubSys using the following lines:

HTTPLoginMethod=GET

HTTPLoginURLTemplate="http://websrvr.example.com:16007/myapplication/
login.jsp?usr=V1&psw=v2"

HTTPLogoffMethod=GET

HTTPLogoffURLTemplate="http://websrvr.example.com:16007/myapplication/
logoff.jsp"

HTTPRequestMethod=POST

HTTPRequestURLTemplate="http://websrvr.example.com:16007/myapplication/
data.jsp"

2. Create a named subsystem MyEchoSubsys for subsystem EAITransportDataHandlingSubsys using the following
lines:

95

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

DispatchService="Workflow Utilities"
DispatchMethod=ECHO

3. In your eai.cfg file, add the following line in the [HTTP Services] section:

MyEcho = MyEchoSubsys

4. In Siebel Tools, set up a new workflow as follows:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

5. Create the following process properties:

Name Data Type In/Out

Employee Message

Hierarchy

In/Out

Employee XML

Binary

In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Object Id

String

In/Out

Response

Binary

In/Out

6. Retrieve the employee message using the EAI Siebel Adapter with the Query method to query the information from
the database using the following input and output arguments.

Input Argument Type Value Property Name Property Data Type

OutputIntObjectName

Literal

Sample Employee

Not applicable

Not applicable

PrimaryRowId

Process Property

Not applicable

Object Id

String

Property Name Type Output Argument

Employee Message

Output Argument

SiebelMessage

96

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

7. Convert the message to XML using the EAI XML Converter with the Integration Object Hierarchy to XML Document
method and the following input and output arguments to convert the message.

Input Argument Type Property Name Property Data Type

SiebelMessage

Process Property

Employee Message

Hierarchy

Property Name Type Output Argument

Employee XML

Output Argument

<Value>

8. Send and receive the converted XML message using the EAI HTTP Transport with the Send and Receive Response
method and the following input and output arguments.

Input Argument Type Value Property Name Property Data Type

<Value>

Process Property

Not applicable

Employee XML

String

ConnectionSubsystem

Literal

HTTPsendreceive_conn

Not applicable

Not applicable

Property Name Type Output Argument

Response

Output Argument

<Value>

9. Write the message to the file using the EAI File Transport with the Send method and the following input arguments.

Input Argument Type Value Property Name Property Data Type

<Value>

Process Property

Not applicable

Response

Binary

FileName

Literal

C:\SendRec.txt

Not applicable

Not applicable

10. Save your workflow and test it using the Workflow Simulator.

Examples Using HTTP Request
This topic provides the following examples of using the EAI HTTP Transport business service:

• Controlling Login Sessions with Session Mode

• Sending Requests in Sessionless Mode

• Accessing a URL Protected by Basic Authentication

• Providing Client Certificate Information for TLS Mutual Authentication

97

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Controlling Login Sessions with Session Mode
The session mode allows control over login sessions. In this mode you log in first and open a session. Any message can be
exchanged without having to log in again until you explicitly log off.

The following example shows parameters for Request and Logoff in a session mode HTTP request. Session cookies are
required in a case such as this.

Note: You enter each of the following URLs as a continuous line of code.

• The following URL passes a query string as the SWEExtData value along with the GET request:
HTTPRequestURLTemplate = "http://$ServerPath$/
start.swe?SWEExtData=<Prop>somedata</Prop>HTTPRequestMethod='GET'"

• The following URL logs off from the server:
HTTPLogoffURLTemplate = "http://$ServerPath$/start.swe?SWEExtCmd=Logoff"

In these URL examples, the following parameter is used:

• ServerPath = "siebel1/eai"

In the examples, the ServerPath variable value of siebel1/eai is substituted for the token $ServerPath$.

Any XML document represented by the entry for SWEExtData can be put into the body. This would change the sample code
so that HTTPRequestURLTemplate would read as:

HTTPRequestURLTemplate = "http://$ServerPath$/start.swe?"

Sending Requests in Sessionless Mode
The following example includes a Request Method, a Request, and a Login for a sessionless mode request. In this example,
the request is simply passed to the secure server using the POST command. Unlike the Session Mode example, this request
sends data in the body of the request. This request does not require cookies.

HTTPRequestMethod = "POST"

HTTPRequestURLTemplate = "https://accounts.mypartnerexample.com/server/login.asp"

HTTPRequestBodyTemplate = "Acct=ABCIntl&User=$Username$&pwd=$Password$"

Username = "acctuser"

Password = "123456789abcdefg"

Accessing a URL Protected by Basic Authentication
Siebel Business Applications support server, or basic, authentication. You can use basic authentication with the EAI HTTP
Transport to send messages. For more information about authentication, see Siebel Security Guide .

The format for accessing a URL protected by basic authentication with HTTP Outbound is:

98

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

http://username:password@host/rest of the URL

For example:

http://Administrator:manage@127.0.0.1:5555/example.com/stuff

Note: The EAI HTTP Transport business service does not provide standard parameters to support the use of
Digest HTTP Authentication.

Providing Client Certificate Information for TLS Mutual Authentication
In certain versions, Siebel Business Applications support client authentication for TLS-based communications (also known
as mutual authentication) using the EAI HTTP Transport business service, and for workflows and outbound Web service calls
that call the EAI HTTP Transport business service.

Note: For information about the specific versions that support mutual authentication, see 560965.1 (Article ID)
on My Oracle Support.

CAUTION: It is strongly recommended to use Transport Layer Security (TLS) for best security, where possible.
Using Secure Sockets Layer (SSL) is not supported for secure environments. For current information about TLS
support, see 1944467.1 (Article ID) on My Oracle Support. See also Siebel Security Guide .

If client authentication is enabled, then the Siebel Server presents a client certificate to an external Web server by supplying
values for the EAI HTTP Transport parameters HTTPCertSerialNo and HTTPCertAuthority.

If the EAI HTTP Transport business service is invoked directly by Siebel eScript or a workflow, then you can specify the
HTTPCertSerialNo and HTTPCertAuthority parameters by setting input properties (business service method arguments).

The following is an example of the code used to call the EAI HTTP Transport business service using Siebel eScript:

var oService = TheApplication().GetService("EAI HTTP Transport");
var oInputs = TheApplication().NewPropertySet();
var oOutputs = TheApplication().NewPropertySet();

oInputs.SetProperty("HTTPRequestMethod", "GET");
oInputs.SetProperty("HTTPRequestURLTemplate", sUrl);

// Set the Serial Number of the Client Certificate
oInputs.SetProperty("HTTPCertSerialNo", "00d802dc387dd867b9");

// Set the RDN for the CA of the certificate
oInputs.SetProperty("HTTPCertAuthority","E=cacert@oracle.com,CN=somecertcomputer,
OU=ca,O=oracle,L=boston,C=usa");

// Invoke EAI HTTP Transport
oService.InvokeMethod("SendReceive", oInputs, oOutputs);

Note: If the EAI HTTP Transport business service is invoked indirectly by an outbound Web service, then you
can specify the HTTPCertSerialNo and HTTPCertAuthority parameters as input arguments for the outbound Web
Service Dispatcher. For information about setting parameters for the EAI HTTP Transport business service for
outbound Web services, see Integration Platform Technologies: Siebel Enterprise Application Integration .

99

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

Note: On the UNIX (MainWin) operating system, SHA-2 encryption is not supported for the EAI HTTP Transport.

For more information about configuring TLS mutual authentication using the EAI HTTP Transport, see Siebel Security Guide
.

Creating Custom Headers for the EAI HTTP Transport
Service
Custom headers can be created when sending a request through the EAI HTTP Transport service using a script or a
workflow.

To create custom headers for the EAI HTTP Transport service
• Create a new input property in the input to the HTTP transport.

The name of the property must have a prefix of HDR. or HDR_ followed by the name of the custom header, for
example:

httpIn.SetProperty("HDR.CustomHttpHeader","MyValue");
httpSvc.InvokeMethod("SendReceive", httpIn, httpOut);

A custom HTTP header with a name of "CustomHttpHeader" and a value of "MyValue" is the result.

Note: The HDR_ prefix can be useful in workflows for avoiding interference with the period (.) notation used in
creating property sets.

About Sending and Receiving Messages Through HTTP
To send and receive messages through HTTP, you set up a workflow with the SendReceive method.

The Receive part of that method receives the response in an output argument of that method. You can then use the response
to perform an upsert operation using an integration object and EAI Siebel Adapter, or display the response to your user.
In this scenario, none of your quote integration design uses the eai.cfg or the Application Interface. You are performing an
outbound HTTP call and waiting for a response synchronously.

You can then communicate the response to the user by displaying the returned error message in a browser alert or use the
new User Interact step of the workflow to refresh the view and show any new updates to fields to the user. The User Interact
step can run synchronously or asynchronously, in the local Siebel Application Object Manager or on the server.

100

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

About Transport Headers and HTTP Response Headers
This topic describes how transport headers and HTTP response headers work with HTTP Transport (outbound) to form a
cookie handling system. HTTP Transport handles the cookie it receives from the server by storing and then creating a valid
request transport header that it sends back to the server as a part of the request.

By exposing all the HTTP response headers as a part of output property set, you can handle the response accordingly. You
can have all the HTTP response headers, as well as HTTP Status code, as part of the output property set.

Transport headers are preserved across various connections and are a part of the transport service and not the HTTP
connection.

Features of Transport Headers
Transport headers have the following features:

• Every connection has its own transport header.

• The transport header separately stores each cookie sent by the server during a connection.

For example, each name, domain, value pair, along with path, and other attributes (if present) are stored as a
separate cookie in the transport header.

• Each cookie in the transport header has a distinct name.

Two cookies with the same name cannot be present in the transport header at the same time. The second cookie
overwrites the first one. Therefore, since the transport header is implemented as a CSSMapStringToPtr class, each
cookie is hashed in the transport header based on its name.

• The transport header classifies cookies into two categories:

◦ Type HTTP Version 1 and later.

◦ Preliminary Netscape cookie spec type.

• When a ToString function is called on the transport header, it scans through the header and collects all the cookies
in the header and creates a request transport header (based on the cookie category).

• The transport header is cleared when the connection is terminated.

• During SendReceive, the HTTP response has HTTP headers associated with it. Expose those response HTTP
headers as properties of the output property set.

All of these HTTP header properties are distinguished from other properties by adding the prefix HDR. in front of the
property (header) name.

• Also, HTTP Status code for the HTTP request sent by way of EAI HTTP Transport is exposed as a property in the
output property set. The property is called StatusCode.

101

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 7
EAI HTTP Transport

102

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

8 Integrating Siebel Business Applications
with Java Applications

Integrating Siebel Business Applications with Java
Applications
This chapter discusses the integration of Java applications with Siebel Business Applications. It includes the following topics:

• About Siebel Business Applications and Java Applications

• About the JDB Business Service API

• About the Siebel Code Generator

• About Running the Java Data Bean

• About the Siebel Resource Adapter

About Siebel Business Applications and Java Applications
Many enterprises develop Java applications to meet a variety of business requirements. Typically, these applications combine
existing enterprise information systems with new business functions to deliver services to a broad range of users. Oracle
supports integration of its business services and business objects using the Siebel Java Data Bean. The Siebel Java Data
Bean can be used for interaction with various kinds of Siebel application objects:

• Business objects and business components

• Business services and property sets

• Integration objects

In all cases, the Java code acts as client-side proxy stub to the corresponding object on the Siebel Server. It does not
implement the functionality of the object in Java.

For ease of use, the Siebel Code Generator can be used to produce Java code based on the Siebel Java Data Bean for any
specific business service or integration object. This generated code has an API specific to the chosen business service or
integration object.

Additionally, Siebel Business Applications support the Java EE Connector Architecture (JCA) with the Siebel Resource
Adapter. The Siebel Resource Adapter supports the invocation of business services.

About the JDB Business Object API
The Java Data Bean provides an API to Siebel business objects and their business components. The API is similar in function
to the API provided for other platforms, such as COM.

103

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Example of the Business Object and Business Component Interface
Following is a code sample demonstrating use of the business object API. The sample shows how the Java Data Bean might
be used to search for a Contact with a particular login name.

The first step in using the Siebel Java Data Bean is to log in to the Object Manager of the Siebel Server. The first parameter,
the connection string, specifies the protocol, server name, enterprise name, and Application Object Manager name. Once
logged into the Object Manager, the methods getBusObject and getBusComp are used to obtain business objects and their
business components.

The code sample activates fields to allow the query to retrieve data for the specific fields, specifies the search criteria, and
executes the query. If the query is successful, then the first and last name of the contact are printed to the standard output.

import com.siebel.data.*;

public class ObjectInterfaceExample {
 public static void main(String[] args) throws SiebelException {
 String connectString = siebel://examplecomputer:2321/siebel/SCCObjMgr_enu";

 SiebelDataBean dataBean = new SiebelDataBean();
 dataBean.login(connectString, "USER", "PWD", "enu");
 SiebelBusObject busObject = dataBean.getBusObject("Contact");
 SiebelBusComp busComp = busObject.getBusComp("Contact");

 busComp.setViewMode(3);
 busComp.clearToQuery();
 busComp.activateField("First Name");
 busComp.activateField("Last Name");
 busComp.activateField("Id");
 busComp.setSearchSpec("Login Name", "thomas");
 busComp.executeQuery2(true,true);

 if (busComp.firstRecord()) {
 System.out.println("Contact ID: " + busComp.getFieldValue("Id"));
 System.out.println("First name: " + busComp.getFieldValue("First Name"));
 System.out.println("Last name: " + busComp.getFieldValue("Last Name"));
 }
 busComp.release();
 busObject.release();
 dataBean.logoff();
 }

If the query results in multiple records, then the record set can be iterated as follows:

if (busComp.firstRecord()) {
 // obtain the fields/values from this record
 while (busComp.nextRecord()){
 // obtain the fields/values from the next record
 }
}

About the JDB Business Service API
Aside from the business object and business component API, the primary point of integration with the Siebel application is by
using business services.

104

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

There are several ways to invoke a business service. The simplest way is using the Siebel Java Data Bean directly, as shown
in the following example. Alternatively, Siebel Tools provides a Code Generator which creates, for any business service, Java
classes that invoke the business service. The generated code can invoke the business service either using the Siebel Java
Data Bean or using the Siebel Resource Adapter. The creation and use of generated code is described in the next topic. The
Siebel Resource Adapter is part of the Java EE Connector Architecture, which is described in About the Siebel Resource
Adapter.

The following is an example of invoking a business service directly using the Siebel Java Data Bean.

 import com.siebel.data.SiebelDataBean;
 import com.siebel.data.SiebelException;
 import com.siebel.data.SiebelPropertySet;
 import com.siebel.data.SiebelService;
 public class BasicDataBeanTest {
 public static void main(String[] args) throws SiebelException {
 SiebelDataBean dataBean = new SiebelDataBean();
 dataBean.login("siebel://examplecomputer:2321/siebel/SCCObjMgr_enu", "USER", "PWD", "enu");
 SiebelService businessService = dataBean.getService("Workflow Utilities");
 SiebelPropertySet input = new SiebelPropertySet();
 SiebelPropertySet output = new SiebelPropertySet();
 input.setValue("Please echo this");
 businessService.invokeMethod("Echo", input, output);
 System.out.println("Output: " + output.toString());
 }
 }

About the Siebel Code Generator
JavaBeans for invoking a particular business service can be generated using the Siebel Code Generator. These JavaBeans
provide a uniform mechanism for interacting with the Siebel application from a Java or Java EE application. The JavaBean
for a particular business service provides facilities for creating inputs and invoking methods. The JavaBean representing a
business service can be based on either the Siebel Java Data Bean or on the Siebel Java EE Connector Architecture (JCA)
Resource Adapter.

For business services whose methods have integration objects as input or output, JavaBeans representing the integration
objects must be generated separately. These beans provide facilities for creating the integration objects and setting their
fields.

The business services most commonly used for integration are EAI Siebel Adapter and various ASI business services based
on the data sync service. The methods of these business services typically have inputs and outputs that are property sets of a
special type called integration objects. Siebel Java integration provides special support for working with integration objects.

The following Siebel Code Generator topics are also discussed:

• Invoking the Siebel Code Generator

• Code Generated for a Business Service

• Connect String and Credentials for the SiebelDataBean

• Connection Parameters for the SiebelDataBean

Invoking the Siebel Code Generator
This topic describes how to invoke the Siebel Code Generator to create JavaBeans for either a Siebel business service or a
Siebel integration object.

105

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

To invoke the Siebel Code Generator

1. Start Siebel Tools.

Note: For information about how to use Siebel Tools, see Using Siebel Tools .

2. Select Business Service or Integration Object in the Object Explorer.

Note: If Integration Object is not present, then add it by checking Integration Object on the Object
Explorer tab of the Development Tools Options window opened by selecting View, then Options.

3. Select the desired business service or integration object.

For example, at the first section of the Integration Object list, there is a set of three buttons: Synchronize, Generate
Schema, and Generate Code.

4. Click Generate Code.
5. Complete the Code Generator wizard:

a. Leave the business service as is. There is only one available, the Siebel Code Generator.
b. Select either Java(JDB) (Java Data Bean) or Java(JCA) (Java EE Connector Architecture/Siebel Resource

Adapter) for the Supported Language.
c. Browse to select an existing folder as the output folder. Your Java code for the selected business services or

integration objects is stored in subdirectories there, as explained next.
d. Click Finish.

The code is generated and the wizard closes, returning you to the Business Service or Integration Object
form.

Code Generated for a Business Service
The code generated for a business service includes a class representing the business service itself as well as classes
representing inputs and outputs of its methods. These classes are described in detail in this topic.

ASI business services based on the data sync service have integration objects as part of the input or output of their methods.
The JavaBeans representing these integration objects must be generated separately from the business service.

The classes for a given business service reside in a package in one of the following:

• com.siebel.service.jdb.business service name or

• com.siebel.service.jca.business service name

Depending on whether the beans are based on the Java Data Bean or the Siebel JCA Resource Adapter. For example,
generated JDB code for the EAI Siebel Adapter resides in the package com.siebel.service.jdb.eaisiebeladapter.

The Code Generator creates the standard Java directory structure reflecting the package structure. As shown in the following
image, a subfolder named com is created in the folder specified during the generation process. The com folder contains a folder
named siebel, which in turn contains a folder named service. Under the service is a folder named jdb (or jca), containing a
folder named for the business service. This last folder contains the classes for the business service. Each class is defined in
its own file. The folder created under jdb (or jca) for every business service generated contains several Java files.

106

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

One Java class is generated to represent the business service itself. The name of the class is the name of the business
service with all special characters replaced by underscores (_) and BusServAdapter appended to the end. For example, the
class representing EAI Siebel Adapter is EAI_Siebel_AdapterBusServAdapter.

The Java class has one method for each method of the business service. Its name is the name
of the method with m prefixed. For code based on the Java Data Bean, the class is a subclass of
com.siebel.integration.adapter.SiebelJDBAdapterBase. For code based on the Siebel Resource Adapter, the class is a
subclass of com.siebel.integration.adapter.SiebelJCAAdapterBase.

Additionally, for each method of the business service defined in Siebel Tools, one Java class is created for the method's input
and one for the method's output. The name of the class is the name of the method with Input or Output appended. The class
encapsulates all input (or output) arguments for the method. Each argument is represented as a field whose name is that of
the argument with f prefixed. For each field, public set and get methods are provided Java methods for reading and writing
their values.

For example, the business service CC XML Converter, which has two methods, PropSetToXML and XMLToPropSet,
generates the following four classes:

• CC_XML_Converter BusServiceAdapter

• PropSetToXMLInput

• PropSetToXMLOutput

• XMLToPropSetInput

The first class, CC_XML_Converter BusServiceAdapter, represents the business service as a whole; it has methods
mPropSetToXML and mXMLToPropSet. The other three classes represent the input or output parameters of the
two methods. (Notice there is no class XMLToPropSetOutput because that method has no outputs.) Those three
classes each have methods to read and write the individual parameters, as well as methods to convert to and from a
com.siebel.data.SiebelPropertySet.

About Methods of Java Classes Generated for a Business Service
The tables in the following topics describe the methods that are present in the generated Java code for every business
service. Generic names (for example, GenericService and GenericMethod) are substituted for the actual names of the
business service, methods, and arguments.

• Methods for Java class com.siebel.service.jdb.GenericServiceBusServAdapter,

• Methods for Java class com.siebel.service.jdb.GenericMethodInput, and

• Methods for Java class com.siebel.service.jdb.GenericMethodOutput Methods

107

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Methods for Java class com.siebel.service.jdb.GenericServiceBusServAdapter
The following table lists the methods in the Java class com.siebel.service.jdb.GenericServiceBusServAdapter generated for an
example business service, GenericService, that has the business service method GenericMethod.

Method Description

GenericServiceBusServAdapter()

Constructor that uses the default properties file, siebel.properties.

GenericServiceBusServAdapter(SiebelDataBean)

Constructor that reuses the resources of an existing SiebelDataBean.

GenericServiceBusServAdapter(String)

Constructor taking the name of the properties file to use.

GenericServiceBusServAdapter(String,
String, String)

Constructor taking the username, password, and connect string.

GenericServiceBusServAdapter(String,
String, String, String)

Constructor taking the username, password, connect string, and language.

GenericMethod(GenericMethodInput)

Invokes the specified business service method.

Methods for Java class com.siebel.service.jdb.GenericMethodInput
The following table lists the methods in the Java class com.siebel.service.jdb.GenericMethodInput generated for an example
business service method, GenericMethod.

Method Description

GenericMethodInput()

Constructor.

GenericMethodInput(SiebelPropertySet)

Constructor that sets its fields from the given property set.

fromPropertySet(SiebelPropertySet)

Copies field values from the given property set.

toPropertySet()

Returns a SiebelPropertySet with the properties and values corresponding to the fields of this
object.

getfGenericArgument()

Returns the value of business service method argument.

setfGenericArgument(String)

Sets the value of a business service method argument.

Methods for Java class com.siebel.service.jdb.GenericMethodOutput Methods
The following table lists the methods in the Java class com.siebel.service.jdb.GenericMethodOutput generated for an
example business service method, GenericMethod.

108

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Method Description

GenericMethodOutput()

Constructor.

GenericMethodOutput(SiebelPropertySet)

Constructor that sets its fields from the given property set.

fromPropertySet(SiebelPropertySet)

Copies field values from the given property set.

toPropertySet()

Returns a SiebelPropertySet with the properties and values corresponding to the fields of this
object.

getfGenericArgument ()

Returns the value of business service method argument.

setfGenericArgument ()

Sets the value of a business service method argument.

About the Code Generated for an Integration Object
Integration objects are special kinds of property sets that are the input and output of business services based on the data
sync service. JavaBeans based on integration objects are designed to be used with those business services or with the EAI
Siebel Adapter and can be used to query, delete, upsert, and synchronize information in the Siebel Server's database.

The integration object, and each of its components, has its own Java class, stored in the package
com.siebel.local.IntegrationObjectName. The class for the integration object has IO appended to the end, and the class for
an integration component has IC appended. The Code Generator creates the standard Java directory structure reflecting
the package structure. In the selected folder, a subfolder named com is created, containing a subfolder siebel, containing a
subfolder local, which contains one subfolder for each integration object that was generated. The Java files are stored in the
lowest directory. This structure is shown in the following image. One folder is created under local for each integration object
that is generated. The folder that is created contains all the Java files for that integration object.

For example, the integration object Sample Account; which has five components Account, Account Attachment,
Account_Organization, Business Address, and Contact; generates the following six classes:

• Sample_AcccountIO

• AccountIC

• Account_AttachmentIC

• Account_OrganizationIC

• Business_AddressIC

109

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

• ContactIC

The first class, suffixed with IO, represents the entire integration object. It has methods to construct the object, to read and
write fields, to add integration object components, and to convert to and from a SiebelPropertySet. The other five classes,
suffixed with IC, represent the individual integration object components and provide methods that are for constructing the
component to read and write fields and to convert to and from a SiebelPropertySet.

Methods of Java Classes Generated for an Integration Object
The following table describes the methods that are present in the generated Java code for every integration object, using the
example integration object GenericIntObj.

Object Description

addfintObjInst(SiebelHierarchy)

Adds an integration object component object to the integration object.

clone

Returns a copy of the integration object.

equals(Object)

Determines whether integration object has the same data as the integration object passed.

fromPropertySet(SiebelPropertySet)

Copies the data from the given property set to the integration object.

getfIntObjectFormat

Returns a String containing the format of the integration object.

getfIntObjectName

Returns the integration object name property.

getfintObjInst

Returns a Vector representation of the integration object.

getfMessageId

Returns the MessageId property of the integration object.

getfMessageType

Returns the MessageType property of the integration object.

getfOutputIntObjectName

Returns the OutputIntObjectName property of the integration object.

Generic_ObjectIO()

Default constructor.

Generic_ObjectIO(SiebelPropertySet ps)

Creates an integration object (and its hierarchy) based on a property set.

setfIntObjectFormat

Sets the IntObjectFormat property of the integration object.

setfIntObjectName

Sets the IntObjectName property of the integration object.

setfMessageId

Sets the MessageId property of the integration object.

setfMessageType

Sets the MessageType property of the integration object.

setfOutputIntObjectName

Sets the OutputIntObjectName property of the integration object.

110

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Object Description

toPropertySet

Returns a SiebelPropertySet representation of the integration object.

Methods of Java Classes Generated for an Integration Object Component
The following table describes the methods that are present in the generated Java code for every integration object
component, using an example integration object component, GenericIntComp, that has the child components
GenericIntCompChild and field GenericField.

Object Component Description

addfGenericIntCompChildIC(GenericIntCompChildIC)

Adds to the integration object component the given child integration object component.

clone

Returns a copy of the integration object.

equals(Object)

Determines whether the integration object component has the same data as the passed integration
object component.

fromPropertySet(SiebelPropertySet)

Populates the integration object component based upon the contents of a property set.

getfGenericIntCompChildIC

Returns a Vector containing all child integration object components of type ChildIntObjComp
associated with the integration object component.

getfGenericField()

Returns the value of the field GenericField.

GenericIntCompIC()

Default constructor.

GenericIntCompIC(SiebelPropertySet)

Creates an integration object component from a property set.

setfGenericField(val)

Sets the value of the field GenericField.

toPropertySet

Returns a property set representation of the integration object component.

About Running the Java Data Bean
Two Siebel .jar files are needed to compile and run a Java application that uses the Java Data Bean:

• Siebel.jar

• SiebelJI_lang.jar (lang is the installed language pack; for example, SiebelJI_enu.jar for English or SiebelJI_jpn.jar for
Japanese.)

These jar files are provided with the standard Siebel installation under the directory INSTALLED_DIR\classes.

111

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Documentation of individual classes is provided in the form of javadoc (Siebel_JavaDoc.jar), which is installed when installation
option Siebel Java Integrator (a component of the Siebel Tools or the Siebel Server installer) is chosen. This .jar file contains
the up-to-date javadoc for the Siebel Java Data Bean, Siebel Resource Adapter, and dependent classes.

Note: The Siebel Data Bean is not thread-safe: simultaneous access by different threads is not supported.
This restriction applies to all objects obtained from the same instance of SiebelDataBean. For example, if two
instances of SiebelBusObj are obtained from the same instance of SiebelDataBean, then methods on them are
not invoked simultaneously by different threads.

Connect String and Credentials for the SiebelDataBean
When using the SiebelDataBean directly, without any generated code, three arguments must be passed to the login method.
A fourth argument, language code, is optional.

• connect string

• Siebel username

• Siebel password

• language code (default is enu)

The connect string has the following form:

siebel://SiebelServerName:SCBPort/EnterpriseName/XXXObjMgr_lang

For example:

siebel://examplecomputer:2321/mysiebelenterprise/SCCObjMgr_enu

When using generated code, these parameters can be taken from the siebel.properties file, which must be in the classpath
of the Java Virtual Machine (JVM). These properties are read from siebel.properties at the time an instance of the generated
business service class is created using that explicitly specifies siebel.properties, for example:

Siebel_AccountBusServAdapter svc = new
Siebel_AccountBusServAdapter("siebel.properties");

They can be overridden by calling the methods setConnectString, setUserName, setPassword, and setLanguage any
time prior to calling initialize() or invoking a business service method (such as GenericMethod in Methods for Java class
com.siebel.service.jdb.GenericServiceBusServAdapter). This is the behavior when the default (no-argument) constructor of
the generated Java class is used.

Alternatively, the generated class provides the following four constructors with arguments:

• One String argument: the name of the property file to be used.

• Three String arguments: the connect string, username, and password. No properties file is used.

• Four String arguments: the connect string, username, password, and language. No properties file is used.

• SiebelDataBean argument: the SiebelDataBean passed already has parameters assigned and its login method
executed.

112

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Connection Parameters for the SiebelDataBean
Regardless of how the SiebelDataBean is invoked, certain parameters of the connection can be set using the properties
file. These are siebel.conmgr.txtimeout, siebel.conmgr.poolsize, siebel.conmgr.sesstimeout, siebel.conmgr.retry, and
siebel.conmgr.jce.

Other connection parameters can also be specified in the properties file, but they are used only in conjunction with generated
code (subclasses of com.siebel.integration.adapter.SiebelJDBAdapterBase or SiebelJCAAdapterBase).

The following table describes these parameters.

Property Description

siebel.conmgr.txtimeout

The number of milliseconds to wait after sending a request to the Siebel Server. Must be a positive
integer; other values are ignored. The default value is 600000 milliseconds (10 minutes); the
maximum value is 2,147,483,647 ms (approximately 25 days).

siebel.conmgr.poolsize

For each Application Object Manager process, a pool of open connections is maintained and shared
by all users of that process. This parameter specifies the maximum number of connections that are
stored in the pool. Its value must be a positive integer less than 500; other values are ignored. The
default is 2.

siebel.conmgr.sesstimeout

The number of seconds the Siebel Server waits before disconnecting an idle client session. Its value
must be a nonnegative integer. The default is 2700 seconds (45 minutes); the maximum value is
2,147,483,647 s (approximately 68 years).

siebel.conmgr.jce

Determines whether encryption of transmissions is done using Java Cryptography Extension (JCE)
or RSA (if the connection uses encryption). 1 indicates JCE; 0 indicates RSA. The default is 0.

siebel.conmgr.retry

The number of attempts to be made at establishing a connection (opening a session) before giving
up. Must be a positive integer. The default is 3.

siebel.conmgr.virtualhosts

A listing of virtual servers representing a group of like servers that perform the same function, for
example, call center functions.

An incoming login for the call center virtual server tries servers from the list in a round-robin fashion.

An example of such a list follows:

 VirtualServer1=sid1:host:port,sid2:host:port...;
VirtualServer2=...

where VirtualServer1, VirtualServer2, and so on, are assigned lists of real Siebel Servers with host
names and port numbers (of the local SCBroker component).

siebel.connection.string

The Siebel connect string. For information about the syntax of the connect string, see Siebel
Object Interfaces Reference .

siebel.loglevel

The level of messages to be logged. Must be a positive integer less than 6. Other values are ignored
or throw an exception. 0 causes only FATAL messages to be logged; 1 ERROR; 2 WARN; 3 INFO;
4 DETAIL; 5 DEBUG. The default is 0.

113

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Property Description

Note: The siebel.loglevel parameter is used only in conjunction with the generated code for
the SiebelJCAAdapterBase subclass.

siebel.logfile

The name of a file to which logging is directed. Strings that cause a FileNotFoundException cause
an error to be logged and are ignored. The default is to print to the JVM’s standard output.

Note: The siebel.logfile parameter is used only in conjunction with the generated code for
the SiebelJCAAdapterBase subclass.

siebel.user.name

The Siebel username to be used for logging in to the Application Object Manager.

siebel.user.password

The Siebel password to be used for logging in to the Application Object Manager.

siebel.user.language

The language code indicating the natural language to be used for messages and other strings.
Default is enu.

siebel.jdb.classname

The name of a subclass of com.siebel.data.SiebelDataBean to use instead of SiebelDataBean.
Strings that do not specify a valid class or specify a class that is not a subclass of SiebelDataBean
cause an error log to be logged and SiebelDataBean to be used instead.

Here is a sample siebel.properties file:

siebel.connection.string = siebel://examplecomputer:2321/siebel/EAIObjMgr_enu
siebel.user.name = User1
siebel.user.password = password
siebel.user.language = enu
siebel.user.encrypted = false
siebel.conmgr.txtimeout = 300000
siebel.conmgr.poolsize = 5
siebel.conmgr.sesstimeout = 3600
siebel.conmgr.retry = 5
siebel.conmgr.jce = 1
siebel.loglevel = 0

Examples Using Generated Code for Integration Objects
The following code examples use the code generation facilities provided in Siebel Tools. For more information, see About the
Siebel Code Generator, for both business services and integration objects. By using the code generation facilities, many of
the complexities of the Siebel property sets and business service interfaces have been abstracted, providing a standards-
based JavaBean interface.

Siebel Account Business Service Example
The following is a code sample invoking the QueryByExample method of the Siebel Account business service. In addition
to the generated code for Siebel Account (resident in com.siebel.service.jdb.siebelaccount), the sample uses the generated
code for the Account Interface integration object (resident in com.siebel.local.accountinterface).

The code invokes the QueryByExample method of the Siebel Account business service. The parameter to this method is
formed from an instance of the Account Interface integration object, which serves as the example, essentially specifying a

114

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

search criterion of all accounts that start with the letters Ai. The output integration object is converted to a Vector and iterated
through to print the names of matching accounts.

 import com.siebel.data.SiebelDataBean;
 import com.siebel.data.SiebelException;
 import com.siebel.service.jdb.siebelaccount.Siebel_AccountBusServAdapter;
 import com.siebel.service.jdb.siebelaccount.QueryByExampleInput;
 import com.siebel.service.jdb.siebelaccount.QueryByExampleOutput;
 import com.siebel.local.accountinterface.Account_InterfaceIO;
 import com.siebel.local.accountinterface.AccountIC;

 public class JDBSiebelAccount {
 public static void main(String[] args) throws SiebelException {
 Siebel_AccountBusServAdapter svc = new Siebel_AccountBusServAdapter("USER",
 "PWD","siebel://examplecomputer:2321/siebel/SCCObjMgr_enu","enu");

 // Create the example-accounts starting with "Ai":
 AccountIC acctIC = new AccountIC();
 Account_InterfaceIO acctIO = new Account_InterfaceIO();
 acctIO.addfintObjInst(acctIC);
 acctIC.setfName("Ai*");
 QueryByExampleInput qbeIn = new QueryByExampleInput();
 qbeIn.setfSiebelMessage(acctIO);

 // Call QueryByExample
 QueryByExampleOutput qbeOut = svc.mQueryByExample(qbeIn);
 acctIO = new Account_InterfaceIO(qbeOut.getfSiebelMessage().toPropertySet());
 Vector ioc = acctIO.getfintObjInst();

 // print the name of each account returned:
 if (!ioc.isEmpty()) {
 for(int i=0; i < ioc.size(); i++) {
 acctIC = (AccountIC) ioc.get(i);
 System.out.println(acctIC.getfName());
 }
 }
 }

EAI Siebel Adapter Business Service Example
The following example uses the generated code for the EAI Siebel Adapter business service. An instance is instantiated
using the constructor that takes an instance of SiebelDataBean. The QueryPage method is called; its output is actually an
Account Interface integration object, but the object returned is not strongly typed and instead is used to construct an Account
Interface instance. The generated code for Account Interface is also needed for this example.

 import com.siebel.data.SiebelDataBean;
 import com.siebel.data.SiebelException;
 import com.siebel.local.accountinterface.Account_InterfaceIO;
 import com.siebel.local.accountinterface.AccountIC;
 import com.siebel.service.jdb.eaisiebeladapter.EAI_Siebel_AdapterBusServAdapter;
 import com.siebel.service.jdb.eaisiebeladapter.QueryPageInput;
 import com.siebel.service.jdb.eaisiebeladapter.QueryPageOutput;

 public class DataBeanDemo {
 public static void main(String[] args) throws SiebelException {
 SiebelDataBean m_dataBean = new SiebelDataBean();
 String conn = "siebel://examplecomputer:2321/siebel/SCCObjMgr_enu";
 m_dataBean.login(conn, "USER", "PWD", "enu");

 // Construct the EAI Siebel Adapter, using the data bean
 EAI_Siebel_AdapterBusServAdapter svc =
 new EAI_Siebel_AdapterBusServAdapter(m_dataBean);
 svc.initialize();
 try {

115

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

 // Set values of the arguments to the QueryPage method.
 QueryPageInput qpInput = new QueryPageInput();
 qpInput.setfPageSize(Integer.toString(10)); // Return 10 records.
 qpInput.setfOutputIntObjectName("Account Interface");
 qpInput.setfStartRowNum(Integer.toString(0)); // Start at record 0.
 QueryPageOutput qpOutput = svc.mQueryPage(qpInput);

 // Construct the integration object using the QueryPage output
 Account_InterfaceIO acctIO =
 new Account_InterfaceIO(qpOutput.getfSiebelMessage().toPropertySet());

 // Convert the results to a vector for processing
 Vector ioc = acctIO.getfintObjInst();

 // Print name of each account
 if (!ioc.isEmpty()) {
 for (int i = 0; i < ioc.size(); i++) {
 AccountIC acctIC = ((AccountIC) ioc.get(i));
 System.out.println(acctIC.getfName());
 }
 }
 }
 catch (SiebelException e) {}
 finally {
 m_dataBean.logoff();
 }
}
}

About the Siebel Resource Adapter
The Siebel Resource Adapter is for use within the Java EE Connector Architecture (JCA) by Java EE-based applications
(EJBs, JSPs, servlets) that are deployed on containers. JCA provides clients with a standard interface to multiple enterprise
information services such as the Siebel application.

The Siebel Resource Adapter implements system-level contracts that allow a standard Java EE application server to perform
services such as pooling connections and managing security. This is referred to as operation within a managed environment.

The Java EE Connection Architecture also provides for operation in a nonmanaged environment, where the client need
not be deployed in a Java EE container, but instead uses the adapter directly. In this case, the client takes responsibility for
services such as managing security.

The Siebel Resource Adapter has transaction support level NoTransaction. This means that the Siebel Resource Adapter
does not support local or JTA transactions. For more information about JCA, see:

http://jcp.org/en/jsr/detail?id=322

The following Siebel Resource Adapter topics are also discussed:

• Using the Resource Adapter

• About the Connect String and Credentials for the Java Connector

• About JCA Logging

116

http://jcp.org/en/jsr/detail?id=322

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

Using the Resource Adapter
When deploying the Siebel Resource Adapter to a Java EE application server (for example, Oracle Application Server, Oracle
WebLogic Server, or IBM WebSphere MQ), you must make sure that the necessary Siebel JAR files are included. The Siebel
JAR files that must be added to the classpath are:

• SiebelJI.jar

• SiebelJI_lang.jar (lang is the installed language pack; for example, SiebelJI_enu.jar for English or SiebelJI_jpn.jar for
Japanese.)

The resource adapter archive, or RAR file, might also be required for deployment. Refer to the documentation of the Java EE
application server for more information about deploying a JCA adapter on the server.

The following topics contain code samples for both managed and nonmanaged environments.

About the Connect String and Credentials for the Java Connector
The Java Connector Architecture allows for credentials to be supplied using either Container-Managed Sign-on or
Application-Managed Sign-On.

With Container-Managed Sign-On, the application server's container identifies the principal and passes it to the JCA
adapter in the form of a JAAS Subject. Application servers provide their own system of users and roles; such a user must be
mapped to Siebel user and password for the purpose of the JCA adapter. Application servers allow the specification of such
mappings. With Container-Managed Sign-On, the Siebel connect string and language must be specified in the deployment
descriptor of the adapter (ra.xml). If a Siebel user name and password are present in the descriptor, then they are used by the
application server only to create an initial connection to the Siebel application when the application server is started, which is
not necessary.

With Application-Managed Sign-On, the client application must provide the credentials and connect string. This is done just
as for the Java Data Bean, as described in About Running the Java Data Bean, by either supplying them in siebel.properties
or setting them programmatically using setUserName, setPassword, setConnectString, and setLanguage. If any of these
parameters are supplied using Application-Managed Sign-On, then supply all four of them in that manner.

Note: Connection parameters beginning with siebel.conmgr are read from siebel.properties, whether the
adapter is being used in managed or nonmanaged mode.

Managed Code Sample Using the Siebel Resource Adapter
The following is a code sample using the Siebel Resource Adapter in a managed environment. The sample is a servlet that
makes a simple invocation to a business service using the generated JCA code. (For more information about generating
code, see About the Siebel Code Generator.)

The JCA ConnectionFactory is obtained through JNDI. Credentials are obtained at run time from the JAAS Subject passed
to the servlet. The connect string and language are obtained from the deployment descriptor (ra.xml). Other connection
parameters are obtained from the siebel.properties file.

Note: The siebel.properties file must be in the JVM classpath and must be specified explicitly when the business
service instance is created.

 import javax.naming.*;
 import java.io.*;

117

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

 import javax.servlet.*;
 import javax.servlet.http.*;
 import com.siebel.integration.jca.cci.SiebelConnectionFactory;
 import com.siebel.service.jca.eaifiletransport.*;

 public class ManagedConnectionServlet extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException,ServletException {
 PrintWriter reply = response.getWriter();

 try {
 // Specify siebel.properties in the constructor.
 EAI_File_TransportBusServAdapter bs = new
 EAI_File_TransportBusServAdapter("siebel.properties"?);
 InitialContext jndi = new InitialContext();
 SiebelConnectionFactory scf =
 (SiebelConnectionFactory)jndi.lookup("siebelJCA");
 bs.setConnectionFactory(scf);

 // Username and password obtained from JAAS Subject passed by server at runtime.
 // Connect string and language obtained from deployment descriptor, ra.xml.
 ReceiveInput input = new ReceiveInput();
 input.setfCharSetConversion("UTF-8");
 input.setfFileName("D:\\helloWorld.txt");
 ReceiveOutput output = bs.mReceive(input);
 reply.println(output.getf_Value_());
 }
 catch (Exception e) {
 reply.println("Exception:" + e.getMessage());
 }
 }
 }

Nonmanaged Code Sample Using the Siebel Resource Adapter
The following is a code sample using the Siebel Resource Adapter in a nonmanaged environment. The sample performs
the same function as the Managed sample; it is a servlet that makes a simple invocation to a business service using the
generated JCA code. (For more information about generating code, see About the Siebel Code Generator.)

The JCA ConnectionFactory is created directly. The username, password, connect string, and language are obtained from
siebel.properties or set programmatically. Other connection parameters are obtained from the siebel.properties file.

Note: The siebel.properties file must be in the JVM classpath and must be specified explicitly when the business
service instance is created.

 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.http.*;
 import com.siebel.integration.jca.cci.notx.SiebelNoTxConnectionFactory;
 import com.siebel.service.jca.eaifiletransport.*;
 public class BookshelfNonManagedConnectionSample extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 PrintWriter reply = response.getWriter();
 try {
 EAI_File_TransportBusServAdapter bs = new
 EAI_File_TransportBusServAdapter(“siebel.properties#?);
 bs.setConnectionFactory(new SiebelNoTxConnectionFactory());
 // Username, password, connect string, and language are read from
 // siebel.properties, which must be in the classpath of the servlet
 // and be specified in the constructor.
 // Alternatively, they can be set here programmatically:

118

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

 // bs.setUserName("USER");
 // bs.setPassword("PWD");
 // bs.setConnectString("siebel://examplecomputer:2321/siebel/
 SCCObjMgr_enu");
 ReceiveInput input = new ReceiveInput();
 input.setfCharSetConversion("UTF-8");
 input.setfFileName("D:\\helloWorld.txt");
 ReceiveOutput output = bs.mReceive(input);

 reply.println(output.getf_Value_());
 }
 catch (Exception e) {
 reply.println("Exception:" + e.getMessage());
 }
 }
 }

About JCA Logging
The following improvements have been made to JCA logging in Oracle’s Siebel CRM version 8.0 and later:

• Appending JCA logs to one file, which is found in the working directory of the JVM.

Previously, each JCA thread would overwrite the same log file over and over again. Now all JCA threads log into one
file. When the log file size exceeds 100 MB, it is renamed and a new one is started. For example, test.log is renamed
to test_1166581351656.log, where the value is the number of milliseconds since 1970.

• Proper logging of call stacks for LOG_DEBUG.

Previously, JCA log events in the LOG_DEBUG level (level 5) logged the call stack, but the call stack was often
incomplete and cryptic. Now the call stack is a complete Java call stack.

• Logging of thread names.

Previously, the JCA logs did not include the thread name. Now that all threads log to one file, each line contains the
thread name. An example of a line in the log file is:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 4,5,main] [2010-11-04
15:58:38.058] [SiebelManagedConnection(2137125295)] Cleaning up 0 handles on
SiebelManagedConnection(2137125295)

• New logging in LOG_DETAIL (level 4):

◦ When a listener thread is created (logs the host and port):

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:10.139] [] creating
socket for listening thread: host=xyz port=9312

◦ When the main thread sends a request to the Siebel Server (logs the packet number):

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.521] [] set tx=2813

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.521] [] wait=1 tx=2813

◦ When the main thread receives a response:

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.580] [] end loop tx=2813 isDone

◦ Before the listener thread reads a packet (logs the number of bytes in the packet):

119

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

[SIEBEL DETAIL] Thread[Thread-54,5,Listener Threads] [2010-11-04 16:12:56.575] [] about to read to
 bytes: len=1800

◦ As the listener thread reads the packet (logs the packet number and number of bytes read thus far):

[SIEBEL DETAIL] Thread[Thread-54,5,Listener Threads] [2010-11-04 16:12:56.575] [] read some bytes:
 tx=2813 len=1800 read=1800

• Logging call stacks when opening and closing a connection to the Siebel Server.

Previously, the JCA logs for LOG_INFO (level 3) logged the opening and closing of a connection, but did not log the
call stack. Now the call stack is logged, for example:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05
07:53:26.078] [SiebelConnection(507473761)] Opening a new connection to Siebel
...
java.lang.Throwable
 at com.siebel.integration.util.a.trace(Unknown Source)
 at com.siebel.integration.util.SiebelTrace.trace(Unknown Source)
 at com.siebel.integration.jca.cci.SiebelConnection.a(Unknown Source)
 at com.siebel.integration.jca.cci.SiebelConnection.initialize(Unknown Source)
 at com.siebel.integration.jca.cci.SiebelConnection.<init>(Unknown Source)
 at com.siebel.integration.jca.cci.notx.SiebelNoTxConnection.<init>(Unknown Source)
 at
 com.siebel.integration.jca.spi.notx.SiebelNoTxManagedConnectionFactory.createManagedConnection(Unknown
 Source)
 at com.ibm.ejs.j2c.poolmanager.FreePool.createManagedConnectionWithMCWrapper(FreePool.java(Compiled
 Code))
 at com.ibm.ejs.j2c.poolmanager.FreePool.createOrWaitForConnection(FreePool.java(Compiled Code))
 at com.ibm.ejs.j2c.poolmanager.PoolManager.reserve(PoolManager.java(Compiled Code))
 at com.ibm.ejs.j2c.ConnectionManager.allocateMCWrapper(ConnectionManager.java(Compiled Code))
 at com.ibm.ejs.j2c.ConnectionManager.allocateConnection(ConnectionManager.java(Compiled Code))
 at com.siebel.integration.jca.cci.SiebelConnectionFactory.getConnection(Unknown Source)
 at com.siebel.integration.adapter.SiebelJCAAdapterBase.invoke(SiebelJCAAdapterBase.java(Compiled Code))
 ...
[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 07:53:26.243]
 [SiebelConnection(507473761)] Opened a new connection to Siebel (Siebel session :
 siebel.tcpip.none.none://myserver.example.com:2321/esblp01/SCCObjMgr_enu/!10.6373.3ba70.465c2246)

[SIEBEL INFO] Thread[Thread-56,5,main] [2010-11-05 07:54:38.484] [SiebelConnection(974516018)] Closing
 the connection

java.lang.Throwable
 at com.siebel.integration.util.a.trace(Unknown Source)
 at com.siebel.integration.util.SiebelTrace.trace(Unknown Source)
 at com.siebel.integration.jca.cci.SiebelConnection.a(Unknown Source)
 at com.siebel.integration.jca.cci.SiebelConnection.close(Unknown Source)
 at com.siebel.integration.jca.spi.SiebelManagedConnection.destroy(Unknown Source)
 at com.ibm.ejs.j2c.MCWrapper.destroy(MCWrapper.java:1380)
 at com.ibm.ejs.j2c.poolmanager.FreePool.cleanupAndDestroyMCWrapper(FreePool.java(Compiled Code))
 at com.ibm.ejs.j2c.poolmanager.PoolManager.reclaimConnections(PoolManager.java(Compiled Code))
 at com.ibm.ejs.j2c.poolmanager.PoolManager.executeTask(PoolManager.java(Compiled Code))
 at com.ibm.ejs.j2c.poolmanager.TaskTimer.executeTask(TaskTimer.java(Compiled Code))
 at com.ibm.ejs.j2c.poolmanager.TaskTimer.run(TaskTimer.java:113)

• Logging execution of a request in LOG_INFO (level 3).

Previously, execution of a request was logged in LOG_DEBUG. Now the request is logged in LOG_INFO with no call
stack, for example:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 07:53:26.244]
 [SiebelConnection(507473761)] Executing

120

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

com.siebel.integration.jca.client.SiebelInteractionSpec@1b6bef7c

Mapping a JCA Thread to a Siebel Server Task and Log File
From the JCA logging information, you can find the Siebel Server task and log file, which can be useful in diagnosing threads
that use large amounts of CPU time.

To map a JCA thread to a Siebel Server task and log file

1. Examine the JCA log file to find the high-CPU thread, for example:
[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05
07:53:26.243] [SiebelConnection(507473761)] Opened a new connection to Siebel
(Siebel session : siebel.tcpip.none.none://myserver.example.com:2321/esblp01/
SCCObjMgr_enu/!10.6373.3ba70.465c2246)

The Siebel session URL takes the following form:
siebel[.transport][.encryption][.compression]://host[:port]/EnterpriseServer/
AppObjMgr_lang/!AppObjMgrID.ProcessID.TaskID.timestamp

where the Application Object Manager ID, process ID, task ID, and timestamp are represented by hexadecimal
numbers.

2. Use the Siebel session URL to find the following parameters, converting hexadecimal numbers to decimal:

Parameter Example

Host

myserver.example.com

Siebel Enterprise Server

esblp01

Application Object Manager_lang

SCCObjMgr_enu

Application Object Manager ID

10 (16 decimal)

Task ID

3ba70 (244336 decimal)

3. Find the corresponding Siebel Server log file, which is in the SIEBEL_SERVER_ROOT/log directory:

◦ Windows:

 AppObjMgr_lang_AppObjMgrID_taskID.log

For example:
SCCObjMgr_enu_0016_244336.log

◦ UNIX:

 AppObjMgr_lang_taskID.log

121

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 8
Integrating Siebel Business Applications with Java Applications

For example:

SCCObjMgr_enu_244336.log

122

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

9 EAI DLL and EAI File Transports

EAI DLL and EAI File Transports
This chapter discusses the EAI DLL Transport and EAI File Transport business services. It includes the following topics:

• About the EAI DLL Transport

• About the EAI File Transport

About the EAI DLL Transport
You use the EAI DLL Transport when you want to call a function that exists in an external DLL. You must know the exported
function in the DLL that you want to invoke. You specify the EAI DLL Transport as one of the business services in your
workflow.

Note: The EAI DLL Transport only accepts String type as input or output to the external DLL. The external
function also must return String type.

The following topics are discussed here:

• EAI DLL Transport Methods

• EAI DLL Transport Parameters

• Creating a DLL to Call a Function in an External DLL

EAI DLL Transport Methods
The EAI DLL Transport supports sending messages using the following methods:

• Send

• SendReceive

EAI DLL Transport Parameters
Use the Send or SendReceive method as needed when you want to pass data from the Siebel Database to an external
system. These methods require an input property set. In addition to the common parameters described in EAI Transports
and Interfaces Overview, the EAI DLL Transport takes the parameters presented in the following table

Argument Description

DLLName

Name of the (request/response) DLL.

ExternalFunction Function in the DLL to invoke.

123

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

Argument Description

Return Value

The return value from the function called. This value is an output property.

Calling a Function in an External DLL
The following procedure shows how to call a function in an external DLL.

To call a function in an external DLL

1. Create a workflow.

Note: For details on creating workflows, see Siebel Business Process Framework: Workflow Guide .

2. Set the first business service, after the Start, to use the EAI DLL Transport. Usually, this object is named Send.
3. Double-click to set the input properties for the EAI DLL Transport.
4. Select a method, either Send, or Send and Receive Response.
5. Select the input arguments that you want to use from the list that appears (the arguments are described in the table

in EAI DLL Transport Parameters.
6. Enter any output arguments required and save your work.

Creating a DLL to Call a Function in an External DLL
The following procedure illustrates how to create a DLL to use the EAI DLL Transport business service to call a function in an
external DLL.

As of Siebel Innovation Pack 2014, a new mechanism is provided to free memory allocated. The creator of the
external DLL can now expose additional API functions to free memory. Two new business service method arguments,
DLLExternalFunction and DLLExternalFunctionFreeMemory, are added to the Send and SendReceive methods. Both
arguments are optional input arguments.

• To use the new mechanism for memory deallocation, you must use both of these arguments together:
DLLExternalFunction and DLLExternalFunctionFreeMemory.

• Customers can optionally use the old approach of only exposing the old argument, ExternalFunction, instead
of exposing the new memory freeing API functions. If you continue to use ExternalFunction instead of the new
arguments, then the old mechanism is used for memory deallocation. With the old mechanism, failure might occur
when the EAI DLL Transport business service performs the memory deallocation.

The signature for the new memory freeing function would resemble the following:

extern "C" int __declspec(dllexport) TestFree(void* Value)

To create a DLL

1. Open a VC++ project by choosing the Open menu, then New.
2. Select a Win32 Dynamic Link Library and give a name to the project, such as MyDLL.
3. In the next dialog box, select the option Simple dll project.

The following files are created by default:

124

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

◦ MyDLL.cpp

◦ StdAfx.h

◦ StdAfx.cpp

4. Make the following changes in the StdAfx.h and Main.cpp files and check the results in the process simulator:

// MyDLL.cpp : Defines the exported functions for the DLL application.
//

#include "stdafx.h"

#include <string.h>
#include <stdio.h>
#include <io.h>
#include <malloc.h>

extern "C" int __declspec(dllexport) TestEAI(const XMLDataBuf* pValue, XMLDataBuf* Value)
{

 FILE *fp = NULL;
 int retf = 0;
 int rc = 0;

 if ((fp = fopen("testeai.txt", "wb")) != NULL)
 {
 fprintf(fp, "Before test");
 fwrite(pValue->pData, sizeof(char), (size_t)pValue->nLength, fp);
 fprintf(fp, " After Test");
 fclose(fp);
 }
 else return -1;

 if ((fp = fopen("testeai.txt", "rb")) != NULL)
 {
 rc = (int)_filelength(_fileno(fp));
 Value->pData = (void *)malloc((size_t)(rc + 1));
 rc = (int)fread(Value->pData, sizeof(char), (size_t)rc, fp);

 fclose(fp);
 Value->nLength = rc;
 ((char*)Value->pData)[rc] = (char)NULL;
 }
 else return -2;

 return rc;

}

extern "C" int __declspec(dllexport) TestFree(void* Value)
{
 if(Value != NULL)
 {
 free (Value);
 Value = NULL;
 }

 return 0;

}

125

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

About the EAI File Transport
The EAI File Transport helps move data between a Siebel application and an external file.

Note: The EAI File Transport is different from EAI XML Read from File. The EAI XML Read from File uses a
Siebel Message in Hierarchical format as the output property. When reading in data, the EAI File Transport uses
a process property with Data Type of Binary as the output property by default; if CharsetConversion is set, then it
uses a string output property instead.

The following topics are discussed here:

• EAI File Transport Methods

• Using the EAI File Transport Methods

• Generating Unique Filenames

• EAI File Transport Parameters

• Enabling Write Access for the EAI File Transport

• EAI File Transport Named Subsystem

EAI File Transport Methods
The EAI File Transport supports two transport modes: sending messages and receiving messages. It uses the following
methods:

• Send

• SendReceive

• Receive

• ReceiveDispatch

• ReceiveDispatchSend

Using the EAI File Transport Methods
You create a workflow to use the EAI File Transport, defining and refining the workflow as needed to meet your unique
business requirements.

To create a workflow using the EAI File Transport

1. Create a workflow in Siebel Tools.

Note: For details on creating workflows, see Siebel Business Process Framework: Workflow Guide .

2. Set up a step in the workflow to use the EAI File Transport. Usually, this object is named Send.
3. Double-click to set the input properties for the EAI File Transport.

126

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

4. Select a method that fits your business needs.
5. Select the input arguments that you want to use from the list of arguments. The full list is presented in the table in

EAI File Transport Parameters.
6. Enter any output arguments required and save your work.

Generating Unique Filenames
When using the EAI File Transport, you can have the system generate unique file names for you, as needed. One way is to
specify the directory name only. The other way is to include $$ in the filename.

Note: If a directory is not specified when using the EAI XML Write to File, EAI XML Read from File, or the EAI
File Transport business service, then the FileName input argument defaults to the directory where the Siebel
application is running.

• Directory Only. To generate the unique file name, only enter the directory name. For example, instead of specifying
the filename as d:\data\record1.xml, just specify d:\data. For every call of the workflow, a unique name is
generated in the directory. To find out the file name generated, specify FileName as an output argument for the File
Transport Workflow Step.

• Using $$. For generating filenames based on the $$ wildcard, specify the filename in the form d:\data\record$
$.xml. At run time, Siebel application replaces the $$ with a unique row ID, for example:

d:\data\record3-149.xml

Note: The file name generated by using $$ is not returned as the output filename property.

EAI File Transport Parameters
In addition to the common parameters presented in Common EAI Transport Parameters, the EAI File Transport takes the
parameters presented in the following table. These parameters can be specified as service method arguments, subsystem
parameters, or user properties.

Display Name Parameter Description

Append To File

AppendToFile

Default is False. A value of True means that, if the file exists,
then the method appends the message to the existing file. A
value of False specifies that the method overwrites any existing
file.

Delete File after Receive

DeleteFile

Default is False. A value of True means that an attempt is
made to delete the file after receiving it. If permissions prevent
deletion, then no error is given, but the information is traced.

File Name

FileName

The name of the file to be received by the file transport.

For the Send method, if a file name is not provided, then a
random name is used for the output file. You must specify
an explicit path for file name. You can also use $$ as the
wildcard symbol in the file name. For example, if you specify a

127

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

Display Name Parameter Description

file name of “file$$.xml”, then Siebel CRM creates files like
file1-134.xml, fileA25.xml, and file242_12B.xml.

For the Receive method, a specific file name must be provided.
The use of wildcards such as $$ is not allowed. The source file
is deleted upon receiving if DeleteFile is set to True. If DeleteFile
is set to False (the default), then the source file is not deleted.

Response File Name

RespFileName

Name of the file containing the response when using the
SendReceive Method.

Sleep Time

FileSleepTime

The timeout interval on receive calls, in milliseconds.

This specifies the maximum amount of time that the service
waits for a response. Default is 20000 milliseconds.

Enabling Write Access for the EAI File Transport
The EAIFileTransportFolders parameter allows you to enable write access for the EAI File Transport for specific folders within
the Siebel file system. The EAIFileTransportFolders parameter can be set at the enterprise or server level as a semicolon-
separated list.

By default, the Siebel temporary folder, SIEBSRVR_ROOT\TEMP, is a permitted folder and is not required to be explicitly
configured with the EAIFileTransportFolders parameter. If the parameter is not configured, then writing is allowed only to the
Siebel temporary folder; any attempt to write a file to a folder other than the Siebel temporary folder fails.

CAUTION: Do not allow write access to the SIEBSRVR_ROOT\BIN folder. Write access to the BIN folder allows
anyone to overwrite Siebel system DLL files.

Configuring the EAIFileTransportFolders Parameter at the Enterprise Level
You use the srvrmgr utility to configure the EAIFileTransportFolders parameter at the enterprise level.

To configure the EAIFileTransportFolders parameter at the enterprise level

• Use the following command in srvrmgr:

change ent param EAIFileTransportFolders=\\fileserver\fs1;\\fileserver2\fs2

Configuring the EAIFileTransportFolders Parameter at the Server Level
You use the srvrmgr utility to configure the EAIFileTransportFolders parameter at the server level.

To configure the EAIFileTransportFolders parameter at the server level

• Use the following command in srvrmgr:

change param EAIFileTransportFolders=\\fileserver\fs1;\\fileserver2\fs2 for server servername

128

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

Configuring the EAIFileTransportFolders Parameter in the Application Configuration File
You add a new section to the application configuration file to configure the EAIFileTransportFolders parameter.

To configure the EAIFileTransportFolders parameter in the application configuration file

1. Open the application configuration file, such as uagent.cfg, in a text editor.
2. Add the following section:

[EAIFileTransportConfigSubsys]
EAIFileTransportFolders = \\fileserver\fs1;\\fileserver2\fs2

EAI File Transport Named Subsystem
The EAI File Transport can read parameters from a named subsystem. For the EAI File Transport, the named subsystem type
is FileTranspSubsys.

The following example shows how to use the FileTranspSubsys named subsystem with EAI File Transport business service
methods.

Receiving a Message and Writing It to a File
This example uses the Receive method of the EAI File Transport business service to receive a message as a file, then it
uses the Send method of the EAI File Transport business service and the FileTranspSubsys named subsystem to write the
message to a file.

To receive a message and write it to a file

1. Define an EAI File Transport named subsystem, for example:

create named subsystem FileConnSubsys_sub for subsystem FileTranspSubsys with
FileName="D:\temp\FileOut.txt", AppendToFile=true

2. Create a workflow as follows:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

3. Define the following process properties:

Name Data Type In/Out Default String

BinaryMsg

Binary

In/Out

Not applicable

Error Code String In/Out Not applicable

129

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 9
EAI DLL and EAI File Transports

Name Data Type In/Out Default String

Error Message

String

In/Out

Not applicable

Object Id

String

In/Out

Not applicable

Process Instance Id

String

In/Out

Not applicable

Siebel Operation Object Id

String

In/Out

Not applicable

4. Set up the first business service step to use the EAI File Transport business service with the Receive method and the
following input and output arguments:

Input Argument Type Value

FileName

Literal

D:\temp\InputToFile.txt

Property Name Type Output Argument

BinaryMsg

Output Argument

<Value>

5. Set up the second business service step to use the EAI File Transport business service with the Send method and
the following input arguments:

Input Argument Type Value Property Name

<Value>

Process Property

Not applicable

BinaryMsg

ConnectionSubsystem

Literal

FileConnSubsys_sub

Not applicable

130

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

10 Transcode Service Business Service

Transcode Service Business Service
This chapter discusses the Transcode Service business service. It includes the following topics:

• About the Transcode Service Business Service

• Transcode Service Business Service Methods

• Transcode Service Business Service Examples

About the Transcode Service Business Service
The Transcode Service business service converts data from one character-set encoding to another. It can also validate
conversions before they are performed.

The conversion implementation is portable, and does not rely on the operating system or any third-party products for
codepage definitions. Supported error detection includes output-buffer overflow, memory-allocation failure, invalid data in the
input encoding stream, and substitution in the output encoding stream.

Note: Windows fallback (that is, approximate) conversions are not supported.

The Transcode Service business service provides data conversion and validation of conversion between the following
encodings:

• ASCII

• 874 (Thai)

• 932 (Japanese)

• 936 (Simplified Chinese)

• 949 (Korean)

• 950 (Traditional Chinese)

• 1250

• 1251

• 1252 (Western European)

• 1253

• 1254

• 1255

• 1256

• 1257

• 1258

• UTF-8

131

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

• UTF-16LE

• UTF-16BE

• UTF-16

For a list of the languages supported by Siebel Business Applications, and the supported code pages for each database, see
1513102.1 (Article ID) on My Oracle Support. See also Siebel Global Deployment Guide and see the Certifications tab on
My Oracle Support. For information about the Certifications application, see 1492194.1 (Article ID) on My Oracle Support.

Transcode Service Business Service Methods
The Transcode Service business service has two methods:

• Convert Method

• Validate Method

Convert Method
This method converts the value in the input property set to the target encoding in the output. You use this method when data
enters or leaves Oracle’s Siebel Business Applications and conversion is required so that the next software component in the
processing chain can recognize the data.

The Convert method has the method arguments shown in the following table.

Method Argument Required Description

<Value>

Yes

Data to convert.

ConversionMode

Yes

The mode can be StringToEncoding, EncodingToString, or
EncodingToEncoding.

SourceEncoding

No

Encoding from which data is converted. Required for the EncodingToString
and EncodingToEncoding modes.

TargetEncoding

No

Encoding to which data is converted. Required for the StringToEncoding and
EncodingToEncoding modes.

IgnoreConversionErrors

No

To ignore character conversion errors (invalid-character errors or substitution
errors), set IgnoreConversionErrors to TRUE.

Note: This argument is not shown in Siebel Tools.

132

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Validate Method
To avoid problems associated with relying on third-party applications to convert data, you can use the Validate method of the
Transcode Service business service. The Validate method confirms the input property set hierarchy or the value of the input
property set. You can use this method to check that a character is valid within a particular character set before performing the
conversion. You can choose not to send the data to the external application if validation fails.

If validation fails, then the Transcode Service business returns a client-side error code (Error Code). The log file contains
detailed information about what went wrong, including the failure type, first position in the input, and where conversion failed.

The Validate method has the method arguments shown in the following table.

Method Argument Required Description

ValidationMode

No

Can be Value or left blank.

If the mode is Value, then only <Value> is validated. Otherwise, the entire property set
hierarchy is validated.

SourceEncoding

No

Encoding from which data is converted.

Required when ValidationMode is set to Value and the input value contains
binary data. Conversion from binary data in SourceEncoding to binary data in
TargetEncoding is implied.

TargetEncoding

Yes

Encoding to which data is converted.

<Value>

No

If <Value> is used (ValidationMode is set to Value), then only it is validated. Otherwise,
the entire property set hierarchy is validated.

SiebelMessage

No

If the validation is for a hierarchy of type Siebel Message, for example, the output of
the EAI Siebel Adapter, then this argument refers to the property set.

Note: This argument is not shown in Siebel Tools.

XMLHierarchy

No

If the validation is for an XML hierarchy, for example, the output of the ReadXMLHier
method of the EAI XML Read from File business service method, then this argument
refers to the property set.

Note: This argument is not shown in Siebel Tools.

133

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Transcode Service Business Service Examples
The following examples show how to use the Validate and Convert methods of the Transcode Service business service:

• Using the Validate Method

• Using the Convert Method

Using the Validate Method
The following examples demonstrate the use of the Validate method of the Transcode Service business service:

• XML Hierarchy Example

• Siebel Message Example

XML Hierarchy Example
In this workflow example, a file encoded in codepage 932 (Japanese) is read into an XML hierarchy, then validated for
conversion into codepage 1252 (Western European).

To create the validation workflow (XML hierarchy example)

1. Create a workflow as follows:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

2. Define the following process properties:

Name Data Type In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Siebel Operation Object Id

String

In/Out

XMLHier

Hierarchy

In/Out

3. Set up the first business service step to use the EAI XML Read from File business service with the ReadXMLHier
method and the following input and output arguments:

Input Argument Type Value

FileName Literal c:\JPN_JIS.xml

134

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Input Argument Type Value

Property Name Type Output Argument

XMLHier

Output Argument

XMLHierarchy

4. Set up the second business service step to use the Transcode Service business service with the Validate method
and the following input arguments:

Input Argument Type Value Property Name

SourceEncoding

Literal

CP932

Not applicable

TargetEncoding

Literal

CP1252

Not applicable

ValidationMode

Literal

Not applicable

Not applicable

XMLHierarchy

Process Property

Not applicable

XMLHier

Siebel Message Example
In this workflow example, an account record is read from an integration object by the EAI Siebel Adapter as a Siebel
Message, then validated for conversion from UTF-8 (Unicode) to codepage 1252 (Western European).

To create the validation workflow (Siebel message example)

1. Create a workflow as follows:

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

2. Define the following process properties:

Name Data Type In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Object Id

String

In/Out

Process Instance Id

String

In/Out

135

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Name Data Type In/Out

Siebel Operation Object Id

String

In/Out

SiebelMsg

Hierarchy

In/Out

3. Set up the first business service step to use the EAI Siebel Adapter business service with the Query method and the
following input and output arguments:

Input Argument Type Value Property Name

OutputIntObjectName

Literal

Sample Account

Not applicable

PrimaryRowId

Process Property

Row ID of the account record

Object Id

Property Name Type Output Argument

SiebelMsg

Output Argument

SiebelMessage

4. Set up the second business service step to use the Transcode Service business service with the Validate method
and the following input arguments:

Input Argument Type Value Property Name

SourceEncoding

Literal

UTF-8

Not applicable

TargetEncoding

Literal

CP1252

Not applicable

ValidationMode

Literal

Not applicable

Not applicable

SiebelMessage

Process Property

Not applicable

SiebelMsg

Using the Convert Method
The following workflow example demonstrates the use of the Convert method of the Transcode Service business service.
An account record is read from an integration object by the EAI Siebel Adapter as a Siebel Message, converted from UTF-8
(Unicode) to codepage 932 (Japanese), and then written to an XML file.

To create the conversion workflow (using the Convert method)

1. Create a workflow as follows:

136

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Note: For details on the Business Process Designer, see Siebel Business Process Framework:
Workflow Guide .

2. Define the following process properties:

Name Data Type In/Out

Error Code

String

In/Out

Error Message

String

In/Out

Object Id

String

In/Out

Process Instance Id

String

In/Out

Siebel Operation Object Id

String

In/Out

SiebelMsg

Hierarchy

In/Out

SiebelMsgJPN

Hierarchy

In/Out

3. Set up the first business service step to use the EAI Siebel Adapter business service with the Read Siebel Msg
method and the following input and output arguments:

Input Argument Type Value Property Name

OutputIntObjectName

Literal

Sample Account

Not applicable

PrimaryRowId

Process Property

Row ID of the account record

Object Id

Property Name Type Output Argument

SiebelMsg

Output Argument

SiebelMessage

4. Set up the second business service step to use the Transcode Service business service with the Convert method
and the following input and output arguments:

Input Argument Type Value Property Name

SourceEncoding

Literal

UTF-8

Not applicable

TargetEncoding Literal CP932 Not applicable

137

Siebel
Transports and Interfaces: Siebel Enterprise Application
Integration

Chapter 10
Transcode Service Business Service

Input Argument Type Value Property Name

ConversionMode

Literal

EncodingToEncoding

Not applicable

<Value>

Process Property

Not applicable

SiebelMsg

Property Name Type Output Argument

SiebelMsgJPN

Output Argument

<Value>

5. Set up the third business service step to write the converted integration object hierarchy to an XML file using the EAI
XML Write to File business service with the WriteEAIMsg method. This step requires the following input arguments:

Input Argument Type Value Property Name

FileName

Literal

File to write, for example, d:\temp
\acct_record_JPN.xml

Not applicable

<Value>

Process Property

Not applicable

SiebelMsgJPN

138

	Transports and Interfaces: Siebel Enterprise Application Integration
	Preface
	What's New in This Release
	What’s New in Transports and Interfaces: Siebel Enterprise Application Integration Guide, Siebel CRM 19.7 Update
	What’s New in Transports and Interfaces: Siebel Enterprise Application Integration Guide, Siebel CRM 19.1 Update
	What’s New in Transports and Interfaces: Siebel Enterprise Application Integration, Siebel 2018

	EAI Transports and Interfaces Overview
	EAI Transports and Interfaces Overview
	About EAI Transports
	About EAI Transport Methods
	Outbound Methods for a Transport Business Service
	Inbound Methods for a Transport Business Service

	Using Named Subsystems for Transport Parameters
	Rules of Precedence for Parameter Specification
	Common EAI Transport Parameters

	About Object Interfaces and EAI
	Database-Level Interfacing

	EAI MQSeries Server Transport
	EAI MQSeries Server Transport
	About the EAI MQSeries Server Transport Business Service
	About the MQPMO_SYNCPOINT Option
	EAI MQSeries Server Transport Parameters
	Exposing MQMD Headers as Properties
	EAI MQSeries Server Transport Named Subsystem

	Using the SendReceive Method with MQSeries
	Dispatch Error Handling for the EAI MQSeries Server Transport
	Increasing the Maximum Message Length on IBM WebSphere MQ
	Using the EAI MQSeries Server Transport on AIX
	Fixing a Shared Memory Segment Conflict on AIX
	Configuring AIX to Run the Siebel Server with Less Memory

	About EAI MQSeries Transport Re-Entrance
	About Message ID Tracking for an Inbound Message
	Invoking a Workflow Using MQSeries Server Receiver
	Command to Create an EAI Transport Data Handling Subsystem
	Command to Create an EAI Transport Connection Subsystem
	Command to Start an MQSeries Server Receiver

	EAI MSMQ Transport
	EAI MSMQ Transport
	About Microsoft Message Queuing (MSMQ)
	About the EAI MSMQ Transport
	Methods for Sending and Receiving Messages
	Messages from a Siebel Application to an External System
	Messages to a Siebel Application from an External System

	EAI MSMQ Transport Named Subsystems

	Configuring the EAI MSMQ Transport Servers
	MSMQ Primary Enterprise Controller
	Regional Enterprise Server and MSMQ Client

	Configuring EAI MSMQ Transport for Various Send and Receive Scenarios
	EAI MSMQ Transport Prerequisites
	EAI MSMQ Transport Parameters
	About Defining Integration Objects
	Sending Outbound Messages with EAI MSMQ Transport
	Sending Messages with EAI MSMQ Transport
	Sending and Receiving Messages with EAI MSMQ Transport

	Receiving Inbound Messages with MSMQ Receiver
	Receiving and Dispatching MSMQ Messages with MSMQReceiver
	Receiving, Dispatching, and Sending MSMQ Messages with MSMQ Receiver

	EAI Java Business Service
	EAI Java Business Service
	About the EAI Java Business Service
	Requirements for Implementing a Java Business Service
	Creating a 32-bit Java Subsystem by Using the Siebel Server Manager
	Creating a 64-bit Java Subsystem by Using the Siebel Server Manager
	Creating a 32-bit Java Subsystem by Using the Siebel Web Client
	Creating a 64-bit Java Subsystem by Using the Siebel Web Client
	Creating a 32-bit Java Subsystem by Using the Siebel Dedicated Client
	Creating a 64-bit Java Subsystem by Using the Siebel Dedicated Client
	About Platform-Specific Configurations for the JVM

	Creating a Java Business Service
	Defining a Business Service in Java
	About Implementing a Business Service in Java
	About Exception Handling for the Java Business Service

	About the Lifecycle of a 32-bit Java Business Service
	Example of a Java Business Service
	About the Lifecycle of a 64-bit Java Business Service
	Restrictions for Implementing a Java Business Service
	Troubleshooting the Java Business Service

	EAI JMS Transport
	EAI JMS Transport
	About the EAI JMS Transport Business Service
	About Synchronous and Asynchronous Invocation
	About the JMS Publish-and-Subscribe Model
	About Operations (Methods) of the EAI JMS Transport
	Features Not Supported for Use with the Siebel JMS Transport
	About JMS Message Types
	About Sending and Receiving XML
	About Multistep Operations Within a JMS Session
	About Undeliverable Messages in JMS Transport
	Detailed Input and Output Specifications for the EAI JMS Transport
	JMS Headers and Properties
	Input Arguments Used by the Dispatch Step
	Input Argument Values

	About the Output of the JMS Transport

	Configuring the EAI JMS Transport
	About the JMSSubsys Named Subsystem
	About the JavaContainerSubsys Named Subsystem
	About the JMS Receiver
	About Multithreading in the JMS Receiver Component
	About Configuring the JMS Receiver

	About Reconnecting to the External JMS Queue
	Creating a JMS Subsystem by Using the Siebel Web Client

	Sending and Receiving JMS Messages
	Receiving, Dispatching, and Sending JMS Messages
	Sending and Receiving Custom JMS Properties
	Receiving Custom Properties in Inbound Messages
	Sending Custom Properties in Outbound Messages

	Enabling Authentication and Authorization for the EAI JMS Transport
	About JMS Credential Specification
	Configuring Credentials in JNDI
	Configuring Credentials in JMS
	JMS Password Encryption

	Configuring Against Oracle WebLogic Server
	Configuring Against TIBCO Enterprise Message Service
	Configuring Against IBM WebSphere MQ
	About Security Configuration on the JMS Server

	Troubleshooting for the JMS Transport
	About Logging for the JMS Transport
	About Caching for the JMS Transport

	EAI HTTP Transport
	EAI HTTP Transport
	About the EAI HTTP Transport
	System Requirements for Using the EAI HTTP Transport
	Selecting the Appropriate Business Service for HTTP

	Using POST and GET
	EAI HTTP Transport Named Subsystems
	EAI HTTP Transport Method Arguments
	Sending a Message Using the EAI HTTP Transport
	Using the EAI HTTP Transport for Inbound Integration
	Preparing to Use the EAI HTTP Transport for Inbound Integration
	Specifying HTTP Parameters for Inbound Integration
	Using the EAI HTTP Transport in Session Mode
	Example Requests for the HTTP Protocol in Session Mode

	Using the EAI HTTP Transport in Sessionless Mode
	Example Request for the HTTP Protocol in Sessionless Mode

	Process of Using the EAI HTTP Transport for Inbound Messages
	Setting Up the Business Service
	Creating the Workflow to Receive Messages

	Handling EAI HTTP Transport Business Service Errors
	Processing and Sending Outbound XML Documents
	Specifying Parameters as Business Service User Properties
	Specifying Parameters as Subsystem Parameters
	About Parameters as Run-Time Properties
	About Parameters in Parameter Templates

	Sending and Receiving Messages with the EAI HTTP Transport
	Examples Using HTTP Request
	Controlling Login Sessions with Session Mode
	Sending Requests in Sessionless Mode
	Accessing a URL Protected by Basic Authentication
	Providing Client Certificate Information for TLS Mutual Authentication

	Creating Custom Headers for the EAI HTTP Transport Service
	About Sending and Receiving Messages Through HTTP
	About Transport Headers and HTTP Response Headers
	Features of Transport Headers

	Integrating Siebel Business Applications with Java Applications
	Integrating Siebel Business Applications with Java Applications
	About Siebel Business Applications and Java Applications
	About the JDB Business Object API
	Example of the Business Object and Business Component Interface

	About the JDB Business Service API
	About the Siebel Code Generator
	Invoking the Siebel Code Generator
	Code Generated for a Business Service
	About Methods of Java Classes Generated for a Business Service
	Methods for Java class com.siebel.service.jdb.GenericServiceBusServAdapter
	Methods for Java class com.siebel.service.jdb.GenericMethodInput
	Methods for Java class com.siebel.service.jdb.GenericMethodOutput Methods

	About the Code Generated for an Integration Object
	Methods of Java Classes Generated for an Integration Object
	Methods of Java Classes Generated for an Integration Object Component

	About Running the Java Data Bean
	Connect String and Credentials for the SiebelDataBean
	Connection Parameters for the SiebelDataBean
	Examples Using Generated Code for Integration Objects
	Siebel Account Business Service Example
	EAI Siebel Adapter Business Service Example

	About the Siebel Resource Adapter
	Using the Resource Adapter
	About the Connect String and Credentials for the Java Connector
	Managed Code Sample Using the Siebel Resource Adapter
	Nonmanaged Code Sample Using the Siebel Resource Adapter

	About JCA Logging
	Mapping a JCA Thread to a Siebel Server Task and Log File

	EAI DLL and EAI File Transports
	EAI DLL and EAI File Transports
	About the EAI DLL Transport
	EAI DLL Transport Methods
	EAI DLL Transport Parameters
	Calling a Function in an External DLL

	Creating a DLL to Call a Function in an External DLL

	About the EAI File Transport
	EAI File Transport Methods
	Using the EAI File Transport Methods
	Generating Unique Filenames
	EAI File Transport Parameters
	Enabling Write Access for the EAI File Transport
	Configuring the EAIFileTransportFolders Parameter at the Enterprise Level
	Configuring the EAIFileTransportFolders Parameter at the Server Level
	Configuring the EAIFileTransportFolders Parameter in the Application Configuration File

	EAI File Transport Named Subsystem
	Receiving a Message and Writing It to a File

	Transcode Service Business Service
	Transcode Service Business Service
	About the Transcode Service Business Service
	Transcode Service Business Service Methods
	Convert Method
	Validate Method

	Transcode Service Business Service Examples
	Using the Validate Method
	XML Hierarchy Example
	Siebel Message Example

	Using the Convert Method

