
Siebel
XML Reference: Enterprise
Application Integration Guide

January 2019

Siebel
XML Reference: Enterprise Application Integration Guide

January 2019

Part Number: F12809-01

Copyright © 2019, Oracle and/or its affiliates. All rights reserved

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to
us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating
system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in
any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement
between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
XML Reference: Enterprise Application Integration Guide

Contents

Preface .. i

1 What's New in This Release 1
What’s New in XML Reference: Siebel Enterprise Application Integration Guide, Siebel CRM 19.1 Update 1

What’s New in XML Reference: Siebel Enterprise Application Integration, Siebel 2018 ... 1

2 Overview of Support for XML in Siebel Business Applications 3
Overview of Support for XML in Siebel Business Applications .. 3

About XML ... 3

Siebel CRM Integration and XML ... 3

Metadata Support for XML ... 5

Special Characters in XML Documents .. 5

3 XML Representation of Property Sets 7
XML Representation of Property Sets .. 7

Mapping Between Property Sets and XML .. 7

Element and Attribute Naming ... 7

Property Set Examples and Their XML Representation .. 9

Properly Formatted Property Sets .. 10

4 XML Representation of Siebel Integration Object Instances 13
XML Representation of Siebel Integration Object Instances .. 13

About Representing Siebel Integration Object Instances as XML Documents ... 13

Integration Objects ... 13

Elements and Attributes ... 15

How XML Names Are Derived from Integration Objects ... 16

Elements Within a Siebel Integration Object Document .. 16

Example XML Document .. 19

XML Schema Definitions (XSDs) ... 20

Document Type Definitions (DTDs) ... 21

Siebel
XML Reference: Enterprise Application Integration Guide

5 XML Integration Objects and the XSD Wizard 23
XML Integration Objects and the XSD Wizard .. 23

Creating XML Integration Objects with the XSD Wizard .. 23

Supported XSD Elements and Attributes .. 24

Structure of XSD XML Integration Objects ... 29

6 XML Integration Objects and the DTD Wizard 33
XML Integration Objects and the DTD Wizard .. 33

Creating XML Integration Objects with the DTD Wizard .. 33

How the DTD Wizard Creates XML Integration Objects .. 34

7 Siebel XML Converters 37
Siebel XML Converters ... 37

About Siebel XML Converters .. 37

EAI XML Converter ... 38

XML Hierarchy Converter ... 42

EAI Integration Object to XML Hierarchy Converter .. 45

XML Converter ... 48

Siebel XML Converter Business Service Comparison ... 50

EAI XML Write to File Business Service .. 51

EAI XML Read from File Business Service ... 54

8 Scenarios for Siebel EAI XML Integration 57
Scenarios for Siebel EAI XML Integration ... 57

Scenario 1: Process of Inbound Integration Using Siebel XML ... 57

Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD .. 58

9 Using XML Files 61
Using XML Files ... 61

Using an XML Document as Input ... 61

Inserting File Attachments Using XML .. 63

Removing Empty XML Tags ... 63

10 Sample XML for Siebel EAI Effective Dating Operations 65
Sample XML for Siebel EAI Effective Dating Operations ... 65

Siebel
XML Reference: Enterprise Application Integration Guide

About Siebel EAI Effective Dating Operations ... 65

Sample XML for Field-Related Siebel EAI Effective Dating Operations .. 65

Sample XML for Link-Related Siebel EAI Effective Dating Operations ... 72

Siebel
XML Reference: Enterprise Application Integration Guide

Siebel
XML Reference: Enterprise Application Integration Guide

Preface

Preface

This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at http://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an e-mail to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
XML Reference: Enterprise Application Integration Guide

Preface

ii

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 1
What's New in This Release

1 What's New in This Release

What’s New in XML Reference: Siebel Enterprise
Application Integration Guide, Siebel CRM 19.1 Update
No new features have been added to this guide for this release. This guide has been updated to reflect only product name
changes.

Note: Siebel 2019 is a continuation of the Siebel 8.1/8.2 release.

What’s New in XML Reference: Siebel Enterprise
Application Integration , Siebel 2018
No new features have been added to this guide for this release. This guide has been updated to reflect only product name
changes.

Note: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release

1

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 1
What's New in This Release

2

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 2
Overview of Support for XML in Siebel Business Applications

2 Overview of Support for XML in Siebel
Business Applications

Overview of Support for XML in Siebel Business
Applications
This chapter provides an overview of support for Extensible Markup Language (XML) in Siebel Business Applications. It
includes the following topics:

• About XML

• Siebel CRM Integration and XML

• Metadata Support for XML

• Special Characters in XML Documents

About XML
XML is the industry standard for precisely representing data from virtually any source, stored in virtually any format. In
appearance, it is similar to HTML, but while HTML explains a document in terms of how it should display data in a Web
browser, XML is the data (or more precisely, the data from an application represented as XML).

This data can be from an application screen, sometimes called a screen scraping, it can be the output from a database, or it
can be an application executed using processing instructions that run Oracle’s Siebel eScript, for example.

There are also technologies that explain XML documents. These are known as metadata because the data within these
documents is used to describe and format the information in an XML document. Examples of metadata documents include
XSDs (XML Schema Definitions), DTDs (Document Type Definitions), and XDRs (XML Data Reduced), which are supported by
Siebel Business Applications.

Siebel CRM Integration and XML
Siebel Business Applications support for XML allows you to communicate with any Siebel application or external application
that can read and write XML (either arbitrary XML or Siebel XML, also known as the Siebel Message format).

XML documents are delivered directly to and from Siebel Business Applications, or through middleware using any of the
supported transports: HTTP, IBM WebSphere MQ, File, and so on. XML communicated in this way can query the Siebel
Database, upsert (update or insert) data, synchronize the two systems, delete data, or execute a workflow process.

Objects from various systems, such as Siebel business objects and Oracle application data, can be represented as Siebel
integration objects.

Siebel CRM can also communicate bidirectionally with Web services using Simple Object Access Protocol (SOAP), and
Representational State Transfer (REST) through Siebel Application Integration (SAI) for Oracle Fusion Middleware. For details,

3

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 2
Overview of Support for XML in Siebel Business Applications

see Integration Platform Technologies: Siebel Enterprise Application Integration and Siebel Application Integration for
Oracle Fusion Middleware Guide .

Note: If you do a minimal client installation, make sure you select the XML parser option; otherwise, you will
encounter the following error when attempting to run any client process that uses the XML parser: Unable
to create the Business Service ‘EAI XML Converter.’ The XML parser is included by default in the full
installation.

XML Integration Objects
The Integration Object type of XML is available within Siebel Business Applications to represent externally defined XML
documents, where the object’s XML representation is compliant with the XSD or DTD supplied by your trading partner or
external system. This type of integration object supports a representation of XML documents.

Note: Siebel XSD does not support the use of <import> and <include> elements and the <any> attribute. To
implement the <import> or <include> functionality, place the schema definition into a single file.

Bidirectional Data Flow
The following shows the bidirectional progress of XML documents into and out of Siebel Business Applications.

Note: For details on integration objects and Web services, see Integration Platform Technologies: Siebel
Enterprise Application Integration . For an overview of Siebel EAI, see Overview: Siebel Enterprise Application
Integration .

4

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 2
Overview of Support for XML in Siebel Business Applications

Metadata Support for XML
For sending and receiving information for Siebel Objects in an XML format between Oracle and external systems, Oracle
supports the metadata representations for XML known as XSDs (XML Schema Definitions), DTDs (Document Type
Definitions), and XDRs (XML Data Reduced, a Microsoft specification). Support for XSDs and DTDs gives you a way to
communicate with external systems using externally defined XML documents, instead of having to use the Siebel XSD and
DTD format.

The Siebel application includes a Schema Generator wizard to assist in the creation of XML Integration Objects, using an
externally defined XSD or DTD. The XSD and DTD are used to map data between the Siebel application and an external
integration object, and to transform data, as needed. These tasks are conducted using the Siebel Data Mapper.

Special Characters in XML Documents
Special characters should be represented in accordance with XML standards for those characters in order for them to be
correctly interpreted within Siebel Business Applications. Also, specify the character set you are using if it is not UTF-8 (the
default).

Note: To edit an XML document including binary or encoded data, use editors such as Microsoft Notepad or
Word that do not convert the data upon saving the file.

Special (Escape) Characters
The EAI XML Converter can handle special characters for inbound and outbound XML, as shown in the following. Non-Siebel
XML should already handle special characters before integrating into the Siebel application. Special characters are indicated
by enclosing the text for the character between an ampersand (&) and a semicolon (;). Also, if the XML is passed in a URL,
then URL encoding of special characters is required as shown in the following table.

Character Entity URL Encoded

<

<

%26lt%3B

>

>

%26gt%3B

&

&

%26amp%3B

“

"

%26quot%3B

'

'

%26apos%3B

Unicode Character (Decimal)

	

%26%2309%3B

Unicode Character (Hex) ° %26%23x00B0%3B

5

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 2
Overview of Support for XML in Siebel Business Applications

Character Entity URL Encoded

Date

Must follow the ISO
8601 format

Not applicable

Declaring the Character Set in Use
You must include the following parameter in the XML version declaration of your XML, XSD, or DTD document to declare the
character set in use, if it is not the default of UTF-8:

 <?xml version="1.0" encoding="US-ASCII"?>

Supported character sets include but are not limited to ASCII, UTF-8, UTF-16 (Big or Small Endian), UCS4 (Big or Small
Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1, and Windows-1252. This means that the XML
parser can parse input XML files in these encodings.

The following encodings can be used in the XML declaration:

• US-ASCII

• UTF-8

• ISO-10646-UCS-4

• ebcdic-cp-us

• ibm1140

• ISO-8859-1

• windows-1252

The character set declaration encoding must appear after the version declaration. For example: <?xml version="1.0"
encoding="US-ASCII"?>

The output can be in one of the following XML encodings:

• UTF-8

• UTF-16

• Local Code Page

6

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

3 XML Representation of Property Sets

XML Representation of Property Sets
This chapter discusses the XML representation of property sets and the mapping between property sets and XML. It also
discusses the elements and attributes naming conversion performed by the XML Converter. It includes the following topics:

• Mapping Between Property Sets and XML

• Element and Attribute Naming

• Property Set Examples and Their XML Representation

• Properly Formatted Property Sets

Mapping Between Property Sets and XML
An arbitrary property set hierarchy can be serialized to XML and an XML document can be converted to a property set
hierarchy using the XML Converter business service. This service is used by the Business Service Simulator screen to save
property set inputs and outputs to a file from eScript.

Each part of a property set object has a corresponding XML construct. The following table shows the mappings between
parts of a property set hierarchy and their XML representation.

Property Set Component XML Representation

PropertySet

Element

PropertySet Type

Element name (if Type is not specified, then the element name is set to PropertySet)

PropertySet Value

Element Character Data

Property name

Attribute name

Property value

Attribute value

Child Property Set

Child element

Element and Attribute Naming
The property set Type (which maps to an XML element name) and the names of individual properties (which map to XML
attribute names) do not necessarily follow the XML naming rules. For example, a name can include characters such as a

7

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

space, a quote, a colon, a left parenthesis, or a right parenthesis that are not allowed in XML element or XML attribute names.
As a result, you must perform some conversion to generate a valid XML document.

When creating an XML document from a property set hierarchy, the XML Converter will make sure that legal XML names
are generated. There are two different approaches provided to handle name translation. The approach is determined by the
EscapeNames user property on the XML Converter service. This user property can be either True or False.

• True. If EscapeNames is True, instances of illegal characters are converted to an escape sequence that uses only
legal characters. For example, a space is converted to the characters _spc. When an XML document is parsed to a
property set hierarchy, the escape sequences are converted back to the original characters. For example, the name
Account (SSE) becomes Account_spc_lprSSE_rpr.
The following table shows the escape sequences that are used by the XML Converter.

Character in Property
Set

Description Generated Escape Sequence

Space

_spc

_

Underscore

_und

“

Double Quote

_dqt

‘

Single Quote

_sqt

:

Colon

_cln

;

Semicolon

_scn

(

Left Parenthesis

_lpr

)

Right Parenthesis

_rpr

&

Ampersand

_amp

,

Comma

_cma

#

Pound symbol

_pnd

/

(Forward) slash

_slh

?

Question Mark

_qst

<

Less Than

_lst

>

Greater Than

_grt

Illegal characters

Other illegal characters not listed in this
table

_<Unicode character code>

8

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

• False. If EscapeNames is False, the XML Converter removes illegal characters. These characters include the space
(), double quote ("), single quote('), semicolon (;), left parenthesis ((), right parenthesis ()), and ampersand (&). For
example, the XML Converter changes the name Account (SSE) to AccountSSE.

Note: These conversions are not reversible: the original names cannot be obtained from the XML names.

If a property set instance does not have a value for its Type member variable, the XML Converter uses the name PropertySet
for the corresponding element’s name.

Property Set Examples and Their XML Representation
The following is examples of different types of property sets that are available and their XML representation:

An Arbitrary Property Set
 <?Siebel-Property-Set> <PropertySet> <Person> Jack </Person> </PropertySet>

A Siebel Message
 <?Siebel-Property-Set EscapeNames="true"><PropertySet><SiebelMessage MessageID="1-
 111" IntObjectFormat="Siebel Hierarchical" MessageType="Integration Object"
 IntObjName="Sample Account"><ListOfSample_spcAccount>...</
 ListOfSample_spcAccount></SiebelMessage></PropertySet>

An XML Hierarchy
 <?Siebel-Property-Set><PropertySet><_XMLHierarchy><Account><Contact>...</
 Contact></Account><_XMLHierarchy></PropertySet>

The following illustrates an example property set hierarchy and the XML that would be generated for each component of the
hierarchy. The XML was generated with the EscapeNames user property set to True.

9

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

Properly Formatted Property Sets
Property sets are used internally to represent Siebel EAI data. A property set is a logical memory structure that is used to
pass the data between business services.

To benefit from using the XML Converter, be sure that any code you use, such as eScript or Siebel VB, correctly represents
property sets within Siebel Business Applications for the XML Converter Business Service. This includes necessary arguments
and values. An example of such code is:

 Set Inputs = TheApplication.NewPropertySet

10

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

 REM Fill in Siebel Message Header
 Inputs.SetType "SiebelMessage"
 Inputs.SetProperty "MessageId", ""
 Inputs.SetProperty "MessageType", "Integration Object"
 Inputs.SetProperty "IntObjectName", "Sample Account"

 Set svc = theApplication.GetService("EAI XML Converter")
 Set XMLInputs = theApplication.NewPropertySet
 Set XMLOutputs = theApplication.NewPropertySet

 XMLInputs.AddChild Inputs

 svc.InvokeMethod "PropSetToXML", XMLInputs, XMLOutputs

11

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 3
XML Representation of Property Sets

12

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

4 XML Representation of Siebel Integration
Object Instances

XML Representation of Siebel Integration Object Instances
This chapter describes the XML representation of Siebel integration object instances. It includes the following topics:

• About Representing Siebel Integration Object Instances as XML Documents

• Integration Objects

• Elements and Attributes

• How XML Names Are Derived from Integration Objects

• Elements Within a Siebel Integration Object Document

• Example XML Document

• XML Schema Definitions (XSDs)

• Document Type Definitions (DTDs)

About Representing Siebel Integration Object Instances as
XML Documents
You can represent any integration object instance in Siebel Business Applications as an XML document (or created from
a properly formatted XML document). This makes it convenient to save an object to a file for viewing or to send it over a
transport, such as HTTP or IBM WebSphere MQ. You can control the format of the XML document through the integration
object definition in the Siebel Repository. You can use the EAI XML Converter business service to perform translations
between integration object instances and the corresponding XML representation.

Integration Objects
Integration objects are logical representations of Siebel business objects or external application data, such as externally
defined XML documents. An integration object is metadata stored in the Siebel Repository. One integration object can be
mapped to another integration object. Instances of integration objects are used in integration processes for data exchange.
For more information on integration objects, see Integration Platform Technologies: Siebel Enterprise Application
Integration .

13

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

Integration objects are made up of three distinct data sections: the canonical, the external, and the XML, as shown in the
following.

14

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

The integration object schema in the Siebel Repository is composed of the three data sections shown in the following table.

Name Purpose

Canonical section

Stores information about an object in a common representation. The names used for objects,
components, and fields are the names that the designer wishes to be visible. The data types are the
Siebel business component field types that are used by the Object Manager.

External section

Stores information about how the object, component, or field is represented in the external system.
For integration objects based on business objects, this can include the business object names,
component names, and field names and data types.

XML section

Stores the mapping between an integration object definition and its XML representation. This allows
any integration object to be represented as XML.

Elements and Attributes
An XML document consists of one or more elements. An element consists of a start tag and an end tag that enclose
character data, nested elements, or both. For example, here is a simple element called Element1, with two tags containing
character data:

 <Element1>
 This is character data.
 </Element1>

The next example shows an element nested within another element. Parent-child relationships are frequently represented
using nested elements.

 <Element1>
 <NestedElement>

15

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

 data
 </NestedElement>
 </Element1>

Elements can have attributes that refine or modify the element’s default attributes. An attribute is a key and value pair of
strings, contained within the start tag of an element. In the following example, status is an attribute that is assigned the value
test. Attributes are frequently used to specify metadata about an element.

 <Element1 status="test">
 This is character data.
 </Element1>

In the Siebel representation, objects and components are represented by XML elements. A set of integration object instances
of a given type are nested within the object element for that type.

An element represents each component. Child components are nested within their parent’s elements. Fields can be either
elements nested within their containing component element or attributes of the component element. You can set the XML
Style attribute of the integration component field definition to specify which style represents a given field.

How XML Names Are Derived from Integration Objects
When Siebel Tools generates the XML representation of your integration object, it derives the XML element and attribute
names from the Siebel Repository names of the integration object, its components, and fields. However, Siebel Repository
names can include characters not permitted in an XML name, such as blank spaces. Thus, some translation must be
performed to make sure a valid XML name is derived from such a repository name. In addition, XML element names must
be unique in the document in which they are defined. This can cause a parsing problem if two integration components have
fields with the same name.

To handle these issues, Siebel Tools stores a separate name in the XML Tag attribute of the integration object, component,
and field. When you create an integration object using a wizard, the XML Tag attribute is initialized to the value of the Name
column, with any illegal characters removed from the name. In addition, Siebel Tools might add a number to the tag name
if the same name is already in use by a different object, component, or field. You can change the XML names after the
integration object has been created, if necessary.

Elements Within a Siebel Integration Object Document
An integration object can be textually represented as an XML document. In order to exchange data using the Siebel
integration object document, you must have an understanding of its XML structure, including elements and attributes. The
document can include up to five different types of elements:

• Siebel Message Element

• Object List Element

• Integration Component Elements

• Component Container Elements

• Integration Field Elements

16

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

Siebel Message Element
When integration object documents are sent to an external system, they might be encapsulated within a SiebelMessage
element. This element identifies the document as a Siebel message and indicates that the document includes integration
object instances. It can also provide metadata, such as the integration object type and a message ID.

Note: The SiebelMessage element is optional. The presence of this element is determined at run time through
arguments to the EAI XML Converter Business Service.

Since the Object List element is optional, SiebelMessage can include a Root component element to allow cases when the
Object List element is left blank (omitted). For details on Object List element, see Object List Element.

Attributes
The SiebelMessage element can contain a number of attributes, which are known as the Message Header attributes.
In addition, you can add arbitrary attributes to the SiebelMessage element. An XSD or DTD for the document can be
dynamically generated inline to include all present attributes. The following standard attributes have well-defined meanings.

Int Object Name
The name of the integration object type contained within the message. If the message is an integration object message, you
must specify this property.

MessageId
A unique ID for a given message as it flows through a connector. This is an optional field that might be useful for tracking
message processing.

Child Elements
For integration object messages, the SiebelMessage element includes exactly one object list element. Since only one object
list element is permitted in each XML document, only one integration object type can be represented in a given document.

Object List Element
The object list element is a container for the integration object instances. The XML Tag attribute value that you specify in the
integration object definition becomes the name of this element. By default, an integration object wizard generates an XML
Tag value of ListOfName, where Name is the name of the integration object, with any illegal XML characters removed—for
example, spaces.

Note: The Object List element is optional. The XML element is not generated if the Object List element is blank
(omitted) in the integration object definition.

Attributes
None.

17

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

Child Elements
The object list element can include one or more instances of the integration object's root component element. A root
component element corresponds to one integration object instance.

Integration Component Elements
An integration component element corresponds to an integration component type in the repository definition.

Component parent-child relationships are represented by a structure in which the child components of a given component
type are nested within a component container element. The component container element is, in turn, nested within the
parent component instance.

Thus, all components within an integration object instance are indirectly nested within the root component. Only one instance
of the root component is allowed for each object instance. The root component is nested within the object list element. The
object list element permits multiple integration object instances of a given type within the XML document.

The field children of an integration component element can be either elements or attributes, depending on the XML Style
setting for each field. The component container elements of a given component appear after the fields in the XML document.

In the following example, Contact child components are nested within the Account component instance:

 <Account>
 . . .
 Account Field Elements
 . . .
 <ListOfContacts>
 <Contact> . . . Contact 1 . . . </Contact>
 <Contact> . . . Contact 2 . . . </Contact>
 </ListOfContacts>
 <Account>

Attributes
Any field that has an XML Style set to Attribute is an attribute of its component element. The name of the attribute is the same
as the XML Tag of the field.

Child Elements
An integration component element can include integration field elements and component container elements. The field
elements must appear before the component container elements. The name of a field element is determined by the value of
its XML Tag attribute, as defined in Siebel Tools.

Component Container Elements
An integration component container encloses a list of child component instances of the same type. The integration
component container organizes child component instances by type and permits the specification of empty containers—
functionality needed by the EAI Siebel Adapter. All component types, except the root component, are enclosed within
container elements.

18

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

By default, the name of a component container element is ListOf plus the element name of the component type it encloses.
For example, the component container for Contact is ListOfContact. You can override the default name by specifying a name
in the XML Container element field of the component's definition.

Another option is to leave the container element blank. In that case, the component element is the child of the parent
component element.

Attributes
None.

Child Elements
Zero or more instances of the component element associated with the container.

Integration Field Elements
An integration field element includes the value of the specified field. It must appear in an instance of its parent integration
object type. If a field element has no contents (signified by a start tag immediately followed by an end tag), it is interpreted to
mean that the field's value should be set to empty. The same is true when a field’s value is empty; the field element will have a
start tag immediately followed by an end tag.

The order in which XML fields appear within their parent component element is determined by the Sequence field in the Tools
definition of the field.

All fields are optional. If a field element is not present in a component element, the field is not created in the integration object
instance.

Child Elements
Integration component fields have a property called XML Parent Element. If this property contains the name of another field,
then that field (either as an attribute or as an element) appears as a child of its parent field’s element.

Example XML Document
The following XML document represents an instance of the Sample Account integration object. This document includes one
account instance: A. K. Parker Distribution. The instance has one business address and two contacts.

Note that the PhoneNumber field of the business address appears as an attribute. This means that the XML Style in the
field’s definition in Siebel Tools is set to the Attribute style. The rest of the fields are represented by XML elements.

 <SiebelMessage MessageId=""
 IntObjectName="Sample Account">
 <ListofSampleAccount>
 <Account>
 <Name>A. K. Parker Distribution</Name>
 <Location>HQ-Distribution</Location>
 <Organization>Siebel Organization</Organization>
 <Division></Division>
 <CurrencyCode>USD</CurrencyCode>
 <Description></Description>
 <HomePage></HomePage>

19

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

 <ListOfBusinessAddress>
 <BusinessAddress PhoneNumber="6502955000">
 <City>Menlo Park</City>
 <Country>United States of America</Country>
 <FaxNumber></FaxNumber>
 <StreetAddress>1000 Industrial Way</StreetAddress>
 <Province></Province>
 <State>CA</State>
 <PostalCode>94025</PostalCode>
 </BusinessAddress>
 </ListOfBusinessAddress>
 <ListOfContact>
 <Contact>
 <FirstName>Stan</FirstName>
 <JobTitle>Senior Mgr of MIS</JobTitle>
 <LastName>Graner</LastName>
 <MiddleName></MiddleName>
 <Organization>Siebel Organization</Organization>
 <PersonalContact>N</PersonalContact>
 </Contact>

 <Contact>
 <FirstName>Susan</FirstName>
 <JobTitle>President and CEO</JobTitle>
 <LastName>Grant</LastName>
 <MiddleName></MiddleName>
 <Organization>Siebel Organization</Organization>
 <PersonalContact>N</PersonalContact>
 </Contact>
 <Contact>
 </ListOfContact>
 </Account>
 </ListofSampleAccount>
 </SiebelMessage>

XML Schema Definitions (XSDs)
The XML Schema Definition (XSD) language describes the content of an XML document. The definition can describe which
elements are allowed and how many times the element can be seen. The schema can be used to generate an integration
object through Siebel Tools. The feature is accessed through the Integration Object Builder.

Here is an example of an XSD for the Sample Account integration object as generated by Siebel Tools:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://
example.com/xsd/SampleAccount.xsd" xmlns:xsdLocal="http://example.com/xsd/
SampleAccount.xsd" >
<xsd:element name = "elem1" type ="xsd:string" minOccurs ="0" maxOccurs = "1"/>
<xsd:element name = "elem2" type ="xsd:string" minOccurs ="0" maxOccurs="unbounded"/>
</xsd:schema>

Note: All Siebel data types except DTYPE_ATTACHMENT map to xsd:string. DTYPE_ATTACHMENT maps to
xsd:base64Binary.

20

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

Document Type Definitions (DTDs)
The Document Type Definition (DTD) provides metadata describing the structure of an XML document. It can be used
by validating XML parsers to make sure that a given document instance conforms to the expected structure, that is, the
structure defined in the DTD.

You can generate the DTD for an integration object by using the Generate Schema feature in Siebel Tools. The feature is
activated by clicking the Generate Schema button in Siebel Tools after selecting a given integration object definition.

Note: Attachment attributes are not supported in DTDs because they are not part of the integration object
definition and only appear at runtime.

The SiebelMessage element is optional. It can be omitted by selecting the No Envelope option in the Generate XML Schema
wizard.

The DTD for the message header is generated in the actual XML document at run-time. The generation of this inline DTD and
a reference to the external portion is enabled through the GenerateDTD parameter of the EAI XML Converter.

Here is an example of a DTD for the Sample Account integration object as generated by Siebel Tools:

 <!-- Siebel DTD Generation -->
 <!-- Shared Element List. These elements are guaranteed -->
 <!-- to have the same datatype, length, precision, and scale.-->
 <!ELEMENT Name (#PCDATA) >
 <!ELEMENT Location (#PCDATA) >
 <!ELEMENT Division (#PCDATA) >
 <!ELEMENT Description (#PCDATA) >
 <!ELEMENT CurrencyCode (#PCDATA) >
 <!ELEMENT StreetAddress (#PCDATA) >
 <!ELEMENT State (#PCDATA) >
 <!ELEMENT PostalCode (#PCDATA) >
 <!ELEMENT Country (#PCDATA) >
 <!ELEMENT City (#PCDATA) >
 <!ELEMENT Organization (#PCDATA) >
 <!ELEMENT ListofSampleAccount (Account+) >
 <!ELEMENT Account (Name?,
 Location?,
 Organization?,
 Division?,
 CurrencyCode?,
 Description?,
 HomePage?,
 LineofBusiness?, BusinessAddress?, Contact?)>
 <!ELEMENT HomePage (#PCDATA) >
 <!ELEMENT LineofBusiness (#PCDATA) >
 <!ELEMENT BusinessAddress (BusinessAddress*) >
 <!ELEMENT BusinessAddress (City?,
 Country?,
 FaxNumber?,
 StreetAddress?,
 Province?,
 State?,
 PostalCode?)>
 <!ATTLIST BusinessAddress PhoneNumber CDATA #IMPLIED >
 <!ELEMENT FaxNumber (#PCDATA) >
 <!ELEMENT Province (#PCDATA) >
 <!ELEMENT Contact (Contact*) >
 <!ELEMENT Contact (CellularPhone?,

21

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 4
XML Representation of Siebel Integration Object Instances

 FirstName?,
 HomePhone?,
 JobTitle?,
 LastName?,
 MiddleName?,
 Organization?,
 PersonalContact?,
 Account?,
 AccountLocation?)>
 <!ELEMENT CellularPhone (#PCDATA) >
 <!ELEMENT FirstName (#PCDATA) >
 <!ELEMENT HomePhone (#PCDATA) >
 <!ELEMENT JobTitle (#PCDATA) >
 <!ELEMENT LastName (#PCDATA) >
 <!ELEMENT MiddleName (#PCDATA) >
 <!ELEMENT PersonalContact (#PCDATA) >
 <!ELEMENT Account (#PCDATA) >
 <!ELEMENT AccountLocation (#PCDATA) >

Note: All fields are optional, but if they are present, then they must appear in the correct order. The definition of
a field appears only once at the beginning of the DTD, even if its XML tag appears in multiple components. When
creating XML tag names for fields, the wizard only reuses a field name if all instances have the same data type,
length, precision, and scale.

22

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

5 XML Integration Objects and the XSD
Wizard

XML Integration Objects and the XSD Wizard
This chapter discusses the XSD wizard, the supported XSD elements and attributes, and the structure of the XSD XML
integration object, such as user properties. It includes the following topics:

• Creating XML Integration Objects with the XSD Wizard

• Supported XSD Elements and Attributes

• Structure of XSD XML Integration Objects

Creating XML Integration Objects with the XSD Wizard
Siebel EAI provides two different wizards to create XML integration objects. An XML integration object is essentially an
integration object with a base object type of XML. This wizard parses the XML Schema Definition (XSD) file to create an XML
integration object.

To create an integration object
1. Launch Siebel Tools.
2. Select File, then New Object.
3. In the New Object Wizards window, select the EAI tab.
4. Double-click the Integration Object icon.
5. Complete the Integration Object Builder initial page:

a. Select the project from the first drop-down list.
b. Select EAI XSD Wizard as the Business Service.
c. Navigate to the location of the XSD or XML file that you want to use as the basis of the XSD and click Next.

Note: The Simplify Integration Object Hierarchy option creates a simpler and flatter internal
representation of the XML integration object; however, this does not change the external
representation. Having a simpler internal representation makes declarative data mapping easier.

6. Select the source object, give it a unique name, and then click Next.
7. Click on the plus sign to expand the list and select or clear the fields you need from the component.
8. Click Next to get to the final page to review the messages generated during the process and take necessary action

as required.
9. Click Finish to complete the process.

The integration object is displayed in the Integration Objects list.

23

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Note: You must review the integration objects and the integration components created by the Wizard and
complete their definitions based on your requirements.

Selecting the Source Object in the XSD Wizard
Each XML document has exactly one root or document element. The root element corresponds to the integration object.
However, because an XSD or DTD file can be used by a vendor to specify the XML documents that it can generate, the root
element cannot be inferred from the XSD or DTD file. For example, Ariba can generate XML for contracts, order requests,
subscriptions, and so on. A single file describes the possible XML documents.

As a reference when determining the root element, use an XML document that best represents the XML documents you are
integrating. The root element is the root of the XML hierarchy tree. No part of the root element appears within the content of
any other element. For all other elements, the <Start></Start> tag appears within the content of another element.

To view any XML hierarchy, with collapsible and expandable elements, use an XML editor, an XML reader, or an XML-capable
browser such as Microsoft Internet Explorer.

Supported XSD Elements and Attributes
Not all XSD schema elements and attributes are supported by Siebel Business Applications. The following tables list all the
XSD elements and attributes with Siebel CRM support levels for them. The following terminology is used in these tables:

• Ignored. This level of support means that processing will continue, and an error is not generated. However, the
information given for the specified element or attribute is ignored.

• Mapped. This level of support means that the information specified in a given element or attribute is used in the
integration object representation.

• Not mapped. This level of support means that the given element or attribute information is not used. However,
children of the element will be processed.

•
Note: The Siebel application does not perform any formatting or processing for any of the schema types.
All the scalar types such as string, ID, or integer are treated as strings. When converted to an integration
object and integration component field, DataType is set to DTYPE_TEXT.

The following lists XSD schema elements and the level of support for them in Siebel Business Applications.

Element Siebel CRM Support Level Details

all

Not mapped. Treated as
sequence.

Not applicable

annotation

Mapped

Mapped as a parent's comment property.

Children can be mapped only if parent of annotation is mapped to a
component or field.

any

Mapped

Mapped as a XML Hierarchy if namespace attribute cannot be resolved to
a schema import definition.

24

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Element Siebel CRM Support Level Details

Otherwise, all global elements logically replace the any element that are
then mapped to an integration object using rules for elements.

Acts as a placeholder for any element.

For more information about this element, see Integration Platform
Technologies: Siebel Enterprise Application Integration .

anyAttribute

Mapped

Same as the any element.

Act as a placeholder for any attribute.

For more information about this element, see Integration Platform
Technologies: Siebel Enterprise Application Integration .

appinfo

Ignored

Not applicable

attribute

Mapped

Mapped as a field.

Storing type information is useful when generating schema either after
importing one or manually creating one. Also, useful for type specific
formatting, such as xsd:datetime.

attributeGroup

Mapped

Mapped as children attributes that are added as fields to the parent
element's component.

choice

Not mapped. Treated as
sequence.

Not applicable

complexContent

Mapped

Mapped to add properties and children to the parent element's
component.

Attributes can affect parent (complexType) and children when
restriction and extension are processed.

complexType

Mapped

Mapped if global complexType is starting point for integration object that
maps to root component.

Also mapped when XSDTypeName and XSDTypeNamespace user
properties are set on the root or elements component.

documentation

Mapped

Mapped if Comment property is on a field, component, or object.

element

Mapped

Mapped as a component or field.

If element is of simpleType and maxOccurs is at most 1, then map to
field, otherwise map to component (complexType).

enumeration

Ignored

Not applicable

extension

Mapped

Mapped if merging base type and children into the parent.

Extension element affects the parent for complexContent and
simpleContent.

25

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Element Siebel CRM Support Level Details

field

Ignored

Not applicable

group

Mapped

Mapped if adding children to the parent element's component.

import

Mapped

Preprocessed to receive the additional schema.

Resolve a schemaLocation reference by URI or Local (File).

Whatever is defined in imported schema will belong to a different
namespace.

include

Mapped

Preprocessed to receive the additional schema.

Resolve a schemaLocation reference by URL or Local (File).

Whatever is defined in imported schema can belong to the same
namespace.

key

Ignored

Defines a unique key.

keyref

Ignored

Defines fields for key.

Keyref refers to a key that must exist in the document.

length

Mapped. Does not
support lists.

Mapped for field external length and length.

Fixed length of string-based content. Also might mean length of a list
(number of items).

list

Ignored

Not applicable

maxLength

Mapped

Mapped for field length.

minExclusive,
maxExclusive

Ignored

Not applicable

minInclusive,
maxInclusive

Ignored

Not applicable

minLength

Not mapped

You can use minlength = 0 to indicate that a field can have zero characters,
that is, it is optional. You must manually edit the XSD to specify the
minLength value.

notation

Ignored

Not applicable

pattern

Ignored

Not applicable

redefine

Ignored

Not applicable

26

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Element Siebel CRM Support Level Details

restriction

Mapped

Mapped when adding children to the parent component or field.

Affects its parent: complexContent, simpleContent, simpleType .

Remove the elements and attributes that are not specified as the restriction
ones.

Validate that the elements and attributes used in the restriction are present
in the base type.

schema

Mapped

Namespace information used for object, component, and field.

selector

Ignored

Not applicable

sequence

Not mapped

Not applicable

simpleContent

Mapped

Mapped when adding properties and children to the parent element's
component.

simpleType

Mapped

XSDTypeName and XSDTypeNamespace user properties on parent
element's field or component, or attribute's field.

union

Ignored

Not applicable

unique

Ignored

Not applicable

The following lists XSD schema attributes and the level of support for them in Siebel Business Applications.

Attribute Siebel CRM
Support Level

Details

abstract

Ignored

Not applicable

attributeFormDefault

Ignored

Not applicable

base

Mapped

Mapped if base type is used to create component or field.

block

Ignored

Not applicable

blockDefault

Ignored

Not applicable

default: attribute

Mapped

Mapped to XML Literal value property only.

Provides default value for an attribute when an attribute is missing.

default: element

Mapped

Mapped to XML Literal value property only.

Provides default value for an element when an element is empty.

27

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Attribute Siebel CRM
Support Level

Details

elementFormDefault

Ignored

Not applicable

final

Ignored

Not applicable

finalDefault

Ignored

Not applicable

fixed: attribute or element

Ignored

Not applicable

fixed: simpleType

Ignored

Not applicable

form

Ignored

Not applicable

itemType

Ignored

Not applicable

maxOccurs

Mapped

Maps to the cardinality upper bound on parent element's component.
Maps to One or More (unbounded).

If you want to preserve the maximum number of occurrences, then new
column is needed.

memberTypes

Ignored

Not applicable

minOccurs

Mapped

Maps to the cardinality lower bound on parent element's component. Maps
to Zero or One.

If you want to preserve the minimum number of occurrences, then new
column is needed.

mixed

Ignored

Not applicable

name

Mapped

Maps to the XML Tag of parent element (component, field) or attribute
field or to the XSD Type Name on object, component, or field.

Name of the schema component.

namespace: any,
anyAttribute

Mapped

Namespace for the replacement elements and attributes.

namespace: import

Mapped

Maps to Namespace and XSDNamespace user property on components
and fields that are being imported.

Namespace for the imported elements and attributes.

nillable

Ignored

Not applicable

processContents

Ignored

Not applicable

28

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Attribute Siebel CRM
Support Level

Details

public

Ignored

Not applicable

ref

Mapped

Mapped if metadata starting from global element or attribute that is being
referred to is copied to the referring element (component, field) or attribute
field.

schemaLocation

Mapped

Mapped if used for preprocessing of import or include

substitutionGroup

Ignored

Not applicable

targetNamespace

Mapped

Maps toXSD Type Namespace andXML Tag Namespace user
properties on the integration object, imported component, or field.

Schema targetNamespace to which all schema components definitions in a
particular schema belong (children of schema element).

type

Mapped

Maps to XSDTypeName user property on element's component or field, or
attribute's field.

use

Ignored

Not applicable

version

Ignored

Not applicable

whitespace

Ignored

Not applicable

xpath

Ignored

Not applicable

Structure of XSD XML Integration Objects
The structure of an XSD XML integration object is same as any other integration object. This topic discusses properties
specific to XSD XML integration objects.

Note: For details on integration objects, see Integration Platform Technologies: Siebel Enterprise Application
Integration .

XSD-Specific Integration Object Properties
The following information lists the integration object property that is used to represent XSD as an XML integration Object.

29

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Name Project Base Object Type XML Tag

Name of the integration
object. The value is provided
through the wizard.

The project that the integration
object is built in. The value is
provided through the wizard.

XML

XML Tag used to
represent the integration
object.

XSD-Specific Integration Object User Properties
The following information lists integration object user properties for representing XSD as an XML integration object.

Name Value Description

XMLTagNamespace

targetNamespace

Namespace for the Element XML tags.

XSDTypeName

Name of the root
complexType

Name of the root complexType used to create the integration object.
This is only used through WSDL Import.

XSDTypeNamespace

targetNamespace

The namespace URI of the root complex type. This is only used through
WSDL Import.

XSD-Specific Integration Component Properties
The following information lists the integration component property for representing XSD as an XML integration component.

External Name
Context

Name External
Name

External
Sequence

Cardinality XML Tag XML
Sequence

XPath to
the schema
component
starting with the
global element

XML Tag plus a
sequence number
to make component
name unique within the
integration object

Element
name

XML
Sequence

Based on
minOccurs or
maxOccurs

Element
Name

Sequence
within parent
element

XSD-Specific Integration Component User Properties
The following information lists integration component user properties for representing XSD as an XML integration component.

Name Value Description

XMLTagNamespace

targetNamespace

Namespace for the Element XML tags.

30

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

Name Value Description

XSDTypeName

Component element type
attribute

Type of the element. For instance, for element type="xyz",
XSDTypeName=xyz.

XSDTypeNamespace

NamespaceURI for element
type

Namespace for the element type. This is the Namespace URI for
the element's type name.

XSD-Specific Integration Component Field Properties
The following information lists the integration component field property for representing XSD as an XML integration
component.

Name Data Type Length External Name External Length XML Literal Value

XML Tag

DTYPE_TEXT

maxLength or
length

Attribute or element
name

Length

fixed or default

XSD-Specific Integration Component Field User Properties
The following information lists integration component field user properties for representing XSD as an XML integration
component.

Name Value Description

XMLTagNamespace

targetNamespace

Namespace for element or attribute XML tags.

XSDTypeName

Field element or attribute
XML Schema type name

Type of the element or attribute. For instance, for element type
="xyz", XSDTypeName=xyz.

XSDTypeNamespace

NamespaceURI for element
or attribute type

Namespace for the element or attribute type. In effect, this is the
Namespace URI for the element's or attribute’s type name.

31

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 5
XML Integration Objects and the XSD Wizard

32

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 6
XML Integration Objects and the DTD Wizard

6 XML Integration Objects and the DTD
Wizard

XML Integration Objects and the DTD Wizard
This chapter discusses the DTD wizard and how it creates XML integration objects. It includes the following topics:

• Creating XML Integration Objects with the DTD Wizard

• How the DTD Wizard Creates XML Integration Objects

Creating XML Integration Objects with the DTD Wizard
Siebel EAI provides two different wizards to create XML integration objects. An XML integration object is essentially an
integration object with a base object type of XML. This wizard parses an external Document Type Definition (DTD) file to
create an XML integration object.

To create an integration object
1. Select File, then New Object.
2. Select the EAI tab.
3. Double-click the Integration Object icon.
4. Complete the Integration Object Builder initial page:

a. Select the project from the first drop-down list.
b. Select EAI DTD Wizard as the Business Service.
c. Navigate to the path to the location of the DTD or XML file that you want to use as the basis of the DTD and

click Next.

Note: The Simplify Integration Object Hierarchy option creates a simpler and flatter internal
representation of the XML integration object. Please note that this does not change the external
representation. Having a simpler internal representation makes declarative data mapping easier.

5. Select the source object and give it a unique name, and then click Next.
6. Click on the plus sign to expand the list and select or clear the fields based on your business requirements.
7. Click Next to go to the final page to review messages generated during this process and take necessary action.
8. Click Finish to complete the process.

The integration object is displayed in the Integration Objects list.

Note: You must review the integration objects and the integration components created by the Wizard and
complete their definitions based on your requirements.

33

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 6
XML Integration Objects and the DTD Wizard

Selecting the Source Object in the DTD Wizard
Each XML document has exactly one root or document element. The root element corresponds to the integration object.
However, because an XSD or DTD file can be used by a vendor to specify the XML documents that it can generate, the root
element cannot be inferred from the XSD or DTD file. For example, Ariba can generate XML for contracts, order requests, and
subscriptions. A single file describes the possible XML documents.

As a reference when determining the root element, use an XML document that best represents the XML documents you are
integrating. The root element is the root of the XML hierarchy tree. No part of the root element appears within the content of
any other element. For all other elements, the <Start></Start> tag appears within the content of another element.

To view any XML hierarchy, with collapsible and expandable elements, use an XML editor, an XML reader, or an XML-capable
browser such as Microsoft Internet Explorer.

How the DTD Wizard Creates XML Integration Objects
XML integration objects consist of the following:

• Elements

• Attributes

• Element’s #PCDATA

• Names

• Hierarchy

• Connectors

• Cardinality

CAUTION: The DTD Wizard removes recursion by breaking loops. Repeating entities in XML at run time are not
supported.

Elements
Generally, XML elements map to components within integration objects. However, in many cases the component is so simple
that it is a performance optimization to map these elements into component fields of the parent element rather than as child
components.

Elements are expressed this way (within brackets and starting with an exclamation point):

<!ELEMENT car (year, model, color+)>

An element can be mapped to a component field when the following three properties are satisfied:

• The component field must match an element within the DTD.

• The component field must match the cardinality of the element in the DTD; in other words, if the DTD specifies only
one instance of this element type is valid, all subsequent appearances of this element type are illegal.

• The element must appear within the root element; any element appearing outside of the root is illegal.

When an element is mapped to component field, the component field has the property XML Style set to Element.

34

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 6
XML Integration Objects and the DTD Wizard

Attributes
Attributes include additional information related to an element, can be either required or implied (optional), and might
have a default value. For example, an element might be a car with soundsystem, transmission, and doors as attributes.
Soundsystem can be any text and is required; transmission is required because there is a default listed; other is optional.This
would be expressed this way:

<!ELEMENT car>
<!ATTLLST car
 soundsystem CDATA #REQUIRED
 transmission (automatic | manual | 5-speed-manual) "automatic"
 other CDATA #IMPLIED>

Attributes are always mapped to component fields and are related directly to elements. The component field within Siebel
application has the XML Style property set to Attribute.

Element’s #PCDATA
If the element is mapped to an integration component, then its #PCDATA is mapped to a component field <!Element>
#PCDATA. If the element is mapped to a field, then the #PCDATA is mapped to the value of the field.

Names
Name is the name of the component or the field of the integration object. Because these names have to be unique within an
integration object, the names might have suffixes attached to make them unique.

• Property External Name is the name of the attribute or the element in the external system, such as CustName.

• Property XML Tag is the name of the tag in the XML, such as <customer>.

Hierarchy
The parent components of integration components in an integration object correspond to their parents in XML. For integration
component fields, if the property XML Parent Field is set, then the field in the same component with its Name value equal
to the XML Parent Field corresponds to the parent in the XML. This happens because elements can be mapped to fields of
integration components.

For integration component fields, if the property XML Parent Field is not set, then the parent component corresponds to the
parent in the XML.

Connectors
Connectors specify the order of elements and either/or relationships, if one exists, as shown in the following.

35

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 6
XML Integration Objects and the DTD Wizard

Connector Explanation Example

,

followed by

(a,b)

|

one or the other

(a | b)

CAUTION: The Siebel DTD wizard does not support "one or the other" (|) relationships expressed in DTDs.
"One or the other" (|) will be treated the same as "followed by" (,).

Cardinality
As shown in the following, the DTD syntax allows you to specify a cardinality (the number of times an element can appear
within an XML document) for elements using the following modifiers: question mark (?), plus sign (+), and asterisk (*), or none.
Elements with a cardinality, or occurrence, specified in a DTD map only to Integration Components. The Cardinality property
in the Integration Component within Siebel maps to the specified cardinality information in the DTD.

DTD Element
Occurrence
Operator

Description Integration
Component
Cardinality Property

Description

None

Appears once

Not applicable

Not applicable

?

Appears 0 or once

Zero or One

Appears 0 or once

+

Appears one or more times

One or More

Appears one or more times

*

Can appear 0 or more times

Zero or More

Can appear 0 or more times

No modifier

Appears once

One

Appears once

The specification for DTDs supports using parentheses to express complex hierarchical structures. For example:

<!ELEMENT rating ((tutorial | reference)*, overall)+ >

The DTD Wizard uses the operator (?, *, +, or "none") closest to the child element as that child element’s cardinality. In
addition, the DTD Wizard will ignore such grouping by parentheses as illustrated in the preceding example.

36

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

7 Siebel XML Converters

Siebel XML Converters
This chapter provides detailed information about the various Siebel XML converters. It includes the following topics:

• About Siebel XML Converters

• EAI XML Converter

• XML Hierarchy Converter

• EAI Integration Object to XML Hierarchy Converter

• XML Converter

• Siebel XML Converter Business Service Comparison

• EAI XML Write to File Business Service

• EAI XML Read from File Business Service

About Siebel XML Converters
Siebel EAI includes four XML converter business services:

• EAI XML Converter

• XML Hierarchy Converter

• EAI Integration Object to XML Hierarchy Converter

• XML Converter

Note: XML converters might add unexpected carriage returns throughout the output document, for readability
reasons. These characters are not significant and can be removed if the receiving application does not expect
them and produces a parsing error. You can use eScript or Siebel VB to remove them.

Siebel XML Converter Business Service Comparison outlines the differences among these converters. Using these
converters, Siebel EAI supports three types of standard XML integrations:

• XML integration using Siebel XML. This integration uses XML that conforms to the XML Schema Definition (XSD),
Document Type Definition (DTD), or schema generated from any Siebel integration object. Siebel XML is generated
by the external application or by a third-party product. This type of integration uses the EAI XML Converter business
service.

• XML integration without using integration objects. For this integration, any necessary data mapping and data
transformation must be handled using custom eScripts. This type of integration uses the XML Hierarchy Converter
business service.

• XML integration using XML integration objects. With this integration, XML integration objects are mapped to Siebel
integration objects using Siebel Data Mapper and are based on external XSDs or DTDs. XML integration objects are
used to map data between the external application and Siebel Business Applications. This type of integration uses
the EAI XML Converter business service.

37

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Note: These converters do not support Shift-JIS page code on UNIX platforms.

You can specify most parameters for the XML Converters as either business service method arguments or as user properties
on the business service. If a business service method argument and a user property have the same name, the business
service method argument always takes precedence over the user property.

Note: There are also two associated business services for XML that combine XML Converters with file reading
and writing, which are useful for testing and debugging during the development phase. These are the EAI XML
Read from File business service and the EAI XML Write to File business service.

EAI XML Converter
The EAI XML Converter uses integration object definitions to determine the XML representation for data. It converts the data
between an integration object hierarchy and an XML document. The following shows the translation of an XML document
into an integration object property set in Siebel application and back again. The integration object property set of type Siebel
Message will appear as a child of the Service Method Arguments property set.

The following topics are also described here:

• EAI XML Converter Parameters

• EAI XML Converter Business Service Methods

• Integration Object Hierarchy to XML Document Method Arguments

• XML Document to Integration Object Hierarchy Method Arguments

38

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

EAI XML Converter Parameters
You can control the location of where you want the temporary EAI XML Converter file generation to occur as well as the
threshold by setting two server component parameters as described in the following table. For more information about setting
these and other server component parameters, see Siebel System Administration Guide .

Server Component
Parameter Name

Server Component Type Description

XMLTempFilePath

EAIXMLConvSubsys

Use this parameter to specify the location where you want the
temporary XML conversion files generated when EAI XML Converter
response size is greater then the size specified in the XMLTempFileSize
parameter. By default, if the response size is greater than 50kb, then
generation occurs in the SIEBSRVR_ROOT \temp directory.

XMLTempFileSize

EAISubSys

Use this parameter to specify the threshold size for EAI XML Converter
method responses. For more information about these methods, see
Siebel XML Converter Business Service Comparison.

EAI XML Converter Business Service Methods
There are two methods for the EAI XML Converter: Integration Object Hierarchy to XML Document and XML Document
to Integration Object Hierarchy, as described in the following table. The arguments for each method appear in Integration
Object Hierarchy to XML Document Method Arguments, Integration Object Hierarchy to XML Document Method
Arguments, XML Document to Integration Object Hierarchy Method Arguments, and XML Document to Integration
Object Hierarchy Method Arguments.

Display Name Name Description

Integration Object Hierarchy to XML
Document

IntObjHierToXMLDoc

Converts an integration object hierarchy into an
XML document.

XML Document to Integration Object
Hierarchy

XMLDocToIntObjHier

Converts an XML document into an integration
object hierarchy.

Integration Object Hierarchy to XML Document Method Arguments
The following table describes the input arguments for the Integration Object Hierarchy to XML Document method of the EAI
XML Converter.

Display Name Name Data Type Description

Siebel Message

SiebelMessage

Hierarchy

The Integration Object Hierarchy to be converted
to XML.

39

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data Type Description

XML Character
Encoding

XMLCharEncoding

String

The character encoding to use in the XML
document. The default is UTF-16 for the Unicode
version of Siebel Business Applications.

Use Siebel Message
Envelope

UseSiebelMessageEnvelope

String

Inserts the Siebel Message Envelope into the
XML document. The default is True.

Ignore Character Set
Conversion Errors

IgnoreCharSetConv Errors

String

If some characters cannot be represented in
the destination character set (like the local code
page), then the errors can be ignored. The errors
are not ignored by default. For both situations, a
warning error entry is created.

Tags on Separate
Lines

Tags on Separate Lines

String

Default is True, which means that a line feed is
placed at the end of each tag. If False, then no
line feed is added to the end of each tag; the
XML message is generated in a single line.

XML Header Text

XMLHeaderText

String

Text to prepend to the beginning of the XML
document data.

Generate
Namespace
Declarations

GenerateNamespaceDecl

String

Default is False. If True, then the namespace
declarations will be generated.

Generate Processing
Instructions

GenerateProcessingInstructions

String

Default is True. If set to False, then the Siebel
processing instructions are not written.

Generate Schema
Types

GenerateSchemaTypes

String

Default is False. If set to True, then XSD schema
types will be generated if set on the integration
objects user properties.

Namespace

Namespace

String

If a namespace is defined here, then it will
override any namespace defined in the user
properties of an integration object.

The following table describes the output argument for the Integration Object Hierarchy to XML Document method of the EAI
XML Converter.

Display Name Name Data Type Description

XML Document

<Value>

String

The resulting XML document.

XML Document to Integration Object Hierarchy Method Arguments
The following table describes the input arguments for the XML Document to Integration Object Hierarchy method of the EAI
XML Converter.

40

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data
Type

Description

XML Document

<Value>

String

The input XML document.

Integration
Object Name

IntObjectName

String

Name of the Integration Object to use in cases
where the Siebel Message envelope might not be
present.

Integration
Object Lookup
Rule Set

IntObjectNameLookupRuleSet

String

Rule Set for the EAI Dispatcher Service for finding
out Integration Object Name in cases where the
Siebel Message envelope might not be present.

Validate External
Entity

ValidateExternalEntity

String

If set to True, then the parser will be set to validate
against external metadata, such as DTDs.

If set to True, then the DOCTYPE definition must
be included in the incoming XML header, for
example:

<!DOCTYPE SiebelMessage SYSTEM
"c:\temp\ListOfMyInbound.dtd">

External Entity
Directory

ExternalEntityDirectory

String

The directory to use for finding external entities
referenced in the XML document, such as DTDs.

Truncate Field
Values

TruncateFieldValues

String

Default is False. If True, then truncate any fields
longer than their maximum size, as specified in the
Integration Component field definition.

Ignore Character
Set Conversion
Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set, such as the local
code page character set, then conversion errors
are logged, including a warning log entry. When
set to True, only a warning message is logged.

Contains Inline
Attachments

ContainsInlineAttachments

String

This is True if the file attachment content was
included in the original XML document. Otherwise
it is False. From MIME (Multipurpose Internet Mail
Extensions) Converter only.

Process
Elements Only

ProcessElementsOnly

String

Default is False. If set to True, then processing of
attributes is skipped.

The following describes the output arguments for the XML Document to Integration Object Hierarchy method of the EAI XML
Converter.

Display Name Name Data Type Description

Siebel Message

SiebelMessage

Hierarchy

The Integration Object Hierarchy to be converted to XML.

XML Character
Encoding

XMLCharEncoding

String

Character encoding of the XML document, detected by the
converter independent of the parser.

41

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

XML Hierarchy Converter
The XML Hierarchy Converter does not use integration object metadata, but instead relies on simple rules for converting
between an XML hierarchy and an XML document. The important distinction between this service and the XML Converter is a
Property Set of type XMLHierarchy, which is always presented as a child of Service Method Arguments and as a parent of the
XML document root element.

As shown in the following, every XML element becomes a property set where the XML tag name becomes the Type. For
example, the XML element Contact becomes a property set of the type Contact in Siebel application. In addition, every XML
attribute becomes a property within the element’s property set. For example, if the attribute of the XML element Contact is
City = Toronto, then "City=Toronto" will be a property for Contact.

The convenience of having this representation is that the XML Hierarchy Converter can convert to and from this
representation in the same way, independent of whether or not the XML document includes a Siebel Message or an external
XML document. This representation is also handled in Siebel Workflow because it allows all the XML documents in memory to
be treated as the Hierarchical Service Parameter of type XMLHierarchy.

XML Hierarchy Representation in Siebel Business Applications
• As illustrated in the image in XML Hierarchy Converter, there is a Property Set of type XMLHierarchy that always

appears as a child of the Service Method Argument and the parent of the root XML element.

• Elements are represented by Property Sets. The XML tag is the type in the property set and the value assigned
to that XML tag is the Value in the property set. For example, if an XML element has a value such as <Contact
City="Toronto">Davis, Pace</Contact> as shown in XML Hierarchy Converter, then the Value in the property set
would be set to Davis, Pace and the Type in the property set would be set to contact.

• Attributes are represented as properties on the Property Set that represent the attribute’s element.

• Child elements are represented as child property sets and Parent elements as Parent property sets.

• Processing instructions are represented as a child Property Set of type ProcessingInstructions, which is at the same
level as the root element (the child of XML Hierarchy). In XML Hierarchy Converter, the root element is Account.

42

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

External entity resolution (XXE)has been disabled by default for security reasons and XML conversion will fail if the
xml input has unknown External entities. To allow the external entities (XXE), user need to add the user property
"DisableDefaultEntityResolution" with value "false" to the above business services.

• When DisableDefaultEntityResolution = false external entities (XXE) will be ALLOWED.

• When DisableDefaultEntityResolution = true external entities (XXE) will be NOT BE ALLOWED

• When DisableDefaultEntityResolution user property is ABSENT external entities (XXE) will be NOT BE ALLOWED

The following topics are also described:

• XML Hierarchy Converter Business Service Methods

• XML Document to XML Hierarchy Method Arguments

• XML Hierarchy to XML Document Method Arguments

XML Hierarchy Converter Business Service Methods
There are two methods for the XML Hierarchy Converter, as shown in the following. The arguments for each method appear
in XML Document to XML Hierarchy Method Arguments, XML Document to XML Hierarchy Method Arguments, XML
Hierarchy to XML Document Method Arguments, and XML Hierarchy to XML Document Method Arguments.

Display Name Name Description

XML Document to XML
Hierarchy

XMLDocToXMLHier

Converts an XML document into an XML
Hierarchy.

XML Hierarchy to XML
Document

XMLHierToXMLDoc

Converts an XML Hierarchy into an XML
document.

XML Document to XML Hierarchy Method Arguments
The following describes the input arguments for the XML Document to XML Hierarchy method of the XML Hierarchy
Converter.

Display Name Name Data Type Description

XML Document

<Value>

String

The input XML Document.

If XML converter business services that expect
XML Document (EAI XML Converter, XML
Converter, XML Hierarchy Converter) are being
used, then <Value> should contain a binary
buffer rather than a text string.

With workflows, use the Binary data type for the
process property for XML Document.

Escape Names

EscapeNames

String

Invalid characters in XML tags will be escaped,
using Siebel’s internal escape format.

43

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data Type Description

If True, then process Escape characters (this is
the default).

If False, then do not process Escape
characters.

Validate External
Entity

ValidateExternalEntity

String

If True, then the parser will be set to validate
against external metadata, such as DTD
schemas.

External Entity
Directory

ExternalEntityDirectory

String

Location of external entity files, such as DTD
files.

Ignore Character Set
Conversion Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set, such as the
local code page character set, then conversion
errors are logged, including a warning log entry.
When set to True, only a warning message is
logged.

The following describes the output arguments for the XML Document to XML Hierarchy method of the XML Hierarchy
Converter.

Display Name Name Data Type Description

XML Character
Encoding

XMLCharEncoding

String

Character encoding of the XML document, detected by
the converter, independent of the parser.

XML Hierarchy

XMLHierarchy

Hierarchy

The Output XML hierarchy.

XML Hierarchy to XML Document Method Arguments
The following describes the input arguments for the XML Hierarchy to XML Document method of the XML Hierarchy
Converter.

Display Name Name Data Type Description

Escape
Names

EscapeNames

String

Invalid characters in XML tags will be escaped, using
Siebel’s internal escape format.

• If True, then Escape invalid characters (this is the
default).

• If False, then delete invalid characters. (Do not use
in XML tags.)

XML
Character
Encoding

XMLCharEncoding

String

Outputs the XML character encoding to use. If encoding is
blank or not supported, then an error is produced.

44

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data Type Description

XML Header
Text

XMLHeaderText

String

A string in a local code page character encoding to be
inserted before the XML document’s root element, after
the <?xml...?> declaration. This allows custom processing
instructions or an XML header to be inserted before the
XML document data starts.

For instance, if the header text is <myheader>data</
myheader> and the XML document output
without this parameter is <?xml version="1.0"
encoding="UTF-8"?><account>..</account>,
then the document with the XMLHeaderText included will
be:

<?xml version="1.0" encoding="UTF-8"?
><myheader>some data</
myheader><account>.......</account>

XML Hierarchy

XMLHierarchy

Hierarchy

The XML hierarchy.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot represent
a given character set, such as the local code page
character set, then conversion errors are logged, including
a warning log entry. When set to True, only a warning
message is logged.

Tags on
Separate
Lines

Tags on Separate Lines

String

Default is True, which means that a line feed is placed at
the end of each tag. If False, then no line feed is added to
the end of each tag; the XML message is generated in a
single line.

Generate
Processing
Instructions

GenerateProcessingInstructions

String

Default is True. If set to False, then the Siebel processing
instructions are not written.

The following describes the output argument for the XML Hierarchy to XML Document method of the XML Hierarchy
Converter.

Display Name Name Data Type Description

XML Document

<Value>

String

The output XML Document.

EAI Integration Object to XML Hierarchy Converter
The EAI Integration Object to XML Hierarchy Converter can be used if additional types of XML processing are needed, such
as adding new elements, attributes, or envelopes to in-memory integration object property sets. XML Hierarchy property sets
can be manipulated using eScript and Siebel VB.

45

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

The following topics are also described here:

• EAI Integration Object to XML Hierarchy Converter Business Service Methods

• Integration Object Hierarchy to XML Hierarchy Method Arguments

• XML Hierarchy to Integration Object Hierarchy Method Arguments

EAI Integration Object to XML Hierarchy Converter Business Service
Methods
There are two methods for the EAI Integration Object to XML Hierarchy Converter, as shown in the following. The arguments
for each method appear in Integration Object Hierarchy to XML Hierarchy Method Arguments, Integration Object
Hierarchy to XML Hierarchy Method Arguments, XML Hierarchy to Integration Object Hierarchy Method Arguments, and
XML Hierarchy to Integration Object Hierarchy Method Arguments.

Note: You can use the XML Hierarchy property sets to manipulate in memory XML hierarchies, such as to
add new elements, attributes, or envelopes. An XML Hierarchy property set can be converted to and from an
Integration Object property set using EAI Integration Object to XML Hierarchy Converter. An XML Hierarchy
property set can be converted to and from an XML document using the XML Hierarchy Converter.

Display Name Name Description

Integration Object Hierarchy to XML
Hierarchy

IntObjHierToXMLHier

Converts an integration object hierarchy to an
XML hierarchy.

XML Hierarchy to Integration Object
Hierarchy

XMLHierToIntObjHier

Converts an XML hierarchy to an integration
object.

Integration Object Hierarchy to XML Hierarchy Method Arguments
The following table describes the input arguments for the Integration Object Hierarchy to XML Hierarchy method of the EAI
Integration Object to XML Hierarchy Converter.

Display Name Name Data Type Description

Namespace

Namespace

String

If a namespace is defined here, then it will override
any namespace defined in the user properties of
an integration object.

Integration Object
Hierarchy

SiebelMessage

Hierarchy

The integration object hierarchy to be converted.

Use Siebel
Message Envelope

UseSiebelMessageEnvelope

String

Default is True. If set to True, then the Siebel
Message Envelope is used in the XML Hierarchy,
otherwise the Siebel Message Envelope is not
included.

46

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data Type Description

Generate
Namespace
Declarations

GenerateNamespaceDecl

String

Default is False. If set to True, then the namespace
declaration will be generated.

Generate Schema
Types

GenerateSchemaTypes

String

Default is False. If set to True, then XSD schema
types will be generated if set on the integration
objects user properties.

The following describes the output argument for the Integration Object Hierarchy to XML Hierarchy method of the EAI
Integration Object to XML Hierarchy Converter.

Display Name Name Data Type Description

XML Hierarchy

XMLHierarchy

Hierarchy

The converted integration object.

XML Hierarchy to Integration Object Hierarchy Method Arguments
The following describes the input arguments for the XML Hierarchy to Integration Object Hierarchy method of the EAI
Integration Object to XML Hierarchy Converter.

Display Name Name Data Type Description

Contains Inline
Attachments

ContainsInlineAttachments

String

Default is True. DTYPE_ATTACHMENT fields are
assumed to include actual attachment content. If
False, then the field is treated as a reference to an
external attachment.

Integration
Object Name

IntObjectName

String

Integration Object Name can be specified if the
Siebel Message envelope is not present in the
XML hierarchy. The service generates the envelope
automatically if this parameter is present.

Strip Name
Space

StripNamespace

String

Removes the namespace from XML tags.

Truncate Field
Values

TruncateFieldValues

String

Default is True. If True, then truncate any fields longer
than their maximum size. If False, then report fields
that are too long as errors.

XML Hierarchy

XMLHierarchy

Hierarchy

The hierarchy to be converted.

Process
Elements Only

ProcessElementsOnly

String

Default is False. If set to True, then processing of
attributes is skipped.

47

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

The following describes the output argument for the XML Hierarchy to Integration Object Hierarchy method of the EAI
Integration Object to XML Hierarchy Converter.

Display Name Name Data Type Description

Integration Object Hierarchy

SiebelMessage

Hierarchy

The converted integration object.

XML Converter
The XML converter uses no integration object metadata. The rules for converting between XML documents and property sets
are essentially the same as the XML Hierarchy Converter. This service, however, does not create an XML hierarchy property
set, but instead the XML document’s root element becomes a Type top-level property set (for example, Service Method
Arguments). The service is intended for importing and exporting hierarchical data (arguments, definitions, and so on) and for
passing property set arguments to and from business services.

Note: When using this business service, you do not specify an output argument name. The Siebel application
automatically maps the newly generated property set to the specified output process property.

The following shows the translation of an XML document into a property set representation within Siebel XML, and back
again.

External entity resolution (XXE)has been disabled by default for security reasons and XML conversion will fail if the
xml input has unknown External entities. To allow the external entities (XXE), user need to add the user property
"DisableDefaultEntityResolution" with value "false" to the above business services.

• When DisableDefaultEntityResolution = false external entities (XXE) will be ALLOWED.

• When DisableDefaultEntityResolution = true external entities (XXE) will be NOT BE ALLOWED

• When DisableDefaultEntityResolution user property is ABSENT external entities (XXE) will be NOT BE ALLOWED

48

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

The following topics are also described here:

• XML Converter Business Service Methods

• Property Set To XML Method Arguments

• XML To Property Set Method Arguments

XML Converter Business Service Methods
Use the XML Converter when you want to convert any property set to XML, or convert an XML document that is not a Siebel
EAI Integration Object Message to a property set.

There are two methods for the XML Hierarchy Converter, as shown in the following table. The arguments for each method
appear in Property Set To XML Method Arguments, Property Set To XML Method Arguments, XML To Property Set
Method Arguments, and XML To Property Set Method Arguments.

Display Name Name Description

Property Set to XML

PropSetToXML

Converts a property set hierarchy to XML. Returns the result in the Value field of the
Output property set.

XML to Property Set

XMLToPropSet

Converts an XML document stored in the Value field of the property set to a
property set hierarchy. Returns the result in the Output property set.

Property Set To XML Method Arguments
The following table describes the input argument for the Property Set To XML method of the XML Converter.

Name Data Type Description

Child type of the hierarchical process property containing
the entire property set, service method arguments, and
child property set.

Hierarchical

The entire input property set.

You must manually create and name this input
argument if it is required by your business
needs.

The following describes the output argument for the Property Set To XML method of the XML Converter.

Display Name Name Data Type Description

XML Document

<Value>

String

The output XML document.

49

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

XML To Property Set Method Arguments
The following describes the input argument for the XML To Property Set method of the XML Converter.

Display Name Name Data Type Description

XML Document

<Value>

String

The input XML document

The following describes the output argument for the XML To Property Set method of the XML Converter.

Name Data Type Description

Child type of the hierarchical process property containing
the entire property set, service method arguments, and
child property set.

Hierarchical

The entire output property set. You must
manually create and name this output argument if
it is required by your business needs.

Siebel XML Converter Business Service Comparison
The following table shows the basic differences between the four XML Converter business services. The table also gives
guidelines on the appropriate usage. The following terminology is used in :

• Yes. Supported by the converter.

• Yes-second. Supported when used with a second converter.

Note: The EAI Integration Object to XML Hierarchy Converter always requires the XML Hierarchy
Converter in the following instances.

• No. Not supported by the converter.

Support or Requirement EAI XML
Converter

XML Hierarchy
Converter

EAI Integration
Object to XML
Hierarchy Converter

XML
Converter

Siebel Workflow

Yes

Yes

Yes-second

No

Siebel Data Mapper

Yes

Yes-second

(with the EAI
Integration
Object Hierarchy
Converter)

Yes-second

No

Siebel eScript for data transformation

Yes

Yes

Yes-second

No

50

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Support or Requirement EAI XML
Converter

XML Hierarchy
Converter

EAI Integration
Object to XML
Hierarchy Converter

XML
Converter

Custom XML envelopes

No

Yes

Yes-second

No

Dispatch Service

Yes

Yes

Yes-second

No

XML representing business service method
arguments

No

No

Yes-second

Yes

Serializing property sets as XML

No

No

Yes-second

Yes

Internal representation

Siebel Message
(integration
object instance)

XML Hierarchy

Siebel Message
(integration object
instance)

Property Set

Requirement for creating an integration object
definition

Yes

No

Yes

No

EAI XML Write to File Business Service
Use the EAI XML Write to File business service when you want to create an XML document from a property set hierarchy and
write the resulting document to a file. This business service supports all XML converters. The following describes the EAI XML
Write to File business service methods.

Display Name Name Description

Write Siebel Message

WriteEAIMsg

Uses the EAI XML Converter

Write XML Hierarchy

WriteXMLHier

Uses the XML Hierarchy Converter

Write Property Set

WritePropSet

Uses the XML Converter

Write Siebel Message Method Arguments
The following describes the input arguments for the Write Siebel Message method of the EAI XML Write to File business
service.

Display Name Name Data Type Description

File Name

FileName

String

The name of the file where output is to be
written. This is a required field.

51

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data Type Description

Siebel
Message

Siebel Message

Hierarchy

The Integration Object Hierarchy to be
converted to XML.

XML Character
Encoding

XMLCharEncoding

String

Character encoding in the XML document. If
encoding is blank or not supported, then an
error is produced.

Use Siebel
Message
Envelope

UseSiebelMessageEnvelope

String

Default is True. Insert the Siebel Message
Envelope into the XML document.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set, such as the
local code page character set, then conversion
errors are logged, including a warning log entry.
When set to True, only a warning message is
logged.

Tags on
Separate Lines

Tags on Separate Lines

String

Default is True, which means that a line feed is
placed at the end of each tag. If False, then no
line feed is added to the end of each tag; the
XML message is generated in a single line.

Generate
Namespace
Declarations

GenerateNamespaceDecl

String

Default is False. If set to True, then the
namespace declarations will be generated.

Generate
Processing
Instructions

GenerateProcessingInstructions

String

Default is True. If set to False, then the Siebel
processing instructions are not written.

Generate
Schema Types

GenerateSchemaTypes

String

Default is False. If set to True, then XSD
schema types will be generated if set on the
integration objects user properties.

Namespace

Namespace

String

If a namespace is defined here, it will override
any namespace defined in the user properties
of an integration object.

Write Property Set Method Arguments
The following describes the input arguments for the Write Property Set method of the EAI XML Write to File business service.

Display
Name

Name Data Type Description

File Name

FileName

String

The name of the file where output is to be
written. This is a required field.

52

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display
Name

Name Data Type Description

Not
applicable

Child type of the hierarchical process
property containing the entire property
set, service method arguments, and child
property set.

Hierarchical

The entire input property set. You must
manually create and name this input argument
if it is required by your business needs.

Write XML Hierarchy Method Arguments
The following describes the input arguments for the Write XML Hierarchy method of the EAI XML Write to File business
service.

Display Name Name Data Type Description

File Name

FileName

String

The name of the file where output is to be written. This
is a required field.

XML Hierarchy

XMLHierarchy

Hierarchy

The XML Hierarchy Property Set.

Escape Names

EscapeNames

String

Invalid characters in XML tags will be escaped, using
Siebel’s internal escape format.

If True, then Escape invalid characters (this is the
default).

If False, then delete Escape characters.

XML Character
Encoding

XMLCharEncoding

String

Outputs XML character encoding to use. If encoding is
blank or not supported, then an error is produced.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set, such as the local code
page character set, then conversion errors are logged,
including a warning log entry. When set to True, only a
warning message is logged.

Tags on
Separate Lines

Tags on Separate Lines

String

Default is True, which means that a line feed is placed
at the end of each tag. If False, then no line feed is
added to the end of each tag; the XML message is
generated in a single line.

Generate
Processing
Instructions

GenerateProcessingInstructions

String

Default is True. If set to False, then the Siebel
processing instructions are not written.

53

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

EAI XML Read from File Business Service
Use the EAI XML Read from File business service when you want to create a property set hierarchy in the Siebel environment
from an XML document stored as a file. This business service supports both standard and EAI XML conversion.

The following describes the three EAI XML Read from File business service’s methods. The arguments for each method
appear in the tables that follow.

Display Name Name Description

Read Siebel Message

ReadEAIMsg

Uses the EAI XML Converter

Read Property Set

ReadPropSet

Uses the XML Converter

Read XML Hierarchy

ReadXMLHier

Uses the XML Hierarchy Converter

Read Siebel Message Method Arguments
The following describes the input arguments for the Read Siebel Message method of the EAI XML Read from File business
service.

Display Name Name Data
Type

Description

File Name

FileName

String

The name of the file to be read. This is a required
field.

Integration Object
Name

IntObjectName

String

Name of the Integration Object to use in cases
where the Siebel Message header is not present.

Integration Object
Lookup Rule Set

IntObjectLookupRuleSet

String

Rule Set for the EAI Dispatcher Service for finding
the Integration Object Name in cases where the
Siebel Message header is not present.

External Entity
Directory

ExternalEntityDirectory

String

Directory to use for finding external entities
referenced in the XML document, such as DTDs.

Truncate Field Values

TruncateFieldValues

String

Default is True. If True, then truncate any fields
longer than their maximum size. If False, report fields
that are too long as errors.

Ignore Character Set
Conversion Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set, such as the local
code page character set, then conversion errors are
logged, including a warning log entry. When set to
True, only a warning message is logged.

54

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data
Type

Description

Process Elements
Only

ProcessElementsOnly

String

Default is False. If set to True, then processing of
attributes is skipped.

The following describes the output arguments for the Read Siebel Message method of the EAI XML Read from File business
service.

Display Name Name Data Type Description

Siebel Message

SiebelMessage

Hierarchy

The Integration Object Hierarchy converted from
XML.

XML Character
Encoding

XMLCharEncoding

String

Outputs XML character encoding to use. If
encoding is blank or not supported, then an error
is produced.

Read Property Set Method Arguments
The following describes the input argument for the Read Property Set method of the EAI XML Read from File business
service.

Display Name Name Data Type Description

File Name

FileName

String

The name of the file to be read. This is a
required field.

The following describes the output argument for the Read Property Set method of the EAI XML Read from File business
service.

Name Data Type Description

Child type of the hierarchical process property containing
the entire property set, service method arguments, and child
property set.

Hierarchical

The entire output property set. You must
manually create and name this output
argument if it is required by your business
needs.

Read XML Hierarchy Method Arguments
The following describes the input arguments for the Read XML Hierarchy method of the EAI XML Read from File business
service.

55

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 7
Siebel XML Converters

Display Name Name Data
Type

Description

File Name

FileName

String

The name of the XML file to read. This is a Required
field.

Escape Names

EscapeNames

String

Invalid characters in XML tags will be escaped, using
Siebel’s internal escape format.

• If True, then process Escape characters (this is
the default).

• If False, then do not process Escape characters.

External Entity
Directory

ExternalEntityDirectory

String

Directory for external entities such as DTD files.

Ignore Character
Set Conversion
Errors

IgnoreCharSetConvErrors

String

Default is False. If the Siebel application cannot
represent a given character set—such as the local code
page character set—then conversion errors are logged,
including a warning log entry. When set to True, only a
warning message is logged.

The following describes the output arguments for the Read XML Hierarchy method of the EAI XML Read from File business
service.

Display Name Name Data Type Description

XML Character
Encoding

XMLCharEncoding

String

Character encoding of the XML document, detected by the
converter independent of the parser.

XML Hierarchy

XMLHierarchy

Hierarchy

The XML Hierarchy property set.

56

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 8
Scenarios for Siebel EAI XML Integration

8 Scenarios for Siebel EAI XML Integration

Scenarios for Siebel EAI XML Integration
This chapter provides two business scenarios to assist you in implementing XML technologies for your organization. It
includes the following topics:

• Scenario 1: Process of Inbound Integration Using Siebel XML

• Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD

Scenario 1: Process of Inbound Integration Using Siebel
XML
This topic gives an example of how to set up an inbound integration using XML. You might use the integration differently,
depending on your business model.

To set up the inbound integration, perform the following tasks:

• Creating the XML Schema

• Creating the Workflow

• Running the Integration

Creating the XML Schema
Use the Generate Schema wizard in Siebel Tools to create an XSD or a DTD for the incoming XML. For details on using the
Siebel XSD Wizard, see XML Integration Objects and the XSD Wizard For details on using the Siebel DTD Wizard, see XML
Integration Objects and the DTD Wizard

To create the XML schema: XSD, DTD, or XDR

1. Launch Siebel Tools and navigate to the Integration Objects list.
2. Select an integration object from the list.
3. Click the Generate Schema button in the Integration Objects list.
4. Complete the steps of the wizard:

a. Select a business service from the Business Service drop-down list.
b. Select the EAI Siebel Message Envelope Service from the Envelope drop-down list.
c. Browse to a file location and type a file name to generate the schema, for example, ListOfSiebelOrder.xml,

and click Save.
5. Load the schema into the external system.

57

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 8
Scenarios for Siebel EAI XML Integration

Creating the Workflow
Create a new workflow using the Workflow Process Designer. For details on Siebel Workflow, see Siebel Business Process
Framework: Workflow Guide .

To create a new workflow

1. Start a Siebel application and navigate to the Workflow Process Designer.
2. Create a new workflow that will take the XML file, convert it to Siebel XML format (if necessary) using the Siebel EAI

XML Converter business service, call the EAI Data Transformation Engine to perform the data transformation, and
call the Siebel Adapter to modify the Siebel Database as needed (upsert, delete, query, and so on).

Note: The Siebel application uses an instance of the integration object you created to map the incoming
XML data to fields (rows and columns) within the Siebel Database.

3. Test your workflow using the Workflow Process Simulator.
4. Save your workflow.

Running the Integration
In this scenario, assume that either an external application has generated Siebel XML that requires no translation or Siebel
XML is XML that conforms to the Siebel XSD or DTD.

At run time, the Siebel application:

• Calls the EAI XML Adapter.

• Calls the EAI XML Converter to convert the incoming XML to a Siebel message.

• Calls the EAI Siebel Adapter and updates the Siebel Database with the new information just received from the
incoming (external) XML document.

Scenario 2: Process of Outbound Integration Using External
XML and an XSD or DTD
This topic gives one example of how to set up an integration based on incoming XLML that has been defined in an XSD or a
DTD. You might use this integration differently, depending on your business model.

To set up the outbound integration, perform the following tasks:

• Creating the Integration Object

• Mapping the Data

• Running the Integration

58

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 8
Scenarios for Siebel EAI XML Integration

Creating the Integration Object
Create a new external Siebel integration object. For details on creating integration objects, see Integration Platform
Technologies: Siebel Enterprise Application Integration .

To create the Siebel integration object

1. Start Siebel Tools and select File, then New Object.
2. Select the EAI tab.
3. Double-click the Integration Object icon.
4. Complete the Integration Object Builder initial page:

a. Select the Siebel project from the first drop-down list.
b. Select EAI XSD or EAI DTD Wizard as the Business Service.
c. Navigate to the path and file of the location of the XSD, DTD, or XML file that you want to use as the basis of

the DTD.
5. Save the new integration object.

Mapping the Data
Use Siebel Data Mapper to map the fields in the external integration object with an internal Siebel integration object. For
details on using the Siebel Data Mapper, see Business Processes and Rules: Siebel Enterprise Application Integration .

To map the data

1. Start a Siebel application and navigate to the Siebel Data Mapper.
2. Create the data mapping between the external integration object and an internal Siebel integration object.
3. Save the mapping.

The new data mapping rules are now in the Siebel Database.

Running the Integration
In this scenario, assume that the external application has generated external XML and includes an associated XSD or a DTD.

At runtime, the Siebel application:

• Calls the EAI XML Converter to convert incoming XML to a Siebel Message.

• Calls the EAI Data Mapping Engine to transform the external integration object to an internal integration object.

59

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 8
Scenarios for Siebel EAI XML Integration

60

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 9
Using XML Files

9 Using XML Files

Using XML Files
This chapter discusses using XML files as an input as well as inserting a file attachment into the Siebel database using XML. It
includes the following topics:

• Using an XML Document as Input

• Inserting File Attachments Using XML

• Removing Empty XML Tags

Using an XML Document as Input
You can use XML documents as input in a workflow, by calling business services to convert them to Siebel Property Sets and
calling business services to process the data from XML documents as required. The following illustrates a sample workflow
that uses the Siebel Adapter Insert or Update method.

The following is an example of a sample XML document containing employee information that will get upserted by the EAI
Siebel Adapter as in the workflow. Just before the EAI Siebel Adapter step in the workflow is invoked, the variable Employee
Message will contain the XML document in a hierarchical format.

 <SiebelMessage MessageId=""IntObjectName="Sample Employee">
 <ListOfSampleEmployees>
 <Employee>
 <FirstName>Pace</FirstName>
 <MiddleName></MiddleName>
 <LastName>Davis</LastName>
 <LoginName>ADIOTATI</LoginName>
 <PersonalTitle>Mr.</PersonalTitle>
 <EMailAddr>pdavis@pcssiebel.com</EMailAddr>
 <JobTitle>Field Sales Representative</JobTitle>
 <Phone>4153296500</Phone>
 <Private>N</Private>
 <ListOfPosition>
 <Position>
 <Name3>Field Sales Representative - S America</Name3>
 <Division>North American Organization</Division>
 <Organization>North American Organization</Organization>
 <ParentPositionName>VP Sales</ParentPositionName>
 <PositionType>Sales Representative</PositionType>
 <ListOfPosition_BusinessAddress>
 <Position_BusinessAddress>
 <City>San Mateo</City>
 <Country>USA</Country>
 <FaxNumber></FaxNumber>

61

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 9
Using XML Files

 <PhoneNumber></PhoneNumber>
 <PostalCode>94175</PostalCode>
 <State>CA</State>
 <StreetAddress>1855 South Grant St</StreetAddress>
 </Position_BusinessAddress>
 </ListOfPosition_BusinessAddress>
 </Position>
 </ListOfPosition>
 </Employee>
 </ListOfSampleEmployees>
 </SiebelMessage>

This EAI XML document shows an integration object called Sample Employee as specified by the IntObjectName attribute of
the Siebel Message element.

The Sample Employee object has three integration components you can view using Siebel Tools:

• Employee—A root component

• Position—A Child of Employee

• Position Business Address—A Child of Position

An upsert to this integration object is determined by the user key on the root component. In the Sample Employee Integration
object provided as part of the sample database, the user key for the Employee integration object is Login name. Therefore,
if the login name is unique, then a new employee is inserted. If the login name already exists, then the Siebel application
performs an update. This XML document will create a new employee whose name is Pace Davis and assign the position Field
Sales Representative - S America to this person. You could also specify a new position and have the employee be assigned
to the new position. This can be extended to other methods such as Delete or Query. If you want to delete an employee, then
the user key is the only element that must be specified.

Example. In the following example, the employee with login name ADD1 will be deleted.

<SiebelMessage MessageId="" IntObjectName="Sample Employee">
 <ListOfSampleEmployees>
 <Employee>
 <LoginName>ADD1</LoginName>
 </Employee>
 </ListOfSampleEmployees>
</SiebelMessage>

Example. Query on all employees with the first name Pace and Last name starting with D.

<SiebelMessage MessageId="" IntObjectName="Sample Employee">
 <ListOfSampleEmployees>
 <Employee>
 <FirstName>Pace</FirstName>
 <LastName>D*</LastName>
 </Employee>
 </ListOfSampleEmployees>
</SiebelMessage>

CAUTION: When defining these business components, be aware that the precise definition can negatively
affect mobile clients and regional clients. There are setup options to allow all attachments to automatically
download to mobile clients that have visibility to the underlying row. This could be quite problematic, especially
for large files. The preferred setup is Demand Mode, whereby mobile client users trying to open an attachment
will see a message asking if they want to download the file the next time they synchronize. This is known as the
deferred approach and gives users control over what files they do or do not download.

62

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 9
Using XML Files

Inserting File Attachments Using XML
You might want to insert an attachment into the Siebel Database, such as an image file in JPEG format. This could be a
customer’s picture, a site picture, an item or part image, a text document, and so on. For integration with external systems
using file attachments, see Integration Platform Technologies: Siebel Enterprise Application Integration .

For integration between Siebel instances, the support for attachments is built into the Siebel Adapter and the EAI XML
Converter. The integration between Siebel instances can occur when generating or reading XML, which is further defined in
the next topic.

• Generating XML. In the case of the Attachment business component being used, the Siebel Adapter will correctly
perform the query. Then, the EAI XML Converter will include the attachment in XML.

• Reading XML. If XML was generated by the EAI XML Converter as described previously, then the EAI XML Converter
will read such XML and correctly bring attachments into memory. After which, the Siebel Adapter will insert them into
Oracle’s Siebel database.

Removing Empty XML Tags
You can to remove empty XML tags from messages for optimization. For example, an XML representation of an integration
object might have unused integration components. You can use the siebel_ws_param:RemoveEmptyTags parameter to
remove empty tags when making Web service calls.

There are two ways to use the parameter:

• Adding the Remove Empty Tags Parameter to a Property Set in an Input XML File

• Adding the Remove Empty Tags Parameter as a Process Property in a Workflow

Adding the Remove Empty Tags Parameter to a Property Set in an
Input XML File
You add the siebel_ws_param:RemoveEmptyTags parameter to an input XML file manually as a property in the top-level
property set.

To add the RemoveEmptyTags parameter to a property set manually
1. Open the XML file in a text editor.
2. Add the following text (in bold) to the top-level <PropertySet> tag, as in this example:

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet siebel_undws_undparam_clnRemoveEmptyTags="Y">
<SiebelMessage>
 ...
 ...
 </SiebelMessage>
</PropertySet>

3. Save the XML file.

63

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 9
Using XML Files

Adding the Remove Empty Tags Parameter as a Process Property in
a Workflow
You can add the siebel_ws_param:RemoveEmptyTags parameter to a workflow to automate the removal of empty tags.
You add the parameter as a process property of the workflow, then as an input argument to the step that reads the XML file.
For information on adding workflow process properties and input arguments, see Siebel Business Process Framework:
Workflow Guide .

To add the RemoveEmptyTags parameter to a workflow

1. In Siebel Tools, create and open a workspace.
2. Edit the workflow process to add the following process property:

Name Data Type In/Out

Remove Empty Tags

String

In

3. Add the following input argument to the workflow step that reads the XML file:

Input Argument Type Value Property Name

siebel_ws_param:RemoveEmptyTags

Process Property

Y

Remove Empty Tags

4. Deliver the workspace, which will compile the changes made above to runtime repository.

64

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

10 Sample XML for Siebel EAI Effective Dating
Operations

Sample XML for Siebel EAI Effective Dating Operations
This chapter provides sample XML for Siebel Enterprise Applications Integration (Siebel EAI) effective dating operations. It
includes the following topics:

• About Siebel EAI Effective Dating Operations

• Sample XML for Field-Related Siebel EAI Effective Dating Operations

• Sample XML for Link-Related Siebel EAI Effective Dating Operations

About Siebel EAI Effective Dating Operations
The Siebel Enterprise Applications Integration (Siebel EAI) effective dating framework allows access to effective dating data
through various Siebel EAI communication mechanisms. You can use the typical query, insert, update, synch, and so on
operations to manipulate effective dating enabled data. For more information about the Siebel effective dating feature, see
Integration Platform Technologies: Siebel Enterprise Application Integration .

Related Topics
Sample XML for Field-Related Siebel EAI Effective Dating Operations

Sample XML for Link-Related Siebel EAI Effective Dating Operations

Sample XML for Field-Related Siebel EAI Effective Dating
Operations
This topic provides sample input and output XML for field-related Siebel Enterprise Applications Integration (Siebel EAI)
effective dating operations. It includes the following information:

• Insert Field-Related Operations

• Query By Id Field-Related Operations

• Query By Example Field-Related Operations

• Delete Field-Related Operations

• Synchronize Field-Related Operations

• Upsert Field-Related Operations

65

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

Note: Bold text in the following code samples indicates syntax specific to Siebel EAI effective dating
functionality.

Insert Field-Related Operations
The following code shows sample input and output XML for field-related INSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdInsert_Input>
 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:Category>Gold</hous:Category>
 <hous:CurrencyCode>USD</hous:CurrencyCode>
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName EDStartDate="04/10/2012" EDEndDate="04/20/2012">Adam</hous:HouseholdName>
 <hous:HouseholdName>Becham</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>ASDQ-1264</hous:HouseholdId>
 <hous:Income>47751</hous:Income>
 <hous:PhoneNumber>6504234234</hous:PhoneNumber>
 <hous:Segment>White Collar</hous:Segment>
 <hous:Status>Active</hous:Status>
 <hous:Type>Single</hous:Type>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 <asi:StatusObject>?</asi:StatusObject>
 </asi:SiebelHouseholdInsert_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdInsert_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household operation="insert">
 <HouseholdId>ASDQ-1264</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdInsert_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Query By Id Field-Related Operations
The following code shows sample input and output XML for field-related QueryById operations.

66

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdQueryById_Input>
 <asi:PrimaryRowId>1-EKCK</asi:PrimaryRowId>
 </asi:SiebelHouseholdQueryById_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdQueryById_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household>
 <Category>Gold</Category>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdId>1-EKCK</HouseholdId>
 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber>6504234234</PhoneNumber>
 <Revenue>1500</Revenue>
 <Segment>White Collar</Segment>
 <Status>Active</Status>
 <Type>Single</Type>
 <ListOfRelatedContact>
 <RelatedContact IsPrimaryMVG="Y">
 <ContactIntegrationId/>
 <MiddleName>B.</MiddleName>
 <PersonUId>1-D4U9</PersonUId>
 <PersonalContact>N</PersonalContact>
 <DateEnteredHousehold>11/12/2001 17:30:29</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>1-19T</PrimaryOrganizationId>
 <Relationship>Head</Relationship>
 <EDListOfFirstName>
 <FirstName EDEndDate="" EDStartDate="11/08/2001">John</FirstName>
 </EDListOfFirstName>
 <EDListOfLastName>
 <LastName EDEndDate="" EDStartDate="11/08/2001">Devine</LastName>
 </EDListOfLastName>
 </RelatedContact>
 </ListOfRelatedContact>
 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Millennium Retail Finance Services RF ENU</
 OrganizationName>
 <OrganizationId>1-19T</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>
 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>

67

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>
 <EDListOfHouseholdName>
 <HouseholdName EDEndDate="" EDStartDate="11/12/2001">Devine - San Mateo
 </HouseholdName>
 </EDListOfHouseholdName>
 <EDListOfHouseholdSize>
 <HouseholdSize EDEndDate="" EDStartDate="11/12/2001">1</HouseholdSize>
 </EDListOfHouseholdSize>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdQueryById_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Query By Example Field-Related Operations
The following code show sample input and output XML for field-related QueryByExample operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdQueryByExample_Input>
 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>

 <HouseholdName EDEndDate="04/20/2012" EDStartDate="04/10/2012"></HouseholdName>
 </hous:EDListOfHouseholdName>

 <HouseholdId>ASDQ-1264</HouseholdId>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdQueryByExample_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns:SiebelHouseholdQueryByExample_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/Household%20Interface">
 <Household>
 <Category>Gold</Category>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdId>ASDQ-1264</HouseholdId>
 <HouseholdWealth/>
 <Income>47751</Income>
 <IntegrationId/>
 <PhoneNumber>6504234234</PhoneNumber>
 <Revenue/>

68

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <Segment>White Collar</Segment>
 <Status>Active</Status>
 <Type>Single</Type>
 <ListOfRelatedContact/>
 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>
 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</Position Division>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 RelatedSalesRep>
 </ListOfRelatedSalesRep>
 <EDListOfHouseholdName>
 <HouseholdName EDEndDate="04/20/2012" EDStartDate="04/10/2012">Adam</HouseholdName>
 </EDListOfHouseholdName>

 <EDListOfHouseholdSize>
 <HouseholdSize EDEndDate="04/19/2012"" EDStartDate="04/10/2012">5</HouseholdSize>
 <HouseholdSize EDEndDate="" EDStartDate="04/20/2012">7</HouseholdSize>
 </EDListOfHouseholdSize>

 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdQueryByExample_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Delete Field-Related Operations
The following code shows sample input and output XML for field-related DELETE operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdDelete_Input>
 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName/>
 <HouseholdId>ASDQ-1264</HouseholdId>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdDelete_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://

69

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdDelete_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="delete">
 <HouseholdId>ASDQ-1264</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdDelete_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Synchronize Field-Related Operations
The following code shows sample input and output XML for field-related SYNCH operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:acc="http://www.example.com/xml/
Account%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelAccountSynchronize_Input>
 <acc:ListOfAccountInterface>
 <acc:Account>
 acc:AccountId>88-30A85</acc:AccountId>
 <acc:Name>TESTASDP</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>88-30ARL</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate="">John</acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/01/2012" EDEndDate=""> Steven</acc:LastName>
 </acc:EDListOfLastName>

 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>
 <acc:Account>
 <acc:AccountId>ASDQ_TY2</acc:AccountId>
 <acc:Name>TESTASDT</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>ASDQ_TC2</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/25/2012" EDEndDate="">Sam</acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/25/2012" EDEndDate="">Vincent</acc:LastName>
 </acc:EDListOfLastName>

 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>
 </acc:ListOfAccountInterface>
 </asi:SiebelAccountSynchronize_Input>
</soapenv:Body>

70

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelAccountSynchronize_Output xmlns:ns="http://example.com/asi/">
 <ListOfAccountInterface xmlns="http://www.example.com/xml/
Account%20Interface">
 <Account operation="update">
 <AccountId>88-30A85</AccountId>
 <IntegrationId/>
 </Account>
 <Account operation="insert">
 <AccountId>88-30GK4</AccountId>
 <IntegrationId/>
 </Account>
 </ListOfAccountInterface>
 </ns:SiebelAccountSynchronize_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Upsert Field-Related Operations
The following code shows sample input and output XML for field-related UPSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:acc="http://www.example.com/xml/
Account%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelAccountInsertOrUpdate_Input>
 <acc:ListOfAccountInterface>
 <acc:Account>
 <acc:AccountId>88-30A85</acc:AccountId>
 <acc:Name>TESTASDP</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>88-30ARL</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate="">John</acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/01/2012" EDEndDate="">Steven</acc:LastName>
 </acc:EDListOfLastName>

 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>
 <acc:Account>
 <acc:AccountId>ASDQ_TY4</acc:AccountId>
 <acc:Name>TESTASDY</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>ASDQ_TC4</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/25/2012" EDEndDate="">Louis</acc:FirstName>

71

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/25/2012" EDEndDate="">George</acc:LastName>

 </acc:EDListOfLastName>
 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>
 </acc:ListOfAccountInterface>
 <!--Optional:-->
 <asi:StatusObject>?</asi:StatusObject>
 </asi:SiebelAccountInsertOrUpdate_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelAccountInsertOrUpdate_Output xmlns:ns="http://example.com/asi/">
 <ListOfAccountInterface xmlns="http://www.example.com/xml/
Account%20Interface">
 <Account operation="update">
 <AccountId>88-30A85</AccountId>
 <IntegrationId/>
 </Account>
 <Account operation="insert">
 <AccountId>88-30HDZ</AccountId>
 <IntegrationId/>
 </Account>
 </ListOfAccountInterface>
 </ns:SiebelAccountInsertOrUpdate_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Related Topics
About Siebel EAI Effective Dating Operations

Sample XML for Link-Related Siebel EAI Effective Dating Operations

Sample XML for Link-Related Siebel EAI Effective Dating
Operations
This topic provides sample input and output XML for link-related Siebel Enterprise Applications Integration (Siebel EAI)
effective dating operations. It includes the following information:

• Insert Link-Related Operations

• Query By Example Link-Related Operations

• Query By Id Link-Related Operations

• Update Link-Related Operations

• Upsert Link-Related Operations

• Synchronize Link-Related Operations

72

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

Note: Bold text in the following code samples indicates syntax specific to Siebel EAI effective dating
functionality.

Insert Link-Related Operations
The following code shows sample input and output XML for link-related INSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
<asi:SiebelHouseholdInsert_Input>
 <asi:StatusObject/>
 <hous:ListOfHouseholdInterface>
 <hous:Household operation="insert">
 <hous:HouseholdName>Aaron12</hous:HouseholdName>
 <hous:HouseholdId>1-COQ1</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011" EDEndDate="">
 <ContactId>0V-19GBUM</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2010" EDEndDate="12/11/2011">
 <ContactId>0V-19GBUM</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2003" EDEndDate="12/12/2004">
 <ContactId>0V-18PLL2</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2001" EDEndDate="12/12/2002">
 <ContactId>0V-18PLL2</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2005" EDEndDate="12/12/2006">
 <ContactId>0V-18PMMD</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2007" EDEndDate="12/12/2008">
 <ContactId>1-AJ3J</ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdInsert_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdInsert_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household operation="insert">
 <HouseholdId>1-COQ1</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdInsert_Output>

73

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Query By Example Link-Related Operations
The following code shows sample input and output XML for link-related QueryByExample operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdQueryByExample_Input>
 <hous:ListOfHouseholdInterface>
 <hous:Household operation="?">
 <hous:HouseholdId>1-COQ1</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2000" EDEndDate="">
 <hous:ContactId/>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdQueryByExample_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdQueryByExample_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household>
 <Category/>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdName>Aaron12</HouseholdName>
 <HouseholdId>1-COQ1</HouseholdId>
 <HouseholdSize/>
 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber/>
 <Revenue/>
 <Segment/>
 <Status>Active</Status>
 <Type/>
 <ListOfRelatedContact>
 <RelatedContact EDEndDate="12/12/2004" IsPrimaryMVG="N"
 EDStartDate="12/12/2003">
 <ContactIntegrationId/>
 <FirstName>ANDREW</FirstName>
 <LastName>LAM</LastName>
 <MiddleName/>
 <PersonUId>0V-18PLL2</PersonUId>

74

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PLL2</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="12/12/2001" IsPrimaryMVG="N"
 EDStartDate="12/12/2002">
 <ContactIntegrationId/>
 <FirstName>ANDREW</FirstName>
 <LastName>LAM</LastName>
 <MiddleName/>
 <PersonUId>0V-18PLL2</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PLL2</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50<
 /DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="" IsPrimaryMVG="Y" EDStartDate="12/12/
 2011">
 <ContactIntegrationId/>
 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="12/11/2010" IsPrimaryMVG="Y"
 EDStartDate="12/12/2010">
 <ContactIntegrationId/>
 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="12/12/2006" IsPrimaryMVG="N"
 EDStartDate="12/12/2005">
 <ContactIntegrationId/>
 <FirstName>SARVI</FirstName>
 <LastName>ANANDAN</LastName>
 <MiddleName/>
 <PersonUId>0V-18PMMD</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PMMD</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="12/12/2008" IsPrimaryMVG="N"
 EDStartDate="12/12/2007">

75

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <ContactIntegrationId/>
 <FirstName>Felix</FirstName>
 <LastName>Aaron</LastName>
 <MiddleName>Q</MiddleName>
 <PersonUId>1-AJ3J</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>1-AJ3J</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>88-14P0K</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 </ListOfRelatedContact>
 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>
 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdQueryByExample_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Query By Id Link-Related Operations
The following code shows sample input and output XML for link-related QueryById operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdQueryById_Input>
 <asi:PrimaryRowId>88-30D3R</asi:PrimaryRowId>
 </asi:SiebelHouseholdQueryById_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdQueryById_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household>

76

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <Category/>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdName>Aul_HouseHold</HouseholdName>
 <HouseholdId>1-EKB3T1</HouseholdId>
 <HouseholdSize/>
 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber/>
 <Revenue/>
 <Segment/>
 <Status>Active</Status>
 <Type/>
 <ListOfRelatedContact>
 <RelatedContact EDEndDate="" IsPrimaryMVG="Y" EDStartDate="05/16/
 2012">
 <ContactIntegrationId/>
 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="" IsPrimaryMVG="N" EDStartDate="05/16/
 2012">
 <ContactIntegrationId/>
 <FirstName>SARVI</FirstName>
 <LastName>ANANDAN</LastName>
 <MiddleName/>
 <PersonUId>0V-18PMMD</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PMMD</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 <RelatedContact EDEndDate="" IsPrimaryMVG="N" EDStartDate="05/16/
 2012">
 <ContactIntegrationId/>
 <FirstName>Felix</FirstName>
 <LastName>Aaron</LastName>
 <MiddleName>Q</MiddleName>
 <PersonUId>1-AJ3J</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>1-AJ3J</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>88-14P0K</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>
 </ListOfRelatedContact>
 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>
 <ListOfRelatedSalesRep>

77

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdQueryById_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Update Link-Related Operations
The following code shows sample input and output XML for link-related UPDATE operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdUpdate_Input>
 <asi:StatusObject/>
 <hous:ListOfHouseholdInterface>
 <hous:Household operation="update">
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>Aaron Household</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>1-3W8</hous:HouseholdId>
 <hous:Type>Single</hous:Type>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011">
 <hous:ContactId>1-D4U9</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2004" EDEndDate="12/12/2005">
 <hous:ContactId>0V-18PLP2</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2002" EDEndDate="12/12/2004">
 <hous:ContactId>0V-19GBUM</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdUpdate_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdUpdate_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household operation="update">

78

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

 <HouseholdId>1-3W8</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdUpdate_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Upsert Link-Related Operations
The following code shows sample input and output XML for link-related UPSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
<asi:SiebelHouseholdInsertOrUpdate_Input>
 <asi:StatusObject/>
 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>A2</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>2</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011">
 <hous:ContactId>1-D4U9</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2004" EDEndDate="12/12/2005">
 <hous:ContactId>0V-18PLP2</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2002" EDEndDate="12/12/2004">
 <hous:ContactId>0V-19GBUM</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdInsertOrUpdate_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdInsertOrUpdate_Output xmlns:ns="http://example.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household operation="insert">
 <HouseholdId>2</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdInsertOrUpdate_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope

79

Siebel
XML Reference: Enterprise Application Integration Guide

Chapter 10
Sample XML for Siebel EAI Effective Dating Operations

Synchronize Link-Related Operations
The following code shows sample input and output XML for link-related SYNCH operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">
<soapenv:Header/>
<soapenv:Body>
 <asi:SiebelHouseholdSynchronize_Input>
 <asi:StatusObject/>
 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>123</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>296-5062875</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="2/2/2010" EDEndDate="1/1/2011">
 <hous:ContactId>04-LLSQ5</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>
 </asi:SiebelHouseholdSynchronize_Input>
</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <ns:SiebelHouseholdSynchronize_Output xmlns:ns="http://example.com.com/asi/">
 <ListOfHouseholdInterface xmlns="http://www.example.com/xml/
 Household%20Interface">
 <Household operation="update">
 <HouseholdId>296-5062875</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>
 </ns:SiebelHouseholdSynchronize_Output>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Related Topics
About Siebel EAI Effective Dating Operations

Sample XML for Field-Related Siebel EAI Effective Dating Operations

80

	XML Reference: Enterprise Application Integration Guide
	Preface
	What's New in This Release
	What’s New in XML Reference: Siebel Enterprise Application Integration Guide, Siebel CRM 19.1 Update
	What’s New in XML Reference: Siebel Enterprise Application Integration, Siebel 2018

	Overview of Support for XML in Siebel Business Applications
	Overview of Support for XML in Siebel Business Applications
	About XML
	Siebel CRM Integration and XML
	XML Integration Objects
	Bidirectional Data Flow

	Metadata Support for XML
	Special Characters in XML Documents
	Special (Escape) Characters
	Declaring the Character Set in Use

	XML Representation of Property Sets
	XML Representation of Property Sets
	Mapping Between Property Sets and XML
	Element and Attribute Naming
	Property Set Examples and Their XML Representation
	Properly Formatted Property Sets

	XML Representation of Siebel Integration Object Instances
	XML Representation of Siebel Integration Object Instances
	About Representing Siebel Integration Object Instances as XML Documents
	Integration Objects
	Elements and Attributes
	How XML Names Are Derived from Integration Objects
	Elements Within a Siebel Integration Object Document
	Siebel Message Element
	Attributes
	Child Elements

	Object List Element
	Attributes
	Child Elements

	Integration Component Elements
	Attributes
	Child Elements

	Component Container Elements
	Attributes
	Child Elements

	Integration Field Elements
	Child Elements

	Example XML Document
	XML Schema Definitions (XSDs)
	Document Type Definitions (DTDs)

	XML Integration Objects and the XSD Wizard
	XML Integration Objects and the XSD Wizard
	Creating XML Integration Objects with the XSD Wizard
	Selecting the Source Object in the XSD Wizard

	Supported XSD Elements and Attributes
	Structure of XSD XML Integration Objects
	XSD-Specific Integration Object Properties
	XSD-Specific Integration Object User Properties
	XSD-Specific Integration Component Properties
	XSD-Specific Integration Component User Properties
	XSD-Specific Integration Component Field Properties
	XSD-Specific Integration Component Field User Properties

	XML Integration Objects and the DTD Wizard
	XML Integration Objects and the DTD Wizard
	Creating XML Integration Objects with the DTD Wizard
	Selecting the Source Object in the DTD Wizard

	How the DTD Wizard Creates XML Integration Objects
	Elements
	Attributes
	Element’s #PCDATA
	Names
	Hierarchy
	Connectors
	Cardinality

	Siebel XML Converters
	Siebel XML Converters
	About Siebel XML Converters
	EAI XML Converter
	EAI XML Converter Parameters
	EAI XML Converter Business Service Methods
	Integration Object Hierarchy to XML Document Method Arguments
	XML Document to Integration Object Hierarchy Method Arguments

	XML Hierarchy Converter
	XML Hierarchy Representation in Siebel Business Applications
	XML Hierarchy Converter Business Service Methods
	XML Document to XML Hierarchy Method Arguments
	XML Hierarchy to XML Document Method Arguments

	EAI Integration Object to XML Hierarchy Converter
	EAI Integration Object to XML Hierarchy Converter Business Service Methods
	Integration Object Hierarchy to XML Hierarchy Method Arguments
	XML Hierarchy to Integration Object Hierarchy Method Arguments

	XML Converter
	XML Converter Business Service Methods
	Property Set To XML Method Arguments
	XML To Property Set Method Arguments

	Siebel XML Converter Business Service Comparison
	EAI XML Write to File Business Service
	Write Siebel Message Method Arguments
	Write Property Set Method Arguments
	Write XML Hierarchy Method Arguments

	EAI XML Read from File Business Service
	Read Siebel Message Method Arguments
	Read Property Set Method Arguments
	Read XML Hierarchy Method Arguments

	Scenarios for Siebel EAI XML Integration
	Scenarios for Siebel EAI XML Integration
	Scenario 1: Process of Inbound Integration Using Siebel XML
	Creating the XML Schema
	Creating the Workflow
	Running the Integration

	Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD
	Creating the Integration Object
	Mapping the Data
	Running the Integration

	Using XML Files
	Using XML Files
	Using an XML Document as Input
	Inserting File Attachments Using XML
	Removing Empty XML Tags
	Adding the Remove Empty Tags Parameter to a Property Set in an Input XML File
	Adding the Remove Empty Tags Parameter as a Process Property in a Workflow

	Sample XML for Siebel EAI Effective Dating Operations
	Sample XML for Siebel EAI Effective Dating Operations
	About Siebel EAI Effective Dating Operations
	Sample XML for Field-Related Siebel EAI Effective Dating Operations
	Insert Field-Related Operations
	Query By Id Field-Related Operations
	Query By Example Field-Related Operations
	Delete Field-Related Operations
	Synchronize Field-Related Operations
	Upsert Field-Related Operations

	Sample XML for Link-Related Siebel EAI Effective Dating Operations
	Insert Link-Related Operations
	Query By Example Link-Related Operations
	Query By Id Link-Related Operations
	Update Link-Related Operations
	Upsert Link-Related Operations
	Synchronize Link-Related Operations

