ORACLE

Oracle® MICROS Simphony
System Interface Module (SIM) Manual
Release 19.1

F15064-03

March 2022

Copyright © 2007, 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

Contents

Tables.......c.cooiiiiiiii 21
FIGUIES.....ooiiiiiiiiii 25
Preface.........oooiiiiiiiii 26
AUAIEIICE ... 26
CUStOMET SUPPOTT..ceieiiiiit s 26
DocumMEeNtatioNovouiiieiiicc s 26
ReViSION HIStOTYccuiviiiiiiiiiiiiiciciicicc s 26

1 Before You Start.............cccoooiiiiiiiii 1-1
Abbreviations, Conventions, and SYmbOISccccccceiirnnnnieieceeeccirrrreeeeenes 1-1
ADDIevIationsc.ciiiiiiiiiiic e 1-1
CONVENLIONS....viiiiiiiiiiii e 1-1

2 Understanding the SIM and ISL.............cccoociiiiiiiiii e, 2-1
Getting to Know the SIM and ISL..........cccooiiiiiiiiiccee e 2-1
What is the System Interface Module?.............cooiiiiii, 2-1

What is the Interface Script Language? ... 2-1

SCript WITHNG c.ovvvie 2-3

How the ISL Accesses the SIM..........ccccovniininiiiiiie 2-4
Features of the SIM ... 2-5
Message Formats and Interface Methods.........c.cccccoeiiiiinnniiiiiiciininnes 2-5
Methods of Displaying, Capturing, and Printing Data ... 2-5
Interfacing with Third-party Systems..........cccoooeiiiiiii 2-6

ISL File HandIINgccooivieiririeieieicecciiinrererteete e eseeaenenes 2-6
Creating SIM Applications with the ISL............c.cccooiii 2-7
Benefits of SIM Applications...........ccceueiiiiiicieieec e 2-7

Types of SIM APPLCAIONSc.ouevmiiiiiiririririecceeccee e 2-7
Generating Coupons for CUSTOMETScccovueuiuiiiiiininininnicceeeccc e 2-7
Interfacing with a Pizza Delivery System............cccooooviiiiiiiiniicccce 2-9
Collecting Customer Information for a Membership List.........cccoooeienni. 2-9
Customizing OUtPUL........ccciiiiiiii s 2-10

3 Getting Startedcccooiii 3-1
Getting Started with the ISL and SIMccccoviiiiiiiiiiiirreeeceeecceer e 3-1
Developing the SIM Interface............cccovvirriniiiiiiiiiiinnncccccccccenes 3-1
Enabling SIM and a SIM Interface............cccocovviviniiiiiiiinnniiiiicccccinnes 3-1
Message Formats and Interface Methods...........cccoceeiiiiiiiniiis 3-1

Contents 3

Message FOrmats...........coivviiiiiiiiicccccc e 3-1

Interface Methods ... 3-4

4 Script Writing Basicscccciviiiiiiiii 4-1
Getting Started with Script WIitingcccooviviviiiiiiiiiiiiiccs 4-1
WHRat 1S @ SCIIP? ... 4-1
Structure of @ SCIIPLoouiviieiiic s 4-1
Creating SCIIPLS ..ot 4-2
Guidelines for Creating SCIPLS.......cccoccvrrereririeieieiiier e 4-3
Examples Of SCIIPLS......c.ciiiiiiiiiiccccr e 4-3
Script WITHNG Style.......ovoiiiiicci s 4-5
CASE...eiiii et 4-5
Length of Variables..........cccooiiiiiiiiiiiiccccccee e 4-5
COMIMENES (//) cveuvemerreieirienietrere ettt ettt sttt se e ene 4-5
ContinUation LINes (1) «.eeeeeeeerrieeninieirrieerietcresteereree ettt ettt naes 4-5
WRIEESPACE. ...ttt 4-6
Writing and Editing SCrIPtscccocciiiiiiiiicccccrceeecces 4-7
AvOIdING EITOIS ..ottt 4-7
TeStING SCIIPLS ...vcviiiiiiiicic e 4-8
Detecting Errors in LOZIC.......coviiiiiiiiiiiiiccccccne 4-8
Stepping Through the Script ..o 4-8

5 Using Variables...............ccocoiiiiiiiiii 5-1
Variables and ISL ... 5-1
Data TYPES c.cvviiieietctctct s 5-1
EXAMPLe...ciiiieiiiii e 5-3
Relational and Logical Operators ... 5-4
UNAry OPeratorsocovoiieiiiiieieicicicicic ettt 5-4
Binary Operators. ...t 5-4
OPErator RUIES ... 5-6
USET Variables ...t 5-7
Declaring User Variablescccocreiiiiiiiieieeiecce s 5-7
Local and Global Variables...........cccccoovniinininiiiiiiicns 5-8
ATray Variables ... 5-11
Variable Size Variables...........cccccociiiiiininininiiiiiiie 5-11
Using List Arrays and Records ... 5-12
PIOMOtION .ot 5-15
DIEEKEY ... 5-16

6 ISLPrintingcccccooiiiiiiiiiiiii 6-1
Getting Started with ISL Printingc.cccccovvrnniiiiiiiiiinniccccecccccnrereeeenes 6-1

Contents

ISL Print Commands and System Variablescccooiiiiiii 6-1

Starting an ISL Print JOD ..o 6-1
ISL StartPrint Commands..........ccccveeeiiniiiiieie s 6-1
Specifying an ISL Printercccooeeioiiiiiceccc s 6-2

Using Print DIirectives ... 6-3
The Printline Command...........cocovriiiiiiiiiiic s 6-4
Print Type System Variables ..o 6-4
Print Directives and SUbroutines............ccocovviiiinniniiiicnes 6-5

Backup Printing.......c.ccueuiiiiiceccccci et 6-5
ConSIAETAtIONSvveveieiicriiieie s 6-5

Reference Strings..........ocoeiiiicicieieccee s 6-6

7 ISL System Variablesccccceiiiiiiiiiiiiiiic e 7-1

System Variables ..o 7-1
System Variable SUMMATyccoooiiiiiiii e 7-1
Specifying System Variables ... 7-1

Specifying System Variables...........cccccccoiiiiiininniniiiiiiiceee e 7-1
Guidelines for Specifying System Variablesccccoooeiiiiniiiiiine, 7-1
Using an Index to Specify System Variables..........cccccovvnniiccccininnnnnnennes 7-2

System Variable SUMMATY.........ccccccociiiiiiniiiiiecc e 7-4

ISL System Variable Reference............cccoooeiieieiiiiiicicieccee e 7-12
ACTIVE_LANGID ..ottt 7-12
ADDXFER_CHK_FROMccccotviimiiniiiiiiii s 7-13
ADDXFER_CHK _TO ..ot 7-13
ADDXFER_GRP_FROMc.coiviiiiiiiiiiiiiiieieesriicce s 7-14
ADDXFER_GRP_TO ..ottt ssssnnens 7-14
ADDXFER_RVC_FROM.......coviiiiniiiiiinieec st 7-15
ADDXFER_RVC_TO ..ottt 7-15
ADDXFER_TBL_FROMccosiiiiiiiiiniiiiinice s sssssssssssenenens 7-15
ADDXFER_TBL_TO ..ottt ssssnnens 7-16
APPLICATIONNADMEccooiiiiiii st 7-16
AUTHEMP ...ttt 7-17
AUTHEMP_FNAMEccocoiviiiiiiiiii s 7-17
AUTHEMP_LNAME........cccoiiiiiiiii s 7-17
AUTHTYPE ..ot 7-18
AUTOSVC ..ot 7-18
AVAILABLEMEMORYccccoviiiiiiiii s 7-18
BOOTSERIALNUM........oiiiiiiiiininteteicicscii s 7-19
BOOTSERIALSTR ...ttt 7-19
CASH_DRAWER ...ttt 7-19

Contents 5

CENTER ...ttt ettt ettt sttt b e enes 7-20

CHANGE ...ttt ettt sttt 7-20
CHECKDATA ...ttt 7-21
CHGTIP ...ttt sttt sttt et be et ettt e e 7-21
CHK ettt ettt ettt st a et n e enes 7-22
CHKINFOKEY ..ottt ettt 7-22
CHEK_OPEN_TIMEcoiiiitiiiiiiienieenteteteterestesie ettt sttt 7-23
CHEK_OPEN_TIME _T...coiotitriiieerieicintetetnietetsteeeitseesseiesseseest st ss e ess s eenes 7-23
CHEK _PAYMNT _TTL ..ottt eresee et n e eenes 7-23
CHEK UTTL ottt ettt 7-23
CRCSHR. ..ottt st sttt sa e sa et et ne 7-24
CKCSHR_INAME ...ttt sttt 7-24
CKEMP ...ttt 7-24
CKEMP_CHKNAME ..ottt sttt 7-25
CKEMP_FNAME ..ottt sttt sttt s et s e enes 7-25
CKEMP_CHKNADME ..ottt et eenes 7-26
CKEMP_TYPEDEF ..ottt 7-26
CKID ittt ettt sttt sttt ettt st sttt besa e bt sae et e e 7-26
CKINUM ..ottt ettt sttt sttt st s et en s e enes 7-27
CLIENT_ONLINE ..ottt 7-27
DAY et et sa e st e e 7-28
DAYOFWEEK ..ottt ettt st ss et s e 7-29
DBVERSIONccootrtiteiniietrteeetreteesteeet et sr et n et es e ne e se e s s s e e enes 7-29
DEBUGTRACE ...ttt 7-29
DETAILSORTED......coetrtiietnieietnientetnienteitsietet sttt sse et stss st es s eenes 7-30
DISC ettt ettt 7-30
DSC_OVERRIDE......c.ooiiiiiciicreeeeet ettt 7-30
DSttt sttt ettt st sttt sa b st 7-31
DTLCHILDSELECTEDctriiiiiriieinieietnieteitsteeeeteeesenesseseesesseseseesesseeeseseeenes 7-31
DTL_DEFSEQ) ..ottt ere et es et sese e es s seneeenes 7-31
DTL_DETAILLINK ..ottt 7-32
DTL_DSC_EMPL ..ottt sttt ss st sse st s s es s seenes 7-32
DTL_DSC..uiiiieirteeeeeteeetrtee ettt ettt et s e enes 7-33
DTL_FAMGRPortiiiiiiieireeetreeteeet ettt et 7-33
DTL_INDEX ..ottt sttt sttt st sttt et sse s besae et st e e nne 7-33
DTL_IS_COMBO.......ccttiriiieitrieietnietetsiesteetsiestetssesset et ese st sessestes s e eseseeenes 7-34
DTL_IS_COMBO_MAINooiitiirieirtinetrreeeteetreteseseseesesseteseseneesesseeeseseseenes 7-34
DTL_IS_COMBO_SIDE........oooioiiiiiieiriictrietneeeteeree sttt 7-35
DTL_IS_COMBO_PARENTc.cceoiiiiiiiiiiirieicireecee et 7-35

Contents

Contents

103N T TN @) N1)51 oSO 7-35

DTL_IS_ON_HOLDcctctrtitiirieeeirieieirteetsteeessesesessssessssesassssssessssesessssesessssesesesses 7-36
DTL_IS_VOID[A]..eteteteteueeeririeiriereeresienesssseestssensssssesessssessssesesessssessesesessssesessssesesessns 7-36
DTL_MAJGRP ...ttt eae e sesse st sesseseesassaseesasessssassessesensensases 7-36
DTL_MLVL...oiitiiieieiietetrieieistetet sttt e st s sese st se e sesasessesesessesassssesessrsnsesesns 7-37
DTL_INAME.....oiteeiieteerieietrtetet ettt st e s se st st te et et asessssessasesasessesenssesanesns 7-37
DTL_OBJNUMcutitiieieiiieeieieieeetesieestesseseesessestesassessesassessessssessesassesssssssessesessesseses 7-38
DTL_PLVL ettt ettt ettt ettt b e s e bese et ensaneenn 7-38
DTL_PMSLINK ...c.ootiiiteeirieieirieetsteestteetstsseessesesessssesessesessssssesssesassssesessssesesenses 7-39
DTL_PRICESEQ)c.cctsteetririeiietetrietestsseseestsseessesesestsseessesesessssessssssassssesensssesesensns 7-39
DTL_QTY oottt et ste ettt sae et e s et et e sese s e seseesassaseesasseseesassassesansenseses 7-39
DITL_SEAT ...ttt ettt sttt es e s et esesessesasessesesersesasensas 7-40
DTLSELECTEDcouiiiiteiieieeieteeeiee ettt sttt et esaesese s ssenessesanenens 7-40
DTL_SLST ..ottt ettt t ettt b b e st e s e seseesasaseesassaseesassaseesansansesen 7-41
DTL_SLVL ettt ettt ettt b et s b e e et e beneesansensenn 7-41
DITL_STATUS ...ttt e sttt st st se s esasessesesessesasessesasersesasensns 7-41
DTL_SVC_LINK ...ttt sttt esessese st te st e e sesessesesessssanssesanensns 7-42
DTL_SVC_TYPE....oo oottt ettt ss e s s s e seseesansaneess 7-42
DITL_SVCl ..ottt sttt se st et e e s esasessesesessesasessesasersesasensns 7-43
|23 =57 S 4 AR 7-43
DTL_TAXTYPE ..ottt ettt etese e se et se s saseseesassassesassaneess 7-43
DTL_TIMED_FIRE_TIMEcceciitrtetiririeteinieteisieresestesessssetsssssesessssesessssesessssesesnnes 7-44
DITL_TTL c.ootetteteieieieirieeerte et etee sttt e sttt s s ssesasesasessesesessesasessasasersesasensns 7-44
DITL_TYPE ..ottt sttt sttt et a et s e esesa st enesesenenens 7-45
DTL_TYPEDEF......ooitiieiieieeieieeietetetet ettt st ss e as et sasse e s e saneenn 7-46
DWORFF......coiiieeirieieisieetste ettt ettt sese st et esesesesessesassrsesasessasassnsesasensns 7-47
DIWON ...ttt ettt ettt sttt s e st st et e et esesessesenssesasessesensasesanensns 7-48
EMPLDISCOUNT ..ottt stestesestesesessesse e stessessssessesassassessssessessssensesens 7-48
EMPLDISCOUNTEMPL......ooiteieiiteieieieeeeteteeeteteressetesesseseesessesessesseseesesenseses 7-49
EMPLOPT ..ottt sttt sttt sesesasesasessesesessesasessasasersnsasensns 7-49
EPOCH ...ttt ettt ettt et s e a st ese s s s ese e ssenennesens 7-50
ERRORMESSAGE.......ciiiieieiiieieieieeeteteee ettt vesse et ebe s sasse e esaseneenen 7-50
EVENTARGUMENTS.......cocttieteirieieiteetsteieesesesessssesssesessssssesssesassssesesssesesensns 7-50
EVENTID ..ottt ettt ettt a st e essa e e ssenennesens 7-51
EVENTINAMEc.ooiiteiretetsteteesete sttt ste st sestesesssbesesassassesassassesassansesens 7-51
EVENTTYPE ...ttt ettt ettt ettt b et se e s ansaneenn 7-51
FIELDSTATUS ..ot eteiieieieieietteteieste et e st se s ssesesssse s sesessssesessssesasassasasssesesesns 7-51
FILE ..ottt ettt ettt ettt sttt s et e et e s e sttt e et sane st et e e neseneees 7-52
FILELINEMARKER.......ccciettteirteietinteieteieeeeteteresseneesesseseesesseseesesessesesessesessenseses 7-53

7

FILE_BERSIZEoootiiiiriieireetneetsteet ettt ettt ettt 7-53

FILE_ERRINO......ooeoeoeeeeeeeeeeeeseeeeeesessssessseeeeessssssesssssessessssssssssssseessssssssssesensesssesssees 7-54
FILE_ERRSTR ...oooromoeoeeeeeeeeeeseeeeeeeesessseessseeeeeseesssesssseeesesesssesseseseesssseessssesensessseeseees 7-55
FILE_SEPARATOR ..o.vvcccoeeeeeeeeeeeeesseeesseeeseeessssessssssessssssssssssssesessssessssssenessssesseees 7-56
FILTER _ACTIVE oo eeeeeeesesseeeeseeeeeesessesessseseesessssssssssssesesssssssssesesesssesseees 7-56
FILTER _MASK ... eeeeeesesseeeeseeeeeeseessseesseeeeeessssesssssssessssseesssseeesessseeseees 7-57
GRPNUM ..o eeeeeeeeeeeseeeeeeeeseeeessssessssssseessssesssssssesssssesssssssesessssessssssensessseeseees 7-57
G veoeeeeeeeeeeeeeeeeseeeeeeseseeeeseseesessseseeseeseeessesesee e e e s seesesesseeesssssssee e seesssseseneesseesrees 7-57
GSTRMNGcooooeeeeeeeeeeeeeeseeseseeeeeesessssessseseeesessssessssesesesessssessssseeesssesssssesesssssesseees 7-58
GSTTHISTENDERcoooeeeeeeeeeoeeeseseseeeseeeeessessseeseseeeeesssssesssessesessseesssseeesessseeseees 7-59
(@10} 10 SO O OO O 7-60
HEADER ...ooooooooeeeeeeeeeeeoeeeseeseeeeeeeeseesssessseeeseeesssessseeseseesssesssssssseesessessssseseesesssesseees 7-60
HOUR ..o ss e seeeeeesesesesssseeesesesesesssesseseseseessssesesesssesseee 7-60
IGNORE_PRMT ..o eeeeeeeessseesssesseeessssesssssssssssssssssssssesessssesssssseneesssesseees 7-61
INEDITCLOSEDCHECK ..o eeeeeeeeeseseeseeeeeeessssssssssseeeessssssssssseesesssseseees 7-61
INPUTSTATUS .o eeeeeeesessseeesseeeeeseesssesssseseeessssssssssssesssssssssssesesssssesseees 7-61
INREOPENCLOSEDCHECKcooeeoreeeeeseeseseeseeeeeeesesesesseeeeessesseesssseeessessseeseee 7-62
INSTANDALONEMODE ..o eeeeeeeeesseseeseeeeeeessssesssssssesessssessssssenesssseeseees 7-62
ISJOURNALPRINT........ccoomereeeeeeeeeeseeeeseeeeeeseseseessseeeeeesesssssssssseeessssesssseseesesssesseees 7-63
ISUNICODE........ooeeeeeeeeeeeeeseeeeeeeeesessseeeseeeeesesssseesseeeesesessesssssseeeeesseessssesesesssesseees 7-63
TINIL oo eseeeees e seseeese s ssesese e s eseeeeeeseeesseseeeseeeeesseseeeeeeesesseseneeens 7-63
KEY_CANCEL ..ooooeoeeveeeoeesee e eeeoeeeesseeesssesesesesssssssssesessessssssssssssesssssssssssssensesssesseees 7-64
KEY_CLEARooeeoeeeeeeeeeeseeseeeeeeeeesessesessseeeeesessssssssseeesessssssssssssseessssessssseseesesssesssees 7-65
KEY_DOWN_ARROW ...ooorrierveeeereeseeeeeeeeeesssseseeseeeeeeesssssessesesessssseessssesessssseeseees 7-65
KEY_ENTER ...oooomeeoeeeeeoeeeseeseseeeeeesessssesssesseeessssssssssssssssssssssssssesssssssssssssesesssesseees 7-66
KEY _EXIT oo eeeeeoeeeseeseseeeseesessssessseeeseeesssessseesesesssssssssssseessssssssssesenessssesseees 7-66
KEY_HOME.......ooeoeooeeeeeeeeeeeseeeeeeeesessseeeseseeeseesssessseseessssssssesssssessssseeesssesesesssesseees 7-67
KEY_LEFT_ARROWooooeeeeeeeeeeeeeeseeeseeeeeeeessssesssesssssssssssssssssesessssessssssessesssesseees 7-67
KEY_PAGE_DOWN ...oocoooeeeeeeeeeoeesesseeessseeeeessssssssssseseesssssssssssssessssssssssssseesssssssssees 7-67
KEY_PAGE_UP.....oooveeeeoeeeeeeeeeeeeeeseeseeeeseeeeesessssessseseessssssssssssssesssssssssssesessssssesseees 7-68
KEY_RIGHT_ARROW ...coorioreeeeereseeeeeeeeeeeseeseseeseeeeeeesssessssssesesessseesssseeessesssesseee 7-68
KEY_UP_ARROW «..oovvocooeeeseeeeeoeesesseeesseeeeeesessssessssesesessssssssssssesssssssssssesensssssesssees 7-69
LANG_ID . oooeoeoeeeeeeeeeeeeeseseeeeseeeeeeeessssessseseseeesssessseeseeessssssssessseessssesssseseeeesssesseees 7-69
LANG_NAMEooooveeeeeeeeeeeeeeeeeesessseeeseeeeesesseseesseeeesessssesesssssesessseesssseeessessseeseees 7-69
LASTCKNUM ..o eeeeeeeesseeesssesseeessssessssssessssssesssssssesessssssssssseesssssesseees 7-70
LINE oo eeeeeeeeeeeeeeeseeeeeeseesesseeseesseesssesssesseeeesssessssesessssssssssesssensesssssssseseeeessesssees 7-70
LINE_EXECUTED ...oovooooeeeeeeeeeeoeeeseeseeeeseeeeesessssessssseesessssssssssssesssssssssssssessesssesseees 7-70
MAGSTATUS ..o seeeeeeeesessseeesseeeeeseeseseesseeeesessssessssseseseseseessssesesessseeseees 7-71
MAXDTLR ..o eeeeeeeseseeseseeeeeesessesesssesseesesssessssesessessssssssssssesesssssssssssensesssesssees 7-72

Contents

Contents

MAXDTLT ..ttt st sa s s 7-72

MAXKYBDMAGCRO ..o ssaes 7-73
MAX_LINES_TO_RUN......cceiiiiiiiiiiiicieiiiisce s ssans 7-73
MINUTE ... 7-73
MONTH ..ot 7-74
NEXTMYOPENCHECKGUID........ccooiiiiiiiniicinicciicctcesci e 7-74
INUL Lot 7-74
INULL .ot 7-75
INUMDSC ..ottt 7-75
NUMDTLR ..ottt 7-75
NUMDTLT ..ottt 7-76
NUMLANGS ..ot 7-76
NUMOPENCHK ... 7-76
INUMSL...oiii e 7-77
NUMSVC ..ot 7-77
INUMTAX oo 7-77
OBJ o 7-78
OFFLINE LINK ...ttt 7-78
OPNCHK_CKNUMcoctiiiiiiiiiiiiiiisicissssss s ssssssssssssesssns 7-78
OPNCHK_TREMPID ..ottt 7-79
OPNCHK_TREMPNUM.....c.coriiiiiiiiiiiiiieiiersiicee s ssesesssssesenens 7-79
OPNCHEK _WSID ..ot nens 7-79
OPNCHK _WSNUM ..ot ssans 7-80
OPSCONTEXT ..ottt 7-80
ORDERTYPE ..ot s 7-80
OrderType_INAME........coeviriieieieeccci et 7-81
ORDR. ...ttt 7-81
OS_PLATFORM ...ttt 7-82
PICKUPLOAN ..ottt 7-82
PLATFORM ..ottt 7-83
PMSBUFFER ..ot 7-83
PMSLINK ..o s 7-83
PMSNUMBERcouiiiiiiiiiii it 7-84
PREVPAY ..ottt 7-85
PRINTSTATUS. ..ottt 7-85
PROPERTY ..ottt 7-86
QTY s 7-86
RANDOM ..ottt 7-87
ROCPT ..ot 7-87

9

10

REDON ...ttt ettt sttt ettt sae bt ettt et be st e e besae e st et et enee 7-88
RETURNSTATUS ...ttt sttt sa e s st 7-89
RUNNINGDIRECTORYoottiiieieeiteiteieete ettt ettt ettt e e b sae st 7-89
RV ettt ettt ettt st be st e et et nee 7-89
RVIC_INAME ...ttt sttt s st 7-90
RXIMSG .ttt sttt ettt ettt b ettt 7-90
SE AT ettt ettt st b e she bt ettt et b b e bt aeen e et et enee 791
SECOND ...ttt sttt ettt st sttt ettt besbe bt sae et e e et e e 7-91
Sl ettt bbbt sa ettt b et be s bttt e e nee 7-91
ST DSttt ettt sttt et ettt e bt b e e b e e be et e satesas 7-92
SIMDBLINK ..ttt ettt ettt ettt se s b st e s 7-92
SRVPRD ...ttt ettt sttt sttt ettt ettt nee 7-92
STACKEFRAMETEXT ...ttt ettt s st e 7-93
STRINGARGS ...ttt sttt ettt st ettt 7-93
SV ettt sttt ettt be bbbt et e et nee 7-93
SVttt ettt sttt be et ae et aee 7-94
SYSLOGTRACE ...ttt ettt sttt ettt ettt b st st e 7-94
SYSTEM_STATUS ..ottt sttt sttt 7-94
T AKX ettt sttt ettt sttt be et e et nee 7-95
TAXRATE ..ttt ettt ettt ettt et e b e beebe st e 7-95
TAXV AT ettt st sttt ettt e e e s bt e b s beeabesaeesae 7-96
TBLID ettt et st st sttt et saeesae 7-96
TBLINUM...cooititiietieree ettt sttt ettt st be ettt aee 7-96
TICKCOUNT ...ttt sttt ettt ettt st ettt e e e b s b sbe e st e st et e e enee 7-97
TIMDNUDM ...ttt sttt sttt e r et s e e sbee b e besnesmnesmeesaee 7-97
TINDTTL .ttt sttt bt nee 7-97
TOTALMEMORYcoitiitiiieiieieeeetteite ettt sttt ettt ettt e b e besbe st e 7-98
TRACE .ttt h et ettt st b sat e bt et et et e e e besbeebeeae e st et et enee 7-99
TRATILER ...ttt sttt ettt st ettt be bbbttt nee 7-99
TRAININGMODE ..ottt sttt ettt s st ee 7-99
TROSHR ...ttt et st b e s ae bt et e e b et e besbe e bt et eaeeeenean 7-100
TRIDTLR ettt ettt ettt et s st s sae e bt e et et e emeessaesbaebeeanens 7-100
TRIDTLT ..ttt ettt et ettt et b see bt een 7-101
TREMP ..ottt st sttt ettt e e s bt e beebean 7-102
TREMP_CHEKNAME ...ttt ettt st be et et 7-103
TREMP_FINAME ...ttt sttt ettt st aen 7-103
TREMP_LNAME ..ottt sttt ettt een 7-103
T ettt b et e bttt s bt st s at e s bt e bt e bt et eateeateebe e beebeen 7-104

Contents

Contents

TXBL oot 7-104
TXEX_ACTIVE ..ot 7-105
USEDMEMORY ...ttt 7-105
USERENTRY ..ottt snnns 7-105
VALD ..ottt 7-106
VARIABLEFRAMETEXT ...ttt 7-106
VERSION ..ottt 7-106
VOIDSTATUS ..o 7-107
WARNINGS_ARE_FATAL ...t 7-107
WCOLS.....coe e 7-108
WEEKDAY ...t 7-108
WROWS ..o 7-109
WWSID ..o 7-109
WSNUM ..o 7-109
WSSUBTYPE.......oiiiiiiiiiic e 7-109
WESTYPE ... 7-110
YEAR e 7-110
YEARDAY ..cooviiiiiiiii s 7-111
ISL Commandscoceeiiiiiiiiiiiiiiiic i 8-1
COMMEANGAS ..ot 8-1
CommaNnd SUIMIMATY «..c.cvevririeieieieieieieiiinrrereeee e eeaeaenes 8-1
File I/O OPerationsccoveieuiiiiiiinininriciceeeccc e 8-1
Format SPecifiers ... 8-1

ISL File Input/Output Commands...........ccoerrerrureeueieiiiiieneneseeiereeeneeeceseseseseseenenes 8-1
The FOpen Command..........ccccceiiiiiinininniiieccccinseee e 8-1
File I/O System Variables...........cccccccoiiiiinininininiiiiiiiiiiiicccnes 8-2
Input/Output File FOrmatccoovovuiioiiiiiiiiiicccce e 8-2
Using Format SPeCifierscccovueueueueiiiiiiirrereecccccccc e 8-2
What is a Format Specifier? ... 8-3
Types of Format Specifiers ... 8-3
OULPUL SPECIFIETS ... 8-6
Examples Of SPeCIfiers.........ccoviiiiiiiiiiiiiiiiinricccc e 8-7
Using Input and Output Specifiers Together............ccooooiiiiiiiie 8-10
Command SUMIMATY ..o 8-10
ISL Command Reference ... 8-16
BEEP e 8-16
Break ..o 8-17
Al s 8-18

11

12

CLEATATTAY «..ecvvttiiiecicte ettt 8-19

ClEATCRKINTO ...ttt ettt ettt b s e enes 8-20
CLEATISITS ..ttt ettt ettt et ettt b bt eaes 8-21
ClearKybdMAacIO.......c.ocvuriiieiiiieciciete e 8-22
ClEATREATATEA ...ttt ettt ettt et s b e st s et et e sebeneeseseneesenseneenn 8-22
ContINUEONCANCE]cveriiieiiieieirieie ettt sttt eaes 8-23
DESPIAY oottt e 8-23
DiSplayInput......c.cuoviieee e 8-24
DISPLAYINVEISE. ...t 8-26
DeSCIIPLION. ...c.ciiiiiiiiiiic e 8-26
DiSPIAYISITSevviicctete s 8-28
DiSPlayMSINPUL ...t 8-28
DisSplayRearATea...... ..o 8-30
DLLECAIL....t ittt ettt ettt ettt b s e s e seseesaseseesasseseesassaseesansensasen 8-31
DLLCAIL_CAECL ittt ettt ettt et e et e e eaeeeetaeeesae e teeeesseeesseenseeenes 8-31
DLLCAlI_STDICAILcuveuiriiieeirieieieieieieieieee ettt ettt st seseseesesseseesenseneenes 8-31
DLLECAIIW ettt ettt ettt ettt ettt b bt b e be e enes 8-31
DILLEFT@E.... ettt et sttt ettt et e bbbt et e st e e 8-32
DLLLOAA .ttt ettt ettt ettt b et et b et b enb et enen 8-32
EITOTBEEP ..o 8-32
EITOIMESSAZE.vvvtttie ettt 8-33
Event...ENAEVENT......cccoiiiie et st 8-34
EXAECANCEL .ttt ettt ettt b e ens 8-39
EXTECONENUE ...c.vetiiiicieieeere ettt et 8-40
EXTtONCANCEL. ...ttt ettt ettt st ettt 8-41
EXAEWIERETTOT .ttt ettt 8-41
FICLOSE vttt ettt ettt ettt b et ean 8-42
FGELFILE ..ottt ettt ettt s bbb s e b ese et e sese et aasaneens 8-43
FLOCK ettt sttt b et ettt b e s b bt ettt et nee 8-43
FOPEN ..o 8-46
FOT .. ENAFOT ...ttt ettt 8-47
FOrEVer... ENAFOT ... 8-49
FOTINAL .ttt ettt s e 8-50
FOrmMatBULErc.eeuiieieiiieee ettt 8-51
FOrmatQ ..coueeeeiieeiiecee ettt ettt et e et e bt e e ra e bt e e bae e baeeaae e baeenaaaeans 8-52
FPULFILE <.ttt ettt ettt b et b et ensaneens 8-53
FIREA ...ttt ettt ettt ettt s st e s e b et s eb et enn 8-53
FREAABIT....cueeviteieiieiete ettt ettt ettt ettt 8-55
FREAALN ...ttt ettt s b ettt 8-56

Contents

Contents

FWIIEE ..ttt ettt 8-59
FWIIEEBIT ..ottt ettt et 8-60
FWIIEELI 1.ttt ettt sttt 8-61
GEtENLETOTCLEAT ...ttt ettt 8-62
GEtRXIMSE....eiiiiiiiincc e 8-63
GOETIIMI ...ttt sttt b ettt b ettt sebe s e 8-63
If. EISe[If].. ENALL oottt ettt et 8-64
INPUL oo 8-66
INPULKEY .o 8-68
INfOMESSAZEevvviiiieecictete ettt e 8-69
LINEFEEA ...ttt ettt ettt et 8-70
LiStDASPIAY ...t 8-71
LISHINPUL .. 8-72
ListINPULEX c.oviiii 8-74
LASEPTINE ...t 8-75
LoadDDbKybdMAacro........ccouiiiiiiiiiiiiiiiiiniicicieeeceee e 8-76
LoadKybAMACIOcoviuririeieieiiiecicicte s 8-77
LOWETCASE ...ttt ettt ettt 8-79
IMAKEASCIIL .ttt ettt ettt se et sa st et neen 8-79
MaAKEUNICOE ...ttt ettt ettt et ettt eaes 8-80
IV etttk b et nae 8-81
MMISIEEP ...ttt 8-82
POPUPISITS ..t 8-82
PrintLINe....couioiiiiiiiiienieeee et s 8-83
PrintSImMEEatures.ccvuivieirinieiricreereettee ettt 8-85
PrOmMPt..c.ooiiiiic e 8-85
PIORALE .ttt s 8-86
[Retain/Discard]GlODAlVArccoueeirieierinieeinieieinieeereeieesieeeseei et 8-88
RETUIML .ot 8-89
RETXIMSE .ttt 8-90
RXIMISE vttt 8-90
SAVECHKINTO ...ttt ettt ene e nees 8-92
SAVERELINTO ...c.viiiiciiiicircec ettt 8-94
SAVEREIINTOX ...ttt et ettt eaen 8-96
SEtISITSKEYoviiiiiiiiiic e 8-97
SEEREREAM ..ottt ettt ettt sttt 8-99
SetSignON[Left/Right]ccoiuiiiiiiiiiiniiccceeceenes 8-99
SELSEIINEG ..ot 8-100

13

SPIEQ et 8-102
StartPrint...ENdPrint[FE/NOFF]cccocoviiieieieeseeeeteteteeees e 8-103
SUD... ENASUD ...ttt 8-105
TimerSet, TimerReset, TIMerReSetAlL.........cooviviieiiiieieeeeeceeeeee e 8-108
TXIMISG ettt 8-109
TXMSZONLY ...ttt e 8-110
UPPEICASE ...ttt 8-111
UseBackUPTENdeT ..o 8-111
Use[Compat/ISLIFOIMat........ccccecuiuiiiiiniririniricicicccccieieee e 8-111
USe[ISL/STD]TIMEOULS......cvrveieeiereieisieeeieteieesteteeestesesessessessesesesessessessssensesees 8-112
USESOrtedDEtall ..ottt sttt 8-112
USESEADELAT] ...ttt ettt 8-113
Y 1 OO OO OO SO R RO PR URURR 8-113
WaATEFOTCIEAT ...ttt sttt 8-115
WaitFOTCONTITIN .ottt ettt ees 8-116
WaATEFOTENLET ...eeiiiiiieiiee ettt s 8-117
WaItFOIRXIMSE ...t 8-118
WaitPrompt/ClearWaitPromptccceiiiennniceccecrrreeeeee s 8-119
While...ENAWILEcoouiiiiiiieiieee ettt 8-120
WA OW ..ttt ettt ettt st et e et e st e besaeeseeneeneensenean 8-121
WINAOWCLOSE ...ttt sttt ettt sttt e 8-122
Window[Edit/Input][WithSave]cccccviirnnriccecicinrreeeeeeeeeecceenes 8-123

9 ISL FUNCHONS.....cooiiiiiiiiiiie et 9-1
FUNCHONS ..ottt sttt et et saee 9-1
Function SUMmMATY ..o 9-1
ISL FUNCHON REEIENCE.coiiiiieieiieeieieieiesieee ettt ettt ettt seeneas 9-2
ADS FUNCHON. ...ttt ettt ettt bbb bt et e e eeens 9-3
ArraySize FUNCHON ..ot 9-3
ASC FUNCHON ..ttt sttt 9-4

Bit FUNCHOMN. ...etiiieteeeee ettt sttt ettt st st st e sae et 9-4
CIT FUNCHON .ttt ettt ettt be e s e ne 9-5
CommandEXists FUNCHOMN.......cc.ccivirieiriieireteeeeeeee e 9-6
DefKey FUNCHONcvuiiiieiiict s 9-6
BNV FUNCHON. ..ottt st 9-6
FEOf FUNCHON ...ttt ettt 9-7
FormatCheckData FUNCHONcccovirieiriiieiniiieteeeeeeteeiee et 9-7
FormatCurrentDate FUNCHON.........ccceiiiiiiiiiirieieeeeeee ettt 9-8
FormatDate FUNCHOMN.cocuiriiieieieeiecceceeeteeeeeeee et 9-8

Contents

Contents

FOrmatStr FUNCHONvviiieeeeee ettt e e et e s eaaae e e snaeeeeas 9-8

FormatValue FUNCHONccoovoviiiiiiiiiiiccccc e 9-9
FTell FUNCHON.......cuiiiiiiiiiiieiccccccc e 9-9
FUunctioNEXiStsccociiiiiiiiiiiiiiiicc 9-10
GetHexX FUNCHON ..o 9-10
GetValue FUNCHOMN ..o 9-11
INStr FUNCHON ..o 9-12
Key FUNCHON.....cootiiiiii s 9-12
KeyNumber FUNCHON.ccuiviuiieiiiirrcccecccce e 9-13
KeyType FUNCHON.......ccoiiiiiiiiiiiiciccc e 9-13
Len FUNCHON ..ot s 9-14
M FUNCHOM ...t 9-15
SPLitString FUNCHON ..o 9-16
Str FUNCHON. ... 9-16
SystemVariableExists FUNCHON............oooiiiiiiee 9-17
Tolnteger FUNCHON ... 9-17
Trim FUNCHON ... 9-17
TypeOf FUNCHON ...t 9-18
VarExists FUNCHON........coviiiiiiiiiii s 9-18
VarSize FUNCHON ..o 9-19
Appendix A - ISL Error Messages...............ccceeviiiiiniiiiiciiiinc e A-1
Error Message Format ... A-1
Variable DeSCriptionsccccucuciiiiiininiiicccecee e A-1
FOrmat 1coiiiiiiiiicc s A-1
FOrmat 2 ... A-1
FOormat 3 ... A-2
FOIrmat 4cooiiiiiiiii s A-2
FOrmat 5ccoiiiiiii s A-2
EITOT MESSAZES ...t A-2
Array Index Out Of RANGEc.cococuiiiiiininiiiiiiccieeeeee e A-2
Bad Sys Var INdeX..........cceeiiiiiiiicicice e A-3
Break with Too Many ENdfor..........ccccovriiiiiiiinneccccccee e A-3
Break without ENdfor.........cccoiiiiiiiiiccccc e A-3
Call Has NO Arguments............c.coeemieieiiiiiinicieei et A-3
Can Not Evaluate.........cooiiiiiiicic s A-3
Cannot Access ISL Script File ..o A-3
Command Outside Procedure ..o A-3
Decimal OVETfIOWccoiuiiiiiiiiciicccee e A-4
Display Column or Row Out Of RaNgec.cccueuiiirinnnereeieicceceeerereeeeeenenene A-4
15

16

Divide bY ZETO ..vveiieeiiii e A-4

Duplicate variable Def............ccccociiiinncceeee e A-4
Encountered Non-Hex Data..........ccocovviiiiiiiiiiiiccecccs A-4
Endsub Nesting Mismatchccoooiiiii e, A-5
Evaluation NESHNEcccvviiiiiiiiiiiiirreeece e e A-5
Event Inside Procedure.........ccccoovviiiiiiiininiicncc s A-5
Event Type Must Be Wordc.oooviiiiiccc s A-5
Exceeded Max Array or Variable Size ... A-5
Expected Array in Call.........cccociiiiinnnnecececce e A-5
Expected ..., Encountered............ccoooiiiiiiiiiinininicccccce e A-5
A-Expected Decimal...........cooviiiiiiiicce e A-6
Expected ENd Of LINe.......coouiiiiiiiiiiinicccceccceee e A-6
Expected Format TOKEN ... A-6
Expected Operandc.coceeueiiiiiiccieec s A-6
Expected SHHNGc.ovveiiiceei e A-6
File Buffer OVEIflOWcccoviiiiiiiiiiiiiii e A-6
File is Read ONly ..o A-6
File is WTite ONLYcooviimiiiieiict e A-7
File Name TOO LONG ..o A-7
Format Needs String..........cccoceiiiiiiinnnicccce e A-7
Format TOO LONG ...c.oviiiiiiiicic e A-7
Integer OVeIfloW ... A-7
Invalid Decimal Operation ...t A-7
Invalid File BUffer Size ... A-7
Invalid File Mode.......ccocoiiiiiiiiiiiiiiiis A-7
Invalid File NUMDETccoooviiiiiiiiiiiiii e A-8
Invalid First TOKEN......cccoiiiiriiiiiiiiiie ettt A-8
Invalid Input fmt SPeC.......coeveiiiiiii e A-8
Invalid List SiZe.......cooiiiiiiiiiiiiiiiii s A-8
Invalid Locking MOde..........c.ccuiuiiiiirinieccicecee e A-8
Invalid Output FOrmat.........cccciiiiiiiniiiicccccccceeenee A-8
Invalid PMS SEND ... A-8
Length INvalidc.ooooiiiiccc e A-8
List Valtle TOO Big......ccooiviviiiiiiiiiiiiiiiiniirncce e A-8
Loop Variable Constantccoeeeioiiiiiicicccce e A-9
Loop Variable Not INTccooiii A-9
MaX FIles OPEINuuiuiiiiiciciceccccrr et A-9
Max Include NeSHNEcccvuvviiimiiiiiiiirrrcc e A-9
Max Lines Executed.........cccccoviiiiiiiiiniiiiiiics A-9

Contents

Contents

Max Macro KeYS ...ttt A-9

Max Ref INFO c..ovviiiiiiiccc e A9
Max Window Input Entries ... A-9
Memory AllOCAtiON.........ceueiiiiiicicicie e A-9
Must Have List Var.......cccooiiiccc s A-10
Name is a Reserved Word ... A-10
New TNDTTL Exceeds Original.............ccoooviiiiiiiiiiiiiiiccceeeies A-10
NO A11ays in SUD Var ... A-10
NO ISL FALE vt A-10
No Match for ENAFOTccoviiiiiiiiiiccc e A-10
No Match for EndWHhile.........ccccccoiiiiiinininiiiiiiiiiiccces A-10
No Match for EVentcccocoviiiiiiiiiiiicsnnas A-11
NO NUMDET iN SYS VT ..o A-11
INO OPS ON SETINGS.....oueeiiiiieietcttct e A-11
No PMS Message Received ..., A-11
No Touchscreen Keys Defined............covveiiiiiiiiinnnccccccccereeeeeenenene A-11
Not @ Variable.........cccoiiiiiii e A-11
Not Enough Input Datac.c.ooooimiiiiiicc e A-11
Not Enough List Data.........ccceeiiiiniinnneeeeececc e A-12
Not Enough Variables...........ccccccciiiiiiiiiiiiicccccccnee A-12
NUMERIC ENTRY REQUIRED.........cccceviiiiiiiirinriiiceieiinniee e A-12
Print Already Started ..o A-12
Print Not Started ... A-12
Reading Ord Dve Table........ccccciiiiiiiiiiiicccceeeec e A-12
Reading ThIDef ... A-13
Require Array fOr LiStcoeiuiiiiiiiirreecececccce e A-13
Script Memory Allocation EITOr ... A-13
Start Position Invalid..........ccccceiiiiiiniiiiie A-13
SNE OVEITIOWoiviiiiiiiiiic s A-13
Sub Array Ref INValid.......ccocoeiuiiiiiiineeccccc e A-13
Sub Has NO ATgUIMENLSc.cceuiuiiiiiriiiicicccccseee e A-13
Sub Statement in Procedure ... A-13
System Variable Declarationc.cccovveeueieiecuiiinnnnneeeeeeeeeeseseseeeeeenenene A-14
Sys Var Not Assignable..........c.cccociiiiininiiiiiiicceceeeceeenee A-14
Too Few Args in Call.........coovoviiiiiiiice e A-14
TOO FEW ATGUMENLS ..ot A-14
Too many Args in Call.........c.cccciiiicr e A-14
Too Many ATGUMENtSccccvviimiiiiiiiiiiiic s A-14
Too Many Nested Calls..........cooiriiriiiiiiice e A-14

17

Too Many Touchscreen Keys ..., A-14

Too Many PMS Definitions Active. Start New Transaction..........ccccecevuvuruenenee A-15
Undefined Call ... A-15
Undefined FUNCHON.........cccoviiiiiiiiiiiiiiicc e A-15
Undisplayable Variable..........ccccoiinnciiineeeeeeeeeeeses e A-15
Unexpected Data after Call..........ccccccooiviiininiiiiiiiiiiinccccccccenes A-15
Unexpected Data after Sub...........ccoooi e, A-15
Unexpected Data in Sub............co A-15
Unexpected ENd of LiNe.......c.ccociiiiinnncccccccreeeeeeeeeece e A-15
Unexpected TOKEN TYPE ..o A-15
Unknown Command..........ccoeueuiiiiiiiininii s A-16
Unknown System Variable..........ccccccoonnniiiiiiinneccecccceeseeeeeeenenee A-16
Unmatched Endevent.............ooiiiiiiiiiicce s A-16
Unmatched ENAFOT ..o A-16
Unmatched If ... A-16
Value Not Key Definitionocoeeueueueuiuiiinnnrrececeeeiseeeeeeee e A-16
Variable Undefinedccooviiiiiiiiiiiicc e A-16
Window Columns Out of RANGEc.oviiiiiiiiiieiiccc e A-16
Window Has Not Been Definedcccccovvvviviininiii A-16
Window Rows Out of Range...........cccccvvvviiiiiiiiicccccccnneeenes A-16
Appendix B - TCP Interface Code...............cocoeiiiiiiiiiii, B-1
MICROS SIM TCP SEIVETcvviiiritirerircririiiniiee et senes B-1
SamMPIE SIM SEIVETcuuimiiiiiiiicicicccct et B-8
Sample MaKefile..........oooiiiiiiiic s B-8
Appendix C-ISL Quick Reference...............ccoccvvvveiiiiiiiiiiiiiiiicc, C-1
Data TYPES ..ottt C-1
Relational and Logical Operatorscccccueueieiiiicicicicceecee s C-2
UNary OPeratorsccceiviiiiiiiiiiiiiicc s C-2
Binary OPerators. ... C-2
C-System Variables............cooooiiiiiiiiiiic e C-3
Format SPeCifiers........ccueueiiiicc s C-8
INPUL SPECIFIETS ... C-8
Output SPECIfIErS ...t C-9
COMMEANGS ..ottt C-10
FUNCHONS ..ot C-17
Appendix D - Microsoft Windows DLL Access...........ccccccoovvvireennnnnnn. D-1
Microsoft Windows DLL ACCESS...........ccviiiinininiiiiiiiiiiiicsccsennnens D-1
OVEIVIEW ..ottt D-1

Contents

Contents

WHhat 1S @ DLL7? ..ottt ettt ettt ettt nes D-1

USING DLLS ..ocviiiiiiiiiiiiii st ens e D-2
Simphony SIM DLL SUPPOLt.....ccccciiiiiniriiiicicciiceceeeeeccee e D-2

Using Simphony SIM DLL Commands...........cccoeueieiiinceieiiccee e D-3
Parameter Passing.........cccoviviiiiniiiiiiiiiiiic e D-4
INEEZETS ...t D-6

SHTINES ettt D-7
Monetary Data..........cooueeiiiiiiiccc s D-8

ATTaY REfETENCES......ceieiiiiiiiccccc et D-9

DLL EXTOr MESSAZESccveviuiiiriiiiiiiiiciiiicrcictc s D-9
General Error MESSagEesc.viiuririeiiiiiiccieie ettt D-9
DLLCaIl EITOTr MESSAZESe.vvvmiiieiiirirereeeeie et esesesesaesenene D-10
DLLFree Error Messages.........cccevviiuiiniiiiiniiiiiiccinicncncscsnesssesc s D-11
Appendix E-SIM Events..............cococoiiiiiiiiiiin E-1
OVEIVIEW ..cuiiiiiiitct et E-1
Events Directly Triggered by a Keystroke...........cccccceiioiinnniniiiciiinnnnes E-1

Events Indirectly Triggered by an Ops Event............ccooooiiiiiiiiiiiin E-1
Event-Specific Variables...........cccccociiinnnnncccicieeeeeeeeeee e E-1

QUICK RefErenCe TabIe......ccouiieiiieeeiieeeeeee ettt ettt ettt eteseseeereeennee s E-2
SIM Confirm EVENntscccovviviiiiiiiiiiiiiiiin e E-6
Appendix F-Stack Traceocociiiiiiiiii i, F-1
Appendix G -SIMnet..........ccoooiiiiiiiiii G-1
GlOSSATY ...t H-1
ATGUIMENE ..ot H-1
TN OO H-1
Asynchronous Serial INterface ..o H-1
CONCALENALE.......oovittctcteic s H-1
CONSLANT ...ttt H-1
BQUAtiON oo H-1
EXPIESSIONooviiiiiiiiiicicic s H-1
Format SPeCifiers.........ccueuiiiiiiicicic s H-2
FOrmUla ..o H-2
FUNCHON ottt H-2
Global Command.........cccoeveiiiiiiiii s H-2
Global Variable...........ccciiiiiiiiiiii e H-3
HeX EXPIOSSION......cuitiiiiiiiiiiiiietete ittt H-3
INPUt EXPIeSSIONcviviiiiiiniiiiiiiiic s H-3
INE@EOT oo H-3

19

20

ISL o H-3
Language EIement ... H-3
Local Command ..ottt H-4
L0Cal Variable ...t H-4
INESHING .viiiiiicc e H-4
INUILSEING. ..o H-4
Number of ReCOTAS..........ciiiiiiiiiiiiiic s H-4
NUmMeTric EXPIeSSIONcciviiiiiiiiiiiiiiiic s H-4
OFESOL. . H-4
OPETALOT ... H-5
SCIIPL it H-5
SIM oot H-5
SETINIZ ottt H-5
StrING EXPIESSION ...ceeiiiiictt et H-5
SUDEXPIESSION ...ttt H-5
SUDTOULINE. ...t H-5
SYINEAX wvvieiictict e H-5
System Interface ModULEc.ccciiiiiinncc e H-5
System Variable.........ccooiiiiiiiiii e H-6
TOKETL ..ttt H-6
TOKEN EITOT ...t H-6
TTY oo H-6
USETr Variablec.ouiiiiiiiiiiiicccccc e H-6
Variable ... s H-6

Contents

Tables

Tables

Table 1 ABDreviations.........cccoeiiiiiiiiiiiecc e 1-1
Table 2 CONVENIONS ... 1-1
Table 3 Language Element Chapter Navigation..........ccccoeiiinininiiiiiiiiiiiiinns 2-2
Table 4 POS Source ID FOrmatcccooeeuiuiiiiiiiiiiiiiiicceccceennne 3-2
Table 5 Application_Sequence FOrmat............ocoooerieieiiiiiiiiiieeccee 3-3
Table 6 Checksum FOrmatc.coouviiiiiiiieiiiiicicec e 3-4
Table 7 Correct and Incorrect Use of Whitespacesccceeeeirenenerericrerccccinrrereeeeenes 4-6
Table 8 Examples of Where Whitespaces Increase Program Readability........................... 4-7
Table 9 Data Types and Corresponding Abbreviations.............ccceeeeececieiiiiniccciceee, 5-2
Table 10 Unary OPerators...........couceeerueieieieieiicciciee et 5-4
Table 11 BiNary OPerators ...t 5-4
Table 12 Example Variable ASSIgNMeNtccccovvurivirieieicuiiiiiinrreeeeeeeeeee e 5-15
Table 13 ISL StartPrint Commands...........ccccoiviiiiiiininiiiniiiiiie 6-2
Table 14 Printer System Variables ... 6-3
Table 15 Print Type System Variables..........ccccccovniriiiiiiiiinnccecccccrereeeenes 6-4
Table 16 System Variable SUMMATYcccccoeiiirirrrnieieicccecec e 7-4
Table 17 Item Detail TYPES......cccvvereriiueueeceeiirrereeeeee e seseeaenen 7-45
Table 18 Detail Types and Corresponding Sizescooooerueieieieiciicicicieieiceccee e, 7-46
Table 19 Input Status FIagscovoiiirieiiieiicccic e 7-52
Table 20 Common Non-Zero Error Codes Returned by ISL File [/O Commands 7-54
Table 21 Possible Errors Received by the File I/O Commands...........cccccoeeeieinnnnnennnes 7-54
Table 22 User Input Status FIags.........coceuiieiiiiicici 7-62
Table 23 Magnetic Card Entry Status Flag..........cccoeoviioiiiiiiic, 7-71
Table 24 Values Corresponding to the Operating System Platformccccooeennnnnn. 7-82
Table 25 Print Status Flags ..o 7-85
Table 26 Training Mode Status..........ccccceeiiinirrrreeeieecece e eseeeeaenes 7-100
Table 27 Transaction Detail Fields ... 7-101
Table 28 Input Specifier Placement Ordercccooeiiiiiiiiiiccc e, 8-3
Table 29 M Input Specifier Format Fields..........ccocovviiiiiiiiiiiccccicnrnnes 8-4
Table 30 Track 1 Field Positions of Credit Cards...........cccoouiiviiiiiiiiiii, 8-5
Table 31 Track 2 Field Positions of Credit Cards...........cccoouiiviiniiiiiiiiii, 8-5
Table 32 Standard Field Position for MICROS Employee Cardcccoceveiiiiirniennnne. 8-6
Table 33 Commands for Output TYPes........cccoueveeurieieiiiiiccce e 8-6
Table 34 Output Specifier Placement Order............cocooueuiiiiiiiiinnniiiiicccccinrnenes 8-6
Table 35 Examples for Justification SPecifiers...........cooceeueuiuiinininnnreneeecccccererrereeeeaenes 8-7
Table 36 Examples for *Specifier ... 8-8
Table 37 Examples for + SPeCifier ... 8-8
Table 38 Examples for 0 SPeCifier ..., 8-8
Table 39 Examples for 0 SPeCIfier ... 8-9
Table 40 Examples for D, X, O, and B Specifiers...........ccccoecuiiornnnreruerecccccerrereeeenenes 8-9
Table 41 Example 1 for :format_string Specifier ..., 8-10
Table 42 Example 2 for :format_string Specifier ..o, 8-10
Table 43 Commands that Require a StartPrint or a Window Command...............c......... 8-11
Table 44 Call Command ATgUMENLSc.cccciiiiiririririiiiieieirsecee e 8-18

21

22

Table 45 ClearArray Command Argumentscoooeiiiiiieeieiiiicccece 8-19

Table 46 Display Command Argumentscccceeueieieiiecieeeiecececee e 8-23
Table 47 DisplayInput Command ATgUMENtS...........ccceueueuiiioinininininiicceceiiinerereeeeenes 8-25
Table 48 Display Inverse Command Arguments............cceeeeerrerereeueuemeemccenenrerereneeeenes 8-27
Table 49 DisplayMSInout Command Argumentsc.ccccoeeeerrenerueueuececnenennererneeeenes 8-28
Table 50 Error Message Command Arguments............cccciiiininininiiiiiicinnes 8-33
Table 51 Event Inq Command Arguments..........cccceevoiiiiiieininiicccce e, 8-34
Table 52 Event Tmed Command Arguments............cccccueueueiininininniniiieecciinnerreeeenes 8-35
Table 53 Event RxMsg Command ATrguments...........cccceueueureeinenneneeiereueemeeeeirereseneeeenes 8-35
Table 54 Event Print_Header and Event Print_Trailer Command Arguments............... 8-38
Table 55 ExitWithError Command Argumentscccoeereieinieiicccieeececcee e, 8-42
Table 56 FClose Command ATrgUMENLSccoceueieiiiiiniiicieie et 8-42
Table 57 FGetFile Command ATrgUmEeNtscocovuvueurieieuiiininnniniececeeecccseseseseneenes 8-43
Table 58 Flock Command ATgUMENtS..........ccccoourrmrirerirueieucmiiiienerreeeeereeneneeeeeseseseseeeenen 8-44
Table 59 FOpen Command ArgUmMeNtsc.cccrueieieiiiiicicicieeeeeicie e 8-46
Table 60 For...EndFor Command Arguments..............cccoceeemeieieininiiccicieeeccceie e, 8-48
Table 61 Format Command Argumentscccoovvururiiiiiiininnnneceeeccecsesseeeeeenes 8-50
Table 62 FormatBuffer Command ATgUmEentsccceueuereennneneeeereeeeceirrereseeeeeenes 8-51
Table 63 FormatQ) Command ATGUMENLSccouvueurueueueuemiiierreeeeereneeneeeeereseseseenenes 8-52
Table 64 FPutFile Command Argumentsc.cccocovviiiiiiiinniniiccnnes 8-53
Table 65 FRead Command Arguments...........c.cceeueueieiiiiiccieieeieccicieie e 8-54
Table 66 FReadBr Command ATgUumMents...........cccovuvurieiiiiuiiinininininicceceeeccceereseeesenes 8-55
Table 67 FReadLn Command ArgUmMeNtscceeueueueueueuiuiininnneneeereneeeeeeseseseseseenenes 8-56
Table 68 FSeek Command Arguments............ccccovviininiiiniiiiinccnnes 8-57
Table 69 FUnLock Command Arguments...........cccovvvivieiiiiiinininininiceecceenennes 8-58
Table 70 FWrite Command Argumentscccoeeueieiiiniiicieieieiecccice e 8-59
Table 71 FWrite Command ATgUmMEents...........cccovuvriruririiiiiiiiiniinneceeeeecccseseseseeeenes 8-60
Table 72 FWriteLn Command ATGUMENLSccceuvurueueueuemiiiiinireneeeneeeeeeeeseseseseeeenes 8-62
Table 73 GetEnterOrClear Command Arguments ... 8-62
Table 74 If...Else[If]...EndIf Command Argumentsccccoeevvniviviniiiiicicniinninnninnns 8-65
Table 75 Input Command ATGUMENLSccccceiririririririiiiiiiiieee e 8-66
Table 76 InputKey Command ATgUMENtscccoeuvuruiiiuiuiiiininininicceeececenereeeeenes 8-68
Table 77 InfoMessage Command ATgUMENts...........ccceueueuiierinninereeierenereeeeeereseseeeeeenes 8-69
Table 78 LineFeed Command Arguments.............ccovuvuiuiiimiiiininininiiiicccnennen 8-70
Table 79 ListDisplay Command Arguments............c.cocoeeeeemnieieininiiccieieeeeececce e 8-72
Table 80 Listinput Command Arguments............coeueueuiueiemiiiiinninniicceeeeecnesereeeenes 8-73
Table 81 List Print Command Arguments...........c.coeeueueueuemiiininnnneeeneeeeeeeeseseseseeeenes 8-75
Table 82 LoadDbKybdMacro Command Arguments............ccccoueveiirncieieininccccieeen, 8-76
Table 83 LoadKybdMacro Command Argumentsccoevvevvinininiiieieiiiininnnnenes 8-78
Table 84 LowerCase Command Argumentscooveeeeerieieieininicccicie e, 8-79
Table 85 MakeAscii Command Argumentscooeeueuiiiininnnniiiiccccccsnreeenes 8-80
Table 86 MakeUnicode Command ATgUMENLScceueueuiiinnneneeieuereereeeeirerereeeeeenes 8-80
Table 87 Mid Command Arguments...........cccccvivivininiiiiiiiiiiiiiieecnennen 8-81
Table 88 PrintLine Command Arguments............cccceeviiiiiieeeieieccee e 8-83
Table 89 Prompt Command ATGUMENtS..........cccovvririririeiiiiiiiiineieeeeeecseseseseeeenes 8-86
Table 90 RxMsg Command ATZUMENLS...........ccouviririririiieiiiiiiineceeeeeec e 8-90
Table 91 SaveChkInfo Command Argumentsccccceeieeinnneneeuerereemeeeirerereseeeeeenes 8-92
Table 92 SaveRefInfo Command Arguments............cccoeeeiiiininininiiiiiiics 8-95

Tables

Tables

Table 93 SaveRefInfox Command Arguments............cooeueiiinininininiiiiiiccnes 8-96

Table 94 SetIsSTSKey ATgument.........cccceueieieioiiicicieieecccce e 8-97
Table 95 SetString Command Argument............coovueueueuiiiiinnnnicccccccereenes 8-100
Table 96 Split Command ATgUMENLt.......c.ccccciirirririririeieiecceeerreeeee e 8-101
Table 97 SplitQ Command ATZUMENLES........c.ccccovrrirurieieieiiieiiiierreeee e eseeeeaenes 8-102
Table 98 StartPrint...EndPrint[FF/NOFF] Command Arguments........c.c.cccccocevererururueee 8-103
Table 99 ISL Printer System Variables for StartPrint...EndPrint[FF/NOFF].................. 8-103
Table 100 Sub...EndSub Command Arguments............cccccceevieevnniriniiieeciininnnenenenes 8-105
Table 101 TxMsg Command ATGUMENLSccorurururueuemeuimieiireneeeeeeneeeneeeeseseseseeeeaenes 8-109
Table 102 TxMsgOnly Command Argumentsccccceeiiinininininniniieciinnnen 8-110
Table 103 UpperCase Command Argumentsooceeereiereieineieceeieieececese e, 8-111
Table 104 Var Command Argumentcooeeeueieiiiniicceeeeceeee e 8-113
Table 105 Type Specifiers for User-Defined Variables............ccccoeiiiiiiiiinnnnnnnns 8-114
Table 106 WaitForClear Command ATgUMENLSc.ccceueuiierrernererierercreeeeinrereseeeennes 8-115
Table 107 WaitForConfirm Command Arguments............ccccovvviviiiniiiiiiiinnnnnnes 8-116
Table 108 WaitForEnter Command Argumentsccoceeeeieiniiiceeieieecccee e, 8-118
Table 109 WaitForRxMsg Command Argumentscccoceeeevvniriiiieeeciinnnnnenenas 8-119
Table 110 While...EndWhile Command Arguments...........ccoceeveeueueucuccccnennrrereraenes 8-120
Table 111 Window Command ATGUMENLS..........ccceuvueueueueueuiieireninereeeenenereneeneeeseseseseenenes 8-121
Table 112 ISL Function SUMMATYcccceiiiiiiiiiiiiiinic e 9-1
Table 113 Abs Function Argumentscoeuveeurieieiiiiiiiicee e 9-3
Table 114 ArraySize Function Arguments.............coovuvueueieiiuiiininininniieeeeecccesseseseenenes 9-3
Table 115 Asc FUNCHON ATGUMENES.......c.c.ceimiiiiriirireeeieeeece e 9-4
Table 116 Bit Function Argumentscceoviiviiininiiiiiiiiiiiiiecec e 9-4
Table 117 Example Bit Positions for a four Digit Hexadecimal Number 9-5
Table 118 Chr Function Arguments..............ooooeiemieieiiininiiccee e 9-5
Table 119 Abs Function ATgUMENLScccceiiiiiniririricicicccce e 9-6
Table 120 Env Function ATGUMENESc.cccociiiiriririnirieiccccccce e 9-6
Table 121 Feof Function Arguments............ccoooiviiininiiiniiiiiiiiineeeeeenenne 9-7
Table 122 Abs Function Argumentsoeueverurieieiiiniiiccee e 9-7
Table 123 Abs Function ArgUMENtScccceiiininiriririiicicccccceseee e 9-8
Table 124 Abs Function ATgUMENLSc.ccccciiiiiiririririciciccceee e 9-8
Table 125 Abs FUNCHON ATGUMENLSc.c.ceuiuiiiiriririieieiceeecec e 9-9
Table 126 Abs Function Arguments ... 9-9
Table 127 FTell Function Argumentsc.coueeumieieioiiicncee e 9-9
Table 128 Abs Function ArguUmentsc.ccccccieiniriririririciciciiiicseceeeeeec e 9-10
Table 129 GetHex FuNction ATgUMENtS.........cccccvvririririeueieuciiieineeeeeeeneeeeeeeeseseseeaeeenes 9-11
Table 130 Abs Function Arguments ... 9-11
Table 131 Instr Function Argumentsccooviiinninininiiiiicnen 9-12
Table 132 Key Function Argumentsooeoveerieioiiiniicceeeecc e 9-12
Table 133 KeyNumber Function ATgumentsccccceueiiininninniniiicecciinenrreeenes 9-13
Table 134 KeyType Function ATgUMENLSccoveveeeeueieucuiiiirrreecreeeeeeeeseseseseeeenes 9-14
Table 135 Len Function Arguments...........cccccviviiiinininininiiiiiieeccccnnnen 9-14
Table 136 Mid Function ATgUmMENts...........ccceeveurueueieieiiiiiccee e 9-15
Table 137 Abs Function Argumentsc.cccccciviiririririniciciciiiiienseceeeeeeccseseseseeeenes 9-16
Table 138 Abs Function ArguUmentsc.cccccieiviriniririeicicieiiiieceeeeeec e 9-16
Table 139 Abs FUNCtiON ATGUMENLSc.ccceuiuiiriririririeieiceicccee e 9-17
Table 140 Tolnteger Function Arguments............ccoeevvuiiiiiiiiininnniiicces 9-17

23

24

Table 141 Trim Function Arguments.............cccoviiinininiiiiiiiieccnnes 9-18

Table 142 Abs Function Argumentsooooveeueieiiieiniiccee e 9-18
Table 143 Abs Function ArguUmentsc.ccccccieviririririiiiieiciiiiieseceeeeeec e 9-18
Table 144 VarSize FUNCHON ATUMENES.......cccooiiririririeieieieiciiceeeeeeeesenee e eseseseeeeaenes 9-19
Table 145 Data TYPES.....c.ceuiuiririreeeeieeiceect sttt C-1
Table 146 Unary OPerators...........cceicieieieieiicccice it C-2
Table 147 Binary OPerators ..ottt C-2
Table 148 System Variables..........ccoviiiiiiiiniiiicccc e C-3
Table 149 Format SPeCifiersccovueuiueueiiiiiirrrreeceeee e C-8
Table 150 Output SPeCIfiersccvoviiiicicie s C9
Table 151 ComMMANAScciiiiiiiiiiccc e C-10
Table 152 FUNCHONS. ..o C-17
Table 153 C Parameter Declaration............ooevieeueieiiiiiiiceieeecccneeeccne s D-5
Table 154 SIM Type Mapping to C Declaration...........c.cccceeeecenenenereeuerercrcccnennrsereenenenes D-6
Table 155 SIM Events and Corresponding Variables..........ccccooooiiiiniiiiiiice, E-2

Tables

Figures

Figures

Figure 1 Order Chit with MeSSage........c.ccccceuiininininiriniiiiiciiciciecee e 2-10
Figure 2 Sample Raffle TiCKet......cccoiuiieuiiiiiiiireeieiecceccce e 2-11
Figure 3 Example var Command ..o 5-2
Figure 4 Example PMSLINKcocoooiiiiiii 7-84
Figure 5 Example PMSNUMBER..........ccccoceviiiiiiiiiiiiicccenes 7-85
Figure 6 ISL Error Message Format 1ccccooviiiiiiiniiiniiicccccccn A-1
Figure 7 ISL Error Message Format 2..........ccoviiiiiininiiiniiiiiiccccccccnas A-1
Figure 8 ISL Error Message Format 3..........cccccovvinininiiiiiiiiiicccccnes A-2
Figure 9 ISL Error Message FOormat 4..........c.cocoooovoiiiiiiiiiiiiiiiiicce A-2
Figure 10 ISL Error Message Format 5........c.cocooovviiiiiiiiiiiiiccc A-2
Figure 11 SIM EXCEPLIONcvvviviiiiiiiiciiiicncc s F-1

25

Preface

This manual describes the System Interface Module (SIM) of Oracle MICROS Simphony
and its proprietary Interface Script Language (ISL). This manual provides information
needed to develop an interface that facilitates communications between Simphony and
various third-party systems by learning how to write scripts in ISL.

Audience

This document is intended for Simphony programmers, MIS personnel, and installers.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://support.oracle.com
When contacting Customer Support, please provide the following;:
o Product version and program/module name
o Functional and technical description of the problem (include business impact)
o Detailed step-by-step instructions to re-create
» Exact error message received and any associated log files

o Screen shots of each step you take

Documentation

Oracle Food and Beverage product documentation is available on the Oracle Help Center
at https://docs.oracle.com/en/industries/food-beverage/pos.html

Revision History

Date Description of Change

January 2020 o Initial publication.

December 2020 o Removed the last bullet item in the
Getting Started with Script Writing
chapter.

March 2022 o Updated the Using Variables chapter.

26 Preface

https://support.oracle.com/
https://docs.oracle.com/en/industries/food-beverage/pos.html

1 Before You Start

You must know:
« How to program high-level languages, such as BASIC or C/C++
« How to implement an interface

« How to program a Simphony database

Abbreviations, Conventions, and Symbols

This section describes the abbreviations, conventions, and symbols that are used
throughout this manual.

Abbreviations

Certain phrases, as listed below, are abbreviated to make reading easier.

Table 1 Abbreviations

This abbreviation... Refers to...

Interface A software interface developed by a third party for
the purpose of facilitating communications with
Simphony

Operator Anyone operating an Oracle MICROS
workstation, including employees, cashiers,
managers, servers

System Simphony

Third-party System Any other system interfacing with Simphony

Conventions

The typographic conventions explained below help to simplify the written instructions.

Table 2 Conventions

This Typographic Described as... Which is Used to | Is Shown In The
Convention... Denote... Following
Example(s)...
Three dots in a That part of a Startprint
column program or
script has been
intentionally .
omitted Endprint

Before You Start 1-1

This Typographic

Described as...

Which is Used to

Is Shown In The

Convention... Denote... Following
Example(s)...
The pipe symbol | A list of options |[GE | LE | GT |
where only one | LT]
option may be
selected
Note that a pipe
is not allowed
within an ISL
command or
function syntax.
_H An alphanumeric | Hexadecimal 30H
string with an numbers
“H” suffix
boldface or Words appearing |® Commands cleararray
BoldFace in a bold type or functions | kitchen_msg
font that are the
focus of the
discussion
e Items that DbResetTtls
must be (UINT...)
entered
exactly as
they appear
Boldface words Function and | GetHex
with mixed command WindowClose
uppercase and names
lowercase letters
and no spaces
Ellipses... Three dots That similar [.prompt_expression.
following a word | elements may -l
or word series follow
[keys] A keyname Keys on a PC [Enter]
inside brackets or
workstation [Tab]
keyboard

Before You Start

Before You Start

This Typographic

Described as...

Which is Used to

Is Shown In The

Convention... Denote... Following
Example(s)...
Placeholder or Italicized words | Information the | ResetType,

[placeholder]

Italicized words
between brackets

user must supply

information the
user must
supply, but
WITHOUT the
brackets

expression, file_num

[expression]

“Prompts” Words or phrases | Prompts, text “Press Enter to
in quotes strings, and confirm”
chapter names
“MM/DD/YY”
text A non- Code, program | cleararray
proportional font |output, and error | kitchen_msg
messages

under_score

An underlined
space appearing
between words

Argument names
made up of two
or more
connected words

ver_rsp
kitchen_msg

UPPER CASE

Words shown in
all capital letters

Modules,
fieldnames, type
definitions,
system variables,
messages, and
certain key
words

27FLEDEF.H
@CHK_OPEN_TIM
E

EMPL_DEF
SECOND
LAST_CHK_NUM

1-3

2 Understanding the SIM and ISL

This chapter contains an overview of the System Interface Module (SIM) and the
Interface Script Language (ISL).

Getting to Know the SIM and ISL

SIM extends the standard operation and functionality of Simphony through the Oracle
Hospitality proprietary Interface Script Language (ISL). The SIM and ISL work together
to provide establishments with the capability to enhance daily operations quickly and
easily.

This section introduces SIM and ISL and explains how the module and script language
work together.

What is the System Interface Module?

SIM is a component of the Simphony POS which allows third-parties to customize and
enhance the functionality of the POS. Similar to browser plug-ins or spreadsheet macros,
SIM consists of a programming language (ISL) and an operating environment. SIM
scripts can:

1. Hook into system events such as “begin check” or “transaction cancel” and
perform custom processing.

Respond to custom user-programmed keypresses.

Access POS data such as check detail, the local configuration database, and
various state variables such as current employee information.

4. Utilize POS functionality such as printing, display prompting and dialogs,
interfacing with third-party systems, and disk I/O.

What is the Interface Script Language?

The ISL is a proprietary Oracle Hospitality interpreted language used to create small
programs, called scripts. These scripts contain instructions that tell the SIM what to do.

The ISL includes easy-to-learn, easy-to-use language elements, including a repertory of
commands, functions, and system variables, as well as simple statement formats. Users
manipulate these language elements to create instructions that are executed when the
script is run.

Users with programming experience and familiarity with script writing will quickly
adapt to the ISL. Although ISL is designed for use by systems developers, POS installers,
and MIS staff, users with a strong knowledge of programming concepts and building
blocks will also find the ISL easy to access.

Characteristics of the ISL

Like BASIC

ISL closely resembles BASIC (or variants) in its structured, linear structure. Scripts flow
in a step-by-step structure, but unlike BASIC, each line of the script does not need to be
numbered. Like BASIC and other structured languages, the ISL supports decision-

Understanding the SIM and ISL 2-1

2-2

making language elements such as If...Else, and loop constructs using the For...EndFor
and Forever...EndFor.

Language Elements and Components

A myriad of language elements, common to most interpreted languages, comprise the
ISL to help build SIM applications. Among the language elements comprising the ISL are
commands, functions, system variables, operators, and format specifiers. All these
elements are used in script writing.

Numerous commands comprise the foundation of the ISL, allowing the designer to:
» Control the flow of instructions in the script
o Define and manipulate variable information
« Facilitate communications between a third-party system and Simphony
» Process input and output
o Handle a variety of file processing operations

» Send data to print devices

ISL functions enhance text handling and formatting facilities.
These additional elements are also provided:

« System variables, for reading selected definition and totals information from the
database and setting certain system parameters

o Operators, relational and logical (Boolean), that perform mathematical actions on
variable and constant operands

¢ Format specifiers, which when used with commands, allow the specification of the
format of input and output data where permitted

For detailed descriptions about each component of a specific language element, refer to
the chapters listed below.

Table 3 Language Element Chapter Navigation

Language Element Where to Go

Commands See ISL Commands
Functions See ISL Functions

System Variables See ISL System Variables
Operators See Using Variables
Format Specifiers See Using Format Specifiers

Event Procedures

ISL is event-oriented. An event procedure is a group of statements and commands that is
defined by the ISL Event...EndEvent commands. The scripts provide a frame-like
structure for a sequences of events.

In order to start an event, the event must be initiated with a specially programmed key or
by a message response received from a third-party system. After an event is initiated
successfully, the SIM stops processing the script until another event is initiated.

Understanding the SIM and ISL

For example, the event shown below performs the following set of tasks:
» Displays an ISL-defined window on the screen of the workstation,
« Prompts an operator to enter a room number, and

« Sends the room number and the number of the Transaction Employee to a third-
party system (for example, PMS).

event ing : 1 // Execute when SIM Inquiry
key 1
// is pressed
var room_num : N5 // Declare
local variable window 2, 19, “Room Inquiry” //
Create input window display 2, 2, “Enter Room
Number” // l1ssue
operator prompt input room_num, “ “ // Accept
input
txmsg room_num, @tremp // Transmit room number and
Transaction
// Employee to third-party
system
waitforrxmsg // Wait for response from

third-party endevent
« After the third-party system acknowledges receipt of the data, the event ends.

If the operator at the workstation initiates another event, the SIM begins processing the
script again but until then, the SIM waits for the next instruction.

Script Writing

What is a Script File?

Scripts are small programs through which the ISL issues instructions to the SIM. A script
is an ASCII text file that can be created in any common text editor, such as Microsoft
Notepad. These scripts can contain one or more events to implement SIM applications.

A single script must be maintained for each SIM Interface defined for a system. The script
is linked to a SIM Interface through Simphony database programming. Once this
relationship has been formed through database programming, the script can be executed
by Simphony. For specific programming requirements, refer to Programming Simphony
for SIM.

Being Familiar with Script Writing...

Script writing is a common way to issue instructions to a computer. However, scripts
written with the proprietary Oracle Hospitality ISL have a specific format and include
elements unique to this language. Consequently, Oracle Hospitality recommends that
users familiarize themselves with the unique language elements and script structure
before writing the first script. Refer to Script Writing Basics.

Being New to Script Writing...

This manual also contains a brief introduction to this method of automating operations. If
the programmer has never used scripts before, Oracle Hospitality recommends
reviewing this introductory material. For further details, refer to Script Writing Basics.

Understanding the SIM and ISL 2-3

2-4

How the ISL Accesses the SIM

The SIM can be accessed through instructions executed by a small program called a
script, written with the Interface Script Language (ISL). Within a script, there may be
several events, each defined to perform different tasks.

Initiating an Event

Instructions within events in the script tell the SIM which tasks to perform. In order to
carry out these instructions, the SIM first must be told to execute them. An event can be
initiated within a script in one of the following three ways:

o The operator can press a SIM Inquiry key, programmed in the Simphony
database to initiate an event.

o The operator can press a SIM Tender key, programmed in the Simphony
database to initiate an event.

o A third-party system, interfaced with Simphony, can respond to a message sent
to it by the SIM.

Pressing a SIM Inquiry or Tender Key
When an operator at a workstation presses a SIM Inquiry or SIM Tender key:

o First, the SIM verifies certain required parameters within the Simphony
database.

o After verifying that certain programming options and links are set up, the SIM
searches for the script.

o After the SIM finds the correct script, it looks for a valid event, linked to the SIM
Inquiry or SIM Tender key that the operator pressed to initiate the whole
process.

o Finally, after locating a valid event, the SIM runs the script and executes the
instructions contained in the event.

Interfacing with a Third-party System

Several communications commands and system variables can be issued by events in the
script. These commands and system variables can be used to send messages to a third-
party system. In turn, the third-party system acknowledges these messages and responds
over an interface method (for example, TTY or TCP/IP) using a message format
recognized by Simphony. Message formats and interface methods supported by the SIM
are described in Message Formats and Interface Methods.

During this exchange, the SIM Interface acts as the go-between for both systems by
shuttling the messages back and forth. A simplified version of the exchange goes like
this:
o Simphony transmits a message to a third-party system with a TxMsg command
statement in a script.
« The SIM Interface puts the message in a format that is acceptable to the third-
party system.
o Then, the third-party system acknowledges the message and sends back a
response, such as data requested by the SIM.

Understanding the SIM and ISL

o The SIM Interface forwards the response to Simphony in a message format
acceptable to the POS: either fixed format or ISL format.

Features of the SIM

The SIM provides a variety of features to help create functional and useful SIM
applications with the ISL. The main features of the SIM include support for:

» Common communications message formats and interface methods for
development of SIM Interfaces

o A variety of methods of displaying, capturing, and printing information

o The standard communications protocol that is required to interface with a third-
party system, such as a PMS or delivery system

« Comprehensive file I/O processing operations

Message Formats and Interface Methods

The ISL handles two types of message formats for developing a SIM Interface: fixed

format and ISL format. Both of these message formats can be sent over two different
interface methods, including an asynchronous serial interface (Host TTY ports) and
TCP-based interface.

A discussion of both message formats and interface methods is in Message Formats and
Interface Methods.

Methods of Displaying, Capturing, and Printing Data

Processing input and output, as well as printing data, are the mainstay of most POS
transactions. Consequently, the SIM handles a variety of input and output operations.
For displaying data, the Liquid Crystal Display (LCD) of a workstation is used as the
platform for screen output.

Input data can be captured with the use of a touchscreen, a PC keyboard, a barcode
reader, or a magnetic card reader.

The SIM controls printing with a versatile set of print commands and system variables,
also called print directives.

Data Entry

The entry of data is accepted from a PC keyboard, a touchscreen, a barcode reader, or a
magnetic card reader. Generally, scripts that instruct an operator to collect data, such as
name and address information, require entry using one of these methods.

Touchscreen

Data entry from a touchscreen is accepted, when required by the SIM during the
execution of a script.

To support data entry from the touchscreen, the ISL includes commands for displaying a
programmed or ISL-defined touchscreen when one is required. Normally, the script
should display a touchscreen in order for the operator to select data from it. The data
could be menu items, in which case the script should pop up a sales transaction type

Understanding the SIM and ISL 2-5

2-6

touchscreen. Or the script could direct the operator to enter the customer’s name, in
which case, an alpha touchscreen should pop up for the operator to use.

Magnetic Card Reader

The SIM can also access data that can be stored as track data on a magnetic card. Usually,
track data includes the cardholder’s name, a reference number, such as a credit card
account number, and an expiration date. For example, the account number of a country
club member could be stored as track data, allowing the operator to capture it from the
POS by swiping the member’s card through the magnetic card reader.

Printing
Printing and backup printing are accomplished by the ISL through the use of several ISL
commands and a variety of ISL system variables.

Print Commands and Print Directives

Print commands start print jobs, while the system variables—also called print
directives—change the print characteristics of generated text. The print directives change
the print type, similar to the way standard parallel printer escape sequences work. For
example, printing some text in red ink can be accomplished with a print directive.

Type of Printers Supported

All output can be generated at roll printers and Kitchen Display Systems (KDS). For the
WS4(+) only, the ISL accommodates printing to a laser or dot matrix printer that is
connected to its parallel port and is configured for the Extended Line Printing option.

Interfacing with Third-party Systems

Communications are handled by the SIM through a variety of commands that support
the exchange of messages between a third-party system and Simphony.

The type of messages sent back and forth between these two systems typically includes
blocks of data. For instance, the third-party system can be used as a repository for data,
such as customer name and address information in a customer database. This data might
be used by Simphony to verify information in the third-party database with information
input from the POS side.

In order for Simphony to send and accept data from a third-party system, a SIM Interface
must be developed and enabled using the interface methods supported by the SIM, and
the messages must be put in a format accepted by the SIM.

ISL File Handling

The ISL also supports file processing operations found in other programming languages.
Files can be opened, and while open, read and write operations can be performed, and

then the file closes. For example, an application at a country club may involve checking a
file for a member account number, retrieving it, and adding it to a guest check. But, if the
member’s account number is not found in the file, this feature allows the ISL to assign an
account number for the new member, with the next available account number in the file.

Understanding the SIM and ISL

Creating SIM Applications with the ISL

The ISL is the gateway to the SIM of the Simphony software. When the ISL is used
correctly, this powerful script language can be harnessed to build useful and practical
SIM applications for all types of POS environments, including restaurants, bars, hotels,
country clubs, and so on.

Benefits of SIM Applications

The impact of SIM applications on these POS environments is immediate, especially
when used to make certain POS transactions and functions easier for operators to
perform. Such applications have the added benefit of making Simphony easier and
simpler to use, thus, improving overall customer service.

Equally important is the fact that creating SIM applications also enables the user to
expand the capabilities of Simphony. These applications take Simphony beyond its
traditional function and improve existing features. For example, guest charge posting
could be made faster, user prompting and system messaging could be improved, and
customers can be tracked through the collection of information, like names and
addresses. Whether simple or complex, when implemented properly, these types of SIM
applications can make the system a more powerful tool for users.

Types of SIM Applications

Although SIM applications can emphasize a variety of features, the applications likely to
be implemented might involve such features as:

o Collecting and saving data for future retrieval or tracking, such as tracking
customer sales in order to generate coupons, as rewards or incentives for
frequent diners

» Expediting certain POS operations, like automatically applying a discount to a
guest check when certain conditions are met

» Communicating with a third-party system, such as a Pizza Delivery System

» Writing to and reading from files, as in the case of verifying input with
information in a file stored on disk

» Printing and posting information to checks in ways that the system may not be
programmed to do, such as generating messages with special instructions for
kitchen staff

This section contains several real-world examples of SIM applications, implementing a
combination of SIM features. These examples are provided to give an idea of the type of
SIM applications that can be created with the ISL. Keep in mind that these are only
examples, and implementations of similar SIM applications can vary.

Generating Coupons for Customers

The collection of data, such as customer information, is easily handled by the SIM. Such
data can be captured and used by a third-party delivery system, interfaced with
Simphony, allowing the entry and recall of customer name and address information.

Since customer sales and other data can be tracked this way, the ISL makes it easy to
develop SIM applications that create rewards for customers. Most common are rewards

Understanding the SIM and ISL 2-7

in the form of coupons and other incentives. Customers redeem these coupons for cash,
gifts, reduced purchase price, and so on.

Frequent Diners

Customers who frequently patronize an establishment are often targeted to receive
rewards and incentives for their continued loyalty. At the fictional restaurant, a Birthday
Club is one of the incentive programs offered to frequent diners.

Assume that a third-party database exists with pertinent information about frequent
diners, such as name, account number, birthdate, and so on, for sales tracking purposes.
In addition, also assume that the restaurant issues frequent diners a special VIP card,
including an account number and birthdate as track data’.

Whenever the frequent diner visits the restaurant, the diner must present the VIP card so
the server can credit sales to the frequent diner’s account.

Generating a Birthday Coupon

A server generates a “Birthday Coupon” based on the information that the restaurant is
tracking. The coupon is redeemable for a free appetizer upon the customer’s next visit. At
this restaurant, the Birthday Club works like this:

» Using the birthdate read by a magnetic card reader from the VIP card track data',
Simphony checks it against the current system date. If the birthdate is equal to
the system date, then Simphony automatically issues a Birthday Coupon when
the server closes the guest check.

o When presenting the guest check, the server also gives the diner the Birthday
Coupon.

1 This term refers to information stored on the magnetic stripe of a credit card. The
information is often stored on separate areas of the magnetic stripe, called tracks. For
example, the account number and birthdate in this example are stored on Track 2 of the
magnetic stripe.

Understanding the SIM and ISL

Interfacing with a Pizza Delivery System

One of the important features of the ISL is its ability to support an interface between
Simphony and a third-party system. Such an interface allows both systems to
communicate with each other by handling the exchange of messages between the
systems.

For example, over a SIM Interface, Simphony captures customer information input on the
POS side, and then the information is sent to the third-party delivery system. A SIM
Interface enables the operator to retrieve this information from the delivery system’s
database as needed through a query or search.

Guest Check Information Detail

Information that might be captured and stored in a third-party database includes the
name and address information, the customer’s telephone number, as well as directions to
the customer’s residence. When a customer telephones the pizzeria, an operator uses the
customer’s telephone number to access any existing information in the pizza delivery
system’s database.

As an added benefit, this SIM application also prints this customer information on the
guest check. For example, the directions to the customer’s residence prints on the check
for the delivery person to reference.

Previous Order History

In addition to name and address information, a customer’s order history is also
information that the third-party system maintains. By retrieving previous order history,
the operator eliminates the additional steps required to post order information, namely
menu items, to a guest check. If the customer always orders a large pepperoni and
mushroom pizza, these items can be retrieved from the third-party database, and posted
to the check, without directly accessing the menu item keys again. In a fast-paced
environment like a pizza delivery operation, where quick turnaround is critical,
eliminating steps in the order entry process is a real advantage.

Collecting Customer Information for a Membership List

Many implementations of SIM applications collect data, such as name and address
information or guest history. Collecting and storing this information can be retrieved for
later use.

The ISL can be used to handle these functions in one of two ways, including:

o Use ISL file I/O capabilities to read from and write to files that are stored on the
same PC running Simphony.

« Interface with a third-party system, as described in the pizza delivery system
example, to send data to and retrieve it from another system.

Although both options enable the storage and retrieval data, the first option allows faster
access data, because no communications overhead is involved.

Reading Data from a File

One implementation of the file I/O option is to collect customer data and add it to a
membership list, which is kept in a file. The application requires that an operator at a

Understanding the SIM and ISL 2-9

2-10

country club, for example, enters name and address information in Simphony. Behind
the scenes, the ISL opens the file and writes this new information to it, or verifies existing
information, and then closes it.

The country club uses this file to verify membership information. For example, by
reading this file, operators determine whether the customer’s membership dues are
current, or whether the member is entitled to certain privileges, such as running a tab at
the country club’s bar.

Customizing Output

Printing is an essential POS function that can be expanded to accommodate the unique
preferences of a property. Simphony comes equipped with many different programming
options that affect how, where, and when things print. With the ISL, printing can be
further customized for a property by extending the functionality of Simphony beyond its
normal programmable limits.

The ISL’s special printing abilities in the previous examples, such as printing customer
information on guest checks and generating coupons for customers has been previously
mentioned. Now let’s examine how servers can save time when they must send special
instructions to kitchen staff about orders.

Sending Special Messages to the Kitchen

The SIM application allows an operator to select a message from a list, and then send the
message to the kitchen. The list includes messages frequently sent to the kitchen, which is
a feature that current programming options for number lookups (NLUs) do not support.

A remote roll printer in the kitchen generates the following message on a chit:

Server's Name

FROM IRIS +

M
Besa INOV2007

CANCEL ORDER
Chk 124 Thl 5472

S====END MESSAGE=====

Figure 1 Order Chit with Message

Creating Raffle Tickets

Another good example of using the special printing capabilities of the ISL is creating
output other than guest checks, remote order chits, and customer receipts.

Earlier in this section we described how to generate a coupon with the ISL. Now, let’s
create a raffle ticket for hotel guests.

This application requires that Simphony interface with a PMS. The application performs
a common PMS task: collecting a guest’s name and room number when the operator
closes a guest check in one of the hotel’s food and beverage outlets.

Understanding the SIM and ISL

For this application, the ISL verifies the input with data already stored in the PMS
database. Based on how many times the guest has patronized the hotel’s four star
restaurant, for example, a raffle ticket chit is generated after the guest check prints.

The raffle ticket includes an excursion option, which was selected from a list of others, as
well as the guest’s name and room number. The ISL also automatically assigns a ticket
number to the chit.

Ticket Mumber

RAFFLE TICKET

U£L£IU
11-18-07 Foom Mumber

Last. First Room 456.4

Guest's Name
VACATION FOR TWO :’— Excursion Option
BAHAMAS

Thank You for Dining
gt the Oracle Cafe

Figure 2 Sample Raffle Ticket

Such a chit cannot be generated by Simphony using current programming options.
However, the ISL makes it possible to print output that is outside the traditional realm of

a POS.

Understanding the SIM and ISL 2-11

3 Getting Started

This chapter contains a description of the message formats and interface methods that
must be used to develop a SIM Interface. It also includes a description of the Simphony
database programming required to enable the SIM and a SIM Interface.

Getting Started with the ISL and SIM

This chapter focuses on the steps that must be taken in order to implement the SIM
applications successfully. In this chapter, the following is described:

+ What communications message formats and interface methods are available for
developing a SIM Interface

« How to enable the SIM and a SIM Interface

Developing the SIM Interface

When creating SIM applications that require communication with a third-party system,
such as a PMS or delivery system, a SIM Interface must be developed. This interface must
utilize supported message formats and interface methods to facilitate communications
between Simphony and the third-party system. In Message Formats and Interface
Methods, the message formats and interface methods to apply when creating the SIM
Interface are discussed.

Enabling SIM and a SIM Interface

Specific Simphony EMC configuration steps must be performed to enable the SIM and
the SIM Interface to successfully execute scripts. Contact your Oracle MICROS Simphony
implementation consultant to enable your SIM Interfaces and to review your associated
SIM script configuration options.

Message Formats and Interface Methods

Getting Started

To develop the SIM Interface, use the message formats and the interface methods
described in this section.

Message Formats

There are two classes of message format: fixed format and ISL format.

Note: Both formats over the same type of interface can be
used. For example, the ISL format can be used over both a
TTY- and a TCP-based SIM Interface.

Fixed Message Format

Support for this message format allows a PMS compatible fixed-format message to
communicate with Simphony through a SIM Interface. However, Oracle Hospitality
recommends that the ISL message format be used unless fixed-format messages are a
requirement of the third-party system.

3-1

3-2

This recommendation is made since the fixed content of this message format provides a
limited set of information. For example, a fixed message must always contain four sales
itemizers and four tax itemizers. If a PMS needs access to eight sale itemizers, this
message format cannot be changed to accommodate eight sales itemizers. The ISL
message format provides much more flexibility.

Consequently, the fixed message format should only be used in cases where the third-
party system requires fixed-format style compatibility due to pre-existing PMS
installations.

Message Format
The format of the message is as follows:
SOH ID STX Data ETX Checksum EOT

ISL Message Format

Messages defined using the ISL are structured like fixed messages, except that the Data
segment of a fixed message is broken out into two segments in the ISL message:
Application_Sequence and Application_Data.

However, the segments of the ISL message are enveloped using control characters. IBM
PC character codes, an ASCII superset, provide support for international characters.

The format of the ISL message is as follows:
SOH ID STX FS Application_Sequence Application_Data ETX Checksum EOT

A description of each message segment follows.

SOH

The SOH character (start of header) serves as a message lead-in character that identifies
the start of a new message. The SOH character is represented by the 7-bit hexadecimal
value 01H, plus a parity bit, if applicable.

ID

This is the POS Source ID segment that includes information about the workstation. The
workstation initiates the message and identifies the interface.

The format of this segment is as follows:

Table 4 POS Source ID Format

Field Length Format Remarks
POS 9 Bytes 2 or 9 ASCII May contain leading
Workstation Digits spaces or zeroes and is
Number between 1 and 999999999,

depending on 2/9 digit ID
in the Interface module.

Standard interface format
Interface Name 16 Bytes | 16 ASCII Uses IBM PC character set.
Characters

STX

Getting Started

Getting Started

The STX character (start of text) serves as a data field lead-in character that identifies the
start of the message data block. The STX character is represented by the 7-bit
hexadecimal value 02H, plus a parity bit, if applicable.

FS

The FS character (field separator) identifies this message as a SIM message data block.
The FS character is represented by the 7-bit hexadecimal value 1CH, plus a parity bit, if
applicable.

Application_Sequence

The Application_Sequence segment comprises a two-digit sequence number and a
retransmission flag. Each POS workstation application increments its own sequence
number with each message. When a message is being retransmitted, the same sequence
number is used as in the original message. In addition, a retransmit flag character is
provided.

The format of this segment is as follows:

Table 5 Application_Sequence Format

Field Length Format Remarks
Applications 2 Bytes 2 ASCII Digits | May contain leading
Sequence spaces or zeroes and is
Number between 00 and 99.
Retransmissi 1 Byte Space or ‘R’ ‘R’ character (ASCII 52H)
on Flag is placed in this field if
Character this is a retransmitted

The Application_Sequence number is initially set to “01” when the application starts. The
application rolls the sequence number back to “01” after “99.”

If the third-party system receives a message containing the same sequence number as the
previous message and the retransmit flag is set, the third-party should retransmit the last
response.

Application_Data

Both the TxMsg and RxMsg commands define the Application_Data segment. The total
size of the message can be 32K from the SOH to the EOT. There are a maximum of 37
bytes overhead, which means that the maximum byte count of all the fields and field
separators is 32768 - 37, or 32731 bytes.

Note: When the asynchronous serial interface messages are
not limited, it is recommended that they be no more than
1024 bytes in length, so that the interface remains
responsive.

Multiple fields can comprise this segment. Individual fields within the Application_Data
segment are separated by the ASCII field separator character (1CH), inserted by the ISL.

In addition, the first field within the receive message Application_Data segment defines
the name of the ISL procedure to execute when processing the response message. The

3-3

3-4

detail description of the RxMsg command describes the relationship between the
command and the Application_Data segment of an ISL message.

ETX

The ETX character (end of text) serves as a data field lead-out character that identifies the
end of the message data block. The ETX character is represented by the 7-bit hexadecimal
value O3H, plus a parity bit, if applicable.

Checksum

The Checksum field is only used when communicating over an asynchronous serial
interface. A TCP-based SIM Interface ignores this field, so it can be omitted from the
message format. When the Checksum is part of the message, however, format it as
follows:

Table 6 Checksum Format

Field Length Format Remarks
Checksum 4 Bytes 4 ASCII Hex Contains ASCII
characters characters in the range
30H - 39H and 41H - 46H
(0-9 and

The Checksum is the 16-bit binary addition (excluding parity, if applicable) of all
characters after the SOH, up to and including the ETX character. The Checksum is initially
set to zero. For transmission, the Checksum is represented as four ASCII-Hex characters.

EOT

The End of Transmission character (EOT) identifies the end of the message. It is
represented by the hexadecimal value 04H, plus a parity bit, if applicable.

Interface Methods

The SIM supports two types of interface: an asynchronous serial interface and a TCP-
based interface. Both interface methods support the Simphony-compatibility fixed-
format message and the ISL message format.

Note: Both the fixed and ISL formats can be used over the
same interface and, because Simphony supports multiple
interfaces per revenue center, any combination of these
interfaces may be used within a revenue center.

Asynchronous Serial Interface

This type of interface method supports communications with a third-party system over
an Asynchronous Communications Adaptor (COM port) installed in the PC that controls
Simphony.

This interface is widely used to implement a PMS Interface to facilitate communications
between Simphony and a PMS. With the introduction of SIM, this interface method can
also be a choice for implementing a SIM Interface.

Getting Started

Getting Started

Asynchronous Serial Interface Specifications

Specifications for developing an asynchronous serial interface are defined in the
1700/2000/4700/8700 PMS Interface Specifications Manual. Refer to this manual for more
information about this type of interface method.

Configuring a TTY Interface in the Simphony Database

If using this type of interface, the Enterprise Management Console (EMC) Hardware |
Interface module must be configured in order to enable the interface.

To enable a TTY interface:

1. Add an interface record.

2. Select TTY in the Comm Type field.

3. Enter the device name in the Comms Name field. For example, type:
e tty2a (which represents the TTY device), or
e workstation (which indicates that the workstation is directly connected to the

PMS)

4. Select the appropriate number of digits for the interface by enabling or disabling this

option: ON = Use 9 digits for Terminal IDs; OFF = Use 2 Digits for Terminal IDs.

TCP Interface

This interface is designed to connect Simphony to Microsoft Windows-based systems and
other systems using the TCP/IP networking protocol. This interface can also be used to
facilitate communications between the POS application and third-party applications that
reside on the same Microsoft Windows platform as the Simphony software.

This interface is also compatible with many forms of local area networks (LANSs),
including Ethernet, Token Ring, FDDI, Arcnet, PPP, and so on.

Configuring a TCP Host in Simphony

If using this type of interface, the Enterprise Management Console (EMC) Hardware |

Interface module must be configured in order to enable the interface.

To enable a TCP interface:

1. Add an interface record.

2. Select TCP in the Comm Type field.

3. Enter the TCP Host Name.

4. Select the appropriate number of digits for the interface by enabling or disabling this
option: ON = Use 9 digits for Terminal IDs; OFF = Use 2 Digits for Terminal IDs.

TCP Connection
The SIM connects to the TCP port as a client. The SIM Server should accept TCP

connections from the Simphony POS client on the port “micros-sim.” If this service is not
defined, the port number 5009 should be used as the default.

Error-Handling

If the receiving system detects an error in the message or some other applications-related
error, it should provide an appropriate error message response to the POS application. In
addition, if using the fixed message format, response messages should handle error
messages. As such, to support these conditions, the ISL should define specific error
responses.

3-5

3-6

Pinging

The TCP connection has a typical “keep-alive” time-out of two hours. In order to detect a
“down” interface more quickly and re-establish the connection, the SIM periodically
sends a “ping” message to the server about every five minutes. The server should detect
the ping message and return the message in its original format.

The format of the ping message should be as follows:
SOH ID STX ETX EOT

The ID source segment contains a null address: the POS workstation number will be zero
and the interface name will contain spaces.

TCP Interface Code Example

Several programming aides are provided in TCP Interface Code. Two samples of code
are provided to implement a TCP Interface: a SIM TCP Server and a SIM Server.

Getting Started

4 Script Writing Basics

For users who are new to script writing or need to familiarize themselves with script
writing conventions, this chapter discusses basic script writing concepts to apply when
creating scripts.

Getting Started with Script Writing

This section introduces the process of script writing, a tool used to create SIM scripts.

This section provides the specific conventions and formats needed to write scripts with the
ISL. This section also includes the information needed to begin using scripts for the first
time.

Specifically, this chapter covers:
o Whatascriptis
o Why use scripts
o Parts of a script
« How to write a script
o Whatis proper script writing style

o How to test a script

What is a Script?

The means by which the ISL issues instructions to the SIM is through small programs
known as scripts. A script is an ASCII text file that the programmer creates in any
common text editor, such as Microsoft Windows Notepad. These scripts can contain one
or more events to implement SIM applications.

A separate script must be maintained for each SIM Interface defined for a system. The
script is linked to a SIM Interface through Simphony database programming. Once this
relationship is formed through database programming, the script can be executed by the
SIM. For specific programming requirements, refer to Programming Simphony for SIM.

Structure of a Script

The basic structure of scripts should be written in a format similar to the sample script
below. When writing the script, keep the following structure in mind. A brief description
of each part follows the diagram.

// This is a sample SCript. qu— Comments
var trans_type e Global Variable Declaration
eventing:1 -— Event Declaration
var cnt : N3 — Local Variable Declaration
window 2, 19 — Commands

Script Writing Basics 4-1

endevent — End Event

sub sort_list — Subroutine Declaration

var temp_name : A24 Local Variable Declaration
startprint C—— Commands

B ——— End Subroutine

Comments: Comments are used to document the purpose and scope of events
included in the script. Place comments anywhere in the script, but make sure
each comment line is preceded by two backslash characters “//” (see Script
Writing Style).

Global variable declarations: Global variables are initialized at the beginning of
each script and maintained for the duration of the script.

Event declaration: ISL is event-oriented. Almost all ISL statements will be
contained in events or subroutines, called by those events (see Event...EndEvent).
There are five types of events:

Event Inq: This event executes when a SIM Inquiry key is used.
Event Tmed: This event is executed when a SIM Tender key is used.

Event RxMsg: This event is executed when a response is received from the third-
party system.

Event Final_Tender: This event is executed whenever the last tender event has
occurred, but before a check has closed.

Event Print_ Header and Print_Trailer: This event is executed whenever certain
control characters are programmed in the RVC Descriptors module within the
Enterprise Management Console (EMC).

Local variable declaration commands: Local variables are purged after each
event completes execution; the event terminates after an EndEvent, ExitCancel,
ExitContinue, or any other command that causes the event to stop executing,
successfully or not.

Subroutine declaration: Subroutine procedures are called from other event or
subroutine procedures, allowing common code to be used by multiple events. As
a script writing convention, Oracle Hospitality recommends that all subroutines
be placed after all events in the script. Subroutines are described on page 8-105.

Creating Scripts

Scripts consist of one or more events. Each event within the script represents a task that
the SIM should perform. For instance, Chapter 2 discusses several different types of SIM
applications. Each of these applications can exist as separate events within the same

Script Writing Basics

Guidelines for Creating Scripts

When beginning to develop the SIM applications, use the guidelines below to create the

script.

Understand the tasks that the script will perform.

Outline the structure of the script. In plain English, write down the steps needed
to automate in each event. Carefully note each detail about the tasks that the
event will accomplish.

Write a brief description of the task that each event or subroutine performs. For
future reference, this description should appear as a comment before each event
and subroutine in the script.

Note any input and output. Does the user enter data? Does a guest check or
remote order chit need to be generated?

Think about assumptions being made about the environment. For example, if the
application applies a discount to a check total greater than or equal to $50.00, test
for this case in the script before applying the discount.

Protect against the user. The event should not allow users to get stuck or to
perform a task that they should not. For example, if input is requested from an
operator and the operator gives incorrect input, then an error should be issued to
force the operator to enter the requested information.

Determine what variables (global, local) need to be declared. For a discussion of
user variables, refer to Using Variables.

Determine whether some of the events in the script perform similar tasks. If they
do, consider creating a subroutine to save time in writing the script and to make
the script process instructions more efficiently.

Translate the instructions written into one or more lines of code.
Consult the ISL Quick Reference beginning on page 1 to determine what

commands, functions, and system variables allow the desired task to be
performed.

Learn what considerations are involved in writing ISL statements. Script Writing
Style covers these guidelines.
Review the detail descriptions of the required language elements. The examples

provided with detail descriptions can be helpful as templates from which ISL
statements can be built.

Examples of Scripts

Charge Denial

This script places a window with the title “Charge Denied” on the screen, and provides
text in it with the reason why the charge was denied. The operator is then prompted to
enter the [Clear] key before cancelling the operation.

event rxmsg : denial_msg
var reason_text : a32

rxmsg reason_text

Script Writing Basics

4-3

window 3, 34, “Charge Denied”
display 2,@CENTER, reason_text
waitforclear
exitcancel

endevent

Charge Posting

This script posts a charge to a PMS system and waits for the response.
var guest_id:a20

event tmed : 1 //PNS room charge key is

// Tender key #1 input guest id, ‘““Guest
posting, enter name or room #’ txmsg “CHG_POSTING”, guest_id, @TNDTTL,
@CHKNUM, @RVC waitforrxmsg
endevent

event rxmsg : chg_posting
var status : al, message : a20, temp_tndttl : $12

rxmsg status, message, temp_tndttl
if status="P” //Posting approved

saverefinfo message
@TNDTTL = temp_tndttl

exitcontinue
endif

if status = “D” //Charge declined. exitcancel message
endif

if status = “E” //Error exitwitherror message

endif endevent

Address and Phone Number Entry

This example prompts the operator to enter a customer’s address and phone number.

var phone_num : N7 //Global variable, keep phone
// number around.

event ing : 1 //Use Inquiry key #1 to get guest info.
var cust name : A32
var addrl : A32 var addr2 : A32 var addr3 : A32
var special_instructions : A32

window 7, 50, ““Customer Info” display 2,2, “Phone Number:”
displayinput 2, 18, phone num{:##—###}, “Enter phone number” display 3,2,
“Customer name:”’
displayinput 3,18,cust name, “Enter customer’s name” display 4,2, “Address
Line 1:”
displayinput 4,18,addrl, “Enter address™ display 5,2, “Address Line 2:”
displayinput 5,18,addr2, “Enter address” display 4,2, “Address Line 3:”
displayinput 6,18,addr3, “Enter address” display 7,2, “Instructions:”
displayinput 7,18,special_instructions, “Enter instructions”
windowinput
txmsg phone_num, cust name, addrl, addr2, addr3, \
special_instructions

waitforrxMsg

endevent

event rxmsg : phone_num

Script Writing Basics

var phone_num : nlO
var status : al

rxmsg status, phone_num
if status = “N”
exitwitherror “Phone Number Not Found “
endif
window 3, 12
display 2, @CENTER, phone_num
waitforenter
endevent

Script Writing Style
Before beginning to write the first script, review the style conventions in this section. For
readability, apply these conventions in the script writing.

Case

ISL statements are not case sensitive and the use of case in examples is purely for clarity
and the author’s choice of style. However, quoted strings are case sensitive.

Length of Variables

The maximum character length for all variable names (user variables, subroutines, etc.) is
255.

Comments (/)

Declarations and commands will always be on their own line and should be the first non-
white space characters. A comment may be placed on a line by beginning the comment
with “//” characters. All characters to the right of the comment identifier “//” are ignored.
For example:

Window 2,19, “ROOM INQUIRY” //Create window
Display 2,2, “Enter Room Number” //Prompt for room number

A comment may reside on its own line or to the right of a command and its arguments.
Lines should be terminated with an ASCII carriage return, or an ASCII line feed, or a
carriage return/line feed pair.

Continuation Lines (\)

A line continuation character “\” is provided to allow commands to continue from one
line to the next. For example, a command that overflows several lines might be:
TxMsg fieldl, field2, field3, field4, \ field5, field6, field7, field8, field9

It is not possible to break apart a string with a line continuation character:

Correct:

errormessage ““Choose a number between 1 ”°,\
“and 10~

Incorrect:

errormessage ““Choose a number between 1\
and 10”

Script Writing Basics 4-5

4-6

Line continuation characters may not be followed by comments or any other commands.

Whitespace

Whitespace in ISL is defined as spaces or tab characters inserted into a program to either
separate commands from their arguments or to improve program readability. For
example, the programmer might find it easier to write:

numrow = (((hun_guest - 1) * 2) + header)

Instead of:
numrow=(((num_guest-1)*2)+header)

Whitespace can be placed anywhere in a script between two distinct language elements.
Language elements are: commands, functions, system variables, user- defined variables,
input/output specifiers, comments (//), relational and Boolean operators, and commas. A
language element is an indivisible piece of information which, if broken apart with
whitespace, will generate an ISL “token” error. For a complete listing of error messages,
see Appendix B.

For example, the number -125.99 cannot be written as - 125. 9 9. The command
WaitForClear cannot be written as Wait For Clear.

The table below shows the incorrect and correct ways of using whitespace:

Table 7 Correct and Incorrect Use of Whitespaces

Incorrect Use of Correct Use of
Whitespace Whitespace

ISL Language

Within a variable name num _ columns=1 num_columns =1

Within a command load ky bd macro 1:12 loadkybdmacro 1 :12

or function name

Within a numeric value -198. 45 -198.45
Within a command format | A 12 A12
specifier

N 5 N5

$ 12 $12
Within a comment / / comment... // comment...
delimiter
Within double-character a< >b a<b
relational operators

count< =5 count <= 5

Joe> =Richard Joe >=Richard
Between the @ and a @ TNDTTL @TNDTTL
System Variable name @ YEAR @YEAR

Script Writing Basics

The following table shows examples of where whitespace increases program readability:

Table 8 Examples of Where Whitespaces Increase Program Readability

No Whitespace With Whitespace
var count[10]:N5 var count[10] : N5
display 1,2,"Room is ",room display 1, 2, "Room is ", room
txmsg"CHG",guest,@tndttl+1.00 txmsg "CHG", guest, @tndttl + 1.00

Writing and Editing Scripts
Scripts should be composed in an ASCII text file and saved with the appropriate file
naming convention discussed in Programming Simphony for SIM.

Note: There is no need to compile the script or process it in
any other way before the SIM can read the script.

Avoiding Errors

To avoid errors when writing and editing scripts, follow these basic guidelines:

Script Writing Basics

Verify that the script was named using the correct conventions (see page 4-5).
Also make sure it is in the proper directory.

Check the Simphony database programming.
Review the structure of the script.
Are all global variables declared at the beginning of the script?

Within each event, have all local variables been declared before issuing the first
command?

Are the subroutines that are called in events also within the same script? Does
the called subroutine have the same name as the actual subroutine?

Look at the programming style. See Script Writing Style.

Check that events correspond to the correct SIM Inquiry or SIM Tender keys
initiating the event or tender event, respectively. For further details about
creating these keys, refer to Programming Simphony for SIM.

Check the script for syntax errors. Make sure that if a command has a
corresponding command ending the task, include it. For example, the Event
command must be used with the EndEvent command, which should always be
the last line of an event procedure.

4-7

Testing Scripts

Before using the SIM application in a live environment, Oracle Hospitality recommends
testing it for errors first.

4-8

Detecting Errors in Logic

When the script is run, any errors in syntax are detected by the SIM, and an ISL error
message appears. However, some errors in logic may not be caught by running the script.

Scripts make no assumptions, so execute the instructions exactly as specified. It is
possible to run a script and detect no syntax-errors, but still have problems with the
logic. Therefore, Oracle Hospitality recommends that each task be stepped through in the
script.

Stepping Through the Script

Follow these steps to test the script:

1.
2.

Print the script for reference.

Mark through each step of the script as it is tested and correct it. This procedure

helps track the steps tested.

Confirm that the script has the correct filename, links to the appropriate SIM

interface, and that it is in the correct directory.

Execute each event in the script. Remember, an event can be initiated in three ways:

by pressing a SIM Inquiry key, by pressing a SIM Tender key, or by responding to a

message sent by an interfaced third-party system.

e Make sure that the SIM Inquiry or SIM Tender key pressed executes the correct
event. The key should be linked to a corresponding event in the script.

e Test whether communications are active between the two systems and that each
system responds appropriately to messages sent to it by the other.

Test each step of the event, such as the flow and logic of If...EndIf and For loop

statements.

e Check assumptions made in the script. If a condition must exist in order for the
next step to occur, check the condition. The programmer might need to display
an error message or perform another step until this condition is met.

Check the logic of each task. For example, if the script collects data from the user
before querying a third-party database, make sure that the script prompts the user
for data entry before starting the query.

Correct any detected syntax errors. The ISL error message will provide the number of
the line in the script where the error is found.

Verify inputs and outputs. For example, if the script calls for a coupon to be
generated when an operator closes a guest check, test for this case.

Script Writing Basics

5 Using Variables

For users who are new to script writing, or need to familiarize themselves with script
writing conventions, this chapter discusses basic script writing concepts to apply when
creating scripts.

Variables and ISL

As in other programming languages, the ISL supports the use of variables for holding
information, such as integers or character strings that may change from one ISL event to
another.
Typically, variable results are stored in expressions like the following example:
variable_name = expression
An expression is a combination of variables and operators. Expressions may also include
constants and functions.
For example, in the expression below, the size of a window is computed from the
number of elements in a list:
window_length = ListSize + 2
The user variable window_length has a unique name defined by the user. This variable is
compared, using the operator “equal to”, or =, to the expression on the right. The
expression on the right contains a user variable called ListSize, which is added to the
integer 2. The result of the expression on the right will be the value assigned to the user
variable window_length: the ListSize plus 2.
This chapter describes how to use the language elements that allow variable information
to be held and evaluate expressions of variables.

This chapter contains the following:
« Alist of the different kinds of data types variables that can be in ISL

o A discussion of the mathematical operators used to evaluate expressions
containing variables

o A discussion of the type of user variables supported by the ISL

Data Types

Using Variables

The ISL supports several kinds of data types, including numeric, decimal, alphanumeric,
and key data types, to specify different kinds of variables and constants.

When a variable is declared using the var? command, its data type and size must also be
declared. The type and size are referred to as the variable_specifier and type_specifier,
respectively.

2 For a complete description of the var command, refer to page 300.

5-1

var message text[8] : A32

\f} 32/}

variable_specifier type_specifier

Figure 3 Example var Command

Note that the length specifier (“32” in the example above) is optional.

The table below lists the kinds of data types and provides the abbreviations that must be
used when declaring them.

Table 9 Data Types and Corresponding Abbreviations

Data Type Abbreviation | Description Example
Numeric Nx The maximum size can If the variable
be 32768 (N32768). were defined
However, only the first as test:N12=
nine digits are 12345678901
significant when any 2, then test+1
arithmetic operation is would not
performed. evaluate
correctly due to
truncation.

Using Variables

Data Type

Abbreviation

Description

Example

Decimal

$x

These variables are
used for decimal
amounts.

Operator entries will
assume a decimal place
according to the
currency's default
setting, as specified in
the Currency file; for
example, entering 1234
in the US results in an
amount of 12.34. They
may comprise x digits,
(for example, $4 in the
US will support -99.99 to
99.99).

The maximum size can
be 32768 (N32768).
However, only the
first sixteen digits are
significant when any
arithmetic operation

is performed.

If the variable
were defined
as test:$18 =
12345678901

2345678, then
test+1lwould
not evaluate
correctly due to
truncation.

Alpha-

numeric

These variables may
include any non-control
character, including
punctuation marks.
They may comprise x
characters.

var name : a20

Key

key

This system variable
is used for key press
variables.

var
keypressed :
key

Example

The example below declares a 32-character alphanumeric variable and a four-digit room

number variable, respectively.

Using Variables

1

var message_text[8] : A32 var room_num : N4

5-3

Relational and Logical Operators

5-4

The mathematical operators described in this section are supported by the ISL. Before
using these operators in a script, review each description carefully, as well as the

Operator Rules.

For an explanation of the operand types (Nx, $x, Ax, and Key), see Data Types.

Unary Operators

There are two unary operators:

Table 10 Unary Operators

Operator Description Example
- Negation operator (a minus -3
sign). This is used to negate -count
an expression. -((count+5) * -index)
NOT Will negate the result of the -3
expression. The NOT -count
operator can be applied to -((count+5) * -index)
expressions in the same way
as the unary minus operator.

Given that ISL expressions are true if they evaluate to a non-zero value and false if they
are zero, the NOT operator will change non-zero values to 0 and 0 values to non-zero.
The expression NOT 3 is valid and will evaluate to a 0.

The NOT operator is generally used in If, Elself, and While statements to control
program flow.

The following is an example of a loop that looks for the end of a file:
whille NOT feof(fn)

Endwhi le

Binary Operators

The following table lists the available binary and logical operators in order of precedence
(highest to lowest). AND and OR, the logical operators, have a lower precedence than all
the binary operators:

Table 11 Binary Operators

Operation Operator Allowable Operand Types:
Nx, $x, Ax, and Key
multiplication * Nx, $x
division / Nux, $x
modulus % Nx, $x

Using Variables

Using Variables

Operation Operator Allowable Operand Types:
Nx, $x, Ax, and Key

plus + Nx, $x

minus - Nx, $x

bit-wise and & Nx

bit-wise or I Nx

equality = Nx, $x Ax, Key
greater than or >= Nx, $x Ax, Key
greater than > Nx, $x Ax, Key

less than or equal <= Nx, $x Ax, Key
inequality < Nx, $x Ax, Key

less than < Nx, $x, Ax, Key
logical and AND Nx

logical or OR Nx

String && A

concatenation

5-5

5-6

Operator Rules

Relational Operators

All relational operators produce a non-zero value if they are true, and 0 if they are false.
For example:

result
result

1<2 //true, result will be non-zero
100 < 4 //false, result will zero

Logical (Boolean) Operators
The logical (Boolean) AND and OR operators treat their operand as either true (non-zero)
or false (zero) values.

For example:

result = 5 AND 6
//true, since 5 and 6 are both non-zero result =5 AND O
//false, since 0 is false result = 00RO
//Talse, since neither one is true result = 0 0R 5
//true, at least one value is non-zero

Precedence

o ISL expression operands are evaluated from left to right until the end of the
expression is reached. For example, in the following expression, 1 +5 + 2, the 1 is
added to the 5, equaling 6, then 2 is added to 6, resulting in 8.

« When expressions mix operators (for example, + and *), then ISL will use the
precedence table to determine which subexpression within the expression will
evaluate first. In the example, the * operator has higher precedence then the +
operator. Therefore, the last two operands will be combined first, even though
they are not the first in the expression: 1 +5 * 2

o Theresultis 11 (1 + 10), rather than 12 (6 * 2). The precedence rules are used for
all operators. Since the < operator has greater precedence than the OR operator,
then in the following expression:a < 1 OR b > 3

a < 1 and b > 3 are evaluated first, and both results are combined with the OR
operator.

Overriding and Clarifying Precedence

The parentheses can be used to override the default precedence rules. Parentheses are
used for two reasons:

o To override the default expression evaluation
« To clarify the expression
Subexpressions enclosed in parentheses always override the operator evaluation. For
example, in the following expression:
(1 +5)*2
The 1 + 5is evaluated first since it is within parentheses, even though the
multiplier * hashigher precedence.

The following expression:

a<1O0Rb<3

Using Variables

Can be rewritten as:

(a<1) OR (b < 3)
It is good practice to always place parentheses around subexpressions, to reduce
programming errors and to make scripts more easily understood and maintained.

For example, the following expression:

offset + width * 2 <= w_width / stlen + 1

Is equivalent to:

(offset + (width * 2)) <=((w_width / stlen) + 1)

The second expression is clearer in its intent.

User Variables

Using Variables

User variables are defined by the interface designer and may be used to get operator
input, such as customer name and address information, a room number, etc. They can
also reference an entry in a message received over a SIM Interface.

Declaring User Variables

Declare variables just as is in C, but in this case, use the var command to do this. These
variables are given a value by an operator, or by the interface, in a response message. For
example:

event inq : 5

var rowcnt : n3

Guidelines

o The variable name must begin with a letter A-Z, a-z, or the underline character
Q)

o The first character cannot be a number. It may subsequently include any
character in the range A-Z, a-z, 0-9, or the underscore _ character.

o Initially, numeric variables should always be set equal to 0.

"o

« String variables should initially equal a null string " ".

Remember that when declaring SIM numeric or decimal variables, large variables used in
mathematical operations may be truncated. All operations involving numeric variables
use only the first nine digits, and decimal variables use only the first sixteen digits.

The scriptwriter can still declare and assign large variables. For example, it is still valid to
create an N10 variable that will hold a telephone number, or an N16 variable that will
hold an access code. However, any non-relational expressions may cause truncation and
yield the wrong answer.

5-7

5-8

Local and Global Variables

Variables can be declared either globally or locally.

Global Variables

If a variable is declared outside of an Event procedure, it is considered global. The
variable is called global because it can be referenced by any event or subroutine in the
script. As a result, the ISL must maintain the contents of the variable the duration of a
script. The variable is then reset at the start of a new transaction (for example, when
tendering a check). Also, since the variable will be used by other events and subroutines
in the script, a global variable needs to be declared only once at the top of the script
before any events or subroutines.

Local Variables

Conversely, a variable is considered local when it is declared inside an event procedure.
Local variables are only maintained while the event procedure is being executed;
executing the EndEvent command, or any other command that stops the script, purges
the local variable from the event procedure. Thus, local variables must be declared within
event procedures.

Local Variables Used by Subroutines

Local variables declared by a parent event procedure are visible within a child
subroutine. This functionality is possible because a local variable is accessible to the event
in which it is included, and to any child subroutine called by the parent event. Moreover,
the contents of a local variable, declared in the parent event, can be changed by the
operation of a subroutine called by the same parent event. Consequently, the new
contents of the local variable are retained when the subroutine is complete.

CONST keyword

The ‘const’ keyword can be used in place of the ‘var’ keyword. The two places where
const can be used are:

1. Global and local variable declarations

2. Parameter declarations

Global and local variable declarations

For global and local variable declarations the constant must be defined at the time it is
declared. For example:

const MAX_COUNT:N5 = 100
Given the declaration above the following statement will cause an error:

MAX_COUNT = i + 1

Using Variables

Using Variables

Parameter declarations
For parameter declarations a variable can be passed in, but the const variable inside the
subroutine cannot be modified. See the comments in the code section below for behavior:

event ing:1
var count:N5 = 20
call Test(count)
call Test(30)
endevent

sub Test(const c:N5)
// this will cause an error as it’s declared as const
c = 30

// const will be turned into var but c will remain
unchanged

call Test2(c)
end

sub Test2(var d:N5)

// this will not cause an error as a copy of c¢ has been
made

// the local copy of ‘d’ will change.

d = 40
endsub

sub Test3(ref e)
// this will cause an error since e refers to the original

const c.
// Its “constness” carries through until a copy is made.
e = 50

endsub

Unspecified Variable Length

It is not necessary to specify the length of the variable in its declaration. For example,
when declaring a string one would specify a length of 20 as:

var text:A20

Specifying the length of a variable is useful for formatting and input entry checking.
Omitting the length specification makes it easier to write scripts. The variable’s implicit
length is “whatever it takes to hold its next assignment”. For example:

var text:A
var number:N
var amount:$

LVAR and LCONST keywords

There is an annoying SIM feature where a variable is ‘visible’ in all subroutines that it
calls. For example:

5-9

5-10

event inq:1
var count:N5 = 20
call Test()

endevent

sub Test()
// count 1is visible even though not declared in Test()
count = 30

endsub

The ‘lvar’ and ‘lconst’ declarations were introduced to bring SIM variable handling to
modern standards. The ‘1’ that prefixes the declaration means that the variable’s scope is
local to the event or subroutine.

event inq:1
var a:N5 = 20
lvar b:N5 = 20
call Test()

endevent

sub Test()
// a is visible even though not declared
a = 30

// b 1s not visible as it was declared Locally
b = 40
end

The reasons for using lvar and lconst are clear: they provide local scoping rather than
global scoping. Global scoping is fraught with danger as it is too easy to overwrite parent
variables by accidentally not declaring them first.

event inqg:1
var i:N5
for i =1 to 10
call Test()
endfor
endevent

sub Test()

// the Lloop in 1inq:1 will only run once since we will
reset 1 to 10 upon exit.

// i1f 1 was declared using 'lvar' then an error message
will appear here because

// '1' 1s not declared

for i =1 to 10

call SomethingElse()

endfor

endsub

Notes:
e ‘lvar’ and ‘lconst’ cannot be used at the global level.

Using Variables

Using Variables

e Itis recommended that lvar and lconst be used whenever possible.

SetLocalScoping

It can be troublesome to always remember to use lvar and lconst rather than var and
const. A new command has been introduced that can force var and const, when declared
in an event or sub, to always be local. If one uses the following command at the top of the
script ...

SetlLocalScoping 1
... then a var will “become’ an lvar and a const will become an lconst.

Notes:
e If you are writing a brand new script it is recommended that you always use

local scoping. It is good programming practice. Without it your program can
easily become unmaintainable.

e If you have a legacy scripts be careful about setting this. A hidden bug may
surface. On the other hand, you may want to set local scoping on so that you can

find any latent bugs that have been hidden.

Array Variables

Arrays of variables can also be declared by including an array size with the declaration.
The syntax for an array variable is:

Var variable_name[array_size]:variable_specifier

The example below declares an array of strings named message_text, containing eight
elements, each 32 characters in length.
var message_text[8]:A32

Note: The use of brackets in the example above does not
denote an optional entry, but is actually part of the syntax.

Array assignment in declaration
SIM allows arrays to be initialized within the declaration of the variable. For example:
var somePrimes:N[5] = [2, 3, 5, 7, 11]

This syntax is necessary so that const arrays can be initialized. This syntax is only
allowed when the variable is declared, not in normal assignment.

For more information on the var command, see page 8-113.

Variable Size Variables

It is possible to declare a variable with a size that is defined by an expression, rather than
a hard-coded number. If the SIM encounters an open parenthesis immediately following

5-11

5-12

the type of the variable, it will assume that an expression follows, defining the variable’s
size. For example, the following commands have the same effect:

var window_width = N30
var window_width - N(15 + 15)

This feature is useful for declaring variables whose size is not known until run-time. For
example:
var longest str : A(max_str_len)

Using List Arrays and Records

The application data message contains the information that the SIM sends to and receives
from an interface. The message consists of a set of ASCII fields, separated by the ASCII
field separator (1CH).

In many cases, the number of variables to be sent by the SIM or the interface is not
known until run-time. For example, a script may query the PMS for a list of guests whose
last name starts with “SMITH.” The PMS may respond with two names, or with ten
names, depending on who is in the hotel at the time.

In order to send and receive variable amounts of data, ISL uses two methods: list arrays
and records.

List Arrays

The SIM provides more than one method for sending and receiving variable amounts of
data within one message. The simplest method is to send a list. A list consists of a list_size
and the array_variable that contains the list. The list_size is any user-defined integer
variable. The array_variable is any user-defined array, as shown on page 5-11.

Specifying a List Array
A list is specified for an RxMsg or TxMsg command by using empty array brackets ([])
after the array name.
For example: Rxmsg list_size, list[]
When specifying a list array, follow these guidelines:
+ The variables used for the list size and the list are user-defined.
o The list size variable should always precede the list array variable.

o Array system variables (for example, @DTL_OBJNUM) cannot be used as list
arrays.

o The values in the list[] should be formatted into as many lines as are specified in
list_size. In the example below, list_size is 5, thus five values from the list[] will
be formatted if these ISL statements are executed.

var list size - N5
var list[10] : A20
txmsg list size, list[]

Using the same example, if the [fs] symbol stands for the field separator, then the

following lines will create these messages:
list[1] = "L1"

Using Variables

list[2] = "L2"
list[3] = "L3"
list[4] = "L4"
list[5] = "L5"

txmsg 3, list[] //3[fs]L1[fs]L2[fs]L3
txmsg 5, list[] //5[Fs]LL[Fs]L2[fs]L3[Fs]L4[fs]L5
txmsg 0, list[] //0

o The PMS should read the first value in the message and receive that many
elements from the rest of the message. The RxMsg command reads the data from
the message in a similar manner. For example:

var listsize : N5 var list[10] : A20

//1TF message from PMS is: 2[fs]L1[fs]L2, then
//listsize = 2

//list[1] = "L1"

//Nist[2] = L2

rxmsg listsize, list[]

//1f message from PMS is: 4[fs]L1[fs]L2[fs]L3[Ts]L4, then
//listsize = 4

//Nist[1] = "L1"
//ist[2] = "L2"
//1ist[3] = "L3"
//1ist[4] = "L4"

rxmsg listsize, list[]

In another example, the script collects a guest name from the operator, transmits the
guest name to the PMS, receives a list of names from the PMS, and displays the list in
a window:
event inq - 1

var name : A20

input name, "Enter guest name"

txmsg "'GST_INQ", guest

waitforrxmsg
endevent

event rxmsg - GST_RSP
var guest _count : N5 //declare list size
var guest name[10] : A20 //declare list
rxmsg guest _count, guest_name[]
//receive up to 10 names
//0open up window

window guest_count, 25, "Cuest List"
listdisplay 1, 1, guest name //display names
waitforclear

endevent

» Lists can be intermingled with other non-list variables, as well as other lists. In
the following example, one single variable and two lists, each with its size
variable, are received from the PMS:

Using Variables 5-13

5-14

rxmsg status, guest count, guest name[], action_count,\ action_list[]

o For each list, only one array may be assigned. It is possible, for example, for the
PMS to send not only the guest name, but also the room number. One way to
handle this is to receive two lists within one message:

event rxmsg : GST_RSP
var guest count : N5
var guest_name[10] : A20h
var guest _room[10] : N5
rxmsg guest _count, guest name[], guest _count,\
guest_room[]

endevent

Implicit List_Sizes

There are occasions where the script writer may want to use lists, but does not want to
actually specify the list_size, since the list_size is not specified in the data. For example,
assume that each line in a file contains 20 fields. In order for the ISL to read each line, a
separate variable must be specified in the Fread command for each field.

var n[20]
fread fn, n[1], n[2], n[4]1, n[5]., n[6]., n[7], n[8].\
n[9]., n[10], n[11]., n[12], n[13], n[14], n[15], n[16].\
n[17], n[18], n[19], n[20]
The ISL provides a method for specifying list_sizes implicitly for those cases when the
data does not contain a list_size. An implicit list_size is identified by a pound symbol (¥)
placed before the list_size. Alternatively, the example above could be written as:
var n[20]
fread tn, #20, n[]
Only integer expressions may be placed in the implicit list_size field. Integer variables
may also be used.
var n[20]
var size : N5 = 20 fread fn, #size, n[]

Implicit list_sizes may be used anywhere standard list_sizes may be used.

Records

ISL also provides a more powerful, yet more complicated, syntax for specifying variable
amounts of data called records. In this format, the variables following the list size are
considered to be in groups of records.

The syntax for receiving this type of information is:
listsize, listl[] : list2[] : list3[] --.

The colon separates fields within a record and must be used when specifying records.
For example, if the PMS received an inquiry on SMITH, then it may want to group the
data as follows:

3[fs]Smith[fs]1423[fs]Smithers[fs]1827[fs]Smithson[fs]1887

Note that each record consists of a name followed by a room number. To receive the
message above, use the following statement:
rxmsg count, name[] : room[]

Using Variables

In this case, the variables are set as follows:

count = 3

name[1] = "'Smith"
name[2] = "Smithers"
name[3] = "'Smithson"
room[1] = 1423
room[2] = 1827
room[3] = 1887

The same format can be used for transmitting data.

A list specification is a special case of a record format, where each record consists of one
element.

Promotion

ISL allows the programmer to freely combine and assign variables of the different types.
For example, it is possible to add a string and an integer, and assign it to a decimal value.
var amt : $10 = 12 + "'25" + 100.45

Whenever two variables and/or constants are operated upon with an operator, and they
are not the same types, one will be “promoted” (have its type changed) before the
operation takes place.

Strings promote to integers and integers promote to decimal values. A final promotion
occurs when the expression is assigned to a variable. Therefore, the expression is
promoted (or demoted) to the variable type.

For example, if the following variables are declared:

var string : A20
var integer : N10
var decimal : $10

Then the following statements are assigned within an Event procedure, the statements
would be equivalent to:

Table 12 Example Variable Assignment

Assignment Equivalent To
string = "12" + 35 string = "47"
string ="14.15" + 2 string ="16"
string ="14.15" + 2.00 string = "16.15"
integer ="14"+12.5 integer =26
integer ="14.5" +12.5 integer = 27

expression was real, and
then demoted to integer

decimal=12.23+1 decimal =13.23

decimal ="12.23" +1 decimal = 13.00

"12.23" + 1 yields an
integer 13, which is then
assigned to decimal

Using Variables 5-15

5-16

Strings are converted to integers by using the first digits in the string field. “12.35”
converts to an integer 12, since “.” does not belong in an integer. “12NUM” also converts
to 12. Therefore, it is legal to write:

integer = "ABC123" // integer = 0

Only relational operators are allowed between strings; see Relational and Logical
Operators on page 2.
Correct:

integer = ""12" > "'35"

Incorrect:
integer = '"12" + ""35"

DefKey

Key definitions have these fields:
e Command: The command to execute; a word instead of a number

e Number: The object number associated with the command. If this is a menu item
command, then Number is the object number.

¢ Index: Similar to number, this depends on the command.

o Text: Preset keyboard buffer OR characters for the ASCII command.

e Arguments: Command-dependent.

A new function ‘defkey’ has been created that allows a SIM script to set one or more
fields of the command (formerly known as ‘key’) for OPS to process in a
LoadKybdMacro command. The syntax is:

DefKey(OpsCommandType, Name:Value, Name:Value, ...)

Where:
e OpsCommandType: A string which defines the command to process. (We will

discuss how to determine what string to use soon.)

¢ Name: A one character identifier for the field type. For example, ‘N’ corresponds
to number.

e Value: The value for the name. For example, ‘N:2” indicates that the number field

should be set to 2. The value can be hardcoded or it can be an expression.

Valid Name values
e N - Number

e A-Arguments
e [I-Index
e T-Text

Using Variables

Using Variables

Example:
var myKey : key
myKey = defkey("Payment", N:2, A:"Cash:Cash")
loadkybdmacro myKey
Depending on the OpsCommandType used, arguments are sometimes required.
Sample without arguments:
defkey("MinimizeApplication")
Sample with a Number Value:
defkey("MenuItem", N:104)

Sample with a Number Value and an Arguments Value:

defkey("Payment", N:2, A:"Cash:Cash")

Sample with an Arguments Value using the @ApplicationName System Variable:

var sKey : A64
format sKey as @ApplicationName, ":20"
defkey("siminquire", A:sKey)

5-17

6 ISL Printing

This chapter contains an introduction to the ISL command and system variables that
facilitate output to print devices.

Getting Started with ISL Printing

Printing in ISL is accomplished using the StartPrint, PrintLine, and EndPrint directives
(or their variants).

« Backup printers may be specified
« Printouts can end with or without Form Feeds
» Printing text in double-wide characters and red ink is supported

This chapter focuses on how to start and direct print jobs to printers. In performing these
tasks, the other options available are covered as well, including detecting the status of
print jobs, redirecting print jobs to ISL-defined backup printers, and defining a reference
line for print error messages.

ISL Print Commands and System Variables

All commands and system variables associated with ISL printing are discussed. For
complete descriptions, including syntax and examples of all commands discussed in this
section, refer to ISL Commands. For more information about system variables and their
use, refer to ISL System Variables.

Starting an ISL Print Job

Print jobs include guest checks, customer receipts, validation chits, local backup printing,
remote order printing, as well as journal printing.

These types of print jobs are initiated by variations of the StartPrint command described
in this section. These variations are designed to accommodate the ability to detect
whether a print job completed successfully by using the

@PRINTSTATUS system variable.

ISL StartPrint Commands

Printing in ISL is started using the command in the table below. The StartPrint command
is used to print to a standard remote printer. These printers print a maximum of 32
characters per line and understand special formatting.

ISL Printing 6-1

6-2

Table 13 ISL StartPrint Commands

175)
2 g g
< T = 3
2 wn = & 51
L M & [y =
Command =z g 5 3
] (=] =4 [+F]
o~ = = -~
[] U
® =] [

StartPrint...EndPrint[FF/NOFF] P

Extended Printing and Printing Binary Data

Extended and Binary printing is possible using a certain set of ISL command and system

variables. See the following;:
e Print Header Event
e Print_Trailer Event
« @HEADER System Variable
« @TRAILER System Variable

e PrintLine Command

Form Feeds

The EndPrint command can issue three types of form feeds:
» EndPrint
« EndPrintNOFF
o EndPrintFF

The EndPrint command is used when the default behavior for formfeeding at the end of
a print session should be used. For journal printers, there is no formfeed. For all other

printers a form feed is used.

The EndPrintNOFF command is used to prevent a formfeed being sent at the end of a

print job.

The EndPrintFF command is used to always force a formfeed at the end of a print job.

Backup Printing and Reference Lines

The commands used for print jobs also allow for the specification of a backup printer in
case the print job fails. This backup printer overrides any backup printer already
programmed in the database for the specified printer. In addition, the text can be
specified, called a reference line, to appear in printer error messages returned when print

jobs fail.

Specifying an ISL Printer

When specifying a StartPrint command, there are two options for defining a printer: the

object number or a system variable.

3 Always set to Y.

ISL Printing

Using Printer Object Numbers

All printing requires that a printer be specified by the StartPrint command. A printer can
be identified either by its object number, or by a system variable. For example, if the print
job goes to device 8 in the Printers module, using the object number, the StartPrint
command would be written as follows:

StartPrint 8
Although using this method is valid, it has a primary disadvantage. The destination
printer for ISL print jobs may differ for each workstation. If the object number had to be
hardcoded, as it is in the example above, then a different script would be required for
each workstation. Thus, each script would need to specify the printer to which each
workstation must print, limiting the flexibility of the script.

Considerations

o Although it is legal to specify a printer object number of 0, all print jobs printing
to 0 will not print—anywhere.

» Aninvalid object number value (-1) will generate an ISL error.

Using System Variables

A more efficient method of specifying printers is through the use of system variables.
These system variables return the value of the object number of the printer. For example,
the @CHK system variable will return the object number of the printer defined as the
Check Printer for that workstation in the database.

Since each workstation will have a different entry for its Check Printer, the ISL command
“startprint @chk” will specify a different printer for each UWS. For example, on
Workstation #1, @CHK is 8 but, on Workstation #2, @CHK is 12. Using a system variable
instead of the object number to specify a printer means that each workstation can use the
same script, yet still print to different printers.

ISL Printer System Variables

The printer system variables available in ISL include the following:

Table 14 Printer System Variables

System Variable Description
@CHK Guest Check Printer
@RCPT Customer Receipt Printer
@ORDR[1...15] Remote Order or Local Backup Printer
@VALD Validation Printer

A table describing all options available with each valid ISL printer is provided with the
detail description of the StartPrint command. See StartPrint...EndPrint[FF/NOFF].

Using Print Directives

The ISL Print Directives consist of one-byte values sent to the printer, defined by the
StartPrint command, to change the print type of the expression that follows it. These

ISL Printing 6-3

6-4

directives are similar in function to standard parallel printer escape sequences: Each print
directive is a non-printable character and is included in the print data sent to the printer.

The Printline Command

Print Directives are actually system variables, and are arguments of the Printline
command. This command allows the ISL to print information provided as a text string or

variable.

The Printline command prints a line on the selected printer defined by the StartPrint
command, which must be issued before Printline. Depending on the print directives
specified in the Printline statement, the expression will print in double-wide characters

or red ink.

Print Type System Variables

Several system variables that evaluate to these print directives are provided by the ISL to
facilitate printing expressions in double-wide characters and in red ink.

These directives are described in the table that follows.

Table 15 Print Type System Variables

Print Directive

Description

@DWON

Prints the following text or variable
fields double-wide. Single- and double-
wide characters may be mixed on the

@DWOFF

Prints the following text or variable
fields double-wide. Single- and double-
wide characters may be mixed on the

@REDON

Prints an entire line in red. It is not
possible to mix red and black characters on
the same line. All new lines default to

@REDOFF

Returns printing to default ink (blue,
black, etc.) All new lines default to black.

Considerations

o Print directives (@DWON and @DWOFF) may be inserted between expressions,
but only affect the expression to the right.

« The print directives are reinitialized at the end of each printed line.

« If no print directives are specified, printing will be in black and single- wide.

Example

The following example illustrates how the same expression can be printed in four
different ways by using a combination of these print directives:

Printline “Print line”
Printline @redon, “Print line”
Printline @dwon, “Print line”

Printline @dwon, @redon, “Print line”

//prints in black
//prints in red
//prints in black,
// double-wide
//prints double-wide
// in red ink

ISL Printing

Print Directives and Subroutines

Since the print directives are normal ISL strings, they can be passed as arguments to
subroutines. The following example prints an array of data and displays a header using a
print directive passed in as a parameter to the subroutine:

sub print_list(var printer : N9, var listsize : N5,\ ref
list[], ref header_string, var directive : Al)

if printer = 0
errormessage “Printer dten is 0. Cannot print.” exitcancel
endif

startprint printer

printline “———————————
printline directive, header_string

printline “-—————————— -
listprint listsize, list endprint

endsub

The subroutine could be invoked in the following fashion:

event inq : 1
print_list(@chk, sz, data[], “NORMAL HEADER”, @redoff)

print_list(@rcpt, sz, data[], “RED HEADER”, @redon) endevent

Backup Printing

ISL Printing

Whenever the StartPrint command is issued, a print job will occur. If the print job is
unable to complete successfully, it will go to the backup printer defined in the Simphony
database for each printer type (for example, @chk, @rcpt, ...).

However, there are instances when a backup printer different from the one defined in
Simphony should be specified. To accommodate these instances, the StartPrint command
accepts an optional second argument. This optional argument specifies the object number
of the backup printer, overriding the backup printer programmed in the Simphony
database.

For example, if the Check Printer is normally backed up by the Customer Receipt Printer
but the script requires that a print job to the Check Printer back up to the Order Printer,
the following command should be issued:

STARTPRINT @chk, @ordr[1] // back up to @ordr[1] instead of @rcpt

Considerations

The SIM will only route the print job to the backup printer defined in the command
syntax if the primary printer specified is a system variable. Otherwise, the ISL does not
know to which printer type the job should be re-routed. For example, assume that the
@CHK system variable equals 2.

6-5

STARTPRINT @chk // ISL can determine backup printer
STARTPRINT 2 // 1SL cannot determine backup printer

In the first line, the SIM will correctly determine the backup for the Check Printer, since

“@chk” is explicitly specified. In the second line, the number 2 is used instead, and ISL
cannot correctly determine the backup printer, and so, no backup is used.

Reference Strings

Whenever the SIM is performing a print job and an error occurs during printing (paper
out, door open), an error message will appear on the display of the workstation
explaining the error. Included in this error message is a line of text identifying the print
job.

Normally, ISL will leave this line blank. However, this reference line can be specified in
both the StartPrint commands.

STARTPRINT @chk // use default backup
STARTPRINT @chk, @rcpt // no reference line

STARTPRINT @chk, @rcpt, "Printing Customer Coupon' //ref line

6-6 ISL Printing

7 ISL System Variables

This chapter summarizes all ISL system variables in an A-Z reference format.

System Variables

System variables return status information from Simphony, Microsoft Windows Status
flags, or the PMS System, as well as provide access to transaction totals and other
transaction parameters.

The following can be accomplished using the system variables that the ISL supports:
o Access the system transaction variables and totals information
» Set certain operational parameters.

This chapter contains a detailed description of each system variable.

System Variable Summary

For quick reference, a summary of system variables in alphabetical order and in order by
category of function begins on page 7-1.

Specifying System Variables

Review this section to determine the guidelines to follow when specifying system
variables.

Specifying System Variables
This section contains guidelines to follow when specifying system variables in ISL
statements.

Guidelines for Specifying System Variables

Follow the guidelines below when specifying system variables:

e The names for system variables are reserved; do not declare other user variables
using the same name.

The example below is incorrect because the local variable ccnumber has the same name as
the system variable @ CCNUMBER, which returns a credit card account number.

event : 1
var ccnumber : Al6

This problem can be corrected by replacing ccnumber with account num,
which is a user variable that represents the credit card account number,
but is not a system variable.

event :© 1
var account_num : Al6

ISL System Variables 7-1

7-2

« Always precede each system variable with an At @ character (for example:
@ST1[1)).

« Never put spaces between the At @ and the system variable name.

Correct: @SI[T 1]

Incorrect: @ SI[1]

» Before using a system variable, review the description carefully for any special
considerations, such as:

= The majority of system variables must be used in conjunction with other
commands, functions, or other system variables. For example, the @DWON
system variable can only be used with the Printline command.

= Some system variables are only valid within a certain event. For example,
@CCNUMBER will only return valid values if issued from within a tender/media
event referencing a credit card tender type.

= A strategically placed system variable may or may not be required within the
script. For example, the @ WARNINGS_ARE_FATAL system variable must be
placed at the top of the script. But the @LINES_EXECUTED system variable can
be placed anywhere in a script.

« Just as there are user variables that can be specified as arrays, there are array
system variables. Array system variables require a reference to an array index.
“Using an Index to Specify System Variables” below describes how to issue these
types of system variables.

Using an Index to Specify System Variables

Specifying array system variables is the same as specifying user-declared array variables.
Array references in ISL take the form:
<array name> [<expression>]

Where <array name> can be either a user or system array variable, and

<expression> (for example, the index) can be a user variable, another system variable, a
constant, a string, a function, or an equation.

As long as the array index evaluates to an expression within the array limits for the
system variable, the index can be specified as a user variable, another system variable, a
constant, a string, a function, or an equation. In the following examples, three different
references evaluate to 3:

@si[3] // constant

@si[6 - 3] // equation

@si[(index * 2) - 1] // equation using user
variable,

//where index = 2

Array Subscripts

The difference between system array variables and user-declared array variables, is that
system array variables already have been declared and filled with the corresponding
information. Consequently, there is no need to declare the subscripts of the array.

For example, the user-declared array variable must be declared as follows:

ISL System Variables

var myarray[5] : A20
myarray[1] = “mytest”
myarray[2] = “mytest”
myarray[3] = “mytest”
myarray[4] = “mystes”

myarray[5] = “mytest”
But a system array variable can be specified as:

@si[3]
For a system array variable, the variable data type and size, and subscript are assumed
by the ISL to reference Sale Itemizer #3. If executed by a script, this system array variable
would return the totals posted to this sales itemizer on the current guest check.

Array Index Limits

The array index limits are included for system variables with the detail description of
each system array variable. These limits vary depending on the system variable.

If the array index exceeds the limit when referencing the system variable, an error will
occur. For example, below are invalid limits for the @SI system array variable:

@si[10] //incorrect
@si[-10] //incorrect

The array index for @S1 must evaluate to an index between 1 and 16.

All array indices start at 1, and not 0. For example, @si [0] will generate an error.

Embedded Index vs Array-Index

System variables that require an index (for example, DTL_*, @S], etc.) can be referenced
in two ways: by an embedded index or array-index. Both of these methods enable older
versions of SIM scripts to maintain compatibility with the ISL. In early versions of the
ISL, there was support only for the embedded index method.

If using the embedded index to maintain older SIM scripts (Version 1.01S or earlier), the
desired index is placed immediately after the system variable.
For example:
@SI12, @TAX1, @TXBL1, @DTL_STATUS9
In scripts compatible with Version 1.01T or higher of the ISL, the array-index method is
the preferred way to specify system array variables. The array-index requires to reference
the index as an array.
For example:
@SI[2], @TAX[1], @TXBL[1], @DTL STATUS[9]
Note: The embedded-index method remains in ISL to retain compatibility with older
scripts and should not be used with new scripts.

ISL System Variables 7-3

System Variable Summary

7-4

For quick reference, this section contains an alphabetical summary of all ISL system

variables.

Note: ISL variables are listed by category in Appendix C.

Table 16 System Variable Summary

Variable Name

Field/Parameter

@ACTIVE_LANGID

ID Number of Currently Selected
Language

@ADDXFER_CHK_FROM

Check Number of the Check
Being Transferred From

@ADDXFER_CHK_TO

Check Number of the Check
Being Transferred To

@ADDXFER_GRP_FROM

Table Group Number of the Check
Being Transferred From

@ADDXFER_GRP_TO

Table Group Number of the Check
Being Transferred To

@ADDXFER_RVC_FROM

Rev. Center Number of the Check
Being Transferred From

@ADDXFER_RVC_TO

Rev. Center Number of the Check
Being Transferred To

@ADDXFER_TBL_FROM

Table Number of the Check
Being Transferred From

@ADDXFER_TBL_TO

Table Number of the Check
Being Transferred To

@APPLICATIONNAME

@AUTHEMP

@AUTHEMP_FNAME

@AUTHEMP_LNAME

@AUTHTYPE

@AUTOSVC

Auto Service Charge

@AVAILABLEMEMORY

@BOOTSERIALNUM

@BOOTSERIALSTR

@CASH_DRAWER

@CENTER Center Column in ISL-defined Window
@CHANGE Change Due
@CHECKDATA Facsimile of Check

ISL System Variables

Variable Name

Field/Parameter

@CHGTIP Charged Tip
@CHK Guest Check Printer
@CHKINFOKEY

@CHK_OPEN_TIME

Date and Time Check Opened

@CHK_OPEN_TIME_T

Current Check Open Time

@CHK_PAYMNT_TTL

Current Check Payment Total

@CHK_TTL Current Check Total
@CKCSHR Guest Check Cashier Number
@CKCSHR_NAME Guest Check Cashier’s Name
@CKEMP Check Employee

@CKEMP_CHKNAME

Check Employee’s Check Name

@CKEMP_FNAME

Check Employee’s First Name

@CKEMP_LNAME

Check Employee’s Last Name

@CKEMP_TYPEDEF

@CKID Guest Check ID

@CKNUM Check Number

@CLIENT_ONLINE Determine if SAR Workstation is Online
@DATASTORE

@DAY Current Day of Month

@DAYOFWEEK Current Day of Week

@DBVERSION Current Database Version
@DEBUGTRACE

@DETAILSORTED Detail Sorting Status

@DSC Discount Total

@DSC_OVERRIDE

When a manual discount is entered, a SIM
‘Discount’ script can decrease the amount
of the discount by setting this variable to
the desired discount amount

@DSCI

Discount Itemizer Value

@DTLCHILDSELECTED

@DTL_DEFSEQ

Definition Sequence of Detail Item

@DTL_DETAILLINK][expression]

ISL System Variables

7-5

7-6

Variable Name

Field/Parameter

@DTL_DSC_EMPLJ[]

Employee who is getting the employee
meal discount for the specified detail entry

@DTL_DSCI[]

Menu Item Detail Class Discount Itemizer
Value

@DTL_FAMGRP[]

Menu Item Family Group

@DTL_INDEX

Index of the detail which fired the SIM
event

@DTL_IS_COMBOexpression]

@DTL_IS_COMBO_MAIN[expres
sion]

@DTL_IS_COMBO_PARENT exp
ression]

@DTL_IS_COMBO_SIDE[expressi
on]

@DTL_IS_CONDYi]

Determines if a Guest Check Menu Item is
a Condiment

@DTL_IS_ON_HOLDJexpression)

@DTL_IS_VOIDJi]

When set (non-zero), the specified detail is
a Voided Item

@DTL_MAJGRP[]

Menu Item Major Group

@DTL_MLVL[]

Main Menu Level of Detail Item

@DTL_NAME[]

Name of Detail Item

@DTL_OBJNUM([|

Object Number of Detail Item

@DTL_PLVL[]

Price Level of Detail Item

@DTL_PMSLINK]]

PMS Link of Detail Item

@DTL_PRICESEQ[]

Price Sequence Number of Detail Item

@DTL_QTY[] Quantity of Detail Item
@DTL_SEAT] | Seat Number of Detail Item
@DTLSELECTED

@DTL_SLSI[]

Menu Item Detail Class Sales Itemizer
Value

@DTL_SLVL[]

Sub-menu Level of Detail Item

@DTL_STATUS[]

Status of Detail Item

@DTL_SVC_LINK][]

Stored Value Card Link

ISL System Variables

Variable Name

Field/Parameter

@DTL_SVC_TYPE[]

Stored Value Card Type

@DTL_SVCI[]

Menu Item Detail Class Service Charge
Itemizer

@Dtl_TaxTtl[expression] Tax Total of Detail Item
@DTL_TAXTYPE[] Active Tax Types
@DTL_TIMED_FIRE_TIME[expre

ssion]

@DTL_TTL[] Total of Detail Item
@DTL_TYPE[] Type of Detail Item

@DTL_TYPEDEF[]

Returns the Detail Item Type Definition

@DWOFF Double-wide Characters OFF

@DWON Double-wide Characters ON

@EMPLDISCOUNT In a discount event, this variable is the
number of the employee discount

@EMPLDISCOUNTEMPL In a discount event, this variable is the
employee number of the discount receiving
the employee discount

@EMPLOPT][] SIM Employee Options #1-#8

@EPOCH EPOCH Time

@ERRORMESSAGE

@EVENTARGUMENTS

@EVENTID String that represents the event ID

@EVENTNAME

@EVENTTYPE String that represents the event type

@FIELDSTATUS Data Entry Field Status Flag

@FILE

@FILE_BFRSIZE

User Definable Variable

@FILE_ERRNO

Standard Error Number Value

@FILE_ERRSTR

Standard Error String based on
@FILE_ERRNO

@FILELINEMARKER

@FILE_SEPARATOR

Field Separator for File I/O Operations

@FILTER_ACTIVE

Seat Filter Active

@FILTER_MASK

Current Seat Filter Mask

@GRPNUM

Table Group Number

ISL System Variables

7-7

Variable Name

Field/Parameter

@GST Guest Count

@GSTRMNG Guests Remaining after Proration

@GSTTHISTENDER Guest Count Associated with Split Tender

@GUID The GUID of the Current Check

@HEADER Print Header from Print_Header Event

@HOUR Current Hour of Day

@IGNOREPRMT Bypass general operator prompts with the
Enter key

@INEDITCLOSEDCHECK Edit Closed Check Entry

@INPUTSTATUS User Input Status Flag

@INREOPENCLOSEDCHECK Reopen Closed Check Entry

@INSTANDALONEMODE Determine if SAR Workstation is Offline

@ISJOURNALPRINT

@ISUNICODE Determines if Unicode Characters are
Supported

@JNL

@KEY_CANCEL Cancel Key

@KEY_CLEAR Clear Key

@KEY_DOWN_ARROW Arrow Down Key

@KEY_END End Key

@KEY_ENTER Enter Key

@KEY_EXIT Exit Key

@KEY_HOME Home Key

@KEY_LEFT_ARROW Arrow Left Key

@KEY_PAGE_DOWN Page Down key

@KEY_PAGE_UP Page Up key

@KEY_RIGHT_ARROW Arrow Right key

@KEY_UP_ARROW Arrow Up key

@LANG_IDJ] ID Numbers of Defined Languages

@LANG_NAME][] Language Names for Defined Languages

@LASTCKNUM Last Check Number Assigned to Guest
Check

@LINE Current Line Executed in Script

7-8

ISL System Variables

Variable Name

Field/Parameter

@LINE_EXECUTED

Lines Executed in Script

@MAGSTATUS Magnetic Card Entry Status Flag
@MAXDTLR Maximum Size of @TRDTLR
@MAXDTLT Maximum Size of @TRDTLT
@MAXKYBDMACRO

@MAX_LINES_TO_RUN

Maximum Lines of Script to Execute

@MINUTE Current Minute

@MONTH Current Month

@NEXTMYOPENCHECKGUID

@NUL A binary 0 should be sent when printing
binary data

@NULL

@NUMDSC Active Discounts

@NUMDTLR Number of Detail Entries this Service
Round

@NUMDTLT Number of Detail Entries for Entire
Transaction

@NUMLANGS Number of Languages

@NUMOPENCHK

@NUMSI Active Sales Itemizers

@NUMSVC Active Service Charges

@NUMTAX Active Tax Rates

@OB]J Object number of the detail item for the
event

@OFFLINELINK Used to link to an offline PMS system

@OPNCHK_CKNUM][expression
|

@OPNCHK_TREMPID[expressio
nj

@OPNCHK_TREMPNUM][expre
ssion]

@OPNCHK_WSID[expression]

@OPNCHK_WSNUM[expressio
nJ

ISL System Variables

7-9

7-10

Variable Name

Field/Parameter

@OPSCONTEXT

@ORDERTYPE

Order Type

@OrderType_Name

@ORDR[]

Remote Order or Local Order Printer

@OS_PLATFORM

1 - Microsoft Windows CE
3-Win32
4 - Oracle Linux for MICROS

@PICKUPLOAN Value of the pickup or loan amount

@PLATFORM Hardware Platform

@PMSBUFFER PMS Message

@PMSLINK Revenue Center PMS Link

@PMSNUMBER Object Number of PMS

@PREVPAY Previous Payment

@PRINTSTATUS Print Status Flag

@PROPERTY The Property Number of the Workstation

@QTY Quantity of the detail item for the event

@RANDOM Returns a random value between 0 and
2321

@RCPT Customer Receipt Printer

@REDOFF Red Ink OFF

@REDON Red Ink ON

@RETURNSTATUS Transaction Item Return Indicator

@RUNNINGDIRECTORY

@RVC Revenue Center Number

@RVC_NAME Current Revenue Center Name

@RXMSG Name of Return Message

@SEAT Active Seat Number

@SECOND Current Second

@SI[] Sales Itemizers

@SI_DSC[expression]

@SIMDBLINK Links to the SIMDB DLL to the database
@SRVPRD Serving Period

@STACKFRAMETEXT

@STRINGARGS

ISL System Variables

Variable Name

Field/Parameter

@SVC Service Charges

@SVCI Service Charge Itemizer Value

@SYSLOGTRACE

@SYSTEM_STATUS Shell Return Status

@TAX][] Tax Collected

@TAXRATE]] Tax Rate

@TAXVAT[] Returns the Value Added Tax Amount for
Tax Rate “X”

@TBLID Table ID

@TBLNUM Table Sequence Number

@TICKCOUNT

@TMDNUM Tender/Media Number

@TNDTTL Tender Total

@TOTALMEMORY

@TRACE Output Line of Script to 8700d.log

@TRAILER Print Trailer from Print_Trailer Event

@TRAININGMODE Training Mode Status Flag

@TRCSHR Transaction Cashier Number

@TRDTLR Transaction Detail of Current Service
Round

@TRDTLT Transaction Detail of Entire Check

@TREMP Transaction Employee

@TREMP_CHKNAME

Transaction Employee’s Check Name

@TREMP_FNAME

Transaction Employee’s First Name

@IREMP_LNAME

Transaction Employee’s Last Name

@IREMP_TYPEDEF

@TTL Amount of the detail item for the event
@TTLDUE Total Due
@TXBL][] Taxable Sales Itemizers

@TXEX_ACTIVE[]

Checks if the Tax is Exempt at the
Specified Level

@UNMANAGEDDLLLIST

@USEDMEMORY

ISL System Variables

Variable Name

Field/Parameter

@USERENTRY Data Entered Before SIM Inquiry Key
Activated

@VALD Validation Chit Printer

@VARIABLEFRAMETEXT

@VERSION SIM Version Number

@VOIDSTATUS Transaction Item Void Indicator

@WARNINGS_ARE_FATAL

Strong Checking

@WCOLS

Number of Columns in ISL-defined
window

@WEEKDAY Day of Week

@WROWS Number of Rows in ISL-defined window
@WSID User Workstation ID number

@WSNUM User Workstation Object Number
@WSSUBTYPE User Workstation Sub Type

@WSTYPE User Workstation Type

@YEAR Current Year

@YEARDAY Current Day of Year

ISL System Variable Reference

This section is an A-Z reference of the system variables supported by the ISL. Each
system variable includes the following information:

o Description: Summarizes the function of the system variable.

o Type/Size: Contains the symbol that represents the data type and size of the field
or total returned.

o Syntax: Provides the proper way to specify the system variable and any
arguments, as well as a description of each argument.

o Remarks: Gives more detailed information of the system variable, its arguments,
and how the system variable is used.

» Example: Includes an example of the system variable being used in a script. This
section may not appear in the detail description of each system variable.

» See Also: Names related system variables, commands, functions, and other
documentation to consult.

ACTIVE_LANGID

Description

This system variable holds the ID number of the currently selected language.

7-12 ISL System Variables

TypelSize
N9

Syntax
@ACTIVE_LANGID

Remarks
« This system variable is Read-Only.
o This system variable is only available on SAR Ops.

ADDXFER_CHK_FROM

Description

This system variable returns the check number of the check being transferred from when
called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the check number of the
check being added to the current check.

Type/Size
N9

Syntax
@ADDXFER_CHK_FROM

Remarks
o This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_CHK_TO

Description

This system variable returns the check number of the new check being transferred to (if
the check number is changed) when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the check number of the
check that is receiving the newly added check.

TypelSize
N9

Syntax
@ADDXFER_CHK_TO

ISL System Variables 7-13

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_GRP_FROM

Description

This system variable returns the table group number of the check being transferred from
when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the table group number
of the check being added to the current check.

Type/Size
N9

Syntax
@ADDXFER_GRP_FROM

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_GRP_TO

Description

This system variable returns the table group number of the new check being transferred
to (if the check number is changed) when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the table group number
of the check that is receiving the newly added check.

Type/Size
N9

Syntax
@ADDXFER_GRP_TO

Remarks
« This system variable is Read-Only.

« This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

7-14 ISL System Variables

ADDXFER_RVC_FROM

Description

This system variable returns the revenue center number of the check being transferred
from when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the revenue center
number of the check being added to the current check.

Type/Size
N3

Syntax
@ADDXFER_RVC_FROM

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_RVC_TO

Description

This system variable returns the revenue center number of the new check being
transferred to (if the check number is changed) when called inside an XFER_CHECK
event.

Inside the ADD_CHECK event, this system variable will return the revenue center
number of the check that is receiving the newly added check.

Type/Size
N3

Syntax
@ADDXFER_RVC_TO

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_TBL_FROM

Description

This system variable returns the table number of the check being transferred from when
called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the table number of the
check being added to the current check.

ISL System Variables 7-15

7-16

TypelSize
N9

Syntax
@ADDXFER_TBL_FROM

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

ADDXFER_TBL_TO

Description

This system variable returns the table number of the new check being transferred to (if
the check number is changed) when called inside an XFER_CHECK event.

Inside the ADD_CHECK event, this system variable will return the table number of the
check that is receiving the newly added check.

Type/Size
N9

Syntax
@ADDXFER_TBL_TO

Remarks
« This system variable is Read-Only.

o This system variable is only valid in ADD_CHECK or XFER_CHECK SIM
events.

APPLICATIONNAME

Description

This system variable holds the name of the extension application as configured in the
database.

Type/Size
A>{-

Syntax
@ApplicationName

Remarks
o This system variable is Read-Only.

o This variable can be used instead of hardcoding the application name in the
script. Alternatively it can be used to validate that the extension application was
configured properly

ISL System Variables

AUTHEMP

Description

This system variable holds the object number of the authorizing employee when an
authorization is occurring at a POS terminal.

Type/Size
N9

Syntax
@AuthEmp

Remarks
« This system variable is Read-Only.

« This variable is only active in the “auth” event.

AUTHEMP_FNAME

Description

This system variable holds the first name of the authorizing employee when an
authorization is occurring at a POS terminal.

TypelSize

A*

Syntax
@AuthEmp_FName

Remarks
« This system variable is Read-Only.

o This variable is only active in the “auth” event.

AUTHEMP_LNAME

Description

This system variable holds the last name of the authorizing employee when an
authorization is occurring at a POS terminal.

Type/Size
A>(-

Syntax
@AuthEmp_LName

Remarks
o This system variable is Read-Only.

« This variable is only active in the “auth” event.

ISL System Variables 7-17

7-18

AUTHTYPE

Description

This system variable holds the type of authorization when an authorization is occurring
at a POS terminal.

Type/Size
N9

Syntax
@AuthType

Remarks
« This system variable is Read-Only.
« This variable is only active in the “auth” event.

e The number in this variable corresponds to the number of the role privilege bit
that is being authorized.

AUTOSVC

Description

This system variable contains the sum of all auto service charges posted to the current
guest check.

Type/Size
$12

Syntax
@AUTOSVC

Remarks
This system variable is Read-Only.

AVAILABLEMEMORY

Description

This system variable holds the amount of available memory available as reported by the
net framework.

Type/Size
N

Syntax
@AvailableMemory

Remarks
« This system variable is Read-Only.
o This variable is a passthrough to @OpsContext.AvailableMemory

ISL System Variables

BOOTSERIALNUM

Description

This system variable is currently not set and is provided for backwards compatibility for
older scripts.

Type/Size
N9

Syntax
@BOOTSERIALNUM

Remarks
« This system variable is Read-Only.

BOOTSERIALSTR

Description

This system variable is currently not set and is provided for backwards compatibility for
older scripts.

Type/Size
N9

Syntax
@BOOTSERIALSTR

Remarks
« This system variable is Read-Only.

CASH_DRAWER

Description

This system variable contains the currently assigned cash drawer.

Type/Size
N1

Syntax
@CASH_DRAWER

Remarks
« This system variable is Read-Only.

o If a cash drawer is assigned the value will be 1 or 2. The value will be 0 if no cash
drawer is assigned.

ISL System Variables 7-19

7-20

CENTER

Description

This system variable contains the column number that is required to center text in an ISL-
defined window.

Type/Size
N9

Syntax
@CENTER

Remarks
« This system variable is Read-Only.
« @CENTER evaluates to -1.

o This system variable can be used as the column argument when specifying the
Display command.

Example

The following event procedure centers the text within an ISL-defined window:

event ing : 1
window 4, 40
display 1, @center, “In this window, all lines have
display 2, @center, “been centered to give it “
display 3, @center, “that professional “
display 4, @center, “look.”
waitforclear

endevent

See Also

Display command

CHANGE

Description

This system variable is the amount of change due for an overtender.

TypelSize
$12

Syntax
@CHANGE

Remarks
« This system variable is Read-Only.
« This system variable is valid under only two conditions:
* If in the TMED event

= If the @ TLDUE system variable equals $0.00

ISL System Variables

See Also
@TTLDUE system variable

CHECKDATA

Description

This system variable returns a string that contains a facsimile of a guest check created by
the current transaction.

Type/Size

String; size depends on data

Syntax
@CHECKDATA

Remarks
o This data is Read-Only.

o The string may consist of zero or more lines that are separated by ASCII
newlines, including print formatting characters specifying red ink or double-
wide characters.

o The MakeAscii command can be used to strip out the print formatting characters
in the string.

o This variable should only be accessed in a final_tender event.

See Also

MakeAscii command

CHGTIP

Description

This system variable contains the charged tip for the associated tender in a TMED event.

Type/Size
$12

Syntax
@CHGTIP

Remarks
« This system variable is Read-Only.
« Valid only in a TMED event.
o The @CHGTIP amount is included in the @SVC system variable.

ISL System Variables 7-21

CHK

Description

This system variable contains the object number of the Guest Check Printer assigned to
the workstation.

Type/Size
N9

Syntax
@CHK

Remarks
« This system variable is Read-Only.

o This system variable can be used as an argument to the StartPrint command.

Example

The event procedure below starts a print job at the Guest Check Printer.
event inq - 1
startprint @chk
printline “this is a line”
endprint
if @printstatus = “Y”
waitforclear “Print successful”
else
waitforclear “Print failed”
endif
See Also
e StartPrint command

o ISL Printing

CHKINFOKEY

Description

This system variable is used to set the key used for storing check info lines as
extensibility detail.

Type/Size
A

Syntax
@ChkInfoKey

Remarks

« The “check info lines” in Simphony are stored as extensibility detail in the check.
When SaveChklInfo is called, OPS uses the ChkInfoKey value as a key to store the
data in the check.

« If no key is specified it will be stored with a blank key.

7-22 ISL System Variables

CHK_OPEN_TIME

Description

This system variable returns a string containing the date and time that the current guest
check was opened.

Type/Size
Al17

Syntax
@CHK_OPEN_TIME

Remarks
This system variable is Read-Only.

CHK_OPEN_TIME_T

Description

This system variable returns the date and time that the current guest check was opened
seconds since midnight January 1, 1970.

Type/Size
N9

Syntax
@CHK_OPEN_TIME_T

Remarks
This system variable is Read-Only.

CHK_PAYMNT_TTL

Description

This system variable returns the current payment total.

Type/Size
$12

Syntax
@CHK_PAYMNT_TTL

Remarks
This system variable is Read-Only.

CHK_TTL

Description

This system variable returns the current check total.

ISL System Variables 7-23

TypelSize
$12

Syntax
@CHK_TTL

Remarks
This system variable is Read-Only.

CKCSHR

Description

This system variable contains the guest check cashier number.

Type/Size
N9

Syntax
@CKCSHR

Remarks
This system variable is Read-Only.

CKCSHR_NAME

Description

This system variable contains the guest check cashier’s check name.

Type/Size
Al6

Syntax
@CKCSHR_NAME

Remarks
This system variable is Read-Only.

CKEMP

Description

This system variable contains the number of the Check Employee, the operator who
owns the current guest check.

Type/Size
N9

Syntax
@CKEMP

7-24 ISL System Variables

Remarks
This system variable is Read-Only.

Example

The following example is a standard message exchange between Simphony and a PMS:
event ing : 1
var room_num : a4

input room_num, “Enter Room Number”
txmsg ““‘charge_ing’”,@CKEMP,@CKNUM,@TNDTTL , room_num

(charge_ing) is an // The first field
string // example of an identifying
process // that the POS might use to
waitforrxmsg // messsage from the POS.
endevent
event rxmsg : charge declined // This is one of the PMS
response
var room_num : a4 // possibilities

rxmsg room_num
exitwitherror “Charge for room
endevent

, room_num,” declined”

CKEMP_CHKNAME

Description

This system variable contains the check employee’s check name, the operator who owns
the current guest check.

Type/Size
Ale

Syntax
@CKEMP_CHKNAME

Remarks
This system variable is Read-Only.

CKEMP_FNAME

Description

This system variable contains the check employee’s first name, the operator who owns
the current guest check.

Type/Size
A8

ISL System Variables 7-25

Syntax
@CKEMP_FNAME

Remarks
This system variable is Read-Only.

CKEMP_CHKNAME

Description

This system variable contains the check employee’s last name, the operator who owns the
current guest check.

Type/Size
Ale

Syntax
@CKEMP_LNAME

Remarks
This system variable is Read-Only.

CKEMP_TYPEDEF

Description

This system variable is an array that contains the employee option bits for the check
employee.

Type/Size
N1, array

Syntax
@CKkEmp_TypeDef

Remarks
« This system variable is Read-Only.

CKID

Description

This system variable contains the current guest check ID.

Type/Size
A32

Syntax
@CKID

Remarks
This system variable is Read-Only.

7-26 ISL System Variables

CKNUM

Description

This system variable contains the number assigned to the current guest check.

TypelSize
N9

Syntax
@CKNUM

Remarks
This system variable is Read-Only.

Example
See example of @CKEMP on page 7-24.

CLIENT_ONLINE

Description

This system variable determines if a workstation is online.

Type/Size
N1

Syntax
@CLIENT_ONLINE

Remarks
This system variable is Read-Only.

Example

Event Inq - 2
if @client online < 0
window 1,60
display 1,2, "@client_online variable value is ",
@client online,". SAR Client is online!"
waitforclear
else
window 1,60
display 1,2, "@client _online variable value is ",
@client_online,". SAR Client is offline!"
waitforclear
endif
EndEvent

DATASTORE

Description

This system variable contains the .net object reference to the extensibility datastore.

ISL System Variables 7-27

TypelSize
object

Syntax
@DataStore

Remarks
« This system variable is Read-Only.

« DPlease consult the .net extensibility documentation for methods and properties
available on this object.

DAY

Description

This system variable contains the current date.

Type/Size
N2

Syntax
@DAY

Remarks
This system variable is Read-Only.

Example

The following script will construct a string_variable containing the current date in the
form dd-mm-yy:

event ing : 1
var date : a9

call get_date_string
endevent
sub get _date_string
var month_arr[12] : a3
//Listing of all the months

month_arr[1] = “JAN”
month_arr[2] = “FEB”
month_arr[3] = “MAR”
month_arr[4] = “APR”
month_arr[5] = “MAY”
month_arr[6] = “JUN”
month_arr[7] = “JuL”

month_arr[8] = “AUG”

month_arr[9] = “‘SEP”

month_arr[10] = “OCT”

month_arr[11] = “NOV”’

month_arr[12] = “DEC”

format date as @DAY, “-”, month_arr[@VONTH], “-”, @QYEAR
// i.e., 10-NOV-01

endsub

7-28 ISL System Variables

See Also
@MONTH and @YEAR system variables

DAYOFWEEK

Description

This system variable contains the current day of the week.

Type/Size
N1

Syntax
@DayOfWeek

Remarks
o This system variable is Read-Only.

o This value corresponds to the System.DateTime.DayOfWeek value. Consult
MSDN for details.

DBVERSION

Description

The current database version. For example, if a customer wants to take advantage of all
elements in a variable-sized array, the customer may have to specify a more recent
@DBVERSION value in the SIM script

Type/Size
N5

Syntax
@DBVERSION

Remarks
This system variable is Read-Only.

DEBUGTRACE

Description

This system variable is used to send debug information to the Visual Studio output
window.

Type/Size
N1

Syntax
@DebugTrace

ISL System Variables 7-29

Remarks

o If the POS is running in the Visual Studio debugger (when debugging .net
extensibility applications, for example), setting this variable to 1 will cause SIM
line debug information to be sent to the output window.

« This variable is useful in debugging SIM issues and is similar to legacy @trace.
o The default value is 0.

DETAILSORTED

Description

This system variable contains a “1” value if detail sorting is enabled or a “0” value if
sorting is disabled.

Type/Size
N9

Syntax
@DETAILSORTED

Remarks
This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands

DSC

Description

This system variable contains the total amount of discounts applied to the current guest
check. This total is the sum of all percentage and amount discounts on the guest check.

Type/Size
$12

Syntax
@DSC

Remarks
This system variable is Read-Only.

DSC_OVERRIDE

Description

When a manual discount is entered, a SIM ‘Discount’ script can decrease the amount of
the discount by setting this variable to the desired discount amount.

Type/Size
$12

7-30 ISL System Variables

Syntax
@DSC_OVERRIDE

Remarks
This system variable is Read-Only.

DSCI

Description

This system variable is an array that contains the discount itemizer totals posted to the
current guest check.

Type/Size
$12

Syntax
@DSCl[expression]

Remarks
« This system variable is Read-Only.
o The array limits of the expression are from 1 to 16.

o This variable will return totals posted to the discount itemizer specified by the
array index.

e This variable is similar to the @SI variable.

DTLCHILDSELECTED

Description

This system variable contains the detail link of the child item selected in the detail area.

Type/Size
N9

Syntax
@DTLCHILDSELECTED

Remarks
« This system variable is Read-Only.
o See @DtlSelected to get the parent item.
o If the parent is selected this value will be the detail link of the parent item.

o This value is the same as the @OpsContext.CurrentChildItem property.

DTL_DEFSEQ

Description

This system variable contains the definition sequence number of a detail item.

ISL System Variables 7-31

7-32

TypelSize
N3

Syntax
@DTL_DEFSEQ[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_DETAILLINK

Description

This system variable is an array containing the detail link of a detail item on the current
guest check.

Type/Size
N9

Syntax
@DTL_DETAILLINK [expression]

Remarks
o This system variable is Read-Only.

DTL_DSC_EMPL

Description

This system variable contains the employee number who is getting the employee meal
discount for the specified detail entry.

Type/Size
N9

Syntax
@DTL_DSC_EMPL [expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

ISL System Variables

DTL_DSCI

Description

This system variable contains the discount itemizer value for the menu item detail class.

Type Size
N9

Syntax
@DTL_DSClI[expression]

Remarks
This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system variable

DTL_FAMGRP

Description

This system variable is an array containing the family group of a menu item that is listed
in the current guest check detail.

TypelSize
N9

Syntax
@DTL_FMGRP[expression]

Remarks
» The expression following the system variable is the menu item’s detail number.
o The array limits are 1 to @NUMDTLT.
o This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_INDEX

Description
Index of the detail which fired the SIM event; applicable to the following SIM events:
« EMON_MI
« EMON_MI_VOID
« EMON_MI_RETURN
« EMON_DSC
« EMON_DSC_VOID

ISL System Variables 7-33

. EMON_SVC

. EMON_SVC_VOID

. EMON_TNDR

« EMON_TNDR_VOID

TypelSize
N9

Syntax
@DTL_INDEX

Remarks
o The array limits are 1 to @NUMDTLT.

« This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_IS_COMBO

Description

This system variable is an array containing the combo status of a detail item on the
current guest check.

Type/Size
N1

Syntax
@DTL_IS_COMBO [expression]

Remarks
o This system variable is Read-Only.

e The value is 1 if the detail is a main or side combo item.

DTL_IS_COMBO_MAIN

Description

This system variable is an array containing the combo status of a detail item on the
current guest check.

TypelSize
N1

Syntax
@DTL_IS_COMBO_MAIN [expression]

7-34 ISL System Variables

Remarks
« This system variable is Read-Only.

e The value is 1 if the detail is a main combo item.

DTL_IS COMBO_SIDE

Description

This system variable is an array containing the combo status of a detail item on the
current guest check.

Type/Size
N1

Syntax
@DTL_IS_COMBO_SIDE [expression]

Remarks
o This system variable is Read-Only.

e The value is 1 if the detail is a side combo item.

DTL_IS_COMBO_PARENT

Description

This system variable is an array containing the combo status of a detail item on the
current guest check.

TypelSize
N1

Syntax
@DTL_IS_COMBO_PARENT [expression]

Remarks
« This system variable is Read-Only.

o The value is 1 if the detail is a combo meal parent combo item.

DTL_IS_CONDJi]

Description

This system variable is an array that determines if a Guest Check Menu Item is a
condiment.

Type/Size
N1

Syntax
@DTL_IS_CONDIexpression]

ISL System Variables 7-35

7-36

Remarks

o The array limits are 1 to @NUMDTLT.

« This system variable is Read-Only.

DTL_IS_ON_HOLD

Description

This system variable is an array containing the hold status of a detail item on the current

guest check.

Type/Size
N1

Syntax
@DTL_IS_ON_HOLD [expression]

Remarks
o This system variable is Read-Only.
e The value is 1 if the detail on hold.

DTL_IS_VOIDJ[i]

Description

This system variable is set to “Y” if this detail item is a void entry. Otherwise, the

variable is set to “N.”

TypelSize
N1

Syntax
@DTL_IS_VOID

Remarks
This system variable is Read-Only.

DTL_MAJGRP

Description

This system variable is an array containing the major group of a menu item that is listed

in the current guest check detail.

Type/Size
N9

Syntax
@DTL_MA]JGRP[expression]

ISL System Variables

Remarks
» The expression following the system variable is the menu item’s detail number.
o The array limits are 1 to @NUMDTLT.
o This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_MLVL

Description

This system variable is an array containing the Main Menu Level (1-8) of a detail item on
the current guest check.

TypelSize
N1

Syntax
@DTL_MLVL[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_NAME

Description

This system variable is an array containing the name of a detail item on the current guest
check.

Type/Size
A20

Syntax
@DTL_NAME/expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

¢ The first name of menu items will be returned.

ISL System Variables 7-37

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_OBJNUM

Description

This system variable is an array containing the object number of a detail item on the
current guest check.

Type/Size
N9

Syntax
@DTL_OBJNUM|[expression]

Remarks
o This system variable is Read-Only.
o The array limits for the expression are 1 to @NUMDTLT.

Example
See the example for @DTL_MLVL on page 7-37.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_PLVL

Description

This system variable is an array containing the price level (1-8) of a menu item on the
current guest check.

TypelSize
N1

Syntax
@DTL_PLVL[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

7-38 ISL System Variables

DTL_PMSLINK

Description

This system variable is an array containing the PMS link (1-4) assigned to a detail item on
the current guest check.

Type/Size
N2

Syntax
@DTL_PMSLINK[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.
o The PMS Link is defined in the RVC Parameters module.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_PRICESEQ

Description

This system variable is an array containing the price sequence number (0-64) of a detail
item on the current guest check.

Type/Size
N3

Syntax
@DTL_PRICESEQ]expression]

Remarks
o This system variable is Read-Only.
o The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_QTY

Description

This system variable is an array containing the quantity of a detail item on the current
guest check.

ISL System Variables 7-39

7-40

TypelSize
N5

Syntax
@DTL_QTY[expression)

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_SEAT

Description

This system variable is an array containing the object number of the detail item assigned
to a seat number.

Type/Size
N5

Syntax
@DTL_SEAT][expression]

Remarks
o This system variable is Read-Only.
o The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTLSELECTED

Description

This system variable contains the detail link of the parent item selected in the detail area.

Type/Size
N9

Syntax
@DTLSELECTED

Remarks
o This system variable is Read-Only.

ISL System Variables

« This value is the same as the @OpsContext.CurrentParentltem property.

DTL_SLSI

Description

This system variable contains the sales itemizer value for the menu item detail class.

Type/Size
N9

Syntax
@DTL_SLSI[expression]

Remarks
This system variable is Read-Only.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system variable

DTL_SLVL

Description

This system variable is an array containing the Sub Menu Level (1-8) of a detail item on
the current guest check.

Type/Size
N1

Syntax
@DTL_SLVL[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

Example
See the example for @DTL_MLVL on page 7-37.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_STATUS

Description

This system variable is an array containing the status of a detail item on the current guest
check.

ISL System Variables 7-41

7-42

TypelSize
Al12

Syntax
@DTL_STATUS[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

o The value returned is formatted in hexadecimal digits.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_SVC_LINK

Description

This system variable is the current detail’s stored value card link, as stored in the check
detail.

Type/Size
N9

Syntax
@DTL_SVC_LINK[expression]

Remarks
« This system variable is Read-Only.
o The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_SVC_TYPE

Description

This system variable is the current detail’s stored value card type, as stored in the check
detail.

Type/Size
N9

Syntax
@DTL_SVC_TYPE[expression]

ISL System Variables

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@NUMDTLT system variables

DTL_SVCI

Description

This system variable contains the service charge itemizer value for the menu item detail
class.

Type/Size
N9

Syntax
@DTL_SVCl[expression]

Remarks
This system variable is Read-Only.

See also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system variable

Dtl_TaxTtl

Description

This system variable is an array containing the tax total of a detail item on the current
guest check.

Type/Size
$

Syntax
@Dtl_TaxTtl [expression]

Remarks
« This system variable is Read-Only.

o This value is calculated for the referenced detail. The sum of all detail tax totals is
not guaranteed to balance with the summary tax total.

DTL_TAXTYPE

Description

This system variable contains the tax types that were active when the corresponding
menu item, service charge, or discount detail item was ordered.

ISL System Variables 7-43

TypelSize
A2

Syntax
@DTL_TAXTYPE[expression]

Remarks
« This system variable is Read-Write.

» This system variable is represented as a two-digit hex field, ranging from 00 to
FFE. Each bit corresponds to the tax type. For example, 80 corresponds to tax type
1.

See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED system variable

DTL_TIMED_FIRE_TIME

Description

This system variable is an array containing the timed fire time of a detail item on the
current guest check.

Type/Size
N9

Syntax
@DTL_TIMED_FIRE_TIME [expression]

Remarks

o This variable can be used to set the timed fire time of a detail item.

DTL_TTL

Description

This system variable is an array containing the total of a detail item on the current guest
check.

TypelSize
$12

Syntax
@DTL_TTL[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.

7-44 ISL System Variables

Example

This example is part of a script that checks a current guest check for a certain number of
menu items. If four menu items are found, the script will call a subroutine that prints a
coupon (call print_coupon) and a subroutine that determines how many items are
on the check (call check_grill_list(objnum)); these subroutine scripts are not
shown.

event tmed : *
var dtl_cnt : n3
var num grill_items : n3 = 6
var grill_item[num_grill_items] : n5 var grill_hit : n3
var objnum : n5

grill_item[1] = 150
grill_item[2] =1 10
grill_item[3] = 1520
grill_item[4] 1530
grill_item[5] = 154
1 = 1550

grill_item[6

// look through the check, have we ordered 4 grill items
for dtl_cnt = 1 to @numdtlt
it @dtl_type[dtl_cnt] = “M” AND @dtl_ttI[dtl_cnt] > 0
objnum = @dtl_objnum[dtl_cnt]
call check grill_list(objnum)
endif
if grill_hit>=4c
all print_coupon
endif
endevent
See Also
UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and

@NUMDTLT system variables

DTL_TYPE

Description

This system variable is an array containing the detail type of an item on the current guest
check.

TypelSize
Al

Syntax
@DTL_TYPE[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are 1 to @NUMDTLT.
o The detail type will be one of the following:

Table 17 Item Detail Types

ISL System Variables 7-45

7-46

Type Description

—

Check Information Detail

Menu Item

Discount

Service Charge

Tender/Media

Reference Number

ol =|=|e|lol =z

CA Detail

Example

See the example for @DTL_MLVL on page 7-37.

See also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and

@NUMDTLT system variables

DTL_TYPEDEF

Description

This system variable returns the detail item type definition for discounts (D), menu items

(M), service charges (S), and tenders (T).

Type/Size

Size depends on the detail type:
Table 18 Detail Types and Corresponding Sizes

Detail Type Size
Discount A6
Menu Item Al2
Service Charge | Al2
Tender A22
CA A2

Syntax

@DTL_TYPEDEF][expression]

Remarks

« This system variable is Read-Only.

o The type definition is returned as a hex string. If the discount type definition is
E78D, then @dtl_typedef][] for that discount will be “E78D,” or an A4.

o For menu items, this variable returns the type definition field from the revenue
center (RVC) level menu item class module associated with that menu item.

ISL System Variables

» For discounts, service charges, and tender media detail items, this variable
returns the type definition field from the property level modules.
o For CA detail, this variable returns the type definition from the Check Detail.
Example

This piece of ISL code will scan the detail and display any open-priced menu items or
open discount items.

event ing:1
var i:N5
for i = 1 to @numdtlt // loop through

all detail

if @dtl_type[i] = "M" AND bit(@dtl_typedefi], 1) < 0 // check
if M and bit 1 are set in the M class typedef

waitforclear "Item ", i, " is open priced MI" // check if D
and bit 1 are set in the D typedef
elseif @dtl_type[i] = "D AND bit(@dtl_typedef[i], 1) < 0

waitforclear "lItem ", i, " is open DSC"

endif

endfor
endevent

See Also

UseSortedDetail and UseStdDetail commands, and @DETAILSORTED and
@DTL_TYPE system variables

DWOFF

Description
This system variable returns printed text to single-wide characters (default) if the

@DWON system variable was used to switch text to double-wide characters.

TypelSize
Al

Syntax
@DWOFF

Remarks
« This system variable is Read-Only.
« @DWON is also known as a print directive and can be an argument of the
Printline command.

« Allnew lines of text print as single-wide characters.

Example

The ISL statement below prints “Print line” in double-wide characters and red ink, then
turns off these print directives.

startprint printer
printline
printline @dwon, @redon, “chit”

ISL System Variables 7-47

printline
@dwofF, @redoff
endprint
See Also
« @DWON system variable; Printline command

o “ISL Printing”

DWON

Description

This system variable prints the expression that follows it in double-wide characters.

Type/Size
Al

Syntax
@DWON

Remarks
o This system variable is Read-Only.

« @DWON is also known as a print directive and can be an argument of the
Printline command.

« Double- and single-wide characters may be mixed on the same line.

Example

The ISL statement below will print “Print line” in double-wide characters and red ink.
Printline @dwon, @redon, “Print line” //prints double-wide in red

See Also

» @DWON system variable; Printline command
o “ISL Printing”

EMPLDISCOUNT

Description

In a discount event, this variable is the number of the employee discount.

Type/Size
N9

Syntax
@EMPLDISCOUNT

Remarks
This system variable is Read-Only.

7-48 ISL System Variables

EMPLDISCOUNTEMPL

Description

In a discount event, this variable is the employee number of the discount receiving the
employee discount.

Type/Size
N9

Syntax
@EMPLDISCOUNTEMPL

Remarks
This system variable is Read-Only.

EMPLOPT

Description
This system variable is an array containing the setting of SIM Employee Options

#1 through #8, which are defined for the employee who initiated the event.

Type/Size
N1

Syntax
@EMPLOPT[expression]

Remarks
o This system variable is Read-Only.
o The array limits for the expression are from 1 to 8.

o The value returned by the system variable will be the setting of the privilege
option code: “0” for OFF, or “1” for ON.

» These values correspond to ISL Employee Options #1 - #8 in Employee Classes |
Privileges.

« This system variable can be used to control access to specific events in scripts.
For example, to prevent certain employees from initiating a particular event,
disable one of the eight available privilege option codes. Within the event,
include an ISL statement in which the setting of the corresponding privilege
option code is checked. Thus, if the setting is disabled, for example, at this point
in the script, an error message is issued, or the employee is directed to take some
other action instead of performing the task.

ISL System Variables 7-49

EPOCH

Description

This system variable contains the number of seconds that have expired since midnight
January 1, 1970, the EPOCH Time.

Type/Size
N9

Syntax
@EPOCH

Remarks
This system variable is Read-Only.

ERRORMESSAGE

Description

This system variable contains the error message text in the “errmsg” event.
Y

TypelSize
A

Syntax
@ERRORMESSAGE

Remarks
« This system variable is Read-Only.

EVENTARGUMENTS

Description

This system variable contains reference to the EventMonitorArgs object associated with
the currently executing event.

Type/Size
object

Syntax
@EVENTARGUMENTS

Remarks
« This system variable is Read-Only.

o This object is the same that is passed to .net extensibility. (Both share the same
EventMonitorArgs facility.)

7-50 ISL System Variables

EVENTID

Description

This system variable is the string that represents the ID of the event being raised. The text
is the same as the second parameter in an EVENT statement.

Type/Size
A32

Syntax
@EVENTID

EVENTNAME

Description

This system variable contains the event ID associated with the currently executing event.

Type/Size
A

Syntax
@EVENTNAME

Remarks
« This system variable is Read-Only.

o This variable allows subroutines common across many events to distinguish
which event they are in.

EVENTTYPE

Description

This system variable is the string that represents the type of event being raised (an
inquire event is “INQ”). The text is the same as the first parameter in an EVENT
statement.

Type/Size
A32

Syntax
@EVENTTYPE

FIELDSTATUS

Description

This system variable contains the Input Status Flag, which is set automatically by the ISL
after any of the WindowEdit or WindowInput command is issued in an event
procedure.

ISL System Variables 7-51

7-52

TypelSize
Al

Syntax
@FIELDSTATUS

Remarks

« This system variable is Read-Only.

o The Input Status Flag will be either of the following settings:
Table 19 Input Status Flags

Flag Description

Y indicates that all fields were entered by
the operator

N indicates that some, not all, of the fields
were entered by the operator

o This system variable will be set to “Y” if each DisplayInput variable has been
entered using the WindowEdit or WindowInput command; otherwise the
system variable will be set to “N”.

Example

In the example below, three variables have been defined for the DisplayInput command,
and all have been set by the user; consequently, @FIELDSTATUS is set to “Y”. If the user
entered data for only two of the three fields,

@FIELDSTATUS would be set to “N”. Thus, accessing this system variable is most logical
after issuing either the WindowEdit or WindowInput command.

event inq - 1
var data[3] : a20
window 3, 40
displayinput 1, 1, data[1], “Enter data 1”
displayinput 2, 1, data[2], “Enter data 2”
displayinput 3, 1, data[3], “Enter data 3”
windowinput
if @fieldstatus = “Y”
display 2, @center, “All fields entered”
else
display 2, @center, “Some fields not entered”
endif
waitforclear
endevent

See Also
WindowEdit[WithSave] and WindowInput[WithSave] commands

FILE

Description

This system variable contains the file name of the line of the script where the @file system
variable is referenced.

ISL System Variables

TypelSize
A

Syntax
@FILE

Remarks
« This system variable is Read-Only.

o This can be useful for debug purposes.

FILELINEMARKER

Description

This system variable contains the file name/line number of the line of the script where the
@filelinemarker system variable is referenced.

Type/Size
A

Syntax
@FILELINEMARKER

Remarks
« This system variable is Read-Only.

o Anexample of this variable’s value is “myscript.isl:123”, where 123 is the current
line number.

o This can be useful for debug purposes.

FILE_BFRSIZE

Description

This system variable is a user-definable variable that the ISL sets when it expects to read
lines greater than 2048 bytes in an open file.

TypelSize
N9

Syntax
@FILE_BFRSIZE

Remarks

This user-definable variable has Read-Write attributes.

Example

If the script is reading lines from a file which is 4K in length, for example, then the script
should execute the following line:
@FILE_BFRSIZE = 4096

ISL System Variables 7-53

7-54

See Also
ISL File Input/Output Commands

FILE_ERRNO

Description

This system variable is where a Standard Error Number value is saved after every file
input/output operation initiated during an event procedure.

Type/Size
N6

Syntax
@FILE_ERRNO

Remarks
This system variable has Read-Write attributes.

o The value will either be 0 or non-zero: 0 means no error occurred, and non- zero
indicates an error has occurred. The following table contains the more common
non-zero error code values that may be returned by the ISL File I/O commands:

Table 20 Common Non-Zero Error Codes Returned by ISL File I/O Commands

Error Name Error Number Description
Value

EACCES 13 Permission denied
EAGAIN 11 No more processes
EDEADLK 45 Deadlock condition
EFBIG 27 File too large
EIO 5 I/O error
EISDIR 21 Is a directory
ENOLINK 67 The link has been saved
ENXIO 6 No such device or address
EROFS 30 Read only file system
ESPIPE 29 Illegal seek

The following table lists the possible errors that the File I/O commands may receive:

Table 21 Possible Errors Received by the File /O Commands

File Commands Error Names
FOpen EACCES, EAGAIN, EISDIR,
ENXIO, and EROFS
FClose ENOLINK

ISL System Variables

File Commands Error Names
FLock EACCES, EDEADLK, and
ENOLINK
FRead, FReadBfr, and FReadLn EIO and ENOLINK
FSeek ESPIPE
FUnlock EACCES and ENOLINK
FWrite, FWriteBfr, and FWriteLn EFBIG and ENOLINK

o The @FILE_ERRSTR system variable contains the error message text
corresponding to the Error Code. This system variable can be used to display
that text if the error occurs.

See Also
o @FILE_ERRSTR system variable

« ISL File Input/Output Commands

FILE_ERRSTR

Description

This system variable returns a string containing the Standard Error that occurred during
a file input/output operation. The string corresponds to the error code saved in the
@FILE_ERRNO system variable.

Type/Size
A80

Syntax
@FILE_ERRSTR

Remarks
« This system variable is Read-Only.

o This string can be used to display the actual error message text, based on the
number value saved in the @FILE_ERRNO system variable. Displaying this error
message can make it easier to troubleshoot problems with file I/O operations and
to verify whether the script was successful in executing a file I/O operation. For
example, assume an attempt is made to write to a file with the FWrite command
and the error code 5 is saved in @FILE_ERRNO. If this file I/O operation is
unsuccessful, specifying the @FILE_ERRSTR system variable will allow the string
“I/O error” to be displayed.

o To determine the string that will be displayed, refer to Table 21 Possible Errors
Received by the File I/O Commands.

ISL System Variables 7-55

7-56

Example

The following script opens a file. If the operation is unsuccessful, an error message will
display the cause of the error.

event inq - 1

var fn : N5
fopen fn, "myfile.dat”, read
iffmm=0

errormessage @FILE _ERRSTR
exitcontinue endif
endevent
See Also
@FILE_ERRNO system variable

FILE_SEPARATOR

Description

This system variable stores the user-defined field separator to be used in all file
input/ouput operations.

TypelSize
Al

Syntax
@FILE_SEPARATOR

Remarks
« This system variable has Read-Write attributes.

+ Innormal ISL File I/O operations, ISL assumes the comma (,) character is the
field separator. But if a different field separator is needed, the script must change
the @FILE_SEPARATOR system variable.

» If a string with more than one character is assigned to the variable, then only the
first character will be used.

« When @FILE_SEPARATOR changes the field separator, all subsequent field
operations will use the new field separator until the @FILE_SEPARATOR
variable is changed.

FILTER_ACTIVE

Description

This system variable is set to “Y” if seat filtering is active. Otherwise, the variable is set to
IIN‘//

TypelSize
Al

Syntax
@FILTER_ACTIVE

ISL System Variables

Remarks
This system variable is Read-Only.

FILTER_MASK

Description

This system variable is the current seat filter mask.

Type/Size
A8

Syntax
@FILTER_MASK

Remarks
This system variable is Read-Only.

GRPNUM

Description

This system variable contains the table ID group number assigned to the current guest

check.

Type/Size
N9

Syntax
@GRPNUM

Remarks
This system variable is Read-Only.

GST

Description

This system variable contains the number of guests assigned to the current guest check.

TypelSize
N5

Syntax
@GST

Remarks
This system variable is Read-Only.

See Also
@GSTRMNG system variable

ISL System Variables

7-57

7-58

GSTRMNG

Description

This system variable contains the number of guests remaining on the current guest check
after it has been prorated.

Type/Size

N5

Syntax

@GSTRMNG

Remarks

This system variable is Read-Only.
This system variable must be used within an Event Tmed only.

This system variable should be used in tandem with the @ GSTTHISTENDER
system variable and the Prorate command to determine the remaining guest
count on a prorated guest check. In a PMS environment, the PMS may require
that the guest count on a check be prorated. For example, if five guests are on a
$100 check, and $60 ($20 * 3 = $60) is tendered, the PMS assumes that three of the
guests have settled. A typical PMS posting scenario will include a step for
prompting the operator to enter the number of guests for the current posting, to
associate the guests with the tender.

ISL provides the same capability. However, implementing this function via a SIM
Interface requires 1) knowing the number of guests remaining on the check, and 2)
informing Simphony of the number of guests to associate with a tender. Use
@GSTRMNG to get the number of guests remaining, then use this value as a
condition for requiring an operator to enter the number of guests during a tendering
transaction before posting to the PMS. See the example below.

When the Prorate command is active and a tender/media event occurs,
@GSTRMNG will contain the number of guests yet to post. When the first tender
is posted, @GSTRMNG will be equal to all of the guests on the check. When
posting subsequent tenders, @GSTRMNG will be the number of guests
remaining. For example, if there are five guests on a check, @GSTRMNG will be
five. But if three are prorated with the first tender, @GSTRMNG will be two upon
the second round of proration.

Example

The following subroutine implements guest count proration:

sub prorate_guests
var num_guests : n5
prorate

// IT there are still guests left on this check to be prorated,
// ask the user how many guests this check.

if @gstrmng > 0
forever

input number_guests, “Number of guests this tender?”
if number_guests > @gstrmng

ISL System Variables

errormessage “Max guests is
else
break
endif
endfor

, @gstrmng

// Prorate this many many guests for this tender. Next time around,
// this many guests will be subtracted from @gstrmng.

@gstthistender = num_guests
endif
endsub
See Also

o @GST and @GSTTHISTENDER system variables

e Prorate command

GSTTHISTENDER

Description

This system variable contains the number of guests on the current guest check associated
with a split tender when proration is active.

TypelSize
N5

Syntax
@GSTTHISTENDER

Remarks
« This system variable has Read-Write attributes.
o This system variable must be used within an Event Tmed only.

« Use this system variable in tandem with the @ GSTRMNG system variable and
Prorate command to properly prorate guest count for a PMS via a SIM Interface.
When set, @GSTTHISTENDER will define the number of guests that are prorated
during a tendering transaction. For explanation, see the detail description of
@GSTRMNG.

o If the PMS requires prorated guest counts when posting tenders, the SIM script
must set @GSTTHISTENDER.

Example
See example for @GSTRMNG on page 7-58.

See Also
o @GST and @GSTRMNG system variables

e Prorate command

ISL System Variables 7-59

7-60

GUID

Description

This system variable returns a string array with the GUID of the current check.

TypelSize
A40

Syntax
@GUID

Remarks
This system variable is Read-Only.

HEADER

Description

This system variable is string array with 48 elements. The @ HEADER[] array is unique to
each event. This means that each event can begin writing to the array starting at index 1,
rather than at the next available index.

Type/Size
A32

Syntax
@HEADER[expression]

Remarks
« This system variable is Read-Write.

o This system variable is only used with the Print_Header Event. All transaction
system variables are still valid in this event. User input is still allowed, as are file
operations and display manipulation. See page 8-37.

See Also
Print_Header and Print_Trailer events and @TRAILER system variable.

HOUR

Description

This system variable contains the current hour of the day.

TypelSize
N2

Syntax
@HOUR

ISL System Variables

Remarks
« This system variable is Read-Only.
e The value returned will be from 0 to 23.

o The hour will be in Military Time format. For example, 2 pm will be returned as
‘" 14./1

IGNORE_PRMT

Description

This system variable must be set to a non-zero value to enable the keyboard macro
command to pass the [Enter] key to general operator prompts.

Type/Size
N5

Syntax
@IGNORE_PRMT=integer

Remarks
This system variable has Read-Write attributes.

INEDITCLOSEDCHECK

Description

This system variable is set to “1” if this is an edit closed check entry. Otherwise, the
variable is set to “0.”

Type/Size
N1

Syntax
@INEDITCLOSEDCHECK

Remarks

This system variable is Read-Only, and is related to the Simphony function “Adjust
Closed Check”.

INPUTSTATUS

Description

This system variable sets the User Input Status Flag if the ContinueOnCancel command
is executed.

Type/Size
N9

Syntax
@INPUTSTATUS

ISL System Variables 7-61

Remarks

« This system variable is Read-Only.

o The User Input Status Flag will be set to one of the following:
Table 22 User Input Status Flags

Flag Description

0 indicates that the user canceled any input
by pressing [Cancel]

1 indicates that the user entered all valid
data

See Also

ContinueOnCancel command

INREOPENCLOSEDCHECK

Description

This system variable is set to “1” if this is reopen closed check entry. Otherwise, the
variable is set to “0.”

Type/Size
N1

Syntax
@INREOPENCLOSEDCHECK

Remarks
This system variable is Read-Only.

INSTANDALONEMODE

Description

This system variable determines if the workstation is offline.

TypelSize
N1

Syntax
@INSTANDALONEMODE

Remarks
This system variable is Read-Only.

Example

Event Inq - 2
iT @InStandaloneMode <> 0O
window 1,65
display 1,2, "@InStandaloneMode variable value is ",

7-62 ISL System Variables

@InStandaloneMode,''. SAR Client is offline!"
waitforclear

else
window 1,65
display 1,2, "@InStandaloneMode variable value is ",
@InStandaloneMode,’. SAR Client is online!""
waitforclear

endif

EndEvent

ISIOURNALPRINT

Description

This system variable contains the status of the current print job when header and trailer
lines are being formatted by SIM.

Type/Size
N1

Syntax
@ISJOURNALPRINT

Remarks
« This system variable is Read-Only.
o This value is 1 when formatting for a journal printer, 0 otherwise.
« This variable is only valid during header/trailer events.

o This variable can be used to change the output when formatting for the journal.

ISUNICODE

Description

This system variable is set to “Y” if Unicode characters are supported. Otherwise, the
variable is set to “N.”

Type/Size
N1

Syntax
@ISUNICODE

Remarks
This system variable is Read-Only.

JNL

Description

This system variable contains the printer object number of the workstation’s report
printer.

ISL System Variables 7-63

TypelSize
N9

Syntax
@JNL

Remarks
« This system variable is Read-Only.

KEY_CANCEL

Description

This system variable contains the [Cancel] key.

Type/Size
Key

Syntax
@KEY_CANCEL

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

Example

The script below tests that the [Cancel] key was pressed by using @KEY_CANCEL. The
operator is prompted to enter a number between 1 and 9. However, if either the [Clear]
or [Cancel] key is pressed instead, the script will terminate.
event inq : 4
var key pressed : key // Hold the function key pressed
var data : alO // Hold the number chosen

forever
inputkey key pressed, data, “Type a Number then Enter, Clear to Exit” if
key pressed = @KEY_CLEAR
exitcontinue
elseif key pressed = @KEY_CANCEL
exitcontinue
elseif key pressed = @KEY_ENTER
if data < 0 and data <=10
waitforclear ““You chose ““, data, ““. Press Clear.”
else
errormessage ““Choose a number between 1 and 10, then press Enter.”

endif
endif
endfor
endevent
See Also

InputKey command

7-64 ISL System Variables

KEY_CLEAR

Description

This system variable contains the [Clear] key.

TypelSize
Key

Syntax
@KEY_CLEAR

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

Example
See the example for @KEY_CANCEL on page 7-64.

See Also
InputKey and LoadKyBdMacro commands

KEY_DOWN_ARROW

Description

This system variable contains the [Down Arrow] key.

Type/Size
Key

Syntax
@KEY_DOWN_ARROW

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands
KEY_END

Description
This system variable contains the [End] key.

TypelSize
Key

ISL System Variables 7-65

Syntax
@KEY_END

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

KEY_ENTER

Description

This system variable contains the [Enter] key.

Type/Size
Key

Syntax
@KEY_ENTER

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

Example
See the example for @KEY_CANCEL on page 7-64.

See Also
InputKey and LoadKyBdMacro commands

KEY_EXIT

Description

This system variable contains the [Exit] key.

Type/Size
Key

Syntax
@KEY_EXIT

Remarks
o This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

7-66 ISL System Variables

See Also
InputKey and LoadKyBdMacro commands

KEY_HOME

Description

This system variable contains the [Home] key.

Type/Size
Key

Syntax
@KEY_HOME

Remarks
o This system variable is Read-Only.

« This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

KEY_LEFT_ARROW

Description

This system variable contains the [Left Arrow] key.

Type/Size
Key

Syntax
@KEY_LEFT_ARROW

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

KEY_PAGE_DOWN

Description

This system variable contains the [Page Down] key.

Type/Size
Key

ISL System Variables 7-67

Syntax
@KEY_PAGE_DOWN

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

KEY_PAGE_UP

Description
This system variable contains the [Page Up] key.

Type/Size
Key

Syntax
@KEY_PAGE_UP

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

KEY _RIGHT ARROW

Description
This system variable contains the [Right Arrow] key.

Type/Size
Key

Syntax
@KEY_RIGHT_ARROW

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

7-68 ISL System Variables

KEY_UP_ARROW

Description
This system variable contains the [Up Arrow] key.

TypelSize
Key

Syntax
@KEY_UP_ARROW

Remarks
« This system variable is Read-Only.

o This system variable is designed for checking keystrokes from the InputKey
command and setting keyboard macros with the LoadKyBdMacro command.

See Also
InputKey and LoadKyBdMacro commands

LANG_ID

Description

This system variable is an array that contains the ID numbers of all defined languages.

Type/Size
N9

Syntax
@LANG_ID

Remarks
« This system variable is Read-Only.
o This system variable is only available on SAR Ops.

LANG_NAME

Description

This system variable is an array that contains the language names for all defined
languages. The indexing is the same as @lang_id, therefore @lang_name[1] is the name of
the language associated with @lang_id[1].

Type/Size
A20

Syntax
@LANG_NAME

ISL System Variables 7-69

7-70

Remarks
« This system variable is Read-Only.
o This system variable is only available on SAR Ops.

LASTCKNUM

Description

This system variable contains the previous check number that was assigned to the
current guest check.

Type/Size
N9

Syntax
@LASTCKNUM

Remarks
o This system variable is Read-Only.

o A last check number value of 0 indicates that the check number has not changed.

LINE

Description

This system variable contains the number of the current line in the script that is being
executed.

TypelSize
N5

Syntax
@LINE

Remarks
« This system variable is Read-Only.

o Use this system variable as a debugging tool.

See Also
@LINE_EXECUTED system variable

LINE_EXECUTED

Description

This system variable contains the number of lines executed since the script began
running.

Type/Size
N5

ISL System Variables

Syntax
@LINE_EXECUTED

Remarks
« This system variable is Read-Only.

o Use this system variable as a debugging tool.

See Also
@LINE system variable

MAGSTATUS

Description

This system variable contains the Magnetic Card Entry Status Flag. The flag indicates
whether data was input by swiping a card through a magnetic card reader.

Type/Size
Al

Syntax
@MAGSTATUS

Remarks
« This system variable is Read-Only.
o The Magnetic Card Entry Status Flag will be either of the following settings:

Table 23 Magnetic Card Entry Status Flag

Flag Description

Y Indicates that data was input by
swiping a card through a magnetic card

N Indicates that data was input by means
other than a magnetic card reader, such as
via keyboard entry
o @MAGSTATUS is best used after issuing an Input or WindowInput/Edit
command.
Example

This event captures credit card information, entered manually from a keyboard or
electronically from a magnetic card reader. The script uses the @MAGSTATUS system
variable to determine the source from which the information is captured.
event : 1

var cardholder_name : a20

var account num : al9

var expire_date : n4

var trackl data : a79
var track2 data : a79

window 3, 78
touchscreen 16

ISL System Variables 7-71

7-72

displayMSinput 1, 2, cardholder_name{m2, 2, 1, *}, \
“Read Credit Card or Enter Guest Name™, \
2, 2, account_num{m2, 1, 1, *}, “Enter Account Number”, \
3, 2, expire_date{m2, 3, 1, 4}, “Enter Expiration Date (YYMM)”, \
0, O, trackl data{ml, *}, “
windowinput
waitforclear
window 4, 40
display 1, 2, “Cardholder: ““, cardholder_name

if @MAGSTATUS = “Y”’
display 2, 2, “As read from credit card.”
else
display 2, 2, “As entered from keyboard.”
endif
waitforclear
endevent
See Also

DisplayMSInput command

MAXDTLR

Description

This system variable contains the maximum size string required to format the transaction
detail held in the @TRDTLR system variable.

Type/Size
N9

Syntax
@MAXDTLR

Remarks
This system variable is Read-Only.

See Also
@DTL_*, @MAXDTLT, and @TRDTLR system variables

MAXDTLT

Description

This system variable contains the maximum size string required to format the transaction
detail held in the @TRDTLT system variable.

Type/Size
N9

Syntax
@MAXDTLT

ISL System Variables

Remarks
This system variable is Read-Only.

See Also
@DTL_*, @MAXDTLR and @TRDTLT system variables

MAXKYBDMACRO

Description

This system variable contains the maximum number of macro keys that can be queued
for the LoadKybdMacro command.

Type/Size
N9

Syntax
@MAXKYBDMACRO

Remarks
« This system variable is Read-Only.

MAX_LINES_TO_RUN

Description

This system variable is a debugging tool that can be set to the maximum number of lines
in the script to run.

Type/Size
N5

Syntax
@MAX_LINES_TO_RUN = # of lines

Remarks
o This system variable has Read-Write attributes.

o This system variable should be set before the lines in the script that are being
debugged.

MINUTE

Description

This system variable contains the current minute of the current hour.

Type/Size
N2

Syntax
@MINUTE

ISL System Variables 7-73

7-74

Remarks
« This system variable is Read-Only.

e A value returned will be from 0 to 59.

MONTH

Description

This system variable contains the current month of the current year.

Type/Size
N2

Syntax
@MONTH

Remarks
« This system variable is Read-Only.

e The value returned will be from 1 to 12.

Example
See the example for @DAY on page 7-28.

See Also
@DAY and @YEAR system variables

NEXTMYOPENCHECKGUID

Description

This system variable contains the the guid of the oldest open check for this workstation.

Type/Size
A

Syntax
@NEXTMYOPENCHECKGUID

Remarks
« This system variable is Read-Only.

NUL

Description

This system variable specifies that a binary 0 should be sent when printing binary data to
a printer. The @nul variable is useful only on the PrintLine command.

Type/Size
A2

ISL System Variables

Syntax
@NEXTMYOPENCHECKGUID

Remarks

This system variable is used to escape the NUL character.

NULL

Description

This system variable contains a null object reference.

Type/Size
object

Syntax
@NULL

Remarks
« This system variable is Read-Only.

o There is no literal way to represent ‘null’” in SIM; this provides that capability.

NUMDSC

Description

This system variable contains the number of active discounts posted to the current guest
check.

Type/Size
N1

Syntax
@NUMDSC

Remarks
This system variable is Read-Only.

NUMDTLR

Description

This system variable contains the number of transaction detail entries posted during the
current service round on the guest check.

TypelSize
N5

Syntax
@NUMDTLR

ISL System Variables 7-75

Remarks
This system variable is Read-Only.

NUMDTLT

Description

This system variable contains the number of transaction detail entries posted to the
current guest check.

Type/Size
N5

Syntax
@NUMDTLT

Remarks
« This system variable is Read-Only.

o This system variable is used to provide the maximum array limit for the @DTL_*
system variables.

Example
See the example for @DTL_MLVL on page 7-37.

See Also
@DTL_* and @NUMDTLR system variables

NUMLANGS

Description

This system variable holds the number of languages in the @lang_id and @lang_name
arrays.

Type/Size
N9

Syntax
@NUMLANGS

Remarks
« This system variable is Read-Only.
o This system variable is only available on SAR Ops.

NUMOPENCHK

Description

This system variable contains the number

7-76 ISL System Variables

TypelSize
object

Syntax
@NUMOPENCHK

Remarks
« This system variable is Read-Only.

« There is no literal way to represent ‘null” in SIM; this provides that capability.

NUMSI

Description
This system variable contains the number of active sales itemizers defined in the

RVC Descriptors module.

Type/Size
N9

Syntax
@NUMSI

Remarks
This system variable is Read-Only.

NUMSVC

Description

This system variable contains the number of active service charge itemizers defined for
the revenue center.

TypelSize
N1

Syntax
@NUMSVC

Remarks
« This system variable is Read-Only.

o This system variable will always returns the value 1.

NUMTAX

Description

This system variable contains the number of active tax rates.

Type/Size
N1

ISL System Variables 7-77

7-78

Syntax
@NUMTAX

Remarks
This system variable is Read-Only.

OBJ

Description

This system variable is the object number of the detail item for the event.

Type/Size
N9

Syntax
@OBJ

Remarks
This system variable is only valid in the MI¥, DSC*, SVC*, and TNDR* events.

OFFLINE LINK

Description

This system variable is used to link to an offline PMS system. For example when the PMS
is down, Ops can query the local guest database for account information and post the
transaction offline.

Type/Size
N12

Syntax
@OFFLINE LINK

OPNCHK_CKNUM

Description

This system variable contains the Open Check check number

Type/Size
N5

Syntax
@OPNCHK_CKNUM][expression]

Remarks

o The @NUMOPENCHK system variable must be called first to return data using
any of the available @OPNCHK_* system variables.

« This system variable is Read-Only.

ISL System Variables

« The array limits of the expression are from 1 to the count return from
@NUMOPENCHK.

OPNCHK_TREMPID

Description

This system variable contains the Open Check transaction employee database ID

Type/Size
N

Syntax
@OPNCHK_TREMPID[expression]

Remarks

o The @NUMOPENCHK system variable must be called first to return data using
any of the available @OPNCHK_* system variables.

o This system variable is Read-Only.

o The array limits of the expression are from 1 to the count return from
@NUMOPENCHK.

OPNCHK_TREMPNUM

Description

This system variable contains the Open Check transaction employee number

TypelSize
N9

Syntax
@OPNCHK_TREMPNUM [expression]

Remarks

o The @NUMOPENCHK system variable must be called first to return data using
any of the available @OPNCHK_* system variables.

« This system variable is Read-Only.

« The array limits of the expression are from 1 to the count return from
@NUMOPENCHK.

OPNCHK_WSID

Description

This system variable contains the Open Check owner workstation database ID.

Type/Size
N

ISL System Variables 7-79

Syntax
@OPNCHK_WSID [expression]

Remarks

o The @NUMOPENCHK system variable must be called first to return data using
any of the available @OPNCHK_* system variables.

« This system variable is Read-Only.

« The array limits of the expression are from 1 to the count return from
@NUMOPENCHK.

OPNCHK_WSNUM

Description

This system variable contains the Open Check owner workstation number.

Type/Size
N

Syntax
@OPNCHK_WSNUM][expression]

Remarks

o The @NUMOPENCHK system variable must be called first to return data using
any of the available @OPNCHK_* system variables.

o This system variable is Read-Only.

o The array limits of the expression are from 1 to the count return from
@NUMOPENCHK.

OPSCONTEXT

Description

This system variable contains the reference for the extensibility OpsContext object.

TypelSize
object

Syntax
@OPSCONTEXT

Remarks
« This system variable is Read-Only.

» Consult extensibility documentation for methods and properties on this object.

ORDERTYPE

Description

This system variable contains the active order type on the current guest check.

7-80 ISL System Variables

TypelSize
N9

Syntax
@ORDERTYPE

Remarks
This system variable is Read-Only.

OrderType_Name

Description

This system variable contains the order type name for the current check.

Type/Size
A

Syntax
@OrderType_Name

Remarks
« This system variable is Read-Only.

ORDR

Description

This system variable is an array containing the object number of a Remote Order or Local
Backup Printer defined for Simphony.

Type/Size
N9

Syntax
@ORDR[expression]

Remarks
o This system variable is Read-Only.
o The array limits for the expression are from 1 to 15.

o This system variable can be used as an argument to the StartPrint command.

Example

The example below starts a print job at a remote order printer.
sub print_message
startprint @ordrl
printline “ >
printline “Message from “, sender_name
printline “ -
for rowent = 1 to 136
if len(kitchen_msg[rowcnt]) > ““
printline kitchen_msg[rowcnt]

ISL System Variables 7-81

endif

endfor

printline “======= END MESSAGE ========"

endprint
endsu

See Also

e StartPrint command

o “ISL Printing”

OS_PLATFORM

Description

This system variable is the value of the operating system platform:

Table 24 Values Corresponding to the Operating System Platform

Value Description

1 Microsoft Windows CE

3 Win 32

4 Oracle Linux for MICROS
Type/Size
N1
Syntax

@OS_PLATFORM

Remarks

This system variable is Read-Only.

PICKUPLOAN

Description

This system variable is the value of the pickup or loan amount.

TypelSize
$4

Syntax

@PICKUPLOAN

Remarks

This system variable is only valid in the PICKUP_LOAN event.

7-82

ISL System Variables

PLATFORM

Description

This system variable contains a character string identifying the hardware platform on
which the script is running.

Type/Size
A4

Syntax
@PLATFORM

Remarks
« This system variable is Read-Only.
o The string returned is “Simphony.”

PMSBUFFER

Description

This system variable contains a string that points to the entire message received from the
third-party system communicating with Simphony.

TypelSize
String; size depends on the data returned from the third-party system (for example, PMS)

Syntax
@PMSBUFFER

Remarks
« This system variable has Read-Write attributes.

« The size of data in the PMS buffer is formatted as a string, which can be up to
32,768 bytes in length.

o This system variable is a debugging tool. For example, if the PMS message
received by Simphony is suspected of being formatted incorrectly, using
@PMSBUFFER the message can be displayed in an ISL-defined window as it is
being received.

o Issuing @PMSBUFFER is valid only after a message has been received from the
third-party system (for example, PMS).

PMSLINK

Description
This system variable contains the PMS Link defined in the RVC Parameters module.

Type/Size
N2

ISL System Variables 7-83

Syntax
@PMSLINK

Remarks
« This system variable is Read-Only.
« The value returned by @PMSLINK will be the PMS defined in the RVC Parameters

module to which the script is linked. For example, if @°MSLINK is executed by
pmsl.isl, which is linked to PMS Link #2 “1 Fidelio,” then @®MSLINK will be set

tO 112‘11
pms1.isl
Interface File
1 Fidelio
2
RVC Parameters File
PMS Link
1
»|2 1 Fidelio

L »@PMSLINK =2
Figure 4 Example PMSLINK

See Also
@PMSNUMBER system variable

PMSNUMBER

Description

This system variable contains the PMS object number, defined in the Interfaces module, to
which the script is linked.

Type/Size
N3

Syntax
@PMSNUMBER

Remarks
« This system variable has Read-Write attributes.

» Inorder to link the script file to a PMS, this object number is contained in the
name of the script file. Thus, if running the script pmsl1.isl, then @>PMSNUMBER
will be set to 1.

7-84 ISL System Variables

pms1.isl

Interface File
1 Fidelio
2 |

L’@PM SNUMBER =1

Figure 5 Example PMSNUMBER

See Also
@PMSLINK system variable

PREVPAY

Description

This system variable contains the total amount tendered thus far on the current guest
check.

Type/Size
$12

Syntax
@PREVPAY

Remarks
This system variable is Read-Only.

PRINTSTATUS

Description

This system variable sets the Print Status Flag to indicate whether a print job has
completed successfully or failed.

Type/Size
Al

Syntax
@PRINTSTATUS

Remarks

« This system variable is Read-Only.

o The Print Status Flag will be either of the following settings:
Table 25 Print Status Flags

Flag Description

Y indicates that a print job completed successfully

ISL System Variables 7-85

7-86

Flag Description

N indicates that a print job failed

Example

The event procedure below uses the setting of @PRINTSTATUS to determine which
message to display after issuing the Printline command.
event inqg : 1

startprint @chk

printline “this is a line”

endprint
if @printstatus = “Y”

waitforclear “Print successful”
else

waitforclear “Print failed”
endif
See Also

e Printline command

o “ISL Printing”

PROPERTY

Description
This system variable returns the Property Number of the Workstation.

Type/Size
N9

Syntax
@PROPERTY

Remarks
This system variable is Read-Only.

QTY

Description

This system variable is the quantity of the detail item for the event.

Type/Size
N9

Syntax
@QTY

Remarks
This system variable is only valid in the MI¥, DSC¥, SVC*, and TNDR* events.

ISL System Variables

RANDOM

Description
This system variable returns a random value between 0 and 232-1.

TypelSize
N9

Syntax
@RANDOM

RCPT

Description

This system variable contains the object number of the Customer Receipt Printer defined
for the System Unit.

Type/Size
N9

Syntax
@RCPT

Remarks
« This system variable is Read-Only.

« This system variable can be used as an argument to the StartPrint command.

See Also
e StartPrint command

o “ISL Printing”

REDOFF

Description

This system variable contains printed text to black ink (or default ink, such as blue).

TypelSize
Al

Syntax
@REDOFF

Remarks
« This system variable is Read-Only.

« @REDOFF is also known as a print directive and can be an argument of the
Printline command.

« Allnew lines of text print default ink (for example, black or blue).

ISL System Variables 7-87

Note: The Citizen autocut roll printer does not recognize the first occurrence of this
variable after a printline command. The second occurrence, and all succeeded
occurrences of this variable, are recognized by the Citizen autocut roll printer.

This situation does NOT occur with standard MICROS roll printers.

Example
The ISL statement below prints “Print line” in double-wide characters and red ink, then
turns off these print directives.
startprint printer
printline “
printline @dwon, @redon, “chit”
printline “
@dwoff, @redoff
endprint

See Also
o @REDON system variable; Printline command
o “ISL Printing”

REDON

Description
This system variable prints the expression that follows it in red ink.

TypelSize
Al

Syntax
@REDON

Remarks
« This system variable is Read-Only.

« @REDON is also known as a print directive and can be an argument of the
Printline command.

« Characters in red and black ink can print on the same line.

Note: The Citizen autocut roll printer does not recognize the first occurrence of this
variable after a printline command. The second occurrence, and all succeeded
occurrences of this variable, are recognized by the Citizen autocut roll printer.

This situation does NOT occur with standard MICROS roll printers.

Example

The ISL statement below will print “Print line” in double-wide characters and red ink.
Printline @dwon, @redon, “Print line” //prints double-wide in red

See Also

« @REDOFF system variable; Printline command
o “ISL Printing”

7-88 ISL System Variables

RETURNSTATUS

Description

This system variable is set to “Y” when the Return and Transaction Return functions are
active; otherwise, the variable is set to “N.”

Type/Size
Al

Syntax
@RETURNSTATUS

Remarks
This system variable is Read-Only.

RUNNINGDIRECTORY

Description

This system variable contains the absolute path for the current executable.

TypelSize
A

Syntax
@RUNNINGDIRECTORY

Remarks
« This system variable is Read-Only.

RVC

Description

This system variable contains the number of the revenue center to which the script is
linked by its revenue center PMS link.

Type/Size
N3

Syntax
@RVC

Remarks
« This system variable is Read-Only.

o This system variable will be set to the object number of the revenue center in
which the script is running. For instance, if the PMS link for pmsl.isl is defined in
revenue center #4, then the system variable will be set to 4.

ISL System Variables 7-89

RVC_NAME

Description

This system variable contains the current revenue center’s name.

TypelSize
Alé

Syntax
@RVC_NAME

Remarks
This system variable is Read-Only.

RXMSG

Description

This system variable contains the Event ID assigned to the response message sent by a
third-party system to Simphony.

TypelSize
A32

Syntax
@RXMSG

Remarks
« This system variable is Read-Only.
« This command is not available on SAR Ops.
o When either the WaitForRxMsg or GetRxMsg commands are executed, the ISL
waits for a return event. The first field of the Application_Data segment of the

response message is assumed to be the Event ID of the return event. The
@RXMSG system variable contains that Event ID.

Example

In the event below, the @RXMSG system variable is used to verify that the Event ID in
the returned message is the correct one.
event inq - 1

txmsg “'ver_req" // Transmit string requesting
// version of system software
getrxmsg // Wait for response

if @rxmsg = "ver_rsp"
rxmsg version_s // Format message received
waitforclear version_s // Display it

elseif @rxmsg = "‘ver_err"
errormessage "'Version number invalid”
exitcancel

endif

endevent

7-90 ISL System Variables

See Also
o GetRxMsg and WaitforRxMsg commands
o Application_Data

SEAT

Description
This system variable contains the number of the active seat on the current guest check.

Type/Size
N5

Syntax
@SEAT

Remarks
This system variable is Read-Only.

SECOND

Description

This system variable contains the current second of the current minute.

Type/Size
N2

Syntax
@SECOND

Remarks
« This system variable is Read-Only.

e A value from 0 to 59 is valid.

See Also
@MINUTE system variable

Sl

Description

This system variable is an array containing the sales itemizer totals posted to the current
guest check.

Type/Size
$12

Syntax
@SI[expression]

ISL System Variables 7-91

Remarks
« This system variable is Read-Only.
« The array limits of the expression are from 1 to 16.

o This system variable will return the totals posted to the sales itemizer specified
by the array index. For example, if the array index references @SI[1], any totals
posted to Sales Itemizer #1 will be returned.

S|_DSC

Description

This system variable contains the discount sales itemizer

Type/Size
$

Syntax
@SI_DSC[expression]

Remarks
o This system variable is Read-Only.

SIMDBLINK

Description

This system variable links to the SIMDB DLL to the database. For example, if a property
has a PMS System which has two connections—one for live postings and another for
room updates to the SIMDB DLL —the two systems can be linked with the @SIMBLINK
system variable in SIM

Type/Size
N12

Syntax
@SIMDBLINK

SRVPRD

Description

This system variable contains the active serving period.

Type/Size
N9

Syntax
@SRVPRD

Remarks
This system variable is Read-Only.

7-92 ISL System Variables

STACKFRAMETEXT

Description

This system variable contains the stack frame of the SIM engine for the line being
executed.

Type/Size
A

Syntax
@STACKFRAMETEXT

Remarks
« This system variable is Read-Only.

o Thisis not a .net stack trace but a SIM subroutine stack.

STRINGARGS

Description

This system variable contains the status for directing how SIM processes list input.

Type/Size
N

Syntax
@STRINGARGS

Remarks
o This system variable is Read/Write

o When processing list input (parsing a variable list of values) the SIM engine can
be directed what to do with a mismatch between expected number of items
versus actual number of items.

o If set to 0 SIM will not throw an error if the expected versus actual number of
items differ.

o If set to 1 SIM will throw an error when the number of values differ.

SVvC

Description

This system variable contains the total amount of service charges posted to the current
guest check.

Type/Size
$12

Syntax
@S5VC

ISL System Variables 7-93

7-94

Remarks
« This system variable is Read-Only.
o The @CHGTIP amount is included in the @SVC system variable.

SVClI

Description

This system variable is an array that contains the service charge itemizer totals posted to
the current guest check.

Type/Size
$12

Syntax
@SV Cl[expression]

Remarks
« This system variable is Read-Only.
« The array limits of the expression are from 1 to 16.

o This variable will return totals posted to the service charge itemizer specified by
the array index.

o This variable is similar to the @SI variable.

SYSLOGTRACE

Description

This system variable contains the status for directing how SIM logs execution lines.

TypelSize
N

Syntax
@SYSLOGTRACE

Remarks
« This system variable is Read/Write

» When set to 1 each SIM text line will be logged to the EGateway log until either
the script ends of this variable is set to 0.

« This variable can be used to troubleshoot scripts.

SYSTEM_STATUS

Description

This system variable contains the shell return status after the System command is
executed.

ISL System Variables

TypelSize
N6

Syntax
@SYSTEM_STATUS

Remarks
This system variable is Read-Only.

TAX

Description

This system variable is an array containing the totals posted to the active tax rate on the
current guest check.

TypelSize
$12

Syntax
@T AX[expression]

Remarks
« This system variable is Read-Only.

« The array limits for the expression are from 1 to 8.

See Also
@TAXRATE[] system variable

TAXRATE

Description
This system variable is an array containing the tax rate defined for the specified

Taxes module.

TypelSize
A6

Syntax
@TAXRATE[expression]

Remarks
« This system variable is Read-Only.
« The array limits for the expression are from 1 to 8.

o The value returned is a string instead of an amount, since the percentage may be
any number of decimal digits (for example, 5.1265).

See Also
@TAX][] system variable

ISL System Variables 7-95

TAXVAT

Description

This system variable returns the Value Added Tax amount for Tax Rate “X”.

TypelSize
$12

Syntax
@TAXVAT([expression]

Remarks
This system variable is Read-Only.

See Also
@TAX[] system variable

TBLID

Description

This system variable contains the sequence number of the table ID assigned to the current
guest check.

TypelSize
A4

Syntax
@TBLID

Remarks
This system variable is Read-Only.

See Also
@TBLNUM system variable

TBLNUM

Description

This system variable contains the sequence number of the table ID assigned to the current
guest check.

TypelSize
N9

Syntax
@TBLNUM

Remarks
This system variable is Read-Only.

7-96 ISL System Variables

Example

This event is used to send to the PMS a message indicating which table has just paid its
check.
event final_tender

txmsg "'CHECK_PAID", @cknum, @tblnum
// Here we do a ’getrxmsg” to receive the message to fulfill the
// requirements of the protocol, but do not process any data
// associated with the message.

getrxmsg

endevent

TICKCOUNT

Description

This system variable contains the tick count for the executing application.

Type/Size
N

Syntax
@TICKCOUNT

Remarks
o This system variable is Read-Only.

o This variable returns the value of the .net framework
System.Environment.TickCount property.

TMDNUM

Description

This system variable contains the number assigned to the tender/media associated with
this posting.

Type/Size
N9

Syntax
@TMDNUM

Remarks
This system variable is Read-Only.

TNDTTL

Description

This system variable contains the total for this posting, which can be reduced.

ISL System Variables 7-97

7-98

TypelS
$12

Syntax

ize

@INDTTL

Remarks

Examp

This system variable has Read-Write attributes.
This system variable must be accessed within a tender/media event.

The purpose of this system variable is to allow the total due on a check to be
updated if necessary. This system variable is best used in an environment where
some form of credit limit is applied to purchases, such as in a student meal plan
or a frequent diner program for hotel patrons. In a student meal plan, students
may have a set amount of credit applied to each meal. For example, assume that
each student meal credit limit is $4.50 per meal. If a student surpasses this
amount with a purchase of $6.00, the @TNDTTL ($6.00) can be overwritten with
the credit limit of $4.50. Then the student can cover the difference of $1.50 with
cash, for example.

le

In the example that follows, the tender total is reduced from $6.00 to $4.50, the allowable

student

meal credit.

event tmed : 1
txmsg “POST”, @tndttl // send over $6.00
waitforrxmsg

endevent

event rxmsg: POST

var

new_tnddtl : $10

rxmsg new_tnddtl // receive $4.50
if new_tnddtl > 0O

@tndttl = new_tnddtl
exitcontinue

else

exitcancel // cancel

endevent

TOTA

LMEMORY

Description

This sys

tem variable holds the amount of total memory available as reported by the .net

framework.

Typel/S
N

Syntax

ize

@TOTALMEMORY

Remarks

This system variable is Read-Only.

ISL System Variables

« This variable is a passthrough to @OpsContext.TotalMemory

TRACE

Description

This system variable must be set to a non-zero value in order to output each executed ISL
statement to the 8700d.log file.

Type/Size
N5

Syntax
@TRACE = integer

Remarks
o This system variable has Read-Write attributes.
o The primary usage of this feature is debugging.

TRAILER

Description

This system variable is string array with 32 elements. The @TRAILER]] array is unique to
each event. This means that each event can begin writing to the array starting at index 1,
rather than at the next available index.

Type/Size
A32

Syntax
@TRAILER[expression]

Remarks
« This system variable is Read-Write.

o This system variable is only used with the Print_Header event. All transaction
system variables are still valid in this event. User input is still allowed, as are file
operations and display manipulation. See page 8-37.

See Also
Print_Header and Print_Trailer events and @HEADER system variable.

TRAININGMODE

Description

This system variable contains the Training Mode Status of an employee.

Type/Size
N1

ISL System Variables 7-99

7-100

Syntax
@TRAININGMODE

Remarks

« This system variable is Read-Only.

o The Training Mode Status will be either of the following settings:
Table 26 Training Mode Status

Status Description

Zero indicates that the employee is not in
training mode

Non-zero | indicates that the employee is in

training mode

TRCSHR

Description

This system variable contains the Transaction Cashier number of the current guest check.

Type/Size
N9

Syntax
@TRCSHR

Remarks
This system variable is Read-Only.

TRDTLR

Description

This system variable contains transaction detail posted to the current guest check during
this service round.

Type/Size

Various (see Remarks)

Syntax
@TRDTLR

Remarks
o This system variable is Read-Only.

o The transaction detail information is designed to provide enough detail, to
display or print a basic guest check. If more information is required, it should be
exported from the appropriate database files with the Simphony SQL module.

o Each transaction detail entry comprises the following fields:

ISL System Variables

Table 27 Transaction Detail Fields

Field Typeand | Description
Size
Detail Type | Al Indicates type of detail entry:

I = Check Information
Detail M = Menu Item
D = Discount
S=Service

Charge T=
Tender/Media

R = Reference Number

Status A6 Check Detail Status Flag

Number N9 Object number; set to 0 for reference
numbers and check information detail.

Quantity N5 Quantity; set to 0 for reference numbers
and check information detail.

Main Sales | N1 Main sales level (between 1 and 8); set to 0
Level for reference numbers and check
information detail.

Sub Sales N1 Sub sales level (between 1 and 8); set to 0
Level for reference numbers and check

information detail.

Total $12 Total; set to 0 for reference numbers and
check information detail.

Name A22 Contains the detail’s name (menu item,
discount, etc.). For reference numbers; this
contains the actual reference number.

+ The transaction detail will be preceded by a Number of Detail Entries field. This
field is of the type and size N3, and indicates how many detail entries follow.

« When partial payments are posted to a PMS using prorated itemizers, all the
detail on the guest check will be transferred, not just the detail associated with
this partial payment. If selective detail is required, the guest check should be split
at the POS prior to being posted to the PMS.

See Also
@DTL_*, @MAXDTLR, and @TRDTLT system variables

TRDTLT

Description

This system variable contains all the transaction detail from the current guest check.

Type/Size

Various (see Remarks)

ISL System Variables 7-101

Syntax
@TRDTLT

Remarks
« This system variable is Read-Only.

o The transaction detail information is designed to provide enough detail, to
display or print a basic guest check. If more information is required, it should be
exported from the appropriate database files with the Simphony SQL module.

» Each transaction detail entry comprises the fields described in the Table 27
Transaction Detail Fields.

« The transaction detail will be preceded by a Number of Detail Entries field. This
field is of the type and size N3, and indicates how many detail entries follow.

« When partial payments are posted to a PMS using prorated itemizers, all the
detail on the guest check will be transferred, not just the detail associated with
this partial payment. If selective detail is required, the guest check should be split
at the POS prior to being posted to the PMS.

See Also
@MAXDTLT and @TRDTLR system variables

TREMP

Description

This system variable contains the number of the Transaction Employee, the employee
posting sales to the current guest check.

Type/Size
N9

Syntax
@TREMP

Remarks
« This system variable is Read-Only.

« Typically, the Transaction Employee is also the Check Employee, or the person
who originally began the check. However, managers and cashiers may be
privileged to be the Transaction Employee if they must post sales to another
employee’s check. Depending on the revenue center options enabled, sales totals
and tender totals will post to either the Check Employee or the Transaction
Employee and to their corresponding Cashier Totals, if there is a link.

See Also
@CKEMP system variable

7-102 ISL System Variables

TREMP_CHKNAME

Description

This system variable contains the Transaction Employee’s check name, the employee
posting sales to the current guest check.

Type/Size
Al6

Syntax
@TREMP_CHKNAME

Remarks
This system variable is Read-Only.

TREMP_FNAME

Description

This system variable contains the Transaction Employee’s first name, the employee
posting sales to the current guest check.

Type/Size
A8

Syntax
@TREMP_FNAME

Remarks
This system variable is Read-Only.

TREMP_LNAME

Description

This system variable contains the Transaction Employee’s last name, the employee
posting sales to the current guest check.

TypelSize
Ale

Syntax
@TREMP_LNAME

Remarks
This system variable is Read-Only.

ISL System Variables 7-103

7-104

TREMP_TYPEDEF

Description

This system variable is an array that contains the employee option bits for the transaction
employee.

Type/Size
N1, array

Syntax
@TREMP_TYPEDEF

Remarks
« This system variable is Read-Only.

TTL

Description

This system variable is the amount of the detail item for the event.

TypelSize
$12

Syntax
@TTL

Remarks
This system variable is only valid in the MI¥, DSC¥, SVC*, and TNDR* events.

TTLDUE

Description

This system variable contains the total due for the current guest check.

Type/Size
$12

Syntax
@TTLDUE

Remarks
This system variable is Read-Only.

TXBL

Description

This system variable is an array containing the taxable sales itemizer on the current guest
check.

ISL System Variables

TypelSize
$12

Syntax
@TXBL[expression]

Remarks
« This system variable is Read-Only.

« The array limits of the expression are from 1 to 8.

TXEX_ACTIVE

Description

This system variable checks if the Tax is exempt at the specified level.

Type/Size
N1

Syntax
@TXEX_ACTIVE(expression]

Remarks
This system variable is Read-Only.

USEDMEMORY

Description

This system variable holds the amount of total memory used as reported by the .net
framework.

Type/Size
N

Syntax
@TOTALMEMORY

Remarks
« This system variable is Read-Only.
o This variable is a passthrough to @OpsContext.UsedMemory

USERENTRY

Description

This system variable contains the data entered by an operator prior to pressing the SIM
Inquiry key.

Type/Size
A20

ISL System Variables 7-105

Syntax
@USERENTRY

Remarks
« This system variable is Read-Only.

« @USERENTRY will contain the data entered prior to pressing the SIM Inquiry
key. For example, if an operator enters “123” then presses the SIM Inquiry key,
@USERENTRY will contain “123.”

VALD

Description

This system variable contains the object number of the Validation Chit Printer assigned
to the workstation.

TypelSize
N9

Syntax
@VALD

Remarks
« This system variable is Read-Only.

o This system variable can be used as an argument to the StartPrint command.

See Also
o StartPrint command

o “ISL Printing”

VARIABLEFRAMETEXT

Description

This system variable holds a string which lists all of the declared user variables in all
stack frames.

Type/Size
A

Syntax
@VARIABLEFRAMETEXT

Remarks
« This system variable is Read-Only.

VERSION

Description

This system variable contains the version designation of the SIM.

7-106 ISL System Variables

TypelSize

Various (see Remarks)

Syntax
@VERSION

Remarks
« This system variable is Read-Only.

o This system variable returns text of varying lengths.

Example

The event below draws a window and displays the SIM version number.

event ing : 1

window 1, 30

display 1, @center, “The SIM Ver is: “, @version
endevent

VOIDSTATUS

Description

This system variable is set to “Y” when the Void and Transaction Void functions are
active; otherwise, the variable is set to “N.”

Type/Size
Al

Syntax
@VOIDSTATUS

Remarks
This system variable is Read-Only.

WARNINGS_ARE_FATAL

Description

This system variable interrupts script processing with a fatal error if variable overflow
occurs.

TypelSize
N5

Syntax
@WARNINGS_ARE_FATAL

Remarks
« This system variable has Read-Write attributes.

» By default, no error is reported when strings, reals, or integers overflow the
variables to which they are assigned; the values are truncated to fit the variables.
The @WARNINGS_ARE_FATAL system variable can be set to handle the

ISL System Variables 7-107

instance when the script writer wants the ISL to report a fatal error if a variable
overflow occurs. If @WARNINGS_ARE_FATAL is set equal to 1, variable
overflow will cause a fatal error, thereby interrupting script processing.

» Specify @NARNINGS_ARE_FATAL at the top of the script.

Example
@WARNINGS_ARE_FATAL = 1
event tmed : 9

var room : a6

var guest_name : a20

window 4, 22, "Room Charge"

WCOLS

Description

This system variable contains the number of columns in the ISL-defined window
currently displayed.

Type/Size
N9

Syntax
@WCOLS

Remarks
This system variable is Read-Only.

WEEKDAY

Description

This system variable contains the day of the week.

Type/Size
N1

Syntax
@WEEKDAY

Remarks
o This system variable is Read-Only.

» Valid values range from 0 - 6, where 0 is Sunday.

7-108 ISL System Variables

WROWS

Description

This system variable contains the number of rows in the ISL-defined window currently
displayed.

Type/Size
N9

Syntax
@WROWS

Remarks
This system variable is Read-Only.

WSID

Description

This system variable contains the workstation ID number.

TypelSize
N9

Syntax
@WSID

Remarks
This system variable is Read-Only.

WSNUM

Description

This system variable holds the current workstation object number

Type/Size
N

Syntax
@WSNUM

Remarks
o This system variable is Read-Only.

WSSUBTYPE

Description

This system variable holds the current workstation’s configured sub type.

ISL System Variables 7-109

7-110

TypelSize
N

Syntax
@WSSUBTYPE

Remarks
« This system variable is Read-Only.

WSTYPE

Description

This system variable is the User Workstation type, such as SAR Client of Mobile
MICROS.

TypelSize
N9

Syntax
@WSTYPE

Remarks
« This system variable is Read-Only.

« The workstation types correspond to the type field in the workstation definition
and are as follows:

= 1 =Mobile MICROS 2 = SAR Client
= 3=KW%4
= 4=POSAPI

YEAR

Description

This system variable is at least a two-digit number that contains the number of years
since 1900.

Type/Size

N2 or N3. This will be a two-digit number up until the year 2000, when it becomes a
three-digit number.

Syntax
@YEAR

Remarks
This system variable is Read-Only.

Example
The year 1999 would be 99 (1999-1900), the year 2000 would be 100 (2000-

ISL System Variables

1900), and the year 2015 would be 115 (2015-1900).

See Also
@DAY and @MONTH system variables

YEARDAY

Description

This system variable contains the number representing the current day of the year.

Type/Size
N3

Syntax
@YEARDAY

Remarks
o This system variable is Read-Only.
o Awalid value will be from 0 to 365.

ISL System Variables 7-111

8 ISL Commands

This chapter contains a summary and an A-Z reference of all ISL commands, as well as a
discussion of format specifiers used in command syntax.

Commands

The Interface Script Language (ISL) provides commands to display information, get
operator entries, display touchscreens, execute keyboard macros, as well as transmit and
receive messages over the interface. This chapter contains a detail description of each ISL
command.

Command Summary

For quick reference, a summary of commands in alphabetical order and in order by
category of function begins on page 8-1.

File I/O Operations

A brief introduction and discussion of file [/O commands and system variables is also
included in this chapter. Before attempting any file I/O operations for the first time,
review this discussion and the detail descriptions of the applicable file I/O commands.

Format Specifiers

This language element can be part of the syntax of certain commands. Format specifiers
can be used to change the format of both input and output data. Review Using Format
Specifiers to learn the ways in which this language element can be used in command
syntax.

ISL File Input/Output Commands

ISL Commands

The ISL interpreter includes commands for file operations similar to those offered by
languages such as C and BASIC. Anyone familiar with these languages should be
comfortable with the ISL file I/O commands.

All file processing involves the following three steps in the order listed:

1. Open the file
2. Perform all read and write operations
3. Close the file

The FOpen Command

When a file in ISL is opened using the FOpen command, it is assigned a file number
between 1 and 10. While no other file commands can modify this value, this file number
is required with all the ISL File Input/Output commands. Since this value is a normal ISL
integer, it can be passed into subroutines. The file number’s value, when the FOpen
command is called, will be ignored.

8-1

Since ISL is intended to run in a multiprocessing environment, it also has commands for
“locking files.” This means that if a script has to read a file, it has the capability to
prevent other programs from changing the file while it is being read.

File /O System Variables

All file operations affect two system variables: @FILE_ERRNO and @FILE_ERRSTR.
Programmers will recognize these two variables as corresponding to the C “errno”
variable and the C “strerror()” function. If an error has been detected, then
@FILE_ERRNO will be set to a non-zero value, and @FILE_ERRSTR will be the readable
string describing the condition.

ISL maintains a temporary internal buffer for reading and writing data to and from a file.
This buffer is normally set at 2048 bytes. The size of this buffer is available in the system
variable @FILE_BFRSIZE.

If a script’s file operations require reading or writing data lines greater than 2K, then the
script should change the size of the buffer by directly changing the value of
@FILE_BFRSIZE. The file buffer size applies to all files used in the script.

For example, if the script is reading lines from a file which is 4K in length, then it should
execute the following line:

@FILE_BFRSIZE = 4096

Input/Output File Format

In general, ISL file handling is geared for reading and writing ASCII files, specifically,
comma-separated files (for example, the files exported and imported via the Simphony
Data Access Service). In this format, integers and real values appear without quotes, and
non-numeric values appear within quotes.

For example, an employee file may look like this:
134,"Tooher","Daniel'*,100.00, " 12FE"
156, "Collins","Michael'",150.00, " 12FF"
179,"Blaine",""Richard",125.00,"'56BB"
ISL has commands for automatically breaking these comma-separated fields into
variables, and writing variables as comma-separated lines. If the format of each line is not
a list of fields, then commands exist to read an individual line into a string, as well as
writing an individual string to a file.

Using Format Specifiers

8-2

In general, the default behavior for entering data and displaying data in ISL is sufficient
for most needs. However, it is necessary sometimes to change the default behavior to suit
the application at hand. For example, one might want to allow magnetic card data entry,
to pad displayed data with Os instead of spaces, or to center data within a display area.

A variety of ISL commands can be used to accomplish this type of formatting, using a
language element called a format specifier. To know if the command takes a format
specifier as an argument, look at the syntax for the command in the ISL Command
Reference.

ISL Commands

ISL Commands

What is a Format Specifier?

A format specifier is text enclosed in braces and appears directly after the variable or
constant whose input/output behavior is affected. When defined, a format specifier
changes the way that the variable or constant is input or output.

For example, the following command will display the contents of the user variable
guest_name in the prompt area. The format specifier appears directly after the
guest_name variable.

PROMPT guest name{ 20” }

Note: The meaning of the data within the braces will be explained later.

Types of Format Specifiers

There are two types of specifiers: input and output. Input specifiers are placed after input
variables in commands that get data from a user: Display, DisplayMSInput, Input, and
InputKey. Output specifiers are placed after variables and expressions that are being
converted to ASCII for outputting data to the screen, printer, or a message to a PMS.

Specifier Attributes
The general layout of a format specifier is:

{ [input_specifier] [output_specifer] }

o The input_specifier and output_specifier consists of individual specifiers, which are
usually one character.

o Spaces and tabs may be used in a format specifier for clarity. The following two
format specifiers are equivalent:

{-=08}
{-=-083%

« Input and output specifiers can appear within one format specifier. However, not
all of the individual specifiers may have meaning. For example, it is possible to
put input specifiers after a variable that is going to be displayed, but since data is
not being entered into the variable, the input specifiers are meaningless and will
be ignored

Input Specifiers

The input specifiers only have meaning for commands that receive input from the user.
They will be ignored if they appear in commands that only output data (for example, the
Display command).

All input specifiers must be placed before any output specifiers. If they are present, they
must also be placed in the order listed in the following table:

Table 28 Input Specifier Placement Order

8-3

Input Description

Specifier
- Data being typed in by the operator should not be echoed
back to the display
Mn Specity the track number (n =1 or 2) and what data to read

from the magnetic card. For use with the Input, InputKey,
DisplayInput, and DisplayMSInput commands only. The
M character is case-insensitive

Input Specifier
The - specifier is used to hide data being entered by the operator. For example,
authorization codes or passwords should not be echoed to the display as the operator
types them in. The following command prompts the operator for an authorization code,
but echoes it back to the display as it is being typed:

Input auth_code, “Enter authorization code”
It can be rewritten so that no data is echoed:

Input auth_code{-}, “Enter authorization code”
If the - specifier is used in commands that require both operator input and the data to be
displayed, then not only will the data not be echoed, it will also not be displayed in the
window after it is entered. Instead, the field will contain asterisks where data is expected.

M Input Specifier

The M specifier is used when magnetic card data may be entered in lieu of the operator
typing the data in. The M specifier defines whether the data is on a mag card, and which
track and field the data should be read from. For example, it is possible to use the M
specifier to get an authorization code from track 2, field 1, starting offset 3, and copy in 10
characters.

There are two M formats:

o Format 1 Syntax: Mn,*

+ Format 2 Syntax: Mn, field, start, count | *
These fields are defined as follows:

Table 29 M Input Specifier Format Fields

Field Description

Mn: The track number (M1 or M2). This can be followed by a star
(*) to specify all fields on the track, or use the remaining fields
in this table to read specific information.

field: The field position within the specified track. This is a
positive integer.

start: The starting offset (character) within the field. For example, if
the last four characters of the “Blaine Richard” string needed
to be removed, start the offset at 11.

ISL Commands

ISL Commands

Field Description

count: Number of characters to be read from the start (first
character) to the end of the field (place an asterisk * to
include all characters).

Format One

In format 1, the data from the entire track (1 or 2) will be placed into the variable when
the mag card is swiped. The following command allows the user to enter a code or swipe
a magnetic card:

Input auth_code{ M2,* }, “Enter authorization code”

If the mag card is swiped, then all the data from track 2 (M2) will be placed into the
variable auth_code.

Format Two

Format 2 defines exactly where the data in the track occurs. If the authorization code
appears in field 1 of track 2, and furthermore, starts at character 3 in the field and consists
of 10 characters, then the command can be rewritten as:

Input auth_code{ M2,1,3,10 }, “Enter authorization code”

If the operator swipes the card, the appropriate data will be extracted from the field and
placed into auth_code.

Note: A * can be substituted for count, to specify ALL data from the start offset in the
field.

Field Positions for Credit Cards

The following is an illustration of the standard field positions for credit cards:
Track 1:

Table 30 Track 1 Field Positions of Credit Cards

Field # 1 2 3
Data 16/19 Digit 26 Alpha YYMM
Account Number Character
Account Name
Track 2:
Table 31 Track 2 Field Positions of Credit Cards
Field # 1 2
Data 16/19 Digit Account Number YYMM

The following Input command allows the operator to enter the credit card name or swipe
the card and have the name transferred from track 1, field 2.
Input card_name{ M1,2,1,* }, “Enter cardholder name”

The following is an illustration of the standard field position for the MICROS Employee
Card (Note: this card is Track 2 only):

8-5

8-6

Table 32 Standard Field Position for MICROS Employee Card

Field # 1

Data 10 Digit Employee Number

The following Input command will get the employee number from the operator or the
mag card and will not echo the data as it is being entered:
Input empl_num{ - M2,1,1,10 }, “Enter employee number”

Using Both Input Specifiers

Both input specifiers may be used. This command uses both the - and the M specifiers:
Input auth_code{ - M2,1,3,10 }, “Enter authorization code”

Output Specifiers

Output specifiers are used after variables and expressions that are being converted to
ASCII. The output specifiers are similar to the C language printf() specifiers. The
following table lists some representative commands for each of these output types:

Table 33 Commands for Output Types

Commands Output Type
Display, WaitForConfirm, and Window | Screen
PrintLine Printing
FWrite File I/O
TxMsg PMS

Syntax

The proper syntax for using the output_specifiers is as follows:
[<I=1>1*] [+] [0] [size] [DIXIOIB] [*] ["] [:format_string]
Output specifiers must also be placed in the order listed in the following table:

Table 34 Output Specifier Placement Order

Output Specifier | Description

< Leftjustification; the size specifier may be used to specify
the size of the field.

= Center justification; the size specifier may be used
to specity the size of the field.

> Right justification; the size specifier may be used to
specify the size of the field.

Trim leading and trailing spaces; the size specifier may
be used to specify the size of the field.

+ Place the sign at the start of field.

0 Place the sign at the start of field.

ISL Commands

Output Specifier | Description

size Where size is the number of the characters in the required
field. The size must be a positive integer or an expression
that is a positive integer.

Decimal (Default); display numerics in decimal format.

Hexadecimal; display numerics in hexadecimal format.

Octal; display numerics in octal format.

wW| O| X| T

Binary; display numerics in binary format.

>

Place a space on each side of the data to be displayed.

! Place double quotes around the data to be displayed.

:format_string Similar to the BASIC language PRINT USING
command. All characters will be displayed except for
the # character, which will be replaced by characters
from the variable or expression preceding the format

specifier.

Examples of Specifiers

The following are examples of how Input and Output Specifiers may be used. For
complete examples and explanations of the ISL commands, see ISL Command Reference.

Input Specifier
The following lines would read data from a Credit Card:
displaymsinput 1, 2, cardholder_name{ml, 2, 1, *}, “Enter Guest Name”, \

2, 2, account_num{ml, 1, 1, *}, “Enter Account Number”,

3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”
Output Specifiers

Justification Specifiers
The justification specifiers <, =, and > are only meaningful when the size of the expression
being formatted is greater than the size of the variable itself.

All integers and decimal expressions are right justified, and all string expressions are left
justified, by default. The following section gives examples and shows how these
specifiers can be used to justify data:

Table 35 Examples for Justification Specifiers

Expression Output
125{8} 125
125{<8} 125
125{=8} 125

ISL Commands 8-7

Expression Output
125 {>8} 125
“abc” {8} abc
“abc” {=8} abc
* Specifier

The * specifier is used when the expression should be displayed with leading and trailing
spaces removed.

Table 36 Examples for *Specifier

Expression Output
“125” {*} 125
“ 125 7 {*) 125
“ word 1 and word 2 ” {*} word 1 and word 2
+ Specifier

The + specifier is used to override the default behavior of displaying negative numbers
with the - sign to the right of the number by causing the - to appear on the left.

Table 37 Examples for + Specifier

Expression Output
-891 891-
-891 {+} -891

If the SetSignOnLeft command is executed, then the sign will always appear on the left
side of the number. The + specification in this case will be superfluous.

0 Specifier
The 0 specifier is used to pad the data being displayed with ASCII Os instead of spaces.
The 0 specifier is only meaningful if the size specifier is also used:

Table 38 Examples for O Specifier

Expression Output
199 {0} 199
199 {5} 199
199 {05} 199
199 { <05} 19900

size Specifier
The size specifier defines the width of the expression being displayed. If no size specifier

is present, then the width of the data formatted will be equal to the number of characters
in the data.

ISL Commands

ISL Commands

If the size specifier is 8, then 8 characters will be displayed, irrespective of the width of
the actual data being displayed. The output data will be padded with spaces (unless the 0
specifier is used) or truncated if the size specifier is less than the length of the data to be
displayed.

There are two types of size specifiers: absolute and expression. All size specifiers must
evaluate to positive integers. Negative numbers and/or decimal values are not allowed.

Absolute specifiers are an integer value, for example, 5. The size specified must not begin
with a 0, since the 0 will be mistaken for the 0 specifier.

Expression sizes use standard ISL expressions to specify the size. However, the
expression must be enclosed in parentheses, or an error will be displayed.

(In the following example, the value of width is assumed to be 3.)

Table 39 Examples for O Specifier

Expression Output
“fred” fred
“fred” {8} fred
“fred” { =8} fred
“fred” { (width*2) } fred
“fred” { width+2 } ERROR: not enclosed in ()

D, X, O, and B Specifiers
The radix specifiers (D, X, O, and B) determine the numeric base of the integer expression

being displayed. They have no meaning for decimal and string data. The default is base
10 (D).

Table 40 Examples for D, X, O, and B Specifiers

Expression Output
100 100
100 {H} 64
100 {B} 1100100
100 {08B} 01100100

.format_string Specifier
The format_string is the data that follows the colon : specifier. The format_string consists of
ASCII characters and the # character. Format_strings are used when the data displayed
should be interspersed with spaces and/or other characters to fit conventional display
methods. For example, a 10-digit phone number should be displayed as:

(nnn)nnn-nnnn

When the SIM encounters a format_string, all # characters will be replaced with data from
the preceding expression. All other characters will be output as-is. Characters are
replaced starting from the right side of the format string.

8-9

Output format specifiers may be used in a format specifier along with the format_string
specifier. Any # characters in excess of the expression being formatted will be replaced
with spaces, unless the 0 output specifier is used.

For example, to display a U.S phone number, assume that the variable phone_num
contains the phone number and is equal to 3012108000. Also assume that room_num
contains a room number and is equal to 17031.

Table 41 Example 1 for :format_string Specifier

Expression Output
phone_num 4432858000
phone_num {:###-###-####} 443-285-8000
phone_num {:(##¥) ###-###4#} (443) 285-8000
room_num 17031

room_num {:##-###} 17-031
room_num {:Floor ## room ###} Floor 17 room 031

It may be necessary sometimes to display the # character and not have it replaced with a
character from the output expression. In this case, precede the # character with a single
quote.

Table 42 Example 2 for :format_string Specifier

Expression Output
phone_num {:Phone ‘# ###-###-##4##) Phone # 443-285-8000

It is possible to include format specifiers after each expression being formatted in one
command. For example:
TXMSG room_number { 04 }, guest name { <24 }, @cknum

Using Input and Output Specifiers Together

Input and output specifiers may be used within the same syntax in the DisplayInput and
DisplayMSInput commands only.

Command Summary

For quick reference, this section contains an alphabetical listing and brief description of
all ISL commands.

Note: ISL commands are listed by category in Appendix C

REMEMBER, the commands that require either the StartPrint command or Window
command in order to operate correctly are listed in the table below with the following
designation:

e (P) for StartPrint
or

o (W) for Window

8-10 ISL Commands

ISL Commands

Table 43 Commands that Require a StartPrint or a Window Command

Command Description
Beep Sound the beeper.
Break Break out of the current ‘For’ loop.
Call Call a subroutine procedure.
ClearArray Clear an array.
ClearChkInfo Clears check information detail lines in
buffer.
ClearIslTs Clear any previously defined touchscreen
keys.
ClearKybdMacro Clear macro key definitions.
ClearRearArea Clears the contents of the customer display.
ContinueOnCancel Continue processing script even if the
[Cancel] or [Clear] key is pressed after an
Input command has been issued.
Display Display text or a field at a defined place
(W) within a window.
Displaylnput Display an input field within a window.
(W)
DisplayInverse Display input field in inverse video.
DisplaylslTs Display an ISL-defined touchscreen.
DisplayMSInput (W) Display an input field within a
window and allow magnetic card
swipe to satisfy field entry.
DisplayRearArea Display up to 20 characters on the
POS workstation customer display.
DLLCall Calls a function contained in the

DLL. Refer to page 3.

DLLCall_cdecl

Calls a function contained in the
DLL using the cdecl convention.

DLLCall_STDCall

Calls a function contained in the
DLL using the STDCall convention.
Refer to page 3_bookmark147.

DLLCallW Calls a function contained in the
DLL with Unicode. Refer to page 3.
DLLFree Frees a loaded DLL. Refer to page 3.

8-11

8-12

Command

Description

DLLLoad Loads an external DLL. Refer to
page 3.

ErrorBeep Sound an error beep.

ErrorMessage Display an error message and

continue.

Event...EndEvent

Indicate the start and end of an
Event procedure. The following
events are supported:

« Inq
. Tmed
e RxMsg

o Final Tender
e Print_Header

e Print Trailer

ExitCancel Exit a script and cancel the current
tendering operation.

ExitContinue Exit a script and continue the current
tendering operation.

ExitOnCancel Exit a script when the [Cancel] or
[Clear] key is pressed after an Input

ExitWithError Display a defined error message and
exit the script.

FClose Close a file.

FGetFile Gets a file from the SIM file service:

FLock Lock a file.

FOpen Open a file.

For...EndFor Perform commands a specified

number of times.

ForEver...EndFor

Perform commands an indefinite
number of times.

Format Concatenate one or more variables
into a string.

FormatBuffer Format a non-printable string into a
printable string.

FormatQ Concatenate one or more variables
into a string and enclose the string in
quotes.

FPutFile Puts a file into the SIM file service

ISL Commands

ISL Commands

Command

Description

FRead Split the next line read from a file
into the variables specified in the
statement.

FReadBfr Read the number of bytes specified
in the command.

FReadLn Read the entire line into a string
variable.

FSeek Go to a specified position in an open
file.

FUnLock Unlock a locked file.

FWrite Write to a formatted file.

FWriteBfr Write a specified number of bytes.

FWriteLn Write an entire line.

GetEnterOrClear Wait for the [Enter] or [Clear] key to
be pressed.

GetRxMsg Wait for a PMS message.

GetTime Retrieve current time.

If...Else[If]...EndIf

Execute commands if the specified
condition is met.

InfoMessage Display an informational message
and continue.

Input Capture operator entry for a single
field or prompt.

Inputkey Capture operator entry and a key for
a single field or prompt.

LineFeed (P) Linefeed one or multiple lines.

ListDisplay (W) Display a list.

Listinput (W) Display a list and get an operator
selection.

ListInputEx Display a list and get an operator
selection. Does not provide a
WROW or WCOL variable.

ListPrint (P) Print a list.

LoadDbKybdMacro Load a pre-defined keyboard macro
so that it may be executed upon
successful completion of a script.

LoadKybdMacro Load a user-defined keyboard macro

so that it may be executed upon
successful completion of a script.

8-13

Command Description

LowerCase Convert a string to lower-case.

MakeAscii Remove any non-ASCII or non-
printable characters from a string.

MakeUnicode Remove any non-printable
characters from a string.

Mid Set one portion of a string equal to
another string.

MSleep Sleep for the requested number of
milliseconds.

PopUplIslTs Display a touchscreen as a pop-up.

PrintLine (P) Print specified text and/or fields.

PrintSimFeatures Print all SIM features available in

current SIM engine.

Prompt Display an operator prompt.

ProRate Prorate the itemizers for charge
posting.

[Retain/Discard]GlobalVa Retain or discard global variables

r between transactions.

Return Return from a subroutine.

ReTxMsg Retransmit a message.

RxMsg Define the format of a message
received over the interface.

SaveChkInfo Insert check information detail into
the check.

SaveRefInfo Save information as tender/media

reference detail.

SaveRefInfox Save information as tender/media
reference detail with reference type.

SetlslTsKey Define a touchscreen key.

SetReRead Re-read the ISL script for new or
changed ISL scripts.

SetSignOn[Left/Right] The minus sign will go on the left or

right side, respectively, when
formatting numbers.

SetString Replace all or a specific number of
characters in a string with a
particular character.

Split Break a string into separate fields.

8-14 ISL Commands

ISL Commands

Command

Description

SplitQ

Break a string into separate fields
and enclose the string in quotes.

StartPrint...\
EndPrint[FF/NOFF] (P)

Print information on a specified
printer, with or without a form feed.

Sub...EndSub

Indicate the start and end of a
subroutine procedure.

TimerSet, TimerReset,

Launch and cancel timer events.

TimerResetAll

UpperCase Convert a string to upper-case.

UseBackupTender Use backup tender programmed in
the Simphony database.

Use[Compat/ISL]Format Use Simphony-standard or ISL

Use[ISL/STD]TimeOuts Use ISL time outs or the standard
Simphony error messaging when
there is no response from the PMS

UseSortedDetail Consolidated detail is accessible.

UseStdDetail Raw detail is accessible.

Var Declare a variable field of specified
type that will be used for input
and/or used in an interface message.

WaitForClear Wait for the [Clear] key before
continuing. If no prompt text is
supplied, “Press Clear to Continue”
is the default.

WaitForConfirm Wait for an operator confirmation. If
no prompt text is supplied, “Press
Enter to Continue” is the default.

WaitForEnter Wait for the [Enter] key before
continuing. If no prompt text is
supplied, “Press Enter to Continue”
is the default.

WaitForRxMsg Wait for an interface message to be

received after a TxMsg has been
sent. If no prompt text is supplied,
“Please Wait--Sending Message” is
the default.

WaitPrompt/ClearWaitPr
mpt

Display a ‘wait prompt’ dialog
while SIM is processing a lengthy
operation.

8-15

Command Description

While...EndWhile Execute a loop structure until an
expression becomes FALSE.

Window Create a window of specified size
and optionally display a window

WindowClose (W) Close the current window.

WindowEdit[WithSave] Display the current contents of

(W) specified variables within a window

and allow them to be edited;
optionally require the [Save] key to
save entries and exit.

WindowInput[WithSave] Display the specified fields within a

(W)

window, without the present
contents; optionally require the
[Save] key to save entries and exit.

ISL Command Reference

This section is an A-Z reference of ISL commands. The information for each command is

8-16

organized into the following categories:

Beep

Description: Summarizes the function of the command.

Syntax: Provides the proper way to specify the command and any arguments, as
well as a description of each argument.

Remarks: Gives more detailed information of the command, its arguments, and
how the command is used.

POS Setup: Provides any Simphony database programming required to issue the
command successfully.

Example: Includes an example of the command being used in a script.

See Also: Names related commands, functions, system variables, other
documentation to consult, etc.

Description

This command can be used to sound the beeper at a workstation. It should be used for
operator confirmation or notification. Note that a separate ErrorBeep command is

provided to notify the operator of errors.

Note: The Beep command currently does not cause the workstation to beep in
Simphony as the “Enable Error Beeper” option is not available in the Enterprise
Management Console (EMC).

The command remains so that scripts written for legacy MICROS products using the
Beep command will still function in Simphony.

ISL Commands

ISL Commands

Syntax
Beep

See Also

ErrorBeep command

Break

Description

This is used to break out from a For or Forever loop. This is especially useful when a
ForEver loop is executed.

Syntax
Break

Remarks

o The Break command will only break out of the For or Forever loop it is currently
in. If the loops are nested, then multiple breaks are required:

forever
forever
break //break out of inner loop
endfor
break //break out of outer loop
endfor

« If the ability to break out of a nested For is required, then use a subroutine and
Return out of the loop instead:
sub break out

forever
for i =1 to 10
for num = 1 to count
if...
return

endif
endfor
endfor
endfor

endsub

Example

The following script provides an example of how to break out of a Forever loop:
event inq : 1

var user_input : N6
forever
input user_input, “Enter a number and press [ENTER]”
if user_input > 0 AND user_input <99999
break
else
errormessage “Value outside valid range”
endif
endfor
errormessage “Well done

endevent

8-17

8-18

See Also

For and ForEver command

Call

Description

This command is used to call a subroutine defined by the Sub command.

Syntax
Call name

Table 44 Call Command Arguments

Argument Description
name The name of the subroutine defined by the
Sub
Remarks

o The subroutine has access to all the local variables within the Event that called
the subroutine, and all global variables in the script file, so these variables may
be used to pass parameters. In addition, local variables may be declared in the
subroutine.

o When a Call is made, ISL will start searching for the subroutine from the top of
the program. Therefore, if there are two subroutines with the same name, only
the first one will ever get called:

event inq:1
call mysub

endevent

sub mysub //this one will get called

éndsub

sub mysub
//this one will not
// because it is
// preceded by a
// subroutine of
// the same name

endshb

o Up to 32 calls can be nested within a subroutine. If there are anymore, an error
will occur.

sub mysub
call mysub //this will occur 32 times
endsub

Example

The following script will call a subroutine to build a window:

ISL Commands

ISL Commands

event ing : 1
var win_string : ad40 = “This window was built in a subroutine!”

call msg_window
waitforclear
endevent

sub msg_window
window 1, len(win_string) + 2
display 1, 2, win_string
endsub
See Also

Sub command

ClearArray

Description

This command sets all elements of the specified array equal to zero if the array is
numeric, or null if alphanumeric. By default, arrays are initialized in this way when
declared.

Syntax

ClearArray array_variable

Table 45 ClearArray Command Arguments

Argument Description

array_variable The name of the array to clear, based on
the name of a user_variable

Example
The following script allows the user to send up to a 13 line message to the kitchen

printer. Before actually sending to the printer, it allows the user the opportunity to edit
their work. If the user presses clear when prompted, the array_variable is cleared and the

user can retype a message.

event inq : 1
var kitchen _msg[13]: a20
var sender_name: a20
var rowcnt : n3
var term key : key
var data _entered: a20

forever
call get message
window 1, 66
display 1, 2, “PAGE UP=edit, CLEAR=retype, ENTER=send, CANCEL=‘‘quit”
inputkey term key, data entered, ““
if term_key = @KEY_ENTER
break
elseif term key = @KEY_CLEAR
cleararray kitchen msg
elseif term key = @KEY_CANCEL
exitcontinue
endif
endfor

8-19

8-20

call print _message
endevent
sub get_message
window 14, 22
displayinput 1, 2, sender_name, “Enter your name”
for rowcnt = 1 to 13
displayinput rowent + 1, 2, kitchen msg[rowcnt], “Enter kitchen

message”
endfor
windoweditwithsave
endsub
sub print_message startprint @ordrl
printline
printline “Message from *, sender_name
printline “ ”
for rowent = 1 to 136
if len(kitchen_msg[rowcnt]) > ““
printline kitchen_msg[rowcnt]
endif
endfor
printline “======= END MESSAGE ===—=—===="
endprint
endsub

ClearChkInfo

Description
This command clears any check information detail lines that have not been written to the
Guest Check files and are stored in the guest check information buffer.

Normally, this command is used if the script added information to the buffer but, at a
later time, decides that the information should not be saved in the Guest Check Files.

Syntax
ClearChklInfo

Remarks
o Check information detail is a type of check detail that can be stored in the Guest
Check files via the SaveChkInfo command. Typically check information detail
lines are used to store customer information, such as name and address, so that it
can print on a guest check or a remote order device.
o This command is executed upon exiting the script.

» Keep in mind that, like other types of guest check detail, such as totals and
definitions, guest check information detail lines are only stored in the Guest
Check files temporarily and cleared upon closing a guest check.

POS Setup

Refer to the detail description of SaveChkInfo for a brief discussion of the usage of check
information detail.

Example

The subroutine below requires that the operator input a string five times, then prompts
the operator to confirm saving the information. If the operator responds by pressing the

ISL Commands

ISL Commands

[Clear] key, the check information detail is discarded; otherwise, the information is
saved.

sub get_info
var string : A20
var answer : N5
var 1 : N5
fori=1to5
input string, “Enter string “, i
savechkinfo
endfor
getenterorclear answer, “Save information?”
if answer = 0
clearchkinfo
endif
endsub

See Also

SaveChkInfo command

ClearlsITs

Description
This command clears any touchscreen keys that have been defined using the

SetIslTsKey command.

Syntax
ClearIslTs

Remarks
All previously defined keys are cleared each time a script executes.

After a touchscreen has been displayed, its keys remain defined, thus, MICROS Systems,
Inc. recommends using the ClearIslTs command to clear previously defined touchscreen
keys when building two or more touchscreens in the same event.

Example

The following example is a subroutine (create_ts) that clears previously defined
touchscreen keys before calling another subroutine (set_keys), one that will build a new
touchscreen.

sub create_ts

clearislts //Clear out any previously
// defined touchscreen keys

call set keys //Build the keys needed

(::-ndsub

See Also

DisplaylIslTs, PopUpIslTs, and SetIslTsKey commands

8-21

ClearKybdMacro

Description
This command will clear out any macro keys that have been defined by the

LoadKybdMacro or LoadDbKybdMacro commands since the script started.

Syntax
ClearKybdMacro

Remarks

All macro keys are cleared out when the script is started.

Example

For example, this command may be used if the LoadKybdMacro command were issued,
but the response from the PMS system was incorrect; the ClearKybdMacro would be
used to clear the macro in preparation for a rebroadcast or transaction cancel.

event inq:1
loadkybdmacro 11:841 //Load PMS 1 Inquiry Key
txmsg ''ing_1_request’
waitforrxmsg

endevent

event rxmsg : ingq_1_reply
var status - n5
rxmsg status
if status = 0
errormessage “No Response from PMS “
clearkybdmacro
else
waitforclear “Press Enter to Continue *
endif
endevent

See Also
LoadKybdMacro and LoadDbKybdMacro command

ClearRearArea

Description

This command will clear the contents of the customer display.

Syntax

ClearRearArea

Example

event inq:1
DisplayRearArea “‘Hello”
WaitForClear “Press clear to clear display”
clearreararea

end event

See Also

DisplayRearArea command

8-22 ISL Commands

ISL Commands

ContinueOnCancel

Description

This command will continue processing the script even if the [Cancel] or [Clear] key is
pressed after an Input command is issued.

Syntax

ContinueOnCancel

Remarks

« Innormal operations, when ISL is waiting for user data after an Input command
is issued (for example, Input, WindowInput, WindowEdit,...) and the user
presses the [Cancel] key or the [Clear] key at the input prompt, the script will
terminate. It may be necessary for the script to continue even if the user has
cancelled the entry. If the ContinueOnCancel command is executed, then the
Input commands will not terminate the script if the [Cancel] key or the [Clear]
key is pressed. Instead, they will return to the line after the Input command. The
@INPUTSTATUS system variable will be set to 0 if the user cancelled the input,
or 1 if valid data was entered.

o If the ContinueOnCancel is used, the script should check all Input commands to
determine if the user cancelled the input or not.

See Also
ExitCancel, ExitOnCancel, Input, WindowEdit, and WindowInput commands
Display

Description

This command can be used to display a message in a window.

Syntax
Display row, column, expression[{output_specifier}] \ [, expression[{output_specifier}]...]

Table 46 Display Command Arguments

Argument Description

row The integer expression specifying the
screen row within the defined window
where the message will be displayed

column The integer expression specifying the screen
column within the defined window where
the message will be displayed

8-23

8-24

Argument Description

expression An expression to be displayed; it may be one
of the following:

e user_variable

o system_variable

e constant
o string
o function
o equation
{output_specifier} The integer expression specifying the screen

column within the defined window where

the message will be displayed.

Remarks
» Since this command provides information about where to locate the text or fields
within the window, a Window command must have been executed prior to this
command

o The Display row and column must fall within the boundaries of the defined
window.

o An error will occur if the data to be displayed extends past the end of the
window:

window 10, 10, “10 columns™

//ERROR!
display 1, 1, “this line is greater than 10 columns”

Example
The following script will display a guest room number and name in a window:
event rxmsg : room_info

var room_num : a5

var guest_name : a20
rxmsg room_num, guest name

window 1, 40
display 1, 2, “The guest in room ”, room num, “ is ”’, guest name
waitforclear
endevent
See Also

Window command; Chr function

Displaylnput

Description

This command defines an input field within a window. Thus, a Window command must
have been executed prior to this command. In addition, a WindowEdit or WindowInput
must follow it, or the grouping of DisplayInput commands to which it belongs.

ISL Commands

ISL Commands

Syntax
DisplayInput row, column, input_variable[{input/output_specifier}],\ prompt_expression|,
prompt_expression,...]

Table 47 Displaylnput Command Arguments

Argument Description

row The integer expression specifying the
screen row within the defined window
where the input_variable will be
displayed.

column The integer expression specifying the screen
column within the defined window where
the input_variable will be displayed.

input_variable An array_variable or user_variable that allows
user input.
{input/output_specifier} One or more of the input and output_specifiers

that determine the format of all input and
output fields; see full definition on pages 8-3
through 8-6.

prompt_expression An expression displayed on the prompt line,
usually to instruct the user what to enter; it

may be one of the following:
e user_variable

o system_variable

e constant
o string
o function

o equation

Remarks
o The DisplayInput row and column must fall within the boundaries of the defined
window.
o The prompt_expression is required.

« DisplayInput can be used with the WindowEdit\ Input commands to build a
screen of input fields in order to accept input from the user. Navigating among
the input fields is achieved with the movement keys: up arrow, down arrow,
home, and end. [Enter] can also be used to navigate, which moves the focus to
the next field, and [Clear], which moves the focus to the previous field.

o When a WindowEdit or WindowInput command is executed, each field
displayed using the DisplayInput command will be edited in turn.

o The Displaylnput, DisplayMSInput, Input, and InputKey commands are the
only commands that act on both the Input and Output Specifiers.

o The maximum number of window input entries allowed is 64.

8-25

8-26

for 1 =1 to 65
displayinput 1, i, a[i], "Enter ", i
// error when i is 65
endfor
o If the input_variable to be displayed extends past the end of the window, then an
error will occur on the WindowEdit or WindowInput command, and not the
DisplayInput command.

» WindowlInput fields can be edited using the in-place keyboard entry editing
feature. The following Type 9 (Keypad) keycodes assign commands to specific
keys in the keyboard or touchscreen files:

* #19—Edit
* #20—Edit Delete
= #21—Edit Insert Tggl

» A keyboard entry field can be greater than the 40 characters allowed in a
displayed entry field.

Example

The following script will allow input of customer information in a window:
event inq - 1

var rowcnt: n3

var field name[5] : al5

var customer_info[5]: a20

field_name[1] = “Customer name:”

field_name[2] = “Company:”

field_name[3] = “Address:”

field_name[4] = “City:”

field_name[5] = “Phone:”

window 5, 36
for romcnt =1 to 5
display rowent, 2,
field_name[rowcnt]
displayinput rowcnt, 16, customer_info[rowcnt],\
“Enter °, field_name[rowcnt]
endfor
windowedit
endevent

See Also
Window, WindowEdit, and WindowInput commands

DisplayInverse

Description

This command can be used to display a message in a window in inverse video. Since this
command provides information about where to locate the text or fields within the
window, a Window command must have been executed prior to this command.

Syntax

Displaylnverse row, column, expression[{output_specifier}] \ [,
expression[{output_specifier}]...]

ISL Commands

Table 48 Display Inverse Command Arguments

Argument Description

row The integer expression specifying the
screen row within the defined window
where the message will be displayed

column The integer expression specifying the screen
column within the defined window where
the message will be displayed

expression An expression to be displayed; it may be one
of the following;:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition on pages 8-3 through 8-6.

Remarks

o The DisplayInverse row and column must fall within the boundaries of the
defined window.

o An error will occur if the data to be displayed extends past the end of the
window:
window 10, 10, ““10 columns™

//ERROR!
displayinverse 1, 1, “this line is greater than 10 columns”

Example

The following script will display a guest room number and name in a window:

event rxmsg : room_info var room num : a5
var guest name : a20
rxmsg room _num, guest_name
window 1, 40
displayinverse 1, 2, “The guest in room ”’, room_num,
waitforclear
endevent

is 7, guest _name

See Also

Display and Window commands

ISL Commands 8-27

8-28

DisplaylsITs

Description

This command displays a touchscreen defined by the SetlsITsKey command.

Syntax
DisplayIslTs

Remarks

o After a touchscreen has been displayed, its keys remain defined until cleared by
the ClearIslTs command or until the script terminates

« Sixty temporary touchscreen keys are available.

Example

The subroutine below first clears any previously defined touchscreen keys and displays
two touchscreen keys, [YES] and [NO], using the DisplayIslTs command. This
subroutine displays these keys as the operator is issued a prompt by the system and
captures the operator’s input.

sub get_yes or_no(ref answer, var prompt s:A38)
var keypress : key
var data : A20

clearislts

setisltskey 2, 2, 4, 4, 3, @KEY_ENTER, "YES"
setisltskey 2, 6, 4, 4, 3, @KEY_CLEAR, "NO"
displayislts

inputkey keypress, data, prompt_s
if keypress = @KEY_ENTER

answer = 1
else
answer = 0 endif
endsub
See Also

ClearIslTs, PopUplIslTs, and SetlslTsKey commands

DisplayMSInput

Description

This command defines an input field within a window; therefore, a Window command
must have been executed prior to this command, and a WindowEdit or WindowInput
must follow it. This command defines an input field within a window that may be
entered through the keyboard or touchscreen, or by swiping a magnetic card through the
magnetic card reader on the workstation.

Syntax
DisplayMSInput row, column, input_variable\ [{input/output_specifier}], prompt_expression|,
row, column, \ input_variable{input/output_specifier}, — prompt_expression,...]

Table 49 DisplayMSInout Command Arguments

ISL Commands

ISL Commands

Argument

Description

row The integer expression specifying the
screen row within the defined window
where the input_variable will be
displayed.

column The integer expression specifying the screen

column within the defined window where
the input_variable will be displayed.

input_variable

An array_variable or user_variable that allows
user input.

{input/output_specifier}

One or more of the input and output_specifiers
that determine the format of all input and
output fields; see full definition on pages 8-3
through 8-6.

prompt_expression

An expression displayed on the prompt line,
usually to instruct the user what to enter; it
may be one of the following;:

e user_variable

o system_variable
e constant

o string

o function

o equation

Remarks

o This command allows the designer to specify the fields that the operator can

enter manually, fields that may be entered from a magnetic card swipe, or fields
that may be entered in both fashions. In addition, the location and length of the
data to be used on the magnetic card stripe may also be defined.

o After the WindowInput command is executed, the system variable

@MAGSTATUS will be set to Y if the magnetic card was swiped during the
WindowInput. It will be set to N if a magnetic card was not swiped. To use

@MAGSTATUS in this way, use only one DisplayMSInput command with each
WindowInput entry (otherwise, @MAGSTATUS will be undefined). If more than
one DisplayMSInput command is needed, use the Len function to check if the

input string is set to zero (see “ISL Functions” for an explanation of the Len

function).

o The prompt_expression is required.

» DisplayMSInput can be used with the WindowEdit\ Input commands to build a
screen of input fields in order to accept input from the user. Navigating among

the input fields is achieved with the movement keys: up arrow, down arrow,

home, and end. [Enter] can also be used to navigate, which moves the focus to

the next field, and [Clear], which moves the focus to the previous field.

8-29

8-30

o The Displaylnput, DisplayMSInput, Input, and InputKey commands are the
only commands which act on both the Input and Output Specifiers (see page 8-2
for more information).

« The maximum window input entries allowed is 64.

for i =1 to 65
displayinput 1, i, a[i], "Enter ", 1
// error when i is 65
endfor
o If the input_variable to be displayed extends past the end of the window, then an
error will occur on the WindowInput command, and not the DisplayInput

command.

o In the case where row and column is 0, the input field (for exmple,
cardholder_name) is considered hidden and will not be displayed;
additionally, it can only be satisfied with a magnetic card, which means no
keyboard input is allowed.

displaymsinput 0, O, cardholder_name{ml, 2, 1, *},\ “Enter Guest Name”,...

There can be more than one hidden field in a DisplayMSInput command. In most

cases, the input specification for this field will contain magnetic stripe information.

o The prompt_expression for all hidden field(s) will be ignored.

Example

The following script will read the information from Track 1 of a credit card:
event inq : 1

var cardholder_name: a26

var account_num: nl9

var expiration_date: n4

var trackl _data: a79

window 3, 78
displaymsinput 1, 2, cardholder_name{ml, 2, 1, *}, “Enter Guest Name”, \
2, 2, account_num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”
windowinput
waitforclear
endevent
See Also

Window, WindowEdit, and WindowInput commands; Len function

DisplayRearArea

Description

This command will display up to 20 characters on the POS workstation customer display
(rear display).

This command works on 20-character displays only —8-character displays are ignored.

Syntax
DisplayRearArea expression[{output_specifier}] [, expression[{output_specifier}]...]

Example
event ing:1

ISL Commands

var text:80

input text, “Enter data”

displayreararea “Data:”, text
end event

See Also

ClearRearArea command

DLLCall

Description

This command will call a function contained in the DLL.

Syntax
DLLCall handle, dll_name([parm1 [parm2 [parm3...]]])

See Also
o« DLLCallW, DLLFree, and DLLLoad commands
« Appendix D—Microsoft Windows DLL Access

DLLCall_cdecl

Description

This command will call a function contained in the DLL using the cdecl convention.

Syntax
DLLCall_cdecl handle, dll_name([parm1 [parm2 [parm3...]1]])

See Also
« DLLCallW, DLLFree, and DLLLoad commands
» Appendix D—Microsoft Windows DLL Access

DLLCall_STDCall

Description

This command will call a function contained in the DLL using the STDCall convention.

Syntax
DLLCall_STDCall handle, dll_name([parm1 [parm2 [parm3...]1])

See Also
o« DLLCallW, DLLFree, and DLLLoad commands
« Appendix D—Microsoft Windows DLL Access

DLLCallw

Description

This command will call a function contained in the DLL with Unicode.

ISL Commands 8-31

8-32

Syntax
DLLCallW handle, dll_name([parm1 [parm2 [parm3...]]])

See Also
« DLLCall, DLLFree, and DLLLoad commands
» Appendix D—Mirosoft Windows DLL Access

DLLFree

Description
This command will free a loaded DLL.

Syntax
DLLFree handle

See Also
« DLLCall, DLLCallW, and DLLLoad commands
» Appendix D—Microsoft Windows DLL Access

DLLLoad

Description

This command will load the external DLL. The dllload command needs to be called only
once during the lifetime of the SIM script.

Syntax
DLLLoad handle, name

Example
event inqg:1
var dll_handle:N9
dilload dIl_handle, “myops.dil”
end event
See Also
o DLLCall, DLLCallW, and DLLFree commands

« Appendix D—Microsoft Windows DLL Access

ErrorBeep

Description

This command can be used to sound the error beeper at the workstation.

Note: The ErrorBeep command currently does not cause the workstation to beep in
Simphony as the “Enable Error Beeper” option is not available in the Enterprise
Management Console (EMC).

The command remains so that scripts written for legacy MICROS products using the
ErrorBeep command will still function in Simphony.

ISL Commands

ISL Commands

Syntax
ErrorBeep

See Also

Beep command

ErrorMessage

Description

This command can be used to display an
incorrect entry is made by the operator.

Syntax

ErrorMessage expression[{output_specifier}

error message at the workstation when an

1l, expression\ [foutput_specifier}]...]

Table 50 Error Message Command Arguments

Argument Description
expression An expression to be displayed; it may be one of
the following:

user_variable
system_variable
constant

string

function

equation

{output_specifier} #one or more of the output_specifiers that

determine the format of the output fields;
see full definition on pages 8-3 through 8-6.

Remarks

The ErrorMessage command expects one error line to be displayed. However, the UWS
displays two lines. The error line to be displayed is broken up between the two logical
lines. If the line is too long to be displayed, it will be truncated.

See Also
InfoMessage

Example

The following script will display a message indicating that an entry is invalid:

event inq : 1
var menu_choice: n3

window 3, 23

display 1, 2, “[1] Edit member info”

display 2, 2, “[2] Add new member”
display 3, 2, “[3] Exit”
forever

8-33

8-34

input menu_choice, ““Choose a number and press [ENTER].”
if menu_choice < 1 oR menu_choice > 3
errormessage ““Choice [’ , menu_choice, “Jis outside the valid”,\
“range”
else
break
endif
endfor
endevent

Event...EndEvent

Description

The Event command indicates the start of a procedure associated with an operator
inquiry, payment, an interface response message or printing addition information on the
check header or trailer lines. The EndEvent indicates the end of the event procedure.

o If the * specifier is present in an Event line, in the Event ID field, then the Event
will be executed if the Event types match, regardless of the Event ID. The *
specifier affects the following events: Inq, Tmed, RxMsg, and Final_Tender. For
example, the following Event will catch all Inquire Events:
event inq : *
endevent

o Itis possible to write an Event Inq or Event Tmed as an expression. Example:
event ing : 5

Can be defined as:
event ing : (2 +3)

In addition, variables may also be used, but must be defined as global variables. For

example:
var guest_ing number : N5 =5
event ing : guest_ing_number

¢ The EndEvent command cannot be used within a subroutine.

Syntax 1

Event Inq : number

Table 51 Event Ing Command Arguments

Argument Description

number Corresponds to a pre-defined SIM Inquiry
key programmed in the Simphony database,
or *to execute the Event whenever it is

encountered

Remarks 1

o The Event Inq command is executed when a SIM Inquiry key is used at a
workstation.

« The valid entry for number is 1 through 20.

ISL Commands

Example 1

This is an example of a standard Inquiry event:

event ing : 1
var menu_choice: n3
window 3, 23

Endevent

Syntax 2

Event Tmed : number

Table 52 Event Tmed Command Arguments

Argument Description

number Corresponds to a pre-defined SIM Inquiry
key programmed in the Simphony database,
or * to execute the Event whenever it is

encountered
Remarks 2
o The Event Tmed command is executed when an ISL Tender key is used at the
workstation.

o The Tender number must be an object number in the Tender Media module. It is
required that the Tender Media PMS Option, Use ISL TMED Procedure Instead
of PMS Interface is enabled, and the workstation must be within a transaction
for this Event to work. For a complete explanation, see Step 5: Create a SIM
Tender Key.

Example 2

This is an example of a standard Tender/Media event:

event tmed : 10 var rowcnt : n3
var deliv_desc[6] : al5
deliv_desc[1] = “Name:”
window 6, 43

endevent

Syntax 3
Event RxMsg : event_ID

Table 53 Event RxMsg Command Arguments

Argument Description

event_ID The first field in the response message
that identifies the event that is expecting
that response

ISL Commands 8-35

8-36

Remarks 3

o The first field in a response message is always the event_ID and should not be
used in any successive RxMsg variable. The event_ID must begin with a letter A -
Z, a - z, or the underline character (_), and it can be up to 255 characters in length.

« When a message has been received from the PMS, the ISL will search the script
for an RxMsg event whose event type matches the first field in the
application_data segment of the message. If ISL encounters a message of the
form: Event RxMsg : * it will automatically run that event without regard to the
PMS message’s first field value. This feature is useful for debugging ISL scripts
when the message from the PMS may not be correct.

o The Event RxMsg command is executed when SIM has been instructed to wait
for a response and a response is received from the interfaced system. This event
requires that both the TxMsg and WaitForRxMsg commands be used in another
event, in the script file, for the RxMsg command to work.

o If the UseISLTimeOuts command is used and the PMS does not respond to an
ISL message within the timeout period, the ISL will search the script for an
RxMsg event with an event_ID of _Timeout (Event RxMsg : _Timeout).
If_Timeout is found, ISL will bypass the standard Simphony error messaging
and process a user-defined ISL instruction in its place.

» The interface application data message fields are always separated by an ASCII
field separator character (1CH).

Example 3a

This is an example of a standard response message event:
event ing : 1

var room_num : a4

input room_num, “Enter Room Number”

txmsg ““‘charge_ing”,@CKEMP,@CKNUM,@TNDTTL , room_num

is a //The first field (charge_inq)
string // example of an identifying
process // that the POS might use to
waitforrxmsg // messsage from the POS.
endevent
event rxmsg : charge_declined //This is one of the PMS
response // possibilities

var room_num : a4
rxmsg room_num
exitwitherror “Charge for room
endevent

, room_num,” declined”

Example 3b

This is an example of an event that is run when the response message is not received
within the ISL timeout period:
useisltimeouts

event tmed : 10

var room : N5

ISL Commands

ISL Commands

input room, “Enter room number”
txmsg “CHARGE”, room, @tndttl
waitforrxmsg

endevent

event rxmsg : charge_response
waitforclear “Posting successful”

endevent
event rxmsg : _timeout
window 4, 30

display 2, @center, “PMS is down.”
display 3, @center, “Post to alternate tender?”
waitforconfirm
usebackuptender
endevent

Syntax 4

Event Final_Tender

Remarks 4

o This event is called after the last tender has occurred, but just before the check is
closed. This event is a separate event from the Event Tmed event. An Event
Tmed event is used to post the tender, while the Event Final_Tender is used
when the check has been completely tendered.

For example, one could use the Event Final_Tender to implement the following

features with the ISL:

= Creating a specialized printout of a guest check for which neither the Event Inq
nor Tmed can be called when all the check detail is in the check.

= Sending log information to a PMS containing all of the check information.

o If the Event Final_Tender is not present in the script, no error will occur.

o Unlike the Event Tmed, when using the Event Final_Tender command, a tender
does not need to be linked to a PMS by Tender Media PMS Option, Use ISL
TMED Procedure Instead of PMS Interface.

¢« When the Event Final_Tender is executed, the ISL will execute the event for each
script linked to a PMS Computer. For example, if pmsl.isl and pms2.isl both
include an Event Final_Tender, the ISL will process both scripts.

e There is no event_ID field for the Event Final_Tender.
The Print_Header and Print_Trailer events, along with the some new SIM system
variables (see 6-110 and 6-205) and a specific set of control characters are used to print
information on checks and receipts. This information can be printed in the header and/or
trailer of Customer Receipts, Guest Checks, and Credit Card Vouchers. This information
can include text, bar codes, estimated tip amounts, or any function a SIM script is capable
of performing.

Syntax 5
Event Print_Header : <alpha/numeric >

Event Print_Trailer : <alpha/numeric >

8-37

Table 54 Event Print_Header and Event Print_Trailer Command Arguments

Argument Description

alphanumeric Corresponds to an entry in the RVC Descriptors
module in the Enterprise Management
Console (EMC)

Remarks

Control Characters:
@@<event 1D argument>

Control characters and SIM event(s) are programmed in the RVC Descriptors module. The
combination of the control characters and the SIM event will call a SIM script, and the
additional text or bar code is printed on either the header or trailer.

Example 1

For example, using the event called “est_tip_amt” the Credit Card Voucher Header lines
in the RVC Descriptors module will be programmed something like this:

1 Tip Amount

2 Estimated Tip Amount:
3 @@est_tip_amt

4

5 Total

6
7
8

9 Signature

When POS Operations starts printing the credit card voucher trailer, it will print line 1
and 2 as the part of the header, when the event argument (@@est_tip_amt) at line 3 is
recognized, POS Operations will call the SIM script.

Example 2

For example, the following portion of a SIM script will be called by the credit card
voucher trailer, and will printout the estimated tip amount on the credit card voucher:
event print_trailer - est tip _amt

format @trailer[1] as "EST TIP AVT $", (@ctldue
* 15) / 100
format @trailer[2] as "

endevent

After the SIM script is finished, POS Operations will continue printing the remaining
lines on the credit card voucher.

Once the SIM script is called, the script will instruct POS Operation what to print and
how to format it. The system variables, @HEADER (see page 7-60) and

@TRAILER (see page 7-99), support this function.

8-38 ISL Commands

ISL Commands

o The maximum number of SIM events available is the same as the number
descriptor lines available in the header and trailer fields. If there are 6 header
lines available, then 6 SIM events can be used.

For example, if printing a CA voucher header (a total of 6 lines) which contained text

on line number 1 and 2, then called a SIM event on line 3 that would leave 3 lines

available to print information from within the SIM script. For example, one cannot

print 5 of 6 lines of a header, then on the 6th line call a SIM script which prints 5

more lines of text. If the SIM script calls for 5 lines, only 1 line will print, as 5 of the 6

lines have already printed.

o The event argument should consist of only letters, numbers, and an underscore
(no spaces or punctuation). Also, the first character must be a letter. For example:
@@voucher is a valid entry, @@5voucher would be an invalid entry. Maximum
length of the descriptor is 30 characters, plus 2 control characters, which is a total
of 32.

o More than one event argument (@@) can be embedded in a trailer.

o The @HEADER[] and @TRAILER]] arrays are unique to each event. This means
that each event can begin writing to the array starting at index 1, rather than at
the next available index. In the example above, both events started formatting at
index 1.

o All transaction system variables are still valid in these events. User input is still
allowed as are file operations and display manipulation.

o The events are called when POS Operations is formatting the print data, and not
printing it. Therefore, startprint and other SIM commands can be used to
generate printouts while the formatting process takes place.

o If the event is not found in the SIM script, then no error is given. The @@ line is
ignored.

See Also

Format, RxMsg, TxMsg, UseBackupTender, UseISLTimeOuts, UseSTDTimeOuts, Var,
and WaitForRxMsg commands

ExitCancel

Description

This command should be used to exit the current script and cancel the current POS
tendering operation.

Syntax
ExitCancel

Remarks

This command might be useful if charge posting was denied.

Example

The following example will either allow a check to be tendered to a room charge or
prevent the room charge from being posted:

8-39

8-40

event tmed : 9
var room : a6
var guest name : a20

window 4, 22, "Room Charge"
displayinput 2, 2, room, "Enter room number"
displayinput 3, 2, guest name, "Enter guest name"
windowinput
txmsg "‘room _charge', room, guest name
waitforrxmsg

endevent

event rxmsg : post_response
var status : alO
var room : ab6
var guest_name : a40

rxmsg status, room, guest_name
if status = "accept”
exitcontinue
elseif status = "'deny"
errormessage "‘Room charge denied™
exitcancel
else
call get_more_info(room, guest name)
endif
endevent

ExitContinue

Description

This command should be used to end the current script and continue processing the POS
tendering operation.

Syntax

ExitContinue

Remarks

o This might be useful if tendering should continue after a guest charge is
approved.

« Do not confuse the ExitContinue command with the EndEvent command.
EndEvent acts as both an Event procedure delimiter and an implicit
ExitContinue.

e Do not use the EndEvent command instead of the ExitContinue command.

Example

The following example will either allow a check to be tendered to a room charge or
prevent the room charge from being posted:
event tmed : 9

var room : a6
var guest name : a20

window 4, 22, "Room Charge"'

displayinput 2, 2, room, "Enter room number"
displayinput 3, 2, guest name, "Enter guest name"
windowinput

ISL Commands

ISL Commands

txmsg “'room_charge™, room, guest name

waitforrxmsg
endevent

event rxmsg : post_response
var status : alO
var room : a6
var guest name : a40

rxmsg status, room, guest_name

if status = "accept”
exitcontinue

elseif status = "'deny"

errormessage "‘Room charge denied"

exitcancel
else

call get more_info(room, guest name)

endif
endevent

ExitOnCancel

Description

This command will exit the script when the [Cancel] key or the [Clear] key is pressed

after an Input command has been issued.

Syntax
ExitOnCancel

See Also

ContinueOnCancel, ExitCancel, and ExitContinue commands

ExitWithError

Description

This command is used to display an error message and cancel the current POS tendering

operation.

Syntax

ExitWithError error_message[{output_specifier}] [, error_message\ [{foutput_specifier}]...]

8-41

Table 55 ExitWithError Command Arguments

Argument Description

error_message An expression displayed in the error banner,
usually to instruct the user of a problem; it may
be one of the following:

e user_variable

o system_variable
e constant

o string

o function

o equation

{output_specifier) One or more of the output_specifiers that
determine the format of the output fields; see
the full definition on pages 8-3 through 8-6.

Remarks

The error_message is required.

Example

The following script illustrates how this command will display an error if a charge is
denied:

event rxmsg : charge_declined
var room_num : a4

rxmsg room_num

exitwitherror “Charge for room ““, room _num,” declined”

endevent

FClose

Description

This command closes a file that was previously opened by the FOpen command.

Syntax
FClose file_number

Table 56 FClose Command Arguments

Argument Description

file_number An integer variable which was assigned in the
FOpen statement when the file was opened

Remarks

o The file_number specified must be a valid file number. That is, it must correspond
to a file already opened. Otherwise, an error message will be generated.

8-42 ISL Commands

« Allfiles are automatically closed at the end of a script.

Example

The following example would open a file, read from it, and then close it:
event ing: 1

var fn - n5
fopen fn, '/micros/simphony/data/emplist.dat", read

fclo-se n

endevent

See Also

FOpen command

FGetFile

Description

This command gets a file from the SIM file service.

Syntax
FGetFile RemoteFileName, LocalFileName, Status

Table 57 FGetFile Command Arguments

Argument Description

RemoteFileName Relative to “SimDataFiles” directory in
\MICROS\ Simphony \ EGatewayService

LocalFileName Relative to the location of SarOps.exe
(...\PosClient\bin) directory on the

Status Will contain result of operation after
completion.

A status of “0” (zero) indicates the file retrieval
was successful.

A status of any non-zero value indicates the file

Remarks

All files are automatically closed at the end of a script.

See Also

FPutFile command

FLock

Description

This command locks a file to prevent other processes from writing to the file, usually
while it is open.

ISL Commands 8-43

Syntax
FLock file_number, [Preventwrite] [And] [Preventread] [and]\ [Nonblock]

Table 58 Flock Command Arguments

Argument Description

ile_number Identifies the file to be locked; an integer
&

variable which was assigned in the

FOpen statement when the file was

opened.

Preventwrite A mode separator that prevents others from
writing to the specified file, while the lock is
in place.

And Required by syntax if more than one

mode separator is issued.

Preventread Required by syntax if more than one
mode separator is issued.

Nonblock tTe FLock command will return
immediately, whether the lock was
successful or not.

Remarks

« The purpose of this command is to implement cooperative file locking among
processes. Since ISL scripts execute in a multiprocessing environment, it may be
necessary for one script to write to a file at the same time another needs to read
from it. Without any type of synchronization, corrupted data may be read from
or written to the file. (Within this explanation, the terms script and process both
refer to the POS Operation process which executes the script.)

o The ISL file locking model is based on the file locking model of the underlying
Microsoft Windows operating system. Files can be locked so that other processes
cannot read or write that file until a previous lock has been removed.

» As with Microsoft Windows, file locking can only be used if all processes
accessing the file implement file locking. If one script locks a file, but another
chooses to ignore this lock, then the benefits of the lock are lost.

+ If the Preventread mode is specified with the FLock command, all processes
which try to lock the file for reading must also wait until the lock is released.

o If the Preventwrite mode is specified with the FLock command, all other
processes which try to lock the file for writing must wait until the current process
has released the lock. However, other processes can read the file.

+ If the Nonblock mode is specified, the script must check system variable

« @FILE_ERRNO to determine if the lock was successful or unsuccessful. See
FILE_ERRNO for the File Access Error Codes.

o Itis not possible to lock portions of a file. The entire file must be locked.

o Alllocks on files are released automatically when the file is closed.

8-44 ISL Commands

ISL Commands

o If the call to FLock is executed and another process is busy writing to the file, the
command will wait until the lock is released by the other process. For example,
assume that there is a file which all ISL scripts need to read. There is also a
procedure inside the ISL script, which every so often, needs to update the file (to
add new records, for example).

» Locks should be placed on files for only short periods of time. Keeping a file
locked for a long time prevents other processes from accessing the file.

Example 1

The following script shows how to lock a file for reading only:
event inq : 1

var fn : N5
fopen fn, */micros/simphony/etc/custlist.dat”, read
flock fn, preventwrite
call read from file(fn)
funlock fn
fclose tn
endevent

Example 2

The following script shows how to lock a file for reading and writing:
event inq : 2

var fn : N5
fopen fn, */micros/simphony/etc/custlist.dat™, append
flock fn, preventwrite and preventread
call write_to _file(fn)
funlock fn
fclose tn
endevent

The call to FLock will wait until all files are done reading.

Example 3
The following script gives an example of the incorrect way of using the Flock command;
the file is locked while the script waits for input from the user:
event inq : 3
var fn : N5, data : A20

fopen fn, "/micros/simphony/etc/custlist.dat”, append
flock fn, preventwrite and preventread

input data, "Enter customer id"

call write_to_file(fn, data)
funlock fn
fclose tn

endevent

Example 4

The proper way to implement the script in example 3 would be:
event ing : 1

var fn : N5, data : A20
input data, "Enter customer ID#"

8-45

fopen fn, */micros/simphony/etc/custlist.dat™, append
flock fn, preventwrite and preventread
call write_to_file(fn, data)
funlock fn
fclose tn
endevent
See Also

FClose, FOpen, and FUnLock commands

FOpen

Description

This command opens a file for reading or writing.

Syntax
FOpen file_number, file_name, [Append] [And] [Read] [And] [Write], [Local], [Unicode]
Table 59 FOpen Command Arguments

Argument Description

ile_number An integer variable which will be assigned a
g gn
file number to identify the file.

file_name A string which identifies the file to be opened.
Append A mode separator that appends to an open file.
And Required by syntax if more than one

mode separator is issued.

Read A mode separator that reads from an open file.
Write A mode separator that writes to an open file.
Local A mode separator that indicates the file

is located on the local client
workstation (available in SAR only).

Unicode A mode separator that identifies the file
as Unicode (available in SAR only).

Remarks

o The variable file_number will be assigned a value of 0 if the operation was
unsuccessful. This could occur if the file was opened for reading and did not
exist, or the permissions of the file were not set correctly.

o The variable file_name must use Microsoft Windows naming conventions and
pathnames. If a file is written to, and does not exist, the file will be created.

« The system variable @FILE_ERRNUM will contain the operating system error
code corresponding to the error which occurred when FOpen was executed.

o The Unicode keyword can be used with, without, before, or after the Local
keyword. If used without, do not include an extra comma separator where the
Local keyword would have been.

8-46 ISL Commands

Example 1

The following statements would open a file and read it:

var fn : N5 //open a File for reading
fopen fn, */micros/simphony/data/emplist.dat’, read

Example 2

The following statement would open a file and append to it:

var fn : N5 //open a file for appending
fopen fn, */micros/simphony/log/transact. log™, append

Example 3

The following statement would open a file and write to it:

var fn : N5 //create a file for writing
fopen fn, */micros/simphony/log/ws._log"”, write

Example 4

The following statement would open a file then read and write to it:

var fn : N5 //open a file for reading and writing
fopen fn, '/micros/simphony/data/emplist.dat", read and write

endevent

Example 5

The following script will open a file. If the open was unsuccessful, an error message will
display the cause of the error.
event inq - 1

var fn - N5
fopen fn, "myfile.dat"”, read
iffm=0
errormessage @FILE_ERRSTR
exitcontinue
endif
endevent
See Also

FClose command

For...EndFor

Description

These commands are used to implement an iterative loop. The EndFor command should
always be used to terminate the loop.

Syntax

For counter = start_expression To end_expression [Step increment]

EndFor

ISL Commands 8-47

8-48

Table 60 For...EndFor Command Arguments

Argument Description
counter A variable that is incremented by the For
command.
start_expression The first variable in the counter; separated

from counter by = sign; it can be one of the
following:

e user_variable
o system_variable (N or $ format)

e constant

o function
..=..To..[Step...] Required by syntax.
end_expression The last variable in the counter; separated

from the start expression by the reserved
word To; it can be one of the following;:

e user_variable
o system_variable (N or $ format)
e constant

o function

increment Used with the reserved word Step to increase
or decrease the value of the counter; use a

negative value to decrease the counter.

Remarks

» Normally, the variable in the For loop will be incremented by one. If required,
the Step feature may be used to override this so that the variable may be
incremented or decremented by any integer value.

o For loops work similar to C and Basic; the For loop counter will always
increment to the end_expression + 1. A For loop will execute when the following
conditions are met:

If Step > 0 and counter <= end_expression
If Step <0 and counter >= end_expression

Sample For commands:

for i =1 to 10 // execute 10 times
for i =1 to 10 step 5// execute 2 times (i=1,6)
for i = 1 to 10 step -5 // will not execute for i = 10 to 1// will not execute
for i =10 to 1 step -1 // execute 10 times
for i =10 to 1 step -5 // execute 2 times (i=10,5)
Example

The following script will display the current occupant(s) of a room:

event rxmsg : display_occupants
var row_cnt - n3, room num : a4, number_occupants : n3, occupant_ list[8] : a30
rxmsg room_num, nhumber_occupants, occupant_list

ISL Commands

ISL Commands

if number_occupants > 14
number_occupants = 14
endif
window number_occupants, 38
for row_cnt = 1 to number_occupants
display row_cnt, 2, occupant_list[row_cnt]
endfor
waitforclear
endevent

//For example, this subroutine will reverse a string
// using the Step feature
sub reverse_string
var cnt : n3, char : al, reversed string : a78
window 2, len(string_2 reverse) + 2
display 1, 2, string_2_reverse
for cnt = len(string 2 reverse) to 1 step -1
char = mid(string_2 reverse, cnt, 1)
format reversed string as reversed string, char
display 2, 2, reversed _string
endfor
endsub

See Also

Break and Forever commands

ForEver...EndFor

Description

The ForEver command provides continuous looping capabilities in a script. The ForEver
command is generally used when the conditions for terminating the loop are too complex
for a For command, or may not be known ahead of time. This loop may be broken by
executing a Break command or by exiting the script (for exmple., ExitCancel or
ExitContinue).

Syntax

ForEver

EndFor

Example

The following script will wait for a magnetic card swipe:

event inq : 1
var mag_card_track2 _data : a79

window 1, 28 // build the window

forever // loop until the user swipes a
// card or presses clear

displaymsinput 1, O, mag card track? data{m2, 1, 4, *}, " "

display 1, 2, “Please swipe your ID card.”

windowinput

if @MAGSTATUS = “Y¥” // we got a swipe

8-49

windowclose // close the window

break // and exit the loop endif
errormessage “Swipe card or press clear twice”
endfor
endevent
See Also

Break, ExitCancel, ExitContinue, and Return commands

Format

Description

This command is used to concatenate expressions into a string variable.

Syntax

Format string_variable [, field_sep_char] As expression[{output_specifier}],
expression[{output_specifier}] [, expression[{output_specifier}],...]

Table 61 Format Command Arguments

Argument Description

string_variable A place holder for text characters such as a
user_variable (string).

field_sep_char The character used to separate fields; use the
Chr function to define the character required

As Required by syntax.
expression An expression to be concatenated; it may be one
of the following:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition on pages 8-3 through 8-6.

Remarks

« If the field separator character is specified, then the first character in the string is
used to separate variables within the string.

format string as 1, 2, 3 // will create "123*
format string, "," as 1, 2, 3 /7 will create "1,2,3"

« The Format command is also used to print information to guest checks, receipts,
and credit card vouchers. Two events: Print_Header and Print_Trailer (see page
8-37) are used to support this function.

8-50 ISL Commands

Example

The following script will construct a string_variable containing the current date in the
form dd-mm-yy:

event inq - 1
var date : a9

call get date string
endevent
sub get _date string
var month_arr[12] : a3
//Listing of all the months

month_arr[1] = “JAN”
month_arr[2] = “FEB”
month_arr[3] = “MAR”
month_arr[4] = “APR”
month_arr[5] = “MAY”
month_arr[6] = “JUN”
month_arr[7] = “JUL”
month_arr[8] = “AUG”
month_arr[9] = “‘SEP”

month_arr[10] = “OCT”
month_arr[11] = “NOV”
month_arr[12] = “DEC”
format date as @DAY, “-”, month_arr[@MONTH], “-", @YEAR
// i.e., 10-NOV-93
endsub
See Also

FormatQ and Split commands

FormatBuffer

Description

This command will format a string containing non-printable characters into a string that
is printable.

Syntax
FormatBuffer source_string, destination_string

Table 62 FormatBuffer Command Arguments

Argument Description
source_string A string_variable containing non-printable
characters.
destination_string A place holder for the string_variable
containing the printable characters.

Remarks

o All printable characters will display as-is. All non-printable characters will be
formatted as a two-digit hexadecimal number surrounded by angle brackets.

« This function is generally used to look at data from the PMS.

ISL Commands 8-51

Example

The following script will convert a string containing a non-printable character into a
string that can be displayed:

event inq - 1
var source s : A30, dest s : A30

format source_s as “before ““, chr(27), “ after”
formatbuffer source s, dest s
waitforclear dest s //displays “before <1B> after’
endevent
See Also

Format and FormatQ commands

FormatQ

Descripion

This command is used to concatenate variables into a string. String variables are
automatically surrounded by quotes. This feature can be used to create comma-
separated lines in ASCII files.

Syntax

FormatQ string_variable [, field_sep_char] As expression[{output_specifier}],
expression[{output_specifier}]...] [, expression[{output_specifier}],...]

Table 63 FormatQ Command Arguments

Argument Description

string_variable A place holder for text characters such as a
User_variable (string).

field_sep_char The character used to separate fields; use the
Chr function to define the character required.

As Required by syntax.

expression An expression to be concatenated; it may be
one of the following:

e user_variable

o system_variable
e constant

o string

o function

e equation

{output_specifier) One or more of the output_specifiers that
determine the format of the output fields;
see the full definition on pages 8-3
through 8-6.

8-52 ISL Commands

Remarks

« If the field separator character is specified, then the first character in the string is

used to separate variables within the string.

« The FormatQ command operates in the same way as the Format command,

except that all strings are automatically quoted. This command is generally used

to format lines to a file.

See Also

Format and Split commands

FPutFile

Description

This command puts a file from the SIM file service:

Syntax

FPutFile RemoteFileName, LocalFileName, Status

Table 64 FPutFile Command Arguments

Argument

Description

RemoteFileName

Relative to “simdatafiles” directory in
\micros\simphony \ egatewayservice

LocalFileName

Relative to the location of sarops.exe
(...\posclient\bin) directory on the
workstation.

Status

Will contain the result of the operation after
completion.

A status of “0” (zero) indicates the file retrieval
was successful.

A status of any non-zero value indicates the
file retrieval failed.

Remarks

All files are automatically closed at the end of a script.

See Also

FGetFile command

FRead

Description

This command reads formatted data from a file.

Syntax

FRead file_number, user_variable or list_spec[, user_variable \ or list_spec...]

ISL Commands

8-53

Table 65 FRead Command Arguments

Argument Description

file_number Identifies the file to be read; an integer
variable which was assigned in the fopen
statement when the file was opened

user_variable
A user_variable which will be assigned the
list_spec is defined as: data from the file

number_records A user_variable (integer) containing the
number of records to be built from this string

field_arrayl field_array) An array_variable that will hold one field per
record; a field can be split into more than one
array by separating the array_variables using a

colon ()

Remarks
o The file must have been opened in Read mode in order to execute this command.
o If the System Variable @STRICTARGS is set to 1, then ISL will ensure that the
variable count in the FRead command line matches the number of fields in the
file record. If an incorrect number of fields is specified in the statement or the file
is corrupted, then an error message will be generated.

« Itis possible to skip over fields in a line by not specifying the variables. For
example the third field in the line below would be ignored:

fread file_number, variablel, variable2, , variable4

If a script needs to read only the first few fields in a file, but wishes to ignore the rest
of the fields, then it should specify a * in the statement to indicate that no more
variables should be assigned to that line. For example, if each line in a file has 20
fields, but only the first three need to be read, the following line will only read the
first three. All fields are assigned in the order they occur. The * must be the last
element on the FRead line.

fread file_number, variablel, variable2, variable3, *
This command will assign data to the variables a line at a time. If the line in the file

has 10 variables and only 7 variables are specified, then the last 3 are thrown away.
They are not read on the next FRead.

Example

If a file contains this line:
145, ""Tooher"","'Dan""

An ISL script uses the following lines to read the file:

8-54 ISL Commands

event ing : 1

var num:N5, last name:A20, first name:A20
fread file_number, num, last_name, First_name

//num will be 145

//last_name will be "Tooher"

//First_name will be "Dan"
Endevent

See Also
FClose, FOpen, FReadBfr, and FReadLn commands

FReadBfr

Description

This command reads a block of data from a file.

Syntax
FReadBfr file_number, data, count_to_read, count_read

Table 66 FReadBr Command Arguments

Argument Description

file_number Identifies the file to be read; an integer
variable which was assigned in the fopen
statement when the file was opened.

data string_variable the data block will read into

count_to_read How much data to read.

count_read How much data was actually read.
Remarks

« The file must have been opened in read mode in order to execute this command.

o This command will read data across lines. This command is equivalent to a raw
read from a file.

Example

The following script will attempt to read 100 characters:
event ing : 1

var fn - n5
var data:A100, linesread:N5

fopen fn, “/micros/simphony/etc/script.isl”, linesread
freadbfr fn, data, 100, linesread
if linesread <> 100
errormessage ""Tried to read 100 and read ', linesread
exitcancel
endif
endevent

ISL Commands 8-55

8-56

See Also
FClose, FOpen, FRead, and FReadLn commands

FReadLn

Description

This command reads a line of data from a file.

Syntax
FReadLn file_number, line

Table 67 FReadLn Command Arguments

Argument Description

file_number Identifies the file to be read; an integer
variable which was assigned in the fopen
statement when the file was opened

line String variable where the line will read into

Remarks
o The file must have been opened in Read mode in order to execute this command.

o This command may be useful if the file being Read does not store its data in
comma-separated format. For example, the Microsoft Windows system variable,
%PATH%, stores its data separated by the (;) character. A script could read the
variable and use the Split command to access the individual path components.

Example

The following statements would search for a certain line in the /etc/passwd directory:

fopen fn, "/etc/passwd’’, read
whille not feof(fn)
freadln fn, line
split line, ':", name,, user_id, group_id, *
endwhile
fclose tn
See Also

FClose, FOpen, FRead, and FReadBfr commands

FSeek

Description

This command goes to a specified position in the file.

Syntax

FSeek file_number, seek_position

ISL Commands

Table 68 FSeek Command Arguments

Argument Description

file_number An integer variable which was assigned in the

Fopen statement when the file was opened.

seek_position Where to position the file pointer (specify

to position to).

the offset of the byte the programmer wants

Remarks

o Whenever a file is opened, the file pointer is positioned at the start of the file.

When data (a line or number of characters) is read or written, the file pointer is
positioned at the end of the data that was read or written. The FSeek command
allows the user to position the file pointer to an arbitrary point in the file so that

the next read or write statement will act on the data or position following the

new location of the file pointer.

» If aseek position of -1 is specified, the file pointer will be positioned to the end of

the file.

Example

The following example gets a number from user, then uses FReadLn to read the first field
from each line, testing it against the number the user entered. Once the number is found
using FSeek, the file pointer is positioned at the beginning of the line where the number
was found. Then the entire line is read and the first 77 characters displayed for the user.

event ing : 1
var fn - n3
var fhame : a30 = "/micros/simphony/sqgl .out™
var line : a200
var objnum : n6
fopen fn, fname, read
forever
input objnum, “Enter number to search for"

fseek fn, 1

call find_obj(fn, objnum)
if objnum = 0

break

endif
freadln fn, line

window 1, 78
display 1, 2, mid(line, 1, 77)
waitforclear
windowclose
endfor
endevent

sub Find_obj(ref fn, ref objnum)
var current position : n6
var found_num : n6
prompt ''Searching, please wait..."

ISL Commands

//0pen the file

//Get number to search
// for from user

// move file pointer
// to beginning of file
//Call the subroutine
// if 0, no match was
// found, break out

//Read the line where
// match found
//0pen window
//Display the line

//Close the window

8-57

while not feof(fn) //Loop until end of
//file encountered

current_position = ftell(fn) //CGet the current file
// pointer position
fread fn, found num, * //Fread the first field
// only from the file
if found_num = objnum //1F it matches
//what user entered
fseek fn, current position //Fseek to the beginning
// of the line
return //Exit the subroutine
endif
endwhile
errormessage "‘Can"t find that number" //1f end of file is
// encountered then
objnum = 0 // we didn"t find a
// match, tell user, set
endsub // objnum = 0, and return
See Also

FClose and FOpen commands

FUnLock

Description

This command releases any previous locks on a file.

Syntax
FUnLock file_number

Table 69 FUnLock Command Arguments

Argument Description

file_number An integer variable which was assigned in the
FOpen statement when the file was opened.

Remarks

Closing a file automatically releases any locks on a file.

Example

The following example will lock and unlock one file within an Event procedure, while
another Event procedure attempts to access it.

event ing : 1 var fn : n3
var fname : a30 = "/micros/simphony/etc/preventread”
var rite : n5 = 30
var rote : n5
var data : a30 = ""Some data to write to file"

fopen fn, fname, read and write

prompt "Waiting for write access..."

flock fn, preventread

fwritebfr fn, data, rite, rote

waitforclear "File read lock in progress..."

funlock fn

waitforclear "File should be unlocked..."
endevent

8-58 ISL Commands

event inq : 2 var fn : n3
var fname : a30 = "/micros/simphony/etc/preventread”
var reed : n6 = 30
var red : n6
var data : a30

fopen fn, fname, read

prompt "Waiting for read access..."

flock fn, preventwrite

freadbfr fn, data, reed, red

window 1, 32

display 1, 2, data

waitforclear "File write lock in progress..."
endevent
See Also

FClose, FLock, and FOpen commands

FWrite

Description

This command writes formatted data to a file.

Syntax
FWrite file_number, variablel [, variable2][, variable3... |
Table 70 FWrite Command Arguments

Argument Description

file_number An integer variable which was assigned in the
Fopen statement when the file was opened.

variable n Variables which will be written to the
file, where n is the number of variables
to write.

Remarks

« The file must have been opened in Write mode in order to execute this
command.

« All strings on the FWrite line will be enclosed in quotes.

o This function will write one line of data to the file. The line will be terminated
with the standard new line character.

Example

The following statements will write a single line of data to 3 different lines:

fwrite fn, 1, 500, "line 1"
fwrite fn, 2, 501, "line 2"
fwrite fn, 3, 502, "line 3"

The above statements will produce the lines below in the data file:

1,500,"line 1"
2,501,"line 2"
3,502,"line 3"

ISL Commands 8-59

See Also
FClose, FOpen, FWriteBfr, and FWriteLn commands

FWriteBfr

Description

This command writes formatted data to a file.

Syntax
FWriteBfr file_number, data, count_to_write, count_written

Table 71 FWrite Command Arguments

Argument Description

ile_number An integer variable which was assigned in the
g g
Fopen statement when the file was opened.

data String variable to write.

count_to_write How much data to write.

count_written How much data was actually written.
Remarks

« The file must have been opened in Write mode in order to execute this
command.

e This command will write data across lines.

Example

This example reads from a file one character at a time, capitalizes the character as long as
it is not in a quoted string, and, if the character was changed, writes the new character
back to the position in the file where its lowercase counterpart was found.
event inq - 1

var fn : n3 =1

var fhame : a40 = "/micros/simphony/etc/templ._dat"

var ritecnt : n5 =1

var rotecnt : n5

var char : a20 v

ar fpos : n6 var aschar : n3

var inquotes : n3

var changed : n3

fopen fn, fname, read and write //0pen the file for
// read and write
iffn=0 //1f fn = 0, File

// couldn™t be opened
call ferr(fhame)

endif
while not feof(fn) //Loop until the end
// of file is encountered
fpos = frell(n) //Store the current
// file pointer position
freadbfr fn, char, 1, rotecnt //Read 1 character
aschar = asc(char) //CGet the ascii number
// for the character
if aschar = 34 // if the character

8-60 ISL Commands

// 1s a quotation mark

if inquotes = 1 // and if it is a
// closing quote
inquotes = 0 //Set inquotes flag to O
else // But if it"s an opening quote
inquotes = 1 //Set inquotes flag to 1
endif
endif
if not inquotes /71T this character
// is not in quotes
call capitalize(char, changed) //Pass it to the subroutine
endif
if changed = 1 //1T the character was changed
fseek fn, fpos //Fseek back to position
// where we found the character
fwritebfr fn, char, ritecnt, rotecnt // and write the character
// to the file
changed = 0 //Reset the changed flag
endif
endwhile
fclose tn
endevent

sub ferr(ref fname)
exitwitherror "Can"t open file

, Thame endsub

sub capitalize(ref achar, ref changed) //\We could also use the
// UpperCase command
var aschar : n3 = asc(achar) // but we"ll take the

// slow difficult route for fun

if aschar > 96 and aschar < 123 //1T the character
// is a lower case alpha
aschar = aschar - 32 // get its upper case

achar = chr(aschar)
changed = 1 // and set the changed flag
endif
endsub

See Also
FClose, FOpen, FWrite, and FWriteLn commands

FWriteLn

Description

This command writes a line of data to a file.

Syntax
FWriteLn file_number, line

ISL Commands 8-61

Table 72 FWriteLn Command Arguments

Argument Description

ile_number An integer variable which was assigned in the
g g
Fopen statement when the file was opened.

line A string variable to write to the file.

Remarks

o The file must have been opened in Write mode in order to execute this
command.

» No quotes will be removed from the string that is written.

See Also
FClose, FOpen, FWrite, and FWriteBfr commands

GetEnterOrClear

Description

This command waits for the operator to press the [Enter] key or the [Clear] key and
reports which key was pressed.

Syntax

GetEnterOrClear input_variable, prompt_expression \ [{output_specifier}][,
prompt_expression[{output_specifier}]...]

Table 73 GetEnterOrClear Command Arguments

Argument Description
input_variable An user_variable that accepts user input
prompt_expression An expression displayed on the prompt line,

usually to instruct the user what to enter; it
may be one of the following:

e user_variable

o system_variable
e constant

o string

o function

o equation

{output_specifier) One or more of the output_specifiers that
determine the format of the output fields;
see full definition on pages 8-3 through 8-6.

8-62 ISL Commands

Remarks

o Avwvalue of 0 or 1is placed in the input_variable, depending upon which key is
pressed; 0 is placed in the variable if the [Clear] key is used and 1 if the [Enter]
key is used.

o The combined length of all prompt_expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

o The prompt_expression is required.

Example
The following script will wait for either the [Enter] key or the [Clear] key:
event inqg : 1

var ent or clr - nl
var ENTER - nl =1

getenterorclear ent or_clr, “Press ENTER to Inquire, CLEAR to end”
if ent or clr = ENTER
txmsg “inquiry_1”
waitforrxmsg
else
exitcontinue
endif
endevent

GetRxMsg

Description

This command is used to immediately wait for a PMS message.

Syntax
GetRxMsg prompt

Remarks

o WaitForRxMsg uses the SIM event structure to process sending and responding
to PMS messages. GetRxMsg waits for the response inline.

Example
This sample code display the dialog for 3 seconds, changing the text 3 times.

event inq:1
txnsg parml, parm2, parm4
getrxmsg “Waiting for response”
endevent
See Also

WaitForRxMsg

GetTime

Description

This command reads the current time atomically, allowing the script to read all of the
time and date value, which guarantees that the values will be correct.

ISL Commands 8-63

Syntax
GetTime [year], [month], [day], \ [hour], [minute], [second], \ [day_of week], [day_of year]

Remarks
» Each variable on the command line corresponds to the time value to read.

» Itis not necessary to include each value in the command.

Example 1
gettime year, month, day// Get only the date

Example 2
gettime ,,, hour, minute, second// Get only the time

Example 3

gettime year, month, day, hour, minute, second// Get everything
but last two

If...Else[lf]...EndIf

Description

These commands allow conditional execution. The If command may be used to compare
one expression to another. The Else command is used to execute a group of commands
when the If command’s condition is not met. The Elself command can be used to execute
commands when the If command’s condition is not met and another condition needs to
be tested.

Syntax
If expression [operator expression][And | Or expression operator \

expression...]

Else
or

Elself expression [operator expression][And | Or expression \ operator expression...]

EndIf

8-64 ISL Commands

ISL Commands

Table 74 If...Else[If]...EndIf Command Arguments

Argument Description

expression One of the following:

e user_variable
o system_variable

e constant

o string

o function

o equation
operator Can be one or more Relational Operator.
And | Or Relational Operators used to provide

additional or alternative conditions.

Remarks

Numeric, currency, alphanumeric, and key variables may be compared. For
example, the following usages are valid:

it counter < 20

if name = “Richard”

if keyname > @KEY_CLEAR

The expression will always be evaluated as true or false; for example, anything
that evaluates to 0 is false and anything that evaluates to non-0 (including a
negative) is true. If the operator and second expression are left off, the remaining
expression will still be evaluated in this way.

if counter //This will be true as long
//as the counter is not O
See ISL System Variables.

It is not considered a fatal error if an Else command appears without an If
command preceding it. An error will occur if a corresponding EndIf command is
not found.

The text “Then” is allowed after an If or Elself statement, but it is not required.
Although this syntax is legal, it conveys no additional meaning to the If or Elself
statement in which it used. Example:

If 1 <4 then //Correct

élself i > 10 then //Correct

8-65

8-66

Example

The following script will wait for a number entry between 1 and 10:
event ing : 9

var key pressed : key //Hold the function key user presses
var data : alO //Hold the number user chooses
forever

inputkey key pressed, data, “Number then Enter, Clear to Exit

if key pressed = @KEY_CLEAR
exitcontinue
elseif key pressed = @KEY_CANCEL
exitcontinue
elseif key pressed = @KEY_ENTER
if data > 0 and data <= 10
waitforclear “You chose” , data,
else
errormessage ““Choose a number between 1 , \ “
and 10, then press enter”
endif
endif
endfor
endevent

cc cc

. Press clear.

See Also

For, ForEver, and While commands

Input

Description

This command accepts an entry from the operator.

Syntax
Input input_variable[{input/output_specifier}l, prompt_expression\ [{input/output_specifier}l[,
prompt_expression,...]

Table 75 Input Command Arguments

Argument Description
input_variable A user_variable that will store the user’s input.
{input/output_specifier} One or more of the input and output_specifiers that

determine the format of all input and output
fields; see full definition on pages 8-3 through 8-6.

ISL Commands

ISL Commands

Argument Description

prompt_expression An expression displayed on the prompt line,
usually to instruct the user what to enter; it may
be one of the following;:

e user_variable

o system_variable
e constant

o string

o function

o equation

Remarks

o Prior to changing the input_variable, the user’s entry will be validated against the
field type and optional format definition.

o The combined length of all prompt_expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

o The prompt_expression is required.
» Magnetic card entry input formats are allowed with the Input command.

o If the [Clear] key is pressed during execution of the Input command, the script
will terminate unsuccessfully. This can have undesired side effects. If a script
transacts a successful posting and then uses the Input command to get reference
information on the posting from the user, the [Clear] key will perform an implicit
ExitCancel, even though the posting was successful. The following code ensures
that the script will not terminate while data is being entered:

var user_entry : A20, key press : key

forever
inputkey keypress, user_entry, "Enter ref info"

if keypress = @KEY_ENTER
break
//only terminate if ENTER pressed

endif
endfor

Example

The following script accepts a patron number from the user, then transmits it to the PMS
for further action:

event inq - 1
var ptrn_no : a8

input ptrn_no,“Enter Patron Number” //Get patron number
txmsg “Inquire_1”, ptrn_no //Send to PMS
waitforrxmsg //\ait for reply
endevent
See Also

InputKey command

8-67

8-68

InputKey

Description

This command accepts an alphanumeric entry from the operator, then stores the entry
and the terminating key stroke in separate variables.

Syntax

InputKey key_variable, input_variable, prompt_expression \

{input/output_specifierl[, prompt_expression[{input\

loutput_specifier}]...]

Table 76 InputKkey Command Arguments

Argument Description

key_variable A user_variable key type

input_variable A user_variable that will store the user’s input
{input/output_specifier} One or more of the input and output_specifiers

that determine the format of all input and
output fields; see full definition on pages on
pages 8-3 through 8-6.

prompt_expression An expression displayed on the prompt line,

usually to instruct the user what to enter; it
may be one of the following:

user_variable
system_variable
constant

string

function

equation

Remarks

o The key_variable will be set equal to the terminating key press. In this way, the
script can compare the value held by key_variable to the @KEY ... System
Variables, to test for the terminating keystroke the user pressed. See “ISL System
Variables” on page 6-1 for more information about the @KEY... System Variables.

o The prompt_expression is required.

Example

The following script waits for a number entry between 1 and 9 followed by the [Enter]
key. If the [Clear] or [Cancel] key is pressed, it exits the script:

event ing : 9
var key pressed : key
var data : alO
forever

//Hold the function key user presses
//Hold the number user chooses

inputkey key pressed, data, “Number then Enter, Clear to Exit

ISL Commands

if key pressed = @KEY_CLEAR
exitcontinue

elseif key pressed = @KEY_CANCEL
exitcontinue

elseif key pressed = @KEY_ENTER
if data > 0 AND data <= 10

waitforclear “You chose ““, data, ““. Press clear. “
else
errormessage ““Choose a number between 1 “, \ “and 10, then press enter”
endif
endif
endfor
endevent
See Also

Input command

InfoMessage

Description

This command will display an informational message and continue.

Syntax
InfoMessage expression[{output_specifier}][, expression \
[{output_specifier}]...]

Table 77 InfoMessage Command Arguments

Argument Description
expression An expression to be displayed; it may be one of
the following:

e user_variable

o system_variable

e constant
o string
» function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;

see full definition on pages 8-3 through 8-6.

Remarks

The InfoMessage command expects one message line to be displayed. However, the
workstation displays two lines. The message line to be displayed is broken up between
the two logical lines. If the line is too long to be displayed, it will be truncated.

See Also

ErrorMessage

ISL Commands 8-69

8-70

LineFeed

Description

This command will line feed the selected printer. The number of line feeds is optional.

Syntax

LineFeed [number_of _line_feeds)

Table 78 LineFeed Command Arguments

Argument Description
number_of line_feeds An expression which defines the number of
line feeds.
Remarks

o Prior to the LineFeed command, the printer must be activated within the script
using the StartPrint command. To determine the line feeds required for the
printer, refer to the table that defines ISL Printers on page 8-103.

» Printing will not begin until the EndPrint command is executed.

o Aline feed is automatically executed after the PrintLine command is issued.

Example
event ing : 1
var kitchen_msg[13] : a20
var sender_name : a20
var rowcnt : n3
window 14, 22 //Display the window
displayinput 1, 2, sender_name, “Enter your name”
//Accept users name

for rowent = 1 to 13 //Have user input the message
displayinput rowcnt + 1, 2, kitchen msg[rowcnt], “Enter kitchen message”
endfor
windowedit 1 //0nly save or cancel will
// end input
startprint @ordrl //Start the print job at
// remote printerl
printline “ >
printline “Message from “, sender_name
printline “ >

for rowcnt = 1 to 13
if len(kitchen_msg[rowcnt]) >
printline kitchen_msg[rowcnt]
endif
endfor
printline “======= END MESSAGE ====—===="
linefeed 5
endprint
endevent

See Also

EndPrint, Printline, and StartPrint commands

ISL Commands

ListDisplay

Description

This command is used to display a list (array) variable within a window. This command
is useful when displaying the contents of an array variable that contains data received
from a PMS, such as a list of names.

Syntax
ListDisplay row, column, list_size, array_variable

ISL Commands 8-71

8-72

Table 79 ListDisplay Command Arguments

Argument Description

row The integer expression specifying the screen row
within the defined window where the first
array_variable entry will be displayed.

column The integer expression specifying the screen
column within the defined window where
the first array_variable entry will be

displayed.
list_size The number of array_variable entries to display.
array_variable The name of the user_variable that holds

the matrix of values to be displayed.

Remarks
o The Window command must precede this command.

« Itis acceptable to set list_size equal to 0, but if this is done, nothing will display. If
the list_size is less than zero, an error will occur.

» Each entry will be placed on a separate line directly beneath the previous.

Example

The following script will display an employee list:

event rxmsg : emp_list
var emp_list_size : n3
var emp_list_array[14] : a40

rxmsg emp_list_size, emp_list array[1
window 14, 42
listdisplay 1, 2, emp_list_size, emp_list _array
waitforclear

endevent

See Also

Window command

Listinput

Description

This command is used to display a list (array) variable within a window at the
workstation, then waits for the operator to select an item from the list.

Syntax
ListInput row, column, list_size, array_variable, input_variable, \
prompt_expression[{output_specifier}]

ISL Commands

Table 80 Listinput Command Arguments

Argument Description

row The integer expression specifying the screen row
within the defined window where the first
array_variable entry will be displayed.

column The integer expression specifying the screen
column within the defined window where
the first array_variable entry will be

displayed.
list_size The number of array_variable entries to display.
array_variable The name of the user_variable that holds

the matrix of values to be displayed.

input_variable Anarray_variable or user_variable that accepts
user input.
prompt_expression An expression displayed on the prompt line,

usually to instruct the user what to enter; it
may be one of the following:

e user_variable

o system_variable
¢ constant

» string

e function

e equation

{output_specifier} One or more of the output_specifiers that
determine the format of the output fields;

see full definition beginning on page 8-6.

Remarks

o The Window command must precede this command.

« Each list entry is displayed with a selection number starting at 1. The selection
numbers 1 to 9 are preceded by a space. Selection numbers are followed by a
period, then a space, then the list entry. For this reason, the window drawn must
be at least four columns wider than the longest item in the list. Each list entry is
placed on a separate line. The user’s entry is placed in the input_variable and is
validated against the number of items in the list.

o The prompt_expression is required.

« Itis acceptable to set list_size equal to 0, but if this is done, nothing will display. If
the list_size is less than zero, an error will occur.

ISL Commands 8-73

8-74

Example

The following script receives and displays a list of guests from the PMS, allows the user
to choose one from the list, and then transmits the user’s choice to the PMS for further

processing:

event rxmsg : room_inquire
var rm_guest[14] : a20 //Quest names array
var rm_num : a6 //Room number
var list size : n3 //Number of array items
var user_choice - n3 //Quest number user chooses
rxmsg rm_num, list size, rm _guest[] // receive message from POS

window list size, 24, “Guests- Room #’, rm_num
listinput 1, 1, list size, rm _guest, user_choice, “Choose a guest”

txmsg “‘guest inquiry”, rm_num, user_choice
//Ask for info from PMS
waitforrxmsg // on guest user chooses
endevent
See Also

Window command

ListinputEx

Description

This command is used to display a list and get an operator selection. This command is
the same as ListInput, but it does not provide a WROW or WCOL variable.

Syntax

ListInputEx row, column, list_size, array_variable, input_variable, \
prompt_expression[{output_specifier}]

Remarks

o The Window command must precede this command.

» Each list entry is displayed with a selection number starting at 1. The selection
numbers 1 to 9 are preceded by a space. Selection numbers are followed by a
period, then a space, then the list entry. For this reason, the window drawn must
be at least four columns wider than the longest item in the list. Each list entry is
placed on a separate line. The user’s entry is placed in the input_variable and is
validated against the number of items in the list.

o The prompt_expression is required.

« Itis acceptable to set list_size equal to 0, but if this is done, nothing will display. If
the list_size is less than zero, an error will occur.

Example

The following script receives and displays a list of guests from the PMS, allows the user
to choose one from the list, and then transmits the user’s choice to the PMS for further

processing:
event rxmsg : room_inquire
var rm_guest[14] : a20 //Quest names array

ISL Commands

ISL Commands

var rm_num - a6

var list _size : n3

var user_choice : n3

rxmsg rm_num, list_size, rm_guest[]

//Room number

//Number of array items
//Quest number user chooses
// receive message from POS

window list size, 24, “Guests- Room #’, rm_num
listinputex 1, 1, list_size, rm_guest, user_choice, ‘““Choose a guest”

txmsg “‘guest inquiry”, rm_num, user_choice

waitforrxmsg
endevent

See Also

ListInput and Window command

ListPrint

Description

//Ask for info from PMS
// on guest user chooses

This command will print a list on the selected printer.

Syntax
ListPrint list_size, array

Table 81 List Print Command Arguments

Argument Description
list_size The number of array_uvariable entries to be
printed.
array_variable The name of the user_variable that holds
the matrix of values to be printed.

Remarks

o The StartPrint and EndPrint commands are required when using the ListPrint

command.

o Itisacceptable to set list_size equal to 0, but if this is done, nothing will display. If
the list_size is less than zero, an error will occur.

Example

The following script receives a list of directions from the PMS that describes how to get
from the property to another location and prints them at the UWS’s check printer:

event rxmsg : directions

var directions[50] : a35
var list _size : n3
rxmsg list size, directions[1
startprint @CHK
listprint list size, directions
endprint
endevent

//Cur direction array
//Number of array items
//Here’s the message from PMS
//Print at the check printer
//Print the list

8-75

See Also

StartPrint and EndPrint commands

LoadDbKybdMacro

Description

This command loads a keyboard macro that is pre-defined in the Simphony database.
The macro will execute when transaction processing successfully resumes.

There is another keyboard macro command available: LoadKybdMacro, which uses a
script-defined keyboard macro.

Syntax
LoadDbKybdMacro numeric_expression

Table 82 LoadDbKybdMacro Command Arguments

Argument Description

numeric_expression An expression that requires a number; it may
be one of the following:

e user_variable
o system_variable

e constant

o string
o function
o equation

Remarks
o The macro is referenced by its object number.
o Only integer variables can be used to run a pre-defined macro.

» If more than one LoadDbKybdMacro command is used in the same event, only
the last command will be used when transaction processing resumes.

Example

The following script will load a macro from the Simphony database that will add two
menu items to a guest check currently open at the workstation:
event ing : 1

loaddbkybdmacro 1
endevent

See Also
LoadKybdMacro command

8-76 ISL Commands

LoadKybdMacro

Description

This command passes keystrokes to the workstation; these keystrokes will be executed
when the script event terminates. There are a variety of ways to specify script-defined
macros, as listed and described below.

Syntax
LoadKybdMacro key_expression|, key_expression,...]

ISL Commands 8-77

Table 83 LoadKybdMacro Command Arguments

Argument Description

key_expression An expression that can be one of the following;:

o key_type:key_number

o Key function

Remarks
» For pre-defined database macros, see LoadDbKybdMacro.

o A script-defined macro is one that the script writer constructs using key function
codes. These key function codes can be represented by any combination of the
following methods:

» Key pairs—A key_pair in Simphony is designated by the key_type and a
key_number separated by a colon. For example, the number 1 on the numeric
keypad is represented by the key_pair 9 : 1, where 9 (the key_type) represents the
Keypad and where 1 (the key_number) represents Numeric 1. Therefore, one way
to load 123 and the [Enter] key would be:

loadkybdmacro 9:1, 9:2, 9:3, 9:12

o The Key function takes as its argument a key_pair separated by a comma and
returns a key function code. This comma-separated key_pair could be represented
by two comma-separated variables. Key function - The Key function takes as its
argument a key_pair separated by a comma and returns a key function code. This
comma-separated key_pair could be represented by two comma-separated
variables.

For example:

var key type : Key = 9
loadkybdmacro key(key type, 1), key(key type, 2),\

key(key_type, 3), 9:12

o @KEY... System Variables—System Variables that begin with @KEY... are special
key type variables. These keys can be used to test for and represent movement
keys and keys like [Enter] and [Clear]. The @KEY... System Variables can also be
used in the LoadKybdMacro command.

To continue the example:
loadkybdmacro 9:1, 9:2, 9:3, @KEY_ENTER

o User-defined variables with the type Key — User-defined variables with the type
Key can be assigned key function codes using the Key function or with @KEY...
System Variables. Another way to load the keyboard macro:

var key 1 : Key //Declare variables as
//Key types

var key 2 : Key var key 3 : Key var Enter : Key

key 1 = key(9,1) //Assign them with
//key(Qfunction

key 2 = key(9,2) key 3 = key(9,3)

Enter = @KEY_ENTER // and system variable

loadkybdmacro key 1, key 2, key 3, Enter

8-78 ISL Commands

ISL Commands

o If more than one LoadKybdMacro command is used in the same event, they will
be run in order of appearance when transaction processing resumes, as if they
were one large macro.

» Macro keys will remain defined during script processing and will execute once a
script is complete, not when an event is complete.

Example

In the following script, there will be three [Enter] keys that will be run once the script
completes:

event inq:1
loadkybdmacro @KEY_ENTER //Tirst enter key
txmsg ''ing_1_request’
waitforrxmsg

endevent

event rxmsg : ingq_1_reply
loadkybdmacro @KEY_ENTER //second enter key
txmsg ''ing_2_request’’
waitforrxmsg

endevent

event rxmsg : ingq_2_reply
loadkybdmacro @KEY_ENTER //third enter key
endevent

See Also
» LoadDbKybdMacro command; Key function
» “Key Types, Codes, and Names”

LowerCase

Description

This command is used to convert a string variable to lower-case.

Syntax
LowerCase string_variable

Table 84 LowerCase Command Arguments

Argument Description

string_variable The string that will be changed; can be any
user_variable (string).

See Also

UpperCase command

MakeAscii

Description

This command will transfer the data from a source_string into a destination_string,
stripping out any non-ASCII or non-printable characters from the source_string.

8-79

Syntax

MakeAscii source_string, destination_string

Table 85 MakeAscii Command Arguments

Argument Description
source_string A string_variable containing both ASCII and
non-ASCII characters.
destination_string A place holder for the string_variable containing
only ASCII characters.
Example

The following script will convert a string containing both ASCII and non- printable
characters into a string that contains only ASCII characters:

event inq : 1
var stringl : A20
var string2 : A20

format stringl as “ABC”, chr(1), “DEF”
makeascii stringl, string2 //string2 will be “ABCDEF”

MakeUnicode

Description

This command will transfer the data from a source_string into a destination_string,
stripping out any non-printable characters from the source_string.

Syntax
MakeUnicode source_string, destination_string

Table 86 MakeUnicode Command Arguments

Argument Description

source_string A string_variable containing non-
printable characters.

destination_string A place holder for the string_variable
Containing only non-printable characters.

Example
The following script will convert a string containing non-printable characters into a
string that contains only printable characters:

event inq - 1
var stringl : A20
var string2 : A20

113 111

format stringl as
makeunicode stringl, string2 //string2 will be “MAP”

Remarks
This command is only available on SAR Ops

8-80 ISL Commands

ISL Commands

Mid

Description

This command is used to set all or some part of one string variable equal to another

string variable.

Syntax

Mid (string_variable, start, length) = replacement_string

Table 87 Mid Command Arguments

Argument

Description

string_variable

The string that will be changed; can be any
User_variable (string).

start The character position within the
string_variable, where the replacement_string
will begin to overwrite.

length The number of characters in the string_variable

that will be changed using the
replacement_string to the right of the equal sign.

Required by syntax.

replacement_string

The string containing the characters used for
the replacement can be any user_variable
(string).

Remarks

« The parentheses are required.

o The first character in the string is always 1. If the start or length is less the 0, then

an error will occur.

o If the start is greater than the string_variable itself, no data will be assigned. If the

length is greater than the room left to assign the string_variable, then the data will

be truncated.
var string : AlO

string = “this short”

// In this command, the length exceeds room left.

// Only first 5 letters of (“long string™”) are used,
// overwriting the last five characters of string.

// 1In this operation, string would become “this long™.

mid(string, 6, 10) = "long string"

// 1In this command, this starting position is greater
// than length of string.

// 0 characters are overwritten.

mid(string, 25, 10) = "long string"

e Do not confuse this command with the Mid function.

8-81

8-82

Example

The following script will replace the first three letters of the variable “string” with the
string “NEW”:
event inq - 1

var string: al0 = “OLD STRING”

waitforclear string //Prompt will show “OLD STRING”
mid(string, 1, 3) = “NEW”’ //Change OLD to NEW
waitforclear string //Prompt will show “NEW STRING”

endevent

MSleep

Description

This command tells the script to sleep for the requested number of milliseconds.

Syntax
MSleep milliseconds

Example
event inq:2

var seconds:N5

input seconds, "Enter number of seconds to sleep' prompt '‘Sleeping"
msleep seconds*1000

waitforenter ""Done waiting "', seconds*1000, " seconds."
endevent

PopUplsITs

Description
This command displays a pop-up touchscreen defined by the SetIsITsKey command.

Syntax
PopUplslITs

Remarks

After a touchscreen has been displayed, its keys remain defined until cleared by the
ClearIslTs command.

Example

The subroutine below first clears any previously defined touchscreen keys and displays
two touchscreen keys, [YES] and [NO], which are defined by the SetIsITsKey command.
This subroutine displays these keys using the PopUpIslTs command, as the operator is
issued a prompt by the system, and captures the operator’s input.

sub get_yes or_no(ref answer, var prompt s:A38)
var keypress : key
var data : A20

clearislts

ISL Commands

ISL Commands

setisltskey 2,
setisltskey 2,

popupislts

KEY_ENTER, "YES"

@
@KEY_CLEAR, "NO™

inputkey keypress, data, prompt_s
if keypress = @KEY_ENTER

answer = 1

else

answer = 0

endif
endsub

See Also

ClearIslTs, DisplaylslTs, and SetIslTsKey commands

PrintLine

Description

This command prints a line on the selected printer defined in the StartPrint command.

The print information can be provided as text or by referencing a variable field.

This command may also be used to print Binary Data (used to output information such
as barcodes, rotated text, emphasized print, etc.) from within a SIM Script.

Syntax

PrintLine expression[{output_specifier}] or directive\ [, expression[{output_specifier}] or

directive]...]

Table 88 PrintLine Command Arguments

Argument Description
expression An expression that represents the string to
be printed: it may one of the following:

e user_variable
o system_variable
e constant
o string
o function
o equation

directive Specific instructions that affect the color,

width, and justification of the printed

characters; see full definition on page 6-5.

{output_specifier}

One or more of the output_specifiers that
determine the format of the output fields;
see full definition beginning on page 8-6.

8-83

Remarks

« This command will affect the printer selected using the StartPrint command. For
a complete list of available printers, see the table provided in the detail
description of the StartPrint command.

» If printing was started using the StartPrint command, then only the first 32
characters in the PrintLine command are significant.

o The PrintLine command sends a carriage return/line feed to the printer after
every line.

e The PrintLine command may be used to format characters to a certain position
(for example, left, right, or center justified). See Using Format Specifiers.

o Control characters can be printed on the PrintLine using the Chr function. For
example, one can send a command to print a section of a line in emphasized
style. The IBM proportional control code ESC 69 turns emphasized print on, and
ESC 70 turns emphasized print off:
printline “A line with ““, chr(27), chr(69), “emphasized”\

“print’, chr(27), chr(70), “ on it.”

The only control code not printable using the Chr function is the ASCII 0 (NUL). To

print a NUL, use the following sequence:
chr(16), chr(48)

o For example to output Binary Data, the following script sends 3 lines of text to
the printer connected to the PCWS, and will send the proper control codes for
turning on emphasized print for the 2nd line. Note the emphasize on/ off codes
are on the same line.

startprint @chk
printline "This is a normal line"
printline chr(27), "E1", "This is emphasized", chr(27), "EO"
printline "This is back to normal*
endprint
» The workstation application will decode the binary data, and pass it through to

the printer.

» ‘Binary data’ or ‘control codes’ are all ASCII characters below 32 (20 hex). For
example, chr(31) is a control code, but chr(32) is not a control code. All characters
from 32 to 255 are considered printable characters.

« One exception to the control code format is that ASCII NULs cannot be printed
using chr(0). If a chr(0) needs to be printed, then the system variable @nul should
be used instead. For example:
printline chr(27), "E", @nul, "Normal print"

Only 32 printable characters can be sent on one line. However, 48 characters can be
placed on the line. Each control character requires 2 characters.

Therefore, only 24 control codes can be placed on one printline (24 x 2 => 48).
However, non-control codes require only one character. Since not all printer
commands are all composed of binary data, this limitation should not present a
problem.

o When using the SIM Print_Header or Print_Trailer commands (see page 8-37, the
control codes will also be formatted properly to the printer when SIM provides
the data using the @header[] and @trailer[] system variables. Though each line is

8-84 ISL Commands

supposed to have 32 characters of data, up to 48 characters can be formatted.
However, the rule that each control code requires two characters is still in effect.

Example

The following script constructs and prints a date string bordered by hash marks at the
workstation’s check printer:

sub print_date
var date : a9
var hash_mark : a24 //Use format to build a date
// string
format date as @DAY, “-”’, month_arr[@VONTH], “-”, @QYEAR

setstring hash_mark, “="
startprint @CHK //Print what follows at this UNS
// check printer
printline hash mark //Print the date string
printline @DWON, @REDON, date{=16}// double-wide, in red
printline hash mark // and centered between
// hash marks
endprint
endsub
See Also

StartPrint command and the Chr function

PrintSimFeatures

Description

This command is used to print out all SIM features available in the current SIM engine.

Syntax
PrintSimFeatures printerObjectNumber

Remarks

o The output will contain all commands, system variables, and functions.

Example

event inqg:1
PrintSimFeatures 3

endevent

Prompt

Description

This command is used to display an operator prompt on the prompt line at the
workstation.

Syntax
Prompt expression[{output_specifier!] [, expression\ [{output_specifier}]...]

ISL Commands 8-85

8-86

Table 89 Prompt Command Arguments

Argument Description

expression An expression that represents the prompt for

the user: it may one of the following:

user_variable
system_variable
constant

string

function

equation

{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6.

Remarks

o The combined length of all expressions must not exceed 38 characters (including
spaces); extra characters will be truncated.

o The Prompt command should only be used when a time-consuming piece of
code is to be executed. This command will inform the user that the UWS is busy.
All commands that require user input display their own prompts.

prompt *'Posting unsuccessful™

// displayed but erased immediately

waitforclear

// "Press clear to continue™ will display

Example

The following script receives a list of guests from the PMS, calls a subroutine that sorts
the list, then calls another that displays the list:

event rxmsg : guest _list
var num_guests : n3
var guest_list[100] : a20

rxmsg num_guests, guest_list[]

//Cet the guest array from PMS

prompt “Sorting guest list - please wait...”"//Tell the user

call sort list

call display_guests
endevent

ProRate

Description

//Call routine that sorts the list

//Call routine that displays the list

This command is used to indicate to the system that prorated itemizers are to be used.
Prorated itemizers are required for some Property Management Systems.

ISL Commands

ISL Commands

Syntax
ProRate

Remarks

The

If the ProRate command is encountered either inside or outside an Event
procedure, all itemizers will be prorated for the duration of the ISL script. The
following system variables are prorated:

@SI[]

@DSC

@SsvVC

@AUTOSVC

@TAX]]

Refer to ISL System Variables for more information.

Prorated itemizers are useful if the PMS is posting sales, discounts, tax, etc.
during the charge posting operation. When prorated totals are used, the totals
reflect the Current Payment’s share of a guest check. If the Current Payment is
voided, the totals will have the reversed polarity to reflect this. The only
exception (for example, the total that is not prorated) is a charged tip, which will
always be completely attributed to its associated payment. This mode is
supported by Simphony.

following equations can be used by the PMS PC to determine the Current

Payment Total of the prorated transaction being posted:

Current Payment Total = + (+) Sales 1 Total

+ (+) Sales 2 Total
+ (+) Sales 3 Total
+ (+) Sales 4 Total
+ (+) Sales 5 Total
+ (+) Sales 6 Total
+ (+) Sales 7 Total
+ (+) Sales 8 Total
+ (+) Sales 9 Total
+ (+) Sales 10 Total
+ (+) Sales 11 Total
+ (+) Sales 12 Total
+ (+) Sales 13 Total
+ (+) Sales 14 Total
+ (+) Sales 15 Total
+ (+) Sales 16 Total
+ (-) Discount Total
+ (+) Service Charge Total (kybd)
+ (+) Service Charge Total (auto)

8-87

8-88

+ (+) Tax 1 Total (if non-VAT)
+ (+) Tax 2 Total (if non-VAT)
+ (+) Tax 3 Total (if non-VAT)
+ (+) Tax 4 Total (if non-VAT)
+ (+) Tax 5 Total (if non-VAT)
+ (+) Tax 6 Total (if non-VAT)
+ (+) Tax 7 Total (if non-VAT)
+ (+) Tax 8 Total (if non-VAT)
The Previous Payment Total is also provided.

In some jurisdictions, the prorated calculations will result in inexact tax totals. This
occurs because of rounding errors associated with proration and the methods required to
compute tax. As an example, consider three guests paying a $10.00 check which includes
$1.00 tax. The first two guests will be charged

$0.33 tax and the third $0.34 tax (the rounding adjustment is included in the last total).
These situations are unavoidable; if complete accuracy is required, a Split Check
operation should be performed and the remaining checks (after the Split Check) should
be individually posted to the PMS.

Notes:

o If Value Added Tax (VAT) is used, the tax totals represent the total sales
amounts (inclusive of VAT) for each of the VAT tax types and must not be
included in the Transaction Total or Current Payment Total equations.

o Innon-prorated mode, if the Current Payment Amount field in the message data
block is less than the computed Transaction Total (above), then a partial amount
has been tendered.

o If US. inclusive tax is used, the tax total associated with this rate will be zero.

[Retain/Discard]GlobalVar

Description

These commands instruct the ISL to save all global variable values in between
transactions, or to discard them.

Syntax
RetainGlobalVar or DiscardGlobalVar

Remarks

« These commands are global, which means they remain in effect until the
alternative command is used or until the script file has been changed (for
example, until the script file is opened for edit and closed).

o The default action is to discard the global variable values after each event.

Example

The following example could be used to count the number of times Tender #1 has been
used. This value will be retained and incremented until the script is changed.

ISL Commands

ISL Commands

retainglobalvar

var numtnd : n5 //Numtnd is retained until POS
// Operations is Shut Down or
// Reloaded.

event tmed : 1

numtnd = numtnd + 1

endevent

Return

Description

This command is used to return from a subroutine procedure prior to reaching the end of
the routine (EndSub). It is provided as a means of breaking out of the subroutine under
certain conditions.

Syntax

Return

Remarks

The Return command is not allowed in an Event procedure.

Example

The following example shows a subroutine that takes as arguments the file number of an
open file and a search number. It tests the first field in each line for a number that matches
the search number. If a match is found, the subroutine Returns without executing the rest
of the commands in the subroutine. If no match is found before the end of file is
encountered, the subroutine exits normally.

sub finfnd_obj(ref fn, ref search num)
var current_position : n6
var found num : n6
prompt "'Searching, please wait..."

while not feof(fn) //Loop until end
// of file encountered
current_position = ftell(fn) //Cet the current
// file pointer position
fread fn, found num, * //Fread the first field
// only from the file
if found_num = search_num // if it matches
// what user entered
fseek fn, current position //Fseek to the beginning
// of the line
return // exit the subroutine
endif
endwhile
errormessage "‘Can"t find that number™ //1f end of file
// is encountered then
search_num = 0 // we didn"t find a
// match, tell user, set
endsub // search _num = 0,

// and return

8-89

8-90

See Also
If, Sub, and While commands

ReTxMsg

Description

This command retransmits a message. When used in place of the TxMsg command, the
retransmit flag is set to “R” and the sequence number is not incremented.

Syntax
ReTxMsg

Remarks

This command should only be used with the UseISLTimeOuts command.

See Also

UseISLTimeOuts command

RxMsg

Description

This command defines the format of the data segment of an interface response message
by specifying a variable name for each piece of data it receives. The RxMsg command
will assign the values in the Applications Data Segment of the variables specified in the
RxMsg statement.

Syntax

RxMsg user_variable or list_spec[, user_variable or list_spec...] or RxMsg _Timeout

Table 90 RxMsg Command Arguments

Argument Description
user_variable A user_variable which will be assigned data.
list_spec is defined as: A user integer variable containing the
number_records number of records to be built from this
string.
field_array[:field_array] An array_variable that will hold one field per
record; field can be split into more than one
array by separating the array_uvariables using a
colon (:).

Remarks

o The Event RxMsg command is executed when a response is received from the
interfaced system. The Event must contain an RxMsg command. The first field in
a response message is always the Event ID and should not be declared using this
command. The RxMsg command defines all the fields (and their order)
following the Event ID field. The interface message fields are always separated

ISL Commands

ISL Commands

by an ASCII field separator character (ASCII 1CH). The variable fields must have
been previously declared using the Var command.

o The user_variable can be up to 255 characters in length and must begin with a
letter A - Z, a - z, or the underscore character (_). It may include any character in
the range A - Z, 0 - 9, and the underscore character.

o If the System Variable @STRICTARGS is set to 1, then ISL will ensure that the
variable count in the RxMsg command matches the number of fields in the file
record. If an incorrect number of fields is specified in the statement or the file is
corrupted, an error message will be generated.

o This Event requires that both the TxMsg and WaitForRxMsg commands be used
in another event in the script for the RxMsg command to work.

o If the UseISLTimeOuts command is used and the PMS does not respond to an
ISL message within the timeout period, the ISL will search the script for an
RxMsg event with an Event ID of _Timeout. If _Timeout is found, ISL will
bypass the standard Simphony error messaging and process a user-defined ISL
instruction in its place.

o If the RxMsg command specifies more variables than are present in the
applications data segment, no error will occur. The extraneous variables on the
command will retain their previous value. If the number of fields in the
Applications Data Segment exceeds the number of variables in the RxMsg
command, no error will occur. The command will execute successfully and the
extraneous data in the message will be thrown away.

« Itisnot possible to execute an RxMsg if no message has been received. It is also
not possible to execute multiple RxMsg commands within one RxMsg Event.
Once the first RxMsg command executes, any subsequent RxMsg command will
cause an error.

o This command is related to the Split command. While the Split command works
with any string buffer and any field separator, the RxMsg command assumes the
PMS message and the ASCII field separator character.

Example
event inq : 1
var room _num : a4
input room_num, “Enter Room Number”
waitforrxmsg
txmsg @CKEMP,@CKNUM,@TNDTTL, room_num
endevent
event rxmsg : charge_declined
var room _num : a4
rxmsg room_num
exitwitherror “Charge for room
endevent

, room _num,”” declined”

See Also
Event, Split, TxMsg, UseISLTimeOuts, Var, and WaitForRxMsg commands

8-91

8-92

SaveChkinfo

Description

This command saves a type of check detail known as check information detail lines in the
Guest Check files.

Syntax

SaveChklInfo expression[{output_specifier}[, expression\ [{output_specifier}]]...]

Table 91 SaveChkiInfo Command Arguments

Argument Description

expression An expression that represents the information

to be saved; it may be one of the following:
e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6.

Remarks

Like other types of guest check detail, such as totals and definitions, guest check
information detail lines are only stored in the Guest Check files (stored in
workstations) temporarily and cleared upon closing a guest check. As a
consequence, this detail only has short-term value unless it is also written to a
third-party database or to Closed Check files.

Closed Check Files: Once stored in these files, guest check information detail can
be exported to an ASCII comma-separated file using the Simphony Data Access
Service or check detail can be written to a file using the ISL file I/O operations.
Then, an external program can be created to extract this information from these
files and manipulate the information for a variety of purposes.

Third-party System: If this information is captured by a third-party system, like
a delivery system, accessing the information depends on the resources of that
particular system.

The SaveChkInfo command is issued once for each line of check information
detail written to the check. The process goes like this:
The first occurrence of SaveChkInfo in an event writes to the first check

information detail line.

Each subsequent call to SaveChkInfo writes to the next check information detail
line.

ISL Commands

« Check information detail is not actually written to the check detail until the script
terminates.

o Check information detail can be overwritten by using SaveChkInfo in another
event.

How to Capture and Print Check Information Detail

Introduction
Both SIM and Simphony must be used in the following ways to accomplish these tasks:

o A SIM script must be designed to collect and save the check information detail,
and

o Specific Simphony programming must be enabled to print and display the check
information detail to the specifications of the establishment.

Designing the SIM Script

The SIM must be used to capture and save check information detail. That is, the script
must be designed so that an operator can input check information detail and save it, if
necessary, from the System Unit.

When designing the script, keep the following rules in mind:

+ Rule: Do not issue SaveChkInfo in a single event more times than the number of
allocated check information detail lines; doing so will result in an error.
e Rule: Only 24 characters per check information detail line may be written with
SaveChkInfo.
The following steps are the sequence of events that the script might execute in order to
capture and save check information detail:
1. Begin a check.
Draw a window.

2
3. Prompt the operator to enter name and address information.
4. Issue the SaveChkInfo command to save the input data.

Programming the Simphony Database
Whether check information detail lines will print and where they will print on guest
checks and remote output is determined by specific Simphony database programming,
not the script. In order to print this detail and save it in the Guest Check file:

o Check information detail lines must be allocated in Simphony

e Programmed to print

For example, one can program the Simphony to print the check information detail
captured above or after the guest check header, or after the guest check trailer. In the
example of the delivery system, the restaurant programmed the check information detail
lines to print before the guest check header.

ISL Commands 8-93

8-94

Operational Considerations

Voiding Check Information Detail

Unlike other types of check detail, check information detail cannot be voided from a
check using any Simphony void procedures or modified using the Edit Closed Check

function.

Example

The ISL event below initiates a procedure for collecting and saving the following
customer information for a fictional delivery system at a restaurant: last and first name,

telephone number, street address, and up to four lines for directions.

event ing : 1

var field _name[8] : a24

var customer_info[8] : a24
field_name[1] = "Last: "
field_name[2] = "First: "
field_name[3] = "Phone: "
field_name[4] = "Addr: ™
field_name[5] = “D1: “
field_name[6] = “D2: “
field_name[7] = “D3: “
field_name[8] = “D4: “

var rowcnt - n3

window 8, 40

touchscreen 13

for roncnt = 1 to 8
display rowent, 2, field name[rowcnt]
displayinput rowcnt, 10, customer_info[rowcnt],\
“"Enter "', field_name[rowcnt]

endfor

windowedit

for rowent = 1 to 8

savechkinfo customer_info[rowcnt]

endfor

waitforclear

windowclose

touchscreen 3

endevent

See Also
ClearChkInfo command

SaveRefInfo

Description

This command is used to save the contents of an expression as part of tender reference

information.

Syntax

SaveRefInfo expression[{output_specifier}ll, expression\ [{foutput_specifier}]]...]

ISL Commands

Table 92 SaveRefInfo Command Arguments

Argument Description

expression An expression that represents the information
to be saved; it may be one of the following:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;

see full definition beginning on page 8-6.

Remarks

o The SaveRefInfo command will only work with the Event Tmed procedure.
o Every time this command is used, a new reference line is created.

» Up to eight references may be saved with each tender and each may be up to 19
characters long. Text or fields greater than 19 characters will be truncated.

Example

The following script allows a user to enter delivery information on a To Go check:
event tmed : 10

ISL Commands

var rowcnt - n3
var deliv_desc[6] : al5
var deliv_info[6] : a20
var cnt : n3
deliv_desc[1] = “Name:”
deliv_desc[2] = “Company:”
deliv_desc[3] = “Address 1:”
deliv_desc[4] = “Address 2:”
deliv_desc[5] = “City:”
deliv_desc[6] = “Phone:”
//Display a window with address
// prompts, and accept delivery
// info from user
window 6, 43
for rowent =1 to 6
display rowent, 2, deliv_desc[rowcnt]
displayinput rowcnt, 13, deliv_info[rowcnt], “Enter ““, deliv_desc[rowcnt]

endfor

windoweditwithsave //1nput can only be terminated
// by cancel or save

saverefinfo “DELIVER TO:” //Save this line to check detail

forcnt =1 to 6 //1f user made an entry on a

// line, save
// the entry to check detail

if len(deliv_info[cnt]) > 0 AND deliv_info[cnt] <> “

saverefinfo deliv_info[cnt]
endif

8-95

endfor
endevent

See Also

Event and SaveRefInfox commands

SaveRefInfox

Description

This command is used to save both the type and the contents of an expression as part of
tender reference information. SaveRefInfox requires the reference type as an argument
so that different types of reference detail can be distinguished if exported later.

Syntax
SaveRefInfox ref_type, expression[{output_specifier}][, expression\ [{output_specifier}]]...]

Table 93 SaveRefInfox Command Arguments

Argument Description

ref_type A type N3 integer that represents the
reference type; specify 0-255; 0 denotes no
reference type, as with SaveRefInfo.

expression An expression that represents the information
to be saved; it may be one of the following:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;

see full definition beginning on page 8-6.

Remarks
o The SaveRefInfox command will only work with the Event Tmed procedure.
o Every time this command is used, a new reference line is created.

» Up to eight references may be saved with each tender and each may be up to 19
characters long. Text or fields greater than 19 characters will be truncated.

Example

The following script allows a user to enter delivery information on a To Go check:
event tmed : 10

var rowcnt : n3

var deliv_desc[6] : al5

var deliv_info[6] : a20

var cnt : n3

8-96 ISL Commands

deliv_desc[1] = “Name:”
deliv_desc[2] = “Company:”
deliv_desc[3] = “Address 1:”
deliv_desc[4] = “Address 2:”
deliv_desc[5] = “City:”
deliv_desc[6] = “Phone:”

//Display a window with address
// prompts, and accept delivery
// info from user
window 6, 43
for rowent =1 to 6
display rowent, 2, deliv_desc[rowcnt]
displayinput rowcnt, 13, deliv_info[rowcnt], “Enter “,
deliv_desc[rowent]

endfor
windoweditwithsave //Input can only be terminated
// by cancel or save
saverefinfox 15, “DELIVER TO:” //Save this line to check detail for cnt = 1
to 6 //1T user made an entry on a
// line, save
// the entry to check detail
if len(deliv_info[cnt]) > 0 AND deliv_info[cnt] <> “
saverefinfox 15, deliv_info[cnt]
endif
endfor
endevent
See Also

Event and SaveRefInfo commands

SetlsITsKey

Description

This command defines a key to be displayed on a touchscreen, allowing one to define a
key that normally would be programmed in the Touchscreens module.

Syntax

SetIslTsKey row, col, num_rows, num_cols, font, \key_expression, expression

Table 94 SetlsTSKey Argument

Argument Description
row Integer expression defining row coordinate
of key (1-6).
col Integer expression defining column

coordinate of key (1-10).

num_rows Integer expression defining the key height
in rows (1-6).

num_cols Integer expression defining the key width
in columns (1-10).

ISL Commands 8-97

8-98

Argument

Description

font

Font size integer expression (1-3).

key_expression

Key value to be returned when this key
is pressed; it may be one of the
following:

Key function

user_variable (type Key only)
system_variable (@KEYS only)

expression Descriptor to appear on the key as it is
displayed; it may be one of the following;:
o user_variable
o system_variable
e constant
o string
o function
o equation
Remarks

» Up to nine keys may be defined with the SetIslTsKey.

« Any previously defined touchscreen keys are automatically cleared each time a
script executes. However, if two or more touchscreens are defined within an
event, the ClearIslTs command must be used to clear the touchscreen keys.

Example

The subroutine below first clears any previously defined touchscreen keys and displays
two touchscreen keys, [YES] and [NO], which are defined by the SetIsITsKey command.
This subroutine displays these keys as the operator is issued a prompt by the system and

captures the operator’s input.

sub get_yes or_no(ref answer, var prompt _s:A38)

var keypress : key
var data : A20

clearislts

setisltskey 2, 2, 4, 4,
setisltskey 2, 6, 4, 4,
displayislts

, @OKEY_ENTER, "YES"
@

KEY_CLEAR, "NO"

inputkey keypress, data, prompt_ s

if keypress = @KEY_ENTER

answer = 1
else
answer = 0
endif
endsub
See Also

ClearIslTs, DisplaylIslTs, and PopUpIslTs commands

ISL Commands

SetReRead

Description

This command allows OPS to re-read the ISL script for new or changed ISL scripts.

Syntax
SetReRead

Remarks

« Previously, OPS would always check if an ISL script had changed before
processing the event. Now that many more events have been added,
continuously checking file status would be an unnecessary strain on system
resources, especially since this feature is used only for debugging scripts.

o The ISL script will also be reread if /micros/simphony/etc/isl.reread is present
when POS Operations is started.

SetSignOn|[Left/Right]

Description

These commands determine where ISL places the minus sign when formatting numbers.

Syntax
SetSignOnLeft or SetSignOnRight

Remarks
« This is a global command.

o By default, ISL puts the minus sign to the right of the number being displayed
(for example, -45 will display as “45-"). If this is not acceptable, then executing
the SetSignOnLeft command will cause ISL to format all numbers with the
minus sign on the left.

REMEMBER: Using the SetSignOnRight or SetSignOnLeft command does NOT
change the way ISL reads input data. Any external data read and interpreted by ISL,
such as received messages, file read operations, and operator input, must have the
negative sign on the left-hand sign of the value.

For example, if the ISL script prompted for an amount entry, and the operator
entered 1.23-, the value would not be accepted as positive. Any negative PMS entries
must have the sign on the left side of the field.

Example
event inq - 1

waitforclear -123 //will display “123-” by default
setsignonleft
waitforclear -123 //will display “-123~
setsignonright
waitforclear -123 //will display “123-~

endevent

ISL Commands 8-99

8-100

SetString

Description

This command will replace all, or a specific number of, characters in a string with a

particular character.

Syntax
SetString main_string, character_string[, count]

Table 95 SetString Command Argument

Argument Description

main_string The string in which characters will be

replaced; it can be any string_variable.

character_string A string whose first character will be used to

o string
o function

o equation

of the following;:
e user_variable
o system_variable

e constant

replace characters in main_string; it may be one

count Optional count of characters to set the

main_string to. If not specified, the entire
main_string will be replaced with the first
character of the character_string.

Example

The following script constructs and prints a date string bordered by hash marks at the

workstation’s check printer:

sub print_date
var date : a9
var hash mark : a24

//Use format to build a date

// string

format date as @DAY, “-”, month_arr[@MONTH], “-”, @QYEAR

setstring hash_mark, “="
startprint @CHK

printline hash _mark
printline @DWON, @REDON, date{=16}
printline hash _mark

endprint
endsub

//Print what follows at this UANS

// check printer
//Print the date string
// double-wide, in red
// and centered between
// hash marks

ISL Commands

ISL Commands

Split
Description

This command is used to split a field-separated string into separate variables.

Syntax
Split string_to_split, field_sep_char, user_variable or list_spec \ [, user_variable or list_spec...]

Table 96 Split Command Argument

Argument Description
string_to_split The field-separated string to split.
field_sep_char The character used to the separate fields in the

string_to_split; use the Chr function to define
the character required.

user_variable A user_variable which will be assigned one of
the individual fields from the string_to_split.

list_spec is defined as: A user integer variable containing the number
number_records of records to be built from the string_fo_split.
field_arrayl: field_array] An array_variable that will hold one field per

record; a field can be split into more than one
array by separating the array_variables using a
colon (3).

Remarks

If the system variable @STRICTARGS is set to 1, ISL will ensure that the variable count in
the Split command matches the number of fields in the file record. If an incorrect number
of fields is specified in the statement or the file is corrupted, an error message will be
generated.

Example

The following example will assume the PMS has sent the guest name and room number
as one field. The name is separated by the room number with the [fs] character. Without
the Split command, the script would have to search through the field one character at a
time until the [fs] character was found. The Split command, however, will automatically
split the data into fields:

event rxmsg : guest
var name_and _room : a25
var name : a20
var room_number : n5

//Get the data as one field, and

//split it into 2 fields
name_and_room, “[fs]”, name, room_number

//Display data in window

window 5, 30, “Guest Inquiry”
display 2, @CENTER, name

8-101

display 4, @CENTER, room_ number
waitforclear
endevent

See Also

Format and SplitQ commands; Chr function

SplitQ

Description

This command is used to split a field-separated string into separate variables and strips
the quotes from the quoted string.

Syntax
SplitQ string_to_split, field_sep_char, user_variable or list_spec \ [, user_variable or list_spec...]

Table 97 SplitQ Command Arguments

Argument Description
string_to_split The field-separated string to split.
field_sep_char The character used to the separate fields in

the string_to_split; use the Chr function to
define the character required.

user_variable A user_variable which will be assigned one of
the individual fields from the string_to_split.

list_spec is defined as: A user integer variable containing the number
number_records of records to be built from the string_to_split.
field_arrayl: field_array] An array_variable that will hold one field per

record; a field can be split into more than one
array by separating the array_variables using a
colon (:).

Remarks

o The SplitQ command operates in the same way as the Split command, except
that it will strip quotes from quoted strings. The SplitQ command is generally
used to split lines from a file, where strings are usually quoted.

« If the system variable @STRICTARGS is set to 1, ISL will ensure that the variable
count in the SplitQ command matches the number of fields in the file record. If
an incorrect number of fields is specified in the statement or the file is corrupted,
an error message will be generated.

See Also

Format and Split commands; Chr function

8-102 ISL Commands

StartPrint...EndPrint[FF/NOFF]

Description

These commands are used to start and end a print session on any MICROS printer (as
opposed to a line printer). The StartPrint command is used to select the printer and start
the print session and the EndPrint command ends the print session. The Form Feed [FF]
and No Form Feed [NOFF] may also be used with the EndPrint command, depending on

the needs of the application and printer default.

Syntax

StartPrint printer_name|expression [, backup_dten [, reference_line]]

EndPrint [or EndPrintFF or EndPrintNOFF]
Table 98 StartPrint...EndPrint[FF/NOFF] Command Arguments

Argument

Description

printer_name

The object number of the printer.

expression

Any variable that contains the object number
of a printer in the system.

backup_dten

The object number for the backup printer that
overrides the backup printer programmed in
the database.

reference_line

The text string to be displayed in the printer
error window if an error occurs during.

Remarks

» The expression is defined using one of the ISL Printer system variables in the

following table:

Table 99 ISL Printer System Variables for StartPrint...

EndPrint[FF/NOFF]

ISLPriter Printer Vali |#of #of |Red FF Extende

Name Assign d char char Default | d Print
ment in Print |SW DW
Worksta er

@RCPT Custo Roll 32 16 Optional | Yes Yes
mer

@CHK Guest Roll 32 16 Optional | Yes Yes

ISL Commands 8-103

ISLPriter Printer Vali # of # of Red FF Extende

Name Assign d char char Default | d Print
ment in Print |SW DW
Worksta er
@ORDR# Order Roll 32 16 Optional Yes Yes
(where#is1 | (local or
- 15 referring | remote) KDS 19 No No No No
to the

appropriate
orderdevice)

@VALD Validation | Roll 32 16 Optional Yes Yes

» The physical printer is selected based on the workstation printer assignments in
the Simphony database. For example, when @CHK is selected, the ISL will pass
along the information to the Check Printer defined for the workstation, from
which the Event was initiated.

» In the case where a printer fails and a backup printer is programmed, the
printing session will notify the operator at the workstation that the printing
session has failed and the print session has been sent to the backup printer.

« Printing will not begin until the EndPrint command is executed. Each printer
will FormFeed or not, depending on its default characteristic (see table);
EndPrint will follow the printer’s default. Use either EndPrintFF or
EndPrintNOFF to force the opposite action.

o If single-wide printing is used, anything over 32 characters will be truncated. If
the @DWON Print Directive is used, anything over 16 characters will be
truncated.

o If the @REDON Print Directive is used with the @KDS device, the output will be
Bright. If the @REDON Print Directive is used with a printer, the correct type of
ribbon is required (black/red) for output to print in red.

« Note that only one print session may be active at any one time from the same
workstation.

POS Setup
To enable the printer, enter the Simphony database and verify that the printer:
« Isentered as a device in the Workstations module

o Has its object number entered as one of the printers in the Workstations module

Example

The following script allows a user to enter a 13 line message and print it at the kitchen
printer:
event ing : 1

var kitchen_msg[13] : a20

var sender_name : a20

var rowcnt : n3

var hash_mark : a24

window 14, 22 //Display the window

8-104 ISL Commands

displayinput 1, 2, sender_name, “Enter your name”
//Accept users name
//Have user input the message

for rowcnt = 1 to 13
displayinput rowent + 1, 2, kitchen msg[rowcnt], “Enter kitchen message”

endfor

windowedit //0nly save or cancel will
setstring hash_mark, “=" //end input

startprint @ordrl //Start the print job at

// remote printerl
printline hash_mark
printline “Message from “, sender_name
printline hash_mark
for rowcnt = 1 to 13
if len(kitchen msg[rowcnt]) >
printline kitchen_msg[rowcnt]
endif
endfor
printline “====—== END MESSAGE ===——==—=="
endprint
endevent

cece

See Also
e PrintLine command

o “ISL Printing”

Sub... EndSub

Description

These commands are used to declare the start and end of a subroutine. A subroutine may
be used by an event or another subroutine by using the Call command.

Syntax
Sub name [(Ref | Var parameter [, Ref | Var parameter]...)]

EndSub

Table 100 Sub...EndSub Command Arguments

Argument Description

name The subroutine name

Ref ISL keyword

Var Var command, see page 8-113.

ISL Commands 8-105

8-106

Argument Description

parameter A variable or expression passed from the

associated Call command; it may be one of the
following:

o variable by reference

» array by reference expression by value,
ie.,

o local_variable_name : [A, $, N]

Remarks

Each Sub command defines the number and type of parameters that can be
passed in. If the Call command has the incorrect number of arguments or the
incorrect type of arguments, an error will display.

Sub commands are not allowed within an event.

event inq : 1
sub // will display error

endsub endevent

Each subroutine has access to the calling event’s variables, all global variables,
and may declare their own local variables.

The name may be any length up to 255 characters and must begin with a letter A
-Z, a -z, or the underscore character (_). It may include any character in the
range A - Z, 0 - 9, and the underscore character.

Using Subroutines

ISL subroutines can be passed parameters in the same way as C, BASIC, or Pascal

subroutines. Data can be passed in by two methods: value or reference.

By Value

A parameter in a Sub command is considered to be by value if declared as a
normal ISL variable. Example:
sub get_name(var target name:A20, var target id:N5)

Both target_name and target_id are local variables which are assigned the value
passed in with the Call command. A Call command to call this subroutine could be:

call get name("'Smith", 145)

Any type of ISL expression can be passed in. For example:

call get name("'Smith", 145 + offset)
call get _name(user_input, elist[25])

The expression type (string, numeric,...) can be different from the one declared
in the Sub command. Example:

call get name("'Smith, "45")

The assignment of the expression to the subroutine parameter follows the same
rules when setting a variable in a normal assignment expression.

ISL Commands

ISL Commands

« Arrays cannot be passed in by value.

o When a variable is passed in by value (using the Var command in the Sub
statement), a copy is made of the variable and given the name specified in the
Sub statement. Any change made to a variable passed by value in a subroutine
does not affect the original value of the variable.

event ing : 1

var i : n5 =10 //Set i to 10
call mysub (1) //Pass in i by value
waitforclear “i = “, i //1 is still equal
// to 10
endevent

sub mysub (var j : n5)
jJ=20 //Change local copy,
// not the original
endsub

By Reference

o There are two types of data that can be passed in by reference: variables and
arrays. To pass either, the Ref variable is used in the Sub statement. No type
information is specified for the referenced variable.

For example, in the following line status is passed by reference, and
prompt_string is passed by value.
sub mysub(ref status, var prompt_string:A20)
The following example shows correct and incorrect ways to invoke mysub:

var result:N5
call mysub(result, "Enter data") // Correct
call mysub(result+l, "Enter data")
// Incorrect: "result+l® is not a variable.
call mysub((result), “Enter data™)
// Incorrect: "(result)" is considered an
// expression
o To pass an array, empty brackets must be placed after the array name both in the
Sub and the Call commands. Example:

sub mysub(ref data[], var prompt_string:A30)

The following example passes an array to mysub:
var array[10]:A20
call mysub(array[], “Enter data™) // Correct
call mysub(array, "Enter data™)
// Incorrect. Need [] after array
o When a variable is passed in by reference, any change in the subroutine to the
variable affects the original value of the variable. The name after the Ref variable
can be thought of as being another name for the variable passed in.

event ing : 1

var i : n5 =10 //Set 1 to 10
call mysub (i) //Pass in i by
//reference
waitforclear “i = “, i //1 is now equal
//to 20
endevent

sub mysub (ref j)

jJ=20 //Change original
//value of 1 and j

8-107

//to 20
endsub

Example

The event below calls a subroutine, format_data, that formats the current date as follows:
dd-mmm-yyyy.

event ing : 1
var date : all

call format_date(date, @day, @month, @year)
waitforclear date
endevent

sub format _date(ref date, var day : n5, var month : n5, var year - n5)
var month_arr[12] : a3
month_arr[1] = ""JAN"
month_arr[2] = "FEB"
month_arr[3] = "MAR"
month_arr[4] = "APR"
month_arr[5] = "'MAY"
month_arr[6] = "JUN"
month_arr[7] = ""JuL"
month_arr[8] = "AUG"
month_arr[9] = "'SEP"
month_arr[10] = "'OCT"
month_arr[11] = ""NOV**

month_arr[12] = "'DEC"

format date as day, '-'', month_arr[month], "-", year
endsub
See Also

Call and Var commands

TimerSet, TimerReset, TimerResetAll

Description

This command is used to launch and cancel timer events.

Syntax

TimerSet milliseconds, eventName
TimerReset eventName
TimerResetAll

Remarks

TimerResetAll will reset the SIM script’s timers, but does not affect other SIM scripts’
timers.

Example

event sign_in
TimerSet 5, "mytimer"
endevent

event sign_out

TimerReset "mytimer™
endevent

8-108 ISL Commands

event timer : mytimer
InfoMessage "'In mytimer"
endevent

TxMsg

Description

This command defines the applications data segment of a message that will be

transmitted over the interface.

Syntax

TxMsg expression[{output_specifier}[, expression[{output_specifier}] \...]

Table 101 TxMsg Command Arguments

Argument Description

expression An expression that will be transmitted over

the interface; it may be one of the following;:

user_variable
system_variable
constant

string

function

equation

{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6 .

Remarks

o The TxMsg command must be followed by the WaitForRxMsg command.

o If more than one field is required, multiple expressions must be separated by
commas. These commas will be replaced in the message received by the
interfaced system by field separator characters (ASCII 1CH).

o A statement may continue over multiple lines by including the line continuation
character (\) at the end of each line. The line continuation character is very useful
as TxMsg commands tend to be very lengthy.

Example

A transmission message that includes the check employee number, the check number,
tendered total, and a declared room number field could be defined as follows:

event inq - 1
var room_num : a4

input room_num, “Enter Room Number’
txmsg ““‘charge_inqg”,@CHKEMP ,@CHKNUM, @TNDTTL , room_num

ISL Commands

//The first field (charge_ing) is an

// example of an identifying string

8-109

// that the PMS might use to process
// messsage from the POS.

waitforrxmsg
endevent
event rxmsg : charge_declined //This is one of the PMS response
// possibilities
var room_num : a4
rxmsg room_num
exitwitherror “Charge for room
endevent

13

, room_num,” declined”

See Also
Event, RxMsg, TxMsgOnly, and WaitForRxMsg commands

TxMsgOnly

Description

This command sends a message to a PMS without waiting for a response.

Syntax
TxMsgOnly expression[{output_specifier!]l, expression[{output_specifier}] \...]
Table 102 TxMsgOnly Command Arguments

Argument Description

expression An expression that will be transmitted over
the interface; it may be one of the following;:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6.

Example
A transmission message that includes the check employee number, the check number,
tendered total, and a declared room number field could be defined as follows:

event inq - 1
var room_num : a4
input room num, “Enter Room Number”
txmsgonly ““charge_post’,@CHKEMP , @CHKNUM, @TNDTTL , room_num

//No message will be received. If the PMS responds, it will

// be ignored.
endevent

8-110 ISL Commands

ISL Commands

See Also

TxMsg command

UpperCase

Description

This command is used to convert a string variable to uppercase.

Syntax
UpperCase string_variable
Table 103 UpperCase Command Arguments

Argument Description

string_variable The string that will be changed to an uppercase
user_variable (string).

See Also

LowerCase command

UseBackupTender

Description

This command instructs the ISL to switch to the programmed backup Tender.

Syntax
UseBackupTender

Remarks

+ Tender Media PMS Option Switch to Alternate Tenders if PMS Timeout must be
enabled. If backup tender is not programmed, this command has no effect.

« This is useful for posting to other tenders when the primary PMS is not active.

Example

event rxmsg : _Timeout
waitforconfirm “Post to backup tender”
usebackuptender
exitcontinue

endevent

See Also

Event Tmed command

Use[Compat/ISL]Format

Description

These commands are used to instruct ISL to use the ISL message format or the
Simphony-standard message format.

8-111

8-112

Syntax
UseCompatFormat or UseISLFormat

Remarks
o These commands are global.

« If the Simphony-standard message format is selected, the Application Data
Segment will not contain the two-byte sequence number or the retransmission
flag, or the FS after the STX. For more information, see Message Formats and
Interface Methods.

Use[ISL/STD]TimeOuts

Description

These commands instruct ISL how to process a PMS timeout. UseISLTimeOuts will
search the script file for an RxMsg Event with an Event ID of _Timeout.
UseSTDTimeOuts will use the standard Simphony error messaging for a PMS timeout.

Syntax
UseISLTimeOuts or UseSTDTimeOuts

Remarks

o The Event ID _Timeout will bypass the standard Simphony error messaging for
a PMS timeout and process instructions from the ISL script file.

« For example, if the UseISLTimeOuts command is used and the PMS does not
respond to an ISL message within the timeout period, the ISL script may then ask
the user if the processing should be cancelled, or if a backup tender should be
used.

See Also
Event, TxMsg, and RxMsg commands

UseSortedDetalil

Description

This command causes detail system variables to access consolidated detail.

Syntax
UseSortedDetail

Remarks

This command applies to the detail system variables only.

Example

The following example, which assumes that check information lines are equal to one,
displays the name, tax amount, and quantity for each line of detail. Use this event to see
how UseSortedDetail changes the detail output format for consolidated menu items.

event ing : 1
var chk_line = 1
UseSortedDetail
while chk_line <= @numdtit

ISL Commands

call display dtl
chk_line = chk_line + 1
endwhile

endevent

sub display_dtl

window 5,40
display 2,5, “Menu Item Name =7 , @dtl_name[chk_line]
display 3,5, “Tax Amount = " , @dtl_taxttl[chk_line]

display 4,5, “Quantity= " , @dtl_qgty[chk line] if @detailsorted = 1
display 5,5 “Detail Is Consolidated” else
display 5,5 “Detail Is Not Consolidated” endif
waitforclear
endsub
See Also

UseStdDetail command and @DETAILSORTED system variable

UseStdDetail

Description

This command causes the detail system variables to access raw detail.

Syntax
UseStdDetail

Remarks

This command applies to the detail system variables only.

See Also
UseSortedDetail command and @DETAILSORTED system variable

Var

Description

This command is used to declare user variables. When it is used outside an event or
subroutine, the user variable will be accessible globally. When it is used inside an event
or subroutine, the variable is considered “local” and is only allowed to be used by that
event or any subroutine called by the event.

Syntax
Var user_variable : variable_specifier

Table 104 Var Command Argument

Argument Description

user_variable A user-defined name for a variable. If an
array_variable is being declared, the
user_variable must be followed immediately
by brackets containing the maximum number
of items the array_variable may contain, (for

example, name[100]).

ISL Commands 8-113

8-114

Argument

Description

variable_specifier

Made up of a type and a size specifier. The
type_specifier canbe an N, $, or A. The size
specifier can be either a number (for example,
12) or an integer expression enclosed in
parentheses, such as (12 +15). If the Key
type_specifier is used, the size should not be
included. The variable_specifier is concatenated
together, and defines whether the variable is
alphanumeric, numeric (integer), a decimal,
or akey, and, ifits one of the first three, how
many characters/ digits it contains.

Example
var guest name : A20

var guests[max_guests] : A(max_name_length)

Remarks

o The user_variable name can be up to 255 characters in length and must begin with
aletter A - Z, a - z, or the underscore character (_). It may include any character
in the range A - Z, 0 - 9, and the underscore character. Case is insignificant and

the name must not contain spaces.

« Itis possible to declare a variable with a size that is defined by an expression,
rather than a hard-coded number. These are known as variable-size variables. If
the ISL encounters a left parentheses immediately following the type of the
variable, it will assume that an expression follows, which defines the variable’s
size. Variable-size variables can be declared as follows:

var i : n3 =15

var window_width :

n(i + 15)

If i = 15, then the line shown above would be the same as:

var window width :

N30

o If the size of the variable is not known when the variable is being defined, then the

variable size may be placed within parentheses.

var string : AlO
var string : A(7 +3)

//Same as Al10

var string : A(num_guests * 2) //Depends on value

o The type_specifier is different for each of the four types of user-defined variables.

// num_guests

Note that no size is specified when declaring a key variable.

Table 105 Type Specifiers for User-Defined Variables

Field Type Type Specifier Example
Numeric norN n3
Decimal $ $6
Alphanumeric aor A a25

ISL Commands

For more detail about variable_specifiers, refer to Data Types. The declaration of a
four digit room number would be defined as:
var room_num:N4

An array with six elements may also be defined as:
var message_text[6]:A32

More than one variable can be declared on the same line, as long as they are
separated by commas:
var room_num : a5, guest count : n3

Variables can be declared and defined on the same line:
var city _name : al0 = “Charleston”

o Zero-length arrays and zero-size variables are allowed.

e All variables are cleared when a new Event is executed, unless the
RetainGlobalVar command is used (which only affects global variables).

See Also
[Retain/Discard]GlobalVar command

WaitForClear

Description

This command requires the operator to press the [Clear] key before proceeding. It is often
used after the Display command.

Syntax

WaitForClear [prompt_expression[{output_specifier}]]\ [,
prompt_expression[{output_specifier}]...]

Table 106 WaitForClear Command Arguments

Argument Description

prompt_expression An expression displayed on the prompt line,
usually to instruct the user what to enter; it
may be one of the following:

e user_variable

o system_variable
e constant

o string

o function

o equation

{output_specifier} One or more of the output_specifiers that
determine the format of the output fields;

see full definition beginning on page 8-6.

ISL Commands 8-115

Remarks
o The default prompt, “Press Clear to continue”, will appear on the prompt line of
the workstation. This may be overridden by providing a prompt_expression with
the command.
» The combined length of all prompt_expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Example

The following script would display some text, then require the operator to press the
[Clear] key before continuing;:

event inqg : 1
window 1, 14
display 1, 2, “Hello” //You say Hello”
waitforclear
display 1, 2, “Goodbye™ // “and | say Goodbye™
waitforclear

endevent

See Also
Display, WaitForConfirm, WaitForEnter, and b commands

WaitForConfirm

Description
This command requires the operator to press the [Enter] key or the [Clear] key.

Syntax

WaitForConfirm [prompt_expression[{output_specifier}]I\ [,
prompt_expression[{output_specifier}]...]

Table 107 WaitForConfirm Command Arguments

Argument Description

prompt_expression An expression displayed on the prompt line,
usually to instruct the user what to enter; it
may be one of the following:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;

see full definition beginning on page 8-6.

8-116 ISL Commands

ISL Commands

Remarks
« If the operator presses the [Enter] key, the script will continue.

« If the operator presses the [Clear] key, the operation will be cancelled and the
script will be exited. The default prompt, “Press [Enter] to continue”, will appear
on the prompt line of the workstation. This may be overridden by providing a
prompt_expression with the command.

o The combined length of all prompt_expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Example

The following script is a transmission message that includes the check employee number,
the check number, tendered total, and a declared room number field.

After the room_num is displayed, the script will wait for the [Enter] key or the [Clear]
key:
event inq : 1

var room_num : a4

input room_num, “Enter Room Number”

waitforconfim

txmsg ““‘charge_inqg”,@CHKEMP , @CHKNUM, @TNDTTL , room_num
//The first field (charge_ing) is an

// example of an identifying string
// that the POS might use to process

// message from the POS.

waitforrxmsg
endevent
event rxmsg : charge_declined //This is one of the PMS response

// possibilities
var room_num : a4
rxmsg room_num
exitwitherror “Charge for room ““, room _num,” declined”
endevent
See Also

Display, WaitForClear, WaitForEnter, and WaitForRxMsg commands

WaitForEnter

Description

This command requires the operator to press the [Enter] key before proceeding.

Syntax

WaitForEnter [prompt_expression[{output_specifier}]]\ [,
prompt_expression[{output_specifier}]...]

8-117

8-118

Table 108 WaitForEnter Command Arguments

Argument Description

prompt_expression An expression displayed on the prompt line,

usually to instruct the user what to enter; it
may be one of the following:

user_variable
system_variable
constant

string

function

equation

{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6.

Remarks

« The default prompt, “Press Enter to continue,” will appear on the prompt line of
the workstation. This may be overridden by providing a prompt_expression with

the command.

o The combined length of all prompt_expressions must not exceed 38 characters
(including spaces); extra characters will be truncated.

Example

The following script would display the guest’s name and require the operator to press

the [Enter] key before continuing;:

event rxmsg : guest

var name : a20

rxmsg name

waitforenter “guest is ““, name
endevent

See Also

Display, WaitForClear, WaitForConfirm, and WaitForRxMsg commands

WaitForRxMsg

Description

This command is used after a message has been transmitted over the interface so that the

system waits for a response.

Syntax

WaitForRxMsg [prompt_expression[{output_specifier}]]\ [,

prompt_expression[{output_specifier}]...]

ISL Commands

ISL Commands

Table 109 WaitForRxMsg Command Arguments

Argument Description

prompt_expression An expression displayed on the prompt line,

usually to instruct the user what to enter; it
may be one of the following;:

e user_variable
o system_variable

e constant

o string
o function
o equation
{output_specifier} One or more of the output_specifiers that

determine the format of the output fields;
see full definition beginning on page 8-6.

Remarks

The default prompt, “Please Wait--Sending Message,” will appear on the prompt
line of the workstation. The default may be overridden by providing a
prompt_expression with the command.

The WaitForRxMsg is not a stand-alone command; the TxMsg command must
precede the WaitForRxMsg. The WaitForRxMsg command is an implicit return.

When a TxMsg statement is followed by a WaitForRxMsg statement and a
response message is received from the interfaced system, it will assume that
there is a return event (Event Rxmsg) that corresponds to the message from the
interfaced system.

Example

A transmission message that includes the employee check number, the check number,
tendered total, and a declared room number field could be defined as follows:

event inq : 1
var room : n5
input room, “Room? “ txmsg “‘room_ing”, room

waitforrxmsg //Script stops here
waitforclear //Not executed because
// waitforrxmsg has
endevent // terminated event
See Also

Event RxMsg, RxMsg, TxMsg, WaitForClear, WaitForConfirm, and

WaitForEnter commands

WaitPrompt/ClearWaitPrompt

Description

These commands are used to display a ‘wait prompt’ dialog while SIM is busy
processing a lengthy operation.

8-119

Syntax
WaitPrompt text
ClearWaitPrompt

Remarks

« ClearWaitPrompt is called automatically when a script exits.

Example
This sample code display the dialog for 3 seconds, changing the text 3 times.

event ing:1
var i:
fori =1to3
WaitPrompt "Waiting "', i
MSleep 1000
endfor
ClearWaitPrompt
endevent

>

While...EndWhile

Description

The While command is used to implement a loop structure. The EndWhile is used to end
the loop.

Syntax
While expression

EndWhile
Table 110 While...EndWhile Command Arguments

Argument Description

expression The loop condition expression to be evaluated; it
may be one of the following:

e user_variable

o system_variable

e constant
o string

o function
o equation

Remarks

e When ISL encounters a While statement, it will execute all statements within the
While and its corresponding EndWhile command until the expression in the

8-120 ISL Commands

While command becomes FALSE. If the expression is not initially true, then the
statements within the While block are not executed.

while not feof(fn)
call process data(fn)

endwhile

The While example shown above is the standard method of using the Feof function
to test for the end of the file being processed.

endsub
o The While command can be nested within other While commands.

o The expression in the While command is similar to the conditional expression
within the If command.

Example

event ing : 1
while data ok = 1
max_data = 10
while 1 < max_data
call get next_line
i=i+1
endwhile
endwhile
endevent

See Also

For, ForEver, and If commands; Feof function

Window

Description

This command will draw a window on the operator display and is required in order to
display information referenced by the various Display commands.

Syntax
Window row, column|, expression[{output_specifier}]...]

Table 111 Window Command Arguments

Argument Description

row The number of rows the window should
contain; valid entries are 1 to 14.

column The number of columns the window
should contain; valid entries are 1 to 78.

ISL Commands 8-121

8-122

Argument Description

expression An expression that represents the title of the
window, which will appear centered in the top
line of the window itself (above the first row); it
may be on of the following:

e user_variabe

o string

{output_specifier} One or more of the output_specifiers that
determine the format of the output fields;
see full definition beginning on page 8-6.

Remarks

o The row and column values in the window are a function of how much the
programmer needs to display. Refer to the Display commands to determine
these requirements.

« The optional window title may be a text string or a combination of user_variables
and string_variables.

« The maximum number of characters that will be displayed in the Window title is
the number of columns minus 1; extra characters will be truncated.

Example

The following script will read the information from Track 1 of a credit card and display it
in a window:
event inq - 1

var cardholder_name: a26

var account_num: nl19

var expiration date: n4

var trackl data: a79

window 3, 78
displaymsinput 1, 2, cardholder_name{ml, 2, 1, *}, “Enter Guest Name”, \
2, 2, account num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration _date{ml, 3, 1, 4}, “Enter Expiration”
windowinput
waitforclear
endevent
See Also

Display, DisplayInput, DisplayMSInput, WaitForClear, WaitForConfirm,
WaitForEnter, and WindowClose commands

WindowClose

Description

This command closes a currently displayed window.

Syntax
WindowClose

ISL Commands

ISL Commands

Remarks

Microsoft Windows closes automatically when a script is exited, or when a new window
is built with the Window command. The WindowClose command allows the script
writer to close a window before either of these events has occurred.

Example

The following script builds a window, displays some text, then closes the window (after
the operator presses [Clear]):

event ing : 1

window 1, 14

display 1, 2, “Hello” //You say Hello”

waitforclear

windowclose

display 1, 2, “Goodbye” // ”and | say Goodbye” waitforclear
endevent

See Also

Window command

Window[Edit/Input][WithSave]

Description

One of these commands is required any time the DisplayInput and DisplayMSInput
commands are used. The WindowEdit and WindowInput determine whether or not the
contents of the variables are cleared before being displayed. The [WithSave] option, with
either command, determines how the input session will be terminated.

Syntax 1
WindowEdit[WithSave]

Syntax 2
WindowInput[WithSave]

Remarks

+ When one of the WindowEdit or WindowInput commands is found, the SIM
will look for the first and subsequent DisplayInput or DisplayMSInput, since
the window was drawn and executes it. Therefore, the WindowEdit and
WindowlInput command must be preceded by both a Window command and at
least one DisplayInput or DisplayMSInput command.

« The WindowEdit and WindowEditWithSave commands do not clear the
variables. If the input_variables contain data, the contents will be displayed in the
input window. These commands are useful when the operator must change only
a few fields or characters of a record. The WindowInput and
WindowInputWithSave commands clear the variables before they are
displayed. All previous information in the fields is lost after the command is
executed. These commands are useful for entering new information.

o WindowEdit\Input can be used with the Display[MS]Input commands to build
a screen of input fields in order to accept input from the user. Navigating among
the input fields is achieved with the movement keys: up arrow, down arrow,

8-123

8-124

home, and end. [Enter] can also be used to navigate, which moves the focus to
the next field, and [Clear], which moves the focus to the previous field.

o The WindowInput and WindowEdit commands complete the Input session
when the cursor is on the last field and the user presses the [Enter] key or the
[Down Arrow] key. The Input session is cancelled if the cursor is on the:

= First field and the user presses the [Clear] key or the [Up Arrow] key.
= Last field and the user presses [Enter] or [Down Arrow].

o The WindowInputWithSave and WindowEditWithSave commands require the
operator to either press the [Save] key to complete the Input session, or press the
[Cancel] key to cancel it. If the cursor is on the last edit field and either the
[Enter] key or the [Down Arrow] key is pressed, the cursor will roll to the first
field. Likewise, if the cursor is on the first edit field and either the [Clear] key or
the [Up Arrow] key is pressed, the cursor will roll to the last field.

Example 1

The following script will read the information from Track 1 of a credit card:
event inq - 1

var cardholder_name: a26
var account_num: n19
var expiration date: n4
var trackl data: a79

window 3, 78

displaymsinput 1, 2, cardholder_name{ml, 2, 1, *}, “Enter Guest Name”, \
2, 2, account_num{ml, 1, 1, *}, “Enter Account Number”, \
3, 2, expiration date{ml, 3, 1, 4}, “Enter Expiration”

windowinput

waitforclear

endevent

Example 2

The following script will allow input of customer information in a window:
event inq - 1

var

name - a20

var addressl : a20

var address2 : a20

var city : a20

var state : a2

var zip: al0

var tel : al2

window 7, 33

display 1, 2, “ Name:”’
display 2, 2, “ Addressl:”
display 3, 2, “ Address2:”
display 4, 2, “ City:”
display 5, 2, * State:”
display 6, 2, Zip:”
display 7, 2, “Telephone:”

displayinput 1, 13, name, “Enter name”
displayinput 2, 13, addressl, “Enter addressl”
displayinput 3, 13, address2, “Enter address2”
displayinput 4, 13, city, “Enter city”
displayinput 5, 13, state, “Enter state”
displayinput 6, 13, zip, “Enter zip”

ISL Commands

displayinput 7, 13, tel, “Enter telephone number”

windoweditwithsave
txmsg “new_member’, name, addressl, address2, city, state, zip, tel

waitforrxmsg

endevent

See Also
DisplayInput, DisplayMSInput, and Window commands

ISL Commands 8-125

9

This chapter summarizes all ISL Functions in and A-to-Z reference.

Functions

In addition to commands, ISL provides a variety of functions to enhance text handling
and formatting facilities. Each function returns a value which may be useful for certain

Function

ISL Functions

applications.

All function arguments must be enclosed in parentheses.

Summary

ISL Functions

The following table contains a list of function names, a brief description, and the function

type of the returned integer/character/key.

Table 112 ISL Function Summary

Function Description Function Type

Abs() Returns the absolute value of the integer or Integer
decimal.

ArraySize() Returns the declared size of the array. Integer

Asc() Returns the ASCII integer value of the Integer
first character of the string.

Bit() Returns the value of a bit in a hexadecimal Integer
string.

Chr() Returns a one-character string that is the Character
character representation of an integer.

CommandExists() Returns the true if the SIM command exists. String

DefKey() Returns a key value for LoadKybdMacro.

Env() Returns a value of a shell environment variable. | Integer

Feof() Determines if the file pointer is at the end of the | Integer
file.

FormatCheckData() |Returns the image of the current check give the
language ID.

FormatCurrentDate(| Returns the formatted date/time with the given | String

) format string.

FormatStr() Formats a string given a format string and
variable number of arguments.

FormatValue() Returns the formatted value (integer, string, String
decimal) given the format string.

FTell() Gets the file position in a file. Integer

GetHex() Converts a hex string to an integer. Integer

9-1

ISL Function Reference

This section includes all functions supported by the ISL in an A-Z reference format,
which includes the following information for each function:

9-2

Function Description Function Type
GetValue() Returns the value of a key’s property. Key, String
Instr() Returns the index of the first occurrence Character

of a character string.
Key() Returns the key variable associated with the Key
key pair.
KeyNumber() Returns the number portion of the key variable. | Integer
KeyType() Returns the type portion of the key variable. Integer
Len() Returns the length of a string. Integer
Mid() Extracts part of a string to a string field. Character
SplitString() Splits the passed in value given the separator String
and returns a .net ArrayList.
Str() Converts the passed in value into a string.
SystemVariableExist | Returns the true if the SIM system variable String
s() exists.
Tolnteger() Returns an integer from a decimal value. Integer
Trim() Returns a string trimmed of leading and Character
trailing spaces.
TypeOf£() Returns a string representation of the .net Type | Value
name passed in.
VarExists () Returns the true if the user-defined variable String
exists at the current scope.
VarSize() Returns the declared size of a variable. Integer

» Description: summarizes the function’s purpose.

o Syntax: provides the proper way to specify the function and any arguments, as
well as a description of each argument.

o Remarks: gives more detailed information of the function, its arguments, and
how the function is used.

o POS Setup: provides any Simphony database programming required to issue the
function successfully.

» Example: includes an example of the function being used in a script.

» See Also: names related functions, commands, system variables, and other
documentation worth consulting.

ISL Functions

ISL Functions

Abs Function

Description

This function returns the absolute value of the integer or decimal value.

Syntax
Abs (integer or decimal)

Table 113 Abs Function Arguments

Argument Description
integer An integer expression to be converted.
decimal A decimal expression to be converted.
Example

event inq : 1
var int : N5 = -145
var mon : $8 = -12.35

waitforclear abs(int) //will display “145°

waitforclear abs(mon) //will display “12.35”

waitforclear abs(*“-34") //will display error
endevent

ArraySize Function

Description

This function returns the size (number of elements) of the array passed in.

Syntax
ArraySize (array_name)

Table 114 ArraySize Function Arguments

Argument Description
array_name The name of the array.
Remarks

The array name must be placed between the parentheses without brackets. For example,
the following references are illegal:

arraysize (list []

arraysize (list [2])

The following entry is correct:

arraysize(list)

Example

The following subroutine returns the declared size (number of elements) of an array.

sub array_size
var array_test[100] : a50
waitforclear ''Size of array test is "', arraysize(array_test)
//\Would prompt *‘Size of 100"
// array_test is
endsub

9-3

9-4

Asc Function

Description

This function returns the ASCII integer value of the first character of the string passed in.

Syntax
Asc (string_expression)

Table 115 Asc Function Arguments

Argument Description

string_expression A place holder for text characters such as a
user_variable (string).

Remarks

The process of returning a value with the Asc function works opposite of the Chr
function.

Example

The following subroutine displays the ASCII value of the first character of a string:

sub asc_value
var asc_val : n3
asc_val = asc("MICROS™)
waitforclear ""The ascii value of M = **, asc val
//Would prompt *"The ascii
// value of M = 77"
endevent
See Also

Chr function

Bit Function

Description

This function will return the value (0 or 1) of a bit in a hexadecimal string.
Syntax

Bit (hex_string, bit_position)

Table 116 Bit Function Arguments

Argument Description
hex_string A place holder for the hexadecimal string
that will be examined.
bit_position The index of the bit whose value is desired.
Remarks

o The Bit function will generate an error if the string passed in contains non-hex
characters. For example, the following statement will generate an error since the
= character is not a hex digit:

ISL Functions

ISL Functions

i = gethex("12AB=")

o Valid hex digits are 0-9, A-F, and a-f.

o The bit_positions are numbered consecutively from 1. In the example below, a
four-digit hexadecimal number would have bits numbered from 1 to 16. The

digit values are determined by the standard hexadecimal assignment of bit
values (for example, within each digit, bit 1 =8, bit 2 =4, bit 3 =2, bit4 =1).

Table 117 Example Bit Positions for a four Digit Hexadecimal Number

Digit 1 2 3 4
Position

bit_position |1 |2 |3 |4 |56 |7 [8| 9 |10 |11 |12|13 |14 |15 |16

digit value 1 2 F E

bit value 00 010 01 O0}1 1 1 1|1 1 1 0

Example

In the above example, the following command would result in i being set to 1.
i = bit(“12FE”, 7) //i will be set to 1

Thus in all hex_strings, bit_position 1 corresponds to the highest bit value in the first of
the string.

Chr Function

Description

This function returns a one-character string that is the character representation of the
integer passed in.

Syntax
Chr (integer)
Table 118 Chr Function Arguments

Argument Description
integer An integer in the range from 32 to 255.
Remarks
The process of returning a value with the Chr function is the opposite of the Abs
function.
Example

The following subroutine constructs the name of a POS company using ASCII values:

sub make_name
var ascii_array[6] : n3
var pos _king : a6
var arr_cnt: n3

ascii_array[1l] = 77
ascii_array[2] = 73
ascii_array[3] = 67
asciil_array[4] = 82

9-5

9-6

ascii_array[5] = 79
ascii_array[6] = 83

for arrcnt =1 to 6 //Count through the array
format pos_king as pos_king, chr(ascii_array[arr_cnt])
endfor
waitforclear ""The POS king is ', pos_king
endsub

See Also
Display command
CommandExists Function

Description

This function returns true if the SIM command exists

Syntax
CommandExists (string)

Table 119 Abs Function Arguments

Argument Description
String The string of the command
Example

event ing : 1
waitforclear CommandExists(“WaitForClear”)
endevent

DefKey Function

Description

This function returns a key value for LoadKybdMacro

Syntax
(see DefKey discussion in SIM addendum)

Env Function

Description

This function returns the value of a shell environment variable.

Syntax

Env (environment_variable)

Table 120 Env Function Arguments

Argument Description

environment_variable The environment variable to return.

ISL Functions

ISL Functions

Remarks

An empty string will be returned if the environment variable does not exist.

Example
Assume that the environment variable “Term” is “ansi”:
var term : a20 = env('Term') //term will be "ansi™

Feof Function

Description

This function tests whether the file pointer is at the end of the file.

Syntax
Feof (file_number)

Table 121 Feof Function Arguments

Argument Description

file_number An integer variable which was assigned in the
FOpen statement when the file was opened.

Remarks

A 1 is returned if there is no more data left to read, and a 0 is returned if there is more
data left to be read.

Example

The following example shows how to use the Feof function as the condition of a

While command:

whille not feof(fn)
call process_data(nh)

endwhile

See Also
FClose, FOpen, and While commands

FormatCheckData Function

Description

This function returns the image of the current check given the language ID.

Syntax
FormatCheckData (integer)
Table 122 Abs Function Arguments

Argument Description

Integer The language ID to use when formatting

9-7

9-8

Example

event inq - 1
var text:A = FormatCheckData(@0psContext.CurrentLangld)
endevent

FormatCurrentDate Function

Description

This function returns the formatted date/time with the given format string.

Syntax
FormatCurrentDate(string)

Table 123 Abs Function Arguments

Argument Description

String Format string. This method directly calls the
.net API System.DateTime.Now.ToString()

Example

event ing : 1
var text:A = FormatCurrentDate(*'yyyy/MM/dd HH:mm:ss")
endevent

FormatDate Function

Description
This function returns the unformatted date/time with the given format string.

Syntax

FormatCurrentDate(string)

Table 124 Abs Function Arguments

Argument Description

String Format string. This method directly calls the
.net API System.DateTime.Now.ToString()

Example

event inq - 1
var text:A = FormatCurrentDate('yyyy/MM/dd HH:mm:ss™)
endevent

FormatStr Function

Description

This function will format a string given a format string and variable number of
arguments. This method uses the .net API String. Format() method.

Syntax

FormatStr(format,valuel,value2,...)

ISL Functions

ISL Functions

Table 125 Abs Function Arguments

Argument Description
Format The format string. See .net API documentation
for string. Format()
ValueX Elements to be formatted
Example

event inq - 1
var text:a = FormatStr(“Value must be between {0} and {1}, min, max)
endevent

FormatValue Function

Description

This function returns the formatted value (integer, string, or decimal) given the format

string.

Syntax

FormatValue(value,string)

Table 126 Abs Function Arguments

Argument Description
Value The value to be formatted.
String Format string. This method directly calls the

.net API Int64, String, or Decimal method

Example

event ing : 1
var text:A = FormatValue(123, “N3)
endevent

FTell Function

Description
This function returns the file position in a file.

Syntax
FTell (file_number)

Table 127 FTell Function Arguments

Argument Description

file_number An integer variable which was assigned in the
FOpen statement when the file was opened.

Example

The following example will read a certain field position:
sub Find_emp

9-9

whille not feof(fn)

current_position = ftell(fn) //Remember this position.
fread fn, emp_number, * //Read first field.
if emp_number = target_emp_number //1f match, reposition back
fseek fn, current position // to original position and
return // let calling function
endif // reread data.
endwhile
endsub
See Also

FClose, FOpen, FRead, FSeek, and While commands

FunctionExists

Description

This function returns the true if the SIM function exists

Syntax
FunctionExists (string)

Table 128 Abs Function Arguments

Argument Description
String The string of the function
Example

event inq : 1
waitforclear FunctionExists(“abs”)
endevent

GetHex Function

Description

This function will convert a Hex string to a decimal integer.

Syntax
GetHex (hex_string)

9-10 ISL Functions

Table 129 GetHex Function Arguments

Argument Description
hex_string The string to be converted.
Remarks

o The GetHex function will generate an error if the string passed in contains non-
hex characters. The following statement will generate an error since the =
character is not a hex digit, for example:

i = gethex("12AB=")

o A string should be made up of any combination of the following characters 0- 9,
a-f,orA-F.

Example

The following subroutine converts a hex string to its decimal equivalent:

sub hex 2 dec

var hex_str: a4 = "FFFF"

waitforclear ""The decimal equiv of "FFFF" is ", gethex(hex str)
endsub

GetValue Function

Description

This function returns the value of a key’s property. This method is useful to extract a
key’s individual components.

Syntax
FormatValue(key,string)
Table 130 Abs Function Arguments

Argument Description

Key The source key value

String The key to extract.
Example

event inq - 1
var myKey:key = defkey('Payment, N:2, A:*‘Cash:Cash')

// argument will contain “Cash:Cash”
var val:A = GetValue (myKey, “A)

// argument will contain “2”
val = GetValue (myKey, “N”)

endevent

ISL Functions 9-11

9-12

Instr Function

Description

This function will return the index of the first occurrence of a character in a string.

Syntax

Instr (index, string_expression, character)

Table 131 Instr Function Arguments

Argument Description

index Starting position of the search for the

specified character

string_expression The string_expression to be searched; can be

one of the following;:

user_variable
system_variable
constant

string

function

equation

character Character to search for.

Example

The following statement will set i equal to 5, since “E” is the 5th character in the string:

i = instr(2, “ABCDEFGHIJ”, “E”)

Key Function

Description

//1 will be set to 5

This function will execute the key function code defined.

Syntax
Key (key_pair)
Table 132 Key Function Arguments
Argument Description
key_pair A link to a specific workstation key in the

form of: key_type : key_number.

Remarks

» The key_type determines the type of key (for example, Function, Keypad); the
key_number designates the specific Key Code.

o For alist of key codes and names, see Key Types, Codes, and Names.

ISL Functions

Example

The following script begins a check by number, then orders several menu items and
prints the check:

event inq - 1

loadkybdmacrokey (11,400), \ //Begin check
key (1, 552), key(1,554), key (1,555),\ //Order Menu Items
key (7, 101) //Service Total
// check
endevent
See Also

KeyNumber and KeyType functions

KeyNumber Function

Description

This function will return the key number (integer) portion of a key expression.

Syntax
KeyNumber (key_expression)
Table 133 KeyNumber Function Arguments

Argument Description

key_expression An expression that can be one of the following:
o @KEY ...system_variable
o user_variable (KeyType)

» Key function

Example

The following script reports the number and type of the [Enter] key:

event ing : 1
var key var : a20 = ''9,12"

window 3, 26

display 1, 2, “Enter key’s key pair is”, key var

display 1, 2, “Enter key’s key type is”, keytype(key_var)

display 1, 2, “Enter key’s key number is”, keynumber(key var) //keynumber = 12
waitforclear endevent

See Also
Key and KeyType functions

KeyType Function

Description

This function will return the key type (integer) portion of a key expression.

Syntax
KeyType (key_expression)

ISL Functions 9-13

9-14

Table 134 KeyType Function Arguments

Argument Description

key_expression An expression that can be one of the following:
o @KEY...system_variable
o user_variable (KeyType)

« Key function

Example

The following script reports the number and type of the [Enter] key:

event inq : 1
var key var - a20 = ''9,12"

window 3, 26
display 1, 2, “Enter key’s key pair is”, key var
display 1, 2, “Enter key’s key type is”, keytype(key var)//key type = 9
display 1, 2, “Enter key’s key number is”, keynumber(key var)
waitforclear

endevent

See Also

Key and KeyNumber functions

Len Function

Description

This function is used to determine the length of a string or string variable.

Syntax
Len (string_expression)

Table 135 Len Function Arguments

Argument Description
string_expression The string length to be returned.
Example

The following script takes a list of names from the PMS and tests each name for its
length. It then builds a window and displays the names. The longest string determines
the width of the window.

event rxmsg : guest list
var guest list size : n3
var guest list[14] : a78
var arrcnt : n3

var longestr : n3
rxmsg guest_list _size, guest list[] //Receive size and list from PMS
for arrcnt = 1 to guest_list _size //Count through the array to

if longestr < len(guest_list[arrcnt]) // find the longest member.
longestr = len(guest _list[arrcnt])//If this member is longer than
endif // the longest so far, set

ISL Functions

ISL Functions

endfor // longestr equal to its length.

window guest_list size, longestr + 2 //Build the window as high as
for arrcnt = 1 to guest_list_size // the number of guests in the
display arrcnt, 2, guest list[arrcnt] // list and as wide as the
endfor // longest guest name + 2.
waitforclear //Display the names and wait
endevent // for user to press clear.
Mid Function
Description

This function is used to extract text from a string. This function is not to be confused with
the Mid command.

Syntax
Mid (string_expression, start, count)

Table 136 Mid Function Arguments

Argument Description
string_expression A string or user_variable (string).
start The starting offset (character) within the field.
count The number of characters to be read.
Remarks

This command is similar to the BASIC language “mid$” function.

Example

The following subroutine searches a string for a specified character, starting at a specified
place in the string, then returns the location of the character. The extracted text is
compared to the desired characters. This example assumes that the calling routine
declares the following four variables, and defines the first three:

//start: n3 position in string to start search, 1 if not defined
// string a?? string to search
// search _char :al character to search for
// charpos :n3 the subroutine will set this variable equal to the
// location where the search char is found in the
// string; it will be O if search_char is not found
sub instr

if start <= 0 //1T user didn"t define start

// set it =1

start = 1

endif

for charpos = start to len(string)
if search_char = mid(string, charpos, 1) //1f we find the search char,
// return the charpos

return
endif
endfor
charpos = 0 //1f not found, set charpos = 0 endsub

9-15

See Also

Mid command

SplitString Function

Description

This function will split the passed in value given the separator and return a .net
ArrayList.

Syntax

FormatValue(value,string)

Table 137 Abs Function Arguments

Argument Description

Value The value to split. This can be integer,
decimal, or string. All values will be
converted to strings before the split operation.
String The separator. This method uses the .net API
String.Split method.

Example
event inq - 1
// items will contain 4 elements.
var items:object = SplitString(“a,b,c,d”, “,”)

endevent

Str Function

Description

This function will convert the passed in value into a string.

Syntax
Str(value)

Table 138 Abs Function Arguments

Argument Description

Value The value to convert to a string. Integers and
decimals will be converted, strings will
remain as-is.

Example
event inq - 1

// items will contain 4 elements.

var items:object = SplitString(“a,b,c,d”, “,”)
endevent

9-16 ISL Functions

ISL Functions

SystemVariableExists Function

Description

This function returns the true if the SIM system variable exists.

Syntax
SystemVariableExists (string)
Table 139 Abs Function Arguments

Argument Description
String The string of the system variable
Example

event ing : 1
waitforclear SystemVariableExists(“‘ckemp™)
endevent

Tolnteger Function

Description

This function returns an integer from a decimal value by removing the decimal point.
This assumes that the new value will be interpreted correctly. For example, the PMS will
know where the decimal is placed.

Syntax
Tolnteger (decimal)

Table 140 Tolnteger Function Arguments

Argument Description
decimal A decimal expression to be converted.
Remarks

The decimal point will be removed when returned.

Example
event ing : 1 var n : N5
n = 12.45 //n will equal “12”
n = tointeger(12.45) //n will equal <1245~
endevent

Trim Function

Description

This function is used to remove leading and trailing spaces from text or variable fields.

Syntax

Trim (string_expression)

9-17

Table 141 Trim Function Arguments

Argument Description
string_expression A string or user_variable (string).
Example

The following subroutine trims leading and trailing spaces from a string;:
sub trim_spaces

var string : a32 = many spaces” var trimmed_str : all
trimmed_str = trim(string) //Result would be “many spaces”
endsub

TypeOf Function

Description

This function will return a string representation of the .net Type name passed in.

Syntax
TypeOf(value)
Table 142 Abs Function Arguments

Argument Description

Value The type name of the .net class. This name
does not have to be fully qualified. This allows
a script writer to troubleshot scripts when
class names do not appear to resolve to the
appropriate value.

Example

event inq : 1
// text will contain “System.String”
var text:A = TypeOf(“String™)
endevent

VarExists Function

Description

This function returns true if the user-defined variable exists at the current scope.

Syntax
VarExists(string)
Table 143 Abs Function Arguments

Argument Description
String Name of the variable
Example

event ing : 1

var myVar:n

var exists:n = VarkExists(“myVar”)
endevent

9-18 ISL Functions

VarSize Function

Description

This function returns the declared size of a variable.

Syntax
VarSize (user_variable)

Table 144 VarSize Function Arguments

Argument Description
user_variable The name of the user_variable to be “sized”.
Example

The following script displays the declared size of a very large string:
event inq : 12
var big_string : a200
waitforclear “BIG_STRING’S size is 7, varsize(big_string)
//would prompt “BIG_STRING’S size is 200"
Endevent

ISL Functions 9-19

Appendix A ISL Error Messages

This chapter explains the error messages returned by the ISL.

Error Message Format

Error messages will appear in the center of the workstation, in one of the formats
described below. An explanation of the variable information referenced in the format
syntax follows.

Variable Descriptions

o <error text>: specifies a detailed explanation of what the error condition or syntax
error may be.

o <line>: specifies the line number where the error occurred.
o <colummn>: specifies the column number where the error occurred.

» <error text ()>: specifies a detailed explanation, including the specific erroneous
data, enclosed in parentheses.

Format 1
ISL error

<error text>

Example

ISL error
No match for event

Figure 6 ISL Error Message Format 1

Format 2

ISL error on line <line>

<error text>
Example
ISL error on line 102

Command outside procedure

Figure 7 ISL Error Message Format 2

ISL Error Messages A-1

Format 3
ISL error on line <line>:<colummn>

<error text>

Example

ISL error on line 174: 12
Expected end of line (i)

Figure 8 ISL Error Message Format 3

Format 4

Another type of error occurs when the ISL expected specific text, but encountered
different text. This error is displayed as:

ISL error on line <line>
expected <text> encountered <text>

For example, if the Format command is issued, and the as (which is required as part of
the syntax) is missing, the following error would display:

ISL error on line 170

expected ‘AS’ , encountered * date’

Figure 9 ISL Error Message Format 4

Format 5
Format 5 is for the KWS (Keyboard Workstation) only.

ISL error:<line number>

<error text>
Example
ISL error :102

Command outside procedure

Figure 10 ISL Error Message Format 5

Error Messages

Array Index Out Of Range

This message occurs if an index number used to access a list_array is invalid.

var array[10] : N5
array[12] = 1 //Valid range is 1-10
array[-2] = 4 //No negative numbers

A-2 ISL Error Messages

Bad Sys Var Index

This message occurs if a system_variable size was out of range.
txmsg “MSG”, @S134 //Valid @Sl range is 1-16

Break with Too Many Endfor

This message occurs if too many EndFor commands occurred within a script without a
corresponding For command.
for i =1 to 10
a[i] = 0 endfor
endfor //No corresponding
//for command

Break without Endfor

This message occurs if a Break command is issued within a For loop, but there is no
EndFor command to complete the loop.

Call Has No Arguments

This message occurs if the subroutine called by the Call command has arguments, but no
arguments were specified in the Call command.

event inqg:1
call mysub //Nlysub has no arguments
endevent

sub mysub(var i:N5)

endsub

Can Not Evaluate

This message occurs if invalid text was encountered when trying to read an

expression.
display 3, *, “Test”

Cannot Access ISL Script File

This message occurs if the script file was not found, or its permissions were not set
correctly.

Command Outside Procedure

This message occurs if certain commands are issued outside an Event

procedure.
window 10,20 //This must be within the
// event procedure.
event ing:1
endevent

ISL Error Messages A-3

The following commands are allowed outside an Event procedure:

e ContinueOnCancel
e DiscardGlobalVar
e ExitOnCancel

e Prorate

e RetainGlobalVvar

e SetSignOnLeft

e SetSignOnRight

e UseBackUpTender

e UseCompatFormat

e UselSLFormat

e UselSLTimeOuts

e UseSTDTimeOuts

e \Var

Decimal Overflow

This message occurs if an attempt to assign a value to a real exceeded the real’s storage
size.

var n : $3
n = 123.45 //n only holds 3 digits

Display Column or Row Out Of Range

This message occurs if the row and/or column declared with the Display command is
outside the range declared by the Window command.

window 10, 20
display 11, 1, “Line” //Row range is 1-10
display 1, 40, “Line” //Column range is 1-20

Divide by Zero

This message occurs if an attempt was made to divide a numeric value by 0.
i=a/o0

Duplicate variable Def

This message occurs if an attempt is made to declare the same variable either within or
outside an Event procedure.
event ing : 1

var i - N5 //First declaration OK.
var 1 : A20 //Redeclaration error.
endevent

Encountered Non-Hex Data

This message occurs if Hexadecimal data was expected and the string contained non-hex
data.
i = gethex(“145B*”) //* is not a hex character

ISL Error Messages

Endsub Nesting Mismatch

This message occurs if an Endsub occurred within an Event command without its
corresponding Sub command.
event inq - 1

endsub
endevent

Evaluation Nesting

This message occurs if an overly complex expression was specified on the command line.

= (e a 5533300000000

Event Inside Procedure

This message occurs if an Event command was encountered within a subroutine.

sub check _message
event ing : 1 //Event within subroutine

endsub

Event Type Must Be Word

This message occurs if an invalid Event type was specified in the Event line. There are
four types of Events: Inquire, Tmed, RxMsg, and Final_Tender.

event 123 : 377 //No such event type as
// 123

Exceeded Max Array or Variable Size

This message occurs if the array_size or variable_size exceeded the system maximum size
of 32768 bytes.
var array[100000] : N5

Expected Array in Call

This message occurs if the Sub command had an array argument, but the Call command
tried to pass a normal variable.

event ing:1
var i:N5
call mysub(i) //Has a normal variable
endevent
sub mysub(ref arr[]) //Has an array

Expected ..., Encountered...

This message occurs when ISL receives unexpected text as part of the command syntax.

ISL Error Messages A-5

format date @DAY, ““-” , month_arr[@MONTH], “-, @YEAR
//As” is missing after
// the format command

A-Expected Decimal

There are places in ISL where the script writer must specify a decimal number (and not
an integer or a string). Using any expression other than a decimal expression results in
this error.

For example: the function tointeger() expects a decimal number as its argument.

i:N5
i = tointeger(12.34) //0K
i = tointeger(1234) //Not ok. 1234 is not
// decimal.
i = tointeger("12.34") //Not ok. "12.34" is

// not decimal.

Expected End of Line

This message occurs if extraneous data was found at the end of a command line.

startprint 12 i // Data after 12 is an
// error

Expected Format Token

This message occurs if a variable was specified with the Display command that did not
have a comma after it.
display 1, 2, i 123

Expected Operand

This message occurs if an invalid expression was encountered.
var i : n5
i=5+ //Invalid expression

Expected String

This message occurs if a command or function expected a string as one of its arguments,
and a non-string expression was encountered.
var i - n5

setstring i, “a //n : 5 is a non-string

// expression

File Buffer Overflow

This message occurs if an attempt was made to read or write a line to a file, which
exceeded the current @FILE_BFRSIZE.

@FILE_BFRSIZE = 10
fwrite fn, “This string is longer than 10 bytes”

File is Read Only

This message occurs if an attempt was made to write to a file opened for read access only.

ISL Error Messages

File is Write Only

This message occurs if an attempt was made to read from a file opened for write access
only.

File Name Too Long

This message occurs if the file name in the FOpen command is greater than 128
characters.

Format Needs String

This message occurs if the Format command requires a string_variable as its first

argument.
var line : A15
format as “This is a line” //Nissing the variable

// after format command

Format Too Long

This message occurs if the allocated size of the variable to be formatted is smaller than
the total length of the expressions to be included.

var line : Al10
format line as “This line is greater than 10 characters”

Integer Overflow

This message occurs if an attempt to assign a value to an integer exceeded the integer’s
storage size.

var n : N3
n = 12345 // n only holds 3 digits.

Invalid Decimal Operation

This message occurs if the operation is not allowed on real numbers. Real numbers are
amounts, currencies, and decimals.

var a : $5, b : $5, c 1 $5
a=b%c

Invalid File Buffer Size

This message occurs if an attempt was made to assign the system_variable

@FILE_BFRSIZE to an illegal value. An illegal value would be a value less than or equal
to 0.
@FILE_BFRSIZE = -20

Invalid File Mode

This message occurs if an invalid mode was specified on the FOpen command.

fopen fn, “test.log”, read and wirte
//The write mode is
// misspelled

ISL Error Messages A-7

A-8

Invalid File Number

This message occurs if a file number was passed to a File I/O command which was not
previously opened.

event inq:1
var fn:N5 = -4
//No fopen declared
fwrite fn, “hello”
endevent

Invalid First Token

This message occurs if the start of a line contained invalid text.

display 2, 3, “Line”
waitclear // is invalid

Invalid Input fmt Spec

This message occurs if the input format specification contained invalid data.
input name{;}

Invalid List Size

This message occurs if a command which required a list value encountered a list value of
0 or below.

Invalid Locking Mode

This message occurs if an invalid locking mode was specified in the Flock command.

flock fn, preventread and write //Should be preventwrite
// not write

Invalid Output Format

This message occurs if the output format specification contained invalid data.
txmsg name{;}

Invalid PMS SEND

This message occurs if the system was unable to send the PMS message.

Length Invalid

This message occurs if the third argument in the Mid command and/or function was less
than 0.

List Value Too Big

This message occurs if the list value in the command exceeded the array which it

referenced.
var list[10] : A20
txmsg 21, list[] // Valid range is 1-10

ISL Error Messages

Loop Variable Constant

This message occurs if the For loop variable was not a variable.
for 10 = 1 to 20

Loop Variable Not INT

This message occurs if the For loop variable was not an integer.
var i : $10 for i =1 to 10

Max Files Open

This message occurs if an attempt was made to open more than 10 files in a single

Event.

Max Include Nesting

This error occurs when include files become nested too deeply. Include files become
nested when include files include other include files. For example, script.isl may include
filel.isl, which may include file2.isl, and so forth. There is a limit to the depth of files that
may be included.

This error can also occur when a file tries to include itself. In this case, the ISL interpreter
keeps rereading the file at the point of inclusion, and continues until the file is read in 10
times. At this point, an error will be generated before the script has run.

Max Lines Executed

This message occurs if the system_variable @MAX_LINES_TO_EXECUTE was set to a
non-zero value and @MAX_LINES_TO_EXECUTE command lines were executed.

Max Macro Keys

This message occurs if the maximum number of defined macro keys was encountered.
for i =1 to 1000
loadkybdmacro 1 = i
endfor

Max Ref Info

This message occurs if the maximum number of reference lines were issued by the
SaveRefInfo command. The maximum number of lines is 8.

Max Window Input Entries

This message occurs if too many DisplayInput entries were specified. The maximum
number of DisplayInput entries is 64.

Memory Allocation

This message occurs if an internal memory error has occurred.

ISL Error Messages A-9

A-10

Must Have List Var
This message occurs if ISL encountered a list specification without a list value.
txmsg list[]
Name is a Reserved Word
This message occurs if an attempt was made to declare a variable with the same name as
a reserved word.
var display : n4

New TNDTTL Exceeds Original

This message occurs if an attempt was made to increase the system_variable @ TNDTTL
value, but the value can only be decreased.

No Arrays in Sub Var
This message occurs if a Sub command tried to declare an array_variable in the argument
list.
sub mysub(var i[10] : N5)
No ISL File

This message occurs if the script was not found or did not exist.

No Match for EndFor

This message occurs if no corresponding EndFor command exists for a For command.

event ing : 1
for row_cnt = 1 to number_occupants
display row_cnt, 2, occupant_list[row_cnt]

//MNissing endfor command

endevent

No Match for EndWhile

This message occurs if no corresponding EndWhile command exists for a

While command.
event ing:1

while i < 10

//No endwhile declared
endevent

ISL Error Messages

No Match for Event

This message occurs if the SIM Inquiry and/or SIM Tender key had no corresponding
Event Inq or Event_Tmed.

For example, if the SIM Inquiry Key #920 (SIM Key 1 : Inq 1) is pressed, and Event Inq : 1
does not exist, this message will display.

No Number in Sys Var

This message occurs if a system_variable requires a number entry after it and no number
was entered.

For example, system_variable @SI must have a number 1 - 16 after it.

No Ops on Strings

This message occurs if the declared string operation is not allowed.
a = “123” - “abc”

No PMS Message Received

This message occurs if no response was received from the PMS system after the

RxMsg command was executed.

No Touchscreen Keys Defined

If the script executes a ClearIslTs command to clear the ISL-defined touchscreen, then
immediately tries to display the ISL-defined touchscreen using DisplayIsITs or
PopUplslTs, the ISL cannot display the touchscreen because there are no keys to display.

event inq:1
clearislts //Remove any defined keys.
displayislts //No keys, error occurs
// here.
endevent

Not a Variable

This message occurs if a variable was expected but not encountered.
input 123, “Enter value” //123 not variable

Not Enough Input Data
This message occurs if the @STRICTARGS variable is set and there were too many
variables specified in the RxMsg, Split, SplitQ, or FRead command.

Assume the following data was received in a PMS message: Dan | Tooher. The message
has two fields. The following example expects three fields and would generate the above
error:

var fname : A20, Iname : A20, status : N3

rxmsg fname, Iname, status

ISL Error Messages A-11

Not Enough List Data
This message occurs if the @S TRICTARGS variable is set to a non-zero value, but the
input data did not have enough values to assign the specified list.

Assume the following data was received in a PMS message: 3| Smith | Jones. The 3
signifies that three fields follow, and only two fields are present. The following would
generate the above error:

var size : N3
var list[10] : A20

-rxmsg size, list[]

Not Enough Variables

This message occurs if the @STRICTARGS variable is set to a non-zero value, but there
were not enough variables specified in the RxMsg, Split, SplitQ, or FRead command.

Assume the following data was received in a PMS message: DanTooher. The message
has two fields. The following example expects one field and would generate the above
error:

var fname : A20, Iname : A20, status : N3

;'xmsg fname

NUMERIC ENTRY REQUIRED

This message occurs if non-numeric data was entered for a numeric variable.

Print Already Started

This message occurs if a StartPrint command was encountered while print was still
active (for example, prior to a corresponding EndPrint).

startprint @RCPT
printline ...
startprint @CUST

endprint

Print Not Started

This message occurs if a PrintLine or EndPrint command was encountered without a
corresponding StartPrint command.

Reading Ord Dvc Table

This message occurs if an error occurred while reading the Order Devices module in the
Enterprise Management Console (EMC).

A-12 ISL Error Messages

Reading Tbl Def

This message occurs if an error occurred while reading the Tables module in the EMC.

Require Array for List

This message occurs if an array was expected but a non-array variable was encountered.
var i 1 N5
listdisplay 1, 2, 3, i //1 is not an array

Script Memory Allocation Error

This message occurs if an internal error is encountered.

Start Position Invalid

This message occurs if the start_position parameter in the Mid command and/or function
is invalid.
str = mid(*‘abc”, -2, 3) //7-2 is invalid

String Overflow

This message occurs if an attempt to assign a value to a string exceeded the string’s
storage size.

var n - A3
n = “message” //n only holds 3 characters

Sub Array Ref Invalid

This message occurs if a Sub command had an invalid array declaration for an array_
variable.

sub mysub(ref array[) //0nly one bracket
//Should be []

Sub Has No Arguments

This message occurs if a Call command was made with arguments, and the subroutine
called had no arguments.

event inq:1
call mysub(1, 2, 3)
endevent

sub mysub //Mysub missing (1, 2, 3)

endsub

Sub Statement in Procedure

This message occurs if a Sub command was encountered while inside an Event.

event ing:1
sub mysub

ISL Error Messages A-13

endsub
endevent

System Variable Declaration

This message occurs if an attempt was made to declare a systern_uvariable (for example,
any variable name that begins with the @ character).
var @chk - N3

Sys Var Not Assignable

This message occurs if an attempt was made to assign a value to a read-only
system_variable.

Too Few Args in Call

This message occurs if the Call command did not have enough arguments.

event inq:1
call mysub(1)
endevent

sub mysub(var i:n5, var j:N5)

endshb

Too Few Arguments

This message occurs if there were not enough arguments specified for a function.

Too many Args in Call

This message occurs if the Call command had too many arguments.

event inq:1
call mysub(1, 2)
endevent

sub mysub(var i:n5)

endsub

Too Many Arguments

This message occurs if too many arguments were specified for a function.

Too Many Nested Calls

This message occurs if too many subroutines were nested within each other.

Too Many Touchscreen Keys

The ISL-defined touchscreen will hold a finite number of keys (i.e, nine). If the user tries
to define too many keys, this error will occur.

A-14 ISL Error Messages

event inqg:1

var i:n5
clearislts // Remove any defined keys.
for i =1 to 100 // Loop will generate an error.
setisltskey 1, 1, 2, 1, 1, @key _clear, "CLEAR"
endfor
displayislts // No keys, error occurs here.
endevent

Too Many PMS Definitions Active. Start New Transaction

This message occurs if the following condition occurs: the revenue center PMS link
database file must have changed while the User Workstation was in a transaction. To
clear this condition, cancel the current transaction.

Undefined Call

This message occurs if a Call was made to a subroutine that did not exist within the
script.

Undefined Function

This message occurs if an undefined function was called.

Undisplayable Variable

This message occurs if the variable cannot be displayed.

display 2, 3, @TRDTL //QTRDTL cannot be
// displayed

Unexpected Data after Call

This message occurs if the Call command is invalid.
call mysub + 3

Unexpected Data after Sub

This message occurs if the Sub command is invalid.
sub mysub - 4

Unexpected Data in Sub

This message occurs if the parameter list in the Sub command is invalid.
sub mysub(var fred:N5, i 2 N5)

Unexpected End of Line

This message occurs if not enough data was specified on the command line.
display 2, 2, //should be data after 2,

Unexpected Token Type

This message occurs if invalid text is encountered when trying to read a command or
function.

ISL Error Messages A-15

Unknown Command

This message occurs if an unknown command is specified.
dsplay 2, 2, “Line” //display is misspelled

Unknown System Variable

This message occurs if an unknown system_uvariable is referenced.
display 2, 2, GRWC

Unmatched Endevent

This message occurs if an Endevent was encountered without a corresponding

Event command.

Unmatched EndFor

This message occurs if a For/EndFor nesting error occurred.

Unmatched If

This message occurs if an If, Elself, Else, or EndIf nesting error occurred.

Value Not Key Definition

This message occurs if an attempt to use a non-key variable in an expression which
required a key_variable was encountered.
loadkybdmacro 12.47

Variable Undefined

This message occurs if an undefined variable was referenced.

Window Columns Out of Range

This message occurs if an attempt was made to declare a Window that was too wide.
window 4, 1000

Window Has Not Been Defined

This message occurs if an attempt to display text within a Window occurred without a
Window first being declared.

Window Rows Out of Range

This message occurs if an attempt was made to declare a Window that was too tall.
window 1000, 10

A-16 ISL Error Messages

Appendix B TCP Interface Code

This chapter includes sample code for MICROS SIM TCP Server, Sample SIM Server, and
a sample makefile.

MICROS SIM TCP Server

/*

* MICROS SIM TCP Server

*

* This code implements a server process which accepts SIM messages
* from an Oracle MICROS POS client process over a TCP link.

*

* This sample code is written for UNIX System V using the AT&T SVID
* Transport Layer Interface (TLI) API. It should be easily portable
* to the X/Open Transport Interface (XTl). Porting to a

* Berkeley-style socket library is left as an exercise for the

* reader.

*

*/

#include <stdio.h>
#include <fcntl._h>
#include <signal.h>
#include <sysexits.h>
#include <sys/types.h>

#include <netdb.h>

#include <tiuser.h>

#include <stropts.h>

#include <arpaZinet._h>

#include <sys/socket.h>

#include <sys/netinet/in.h> extern int t_errno;
/* operating-system specific device name: */
#define TCP_DEVICE_NAME “/dev/inet/tcp”

/* define SIM TCP service: */
#define SIM_SERVICE_NAME “micros-sim”
#define SIM_SERVICE_TYPE “tcp”
#define DEFAULT_SIM_PORT 5009

#define SIM_MAX_MSG 32767
#define SIM_MAX_MSG_BODY (32767 - 25 -4 - 4)

/* supplied by SIM vendor: */
extern void process_pos_request(const char *header,
const char *body,
char reply_body[SIM_MAX_MSG_BODY]);

TCP Interface Code B-1

B-2

/* supplied below: */
static void transfer_pos_messages(int fd);

void run_sim_server(void)
{
int listen_fd, conn_fd;
struct sockaddr_in *sin;
struct servent *servp;
struct t_bind *bind;
struct t_call *call;
u_short serviceport;
int retries;

/* Open a TCP server endpoint in order to listen for

* requests from POS client processes.

*

* IT the requested address is in use, retry up to 10 times.

* This can occur if another server was running on the same

* address, and the TCP port has not yet completed its shutdown
* processing.

*/

it ((servp = getservbyname(SIM_SERVICE_NAME, SIM_SERVICE_TYPE)) == NULL)
serviceport = htons(DEFAULT_SIM_PORT);

else
serviceport = (u_short) servp->s_port;

retries = 10; while
(retries--) {

if ((listen_fd = t_open(TCP_DEVICE_NAME, O_RDWR, NULL)) < 0) {
t_error(“run_sim_server: t_open”);

exit(EX_OSFILE);
by

if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL))
== NULL) {

t_error(“run_sim_server: t_alloc(T_BIND)”); t_close(listen_fd);
exit(EX_OSERR);

}

sin = (struct sockaddr_in *) bind->addr.buf;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port= serviceport;

bind->addr.len = sizeof *sin;
bind->qglen = 1;

TCP Interface Code

if (t_bind(listen_fd, bind, bind) < 0) {
t_error(“run_sim_server: t_bind”);
t_close(listen_fd);

exit(EX_OSERR);

}

if (sin->sin_port != serviceport) {

fprintf(stderr,“run_server: wanted port %d, got port %d, retrying\n”,
ntohs(serviceport), ntohs(sin->sin_port));

t_close(listen_fd);

t_free((char *)bind, T_BIND); sleep(10);
b
else
break;

}

if (retries == 0) {

fprintf(stderr, “run_sim_server: could not get port %d\n”,
ntohs(serviceport));

t_close(listen_fd);
exit(EX_TEMPFAIL);
}

it ((call = (struct t_call *)t_alloc(listen_fd, T_CALL, T_ALL)) == NULL)

t_error(“run_sim_server: t_alloc(T_CALL));
t_close(listen_fd);
exit(EX_OSERR);

}

/* For simplicity, we ignore SIGCLD, which allows the exiting
* child processes to clean up after themselves, without
* requiring the parent (this process) to call wait().

*/ sigignore(SIGCLD);
/* We now have the desired TCP port open.

* Accept connections, and for each connection accepted,
* start a server process.

*/

while (1) {

/* Listen for incoming connections.

* This process will typically spend 99.9% of its time
* blocked in this t_listen() call.
*/

if (t_listen(listen_fd, call) < 0) {
t_error(“run_sim_server: t_listen”); t_close(listen_fd);
exit(EX_OSERR);

TCP Interface Code B-3

/* Open a new endpoint and accept the connection

* on this new endpoint (freeing the listen_fd
* to accept further connections).
*/

if ((conn_fd = t_open(TCP_DEVICE_NAME, O_RDWR, NULL)) < 0) {
t_error(“run_sim_server: t_open”);
t_close(listen_fd);
exit(EX_OSFILE);
}

if (t_bind(conn_fd, NULL, NULL) < 0) {
t_error(“run_sim_server: t_bind”);
t_close(conn_fd); t_close(listen_fd);
exit(EX_OSERR);

}

if (t_accept(listen_fd, conn_fd, call) < 0) {
if (t_errno == TLOOK) {

/* retrieve disconnect indication, if any, and continue */
t_rcvdis(listen_fd, NULL);
t_close(conn_fd);

}

else {

t_error(*run_sim_server: t_accept™);
t_close(conn_fd); t_close(listen_fd);
exit(EX_OSERR);

}

}

else {

/* Push the “tirdwr” module onto the connection, establishing

* the “read/write” interface This is so the rest of this process
* does not have to understand the more complicated TLI scheme

* for pushing messages, and can treat this connection just like
* a tty. (Let the streams module do the work.)

*

* After this succeeds, no TLI calls can be made on conn_fd,

* only read(), write(), and close().

*/

if(ioctl(conn_fd, 1_PUSH, “tirdwr”) < 0) {
perror(“run_sim_server: ioctl(1_PUSH, tirdwr)”);
t_close(conn_fd);
t_close(listen_fd);
exit(EX_OSERR);

TCP Interface Code

/* Start a child process, which will use conn_fd.
* The parent will close conn_fd and return to

* listening. I the fork fails, we will discard
* this connection, but continue to listen,

* since the situation should clear up eventually.
*/ switch(fork(Q)) {

case -1: /* error */ perror(“run_sim_server: fork™)
break;

default: /* parent */ close(conn_fd); break;

case O: /* child */ t_close(listen_fd);
transfer_pos_messages(conn_fd); exit(EX_0K);

break;

}

}

}

}

#define SOH 1

#define STX 2

#define ETX 3

#define EOT 4

#define ACK 6

#define NAK 21

enum SIM_Link_State { sim_msg_begin, sim_msg_id, sim_msg_data,

sim_msg_cksum };

static void transfer_pos_messages(int fd)

{

int i, n;
int msg_buf_len; char *header, *body;

enum SIM_Link_State state; char msg_buf[SIM_MAX MSG + 1];
char recv_buf[SIM_MAX MSG + 1]; char reply_buf[SIM_MAX MSG + 1]; char

reply_body[SIM_MAX_MSG_BODY];

/* Handle input from POS system,

* 1. Attempt to read bytes from POS connection, blocking.
* 2. If an invalid message is received, discard it.

* 3. When a complete message is available, call

* process_pos_request,

* passing the received header, the received body,

* and a buffer for the reply.

TCP Interface Code

implementing the network protocol:

close(conn_fd);

B-6

* 4_ When process_pos_request returns, reply to the POS

* connection with a copy of the received header and
* the reply buffer returned from process_pos_request.
*/

state = sim_msg_begin; msg_buf _len = 0;

#define NEXT_STATE(prev,next) (state == (prev) \
? (state = (nhext), 1) \
: (state = sim_msg_begin, 0))

#define STATE_ERROR { msg_buf_len = 0; state = sim_msg_|
while (1) {
n = read(fd, recv_buf, SIM_MAX MSG);

if (n <0 && errno == EINTR)
continue; /* ignore interrupts, read again */

if (n < 0) { perror(“transfer_pos_messages: read”);
close(fd); /* this connection is finished */ return;

}

if (n==0) {

begin; }

fprintf(stderr, “transfer_pos_messages: connection closed\n”);

close(fd); /* this connection is finished */
return;

}

for(i = 0; 1 < n; i++) { switch(recv_buf[i]) {
case SOH:

i T(NEXT_STATE(sim_msg_begin, sim_msg_id)) {

/* Restart message, and, for clarity,

* remember the position of the (upcoming) first
* byte of the header.
*/

msg_buf_len = 0;
header = &msg_buf[msg_buf_len];
b
else
STATE_ERROR
break;

case STX:

iT(NEXT_STATE(sim_msg_id, sim_msg_data)) {

/* NUL-terminate header, and remember the position

* of the (upcoming) first byte of the body

*/

msg_buf[msg_buf_len++] = “\0”; body = &msg_buf[msg_buf_len];
}

TCP Interface Code

else
STATE_ERROR
break;

case ETX:

if (NEXT_STATE(sim_msg_data, sim_msg_cksum)) {

/* NUL-terminate the body. */ msg_buf[msg_buf_len++] = “\0”;
}

else

STATE_ERROR

break;

case EOT:
i T(NEXT_STATE(sim_msg_cksum, sim_msg_begin)) {

int reply_len; reply_body[0] = “\0”;
/* IT body exists,

* send request to SIM-specific code.

* header[0] through NUL is the header.

* body[0] through NUL is the request body.

* reply_body[0] through NUL will be the reply body.
* (1T body is empty, return empty response to P0S.)
*/

if (body[0] = “\07)
process_pos_request(header, body, reply_body);

/* Frame original header and reply body,
* and respond to the POS system.
*/

sprintf(reply_buf, “%c¥%s%c¥hs%c¥hc”,

SOH, header, STX, reply_body, ETX, EOT);

reply_len = strlen(reply_buf);

if (write(fd, reply_buf, reply_len) = reply_len) {
perror(“transfer_pos_messages: write”); close(fd);

return;

}

}

else
STATE_ERROR
break;

case ACK: case NAK:
/* Ignore ACKs and NAKs */ break;

default: switch(state) {
case sim_msg_begin: case sim_msg_cksum: default:

TCP Interface Code B-7

break;

case sim_msg_id: case sim_msg_data:
msg_buf[msg_buf_len++] = recv_buf[i]; break;
break;

}

break;

[S W R

Sample SIM Server

/*

*

X ok X F

*/

This code is a complete implementation of a SIM server,
demonstrating the functions which must be provided by
the server application.

This example sends valid responses to Simphony-standard format POS messages.

extern void run_sim_server(void); mainQ

}

run_sim_server();

void process_pos_request(const char *header,
const char *body,

char reply_body[1)

{

printf(“Header = %s\n”, header);
printf(“Body = %s\n”, body);
if (body[0] == “ “ && body[1] = “17)
strcpy(reply_body, “ 1ABCDEFGHIJKLMNOP™”) ;
else if (body[0] = “ “ && body[1] = “27)
strcpy(reply_body, ““ 2ZYXWWUTSRQPONMLK™™) ;
else
strcpy(reply_body, “///UNKNOWN REQUEST™”);

printF(“Reply Body = %s\n”, reply_body);

}

Sample Makefile

Simtest: Simtest.o Simsrv.o

B-8

cc -0 simtest simtest.o simsrv.o -Isocket -Insl_s -Ic_s

simtest.o: simtest.c

cc -c -W2 -strict -g simtest.c

simsrv.o: simsrv.c

cc -c -W2 -strict -g simsrv.c

TCP Interface Code

Appendix C

ISL Quick Reference

This chapter is a quick reference guide to the syntax of all ISL language elements,
including data types, operators, system variables, format specifiers, commands, and

functions.

Data Types

Table 145 Data Types

Data Type

Abbreviation

Description

Example

Numeric

Nx

These variables are used for
numeric information and may
comprise x digits (integers, not
decimal), for example, N4
supports -9999 to 9999.

var rowent : n3

Decimal

$x

These variables are used for
decimal amounts. Operator
entries will assume a decimal
place according to the
currency's default setting, as
specified in the Currency
module; for example, entering
1234 in the US will resultin an
amount of 12.34. They may
comprise x digits, (for
example, $4 in the US will
support -99.99 to 99.99).

var new_ttl : $12

Alphanumeric

Returns the
ASClIIinteger
value of the
first character
of the string

These variables may include
any non- control character,
including punctuation marks.
They may comprise x
characters.

var name : a20

Key

key

This system variable is used
for key press variables.

var keypressed :
key

ISL Quick Reference

C-1

Relational and Logical Operators

C-2

Unary Operators
Table 146 Unary Operators

Operator Description Example
- Negation operator (a minus -3

sign). Thisis used tonegatean | _.qunt

expression. -((count+5) * -index)
NOT Will negate the result of the The NOT operator will negate

expression. The NOT operator
can be applied to expressions

in the same way as the unary

minus operator.

the result of the expression.

For example, the following
expression is always TRUE:
(3<4)

The NOT operator will negate
the sense of the above
expression; thus the following
expression is always FALSE:

NOT (3<4)

Binary Operators
Table 147 Binary Operators

Operation Operator Allowable Operand
Types: Nx, $x, and Ax

multiplication * Nx, $x Ax, Key

division / Nx, $x

modulus % Nx, $x

plus + Nx, $x

minus - Nx, $x

bit-wise and & Nx

bit-wise or | Nx

equality = Nx, $x Ax, Key

greater than or equal >= Nx, $x, Ax, Key

greater than > Nx, $x, Ax, Key

less than or equal <= Nx, $x, Ax, Key

ISL Quick Reference

Operation Operator Allowable Operand
Types: Nx, $x, and Ax
inequality < Nx, $x, Ax, Key
less than < Nx, $x, Ax, Key
logical and AND Nx
logical or OR Nx
C-System Variables
Table 148 System Variables
Category Variable Name and Field/Parameter
Syntax
Cover/Guest Count | @GST Guest Count
Data Entry @FIELDSTATUS Data Entry Field Status Flag
@INPUTSTATUS User Input Status Flag
@MAGSTATUS Magnetic Card Entry Status
Flag
@RETURNSTATUS Transaction Item Return
Indicator
@USERENTRY Data Entered Before SIM
Inquiry Key Activated
@VOIDSTATUS Transaction Item Void Indicator
Date and Time @DAY Current Day of Month
@EPOCH EPOCH Time
@HOUR Current Hour of Day
@MINUTE Current Minute
@MONTH Current Month
@SECOND Current Second
@WEEKDAY Day of Week
@YEAR Current Year
@YEARDAY Current Day of Year
Discount/Service @AUTOSVC Auto Service Charge
Charge @CHGTIP Charged Tip
Employee
@DSC Discount Total

ISL Quick Reference

@DSC_OVERRIDE

When a manual discount is
entered, a SIM ‘Discount’ script

C-3

C-4

Category Variable Name and Field/Parameter
Syntax
@DSCI Discount Itemizer
@EMPLDISCOUNT In a discount event, this
variable is the number of the
employee discount
@EMPLDISCOUNTEMPL | In a discount event, this
variable is the employee
number of the discount
receiving the employee
@NUMDSC Active Discounts
@NUMSVC Active Service Charges
@SVC Service Charges
@SVCI Service Charge Itemizer
@CKEMP Check Employee
@EMPLOPTI] SIM ISL Options #1-#8
@TRAININGMODE Training Mode Status Flag
@TREMP Transaction Employee
Event Data @EVENTID ID of event being raised
@EVENTTYPE Type of event being raised
@OB]J Object number of detail item
@PICKUPLOAN Value of pickup or loan amount
@QTY Quantity of detail item
@TTL Amount of detail item
File I/O @FILE_BFRSIZE User Definable Variable

@FILE_ERRNO

Standard Error Number Value

@FILE_ERRSTR

Standard Error String based on
@FILE_ERRNO

@FILE_SEPARATOR

Field Separator for File I/O
Operations

Function Keys

@KEY_CANCEL Cancel Key
@KEY_CLEAR Clear Key
@KEY_DOWN_ARROW | Arrow Down Key
@KEY_END End Key
@KEY_ENTER Enter Key
@KEY_EXIT Exit Key
@KEY_HOME Home Key

ISL Quick Reference

Category Variable Name and Field/Parameter
Syntax
@KEY_LEFT_ARROW Arrow Left Key
@KEY_PAGE_DOWN Page Down Key
@KEY_PAGE_UP Page Up Key
@KEY_RIGHT_ARROW | Arrow Right Key
@KEY_UP_ARROW Arrow Up Key
Guest Check @CHK_OPEN_TIME Date and Time Check Opened
@CHK_OPEN_TIME_T Current Check Open Time
@CHK_PAYMNT_TTL Current Check Payment Total
@CHK_TTL Current Check Total
@CHECKDATA Facsimile of Check
@CKCSHR Cashier Number
@CKID Check ID
@CKNUM Check Number
@LASTCKNUM Last Check Number Assigned
to Guest Check
@TRCSHR Transaction Cashier Number
Open Check @NUM_OPENCHECKS | Lists Open Checks per Revenue
Center
Order Type @ORDERTYPE Order Type
Printing @CHK Guest Check Printer
@DWOFF Double-wide Characters OFF
@DWON Double-wide Characters ON
@HEADER Guest Check, Receipts, Credit
Card Vouchers
@NUL Specifies a binary 0 should be
@ORDR]] Remote Order or Local Order
@PRINTSTATUS Print Status Flag
@RCPT Customer Receipt Printer
@REDOFF Red Ink OFF
@REDON Red Ink ON
@TRAILER Guest Check, Receipts, Credit
Card Vouchers
@VALD Validation Chit Printer
Property @OFFLINELINK Used to link to an offline PMS
Management @PMSLINK Revenue Center PMS Link

ISL Quick Reference

C-5

C-6

Category Variable Name and Field/Parameter
Syntax
System (PMS) @PMSNUMBER PMS Object Number
@RXMSG Name of PMS Response
Message
@SIMDBLINK Links to the SIMDB DLL to the
database
Proration @GSTRMNG Guests Remaining after
Proration
@GSTTHISTENDER Guest Count Associated with
Split Tender
Sales Itemizer @NUMSI Active Sales Itemizers
@SI[] Sales Itemizers
@TXBL[] Taxable Sales Itemizers
Sales Total @CHANGE Change Due
@PREVPAY Previous Payment
@TNDTTL Tender Total
@TTLDUE Total Due
Script @RANDOM Returns a random value
between 0 and 232-1
@RVC Revenue Center Number
@WARNINGS_ARE_FAT | Strong Checking
AL
Seat @SEAT Active Seat Number
Serving Period @SRVPRD Serving Period
System @DBVERSION Current Database Version
@GUID The GUID of the Current Check
@0OS_PLATFORM 1 - Microsoft Windows CE
3-Win 32
4 - Oracle Linux for MICROS
@PLATFORM Hardware Platform
@PROPERTY The Property Number of the
Workstation
@SYSTEM_STATUS Shell Return Status
@VERSION SIM Version Number
Table @GRPNUM Table Group Number
@TBLID Table ID
@TBLNUM Table Object Number
Tax @NUMTAX Active Tax Rates

ISL Quick Reference

Category Variable Name and Field/Parameter
Syntax
@TAX]] Tax Collected
@TAXRATE[] Tax Rate
@TAXVATI[] Returns the Value Added Tax
Amount for Tax Rate “X”
@TXEX_ACTIVE] | Checks if the Tax is Exempt at
the Specified Level
Tender/Media @TMDNUM Tender/Media Number
Touchscreen @ALPHASCREEN Alpha Touchscreen
@NUMERICSCREEN Numeric Touchscreen
Transaction Detail | @DETAILSORTED Detail Sorting Status
@DTL_DEFSEQ(] Definition Sequence of Detail
Item
@DTL_DSC_EMPL]] Employee who is getting the
employee meal discount for the
specified detail entry
@DTL_DSCI][] Menu Item Detail Class
Discount Itemizer Value
@DTL_FAMGRPY] Menu Item’s Family Group
@DTL_INDEX Index of the detail which fired
the SIM event
@DTL_IS_CONDIi] Determines if a Guest Check
Menu Item is a condiment
@DTL_MAJGRP[] Menu Item’s Major Group
@DTL_MLVL[] Main Menu Level of Detail Item
@DTL_NAME]] Name of Detail Item
@DTL_OBJNUM[] Object Number of Detail Item
@DTL_PLVL][] Price Level of Detail Item
@DTL_PMSLINK]] PMS Link of Detail Item
@DTL_PRICESEQ] Price Sequence Number of
Detail Item
@DTL_QTY(] Quantity of Detail Item
@DTL_SEAT]] Seat Number of Detail Item
@DTL_SLSI[| Menu Item Detail Class Sales
Itemizer Value
@DTL_SLVL][] Sub-menu Level of Detail Item
@DTL_STATUS][] Status of Detail Item
@DTL_SVC_LINK]] Stored Value Card Link
@DTL_SVC_TYPE[] Stored Value Card Type

ISL Quick Reference

Category Variable Name and Field/Parameter
Syntax
@DTL_TAXTTL[] Returns the Tax Total of Detail
Item
@DTL_TAXTYPE]] Tax Types
@DTL_TTL][] Total of Detail Item
@DTL_TYPE]] Type of Detail Item
@DTL_TYPEDEF]] Returns the Detail Item Type
Definition
@MAXDTLR Maximum Size of @TRDTLR
@MAXDTLT Maximum Size of @TRDTLT
Troubleshooting @NUMDTLR Number of Detail Entries this
Service Round
@NUMDTLT Number of Detail Entries for
Entire Transaction
@LINE Current Line Executed in Script
@LINE_EXECUTED Lines Executed in Script
@MAX_LINES_TO_RUN | Maximum Lines of Script to
Execute
@PMSBUFFER PMS Message
@TRACE Output Line of Script to
8700d.log
Window @CENTER Center Column in ISL-defined
window
@WCOLS Number of Columns in ISL-
defined window
@WROWS Number of Rows in ISL-defined
window
Workstation @WSID Workstation ID number
@WSTYPE User Workstation Type
@WSSUBTYPE Use Workstation Subtype

Format Specifiers

Input Specifiers

Table 149 Format Specifiers

Input Specifier

Description

For example:

Data being typed in by the operator should not
be echoed back to the display

Input auth_code{-}, “Enter authorization code”

C-8

ISL Quick Reference

Input Specifier Description

Mn,* Specify the track number (n =1 or 2) and what
data to read from the magnetic card. For use with
the Input, InputKey, DisplayInput, and
DisplayMSInput commands only. The M
character is case-insensitive

For example:

Input auth_code{ M2,* }, “Enter authorization code

Z

Mu, field, start, count | * | Mn: the track number (M1 or M2); this can be
followed by a star (*) to specify all fields on the
track, or use the following fields to read

specific information:

field: the field position within the specified

track; this is a positive integer.

start: starting offset (character) within the field;for
example, if one wants to take the lastfour
characters of the “Blaine Richard” string, the offset
would start at 11.

count: number of characters to be read from the start
(first character) to the end of the field (place an
asterisk * to include all characters)

For example:

Input auth_code{ M2,1,3,10

1, \ “Enter authorization

code”

Output Specifiers

The proper syntax for using the output_specifiers is as follows:

[<I=1>1*] [+] [0] [size] [DIXIOIB] [*] ["] [:format_string]

Output specifiers must also be placed in the order listed in the following table:

Table 150 Output Specifiers

Output Specifier Description

< Left justification; the size specifier may be used to
specify the size of the field.

B Center justification; the size specifier may be used
to specify the size of the field.

> Right justification; the size specifier may be used to
specify the size of the field.

* Trim leading and trailing spaces; the size
specifier may be used to specify the size of the

+ Place sign at the start of the field.

ISL Quick Reference

C-9

Output Specifier

Description

0

Pad with zeroes (as opposed to spaces).

size

Where size is the number of the characters in the
required field. The size must be a positive integer
or an expression that is a positive integer.

decimal format.

Decimal (Default); display numerics in

hexadecimal format.

Hexadecimal; display numerics in

Octal; display numerics in octal format.

Binary; display numerics in binary format.

be displayed.

Place a space on each side of the data to

"

Place double quotes around the data to be displayed.

‘format_string

preceding the format specifier.

Similar to the BASIC language PRINT USING
command. All characters will be displayed except
for the # character, which will be replaced by
characters from the variable or expression

Commands
Note that:

o All arguments enclosed in brackets [] are considered optional.

« The meaning of the data within the braces will be explained later.

Table 151 Commands

Category Command and Syntax Description
Communications | GetRxMsg Wait for a PMS
message.
ReTxMsg Retransmit a message.
RxMsg user_variable or Define the format ofa

list_spec[, user_variable or

message received over the

list_spec... interface.

TxMsg Define the format and
expression[{output_specifier}]], send an interface
TxMsgOnly Send a message to a PMS

expression[{output_specifier}]|,
expression[{output_specifier}]

without waiting for a
response.

Use[Compat/ISL]Format

Use Simphony-standard or
ISL message format.

C-10

ISL Quick Reference

Category

Command and Syntax

Description

Use[ISL/STD]TimeOuts

Use ISL time outs or the
standard Simphony
error messaging, when
there is no response
from the PMS System.

WaitForRxMsg
[prompt_expression[{output_speci
fier}]\ [,

prompt_expression[{output_specifier

1.1

Wait for an interface
message to be received
after a TxMsg has been
sent. If no prompt text is
supplied, Please Wait-
-Sending Messageis

FileI/O

FClose file_number

Close a file.

FGetFile file_number

Gets a file from the SIM file
service.

Flock file_number, Preventwrite Lock a file.
[And] [Preventread][and]

[Nonblock]

FOpen file_number, file_name, Open afile.

mode

FPutFile file_ number

Puts a file into the SIM file
service server.

FRead file_number, user_variable
or list_spec|, user_variable or

Split the next line read
from a file into the

list_spec...] variables specified in the
statement.
FReadBfr file_number, data, Read the number of bytes

count_to_read, count_read

specified in the command.

FReadLn file_number, line

Read the entire line into a
string variable.

FSeek file_number, seek_position

Go to a specified positionin
an open file.

FunLock file_number

Unlock a locked file.

FWrrite file_number, variablel |,
variable2][, variable3...]

Write to a formatted file.

FWriteBfr file_ number, data,
count_to_write, count_written

Write a specified number
of bytes.

FWriteLn file_number, line

Write an entire line.

ISL Quick Reference

C-11

Category Command and Syntax Description

Flow Control Break Break out of the current
For loop.
Call name Call a subroutine
ContinueOnCancel Continue processing the

script even if the [Cancel]
or [Clear] key is pressed
after an Input command

Event Inq : number Indicate the start and end
of an event procedure.

e Tmed: number
¢ RxMsg:event_ID

e Final_Tender: no event_ID
required

e Print_Header: alpha/numeric

e Print_Trailer: alpha/numeric

..EndEvent
ExitCancel Exit a script and cancel the
current tendering
ExitContinue Exit a script and continue
the current tendering
ExitOnCancel Exit a script when the
[Cancel] or [Clear] key is
pressed after an Input
command has been issued.
ExitWithError Display a defined error
message and exit the
For...EndFor counter = Perform commandsa
start_expression To specified number of times.
ForEver...EndFor Perform commands an
indefinite number of times.
If.. Else... EndIf expression Execute commands if the
[operator...] expression specified condition is met.

[operator...]

Return Return from a subroutine.
Sub...EndSub name Indicate the start and end
Sub.. EndSub name (Ref | Var of a subroutine procedure.

parameter [, Ref | Var
parameter]...)

TimerSet Sets a recurring time event.

C-12 ISL Quick Reference

Category

Command and Syntax

Description

TimerReset

Resets a specific timer.

TimerResetAll

Resets all timers.

While...EndWhile expression

Execute a loop structure
until an expression
becomes FALSE.

Input/Output

ISL Quick Reference

Beep Sound the beeper.
ClearChkInfo Clear check information
detail lines in buffer.
ClearIslTs Clear any previously
defined touchscreen keys.
ClearKybdMacro Clear macro key
ClearRearArea Clear the contents of the
customer display.
ClearWaitPrompt Display a wait prompt.

Display row, column,
expression[{output_specifier}] [
expression [{output_specifier}]...]

Display text or a field at a
defined place within a
window.

DisplayInput row, column,
input_variable[{input/output_specifi
er},\ prompt_expression]|,
prompt_expression,...]

Display an input field
within a window.

DisplayInverse row, column,
expression[{output_specifier}]}[,
expression\ [{output_specifier}]...]

Display input field in
inverse video.

DisplaylsITs Display an ISL-defined
touchscreen.
DisplayMSInput row, column, Display an input field

input_variable}\ [{input/
output_specifier}], \
prompt_expression[, row, column, \
input_variable{input/

within a window and
allow magnetic card swipe
to satisfy field entry.

DisplayRearArea

Display up to 20 characters

ErrorBeep
expression{output_specifier}[,
expression[{output_specifier}],...]

Sound an error beep.

ErrorMessage Display an error message
and continue.
GetEnterOrClear Wait for the [Enter] or

[Clear] key to be pressed.

C-13

C-14

Category

Command and Syntax

Description

GetTime Retrieve current time.

Input Capture operator entry for
a single field or prompt.

Inputkey Capture operator entry
and a key for a single field
or prompt.

ListDisplay (W) Display a list.

ListInput (W) Display a list and get an
operator selection.

ListInputEx Display a list and get an
operator selection. Does
not provide a WROW or
WCOL variable.

LoadDbKybdMacro Load a pre-defined
keyboard macro so that it
may be executed upon
successful completion of a

LoadKybdMacro Load a user-defined
keyboard macro so that it

PopUplslTs Display a touchscreen as a
pop-up.

Prompt Display an operator

expression[{output_specifier}] [, prompt.

expression[{output_specifier}],...]

SaveChkInfo
expression[{output_specifier}]

Insert check information
detail into the check.

SetlIslTsKey row, col, num_rows,
num_cols, font, key_expression,

Define a touchscreen key.

WaitForClear
[prompt_expression[{output_specifier
11 [prompt_expression\
[foutput_specifier}],...]

Wait for the [Clear] key
before continuing. If no
prompttextis supplied,
“Press Clear to Continue”
is the default.

WaitForConfirm
[prompt_expression[{output_specifier
}1 [prompt_expression\
[{output_specifier}],...]

Wait for an operator
confirmation. If no prompt
text is supplied, “Press
Enter to Continue” is the
default.

ISL Quick Reference

Category Command and Syntax Description

WaitForEnter Wait for the [Enter] key
[prompt_expression[{output_specifier | before continuing.Ifno
1] [, prompt_expression\ prompttextis supplied,
[{output_specifier}],...] “Press Enter to Continue”
is the default.
WaitPrompt Display a wait prompt.
Window row, column Create a window of
[,expression[{output_specifier}],...] |specified size and
optionally display a
window title.
WindowClose Close the current window.
WindowEdit[WithSave] Display the current

contents of specified
variables within a window
and allow them to be
edited; optionally require
the [Save] key to save
entries and exit.

WindowInput[WithSave] Display the specified fields
within a window, without

the present contents;
optionally require the
[Save] key to save entries

and exit.
Miscellaneous LowerCase Convert a string to lower-

case.

MSleep milliseconds Sleep for the requested
number of milliseconds.

UpperCase Convert a string to upper-
case.

UseBackupTender Use backup tender

programmed in the
Simphony database.

Printing LineFeed [number_of _line_feeds] | Linefeed one or multiple
lines.
ListPrint list_size, array Print a list.
PrintLine Print specified text and/or
expression[{output_specifier}] or fields.

directive \
[, expression[{output_specifier}] or
directive...]

ISL Quick Reference C-15

C-16

Category Command and Syntax Description
PrintSimFeatures Print all SIM features
available in the current
SIM engine.
Variables ClearArray array_variable Clear an array

Format string_variable [,
field_sep_char] as
expression[[{output_specifier}], \
expression[{output_specifier}],...]

Concatenate one or more
variables into a string.

FormatBuffersource_string,
destination_string

Format a non-printable
string into a printable
string.

FormatQ string_variable [,
field_sep_char] as
expression[{output_specifier}], \
expression[{output_specifier}],...]

Concatenate one or more
variables into a string and
enclose the string in
quotes.

MakeAsciisource_string,
destination_string

Remove any non-ASCII
characters from a string.

Mid (string_variable, start, length) =
replacement_string

Set one portion of a string
equal to another string.

ProRate

Prorate itemizers for chg
posting.

[Retain/Discard]GlobalVar

Retain or discard global
variables between
transactions.

SaveRefInfo
expression[{output_specifier}]
[, expression\ [{output_specifier}],...]

Save information as
tender/ media reference
detail.

SaveRefInfoxref type,
expression[{output_spe

cifier}]

[, expression)\ [{output_specifier}],...]

Save information as
tender/ media reference
detail with reference type.

SetReRead

Re-read the ISL script for
new or changed ISL
scripts.

SetSignOn[Left/Right]

The minus sign will go on
the left or right side,
respectively, when
formatting numbers.

ISL Quick Reference

Category

Command and Syntax

Description

SetString main_string,
character_string],
count]

Replace all or a specific
number of characters in a
string with a particular
character.

Splitstring_to_split,
field_sep_char,
user_variable or list_spec \
[, user_variable or

Break a string into separate
fields.

list_spec...]

SplitQ Break a string into separate
fields and enclose the
string in quotes.

UseSortedDetail Consolidated detail is
accessible.

UseStdDetail Raw detail is accessible.

Var Declare a variable field of
specified type that will be
used for input and/or used
in an interface message.

Functions

Table 152 Functions

Command Name Syntax
Abs Abs (integer or decimal)
ArraySize ArraySize (array_name)
Asc Asc (string_expression)
Bit Bit (hex_string, bit_position)
Chr Chr (integer)
CommandExists CommandExists (string)
DefKey
Env Env (environment_variable)
Feof Feof (file_number)
FormatCheckData FormatCheckData (integer)
FormatCurrentDate FormatCurrentDate (string)
FormatStr FormatStr (format, valuel,value2)
FormatValue FormatValue (value,string)

ISL Quick Reference

C-17

C-18

Command Name Syntax

FTell FTell (file_number)

GetHex GetHex (hex_string)

GetValue FormatValue (key,string)

Instr Instr (index, string_expression, character)
Key Key (key_pair)

KeyNumber KeyNumber (key_expression)
KeyType KeyType (key_expression)

Len Len (string_expression)

Mid Mid (string_expression, start, count)
SplitString FormatValue (value,string)

Str Str (value)

SystemVariableExists SystemVariableExists (string)
Tolnteger Tolnteger (decimal)

Trim Trim (string_expression)

TypeOf TypeOf (value)

VarExists VarExists (string)

VarSize VarSize (user_variable)

ISL Quick Reference

Appendix D Microsoft Windows DLL
Access

This chapter describes Microsoft Windows DLLs and how to access them using SIM.

Microsoft Windows DLL Access

Overview

This document describes DLLs and how to access them using SIM. This information is
broken down into the following sections:

o« WhatisaDLL?

o Using DLLs

« Simphony SIM DLL Support

« Using Simphony SIM DLL Commands

What is a DLL?

The Simphony System Interface Module (SIM) can use Microsoft Windows Dynamic
Link Libraries (DLLs). DLLs are modules that contain functions and data. They provide a
way of separating applications into small manageable pieces that can be easily modified
and reused.

Dynamic Linking

Dynamic linking provides a means of giving applications access to function libraries at
run-time. DLLs are not copied into an application’s executable files. Instead, they are
linked to an application when it is loaded and executed.

Dynamic link libraries reside in their own separate files. Applications load them into
memory when they are needed, and share a single copy of the DLL code in physical
memory. A single DLL can be used by several applications simultaneously. This in turn
saves memory and reduces swapping.

Microsoft Windows allows only a single instance of a DLL to be loaded into memory at
any time. When a DLL is being loaded, Microsoft Windows checks all the modules
already in memory. If it doesn’t find a match, then it loads the DLL. If it does find a
match, and the matching module is a DLL, it doesn’t load it again.

The following are steps that an application takes when calling a function in a DLL:

« The application uses the LoadLibrary or LoadLibraryEx function to load the
DLL at run-time. This, for example, can be a .DLL or .EXE.

« The application calls the GetProcAddress function to get the addresses of the
exported DLL functions and it is mapped into the address space of the calling
process.

« The application then calls the exported DLL functions using the function pointers
returned by GetProcAddress.

Microsoft Windows DLL Access D-1

D-2

DLLs can define two kinds of functions: exported and internal. The exported functions
can be called by other applications. Internal functions can only be called from within the
DLL where they are defined. DLLs can contain code, data, and resources such as
bitmaps, icons, and cursors. These are stored as executable programs.

Using DLLs

DLLs are used for three general purposes:
« Sharing components
« Encapsulating (hiding) data and code

o Performing system-level operations

Sharing Components

DLLs provide an easy way for multiple applications to share components. These
components can be:

o Code: a DLL provides one copy of its code for all applications that need it.

» Data: by storing and retrieving data, applications can communicate with each
other. The DLL provides a function for applications to store and retrieve data in
its data segment.

« Custom Controls: these can be placed in DLLs for use by multiple applications.
They can be written by developers and marketed as separate DLLs or used in
applications.

» Resources: icons, bitmaps, fonts, and cursors can be placed in DLLs. Device
drivers are also DLLs that provide system resources.

Encapsulating (hiding) Data and Code

DLLs can be used to hide data and code. A DLL can implement an abstract data type
(ADT), which can be used by applications. The applications can use the ADT without
knowing anything about the actual implementation. When changes are made to the data
structures and internal code, the applications that use the DLL don’t have to be modified
or recompiled.

Performing System-level Operations

DLLs can be used to perform low-level operations. Operations such as interrupt service
routines can be placed in fixed-code segments of DLLs. If an application needs to issue
interrupts, the code can be placed in a DLL rather than in the application. Also, a DLL
can be written as a device driver for certain pieces of hardware (for example, a mouse or
keyboard).

Simphony SIM DLL Support

The Simphony System Interface Module allows the programmer to reap the benefits of
DLLs. The programmer can write or use existing DLLs to further enhance the capabilities
of the Simphony POS Operations module. Using three SIM commands, the programmer
can create a SIM script to access and externally created DLL. This functionality
considerably broadens the scope of the Simphony SIM feature. Some advantages of this
feature are:

Microsoft Windows DLL Access

« The ability to write SIM scripts to customize the Simphony PMS interface.
o The opportunity to take advantage of third-party development.
» A wider range of creativity.

o Faster turnaround time.

Customization

Using DLLs allows the flexibility of customization. Now the programmer is no longer
confined to the text based window that SIM uses for input and output. For example, one
could create a custom interface to a PMS that returns guest information to the Simphony
POS Operations module.

Third-party Development

If the programmer is not interested in writing DLLs, one can take advantage of DLLs that
can be, or already have been, written by a third party for Simphony SIM.

Creativity

Using the resources available with DLLs, fonts, bitmaps, cursors, etc. can be used to
create appealing user interfaces.

Faster Turn Around Time

Using DLLs can increase the turn around time of certain system requests. For example, a
DLL can be created to connect to the Simphony database and perform a custom query on
guest check information.

DLLs allow virtually unlimited flexibility when creating scripts to enhance the
functionality of the POS Operations module.

Using Simphony SIM DLL Commands
Three commands allow SIM to access DLLs. They enable a SIM script to call an externally
created DLL. These three commands are:

o DLLLoad: loads the external DLL

e DLLCall: calls a function contained in the DLL

e DLLCallW: calls a function contained in the DLL with Unicode

o DLLFree: frees a loaded DLL

DLLLoad

The DLLLoad command is used to load the external DLL. It needs to be called only once
during the lifetime of the SIM script. The syntax is:

DLLLoad handle, name
Where handle is a SIM N9 variable, and name is a SIM string expression. The ‘name’
parameter is used to identify the DLL, and the resulting handle is stored in the ‘handle’
variable. An example of this would be:

var dill_handle:N9
DLLLoad dIl_handle, “myops.dll”

If the command fails, then d11_handle will be 0. If not, then d1 1 _handl e is the handle
used for any further accesses for the other DLL functions.

Microsoft Windows DLL Access D-3

D-4

This function is just a wrapper around the Microsoft Windows LoadLibrary()
function. All the rules which apply to path settings apply here.

If the DLL is already loaded, then Microsoft Windows prevents it from being loaded
again.

DLLCall

The DLLCal I command is used to call a function contained in the DLL. The syntax for

this command is:

DLLCall handle, dll_name([parml [parm2 [parm3...111)
Where handle is the previously loaded library handle, d11_name is the name of the
function, and parm# are the optional parameters.

This command performs two tasks:

o Get the address of the function using the Microsoft Windows
GetProcAddress() function. If this function fails, then an ISL error is
generated.

o Call the DLL function.

Since it is not possible for SIM to check the validity of the parameters, it is up to the SIM
script writer to ensure that the proper number and type is used.

Note: It is not possible for a DLL to return a value back to

SIM. More specifically, if one is returned, it is ignored.
Passing information back to the SIM script should be done
using references. Refer to the Parameter Passing.

DLLCallw

The DLLCal IW command is used for string variables. The value is interpreted as Unicode
data when passed back into SIM. This command calls a function contained in the DLL
with Unicode. The syntax for this command is:

DLLCallW handle, dll_name([parml [parm2 [parm3...111)

Where handle is the previously loaded library handle, d1' I _name is the name of the
function, and parm# are the optional parameters.

This command performs the same tasks as DLLCall.

Since it is not possible for SIM to check the validity of the parameters, it is up to the SIM
script writer to ensure that the proper number and type is used.

DLLFree

The DLLFree command is used to free a loaded DLL. The syntax is:
DLLFree handle

Where handle is the handle obtained in a DLLLoad command. This function is
automatically called when OPS exits, or the SIM script is reread. It can be called to free
up resources loaded by the DLL.

Parameter Passing

There are three types of variables in SIM:

o integers

Microsoft Windows DLL Access

o strings
o monetary data

Only these types may be used as parameters to the DLL. However, each type may be
passed in by value or by reference, and each type may also be passed in as an array.
Therefore, there are 12 possible parameter types. Refer to the table on page 5.

To pass by reference, place the string “ref” before the parameter. For example:

// Pass by value

DLLCall handle, my function(count)

// Pass by reference

DLLCall handle, my function(ref count)
Only variables can be passed in by reference. Complex expressions must be passed in by
value.

/7 Will gernerate an error

DLLCall handle, my function(ref count + 1)

DLLCall handle, my function(ref (1 + 3))
Parameter, and this allocated data (or a reference to it) will be passed to the DLL. No
references to the stored copy of the data will be passed. If by reference, SIM will copy in
the new values to the data variables once the function has completed. Therefore, do not
pass in huge arrays by reference when not needed, since SIM will attempt to copy in each
array element, even if it has not changed.

All pointers passed to the DLL are passed in as 32-bit pointers. All strings are C nul-
terminated strings. All integer values are signed. All arrays are passed as a pointer to a
list of pointers or integers. The length of the array must either be passed in as an
argument, or known prior by the DLL.

Though there are 12 ways of passing in parameters, there are only five separate ways to
declare them in C.

Table 153 C Parameter Declaration

1 inta [/ integer
2 int *a // integer pointer
3 int af] // array of integers
4 char *a // string pointer
-or- -or-
wchar_t*a // string pointers (use for Unicode)
5 char *a[] /[array of string pointers
-or- -or-
wchar_t *a[] // array of string pointers (use for Unicode)

Microsoft Windows DLL Access D-5

The following table lists the different possibilities and how they map to the parameter
type.
Table 154 SIM Type Mapping to C Declaration

SIM Type C Declaration Comments

integer inta -

integer by reference int*a -

integer array intaf(] -

integer array by reference |inta [] Same as integer array
string char *a -

string reference char *a Same as string

string array char *a] -

string array by reference | char *a[] Same as string array
amount char *a -

amount by reference char *a Same as amount
amount array char *a -

amount array by reference | char *a Same as amount array
integer array inta[] -

Integers

By Value

N1-N9 integers are passed in as 32-bit signed values. N10 and above are passed in as
pointers to a string which contains the numeric value expressed as a string.

For example, an N12 numeric variable whose value is 12345 will be passed in as “12345.”
If the number is negative, then a “-” will be the first character in the string. (The reason
for this is that a 32-bit integer can only have nine digits.)

By Value Examples

var a:N9 = 4
var b:N10 = 3012108000
DLLCall handle, my function(a, 10, (1 + a) * 10, b)

The DLL prototype should look as follows:

void my_function(int pl, int p2, int p3, char *p4);
The DLL function should expect these parameters:

4

10

50

3012108000

Microsoft Windows DLL Access

By Reference

N1-N9 integers are passed in as pointers to a 32-bit value. The DLL can change this value,
and this change will be reflected in the variable.

N10 variables are passed in as strings. The length of the string is guaranteed to be the
length of the string variable.

An N12 variable with a value of “123” will be passed in as “123,” but the space occupied
by the string will be at least 13. This means that the DLL can safely copy in a string
longer than “123.”

By reference examples

var a:N9 = 12
var b:N12 = 3012108000
DLLCall handle, my function(ref a, ref b)

The DLL prototype should look like:

void my_function(int *pl, char *p2)

The dll function should expect these parameters:
pointer to 12

“3012108000”

Strings

All string parameters are passed in as a pointer. When by reference, SIM will copy the
string data back into the original variable.

By Value

The string parameter is passed in as a pointer to a nul-terminated string.

By Value Examples

var a:A20 = **12345”
DLLCall handle, my function(a, “hello”)

The DLL prototype should look like:

void my_function(char *pl, char *p2)

The DLL function should expect these parameters:
“12345"”

“hello”

By Reference

The string parameter is passed in as a pointer to a nul-terminated string. However, the
memory reference will be guaranteed to have allocated enough space for the declared
string.

For example, if a string is declared as A20 but is set to “12345,” then the string passed in
will be “12345,” but will have 20 characters allocated (not including the nul terminator)
The DLL can then write up to 20 characters into the string.

By reference example

var a:A20
DLLCall handle, my function(ref a)

Microsoft Windows DLL Access D-7

D-8

The DLL prototype should look as follows:
void my_function(char *pl)
The DLL should expect these parameters:

"

The DLL could copy a string of up to 20 characters.

memset(pl, “-7, 20)
pl[20] =0

Monetary Data

All SIM monetary data ($ variables) are kept as strings internally. Each string consists of
the digits which make up the value. There is no representational difference between
monetary amounts and numeric data N10 and greater.

The difference between the two is determined by the operations allowed on the values.
The operations involved are the assignment and arithmetic ones.

Therefore, monetary amounts are passed to the DLL as numeric strings. However, they
will have the decimal point inserted into the proper place.

By Value

The string parameter is passed in as a pointer to a nul-terminated string. A ‘-” will be
placed at the beginning of the string if it is negative.

By Value Example

var a:$12 = 12.34
DLLCall handle, my function(a, a + 1.11, 5.67)

The DLL prototype should look as follows:

void my_function(char *pl, char *p2, char *p3)
The DLL should expect these parameters:

“12.34”

“13.45”

“5.67"”

By Reference

The string parameter is passed in as a pointer to a 0-padded nul-terminated string. The
string will be padded with as many zeroes to make it the same as its declared length. A
$12 variable string will have 12 digits and one decimal point. (The nul is not included.)

By Reference Example

var a:$12 = 12.34
DLLCall handle, my function(ref a)

The DLL prototype should look like:
void my_function(char *pl)

The DLL should expect these parameters:
“0000000012.34”

Microsoft Windows DLL Access

Array References

All arrays are passed in as an array of pointers or integers. As with SIM subroutine calls,
all arrays must have a [] following them.

Note that arrays and arrays by reference use the same declaration. The only difference
between the two is that the values are copied back to the variables when the function is
done.

N1-N9 numeric values are passed in as integers.
var array[20] - N9

// Passing in by value.
// DLL prototype should be: void my_function(int array[]);
DLLCall handle, my function(array[])

// Passing in by reference.
// DLL prototype should be: void my_function(int *array[]);
DLLCall handle, my function(ref array[])

All other types are passed in as strings.

var arrayl[20] : $12
var array2[40] : A40

// Passing in by value

// DLL prototype should be:

// void my_function(char *arrayl[], char *array2[]);
DLLCall handle, my function(arrayl[], array?[])

// Passing in by reference

// DLL prototype should be:

// void my function(char *arrayl[], char *array2[]);
DLLCall handle, my_function(ref arrayl[], ref array2[])

DLL Error Messages

The following is a list of DLL error messages and an example of each.

Note: If the DLL itself has an error in the function, or the wrong values
are passed into it, the Ops process of the workstation running the SIM
application will fail, and a signal 11 error will display on the server.

To correct this problem, restart the workstation from the System/Control
Workstations module within the Enterprise Management Console
(EMCQ).

General Error Messages

ISL Error on Line ###:## Can Not Evaluate (END OF LINE)
This error occurs when the ISL script has no DLL handle in the call line.
(##4:## represents line number:column number)

Example: DLLLoad (no handle specified)

ISL Error on Line ###:## Expected Operand (END OF LINE)

This error occurs when a file name is missing from the expression.

Microsoft Windows DLL Access D-9

(###:4## represents line number:column number)
Example: DLLLoad dll_handle_1,

ISL Error on Line ###:## File Name Too Long
This error occurs when the file name is too long.
(##4:## represents the line number:column number)

Example: thisfilenameistoolong.dll

ISL Error on Line ###:## Not a Variable (“filename. dlI”)
This error occurs when a non-existent DLL is called.
(###:4#4# represents line number:column number)

Example: DLLLoad “filename.dll”” where “filename” is the name of the DLL to be
loaded, and it cannot be found

-OR -

This error occurs when the arguments are reversed.

(### represents the line number)

Incorrect Example: DLLLoad “filename.dil””, dll_handle_1
Correct Example: DLLoad dIl_handle_1, “filename.dll”
Where “filename” is the name of the DLL

Maximum Number of DLLs Loaded

This error occurs when the maximum number of DLLs is loaded. The maximum of 20
DLLs is allowed per SIM interface.

DLLCall Error Messages

ISL Error Expected Operand
This error occurs when a DLLCall is made without arguments.
Example: DLLCall

ISL Error Variable Undefined

This error occurs when a DLLCall is made without a function name.
Example: DLLCalIdl1_handle_1

-OR -

This error occurs when a DLLCall is made with a non-existent function.

ISL Error Undefined Function

This error occurs when a DLLCall is made without a handle name.
Example: DLLCall my_function(3)

-OR-

This error occurs when a DLLCall is made with the arguments reversed.
Example: DLLCall my_function(3), dll_handle_1

D-10 Microsoft Windows DLL Access

DLLFree Error Messages

ISL eEror Expected Operand
This error occurs when a DLLFree is made without arguments.

Example: DLLFree

ISL Error Variable Undefined

This error occurs when a DLLFree is made with an incorrect handle name.

Example: DLLFree wrong_handle_name

Microsoft Windows DLL Access D-11

Appendix E SIM Events

This chapter provides a brief overview of SIM events and their use.

Overview

SIM events can be categorized as:

Directly triggered by a keystroke (for example, INQ and TMED)

Indirectly triggered by an event in Ops (for example, SIGN_IN and
FINAL_TENDER)

Triggered by a SIM script (for example, TIMER and RXMSG)

Events Directly Triggered by a Keystroke

The following are characteristics of these types of events:

The event must be defined in the script. If a SIM Inquire key is pressed, then the
corresponding “event inq:#” code must be in the SIM script. If the event is not in
the SIM script, an error is generated.

The event is specific to a PMS interface, and therefore, only one SIM event is
executed.

Events Indirectly Triggered by an Ops Event

The following are characteristics of these types of events:

The event doesn’t have to be defined in the script. For example, if the SIM script
has the FINAL_TENDER event programmed, then it will be executed whenever
a check is completely tendered. If the event is not defined, then no error will
occur.

These events occur for all interfaces. When a check is completely tendered, then
there will be an attempt to run the FINAL_TENDER in all SIM scripts. Each
script has the chance to “hook in” to the event.

Scripts are executed in the order that the PMS interface definitions appear in the
Remote Management Console, in RVC Information | RVC Parameters | Interfaces. If
the script file does not have the particular event, it is ignored — the events cannot
be cancelled. That is running the ExitCancel command inside the script will not
stop the operation from occurring.

Some events have two variations—a regular event and a confirm event. The

confirm event can optionally prevent the action from continuing, whereas the
regular SIM cannot. Refer to SIM Confirm Events for details on confirm events.

Event-Specific Variables

Many of the events have system variables (for example, @ variables) that are specific to
that event only.

SIM Events

E-1

Quick Reference Table

The table below lists the events available in SIM, and the variables, if any, that can be
used. Each column is described as follows:

T: Identifies the type of event:

E-2

K: keystroke event

O: Ops event

S: SIM-triggered event

C : Indicates the event can be a confirm event and the operation can be cancelled

by the script (Yes/No)

Event:- Identifies the name of the event in the SIM script

Description: Describes what the event does

Variables: Lists the specific variables (if any) that can be used with the event

type
Table 155 SIM Events and Corresponding Variables
T| C |Event Description Variables
ADD_CHECK Check has been added to -
the current check
O | Y | ADJUST_CHECK | Adjust closed check -
operation
AUTO_DSC Auto discounts have been
applied
O | Y | BEGIN_CHECK Check has been begun -
CA_AUTH Credit auth has occurred
CHANGE_DUE Check has change due
O|Y | CLOCK_IN Employee is clocking in -
O|Y | CLOCK_OUT Employee is clocking out -
OlY CLOSE_CHECK Check has been closed B
(paid in full); functionality
isequivalent to the
CSH_DRWR_ASSI | Cash drawer has been
GN assigned
S |Y | CSH DRWR_CLS | Ops hasjust required .

the operator to close
the cash drawer on
the workstation

SIM Events

SIM Events

T| C |Event Description Variables
S |Y | CSH_DRWR_OPN | Opsisopening the cash)
drawer on the workstation
(thiseventis NOT fired if
the cash drawer is
somehow opened on the
workstation)
CSH_DRWR_UNA | Cash drawer has been
SSIGN unassigned
O|Y | DSC Discount has been entered | @0bj - object number of item
@qty - quantity of item
@ttl - total amount of item
DSC_ENGINE_EN | Discount engine has
D completed
DSC_ENGINE_ST | Discount engine is ready
ART to run
DSC_OVERRIDE Not implemented
O|Y | DSC_VOID Discount has been voided @obj - object number of item
@qty - quantity of item
@ttl - total amount of item
END_EVENT Unused
O | N | ERR_MSG Error message has occurred | @€Irormessage - erTor message
O | N | EXIT Ops has exited B
EXT Extensibility has been
added to the check
O | N | FINAL_TENDER | Check has been paid in full |~
O | N | INIT Ops has started)
INQ Inquire event triggered by |~
an Inquire key
O | N | LDS_BPS_OFF LDS bypass has been)
deactivated at the
workstation (for North
American LDS only)
O | N | LDS_BPS_ON LDS bypass has been B

activated at the
workstation (for North
American LDS only)

E-3

C | Event Description Variables
O|Y | MGR_PROC Employee is running a @mngrprocnum - manager
Manager Procedure procedure number
oly MI Menu item has been @obj - object number of item
ordered @qty - quantity of item
@ttl - total amount of item
O| Y | MLRETURN Menu item has been @obj - object number of item
returned @qty - quantity of item
@ttl - total amount of item
O|Y | MLVOID Menu item has been @obsj - object number of item
voided @qty - quantity of item
@ttl - total amount of item
O|Y | NO_SALE No Sale key has been)
pressed
ORDER_TYPE Order type changed
(@) PICKUP_CHECK | Check has been picked up)
(@) PICKUP_LOAN Triggered when a Pickup)
or Loan is performed
PRINT_HEADER | Printer header event
PRINT_TRAILER | Printer trailer event
READY The POS has been
initialized and is ready
REFERENCE_ENT | Cash Management deposit
RY reference entry added
O | Y | REOPEN_CHECK |Check has been reopened)
O|Y | RPT_GEN Employee is running a @autoseq
report
S | N | RXMSG Message has been received |~
from the PMS system
SELECT_EVENT An Event has been selected
SHIFT INCREME | A shift has been
NT incremented
@) SIGN_IN Employee is signing in -
(@) SIGN_OUT Employee is signing out)
O|Y SRVC_TOTAL Transaction has been B
service totalled
START_EVENT An event has been started

E-4

SIM Events

SIM Events

Event Description Variables
SvVC Service charge has been @obj - object number of item
entered @qty - quantity of item
@ttl - total amount of item
SVC_VOID SERVICE charge has been | @0bj - object number of item
voided @qty - quantity of item
@tt] - total amount of item
SYS_AUTH Authorization is required | @authemp - authorizing
employee
@authtype - authorization type
TAX_DUE Tax is due event
TIMER An event programmed by a |~
SIM script to fire
periodically
TMED Tender media event -
triggered by a tender
media key
TNDR Tender has been entered @obsj - object number of item
@qty - quantity of item
@tt] - total amount of item
TNDR_VOID Tender has been voided @obsj - object number of item
@qty - quantity of item
@ttl - total amount of item
TOTAL_DUE Total is due event
TRANS_CNCL Transaction has been -
cancelled
VOID_CHECK Check has been voided -
WS_DOWN Workstation is shutting
down
WS_EXIT Workstation is no longer -
active (for example,, a
workstation may have
exited to DOS)
WS_RESTART Workstation has been B
restarted, either due to a
workstation reboot or a
NetCC restart
WS_UP Workstation is ready
XFER_CHECK Check has been transferred

E-5

SIM Confirm Events

The purpose of SIM confirm events is to allow script writers to stop certain POS
operations. For example, if a third-party inventory control system is used to count menu
items, then the SIM script could query the system when a menu item is ordered, and
“cancel” the operation if the item is out of stock.

All confirm events will be run before the operation takes place, and the normal event will
run after the operation takes place. Therefore, there could be two events in the script: one
confirm and one normal.

Consider the following script:

event mi : confirm
waitforconfirm “Press enter to order item”
endevent

event mi

waitforclear “You have entered menu item ” , @obj
endevent
When a menu item key is first pressed, the confirm event will be run first. If the user
presses the Clear key, the ordering of the menu item will be cancelled. If Enter is pressed,
the item will be ordered, and the normal event will be run afterwards.

Note: One important point about confirm events is that, like the normal events, each
SIM script will have a chance at running it. That means that each SIM script will be
able to cancel the operation. It should not be assumed that allowing an operation in a
confirm event will result in the operation taking place.

In addition, a particular item cannot be specified. The events occur for all items (menu
items, discounts, tenders, etc.).

SIM Events

Appendix F Stack Trace

While this is not part of the programming language SIM error messages are now more
comprehensible. They offer:

e The line/character where the error was encountered (not always precise due to
the usual parsing ambiguities)
e Astack trace indicating the subroutine nesting.

Consider this SIM script. It will fail in “Sub3”.

event inqg:2
call Subl()
endevent

sub Sub1()
call Sub2()
endsub

sub Sub2()
call Sub3()
endsub

sub Sub3()
pancakes
endsub

When “inq:2” is run an exception window with two tabs will be raised:

. Details Stack Trace

Invalid Command

Extension application: SimTest
File: _Main__
Line Number: 30

Close |

Figure 11 SIM Exception

Stack Trace F-1

SIM.net

Appendix G SIM.net

Perhaps the greatest leap forward in the SIM 2.x infrastructure is support for .net objects.
This feature is collectively known as “SIM.net”.

If one wanted to access separately compiled code in other products the only options

were:

Create a C DLL
Run the ‘system’ command

While both work they can be awkward. The characteristics of SIM.net are:

A new data type: “object”. It is peer level with N, A, and $. For example: var
sb:object

Object data types are always .net objects.

The .net objects can be either .net framework objects such as StringBuilder or
custom objects

Object data types are weakly typed. There is no compilation phase on a SIM
script. When a method, field, or property is accessed SIM uses reflection at the
moment of expression evaluation to determine if the reference is valid.

Since objects are weakly typed they can be assigned different types during their
lifetime. For example, an object ‘X’ can be a StringBuilder on one line and an
Int32 on the next.

Static references are supported.

The syntax for creating and referencing objects has been kept as close to the C#

syntax as possible.

Limitations (current):

One cannot create new class definitions as one can in C#.

Nested class references not supported. That is, one cannot access in SIM a class
nested in another class.

Generic instantiations not support. Use non-generic equivalents. For example,
List<string> is not available. Use ArrayList.

User-written DLLs are not supported on iPad

net arrays cannot be created even though they can be accessed. To create one use
ArraylList.

The .NET framework on Microsoft Windows CE is more limited that the full
framework on Win32. Use MSDN to verify which properties/fields/methods are
available for your objects.

No support for foreach. Use iterators (sample below).

No support for delegates.

G-1

G-2

Construction
e Objects are constructed using the ‘new’ keyword in the same was as C#.

e Opverloading of constructors is supported. SIM will try to match the most
appropriate constructor. Note the word ‘try’. If there are multiple constructors
then SIM will first match on parameter count. After that SIM will try to find the
first matching constructor. Unfortunately SIM can ‘guess’ wrong and the method
rejects the attempt. The solution is to try a different constructor. If you encounter
a constructor that makes it impossible to create an object please post on the

Sharepoint site so that we can look into it.
Examples:

var sb:object

// overloaded
sb = new System.Text.StringBuilder()
sb = new System.Text.StringBuilder("this is a string")

Usage

It would be difficult to explain all usages so the following script shows the power of
SIM.net and also how to access the various .net types. The following simple script shows
how one could leverage .net in a SIM script.

// static calls, both stand-alone and in assignment
System.String.Equals("a", "a")
var result:N = System.String.Equals("a", "a")

// Create 1instance of object.
var sb:object = new System.Text.StringBuilder()

// Function calls with chaining.
sb = sb.Append("hello").Append(" ").Append("world")

// conversion of string to SIM text
var text:a = sb.ToString()

// SIM arrays and object storage.

var sbArray[10] : object

sbArray[5] = new System.Text.StringBuilder()
sbArray[5].Append("hello")

text = sbArray[5].ToString().ToUpper()

// Params support

text = System.String.Format("hello world")

text = System.String.Format("hello world {@}", 0, 1, 2)

text = System.String.Format("hello world {0} {1}", @, 1)

text = System.String.Format("hello world {@} {1} {2}", o, 1, 2)
text = System.String.Format("hello world {0} {1} {2} {3}", o,
System.Convert.ToDateTime("11/22/2003"), 2, 3)

SIM.net

SIM.net

Access to C# extensibility events

The C# extensibility provides a very rich set of events that until recently was not
available to SIM. Starting with version 2.6 (build 0.99) SIM has complete access to all
extensibility events and their arguments. The C# extensibility events are much more
detailed and there are many more of them.

It is easiest to explain with an example script dealing with the sign-in event.
The old way

The legacy way to hook into the sign in event was the “sign_in" keyword:

event sign_in
@0OpsContext.ShowMessage("inside sign_in ")
endevent

The new way

event init
SubscribeToEvent "OpsSignInEvent", "SignInEvent"
endevent

event SignInEvent(var sender:object, var args:object)
@OpsContext.ShowMessage("inside SignInEvent")
endevent

The new commands are:

SubscribeToEvent eventName, scriptEventName
UnsubscribeFromEvent eventName, scriptEventName
UnsubscribeFromAllEvents

Where:

1. eventName is the standard OpsEventType. For example, “OpsSigninEvent”.
2. scriptEventName is the script event identifier.

The ‘event’ command now has a new syntax for these new event types. It is compatible

with the old syntax. The new event syntax is:

event scriptEventName(var senderVariableName : object,
argsVariableName : object)

Notes:
o The only parts of the event syntax that you can change are scriptEventName,

senderVariableName, argsVariableName. The rest of the line must remain exactly as

is. For example, the following lines will not work:
0 event OpsSignInEvent(ref sender, ref args)
0 event OpsSignInEvent(sender, args)

G-3

¢ You may name the ‘sender’ and ‘args’ variables anything you like but you may
want to keep them as ‘sender’ and ‘args’ to keep them consistent with the .net
framework eventing style.

¢ You do not have to cast the args to the type appropriate for the event. SIM uses
late binding for all object types and therefore you can access any field directly
from args.

e The sender and args variables are the same as what is passed into a C#
extensibility EventMonitorDelegate delegate.

e When subscribing to events consult the extensibility documentation for a list of
all event types and event arguments.

e When a script is ‘destroyed’ (for example, when a change is made to the script in
EMC while OPS is running) all events will automatically be unsubscribed.

e ExitContinue will allow any preview event to continue, ExitCancel will abort the

event. ExitCancel has no meaning on non-preview events.

Multiple Subscriptions
A script can subscribe to the same event (for example, “OpsSignInEvent”) with multiple
SIM event handlers. For example:
event init
SubscribeToEvent "OpsSignInPreviewEvent",
"SignInPreviewEvent"
SubscribeToEvent "OpsSignInPreviewEvent",
"SignInPreviewEvent2"
endevent

event SignInPreviewEvent(var sender:object, var args:object)
var text:A = System.String.Format("Sign in preview event:
employee {0}", args.EmployeeID.Value)
@OpsContext.ShowMessage(text)
endevent

event SignInPreviewEvent2(var sender:object, var args:object)
var text:A = System.String.Format("Sign in preview event
2: employee {0}", args.EmployeelD.Value)
@0OpsContext.ShowMessage(text)
ExitCancel
endevent
In the example above both SignInPreviewEvent and SignInPreviewEvent2 will be
called when the operator attempts to sign in.
It is also possible to subscribe to the same event with the same script event name though
it is unclear why one would do this. However, if you find that your script event is being
called more than once per event this is most likely the reason.
event init
// subscribe to the same event with the same event handler
SubscribeToEvent "OpsSignInPreviewEvent",
"SignInPreviewEvent"
SubscribeToEvent "OpsSignInPreviewEvent",
"SignInPreviewEvent"
endevent

SIM.net

SIM.net

// this will be called twice
event SignInPreviewEvent(var sender:object, var args:object)
var text:A = System.String.Format("Sign in preview event:
employee {@0}", args.EmployeeID.Value)
@OpsContext.ShowMessage(text)
endevent

Accessing args properties
This example shows how to access the EmployeelD field on args in the preview event.

event SignInEvent(var sender:object, var args:object)

var text:A = System.String.Format("Sign in preview event:
employee {0}", args.EmployeeID.Value)

@0psContext.ShowMessage(text)
endevent

This example shows how to access the object number field in the menu item master in the
OpsMiEvent.

event init
SubscribeToEvent "OpsMiEvent", "MiEvent"
endevent

event MiEvent(var sender:object, var args:object)
var text:A = System.String.Format("Mi event event: master
object number {0}", args.MiMaster.ObjectNumber)
@OpsContext.ShowMessage(text)
endevent

Exception handling

In previous SIM implementations it was not possible to ‘catch” errors in a script. SIM has
implemented a try/catch mechanism with the following characteristics:

o All SIM exceptions are .net objects. Therefore any exceptions thrown by SIM and
regular .net framework objects are equivalent.

o Try/catches can be nested.

e One can only catch a single exceptions. In .net one can have multiple catch
statements per ‘try’, in SIM there is only one catch statement

o There is no ‘finally’.

e One can throw an exception in SIM as a way of unwinding the stack in a more
graceful way.

Example:

event ing:1
try
call TestTryCatch2()
catch ex
// many options; log to disk, raise error window,
Outputdebugstring ex.Message

G-5

G-6

Outputdebugstring ex.Details
Outputdebugstring ex.SimStackTrace
endtry
endevent

sub TestTryCatch2()
call TestTryCatch3()
endsub

sub TestTryCatch3()
throw new System.Exception(“exception inside sim”)
endsub

PrintSimFeatures

The PrintSimFeatures command is used to print out all commands, system variables, and
functions for the current build. The syntax is:

PrintSimFeatures printer_object_number
@OpsContext and @DataStore

These two objects are discussed in the extensibility documentation. SIM provides access
to them via these two system variables. Since they are both .net objects one can access
them in the same way that one would access .net framework objects.

event inqg:1

@0psContext.ShowMessage(System.String.Format("The current
seat is {@}", @OpsContext.ActiveSeat))
endevent

event inqg:2
var dbObject :object

// menu item master
dbObject = @DataStore.ReadMenuItemMasterByNum(1)
call ShowObjectName(dbObject)

// discount
dbObject = @DataStore.ReadDiscountByNum(1)
call ShowObjectName(dbObject)

// read all discounts and enumerate over all until
condition is met
var dbObjectList:object = @DataStore.ReadAllDiscounts()
var dbEnumerator:object = dbObjectList.GetEnumerator()
while dbEnumerator.MoveNext ()
dbObject = dbEnumerator.Current
if dbObject.ObjectNumber = 2
call ShowObjectName(dbObject)
break
endif
endwhile

SIM.net

SIM.net

endevent

sub ShowObjectName(ref dbObject)
if dbObject = @null
@0OpsContext.ShowError("Object not found")
else
var typeName:A = dbObject.GetType().Name
var recordName:A = dbObject.Name.ToString()
var msg:A = System.String.Format("Name of record
type {0} is {1}", typeName, recordName)
@OpsContext.ShowMessage(msg)
endif
endsub

Using custom DLLs

One can access objects a user-compiled DLL on win32 and CE. (This functionality is not
yet available on iPad). Before one can use an external DLL the ‘NetImport’ command
must be provided. The purpose of this command is similar to a .net project reference.
There are two forms: one for release and one for testing:

NetImport from "MyLibrary.dll"
NetImport from &"Path/MyLibrary"

The first statement is used in a production environment when OPS writes the DLLs to
disk from the database. The second form is used to load the DLL from a disk file. (Note
the &) This can make troubleshooting DLLs much easier as they do not have to go into
the database first. And example of the second one is:

NetImport from &"D:\MyProject\bin\Debug\SimTestLibrary.d1l1l"

One can also put namespaces in the NetImport command immediately after the
NetImport word. The namespaces are separated by a comma and are equivalent to the
‘using’ statement in C#.

NetImport SimTestLibrary.Classes, \
SimTestLibrary.Definitions \
from "SimTestLibrary.dll"

NetImport statements must be at the top of a SIM script and cannot be run inside an
event or sub. Once the assembly has been imported it can be referenced by SIM. The
following is a sample c# class called “TestClass”.

using System.Collections.Generic;
using System.Reflection;
using System.Text;
namespace SimTestLibrary.Classes
public enum Colors
Blue = 20,

Red,
Green,

public class TestClass

G-7

G-8

public enum Colors
Blue = 20,
Red,
Green,

}

// Constructors.
public TestClass()

{
}

public TestClass(int number)

ublic TestClass(long number, string text)

s

// Properties
public int IntProperty

s

get { return m_IntProperty; }
set { m_IntProperty = value; }

public string StringProperty

get { return "this is a string"; }

public decimal CalculateDecimal(decimal total) { return total *

// Indexers
public string this[string s]

get { return s_ToUpperQ); }

public string this[int i]

i get { return i.ToString(Q); }
public string GetString(Q)

t return "fred";

3

public string GetString(string text)
; return "fred " + text;

public string GetString(string textl, string text2)

return "fred " + textl + " " + text2;

ublic int GetInt(int i)

return i * 2;

ublic string Concatenate(params object[] strings)

AT W AT W A

var sb = new StringBuilder(Q);
foreach (string s in strings)
sb.Append(s);
return sb.ToString();
public void RefFunction(ref string text)

text = "hello";

public int[] ArrayField = new int[] { 1, 2, 3 };

SIM.net

public int IntField = 5;

public bool BoolField = true;

static public StringBuilder SB = new StringBuilder("a string
builder™);

public string MyText = "1,2,3";

static public string StaticText = "hello";

static public Dictionary< int, string > StaticDictionary = new
Dictionary<int,string>Q) { { 1, "number 1"}, { 2, "number 2" } };

static public Assembly GetCallingAssembly()
{
return Assembly.GetCallingAssembly(Q);

private int m_IntProperty = 0;

}
The following SIM script accesses members on this class:
event ing:1

// Overloaded constructors

var obj:object = new TestClass()

obj = new TestClass(1)

obj = new TestClass(1, "asildjlasdjklaj")

// Properties

obj.IntProperty = 12312

var i:n = obj.IntProperty * 2
var text:A = obj.StringProperty

// Overloaded indexers on an object
text = obj[123]
text = obj["123"]

// Functions on object.

text = obj.GetString().ToUpper()

text = obj.GetString("aaa").ToUpper()

text = obj.GetString("aaa", "bbb").ToUpper()

// Array access.
i = obj.ArrayField[2]

// Field access.
obj.IntField = 123
i = obj.IntField

// Object access on object.
text = TestClass.SB.ToString()
text = obj.MyText

text = TestClass.StaticText

// Function call.
text = obj.Concatenate("a", "b", "c")

// Enums.

SIM.net

var num:n

num = SimTestLibrary.Classes.Colors.Blue
num = SimTestLibrary.Classes.TestClass.Colors.Blue
num = SimTestLibrary.Classes.TestClass.Colors.Green

// Generics access.

var dictionary : object = TestClass.StaticDictionary

text = dictionary[1]

OutputDebugString TestClass.StaticDictionary.ContainsKey(2)

endevent

G-10 SIM.net

Glossary

Argument

An argument is a generic term for an item or group of items that is used in the syntax of
a command that refers to the information that is required by the command. It may be an
alphanumeric character, group of characters, or word(s) that receive the action of a
command or function. For example, the Call command requires an argument (such as the
variable name) in order to work.

See also: Array, Constant, Equation, Expression, Function, Input Expression, Prompt
Expression, String Expression, Syntax, System Variable, and User Variable.

Array

An array is a set of values, based on the name of a User Variable. A User Variable Array
(or Array Variable) identifies each value by the variable name and the index number, in
brackets. For example, an Array called Rooms that has 20 values would be identified
from Rooms [1] to Rooms [20].

See also: User Variable

Asynchronous Serial Interface

An asynchronous serial interface is a full duplex interface supporting transmission
speeds of 300 to 9600 baud.

Concatenate

Concatenate means to join two or more text strings together to form a single contiguous
string.

Constant

A constant is a value that does not change (the opposite of a variable). For example, the
Window command can use a constant (such as window 5, 36).

See also: Expression and Variable

Equation

An equation is a mathematical formula. The ISL may use the following operators within
a formula: addition (+), subtraction (-), division (/), multiplications (*), greater than (>), or
less than (<). Parentheses may be used to isolate parts of the equation, as necessary.

See also: Expression, Formula, and Operator

Expression
An expression is a place holder argument that can be one of the following:
« User Variable
« System Variable

Glossary H-1

Constant
String
Function

Equation

See also: Argument, Hex Expression, Input Expression, Numeric Expression, and String
Expression

Format Specifiers

See Operators.

Formula

A formula can be used to calculate numeric values, compare one value to another, and
select an action based on a comparison, and join multiple string expressions into a single

string. The ISL. may use the following operators within a formula: addition (+),
subtraction (-), division (/), multiplications (*), greater than (>), or less than (<).
Parentheses may be used to isolate parts of the equation, as necessary.

See also: Equation and Operator

Function

A function is a built-in ISL procedure used to evaluate fields, make calculations, or
convert data.

See also: Expression

Global Command

A global command is a command that is allowed outside of an event procedure. They
are initialized at the beginning of each script and then maintained for the duration of that

script. The following ISL commands are global:

ContinueOnCancel
DiscardGlobalVar
ExitOnCancel
Prorate
RetainGlobalVar
SetSignOnLeft
SetSignOnRight
UseBackUpTender
UseCompatFormat
UselSLFormat
UselSLTimeOuts
UseSTDTimeOuts Var

See also: Local Command

H-2

Glossary

Global Variable

A global variable is declared outside an event procedure, and usually initialized at the
beginning of each script. The value of each global variable is maintained throughout all
Events, unless the script is changed or the DiscardGlobalVar command is used.

See also: Local Command

Hex Expression

A hex expression is a variable or function whose value must be a hexadecimal number.
This variable is used with the GetHex and Bit functions.

See also: Expression

Input Expression

Integer

An input expression is an Array or User Variable that requires user input. The input
expression is used by the DisplayInput, DisplayMS, Input, and InputKey commands.

See also: Array, Expression, and User Variable

An integer is a positive or negative whole number or a zero, always without decimal
places.

Interface Script Language (ISL)

ISL

The Interface Script Language (ISL) provides the facility to direct operator prompting,
message formats, printing, and subsequent POS processing. A script is analyzed and
executed by the System Interface Module (SIM).

See also: ISL Script

See Interface Script Language.

Language Element

Glossary

Language Elements are indivisible pieces of information which, if broken apart with
whitespace, will generate an ISL error. The following items are considered language
elements:

o Command Names

o Function Names

» System Variables

o Relational and Boolean Operators
» Input and Output Specifiers

o Comment Symbols (//)

o Continuation Line Symbol (\)

H-3

e Commas

o Any Word and/or Symbol required by the Syntax

Local Command

Most ISL commands are considered local commands, in that they must be placed inside
an Event procedure and only affect the processing within that event.

See also: Global Command

Local Variable

A local variable must always be declared inside an event procedure, and will only be
used by the event and any subroutines called by that event. Local variables are purged
after each event is complete, (when an EndEvent is executed).

See also: Global Variable

Nesting

Nesting is the act of using an If, For, Forever, or While command inside another. Since
each of these commands is executed until its corresponding EndIf, EndFor, or EndWhile
command is found, the entire If...EndIf, For...EndFor, ForEver...EndFor, or
While...EndWhile nest must exist before the outer End... command. Nesting also refers
to the ability to call a subroutine from within another subroutine.

Null String

A null string (" ") is a string expression that contains no characters. All string variables
are initially set to null at the beginning of each Event procedure.

"o

See also: Expression and Variable

Number of Records

Number of Records is used to send and receive variable amounts of data via a list or a
list array.

Numeric Expression

A numeric expression is a variable or function whose value must be a number. A
number expression is used when specifying a touchscreen number within the Simphony
database.

See also: Expression

Offset

An offset is a decimal integer that is used to calculate a position of a field within a string.
For example, this may be used to extract certain field information from a credit card.

H-4 Glossary

Operator

An operator is a mathematical symbol that determines what action is taken on variables
or constants in the equation. For a complete list of operators, see Relational and Logical
Operators.

See also: Expression and String Expression

Script

A Script contains a series of commands, functions, and arguments that perform a
particular task at the workstation and/or the PMS.

SIM

See System Interface Module.

String

A string is a series of connected characters (letters, numbers, symbols, spaces) stored and
used as text. In ISL, a string is always in quotes.

See also: Subroutine and User Variable

String Expression

A string expression is a variable or function whose value must be a string. See also:
Expression

Subexpression

A subexpression is an expression within an expression. Subexpressions are used with
binary operators. For example in the following expression: a+ (b +c) +d, (b

+ ¢) is a subexpression.

See also: Expression and Operators

Subroutine

A subroutine allows common code to be used by multiple events. Each subroutine has a
unique name which is used to define it within the script, outside any event procedure.
Use the Call command to execute a subroutine.

Syntax

A command or function syntax is used to show the proper usage and rules that are
required to execute it correctly within a script.

System Interface Module

The System Interface Module (SIM) is the component of Simphony that allows the
System to interface to a variety of other systems, or third-party systems. A special script
language known as the ISL provides access to the SIM.

Glossary H-5

System Variable

Token

A system variable is a predefined name that identifies a value which contains
information from the Simphony database.

See also: Argument and Expression

A token can be any individual language element inside a script. See also: Language
Element and Token Error.

Token Error

TTY

A token error can occur any time an individual language element is used incorrectly. For
example, incorrect use of whitewashes, missing commas, or erroneous data at the end of
a command statement, and so on. See Appendix A for a complete list of error messages.

See also: Language Element and Token

See Asynchronous Serial Interface.

User Variable

Variable

H-6

A user variable is a user-defined name which is assigned a value within a script. The
value will remain the same until a newer value is assigned; if no newer value is assigned,
the original value is maintained.

See also: Argument and Expression

A variable is a container whose value changes (the opposite of a constant). See also:
Constant

Glossary

	Tables
	Figures
	Preface
	Audience
	Customer Support
	Documentation
	Revision History

	1 Before You Start
	Abbreviations, Conventions, and Symbols
	Abbreviations
	Conventions

	2 Understanding the SIM and ISL
	Getting to Know the SIM and ISL
	What is the System Interface Module?
	What is the Interface Script Language?
	Characteristics of the ISL
	Like BASIC
	Language Elements and Components

	Event Procedures

	Script Writing
	What is a Script File?
	Being Familiar with Script Writing…
	Being New to Script Writing…

	How the ISL Accesses the SIM
	Initiating an Event
	Pressing a SIM Inquiry or Tender Key
	Interfacing with a Third-party System

	Features of the SIM
	Message Formats and Interface Methods
	Methods of Displaying, Capturing, and Printing Data
	Data Entry
	Touchscreen
	Magnetic Card Reader

	Printing
	Print Commands and Print Directives
	Type of Printers Supported

	Interfacing with Third-party Systems
	ISL File Handling

	Creating SIM Applications with the ISL
	Benefits of SIM Applications
	Types of SIM Applications
	Generating Coupons for Customers
	Frequent Diners
	Generating a Birthday Coupon

	Interfacing with a Pizza Delivery System
	Guest Check Information Detail
	Previous Order History

	Collecting Customer Information for a Membership List
	Reading Data from a File

	Customizing Output
	Sending Special Messages to the Kitchen
	Creating Raffle Tickets

	3 Getting Started
	Getting Started with the ISL and SIM
	Developing the SIM Interface
	Enabling SIM and a SIM Interface

	Message Formats and Interface Methods
	Message Formats
	Fixed Message Format
	Message Format
	ISL Message Format
	SOH
	ID
	STX

	FS
	Application_Sequence
	Application_Data
	ETX
	Checksum
	EOT

	Interface Methods
	Asynchronous Serial Interface
	Asynchronous Serial Interface Specifications
	Configuring a TTY Interface in the Simphony Database

	TCP Interface
	Configuring a TCP Host in Simphony
	TCP Connection
	Error-Handling
	Pinging
	TCP Interface Code Example

	4 Script Writing Basics
	Getting Started with Script Writing
	What is a Script?
	Structure of a Script

	Creating Scripts
	Guidelines for Creating Scripts
	Examples of Scripts
	Charge Denial
	Charge Posting
	Address and Phone Number Entry

	Script Writing Style
	Case
	Length of Variables
	Comments (//)
	Continuation Lines (\)
	Whitespace

	Writing and Editing Scripts
	Avoiding Errors

	Testing Scripts
	Detecting Errors in Logic
	Stepping Through the Script

	5 Using Variables
	Variables and ISL
	Data Types
	Example

	Relational and Logical Operators
	Unary Operators
	Binary Operators
	Operator Rules
	Relational Operators
	Logical (Boolean) Operators
	Precedence
	Overriding and Clarifying Precedence

	User Variables
	Declaring User Variables
	Guidelines

	Local and Global Variables
	Global Variables
	Local Variables
	Local Variables Used by Subroutines

	Array Variables
	Variable Size Variables
	Using List Arrays and Records
	List Arrays
	Specifying a List Array

	Implicit List_Sizes
	Records

	Promotion
	DefKey

	6 ISL Printing
	Getting Started with ISL Printing
	ISL Print Commands and System Variables

	Starting an ISL Print Job
	ISL StartPrint Commands
	Extended Printing and Printing Binary Data
	Form Feeds
	Backup Printing and Reference Lines

	Specifying an ISL Printer
	Using Printer Object Numbers
	Considerations
	Using System Variables
	ISL Printer System Variables

	Using Print Directives
	The Printline Command
	Print Type System Variables
	Considerations
	Example

	Print Directives and Subroutines

	Backup Printing
	Considerations

	Reference Strings

	7 ISL System Variables
	System Variables
	System Variable Summary
	Specifying System Variables

	Specifying System Variables
	Guidelines for Specifying System Variables
	Using an Index to Specify System Variables
	Array Subscripts
	Array Index Limits
	Embedded Index vs Array-Index

	System Variable Summary
	ISL System Variable Reference
	ACTIVE_LANGID
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_CHK_FROM
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_CHK_TO
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_GRP_FROM
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_GRP_TO
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_RVC_FROM
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_RVC_TO
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_TBL_FROM
	Description
	Type/Size
	Syntax
	Remarks

	ADDXFER_TBL_TO
	Description
	Type/Size
	Syntax
	Remarks

	APPLICATIONNAME
	Description
	Type/Size
	Syntax
	Remarks

	AUTHEMP
	Description
	Type/Size
	Syntax
	Remarks

	AUTHEMP_FNAME
	Description
	Type/Size
	Syntax
	Remarks

	AUTHEMP_LNAME
	Description
	Type/Size
	Syntax
	Remarks

	AUTHTYPE
	Description
	Type/Size
	Syntax
	Remarks

	AUTOSVC
	Description
	Type/Size
	Syntax
	Remarks

	AVAILABLEMEMORY
	Description
	Type/Size
	Syntax
	Remarks

	BOOTSERIALNUM
	Description
	Type/Size
	Syntax
	Remarks

	BOOTSERIALSTR
	Description
	Type/Size
	Syntax
	Remarks

	CASH_DRAWER
	Description
	Type/Size
	Syntax
	Remarks

	CENTER
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	CHANGE
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	CHECKDATA
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	CHGTIP
	Description
	Type/Size
	Syntax
	Remarks

	CHK
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	CHKINFOKEY
	Description
	Type/Size
	Syntax
	Remarks

	CHK_OPEN_TIME
	Description
	Type/Size
	Syntax
	Remarks

	CHK_OPEN_TIME_T
	Description
	Type/Size
	Syntax
	Remarks

	CHK_PAYMNT_TTL
	Description
	Type/Size
	Syntax
	Remarks

	CHK_TTL
	Description
	Type/Size
	Syntax
	Remarks

	CKCSHR
	Description
	Type/Size
	Syntax
	Remarks

	CKCSHR_NAME
	Description
	Type/Size
	Syntax
	Remarks

	CKEMP
	Description
	Type/Size
	Syntax
	Remarks
	Example

	CKEMP_CHKNAME
	Description
	Type/Size
	Syntax
	Remarks

	CKEMP_FNAME
	Description
	Type/Size
	Syntax
	Remarks

	CKEMP_CHKNAME
	Description
	Type/Size
	Syntax
	Remarks

	CKEMP_TYPEDEF
	Description
	Type/Size
	Syntax
	Remarks

	CKID
	Description
	Type/Size
	Syntax
	Remarks

	CKNUM
	Description
	Type/Size
	Syntax
	Remarks
	Example

	CLIENT_ONLINE
	Description
	Type/Size
	Syntax
	Remarks
	Example
	DATASTORE
	Description
	Type/Size
	Syntax
	Remarks

	DAY
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DAYOFWEEK
	Description
	Type/Size
	Syntax
	Remarks

	DBVERSION
	Description
	Type/Size
	Syntax
	Remarks

	DEBUGTRACE
	Description
	Type/Size
	Syntax
	Remarks

	DETAILSORTED
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DSC
	Description
	Type/Size
	Syntax
	Remarks

	DSC_OVERRIDE
	Description
	Type/Size
	Syntax
	Remarks

	DSCI
	Description
	Type/Size
	Syntax
	Remarks

	DTLCHILDSELECTED
	Description
	Type/Size
	Syntax
	Remarks

	DTL_DEFSEQ
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_DETAILLINK
	Description
	Type/Size
	Syntax
	Remarks

	DTL_DSC_EMPL
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_DSCI
	Description
	Type Size
	Syntax
	Remarks
	See Also

	DTL_FAMGRP
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_INDEX
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_IS_COMBO
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_COMBO_MAIN
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_COMBO_SIDE
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_COMBO_PARENT
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_COND[i]
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_ON_HOLD
	Description
	Type/Size
	Syntax
	Remarks

	DTL_IS_VOID[i]
	Description
	Type/Size
	Syntax
	Remarks

	DTL_MAJGRP
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_MLVL
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_NAME
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_OBJNUM
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DTL_PLVL
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_PMSLINK
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_PRICESEQ
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_QTY
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_SEAT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTLSELECTED
	Description
	Type/Size
	Syntax
	Remarks

	DTL_SLSI
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_SLVL
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DTL_STATUS
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_SVC_LINK
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_SVC_TYPE
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_SVCI
	Description
	Type/Size
	Syntax
	Remarks
	See also

	Dtl_TaxTtl
	Description
	Type/Size
	Syntax
	Remarks

	DTL_TAXTYPE
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	DTL_TIMED_FIRE_TIME
	Description
	Type/Size
	Syntax
	Remarks

	DTL_TTL
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DTL_TYPE
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See also

	DTL_TYPEDEF
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DWOFF
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	DWON
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	EMPLDISCOUNT
	Description
	Type/Size
	Syntax
	Remarks

	EMPLDISCOUNTEMPL
	Description
	Type/Size
	Syntax
	Remarks

	EMPLOPT
	Description
	Type/Size
	Syntax
	Remarks

	EPOCH
	Description
	Type/Size
	Syntax
	Remarks

	ERRORMESSAGE
	Description
	Type/Size
	Syntax
	Remarks

	EVENTARGUMENTS
	Description
	Type/Size
	Syntax
	Remarks

	EVENTID
	Description
	Type/Size
	Syntax

	EVENTNAME
	Description
	Type/Size
	Syntax
	Remarks

	EVENTTYPE
	Description
	Type/Size
	Syntax

	FIELDSTATUS
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	FILE
	Description
	Type/Size
	Syntax
	Remarks

	FILELINEMARKER
	Description
	Type/Size
	Syntax
	Remarks

	FILE_BFRSIZE
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	FILE_ERRNO
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	FILE_ERRSTR
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	FILE_SEPARATOR
	Description
	Type/Size
	Syntax
	Remarks

	FILTER_ACTIVE
	Description
	Type/Size
	Syntax
	Remarks

	FILTER_MASK
	Description
	Type/Size
	Syntax
	Remarks

	GRPNUM
	Description
	Type/Size
	Syntax
	Remarks

	GST
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	GSTRMNG
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	GSTTHISTENDER
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	GUID
	Description
	Type/Size
	Syntax
	Remarks

	HEADER
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	HOUR
	Description
	Type/Size
	Syntax
	Remarks

	IGNORE_PRMT
	Description
	Type/Size
	Syntax
	Remarks

	INEDITCLOSEDCHECK
	Description
	Type/Size
	Syntax
	Remarks

	INPUTSTATUS
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	INREOPENCLOSEDCHECK
	Description
	Type/Size
	Syntax
	Remarks

	INSTANDALONEMODE
	Description
	Type/Size
	Syntax
	Remarks
	Example

	ISJOURNALPRINT
	Description
	Type/Size
	Syntax
	Remarks

	ISUNICODE
	Description
	Type/Size
	Syntax
	Remarks

	JNL
	Description
	Type/Size
	Syntax
	Remarks

	KEY_CANCEL
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	KEY_CLEAR
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	KEY_DOWN_ARROW
	Description
	Type/Size
	Syntax
	Remarks
	See Also
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_ENTER
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	KEY_EXIT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_HOME
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_LEFT_ARROW
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_PAGE_DOWN
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_PAGE_UP
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_RIGHT_ARROW
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	KEY_UP_ARROW
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	LANG_ID
	Description
	Type/Size
	Syntax
	Remarks

	LANG_NAME
	Description
	Type/Size
	Syntax
	Remarks

	LASTCKNUM
	Description
	Type/Size
	Syntax
	Remarks

	LINE
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	LINE_EXECUTED
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	MAGSTATUS
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	MAXDTLR
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	MAXDTLT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	MAXKYBDMACRO
	Description
	Type/Size
	Syntax
	Remarks

	MAX_LINES_TO_RUN
	Description
	Type/Size
	Syntax
	Remarks

	MINUTE
	Description
	Type/Size
	Syntax
	Remarks

	MONTH
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	NEXTMYOPENCHECKGUID
	Description
	Type/Size
	Syntax
	Remarks

	NUL
	Description
	Type/Size
	Syntax
	Remarks

	NULL
	Description
	Type/Size
	Syntax
	Remarks

	NUMDSC
	Description
	Type/Size
	Syntax
	Remarks

	NUMDTLR
	Description
	Type/Size
	Syntax
	Remarks

	NUMDTLT
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	NUMLANGS
	Description
	Type/Size
	Syntax
	Remarks

	NUMOPENCHK
	Description
	Type/Size
	Syntax
	Remarks

	NUMSI
	Description
	Type/Size
	Syntax
	Remarks

	NUMSVC
	Description
	Type/Size
	Syntax
	Remarks

	NUMTAX
	Description
	Type/Size
	Syntax
	Remarks

	OBJ
	Description
	Type/Size
	Syntax
	Remarks

	OFFLINE LINK
	Description
	Type/Size
	Syntax

	OPNCHK_CKNUM
	Description
	Type/Size
	Syntax
	Remarks

	OPNCHK_TREMPID
	Description
	Type/Size
	Syntax
	Remarks

	OPNCHK_TREMPNUM
	Description
	Type/Size
	Syntax
	Remarks

	OPNCHK_WSID
	Description
	Type/Size
	Syntax
	Remarks

	OPNCHK_WSNUM
	Description
	Type/Size
	Syntax
	Remarks

	OPSCONTEXT
	Description
	Type/Size
	Syntax
	Remarks

	ORDERTYPE
	Description
	Type/Size
	Syntax
	Remarks

	OrderType_Name
	Description
	Type/Size
	Syntax
	Remarks

	ORDR
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	OS_PLATFORM
	Description
	Type/Size
	Syntax
	Remarks

	PICKUPLOAN
	Description
	Type/Size
	Syntax
	Remarks

	PLATFORM
	Description
	Type/Size
	Syntax
	Remarks

	PMSBUFFER
	Description
	Type/Size
	Syntax
	Remarks

	PMSLINK
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	PMSNUMBER
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	PREVPAY
	Description
	Type/Size
	Syntax
	Remarks

	PRINTSTATUS
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	PROPERTY
	Description
	Type/Size
	Syntax
	Remarks

	QTY
	Description
	Type/Size
	Syntax
	Remarks

	RANDOM
	Description
	Type/Size
	Syntax

	RCPT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	REDOFF
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	REDON
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	RETURNSTATUS
	Description
	Type/Size
	Syntax
	Remarks

	RUNNINGDIRECTORY
	Description
	Type/Size
	Syntax
	Remarks

	RVC
	Description
	Type/Size
	Syntax
	Remarks

	RVC_NAME
	Description
	Type/Size
	Syntax
	Remarks

	RXMSG
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	SEAT
	Description
	Type/Size
	Syntax
	Remarks

	SECOND
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	SI
	Description
	Type/Size
	Syntax
	Remarks

	SI_DSC
	Description
	Type/Size
	Syntax
	Remarks

	SIMDBLINK
	Description
	Type/Size
	Syntax

	SRVPRD
	Description
	Type/Size
	Syntax
	Remarks

	STACKFRAMETEXT
	Description
	Type/Size
	Syntax
	Remarks

	STRINGARGS
	Description
	Type/Size
	Syntax
	Remarks

	SVC
	Description
	Type/Size
	Syntax
	Remarks

	SVCI
	Description
	Type/Size
	Syntax

	Remarks

	SYSLOGTRACE
	Description
	Type/Size
	Syntax
	Remarks

	SYSTEM_STATUS
	Description
	Type/Size
	Syntax
	Remarks

	TAX
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TAXRATE
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TAXVAT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TBLID
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TBLNUM
	Description
	Type/Size
	Syntax
	Remarks
	Example

	TICKCOUNT
	Description
	Type/Size
	Syntax
	Remarks

	TMDNUM
	Description
	Type/Size
	Syntax
	Remarks

	TNDTTL
	Description
	Type/Size
	Syntax
	Remarks
	Example

	TOTALMEMORY
	Description
	Type/Size
	Syntax
	Remarks

	TRACE
	Description
	Type/Size
	Syntax
	Remarks

	TRAILER
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TRAININGMODE
	Description
	Type/Size
	Syntax
	Remarks

	TRCSHR
	Description
	Type/Size
	Syntax
	Remarks

	TRDTLR
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TRDTLT
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TREMP
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	TREMP_CHKNAME
	Description
	Type/Size
	Syntax
	Remarks

	TREMP_FNAME
	Description
	Type/Size
	Syntax
	Remarks

	TREMP_LNAME
	Description
	Type/Size
	Syntax
	Remarks
	TREMP_TYPEDEF
	Description
	Type/Size
	Syntax
	Remarks

	TTL
	Description
	Type/Size
	Syntax
	Remarks

	TTLDUE
	Description
	Type/Size
	Syntax
	Remarks

	TXBL
	Description
	Type/Size
	Syntax
	Remarks

	TXEX_ACTIVE
	Description
	Type/Size
	Syntax
	Remarks

	USEDMEMORY
	Description
	Type/Size
	Syntax
	Remarks

	USERENTRY
	Description
	Type/Size
	Syntax
	Remarks

	VALD
	Description
	Type/Size
	Syntax
	Remarks
	See Also

	VARIABLEFRAMETEXT
	Description
	Type/Size
	Syntax
	Remarks

	VERSION
	Description
	Type/Size
	Syntax
	Remarks
	Example

	VOIDSTATUS
	Description
	Type/Size
	Syntax
	Remarks

	WARNINGS_ARE_FATAL
	Description
	Type/Size
	Syntax
	Remarks
	Example

	WCOLS
	Description
	Type/Size
	Syntax
	Remarks

	WEEKDAY
	Description
	Type/Size
	Syntax
	Remarks

	WROWS
	Description
	Type/Size
	Syntax
	Remarks

	WSID
	Description
	Type/Size
	Syntax
	Remarks

	WSNUM
	Description
	Type/Size
	Syntax
	Remarks

	WSSUBTYPE
	Description
	Type/Size
	Syntax
	Remarks

	WSTYPE
	Description
	Type/Size
	Syntax
	Remarks

	YEAR
	Description
	Type/Size
	Syntax
	Remarks
	Example
	See Also

	YEARDAY
	Description
	Type/Size
	Syntax
	Remarks

	8 ISL Commands
	Commands
	Command Summary
	File I/O Operations
	Format Specifiers

	ISL File Input/Output Commands
	The FOpen Command
	File I/O System Variables
	Input/Output File Format

	Using Format Specifiers
	What is a Format Specifier?
	Types of Format Specifiers
	Specifier Attributes
	Input Specifiers
	Input Specifier
	M Input Specifier
	Format One
	Format Two
	Field Positions for Credit Cards

	Using Both Input Specifiers

	Output Specifiers
	Syntax

	Examples of Specifiers
	Input Specifier
	Output Specifiers
	Justification Specifiers
	* Specifier
	+ Specifier
	0 Specifier
	size Specifier
	D, X, O, and B Specifiers
	:format_string Specifier

	Using Input and Output Specifiers Together

	Command Summary
	ISL Command Reference
	Beep
	Description
	Syntax
	See Also

	Break
	Description
	Syntax
	Remarks
	Example
	See Also

	Call
	Description
	Syntax
	Remarks
	Example
	See Also

	ClearArray
	Description
	Syntax
	Example

	ClearChkInfo
	Description
	Syntax
	Remarks
	POS Setup
	Example
	See Also

	ClearIslTs
	Description
	Syntax
	Remarks
	Example
	See Also

	ClearKybdMacro
	Description
	Syntax
	Remarks
	Example
	See Also

	ClearRearArea
	Description
	Syntax
	Example
	See Also

	ContinueOnCancel
	Description
	Syntax
	Remarks
	See Also

	Display
	Description
	Syntax
	Remarks
	Example
	See Also

	DisplayInput
	Description
	Syntax
	Remarks
	Example
	See Also

	DisplayInverse
	Description
	Syntax
	Remarks
	Example
	See Also

	DisplayIslTs
	Description
	Syntax
	Remarks
	Example
	See Also

	DisplayMSInput
	Description
	Syntax
	Remarks
	Example
	See Also

	DisplayRearArea
	Description
	Syntax
	Example
	See Also

	DLLCall
	Description
	Syntax
	See Also

	DLLCall_cdecl
	Description
	Syntax
	See Also

	DLLCall_STDCall
	Description
	Syntax
	See Also

	DLLCallW
	Description
	Syntax
	See Also

	DLLFree
	Description
	Syntax
	See Also

	DLLLoad
	Description
	Syntax
	Example
	See Also

	ErrorBeep
	Description
	Syntax
	See Also

	ErrorMessage
	Description
	Syntax
	Remarks
	See Also
	Example

	Event...EndEvent
	Description
	Syntax 1
	Remarks 1
	Example 1
	Syntax 2
	Remarks 2
	Example 2
	Syntax 3
	Remarks 3
	Example 3a
	Example 3b
	Syntax 4
	Remarks 4
	Syntax 5
	Remarks
	Example 1
	Example 2
	See Also

	ExitCancel
	Description
	Syntax
	Remarks
	Example

	ExitContinue
	Description
	Syntax
	Remarks
	Example

	ExitOnCancel
	Description
	Syntax
	See Also

	ExitWithError
	Description
	Syntax
	Remarks
	Example

	FClose
	Description
	Syntax
	Remarks
	Example
	See Also

	FGetFile
	Description
	Syntax
	Remarks
	See Also

	FLock
	Description
	Syntax
	Remarks
	Example 1
	Example 2
	Example 3
	Example 4
	See Also

	FOpen
	Description
	Syntax
	Remarks
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

	For...EndFor
	Description
	Syntax
	Remarks
	Example
	See Also

	ForEver...EndFor
	Description
	Syntax
	Example
	See Also

	Format
	Description
	Syntax
	Remarks
	Example
	See Also

	FormatBuffer
	Description
	Syntax
	Remarks
	Example
	See Also

	FormatQ
	Descripion
	Syntax
	Remarks
	See Also

	FPutFile
	Description
	Syntax
	Remarks
	See Also

	FRead
	Description
	Syntax
	Remarks
	Example
	See Also

	FReadBfr
	Description
	Syntax
	Remarks
	Example
	See Also

	FReadLn
	Description
	Syntax
	Remarks
	Example
	See Also

	FSeek
	Description
	Syntax
	Remarks
	Example
	See Also
	FUnLock
	Description
	Syntax
	Remarks
	Example
	See Also

	FWrite
	Description
	Syntax
	Remarks
	Example
	See Also

	FWriteBfr
	Description
	Syntax
	Remarks
	Example
	See Also

	FWriteLn
	Description
	Syntax
	Remarks
	See Also

	GetEnterOrClear
	Description
	Syntax
	Remarks
	Example

	GetRxMsg
	Description
	Syntax
	Remarks
	Example
	See Also

	GetTime
	Description
	Syntax
	Remarks
	Example 1
	Example 2
	Example 3

	If...Else[If]...EndIf
	Description
	Syntax
	Remarks
	Example
	See Also

	Input
	Description
	Syntax
	Remarks
	Example
	See Also

	InputKey
	Description
	Syntax
	Remarks
	Example
	See Also

	InfoMessage
	Description
	Syntax
	Remarks
	See Also

	LineFeed
	Description
	Syntax
	Remarks
	Example
	See Also

	ListDisplay
	Description
	Syntax
	Remarks
	Example
	See Also

	ListInput
	Description
	Syntax
	Remarks
	Example
	See Also

	ListInputEx
	Description
	Syntax
	Remarks
	Example
	See Also

	ListPrint
	Description
	Syntax
	Remarks
	Example
	See Also

	LoadDbKybdMacro
	Description
	Syntax
	Remarks
	Example
	See Also

	LoadKybdMacro
	Description
	Syntax
	Remarks
	Example
	See Also

	LowerCase
	Description
	Syntax
	See Also

	MakeAscii
	Description
	Syntax
	Example

	MakeUnicode
	Description
	Syntax
	Example
	Remarks

	Mid
	Description
	Syntax
	Remarks
	Example

	MSleep
	Description
	Syntax
	Example

	PopUpIslTs
	Description
	Syntax
	Remarks
	Example
	See Also

	PrintLine
	Description
	Syntax
	Remarks
	Example
	See Also

	PrintSimFeatures
	Description
	Syntax
	Remarks
	Example

	Prompt
	Description
	Syntax
	Remarks
	Example

	ProRate
	Description
	Syntax
	Remarks
	Notes:

	[Retain/Discard]GlobalVar
	Description
	Syntax
	Remarks
	Example

	Return
	Description
	Syntax
	Remarks
	Example
	See Also

	ReTxMsg
	Description
	Syntax
	Remarks
	See Also

	RxMsg
	Description
	Syntax
	Remarks
	Example
	See Also

	SaveChkInfo
	Description
	Syntax
	Remarks
	How to Capture and Print Check Information Detail
	Introduction
	Designing the SIM Script
	Programming the Simphony Database

	Operational Considerations
	Voiding Check Information Detail

	Example
	See Also

	SaveRefInfo
	Description
	Syntax
	Remarks
	Example
	See Also

	SaveRefInfox
	Description
	Syntax
	Remarks
	Example
	See Also

	SetIslTsKey
	Description
	Syntax
	Remarks
	Example
	See Also

	SetReRead
	Description
	Syntax
	Remarks

	SetSignOn[Left/Right]
	Description
	Syntax
	Remarks
	Example

	SetString
	Description
	Syntax
	Example

	Split
	Description
	Syntax
	Remarks
	Example
	See Also

	SplitQ
	Description
	Syntax
	Remarks
	See Also

	StartPrint...EndPrint[FF/NOFF]
	Description
	Syntax
	Remarks
	POS Setup
	Example
	See Also

	Sub... EndSub
	Description
	Syntax
	Remarks
	Using Subroutines
	By Value
	By Reference

	Example
	See Also

	TimerSet, TimerReset, TimerResetAll
	Description
	Syntax
	Remarks
	Example

	TxMsg
	Description
	Syntax
	Remarks
	Example
	See Also

	TxMsgOnly
	Description
	Syntax
	Example
	See Also

	UpperCase
	Description
	Syntax
	See Also

	UseBackupTender
	Description
	Syntax
	Remarks
	Example
	See Also

	Use[Compat/ISL]Format
	Description
	Syntax
	Remarks

	Use[ISL/STD]TimeOuts
	Description
	Syntax
	Remarks
	See Also

	UseSortedDetail
	Description
	Syntax
	Remarks
	Example
	See Also

	UseStdDetail
	Description
	Syntax
	Remarks
	See Also

	Var
	Description
	Syntax
	Example
	Remarks
	See Also

	WaitForClear
	Description
	Syntax
	Remarks
	Example
	See Also

	WaitForConfirm
	Description
	Syntax
	Remarks
	Example
	See Also

	WaitForEnter
	Description
	Syntax
	Remarks
	Example
	See Also

	WaitForRxMsg
	Description
	Syntax
	Remarks
	Example
	See Also

	WaitPrompt/ClearWaitPrompt
	Description
	Syntax
	Remarks
	Example

	While...EndWhile
	Description
	Syntax
	Remarks
	Example
	See Also

	Window
	Description
	Syntax
	Remarks
	Example
	See Also

	WindowClose
	Description
	Syntax
	Remarks
	Example
	See Also

	Window[Edit/Input][WithSave]
	Description
	Syntax 1
	Syntax 2
	Remarks
	Example 1
	Example 2
	See Also

	9 ISL Functions
	Functions
	Function Summary
	ISL Function Reference
	Abs Function
	Description
	Syntax
	Example

	ArraySize Function
	Description
	Syntax
	Remarks
	Example

	Asc Function
	Description
	Syntax
	Remarks
	Example
	See Also

	Bit Function
	Description
	Syntax
	Remarks
	Example

	Chr Function
	Description
	Syntax
	Remarks
	Example
	See Also

	CommandExists Function
	Description
	Syntax
	Example

	DefKey Function
	Description
	Syntax

	Env Function
	Description
	Syntax
	Remarks
	Example

	Feof Function
	Description
	Syntax
	Remarks
	Example
	See Also

	FormatCheckData Function
	Description
	Syntax
	Example

	FormatCurrentDate Function
	Description
	Syntax
	Example

	FormatDate Function
	Description
	Syntax
	Example

	FormatStr Function
	Description
	Syntax
	Example

	FormatValue Function
	Description
	Syntax
	Example

	FTell Function
	Description
	Syntax
	Example
	See Also

	FunctionExists
	Description
	Syntax
	Example

	GetHex Function
	Description
	Syntax
	Remarks
	Example

	GetValue Function
	Description
	Syntax
	Example

	Instr Function
	Description
	Syntax
	Example

	Key Function
	Description
	Syntax
	Remarks
	Example
	See Also

	KeyNumber Function
	Description
	Syntax
	Example
	See Also

	KeyType Function
	Description
	Syntax
	Example
	See Also

	Len Function
	Description
	Syntax
	Example

	Mid Function
	Description
	Syntax
	Remarks
	Example
	See Also

	SplitString Function
	Description
	Syntax
	Example

	Str Function
	Description
	Syntax
	Example

	SystemVariableExists Function
	Description
	Syntax
	Example

	ToInteger Function
	Description
	Syntax
	Remarks
	Example

	Trim Function
	Description
	Syntax
	Example

	TypeOf Function
	Description
	Syntax
	Example

	VarExists Function
	Description
	Syntax
	Example

	VarSize Function
	Description
	Syntax
	Example

	Appendix A ISL Error Messages
	Error Message Format
	Variable Descriptions
	Format 1
	Example

	Format 2
	Example

	Format 3
	Example

	Format 4
	Format 5
	Example

	Error Messages
	Array Index Out Of Range
	Bad Sys Var Index
	Break with Too Many Endfor
	Break without Endfor
	Call Has No Arguments
	Can Not Evaluate
	Cannot Access ISL Script File
	Command Outside Procedure
	Decimal Overflow
	Display Column or Row Out Of Range
	Divide by Zero
	Duplicate variable Def
	Encountered Non-Hex Data
	Endsub Nesting Mismatch
	Evaluation Nesting
	Event Inside Procedure
	Event Type Must Be Word
	Exceeded Max Array or Variable Size
	Expected Array in Call
	Expected ..., Encountered...
	A-Expected Decimal
	Expected End of Line
	Expected Format Token
	Expected Operand
	Expected String
	File Buffer Overflow
	File is Read Only
	File is Write Only
	File Name Too Long
	Format Needs String
	Format Too Long
	Integer Overflow
	Invalid Decimal Operation
	Invalid File Buffer Size
	Invalid File Mode
	Invalid File Number
	Invalid First Token
	Invalid Input fmt Spec
	Invalid List Size
	Invalid Locking Mode
	Invalid Output Format
	Invalid PMS SEND
	Length Invalid
	List Value Too Big
	Loop Variable Constant
	Loop Variable Not INT
	Max Files Open
	Max Include Nesting
	Max Lines Executed
	Max Macro Keys
	Max Ref Info
	Max Window Input Entries
	Memory Allocation
	Must Have List Var
	Name is a Reserved Word
	New TNDTTL Exceeds Original
	No Arrays in Sub Var
	No ISL File
	No Match for EndFor
	No Match for EndWhile
	No Match for Event
	No Number in Sys Var
	No Ops on Strings
	No PMS Message Received
	No Touchscreen Keys Defined
	Not a Variable
	Not Enough Input Data
	Not Enough List Data
	Not Enough Variables
	NUMERIC ENTRY REQUIRED
	Print Already Started
	Print Not Started
	Reading Ord Dvc Table
	Reading Tbl Def
	Require Array for List
	Script Memory Allocation Error
	Start Position Invalid
	String Overflow
	Sub Array Ref Invalid
	Sub Has No Arguments
	Sub Statement in Procedure
	System Variable Declaration
	Sys Var Not Assignable
	Too Few Args in Call
	Too Few Arguments
	Too many Args in Call
	Too Many Arguments
	Too Many Nested Calls
	Too Many Touchscreen Keys
	Too Many PMS Definitions Active. Start New Transaction
	Undefined Call
	Undefined Function
	Undisplayable Variable
	Unexpected Data after Call
	Unexpected Data after Sub
	Unexpected Data in Sub
	Unexpected End of Line
	Unexpected Token Type
	Unknown Command
	Unknown System Variable
	Unmatched Endevent
	Unmatched EndFor
	Unmatched If
	Value Not Key Definition
	Variable Undefined
	Window Columns Out of Range
	Window Has Not Been Defined
	Window Rows Out of Range

	Appendix B TCP Interface Code
	MICROS SIM TCP Server
	Sample SIM Server
	Sample Makefile

	Appendix C ISL Quick Reference
	Data Types
	Relational and Logical Operators
	Unary Operators
	Binary Operators

	C-System Variables
	Format Specifiers
	Input Specifiers
	Output Specifiers

	Commands
	Functions

	Appendix D Microsoft Windows DLL Access
	Microsoft Windows DLL Access
	Overview
	What is a DLL?
	Dynamic Linking

	Using DLLs
	Sharing Components
	Encapsulating (hiding) Data and Code
	Performing System-level Operations

	Simphony SIM DLL Support
	Customization
	Third-party Development
	Creativity
	Faster Turn Around Time

	Using Simphony SIM DLL Commands
	DLLLoad
	DLLCall
	DLLCallW
	DLLFree

	Parameter Passing
	Integers
	By Value
	By Value Examples

	By Reference
	By reference examples

	Strings
	By Value
	By Value Examples

	By Reference
	By reference example

	Monetary Data
	By Value
	By Value Example

	By Reference
	By Reference Example

	Array References

	DLL Error Messages
	General Error Messages
	ISL Error on Line ###:## Can Not Evaluate (END OF LINE)
	ISL Error on Line ###:## Expected Operand (END OF LINE)
	ISL Error on Line ###:## File Name Too Long
	ISL Error on Line ###:## Not a Variable (“filename. dll”)
	Maximum Number of DLLs Loaded

	DLLCall Error Messages
	ISL Error Expected Operand
	ISL Error Variable Undefined
	ISL Error Undefined Function

	DLLFree Error Messages
	ISL eEror Expected Operand
	ISL Error Variable Undefined

	Appendix E SIM Events
	Overview
	Events Directly Triggered by a Keystroke
	Events Indirectly Triggered by an Ops Event
	Event-Specific Variables

	Quick Reference Table
	SIM Confirm Events

	Appendix F Stack Trace
	Appendix G SIM.net
	Glossary
	Argument
	Array
	Asynchronous Serial Interface
	Concatenate
	Constant
	Equation
	Expression
	Format Specifiers
	Formula
	Function
	Global Command
	Global Variable
	Hex Expression
	Input Expression
	Integer
	Interface Script Language (ISL)
	ISL
	Language Element
	Local Command
	Local Variable
	Nesting
	Null String
	Number of Records
	Numeric Expression
	Offset
	Operator
	Script
	SIM
	String
	String Expression
	Subexpression
	Subroutine
	Syntax
	System Interface Module
	System Variable
	Token
	Token Error
	TTY
	User Variable
	Variable

