
Oracle® Fusion Middleware
Designing Business Rules with Oracle
Business Process Management

12c (12.2.1.3.0)
E97827-03
May 2020

Oracle Fusion Middleware Designing Business Rules with Oracle Business Process Management, 12c
(12.2.1.3.0)

E97827-03

Copyright © 2005, 2020, Oracle and/or its affiliates.

Primary Author: Ramakanth Kotha

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xix

Documentation Accessibility xix

Related Documents xix

Conventions xx

1 Overview of Oracle Business Rules

1.1 Introduction to Oracle Business Rules 1-1

1.1.1 Why Use Oracle Business Rules? 1-2

1.1.2 Understanding Oracle Business Rules Terminology 1-4

1.1.2.1 What Are Facts and Valuesets? 1-4

1.1.2.2 What Are Rulesets? 1-4

1.1.2.3 What Are Dictionaries? 1-5

1.1.2.4 What Are Globals? 1-5

1.1.2.5 What Are Decision Functions? 1-5

1.1.2.6 What Are Decision Points? 1-5

1.1.2.7 What Are Business Phrases? 1-5

1.2 Understanding Oracle Business Rules Formats 1-5

1.2.1 Rules 1-6

1.2.1.1 What Are Rule Conditions? 1-6

1.2.1.2 What Are Rule Actions? 1-7

1.2.1.3 How are Verbal Rules Different from General Rules? 1-7

1.2.2 Decision Tables 1-8

1.3 Oracle Business Rules Runtime and Design Time Elements 1-9

1.3.1 Decision Component (Business Rules) in a SOA Composite Application 1-9

1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE
Application 1-9

1.3.3 Oracle Business Rules RL Language 1-10

1.3.4 Oracle Business Rules SDK 1-10

1.3.5 Rules Designer 1-11

1.3.6 Oracle SOA Composer Application 1-11

1.3.7 Oracle Business Process Composer Application 1-11

iii

1.4 Oracle Business Rules Engine Architecture 1-12

1.4.1 Declarative Rules 1-12

1.4.2 The Rete Algorithm 1-13

1.4.3 The Non-Rete Algorithm 1-13

1.4.3.1 Configuring the Non-Rete Algorithm 1-14

1.4.4 What Is Working Memory? 1-14

1.4.5 Rule Firing and Rule Sessions 1-14

2 Working with Data Model Elements

2.1 Introduction to Working with Data Model Elements 2-1

2.2 Introduction to Dictionaries and Dictionary Links 2-1

2.2.1 Working with Dictionaries and Dictionary Links 2-1

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer 2-2

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer 2-5

2.2.4 How to View and Edit Dictionary Settings 2-5

2.2.4.1 How to Change the Dictionary Alias 2-5

2.2.4.2 How to Edit the Preferences tab 2-6

2.2.4.3 How to Edit the Data Model tab 2-7

2.2.5 How to Link to a Dictionary 2-8

2.2.6 How to Update a Linked Dictionary 2-9

2.2.7 What You Need to Know About Dictionary Linking 2-10

2.2.8 What You Need to Know About Dictionary Linking and Dictionary
Copies 2-11

2.2.9 What You Need to Know About Dictionary Linking to a Deployed
Dictionary 2-11

2.2.10 What You Need to Know About Business Rules Inputs and Outputs
with BPEL 2-11

2.2.11 How to Compare or Merge Two or More Dictionaries 2-11

2.2.11.1 How to See Differences Between Dictionaries 2-13

2.2.11.2 How to Merge Dictionaries 2-14

2.3 Working with Oracle Business Rules Globals 2-15

2.3.1 How to Add Oracle Business Rules Globals 2-15

2.3.2 How to Edit Oracle Business Rules Globals 2-16

2.3.3 What You Need to Know About the Final and Constant Options 2-16

2.4 Working with Decision Functions 2-17

2.5 Introduction to Oracle Business Rules Functions 2-17

2.5.1 How to Add an Oracle Business Rules Function 2-18

2.6 Localizing Oracle Business Rule Resources 2-19

2.6.1 How to Localize the Resources in Oracle Business Rules 2-19

iv

3 Working with Facts and Value Sets

3.1 Introduction to Working with Facts and Value Sets 3-1

3.2 Working with XML Facts 3-2

3.2.1 How to Create XML fact types 3-3

3.2.2 How to Import the XML Schema and Add XML Facts 3-3

3.2.3 How to Display and Edit XML Facts 3-5

3.2.4 How to Reload XML Facts with Updated Schema 3-6

3.2.5 What You Need to Know About XML Facts 3-7

3.3 Working with Java Facts 3-8

3.3.1 How to Import Java Classes and Define Java Facts 3-8

3.3.2 How to Display and Edit Java Facts 3-9

3.3.3 What You Need to Know About Java Facts 3-11

3.4 Working with RL Facts 3-11

3.4.1 How to Define RL Facts 3-12

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties 3-13

3.4.3 What You Need to Know About RL Facts 3-13

3.5 Working with ADF Business Components Facts 3-14

3.5.1 How to Import and Define ADF Business Components Facts 3-14

3.5.2 What You Need to Know About ADF Business Components Fact
Classpaths 3-15

3.5.3 What You Need to Know About ADF Business Components Circular
References 3-15

3.5.4 What You Need to Know About ADF Business Components Facts 3-16

3.6 Working with Value Sets 3-16

3.6.1 How to Define a List of Values Global Value Set 3-18

3.6.2 How to Define a List of Ranges Global Value Set 3-19

3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types 3-21

3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types 3-22

3.6.5 What You Need to Know About List of Values Value Sets 3-22

3.6.6 What You Need to Know About Range Value Sets 3-23

3.6.7 What You Need to Know About the Value Set Allowed in Actions Option 3-24

3.6.8 What You Need to Know About Values 3-25

3.7 Associating a Value Set with Business Terms 3-25

3.7.1 How to Associate a Value Set with a Fact Property 3-25

3.7.2 How to Associate a Value Set with Functions or Function Arguments 3-26

3.7.2.1 How to Associate a Value Set with a Function Argument 3-27

3.7.3 How to Associate a Value Set with a Global Value 3-27

4 Working with Rulesets and Rules

4.1 Introduction to Working with Rulesets, Rules, and Business Phrases 4-1

v

4.2 Working with Rulesets 4-2

4.2.1 How to Create a Ruleset 4-2

4.2.2 How to Set the Effective Date for a Rule Set 4-2

4.2.3 How to Set the Effective Date for a Rule 4-3

4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset 4-4

4.2.5 Using Auto Complete when Selecting Component Values from a List 4-7

4.3 Working with Rules 4-7

4.3.1 How to Add General Rules 4-8

4.3.2 How to Add Verbal Rules 4-9

4.3.3 How to Define a Test in a Rule 4-9

4.3.4 How to Define a Test in a Verbal Rule 4-12

4.3.5 What You Need to Know About Oracle Business Rules Test Variables 4-14

4.3.6 How to Define Range Tests in Rules 4-15

4.3.7 How to Define Set Tests in Rules 4-17

4.3.8 How to Define an Action in a General Rule 4-19

4.3.8.1 Basic Actions in a General Rule 4-21

4.3.9 How to Define an Action in a Verbal Rule 4-22

4.3.10 What You Need to Know About Rule Actions 4-23

4.3.11 What You Need to Know About Oracle Business Rules Performance
Tuning 4-24

4.4 Introduction to Verbal Rules and Business Phrases 4-24

4.4.1 Working with Business Phrases 4-24

4.4.1.1 Business Phrases Tab 4-25

4.4.1.2 Draft Business Phrases and Verbal Rules 4-26

4.4.2 How to Create Business Phrases 4-27

4.4.2.1 Example Business Phrase Creation Scenario 4-27

4.4.2.2 Translating Business Phrases 4-29

4.4.3 Choosing or Adding Business Phrases in Verbal Rules 4-29

4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal
Rule 4-29

4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule 4-31

4.4.3.3 Derived Business Phrases 4-31

4.4.3.4 Choosing Which Business Phrases to See in the List 4-31

4.5 Validating Dictionaries 4-31

4.5.1 Understanding Data Model Validation 4-32

4.5.2 Understanding Rule Validation 4-33

4.5.3 Understanding Decision Table Validation 4-33

4.5.4 How to Validate a Dictionary 4-34

4.6 Using Advanced Settings with Rules and Decision Tables 4-34

4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table 4-36

4.6.2 How to Select the Advanced Mode Option 4-36

4.6.3 How to Select the Active Option 4-37

vi

4.6.4 How to Select the Logical Option 4-38

4.6.5 How to Set a Priority for a Rule 4-38

4.6.6 How to Specify Effective Dates 4-39

4.7 Working with Nested Tests 4-39

4.8 Working with Advanced Mode Rules 4-40

4.8.1 How to Use Advanced Mode Pattern Matching Options 4-40

4.8.2 How to Use Advanced Mode Matched Fact Naming 4-43

4.8.3 How to Use Advanced Mode Action Forms 4-45

4.8.3.1 Advanced Mode Action Options in Rule Designer 4-46

4.8.4 How to Use Advanced Mode Aggregate Conditions 4-47

4.8.4.1 Using Aggregate Functions 4-49

4.8.5 What You Need to Know About Advanced Mode Rules 4-51

4.8.5.1 How to Clear Advanced Mode Option 4-51

4.9 Working with Extended Tests 4-52

4.9.1 Extended Test Forms 4-52

4.10 Working with Tree Mode Rules 4-56

4.10.1 Sample Abbreviated PO XML Instance 4-58

4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode) 4-59

4.10.3 Understanding Advanced Tree Mode Rules 4-59

4.10.4 How to Create Simple Tree Mode Rules 4-60

4.10.5 How to Create Advanced Tree Mode Rules 4-63

4.10.6 What You Need to Know About Tree Mode Rules 4-64

4.11 Using Date Facts, Date Functions, and Specifying Effective Dates 4-64

4.11.1 How to Use the Current Date Fact 4-65

4.11.2 What You Need to Know About Effective Dates 4-66

4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods 4-67

4.12 Introduction to Expression Builder 4-68

4.12.1 How to Use the Expression Builder 4-69

4.12.2 What You Need to Know About Working with Expressions 4-69

4.13 Using Value Sets as Constraints for Options Values in Rules 4-70

4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business
Term 4-70

4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact
Property 4-71

4.13.3 How to Use Value Sets to Provide Options for Test Expressions 4-71

4.14 Importing Runtime Rules Changes From Repository Into JDeveloper 4-72

4.15 How to Model Rules When the Data Model is Deep 4-73

5 Working with Decision Tables

5.1 Introduction to Working with Decision Tables 5-1

5.1.1 What is a Decision Table? 5-2

vii

5.1.1.1 What You Need to Know About Decision Table Conditions 5-3

5.1.1.2 What You Need to Know About Decision Table Actions 5-3

5.1.1.3 What You Need to Know About Decision Table Rules 5-5

5.1.2 Understanding Condition Cell Values 5-6

5.1.3 Understanding Action Cell Values 5-7

5.1.4 What You Need to Know About Decision Table Loops 5-7

5.2 Creating Decision Tables 5-7

5.2.1 How to Create a Decision Table 5-8

5.2.2 How to Add Condition Rows to a Decision Table 5-8

5.2.3 How to Use or Specify the Value Set for a Decision Table Condition 5-9

5.2.4 How to Add Actions to a Decision Table 5-10

5.2.4.1 How to Set Values for Action Cells in a Decision Table 5-12

5.2.4.2 How to Deselect an Action Cell in a Decision Table 5-12

5.2.5 How to Add a Rule to a Decision Table 5-12

5.2.6 How to Define Tests in a Decision Table 5-13

5.3 Introduction to Decision Table Operations 5-15

5.3.1 Understanding Decision Table Split and Compact Operations 5-15

5.3.1.1 Understanding Decision Table Move Operations 5-17

5.3.1.2 Understanding Decision Table Gap Checking 5-18

5.3.1.3 Understanding Decision Table Conflict Analysis 5-20

5.3.2 How to Compact or Split a Decision Table 5-22

5.3.3 How to Merge or Split Conditions in a Decision Table 5-22

5.3.4 How to Use the Condition Cell Operations 5-22

5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table 5-22

5.3.4.2 How to Split a Cell in a Condition in a Decision Table 5-23

5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a
Decision Table 5-23

5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for
a Cell in a Condition: 5-23

5.3.5 How to Perform Decision Table Gap Checking 5-23

5.3.6 How to Perform Decision Table Manual Conflict Resolution 5-24

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy 5-24

5.3.8 How to Set the Decision Table Ignore Conflicts Policy 5-24

5.4 Creating and Running an Oracle Business Rules Decision Table Application 5-25

5.4.1 How to Obtain the Source Files for the Order Approval Application 5-25

5.4.2 How to Create an Application for Order Approval 5-26

5.4.3 How to Create a Business Rule Service Component for Order Approval 5-28

5.4.4 How to View Data Model Elements for Order Approval 5-31

5.4.5 How to Add Value Sets to the Data Model for Order Approval 5-31

5.4.5.1 How to Add CreditScore Value Set to the Data Model 5-32

5.4.6 How to Associate Value Sets with Order and CreditScore Properties 5-33

5.4.7 How to Add a Decision Table for Order Approval 5-34

viii

5.4.7.1 How to Create an action in a Decision Table 5-36

5.4.7.2 Split the Cells in the Decision Table and Add Actions 5-36

5.4.7.3 How to Add Actions for Each Rule in the Decision Table 5-37

5.4.7.4 Compact the Decision Table 5-38

5.4.7.5 Replace Several Specific Rules with One General Rule 5-39

5.4.7.6 Add a General Rule 5-40

5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy 5-41

5.4.8 How to Check the Business Rule Validation Log for Order Approval 5-42

5.4.9 How to Deploy the Order Approval Application 5-42

5.4.10 How to Test the Order Approval Application 5-42

5.5 Editing Decision Tables in Microsoft Excel 5-44

5.5.1 Understanding What is Exported 5-46

5.5.2 How to Export Decision Tables 5-46

5.5.3 How to Import Edited Decision Tables Back to the Dictionary 5-47

5.5.4 How to Edit Decision Tables in Excel 5-48

5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells 5-48

5.5.4.2 Adding or Removing Value Sets 5-49

5.5.4.3 Showing or Hiding Value Sets and Editing the Description 5-49

5.5.4.4 Setting Preferences 5-50

5.5.4.5 Using Simple or Advanced Mode 5-51

5.5.4.6 Hiding or Showing the Readme Worksheet 5-52

5.5.4.7 Editing Condition Cells 5-52

5.5.4.8 Editing Actions 5-53

5.5.4.9 Editing Expressions 5-53

5.5.4.10 Editing Action Expression Parameters 5-53

5.5.4.11 Editing Descriptions 5-54

5.5.4.12 Using the Auto-Addition Feature 5-54

5.5.4.13 Aliases of Values in the Value Sets Worksheet 5-56

5.5.4.14 Syncing Value Sets and Conditions 5-56

6 Working with Decision Functions

6.1 Introduction to Decision Functions 6-1

6.2 Working with Decision Functions 6-1

6.2.1 How to Edit an Existing Decision Function 6-5

6.2.2 How to Change the Order of Inputs 6-6

6.2.3 How to Change the Order of Outputs 6-6

6.2.4 How to Edit a Decision Function 6-6

6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules 6-6

6.4 What You Need to Know to About Decision Function Arguments 6-7

ix

6.5 What You Need to Know About the Decision Function Stateless Option 6-7

7 Testing and Validating Business Rules

7.1 Overview 7-1

7.1.1 Components of the Test Feature 7-2

7.2 Testing Rules in JDeveloper 7-3

7.2.1 How to Create and Manage Test Suites and Cases 7-4

7.2.2 How to Create Test Templates 7-5

7.2.3 How to Run Test Suites or Cases 7-6

7.2.4 How to Run Ad-hoc Tests from Test Templates 7-6

7.2.5 How to Run Tests for a Specific Decision Function 7-7

7.3 Testing Rules in Business Process Composer 7-8

7.4 Testing Rules in SOA Composer 7-8

7.4.1 How to Create and Manage Test Suites and Cases 7-8

7.4.2 How to Create Test Templates 7-10

7.4.3 How to Run Test Suites or Cases 7-11

7.4.4 How to Run Ad-hoc Tests from Test Templates 7-12

7.4.5 How to Run Tests for a Specific Decision Function 7-13

7.5 Testing Decision Functions Using a Rules Function 7-14

7.5.1 What You Need to Know About Testing Decision Functions 7-14

7.6 Testing Decision Services in SOA Composites 7-15

8 Working with Rules in Standalone (Non SOA/BPM) Scenarios

8.1 Loading a Dictionary from the Repository 8-1

8.2 Executing a Rule Dictionary 8-2

8.3 Introduction to the Rules SDK Decision Point API 8-3

8.3.1 Working with Decision Point API 8-4

8.3.2 How to Obtain the Car Rental Sample Application 8-4

8.3.3 How to Open the Car Rental Sample Application and Project 8-5

8.4 Creating a Dictionary for Use with a Decision Point 8-5

8.4.1 How to Create Data Model Elements for Use with a Decision Point 8-6

8.4.2 How to View a Decision Function to Call from the Decision Point 8-7

8.4.3 How to Create Rules or Decision Tables for the Decision Function 8-9

8.4.4 What You Need to Know About Using Car Rental Sample with a
Decision Table 8-11

8.5 Creating a Java Application Using Rules SDK Decision Point 8-12

8.5.1 How to Add a Decision Point Using Decision Point Builder 8-13

8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary 8-14

8.5.3 How to Use Executor Service to Run Threads with Decision Point 8-15

8.5.4 How to Create and Use Decision Point Instances 8-16

x

8.5.4.1 Sample Code to Create a Decision Point Instance with
getInstance() 8-17

8.6 Running the Car Rental Sample 8-17

8.6.1 Sample Output from Car Rental 8-18

8.7 What You Need to Know About Using Decision Point in a Production
Environment 8-18

8.8 What You Need to Know About Decision Point and Decision Tracing 8-19

8.8.1 Sample Usage of Decision Tracing 8-20

9 Creating a Rule-enabled Non-SOA Java EE Application

9.1 Introduction to the Grades Sample Application 9-1

9.2 Creating an Application and a Project for Grades Sample Application 9-1

9.2.1 How to Create a Fusion Web Application for the Grades Sample
Application 9-2

9.2.2 How to Develop Accessible ADF Faces Pages 9-3

9.2.3 How to Create the Grades Project 9-4

9.2.4 How to Add the XML Schema and Generate JAXB Classes in the
Grades Project 9-5

9.2.4.1 How to generate JAXB 2.0 content model from grades schema 9-7

9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades
Project 9-7

9.3 Creating Data Model Elements and Rules for the Grades Sample Application 9-10

9.3.1 How to Create Value Sets for Grades Sample Application 9-11

9.3.2 How to Associate a Value Set with a Fact Property 9-11

9.3.3 How to Add a Decision Table for Grades Sample Application 9-11

9.3.4 How to Add an Action to a Decision Table 9-12

9.3.5 How to Add Rules in the Decision Table for Grades Sample Application 9-12

9.3.6 How to Rename the Decision Function for Grades Sample Application 9-14

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application 9-15

9.4.1 How to Add a Servlet to the Grades Project 9-15

9.5 Adding an HTML Test Page for Grades Sample Application 9-21

9.6 Preparing the Grades Sample Application for Deployment 9-22

9.6.1 How to Create the WAR File for the Grades Sample Application 9-22

9.6.2 How to Add the Rules Library to the Grades Sample Application 9-25

9.6.3 How to Add the MDS Deployment File to the Grades Sample
Application 9-26

9.6.4 How to Add the EAR File to the Grades Sample Application 9-30

9.7 Deploying and Running the Grades Sample Application 9-32

9.7.1 How to Deploy to Grades Sample Application 9-32

9.7.2 How to Run the Grades Sample Application 9-33

xi

10

Working with Oracle Business Rules and ADF Business
Components

10.1 Introduction to Using Business Rules with ADF Business Components 10-1

10.1.1 Understanding Oracle Business Rules ADF Business Components
Fact Types 10-1

10.1.2 Understanding Oracle Business Rules Decision Point Action Type 10-2

10.1.2.1 Sample ActionType Implementation 10-3

10.2 Using Decision Points with ADF Business Components Facts 10-4

10.2.1 How to Call a Decision Point with ADF Business Components Facts 10-4

10.2.1.1 Setting the Decision Point Transaction 10-5

10.2.1.2 Setting Runtime Properties 10-5

10.2.1.3 Calling the Invoke Method for an ADF Business Components
Rule 10-5

10.2.1.4 What You Need to Know About Decision Point Invocation 10-6

10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method 10-6

10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method 10-7

10.2.2 How to Call a Decision Function with Java Decision Point Interface 10-7

10.2.3 What You Need to Know About Decision Function Configuration with
ADF Business Components 10-8

10.3 Creating a Business Rules Application with ADF Business Components
Facts 10-9

10.3.1 How to Create an Application That Uses ADF Business Components
Facts 10-10

10.3.2 How to Create ADF Business Components Application for Business
Rules 10-13

10.3.3 How to Update View Object Tuning for Business Rules Sample
Application 10-14

10.3.4 How to Create a Dictionary for Oracle Business Rules 10-14

10.3.5 How to Add Decision Point Dictionary Links 10-14

10.3.6 How to Import the ADF Business Components Facts 10-15

10.3.6.1 How to Mark a Property as Non-visible 10-15

10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView 10-15

10.3.7 How to Add and Run the Outside Manager Ruleset 10-16

10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision
Function 10-16

10.3.7.2 How to Create the ActionType Java Implementation Class 10-17

10.3.7.3 How to Import the Message Action Java Fact 10-18

10.3.7.4 How to Add the Find Managers Rule 10-18

10.3.7.5 How to Add the Outside Manager Finder Class 10-19

10.3.7.6 How to Update ADF META INF for Local Dictionary Access 10-20

10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location 10-21

10.3.7.8 How to Build and Run the Project to Check the Outside Manager
Finder 10-21

xii

10.3.8 How to Add and Run the Department Manager Ruleset 10-22

10.3.8.1 How to Add the Department Manager Finder Ruleset 10-23

10.3.8.2 How to Add the Find Rule in the Department Manager Finder
Ruleset 10-23

10.3.8.3 How to Add Retract Employees Ruleset 10-23

10.3.8.4 How to Add the Find Department Managers Decision Function 10-24

10.3.8.5 How to Add the Department Manager Finder Java Class 10-24

10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location 10-26

10.3.8.7 How to Build and Run the Project to Check the Find Managers
Rule 10-26

10.3.9 How to Add and Run the Raises and Retract Employees Rulesets 10-27

10.3.9.1 How to Add the Raises Ruleset 10-27

10.3.9.2 How to Create the Raise ActionType Java Implementation Class 10-27

10.3.9.3 How to Import the Raise Action Java Fact 10-28

10.3.9.4 How to Add the 12 Year Raise Rule 10-29

10.3.9.5 How to Add the Employee Raises Decision Function 10-29

10.3.9.6 How to Add the Employee Raises Java Class 10-30

10.3.9.7 How to Copy Dictionary to MDS Accessible Location 10-31

10.3.9.8 How to Build and Run the Project to Check the Raises Rule 10-31

11

Working with Decision Components in SOA Applications

11.1 Introduction to Decision Components 11-1

11.2 Working with a Decision Component 11-2

11.2.1 Working with Decision Component Metadata 11-2

11.2.2 Working with Decision Components that Expose a Decision Function 11-5

11.2.3 Using Stateful Interactions with a Decision Component 11-5

11.2.4 What You Need to Know About Stateful Interactions with Decision
Components 11-6

11.3 Decision Service Architecture 11-6

12

Using Oracle SOA Composer with Oracle Business Rules at
Runtime

12.1 Introduction to Oracle SOA Composer 12-1

12.1.1 Creating and Publishing Sessions 12-2

12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary 12-4

12.1.1.2 Creating a Bookmark 12-4

12.1.1.3 Reviewing Dictionary Settings 12-5

12.1.2 Using Oracle SOA Composer User Authentication 12-5

12.1.3 What You Need to Know About SOA Composer Access Control and
User Authentication 12-6

xiii

12.2 Setting Accessibility Options 12-6

12.2.1 How to Set Accessibility Features Before Logging In 12-7

12.2.2 How to Set Accessibility Options After Logging In 12-7

12.3 Opening and Viewing an Oracle Business Rules Dictionary 12-8

12.3.1 How to View and Edit Rulesets 12-9

12.3.1.1 How to Add Verbal Rules in SOA Composer 12-10

12.3.2 How to View and Edit Value Sets 12-12

12.3.3 How to View and Edit Globals 12-13

12.3.4 How to View and Edit Business Phrases 12-14

12.3.5 How to View and Edit Tests 12-15

12.3.6 How to View Explorer 12-16

12.3.7 How to View and Edit Facts 12-16

12.3.8 How to View Decision Functions 12-17

12.3.9 How to View Linked Dictionary Names 12-17

12.3.10 How to Work With Dictionary Links in an Oracle Business Rules
Dictionary 12-18

12.3.11 How to View and Edit Translations 12-19

12.4 Getting Started with Editing a Dictionary 12-19

12.4.1 What You May Need to Know About Localized Number Formatting
Support in Oracle SOA Composer 12-19

12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule
Elements 12-20

12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary 12-21

12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary 12-21

12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary
12-22

12.4.6 What You May Need to Know About Oracle Business Rules Dictionary
Editor Declarative Component 12-24

12.4.7 What You May Need to Know About Oracle Business Rules Dictionary
Editor Task Flow 12-24

12.5 Editing Rules in an Oracle Business Rules Dictionary 12-25

12.5.1 Using the Rulesets Tab 12-25

12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary 12-26

12.5.3 How to Add a Rule 12-26

12.5.4 How to Delete a Rule 12-27

12.5.5 How to Show and Edit Advanced Settings for Rules 12-27

12.5.6 How to Add Rule Conditions 12-27

12.5.7 How to Delete Rule Conditions 12-28

12.5.8 How to Modify Rule Conditions 12-29

12.5.9 How to Add Rule Actions 12-29

12.5.10 How to Delete Rule Actions 12-30

12.5.11 How to Modify Rule Actions 12-30

12.5.12 How to Work with Advanced Mode Rules 12-31

xiv

12.5.12.1 Working with Advanced Mode Options 12-31

12.5.13 How to Work with Extended Tests 12-33

12.5.14 How to Work with Tree Mode Rules 12-37

12.5.15 What You May Need to Know About Oracle Business Rules Editor
Declarative Component 12-38

12.5.16 What You May Need to Know About Oracle Business Rules
Dictionary Editor Declarative Component 12-38

12.5.17 What You May Need to Know About Oracle Business Rules
Dictionary Editor Task Flow 12-38

12.6 Using the Oracle SOA Composer Browser Windows 12-39

12.6.1 Expression Builder 12-39

12.6.2 Condition Browser 12-40

12.6.3 Date Browser 12-41

12.6.4 Right Operand Browser 12-41

12.7 Editing Decision Tables in an Oracle Business Rules Dictionary 12-42

12.7.1 Adding a Decision Table 12-42

12.7.2 Adding Condition Rows to a Decision Table 12-43

12.7.3 Adding Actions to a Decision Table 12-45

12.7.4 Adding Rules to a Decision Table 12-45

12.7.4.1 Editing Decision Table Cells 12-46

12.7.4.2 Controlling the Order of Rules in a Decision Table 12-48

12.7.5 Deleting Rules in a Decision Table 12-48

12.7.6 Defining Tests in a Decision Table 12-48

12.7.7 Splitting and Compacting a Decision Table 12-49

12.7.8 Checking for Missing Rules in a Decision Table 12-50

12.7.9 Performing Conflict Resolution in Decision Tables 12-50

12.7.10 Switching From Rows to Columns 12-51

12.7.11 Working with Advanced Mode Options in a Decision Table 12-52

12.7.12 Deleting a Decision Table 12-53

12.7.13 Editing Decision Tables in Microsoft Excel 12-53

12.7.13.1 Understanding What is Exported 12-55

12.7.13.2 How to Export Decision Tables 12-56

12.7.13.3 How to Import Decision Tables to the Dictionary 12-56

12.7.13.4 How to Edit Decision Tables in Excel 12-57

12.7.14 What You Need to Know About Rule Test Variables 12-57

12.8 Comparing and Merging Oracle Business Rules Dictionaries 12-58

12.8.1 How to see Differences Between Dictionaries 12-59

12.9 Localizing Names of Resources in Oracle Business Rules 12-60

12.9.1 How to Localize the Alias of a Oracle Business Rules Component 12-61

12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime
Dictionary Updates 12-61

12.11 Validating and Diagnosing an Oracle Business Rules Dictionary 12-63

xv

12.11.1 Understanding the Validation Log Tab 12-63

12.11.2 Understanding the Diagnostics Tab 12-63

12.11.3 Understanding the History Center Tab 12-64

12.11.4 Understanding the Save Log Tab 12-64

12.12 Working with Tasks 12-64

12.12.1 How to View Task Metadata 12-64

12.12.2 How to Configure a Task or an AMX Rule Metadata 12-65

12.12.2.1 Configuring Event-Driven Settings 12-66

12.12.2.2 Configuring Data-Driven Settings (Rule or Condition) 12-69

Part I Appendices

A Oracle Business Rules Files and Limitations

A.1 Rules Designer Naming Conventions A-1

A.1.1 Ruleset Naming A-1

A.1.2 Dictionary Naming A-1

A.1.3 Alias Naming A-1

A.1.4 XML Schema Target Package Naming A-1

B Oracle Business Rules Built-in Classes and Functions

B.1 String Classes B-1

B.2 List Classes B-7

B.3 Numeric Classes B-11

B.4 Time and Duration Classes B-21

B.5 Miscellaneous Classes B-44

B.6 Functions B-45

C Oracle Business Rules Frequently Asked Questions

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action? C-1

C.2 What are the Differences Between Oracle Business Rules RL Language
and Java? C-2

C.3 How Does a RuleSession Handle Concurrency and Synchronization? C-2

C.3.1 Sample RuleSession Shared Objects C-3

C.3.2 Sample RuleSession Producer Code C-3

C.3.3 Sample RuleSession Consumer Code C-3

C.4 How Do I Correctly Express a Self-Join? C-4

C.4.1 Sample Find All Combinations of Fact F C-4

xvi

C.4.2 Sample Finding Combinations of Fact F C-5

C.4.3 Sample Fast Complete Comparison C-5

C.5 How Do I Use a Property Change Listener in Oracle Business Rules? C-5

C.6 What Are the Limitations on a Decision Service with Oracle Business
Rules? C-7

C.7 How Do I Put Java Code in a Rule? C-7

C.8 Can I Use Java Based Facts in a Decision Service with BPEL? C-7

C.9 How Do I Enable Debugging in a BPEL Decision Service? C-8

C.10 How Do I Support Versioning with Oracle Business Rules? C-8

C.11 What is the Priority Order Using Priorities with Rules and Decision
Tables? C-8

C.12 Why do XML Schema with xsd:string Typed Elements Import as Type
JAXBElement? C-9

C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
C-10

C.14 How Do I Use Rules SDK to Include a null in an Expression? C-10

C.15 Is WebDAV Supported as a Repository to Store a Dictionary? C-10

C.16 Using a Source Code Control System with Rules Designer C-10

D Oracle Business Rules Troubleshooting

D.1 Getter and Setter Methods are not Visible D-1

D.2 Java Class with Only a Property Setter D-1

D.3 Runtime NoClassDefFound Error D-2

D.4 RL Specific Keyword Naming Conflict Errors D-2

D.5 java.lang.IllegalAccessError from Business Rules Service Runtime D-2

D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException D-4

D.7 Why Does XML Schema with Underscores Fail JAXB Compilation? D-4

D.8 How Are Decision Service Input Output Element Types Restricted? D-4

D.9 How Are Decision Service Input Output Schema Restricted? D-4

D.10 How Do I Handle Java Reserved Names in an Imported Fact Type? D-5

E Working with Oracle Business Rules and JSR-94 Execution Sets

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets E-1

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets E-1

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL
Language Text E-2

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a
URL E-3

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources E-4

E.3 Using the JSR-94 Interface with Oracle Business Rules E-5

xvii

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet E-5

E.3.2 Creating a Rule Session with createRuleSession E-6

E.3.3 Working with JSR-94 Metadata E-6

E.3.4 Using Oracle Business Rules JSR-94 Extensions E-6

xviii

Preface

Designing Business Rules with Oracle Business Process Management describes how
to use and develop applications involving facts, rules, and decision tables for Oracle
Business Rules by using design-time tools, such as Oracle JDeveloper with Oracle
SOA extension, and a runtime application such as Oracle SOA Composer.

Audience
This guide is intended for application programmers, system administrators, and other
users who perform the following tasks:

• Create Oracle Business Rules programs

• Modify or customize existing Oracle Business Rules programs

• Create Java applications using rules programs

• Add rules programs to existing Java applications

The information in this guide assumes that you have a working knowledge of Java
programming language fundamentals.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle Business Process Management information, see Oracle Business
Process Management.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For versions of platforms and related software for which Oracle products are
certified and supported, review the Certification Matrix on OTN.

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xx

1
Overview of Oracle Business Rules

Learn the concepts of business rules and get an overview of the Oracle Business
Rules runtime and design-time elements such as facts, valuesets, rulesets, decision
tables, Oracle BP Composer and Oracle SOA Composer and also check the Oracle
Business Rules engine architecture.

• Introduction to Oracle Business Rules

• Understanding Oracle Business Rules Formats

• Oracle Business Rules Runtime and Design Time Elements

• Oracle Business Rules Engine Architecture

1.1 Introduction to Oracle Business Rules
Oracle Business Rules makes processes and applications more flexible by enabling
business analysts and non-developers to easily define and modify business logic
without programming. By leveraging the unified JDeveloper design platform, and
maintaining business rules outside of the related process or application, Oracle
Business Rules provides faster, easier rule modifications and reduces subsequent
redeployment costs.

Figure 1-1 Oracle Business Rules

Using Oracle Business Rules you can automate policies, computations, and reasoning
while separating rule logic from underlying application code. This allows more agile
rule maintenance and empowers business analysts to modify rule logic without
programmer assistance and without interrupting business processes.

As a business analyst, a user can model a rule in Process Composer and further
refine and complete the process in Process Studio.

1-1

An IT developer uses the BPM Studio and talk to its business catalogue with well
known data types, services, and human tasks implementation. The developer, then,
creates a project and publishes it into the business catalogue. Then a business analyst
or a business user can go in Process Composer and check out the projects in
business catalogue and make changes to the existing process models.

While some users want to model simple calculations with a handful of rules, others use
rules for complex decision making and hence a need to have a methodology to
approach the decision modeling problem.

Figure 1-2 Oracle Business Rules Components

The Oracle Business Rules includes the rule editor, rule browser, rules engine and
rule repository for rule discovery, governance, versioning, traceability and availability
across the enterprise. Business rules are defined using the Business Rules editor and
stored and managed in a central Business Rules repository. You can reference pre-
defined business process rules within the modeler. The Business Rules activity in the
business process model gets converted to a decision service that in turn invokes the
business rules engine in the executable business process. Business users can change
these business policies on the fly via an intuitive web browser interface without having
to redeploy or re-implement the business process.

1.1.1 Why Use Oracle Business Rules?
Oracle Business Rules is a high performance lightweight business rules product that
addresses the requirements for agility, business control, and transparency.

Business rules are statements that describe business policies or describe key
business decisions. For example, business rules can include:

• Business policies such as spending policies and approval matrices.

A financial institution could use a business rule such as:

Chapter 1
Introduction to Oracle Business Rules

1-2

• Constraints such as valid configurations or regulatory requirements.

For example, a car rental company might use the following business rule:

• Computations such as discounts or premiums.

• Reasoning capabilities such as offers based on customer value.

An airline might use a business rule such as the following:

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally,
business rules such as the Driver Age Rule are buried in application code and might
appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
 boolean declineRent = false;
 int age = driver.getAge();
 if(age < 21) {
 declineRent = true;
 }
 return declineRent;
}

This code may be difficult for nontechnical users to understand and modify. For
example, suppose that the rental company changes its policy so that all drivers under
18 are declined using the Driver Age Rule. In many production environments the
developer must modify the application, recompile, and then redeploy the application.
This process is simplified because a business analyst can change policies that are
expressed as business rules, with little or no assistance from a programmer.
Applications using Oracle Business Rules support continuous change that allows the
applications to adapt to new government regulations, improvements in internal
company processes, or changes in relationships between customers and suppliers.

Chapter 1
Introduction to Oracle Business Rules

1-3

1.1.2 Understanding Oracle Business Rules Terminology
A business rule must contain:

• Rulesets: A set of conditions or actions that determines the outcome of the rule.

• Facts: Data objects used by the ruleset.

• Decision functions: Reference to the code that executes the rule.

Additionally, a business rule may contain:

• Functions: Functions that may be called in the ruleset. An example of this type of
function is one that initializes a data object.

• Globals: Data objects that are used in the ruleset. May be constants.

• Valuesets: Lists or ranges of values used by the condition.

• Links: Links to other business rules dict.

The following sections provide additional details about these components.

1.1.2.1 What Are Facts and Valuesets?
In Oracle Business Rules, rules are written in terms of fact types. Each fact is an
instance of a fact type. You must import or create one or more fact types before you
can create rules, unless you use Verbal Rules, where you have the option of deferring
fact type modeling until the executable rule is defined.

In Oracle Business Rules, a FactType is a type definition in the data model and a fact
is an instance of that type. For example, rules are written in terms of fact types. The
Oracle Business Rules runtime, or a developer writing in the RL Language, uses the
RL Language assert function to add an instance of a fact to the Oracle Business
Rules. In Rules Designer you can define a variety of fact types based on XML
Schema, Java classes, Oracle RL definitions, and ADF Business Components view
objects.

You can create valuesets to define a list of values or a range of values of a specified
type. After you create a valueset you can associate the valueset with a fact property of
matching type. Oracle Business Rules uses the valuesets that you define to specify
constraints on the values associated with fact properties in rules or in Decision Tables.
You can also use valuesets to specify constraints for variable initial values and
function return values or function argument values.

For more information, see:

• Working with Facts and Value Sets

• Oracle Business Rules Engine Architecture

1.1.2.2 What Are Rulesets?
A ruleset is an Oracle Business Rules container for IF-THEN rules and Decision
Tables. A ruleset provides a namespace, similar to a Java package, for rules and
Decision Tables. In addition you can use rulesets to partially order rule firing.

For more information, see:

• Working with Rulesets and Rules

Chapter 1
Introduction to Oracle Business Rules

1-4

• Ordering Rule Firing in the Rules Language Reference for Oracle Business
Process Management

1.1.2.3 What Are Dictionaries?
A dictionary is an Oracle Business Rules container for facts, business phrases,
functions, globals, valuesets, links, decision functions, and rulesets. A dictionary is an
XML file that stores the application's rulesets and the data model. Dictionaries can link
to other dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary
in a .rules file. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. For more information, see Introduction to Dictionaries
and Dictionary Links.

1.1.2.4 What Are Globals?
Globals are any variables or constants that may be accessed anywhere in the
business rule. When you create globals you ensure that a business user can alter the
rule behavior without touching the rule logic.

1.1.2.5 What Are Decision Functions?
A decision function provides a contract for invoking rules from Java or SOA (from a
SOA/BPM composite application or from components within the composite
application). The contract includes input fact types, rulesets to run, and output fact
types. For more information, see Working with Decision Tables.

1.1.2.6 What Are Decision Points?
Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications
that access, create, modify, and execute rules in Oracle Business Rules dictionaries
(and all the contents of a dictionary). The Rules SDK provides the Decision Point API
to access and run rules or Decision Tables from a Java application. For more
information, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

1.1.2.7 What Are Business Phrases?
Business phrases are vocabulary elements that are used to construct tests and
actions for verbal rules. As you write a verbal rule, a set of business phrases, derived
automatically from terms, facts, globals and other dictionary elements, is made
available for inclusion in tests and actions. You can define your own business phrases.

Business phrases are not used in general rules.

1.2 Understanding Oracle Business Rules Formats
Oracle Business Rules provides multiple approaches to writing rules. Rules can be
modeled in different ways - as IF/THEN rules, and as Decision Tables.

There are two approaches to writing IF/THEN rules (or just rules) - as general rules,
and as verbal rules.

• General rules use a pseudo-code language to express rule logic

• Verbal rules use natural language statements to express rule logic

Chapter 1
Understanding Oracle Business Rules Formats

1-5

• Decision Tables are multiple related rules expressed in a spreadsheet-like format.

You write rules and Decision Tables in terms of fact types and properties. See
Decision Tables. Fact types are often imported from the Java classes, XML schema,
Oracle ADF Business Components view objects, or may be created in Rules Designer.
Fact properties have a name, value, data type, and an optional valueset. A valueset
splits the value space of the data type into values or ranges that can be used in
Decision Tables, choice lists, and for design time validation (see What Are Facts and
Valuesets?).

You can write verbal rule tests and actions using derived business phrases as well as
user-defined business phrases. Derived business phrases are automatically created
using facts, globals and other information in the dictionary while user-defined phrases
can be explicitly authored to augment derived phrases. Further, user-defined phrases
can either be pre-created or created as needed while composing the verbal rule.

Rules and Decision Tables are grouped in an Oracle Business Rules object called a
ruleset (see What Are Rulesets?).

You group one or more rulesets and their facts and valuesets in an Oracle Business
Rules object called a dictionary (see What Are Dictionaries?).

For more information, see Oracle Business Rules Runtime and Design Time
Elements.

1.2.1 Rules
Rules are used to evaluate conditions and specify actions when the conditions are met
(evaluate to true).

You can model rules using two different paradigms:

• General rules - use a pseudo-code language to express rule logic.

• Verbal rules - use natural language statements to express rule logic in domain
specific sentences that are akin to spoken language. See How are Verbal Rules
Different from General Rules?

Rules follow an if-then structure and consist of the following parts:

• IF part: a condition or pattern match (see What Are Rule Conditions?).

• THEN part: a list of actions (see What Are Rule Actions?).

1.2.1.1 What Are Rule Conditions?
The rule IF part is composed of conditional expressions that refer to fact types.

For example, for a general rule:

IF Rental_application.driver age < 21

The general rule conditional expression compares a business term
(Rental_application.driver age) to the number 21 using a < (less than+_
comparison.

And for a verbal rule:

IF rental car driver is an underage driver

Chapter 1
Understanding Oracle Business Rules Formats

1-6

The verbal rule condition is a business phrase that can specify one or more logical
tests. (See What Are Business Phrases?).

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query the
rule is activated.

For more information, see:

• Working with Facts and Value Sets

• Working with Rulesets and Rules

• Rule Conditions in Rules Language Reference for Oracle Business Process
Management

1.2.1.2 What Are Rule Actions?
The rule THEN part contains the actions that are executed when the rule is fired. A
rule is fired after it is activated and selected among the other rule activations using
conflict resolution mechanisms such as priority.

A rule might perform several kinds of actions. An action can add facts, modify facts, or
remove facts. An action can execute a Java method or perform a function which may
modify the status of facts or create facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus can affect which rule fires next.

For more information, see:

• Rule Firing and Rule Sessions

• Working with Rulesets and Rules

• Ordering Rule Firing in Rules Language Reference for Oracle Business Process
Management

1.2.1.3 How are Verbal Rules Different from General Rules?
Verbal rules allow you to use pseudo-natural language statements to express rule
logic. They provide a way to write rules using domain specific sentences that are
similar to spoken language.

Verbal rules work closely with business phrases, which provide the vocabulary for you
to compose natural language tests and actions. See What Are Business Phrases?.

For example, a general rule test as shown in the example below:

IF
all of the following are true
policy is a policy
policyScore.type == Score Type.Policy
policyScore.id == policy.id
car is a Car
carScore is a Score Tracker
carScore.type == Score Type.Car
carScore.id == car.id
customer is a Customer
customerScore is a Score Tracker

Chapter 1
Understanding Oracle Business Rules Formats

1-7

customerScore.type == Score Type.Customer
customerScore.id == customer.id
score of a car == carScore.score
score of customer == customerScore.score
score of policy = policyScore.score

THEN
assign new BigDecimal var = newBigDecimal((1+((2-((customerScore + carScore +
policyScore)/150))/100))*(Lower Threshold))
assign new double premium = var.setScale(1,BigDecimal.ROUND_HALF_UP).doubleValue()

The verbal rule expression of this same test might be:

IF
ready to calculate premium
THEN
calculate premium base on score of customer, score of policy and score of car

Business phrases such as 'ready to calculate premium', 'score' and so on would detail
the logic for the conditions.

You can write verbal rules in a way that suits your style, 'top down' or 'bottom up'.

For example, you can write a verbal rule using business phrases that are not yet
defined. Once you have the a verbal rule that expresses the logic for your tests and
actions, you can then define the specifics of the business phrases.

You can also compose verbal rules using system provided derived business phrases.
These are business phrases that are automatically created based on the existing
terms, facts, globals and other dictionary elements.

Alternatively, you can write verbal rules using a bottom up style, by defining all the
business phrases you'll need first, and then using them in the tests and actions of your
verbal rules.

For more information, see Working with Rulesets and Rules

1.2.2 Decision Tables
A Decision Table is an alternative business rule format that is more compact and
intuitive when many rules are needed to analyze many combinations of property
values. You can use a Decision Table to create a set of rules that covers all
combinations or where no two combinations conflict.

Although a decision table is functionally equivalent to if-then rules, you will find
decision tables are ideal for specific circumstances:

• Complexity

Decision tables simplify complex rules. When there are multiple rules, each of
which have multiple conditions and actions, a decision table is much easier to
work with.

• Conflict resolution

A decision table will indicate if any of the conditions are in conflict.

• Gap analysis

You can analyze a decision table to determine if some conditions are not being
accommodated.

Chapter 1
Understanding Oracle Business Rules Formats

1-8

For more information, see Working with Decision Tables.

1.3 Oracle Business Rules Runtime and Design Time
Elements

Oracle Business Rules provides support for using business rules as a Decision
Component or as a library in a Java application. A Decision Component is a
mechanism for publishing rules and rulesets as a reusable service that can be invoked
from multiple business processes.

To create and use rules in the Oracle SOA Suite or Oracle BPM Suite, or to create
rules and integrate these rules into your applications, Oracle Business Rules provides
the following runtime and design time elements:

• Decision Component (Business Rules) in a SOA Composite Application

• Using Rules Engine with Oracle Business Rules in a Java EE Application

• Oracle Business Rules RL Language

• Oracle Business Rules SDK

• Rules Designer

• Oracle SOA Composer Application

• Using BP Composer

1.3.1 Decision Component (Business Rules) in a SOA Composite
Application

Oracle SOA Suite provides support for Decision Components that support Oracle
Business Rules. A Decision Component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is an SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in a SOA composite
application using the SOA Business Rule service engine that efficiently applies rules to
facts and defines and processes rules.

For more information, see Oracle Business Rules Engine Architecture.

1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE
Application

The Rules Engine is available as a library for use in a Java EE application (non-SOA).
Rules Engine efficiently applies rules to facts and defines and processes rules. Rules
Engine defines a Java-like production rule language called Oracle Business Rules RL
Language (RL Language), provides a language processing engine (inference engine),
and provides tools to support debugging.

Chapter 1
Oracle Business Rules Runtime and Design Time Elements

1-9

Using Rules Designer you can specify business rules separately from application code
which allows you to change business policies quickly with graphical tools. The Rules
Engine evaluates the business rules and returns decisions or facts that are then used
in the business process.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form
of Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Oracle Business Rules Engine Architecture and Oracle
Business Rules SDK.

1.3.3 Oracle Business Rules RL Language
Oracle Business Rules supports a high-level Java-like language called Oracle
Business Rules RL Language (RL Language). RL Language defines the valid syntax
for Oracle Business Rules programs. RL Language includes an intuitive Java-like
syntax for defining rules that supports the power of Java semantics, providing an easy-
to-use syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules
can reference object properties and invoke methods. Likewise, application programs
can use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language
both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the
business analyst does not need to directly view or write RL Language programs. For
more information, see Rules Designer.

1.3.4 Oracle Business Rules SDK
Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write a rule-enabled program that
accesses a dictionary, or to write customized rules programs that add rules or modify
existing rules. Rules Designer uses Rules SDK to create, modify, and access rules
and the data model using well-defined interfaces. Customer applications can use
Rules SDK to access, display, create, and modify collections of rules and the data
model.

You can use the Rules SDK APIs in a rule-enabled application to access rules or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a
Decision Point you can access a dictionary and run the rules in the dictionary.

For more information, see Working with Rules in Standalone (Non SOA/BPM)
Scenarios.

Chapter 1
Oracle Business Rules Runtime and Design Time Elements

1-10

1.3.5 Rules Designer
The Oracle Business Rules Designer (Rules Designer) extension to Oracle
JDeveloper is an editor that enables you to create and edit rules.

Rules Designer provides a point-and-click interface for creating and editing General
Rules and Decision Tables. Because you can work directly with business rules and a
data model, you do not need to understand the RL Language to work with Rules
Designer.

Rules Designer also provides Verbal Rules, with guided authoring (auto-suggest and
filtering), and a keyboard based interface. For more information on using guided
authoring and keyboard based interface, see How to Add Verbal Rules in SOA
Composer.

Rules Designer supports several types of users, including the application developer
and the business analyst. The application developer uses Rules Designer to define a
data model and an initial set of rules. The business analyst uses Rules Designer either
to work with the initial set of rules or to modify and customize the initial set of rules
according to business needs. Using Rules Designer, a business analyst can create
and customize rules with little or no assistance from a programmer.

Alternatively, in top-down modeling, a Business Analyst can descriptively define the
rules which can be implemented by the developer later. These different modeling
approaches require collaboration between the developer and the analyst.

In most cases, Rule modeling is done iteratively, with both of them contributing to the
creation of a Domain Specific Language that can be used to define rules using less
technical and more natural-language like sentences.

For more information about verbal rules, see Working with Rulesets and Rules.

1.3.6 Oracle SOA Composer Application
When a dictionary is deployed in a SOA composite application, Oracle Business Rules
lets you view the dictionary or edit and save changes to the dictionary. You can use
the SOA Composer application (SOA Composer) to work with a deployed dictionary
that is part of a SOA composite application.

For more information, see Using Oracle SOA Composer with Oracle Business Rules at
Runtime.

1.3.7 Oracle Business Process Composer Application
The Business Process Composer rules editor enables you to view and edit a rules
dictionary. Rules dictionaries are displayed in a tabbed window similar to the process
editor and data association editor.

For more information on using Rules in BP Composer, see Working with Oracle
Business Process Composer Rules Editor in Oracle Fusion Middleware Developing
Business Processes with Oracle Business Process Composer.

Chapter 1
Oracle Business Rules Runtime and Design Time Elements

1-11

1.4 Oracle Business Rules Engine Architecture
A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules.

A rule-based system consists of the following:

• The rule-base: Contains the appropriate business policies or other knowledge
encoded into IF/THEN rules, verbal rules and Decision Tables.

• Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert
calls.

• Inference Engine: The Rules Engine, which processes the rules, performs pattern-
matching to determine which rules match the facts, for a given run through the set
of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire so when a rule fires that matches a
set of facts, the rule may add facts and these facts are again run against the rules.
This process repeats until a conclusion is reached or the cycle is stopped or reset.
Thus, in a forward-chaining rule-based system, facts cause rules to fire and firing rules
can create more facts, which in turn can fire more rules. This process is called an
inference cycle.

A Non-Rete Algorithm is also available for use. For more information about both, see
The Rete Algorithm and The Non-Rete Algorithm.

1.4.1 Declarative Rules
With Oracle Business Rules you can use declarative rules, where you create rules that
make declarations based on facts rather than coding. Here is an example of
declarative rules:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

• Statements are declared without any control flow.

• Control flow is determined by the Rules Engine.

• Rules are easier to maintain than procedural code.

• Rules relate well to business user work methods.

When a rule adds facts and these facts run against the rules, this process is called an
inference cycle. An inference cycle uses the initial facts to cause rules to fire and
firing rules can create more facts, which in turn can fire more rules. For example, using
the initial facts, Rules Engine runs and adds an additional fact, and an additional rule
tests for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and
modular declarative assertions.

Chapter 1
Oracle Business Rules Engine Architecture

1-12

1.4.2 The Rete Algorithm
The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business
Rules uses the Rete algorithm to optimize the pattern matching process for rules and
facts. The Rete algorithm stores partially matched results in a single network of nodes
in working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm
creates and uses an input node for each fact definition and an output node for each
rule.

Fact references flow from input to output nodes. In between input and output nodes
are test nodes and join nodes. A test occurs when a rule condition has a Boolean
expression. A join occurs when a rule condition ANDs two facts. A rule is activated
when its output node contains fact references. Fact references are cached throughout
the network to speed up recomputing activated rules. When a fact is added, removed,
or changed, the Rete network updates the caches and the rule activations; this
requires only an incremental amount of work.

The Rete algorithm provides the following benefits:

• Independence from rule order: Rules can be added and removed without affecting
other rules.

• Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

• High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1.4.3 The Non-Rete Algorithm
The Non-Rete algorithm (NRE) is an alternative to the Rete algorithm that consumes
less memory than the Rete algorithm. For many business rules use cases it will also
result in improved performance. The core of NRE algorithm is a new rule condition
evaluation approach. Key points about the new algorithm:

• Simpler internal rule representation.

• Byte code generated for rule tests, rule actions, and user defined functions.

• More efficient modify operation.

• Rule conditions not evaluated until the containing ruleset is on the top of the stack.
After initial evaluation, re-evaluation occurs on fact operations as needed.

• Ability to avoid unnecessary re-evaluation when rulesets are only present on the
ruleset stack once during rule execution.

• Preserves rule execution semantics.

The two main differences between the two algorithms are:

• Rule condition evaluation:

– In the Rete algorithm, rule conditions are evaluated when fact operations
occur (assert, modify, retract).

Chapter 1
Oracle Business Rules Engine Architecture

1-13

– In the Non-Rete algorithm, rule conditions are evaluated for the first time when
the ruleset is on the top of the stack, then on fact operations after that.

• Rule firing order. There are cases where the rule firing order is not defined, for
example when a single fact activates multiple rules at the same time and the
priorities are identical. In these cases, the order in which the rule activations fire
may be different.

Note:

It is possible that an existing set of rules has an implicit dependency on
the order in which the rules fire with the Rete algorithm even though that
order may not be defined. The order may be different with the Non-Rete
algorithm which may expose a latent bug in the rules as authored.

1.4.3.1 Configuring the Non-Rete Algorithm
In Rule Designer, the algorithm can be selected in the Dictionary Settings panel in the
preferences tab. Algorithm selection is automatically handled for SOA and BPM
composite applications. For JEE applications or other non-SOA/BPM applications, the
algorithm selection will need to be specified when the RuleSession or
RuleSessionPool is created.

For more information about RuleSessions, see Using a RuleSession in Rules
Language Reference for Oracle Business Process Management.

It is common that multiple rulesets are executed during a rule execution. It is also
common that each ruleset is pushed onto the ruleset stack once and once rules in that
ruleset have completed firing, it is not pushed onto the stack again during that rule
execution. With the Non-Rete algorithm additional performance gain can be realized
for these cases by specifying that the rulesets will only appear on the stack once.
When the Non-Rete algorithm is selected, click the Rulesets Are On Stack Once
check box in a decision function definition to enable this feature.

For information about when to use the Rete or Non-Rete algorithms, see Rules Engine
Algorithm in Rules Language Reference for Oracle Business Process Management.

1.4.4 What Is Working Memory?
Oracle Business Rules uses working memory to contain facts. Facts do not exist
outside of working memory. A RuleSession contains the Oracle Business Rules
working memory.

1.4.5 Rule Firing and Rule Sessions
A Rule Session consists of rules, facts and an agenda. An assert or retract adds or
removes fact instances from working memory.

When facts in working memory are changed:

• Conditions for rules are evaluated

• Matching rules are added to the agenda (Activated)

• Rules which no longer match are removed from agenda

Chapter 1
Oracle Business Rules Engine Architecture

1-14

• Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.

Figure 1-3 Rules in Rule Session with Working Memory and Facts

A rule action may assert, modify, or retract facts and cause activations to be added or
removed from the agenda. There is a possible loop if a rule's action causes it to fire
again. Rules are fired sequentially, but in no pre-defined order. The rule session
includes a ruleset stack. Activated rules are fired as follows:

• Rules within top-of-the-stack ruleset are fired

• Within a ruleset, firing is ordered by user-defined priority

• Within the same priority, the default is that the most recently activated rule is fired
first. For more information, see the setStrategy function in the Rules Language
Reference for Oracle Business Process Management.

For the Rete algorithm, only rules within rulesets on the stack are fired, but all rules in
a rule session are matched and, if matched, activated. For the non-Rete algorithm, this
is true for rules in the ruleset on the top of the stack. It is also true for rules in rulesets
that have been popped from the ruleset stack unless "Rulesets Are On Stack Once"
has been checked.

Chapter 1
Oracle Business Rules Engine Architecture

1-15

2
Working with Data Model Elements

Oracle Business Rules data model elements comprise of fact types, functions, globals,
value sets, decision functions, and dictionary links.

• Introduction to Working with Data Model Elements

• Introduction to Dictionaries and Dictionary Links

• Working with Oracle Business Rules Globals

• Working with Decision Functions

• Introduction to Oracle Business Rules Functions

• Localizing Oracle Business Rule Resources

2.1 Introduction to Working with Data Model Elements
To implement the data model portion of an Oracle Business Rules application you
create a dictionary and add data model elements. To complete the dictionary, you
create one or more rulesets containing rules that use or depend upon these data
model elements.

For more information, see:

• Working with Facts and Value Sets

• Working with Rulesets and Rules

• Working with Decision Tables

2.2 Introduction to Dictionaries and Dictionary Links
A dictionary is an Oracle Business Rules container for facts, functions, globals,
valuesets, links, decision functions, and rulesets. A dictionary is an XML file that stores
the rulesets and the data model for an application. Dictionaries can link to other
dictionaries.

You can create as many dictionaries as you need. A dictionary may contain any
number of rulesets and data model elements. A data model can be contained in one or
more dictionaries. All the data model elements referenced by the rulesets must be
available in the dictionary either directly or through links.

A dictionary is stored in a *.rules file.

2.2.1 Working with Dictionaries and Dictionary Links
When you create a dictionary, you give it a name and a package, similar to a Java
class. You can create data model elements and rulesets inside this dictionary, and you
can also reference the data models and rulesets of other dictionaries by creating a
dictionary link and specifying the name and package of the target dictionary. Each
dictionary logically contains the built-in dictionary. This dictionary includes standard

2-1

functions and types that all Oracle Business Rules applications need. You cannot
modify the built-in dictionary.

In addition to the main dictionary, you can create one or more application-specific
dictionaries, such as PurchaseItems.rules. You can modify the properties of these
dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a
combined data model. You can create multiple links to the same dictionary; in this
case, all but the first link is ignored.

For more information, see What You Need to Know About Dictionary Linking.

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules
Designer

Oracle JDeveloper provides multiple ways to create dictionaries for Oracle Business
Rules. You can create a dictionaries for use in a SOA applications. This section
illustrates one way to create a dictionary in a SOA project.

A typical SOA composite design pattern provides each application with its own
dictionaries. Each application is self-contained and can be deployed independently of
other applications.

Sometimes multiple applications will require access to common parts of a common
data model. In this case, use dictionary links to include a target application's dictionary
in the source application. The source application copies the target application's
dictionary and retains the contents of the copies linked to the source. When you use
the linked elements, they are shown as local contents.

You can also create a dictionary in the business tier for use outside of a SOA
application. For more information, see How to Create an Oracle Business Rules
Dictionary in the Grades Project.

To create a dictionary in the SOA Tier using Rules Designer:

1. In the Application Navigator, select a SOA application and select or create a SOA
project.

2. Click the down arrow, and select New, From Gallery from the list.

3. In the New Gallery dialog, expand SOA Tier as shown in Figure 2-1.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-2

Figure 2-1 Creating a Business Rules Dictionary for a SOA Project

4. In the New Gallery window, select Business Rules.

5. Click OK. This displays the Create Business Rules dialog.

6. In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

• In the Name field, enter the name of your dictionary. For example, enter
PurchaseItems.

• In the Package field, enter the Java package to which your dictionary belongs.
For example, com.example.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-3

Figure 2-2 Create Business Rules Dialog

7. To specify the inputs and outputs:

a. Click the Add button and select Input to create an input or Output, to create
an output.

b. In the Type Chooser dialog, expand the appropriate XSD and select the
appropriate type.

c. Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more
information, see Working with Decision Functions.

8. In the Create Business Rules dialog, click OK to create the Decision Component
and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a .rules extension, and
starts Rules Designer as shown in Figure 2-3. Note the screen shot shows some
BPM functionality that you may not have access to in SOA if you do not have BPM
installed.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-4

Figure 2-3 Creating a New Oracle Business Rules Dictionary

9. Oracle JDeveloper also creates a Decision Component in composite.xml. To view
this component double-click the composite.xml file.

2.2.3 How to Create a Dictionary in the Business Tier Using Rules
Designer

Use Rules Designer to create a rules dictionary for use in the business tier, outside of
a SOA application. For information on using Oracle Business Rules without SOA, see
Creating a Rule-enabled Non-SOA Java EE Application.

2.2.4 How to View and Edit Dictionary Settings
You can view and edit dictionary settings using the Settings tab. The Settings tab has
three tabs: General, Preferences, and Data Model. Use the Preferences tab to
select the execution algorithm and specify phrase suggestions that appear when you
are using Verbal Rules. Use the Data Model tab to specify the global qualifier pattern,
also for Verbal Rules. The pattern must contain two fragments: {member}, {fact}. For
example, {member} of {fact}.

2.2.4.1 How to Change the Dictionary Alias

To change the Dictionary alias:

1. In Oracle JDeveloper, open an Oracle Business Rules dictionary.

2. In Rules Designer, click the Settings tab.

3. In the Dictionary Settings dialog, in the Alias field, change the alias to the name
you want to use. This field is shown in Figure 2-4.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-5

Figure 2-4 Dictionary Settings, General Tab

2.2.4.2 How to Edit the Preferences tab

To edit the Preferences tab:

1. On the Settings tab, click the Preferences tab, shown in Figure 2-5.

2. In the Rule Execution Algorithm field, choose RETE or Non-RETE.

For more information about the RETE or Non-RETE algorithm, see Configuring the
Non-Rete Algorithm.

3. In the Phrase Suggestions field, choose All, Auto Suggestions, or Business
Phrases. Phrase suggestions are for verbal rules. You can choose to see auto
suggestions only, business phrases only, or both.

For more information about business phrases, see Introduction to Verbal Rules
and Business Phrases.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-6

Figure 2-5 Dictionary Settings, Preferences Tab

2.2.4.3 How to Edit the Data Model tab

To edit the Data Model tab:

1. In the Global Qualifier Pattern field, shown in Figure 2-6, click the Bundle Editor
button to update the resource bundles for this translatable value.

You can specify the global qualifier pattern here. This is used in verbal rules. The
pattern must contain two fragments: {member} and {fact}. The fragments
{member} as well as {fact} are mandatory.

2. Click Close when done.

Figure 2-6 Dictionary Settings, Data Model Tab

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-7

2.2.5 How to Link to a Dictionary
You can link to a dictionary in the same application using the Links navigation tab in
Rules Designer. To link to another dictionary you need at least one other dictionary
available.

To link to a dictionary using resource picker:

1. In Rules Designer, click the Links navigation tab as shown in Figure 2-7.

Figure 2-7 Rules Designer Links Tab

2. In the Links area, click the Create button and from the list select Browse
Existing Dictionaries. This displays the SOA Resource Browser dialog.

3. In the SOA Resource Browser dialog navigate to select the dictionary you want to
link to as shown in Figure 2-8.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-8

Figure 2-8 Resource Picker

4. Click OK.

When you work with ADF Business Components Facts you should create a link to the
Decision Point Dictionary. For more information, see Working with Oracle Business
Rules and ADF Business Components.

In order to link the decision point dictionary, click the Links navigation tab in Rules
Designer. In the Links area, click Create and from the list select Decision Point
Dictionary. This operation takes awhile. You need to wait for the Decision Point
Dictionary to load.

2.2.6 How to Update a Linked Dictionary
When you have a dictionary, for example, Project_rules1 that links to another
dictionary, for example, Shared_rules you need to see changes made to either
dictionaries in both. For example, you can modify the Shared_rules dictionary and see
those modifications in Project_rules1 by updating the Project_rules1 dictionary, or by
closing and reopening the Rules Designer. Note that you can only see the changes in
the linked dictionary from the dictionary which defines the link and not vice versa.

To update a linked dictionary:

1. Using these sample dictionary names click the Save button to save the
Shared_rules dictionary.

2. Select the Project_rules1 dictionary.

3. Select the Links navigation tab.

4. Click the Dictionary Cache... button.

5. In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.

6. Click the Clear button.

7. In the Dictionary Finder Cache dialog, click Close.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-9

8. Click the Validate button.

2.2.7 What You Need to Know About Dictionary Linking
Using a dictionary with links to another dictionary is useful in the following cases:

• Data Model Sharing, to share portions of a data model within a project. When you
link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle
Business Rules Functions. You can create a dictionary that contains the functions,
and name it DictCommon. Then, you can create two dictionaries, DictApp1 and
DictApp2 that both link to DictCommon, and both can use the same Oracle
Business Rules functions. When you want to change one of the functions, you only
change the version in DictCommon. Then, both dictionaries use the updated
function the next time RL Language is generated from either DictApp1 or
DictApp2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN
and this consists of two components:

• Dictionary Package: The package name

• Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle
Business Rules uses the DictionaryFQN to find a linked dictionary.

The following are the naming constraints for combined dictionaries:

• The full names of the dictionaries, including the package and name, must be
distinct. In addition, the dictionary aliases must be distinct.

• The aliases of data model definitions of a particular kind, for example, function,
Oracle RL class, or value set, must be unique within a dictionary.

• A definition may be qualified by the alias of its immediately containing dictionary.
Definitions in the top and built-in dictionaries do not have to be qualified.
Definitions in other dictionaries must be qualified and this qualification is controlled
by the prefix linked names property of the dictionary link.

• Ruleset names must be unique within a dictionary. When RL Language for a
ruleset is generated, the dictionary alias is not part of any generated name. For
example, if the dictionary named dict1 links to dict2 to create a combined
dictionary, and dict1 contains ruleset_1 with rule_1 and dict2 also contains
ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1
and rule_2 are in the same ruleset (ruleset_1).

• All rules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and
dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule
rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then
when Oracle Business Rules generates RL Language from the combined, linked
dictionaries, both rules rule_1 and rule_2 are in the single ruleset named
Ruleset_1. If you violate this naming convention and do not use distinct names for
the rules within a ruleset in a combined dictionary, Rules Designer reports a
validation warning similar to the following:

RUL-05920: Rule Set Ruleset_1 has two Rules with name rule_1

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-10

For more information, see Oracle Business Rules Files and Limitations.

2.2.8 What You Need to Know About Dictionary Linking and Dictionary
Copies

When you create a dictionary link using the resource picker, the dictionary is copied to
the source project (the project where the dictionary that you are linking from resides).
Thus, this type of linking creates a local copy of the dictionary in the project. This is not
a link to the original target, no matter where the target dictionary is. Thus, Rules
Designer uses a copy operation for the link if you create a link with the resource
picker.

Also note the following regarding linked dictionaries in SOA and non-SOA rule
dictionaries:

• SOA Applications

1. Only dictionaries from within the same project, system dictionaries seeded in
soa/shared or dictionaries available in the classpath can be used as linked
dictionaries.

2. If the same linked dictionary needs to be used across rules in multiple
composites, then the linked dictionary should be referenced via the classpath.

• Non_SOA Applications

1. Linked dictionaries can be located in the same application, in a shared location
within MDS or the classpath. Appropriate dictionary finders need to be
provided to locate and resolve the dictionaries.

2.2.9 What You Need to Know About Dictionary Linking to a Deployed
Dictionary

When you are using Rules Designer you can browse a deployed composite application
and any associated Oracle Business Rules dictionaries in the MDS connection.
However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.10 What You Need to Know About Business Rules Inputs and
Outputs with BPEL

Decision function inputs are available as variables to the initial actions of the decision
function. When the inputs are facts, the facts are asserted into working memory and
rules must match the facts based on type and property values and not on decision
function input name. For example, if you have inputs of same type, input1 and input2,
rules distinguish these inputs based on type or property values and not on the different
names they have.When the inputs are not visible facts, for example String or int, then
a wrapper type named <decision function name> is created, and rules must match this
type.

2.2.11 How to Compare or Merge Two or More Dictionaries
The Diff Dictionary feature enables you to review any differences in the latest revision
of a dictionary against any previous revision and be able to roll back any changes
since then. The differences are viewed from the perspective of the latest revision.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-11

The Merge Dictionary feature enables you to review any differences between the base
version and up to 3 changed versions and be able to resolve or merge the differences
among them. The differences are viewed from the perspective of the changed
versions.

Both Diff Dictionary and Merge Dictionary allow you to view and resolve the
differences, but the basic difference between the two features is that you can Merge
more than one dictionaries but you can not Diff more than one dictionaries.

The Merge Dictionary and Diff Dictionary options are available in the Rules
Designer toolbar, as shown in Figure 2-9.

Figure 2-9 Diff-Merge Dictionary Button

You can compare up to three different dictionaries and merge into a fourth at design-
time in Oracle JDeveloper. At runtime, you can use SOA Composer to do limited
comparisons. For more information, see Using Oracle SOA Composer with Oracle
Business Rules at Runtime.

In Rules Designer, you can compare a base version (which you must be editing) with
two independently changed versions (relative to the base), and then merge selected
changes into the base version (which must be saved as a new version).

WARNING:

Before you decide to run either of these features, you must be ready resolve
all changes because the dictionary becomes read-only when in diff or merge
mode.

Merging dictionaries should be done with care. You must identify and
manage the different versions involved (base, version 1, version 2, and the
results).

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-12

2.2.11.1 How to See Differences Between Dictionaries
When you want to compare dictionaries, you open the newer dictionary first in the
Rules Designer, then use the Diff Dictionary dialog to select the older dictionary to
compare with. Anything missing from the newer dictionary is flagged as a deletion from
the newer version.

To see the differences between dictionaries:

1. In the Rules Designer, with the newer dictionary open, click Diff Dictionary.

2. In the Diff Dictionary dialog, click Browse to open the Select Dictionary to
Merge dialog and find the dictionary that you want to compare with.

3. Click OK.

4. Enter a short version name or number.

5. Click OK when done.

6. All differences between the two dictionaries will be flagged with change icons, as
shown in Figure 2-10.

Figure 2-10 Diff Changes Displayed

The change icons are shown for all tabs on the left, and for the specific artifacts
within each tab.

7. Click each tab and decide to Accept Diffs or Reject Diffs. Alternatively, you can
choose to Accept All or Reject All in the toolbar.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-13

Diffs can be Accepted or Rejected at any level in the dictionary by clicking on the
appropriate change icon. For example, to revert Rule1 to the older version but
keep everything else in the newer dictionary, first drill down to Rule1 and choose
Reject Diffs, then chose Accept All from the toolbar. Note that in 'Diff mode',
Accept keeps the newer version and Reject reverts to the older version.

You can view the Diff Dictionaries option. This choice is available after you have
compared dictionaries. The View Diff Dictionaries option, shown in Figure 2-10 lists
information about the dictionaries being compared.

2.2.11.2 How to Merge Dictionaries
When you want to merge dictionaries, you open the older dictionary first in the Rules
Designer, then use the Merge Dictionary dialog to select the newer dictionary to merge
with. Anything missing from the old dictionary is flagged as an addition in the latest
version.

This works with two or more dictionaries, so you should use oldest, then one or more
newer, and finally save the result in newest.

Use care when merging dictionaries. Because general editing is disabled until all diffs
are resolved, you may want to provisionally accept or reject conflicting values and then
return to finish the editing after handling remaining diffs.

To merge dictionaries:

1. In the Rules Designer, with the oldest dictionary open, click Merge Dictionary.

2. In the Merge Dictionary dialog, click Browse to open the Select Dictionary to
Merge dialog and find the dictionary that you want to compare with.

3. Click OK.

4. Enter a short version name or number.

5. Click OK when done.

6. All changes are flagged in Rules Designer, as shown in Figure 2-11. Use the
Merge Differences dialog to Accept or Reject or take no action. You can also
use the Accept Diffs or Reject Diffs in the tab. Alternatively, you can Accept All
or Reject All from the toolbar.

Chapter 2
Introduction to Dictionaries and Dictionary Links

2-14

Figure 2-11 Merge Differences Dialog

2.3 Working with Oracle Business Rules Globals
You can use Rules Designer to add Oracle Business Rules globals.

In Oracle Business Rules a global is similar to a public static variable in Java. You can
specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions.
For example, if a 10% discount is used in several rules you can create and use a
global Gold Discount, so that the appropriate discount is applied to all the rules using
the global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals
You can use Rules Designer to add globals.

To add a global:

1. In Rules Designer, select the Globals navigation tab.

2. In the globals table, click the Create button. This adds a global and displays the
Edit Global dialog, as shown in Figure 2-12.

Chapter 2
Working with Oracle Business Rules Globals

2-15

Figure 2-12 Adding a Global in Rules Designer

3. In the Name field, enter a name or accept the default value.

4. In the Type field, select the type from the list.

5. Optionally, in the Value Set field, select a value from the list.

6. In the Value field, enter a value, select a value from the list, or click the
Expression Builder button to enter an expression.

For more information, see Introduction to Expression Builder.

7. If the global is a constant, then select the Constant check box. When selected,
this option specifies that the global is a constant value.

For more information, see What You Need to Know About the Final and Constant
Options.

8. If the global is a nonfinal, then clear the Final check box. When cleared, this
option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals
You can use Rules Designer to edit globals.

To edit a Global:

1. In Rules Designer, select the Globals navigation tab.

2. Click the Edit button to open the Edit Global - Global Name window. In this
window you can edit a global and change field values, including the Final field and
the Constant field.

2.3.3 What You Need to Know About the Final and Constant Options
The Edit Global dialog shows the Constant and Final check boxes that you can select
for a global.

Note the following when you use globals:

Chapter 2
Working with Oracle Business Rules Globals

2-16

• When you clear Final, this specifies that the global is modifiable, for instance, in
an assign action.

• When you select Final, this specifies that you can use the globals in a test in a
rule (nonfinal globals cannot be used in a test in a rule).

• When you select Final, this specifies that the global is initialized one time at
runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the
global is a constant. In Oracle Business Rules a constant is a string or numeric literal,
a final global whose value is a constant, or a simple expression involving constants
and +, -, *, and /.

Selecting the Constant option for a global has three effects:

• You do not have to surround string literals with double quotes.

• Only constants appear in the expression value choice list.

• The expression value must be a constant to be valid.

Selecting the Constant option is optional. Note that Value Set values, Value Set range
endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions
The data model includes decision functions.

For information on working with decision functions, see Introduction to Decision
Functions.

2.5 Introduction to Oracle Business Rules Functions
Oracle Business Rules provides functions to hide complexity when you create rules.
Oracle Business Rules lets you use built-in or user-defined functions in rule and
Decision Table conditions and actions.

In Oracle Business Rules you define a function in a manner similar to a Java method,
but an Oracle Business Rules function does not belong to a class. You can use Oracle
Business Rules functions to extend a Java application object model so that users can
perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action
associated with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a
similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:

• Name: The Oracle Business Rules function name.

• Return Type: A return type for the Oracle Business Rules function, or void if there
is no return value.

• Value Set: The value set to associate with the Oracle Business Rules function.
This is optional.

• Arguments: The function arguments. Each function argument includes a name and
a type and an optional value set.

Chapter 2
Working with Decision Functions

2-17

• Function Body: The function body includes predefined actions. Using predefined
actions Rules Designer assures that an Oracle Business Rules function is well
formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more
information, see Testing Decision Functions Using a Rules Function.

2.5.1 How to Add an Oracle Business Rules Function
You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:

1. In Rules Designer, select the Functions navigation tab.

2. Select the Create... button.

3. Enter the function name in the Name field, or use the default name.

4. Select the return type from the Return Type list. For example, select void.

5. Optionally, select a value set to associate with the function return type from the list
in the Value Set field.

6. Optionally, in the Description field enter a description.

7. In the Arguments table, click Add to add one or more arguments for the function.

8. For each argument in the Type field, select the type from the list.

9. For each argument in the Value Set field, to limit the argument values as specified
by a value set constraint, select a value set from the list.

10. In the Body area, enter actions and arguments for the function body. You can add
any required action ranging from assert, call, modify to even conditional actions
such as if, else, elseif, while, for, if (advanced), and while (advanced). For
example, see Figure 2-13.

Figure 2-13 Adding an Oracle Business Rules Function

Chapter 2
Introduction to Oracle Business Rules Functions

2-18

2.6 Localizing Oracle Business Rule Resources
You can localize the names, aliases and descriptions of rules resources. This enables
better control of these resources in Workspace and SOA Composer. You can localize
most of the resources like Value Sets, Globals, Rulesets, Rules and so on. With
Verbal Rules, you can also localize the value of Business Phrases.

When you create these resources, you can add locale-specific information from the
Translations tab. Each locale is stored in a separate resource bundle.

Note:

You should not manually edit the resource bundle to add or edit localized
strings. You must edit the resource bundle using the Translation tab of the
Rules Designer in JDeveloper, BP Composer, or SOA Composer.

2.6.1 How to Localize the Resources in Oracle Business Rules
You can use the Rules Designer of JDeveloper to localize the resources of a business
rule.

To localize business rule resources:

1. In Rules Designer, select the Translations tab.

2. Click the Create Resource Bundle button.

Create Resource Bundle screen appears.

3. Select the Locale from the list, as shown in Figure 2-14.

Each locale that you add appears as a column in the Resource Bundle
Translations table. Each resource of the business rule appears as a row in this
table. Each locale is stored as a separate resource bundle.

Figure 2-14 Adding New Locales

Chapter 2
Localizing Oracle Business Rule Resources

2-19

4. Click the cell of the table corresponding to the resource and locale and enter the
localized text.

Note:

The translated value is validated only in the current locale. Validations
are not done for translations in other locales that are not used.

5. Select Populate Translations and a radio button to populate the translation of the
new bundle from untranslated text or from another locale.

6. Click OK.

Chapter 2
Localizing Oracle Business Rule Resources

2-20

3
Working with Facts and Value Sets

Face types are the Oracle Business Rules data model elements, which are the objects
that rules reason on. Value sets define groupings of fact property values.

• Introduction to Working with Facts and Value Sets

• Working with XML Facts

• Working with Java Facts

• Working with RL Facts

• Working with ADF Business Components Facts

• Working with Value Sets

• Associating a Value Set with Business Terms

3.1 Introduction to Working with Facts and Value Sets
In Rules Designer, you make business objects and their methods known to Oracle
Business Rules using fact types that are part of a data model. A fact type is a type
definition in the data model. A fact is an instance of that fact type and is a data
structure that rules can operate on.

For example, a fact type is a collection of related properties (business terms), and a
fact is therefore a collection of related data bound to the business terms. A customer
fact may include not only name, but address, history, credit rating, and so forth.

You can create fact types and value sets before you create rules.

In Rules Designer you can work with the following kinds of facts:

• XML Facts: XML Facts are imported from existing sources by specifying XML
Schema. You can add aliases to imported XML Facts or use XML Facts with RL
Facts to change the data model according to your business needs.

For more information, see Working with XML Facts.

• Java Facts: Java Facts are imported from existing sources. You can add aliases
to Java Facts or use them with RL Facts to target the data model to business
needs. Java Facts are also used to import supporting Java classes for use with the
rules or Decision Tables that you create.

For more information, see Working with Java Facts.

• RL Facts: RL Facts are the only kind of facts that you can create directly and do
not have an external source. All other types of Oracle Business Rules facts are
imported. An RL Fact is similar to a relational database row or a JavaBean with
properties. An RL Fact contains a set of named, typed properties. Property values
can be primitives such as String, another structured fact, or a list. RL Facts are
useful for rapid and independent development and testing of decision logic. Input
data that will ultimately come from an imported fact type (for example, an XML
Schema) can be modeled using RL Facts before the imported schema is available

3-1

or stable. Intermediate decisions that should not be returned to the application (for
example, sub-decisions that categorize a customer as GOOD or BAD). It is usually
best to import the fact types that are used for the input and output data of a
decision. You can use RL Facts to extend a Java application object model by
providing virtual dynamic types.

For more information, see Working with RL Facts.

• ADF Business Components Facts: ADF Business Components Facts allow you
to use ADF Business Components as Facts in rules and in Decision Tables. By
using ADF Business Components Facts you can assert view object graphs
representing the business objects upon which rules should be based, and let
Oracle Business Rules deal with the complexities of managing the relationships
between the various related view objects in the view object graph.

For more information, see Working with ADF Business Components Facts.

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language fact type definitions to create intermediate facts that can trigger
other rules in the Rules Engine. ADF Business Components fact types enables you to
use ADF Business Components as Facts in rules and in Decision Tables.

In Oracle Business Rules, facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is
re-asserted (whether it has been changed or not), the Rules Engine is updated to
reflect the new state of the object. Re-asserting the object does not create a fact. To
have multiple facts of a particular fact type, separate object instances must be
asserted.

You can create value sets to define a list of values or a range of values of a specified
type. After you create a value set, you can associate the value set with a business
term of matching type. When a value set is associated with a business term, Oracle
Business Rules uses the values or ranges that you define as constraints for the values
for the business terms for the business terms in rules that are in the Decision Tables.

For more information, see:

• Working with Value Sets

• Associating a Value Set with Business Terms

3.2 Working with XML Facts
The XML fact type allows XML Schema types, elements, and attributes to be used
when writing rules. Elements and types defined in XML Schema can be imported into
the data model and can then be used to create IF/THEN rules and Decision Table
rules, just as with Java fact types and RL Fact types. The mapping between the XML
Schema definition and the XML Fact types uses the Java Architecture for XML Binding
(JAXB).

By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle
Application Server. JAXB as defined in JSR-222 provides a mapping between the
types, names, and conventions in an XML Schema definition and the available types,
allowed names and conventions in Java. For example, an element named order-id
and of type xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

Chapter 3
Working with XML Facts

3-2

Thus, with Oracle Business Rules if you have an XML document that contains data
associated with your application and you have the schema associated with the XML
document then you can use Rules Designer to define rules based on elements that
you specify from the XML Schema.

Note:

When xsd has primitive or non primitive root elements of simple type, JAXB
maps the simple type elements to a JAXBElement and generates only
ObjectFactory class. You must create Facts of complex type to be used in
business rules.

3.2.1 How to Create XML fact types
1. Define or obtain an XML Schema.

2. Use Rules Designer to import the XML Schema into a dictionary.

This step uses the JAXB compiler to generate Java classes from the XML
Schema. After you compile the XML Schema, you select the desired elements
from the schema to add XML Facts in the data model and import the generated
JAXB classes into the data model.

For more information on these steps, see How to Import the XML Schema and
Add XML Facts.

3. Write rules or create Decision Tables based on these XML Facts that you added to
the data model.

For more information, see Working with Rules and Creating Decision Tables.

Elements and types defined in the XML Schema can be imported into the data model
so that instances of types can be created, asserted, modified, and retracted by rules.
Most XML documents describe hierarchical information, where each element contains
subelements. It is common for users to want to write individual rules based on multiple
elements in this hierarchy, and the hierarchical relationship among the elements.

In Oracle Business Rules the default behavior when you assert a fact is to only assert
the single fact instance, and none of the child objects it may reference in the hierarchy
of subelements. When you create rules or a Decision Table it is often desirable to
assert an entire hierarchy of elements based on a reference to a root element. Oracle
Business Rules provides the assertTree action type that allows for a recursive assert
for a hierarchy. For more information, see Working with Tree Mode Rules.

3.2.2 How to Import the XML Schema and Add XML Facts
Before you can use the XML Schema definitions in a data model you must import the
XML schema. This step generates the JAXB classes and makes the generated
classes and packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.

Chapter 3
Working with XML Facts

3-3

Figure 3-1 The XML Facts Tab in Rules Designer

3. In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.

4. In the Create XML Fact dialog, in the Source Schemas area, click Add Source
Schema... to open the Add Source Schema dialog.

5. In the Add Source Schema dialog,

• Enter the location of the XML Schema you want to import, or click Browse to
locate the XML schema in the Schema Location field. During the import the
file is copied into the project.

Note:

Typically, the XML schema (xsd) file is located inside the xsd folder
called Schemas, because any XML schema that is created needs to
be stored inside the xsd folder under SOA.

• Accept the default path or enter the directory where you want Rules Designer
to store the JAXB-generated Java source and class files in the JAXB Classes
Directory field.

• Enter a target package name or leave this field empty in the Target Package
field. If you leave this field empty the JAXB classes package name is
generated from the XML target namespace of the XML schema using the
default JAXB XML-to-Java mapping rule or explicitly defined package name
using annotations, or "generated" if no namespace or annotation is defined.
Using the schema namespace is preferred.

For example, the namespace http://www.oracle.com/as11/rules/demo is
mapped to com.oracle.as11.rules.demo.

• Click OK.

Rules Designer processes the schema and compiles the JAXB, so depending
on the size of the schema this step may take some time to complete. When
this step completes Rules Designer displays the Create XML Fact dialog with
the Target Classes area updated to include the JAXB classes.

Chapter 3
Working with XML Facts

3-4

6. In the Create XML Fact dialog, in the Target Classes area, select the classes you
want to import as XML fact types.

7. Click OK.

3.2.3 How to Display and Edit XML Facts
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.

3. In the XML Facts table, double-click the icon for the XML Fact you want to edit.
This displays the Edit XML Fact dialog, as shown in Figure 3-2.

Figure 3-2 Edit XML Fact Dialog

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3-1 XML Fact: Edit XML Fact Dialog Fields

Field Description

Name Displays the XML Fact name. You cannot change the name of
JAXB generated class.

Chapter 3
Working with XML Facts

3-5

Table 3-1 (Cont.) XML Fact: Edit XML Fact Dialog Fields

Field Description

Alias Enter the XML Fact alias. You can change this value. This
defaults to the unqualified name of the class.

Qualifier Pattern This field is used for verbal rules.

If nothing is specified here, then the system uses the global
qualifier. If a custom qualifier pattern should be specified for a
fact, it has to contain two parts in the pattern: {member}, {fact}.
Specify patterns as follows:

• {fact}'s {member}
• {member} in {fact}
• {member} of {fact} (This is the default).
For more information about using verbal rules, see Introduction
to Verbal Rules and Business Phrases.

Super Class Displays Java super class associated with this fact.

XML Name Displays the XML name associated with the XML Fact.

Generated From Displays the XML schema file that was the source for the XML
Fact when it was copied into the business rules data model.

Visible Select to show the XML Fact in lists in Rules Designer. XML
Facts often reference other XML Facts, forming a tree. You
should make all the XML fact types visible that contain properties
that you reference in rules.

Support XPath Assertion Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically, this option is
not used.

Description Enter the XML Fact description.

Attributes area Select the available constructors, properties, methods, or fields
associated with the JAXB class for the XML Fact to display or
edit.

Fit Columns to Width Select this check box to adjust column width.

3.2.4 How to Reload XML Facts with Updated Schema
If an XML schema changes in a project, the schema must be reimported into the
Oracle Business Rules dictionary. When you reimport the schema, Oracle Business
Rules uses JAXB to recompile all source schemas for every XML fact type and
updates the XML fact type definitions with the updated XML schema definitions. You
should reimport facts if you changed the schema or classes and you want to use the
changed schema or classes at runtime.

Chapter 3
Working with XML Facts

3-6

Note:

When the XML schema on which an XML fact is based changes, on
reimporting the schema, the facts are updated and imported into the base
dictionary. When working with facts in a linked dictionary, you need to reload
the XML facts for the changed schema from the base dictionary instead of
the linked dictionary.

To reimport XML facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.

3. On the XML Facts page, click Reload Facts Based on Modified Schemas
(Excluding Linked Facts) or Reload All Facts (Excluding Linked Facts).

After the reimport operation you need to correct any validation warnings that may be
caused by incompatible changes (for example, the updated schema may include a
change that removed a property that is referenced by a rule).

3.2.5 What You Need to Know About XML Facts
Keep the following points in mind when you work with XML Facts:

When XML Schema contain a restriction definition, this allows a user to restrict the
types that are valid for use in an element. A common use of restriction is to define an
enumeration of strings which can be used for an element, as shown in the XML
Schema Restriction example below:

• <xs:simpleType name="status-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="manual"/>
 <xs:enumeration value="approved"/>
 <xs:enumeration value="rejected"/>
 </xs:restriction>
</xs:simpleType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules
Designer to import either a Java enum type or an element with an XML restriction,
the static final fields representing the enums are available for use in expressions.
Additionally, Oracle Business Rules creates a value set for each enum containing
all of the enum values and null. For more information on value sets, see Working
with Value Sets.

• There is a default version of the JAXB binding compiler supplied with Oracle
Application Server. You can use a different JAXB binding compiler. However, to
use a different JAXB binding compiler you must manually perform the XML
schema processing and then import the generated Java packages and classes
into the data model as Java Facts.

• You should reimport facts if you changed the schema or classes and you want to
use the changed schema or classes at runtime. You should correct any validation
warnings that may be caused by incompatible changes (for example, removing a
property that is referenced by a rule). For more information, see How to Reload
XML Facts with Updated Schema.

Chapter 3
Working with XML Facts

3-7

• Most users should not need to use the ObjectFactory or import it. If you do need to
import and use the ObjectFactory, then use a different package name for every
XML Schema that you import; otherwise the different ObjectFactory classes
conflict.

• The use of XML schema with elements that have minOccurs="0" and
nillable="true" has special handling in JAXB. For more information, see Why do
XML Schema with xsd:string Typed Elements Import as Type JAXBElement?

• The default element naming conventions for JAXB can cause XML schema
containing the underscore character in XML-schema element names to fail to
compile. For more information, see Why Does XML Schema with Underscores Fail
JAXB Compilation?

• There are certain restrictions on the types and names of inputs for the Decision
Service. For more information, see How Are Decision Service Input Output
Element Types Restricted?

• The built-in dictionary includes support for the Java wrappers Integer, Long,
Short, Float, Double, BigDecimal, and BigInteger. These types can appear in
XML Fact Types.

3.3 Working with Java Facts
In Rules Designer, importing a Java Fact makes the Java classes and their methods
become visible to Rules Designer. Rules Designer does not copy the Java code or
bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be
imported to the Rules Engine so that rules can access, create, modify, and delete
instances of the Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes,
public methods, and bean properties defined in a Java class (bean properties are
preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts
Before you can use Java Facts in rules and in Decision Tables, you must make the
classes and packages that contain the Java Facts available to Rules Designer. To do
this you use Rules Designer to specify the classpath that contains the Java classes,
and then you import the Java Facts.

Java fact types allow methods with and without side effects to be imported. Side
effects refer to expensive operations such as I/O, Database Query or web service and
so on. When using Java classes as facts, remember the following about side effects:

• Rule and Decision Table conditions do not use methods with side effects.

• Actions can use all methods. Though side effects are not recommended, are
permissible.

To import and define Java Facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-3.

Chapter 3
Working with Java Facts

3-8

Figure 3-3 The Java Facts Table in the Facts Navigation Tab

3. In the Java Facts tab, click Create... to open the Create Java Fact dialog.

4. In the Create Java Fact dialog, if the classpath that contains the classes you want
to import is not shown in the Classpath area, then click Add to Classpath. This
displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, java, javax, and
org. These packages contain classes that Rules Designer lets you import from the
Java runtime library (rt.jar). Rules Designer does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the
Classpaths area).

5. In the Choose Directory/Jar dialog, browse to select the classpath or jar file to add.
By default, the output directory for the project is on the import classpath and any
Java classes in the project should appear in the Classes importer. If they do not
appear, execute the Build action for the project.

6. Click Open. This adds the classpath or jar file and updates the Classes area.

7. In the Create Java Fact dialog, in the Classes area select the packages and
classes to import.

8. Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts
To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact
dialog.

To display and edit Java facts:

1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab in the Facts navigation tab.

3. In the Java Facts table, double-click the Java Fact you want to edit. This displays
the Edit Java Fact dialog as shown in Figure 3-4.

Chapter 3
Working with Java Facts

3-9

Figure 3-4 Edit Java Fact Dialog

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

Field Description

Class Displays the Java Fact class for the source associated with the
Java Fact.

Alias Enter the Java Fact alias.

Qualifier Pattern This field is used for verbal rules.

If nothing is specified here, then the system uses the global
qualifier. If a custom qualifier pattern should be specified for a
fact, it has to contain two parts in the pattern: {member}, {fact}.
Specify patterns as follows:

• {fact}'s {member}
• {member} in {fact}
• {member} of {fact} (This is the default).
For more information about using verbal rules, see Introduction
to Verbal Rules and Business Phrases.

Super Class Displays Java super class associated with this fact.

Visible Select to show the Java Fact in lists in Rules Designer.

Description Enter the Java Fact description.

Chapter 3
Working with Java Facts

3-10

Table 3-2 (Cont.) Edit Java Fact Dialog Fields

Field Description

Attributes area Select the available class properties, constructors, methods, or
fields associated with the Java class for the Java Fact act to
display or edit.

Properties Some java objects have fields to help define that object. For
example a Calendar has properties for defining the first day of
the week, the time zone, and so on.

Fit Columns to Width Select this check box to adjust column width.

Attribute Description The Attribute Description is the description of the property.

3.3.3 What You Need to Know About Java Facts
When you define Java Facts you need to know the following:

• On Windows systems, you can use a backslash (\) or a slash (/) to specify the
classpath in the Classpath area. Rules Designer accepts either path separator.

• Classes and interfaces that you use in Rules Designer must adhere to the
following rules: If you are using a class or interface, only its superclass or one of
its implemented interfaces may be made visible.

• When you specify the classpath you can specify a JAR file, a ZIP file, or a full path
for a directory.

• When you specify a directory name for the classpath, the directory specifies the
classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the classpath specifies a directory,
Rules Designer looks in that tree for directory names matching the package name
structure.

For example, to import a class cool.example.Test1 located in c:\myprj\cool
\example\Test1.class, specify the classpath value, c:\myprj.

• You should reimport facts if you change the classes. After the reimport operation
you may see validation warnings due to class changes. You should correct any
validation warnings that may be caused by incompatible changes (for example,
removing a property that is referenced by a rule).

3.4 Working with RL Facts
RL Facts are the only kind of facts that you can create directly and that do not have an
external source. All other types of Oracle Business Rules facts are imported. An RL
Fact is similar to a relational database row or a JavaBean without methods. An RL
Fact contains a list of properties of types available in the data model, either RL Fact,
Java Fact, or primitive types.

You can use an RL Fact to extend a Java application object model by providing virtual
dynamic types.

For example:

R1: if monthly spend = Customer.monthlySpend
then assert new Temp(three month spend: monthly spend[0] + monthly spend[1] +

Chapter 3
Working with RL Facts

3-11

monthly spend[2])
R2: if Temp.three month spend > 500
then modify Temp(status: GOLD)
R3: if Temp.status == GOLD
then assert new Result(discount: 0.10).

For testing and prototyping with Rules Designer you can create RL Facts and use the
RL Facts to write and test rules before you import a schema and switch to XML Facts
(you might need to wait for an approved XML schema to be created or to be made
available). Switching from RL Facts to corresponding XML Facts involves the following
steps:

1. Delete the RL Facts (this action shows validation warnings in the rules or Decision
Tables you created that use these RL Facts).

2. Import the XML Facts and give the facts and their properties aliases that match the
names of the RL Facts and properties you deleted in step 1.

3. This process should remove the validation warnings if the XML Fact and property
aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts
You add RL Facts from the Facts navigation tab.

To define RL facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-5.

Figure 3-5 RL Facts Tab in Rules Designer

3. In the RL Facts tab, click Create.

4. In the RL Facts table, in the Name field, enter the name for the RL Fact or accept
the default name.

5. In the RL Facts table, in the Description field, enter a description or accept the
default, no description.

Chapter 3
Working with RL Facts

3-12

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:

1. In Rules Designer, select the Facts navigation tab.

2. In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact.
This displays the Edit RL Fact dialog, as shown in Figure 3-6.

Figure 3-6 Edit RL Fact Dialog

3. To add RL Fact properties, on the Edit RL Fact dialog in the Properties area, click
Create.

a. In the Name field, enter the property name.

b. In the Type field, select a type from the list or enter a property type.

c. To associate a value set with the property, from the list in the Value Set field,
select a value set.

d. To associate an initial value with the property enter a value in the Initial Value
field.

4. Add additional properties by repeating these steps, as required.

5. Click OK.

3.4.3 What You Need to Know About RL Facts
When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties
area the Initial Value field provides a list of possible values as shown in Figure 3-7.

Chapter 3
Working with RL Facts

3-13

Figure 3-7 Setting RL Fact Property Initial Value

When you are working with some fields in Rules Designer, the initial values list or
other lists may be empty. In this case the list is an empty box. Thus, when Rules
Designer does not find options to assist you in entering values, you must supply a
value directly in the text entry area or click the Expression Builder button to display
the expression builder dialog.

3.5 Working with ADF Business Components Facts
ADF Business Components Facts enable you to use ADF Business Components as
Facts in rules and in Decision Tables. By using ADF Business Components Facts you
can assert view object graphs representing the business objects upon which rules
should be based, and let Oracle Business Rules deal with the complexities of
managing the relationships between the various related view objects in the view object
graph.

For more information, see Working with Oracle Business Rules and ADF Business
Components .

3.5.1 How to Import and Define ADF Business Components Facts
When an ADF Business Components view object is imported, an ADF Business
Components fact type is created which has a property corresponding to each attribute
of the view object.

To add ADF Business Components facts:

1. Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the
ADF-BC Facts table, as shown in Figure 3-8.

Chapter 3
Working with ADF Business Components Facts

3-14

Figure 3-8 ADF Business Components Facts Tab

2. Click Create.... This opens the Create ADF-BC Fact dialog.

3. In the Connection field, from the list, select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths. For more information, see What You Need to Know About ADF
Business Components Fact Classpaths.

4. In the View Definition field, select the name of the view object to import.

5. Click OK. This displays the Facts navigation tab. Note that the imported fact
includes a validation warning. For information on how to remove this validation
warning, see What You Need to Know About ADF Business Components Circular
References.

3.5.2 What You Need to Know About ADF Business Components Fact
Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business
Components Fact dialog one of the listed classpaths allows you to see the view object
definitions available in your project. In this dialog you only need to click Add to
Classpath when you need to use a classpath that is not available to your project (this
case should be very rare).

3.5.3 What You Need to Know About ADF Business Components
Circular References

ADF Business Components Facts can include a circular reference. When this warning
is shown in the Business Rule validation log you need to manually resolve the circular
reference. To do this you must clear the Visible check box for one of the properties
that is involved in the circular reference.

Chapter 3
Working with ADF Business Components Facts

3-15

3.5.4 What You Need to Know About ADF Business Components
Facts

Each ADF Business Components fact type contains a property named ViewRowImpl
that references the oracle.jbo.Row instance that the fact instance represents and a
property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to retrieve the
set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

• Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many, and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List, which contains facts of the indicated type at runtime.

• It is not possible to use ADF Business Components fact types which have cyclic
type dependencies. These cycles must be broken by the clearing the Visible
check box for at least one property involved in the cycle.

• ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact
type. In this case, all getters and setters and other methods become available but
the trade-off is that related view objects become inaccessible and, should related
view object access be required, these relationships must be explicitly managed.

• Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly
to a Rule Session, but must instead use the helper methods provided in the
MetadataHelper and ADFBCFactTypeHelper classes. For more information, see
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Value Sets
You can create a value set to define a list of values or a list of value ranges to limit the
acceptable set of values for a fact or a property of a fact in Oracle Business Rules.
You can define a value set as a Global Value Set that allows reuse, where a value set
is named and stored in the data model, or as a Local Value Set that is specified when
you define a Decision Table and only applies to one condition expression.

For more information on using a local value set, see How to Add Condition Rows to a
Decision Table.

You can use value sets for the following:

Chapter 3
Working with Value Sets

3-16

• You can associate fact type properties with value sets. This allows you to limit the
acceptable set of values for a property of a fact. For more information, see How to
Associate a Value Set with a Fact Property.

• A value set defines a list of values or value ranges for some primitive value
(number, string, date, boolean, or enumeration). A value set may be associated
with a fact type property in order to provide a fixed set of choices for the value of
that property, for example, male or female. A value set must be associated with a
decision table condition to provide a fixed set of choices for the value of the
condition's expression. These choices (values or value ranges) are entered into
the condition cells of the decision table.

The value set values or ranges determine, for each condition expression in a
Decision Table, that it has two or more possibilities. Using a value set, each
possibility in a condition expression is divided into values or ranges where a cell
specifies one value or range from the value set (or possibly multiple values or
ranges per cell). For example, if a value set is defined for colors, then the values
or ranges could include a list of strings: "blue", "red", and "orange". A value set
that includes integers could have three ranges could have three ranges, less than
1, 1 to 10, and greater than 10. For more information, see How to Add Condition
Rows to a Decision Table.

• You can associate globals, functions, and function arguments with value sets.
Associating a value set with a global allows for design-time validation that an
assigned value is limited to the values specified in the value set. Associating a
value set with a function argument validates that the function is only called with
values in the value set. Using value sets in this manner allows Rules Designer to
report validation warnings for global values and function arguments that are
assigned or passed a constant argument value that is not allowed. Associating a
value set with a function automatically sets a Decision Table condition row to use
that value set when the function is used as the expression for that condition row.
Only constant expression values are validated. To ensure that global initial
expression values and function parameter expression values are validated against
the associated value set, check the 'constant' check box associated with the
expression. No runtime checks are applied based on the globals or function
arguments associated with value sets. For more information, see How to
Associate a Value Set with Functions or Function Arguments.

• In addition to design-time validation you can use an LOV value set to provide
options that are displayed in lists when entering expressions in IF/THEN rule tests
and actions. For more information, see How to Use Value Sets to Provide Options
for Test Expressions.

There are three forms for value sets:

• LOV: Defined by a list of values (see How to Define a List of Values Global Value
Set).

• Range: Defined by a list of value ranges, defined by the range endpoints (see How
to Define a List of Ranges Global Value Set).

• Enum: Defined by a list of enumerated types that is imported from either of:

– XML types (see How to Define an Enumerated Type (Enum) Value Set from
XML Types).

– Java facts (see How to Define an Enumerated Type (Enum) Value Set from
Java Types).

Chapter 3
Working with Value Sets

3-17

3.6.1 How to Define a List of Values Global Value Set
A list of values value set lets you specify the type and the list of values or ranges for
the value set. For more information, see What You Need to Know About List of Values
Value Sets.

To define a list of values (LOV) global value set:

1. From Rules Designer select the Value Sets navigation tab.

2. From the list next to the Create Value Set icon, select Value Set, as shown in
Figure 3-9.

Figure 3-9 Adding a List of Values Global Value Set

3. Click the Edit button for the value set to display the Edit Value Set dialog.

4. In the Edit Value Set dialog, enter the name in the Name column.

Ensure that the value set name is not the same as any fact aliases. This will cause
a validation error similar to the following:

RUL-05006: The fact type "Rating" has the same alias as an unrelated value set.

5. In the Datatype column, select a data type from list.

6. Enter a Description.

7. Click the Edit button to add a value, as shown in Figure 3-10.

Chapter 3
Working with Value Sets

3-18

Figure 3-10 Edit Value Set Dialog

8. For each value that you add, do the following:

• In the Value field, enter a value. Note that for String type values in an LOV
value, you can select the entire string with three clicks. This allows you to
enter the string. Rules Designer adds the same alias without quotation marks.

You can change the order of values in the list of Value set by editing the Value
set dialog for a value set. Click the Move up or Move Down button to change
the order.

• In the Alias field, enter an alias.

For more information on specifying aliases, see How to Define a List of
Ranges Global Value Set.

• In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include
Disallowed Values in Tests field, see What You Need to Know About the
Value Set Allowed in Actions Option.

• In the Description field, enter a description.

9. Add additional values by clicking the Create button as needed for the value set.

10. On the Edit Value Set window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of
the values or ranges in an LOV value set associated with a condition expression in a
Decision Table.

3.6.2 How to Define a List of Ranges Global Value Set
A list of ranges value set lets you specify the type and the endpoints for values or
ranges in the value set. For more information, see What You Need to Know About
Range Value Sets.

To define a list of ranges (range) global value set:

1. From Rules Designer select the Value Sets navigation tab.

2. From the list next to the Create Value Set button, select Range Value Set.

Chapter 3
Working with Value Sets

3-19

3. Double-click in the Data Type field. This displays the Edit Value Set dialog, enter
the values set name in the Name field.

4. In the Data Type field, from the list, select the appropriate data type for the value
set.

5. Click the Create repeatedly to add the number of values or ranges that you need
in the value set.

In these steps you add three values. You start with the default values. After
changing the defaults, they should have the following values:

• greater than 1000

• between 500 and 1000, inclusive

• less than 500

Rules Designer added the values with the default values of 50 and 0 and a
negative Infinity (-Infinity) value.

6. Starting at the first or top value, in the Endpoint field, double-click the default
value and enter the top value endpoint, and press Enter.

In this example, enter 1000 for the first value.

7. In the Included Endpoint field, select the check box as appropriate to include or
exclude the value endpoint.

In this example, you can leave this check box checked to include the value
endpoint.

8. In the Allowed in Actions field select the check box as appropriate to include the
value in the value set allowable values.

For more information on the Allowed in Actions field and the Include Disallowed
Values in Tests field, see What You Need to Know About the Value Set Allowed
in Actions Option.

9. Optionally, in the Alias field double-click the default value and enter the desired
value alias, and press Enter.

The alias appears in Decision Tables that use this value set. Use an alias to give a
more meaningful name to the value than the default value (the range-based
Range value).

Note that most names and aliases in Oracle Business Rules allow only letters,
numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :.
However, value aliases allow additional characters, such as [0..1]. If an alias
contains such additional characters, then you cannot refer to the value by the alias
in the action cells in a Decision Table. In these cases, you can use the value
name, which is also known as the value.

The Range field is read-only: it clearly identifies the actual range associated with
the value regardless of the Alias value. For more information, see What You Need
to Know About Range Value Sets).

10. Moving down the list of values, for each subsequent vale, repeat from Step 6. For
the second value, enter the endpoint value 500.

11. In the Edit Value Set dialog, click OK.

Chapter 3
Working with Value Sets

3-20

3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML
Types

When you import an XML schema, if the XSD contains enumeration values Rules
Designer automatically creates an enumerated type value set for each enumeration.
Although enumerated type value sets are read-only, you can change the order of
values.

For more information, see What You Need to Know About XML Facts.

To define an enumerated type (enum) value set from XML types:

1. Obtain an XSD with the desired enumerations.

The following example shows the order.xsd schema file which contains the
enumeration Status.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
</schema>

2. Open a dictionary in Rules Designer and create XML facts using the specified
schema that contains the enumeration. For more information, see Working with
XML Facts.

3. Click the Value Sets navigation tab and select the Enum value to see the value
set. Notice that the imported Status enumeration values are imported as values
with the XSD-specified values.

You can change the order of values in an Enumerated Value set by editing the
Value set dialog for a value set. Click the Move up or Move Down button to
change the order.

Chapter 3
Working with Value Sets

3-21

You can control rule ordering in a Decision Table by changing the relative position of
the values in an enum value set associated with a condition expression in a Decision
Table.

3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java
Types

When you import a Java enum, Rules Designer automatically creates an enumerated
type value set for each Java enum. Although enumerated type value sets are read-
only, you can change the order of values.

To define an enumerated type (enum) valueset from Java facts:

1. Create or obtain the Java class with the desired enumerations.

The following code example shows the RejectPurchaseItem.java class which
contains enumeration OrderSize.

package com.example;

public class Class1

{

 public enum OrderSize { SMALL, MEDIUM, LARGE };

 public Class1()

 {
 }
}

2. In Rules Designer open a dictionary and create a Java Fact using the Java class.
For more information, see Working with Java Facts.

3. In Rules Designer click the Value Sets navigation tab and select the Enum value
set.

You can change the order of values or ranges in an enumerated type valueset by
editing the Value set dialog for a value set. Click the Move up or Move Down
button to change the order.

You can control rule ordering in a Decision Table by changing the relative position of
the values or ranges in an enum value set associated with a condition expression in a
Decision Table.

3.6.5 What You Need to Know About List of Values Value Sets
In a Decision Table, the order of the values in a value set associated with a condition
expression determines the order of the condition cells, and thus the order of the rules.
You can control rule ordering in a Decision Table by changing the relative position of
the values in a list of values value set associated with a condition expression;
however, you cannot reorder ranges.

Figure 3-11 shows a value set definition in Rules Designer for a value set named
colors using a list of values.

Chapter 3
Working with Value Sets

3-22

Figure 3-11 Value Set Definition Using List of Values

As shown in Figure 3-11, by default with a List of Values value set there is a value
otherwise included with the list of values (LOV). This value, otherwise, is distinct from
all other values and matches all values of the type that have no other value or range.
Thus, with otherwise in the list of values a condition expression that uses the value
set can handle every value and provides a match for every value of the specified type,
where a match is either a defined value or the otherwise value. The otherwise value
cannot be removed from an LOV value set but it can be excluded by clearing the
Allowed in Actions check box (when otherwise is excluded an attempt to assign any
value that is not in the list of values in the value set causes a validation warning).

Table 3-3 shows the value set values that Rules Designer supports for LOV value
sets.

Table 3-3 Supported Types for LOV Value Sets

Type Description

Java primitive types This includes int, double, boolean, char, byte, short, long,
and float

String Contains String types

Time, DateTime, and
Date

Contains Time, DateTime, and Date types in the current
locale

Note:

You are not required to specify an LOV value set when you use a boolean
type in a Decision Table. For boolean types, Oracle Business Rules provides
built-in values or ranges for the possible values (true and false).

3.6.6 What You Need to Know About Range Value Sets
When you add a value or range to a List of Ranges value set, the value is calculated
based on the currently selected value and the next highest value. When you change
the endpoint value the value is automatically sorted in the value set; thus, it does not
matter where a new range is added. However, it is possible for Rules Designer to not
have values between the current value set endpoint value and the endpoint value. In
this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Valueset has duplicate bucket value "4999"

To correct this problem you must modify value endpoints to remove the duplicate
value.

Chapter 3
Working with Value Sets

3-23

Table 3-4 shows the types Rules Designer supports for Range values.

Table 3-4 Supported Types for Range Values

Type Description

Selected primitive types This includes: int, double, short, long, and float

Time, DateTime, and
Date

Contains Time, DateTime, and Date types in the current
locale

Note the following conventions for the Range field:

• Logical operator: specifies a range with respect to positive or negative infinity. For
example, ">=25" means "from 25 to positive infinity" and "<18" means from
negative infinity up to but not including 18.

• Square bracket "[": specifies a range that includes this end point value. For
example, "[18..25)" means "from 18 up to but not including 25".

• Round bracket ")": specifies a range that excludes this end point value. For
example, "(18..25]" means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About the Value Set Allowed in Actions
Option

When you define values or ranges in a value set you might define some ranges or
values corresponding to non-permissible values. For example, in a value set for driver
ages you would typically not allow a value that contains values less than 0. Thus,
when a fact with driver data includes an age property associated with a driver ages
value set, then you should not be able to create or modify a fact that has the age
property set to a value such as -1. In a value set you select Allowed in Actions for
valid values and clear this option for invalid values.

The value set option Include Disallowed Values in Tests allows you to include all the
values, whether Allowed in Actions is selected or not, in Decision Table conditions
and in rule tests. By including all values or ranges you can explicitly test for illegal
values. Using the option Include Disallowed Values in Tests you can handle two
possible cases:

1. The input data for the Oracle Business Rules Engine is clean and does not contain
invalid data (such as a negative age). In this case, you should clear the Include
Disallowed Values in Tests. Note: the reason you do not want to make age < 0
an Allowed in Actions is this provides design time validation warnings if you try to
create an action that uses an invalid value, such as the following: modify(driver,
age: -1)). For more information, see Using Value Sets as Constraints for Options
Values in Rules.

2. You want to consider excluded values in rule tests and in Decision Tables. In this
case, you should select Include Disallowed Values in Tests. This is useful when
the input data for the Oracle Business Rules Engine may not be clean and may
contain invalid data (for example an invalid negative age). A Decision Table that
provides actions for all value sets could include cases for excluded values and
provide an appropriate action, such as asserting an error fact. To handle this you
could either select the Allowed in Actions field for every value in the value set,
or, leave the Allowed in Actions field configured as is and select the Include
Disallowed Values in Tests field. Using the Include Disallowed Values in Tests

Chapter 3
Working with Value Sets

3-24

field is not only convenient, you do not need to reconfigure every value, it also
preserves the configuration of Allowed in Actions so that you can easily reuse
this value set to handle the first case (when you clear Include Disallowed Values
in Tests).

3.6.8 What You Need to Know About Values
When you enter a value in a value set, the value you supply must be valid for the type
specified for the value set. If the value you enter is not valid for the value set type,
Rules Designer makes the value you supply a string by adding quotation marks.
Adding quotation marks is the only way to make a legal literal when the user provided
data is not appropriate for the specified type. For example, if you add an int type LOV
value set, and then supply a value 2.2, Rules Designer shows a warning such as the
following:

RUL-05833: Invalid characters "2.2" in value

To fix this problem either enter a valid value for the value, for example in this case the
value 2, or change the type of the value set.

For an additional example, when you enter a value for a value, for example if you enter
a value with value set with data type short and add a value with the value 999999,
Rules Designer assigns this the value "999999". The maximum value for a short is
32767. In this case you see a warning related to the value, similar to the previous
example, because a String is not a valid value for a value set with data type short. The
solution to this is to enter appropriate values for all values (in this example, enter a
value less than or equal to 32767).

3.7 Associating a Value Set with Business Terms
After you define a global value set, you can associate parts of the data model with the
global value set (if their types are compatible). In this way, condition cells in the
Conditions area can automatically be assigned a value set when you define a
Decision Table. Also, when a value set is associated with a business term, Oracle
Business Rules uses the values or ranges that you define as constraints for the values
for expressions for the business terms in rules.

You can associate the following four kinds of business terms with a value set:

• Fact Property

• Function Result

• Function Argument

• Global Value

3.7.1 How to Associate a Value Set with a Fact Property
To prepare for creating Decision Tables, you can associate a global value set with fact
properties in the data model.

To associate a value set with a fact property:

1. From Rules Designer, select the Facts navigation tab.

Chapter 3
Associating a Value Set with Business Terms

3-25

2. Select the fact type to edit and click the Edit button. This displays the appropriate
Edit Fact dialog for the fact type you select.

3. In the Properties table, under Value Set, select the cell for the appropriate fact
property and from the list select the value set you want to associate with the
property. For example, see Figure 3-12.

Figure 3-12 Defining a Value Set for a Property

4. On the Edit Fact page, click OK.

3.7.2 How to Associate a Value Set with Functions or Function
Arguments

To prepare for creating Decision Tables you can associate a global value set with
functions in the data model.

To associate a value set with a function return value:

1. From Rules Designer, select the Functions tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, under Value Set, select the cell and from the list select the
value set you want to use. For example, see Figure 3-13.

Chapter 3
Associating a Value Set with Business Terms

3-26

Figure 3-13 Defining a Value Set for a Function Return Value

3.7.2.1 How to Associate a Value Set with a Function Argument

To associate a value set with a Function argument:

1. From Rules Designer, select the Functions navigation tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, in the Arguments area select the appropriate argument.

4. For the specified argument, under Value Set, select the cell and from the list
select the value set you want to use.

3.7.3 How to Associate a Value Set with a Global Value
To prepare for creating Decision Tables, you can associate a global value set with
global values in the data model.

To associate a value set with a global value:

1. From Rules Designer, select the Globals navigation tab.

2. Select the global value to edit.

3. In the Globals table, under Value Set, select the cell for the appropriate global
value, and from the list, select the value set that you want to associate with the
global value. For example, see Figure 3-14.

Chapter 3
Associating a Value Set with Business Terms

3-27

Figure 3-14 Defining a Value Set for a Global Value

Chapter 3
Associating a Value Set with Business Terms

3-28

4
Working with Rulesets and Rules

Ruleset is a Oracle Business Rules data model element that you use to group one or
more rules or Decision Tables. Learn how to work with dictionaries, nested tests, and
simple and tree mode rules, and Expression Builder.

• Introduction to Working with Rulesets, Rules, and Business Phrases

• Working with Rulesets

• Working with Rules

• Introduction to Verbal Rules and Business Phrases

• Validating Dictionaries

• Using Advanced Settings with Rules and Decision Tables

• Working with Nested Tests

• Working with Advanced Mode Rules

• Working with Extended Tests

• Working with Tree Mode Rules

• Using Date Facts_ Date Functions_ and Specifying Effective Dates

• Introduction to Expression Builder

• Using Value Sets as Constraints for Options Values in Rules

• Importing Runtime Rules Changes From Repository Into JDeveloper

• How to Model Rules When the Data Model is Deep

For more information, see What Are Rulesets?.

4.1 Introduction to Working with Rulesets, Rules, and
Business Phrases

Use business rules to define key decisions and policies for a business.

Some of these decisions and policies include:

• Business Policies: for example spending policies and approval matrices

• Constraints: for example valid configurations or regulatory requirements

• Computations: for example discounts, premiums, or scores

• Reasoning Capabilities: for example offers based on customer value

Oracle Business Rules provides multiple approaches to writing rules:

• IF/THEN rules - rules are expressed as IF/THEN statements. There are two ways
of modeling IF/THEN rules. General rules use a pseudo-code language to express
rule logic. Verbal rules use natural language statements to express rule logic.

4-1

• Decision Tables, which display multiple related rules in a single spreadsheet-style
view.

Business phrases are used to provide a natural language vocabulary for the
construction of verbal rules' tests and actions. They are not used in general rules.

This chapter includes details for working with IF/THEN rules. For information on
working with Decision Tables, see Working with Decision Tables.

4.2 Working with Rulesets
A ruleset provides a unit of execution for rules and Decision Tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on and
off the stack. In rulesets, rule priority specifies the order in which the rules should be
fired.

Rulesets also include an effective date specification that controls when a ruleset is
active. A ruleset can be:

• always active

• active during a time range

• active during a date range

• active during a time and date range

4.2.1 How to Create a Ruleset
All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and
Decision Tables into a unit of execution.

To create a rule set:

1. In Rules Designer, go to the Rule Sets tab.

2. Click the Create rule set button. This displays the Create Rule Set dialog.

3. Enter a name in the Name field.

Note:

The names of ruleset and ruleset alias, business rules, and any other
rule objects must begin with a letter and can contain only letters and
numbers. They must not contain spaces or special characters like ., -,
_, :, ,, "".

4. Enter a description in the Description field.

5. Click OK.

4.2.2 How to Set the Effective Date for a Rule Set
Effective date support provides the ability to specify a start date and an end date for a
ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date

Chapter 4
Working with Rulesets

4-2

range in which the rules and Decision Tables within the ruleset are effective. For more
information on effective dates, see Using Date Facts_ Date Functions_ and Specifying
Effective Dates.

To set the effective date for a ruleset:

1. Select the ruleset name from the Rule Sets tab.

2. Click the navigation button next to the ruleset name to expand the ruleset
information to show the ruleset Name, Description, and Effective Date fields, as
shown in Figure 4-1.

Figure 4-1 Ruleset Showing Effective Date Field

3. Select the Effective Date entry. This displays the Set Effective Date dialog, as
shown in Figure 4-2.

Figure 4-2 Using the Set Effective Date Dialog

4. Use the Set Effective Date dialog to specify the effective dates for the ruleset.
Clicking the Set Date button displays a calendar to assist you in entering the From
and To field data.

You can specify an effective start date and or an effective end date for a ruleset, a
rule, or a Decision Table. For information on specifying the effective date for a ruleset,
see How to Set the Effective Date for a Rule Set.

4.2.3 How to Set the Effective Date for a Rule
You can specify an effective start date and or an effective end date for a rule.

To set the effective date for a rule:

1. Select the ruleset name from the Rulesets navigation tab.

2. Select a rule within the ruleset.

Chapter 4
Working with Rulesets

4-3

3. Next to the rule name click Show Advanced Settings.

4. Select the Effective Date field. This displays the Set Effective Date dialog.

5. Use the Set Effective Date dialog to specify the effective dates for the rule.
Clicking the Set Date button displays a calendar to assist you in entering the From
and To field data.

6. In the Set Effective Date dialog, click OK.

4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset
As the number of rules in a ruleset increases, it can be difficult to navigate the list of
rules. You can instruct Rules Designer to filter the list of rules, to display only rules of
interest. For example, you can display only active rules or only rules that have
validation warnings.

For more information on creating rules, see Working with Rules.

To use a filter to display matching rules in a ruleset:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. To show the rule filter settings, next to the ruleset name, click Show Filter Query
as Figure 4-3 shows.

Figure 4-3 Showing or Hiding a Filter Query in a Rule Set

3. In the Filter Query field, click <insert test> to insert a default test.

4. Configure the default test.

In this case, as shown in Figure 4-4, when you click an <operand> you can
choose from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands

Operand Description

name Matches against the rule name.

Chapter 4
Working with Rulesets

4-4

Table 4-1 (Cont.) Rule Filter Query Operands

Operand Description

description Matches against the rule description.

priority Matches against the rule priority. For more information, see
How to Set a Priority for a Rule.

start date Matches against the rule start date. For more information,
see What You Need to Know About Effective Dates.

end date Matches against the rule end date. For more information,
see What You Need to Know About Effective Dates.

minutes until start
date

Matches against a specified number of minutes until the rule
start date. For more information, see What You Need to
Know About Effective Dates.

minutes until end
date

Matches against a specified number of minutes until the rule
end date. For more information, see What You Need to
Know About Effective Dates.

days until start date Matches against a specified number of days until the rule
start date. For more information, see What You Need to
Know About Effective Dates

days until end date Matches against a specified number of days until the rule
end date. For more information, see What You Need to
Know About Effective Dates

years until start
date

Matches against a specified number of years until the rule
start date. For more information, see What You Need to
Know About Effective Dates

years until end date Matches against a specified number of years until the rule
end date. For more information, see What You Need to
Know About Effective Dates

is active Matches against whether the rule is active. For more
information, see How to Select the Active Option.

is valid Matches against whether the rule has validation warnings.
For more information, see Understanding Rule Validation.

referenced fact types Matches against one or more fact types.

Chapter 4
Working with Rulesets

4-5

Figure 4-4 Filter Query Operands

For more information, see How to Define a Test in a Verbal Rule.

5. Select the operator to choose an operator for the comparison. For example, for the
name you can select contains from the operand list.

6. Enter a comparison operand for the right-hand-side of the filter test. For example,
enter the string Policy.

7. When the filter query is complete you can apply the filter to the rules in the ruleset:

a. To apply the filter, select the Filter On check box.

Rules Designer displays only the rules that match the filter query as Figure 4-5
shows.

Figure 4-5 Enable Filter Query in a Rule Set

b. To disable the filter query, clear the Filter On check box.

Rules Designer displays all the rules in the ruleset.

Chapter 4
Working with Rulesets

4-6

c. To delete the filter query, select it and press Delete or click Clear Filter.

4.2.5 Using Auto Complete when Selecting Component Values from a
List

The Rules Designer enables you to easily set values for the following components of a
business rule:

• Expressions

• Conditions

• Operands

• Actions

You can edit these components by clicking them in the Rules Editor and selecting the
desired value from a drop down list or tree. You can also enter the name of the desired
value in the text area at the top of the list. When you begin entering text, the list of
options are filtered as shown in Figure 4-6.

Figure 4-6 Using the Auto Complete Function

In this figure, only the options beginning with the text entered are displayed.

4.3 Working with Rules
You create business rules to process facts and to obtain intermediate conclusions that
Oracle Business Rules can process. You create rules in a ruleset, so before working
with rules you must create a ruleset (or use the default ruleset).

For more information on creating a ruleset, see Working with Rulesets.

You can test rules as you design them without having to deploy your application. For
more information, see Testing Decision Functions Using a Rules Function.

Rules Designer rule validation can assist you when you work with rules by showing
warnings for incorrect or incomplete rules. To show the validation log window, click the
Validate button or select View>Log and select the Business Rule Validation tab.
Note that you must correct all warnings before you can test or deploy rules. For more
information on rule validation, see Understanding Rule Validation.

As the number of rules in a ruleset increases, you can configure Rules Designer to
filter the list of rules to show only rules of interest. For more information, see How to
Use a Filter to Display Matching Rules in a Ruleset.

Chapter 4
Working with Rules

4-7

4.3.1 How to Add General Rules
To create a general rule, first add the rule to a ruleset, and then insert tests and
actions. Actions are associated with pattern matches. At runtime, when a test in the IF
area of a rule matches, the Rules Engine activates the THEN action and prepares to
run the actions associated with the rule.

By default, Rules Designer creates rules which fire for each matching fact. Select
Advanced Mode to enable other options, such as a rule in which the same fact type
matches more than once, or never. For more information on advanced mode and
showing advanced settings, see Using Advanced Settings with Rules and Decision
Tables.

To add a general rule to a ruleset:

1. In Rules Designer, select the Rule Sets tab and click +.

2. In the Overview tab, in the General Rules panel, click +. Alternatively, in the
General Rules tab, click Create Rule or Create (+).

For example, click Create Rule to add a rule named Rule_1, as shown in
Figure 4-8.

Figure 4-7 Adding a Rule to a Rule Set

Note:

Delete rules only from the rule editor region by clicking the delete button.
Rules do not get deleted cleanly when you delete them from left tree
navigation.

Chapter 4
Working with Rules

4-8

4.3.2 How to Add Verbal Rules
Verbal rules are created and executed in a similar fashion to general rules. However,
there are some differences.

To create a verbal rule, first add the rule to a ruleset, and then insert tests and actions.
As you define a verbal rule, you add business phrases which can either be
automatically derived by the system, or defined by you. You can define business
phrases before writing a rule, or after.

Verbal rules do not support Advanced Mode or Tree Mode.

To add a verbal rule to a ruleset:

1. In Rules Designer, select the Rule Sets tab and click +.

2. In the Overview tab, in the Verbal Rules panel, click +. Alternatively, in the
Verbal Rules tab, click Create Verbal Rule or Create (+).

For example, click Create Verbal Rule to add a rule named VerbalRule1, as
shown in Figure 4-8.

Figure 4-8 Adding a Verbal Rule to a Rule Set

4.3.3 How to Define a Test in a Rule
To create a test in a rule you add conditions for facts. For example, with a sample
CustomerOrder fact with an annual spending property, you can add a test to determine
if a customer order is associated with a high value of spending, based on the annual
spending for the customer. Note that you can use value sets to limit the values for
tests and actions in rules. For more information, see Using Value Sets as Constraints
for Options Values in Rules.

Figure 4-9 shows this sample rule.

Chapter 4
Working with Rules

4-9

Figure 4-9 Adding a Test to a Rule

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts. For this sample rule, Rule_1, when
a fact matches the Rules Engine modifies the fact and then modifies the value
property to "High."

To define tests in rules:

1. In Rules Designer, click + from the Rule Sets tab, add or select the rule you want
to use, for example, select Rule_1.

2. The IF area of the rule includes a left-hand-side <operand> and a right-hand-side
<operand>, as shown in Figure 4-14.

Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side
operand

3. In the rule, click <insert test> and choose simple test, for example.

4. In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area
and a list, as shown in Figure 4-15:

Chapter 4
Working with Rules

4-10

Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand.
For example, in the test IF CustomerOrder.annualSpending > <operand>,
valid values for <operand> must agree with the type of CustomerOrder field
annualSpending.

5. In a test, you replace the operator with the desired logical operator or accept the
default (==). To do this, select the default == operator. This displays a field and a
list. The list may contain additional operators, depending on the datatype of the left
operand. For example, to test strings, if you select a String operand on the left
hand side, then additional String operators, such as startsWith and
equalsIgnoreCase are available as shown in Figure 4-16.

Figure 4-12 Configuring String Operators in a Rule

Chapter 4
Working with Rules

4-11

Similarly, to test a logical condition between the left-hand and right-hand
operands, select one of the logical operators: == (equality), != (not equal), >
(greater than), >= (greater than or equal to), < (less than), <= (less than or equal
to). For more information on the operators, see Oracle Business Rules Built-in
Classes and Functions.

6. In a test, you replace the right-hand-side operand with a value.

Configure the <operand> placeholder as you would for any operand.

For example, enter >25 into the text entry area and press Enter or Return, as
shown in Figure 4-13.

Figure 4-13 Configuring the Right-hand-side Operand of a Test in a Rule

4.3.4 How to Define a Test in a Verbal Rule
To create a test in a verbal rule you select a derived or user-defined business phrase,
or write a new user-defined business phrase, for which you supply details later.

As you enter text in a verbal rule test, the Rules Editor displays a drop down list of
related business phrases.

To define tests in verbal rules:

1. In Rules Designer, add a new verbal rule, or select the verbal rule you want to use.

2. The IF area of the rule includes a placeholder <insert test>, as shown in
Figure 4-14.

Chapter 4
Working with Rules

4-12

Figure 4-14 Rule Test with Left-hand-side operand and Right-hand-side
operand

3. In the rule, click <insert test> and begin to type a test in text entry box that
appears.

4. As you type text (such as 'policy', for example), a list of related business phrases
are displayed as shown in Figure 4-15. Select the one you want.

Figure 4-15 Configuring a Test in a Verbal Rule

5. You can refine the list if needed. To display more choices, select a business
phrase and press the Tab key. The list is populated with business phrases related
to the one you selected, as shown below.

Figure 4-16 Refining Suggested Business Phrases in a Verbal Rule

Chapter 4
Working with Rules

4-13

6. If there are parameters in your business rule, such as '{value}', click on them and
specify their details.

7. If you have written a new business phrase, the rule is put into draft mode. Define
the business phrase in the Business Phrases tab. For more information, see How
to Create Business Phrases.

4.3.5 What You Need to Know About Oracle Business Rules Test
Variables

Oracle Business Rules test variables provide a way to shorten lengthy expressions
that occur in rule and decision table conditions and actions. The variable and its value
can be represented as an inline business term definition. The test variables are also
called as inline aliases.

The option to insert test variables appears as a list next to <insert test> in the rules
condition section. As part of the definition of rule condition, you can define a variable to
represent a complex expression, a mathematical expression, or callouts to functions.

For example you have an XML fact called Song that has an attribute as composer
having a function called size. When referring to the attribute, instead of using
Song.composer.size() every time, you can just define a variable as the following:

lo = Song.composer.size()

Subsequently, in tests, you can use lo as part of your expressions. The expression
can be anything from a simple to a complex expression. For example, in the body of a
function, if you click <insert action>, you can see expression as a part of the available
options.

Figure 4-17 displays a test variable.

Figure 4-17 Rules Test Variable

Chapter 4
Working with Rules

4-14

Once you define an inline alias, for subsequent test conditions, the inline alias is
available in the list of the operands. The scope of an inline alias is restricted to the
subsequent tests in a particular rule, in which the inline alias is defined. In case of a
nested test, you can still use the inline alias, because the nested test is a part of the
base test where you have defined the alias. This is true even for any test that you
define even within the nested test. The scope of the inline alias is not just restricted to
the test conditions of the base and its nested test, but also to the actions of that rule. If
the inline alias is defined as a part of a nested test condition and not as a part of the
main test condition, even then the alias will be available to all the subsequent test
conditions and actions within or outside the main nested test.

However, if you define an inline alias inside a not nested test, then the scope of the
inline alias is restricted only to the subsequent tests inside the not nested test and not
to any tests that are outside the not nested test.

The inline aliases can be used both in If-Then rules as well as Decision Tables. In a
Decision Table, in Advanced Mode, you can show or hide patterns as well as enter a
pattern by clicking <insert pattern>. After you insert a pattern, you can insert tests. In
normal mode, you can show or hide tests as well as enter a test by clicking <insert
test>.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create
any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests

4.3.6 How to Define Range Tests in Rules
To create a range test in a rule, you add conditions for facts. For example, with a
sample CustomerOrder fact with an annual spending property, you can add a test to
determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF
 CustomerOrder.annualSpending between 100 and 2000
THEN
 Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define range tests in rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).

Chapter 4
Working with Rules

4-15

3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.

5. The test in the IF area of a rule includes a left-hand side <operand> and a right-
hand-side <operand>.

6. In a range test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area
and a list, as shown in Figure 4-18:

Figure 4-18 Adding a Test Left hand-side Operand to a Rule

a. To enter a value, use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.
The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder.annualSpending > <operand>,
valid values for <operand> must agree with the type of CustomerOrder field
annualSpending.

7. In a range test, you choose the between operator. To do this, select the default ==
operator. This displays a text entry area and a list. Select between as shown in
Figure 4-19.

Chapter 4
Working with Rules

4-16

Figure 4-19 Configuring the Operator of a Range Test in a Rule

This adds two more <operand> placeholders.

8. Configure the <operand> placeholders as you would for any operand.

For this example, the test is true when the left-most operand
(CustomerOrder.annualSpending) is between the values 100 and 2000.

4.3.7 How to Define Set Tests in Rules
To create a set test in a rule, you add conditions for facts. For example, with a sample
CustomerOrder fact with a line item property you can add a test to determine if the line
item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF
 CustomerOrder.lineItem.sku in 12345, 43255, 76348
THEN
 Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define set tests in rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).

3. Add or select the rule you want to use, for example select Rule_1.

4. In Rule_1, in the IF area select <insert test>.

5. The test in the IF area of a rule includes a left-hand side <operand> and a right-
hand-side <operand>.

6. In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area
and a list as shown in Figure 4-20:

Chapter 4
Working with Rules

4-17

Figure 4-20 Adding a Test Left-hand-side Operand to a Rule

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

7. In a set test, you use the in operator. To do this, select the default == operator.
This displays a text entry area and a list. Select in as shown in Figure 4-21.

Figure 4-21 Configuring the Operator of a Set Test in a Rule

This adds two more <operand> placeholders in a comma separated list and an
<insert> placeholder as shown in Figure 4-22.

Figure 4-22 In Operator in a Set Test

Chapter 4
Working with Rules

4-18

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test
Expression.

8. Configure the <operand> placeholders as you would for any operand as shown in
Figure 4-23.

Figure 4-23 Configuring the Operands of a Set Test in a Rule

The test is true when the value of the left-most operand
(CustomerOrder.lineItem.sku) is any of 12345, 43255, or 76348.

4.3.8 How to Define an Action in a General Rule
To create a rule you insert tests and you insert actions. The actions are associated
with pattern matches. When a test in the IF area of a rule matches, the Rules Engine
activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For
each form shown in Table 4-2 the options that Rules Designer presents are context
sensitive, so the lists and the number of items you work with may be different,
depending on which action you add and the choices you make while you enter the
action. Table 4-2 shows the basic actions; additional actions are available with
Advanced Mode. For more information on advanced mode see Using Advanced
Settings with Rules and Decision Tables.

To define actions in general rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In a general rule, in the THEN area, select <insert action>. This displays the add
action list as shown in Figure 4-27.

Chapter 4
Working with Rules

4-19

Figure 4-24 Adding a Modify Action to a Rule

3. In the add action list, select the type of action you want to add. For example, select
modify. You can also enter the name of the action in the text area. As you begin
entering a name, the list of available choices is automatically filters. This is useful
when there are a large number of options available.

You can add any required action ranging from assert, call, modify to even
conditional actions such as if, else, elseif, while, for, if (advanced), and
while (advanced).

4. In the THEN area, select <target> to display the option list. For example, select
RequestedProduct as shown in Figure 4-25.

Figure 4-25 Adding Modify Action to a Rule and Selecting the Target

5. Select <edit property>. This displays the Properties dialog.

6. In the Properties dialog, in the Value column, enter "High" (include the double
quotation marks) and press Enter or Return as shown in Figure 4-26.

Chapter 4
Working with Rules

4-20

Figure 4-26 Adding Modify Action Property and Value to a Rule

7. In the Properties dialog, click Close. This displays the rule.

4.3.8.1 Basic Actions in a General Rule

Table 4-2 Rule Action Choices

Action Form Description

assert New Assert a new fact.

assign, Assert a new fact.

call Call a function.

modify Modify a data value associated with a matched fact.

retract Retract a fact.

assert Assert a fact.

asset tree Asserts a tree of facts given the root.

assign new Assign a new fact.

expression Perform expression.

return The return action returns from the action block of a function or a
rule. A return action in a rule pops the ruleset stack, so that
execution continues with the activations on the agenda that are
from the ruleset that is currently at the top of the ruleset stack.

RL Use an Oracle RL expression that you supply.

synchronized The synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you
acquire the specified object's lock, then execute the action-block,
then release the lock.

throw Throw an exception, which must be a Java object that
implements java.lang.Throwable. A thrown exception may be
caught by a catch in a try action block.

try The try, catch, and finally in Oracle RL is like Java both in syntax
and in semantics. There must be at least one catch or finally
clause.

Chapter 4
Working with Rules

4-21

Table 4-2 (Cont.) Rule Action Choices

Action Form Description

if, else, elseif, for,
while

Conditional actions.

4.3.9 How to Define an Action in a Verbal Rule
Like general rules, to create a verbal rule you insert tests and actions. Verbal rules
tests and actions are composed primarily from business phrases.

To define actions in verbal rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In a verbal rule, in the THEN area, select <insert action>. This displays the add
business phrase list as shown in Figure 4-27.

Figure 4-27 Adding an Action to a Verbal Rule

3. In the business phrases list, start to type the action you want to display a list of
suggested business phrases.

You can also type keywords if you aren't certain of how to phrase your action. For
example, if you know you want to calculate a premium in a particular way, you
might type 'calculate Premium' to see related business phrases.

Chapter 4
Working with Rules

4-22

Figure 4-28 Adding an Action to a Verbal Rule

4. Select a business phrase if one is available that meets your needs.

5. To refine the list of business phrases further, select one related to what you want
to use and press the Tab key.

The list is displayed with a refined set of business phrases. Select the phrase you
want.

Figure 4-29 Adding an Action to a Verbal Rule

6. If no business phrases in the list meet your needs, type a business phrase and
select Add New Business Phrase to instantiate a new business phrase. Complete
the definition of the business phrase in the Business Phrases tab.

4.3.10 What You Need to Know About Rule Actions
A rule loop occurs when the value for a condition is changed by an action. Loops can
occur across rules in a single rule, spread over several Decision Tables, or spread
over rules and Decision Tables in the same ruleset. You need to avoid creating rule
actions that modify fact properties that are used in rule conditions. At runtime, such
rules could cause an infinite loop.

Chapter 4
Working with Rules

4-23

4.3.11 What You Need to Know About Oracle Business Rules
Performance Tuning

In most cases, writing of rules should not require a focus on performance. However,
there are tips that can that help you to enhance and maximize rule performance.

For more information on Oracle Business Rules performance tuning, see Oracle
Business Rules Performance Tuning in Tuning Performance.

4.4 Introduction to Verbal Rules and Business Phrases
Verbal rules work hand in hand with business phrases to provide a flexible way author
rules using natural language statements to express rule logic in domain specific
sentences that are similar to spoken language.

Business phrases provide the logic behind conditions that are used in the composition
of the verbal rule.

You can write verbal rule tests and actions using derived business phrases as well as
user-defined business phrases. Derived business phrases are automatically created
using facts, globals and other information in the dictionary while user-defined phrases
can be explicitly authored to augment derived phrases. Further, user-defined phrases
can either be pre-created or created as needed while composing the verbal rule.

As you write a verbal rule, you can use suggested business phrases, or instantiate
your own on the fly and provide their implementation details later. Alternatively, you
can create the business phrases you need for your verbal rule first, and then complete
the verbal rule.

4.4.1 Working with Business Phrases
You create business phrases in the Business Phrases tab of the Rules Designer.

Business phrases comprise three parts:

• Parameters - parameters defining the types of variables that can be passed to the
business phrase

• Value - the business phrase expression, including placeholders for parameters if
any

• Mapping - definitions of the logic defining the business phrase conditions

There are two types of business phrases:

• Test business phrases - define conditions. These provide the same types of logic
as the IF part of a general rule. For more information, see How to Define a Test in
a Rule.

• Action business phrases - define the actions to perform if the conditions defined by
the test business phrases in a verbal rule are met. These provide the same types
of logic as the THEN part of a general rule. For more information, see How to
Define an Action in a Verbal Rule.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-24

4.4.1.1 Business Phrases Tab
You create both test and action business phrases in the Business Phrases tab of the
Rules Designer, as shown in Figure 4-30.

Figure 4-30 Business Phrases Tab

The tab includes the following sections:

• Business Phrases list

• Parameters

• Value

• Mapping

Business Phrases list

The Business Phrases list displays the business phrases included in the dictionary.

Use the toolbar controls to filter the list by searching, to refresh the list, to add new test
or action business phrases, and to delete the currently selected business phrase.

The list displays business phrases and their attributes: Value, Form and Draft.

Mark a business phrase as draft by checking the Draft check box directly in the list.

Business phrases containing validation errors are marked with a red squiggly
underscore. Hover over them to see the error in a pop-up.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-25

Parameters

Use the Parameters panel to view and edit parameters.

Click Insert to add a parameter to the value of the business phrase. Click Add and
Delete to create and remove parameters.

The Form attribute defines the type of parameter. Choices include:

• Value - ad hoc value. When selected, the Type can be chosen from boolean, byte,
char, double, float, int, long, short or String

• Variable - a variable which is already defined within the scope of the business
phrase. When selected, the Type can be chosen from one of the defined fact types
in the dictionary.

• Expression - enter an expression

Value

Edit the definition of the business phrase in the Value panel. The value is also used as
the display name of the business phrase in the Business Phrases list, and in business
phrases displayed in choice lists when authoring a verbal rule.

Mapping

Edit the logical definition of conditions for the business phrase in the Mapping panel. A
business phrase mapping contains similar logical constructs to what you would see if
the business phrase logic were authored as a general rule. See the discussions of
tests and actions in Working with Rules for principles and procedures which also apply
to the creation of business phrase mappings.

4.4.1.2 Draft Business Phrases and Verbal Rules
Business phrases can be marked as being in draft status.

You can set or override the draft status of a business phrase by checking or
unchecking Draft in the Business Phrases list.

The draft status of a verbal rule is derived from the business phrases it references and
can not be manipulated directly. If a verbal rule contains business phrases marked
draft, the rule is also marked draft. The verbal rule description panel is changed to a
solid blue color, and the word 'Draft' appears next to the rule name, as shown in
Figure 4-31. When all business phrases referenced by the verbal rule are no longer
marked draft, the verbal rule is taken out of draft status.

Figure 4-31 Verbal Rule Marked Draft

Draft business phrases and verbal rules are not validated and are not included in the
dictionary for execution. This allows you to continue to use or test a dictionary as you
refine your business phrases and verbal rules.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-26

As you write a verbal rule you can compose business phrases that do not yet exist in
the dictionary. These are automatically added to the list of business phrases and
marked draft, and the verbal rule is marked draft as well.

4.4.2 How to Create Business Phrases
You create business phrases in the Business Phrases Tab. You can also specify a
business phrase while writing a verbal rule and then complete its definition later in the
Business Phrases tab.

Use the Business Phrases tab to add, modify, and delete business phrases.

To Create a New Business Phrase

1. In Rules Designer, select the Business Phrases tab and click Create (+) to
create a test business phrase. Select either Test Business Phrase or Action
Business Phrase.

A new business phrase is created.

2. Enter the definition of the business phrase in the Value panel. Placeholders for
parameters that have not yet been defined can be included by typing their name
wrapped in curly braces. For example:

{customer} is single

3. Define parameters in the Parameters panel. Click Create (+) to add a new
parameter. Double-click its name to edit it. Specify its Form, and Type. Optionally,
specify a Value Set.

4. To add a parameter to the business phrase value, click Insert.

5. Define the mapping for the business phrase in the Mapping panel. Begin by
clicking <insert test>. Select tests and specify operands. Add additional tests if
needed.

4.4.2.1 Example Business Phrase Creation Scenario
For this example, assume you have an Insurance Quote project with most of the
project definitions complete. Perhaps you want add a business phrase that tests to see
if a customer is a minor, and to invalidate the policy.

You create a new test business phrase and provide the value {customer} is a minor.

Next, you define the parameter customer, and map it to your previously defined
Customer fact.

Now you provide the mapping that specifies the condition. You click on <insert test>
and select simple test. You click on the left <operand>, expand customer and select
customer.age. You click on the right operand and specify the value 21.

The test business phrase looks like Figure 4-32 below.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-27

Figure 4-32 Test Business Phrase Example

Now you create an action business phrase to set the deductible to a high value and
give it the value Set High Deductible.

You create a variable called policy and map it to your previously defined Policy fact.

You click <insert test> in the Mapping panel and select Expression. You click
<expression> and the Expression Editor displays. You navigate to
policy.deductible, select it, and click Insert into Expression. You complete the
expression with '= 2000' and click OK.

Your action business phrase looks like the Figure 4-33 below.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-28

Figure 4-33 Action Business Phrase Example

4.4.2.2 Translating Business Phrases
The Value attribute of Business phrases that have been added to the dictionary can be
translated, regardless of whether they originated as derived business phrases or as
user-defined business phrases.

In the Business Phrases tab, select the business phrase to translate and click Edit
Translation Bundles in the Value panel. Edit translations in the Bundle Editor dialog
that appears.

4.4.3 Choosing or Adding Business Phrases in Verbal Rules
Verbal rules use business phrases to specify the IF and THEN tests and actions.

When defining a test or action in a verbal rule, you enter text which triggers a drop-
down list of choices. From the list, you can select existing business phrases from the
dictionary, automatically generated business phrases, or you can instantiate your a
new business phrase based on what you typed, provide its implementation details later
in the Business Phrases tab.

4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule
You can instantiate new business phrases while authoring a new verbal rule simply by
typing them into a test or action instead of selecting one from the drop down list.
These business phrases are marked draft, and the verbal rules which use them are
also marked as draft.

In the example below, the desired business phrase Customer is low risk is entered
as a test. The business phrase is not shown in the drop down list. It was not
automatically generated, and has not previously been defined in the dictionary.

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-29

Figure 4-34 Adding a New Business Phrase to a Rule

The verbal rule is marked as a draft.

Figure 4-35 New Business Phrase Added and Rule is Marked Draft

The business phrase marked as a draft and is added to the Business Rules list. The
parameters (if any) and mapping information must still be specified.

Figure 4-36 Business Phrases Added From Verbal Rule Marked Draft

Chapter 4
Introduction to Verbal Rules and Business Phrases

4-30

4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule
A robust list including both previously user-defined and auto-generated derived
business phrases, sorted by relevancy, is automatically provided as you author a test
or action.

User-defined and derived business phrases are not visually distinguished from one
another in the drop down list

4.4.3.3 Derived Business Phrases
Derived business phrases are automatically created and are based on business
objects and data model as defined in the dictionary based. These are created on the
fly and based on what the system calculates you intend to author, based on your typed
input. These are not persisted if they are not added to the verbal rule.

Derived business phrases, once added to a verbal rule, are just normal business
phrases and support parameters and translation.

4.4.3.4 Choosing Which Business Phrases to See in the List
Use the Settings tab > Dictionary Settings > Phrase Suggestions > Value drop down to
control the types of business phrases seen in the drop down pick lists shown while
authoring verbal rules' tests and actions.

Choices include:

• All - display both user-defined business phrases in the dictionary, and derived
business phrases

• Auto Suggestions - display only derived business phrases

• Business Phrases - display only user-defined business phrases from the dictionary

4.5 Validating Dictionaries
Rules Designer performs dictionary validation when you make any change to the
dictionary. Rules Designer validation can assist you when you work with rules or
Decision Tables.

To show the validation log window, click the Validate button or select View>Log and
select the Business Rule Validation tab. This displays warnings for incorrect or
incomplete rules. Note that you must correct all warnings before you can test or deploy
rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects. You can use the validation message information
to locate the dictionary object and to correct problems. In addition, Rules Designer
flags objects with validation warnings with a validation indicator (a red, wavy
underline), as shown in Figure 4-37.

Chapter 4
Validating Dictionaries

4-31

Figure 4-37 Validation Warnings Shown in Log and On Screen with Wavy
Underline

If a dictionary is invalid, you can save the dictionary. However, you can only generate
RL Language for a dictionary that is valid and does not display warnings in the Rules
Designer validation log.

In the validation log, each validation message includes the following:

• Message: The message provides details on the Oracle Business Rules exception
that describes the problem.

• Dictionary Object: This field displays a path that indicates details that should allow
you to identify a component in the dictionary.

• Property: provides information on a property of the object associated with the
warning message.

When you are viewing the validation log, if you select an item and then right-click and
select from the list Select and Highlight Object in Editor, Rules Designer moves the
cursor to select the dictionary object. Note that for some validation warnings this
functionality is not possible.

4.5.1 Understanding Data Model Validation
Rules Designer performs dictionary validation when you make any change to the
dictionary. When Rules Designer displays a warning message, the validation log
includes a message that should assist you in locating the dictionary object that caused
the validation warning. For example, the following string indicates that the warning
originates from the data model object named RLFact_1. In addition, the problem is in
the property named test_int:

CarRental/Data Model/RLFact_1/test_int/Expression

Table 4-3 specifies the parts of the dictionary object name specified in a validation
message.

Chapter 4
Validating Dictionaries

4-32

Table 4-3 Data Model Dictionary Property in Validation Log

Name Description

CarRental Dictionary Name

Data Model Data Model component in dictionary.

RLFact_1 Element name in data model

test_int Property name in the specified element.

Expression Expression part of property.

For more information, see:

• Understanding Rule Validation

• Understanding Decision Table Validation

• How to Validate a Dictionary

4.5.2 Understanding Rule Validation
When you click the Validate button Rules Designer displays the validation log. When
you first add a rule you see validation warnings similar to those shown in Figure 4-38.

Figure 4-38 Business Rules - Log Validation Messages for a New Rule

The dictionary object name part of a validation message for a rule includes details that
help you to identify the ruleset, the rule, and an area in the rule that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem:

OracleRules1/Ruleset_2/Rules_1/Pattern[1]

In validation messages, the dictionary object name for a rule uses indexes that start at
1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are
designing them. For more information, see Testing Decision Functions Using a Rules
Function.

4.5.3 Understanding Decision Table Validation
When you click the Validate button Rules Designer displays the validation log. When
you first add a Decision Table you see validation warnings similar to those shown for a
new rule, as in Figure 4-38.

Chapter 4
Validating Dictionaries

4-33

Figure 4-39 Business Rules - Log Validation Messages for a New Decision
Table

The dictionary object name part of a validation message for a Decision Table includes
details that help you to identify the area of the Decision Table that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem in the first action row, and the first action cell of the Decision
Table:

OR1/Ruleset_1/DecisionTable_1/Action[1]/Action Cell[1]

In validation messages the dictionary object name for a Decision Table object uses
indexes that start at 1. For example, to indicate the first condition cell in the first row in
the Conditions area, the message is as follows:

OracleRules1/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first
row of the Conditions area in a Decision Table.

4.5.4 How to Validate a Dictionary
Rules Designer performs dictionary validation when you make any change to the
dictionary.

To validate a dictionary:

1. In Rules Designer, click the Validate button (a checkmark).

2. Select the Business Rules - Log from the messages area.

3. When you are viewing the validation log, if you select an item and then right-click
and select from the list Select and Highlight Object in Editor, Rules Designer
moves the cursor to select the dictionary object. Note that for some validation
warnings this functionality is not possible.

4.6 Using Advanced Settings with Rules and Decision
Tables

Advanced settings for rules and Decision Tables allow you to work with features that
provide advanced options that not all Oracle Business Rules users need.

Advanced settings features are shown in Figure 4-40:

Chapter 4
Using Advanced Settings with Rules and Decision Tables

4-34

Figure 4-40 Show/Hide Advanced Settings

These features include:

• Advanced Mode: allows additional pattern matching options and nested tests in
rules. Only use Advanced Mode if you have used it before. We recommend that
you use extended tests in simple mode to create any kind of condition that you
need.

For more information, see:

– How to Show and Hide Advanced Settings in a Rule or Decision Table

– How to Select the Advanced Mode Option

– Working with Advanced Mode Rules

• Simple Mode: has been updated and should be used when building complex
rules. Only use Advanced Mode if you have used it before. Advanced Mode
capability has been maintained for backward compatibility only.

For more information, see Working with Extended Tests.

• Tree Mode: makes it easier to work with master detail hierarchy, nested elements
that map to a parent child relationship. These parent child relationships among
facts are common with XML and ADF Business Components fact types. You can
use this option with the Advanced Mode option.

For more information, see How to Create Simple Tree Mode Rules.

• Rule Active: specifies that a rule or Decision Table is active or inactive. When
Rule Active is cleared, Rules Designer does not validate the specified rule or
Decision Table.

For more information, see How to Select the Active Option.

• Logical: allows you to enable or disable logical dependence between the facts
that trigger a rule and the facts asserted by a rule.

For more information, see How to Select the Logical Option.

• Allow Gaps (available only with Decision Table advanced settings). This check
box determines if validation messages are reported when gaps are detected in a
Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps

For more information, see Understanding Decision Table Gap Checking and How
to Perform Decision Table Gap Checking.

• Priority: specifies the priority for a rule or a Decision Table. Higher priority rules
run before lower priority rules, within a ruleset.

Chapter 4
Using Advanced Settings with Rules and Decision Tables

4-35

For more information, see How to Set a Priority for a Rule.

• Conflict Policy: (available only with Decision Table advanced settings). Specifies
the Decision Table conflict policy, one of the following:

– manual conflicts are resolved by manually specifying a conflict resolution for
each conflicting rule.

– auto override conflicts are resolved automatically using an override conflict
resolution when this is possible, using the automatic conflict resolution
policies.

– ignore conflicts are ignored.

For more information, see Understanding Decision Table Conflict Analysis.

• Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see How to Specify Effective Dates.

4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision
Table

In Rules Designer, next to each rule name and Decision Table name, the show or hide
advanced settings button lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:

1. Select the ruleset where you want to show advanced settings.

2. In the View field, from the list, select either IF/THEN Rules or select a Decision
Table.

3. a. To show the advanced settings, next to the rule name click Show Advanced
Settings, as shown in Figure 4-41 (there is a highlighted button shown next to
the rule name).

Figure 4-41 Show or Hide Advance Settings

b. To hide the advanced settings, next to the rule name click Hide Advanced
Settings.

4.6.2 How to Select the Advanced Mode Option
Select Advanced Mode to use Rule or Decision Table features that provide additional
pattern matching options and additional actions. For more information, see Working
with Advanced Mode Rules.

Chapter 4
Using Advanced Settings with Rules and Decision Tables

4-36

To select the advanced mode option:

1. Select the rule or Decision Table where you want to set Advanced Mode.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select the Advanced Mode.

Figure 4-42 and Figure 4-43 are examples of a rule displayed in Advanced versus
Simple Mode.

The same forms look different in Advanced Mode and Simple Mode due to the
presence and absence of "Patterns."

Figure 4-42 Advanced Mode Checked

Figure 4-43 shows the same rule with Advanced Mode cleared:

Figure 4-43 Advanced Mode Cleared

4.6.3 How to Select the Active Option
Oracle Business Rules includes the ability to specify that a rule or a Decision Table is
active or inactive. The active option is set independent of the effective dates and may

Chapter 4
Using Advanced Settings with Rules and Decision Tables

4-37

be set without changing or removing previously specified effective dates. When Rule
Active is cleared, Rules Designer does not validate the rule.

To select the active option:

1. Select the rule or Decision Table where you want to set the Rule Active option.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select Rule Active.

4.6.4 How to Select the Logical Option
A ruleset or Decision Table with the Logical option selected specifies that rules in the
generated RL Language use the logical property. The logical property allows you to
enable or disable logical dependence between the facts that trigger a rule and the
facts asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action
block in the rule dependent on facts matched in the rule condition. Anytime a fact
referenced in the rule condition changes, such that the rule's conditions no longer
apply, the facts asserted by the rule condition are automatically retracted. For more
information, see Rule Definitions in the Rules Language Reference forOracle Business
Process Management.

Using the ruleset and Decision Table Logical option you can enable or disable the
logical property for the generated RL Language associated with the rules in the ruleset
or the Decision Table. By default, the Logical option is not selected.

To select the logical option:

1. Select the rule or Decision Table where you want to set the Logical option.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select Logical.

4.6.5 How to Set a Priority for a Rule
You can set the priority for a rule or a Decision Table. You can select from a
predefined named priority list as shown in Table 4-4, or enter a positive or negative
integer to specify your own priority level. Higher priority rules run before lower priority
rules, within a ruleset. The default priority is medium (with the integer value 0).

Table 4-4 Priority String Value Mapping

Named Priority Integer Value

highest 3000

higher 2000

high 1000

medium (Default Priority) 0

Chapter 4
Using Advanced Settings with Rules and Decision Tables

4-38

Table 4-4 (Cont.) Priority String Value Mapping

Named Priority Integer Value

low -1000

lower -2000

lowest -3000

To set a priority for a rule:

1. Select the rule or Decision Table where you want to set the priority.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. In the Priority field, specify the priority value:

a. To specify a named priority, select a named priority from the Priority list.

b. To specify an integer priority, click in the Priority field and enter a positive or
negative integer value and press Enter.

4.6.6 How to Specify Effective Dates
You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:

1. Select the rule or Decision Table where you want to set the effective date.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select the Effective Date field. This displays the Set Effective Date dialog.

4. Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Using Date Facts_ Date Functions_
and Specifying Effective Dates and How to Set the Effective Date for a Rule Set.

4.7 Working with Nested Tests
In a rule or a Decision Table you can create more complicated tests using the nested
tests feature.

To use nested tests:

1. Select the rule where you want to use a nested test.

2. In the IF area, click and select Nested Test.

3. With a test selected right-click to display the list, as shown in Figure 4-44.

Chapter 4
Working with Nested Tests

4-39

Figure 4-44 Adding a Nested Test to a Rule

4. Complete the test as necessary.

4.8 Working with Advanced Mode Rules
Oracle Business Rules provides features that allow you to create advanced rules that
add support for the Oracle Business Rules feature.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create
any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests.

Oracle Business Rules provides features that allow you to create advanced rules that
add support for the following Oracle Business Rules features:

• Additional Pattern Match options (see How to Use Advanced Mode Pattern
Matching Options)

• Additional Matched Fact Naming options (see How to Use Advanced Mode
Matched Fact Naming)

• Additional Supported Action forms (see How to Use Advanced Mode Action
Forms)

• Pattern Match Aggregate Function options (see How to Use Advanced Mode
Aggregate Conditions)

For more information, see What You Need to Know About Advanced Mode Rules.

4.8.1 How to Use Advanced Mode Pattern Matching Options
The advanced mode pattern matching options specify when a rule should fire.
Table 4-5 shows the available options.

Chapter 4
Working with Advanced Mode Rules

4-40

Table 4-5 Advanced Mode Pattern Matching Options

Option Description

for each case where This is the default pattern matching option. A rule should fire
each time there is a match (for all matching cases).

there is a case where This option selects one firing of the rule if there is at least one
match.

there is no case where The value specifies that the rule fires once if there are no such
matches.

aggregate This specifies an aggregate function is applied to all matches.
For more information, see How to Use Advanced Mode
Aggregate Conditions.

To use advanced mode pattern matching options:

1. Select the rule or Decision Table where you want to use pattern matching options.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select Advanced Mode.

4. Right-click a test pattern and select Surround With... as shown in Figure 4-45.

Figure 4-45 Surrounding with an Option

Chapter 4
Working with Advanced Mode Rules

4-41

Figure 4-46 Surrounding With Option

The Surround With dialog appears.

5. Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case
where) as shown in Figure 4-47.

Figure 4-47 Default Pattern Matching Option: for each case where

6. Select the default (for each case where) option and select the desired pattern
matching option from the list as shown in Figure 4-48.

Chapter 4
Working with Advanced Mode Rules

4-42

Figure 4-48 Adding an Advanced Pattern Match Option

4.8.2 How to Use Advanced Mode Matched Fact Naming
The matched fact name field, pattern binding variable, in a rule or a Decision Table
lets you test multiple instances of the same type in a single rule. The matched fact
name lets you enter a temporary name for the matched fact to use in a test. For
example, the rules shown in Figure 4-49 show the use of pattern binding variables in a
rule that applies a discount on a shoe item when an order includes at least one
"matching" hat item.

Figure 4-49 Rule Using a Pattern Binding Variable

For example, you can create the rule, as shown in Figure 4-50 to find duplicate items
in a customer order. This example shows the use of matched in a rule.

Chapter 4
Working with Advanced Mode Rules

4-43

Figure 4-50 Rule to Find Duplicate Items in an Order

To use advanced mode matched fact naming:

1. Select the rule or Decision Table where you want to add a matched fact name.

2. Click the Show Advanced Settings button next to the rule name (see How to
Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select Advanced Mode.

4. Select the <fact type> and enter a fact type from the list.

5. Select the supplied matched fact name and modify it as needed, as shown in
Figure 4-51. For example, enter the matched fact name Order$LineItem1 and
then press Enter.

Figure 4-51 Adding a Matched Fact Variable Name

Chapter 4
Working with Advanced Mode Rules

4-44

6. Create the rule as Figure 4-52 shows. Note that you can choose a matched fact
name as an operand. Choose the LineItem1 and LineItem2 operands as needed
to create the rule.

Figure 4-52 Choosing a Matched Fact Variable Name as an Operand

Note in Figure 4-52 that the test checking:

RL.get fact ID(Order$LineItem1) > RL.get fact ID(Order$LineItem2)

Prevents a single instance of an Order$LineItem from matching both patterns that
match the Order$LineItem fact type. The ">" is required so that the rule does not fire
for different permutations of different instances. For more information, see How Do I
Correctly Express a Self-Join?.

4.8.3 How to Use Advanced Mode Action Forms
When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Table 4-6. For each form shown in Table 4-6, the options
that Rules Designer presents are context sensitive. Thus, the lists and the number of
items you see when you work with the action types are context sensitive, depending
on which action you add and the choices you make while you enter the action.

To use advanced mode action forms:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Select or add a rule or a Decision Table.

3. In the rule or Decision Table click the Show Advanced Settings button next to
the rule or Decision Table name (see How to Show and Hide Advanced Settings in
a Rule or Decision Table).

4. Select Advanced Mode.

5. With the insertion areas showing, in a rule in the THEN area select <insert
action>. This displays the action list, as shown in Figure 4-53.

Chapter 4
Working with Advanced Mode Rules

4-45

Figure 4-53 Adding an Action to a Rule in Advanced Mode

6. In the list select the action you want to add.

For example, select assign new.

7. In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

4.8.3.1 Advanced Mode Action Options in Rule Designer

Table 4-6 Advanced Mode Action Options

Action Form Description

Assert Assert a fact

Assert Tree Asserts a tree of facts given the root.

Assert New Assert a new fact.

Assign Assign a value to a variable.

Assign New Assign a value to a new variable.

Expression Perform expression.

Call Call a function.

For Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

Chapter 4
Working with Advanced Mode Rules

4-46

Table 4-6 (Cont.) Advanced Mode Action Options

Action Form Description

If Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks and
does not allow a single semicolon terminated action.

Modify Modify a data value associated with a matched fact.

Retract Retract a fact.

Return The return action returns from the action block of a function or a rule. A
return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is currently
at the top of the ruleset stack.

rl Use an Oracle RL expression that you supply.

synchronized As in Java, the synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

throw Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in a try
action block.

try The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

while While the test is true, execute the action block. A return, throw, or halt may
exit the action block.

4.8.4 How to Use Advanced Mode Aggregate Conditions
When you create a rule with Advanced Mode, Rules Designer supports the pattern
matching aggregate option. When you write rule conditions that are based not only on
one fact, but on many facts, you can use an aggregate. You use aggregate functions
when the conditions have a view spanning multiple facts.

To use advanced mode aggregates:

1. Select or create the rule or Decision Table where you want to use an aggregate
function.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Select Advanced Mode and enter the fact type you want to work with.

4. Select <insert pattern> to add a pattern and select the pattern.

5. Right-click the pattern and select Surround With.... This displays the Surround
With dialog.

6. In the Surround With dialog select Pattern Block. Click OK.

For more information, see How to Use Advanced Mode Pattern Matching Options.

7. In the pattern select the first field. By default this field contains (for each case
where), as shown in Figure 4-54.

Chapter 4
Working with Advanced Mode Rules

4-47

Figure 4-54 Adding an Advanced Pattern Match Option

8. Select the aggregate option. This adds the context sensitive fields for an
aggregate, as shown in Figure 4-55.

Figure 4-55 Using Aggregate Functions in a Rule

• Click <function> and select a function from the list.

• In the condition, click <fact type> and select a fact type from the list.

• Click <expression> and select an expression from the list.

Rules Designer by default constructs variable names as you create the aggregate
pattern. If needed for the rule you are constructing enter variable names to replace
the default variable names. Figure 4-56 shows a completed rule using aggregate.
In this example, for clarity the rule shows the variable names total_cost and
item_x.

Chapter 4
Working with Advanced Mode Rules

4-48

Figure 4-56 Completed Aggregate Function in a Rule

9. Enter additional tests as required. For this example you enter the test for items
with color "red", as Figure 4-57 shows.

Figure 4-57 Using Aggregate Functions with Rules Red Color Total Cost Rule

4.8.4.1 Using Aggregate Functions
Table 4-7 shows the available aggregate functions.

Table 4-7 Aggregate Functions for Advanced Mode Rules

Function Description

count Count of matching facts.

Chapter 4
Working with Advanced Mode Rules

4-49

Table 4-7 (Cont.) Aggregate Functions for Advanced Mode Rules

Function Description

average Average of matching facts.

maximum Maximum value of matching facts.

minimum Minimum value of matching facts.

sum Sum of matching facts.

collection Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

IF
 an order has more than 5 line items whose price is above a certain value
THEN
 the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate
function to write this sample special order rule.

When you use an aggregate function, do the following:

• Select aggregate for the pattern.

• Enter a function from the list shown in Table 4-7

• Enter or select values from the context sensitive menus:

– <variable> A name for the aggregate value.

– <expression> The value to aggregate, for example driver.age. When the
aggregate function you select is the count function the <expression> is not
used.

For example, you can compute the sum of the cost all the line items with color "red",
as shown in Figure 4-58.

Chapter 4
Working with Advanced Mode Rules

4-50

Figure 4-58 Using Aggregate Functions with Rules Red Color Total Cost Rule

4.8.5 What You Need to Know About Advanced Mode Rules
There are some special cases to keep in mind when you work with Advanced Mode
rules, including the following:

• When you work with aggregates, in actions, you do not see pattern variables. The
pattern variables are only shown for action lists when you use (foreach...) patterns.
Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is
no case patterns".

• After you select Advanced Mode the Advanced Mode stays selected and
inactive (gray), as long as your rule uses advanced options such as advanced
pattern matching. To clear Advanced Mode you must remove or undo the
advanced mode features (sometimes it is easier to start over by creating a non-
advanced mode rule and then delete the advanced mode rule).

4.8.5.1 How to Clear Advanced Mode Option
1. Select the rule or Decision Table where you want to clear Advanced Mode.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name (see How to Show and Hide Advanced Settings in a Rule or Decision
Table).

3. Consider the state of the rule:

• If you can simplify the rule to enable the Advanced Mode option (such that
the Advanced Mode button changes from gray to enabled). Then simplify the
rule and when Advanced Mode is enabled, clear Advanced Mode.

• If you can use Undo to undo the steps you used to create the Advanced
Mode rule, to get to a state where the rule is no longer in Advanced Mode,
then use this technique to simplify the rule.

• If you cannot simplify the rule, then delete the rule and re-create it.

Chapter 4
Working with Advanced Mode Rules

4-51

4.9 Working with Extended Tests
Extended tests should be used when building complex rules. Extended tests, or
Simple Mode, replaces Advanced Mode rules.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. For more information about Advanced Mode, see Working with
Advanced Mode Rules.

Everything that can be done in Advanced Mode can now be done in Simple Mode. The
UI has been streamlined and improved to enable you to more easily create complex
rules and tests, as shown Figure 4-59.

Figure 4-59 List of Extended Tests

Advanced mode rules can be converted to the equivalent simple mode rules by
clearing the Advanced Mode check box.

Extended tests are only applicable to general rules, decision tables, and while defining
business phrases. They are not visible in verbal rules.

4.9.1 Extended Test Forms
In addition to the original four tests (shown first in Table 4-8) there are new forms:

Chapter 4
Working with Extended Tests

4-52

Table 4-8 Extended Tests

Forms Description

simple test This is the building block for conditions. Compares a value
against another value, range or set.

For example: Emp.salary > 1000

variable Initializes variables.

For example: age = Duration.years
between(Emp.birthdate,RL.date.get current())

nested test(...) Encapsulates tests in a containing block.

For example: (age > 50 or Emp.salary > 50000)

negated test(...) Negates a test.

For example: not(age > 50 and Emp.salary > 50000)

all of the following all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

any of the following some of the following are true.For example:

IF

 e is a Emp and there is no Emp where Emp.salary <
e.salary <insert test> <insert test>THEN assign
e.isLowestPaid = true

is a Defines a fact.

For example: e is a Emp

boolean expression Captures a boolean expression.

For example: isEligible(Emp)

there is a case where This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding
of facts to contained is a tests.

Must have is a descendant.

Example:

There is a case where

e is a Emp and

d is a Dept and

e.salary > 1000000 and

d.name == "Marketing" and

d.employees contains e

Chapter 4
Working with Extended Tests

4-53

Table 4-8 (Cont.) Extended Tests

Forms Description

there is a
<factType1>,...<factTypeN>
where#*

This test has N or more child
tests that are ANDed

Hidden <factType> is a <factType> tests as first N children.

The child tests are all true for at least 1 case.

It is legal to have no visible child tests, in which case the where
keyword should be suppressed.

Example:

IF
 there is a Emp, Dept where
 Emp.salary > 1000000 and
 Dept.name == "Marketing" and
 Dept.employees contains Emp
THEN
 call print "there is a highly paid marketer!"
IF
there is a Emp
THEN call print "somebody works here!"

there is no case where This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to
contained is a tests satisfy all the other tests).

Must have is a descendant.

there is no
<factType1>,...,<factTypeN>
where

Hidden <factType> is a <factType> as first N children

The child tests are true for no case

Chapter 4
Working with Extended Tests

4-54

Table 4-8 (Cont.) Extended Tests

Forms Description

aggregation This test has 0 or more child tests that are ANDed.

Must have is a child (may be hidden).

v is the sum|average|minimum|maximum|count|collection
of<expression> where

Where clause omitted when there are no visible child tests.

IF
 number of employees is the count of Emp
THEN
 call print "number of employees: " + number of
employees

IF
 number of male employees is the count of Emp where
 Emp.gender == "M"
THEN
 call print "number of male employees: " + number of
male employees

Note that in both rules above, the SDK will create a hidden
nested is a test for Emp.

You can also use an explicit is a

IF
 number of male employees is the count of e where
 e is Emp and
 e.gender == "M"
THEN
 call print "number of male employees: " + number of
male employees

Figure 4-60 is an example where "there is a case where" form is used:

Figure 4-60 Extended Test Example 1

Figure 4-61 is an example where "there is no case where" form is used:

Chapter 4
Working with Extended Tests

4-55

Figure 4-61 Extended Test Example 2

For information about how to build complex rules, see Working with Rules.

4.10 Working with Tree Mode Rules
Tree Mode rules make it easier to work with a master detail hierarchy, where there are
nested elements that map to a parent child relationship.

Consider the lifecycle of an application fragment that uses business processes and
rules to process a retail purchase order (PO). The purchase order has a header with
business terms that apply to the entire PO. The PO also contains a list of shipping
destinations. Each destination has an address, a list of items to be shipped to the
destination's address, and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every
item is either "shipped" or "canceled".

Figure 4-62 shows a sample XML schema representation for the PO example. The
XML documents for the PO are tree structured. This allows a natural representation for
the PO. For example, the PO itself is the top level document element and destinations
are nested elements that contain item elements and shipment elements. Shipment
elements also contain item elements that reference the ordered items. Status has a list
of valid values.

Chapter 4
Working with Tree Mode Rules

4-56

Figure 4-62 PO Schema for Tree Mode Rules Sample

The following example of sample Purchase Order (PO) schema shows the sample
purchase order XML schema as represented in Figure 4-62.

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="PO">
 <xsd:annotation>
 <xsd:documentation>A sample element</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="header">
 <xsd:complexType>
 <xsd:attribute name="status" type="Status"/>
 <xsd:attribute name="order-date" type="xsd:date"/>
 <xsd:attribute name="customer-value"/>
 </xsd:complexType>

Chapter 4
Working with Tree Mode Rules

4-57

 </xsd:element>
 <xsd:element name="billing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="payment"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destination" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="status"/>
 <xsd:attribute name="quantity" type="xsd:int"/>
 <xsd:attribute name="availability-date" type="xsd:date"/>
 <xsd:attribute name="qoh" type="xsd:int"/>
 <xsd:attribute name="price"
 type="xsd:decimal"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="quantity"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ship-date"/>
 <xsd:attribute name="method"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="status" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="open"/>
 <xsd:enumeration value="partially shipped"/>
 <xsd:enumeration value="fully shipped"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

4.10.1 Sample Abbreviated PO XML Instance
Example 4-1 shows part of the XML for an instance of the PO schema. To use tree
mode rules you can create a rule that tests one or more business terms and if the tests
pass, one or more business terms are added or changed. Oracle Business Rules has

Chapter 4
Working with Tree Mode Rules

4-58

special support to enable error-free authoring of rules on fact trees like the sample PO
instance.

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is more
than 30 days
THEN cancel the item

Example 4-1 Sample Abbreviated PO XML Instance

<PO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org ../../../../Temp/PO.xsd"
 xmlns="http://www.example.org">
 <header/>
 <billing>
 <address/>
 <payment/>
 </billing>
 <destination>
 <address/>
 <item ID="a01"/>
 <item ID="a02"/>
 <item ID="a03"/>
 <shipment>
 <item ID="a01"/>
 <item ID="a02"/>
 </shipment>
 </destination>
</PO>

4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)
You use non-advanced tree mode, or simple tree mode, when the Advanced Mode
option is not selected and Tree Mode is selected. With this mode Rules Designer
shows ROOT: <fact type> where you enter the root fact type.

When you create rules with Tree Mode selected and Advanced Mode cleared, you
can reference properties in the tree using qualified names, for example:

• PO/destination/item.quantity that is similar to item.quantity but only items
that are a destination of PO are matched.

• PO$Destination$item.quantity that refers to a List<item>. This reference is
unchanged from non-tree mode.

With Simple Tree Mode you can only choose terms that do not require many-to-many
joins or aggregation.

For more information, see How to Create Simple Tree Mode Rules.

4.10.3 Understanding Advanced Tree Mode Rules
You use advanced tree mode when the Advanced Mode option is selected and the
Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact
type> where you enter the root fact type, as shown in Figure 4-63. Rules Designer
shows patterns for the tree structured facts but the simple tests that join the parent and
child facts are hidden.

Chapter 4
Working with Tree Mode Rules

4-59

Figure 4-63 Advanced Tree Mode

In advanced tree mode the tree mode patterns, except for the root, display as:

<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many
relationships starting at the root. For example, each fact path has a name like PO/
destination, where PO is the root fact type and the destination is a property of type
List. A 1-to-many relationship in a fact path is indicated with a "/", as in PO/
destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree
mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a
pattern. For example, p is a PO causes p to match, iterate over, all the PO facts, and d
is a p/destination causes d to match all the destinations of p. The left side of is a is
a variable, and the right side is a fact type or a fact path. By default, Oracle Business
Rules sets the variable name equal to the fact type or path. For example, PO is a PO.
A pattern can also be a pattern block. A pattern block has a logical quantifier,
negation, or aggregation that applies to the patterns and tests nested inside the block.

For more information, see How to Create Advanced Tree Mode Rules.

When you work with advanced tree mode rules, Rules Designer expects you to use an
aggregation pattern, including exists and not exists to combine terms from different
child forests into the same rule while avoiding a Cartesian product.

4.10.4 How to Create Simple Tree Mode Rules
The following procedure creates the PO rule to cancel non 30-day availability items.

Chapter 4
Working with Tree Mode Rules

4-60

IF the time between the order date and the date for availability of an item is more
than 30 days
THEN cancel the item

To create simple tree mode rules:

1. Create an IF/THEN rule in your ruleset and view the advanced settings.

For more information on adding general rules, see How to Add General Rules.

For more information on advanced settings, see How to Show and Hide Advanced
Settings in a Rule or Decision Table.

2. Select Tree Mode. Next to ROOT:, click the <fact type> placeholder and select
from the list.

Figure 4-64 Simple Tree Mode: Configuring the Root

• Select <insert test> and select from the list.

The IF statement now reads IF <operand> == <operand>.

• Select the left-hand <operand> and select an option from the list.

3. Select the Expression Builder button, as shown in Figure 4-65.

Figure 4-65 Adding a Simple Tree Mode Expression

Chapter 4
Working with Tree Mode Rules

4-61

• In the Expression Builder dialog, copy and delete the item shown in the
Expression area.

• In the Expression Builder, select the Functions tab.

• In the navigator, expand Duration and double-click the daysbetween
function.

• Remove the daysbetween argument templates.

• In the daysbetween function, paste the value you previously cut as the
second argument.

• In the Expression Builder dialog, select the Variables tab.

• For the daysbetween function first argument, use the navigator to expand PO
and expand header, and double-click orderDate.

• In the Expression Builder dialog, click OK.

For more information, see Introduction to Expression Builder.

4. In the list, in the expression area and press Enter. Select the operator and enter >.

5. Select the right-hand <operand> and enter the value 30 and press Enter, as
shown in Figure 4-66.

Figure 4-66 Simple Tree Mode: Right-Hand Operand with Value 30

• Click <insert action> and from the list select modify.

The THEN statement now reads: THEN modify <target>.

• Click <target> and from the list select PO/destination/item. The THEN
statement now reads:

THEN modify PO/destination/item (<add property>)

• Click <add property>. This displays the properties dialog.

In the properties dialog for the status name, enter the value "canceled", as
Figure 4-67 shows.

Chapter 4
Working with Tree Mode Rules

4-62

Figure 4-67 Simple Tree Mode: Action

6. In the Properties dialog, click Close.

This displays the finished rule, as shown in Figure 4-68.

Figure 4-68 Simple Tree Mode Rule Final Rule

Note that in the modify statement, PO/destination/item refers to the particular item
instance member.

4.10.5 How to Create Advanced Tree Mode Rules
The following procedure creates a free shipping rule that can be summarized as:

IF the total cost of "free shipping eligible" items to a given destination is
greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:

1. Create an IF/THEN rule in your ruleset.

For more information, see How to Add General Rules.

2. View advanced settings.

For more information, see How to Show and Hide Advanced Settings in a Rule or
Decision Table.

3. Select Advanced Mode and select Tree Mode as Figure 4-69 shows.

Chapter 4
Working with Tree Mode Rules

4-63

Figure 4-69 Advanced Tree Mode Rule for Free Shipping

4. Select the <fact type> place holder and from the list, select PO.

5. Complete the free shipping rule, as shown in Figure 4-70.

Figure 4-70 Advanced Tree Mode Free Shipping Rule

4.10.6 What You Need to Know About Tree Mode Rules
When you select Tree Mode and select a root fact type, the options lists show all
available fact types (not just the children of the root fact type). This allows you to view
all available fact types as well as the children of the root fact type. There is no option
to limit the option list to only show the children of the selected root fact type.

4.11 Using Date Facts, Date Functions, and Specifying
Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with
times and dates, and provides effective date features to let you determine when rules
are effective, based on times and dates.

Chapter 4
Using Date Facts, Date Functions, and Specifying Effective Dates

4-64

• The CurrentDate fact allows you to reason on a fact representing the current date.

• The Effective Date value lets you specify a start date and end date that defines a
date or date and time range when all the rules and Decision Tables in a ruleset, an
individual rule, or an individual Decision Table are effective.

Table 4-9 describes the available Effective Date options.

Table 4-9 Effective Date Possible Values

Effective Date Description

Always Valid Specifies to set neither "From" nor "To" dates.

From (without To date set) Valid from a certain date indefinitely into the future.

To (without a From date set) Valid from now until a certain date.

From Set and To set Valid only between two dates.

An effective date specification other than Always can be one of the following:

• Date only, with no time specification: In this case, an effective date assumes a
time of midnight of that date in each time zone.

• Date, time zone, with no time specification: In this case, an effective date assumes
a time of midnight as of the specified date in the specified time zone.

• Date, time zone, time specification: In this case, the date and time is fully
specified.

• Time specification only, with no date and no time zone: applies for all days at the
specified time.

• Time and time zone specified, with no date: applies for all days at the specified
time.

4.11.1 How to Use the Current Date Fact
You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:

1. Select a ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. In the IF area, add a condition that uses the CurrentDate fact and the date method
of Calendar type, as shown in Figure 4-71.

Chapter 4
Using Date Facts, Date Functions, and Specifying Effective Dates

4-65

Figure 4-71 Rule with Condition Using CurrentDate Fact

4.11.2 What You Need to Know About Effective Dates
By default, the Oracle Business Rules Engine implicitly manages the clock associated
with the CurrentDate fact and the effective date, setting each to the value of the
system date. Using the RL Language functions setCurrentDate() and
setEffectiveDate() you can explicitly set the current date and the effective date. For
more information, see Built-in Functions in Rules Language Reference for Oracle
Business Process Management.

An effective start date is defined as the first point in time at which a rule, Decision
Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is
effective it may fire if its condition is satisfied and if the rule is not effective, it does not
fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or
ruleset no longer actively participates in rule evaluations (not effective means the rule
does not fire).

The effective start and end date can be set on a Decision Table, but these dates
cannot be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set
independent of the effective dates and makes dates effective without changing or
removing the specified effective date. For more information on using the Rule Active
option, see How to Select the Active Option.

The precedence of the effective date, when it is defined for both a ruleset and for the
rules or Decision Tables within a ruleset, is as follows (with the top precedence being
1):

1. If the ruleset Rule Active option is cleared, then RL Language is not generated for
that entity.

2. If one or both of the effective date properties are selected for a ruleset, then those
effective start dates and effective end dates define the range of effective dates

Chapter 4
Using Date Facts, Date Functions, and Specifying Effective Dates

4-66

allowable for rules or Decision Tables that are defined within the ruleset (that is, if
in the ruleset the From check box, the To check box, or both check boxes are
selected in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset
must not violate the boundaries established by the ruleset that contains the rules
or Decision Tables. For example, a rule may not have an effective end date that is
later than the effective end date specified for a ruleset.

3. If any individual rule or Decision Table has Rule Active cleared, then RL
Language is not generated for that rule or Decision Table.

4. If the Set Effective Date dialog for a ruleset includes Time selected or this option is
selected on a rule or a Decision Table in the ruleset, then all instances of rules or
Decision Tables in the ruleset must have Time selected when effective dates are
specified. In this case, if Both or Date is selected then Rules Designer shows a
validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate
Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration
extension methods in a rule or a Decision Table. For more information, see Oracle
Business Rules Built-in Classes and Functions.

To use a Duration method:

1. Select ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset (you can also use Duration methods in a Decision
Table).

3. In the IF area, add a condition.

4. Select an operand in the rule condition.

5. From the list, select Expression Builder.... For more information, see Introduction
to Expression Builder.

6. In the Expression Builder, select the Functions tab.

7. In the Expression Builder, in the Navigator, expand the Duration folder.

8. Double-click to select and insert the appropriate method as needed for your
duration test.

9. Provide the appropriate arguments for the method. For example, see Figure 4-72.

10. Click OK to review your rule.

Chapter 4
Using Date Facts, Date Functions, and Specifying Effective Dates

4-67

Figure 4-72 Using Duration Methods in a Rule

4.12 Introduction to Expression Builder
You can access the expression builder from different parts of Rules Designer,
including in the Edit Globals dialog, and in the conditions area when you work with
conditions in Decision Tables, and when you enter rules and Decision Tables in
advanced mode with free form expressions select

Use the expression builder to create and edit expressions for Oracle Business Rules.

Figure 4-73 shows the Rules Designer expression builder.

Chapter 4
Introduction to Expression Builder

4-68

Figure 4-73 Rules Designer Expression Builder

4.12.1 How to Use the Expression Builder
In the expression builder when you double-click items in the Variables or Functions
navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item
into the expression in the Expression area. You can also create or edit expressions
directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and
Constants are not valid assignment targets. Thus, you should use both tabs if you are
unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in
the Expression field and double-clicking the expression or function to insert. For
example, place the cursor inside the parentheses of a function and select a variable.
This inserts the variable in the expression at the cursor position.

4.12.2 What You Need to Know About Working with Expressions
XML fact types allow XML Schema types, elements, and attributes to be used when
writing rules. Elements and types defined in XML Schema can be imported into the
data model and can then be used to create rules and Decision Tables, just as with
Java fact types and RL Fact types. The mapping between the XML Schema definition
and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By
default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application
Server. JAXB as defined in JSR-222 provides a mapping between the types, names,
and conventions in an XML Schema definition and the available types, allowed names
and conventions in Java. For example, an element named order-id and of type

Chapter 4
Introduction to Expression Builder

4-69

xsd:integer is mapped to a Java Bean property named orderID of type BigInteger
(and xsd:int type maps to Java int).

You can use expressions in Oracle Business Rules. Expressions allow arithmetic
using the operators *, +, /, %, and other supported operators on primitive numerics, for
example double, int, and the numeric types Integer, Long, Short, Float, Double
BigDecimal, and BigInteger that are available in the built-in dictionary.

Expressions allow casting between any two numeric types, for example, (short)
((BigInteger)1 + (Long)2). The following code example shows a few additional
sample expressions in actions with types and casting.

assign new double db = 3.3
assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required
assign bd = (BigDecimal)db // cast is required

The expression processor uses the XPath/Xquery rules for type promotion (XML Path
Language (XPath) 2.0). For example, BigDecimal is promoted to float/double; type
promotion going the other direction requires a cast, except for literals such as 3.3.

4.13 Using Value Sets as Constraints for Options Values in
Rules

You can use List of Values value set and List of Ranges value sets to specify
constraints for business terms in rules. This enables you to use Rules Designer to
produce validation warnings for possible errors where a value supplied is out of range,
or not within a set of possible values as specified in a value set.

Oracle Business Rules also lets you use value sets to specify constraints for global
initial values, function return values, or function argument values. For more
information, see Working with Oracle Business Rules Globals and Associating a Value
Set with Business Terms.

4.13.1 How to Use a List of Ranges Value Set as a Constraint for a
Business Term

You can use a list of ranges value set as a constraint for any business term other than
a function result.

For more information on using a list of values value set as a constraint, see How to
Use a List of Values Value Set as a Constraint for a Fact Property.

To use a List of Ranges value set as a constraint for a fact property:

1. In the Value Sets tab, double-click a value set to open the Edit Value Set dialog.

2. Specify a value set that includes the ranges you want to include and select
Allowed in Actions for all valid ranges. To include a range, clear Allowed in
Actions for the top and bottom endpoints.

3. Select Included Endpoint as needed for the application.

4. Clear Include Disallowed Values in Tests. For example, for a value set that
defines valid grades and that does not allow values greater than 100, or less than
0, define the value set endpoints.

Chapter 4
Using Value Sets as Constraints for Options Values in Rules

4-70

Figure 4-74 Valid Value Sets for a Fact Property

5. Associate this value set with a business term. For this example, associate the
value set with test_math1.

Now, if you define a rule with a test that uses the fact property you will receive a
validation warning when a value is out of range. For example if you define a rule with
an expression with the value -10, Rules Designer will show a validation warning.

4.13.2 How to Use a List of Values Value Set as a Constraint for a
Fact Property

You can use a list of values value set as a constraint for a fact property.

For more information on using a list of ranges value set as a constraint, see How to
Use a List of Ranges Value Set as a Constraint for a Business Term.

To use a List of Values value set as a constraint for a fact property:

1. Specify an LOV value set that includes the values you want to include, and select
Allowed in Actions for all valid values. For more information, see How to Define a
List of Values Global Value Set.

2. Clear Allowed in Actions for the otherwise value set.

3. Clear Include Disallowed Values in Tests.

4. Associate this value set with a fact property.

4.13.3 How to Use Value Sets to Provide Options for Test Expressions
You can use LOV value sets to provide options for expressions and actions.

Chapter 4
Using Value Sets as Constraints for Options Values in Rules

4-71

To use value sets to provide options for rule expressions and actions:

1. In Rules Designer, define an LOV value set of a type corresponding to a fact
property. For more information, see How to Define a List of Values Global Value
Set.

2. Associate the value set with a fact property. For more information, see How to
Associate a Value Set with a Fact Property.

3. When you enter expressions, Rules Designer shows the values in the values
options. For example, when you associate a fact property Driver.eye_test with
an LOV value set named eyes, with values: pass, fail, and glasses_required,
and then you use Driver.eye_test in a test expression, the values are limited.

4.14 Importing Runtime Rules Changes From Repository
Into JDeveloper

Import changes to a rule implemented in SOA Composer into the JDeveloper.

When you make changes to a dictionary in SOA Composer, you must upload them to
MDS repository as described in Publishing Changes for an Oracle Business Rules
Dictionary. However, these changes do not get updated in JDeveloper. You need to
import the changes from MDS repository into JDeveloper manually.

To import the changes into the JDeveloper,

1. Select the rule in the application navigator for which changes were made.

2. Click the Import From MDS button in Rule Editor as shown in Figure 4-75.

Figure 4-75 Importing Changes from the MDS Repository

3. Select the MDS Repository from the Import Dictionary dialog.

4. Click OK.

Changes are updated in JDeveloper and you can view the changes in the Rule
Editor.

Chapter 4
Importing Runtime Rules Changes From Repository Into JDeveloper

4-72

4.15 How to Model Rules When the Data Model is Deep
Use the following tips to avoid overly complex rules:

• Use rule test variables (inline aliases) to create a simple test.

• Any 1:1 prefix can be removed from the fact path.

Rule test variables:

Use rule test variables (inline aliases) to create a simple test that can help you model
rules when there is a deep data model.

For example, a rule like this:

IF
task/payload/purchaseOrder/line.amount > 100
THEN
modify ...

Can be rewritten like this:

Root: task
IF
amount = task/payload/purchaseOrder/line.amount and
amount > 100.0
THEN
modify ...

(OR)

Root: task
IF
line = task/payload/purchaseOrder/line and line.amount > 100.0 and line.amount <
1000.0
THEN
modify ...

Remove 1:1 prefixes:

Note that any 1:1 prefix can be removed from the fact path (if not referenced in tests).
For example, if you know that a task has at most 1 payload and a payload has at most
one purchase order, and tests do not reference the task or the payload attributes, then
you can use the shorter example as follows:

Root: PurchaseOrder
IF
line = PurchaseOrder/line and
line.amount > 100.0 and line.amount < 1000.0
THEN
...

You can also use the shorter path if the relationships are 1:many and you do not care
about what task or payload contains which purchase order. You just want to process
all the purchase orders.

Chapter 4
How to Model Rules When the Data Model is Deep

4-73

5
Working with Decision Tables

Use Decision Tables to create and use business rules in an easy to understand
format. Decision Tables provide an alternative to the IF/THEN rule format. Get an
overview of the various components of a Decision Table such as conditions, conflicts,
actions, and the various operations that you can perform on a Decision Table.

• Introduction to Working with Decision Tables

• Creating Decision Tables

• Introduction to Decision Table Operations

• Creating and Running an Oracle Business Rules Decision Table Application

• Editing Decision Tables in Microsoft Excel

5.1 Introduction to Working with Decision Tables
Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to
facilitate human decision-making about that data. Increasingly, however, software
designers and developers are called upon to automate the decision making process by
putting detailed rules about business processes into software architectures. In
addition, many enterprises are experiencing increasing pressure to make software
systems more responsive to business changes.

In some cases, the role of writing and testing business rules is no longer assigned to
software engineers, but is passed to trained business users. Alternatively, some
organizations attempt to separate changes in the business behavior of software from
the traditional software development cycles, and tie changes to business driven
imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks,
especially when that description is done by business analysts rather than computer
programmers.

The Decision Table format is intuitive for business analysts who are familiar with
spreadsheets. The formal structure that a Decision Table provides makes it easier to
author, understand, and change multiple similar rules and lets software check for rule
completeness and consistency.

Oracle Business Rules Decision Tables provide the following features:

• Powerful Visualization: Compact and structured presentation. This visualization
matches the way real world business policies are expressed: with many tables,
declarative, and organized into simple steps.

• Error Prevention: Avoids incompleteness and inconsistency. Because a Decision
Table is well structured, automated tools can check for conflicts, redundancy, and
incompleteness to speed development of valid, consistent business rules.

• Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For

5-1

example, if there are six rules that check an applicant's eligibility, it is more
convenient to see all the rules than to view the rules as individual but related rules.

• Optimization of Rules and Performance Benefits: Oracle Business Rules Decision
Tables provide automated features that can reduce the number of required rules,
as compared to the IF/THEN rules (this is called rule coalescing).

• Rule Validation and Verification: Provides capabilities for ensuring the logical
consistency of rules before deployment. Automated tools for checking conflicts or
incompleteness help speed development of valid, consistent business rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Working with Rulesets and Rules.

5.1.1 What is a Decision Table?
A Decision Table displays multiple related rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a collection of related business rules with
condition rows, rules, and actions presented in a tabular form that is easy to
understand. Business users can compare cells and their values at a glance and can
use Decision Table rule analysis features by clicking buttons and selecting values in
Rules Designer to help identify and correct conflicting or missing rules.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determines if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has_training then training = true
if driver.age < 20 and driver.has_training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas
for Decision Table Conditions and Actions.

Figure 5-1 Sample Decision Table with Conditions and Actions

Chapter 5
Introduction to Working with Decision Tables

5-2

5.1.1.1 What You Need to Know About Decision Table Conditions
The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. The
condition expression is often a fact property or a function result, but it can be any
expression that has a type that can be associated with a value set. Test expressions
are often used, such as Driver.age<16. These expressions are associated with the
built-in boolean value set, with values true and false. The value or the range for a
given condition cell takes its value or its range from one or more values or ranges in
the associated LOV or Ranges value set. For more information on value sets, see
Working with Value Sets.

For example, Figure 5-1 shows the condition expression for a Driver fact with the
Driver.age property. The corresponding row in the Decision Table shows condition
cells including values for the ranges <20, and >=20. The values in the cells come from
the global value set named driver_ages.

Figure 5-1 also shows a condition row for the Driver fact with the
Driver.has_training property. This condition row shows condition cells with the
values, true, false, and -. The hyphen (-) means "do not care" (that is,
Driver.has_training could be true or false in this case). The values for these
condition cells come from the default value set associated with boolean types (this
consists of default values for the values true and false).

The '-' (don't care) value is useful to ensure that a decision table will not have gaps
when new values are added to a value set. For example, if a valueset initially contains
1, 2, and otherwise, a rule matching otherwise will fire if the input is 3. But after 3 is
explicitly added to the valueset, then otherwise no longer matches an input value of 3.
If no rule contains a '-' for this input, then no rule will fire when the input value is 3 and
the decision table is said to have a gap.

Use 'otherwise' when you explicitly want to match the 'otherwise' value in the valueset,
and not any other value. 'Otherwise' is useful to avoid conflicts in a decision table. '-' is
used to match any value, and will often cause conflicts. These conflicts can be
automatically resolved using the 'auto override' conflict policy.

Decision Tables show rules in bucket order, and to change the order of rules you need
to change the order of buckets in the value set. Thus, the order of the buckets in the
value set associated with a condition row determines the order of the condition cells,
and thus the order of the rules. You can control rule ordering in a Decision Table by
changing the relative position of the buckets in an LOV value set associated with a
condition row; however, you cannot reorder range buckets (values). For information on
ordering buckets in a value set, see How to Define a List of Values Global Value Set.

5.1.1.2 What You Need to Know About Decision Table Actions
Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an
action you can call a function, assert a new fact, retract a fact, or modify a fact, and so
on. In the Actions area the cells corresponding to an individual action for a rule are
called action cells. For more information on advanced mode, see How to Select the
Advanced Mode Option.

Chapter 5
Introduction to Working with Decision Tables

5-3

Table 5-1 Decision Table Actions for Action Cells

Action Description

assert new Assert a new fact.

assign Assign a value to a variable.

call Call a function.

modify Modify a data value associated with a matched fact.

retract Retract a fact.

assert Assert a fact.

assert tree Asserts a tree of facts given the root.

assign new Assign a value to a new variable.

expression Perform expression.

return The return action returns from the action block of a function or a
rule. A return action in a rule pops the ruleset stack, so that
execution continues with the activations on the agenda that are
from the ruleset that is currently at the top of the ruleset stack.

throw Throw an exception, which must be a Java object that
implements java.lang.Throwable. A thrown exception may be
caught by a catch in a try action block.

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following rows.

The Decision Table actions such as modify can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Driver fact that
includes condition rows for Driver.age and Driver.has_training, actions can modify
the property Driver.eligible and you can specify a value for Driver.eligible for
each action cell.

Certain types of actions in the Actions area include a Parameterized check box. This
check box specifies that a property from the action can have its value set in the action
cell associated with a rule in the Decision Table. When the parameterized check box is
selected, the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 5-2 where the value false is assigned as the default
value for the action property eligible.

Chapter 5
Introduction to Working with Decision Tables

5-4

Figure 5-2 Action Editor Showing Parameterized Action with Default Value

5.1.1.3 What You Need to Know About Decision Table Rules
A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not
names for individual rules but are labels derived from the current ordering of the rules
in the Decision Table. Thus, a rule with the label R1 could be moved to position 3 and
then Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition
cells. The condition cells in the first row span the cells of later condition rows. A parent
cell in row i spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from
each row in the Conditions area, and an associated action cell in the same column in
the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell
from condition 1 (the Driver.age < 20 value), the second cell from condition 2 (the
Driver.eye_test equals fail value), and the third cell from condition 3 (the
Driver.has_training equals true value). Likewise for each of the other rules, R1 to
R12, there is a unique path through the Decision Table.

Chapter 5
Introduction to Working with Decision Tables

5-5

Figure 5-3 Rules in a Decision Table

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a
parent cell spans lower cells. In the Conditions area, when condition cells have the
same parent condition cell the cells are called siblings. Certain operations only apply
for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells
that are selected; with these cells selected the Merge Selected Cells operation is
valid. For these cells, the corresponding value set with the value fail for
Driver.eye_test is also a sibling (as shown in the R3 and R4 columns in Figure 5-4).
For more information, see How to Merge or Split Conditions in a Decision Table.

Figure 5-4 Sibling Condition Cells in a Decision Table

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move
button. By reordering rows in the Conditions area you can perform operations on
condition cells at the desired granularity. Thus, the move operations can assist you
when you want to split, merge, or assign certain values that might only be appropriate
at a particular level in the tree, depending on the location of a condition cell or
depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Condition Cell Values
By default, when you create a condition row, Rules Designer creates a single condition
cell and assigns the "?" value to the cell. A condition cell with the value "?" indicates
that the value of the cell is undefined in the value set. For example, Figure 5-5 shows
a "?" value for StrategyContext. Note that contiguous value ranges in a condition cell
are combined. For example, if you select <20 and [20..40] it will display as <=40.

Chapter 5
Introduction to Working with Decision Tables

5-6

Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell

5.1.3 Understanding Action Cell Values
In the Decision Table Actions area you can specify that an action cell "do nothing." In
this case, clear the action cell. When the action cell check box is cleared, this means
do not perform this action when the pattern matches for the specified condition values
in the Decision Table. Thus, for each action cell you can specify whether the rule
associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table, when a condition cell represents a value that has been removed
from the value set, Rules Designer provides a validation warning such as the following:

RUL-05831: Decision table value reference not found

To fix this type of validation warning you can do one of the following:

• Define a value by double-clicking the condition cell and selecting one or more
values from the list.

• Add the missing value to the value set or associate the condition with another
value set that contains the missing value.

5.1.4 What You Need to Know About Decision Table Loops
A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same
ruleset. Try not to create Decision Table actions that modify fact properties that are
used in Decision Table conditions. This could cause an infinite loop.

Note:

You can prevent infinite loops by using the rule firing limit on the containing
decision function.

5.2 Creating Decision Tables
You add a Decision Table by performing several steps.

Chapter 5
Creating Decision Tables

5-7

These steps include creating a Decision Table, creating value sets, and then adding
conditions and actions to Decision Table, and using the Decision Table to operate to
validate, correct, and modify the Decision Table.

5.2.1 How to Create a Decision Table
To work with a Decision Table, start by creating a Decision Table in a ruleset.

To create a decision table:

1. From Rules Designer select an existing ruleset from the rulesets tab or create a
ruleset by clicking Create Rule Set....

2. Click Create from the Decision Tables area on the Overview tab, as shown in
Figure 5-6. This creates a Decision Table.

Figure 5-6 Adding a Decision Table

Note:

When you add a Decision Table the rules validation log displays validation
warnings. The Decision Table is not complete and does not validate without
warnings until you add conditions and actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table
A Decision Table includes a Conditions area where you specify Decision Table
condition rows. The condition rows determine the facts that the Oracle Rules Engine
matches at runtime. To create a Decision Table you need to add one or more
condition rows to the Decision Table.

To add condition rows to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add conditions.

Chapter 5
Creating Decision Tables

5-8

2. In the Decision Table area, from the list next to the Add button select Condition.

3. In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 5-7.

Figure 5-7 Adding a Condition to a Decision Table

4. Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder button to display the Expression Builder window. The
Expression Builder lets you build expressions.

5. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

6. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

5.2.3 How to Use or Specify the Value Set for a Decision Table
Condition

1. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

2. If there is no global value set associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges value set to associate with the condition row, or specify
an existing global value set. To add a value set for the condition, in the
Conditions area select the condition and then select from the value set list to
associate a value set, as shown in Figure 5-8. The value set list includes available
global value sets of the appropriate type.

Chapter 5
Creating Decision Tables

5-9

Figure 5-8 Specifying a Value Set For a Condition Row in a Decision Table

3. If you do not specify a global value set, then you can create and use a local value
set by selecting either Local Value Set or Local Range Value Set to create and
use the specified type of value set.

4. Repeat Step 2 through Step 3, as required to define additional condition rows in
the Decision Table.

For more information on creating value sets, see Working with Value Sets.

5.2.4 How to Add Actions to a Decision Table
A Decision Table includes an Actions area where you specify Decision Table actions.
The actions determine actions for rules in a Decision Table. To create a valid Decision
Table, add actions to a Decision Table. For each action cell, where specific values
apply, set the values for the action cells. For each action cell, when the action does not
apply to the rule, deselect the action cell. By default when you add an action to a
Decision Table, actions for all the rules are unselected

To add actions to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add actions.

2. From the list next to the Add button, select Action and select an available action
from the list. Table 5-1 lists the available actions. For example, select Modify.
Rules Designer displays the Action Editor dialog as shown in Figure 5-9.

Chapter 5
Creating Decision Tables

5-10

Figure 5-9 Adding an Action to a Decision Table

3. In the Action Editor dialog select the action target in the Target area. This
specifies the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 5-2.

Table 5-2 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the
specified target.

Type Displays the type for the property.

Value Select the default value for the action from
the list of available actions. The specified
value applies to either the entire action, as
the default value, or when a particular action
cell is selected, the value specified applies
for that particular action cell.

Parameterized This specifies a parameterized value. A
parameterized value displays in a Decision
Table action cell. When you select
parameterized value for a property, this
generally means that each rule supplies a
different parameter value.

Constant Select to specify a constant value.

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected check box.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

Chapter 5
Creating Decision Tables

5-11

5.2.4.1 How to Set Values for Action Cells in a Decision Table

To set values for action cells:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to specify action cell values.

2. In the Actions area, check that the appropriate action cells are selected. If the
Always Selected check box is specified in the Action Editor dialog, then all action
cells should be selected. If Always Selected is not selected, then select the
appropriate action cells using the action cell check box.

3. In the Actions area, enter the appropriate value for parameterized properties for
each selected action cell. To do this select the action cell property cell, and either
enter a value, select a value from the list, or click the Expression Builder button
to use the Expression Builder dialog.

For more information on referring to a value set from a Decision Table, see How to
Define a List of Ranges Global Value Set.

5.2.4.2 How to Deselect an Action Cell in a Decision Table

To deselect an action cell:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want deselect an action cell.

2. In the Actions area, select the action cell and deselect the check box in the action
cell. You are not allowed to deselect action cell values when Always Selected is
selected for the action.

When you add actions, you may need to change the order of the actions. In Rules
Designer you can use the Move Down button or Move Up button to change the order
of actions.

5.2.5 How to Add a Rule to a Decision Table
You can add a rule to a Decision Table. Rules Designer adds a column for the rule to
the left of the existing rules and each condition cell is initialized to "?", which actually
means a validation error prompting you to populate the cell with relevant values.

To add a rule to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. From the list next to the Add button, select Rule.

3. Enter values for the condition cells. Notice that the new rule is added as the first
rule of the Decision Table on the left and the other rules have moved as required
to keep the values in their defined order.

4. Enter values for the action cells.

The Order Rules By Bucket check box under the Advanced Settings of a Decision
Table is selected by default. In this case, the Decision Table layout changes
automatically on adding new rules.

Chapter 5
Creating Decision Tables

5-12

When you add a new rule to a Decision Table, the new rule is added as the first rule of
the Decision Table and the other rules move as required to keep the values in their
defined order. This is because Order Rules By Bucket is enabled, which means rule
ordering in a Decision Table is set according to the relative position of values
associated with a condition expression. If Order Rules By Bucket is not enabled
when you add a rule, the new rule is added as the last rule of the Decision Table. In
either case, the cells in the new rule column have "?" symbols, indicating the cells do
not have values yet.

Note:

When Order Rules By Bucket is selected, the rules are ordered and
duplicate rules (rules with exactly the same values) are combined. So, you
cannot add two rules without any values to a Decision Table, because in that
case, the rules are duplicates and would immediately be combined. When
Order Rules By Bucket is cleared, then duplicate rules are allowed.

In addition, the Move buttons pertaining to a rule column are also enabled. You can
use them to reposition rules. Use the Flip the Table Rows and Columns button to
change the view of the Decision Table. This also affects the Move buttons: the move
direction may be Up or Down, Left or Right. The Merge, Compact and Span options
are also enabled. You can also cut, copy, or paste rules.

For more information, see Introduction to Decision Table Operations.

5.2.6 How to Define Tests in a Decision Table
You can define tests in a Decision Table. The tests must evaluate to true for any rule
in the decision table to fire. For more information about defining tests and working with
rule conditions, see Working with Rules.

You can use the Data Explorer tab to find fact types and value sets in the data model.

To add tests to a Decision Table:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. Click the Show Patterns/Tests button (magnifying glass) left of the Decision
Table name. If Advanced Mode is selected, clear the check box.

3. Select any of the options according to your requirements, as shown in Figure 5-10.
Note that variables without any tests are often used so that the variables can be
used in the decision table conditions and actions.

• simple test

• variable

• nested test

• negated test

• all of the following...

• any of the following...

Chapter 5
Creating Decision Tables

5-13

• is a

• there is a fact where...

• there is a case where...

• there is no fact where...

• there is no case where...

• aggregation...

• boolean expression

Figure 5-10 Options List

4. Click the left and the right <operand> to enter the operand values, and the
operator list to select an operator, as in Figure 5-11:

Figure 5-11 Value Options List

For more information about writing tests, see Testing and Validating Business Rules.

Chapter 5
Creating Decision Tables

5-14

5.3 Introduction to Decision Table Operations
After you create a Decision Table you may want to modify the contents of the Decision
Table to produce a Decision Table that includes a complete set of rules for all cases,
or to produce a Decision Table that provides the least number of rules for the cases.

After you create a Decision Table there are operations that you may want to perform
on the Decision Table, including the following:

• Compact or split cells in a Decision Table.

• Merge a condition or split a condition in a Decision Table.

• Finding and resolving conflicts between rules in a Decision Table.

• Find and fix gaps (missing rules) in a Decision Table.

5.3.1 Understanding Decision Table Split and Compact Operations
The split and compact operations enable you to manipulate the contents of the
condition cells in a Decision Table.

The split table operation creates a rule for every combination of values across the
conditions. For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8
rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion
rules are created. Thus, you only use split table when the number of rules created is
small enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision
Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row.
Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create
condition cells. Thus, using the split operation you can create rules in a Decision
Table. Table 5-3 summarizes the split operation for a selected condition cell, condition
row, or for a complete Decision Table.

Table 5-3 Summary of Split Operation

Operator Description

Condition Cell Creates one sibling condition cell for each value represented by the cell.

If the condition cell value is "do not care", then the cell is split into one
sibling cell for each value in the valueset that is not represented by a
sibling condition cell, and "do not care" is no longer represented.

Condition Row For each condition cell in the proceeding condition expression, create a
sibling group which contains a cell for each value in the value set. The
effect of this operation is the same as adding a "do not care" to each
sibling group and calling split on each condition cell in each sibling group.

Decision Table Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling

Chapter 5
Introduction to Decision Table Operations

5-15

cells or on an entire condition row. Thus, using compact table or merge you can
remove rules from a Decision Table. Table 5-4 summarizes the compact table and
merge operations.

Table 5-4 Summary of Merge Operation

Operator Description

Condition Cell Merging two or more condition cells adds all values in the cells to a single cell, and removes
all but one of the cells. If one of the cells represents "do not care", then the merged cell
represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Condition Row Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge
on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Decision Table Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge
operation combines multiple condition cells into a single condition cell and adds all
values to the single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 5-12 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with check boxes to allow you
to select a single value for the action cell. As shown in the validation log in
Figure 5-12, Rules Designer shows a validation warning until you select a single value.

Chapter 5
Introduction to Decision Table Operations

5-16

Figure 5-12 Conflicting Properties to be Resolved for a Merged Action Cell

5.3.1.1 Understanding Decision Table Move Operations
You can move the conditions or actions in a Decision Table. The Move buttons let you
reorder condition rows in the Conditions area and actions in the Actions area.
Moving conditions up or down may reorder visual display of the rules, but these
operations does not change the logic in any way. For example, if (x.a == 1 and x.b
== 1) is logically the same as if (x.b == 1 and x.a == 1).

When you work with Decision Tables some operations only apply for condition cells
that are siblings. Using the Move button you can reorder rows so that Decision Table
operations apply to the tree at the desired granularity. For example, when you want to
change the action of a condition cell for a single rule, then you need to move that
condition cell to the last row in the Decision Table Conditions area. For example,
consider the Decision Table shown in Figure 5-13.

Figure 5-13 Rules in a Decision Table

Chapter 5
Introduction to Decision Table Operations

5-17

To view this table with granularity for the Driver.age, move the Driver.age condition
from the first row to the third row, as shown in Figure 5-14.

Figure 5-14 Decision Table After Move Down with Age Condition Last

Now to make the Driver.age conditions "do not care" for the first two rules, where the
driver passes the eyesight test and has had driver training is true, you can easily apply
changes to these particular conditions when the Driver.age condition is in the last
row. Thus, in this table, it is easier to view and modify age related rules when
Driver.age is in the last row, with the finest granularity.In general, the move
operations can assist you when you want to split, merge, or assign certain values that
might only be appropriate at a particular level in the tree, depending on the location of
a condition cell, or depending on the location of the parent, children, or siblings of a
condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

5.3.1.2 Understanding Decision Table Gap Checking
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule.
Rules Designer provides Gap Checking to check for gaps. When you click the Gap
Analysis button, Rules Designer finds gaps and presents a dialog to fix any gaps that
are found.

You can choose to make existence of gaps a validation warning. When you clear
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Using Advanced Settings with
Rules and Decision Tables.

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Driver.age < 20 and Driver.has_training false, and then you
click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 5-15. Clicking OK with the check boxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Chapter 5
Introduction to Decision Table Operations

5-18

Figure 5-15 Checking Gaps

Gap checking generates different new rules for the following cases:

• Sibling rules: multiple missing sibling rules are added as a single new rule. For
example, consider a rule with two conditions, Driver.age and Driver.hair. When
there are two missing rules for different hair colors and the rules are siblings, that
is, they have a common parent, then gap checking shows a single rule as shown
in Figure 5-16.

• Non-sibling rules: multiple missing non-sibling rules are added as individual new
rules. For example, when there are two different rules missing that do not have the
same parent, then gap checking provides two rules, as shown in Figure 5-17.

Figure 5-16 Gap Checking with Missing Sibling Rules

Figure 5-17 Gap Checking with Missing Non-Sibling Rules

Chapter 5
Introduction to Decision Table Operations

5-19

In both of these cases shown in Figure 5-16 and Figure 5-17 there are two missing
values, but for sibling rules the multiple values are combined in a single new rule.
Thus, in general gap checking suggests fewer more general rules in preference to
many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the values you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

5.3.1.3 Understanding Decision Table Conflict Analysis
The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a value in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict
Resolution row in the Decision Table when you click Show Conflicts. How you
handle and resolve conflicts depends on the specified conflict policy. You can choose
a conflict policy or use the default manual conflict policy. When you set a conflict policy
using the Conflict Policy option in the Advanced Settings area, Rules Designer sets
the conflict policy for the Decision Table. The Conflict Policy specifies the Decision
Table conflict policy and is one of the following:

• manual: Conflicts are resolved by manually specifying a conflict resolution for
each conflicting rule.

• auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the Oracle Business Rules automatic
conflict resolution policies.

• ignore: Conflicts are ignored.

For more information, see Using Advanced Settings with Rules and Decision Tables.
For example, Figure 5-18 shows a Decision Table with conflicting rules that you
resolve with the default manual conflict policy.

Figure 5-18 Decision Table Showing Conflicting Rules in the Conflicts Area

Chapter 5
Introduction to Decision Table Operations

5-20

By clicking on the cells in the Decision Table Conflict Resolution area Rules
Designer lets you resolve conflicts between rules as follows:

• Override (Override and OverriddenBy): You override one rule with the other.
Override specifies that one rule fires. Override is a combination of prioritization
and mutual exclusion. Prioritization is transitive and not symmetric. Mutual
exclusion is both transitive and symmetric. If A overrides C and B overrides C,
then A or B runs before C but only one of A, B, or C runs.

• Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets
the two rules fire in a prescribed order. Prioritization is transitive but not symmetric.
That is, if A runs before B runs before C, then A runs before C but B does not run
before A. This uses a Decision Table runBefore list specifying that the rule that
runs before has a higher priority than rules in the list.

• Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary
order. For example, consider the following conflicting rules in a decision table:

rule1: everybody gets a 10% raise (as specified with a do not care value in a decision
table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have
both rules fire. Because it does not matter which rule fires first, and there is no
conflict, then a top performer gets a 15.5% raise either way. In this case, use the
NoConflict list to remove the conflict. Note that no conflict is what you get with IF/
THEN rules with equal priorities, only you are not warned of a conflict and you
have to think carefully if you want one rule to override the other.

Figure 5-19 shows the Rules Designer Conflict Resolution dialog shown when you
select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve
conflicts between rules by selecting overrides, prioritization with RunBefore or
RunAfter options, and a NoConflict option.

Figure 5-19 Using the Decision Table Conflict Resolution Dialog

You can use the Decision Table Advanced Settings Conflict Policy auto override
option to specify that, where possible, conflicts are automatically resolved. The
automatic override conflict resolution policy specifies that a special case overrides a
more general case. For more information, see Using Advanced Settings with Rules
and Decision Tables.

Thus, when there are conflicts in a Decision Table, you can do one or more of the
following to resolve the conflicts:

Chapter 5
Introduction to Decision Table Operations

5-21

• Use auto override conflict resolution by selecting the Conflict Policy and then
auto override option in the Decision Table.

• Ignore conflicts by selecting the Conflict Policy and then ignore option in the
Decision Table.

• Use manual conflict resolution by selecting the Conflict Policy and then manual
option in the Decision Table and set Conflict Resolution for each conflicting rule in
the dialog by selecting cells in the Conflict Resolution area with the Show
Conflicts check box selected.

• Change the Decision Table to remove an overlap.

• Combine actions to remove conflicts.

5.3.2 How to Compact or Split a Decision Table
Use the Compact Table and Split Table buttons to compact or split cells in a
Decision Table. For more information, see Understanding Decision Table Split and
Compact Operations.

To compact or split cells in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table and click Edit.

2. Click the Compact Table button to compact or the Split Table button to split the
cells.

5.3.3 How to Merge or Split Conditions in a Decision Table
Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Understanding Decision Table Split and
Compact Operations.

To merge or split a condition in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table where you want to merge or split a
condition and click Edit.

2. In the Conditions area, select the condition you want to merge or split.

3. Right-click, and from the list select Merge Condition or Split Condition.

5.3.4 How to Use the Condition Cell Operations
Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care" value for a condition cell in a Decision Table. For
more information, see Understanding Decision Table Split and Compact Operations.

5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table
1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the

Overview tab, and select the Decision Table where you want to merge condition
cells and click Edit.

2. Select the sibling condition cells to merge.

Chapter 5
Introduction to Decision Table Operations

5-22

3. Right-click, and from the list select Merge selected cells.

5.3.4.2 How to Split a Cell in a Condition in a Decision Table
1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the

Overview tab, and select the Decision Table where you want to split a condition
cell and click Edit.

2. Select the cell to split.

3. Right-click, and from the list select Split selected cell.

5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision
Table

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the list select Do Not Care.

5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell
in a Condition:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to set the "do not
care" value and click Edit.

2. Select the appropriate condition cell.

3. Double-click, and from the list select all the available check boxes for all possible
values.

5.3.5 How to Perform Decision Table Gap Checking
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule.
Rules Designer provides Gap Checking to check for gaps. When you use this
operation Rules Designer presents a window to fix gaps. For more information, see
Understanding Decision Table Gap Checking.

You can choose to make existence of gaps a validation warning. When you clear
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Using Advanced Settings with
Rules and Decision Tables.

To perform decision table gap checking:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to perform gap
checking and click Edit.

2. Click the Gap Analysis button.

Chapter 5
Introduction to Decision Table Operations

5-23

5.3.6 How to Perform Decision Table Manual Conflict Resolution
The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a value in common. For more information, see Understanding Decision Table
Conflict Analysis.

To perform manual decision table conflict resolution:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to check conflicts
and click Edit.

2. Set the conflict policy to manual (this is the default conflict policy). For more
information, see Understanding Decision Table Conflict Analysis.

3. In the Conditions area, in the conflicts area, when conflicts exist for each rule with
a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

4. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the list.

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution
Policy

When you select the Advanced Settings option in a Decision Table, you can select that
Decision Table conflicts are automatically resolved using the auto override conflict
policy (this applies only when it is possible to resolve the conflict using the Oracle
Business Rules automatic conflict resolution policies). The automatic override conflict
resolution uses a policy where when there is a rule conflict a special case overrides a
more general case. For more information, see Understanding Decision Table Conflict
Analysis.

To select the auto override policy:

1. Select the rule or Decision Table where you want to use ignore conflict policy.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name.

3. From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy
When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are ignored using the ignore conflict policy. The ignore
policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more
information, see Understanding Decision Table Conflict Analysis.

To select the ignore conflict policy:

1. Select the rule or Decision Table where you want to use the ignore conflicts policy.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name.

Chapter 5
Introduction to Decision Table Operations

5-24

3. From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules
Decision Table Application

The Order Approval application demonstrates the integration of a SOA composite
application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

• Process rules from XML inputs including: a credit score and the annual spending
of a customer, and the total cost of the incoming order.

• Provide output that determines if an order is approved, rejected, or requires
manual processing.

To complete this procedure, you need to:

• Obtain the Source Files for the Order Approval Application

• Create an Application for Order Approval

• Create a Business Rule Service Component for Order Approval

• View Data Model Elements for Order Approval

• Add Value Sets to the Data Model for Order Approval

• Associate Value Sets with Order and CreditScore Properties

• Add a Decision Table for Order Approval

– Split the Cells in the Decision Table and Add Actions

– Compact the Decision Table

– Replace Several Specific Rules with One General Rule

– Add a General Rule

• Check Dictionary Business Rule Validation Log for Order Approval

• Deploy the Order Approval Application

• Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval
Application

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the
schema file and create all the application, project, and other files in Oracle JDeveloper.
You can save the schema file provided in the following example locally to make it
available to Oracle JDeveloper.

The following example shows the order.xsd schema file.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-25

http://www.oracle.com/technetwork/middleware/soasuite/learnmore/soasuite12csamplestutorials-2769540.html

 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

5.4.2 How to Create an Application for Order Approval
To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

To create an application for order approval:

1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new
application.

a. In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

b. In the Directory field, specify a directory name or accept the default.

c. In the Application Package Prefix field, enter an application package prefix,
for example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. For a SOA composite with Oracle Business Rules, in the Application Template
area select SOA Application for the application template. For example, see
Figure 5-20.

e. Click Next.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-26

Figure 5-20 Adding the Order Approval Application

3. In the Name your project page enter the name and location for the project.

a. In the Project Name field, enter a name. For example, enter OrderApproval.

b. Enter or browse for a directory name, or accept the default.

c. For an Oracle Business Rules project, in the Project Technologies area
ensure that SOA, ADF Business Components, Java, and XML are in the
Selected area on the Project Technologies tab, as shown in Figure 5-21. If an
item is missing, select it in the Available pane and add it to the Selected pane
using the Add button.

Figure 5-21 Adding a Project to an Application

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-27

4. Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order
Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rules service component

• Create input and output variables for the service component

• Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

1. In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

2. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in
Figure 5-22.

Figure 5-22 Adding a Business Rule Dictionary with the Create Business
Rules Dialog

3. To add an input, from the list next to the Add button select Input to enter input for
the business rule.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-28

4. In the Type Chooser dialog, click the Import Schema File... button. This displays
the Import Schema File dialog.

5. In the Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource
Lookup dialog.

6. In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file
and click OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as
shown in Figure 5-23. Click OK.

Figure 5-23 Importing the Order.xsd Schema File

8. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

9. In the Type Chooser, navigate to the Project Schemas Files folder to select the
input variable.

For this example, select CustomerOrder as the input variable.

On the Type Chooser window, click OK. This displays the Create Business Rules
dialog, as shown in Figure 5-24.

Figure 5-24 Create Business Rules Dialog with CustomerOrder Input

10. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

11. In the Create Business Rules dialog, select Expose as Composite Service, as
shown in Figure 5-25.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-29

Figure 5-25 Create Business Rules Dialog with Input and OrderApproval
Output

Click OK. This creates the Business Rule component and Oracle JDeveloper
shows the Business Rule in the canvas workspace, as shown in Figure 5-26.

Figure 5-26 Business Rules Component in OrderApproval Composite

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-30

5.4.4 How to View Data Model Elements for Order Approval
Before adding rules you need to create the Oracle Business Rules data model. The
data model contains the business data definitions (types) and definitions for facts that
you use to create rules. For example, for this sample the data model includes the XML
schema elements from order.xsd that you specify when you define inputs and outputs
for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you
may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components
lane select the business rule (this surrounds the component, OracleRules1 with a
dashed selection box).

2. Double-click the selection box to launch Rules Designer.

3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 5-27.

Figure 5-27 Opening a Business Rules Dictionary with Rules Designer

5.4.5 How to Add Value Sets to the Data Model for Order Approval
To use a Decision Table you need to define value sets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
value sets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount value set to the data model:

1. In Rules Designer, select the Value Sets navigation tab.

2. From the drop down next to the Create Value Set... button, select Range Value
Set.

3. In the Name field, enter OrderAmount. Press Enter to accept the name.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-31

4. Double-click the OrderAmount value set icon to display the Edit Range Value
Set dialog.

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the Range Values area, in the top Endpoint field enter 1000 for the endpoint
value.

8. In the Range Values area, for the middle bucket in the Endpoint field enter 500
for the endpoint value.

9. In the Included Endpoint field for each value set ensure the check box is
selected, as shown in Figure 5-28.

Figure 5-28 Adding the OrderAmount Value Set

10. Modify the Alias field for each value to High, Medium, and Low. Click OK.

5.4.5.1 How to Add CreditScore Value Set to the Data Model

To add CreditScore value set:

1. In Rules Designer select the Value Sets navigation tab.

2. From the drop down next to the Create Valueset... button, select List of Ranges.

3. In the Name field, enter CreditScore.

4. Double-click the CreditScore valueset icon to display the Edit Valueset dialog.

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the top valueset, in the Endpoint field enter 750.

8. For the middle valueset, in the Endpoint field enter 400.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-32

9. In the Included Endpoint field for each valueset, ensure the check box is
selected.

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and
risky for -Infinity. Click OK.

5.4.6 How to Associate Value Sets with Order and CreditScore
Properties

To prepare for creating Decision Tables you can associate a value set with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the valuesets when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status value set
when the OrderApproval fact type is imported from the XML schema. In the schema,
Status is a restricted String type and is therefore represented as an enum valueset.
Rules Designer creates the status value set. For more information, see What You
Need to Know About XML Facts.

To associate value sets with Order and CreditScore properties:

1. In Rules Designer select the Facts navigation tab.

2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-29.

Figure 5-29 Opening a Business Rules Dictionary with Rules Designer

3. Select the type you want to modify. For example in the XML Facts table double-
click the icon next to the CustomerOrder entry. This displays the Edit XML Fact
dialog.

4. In the Edit XML Fact dialog, in the Properties table in the Value Set column select
the cell for the appropriate property and from the list select the valueset you want
to use. For example, for the property order select the OrderAmount valueset, as
shown in Figure 5-30.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-33

Figure 5-30 Associating the OrderAmount Valueset with
CustomerOrder.order

5. In a similar manner, for the property creditScore select the CreditScore valueset.

6. Click OK.

5.4.7 How to Add a Decision Table for Order Approval
You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer to
assist you. Rules Designer performs dictionary validation when you make any change
to the dictionary. To show the validation log window, click the Validate button or select
View>Log and select the Business Rule Validation tab. If you view the rules
validation log you should see warning messages. You remove these warning
messages as you create the Decision Table. For more information on rule validation
see Understanding Rule Validation.

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a Decision Table for order approval:

1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. Click the Add button and from the list and select Create Decision Table.

3. In the Decision Table, click the Add button and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator
expand CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-34

5. Again, in the Decision Table, click the Add button and from the list select
Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>.
Then, in the navigator expand CustomerOrder and select order. This enters the
expression CustomerOrder.order.

7. Again, in the Decision Table, click the Add button and from the list select
Condition.

8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text
entry area, add >2000 as shown in Figure 5-31.

Figure 5-31 Adding the Annual Spending Entry to a Decision Table

10. Type Enter to accept the value, as shown in Figure 5-32. If you view the rules
validation log you should see the warning messages as shown in Figure 5-32. You
remove these warning messages as you modify the Decision Table in later steps.

Figure 5-32 Adding Conditions to the CustomerOrder Decision Table

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-35

5.4.7.1 How to Create an action in a Decision Table

To create an action in a Decision Table:

1. In the Decision Table click the Add button and from the list select Action > Assert
New.

2. In the Actions area, double-click assert new(. This displays the Action Editor
dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized check box and the Constant check box. This specifies that
each rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected check box as shown in
Figure 5-33.

Figure 5-33 Adding an Action to a Decision Table with the Action Editor
Dialog

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.2 Split the Cells in the Decision Table and Add Actions
You can use the Decision Table split operation to create rules for the valuesets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition valuesets. There are three order amount valuesets,
three credit score valuesets, and two boolean valuesets for the annual spending
amount for a total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:

1. Select the Decision Table.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-36

2. In the Decision Table, click the Split Table button and from the list select Split
Table. The split table operation eliminates the "do not care" cells from the table.
The table now shows eighteen rules that cover all ranges as shown in Figure 5-34.

These steps produce validation warnings for action cells with missing expressions.
You fix these in later steps.

Figure 5-34 Splitting a Decision Table Using Split Table Operation

5.4.7.3 How to Add Actions for Each Rule in the Decision Table
In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in a value
for status for each of the 18 rules. The values you enter correspond to the conditions
that form each rule in the Decision Table.

To add actions for each rule in the decision table:

1. In the Actions area, double-click the action cell for the rule you want to work with,
as shown in Figure 5-35.

Figure 5-35 Adding Action Cell Values to a Decision Table

2. In the list, select and enter a value for the action cell. For example, enter
Status.MANUAL.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-37

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 5-5.

4. Select Save All from the File main menu to save your work.

Table 5-5 Values for Decision Table Actions

Rule C1 creditScore C2 order C3 annualSpending > 2000 A1 OrderApproval status

R1 risky Low true Status.MANUAL

R2 risky Low false Status.MANUAL

R3 risky Medium true Status.MANUAL

R4 risky Medium false Status.REJECTED

R5 risky High true Status.MANUAL

R6 risky High false Status.REJECTED

R7 avg Low true Status.APPROVED

R8 avg Low false Status.MANUAL

R9 avg Medium true Status.APPROVED

R10 avg Medium false Status.MANUAL

R11 avg High true Status.MANUAL

R12 avg High false Status.MANUAL

R13 solid Low true Status.APPROVED

R14 solid Low false Status.APPROVED

R15 solid Medium true Status.APPROVED

R16 solid Medium false Status.APPROVED

R17 solid High true Status.APPROVED

R18 solid High false Status.MANUAL

5.4.7.4 Compact the Decision Table
In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:

1. Select the Decision Table.

2. Click the Resize All Columns to Same Width button.

3. Click the Compact Table button and from the list select Compact Table. The
compact table operation eliminates rules from the Decision Table. The Decision
Table now shows nine rules, as shown in Figure 5-36.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-38

Figure 5-36 Compacting a Decision Table Using Compact Table

5.4.7.5 Replace Several Specific Rules with One General Rule
Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of
managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:

1. Select the Decision Table.

2. In the Decision Table, select a rule with OrderApproval status action set to
Status.MANUAL. To select a rule, click the column heading. For example, click rule
R2 as shown in Figure 5-37.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
button in the Decision Table area to delete a rule in the decision table (there is
also a delete button shown in the Ruleset area that deletes the complete Decision
Table).

Figure 5-37 Deleting Rules from a Decision Table

4. Repeat these steps to delete all the rules with action set to Status.MANUAL. This
should leave the Decision Table with four rules as shown in Figure 5-38.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-39

Figure 5-38 Decision Table After Manual Actions Removed

5.4.7.6 Add a General Rule
Now you can add a single rule to handle the manual case. After adding this rule you
set the conflict policy with the option Conflict Policy auto override for conflict
resolution.

To add a general rule:

1. In the Decision Table, click the Add button and from the list select Rule.

2. In the Conditions area, for the three conditions leave the "-" do not care value for
each cell in the rule.

3. In the Actions area, enter Status.MANUAL, as shown in Figure 5-39. Notice that
the Business Rule Validation log includes the warning RUL-05851 for unresolved
conflicts.

Figure 5-39 Decision Table with Conflicting Rules

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution
button, as shown in Figure 5-40.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-40

Figure 5-40 Adding a Rule to Handle Status Manual

5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

To enable the auto override conflict resolution policy:

1. In the Decision Table click Show Advanced Settings (next to the Decision Table
name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule
and selecting auto override, notice that the conflicts are resolved and special
cases override the general case, as shown in Figure 5-41.

Figure 5-41 Adding a Rule to Handle Status Manual with Auto Override
Conflict Policy

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-41

5.4.8 How to Check the Business Rule Validation Log for Order
Approval

Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings, you need to fix any associated
problems. To validate the dictionary, in the Business Rule Validation Log, check for
any validation warnings. If there are warnings, perform appropriate actions to correct
the problems.

5.4.9 How to Deploy the Order Approval Application
Business rules created in a SOA application are deployed as part of the SOA
composite when you create a deployment profile in Oracle JDeveloper. You deploy a
SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle
WebLogic Server.

2. In the Application Navigator, right-click the OrderApproval project and select
Deploy > OrderApproval > to the appropriate server name.

Then the SOA Deployment Configuration dialog displays. Select your Application
connection which you either have created already or you can create it now. The
connection contains the authorization and other connection information (server
name, port, etc).

3. Click Next.

4. In Select Server select or create and then select your application connection.

5. Click Next, Next and Finish.

5.4.10 How to Test the Order Approval Application
After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware
Control Console, as shown in Figure 5-42.

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-42

Figure 5-42 Testing the Order Approval Application

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the
contents of the sample input for testing Order Approval application example as
shown below.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/
OracleRules1_DecisionService_1">
 <ns1:callFunctionStateless name="OracleRules1_DecisionService_1">
 <ns1:parameterList xmlns:ns3="http://example.com/ns/
customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</
ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>
 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateless>
 </soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in step 3 as desired for your test.

5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval xmlns:OrderApproval="http://

Chapter 5
Creating and Running an Oracle Business Rules Decision Table Application

5-43

example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
 </callFunctionStatefulDecision>

5.5 Editing Decision Tables in Microsoft Excel
Business users may find that editing Decision Tables is easier to do in Microsoft Excel.
New functionality enables both developers and business users to export and edit
Decision Tables in Excel and then import the Decision Tables back into the dictionary.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or
Business Process Composer. At runtime, you can export and edit in SOA Composer.
You can export one or more Decision Tables from a Rule dictionary to the same Excel
workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite
the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to
compare dictionaries and accept (merge) or reject any differences.

For more information about comparing dictionaries, see How to Compare or Merge
Two or More Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a
Value Set sheet, and one sheet for each exported Decision Table, as shown in
Figure 5-43. Only Rules and Value Sets can be edited in Excel. You can export
to .xlsm (default) or .xls.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-44

Figure 5-43 Microsoft Excel Workbook

When you open the Excel workbook, the macros are disabled by default. If you enable
the macros, a new tab called Oracle Business Rules, appears. This tab enables you to
add or delete rules, merge or split cells, and add or remove values from value sets.
You can also disable or enable highlighting, use a simple or advanced mode and hide
or show the Readme worksheet.

You can edit with the macros disabled, though you will not be able to:

• Choose values from drop lists for restricted cells.

• Edit free form cells.

• Copy and paste a range of cells to add a rule or Value Set.

• Delete a range of cells to delete a rule or Value Set.

• Split or merge cells.

• Create Value Sets automatically.

• Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:

• Add and delete rules.

• Split or merge cells.

• Add or delete Value Sets.

• Editable cells include:

Chapter 5
Editing Decision Tables in Microsoft Excel

5-45

– Description for Rules, Conditions, Actions.

– Condition and Action nodes.

– Action state.

– Parameterized options for Action parameters.

• Non-editable cells include:

– Condition expressions.

– Action expressions.

– Action parameters.

If you try to edit these cells, you will get an error message, as shown in
Figure 5-44.

Figure 5-44 Non-Modifiable Cell

5.5.1 Understanding What is Exported
In the SDK, there are shared Value Sets that can be associated with multiple
conditions across Decision Tables. However, in Excel there are no shared Value
Sets--each condition has its own Value Set--so you can only export a Value Set if it is
modifiable in Excel. The Value Sets that are non-modifiable include:

• Linked Dictionary Value Sets.

• Enums.

• Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions
associated with non-modifiable Value Sets. A highlighting mechanism informs you
which conditions are associated with non-modifiable Value Sets.

5.5.2 How to Export Decision Tables
The export and import functionality is invoked using the toolbar button, as shown in
Figure 5-45.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-46

Figure 5-45 Export and Import Toolbar Button

To export Decision Table:

1. In Rules Designer, click Export to Excel.

2. In the Export to Excel dialog box, select the Format and browse to the folder
where you want to save the workbook.

3. Click Add and select the Decision Table(s) to export and click OK.

4. Check the Read Only Value Set check box to make all of the value sets read-only
in Excel. There will not be any Value Sets sheet in the Excel workbook. All
conditions will have drop down menus from which values can be selected but no
values can be added or removed.

5. Click Export. You can now open the workbook and edit the Decision Table.

5.5.3 How to Import Edited Decision Tables Back to the Dictionary
The export and import functionality is invoked using the toolbar button, as shown in
Figure 5-45. You can only import Excel workbooks that have been previously
exported.

To import edited Decision tables:

1. In Rules Designer, click Import from Excel.

2. In the Import from Excel dialog box, select the File to browse to the folder where
you saved the workbook.

3. The Perform Diff-Merge on Import check box is selected by default. Browse to
the Base Dictionary that you want to compare your file to. The base dictionary is
required for a 3 way diff-merge.

4. Clear the Perform Diff-Merge on Import check box and select Create New or
Overwrite.

5. Click Import. The decision table is imported into Rules Designer, where you can
accept or reject changes, as shown in Figure 5-46. Each changed artifact is
flagged with a change icon. Merging dictionaries should be done with caution.

For more information about using the Diff-Merge, see How to Compare or Merge
Two or More Dictionaries.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-47

Figure 5-46 Perform Diff-Merge on Import

5.5.4 How to Edit Decision Tables in Excel
In Excel, enable the macros to view the Oracle Business Rules tab, which provides
you with options to author rules, edit Value Sets, and set preferences.

5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells
For each Decision Table worksheet, you can add a rule, as shown in Figure 5-47,
delete rules, and merge or split cells.

Figure 5-47 Oracle Business Rules tab in Excel

Chapter 5
Editing Decision Tables in Microsoft Excel

5-48

5.5.4.2 Adding or Removing Value Sets
In the ValueSets tab, you can add or remove Value Sets, as shown in Figure 5-48.
Depending on the cell you click in, your options will vary: endpoints or values.

Figure 5-48 Value Sets Worksheet

5.5.4.3 Showing or Hiding Value Sets and Editing the Description
On the Value Sets worksheet, right click and select Show/Hide Values to toggle
between viewing or hiding values as shown in Figure 5-49. You can also right click and
select Edit Bucket Description to change the description.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-49

Figure 5-49 Show/Hide Value Sets

5.5.4.4 Setting Preferences
In the Value Sets tab, click Enable Highlighting or Disable Highlighting, as shown in
Figure 5-50.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-50

Figure 5-50 Enabling Highlighting

5.5.4.5 Using Simple or Advanced Mode
In your worksheet, click Simple Mode or Advanced Mode to toggle between the two
modes.

Simple mode displays only the descriptions of conditions and actions and not the
actual expressions. Also, action parameters are displayed, but you cannot specify
them as fixed or variable.

Advanced mode displays both the descriptions and expressions for conditions and
actions, as shown in Figure 5-51. Also, you can specify the action parameter type from
fixed and variable, which is equivalent to specifying "Parameterized/Constant" in the
SDK.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-51

Figure 5-51 Advanced Mode

5.5.4.6 Hiding or Showing the Readme Worksheet
Click Hide or Show ReadMe Sheet to toggle between the modes, as shown in
Figure 5-52. The ReadMe worksheet provides helpful information about how to use the
features on the Oracle Business Rules tab.

Figure 5-52 Show/Hide Readme

5.5.4.7 Editing Condition Cells
You can choose from the drop down or use auto-addition to add new values, shown in
Figure 5-53. For some of the condition cells, you can only choose values from the drop
down menu. These cells have been differentiated by using color code. Any conditions
you change between a Value Set or Decision Table are automatically synced.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-52

Figure 5-53 Editing Conditions

5.5.4.8 Editing Actions
You can select the action state (active/inactive) from the drop down, as shown in
Figure 5-54.

Figure 5-54 Editing Action States

5.5.4.9 Editing Expressions
You can edit the values of action expression cells. Use care to maintain the validity of
these cells when editing.

5.5.4.10 Editing Action Expression Parameters
You can make action parameters fixed or variable, as shown in Figure 5-55. If the
action parameter is fixed, then all the rules will have the same value for that particular
parameter. If the action parameter is variable, then different rules can have different
values for that particular parameter.

Figure 5-55 Editing Action Expression Parameters

Chapter 5
Editing Decision Tables in Microsoft Excel

5-53

5.5.4.11 Editing Descriptions
You can edit descriptions for actions, conditions, and rules. If the description is not
provided for any of the action or condition or rule then it will be defaulted to "A", "C" or
"R" followed by a number which denotes its position in the decision table, respectively.

Figure 5-56 Editing Descriptions

5.5.4.12 Using the Auto-Addition Feature
You can add values in the value sets in two ways:

1. Go to the specific value set in the value sets worksheet. In the Oracle Business
Rules tab, click Add Bucket.

2. Enter a value (in case of LOV valuesets) or end point (in case of Range valuesets)
in the condition cell. This is called auto-addition as the value will be automatically
added to the corresponding value set, as shown in Figure 5-57.

Figure 5-57 Entering a Value in the Condition Cell

The value set above has three values: – 1) <18 , 2) [18..60) , and 3) >=60.

3. To add a new value, for example, [18..30] and (30..60), type 30 in the cell as
shown in Figure 5-58 and press Enter.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-54

Figure 5-58 Adding a New Value

4. After you press enter, the value will be added to the value set and will be shown in
the drop-down as shown in Figure 5-59.

Figure 5-59 Value is Auto-Added

Various highlighting techniques are used to inform you about auto-added values in
the value set, see the following examples. The comment and the highlighting of
the value is removed after you select another value for any other rule for that
condition or if a new value is added in the same value set.

The first is to highlight the newly added value in the value set sheet as shown in
Figure 5-60.

Figure 5-60 Highlighted Value Set

The second is the addition of a comment in the condition cell, as shown in
Figure 5-61.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-55

Figure 5-61 Comments in Condition Cells

The third is to print a message box, shown in Figure 5-62. Note that the box is only
shown the first time when the value is auto-added.

Figure 5-62 Message Dialog

5.5.4.13 Aliases of Values in the Value Sets Worksheet
In the value sets sheet, there are two rows for every value set. The first row denotes
the value and the second one denotes the alias of the value. It is the alias of the value
that is shown in the drop-down of condition cells.The aliases can be edited. Any
change made in aliases will be immediately available in corresponding condition cells.

5.5.4.14 Syncing Value Sets and Conditions
The value sets and condition cells are always in sync. Any change made in value set
is promptly synced with the condition cells whether it is an addition/deletion of any
value, or any change in the alias. The sync is always maintained between value set
and the corresponding condition cells.

Chapter 5
Editing Decision Tables in Microsoft Excel

5-56

6
Working with Decision Functions

Use a decision function to call rules from a Java application, from a composite, or from
a BPEL process.

• Introduction to Decision Functions

• Working with Decision Functions

• What You Need to Know About Rule Firing Limit Option for Debugging Rules

• What You Need to Know to About Decision Function Arguments

• What You Need to Know About the Decision Function Stateless Option

6.1 Introduction to Decision Functions
A decision function is a module of execution that can be invoked to reason on the
inputs to arrive at outputs by applying a given ruleset or other decision functions.

A decision function contains the following declarations:

• Input facts.

• Rulesets and nested decision functions.

• Output facts.

A decision function performs the following operations:

• Asserts inputs as rule facts into the Oracle Business Rules Engine working
memory.

• Runs rulesets configured in the current decision function and in nested decision
functions in order.

• Returns output facts from the Oracle Business Rules Engine working memory.

You can create a decision function to simplify the use of Oracle Business Rules from a
Java application or from a BPEL process. In a decision function the rules you want to
use can be organized into several rulesets, and those rulesets can be executed in a
prescribed order. Facts may flow to the first ruleset, and this ruleset may assert
additional facts that flow to the second and subsequent rulesets until finally facts flow
back to the decision function as decision function output.

6.2 Working with Decision Functions
You use Rules Designer to add a decision function.

To add a decision function:

1. In Rules Designer, click the Decision Functions tab.

2. In the Decision Functions area, click the Create button.

6-1

A new Decision Function is created and an Edit Decision Function dialog is
displayed, as shown in Figure 6-1.

Figure 6-1 Edit Decision Function Dialog

3. Enter a name for the Decision Function in Name field and a description in the
Description field.

4. In the Rule Firing Limit field, select unlimited or an integer value. In some cases
when you are debugging a decision function, you may want to enter a value for the
rule firing limit. The Rule Firing Limit can also be used in primary rules
processing when you want the execution to stop after a specified number of rules
fire.

For more information, see What You Need to Know About Rule Firing Limit Option
for Debugging Rules.

5. Select the appropriate decision function options:

• Rule Firing Limit is Error: is used to indicate whether the rule firing limit is an
error condition or not. Clear the check box if this is a scenario where you want
rules processing to stop after n number of rules fire. When cleared, the rule
firing limit is honored, but not reported as an error.

Select this check box if this is a scenario where you are using the rule firing
limit as a way to, for example, prevent an infinite loop. The system throws an
error when the firing limit is reached.

• Will be invoked as a Web Service: select whether the decision function will
be invoked as a Web Service and provide the Web Service name.

• Check Rule Flow: Rule flow checking verifies the following to generate
validation warnings:

Chapter 6
Working with Decision Functions

6-2

– Types required by rules executed by the decision function are either inputs
to the decision function or asserted by other rules.

– Types generated by rules executed by the decision function are either
inputs to other rules or outputs to the decision function.

Rule flow checking might not identify rule flow issues spanning Java code
that is used in rules. In such cases, the warnings can be ignored by
turning off rule flow checking.

• Stateless: when selected, this option specifies that the decision function is
stateless. For more information, see What You Need to Know About the
Decision Function Stateless Option.

6. In the Inputs tab, click Add to add inputs. For each input in the Inputs Table, select
the appropriate options:

• Name - enter an input name and press Enter or accept the default name.

• Fact Type - select the appropriate fact type from the list.

• Tree - When cleared, the input is asserted using the assert function. When
selected, the input is asserted using the assertTree function. When selected,
all objects referenced by the root object(s) are asserted. For more information,
see Working with Tree Mode Rules.

• List - When unselected, the input must be a single object and the assertion
applies only to that single input object. When selected, the input must be a
List of objects and the assertion applies to each object in the input List
(java.util.List).

• Description - Description of the input.

7. In the Outputs tab, click Add to add outputs. For each output in the Outputs Table,
select the appropriate options:

• Name - enter an output name and press Enter or accept the default name.

• Fact Type - select the appropriate fact type from the list.

• Tree - When selected, this option sets a flag that enables certain design-time
decision function argument checking. For an output argument, this option has
no effect on runtime behavior. However, at design time in the case where
several decision functions are called in a sequence, it is useful to notate
explicitly that the output of one decision function is a tree. This implies that the
input of another decision function in the sequence is expecting a tree as an
input. For more information, see Working with Tree Mode Rules.

• List - When unselected the output is a single object. When selected the output
is a group of objects. For more information on the behavior of the List option
on an output argument, see What You Need to Know to About Decision
Function Arguments.

• Description - Description of the output.

Chapter 6
Working with Decision Functions

6-3

Note:

The visible attribute of a fact type controls whether a fact can be
matched by a rule or can be asserted. Non-visible fact types are visible
when they are part of a visible fact type, or a variable.

When inputs or outputs of a decision function are non-visible fact types,
then a visible wrapper fact type is generated for the non-visible inputs
named DF.in and a visible wrapper fact type for the non-visible outputs
named DF.out.

For example, if i is an input of type int and o is a output of type int, then
the following rule copies input to output:

 IF
 DF.in != null
 THEN
 assert new DF.out(o: DF.in.i)

If you do not reference DF.in or assert DF.out, a rule flow warning
occurs.

8. In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set
up" the environment for running rules.

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset2 is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in
the initial actions, you are calling DF2), you can use initial actions in DF1 to clear
the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling
DF2.

You can add any required action ranging from assert, call, modify to even
conditional actions such as if, else, elseif, while, for, if (advanced), and
while (advanced) as shown in Figure 6-2.

Chapter 6
Working with Decision Functions

6-4

Figure 6-2 Adding Initial Actions

Note:

If decision function DF1 contains DF2 in the Rulesets & Decision
Functions tab, then DF2 may not have any initial actions.

The if (advanced) and while (advanced) conditional actions accept only boolean
values. For each of the action conditions, you can add different test form types.

9. In the Rulesets and Decision Functions area, use the shuttle to move items
from the Available box to the Selected box.

10. Select an item in the Selected box, and click Move Up or Move Down as
appropriate to order the rulesets and the decision functions.

6.2.1 How to Edit an Existing Decision Function
To edit an existing decision function:

1. In Rules Designer, click the Decision Functions tab.

2. Select the decision function to edit and click the Edit button or double-click the
decision function icon.

3. Edit the appropriate decision function fields in the same manner as you would
when you add a decision function.

Chapter 6
Working with Decision Functions

6-5

6.2.2 How to Change the Order of Inputs
To change the order of inputs:

1. In Rules Designer, click the Decision Functions tab.

2. Select the decision function to edit and click the Edit button or double-click the
decision function icon.

3. Select the input argument you want to move. Click either Move Up or Move Down
to reorder the input argument.

6.2.3 How to Change the Order of Outputs
To change the order of outputs:

1. In Rules Designer, click the Decision Functions tab.

2. Select the decision function to edit and click the Edit button or double-click the
decision function icon.

3. Select the output argument you want to move. Click either Move Up or Move
Down to reorder the output argument.

6.2.4 How to Edit a Decision Function
To edit a Decision Function

1. In Rules Designer, click the Decision Functions tab.

2. Select the Decision Function you want to edit and click the Edit icon.

The Edit Decision Function dialog is displayed.

3. Make necessary changes using the process that you have used for adding a new
Decision Function.

6.3 What You Need to Know About Rule Firing Limit Option
for Debugging Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings)
that are allowed at runtime.

Using this option and specifying a value other than unlimited can help you debug
certain rule design problems and in some cases might help prevent
java.lang.OutOfMemoryError errors at runtime. This is can be useful when debugging
infinitely recursive rule firings.

When you choose a value other than unlimited, and choose Rule Firing Limit is
Error, the system throws an error once the limit is reached.

Chapter 6
What You Need to Know About Rule Firing Limit Option for Debugging Rules

6-6

6.4 What You Need to Know to About Decision Function
Arguments

Oracle Business Rules generates a corresponding RL Language function for each
decision function.

The signature of a generated decision function is similar to:

function <name>(InputFactType1 input1, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with
the decision function input, as follows:

• Input argument, List option unselected: for FactTypei the input must be a single
object and the assertion applies only to that single input object.

• Input List option selected: for List<FactTypei> the input must be a List of objects
and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree for
each argument, depending on the decision function Input option, Tree. When Tree is
cleared, the input is asserted using the assert function. When Tree is selected, the
input is asserted using the assertTree function. When selected, all objects referenced
by the root object(s) are asserted.

For the decision function selected rulesets, as specified in the Rulesets and Decision
Functions area Selected box, the generated RL Language function includes a call to
run() with the selected rulesets in the selected ruleset stack order.

The generated RL Language function returns a list. The list has an element for each
decision function output in order. If the output is declared to be a list, then the
corresponding element is a list. However, if the output is not declared to be a list, then
the corresponding element is the output fact or null (if there is no output fact of the
declared type). If an output is not declared to be a list, and more than one output fact
of the specified type is found in the working memory of Oracle Business Rules Engine,
then an exception is thrown.

After you edit a decision function, for example, to change or add inputs and outputs,
the changes are visible in BPEL for new Business Rule activities. However, the
changes are not visible to existing Business Rule activities. For more information, see
"Getting Started with Oracle Business Rules" in the Developing SOA Applications with
Oracle SOA Suite.

6.5 What You Need to Know About the Decision Function
Stateless Option

A decision function supports either stateful or stateless operation. The Stateless
check box in the Edit Decision Function dialog provides support for these two modes
of operation.

By default the Stateless check box is selected which indicates stateless operation.
With stateless operation, at runtime, the rule session is released after each invocation
of the decision function.

Chapter 6
What You Need to Know to About Decision Function Arguments

6-7

When Stateless is cleared, the underlying Oracle Business Rules object is kept in the
memory of the Business Rules service engine, so that it is not given back to the Rule
Session Pool when the operation is finished. A subsequent use of the decision
function re-uses the cached RuleSession object, with all its state information from the
previous invocation. Thus, when Stateless is cleared, the rule session is saved for a
subsequent request and a sequence of decision function invocations from the same
process should always end with a stateless invocation.

Chapter 6
What You Need to Know About the Decision Function Stateless Option

6-8

7
Testing and Validating Business Rules

Test and validate the rules you have created or edited.

• Overview

• Testing Rules in JDeveloper

• Testing Rules in Business Process Composer

• Testing Rules in SOA Composer

• Testing Decision Functions Using a Rules Function

• Testing Decision Services in SOA Composites

7.1 Overview
The business rules test feature enables both developers and business users to quickly
check that a rule satisfies the expected behavior or, if modified, to see if a rule
regresses existing functionality.

You can author and test rules at design-time in Oracle JDeveloper or Business
Process Composer. At runtime, you can test rules in SOA Composer.

You can write tests declaratively, with no need for knowledge of XML or prior rules
actions or programming languages such as Java. Additionally, tests support all types
of facts (XML, Java, RL, and ADF-BC) and can be run on SOA or non-SOA use cases.

The test feature provides test reports with diagnostic comments and visual differences
between the expected and actual values that can be used to correct the rules or fix the
tests.

Figure 7-1 shows the UI in JDeveloper. For more information about using JDeveloper,
see Introduction to Oracle JDeveloper in Oracle Fusion Middleware Developing
Applications with Oracle JDeveloper.

7-1

Figure 7-1 Test Tab in JDeveloper

7.1.1 Components of the Test Feature
No matter which UI you use, the testing functionality behaves mostly the same way in
JDeveloper, BP Composer, and SOA Composer.

Decision functions must have been already created before you begin--there is a one to
one mapping between decision functions and tests. Once a decision function is
associated with a test suite or test template, it cannot be changed later.

The components of the test feature are:

• Test Suites and Test Cases

You can create a test suite with one or more test cases. You can also create
templates that serve as templates for creating other test cases.

• Test Templates

Test templates enable you to create similar test cases that differ only by the values
of a few Fact properties. Templates also let you execute ad-hoc tests by specifying
values for parameters. Ad-hoc tests enable you to perform sanity tests and try
different value combinations for specific parameters before creating them as test
cases in a test suite.

• Test Execution

Executing test suites or test cases invokes the decision function and executes the
rulesets defined in the decision function and presents the results in a new tab, as
shown in Figure 7-2. Tests are executed via RL generation.

Chapter 7
Overview

7-2

Figure 7-2 Test Results Tab

Keep the following in mind:

– Tests can be executed either from the Test tab of the Dictionary or from the
Decision Functions tab.

– Tests can be defined in the current dictionary for decision functions in linked
dictionaries.

– Tests defined in linked dictionaries can be executed in the current dictionary.
Tests from linked dictionaries are available as read-only for execution.

– If you modify the inputs/outputs in a decision function, the changes are
automatically synced to the tests you have defined. Tests are synced to fact-
types referenced in the tests. If you remove facts from a decision function, the
test feature enables you to delete those facts from the input/output tree of the
test.

– A Fact is an instance of a FactType that defines the Test Data and has
property values corresponding to each of the FactType properties. If a
Property value is a complex data type, it is defined using Fact instances as
well.

7.2 Testing Rules in JDeveloper
You can test your rules as you design them in JDeveloper.

In the Test Case editor, you define the inputs and expected output values for a Test
Case. The values here can be simple values or expressions that use globals,
functions, and so on.

The input and output Fact trees are auto-initialized based on the inputs/outputs
specified for the Decision Function.

The test input and output Fact trees are also auto-synchronized with any changes to
the Decision Function (if you add, delete, modify inputs or outputs) or fact types (if you
add, delete or modify properties). The auto-synchronization flags and highlights invalid
Facts or Property values that were changed in a Decision Function or Fact type. These
flags in the test input/output help you to identify and fix issues in your test definitions.

Chapter 7
Testing Rules in JDeveloper

7-3

Testing Permission Related Cases

Before testing permission related cases, change the refresh time 10 seconds. This is
an important prerequisite for reliable test results.

To change the refresh time to 10 seconds:

1. Navigate to $MW_HOME/user_projects/domains/soainfra/config/
fmwconfig.

2. Open jps-config.xml.

3. Set oracle.security.jps.ldap.policystore.refresh.interval to 10000.

<serviceInstance name="pdp.service" provider="pdp.service.provider">
 <property
name="oracle.security.jps.ldap.policystore.refresh.interval"
value="10000"/>
</serviceInstance>

4. Restart the server.

7.2.1 How to Create and Manage Test Suites and Cases
You can create a test suite with one or more test cases. Test suites can only be
defined for specific decision functions.

For more information about decision functions, see Working with Decision Functions.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

Figure 7-3 Test Tab in JDeveloper

To create a test suite:

1. In Rules Designer, click the Test tab.

2. Click the Test Component drop down and select a Test Model from the list.

Chapter 7
Testing Rules in JDeveloper

7-4

3. Click + to create a new test case for the test suite.

4. Enter a name, choose a Decision Function, enter a Description.

5. Click OK. The test suite is displayed.

6. Click Edit to review the Input and Output documents for the test case. This is
where you can edit values to specify the input and the expected output, as shown
in Figure 7-4:

Figure 7-4 Inputs and Outputs

7. Check the Unfired Rules are Errors check box if unfired rules are treated as
errors from the execution.

8. Click the Draft Test check box to turn off the test validation.

When you have finished creating test suites and cases, you can run them. For more
information, see How to Run Test Suites or Cases.

7.2.2 How to Create Test Templates
Test templates enable you to reuse input and output values to repeat tests on those
fields and values.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To create a test template:

1. In Rules Designer, click the Test tab.

2. Click the Test Component drop down and select the Test Model/Templates from
the list.

3. Go to the Templates table and click + to create a new test template.

4. Enter a name, choose a Decision Function, enter a Description.

Chapter 7
Testing Rules in JDeveloper

7-5

5. Click OK. The test template is displayed, where you can see the Input and Output
documents. This is where you can edit values to specify the input and the
expected output, as shown in Figure 7-5.

Figure 7-5 Test Template

When you have finished setting up your test templates, you can run them. For more
information, see How to Run Ad-hoc Tests from Test Templates.

7.2.3 How to Run Test Suites or Cases
When you run a test, a new tab is opened, and you can see the diagnostic comments,
exceptions, and test results. Tests can be run either as a suite, multiple test cases, or
as individual test cases.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To run a test suite or case:

1. Select a Test Suite or Test Case to run, and click Execute.

2. A new tab opens. A new tab Results opens. Click it to see the test results.

For test suite execution, the tab shows a summary of the test results by default,
but you can double-click each test case to see its test results. For test case
execution, the tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences
or exceptions depending on the cause of the failure.

The execute button is enabled only when a test suite or test case (or test template) is
selected from the table and as long as there are no validation warnings in the current
dictionary.

7.2.4 How to Run Ad-hoc Tests from Test Templates
This is where you can run ad-hoc tests from templates by editing the nodes in input
and output trees. The inputs and outputs are from the decision function.

Chapter 7
Testing Rules in JDeveloper

7-6

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To run ad-hoc tests from test templates:

1. Go to the Templates table and select a test template. The inputs and outputs
fields are displayed, as shown in Figure 7-6.

Figure 7-6 Template Inputs and Outputs

2. Enter values for variable or parameter fields and click Run. The Ad-Hoc Test
dialog is displayed.

Select the appropriate options:

• Check the Unfired Rules Are Errors check box if unfired rules are treated as
errors from the execution.

• Click List View or Tree View to toggle between the views.

• Check the Constant check box and select a constant from the list.

• Check the Mark as Parameter check box for variable fields of the test
template. Values for variable fields are entered when the template is
consumed like when the template is tested or used to create a test case.

3. Click Execute Test to run the template.

4. From the new Results tab, check the test results.

7.2.5 How to Run Tests for a Specific Decision Function
You can run tests from the Decision Function tab. This view only shows you the Test
Suites and Test Cases for the specific Decision Function.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

Chapter 7
Testing Rules in JDeveloper

7-7

To run tests for a specific decision function:

1. In Rules Designer, click the Decision Functions tab.

2. Click to select a test case and click the Test button.

3. The Decision Function Test Editor dialog appears. This dialog is just another view
of the testing feature.

7.3 Testing Rules in Business Process Composer
You can test your rules as you design them in Business Process Composer.

For more information about using Business Process Composer, see Introduction to
Oracle Business Process Composer in Oracle Fusion Middleware Developing
Business Processes with Oracle Business Process Composer.

7.4 Testing Rules in SOA Composer
At runtime, you can use SOA Composer to regression test rules. This enables
business users to quickly check if a modified rule changes the existing functionality.

Figure 7-7 shows the Tests tab in SOA Composer. The Tests tab only appears if you
have a deployed composite and are in a SOA Composer session. Click Create
Session to open a session.

Figure 7-7 Tests Tab in SOA Composer

7.4.1 How to Create and Manage Test Suites and Cases
You can create a test suite with one or more test cases. Test suites can only be
defined for specific decision functions.

For more information about decision functions, see Working with Decision Functions.

Chapter 7
Testing Rules in Business Process Composer

7-8

Figure 7-8 Test Suite Page

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

To manage test suites and cases:

1. In Rules Designer, click the Tests tab and click in a Test Suite row to enable the
action buttons.

Click the Draft Tests check box if you want to turn off test validation.

2. Click + to create a new Test Suite.

3. Enter a Name and Description, then choose a Decision Function.

4. The test suite is displayed.

5. After creating a test suite, if you want to create test cases, click the test suite in the
Test Model tree and click + to create a Test Case or a Test Case from
Templates.

6. You can Save Changes in Current Tab to save data at any time or click Publish
if you are done with changes.

7. You can also click a test case in the Test Model tree to see the Input and Output
documents for the test case. This is where you can edit values to specify the input
and the expected output, as shown in Figure 7-9.

Chapter 7
Testing Rules in SOA Composer

7-9

Figure 7-9 Inputs and Outputs from Decision Functions

In the Test Case editor, you define the inputs and expected output values for a
Test Case. The values here can be simple values or expressions that use globals,
functions, and so on.

The test input and output Fact trees are auto-initialized based on the inputs and
outputs specified for the Decision Function.

The input and output Fact trees are also auto-synchronized with any changes to
the Decision Function (if you add, delete, modify inputs or outputs) or fact types (if
you add, delete or modify properties). The auto-synchronization flags and
highlights invalid Facts or Property values that were changed in a Decision
Function or Fact type. These flags in the test input/output help you to identify and
fix issues in your test definitions.

8. Click Edit to make all of the nodes in the tree editable.

9. If you edit a field in the tree, click Show Values to show only those values.

10. Check the Flag Rules not Firing as Error check box if unfired rules are treated
as errors from the execution.

When you have finished setting up your test suites and cases, you can run them. For
more information, see How to Run Test Suites or Cases.

7.4.2 How to Create Test Templates
Test templates enable you to reuse input and output values to repeat tests on those
fields and values.

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

To create test templates:

1. In Rules Designer, click the Tests tab.

2. Click Test Model in the navigation tree. In the Test Templates region, click + to
create a new test template.

3. Enter a Name, Description, and choose a Decision Function.

Chapter 7
Testing Rules in SOA Composer

7-10

4. Click Save.

To run ad-hoc tests from test templates, see How to Run Ad-hoc Tests from Test
Templates.

7.4.3 How to Run Test Suites or Cases
When you run a test, a new tab is opened, and you can see the diagnostic comments,
exceptions and test results. Tests can be run either as a suite, multiple test cases or
as individual test cases. Tests are executed via RL generation.

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

To run test suites or cases:

1. Select a Test Suite or Test Template to run, and click Execute.

The execute button is enabled only when a test suite or test case (or test template)
is selected from the table and as long as there are no validation warnings in the
current dictionary.

2. A new tab, Results appears. Click it to see the test results.

For test suite execution, the tab shows a summary of the test results by default,
but you can double-click each test case to see its test results. For test case
execution, the tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences
or exceptions depending on the cause of the failure.

Figure 7-10 Diagnostic Comments for a Test Suite

If you select a test suite from the Test Model tree and run it, you can see the Decision
Trace tab, as shown in Figure 7-11.

Chapter 7
Testing Rules in SOA Composer

7-11

Figure 7-11 Decision Trace UI

7.4.4 How to Run Ad-hoc Tests from Test Templates
The Input and Output trees are loaded with input and output facts from the associated
Decision Function, as shown in Figure 7-12. If you modify facts in a Decision Function,
those changes are automatically synced to the Input and Output facts.

Figure 7-12 Input and Output Facts

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

To run ad-hoc tests from test templates:

1. To see the Input and Output facts, click to choose a template from the Test Model
tree.

Chapter 7
Testing Rules in SOA Composer

7-12

This is where you can edit values to compare the input with the expected output.
You can add dynamic values here or check Mark as Parameter to be able to
enter values when the rule is executed.

For more information about how to use the Expression Builder, see Working with
Tree Mode Rules.

2. Click the Execute Test Template button to run the template. A dialog box
appears.

3. Enter values for those variable or parameter fields and click Run from the dialog.

4. From the new Results tab, check the test results. Click the Decision Trace tab to
see the audit trail.

7.4.5 How to Run Tests for a Specific Decision Function
You can run tests for specific Decision Functions, as shown in Figure 7-13:

Figure 7-13 Decision Functions Tab

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To run tests for a specific Decision Function:

1. Click the Decision Functions tab and select the appropriate Decision Function
from the list.

2. In the Tests field, use the dropdown to select the appropriate test.

3. The test is opened in the Tests tab. Click the test, and then click Execute to run
your test.

4. The results tab appears. Click the new tab to view test results.

Chapter 7
Testing Rules in SOA Composer

7-13

7.5 Testing Decision Functions Using a Rules Function
You can test rulesets by creating a decision function and calling the decision function
from Rules Designer with an Oracle Business Rules function.

In the body of the Oracle Business Rules function you create input facts, call a
decision function, and validate the facts output from the decision function. For more
information, see Introduction to Decision Functions and Introduction to Oracle
Business Rules Functions.

To test a decision function using an Oracle Business Rules function:

1. Confirm that your dictionary is valid.

For more information on dictionary validation, see How to Validate a Dictionary

2. In Rules Designer, select the Functions navigation tab.

3. In the Functions area click the Create... button.

4. Enter the function name in the Name field, or use the default name.

5. Select the return type from the Return Type list.

For a test function, select boolean.

6. In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assign new
to call and get the return value of the decision function (in the body of the test
function you create input facts, call a decision function, and validate the facts
output from the decision function).

A decision function call returns a List. Thus, to test a decision function in a test
function you do the following:

• You create the input data as required for the decision function input
arguments.

• You call the decision function with the arguments you create in the test
function.

• You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1(testScore)

8. Select the function and click the Test Function button.

The function is executed. The output is shown in a Function Test Result dialog.

9. Click OK to dismiss the Function Test Result dialog.

7.5.1 What You Need to Know About Testing Decision Functions
You can use Oracle Business Rules Functions to test decision functions from within
Rules Designer. Keep the following points in mind when using a test function:

Chapter 7
Testing Decision Functions Using a Rules Function

7-14

• The Test Function button is gray if the dictionary associated with the test Oracle
Business Rules Function contains any validation warnings. The Test Function
button is only shown when the dictionary validates without warnings.

• To enable logging you can call RL.watch.all(). For more information on RL
Language functions, see Rules Language Reference for Oracle Business Process
Management. In this guide, RL.watch.all() is an alias for the RL Language
function watchAll().

• As an alternative to the example above, you can enter the function body that is
shown in the example below:

call RL.watch.all()
assign new TestScore testScore = new TestScore()
modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1(testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns Test Passed. For the testScore
value 91, this returns Test Failed.

This function runs and shows the RL.watch.all() output. The dialog shows Test
Passed when the grade is in the B range. The dialog shows Test Failed when the
grade asserted is not in the B range.

7.6 Testing Decision Services in SOA Composites
In a BPM or SOA application that uses Oracle Business Rules with a Decision Service,
you can test rules at runtime with Oracle Enterprise Manager Fusion Middleware
Control Console Test Web Service page, where you can create an instance of your
composite for testing.

For more information about how to create a test instance of your composite after you
have finished designing and deploying it, see Initiating a SOA Composite Application
Test Instance in Oracle Fusion Middleware Administrating Oracle SOA Suite and
Oracle Business Process Management Suite.

You can see the audit trail for the Decision Service execution. For more information,
see Monitoring Business Rule Tracing in Oracle Fusion Middleware Administrating
Oracle SOA Suite and Oracle Business Process Management Suite.

Chapter 7
Testing Decision Services in SOA Composites

7-15

8
Working with Rules in Standalone (Non
SOA/BPM) Scenarios

When using rules in standalone (non SOA or BPM) scenarios, you can create
RuleSession rules, or you can use the Decision Point API.

For more information about using a RulesSession object, see Using a RuleSession in
Rules Language Reference for Oracle Business Process Management.

For information about using the Decision Point API, see Introduction to the Rules SDK
Decision Point API.

• Loading a Dictionary from the Repository

• Executing a Rule Dictionary

• Introduction to the Rules SDK Decision Point API

• Creating a Dictionary for Use with a Decision Point

• Creating a Java Application Using Rules SDK Decision Point

• Running the Car Rental Sample

• What You Need to Know About Using Decision Point in a Production Environment

• What You Need to Know About Decision Point and Decision Tracing

For more information on APIs that are referred to in this chapter, see Java API
Reference for Oracle Business Rules.

8.1 Loading a Dictionary from the Repository
Non-SCA (SOA/BPM) applications typically package the rule dictionaries used by the
application such that they are copied to the MDS repository when the application is
deployed. In order to use the dictionaries at runtime, they must be retrieved from MDS.

The basic access method is to use the RuleRepository API to access the dictionaries.
A simple usage example is shown below.

RuleRepository rr = RepositoryManager.getMDSRuleRepository(null);
 // pkg and name are the dictionary package and name (Strings).
 // Alternatively you could construct a DictionaryFQN
 RuleDictionary rd = rr.load(pkg, name);
 // if this is an editing session, edit session occurs and
 // then save it when done.
 rr.save(rd);
 // when the RuleRepository will not be used again it must be closed.
 rr.close();

It is typical that an application wants to react when a dictionary has been modified,
reload the dictionary and begin using the new rule definitions. Detecting when a
dictionary must be reloaded is complicated when linked dictionaries are used since it
may not be the root dictionary that was modified.

8-1

In this situation, the oracle.rules.sdk2.repository.DictionaryLoader class is the
recommended mechanism for loading dictionaries for rule execution. DictionaryLoader
tracks the dictionaries that are loaded including linked dictionaries and can determine
when a dictionary it has loaded needs to be reloaded. DictionaryLoader uses
DictionaryFinder instances to load all dictionaries. DictionaryFinders are added to a
DictionaryLoader instance with the addFinder method in the order in which they will be
invoked to find a dictionary. That is, the first finder added will be the first one to attempt
to load a dictionary. When all the desired DictionaryFinders have been added to the
DictionaryLoader, the loadDictionary() method is used to load a dictionary. The
reloadNeeded method can be invoked to determine if a dictionary needs to be
reloaded.

 //
 // A RuleRepository instance is needed for its built-in DictionaryFinder
 //
 RuleRepository rr = RepositoryManager.getMDSRuleRepository(null);
 DictionaryFinder rrf = rr.getDictionaryFinder();

 //
 // Create the dictionary loader
 //
 DictionaryLoader dloader = new DictionaryLoader();
 dloader.addFinder(rrf);
 //
 // If the DecisionPointDictionaryFinder is required, add it
 //
 dloader.addFinder(new DecisionPointDictionaryFinder());

 //
 // Load the dictionary
 //
 DictionaryFQN fqn = new DictionaryFQN("somepackage", "myDictionary");
 RuleDictionary rd = dloader.loadDictionary(fqn);

 //
 // Check if the dictionary needs to be reloaded
 //
 if (dloader.reloadNeeded(fqn))
 rd = dloader.loadDictionary(fqn);

 //
 // When usage is complete, the RuleRepository must be closed.
 //
 rr.close();

8.2 Executing a Rule Dictionary
There are two approaches to initializing the RuleSessionPool from the RuleDictionary:
initiallizing the RuleSessioPool, and using the Decision Point API.

For information, see Introduction to the Rules SDK Decision Point API

When initializing for rule execution, once a RuleDictionary has been loaded a
RuleSessionPool should be initialized with RL generated from the dictionary.

For more information, see How to Use a RuleSession Pool in the Rules Language
Reference for Oracle Business Process Management.

Chapter 8
Executing a Rule Dictionary

8-2

If a single decision function will be invoked, then it is most efficient to load only the rule
sets that are referenced by that decision function. Sample code to build the list of RL
text which is passed to the RuleSessionPool constructor is shown below.

Note that error checking and exception handling not shown for brevity.

RuleDictionary rd; // previously loaded dictionary
 String dfAlias = "Alias for my Decision Function";
 DecisionFunction df =
 rd.getCombinedDataModel().getDecisionFunctionByAlias(dfAlias);
 List<String> rlList = new ArrayList<String>();
 //
 // Add the RL for the data model
 //
 rlList.add(rd.dataModelRL());
 //
 // Add the RL for each rule set referenced by the decision function
 //
 Collection<String> rsal = df.getRuleSets();
 for (String alias : rsal)
 {
 rlList.add(rd.ruleSetRL(alias));
 }

If multiple decision functions will be invoked from the same RuleSessionPool, then
adding the RL for the rulesets referenced by each decision function will enable this.
Care must be taken to avoid adding the same ruleset twice.

In other scenarios such as using rules to dynamically selecting other rule sets to
execute at run time, it will be necessary to load all of the rule sets in the dictionary.
Sample code to do this is shown below.

RuleDictionary rd; // previously loaded dictionary
 List<String> rlList = new ArrayList<String>();
 //
 // Add the RL for the data model
 //
 rlList.add(rd.dataModelRL());
 //
 // Add the RL for each rule set referenced by the decision function
 //
 Collection<String> rsal = rd.getRuleSetAliases(true);
 for (String alias : rsal)
 {
 rlList.add(rd.ruleSetRL(alias));
 }

8.3 Introduction to the Rules SDK Decision Point API
Use Oracle Business Rules SDK (Rules SDK) to write applications that access, create,
modify, and execute rules in Oracle Business Rules dictionaries (and work with the
contents of a dictionary). Get an overview of Rules SDK and learn how to work with
the Rules SDK Decision Point API.

The Rules SDK consists of four areas:

• Engine: provides for rules execution

• Storage: provides access to rule dictionaries and repositories

Chapter 8
Introduction to the Rules SDK Decision Point API

8-3

• Editing: provides a programatic way to create and modify dictionary components

• Decision Point: provides an interface to access a dictionary and execute a
decision function

Other than for explanation purposes, there is not an explicit distinction between these
areas in Rules SDK. For example, to edit rules you also need to use the storage area
of Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help
describe the different modes of usage, rather than to describe distinct Rules SDK
APIs.

8.3.1 Working with Decision Point API
The Decision Point API provides a concise way to execute rules. Most users create
Oracle Business Rules artifacts, including data model elements, rules, Decision
Tables, and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus,
most users do not need to work directly with the engine, storage, or editing parts of
Rules SDK.

To work with the Rules SDK Decision Point package you need to understand three
important classes:

• DecisionPoint: is a helper class that follows the factory design pattern to create
instances of DecisionPointInstance. In most applications there should be one
DecisionPoint object that is shared by all application threads. A caller uses the
getInstance() method of DecisionPoint to get an instance of
DecisionPointInstance which can be used to call the defined Decision Point.

• DecisionPointBuilder: follows the Builder design pattern to construct a Decision
Point.

• DecisionPointInstance: users call invoke() in this class to assert facts and
execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be
chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html

A Decision Point manages several aspects of rule execution, including:

• Use of oracle.rules.rl.RuleSession objects

• Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

• Either the name of a dictionary to be loaded from an MDS repository or a pre-
loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

• The name of a decision function stored in the specified dictionary.

8.3.2 How to Obtain the Car Rental Sample Application
This chapter shows a car rental application that demonstrates the use of Rules SDK
and the Decision Point API. You can obtain the sample application in a ZIP file,
CarRentalApplication.zip. This ZIP contains a complete JDeveloper application and
project.

Chapter 8
Introduction to the Rules SDK Decision Point API

8-4

http://www.martinfowler.com/bliki/FluentInterface.html

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

To work with the sample unzip CarRentalApplication.zip into an appropriate
directory. The car rental application project contains a rules dictionary and several
Java examples using Rules SDK.

For more examples, see Introduction to the Grades Sample Application

8.3.3 How to Open the Car Rental Sample Application and Project
The Car Rental sample application shows you how to work with the Rules SDK
Decision Point API.

To open the car rental sample application:

1. Start Oracle JDeveloper.

2. Open the car rental application in the directory where you unzipped the sample.
For example, from the File menu select Open... and in the Open dialog navigate to
the CarRentalApplication folder.

3. In the Open dialog select CarRentalApplication.jws and click Open.

4. In the Application Navigator, expand the CarRentalApplication, expand
Application Sources and Resources. This displays the Oracle Business Rules
dictionary named CarRental.rules and several Java source files.

8.4 Creating a Dictionary for Use with a Decision Point
When you are working in a development environment you can use the Decision Point
API with the pre-loaded dictionary signature. In a production environment use a
Decision Point with the MDS repository signature.

To work with the Decision Point API you need to create a dictionary that contains a
decision function (the car rental sample application comes with a predefined dictionary
and decision function). The CarRental dictionary is pre-defined and is available in the
car rental sample application. The car rental sample uses the Rules SDK Decision
Point API with either a pre-loaded Oracle Business Rules dictionary or a repository
stored in MDS.

Perform the following tasks to create a dictionary and a decision function:

• How to Create Data Model Elements for Use with a Decision Point

• How to View a Decision Function to Call from the Decision Point

• How to Create Rules or Decision Tables for the Decision Function

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-5

http://www.oracle.com/technetwork/middleware/soasuite/learnmore/soasuite12csamplestutorials-2769540.html

8.4.1 How to Create Data Model Elements for Use with a Decision
Point

Note:

Note that the screen shots reflect a previous version, however, the content is
applicable to the current release.

You need the following to add to a decision function when you create an application
with a Decision Point.

• A dictionary containing data model elements that you use to create rules or
Decision Tables and when working with ADF Business Components fact types,
you need to add links for the Decision Point support dictionary. For more
information, see Working with Data Model Elements. For more information, see
Working with Oracle Business Rules and ADF Business Components.

• A dictionary containing fact definitions. For more information, see Working with
Facts and Value Sets.

To view the data model in the sample application:

1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab, as shown in Figure 8-1.

The Java Facts tab shows four fact types imported, in addition to the fact types
provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.

The Denial Java Fact is imported from Denial Java class in the project.

The LicenseType and VehicleType facts are imported from the nested enum
classes defined in the Driver class.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-6

Figure 8-1 Defined Java Facts for the Car Rental Sample Application

When you use a Decision Point with Rules SDK, you call a decision function in a
specified dictionary. The decision function that you call can contain one or more
rulesets that are executed as part of the Decision Point.

Similarly, to view the ruleset in the supplied car rental sample application, expand the
CarRentalApplication in Rules Designer. In the CarRentalApplication, expand
Resources and double-click the CarRental.rules

8.4.2 How to View a Decision Function to Call from the Decision Point
When you work with the Decision Point API you use decision functions to expose an
Oracle Business Rules dictionary. For more information on decision functions, see
Working with Decision Functions.

To view the decision function in the car rental sample application:

1. In Rules Designer, click the Decision Functions navigation tab. This displays the
available decision functions in the CarRental dictionary, as shown in Figure 8-2.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-7

Figure 8-2 Car Rental Sample Decision Function

2. Select the row with CarRentalDecisionFunction and double-click the decision
function icon. This opens the Edit Decision Function dialog as shown in Figure 8-3.

The decision function Inputs table includes a single argument for a Driver fact
type.

The decision function Outputs table includes a single argument for a Denial fact
type.

The decision function Rulesets and Decision Functions area shows Denial
Rules:if-then in the Selected box.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-8

Figure 8-3 Car Rental Decision Function for the Car Rental Sample
Application

8.4.3 How to Create Rules or Decision Tables for the Decision
Function

The car rental sample includes two rulesets, one with IF/THEN rules and another
containing a Decision Table. You can use either IF/THEN rules or Decision Tables or
both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:

1. In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 8-4.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-9

Figure 8-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

The Denial Rules:if-then ruleset includes two rules:

• under age: this rule defines the minimum age of the driver. The rule compares
the Driver instance age property to the global Minimum driver age. If the
driver is under this age, then a new Denial fact is asserted. A call to the
decision function collects this Denial fact, as defined in its output.

• too many accidents: this rule defines an upper threshold for the number of
accidents a driver can have before a rental for the driver is denied. The rule
also calls a user-defined function, audit, to provide some auditing output
about why the Denial is created.

2. To view the Decision Table in the car rental application, click the Denial
Rules:decision table ruleset in the Rules Designer, as shown in Figure 8-5.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-10

Figure 8-5 Ruleset with Decision Table for the Car Rental Sample Application

8.4.4 What You Need to Know About Using Car Rental Sample with a
Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset.
To switch to use a Decision Table in the supplied decision function sample, move the
Denial Rules:if-then from the Selected area in the decision function and add the
Denial Rules: decision table ruleset, which uses a Decision Table to define similar
rules, as shown in Figure 8-6.

Chapter 8
Creating a Dictionary for Use with a Decision Point

8-11

Figure 8-6 Decision Function for Car Rental Sample with Decision Table
Ruleset

8.5 Creating a Java Application Using Rules SDK Decision
Point

When you use Rules SDK in a development environment, you have the option of using
Decision Point API with a pre-loaded dictionary. In a production environment you
typically use the Decision Point API with the MDS repository signature and the
dictionary is stored in MDS.

For information on using a Decision Point, see What You Need to Know About Using
Decision Point in a Production Environment.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

The CarRentalProject project includes the com.example.rules.demo package that
includes the car rental sample file,

Chapter 8
Creating a Java Application Using Rules SDK Decision Point

8-12

http://www.oracle.com/technetwork/middleware/soasuite/learnmore/soasuite12csamplestutorials-2769540.html

CarRentalWithDecisionPointUsingPreloadedDictionary.java. The project also
includes several .java source files that support different variations for using Decision
Point. Table 8-1 provides a summary of the different versions of the car rental sample.

Table 8-1 Java Files in the Decision Point Sample CarRentalProject

Base Java Filename Description

CarRental This is the base class for all of the examples. It contains constant values
for using the CarRental dictionary and a method createDrivers which
creates instances of the Driver class.

CarRentalWithDecisionPoint Contains a static attribute of type DecisionPoint and a method
checkDriver() that invokes a Decision Point with a specified instance
of the Driver class. This class includes these methods for the sample
application so that both the MDS repository and pre-loaded dictionary
examples can share the same checkDriver() implementation.

CarRentalWithDecisionPointUsing
MdsRepository

Contains an example of creating a Decision Point that uses MDS to
access and load the rule dictionary. In a production environment, most
applications use the Decision Point API with MDS.

CarRentalWithDecisionPointUsing
PreloadedDictionary

Contains an example of creating a Decision Point from an instance of the
RuleDictionary class. This example also contains code for manually
loading the dictionary to create a RuleDictionary instance.

CarRentalWithRuleSession Contains an advanced usage of the Engine API that is documented
further in the comments.

CarRentalWithRuleSessionPool Contains an advanced usage of the Engine API that is documented
further in the comments.

Denial Contains the class that defines the Denial fact type used to create the
rules and Decision Table.

Driver Contains the class that defines the Driver fact type used to create the
rules and Decision Table.

DriverCheckerRunnable Contains the class which can be used as a thread for simulating
concurrent users invoking the Decision Point.

8.5.1 How to Add a Decision Point Using Decision Point Builder
To use a Decision Point you create a DecisionPoint instance using
DecisionPointBuilder, as shown in example below:

 static {
 try {
 // specifying the Decision Function and a pre-loaded
 // RuleDictionary instance
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(loadRuleDictionary())
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " + e.getMessage());
 e.printStackTrace();
 }
 }

The above example shows the DecisionPointBuilder supports a fluent interface
pattern, so all methods can easily be chained together when you create a Decision

Chapter 8
Creating a Java Application Using Rules SDK Decision Point

8-13

Point. The three most common methods for configuring the Decision Point with
DecisionPointBuilder are overloaded to have the name with(). Each with()
method takes a single argument of type RuleDictionary, DictionaryFQN, or String.
The DecisionPointBuilder also supports similar set and get methods:
getDecisionFunction(), setDecisionFunction(), getDictionary(),
setDictionary(), getDictionaryFQN(), setDictionaryFQN().

This chain shown in example above includes the following steps:

1. The first step is to create a DecisionPointBuilder instance with code such as the
following:

new DecisionPointBuilder()

2. The with() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the sample car rental application DF_NAME is defined in
CarRental.java as CarRentalDecisionFunction.

3. Call only one of the other two with() methods. In this case the sample code uses
a pre-loaded Rule Dictionary instance, containing the specified decision function.
The loadDictionary() method loads an instance of RuleDictionary from a file.
Example 8-1 shows the loadDictionary() method. For more information, see
How to Use a Decision Point with a Pre-loaded Dictionary.

.with(loadRuleDictionary())

4. Call the build() method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which is
why it is a static attribute and created in a static block. Another way of initializing the
DecisionPoint would be to initialize the m_decisionPoint attribute with a static
method that created and returned a DecisionPoint instance.

8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary
Example 8-1 shows the loadRuleDictionary() method that loads an instance of
RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 8-1,
ensure to set the encoding to UTF-8. If this is not done, Unicode characters used in the
dictionary are corrupted. The UTF-8 option must be set explicitly in the
FileInputStream or OutputStreamWriter constructor. Do not use Java classes such
as FileReader and FileWriter, as these classes always use the platform default
encoding which is usually an ASCII variant rather than a Unicode variant.

Example 8-1 Load Rule Dictionary Method

private static RuleDictionary loadRuleDictionary(){
 RuleDictionary dict = null;
 BufferedReader reader = null;
 try {
 reader = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(
 new File(DICT_LOCATION)), "UTF-8"));

Chapter 8
Creating a Java Application Using Rules SDK Decision Point

8-14

 dict = RuleDictionary.readDictionary(reader,
 new
DecisionPointDictionaryFinder(null));

 List<SDKWarning> warnings = new ArrayList<SDKWarning>();

 dict.update(warnings);
 if (warnings.size() > 0) {
 System.err.println("Validation warnings: " + warnings);
 }
 } catch (SDKException e){
 System.err.println(e);
 } catch (FileNotFoundException e){
 System.err.println(e);
 } catch (IOException e){
 System.err.println(e);
 } finally {
 if (reader != null) { try { reader.close(); } catch (IOException
ioe) {ioe.printStackTrace();}}
 }
 return dict;
 }

8.5.3 How to Use Executor Service to Run Threads with Decision
Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple
concurrent users. The following code example shows use of the Java
ExecutorService interface to execute multiple threads that invoke the Decision Point.
The ExecutorService is not part of the Rules SDK Decision Point API.

 ExecutorService exec = Executors.newCachedThreadPool();
 List<Driver> drivers = createDrivers();

 for (int i = 0; i < NUM_CONCURRENT; i++) {
 Driver driver = drivers.get(i % drivers.size());
 exec.execute(new DriverCheckerRunnable(driver));
 }

The above example includes the following code for the sample application:

• Create the Executor Service:

ExecutorService exec = Executors.newCachedThreadPool();

• Call method createDrivers(), defined in CarRental.java, to create a list of
Driver instances.

List<Driver> drivers = createDrivers();

• A loop through a list of Driver instances to fill the driver list with drivers.

• A loop to start multiple threads from DriverCheckerRunnable instances. These
instances open a Decision Point and run the rules on each driver. For information
on this code, see How to Create and Use Decision Point Instances.

The following code example shows the code that waits for the threads to complete.

 try {
 exec.awaitTermination(5, TimeUnit.SECONDS);
 } catch (InterruptedException e) {

Chapter 8
Creating a Java Application Using Rules SDK Decision Point

8-15

 e.printStackTrace();
 }
 exec.shutdown();
 }

8.5.4 How to Create and Use Decision Point Instances
The DriverCheckerRunnable instances call the checkDriver() method. Example 8-2
shows the checkDriver() method that is defined in CarRentalWithDecisionPoint.
The checkDriver() method handles invoking Decision Point with a Driver instance.

Example 8-2 shows the following:

• Getting a DecisionPointInstance from the static DecisionPoint defined with the
DecisionPointBuilder, with the following code.

 DecisionPointInstance instance = m_decisionPoint.getInstance();

• Add inputs according to the signature of the decision function associated with the
Decision Point. This defines one argument of type List as the input. This List
contains the Driver instances:

 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });

• Invoke the Decision Point and store the return value. The return type follows the
same pattern as the decision function which is being called in the Decision Point.

 List<Object> outputs = instance.invoke();

In this case the invoke() returns a List of length one, containing a List of Denial
instances.

• If the return is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
 System.err.println("Oops, no results");

• The first entry that is returned from the Decision Point is cast to a List of type
List<Denial>:

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);

• If the denials list is empty, then no Denial instances were asserted by the rules.
This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons
why the driver rental was rejected:

 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }

Chapter 8
Creating a Java Application Using Rules SDK Decision Point

8-16

8.5.4.1 Sample Code to Create a Decision Point Instance with getInstance()
The DriverCheckerRunnable instances call the checkDriver() method. Example 8-2
shows the checkDriver() method that is defined in CarRentalWithDecisionPoint.
The checkDriver() method handles invoking Decision Point with a Driver instance.

Example 8-2 Code to Create a Decision Point Instance with getInstance()

public class CarRentalWithDecisionPoint extends CarRental {

 protected static DecisionPoint m_decisionPoint;

 public static void checkDriver(final Driver driver) {
 try {
 DecisionPointInstance instance = m_decisionPoint.getInstance();
 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });
 List<Object> outputs = instance.invoke();

 if (outputs.isEmpty())
 System.err.println("Oops, no results");

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);
 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }
 } catch (RLException e) {
 e.printStackTrace();
 } catch (SDKException e) {
 e.printStackTrace();
 }
 }

}

8.6 Running the Car Rental Sample
Match the location of the directory on your system before you run the car rental
sample.

In the car rental sample installed on your system, for the code shown in Example 8-1,
modify the value of DICT_LOCATION to match the location of the dictionary on your
system.

Chapter 8
Running the Car Rental Sample

8-17

To run the car rental sample on your system:

1. In the Application Navigator, select the dictionary and from the Edit menu select
Copy Path.

2. In the CarRental.java file, paste the path value into the DICT_LOCATION value.

3. In the CarRentalProject select the
CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

4. Right-click and in the list select Run.

8.6.1 Sample Output from Car Rental
Example 8-3 shows sample output from car rental application.

Example 8-3 Output from Car Rental Sample

Rental is allowed for Carol
Rental is allowed for Alice
Rental is allowed for Alice
Rental is allowed for Carol
Rental is denied for Bob because under age, age was 15, minimum age is 21
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

8.7 What You Need to Know About Using Decision Point in
a Production Environment

In a production environment you can use an MDS repository to store Oracle Business
Rules dictionaries.

When you use an MDS repository to store the dictionary, the steps shown in How to
Add a Decision Point Using Decision Point Builder and How to Use a Decision Point
with a Pre-loaded Dictionary change to access the dictionary. The
CarRentalWithDecisionPointUsingMdsRepository shows sample code for using
Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision
Point to access a dictionary in MDS, see Adding a Servlet with Rules SDK Calls for
Grades Sample Application.

The following code example shows the use of DictionaryFQN with
DecisionPointBuilder to access a dictionary in an MDS repository. The complete
example is shown in the sample code in
CarRentalWithDecisionPointUsingMdsRepository.

 static {
 try {
 // specifying the Decision Function and Dictionary FQN

Chapter 8
What You Need to Know About Using Decision Point in a Production Environment

8-18

 // loads the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());

Similar to the steps in section How to Add a Decision Point Using Decision Point
Builder, the above example shows the following:

1. The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder()

2. The with() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the car rental application this is defined in
CarRental.java a CarRentalDecisionFunction.

3. Call only one of the other two with() methods. In this case the sample code calls
a DictionaryFQN to access an MDS repository. The code example in step 4 shows
the routing that uses the dictionary package and the dictionary name to create the
DictionaryFQN.

.with(DICT_FQN)

4. Call the build() method to construct and return a DecisionPoint instance.

 protected static final String DICT_PKG = "com.example.rules.demo";
 protected static final String DICT_NAME = "CarRental";

 protected static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 protected static final String DF_NAME = "CarRentalDecisionFunction";

8.8 What You Need to Know About Decision Point and
Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace.
These methods process a decision trace to replace the RL names used in the trace
with the aliases used in the associated dictionary. This makes the decision trace
naming consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a RuleDictionary object and a
DecisionTrace object:

RuleDictionary dict = ...;
DecisionTrace trace = ...;
dict.processDecisionTrace(trace);

This code shows the processing call that converts the naming in the decision trace to
use the same names, with aliases, as in the dictionary.

Chapter 8
What You Need to Know About Decision Point and Decision Tracing

8-19

The Rules SDK Decision Point API contains methods that allow you configure decision
tracing and retrieve the resulting trace when you invoke a decision point.

Table 8-2 shows the Decision Point API methods for setting decision trace options.

Table 8-2 Decision Point Decision Tracing Methods

Method Description

decisionTrace Get the decision trace produced from the call to invoke.

Returns DecisionTrace

getDecisionTraceLevel Get the decision trace level to be used by the RuleSession.
This value defaults to DECISION_TRACE_OFF, which means
no trace information is gathered. Possible values are:
DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

Return Type: String

getDecisionTraceLimit Get the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Return Type: int

setDecisionTraceLevel Set the decision trace level to be used by the RuleSession.
This parameter value is a String. Possible values are:
DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

setDecisionTraceLimit Set the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

8.8.1 Sample Usage of Decision Tracing
Example 8-4 shows sample usage of decision tracing with DecisionPoint API.

For more information on decision tracing, see Tracing Rule Execution in Fusion
Middleware Control Console in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Example 8-4 Using Decision Trace from Decision Point API

DecisionPoint dp = new DecisionPointBuilder()
 .with(new DictionaryFQN("com.foo", "Bar"))
 .with("MyDecisionFunction")
 .setDecisionTraceLevel(DecisionPointBuilder.DECISION_TRACE_DEVELOPMENT)
 .setDecisionTraceLimit(24000)
 .build();

...

DecisionPointInstance dpi = dp.getInstance();

dpi.invoke();

DecisionTrace trace = dpi.decisionTrace();

Chapter 8
What You Need to Know About Decision Point and Decision Tracing

8-20

9
Creating a Rule-enabled Non-SOA Java
EE Application

Use Oracle JDeveloper to create a rule-enabled non-SOA Java Enterprise Edition
(EE) application. Check the sample application, a Java Servlet, which runs as a Java
EE application using Oracle Business Rules (this describes using Oracle Business
Rules without a SOA composite).

• Introduction to the Grades Sample Application

• Creating an Application and a Project for Grades Sample Application

• Creating Data Model Elements and Rules for the Grades Sample Application

• Adding a Servlet with Rules SDK Calls for Grades Sample Application

• Adding an HTML Test Page for Grades Sample Application

• Preparing the Grades Sample Application for Deployment

• Deploying and Running the Grades Sample Application

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

9.1 Introduction to the Grades Sample Application
The Grades application provides a sample use of Oracle Business Rules in a Java
Servlet. The servlet uses Rules SDK Decision Point API.

This sample demonstrates the following:

• Creating rules in an Oracle Business Rules dictionary using an XSD schema that
defines the input and the output data, and the facts for the data model. In this case
you provide the XSD schema in the file grades.xsd.

• Creating a servlet that uses Oracle Business Rules to determine a grade for each
test score that is input.

• Creating a test page to supply input test scores and to submit the data to the
grades servlet.

• Deploying the application, running it, submitting test values, and seeing the output.

There is another example--for more information, see How to Open the Car Rental
Sample Application and Project.

9.2 Creating an Application and a Project for Grades
Sample Application

You can create Grades sample application by following the steps below.

9-1

http://www.oracle.com/technetwork/middleware/soasuite/learnmore/soasuite12csamplestutorials-2769540.html

Note:

The screen shots reflect a previous version, however, the content is
applicable to the current release.

To create the application and the project for the grades sample application, do the
following:

• Create a Fusion Web Application (ADF)

• Create a project in the application

• Add the schema to define the inputs, outputs, and the objects for the data model

• Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample
Application

To work with Oracle Business Rules and create a Java EE application, you first need
to create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

1. Create an application. You can do this in the Application Navigator by selecting
New Application..., or from the Application menu list by selecting New
Application....

2. In the Name your application dialog enter the application options, as shown in
Figure 9-1:

a. In the Application Template area, select Fusion Web Application.

b. In the Application Name field, enter an application name. For example, enter
GradeApp.

c. In the Directory field, specify a directory name or accept the default.

d. In the Application Package Prefix field, enter an application package prefix.
For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project
of an application.

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-2

Figure 9-1 Adding GradeApp Application

3. Click Finish. After creating the application Oracle JDeveloper displays the file
summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp

9.2.2 How to Develop Accessible ADF Faces Pages
Oracle software implements the standards of the Web Content Accessibility Guidelines
(WCAG) 1.0 Level AA using an interpretation of the standards at http://
www.oracle.com/accessibility/standards.html

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-3

http://www.oracle.com/accessibility/standards.html
http://www.oracle.com/accessibility/standards.html

ADF Faces user interface components have built-in accessibility support for visually
and physically impaired users. User agents such as a web browser rendering to
nonvisual media such as a screen reader can read component text descriptions to
provide useful information to impaired users. Access key support provides an
alternative method to access components and links using only the keyboard. ADF
Faces accessibility audit rules provide direction to create accessible images, tables,
frames, forms, error messages and popup windows using accessible HTML markup.

For information on how to develop accessible ADF Faces pages, see Developing
Accessible ADF Faces Pages in Developing Web User Interfaces with Oracle ADF
Faces.

9.2.3 How to Create the Grades Project
In the Grades sample application you do not use the Model or ViewController projects.
You create a project in the application for the grades sample project.

To create a grades project:

1. In the GradeApp application, in the Application Navigator, from the Application
Menu select New Project....

2. In the New Gallery, in the Items area select Generic Project.

3. Click OK.

4. In the Name your project page enter the values as shown in Figure 9-3:

a. In the Project Name field, enter a name. For example, enter Grades.

b. Enter or browse for a directory name, or accept the default.

c. Select the Project Technologies tab.

d. In the Available area double-click ADF Business Components to move this
item to the Selected area. This also adds Java to the Selected area as shown
in Figure 9-3.

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-4

Figure 9-3 Adding Generic Project to the Grades Application

5. Click Finish. This adds the Grades project.

9.2.4 How to Add the XML Schema and Generate JAXB Classes in
the Grades Project

To create the Grades sample application you need to use the grades.xsd file, as
shown in example grades.xsd schema below. You can create and store the schema
file locally and then use Oracle JDeveloper to copy the file to your project.

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xs:schema targetNamespace="http://example.com/grades"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/grades"
 attributeFormDefault="qualified" elementFormDefault="qualified"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:element name="TestScore">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="testName" type="xs:string"/>
 <xs:element name="testScore" type="xs:double"/>
 <xs:element name="testCurve" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TestGrade">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="grade" type="tns:Grade"/>
 </xs:sequence>

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-5

 </xs:complexType>
 </xs:element>
 <xs:simpleType name="Grade">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="F"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

To add the XML schema to the grades project:

1. Save the schema file as shown in example grades.xsd schema to a local file
named grades.xsd.

2. In the Application Navigator select the Grades project.

3. Right-click and in the context menu select New....

4. In the New Gallery select the All Technologies tab.

5. In the Categories area, expand General and select XML.

6. In the Items area, select XML Schema. Click OK.

7. In the Create XML Schema dialog, in the File Name field enter grades.xsd.

8. In the Create XML Schema dialog, in the Directory field add the xsd directory to
the Grades project path name, as shown in Figure 9-4.

Figure 9-4 Adding Schema to Grades Project in xsd Directory

Click OK.

9. In the grades.xsd file, select the Source tab.

10. Copy the schema shown in example above to the grades.xsd in the Grades
project, as shown in Figure 9-5.

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-6

Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project

9.2.4.1 How to generate JAXB 2.0 content model from grades schema

To generate JAXB 2.0 content model from grades schema:

1. In the Application Navigator, in the Grades project expand Resources and select
grades.xsd.

2. Right-click and in the context menu select Generate JAXB 2.0 Content Model.

3. In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9.2.5 How to Create an Oracle Business Rules Dictionary in the
Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades
project.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rule to the project and import grades.xsd schema

• Create input and output variables

• Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:

1. In the Application Navigator, select the Grades project.

2. Right-click and in the context menu select New.... and select the All
Technologies tab.

3. In the New Gallery, in the Categories area, expand Business Tier and select
Business Rules.

4. In the New Gallery, in the Items area, select Business Rules. Click OK.

Oracle JDeveloper displays the Create Business Rules dialog, as shown in
Figure 9-6.

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-7

Figure 9-6 Adding a Business Rule to Grades with the Create Business
Rules Dialog

5. In the Name field, enter a name to name the dictionary. For example, enter
GradingRules.

6. To add an input, from the list next to the Add button select Input....

7. In the Type Chooser, expand the Project Schemas Files folder and expand
grades.xsd. Select the input TestScore, as shown in Figure 9-7.

Figure 9-7 Shows the Type Chooser Dialog with TestScore Element

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-8

8. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog.

9. In the Create Business Rules dialog, in a similar manner to the input add the
output by selecting Output... to add the output element TestGrade from the
grades.xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output

Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in
Figure 9-9.

10. In the File menu, select Save All to save your work.

Chapter 9
Creating an Application and a Project for Grades Sample Application

9-9

Figure 9-9 Shows the New Grading Rules Dictionary

Note that the business rule validation log area for the new dictionary shows several
validation warnings. These validation warning messages are cleared as you modify the
dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades
Sample Application

Create data model elements and rules for the grades sample application by following
the steps below.

To create the data model and the business rules for the Grades sample application, do
the following:

• Create value sets for grades

• Create rules by adding a Decision Table for grades

• Split the Decision Table and add actions for rules

• Rename the default decision function

Chapter 9
Creating Data Model Elements and Rules for the Grades Sample Application

9-10

9.3.1 How to Create Value Sets for Grades Sample Application
In this example you associate a value set with a fact type. This supports using a
Decision Table where you need value sets that specify how to draw values for each
cell in the Decision Table (for the conditions in the Decision Table).

To create the value set for the grades sample application:

1. In Rules Designer, select the Value Sets navigation tab.

2. From the list next to the Create Value Set... button, select List of Ranges.

3. For the value set, double-click in the Name field to select the default name.

4. Enter Grade Scale, and press Enter to accept the value set name.

5. In the Value Set table, double-click the icon for the Grade Scale value set to
display the Edit Value Set dialog.

6. In the Edit Value Set dialog, click Add to add a value and click Add three times to
add three more values.

7. In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the
new value.

8. For the next value, in the Endpoint field enter 80 and press Enter to accept the
new value. Similarly, for the next two values enter values in the Endpoint field,
values 70 and 60.

9. In the Included Endpoint field for each value select each check box.

10. Modify the Alias field for each value to enter the values A, B, C, D, and F, for each
corresponding range, (press Enter after you add each alias).

9.3.2 How to Associate a Value Set with a Fact Property
To prepare for creating Decision Tables you can associate a global value set with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the value set when you create a Decision Table.

To associate a value set with a fact property:

1. In Rules Designer, select the Facts navigation tab.

2. In the Facts navigation tab select the XML Facts tab.

3. Double-click the XML fact icon for the TestScore fact. This displays the Edit XML
Fact dialog.

4. In the Edit XML Fact dialog select the testScore property.

5. In the Value Set field, from the list select Grade Scale.

6. Click OK.

9.3.3 How to Add a Decision Table for Grades Sample Application
You create rules in a Decision Table to process input facts and to produce output
facts, or to produce intermediate conclusions that Oracle Business Rules can further
process using additional rules or in another Decision Table.

Chapter 9
Creating Data Model Elements and Rules for the Grades Sample Application

9-11

To use a Decision Table for rules in this application you work with facts representing a
test score. Then, you use a Decision Table to create rules based on the test score to
produce a grade.

To add a decision table for Grades application:

1. In Rules Designer, select Ruleset_1 under the Rulesets list.

2. In Ruleset_1, click Create from the Decision Table area on the Overview tab.
This creates DecisionTable_1. You can ignore the warning messages shown in
the Business Rule Validation log area. You remove these warning messages in
later steps.

3. In the Decision Table, DecisionTable_1, click the Add button and from the list
select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the variables
navigator expand TestScore and select testScore. This enters the expression
TestScore.testScore for condition C1.

If you view the rules validation log, you should see warning messages. You remove
these warning messages as you modify the Decision Table in later steps.

9.3.4 How to Add an Action to a Decision Table
To add an action to a decision table:

You add an action to the Decision Table to assert a new Grade fact.

1. In the Decision Table, click the Add button and from the list select Action and
select Assert New.

2. In the Actions area, double-click Assert New.

This displays the Action Editor dialog.

3. In the Action Editor dialog, in the Facts area select TestGrade.

4. In the Action Editor dialog, in the Properties table for the property grade, select the
Parameterized check box and the Constant check box.

This specifies that each rule independently sets the grade.

5. In the Action Editor dialog select the Always Selected check box.

6. In the Action Editor dialog click OK.

7. Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.5 How to Add Rules in the Decision Table for Grades Sample
Application

You can use the Decision Table split operation to create rules for the value set
associated with the conditions row in the Decision Table. This creates one rule for
every value.

To split the decision table, from the Decision Table, click the Split Table button from
the list select Split Table. The split operation eliminates the "do not care" cells from

Chapter 9
Creating Data Model Elements and Rules for the Grades Sample Application

9-12

the table. The table now shows five rules that cover all ranges, as shown in
Figure 9-10.

These steps produce validation warnings for action cells with missing expressions.
You fix these problems in later steps when you define actions for each rule.

Figure 9-10 Splitting a Decision Table Using Split Table Operation for Grades

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated
with TestGrade for each action cell in the Actions area. The possible choices for each
grade property are the valid grades. In this step you fill in a value for each of the rules.
The values you enter correspond to the conditions that form each rule in the Decision
Table.

1. In the Actions area, double-click the action cell for rule R1 as shown in
Figure 9-11.

Chapter 9
Creating Data Model Elements and Rules for the Grades Sample Application

9-13

Figure 9-11 Adding Action Cell Values to Grades Decision Table

2. In the list select the corresponding value for the action cell. For example, select
Grade.F.

3. For each of the remaining action cells select the appropriate value for TestScore:
D, C, B, and A.

9.3.6 How to Rename the Decision Function for Grades Sample
Application

The name you specify when you use a decision function with a Rules SDK Decision
Point must match the name of a decision function in the dictionary. To make the name
match, you can rename the decision function to any name you like. Thus, for this
example you rename the default decision function to use the name
GradesDecisionFunction.

To rename the decision function:

1. In the Application Navigator, in the Grades project, expand the Resources folder
and double-click the dictionary GradingRules.rules.

2. Select the Decision Functions navigation tab.

3. In the Name field in the Decision Functions table edit the decision function name
to enter the value GradesDecisionFunction, and then press Enter, as shown in
Figure 9-12.

Chapter 9
Creating Data Model Elements and Rules for the Grades Sample Application

9-14

Figure 9-12 Renaming Decision Function in Rules Designer

9.4 Adding a Servlet with Rules SDK Calls for Grades
Sample Application

The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important
Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created
with Rules Designer, you do the following:

• Create initialization steps that you perform one time in the servlet init routine.

• Create a servlet service routine using the Rules SDK Decision Point API.

• Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Working with Rules in
Standalone (Non SOA/BPM) Scenarios.

9.4.1 How to Add a Servlet to the Grades Project
You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:

1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select New....

3. In the New Gallery, select the All Technologies tab.

4. In the New Gallery, in the Categories area expand Web Tier and select Servlets.

5. In the New Gallery, in the Items area select HTTP Servlet. Click OK.

Oracle JDeveloper displays the Create HTTP Servlet Welcome page.

6. Click Next.

This displays the Web Application page.

7. Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-15

This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

8. Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as
follows, and as shown in Figure 9-13.

• Class: GradesServlet

• Package: com.example.grades

• Generate Content Type: HTML

• Generate Header Comments: unchecked

• Implement Methods: service() checked and all other check boxes unchecked

Figure 9-13 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information

Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as
shown in Figure 9-14.

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-16

Figure 9-14 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

9. Configure this dialog as follows:

• Name: GradesServlet

• URL Pattern: /gradesservlet

Click Finish when done.

JDeveloper adds a Web Content folder to the project and creates a
GradesServlet.java file and opens the file in the editor as shown in Figure 9-15.

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-17

Figure 9-15 Generated GradesServlet.java

10. Replace the generated servlet with the source as shown in the grades application
example below.

package com.example.grades;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class GradesServlet extends HttpServlet {

 private static final String CONTENT_TYPE = "text/html";
 private static final String DICT_PKG = "com.example.grades";
 private static final String DICT_NAME = "GradingRules";
 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 private static final String DF_NAME = "GradesDecisionFunction";

 private DecisionPoint m_decisionPoint = null; // init in init()

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-18

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 try {

 // specifying the Decision Function and Dictionary FQN
 // load the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());
 throw new ServletException(e);
 }
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // retrieve parameters
 String name = request.getParameter("name");
 String strScore = request.getParameter("testScore");

 // open output document
 StringBuilder doc = new StringBuilder();
 addHeader(doc);

 // create TestScore object to assert
 final TestScore testScore = new TestScore();
 testScore.setName(name);

 try {
 testScore.setTestScore(Integer.parseInt(strScore));
 } catch (NumberFormatException e){ /* use default val */ }

 // get DecisionPointInstance for invocation
 DecisionPointInstance point = m_decisionPoint.getInstance();

 // set input parameters
 point.setInputs(new ArrayList() {{ add(testScore); }});

 // invoke decision point and get result value
 TestGrade testGrade = null;
 try {

 // invoke the decision point with our inputs
 List<Object> result = point.invoke();
 if (result.size() != 1){
 error(doc, testScore.getName(), "bad result", null);
 }
 // decision function returns a single TestGrade object
 testGrade = (TestGrade)result.get(0);
 } catch (RLException e) {
 error(doc, testScore.getName(), "RLException occurred: ", e);
 } catch (SDKException e) {
 error(doc, testScore.getName(), "SDKException occurred", e);
 }

 if (testGrade != null){
 // create output table in document
 openTable(doc);
 addRow(doc, testScore.getName(), strScore, testGrade.getGrade());
 closeTable(doc);
 }

 addFooter(doc);

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-19

 // write document
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(doc);
 out.close();
 }

 public static void addHeader(StringBuilder doc) {
 doc.append("<html>");
 doc.append("<head><title>GradesServlet</title></head>");
 doc.append("<body>");
 doc.append("<h1>Test Results</h1>");
 }

 public static void addFooter(StringBuilder doc) {
 doc.append("</body></html>");
 }

 public static void openTable(StringBuilder doc) {
 doc.append("<table border=\"1\"");
 doc.append("<tr>");
 doc.append("<th>Name</th>");
 doc.append("<th>Score</th>");
 doc.append("<th>Grade</th>");
 doc.append("</tr>");
 }

 public static void closeTable(StringBuilder doc) {
 doc.append("</table>");
 }

 public static void addRow(StringBuilder doc, String name, String score, Grade grade){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td>"+ score +"</td>");
 doc.append("<td>"+ grade.value() +"</td>");
 doc.append("</tr>");
 }

 public static void error(StringBuilder doc, String name, String msg, Throwable t){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td colspan=2>"+ msg + " " + t +"</td>");
 doc.append("</tr>");
 }
}

The above example includes a Oracle Business Rules Decision Point, that uses an
MDS repository to access the dictionary. For more information, see What You Need to
Know About Using Decision Point in a Production Environment.

When you add the Servlet as shown in the grades application example, note the
following:

• In the init() method the servlet uses the Rules SDK Decision Point API for
Oracle Business Rules. For more information on using the Decision Point API, see
Working with Rules in Standalone (Non SOA/BPM) Scenarios.

• The DecisionPointBuilder() requires arguments including a decision function
name and, in a production environment a dictionary FQN to access a dictionary in
an MDS repository, as shown:

 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)

Chapter 9
Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-20

For more information on using the Decision Point API, see Working with Rules in
Standalone (Non SOA/BPM) Scenarios.

9.5 Adding an HTML Test Page for Grades Sample
Application

Add an HTML test page for the grades application by following the steps below.

The Grades sample application includes an HTML test page that you use to invoke the
servlet you created in Adding a Servlet with Rules SDK Calls for Grades Sample
Application.

To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:

1. In the Application Navigator, in the Grades project select the Web Content folder.

2. Right-click the Web Content folder project and in the context menu select New....

3. In the New Gallery, select the All Technologies tab.

4. In the New Gallery, in the Categories area expand Web Tier and select HTML.

5. In the New Gallery, in the Items area select HTML Page. Click OK.

Oracle JDeveloper displays the Create HTML File dialog.

6. Configure this dialog as follows and as shown in Figure 9-16:

• File Name: index.html

• Directory: C:\JDeveloper\mywork\GradeApp\Grades\public_html

Figure 9-16 Create HTML File Dialog

Click OK.

JDeveloper adds index.html to the Web Content folder and opens the editor.

7. In the editor for index.html, select the Source tab.

8. Copy and paste the HTML code from the HTML test page example below to
replace the contents of the index.html file. Note that in the form element action
attribute uses the URL Pattern you specified in Figure 9-14.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/
loose.dtd">

Chapter 9
Adding an HTML Test Page for Grades Sample Application

9-21

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
 <title>Test Grade Example Servlet</title>
 </head>
 <body>
 <form name="names_and_scores"
 method="post"
 action="/grades/gradesservlet" >
 <p>Name: <input type="text" name="name" /></p>
 <p>Test Score: <input type="text" name="testScore"/></p>
 <input type="submit" value="Submit">
 </form>
 </body>
</html>

9. Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for
Deployment

Business rules are deployed as part of the application for which you create a
deployment profile in Oracle JDeveloper.

You deploy the application to Oracle WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application
You deploy the GradeApp sample application using JDeveloper with Oracle WebLogic
Server.

To create the WAR file for the grades sample application:

1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select Project
Properties.... This displays the Project Properties dialog for the project.

3. In the Project Properties navigator, select the Deployment item as shown in
Figure 9-17.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-22

Figure 9-17 Project Properties - Deployment

4. In the Project Properties dialog, click New....

This displays the Create Deployment Profile dialog.

5. In the Create Deployment Profile dialog, in the Archive Type list, select WAR
File.

6. In the Create Deployment Profile dialog, in the Name field enter grades, as shown
in Figure 9-18. Note the Name value uses the package value that you specified in
the form element action attribute in step 8 of Adding an HTML Test Page for
Grades Sample Application.

Figure 9-18 Create Deployment Profile Dialog for WAR File

7. Click OK.

This displays the Edit WAR Deployment Profile Properties dialog.

8. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 9-19:

Chapter 9
Preparing the Grades Sample Application for Deployment

9-23

a. Set the WAR File: C:\JDeveloper\mywork\GradeApp\Grades\deploy
\grades.war

b. In the Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter grades.

d. In the Deployment Client Maximum Heap Size (in Megabytes): list select
Auto

Figure 9-19 Edit WAR Deployment Properties - General

9. In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown in
Figure 9-20.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-24

Figure 9-20 Project Properties - Deployment Profile Created

10. In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application
To add the rules library to the weblogic-application file:

1. In the GradeApp application, in the Application Navigator expand Application
Resources.

2. Expand Descriptors and expand META-INF and double-click to open weblogic-
application.xml.

3. Add the oracle.rules library reference to the weblogic-application.xml file.
Add the following lines, as shown in Figure 9-21.

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

Chapter 9
Preparing the Grades Sample Application for Deployment

9-25

Figure 9-21 Adding Oracle Rules Library Reference to WebLogic Descriptor

4. Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample
Application

To add the MDS deployment file:

1. In the Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Application
Properties....

This displays the Application Properties dialog.

3. In the Application Properties navigator select the Deployment item, as shown in
Figure 9-22.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-26

Figure 9-22 Application Properties - Deployment

4. In the Application Properties dialog, click New....

This displays the Create Deployment Profile dialog.

5. Configure this dialog as follows, as shown in Figure 9-23:

• Archive Type: MAR File

• Name: metadata1

Figure 9-23 Create Deployment Profile Dialog for MAR File

Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-24.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-27

Figure 9-24 Edit MAR Deployment Profile Properties - MAR Options

6. Expand the Metadata File Groups item and select the User Metadata item and
click Add.

This displays the Add Contributor dialog.

7. In the Add Contributor dialog, click the Browse button and navigate to the
directory for the project that contains the GradingRules.rules dictionary file.

In this example, navigate to C:\JDeveloper\mywork\GradeApp\Grades and click
Select.

8. In the Add Contributor dialog, click OK to close the dialog. This displays the Edit
MAR Deployment Properties dialog as shown in Figure 9-25

Chapter 9
Preparing the Grades Sample Application for Deployment

9-28

Figure 9-25 Edit MAR Deployment Profile Properties - User Metadata

9. In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File
Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9-26.

Figure 9-26 Edit MAR Deployment Profile Properties - Directories

10. Select the oracle directory check box. This selects the GradingRules.rules
dictionary to be included in the MAR.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-29

Click OK.

JDeveloper creates an application deployment profile named metadata1 (MAR
File) as shown in Figure 9-27.

Figure 9-27 Application Properties - Deployment - MAR

Click OK in the Application Properties dialog.

9.6.4 How to Add the EAR File to the Grades Sample Application
Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:

1. In the Application Navigator, select the GradeApp application.

2. Right-click and in the context menu select Application Properties....

3. In the Application Properties dialog, select Deployment and click New.... This
displays the Create Deployment Profile dialog.

4. Configure this dialog as follows, as shown in Figure 9-28.

• Archive Type: EAR

• Name: grades

Chapter 9
Preparing the Grades Sample Application for Deployment

9-30

Figure 9-28 Create Deployment Profile Dialog for EAR File

5. Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

6. In the Edit Ear Deployment Profile Properties dialog, in the navigator select
Application Assembly as shown in Figure 9-29.

Figure 9-29 Edit EAR Deployment Profile Properties - Application
Assembly

7. Configure this dialog as follows:

• Select the metadata1 check box.

• Expand the Grades.jpr item and select the grades check box.

8. In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named grades(EAR File)
as shown in Figure 9-30.

Chapter 9
Preparing the Grades Sample Application for Deployment

9-31

Figure 9-30 Application Properties - Deployment - EAR

9. Click OK to close the Application Properties dialog.

10. Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application
You can now deploy and run the grades sample application on Oracle WebLogic
Server.

9.7.1 How to Deploy to Grades Sample Application
To deploy the grades sample application:

1. In the Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Deploy >
grades > to > and select either an existing connection or New Connection... to
create a connection for the deployment. This starts the deployment to the specified
Oracle WebLogic Server.

3. As the deployment proceeds, Oracle JDeveloper shows the Deployment
Configuration dialog.

4. In the Deployment Configuration dialog enter the following values, as shown in
Figure 9-28:

• In the Repository Name field, from the list, select: mds-soa

• In the Partition Name field, enter grades

Chapter 9
Deploying and Running the Grades Sample Application

9-32

Figure 9-31 Deployment Configuration Dialog for MDS with Repository and
Partition

5. In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application
After you deploy the grades sample application, you can run the application.

To run the grades sample application:

1. Point a web browser at,

http://yourServerName:port/grades/

This displays the test servlet as shown in Figure 9-32.

Chapter 9
Deploying and Running the Grades Sample Application

9-33

Figure 9-32 Grades Sample Application Servlet

2. Enter a name and test score and click Submit. This returns results as shown in
Figure 9-33.

The first time you run the servlet there may be a delay before any results are returned.
The first time the servlet is invoked, during servlet initialization the runtime loads the
dictionary and creates a rule session pool. Subsequent invocations do not perform
these steps and should run much faster.

Figure 9-33 Grades Sample Application Servlet with Results

Chapter 9
Deploying and Running the Grades Sample Application

9-34

10
Working with Oracle Business Rules and
ADF Business Components

Oracle Business Rules enables you to use Oracle ADF Business Components view
objects as facts. As with all fact types, trees of facts, representing master-detail data,
can be asserted as a unit. Oracle Business Rules has built-in tests (RLcontains) and
optional "tree mode" syntax (for example, master-detail) to support navigating one-to-
many relationships.

• Introduction to Using Business Rules with ADF Business Components

• Using Decision Points with ADF Business Components Facts

• Creating a Business Rules Application with ADF Business Components Facts

10.1 Introduction to Using Business Rules with ADF
Business Components

The ADF Business Components rule development process can be summarized as
below.

Using ADF Business Components rule, you can:

1. Create view object definitions.

2. Create action types.

3. Create rule dictionary.

4. Register view object fact types.

5. Register Java fact types for actions.

6. If you are invoking from Java:

• If the view object is already instantiated at the Decision Point, code the
Decision Point invocation passing the view object instance.

• If the view object is not instantiated at the Decision Point, code the Decision
Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business
Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business
Rules data model, an ADF Business Components fact type is created which has a
property corresponding to each attribute of the view object.

Additionally, the ADF Business Components fact type contains the following:

10-1

• A property named ViewRowImpl which points directly to the oracle.jbo.Row
instance that each fact instance represents.

• A property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this property to
retrieve the set of key-values for this row and its parent rows.

Note the following:

• Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List which contains facts of the indicated type at runtime.

• ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact
type. In this case, all getters and setters and other methods become available but
the trade-off is that related view objects become inaccessible and, should related
view object access be required, these relationships must be explicitly managed.

• Internally in Oracle Business Rules, when you use ADF Business Components
fact types these fact types are created as instances of RL fact types. Thus, you
cannot assert ADF Business Components view object instances directly to a Rule
Session, but must instead use the helper methods provided in the MetadataHelper
and ADFBCFactTypeHelper classes. For more information, see Java API Reference
for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action
Type

With Rules SDK, the primary way to update a view object within a Decision Point is
with an action type. An action type is a Java class that you import into the rule
dictionary data model in the same way you import a rule pattern fact type Java class. A
new instance of this action type is then asserted in the action of a rule and then
processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

• The Java fact type class must subclass
oracle.rules.sdk2.decisionpoint.ActionType or
oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard
oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be used to
communicate the rule fact's primary keys and parent-keys to the ActionType
instance.

• The class has a default constructor.

• The class implements abstract exec method for the ActionType. The exec method
should contain the main action which you want to perform.

Chapter 10
Introduction to Using Business Rules with ADF Business Components

10-2

• The Java class must have properties which conform to the JavaBean interface (that
is, each property must have a getter and setter method).

See Example 10-1 for a sample ActionType implementation.

Table 10-1 shows the methods in DecisionPointInstance that an application
developer might need when implementing the ActionType exec.

Table 10-1 DecisionPointInstance Methods

Method Description

getProperties Supplies a HashMap<String,Object> object containing any runtime-
specified parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only
String values.

getRuleSession Gives access to the Oracle Business Rules RuleSession object from which
static configuration variables in the Rule Dictionary may be accessed.

getActivationI
D

If populated by the caller, supplies a String value to be used for Set Control
indirection.

getTransaction Provides a transaction object so that action types may make persistent
changes in the back end.

addResult Adds a named result to the list of output values in the form of a String key
and Object value.

Output is assembled as a List of
oracle.rules.sdk2.decisionpoint.DecisionPointInstance.Name
dValue objects as would be the case in a pure map implementation. The
NamedValue objects are simple data-bearing classes with a getter each for
the name and value. Output values from one action types instance are
never allowed to overwrite each other, and in this regard, the action type
implementations should be considered completely independent of each
other.

10.1.2.1 Sample ActionType Implementation
Example 10-1 shows a sample ActionType implementation and an
oracle.rules.sdk2.decisionpoint.DecisionPointInstance as a parameter to the
exec method.

Example 10-1 Implementing an ActionType

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new boolean[]
{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

Chapter 10
Introduction to Using Business Rules with ADF Business Components

10-3

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

Using Rules Designer you can select parameters appropriate for the ActionType you
are configuring.

10.2 Using Decision Points with ADF Business Components
Facts

You can use a Decision Point to execute a decision function. There are certain
Decision Point methods that only apply when working with ADF Business Components
Fact types.

For more information on decision functions, see Working with Decision Functions .

10.2.1 How to Call a Decision Point with ADF Business Components
Facts

When you use ADF Business Components fact types you invoke a decision function
using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:

1. Construct and configure the template DecisionPoint instance using the
DecisionPointBuilder.

For more information, see How to Add a Decision Point Using Decision Point
Builder.

2. Create a DecisionPointInstance using the DecisionPoint method getInstance.

3. Add the fact objects you want to use to the DecisionPointInstance using
DecisionPointInstance method addInput, setInputs, or setViewObject. These
are either ViewObject or ViewObjectReference instances. These must be added
in the same order as they are declared in the decision function input. For more
information, see Calling the Invoke Method for an ADF Business Components
Rule

4. Set the transaction to be used by the DecisionPointInstance.

For more information, see Setting the Decision Point Transaction.

5. Set any runtime properties the consequent application actions may expect.

For more information, see Setting Runtime Properties.

6. Call the DecisionPointInstance method invoke.

For more information, see:

• Calling the Invoke Method for an ADF Business Components Rule

• What You Need to Know About Decision Point Invocation

Chapter 10
Using Decision Points with ADF Business Components Facts

10-4

10.2.1.1 Setting the Decision Point Transaction
The Oracle Business Rules SDK framework requires an
oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and to
provide ActionType instances within a transactional context. The class
oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object
returned by calling the ApplicationModule method getTransaction. Setting the
transaction requires calling the DecisionPointInstance method setTransaction with
the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle
Business Rules SDK framework can bootstrap one using any of the three provided
overrides of the setTransaction method.

These require one of:

• A JDBC URL, user name, and password.

• A JDBC connection object.

• A javax.sql.DataSource object and a flag to specify whether the DataSource
represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties
Runtime properties may be provided with the setProperty method. These can then be
retrieved by ActionType instances during their execution. If no runtime properties are
needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
The ViewObject to be used in a Decision Point invocation can be specified in one of
two ways, as shown in Table 10-2.

Table 10-2 Setting the View Object for a Decision Point Invocation

ViewObject Set
Method

Description

setViewObject The decision function is invoked once for each ViewObject row. This
the preferred way to use view objects. Between each invocation of the
decision function, the rule session is not reset so any asserted facts
from previous invocations of the decision function are still in working
memory. In most cases, users should write rules that retract the
asserted facts before the decision function call completes. For
example, you can have a cleanup ruleset that retracts the ViewObject
row that runs before the Postprocessing decision function is called.

How to Add Retract Employees Ruleset shows this usage. To use
setViewObject, the ViewObject must be the first entry in the
decision function InputTable.

Chapter 10
Using Decision Points with ADF Business Components Facts

10-5

Table 10-2 (Cont.) Setting the View Object for a Decision Point Invocation

ViewObject Set
Method

Description

addInput

setInputs

The decision function is invoked once with all of the ViewObject rows
loaded at the same time. This is generally not a scalable operation,
since hundreds of thousands of rows can be loaded at the same time.
There are some cases where there are a known small number of rows
in a ViewObject that this method of calling the ViewObject can be
useful.

10.2.1.4 What You Need to Know About Decision Point Invocation
Care must be taken when invoking Decision Points using a view object that loads large
amounts of data, since the default behavior of the JBO classes is to load all data
eagerly. If a view object with many rows and potentially very many child rows is loaded
into memory, not only is there risk of memory-exhaustion, but DML actions taken
based on such large data risk using all rollback segments.

10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method
Example 10-2 shows how to invoke a Decision Point with a ViewObject instance using
the setInputs method. For the complete example, see the example shown in How to
Add the Outside Manager Finder Class.

Example 10-2 Invoking a Decision Point Using setInputs Method

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

Chapter 10
Using Decision Points with ADF Business Components Facts

10-6

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method
Example 10-3 shows how to invoke a DecisionPoint using the setViewObject
method to set the ViewObject.

Example 10-3 Invoking a Decision Point Using setViewObject Method

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.2 How to Call a Decision Function with Java Decision Point
Interface

To call a decision function with a ruleset using ADF Business Components fact types
with the Oracle Business Rules SDK Decision Point interface you must configure the
decision function with certain options. For more information on using decision
functions, see Working with Decision Functions.

To define a decision function using the Java Decision Point interface:

1. In the Decision Functions tab, select the appropriate Decision Function and click
the Edit button. The Edit Decision Function dialog appears.

2. In the Edit Decision Function dialog, configure the decision function:

• Inputs: names the fact types to use in the configured business rules.

Chapter 10
Using Decision Points with ADF Business Components Facts

10-7

The inputs, when working with an application using ADF Business
Components fact types, are the ADF Business Components view objects used
in your rules.

When you use the setViewObject method with a Decision Point, the List
attribute should be cleared. Each Input fact type should have the List attribute
selected when you are using addInput or setInputs methods with the
Decision Point. Optionally, depending on the usage of the view objects, select
the Tree attribute:

List: defines that a list of ADF Business Components fact types are passed to
the decision function.

Tree: defines that all objects in the master-detail hierarchy should be asserted,
instead of only the top-level object.

For more information, see How to Call a Decision Point with ADF Business
Components Facts.

• Initial Actions: click <insert action> to add actions that can be used to change
input facts before they are asserted, change the ruleset stack, set the effective
date, or even assert output facts. These actions can be used instead of rules,
or to "set up" the environment for running rules.

For more information on using decision functions, see Working with Decision
Functions.

• Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a
decision function that uses ActionTypes, two ways of returning output are
available:

– Output fact types can be used, as with any decision function. These
results are returned from DecisionPointInstance.invoke().

– The ActionType's exec method can be overridden to call dpi.addResult
(see Example 10-1). These results are returned from
DecisionPointInstance.getResults().

Using ActionTypes is optional. Typically ActionTypes would not be used
unless the rules need to modify the ADF data. If ActionTypes are not used,
then DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing are not needed.

For more information, see Understanding Oracle Business Rules Decision
Point Action Type.

• RuleSets and Decision Functions: an ordered list of the rulesets and other
decision functions that this decision function executes. The rulesets
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary
must be added so that they run before and after, respectively, the application-
specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function
Configuration with ADF Business Components

Both rulesets and decision functions may be included in the definition of a decision
function. It is common for an application to require some rules or decision functions

Chapter 10
Using Decision Points with ADF Business Components Facts

10-8

which act as "plumbing code". This plumbing code is only needed if you are using
ActionType.

Such applications include components that perform transformations on the input data,
assert auxiliary facts, or process output facts. The plumbing code may need to run
before or after the rules that contain the core business rules of the application.

You can separate these application concerns and their associated rules from the
application functional concerns using nested decision functions. Using nested decision
functions, the inner decision function does not contain the administrative, plumbing-
oriented concerns, and thus only presents those rules which define the core logic of
the application. This design eliminates the need for the user to understand the
administrative rules and prevents a user from inappropriately modifying these rules
(and possibly rendering the system inoperable due to these changes).

To create a configuration using multiple rulesets and nested decision functions, create
two decision functions and add one to the other. A good naming scheme is to suffix
the nested inner decision function with the name Core. The user specified rulesets can
be added to the inner Core decision function. For example, DecisionFunction_1 can
be defined to run the DecisionPointDictionary.Preprocessing decision function, the
DecisionFunction_1Core decision function, and the
DecisionPointDictionary.Postprocessing decision function. For this example,
DecisionFunction_1Core contains the core business logic rulesets.

It is also common for the input of a Decision Point to be an ADF Business
Components fact type that is the root of a tree of ADF Business Components objects.
However, the user might only write business rules that match on a subset of the types
found in the tree. In this case, it is a good practice to define the inputs of the nested
decision functions to be only the types which are actually matched in the contained
rulesets. For example, consider a Decision Point calling a decision function whose
input is an Employee fact type with the Tree option selected; if this decision function
includes a nested decision function with rulesets that only matched on the Department
fact type. In this case, the nested decision function could either have as its input
specified as an Employee fact type with the Tree option selected, or a Department fact
type with the List option selected. For this example, the Tree option causes the
children of the Employee instances, including the Department instances to be asserted
(due to the one-to-many relationship between these types). If Employee is an input to
the outer decision function and the Tree option is selected, the then Department fact
type instances are asserted, and you can identify the signature on the inner decision
function as a list of Department instances (these are the exact types which are being
matched on for this decision function).

10.3 Creating a Business Rules Application with ADF
Business Components Facts

The ADF Business Components sample application shows the use of ADF Business
Component fact types.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-9

http://www.oracle.com/technetwork/middleware/soasuite/learnmore/soasuite12csamplestutorials-2769540.html

10.3.1 How to Create an Application That Uses ADF Business
Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first
need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:

1. Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

2. In the Application Navigator, in the application menu click New Application....

3. In the Name your application page enter the name and location for the new
application:

a. In the Application Name field, enter an application name. For example, enter
Chapter10.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. In the Application Package Prefix field, enter an application package prefix.
For example, enter com.example.

This should be a globally unique prefix and is commonly a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, use the prefix com.example, as shown in Figure 10-1

Figure 10-1 Step 1 of 6

Click Next.

4. On the Name your project page:

a. In the Project Name field, enter Chapter10.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-10

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. In the Project Features area, select ADF Business Components as shown
in Figure 10-2.

Figure 10-2 Step 2 of 6

Click Next.

5. On the Configure Java settings page:

a. In the Default Package field, enter com.example.

b. In the Java Source Path field, enter or browse for a directory name or accept
the default.

c. In the Output Directory field, enter or browse for a directory name or accept
the default as shown in Figure 10-3:

Figure 10-3 Step 3 of 6

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-11

Click Next.

6. For Project 2, on the Name your project page:

a. In the Project Name field, enter ViewController.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. In the Project Features area, select ADF Faces as shown in Figure 10-4:

Figure 10-4 Step 4 of 6

Click Next.

7. For Project 2, on the Configure Java settings page:

a. In the Default Package field, enter com.example.view.

b. In the Java Source Path field, enter or browse for a directory name or accept
the default.

c. In the Output Directory field, enter or browse for a directory name or accept
the default, as shown in Figure 10-5:

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-12

Figure 10-5 Step 5 of 6

8. Click Finish when done.

10.3.2 How to Create ADF Business Components Application for
Business Rules

You need to add ADF Business Components from a database table. For this example
we use the standard HR database tables.

To add ADF Business Components:

1. In the Application Navigator, select the Chapter10 project.

2. Right-click and from the menu select New....

3. In the New Gallery, in the Categories area expand Business Tier and select ADF
Business Components.

4. In the Items area select Business Components from Tables and click OK.

5. In the Initialize Business Components Project dialog, enter the required connection
information to add a connection. Click OK.

This displays the Create Business Components from Tables wizard.

6. In the Entity Objects page, select the desired objects by moving objects from the
Available box to the Selected box. You may need to click Query to see the
complete list. For example, select DEPARTMENTS and EMPLOYEES.

7. Click Next. This displays the Updatable View Objects page.

8. In the Updatable View Objects page select Departments and Employees.

9. Click Next. This displays the Entity based view object page.

10. Click Next. This displays the Application Module page.

11. Click Finish when done.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-13

10.3.3 How to Update View Object Tuning for Business Rules Sample
Application

You should tune the ViewObject to meet the performance requirements of your
application.

To set tuning options for EmployeesView or DepartmentsView:

1. In the Application Navigator, double-click EmployeesView to set tuning options for
employees or DepartmentsView to set tuning options for departments.

2. In the General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.

5. In the Tuning area, select All at Once.

10.3.4 How to Create a Dictionary for Oracle Business Rules
You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:

1. In the Application Navigator, select the Chapter10 project.

2. Right-click, and from the list select New....

3. In the New Gallery, select the All Technologies tab and in the Categories area
expand Business Tier and select Business Rules.

4. In the New Gallery, in the Items area select Business Rules.

5. Click OK.

6. In the Create Business Rules dialog enter the dictionary name and package.

• For example, in the Name field enter Chapter10Rules.

• For example, in the Package field enter com.example.

7. Click OK.

JDeveloper creates the dictionary and opens the Chapter10Rules.rules file in
Rules Designer.

10.3.5 How to Add Decision Point Dictionary Links
You need to add a dictionary links to the Oracle Business Rules supplied Decision
Point Dictionary. This dictionary supports features for working with the Decision Point
interface with ADF Business Components objects.

Add decision point dictionary links:

1. In the Rules Designer, click the Links navigation tab.

2. From the menu next to the Create button, select Decision Point Dictionary. This
operation can take a while to complete. After waiting, Rules Designer adds a link
to the Decision Point Dictionary.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-14

10.3.6 How to Import the ADF Business Components Facts
You import ADF Business Components facts with Rules Designer to make these
objects available when you create rules.

Import the ADF Business Components facts:

1. In Rules Designer, select the Facts navigation tab.

2. Select the ADF-BC Facts tab.

3. Click the Create... button. This displays the ADF Business Components Fact
page.

4. In the Connection field, from the list select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths.

5. In the View Definition field, select the name of the view object to import. For
example, select com.example.EmployeesView.

6. Click OK. This displays the Facts navigation tab.

ADF Business Components Facts can include a circular reference, as indicated with
the validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually
resolve the circular reference. To do this you clear the Visible check box for one of the
properties that is involved in the circular reference.

10.3.6.1 How to Mark a Property as Non-visible

To mark a property as non-visible:

1. Select the Facts navigation tab and select the ADF Business Components Facts
tab.

2. Double-click the icon in the DepartmentsView row.

3. In the Properties table, in the EmployeesView row clear the Visible check box.

4. Click OK.

10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

To set alias for DepartmentsView and EmployeesView:

1. Select the Facts navigation tab and select the ADF Business Components Facts
tab.

2. In the Alias column, replace EmployeesView with Employee.

3. In the Alias column, replace DepartmentsView with Department.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-15

10.3.7 How to Add and Run the Outside Manager Ruleset
The sample code that runs the outside manager ruleset invokes the Decision Point
with the view object set using the setInputs method. This invokes the decision
function once, with all of the view object rows loaded in a List. Note that invoking the
Decision Point this way is not scalable, because all of the view object rows must be
loaded into memory at the same time, which can lead to OutOfMemory exceptions.
Only use this invocation style when there are a small and known number of view
object rows. You can also use a Decision Point with setViewObject. For more
information, see How to Call a Decision Point with ADF Business Components Facts.

10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision
Function

After the view objects are imported as facts, you can rename the ruleset and create
the decision function for the application.

To rename the ruleset, select the Ruleset_1 navigation tab in Rules Designer and
then select the ruleset name and enter Outside Manager Ruleset to rename the
ruleset.

To add a decision function:

1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Edit the decision function fields as follows:

• Enter Name value FindOutsideManagers.

• In the Inputs area, click the Add Input button and edit the input information as
follows:

– Click the Fact Type field and select Employee from the list.

– Select the List check box.

In this decision function you do not define any outputs because you use the
ActionType API for taking action rather than producing output. For more
information, see Understanding Oracle Business Rules Decision Point Action
Type.

• In the Rulesets & Decision Functions area move the following items from
the Available area to the Selected area, in the specified order:

– DecisionPointDictionary.Preprocessing

– Outside Manager Ruleset

– DecisionPointDictionary.Postprocessing

4. Ensure that the items in the Selected area are in this order:
DecisionPointDictionary.Preprocessing, Outside Manager Ruleset,
DecisionPointDictionary.PostProcessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-16

5. Click OK.

Several warnings appear. These warnings are removed in later steps when you add
rules to the ruleset.

10.3.7.2 How to Create the ActionType Java Implementation Class
To create the sample application and to modify the view object in a rule, you need to
create a Java implementation class for abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must
implement the abstract exec method.

To create the ActionType Java implementation class:

1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.

3. Right-click and from the list select New....

4. In the New Gallery, in the Categories area select General.

5. In the New Gallery, in the Items area select Java Class.

6. Click OK.

7. In the Create Java Class dialog, configure the following properties:

• Enter the Name value MessageAction.

• Enter the Package value com.example.

• Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

8. Click OK.

Oracle JDeveloper displays the Java Class.

9. Replace this code with the code shown in the example below showing actiontype
java implementation.

package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {
 public MessageAction() {
 super();
 }

 public void exec(DecisionPointInstance decisionPointInstance) {
 System.out.println(message);
 }

 private String message = null;

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-17

10. In the Application Navigator, right click the MessageAction.java and from the list
select Make.

10.3.7.3 How to Import the Message Action Java Fact
You just created a new Java class and you need to add this class as a Java fact type
in Rules Designer to use later when you create rules.

To create the Java fact type:

1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab.

3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and
expand com and example to display the MessageAction check box.

5. Select the MessageAction check box.

6. Click OK. This adds the fact to the table.

10.3.7.4 How to Add the Find Managers Rule
You add the rule to find the managers that are in a different departments than their
employees.

To add the find managers in different departments rule:

1. In Rules Designer, select the Outside Manager Ruleset tab.

2. Click Add and from the list select Create Rule.

3. Rename the rule by selecting the default rule name Rule_1. This displays a text
entry area. You enter a name. For example, enter Find managers in different
department. Press Enter to apply the name.

4. Click Show Advanced Settings. For more information, see How to Show and
Hide Advanced Settings in a Rule or Decision Table.

5. In the rule select Advanced Mode.

6. Enter the rule as shown in Figure 10-6. The action for the rule shown in the THEN
area is too long to show in the figure. The complete action that you build includes
the following items:

IF Employee is EmployeeandManager is a Employee andManager.EmployeeId
== Employee.ManagerId andManager.DepartmentId !=
Employee.DepartmentIDTHENassert new MessageAction(<add property>
message: "Employee " + Employee.FirstName + " " + Employee.LastName +
"(" + Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId +
" has manager outside of department, " + Manager.FirstName + " " +
Manager.LastName + "(" + Manager.EmployeeId + ")" + " in dept " +
Manager.DepartmentId)

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-18

Figure 10-6 Find Managers in Different Departments Rule

10.3.7.5 How to Add the Outside Manager Finder Class
Add the outside manager finder class. This uses the Decision Point to execute a
decision function.

To add the Outside Manager Finder Class:

1. Select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area select Java Class. Click OK.

5. In the Name field, enter OutsideManagerFinder. Click OK.

6. Replace the contents of this class with the code shown in example below showing
Outside Manager Finder java class.

package com.example;

import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-19

 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 OutsideManagerFinder omf = new OutsideManagerFinder();
 omf.run();
 }

}

10.3.7.6 How to Update ADF META INF for Local Dictionary Access
You need to update the ADF-META-INF file with MDS information for accessing the
dictionary. You can use a local file with MDS to access the Oracle Business Rules
dictionary. However, this procedure is not the usual dictionary access method with
Oracle Business Rules in a production environment. For information on using a
Decision Point to access a dictionary with MDS in a production environment, see What
You Need to Know About Using Decision Point in a Production Environment.

To update ADF-META-INF:

1. In the Application Navigator, expand Application Resources.

2. Expand Descriptors and ADF META-INF folders.

3. Double-click adf-config.xml to open this file.

4. Click the Source tab to view the adf-config.xml source.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-20

5. Add the MDS information to adf-config.xml, before the closing </adf-config>
tag, as shown in the code example below:

 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store class-
name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path"
 value="C:\jdevinstance\mywork\Chapter10\.adf\"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>

6. In the <property> element with the attribute metadata-path, change the path to
match .adf directory in the application on your system.

10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location

To copy definitions/dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application, and in the Chapter10 project, in the src folder select and copy the
com folder. Or if you want to copy dictionary to MDS accessible location, copy the
oracle directory that contains the Oracle Business Rules dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the com folder to this directory. or copy the oracle folder to this directory.

10.3.7.8 How to Build and Run the Project to Check the Outside Manager
Finder

You can build and test the project by running the find managers with employees in
different departments rule.

Build the OutsideManagerFinder configuration:

1. From the dropdown menu next to Run button, select Manage Run
Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter a name. For example, enter
OutsideManagerFinder.

4. Click OK.

5. With OutsideManagerFinder selected, click Edit....

6. In the Default Run Target field, click Browse....

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-21

7. Select OutsideManagerFinder.java from the src\com\example folder.

8. Click Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

To run the project, select OutsideManagerFinder in the dropdown menu next to the
Run project button. Running this configuration generates output, as shown in example
below:

Emp Shelley Higgins(205) in dept 110 manager outside of department, Neena
Kochhar(101) in dept 90
Emp Hermann Baer(204) in dept 70 manager outside of department, Neena Kochhar(101)
in dept 90
Emp Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101)
in dept 90
Emp Michael Hartstein(201) in dept 20 manager outside of department, Steven
King(100) in dept 90
Emp Jennifer Whalen(200) in dept 10 manager outside of department, Neena
Kochhar(101) in dept 90
Emp Kimberely Grant(178) in dept null manager outside of department, Eleni
Zlotkey(149) in dept 80
Emp Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in
dept 90
Emp Gerald Cambrault(148) in dept 80 manager outside of department, Steven King(100)
in dept 90
Emp Alberto Errazuriz(147) in dept 80 manager outside of department, Steven
King(100) in dept 90
Emp Karen Partners(146) in dept 80 manager outside of department, Steven King(100)
in dept 90
Emp John Russell(145) in dept 80 manager outside of department, Steven King(100) in
dept 90
Emp Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in
dept 90
Emp Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100)
in dept 90
Emp Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100)
in dept 90
Emp Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in
dept 90
Emp Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in
dept 90
Emp Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in
dept 90
Emp Nancy Greenberg(108) in dept 100 manager outside of department, Neena
Kochhar(101) in dept 90
Emp Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102)
in dept 90

10.3.8 How to Add and Run the Department Manager Ruleset
The sample code that runs the department manager ruleset invokes the Decision Point
with the view object set using the setViewObject method. This invokes the decision
function once for each row in the view object. All decision function calls occur in the
same RuleSession. Between decision function calls, the RuleSession preserves all
state from the previous decision function call. Thus, any objects asserted during the
previous call remain in working memory for the next call unless they are explicitly
retracted by rulesets that you supply. When the state is maintained, you can retract all
facts or selectively retract facts between calls by running a ruleset with rules that use

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-22

the retract action. This ruleset is run as part of the same decision function that you use
with the Decision Point. The retract all employees ruleset demonstrates retracting
these facts. For more information, see How to Call a Decision Point with ADF
Business Components Facts.

10.3.8.1 How to Add the Department Manager Finder Ruleset
You now add the department manager finder ruleset.

To add the department manager finder ruleset:

1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Department Manager Finder
Ruleset.

3. Click OK.

10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset
Next you add the Find rule to find department managers. This rule demonstrates the
use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:

1. In Rules Designer select the Department Manager Finder Ruleset.

2. In the dropdown menu next to the Add button, click Create Rule.

3. Change the rule name by selecting the name Rule_1, and entering Find.

4. Click Show Advanced Settings. For more information, see How to Show and
Hide Advanced Settings in a Rule or Decision Table.

5. In the rule, select Tree Mode.

6. Enter the Find rule tests and actions. The following shows the complete text of this
rule:

ROOT: Employee
IF
Employee/DepartmentsView.ManagerID == Employee.EmployeeID
THEN
retract Employee
assert new MessageAction (<add property> message: Employee.FirstName + " " +
Employee.LastName + " is the manager of dept "+ Employee/
DepartmentsView.DepartmentName)

10.3.8.3 How to Add Retract Employees Ruleset
You add a ruleset to retract the employee fact type instances. This ensures that the
Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:

1. Add the Retract Employees Ruleset.

2. In the Retract Employees Ruleset, add a rule and name it Retract all employees.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-23

10.3.8.4 How to Add the Find Department Managers Decision Function
Now you create the decision function for the department manager finder ruleset. You
use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:

1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as follows:

• Enter Name value FindDepartmentManagers.

• In the Inputs area, click the Add Input and edit the input information as
follows:

– Click the Fact Type field and select Employee from the list.

– Select the Tree check box.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

• In the Rulesets & Decision Functions area, move the following items from
the Available area to the Selected area, in the specified order:

– DecisionPointDictionary.Preprocessing

– Department Manager Finder Ruleset

– Retract Employees

– DecisionPointDictionary.Postprocessing

4. Ensure that the items in the Selected area are in this order:
DecisionPointDictionary.Preprocessing, Department Manager Finder Ruleset,
Retract Employees, and DecisionPointDicitonary.Postprocessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.8.5 How to Add the Department Manager Finder Java Class
Add the department manager finder class. This class include the code with the
Decision Point that executes the decision function.

Add the department manager finder class:

1. In the Application Navigator, select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area, select Java Class. Click OK.

5. In the Name field, enter DeptManagerFinder. Click OK.

6. Replace the contents of this class with the code example shown below:

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-24

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class DeptManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final String DF_NAME = "FindDepartmentManagers";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public DeptManagerFinder() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 new DeptManagerFinder().run();
 }
}

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-25

10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location
Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper, navigate to the
Chapter10 application, and project and copy the oracle directory that contains the
dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule
You can build and test the project to execute the department manager finder ruleset.

Build the project:

1. From the dropdown menu next to Run button, select Manage Run
Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
DeptManagerFinder.

4. In the Copy Settings From field, enter Default.

5. Click OK.

6. With DeptManagerFinder selected, click Edit....

7. In the Default Run Target field, click Browse....

8. Select DeptManagerFinder.java from the src\com\example directory and click
Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

To run the project, select DeptManager Finder in the menu, next to the Run project
button. Running the decision point generates output, as shown in code example
below:

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales
Adam Fripp is the manager of dept Shipping
Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Steven King is the manager of dept Executive
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-26

Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT
Alexander Hunold is the manager of dept IT
Nancy Greenberg is the manager of dept Finance
Den Raphaely is the manager of dept Purchasing
Adam Fripp is the manager of dept Shipping
John Russell is the manager of dept Sales
Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in
this example, the duplicate entries are due to multiple rule firings on the same data in
a different part of the view object graph.

10.3.9 How to Add and Run the Raises and Retract Employees
Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying
the view object using the setViewObject method. This invokes the decision function
once for each row in the view object. The retract employees ruleset retracts all
instances of Employee asserted for each call, so that they do not remain in working
memory between calls to the decision function. The action type shown in How to
Create the Raise ActionType Java Implementation Class shows how to change the
ViewRowImpl attribute values with a ActionType.

For more information, see How to Call a Decision Point with ADF Business
Components Facts.

10.3.9.1 How to Add the Raises Ruleset
You now add the raises ruleset.

To add the raises ruleset:

1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Raises Ruleset.

3. Click OK.

10.3.9.2 How to Create the Raise ActionType Java Implementation Class
To create this part of the sample application and to modify the view object in the raises
rule, you need to create a Java implementation class for the abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must
implement the abstract exec method.

To create the raise ActionType Java implementation class:

1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.

3. Right-click and from the list select New....

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-27

4. In the New Gallery, in the Categories area select General.

5. In the New Gallery, in the Items area select Java Class. Click OK.

6. In the Create Java Class dialog, configure the following properties:

• Enter the Name value RaiseAction.

• Enter the Package value com.example.

• Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

7. Click OK.

Oracle JDeveloper displays the Java Class.

8. Replace this code with the code example showing actiontype java
implementation as shown below:

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new
boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

9. In the Application Navigator, right click the RaiseAction.java and from the list
select Make.

10.3.9.3 How to Import the Raise Action Java Fact
You just created a new Java class. You import this class as a Java fact type in Rules
Designer to use later when you create rules.

To create the Java fact type:

1. In Rules Designer, select the ManagerRules.rules dictionary.

2. Click the Facts navigation tab and select the Java Facts tab.

3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and
expand com and example to display the RaiseAction check box.

5. Select the RaiseAction check box.

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-28

6. Click OK.

This adds the Raise Action fact type to the Java Facts table.

10.3.9.4 How to Add the 12 Year Raise Rule
This rule shows how to use action types to update database entries.

To add 12 year raise rule:

1. In Rules Designer in the Raises Ruleset, click Create Rule.

2. Change the rule name by selecting Rule_1 and entering the value: Longer than
12 years.

3. Click Show Advanced Settings. For more information, see How to Show and
Hide Advanced Settings in a Rule or Decision Table.

4. Select Advanced Mode.

5. Enter the 12 year raise rules, as shown in this example:

IF
Employee is Employee
and
CurrentDate is a CurrentDate and
Duration.years between(Employee.HireDate, CurrentDate.date) >=12
THEN
assert new RaiseAction(<add property> raisePercent: .03,
viewRowImple:Employee.ViewRowImpl)
retract Employee

10.3.9.5 How to Add the Employee Raises Decision Function
Now create the decision function for the employee raises and the retract all employees
rulesets.

To add a decision function:

1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as follows:

• Enter Name value EmployeeRaises.

• In the Inputs area, click the Add Input and edit the input information as
follows:

– Click the Fact Type field and select Employee from the list.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

• In the Rulesets & Decision Functions area, move the following items from
the Available area to the Selected area, in the specified order.

– DecisionPointDictionary.Preprocessing

– Raises Ruleset

– Retract Employees Ruleset

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-29

– DecisionPointDictionary.Postprocessing

4. Ensure that the items in the Selected area are in this order:
DecisionPointDicitonary.Preprocessing, Raises Ruleset, Retract Employees
Ruleset, DecisionPointDictionary.PostProcessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.9.6 How to Add the Employee Raises Java Class
Add the employee raises class. This executes the decision function.

To add the employee raises class:

1. Select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area, select Java Class. Click OK.

5. In the Name field, enter EmployeeRaises. Click OK.

6. Replace the contents of this class with the deptmanagerfinder class code shown
below:

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";
 private static final String DF_NAME = "EmployeeRaises";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public EmployeeRaises() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-30

 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }

 for (DecisionPoint.NamedValue result : point.getResults()){
 System.out.println(result.getName() + " " + result.getValue());
 }

 }

 public static void main(String[] args) {
 new EmployeeRaises().run();
 }
}

10.3.9.7 How to Copy Dictionary to MDS Accessible Location
Copy the updated dictionary to the MDS accessible location.

To copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper, navigate to the
Chapter10 folder and the Chapter10 project and copy the oracle directory that
contains the dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.9.8 How to Build and Run the Project to Check the Raises Rule
You can build and test the project by running employee raises ruleset.

To build the project:

1. From the dropdown menu next to Run button, select Manage Run
Configurations....

2. In the Project Properties dialog, click New....

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-31

3. In the Create Run Configuration dialog, enter the name. For example, enter
EmployeeRaises.

4. In the Copy Settings From field, enter Default. Click OK.

5. With EmployeeRaises selected, click Edit....

6. In the Default Run Target field, click Browse....

7. Select EmployeeRaises.java from the src\com\example folder. Click Open.

8. In the Edit Run Configuration dialog, click OK.

9. In the Project Properties dialog, click OK.

To run the project, select EmployeeRaises in the menu, next to the Run project
button. Oracle JDeveloper displays the output as shown in example below:

raise for 100 0.03=>81.7
raise for 101 0.03=>1872.46
raise for 102 0.03=>60596.78
raise for 103 0.03=>31146.26
raise for 104 0.03=>20159.43
raise for 108 0.03=>35822.68
raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5
raise for 120 0.03=>16262.34
raise for 121 0.03=>16183.41
raise for 122 0.03=>15591.35
raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79
raise for 145 0.03=>17734.79
raise for 146 0.03=>17101.39
raise for 147 0.03=>15201.23
raise for 150 0.03=>12667.7
raise for 151 0.03=>12034.32
raise for 156 0.03=>13047.73
raise for 157 0.03=>12395.35
raise for 158 0.03=>11400.93
raise for 159 0.03=>10134.16
raise for 168 0.03=>14567.86
raise for 174 0.03=>13934.48
raise for 175 0.03=>11147.58
raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03
raise for 204 0.03=>13047.73
raise for 205 0.03=>15657.27
raise for 206 0.03=>10829.62

Chapter 10
Creating a Business Rules Application with ADF Business Components Facts

10-32

11
Working with Decision Components in SOA
Applications

Get an overview of the Decision Components that support Oracle Business Rules. Use
a Decision Component as a mechanism for publishing rules and rulesets as a reusable
service that can be invoked from multiple business processes.

A Decision Component is an SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for the
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

• Introduction to Decision Components

• Working with a Decision Component

• Decision Service Architecture

11.1 Introduction to Decision Components
A Decision Component is a web service that wraps a rule session to the underlying
decision function.

A Decision Component consists of the following:

• Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

• Metadata that describes facts required for specific rules to be evaluated. Rulesets
that contain rules or Decision Tables are exposed as a service with facts that are
input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan
history as facts, but a pension payment ruleset may expect a value with the years
of employee service, salary, and age as facts.

For more information, see Working with Decision Component Metadata.

• A web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the
process. In some cases, all facts can be asserted from the business process as
one unit. In other cases, the business process can incrementally assert facts and
eventually consult the rule engine for inferences. Therefore, the service has to
support both stateless and stateful interactions.

You can create a variety of such business rules service components.

For more information, see Developing SOA Applications with Oracle SOA Suite.

11-1

11.2 Working with a Decision Component
Using Oracle JDeveloper with Rules Designer these tools automatically generate all
required metadata and WSDL operations.

The Decision Component can be integrated into a SOA composite application in the
following ways:

• Create a Decision Component as a standalone component in the SOA Composite
Editor. In this scenario, the Decision Service is exposed on the composite level
and thus can be invoked from any web service client.

For more information, see Getting Started with Oracle Business Rules in
Developing SOA Applications with Oracle SOA Suite.

• Create a Decision Component in the SOA Composite Editor that you later
associate with a BPEL process. In this scenario the Decision Service is not
exposed on the composite level. However it can be wired to any other component
within the composite, such as BPEL, Oracle Mediator, and Oracle Human
Workflow.

For more information, see Getting Started with Oracle Business Rules in
Developing SOA Applications with Oracle SOA Suite.

• Create a Decision Component within the Human Task editor of a human task
component.

This integration provides the following benefits:

• Dynamic processing: provides for intelligent routing, validation of policies within a
process, and constraint checks.

• Integration with ad hoc human tasks: provides policy-based task assignment,
various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata
A Decision Component is defined by the following files:

• Decision Service Metadata (.decs) File

• SCA Component Type (.componentType) File

• Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

• Decision Service Metadata (.decs) File

Every Decision Component within a composite comprises one business rule
metadata file. The business rule metadata file provides information about the
location of the component business rule dictionary and the Decision Services
exposed by the Decision Component.

One Decision Component might expose one or more Decision Services. For
example, a CreditRating Decision Component might expose two services,
CheckEligibility and CalculateCreditRating.Oracle Fusion Middleware 11g Release
1 (11.1.1) onwards, the Decision Service metadata comprises of the decision
function name that is exposed as a web service. For projects that are migrated

Chapter 11
Working with a Decision Component

11-2

from older releases of Oracle SOA Suite, the Decision Service metadata typically
has more information depending on the interaction pattern used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract
between the components involved in the interaction of the business rule with the
design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle
JDeveloper for your SOA composite application. Table 11-1 describes the top-
level elements in the Decision service .decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

Element Description

ruleEngineProvi
der

The business_rule_name.decs file ruleEngineProvider
element includes details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK"
provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</
path>
 </repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision
Components. This indicates that the rule dictionary is located in the
service component architecture archive. The path is relative and
interpreted differently by the following:

– Design time — The path is prefixed with Oramds:/. Metadata
service (MDS) APIs open the rule dictionary. Therefore, the full
path to the dictionary is as follows:

Oramds:/AutoLoanComposite/oracle/rules/AutoLoanRules.rules

– Runtime (business rule service engine) — The business rule
service engine uses the Oracle Business Rules SDK
RuleRepository API to open the rule dictionary located in
MDS. The composite name prefix, for example
(AutoLoanComposite) is removed from the path and the
metadata manager assumes the existence of oracle/rules/
AutoLoanRules.rules relative to the composite home
directory.

Chapter 11
Working with a Decision Component

11-3

Table 11-1 (Cont.) Decision Metadata File (.decs) Top-level Elements

Element Description

decisionService A Decision service is a web service (or SOA) enabler of business
rules. It is a service in the sense of a web service, thus opening the
world of business rules to service-oriented architectures (SOA). In
12c (12.2.1), a Decision service consists of metadata and a WSDL
contract for the service.

The business_rule_name.decs file decisionService element
defines the metadata that describes business rules exposed as a
web service.

In general, a Decision service includes the following elements:

– Target namespace
– Reference to the back-end Oracle Rules Engine (this is the link

to the rule dictionary). Note that OracleRulesSDK is the
reference name that matches the name of the Oracle Rules
Engine provider in ruleEngineProvider element.

– Name (CreditRatingService in the following example)
– Additional information about the dictionary name and ruleset to

use
– List of supported operations (patterns)
Apart from the operations (patterns), the parameter types (or fact
types) of operations are specified (and validated later at runtime).
Therefore, every Decision service exposes a strongly-typed contract.

• SCA Component Type (.componentType) File

An SCA business_rule_name.componentType file is included with each Decision
Component. This file lists the services exposed by the business rules service
component. In the following sample, two services are exposed:
CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
 <service name="CreditRatingService">
 <interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface(IDecisionSer
vice)"/>
 </service>
 <service name="LoanAdvisorService">
 <interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
 </service>
</componentType>

• Decision Component Entry in composite.xml

An entry in composite.xml is created for a Decision Component. For example,

<component name="OracleRules1">
 <implementation.decision src="OracleRules1.decs"/>
</component>

The business rules service engine uses the information from this implementation
type to process requests for the Service Engine. From an SCA perspective, a
Decision Component is a new "implementation type".

Chapter 11
Working with a Decision Component

11-4

11.2.2 Working with Decision Components that Expose a Decision
Function

You can use a decision service to expose an Oracle Business Rules Decision
Function as a service. A Decision Function is a function you use to call rules from a
Java EE application or from another component.

The code example below shows a business_rule_name.decs file decisionServices
element that defines the metadata for an Oracle Business Rules Decision Function
exposed as a service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="PurchaseItems">
 <ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>PurchasingSampleProject/oracle/rules/com/example/PurchaseItems.rules</path>
 </repository>
 </ruleEngineProvider>
 <decisionService targetNamespace="http://xmlns.oracle.com/PurchaseItems/
PurchaseItems_DecisionService_ValidatePurchasesDF"
ruleEngineProviderReference="OracleRulesSDK"
name="PurchaseItems_DecisionService_ValidatePurchasesDF">
 <catalog>PurchaseItems</catalog>
 <pattern name="CallFunctionStateless">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 <pattern name="CallFunctionStateful">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely in
the PurchaseItems.rules file.

For more information, see Working with Decision Functions.

11.2.3 Using Stateful Interactions with a Decision Component
To provide a stateful decision service you create a decision function and specify that
the decision function is not stateless. To do so, clear the Stateless check box in a
decision function.

Note the following details about stateful interactions with a Decision Component (also
see Figure 11-2):

• Rule sessions from the cache and those from the pool are mutually exclusive:

– The rule session pool is for simple, stateless interactions only.

– The rule session cache keeps the state of a rule session across Decision
service requests.

Chapter 11
Working with a Decision Component

11-5

11.2.4 What You Need to Know About Stateful Interactions with
Decision Components

A Decision Component running in a Business Rules service engine supports either
stateful or stateless operation. The Reset Session (stateless) check box in the Create
Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) check box selected, this indicates stateless
operation.

When Reset Session (stateless) check box is cleared, the underlying Oracle Business
Rules object is kept in memory of the Business Rules service engine at a separate
location (so that it is not given back to the Rule Session Pool when the operation is
finished). Only use stateful operation if you know you need this option (some errors
can occur at runtime when using stateful operation and these errors could use a
significant amount of service engine memory).

When Reset Session (stateless) check box is cleared, a subsequent use of the
Decision Component reuses the cached RuleSession object, with all its state
information from the callFunctionStateful invocation, and then releases it back to
the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture
A Decision service consists only of the service description. All other artifacts are
shared within a Decision Component.

This is shown in Figure 11-1:

Figure 11-1 Decision Service Architecture

The heart of runtime is the decision service cache, which is organized in a tree
structure. Every Decision Component owns a subtree of that cache (depending on the
composite distinguished name (DN), component, and service name). In this regard,
decision services of a Decision Component share the following data:

• Metadata of the Decision Component

– Fact type metadata.

– Function metadata.

Chapter 11
Decision Service Architecture

11-6

– Ruleset metadata.

• Rule session pool

– One rule session pool is created per Decision Component.

– The rule sessions in the pool are pre-initialized with the data model Oracle RL
and the ruleset Oracle RL already executed.

– New rule sessions are created on demand.

– Rule sessions can be reused for a configurable number of times.

– The initial size of the rule session pool is configurable.

• Stateful rule session cache

– A special cache is maintained for stateful rule sessions.

For more information, see Using Stateful Interactions with a Decision
Component.

• Deployment artifacts

– Decision Component deployment can end up in class generation for JAXB fact
types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule
session pool and how stateful rule sessions interact with the stateful rule session
cache during a decision service request.

Chapter 11
Decision Service Architecture

11-7

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service
Request

Chapter 11
Decision Service Architecture

11-8

12
Using Oracle SOA Composer with Oracle
Business Rules at Runtime

Use the Oracle SOA Composer application to work with a deployed dictionary and
tasks that are part of a SOA composite application.

• Introduction to Oracle SOA Composer

• Setting Accessibility Options

• Opening and Viewing an Oracle Business Rules Dictionary

• Getting Started with Editing a Dictionary

• Editing Rules in an Oracle Business Rules Dictionary

• Using the Oracle SOA Composer Browser Windows

• Editing Decision Tables in an Oracle Business Rules Dictionary

• Comparing and Merging Oracle Business Rules Dictionaries

• Localizing Names of Resources in Oracle Business Rules

• Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary
Updates

• Validating and Diagnosing an Oracle Business Rules Dictionary

• Working with Tasks

12.1 Introduction to Oracle SOA Composer
Oracle SOA Composer is a web-based application that enables you to work with
Oracle Business Rules dictionaries and tasks for deployed applications. Oracle SOA
Composer accesses a dictionary or a task in an MDS repository.

Oracle SOA Composer supports viewing and editing different types of metadata
artifacts, such as DVM documents, SOA composites, and Oracle Business Rules
dictionaries. You can view the different types of metadata by Types View or
Deployment View, as shown in Figure 12-1.

The Deployment View is the default. Choose the Types View to see artifacts listed by
type: Business Rules, Domain Value Maps, Human Tasks, or SOA Composites.

12-1

Figure 12-1 Oracle SOA Composer Types View

The Deployment View has two nodes: SOA-Infra and Shared. The default node is a
SOA partition created and managed in Enterprise Manager. The Shared folder
displays rules or DVMs created in JDeveloper and deployed as shared artifacts.

From either view, click artifacts in the navigation tree to open them in separate tabs.

In SOA Composer, the Verbal Rules and Business Phrases features do not appear if
you have not installed BPM.

Use the search field just above the View drop down to quickly find and filter types by
name, as shown in Figure 12-2. Click to open artifacts from this page.

Figure 12-2 Search and Filter

12.1.1 Creating and Publishing Sessions
Click an artifact to open it in read-only mode. If you plan to make changes to an
artifact, click the Edit Session button. Most action buttons only become active if you
are in a session. When you are done making changes, click Publish. All changes in a

Chapter 12
Introduction to Oracle SOA Composer

12-2

session are committed to the main repository, can be seen by others, and the server
will begin executing. If you have validation errors, you cannot publish, though you can
save rules with validation errors and work on them again in another session.

The Discard button enables you to cancel out of changes that you do not want to
save. If, after making some changes in a session, you wanted to go back to the
original state that you started from, click Exit Session. Click Edit Session again to
see the last saved session information.

These icons and buttons provide more information:

Table 12-1 SOA Composer Buttons

Button Description

 Session Info
Hover over this icon to see Session Details.

 Maximize
Click to maximize the tabs section. This increases screen space
when writing or editing rules. Click again to restore the view.

 Validate Click to validate your changes. The system validates when you
save and you can save rules with validation errors, though you
cannot publish. For more information about validating, see
Validating and Diagnosing an Oracle Business Rules Dictionary.

 Bookmark Click the bookmark if you want to avoid the search/deployment
view in a future session. For more information, see Creating a
Bookmark.

Save Changes in Current
Tab or Save Changes in All
Tabs

Click to save as appropriate.

Get Context Sensitive Help Click to view the online help file.

Close All, Close Others Click the drop down and select to close tabs.

The Actions drop down enables you to use the compare and
merge dictionaries, work with Decision Tables in Microsoft Excel,
and review dictionary settings.

Diff Merge enables you to compare the currently selected
dictionary with the File System, the Published Version, or the
Saved Version. If there are differences, you can choose to
merge the dictionaries.

For more information about comparing or merging dictionaries,
see Comparing and Merging Oracle Business Rules
Dictionaries.

Import From Excel enables you to import decision tables from
Excel.

Export To Excel enables you to export decision tables and edit
them in Excel.

For more information about working with Excel, see Editing
Decision Tables in Microsoft Excel.

Dictionary Settings enables you to set dictionary preferences.

For more information about reviewing dictionary settings, see
Reviewing Dictionary Settings.

Chapter 12
Introduction to Oracle SOA Composer

12-3

Table 12-1 (Cont.) SOA Composer Buttons

Button Description

Diagnostics, History Center,
Save Log, Validation Log

At the bottom of the SOA Composer page are four tabs:
Diagnostics, History Center, Save Log, and Validation Log.
Use these tabs to validate changes to rules and perform and
resolve changes to artifacts.

For more information about these tabs, see Validating and
Diagnosing an Oracle Business Rules Dictionary.

12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary
After you verify dictionary modifications, click Publish to commit those changes to the
MDS repository.

To publish changes to an Oracle Business Rules dictionary:

1. Click the Publish menu item.

2. In the Confirm dialog, click Yes if you want to make the changes in the MDS
repository. Click No if you do not want to make the changes in the MDS repository.

Remember to update the runtime changes into Rule Editor ADF following the tasks
described in Importing Runtime Rules Changes From Repository Into JDeveloper

3. When you open the dictionary after saving the edit session and deploying the
composites, SOA composer opens the last saved edit session.

When multiple users are editing the same dictionary, Oracle SOA Composer
shows a message that the dictionary is being edited by another user and asks for
a confirmation. When multiple users work on a single dictionary, only the last
publish is persisted.

To open the new dictionary click Discard, Clear all session edits and save
changes button in the top menu.

Note:

A dictionary with validation errors can be saved, but it can be committed only
after correcting the validation issues.

12.1.1.2 Creating a Bookmark
Create a bookmark to avoid the search or deployment view.

To open a dictionary using a known URL:

1. In an open dictionary, click Bookmark in the toolbar of Oracle SOA Composer.

2. Copy the URL and paste in a browser to launch SOA composer with the
bookmarked artifact opened in a tab.

Chapter 12
Introduction to Oracle SOA Composer

12-4

Figure 12-3 Obtain the URL for an Open Dictionary

3. In a browser, use the saved URL to directly access the dictionary.

For example,

http://SERVER_NAME_OR_IP_ADDRESS/soa/composer?docPath=/deployed-
composites/ default/BusinessRulesTest_rev1.0/oracle/rules/
businessrulestest/OrderBooking.rules

According to the preceding example, composites are stored as per the following
structure: deployed-composites/composite name_rev composite revision/oracle/
rules/dictionary package path/dictionary name.rules

12.1.1.3 Reviewing Dictionary Settings
Click the Dictionary Setting button to set preferences.

Figure 12-4 Dictionary Settings Dialog

Table 12-2 Dictionary Settings

Dialog Sections Settings

Execution section Rule Execution Algorithm: choose RETE or Non-RETE. For
more information, see 1.3 Oracle Business Rules Engine
Architecture. The Rete Algorithm and The Non-Rete Algorithm

Choices section Phrase Suggestions: choose Business Phrases, Auto
Suggestions, or All.

Data Model section Global Qualifier Pattern: confirm {member} of {fact}.

Translations: click to translate {member} of {fact}.

Validate: click to validate {member} of {fact}.

12.1.2 Using Oracle SOA Composer User Authentication
Figure 12-5 shows the Oracle SOA Composer login page. This page allows Oracle
SOA Composer to authenticate the specified user.

Chapter 12
Introduction to Oracle SOA Composer

12-5

Figure 12-5 Oracle Oracle SOA Composer Login Page

To login to Oracle SOA Composer:

1. Access Oracle SOA Composer using the following URL in your browser address
bar:

http://SERVER_NAME_OR_IP_ADDRESS/soa/composer

2. In the Oracle SOA Composer login page, in the Username field, enter a user
name.

3. In the Password field, enter a password.

4. Click Sign In.

For information about creating and managing users and groups, see the integrated
SOA Composer Console online help.

12.1.3 What You Need to Know About SOA Composer Access Control
and User Authentication

Oracle SOA Composer supports user and password access control and only
authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer
does not provide finer grained access control. For example, Oracle SOA Composer
does not support access control for individual rulesets or rules within a dictionary.

Oracle SOA Composer does support access control to metadata. Using Oracle SOA
Composer, only users with the SOADesigner application role can access the metadata
from Oracle SOA Composer. By default, all users with WLS Administrator privileges
have this role.

For more information about assigning the SOADesigner role to a non-admin user who
requires access to Oracle SOA Composer, see Managing Application Roles in Oracle
Enterprise Manager Fusion Middleware Control Console in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

12.2 Setting Accessibility Options
Accessibility settings help you read all components of the application.

You can set accessibility options in SOA Composer for the current instance, or for all
instances.

Chapter 12
Setting Accessibility Options

12-6

12.2.1 How to Set Accessibility Features Before Logging In
SOA Composer presents the Accessibility menu on the login page, so you can
configure accessibility before you log in. These settings can be persisted for only the
current session or for all sessions.

To set accessibility options for the current session only:

1. Launch SOA Composer.

2. On the login page, click Accessibility in the top right corner.

The Edit Accessibility Settings page appears, as shown in Figure 12-6.

Figure 12-6 Edit Accessibility Settings Page

3. Select any of the following options:

• Use screen reader.

• Use high contrast colors.

• Use large fonts.

4. To save the new settings only for this session, click Use for this session. To save
the settings for all sessions, click Save as preference and use.

12.2.2 How to Set Accessibility Options After Logging In
Once you log in to SOA Composer, you can configure accessibility options from any
page. This changes the user preferences, which are retained through all sessions until
you change them again.

To set accessibility options after logging in:

1. Launch SOA Composer and log in.

2. From any page, select Preferences in the top right corner.

The Preferences dialog appears.

3. In the Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 12-7.

Chapter 12
Setting Accessibility Options

12-7

Figure 12-7 Preferences Dialog

4. In the Mode Settings field, select Enable screen reader mode if you use a
screen reader. Select Disable screen reader mode if you do not use a screen
reader.

5. In the Contrast Settings field, select Use high contrast to increase the contrast
between objects on the console; otherwise, select Use normal contrast.

6. In the Font Settings field, select Use large fonts to increase the font size;
otherwise, select Use normal fonts.

7. Click OK.

12.3 Opening and Viewing an Oracle Business Rules
Dictionary

When you open Oracle SOA Composer, it connects to MDS and displays the available
composite applications that contain dictionaries. In addition, it lists the shared
dictionaries, and these shared dictionaries can also be viewed and edited.

As shown in Figure 12-8, Oracle SOA Composer shows a navigation tree that displays
a left-side panel with a list of metadata artifacts. Details for the selected item are
shown on the right-hand side. Oracle SOA Composer includes the following tabs:

• Rulesets

• Value Sets

• Globals

• Business Phrases

• Tests

• Explorer

• Facts

• Decision Functions

• Links

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-8

• Translations

Figure 12-8 Rules Tabs

Note:

In SOA Composer, the Verbal Rules and Business Phrases features do not
appear if you have not installed BPM.

12.3.1 How to View and Edit Rulesets
Oracle SOA Composer displays the rulesets in the dictionary, as shown in Figure 12-9.
You can select a ruleset to display a detailed view of the ruleset. You can add and
delete rulesets and rules.

Figure 12-9 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-9

To use the ruleset tab:

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

1. In Oracle SOA Composer, open a Rules file.

2. Click the Rulesets tab, and click the Create Session button. The action buttons
are enabled.

3. Click the down arrow next to ClaimRules, as shown in Figure 12-9, and choose a
Ruleset. The ruleset is displayed and is editable. You can also add or delete
rulesets from the toolbar.

4. Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules. You
can also delete, cut, copy, or paste rules.

For information on adding verbal rules in SOA Composer, see How to Add Verbal
Rules in SOA Composer.

5. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information about Decision Tables, see Editing Decision Tables in an Oracle
Business Rules Dictionary.

For more information about Verbal and General Rules, see Editing Rules in an Oracle
Business Rules Dictionary

For more information about Rulesets, see Working with Rulesets and Rules .

12.3.1.1 How to Add Verbal Rules in SOA Composer
Verbal rules provide a flexible way to author rules using natural language statements
to express rule logic in domain specific sentences.

To add verbal rules in SOA Composer:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Rulesets tab, and click the Create Session button. The action buttons
are enabled.

3. Select the Ruleset from the drop down list.

4. Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules.

To add Decision Tables, see Adding a Decision Table.

To add Verbal Rules:

a. Click the Add icon and select Verbal Rules.

The Verbal Rules window appears.

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-10

Figure 12-10 Verbal Rule window

b. In the If field, add a test. Once done, add an action in the Then field.

Note that when you add a test or an action, the test or the action becomes
editable. Type in a filter in the If field, for example, 'customer number', all
related options are displayed in the drop down list.

c. Use the up/down arrow keys to select and use the right arrow key on the
selected option to get similar choices.

To get more choices in the list, scroll to the end of the drop down list and
select the More option by using either keyboard or mouse.

d. From the list, select existing business phrase or you can instantiate a new
business phrase based on what you typed.

Once a choice is set, the text field is no longer editable and the existing
parameters become links. The links when clicked becomes editable. To set
the value, double-click the links.

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-11

Note:

Some of the important keyboard-based interface for Verbal Rules
are:

• Copy: ctrl + c

• Paste: ctrl + v

• Cut: ctrl + x

• Move row up: ctrl + up

• Move selection up: up arrow

• Move row down: ctrl + down

• Move selection down: down arrow

• Delete row: ctrl + delete

• Add new row: ctrl + enter

• Edit row: enter

Important keyboard gestures for setting parameter values:

• Avoid having a selected row while specifying parameter values.
Since 'enter' makes the selected row editable and you may be
trying to set a parameter value.

• Using the Esc button within the parameter text field converts it
back to a link without setting the value.

• Using tab or entering key values does not make the link editable
when its in focus. You must use the mouse or use the enter key
to activate the link.

• To set a parameter value, you can tab out of the parameter text
field or press enter.

5. When done, click Save Changes in Current Tab. If you are ready to apply the
changes to the runtime version, click Publish.

To add General Rules, see How to Add General Rules.

12.3.2 How to View and Edit Value Sets
When you open a dictionary and select the Value Sets tab, if the dictionary contains
value sets, the table shows all available value sets. Value sets from linked dictionaries
are also displayed. You can select a linked value set and click the Edit button to view
the values. However, a linked value set is not editable even in the edit mode.

For information on the Oracle SOA Composer edit mode, see Getting Started with
Editing a Dictionary.

To view value sets in Oracle SOA Composer:

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

1. In Oracle SOA Composer, open a Rules file.

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-12

2. Click the Value Sets tab, and click the Create Session button. The action buttons
are enabled, as shown in Figure 12-11.

3. Click + and select Value Set to add a value set to the dictionary.

4. Click + and select Range Value Set to create a range value set.

Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Value Sets
Tab

5. Click + to add values in the table. You can click in a row to make it editable.
Selected rows can also be deleted or moved up or down.

6. The Name, Description, and Data Type cannot be changed only for 'enum' type
value sets. They are editable otherwise.

7. The Include Disallowed Values in Tests controls whether cleared values from
the Values list are included in tests.

8. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.3 How to View and Edit Globals
When you open a dictionary Oracle SOA Composer displays the Globals tab. Globals
can be final or not and can be edited in SOA Composer.

For the Value field, you can use the expression builder to set the value. To check for
validity, you can click the Validate button.

To view globals in Oracle SOA Composer:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Globals tab, and click the Create Session button, as shown in
Figure 12-12.

Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Globals
Tab

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-13

3. Click + to add a Global. Enter a Name, Description, and Value.

4. Choose a Value Set and Type from the drop down.

5. Check the Final check box to indicate whether the global can be changed at
runtime.

6. Check the Constant check box to indicate if the global is a constant or can be
modified.

7. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.4 How to View and Edit Business Phrases
Use the Business Phrases tab to view and manage business phrases in your rules
project.

Note:

In SOA Composer, Verbal Rules and Business Phrases features do not
appear if you have not installed BPM.

To edit Business Phrase:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Business Phrases tab, and click the Create Session button. The action
buttons are enabled, as shown in Figure 12-13.

Figure 12-13 Using the Oracle SOA Composer Rules Dictionary Business Phrases Tab

3. Click the action buttons to add, cut, copy or paste.

To add a Business Phrase, enter the following details:

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-14

a. Phrase - A phrase can be a test or an action. It can be an English phrase, for
example, "calculate premium as {threshold} of {percentage}". You can mark
the phrase as a draft to edit later by selecting the Make Draft button.

b. Parameters - You can edit, add, or delete the parameters in the parameters
table. You can drag and drop parameters into the phrase field. You can also
use the Insert parameter link to drop parameters into the phrase.

c. Mapping - The mapping section is used to map the business phrase to the
internal test/action.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information about business phrases, see Introduction to Verbal Rules and
Business Phrases.

12.3.5 How to View and Edit Tests
At runtime, you can use SOA Composer to regression test rules. This enables
business users to quickly check if a modified rule changes the existing functionality.
The Tests tab only appears if you have a deployed composite and are in a SOA
Composer session.

To view and edit tests:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Tests tab, and click the Create Session button. The action buttons are
enabled, as shown in Figure 12-14.

Figure 12-14 Using the Oracle SOA Composer Rules Dictionary Tests Tab

3. You can create and run Test Suites and Test Templates.

For more information about testing and validating rules at runtime, see Testing
Rules in SOA Composer.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-15

12.3.6 How to View Explorer
To view the Explorer tab:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Explorer tab, as shown in Figure 12-15.

The Explorer tab is used to view the data, its type and description. You cannot
make any changes in the Explorer table.

Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Explorer
Tab

12.3.7 How to View and Edit Facts
To view and edit facts:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Facts tab, and click the Create Session button. The action buttons are
enabled. Only RL facts can be created in SOA Composer, as shown in
Figure 12-16.

Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Facts Tab

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-16

3. Select a fact and click the Edit Facts button to open the Edit Facts dialog. You
can edit RL and XML facts here, but Java and ADFBC facts are read-only.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.8 How to View Decision Functions
In Oracle SOA Composer, you can view the decision functions that are available to the
current dictionary by using the Decision Functions tab. Currently, even in a session,
you can only modify the following fields and options:

• Description

• Rule Firing Limit

• Check rule flow

• Make stateless

• Available Rulesets to fire

You cannot create any decision function, rename an existing decision function, or add
or delete any input or output.

To view decision function names in Oracle SOA Composer:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Decision Functions tab.

3. You can view information on the following tabs: Inputs, Initial Actions, Outputs,
and Rulesets Decision Functions as shown in Figure 12-17.

Figure 12-17 Viewing Decision Functions

12.3.9 How to View Linked Dictionary Names
In Oracle SOA Composer, you can view the names of the dictionaries to which the
current dictionary is linked by using the Links tab as shown in Figure 12-18. Currently,
even in a session, you can view the linked dictionary names, but you cannot link to a
dictionary or delete an existing link to any dictionary.

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-17

To view linked dictionary names in Oracle SOA Composer:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Links tab, as shown in Figure 12-18.

Figure 12-18 Viewing the Linked Dictionary Name

3. Select to Prefix Linked Names.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.10 How to Work With Dictionary Links in an Oracle Business
Rules Dictionary

An Oracle Business Rules dictionary can be linked to other dictionaries. The complete
data model defined by a dictionary and its linked dictionaries is called a combined
dictionary. You can create multiple links to the same dictionary. However, in this case,
all but the first link is ignored.

You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed
composite already has linked dictionaries, using Oracle SOA Composer, you can view
the linked dictionary names and make use of the Globals, Value Sets, and Rulesets of
the linked dictionaries across applications. For example, you have an application
called App1 that contains a dictionary called Dict1. Dict1 is linked to another
dictionary called Dict2. Because Dict1 is linked to Dict2, the objects of Dict2 will be
available for use in App1.

For more information on viewing linked dictionary names, see How to View Linked
Dictionary Names.

In Oracle SOA Composer, you can use the Prefix Linked Names check box in the
Links table to either display or hide the linked dictionary name that is prefixed to the all
the items in the dictionary such as Globals, Value Sets, and Rulesets. Selecting the
check box prefixes facts from the linked dictionary with its dictionary name, and
deselecting hides the linked dictionary facts prefix. By default, the Prefix Linked
Names check box is in selected state as shown in Figure 12-19.

Figure 12-19 Using the Links Tab

Chapter 12
Opening and Viewing an Oracle Business Rules Dictionary

12-18

For more information about linked dictionaries, see What You Need to Know About
Dictionary Linking.

12.3.11 How to View and Edit Translations
Use the Translations tab to view the phrases included in the selected dictionary and
their translated strings.

The translation table contains all translated strings in the current locale as well as
earlier locales. For example, the current locale is Japanese and you edit some
translations and save them. If you log out, and then log back in with a different locale,
for example, English, then the translation table will contain columns for both English
and Japanese.

To translate phrases:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Translations tab, as shown in Figure 12-20.

Figure 12-20 Using the Oracle SOA Composer Translations Tab

3. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.4 Getting Started with Editing a Dictionary
When you select and open a dictionary, Oracle SOA Composer shows the dictionary
in read-only mode. On each tab in read-only mode, use the Session buttons to make
changes and then Save them to a work area. To apply the changes to the runtime
version of the dictionary, click Publish.

For more information about how to use SOA Composer features, see Creating and
Publishing Sessions.

12.4.1 What You May Need to Know About Localized Number
Formatting Support in Oracle SOA Composer

In Oracle SOA Composer, number formatting changes based on the browser locale.
For example, you are using Oracle SOA Composer with U.S. English as the browser

Chapter 12
Getting Started with Editing a Dictionary

12-19

language. You enter a floating-point data, such as 34533223.2345, as a value. If you
wish to view the data in any other language, such as French, you need to:

1. Modify the browser locale for the instance to French.

2. Click the Refresh button of the browser to view the number formatting changes

In French, the value should display as 34533223,2345.

Note:

The grouping and decimal separators specified in Oracle SOA Composer
overrides the locale-specific ones.

12.4.2 What You May Need to Know About Cutting/Copying and
Pasting Rule Elements

You can cut/copy a value set or rule from one dictionary and open another dictionary
in composer and paste it. However, cut/copy/paste works between different
dictionaries within the same session.

Cutting/copying and pasting feature enables you to quickly create a new rule element
based on an existing one, without having to create the new element from scratch.

The buttons in the Figure 12-21 help you with cut, copy and paste options.

Figure 12-21 Cut, Copy and Paste Buttons

Oracle SOA Composer enables you to cut/copy and paste the following elements of a
rule:

• Rules

• Patterns

• Conditions

• Actions

• Value sets

Cut/copy/paste is not supported for the following:

• Globals

• Links

• Values

• Decision Functions

Chapter 12
Getting Started with Editing a Dictionary

12-20

Note:

The Paste button is disabled if multiple conditions or actions are selected.
The button is enabled only on single selected condition/action. When
pasting, the copied/cut items are added at the end of the list.

12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary
In Oracle SOA Composer, selecting the Globals tab shows you a table listing the
globals in the dictionary, as shown in Figure 12-22. To edit a global, select the
appropriate row, and the entire row becomes editable. Make necessary changes as
required.

Figure 12-22 List of Globals in the DIctionary

To add a global, click the Add Global button on the top. A new empty row is added.
Make necessary changes to Name, Description, Value, Value Set, Type, Final,
Consent. For more information on adding globals, see Working with Oracle Business
Rules Globals.

To delete a global, select a row and click the Delete button.

12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary
In Oracle SOA Composer, selecting the Value Sets tab displays a master list on the
left which displays the value sets in the dictionary, and a detail section with a table that
display the values. To edit a value set, click the appropriate Value Set in the master list
and then click the value in the detail section that you want to change.

You can create a Range Value Set by clicking the Add button and selecting a type.
This adds a new value set in the master list. Adding a range value automatically adds
an end point for a range and a value for an LOV based on the datatype. You can
modify the newly added value end point or value. Note that the alias is modified when
an end point or value is changed.

For more information on adding value sets, see Working with Value Sets and
Associating a Value Set with Business Terms.

To cut or copy a value set, select a row and click Cut or Copy. To paste a copied
value set, click Paste.

To delete a value set, select a row and click Delete.

Chapter 12
Getting Started with Editing a Dictionary

12-21

To edit Value Sets:

1. To edit either a Value Set or a Range Value Set, in Oracle SOA Composer select
the Value Sets tab. This displays both master and detail sections for the value
sets in the dictionary.

2. Select the appropriate Value Set from the master list. This displays the detail table,
as shown in Figure 12-23.

Figure 12-23 Editing Value Sets

3. Edit the appropriate fields in the table. You can click Add Value to add a value,
and also select a row and click Delete Value to delete a value.

4. To change the order of values in the value set, select a value and then click the up
or down arrow to move the selected value.

You can change the relative position of values in an LOV value set only; you
cannot reorder values in a Range value set.

Only when a value has the Allowed in Actions field selected does the value set
display in the condition cell drop down in a Decision Table.

5. Click Save Changes in Current Tab to confirm the changes.

Click Validate in the menu bar to validate the dictionary while making changes to
a Value Set.

12.4.5 How to Edit Decision Functions in an Oracle Business Rules
Dictionary

In Oracle SOA Composer, the Decision Functions tab displays a table listing the
decision functions that are available to the dictionary, both parent and linked.

You can only modify the following fields and options:

• Description

• Rule Firing Limit

• Check rule flow

• Make stateless

• Initial Actions

• Rulesets and Decision Functions

Chapter 12
Getting Started with Editing a Dictionary

12-22

To edit a decision function:

1. To edit a decision function, in Oracle SOA Composer, select the Decision
Functions tab. This displays a master list of decision functions on the left, and the
detail panel on the right.

2. Select the appropriate decision function on the left. This displays the Decision
Function Editor dialog box as shown in Figure 12-24.

Figure 12-24 Editing a Decision Function

3. In the Description field, optionally enter a description.

4. Enter the required number value from the Rule Firing Limit list. By default, the
selected value is unlimited. However, you can enter an integer value for the rule
firing limit and press the Tab key. The newly specified value gets added to the
Rule Firing Limit list.

5. Select the appropriate decision function options:

• Check rule flow: When selected, this option specifies that the rule flow is
checked

• Make stateless: When selected specifies the decision function is stateless.

You cannot edit the following:

• Name field

• Inputs tab

• Outputs tab

6. In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set
up" the environment for running rules. Initial Actions always run just before the
inputs are asserted and the rules are run. The RL for the actions will be executed
just before the inputs are asserted.

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset2 is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in

Chapter 12
Getting Started with Editing a Dictionary

12-23

the initial actions, you are calling DF2), you can use initial actions in DF1 to clear
the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling
DF2.

You can add any required action ranging from assert, call, modify to even
conditional actions such as if, else, elseif, while, for, if (advanced), and
while (advanced).

The if (advanced) and while (advanced) structs accepts only boolean values.
For each of the action conditions, you can add different test form types.

Note:

If decision function DF1 contains DF2 in the Rulesets & Decision
Functions tab, then DF2 may not have any initial actions.

7. In the Rulesets & Decision Functions tab, use the left and right arrow buttons to
move items from the Available box to the Selected box.

8. Select an item in the Selected box, and click up or down arrow buttons as
appropriate to order the rulesets and the decision functions.

9. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information on decision functions, see Working with Decision Functions.

12.4.6 What You May Need to Know About Oracle Business Rules
Dictionary Editor Declarative Component

You can use the Oracle Business Rules Dictionary Editor declarative component to
leverage the functionality of editing Rules Dictionaries in any ADF-based Web
application. It enables you to edit business rules metadata artifacts, such as Globals,
Value Sets, and Rulesets, by using the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Editor Declarative Component" in Developing SOA
Applications with Oracle SOA Suite.

12.4.7 What You May Need to Know About Oracle Business Rules
Dictionary Editor Task Flow

Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary
Editor declarative component is used in ADF-based Web applications that require a
task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor, see Using the
Oracle Business Rules Dictionary Task Flow in Developing SOA Applications with
Oracle SOA Suite.

Chapter 12
Getting Started with Editing a Dictionary

12-24

12.5 Editing Rules in an Oracle Business Rules Dictionary
SOA Composer provides an interface to the dictionary that enables you to edit most
dictionary components, though you can only create and edit some dictionary
components at design-time using the Rules Designer extension to Oracle JDeveloper.

In SOA Composer, Verbal Rules and Business Phrases features do not appear if you
have not installed BPM.

12.5.1 Using the Rulesets Tab
Use the Rulesets tab to view and edit Rulesets, and the General Rules, Verbal Rules
and Decision Tables they contain, in the currently selected Business Rules dictionary,
as shown in Figure 12-25.

Figure 12-25 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary

Table 12-3 Rulesets tab

Button Description

Rulesets drop down Click and select a ruleset from the list.

Advanced Property
Editor

Click to edit properties in the pop-up Advanced Property Editor.

Add Ruleset Click to add a Ruleset.

Delete Ruleset Click to delete a Ruleset.

In the Rules master list, you can enter an alias and search for rules. Click Clear to
clear the Search by Alias field. You can also sort rules--click the Sort Ascending or
Sort Descending arrows to sort the IF/THEN detail panel.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-25

Table 12-4 Rules master list buttons

Button Description

Add Click to add a new Decision Table, a Verbal Rule, or a General
Rule.

Delete Click to delete.

Cut, Copy, Paste Click to Cut, Copy, or Paste.

Click the Sort Ascending or Sort Descending arrows to sort the
IF/THEN detail panel. Click By Type and choose an option to
sort by any of these options: Type, Name, Active, Effective Start
or End Date, Priority.

Search by Alias Enter an alias name to search for rules by alias name.

 Clear
Click Clear to clear search results.

12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary
Oracle SOA Composer enables you to edit the rules in a dictionary.

To edit a rule with Oracle SOA Composer:

1. In Oracle SOA Composer, with an Oracle Business Rules dictionary open, click
the Rulesets tab.

2. Select the appropriate ruleset from the drop down and choose a rule from the list.
The rule appears in the detail panel.

Use the Add, Delete, Cut, Copy, and Paste buttons in the Rules toolbar to
modify the rule.

Note:

The Paste button is disabled if the selection is multiple. The button is
enabled only on single selected condition/action. When pasting, the
copied/cut items are added at the end of the list.

3. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.5.3 How to Add a Rule
In Oracle SOA Composer you can add rules to a ruleset.

To add a rule in a ruleset:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, click Add Rule and select to add either a Decision Table, Verbal
Rule, or General Rule.

3. In the IF area, enter search terms to get results and filter them further by pressing
the right arrow to create the condition.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-26

4. In the THEN area for the rule, click Add Action to add the required action for this
rule.

5. When done, click Save Changes in Current Tab.

6. If you are ready to apply the changes to the runtime version, click Publish.

12.5.4 How to Delete a Rule
In Oracle SOA Composer you can delete rules in a ruleset.

To delete a rule in a ruleset:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule detail area, locate the rule you want to delete and click Delete.

3. When done, click Save Changes in Current Tab.

4. If you are ready to apply the changes to the runtime version, click Publish.

12.5.5 How to Show and Edit Advanced Settings for Rules
In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For
more information on advanced settings, see Using Advanced Settings with Rules and
Decision Tables.

To show and edit advanced settings in a rule:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area and locate the rule you want to show or change advanced settings.
Expand the rule first, if necessary.

3. Click the Advanced Property Editor button next to the rule name. This displays
the advanced settings dialog, as shown in Figure 12-26.

Figure 12-26 Advanced Properties Editor Dialog

12.5.6 How to Add Rule Conditions
In Oracle SOA Composer you can add conditions to a rule in a ruleset. Conditions
within a rule use a tree representation. Use the toolbar at the top of the conditions tree
to add, delete, cut, copy and paste. Within the condition tree, you can select a parent
node and perform similar actions.

For more information on working with rule conditions, see Working with Rules.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-27

To add rule conditions:

If no condition is selected, the condition is added at the end. If a condition is selected,
a sibling to the selected condition is added.

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to add a condition.

3. Next to the existing rule condition, click the down arrow to display a list of options
available for adding a condition as shown in Figure 12-27.

Figure 12-27 Adding a Condition

If the rule where you want to add a condition does not contain any existing
condition, then you need to click the Add Test down arrow to display a list of
available options for adding a condition as shown in Figure 12-27.

The following are some of the available options for adding a condition:

• simple test: Adds a simple test condition

• variable: Adds a variable definition. The variable and its value can be represented
as an inline business term definition.

• (...): Adds a new simple test within a nested parenthesis

• not(...): Adds a new simple test within a NOT nested parenthesis

Each nesting level provides a list with the preceding options to operate on a nested
block.

For more information on tests, see How to Work with Extended Tests.

12.5.7 How to Delete Rule Conditions
In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more
information on working with rule conditions, see Working with Rules.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-28

To delete rule conditions:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete a condition.

3. Next to the rule condition that you want to delete, click the down arrow, and then
click Delete Test from the list.

A separate list is available for each nesting level. So the delete operation can be
performed on a single condition or a nested block.

12.5.8 How to Modify Rule Conditions
Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule
condition for nesting or modify expression values within the condition. For more
information on working with rule conditions, see Working with Rules.

To modify a condition in a rule:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area locate the rule where you want to modify conditions.

3. In the IF area, use the controls, buttons, and selection boxes, including the Left
Value expression button, list for an operator, and Right Value expression button
to modify the condition.

Filtering is supported for expressions. For example, when you type Employee,
values are filtered and the values with Employee are displayed in the drop-down.
Use mouse or arrow keys to select a value.

You can use the Expression Builder, Condition Browser, Date Browser, and Right
Operand Browser to edit the left and right-side expressions.

In addition to modifying the values, you can also change the form type of a condition.
For example, a simple test can be changed to variable definition and so on. To change
the form type of a condition, you need to select the condition by using the adjacent
check box and select the required form type from the Selected Tests list.

12.5.9 How to Add Rule Actions
In Oracle SOA Composer you can add actions to a rule. For more information on
working with rule actions, see Working with Rules.

To add rule actions:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area locate the rule where you want to add an action.

3. In the THEN area for the rule, next to the rule action click Add Action, as shown
in Figure 12-28.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-29

Figure 12-28 Rule Actions in a Ruleset

If the rule to which you want to add an action does not contain any existing action,
then you need to click the Add Action button in the THEN area.

12.5.10 How to Delete Rule Actions
In Oracle SOA Composer you can delete actions in a rule. For more information on
working with rule actions, see Working with Rules.

To delete rule actions:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete an action.

3. In the THEN area for the rule, select the action.

Click Delete Action.

12.5.11 How to Modify Rule Actions
In Oracle SOA Composer you can modify actions in a rule. For more information on
working with rule actions, see Working with Rules.

To modify rule actions:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to modify an action.

3. In the THEN area for the rule you can do the following:

• Add and delete actions using Add and Delete buttons on the top.

• Select the action and move it up and down using the respective arrow buttons.

• Cut, copy and paste using the Cut, Copy and Paste buttons on the top.

• Click the More link in the drop-down area to launch Select a Target popup and
select a value.

• Click the Edit Properties button next to the rule action and modify properties.

The Properties dialog box is displayed where you can modify the property details.

For more information on number formatting in rules, see What You May Need to Know
About Localized Number Formatting Support in Oracle SOA Composer.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-30

12.5.12 How to Work with Advanced Mode Rules
In Oracle SOA Composer, you can work with advanced mode rules in a ruleset.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create
any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and modify advanced mode rules:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to show or modify advanced mode
rules.

3. Click Advanced Property Editor button to show advanced settings. For more
information on showing advanced settings, see How to Show and Edit Advanced
Settings for Rules.

4. If the Advanced Mode check box is not selected, then select the Advanced
Mode check box. This shows the advanced mode rule options, as shown in
Figure 12-29.

Figure 12-29 Showing Advanced Mode Rule Options

12.5.12.1 Working with Advanced Mode Options
The Advanced Mode rules options enables you to create, modify, and delete patterns,
as well as add, modify, and delete conditions and actions within a pattern.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-31

Using the Advanced Mode rule options, you can:

• Specify a pattern variable and select a fact type for the variable: You can directly
enter the name of the pattern variable in the variable field. You can specify the fact
type for the variable by using the fact type list as shown in Figure 12-30.

Figure 12-30 Specifying Pattern Variable and Fact Type

In the graphic example, CustomerOrder is a pattern variable of CustomerOrder fact
type.

• Add a pattern: Click the Add Pattern button to create a pattern to the existing rule.
Figure 12-31 displays an added pattern. The newly created pattern is blank.

Figure 12-31 Adding a Pattern

• Delete a pattern: Click the Delete Pattern button to delete a pattern from a rule.

• Specify connectives: Two or more patterns are joined by a connective, and or or.
You can use the connective link to toggle between the connectives.

• Work with nested patterns: A nested pattern has patterns inside it. These are
enclosed within curly braces ({}). The pattern operator list is followed by the open
curly brace. You can create a nested pattern by clicking Surround pattern with

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-32

parentheses button and you can remove the pattern nesting by clicking the
Remove parentheses from pattern button as shown in Figure 12-32.

Figure 12-32 Adding and Removing Pattern Nesting

Inside the open curly brace, you can specify a pattern and then click the Add Test
down arrow to add conditions to the nested pattern as well as add another pattern
to the same pattern block.

A nested pattern block ends with a closing curly brace. You can have multiple
levels of nested patterns, which means that inside a nested pattern, you can have
another nested pattern. You can click the Delete Nested Pattern Block button to
remove the entire nested pattern block.

When you nest a pattern, an operator list is displayed with (for each case where)
selected as the default operator in the operator list. The other items are there is a
case where, there is no case where, and aggregate and so on.

The user interface remains the same as (for each case where) when you select
there is a case where or there is no case where as the operator. However,
when you select aggregate, the user interface changes. For an aggregate
operator, you must enter a variable in the available field and select a function from
the function list. The function list displays the following:

– count

– average

– maximum

– minimum

– sum

– collection

Except for the count function, all the other functions require an expression. You
can specify an expression in the available field or launch the Condition Browser
window.

In the Advanced Mode of rules, in the THEN part, you can add any required action
ranging from assert, call, modify to even conditional actions such as if, else,
elseif, while, for, if (advanced), and while (advanced.

12.5.13 How to Work with Extended Tests
Extended tests should be used when building complex rules. Extended tests, or
Simple Mode, replaces Advanced Mode rules.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-33

Note:

Advanced Mode capability has been maintained for backward compatibility
only.

Everything that can be done in Advanced Mode can now be done in Simple Mode. The
UI has been streamlined and improved to enable you to more easily create complex
rules and tests, as shown Figure 12-33

Figure 12-33 List of Extended Tests

Advanced mode rules can be converted to the equivalent simple mode rules by
clearing the Advanced Mode check box in the Advanced Property Editor.

Extended tests are only applicable to general rules, decision tables, and while defining
business phrases. They are not visible in verbal rules.

In addition to the original four tests (shown first in Table 12-5) there are new forms:

Table 12-5 Extended Tests

Forms Description

simple test This is the building block for conditions. Compares a value
against another value, range or set.

For example: Emp.salary > 1000

variable Initializes variables.

For example: age = Duration.years
between(Emp.birthdate,RL.date.get current())

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-34

Table 12-5 (Cont.) Extended Tests

Forms Description

nested test Encapsulates tests in a containing block.

For example: (age > 50 or Emp.salary > 50000)

negated test Negates a test.

For example: not(age > 50 and Emp.salary > 50000)

all of the following all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

any of the following some of the following are true.For example:

IF

 e is a Emp and there is no Emp where Emp.salary <
e.salary <insert test> <insert test>THEN assign
e.isLowestPaid = true

is a Defines a fact.

For example: e is a Emp

there is a case where This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding
of facts to contained is a tests.

Must have is a descendant.

Example:

There is a case where
e is a Emp and
d is a Dept and
e.salary > 1000000 and
d.name == "Marketing" and
d.employees contains e

there is a
<factType1>,...<factTypeN>
where#*

This test has N or more child
tests that are ANDed

Hidden <factType> is a <factType> tests as first N children.

The child tests are all true for at least 1 case.

It is legal to have no visible child tests, in which case the where
keyword should be suppressed.

Example:

IF
 there is a Emp, Dept where
 Emp.salary > 1000000 and
 Dept.name == "Marketing" and
 Dept.employees contains Emp
THEN
 call print "there is a highly paid marketer!"
IF
 there is a Emp
THEN
 call print "somebody works here!"

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-35

Table 12-5 (Cont.) Extended Tests

Forms Description

there is no case where This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to
contained is a tests satisfy all the other tests).

Must have is a descendant.

there is no
<factType1>,...,<factTypeN>
where

Hidden <factType> is a <factType> as first N children

The child tests are true for no case

aggregation This test has 0 or more child tests that are ANDed.

Must have is a child (may be hidden).

v is the sum|average|minimum|maximum|count|collection of
<expression> where

Where clause omitted when there are no visible child tests.

IF
 number of employees is the count of Emp
THEN
 call print "number of employees: " + number of
employees

IF
 number of male employees is the count of Emp where
 Emp.gender == "M"
THEN
 call print "number of male employees: " + number of
male employees

Note that in both rules above, the SDK will create a hidden
nested is a test for Emp.

You can also use an explicit is a

IF
 number of male employees is the count of e where
 e is Emp and
 e.gender == "M"
THEN
 call print "number of male employees: " + number of
male employees

boolean expression Captures a boolean expression.

For example: isEligible(Emp)

Figure Figure 12-34 shows an example of "there is a case where" form:

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-36

Figure 12-34 Extended Test Example 1

Figure Figure 12-35 shows an example of "there is no case where" form:

Figure 12-35 Extended Test Example 2

For information about how to build complex rules, see How to Add Rule Conditions.

For more information about Advanced Mode, see How to Work with Advanced Mode
Rules.

12.5.14 How to Work with Tree Mode Rules
In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more
information on working with tree mode rules, see Working with Tree Mode Rules.

To show and modify tree mode rules:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area locate the rule where you want to show or modify tree mode rules.

3. Select Advanced Property Editor button to show advanced settings.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-37

4. If the Tree Mode check box is not selected, then select the Tree Mode check box.
This shows the tree mode rule options, as shown in the ROOT area in
Figure 12-36.

Figure 12-36 Showing the Tree Mode Rule Area in a Rule

12.5.15 What You May Need to Know About Oracle Business Rules
Editor Declarative Component

You can use the Oracle Business Rules Editor composite declarative component to
leverage the functionality of editing business rules in any ADF-based Web application.
It enables you to edit business rules available in rulesets by using the Rules SDK2
API.

For more information on Oracle Business Rules Editor, see Using the Oracle Business
Rules Editor Declarative Component in Developing SOA Applications with Oracle SOA
Suite.

12.5.16 What You May Need to Know About Oracle Business Rules
Dictionary Editor Declarative Component

The Oracle Business Rules Dictionary Editor is a composite declarative component
that can be embedded in any ADF-based web application. It enables you to edit
business rules metadata artifacts, such as globals, value sets, and rulesets, by using
the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see Using the
Oracle Business Rules Dictionary Editor Declarative Component in Developing SOA
Applications with Oracle SOA Suite.

12.5.17 What You May Need to Know About Oracle Business Rules
Dictionary Editor Task Flow

The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web
applications that require a task flow instead of a declarative component.

Chapter 12
Editing Rules in an Oracle Business Rules Dictionary

12-38

For more information on Oracle Business Rules Dictionary Editor Task Flow, see
Using the Oracle Business Rules Dictionary Editor Task Flow in Developing SOA
Applications with Oracle SOA Suite.

12.6 Using the Oracle SOA Composer Browser Windows
Oracle SOA Composer provides browser windows that helps you to work with different
types of expressions such as rule expressions, XPATH expressions, date expressions,
and so on.

The different types of browsers provided by Oracle SOA Composer are:

• Expression Builder

• Condition Browser

• Date Browser

• Right Operand Browser

12.6.1 Expression Builder
Expression Builder is used to build different types of expressions such as XPATH
expressions, rule expressions, and so on.

Expression Builder has a field where you can enter the expression directly. It has four
tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data
in a tree structure. The Variables tab displays all the variables in the rules meta-data.
The Functions tab displays all the functions in the rules meta-data. The Operators tab
displays operators such as +, -, *, and so on. The Constants tab displays all the
constants that exist in the rules meta-data.You can switch between the tabs, select an
item in the tree, and click the Insert Into Expression button to insert the selected item
at the cursor position in the expression field. When an item is selected in the tree, the
Content Preview and the Description areas display more information about the
selected item. Once you create the expression and click OK, the newly created
expression appears in the field that is available to the left of the expression builder
button.

Figure 12-37 displays the Expression Builder browser.

Chapter 12
Using the Oracle SOA Composer Browser Windows

12-39

Figure 12-37 The Expression Builder Browser

12.6.2 Condition Browser
The Condition Browser has a field, a hierarchical tree, and an Expression Builder
embedded inside it. You can enter the expression directly in the field, or select an item
from the tree. Condition Browser supports filtering. For example, when you start
entering customer the tree is narrowed down to items with customer.

When an item is selected in the tree, the new selection appears in the field
immediately. You can also use the embedded Expression Builder to create an
expression.

Once the Expression Builder is launched and an expression is created, the new
expression appears in the Condition Browser field. Once you create an expression and
click the OK button in the Condition Browser, the newly created expression appears in
the field that is to the left of the Condition Browser button.

Figure 12-38 displays the Condition Browser.

Chapter 12
Using the Oracle SOA Composer Browser Windows

12-40

Figure 12-38 The Condition Browser

12.6.3 Date Browser
The Date Browser is used to select a Literal Date or a Date Expression. The Date
Browser has two options to switch between a Literal Date and a Date Expression.
When one option is selected, the other one is disabled.

Select:

• Literal Date option to enter a date using a Calendar pop-up.

• Date Expression option to enter the expression directly in the Date Expression
field or to launch the Condition Browser to select a date expression.

Figure 12-39 displays the Date Browser.

Figure 12-39 The Date Browser

12.6.4 Right Operand Browser
The Right Operand browser is used to select multiple right expressions. The browser
displays operands in each row. You can enter an expression directly in the operand
field or launch the Condition Browser to select an expression. The + button adds a row
after the current one. The - button deletes the current row. These buttons are enabled
and disabled based on the selected operator. For instance the in operator allows
multiple right expressions. So in this case, the buttons are enabled.

Figure 12-40 displays a Right Operand browser.

Chapter 12
Using the Oracle SOA Composer Browser Windows

12-41

Figure 12-40 The Right Operand Browser

Note:

Using Right Operand browsers, you can enter multiple values for the right-
side expression. However, you can place a Date browser outside a Right
Operand browser, and in which case, only one expression can be entered.
For both these browsers, you cannot enter values directly in the right-side
expression field. Once you have entered values using the browser and
clicked OK, the values get added as comma-separated values on the Rules
UI.

12.7 Editing Decision Tables in an Oracle Business Rules
Dictionary

When Oracle SOA Composer is in a session, you can edit, add, and delete a Decision
Table in a ruleset.

For more information on how to use sessions, see Creating and Publishing Sessions.

You can edit the description of a rule/condition or action within a decision table. If you
hover over a condition, a right arrow is used to select the condition. If you click on the
condition value, a pop-up appears where you can edit the description.

12.7.1 Adding a Decision Table
In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more
information on working with Decision Tables, see Introduction to Working with
Decision Tables.

To add a Decision Table in a ruleset:

1. In a session, select a ruleset of interest.

2. In the ruleset area, click Add and then Add Decision Table, as shown in
Figure 12-41. An empty Decision Table appears.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-42

Figure 12-41 Adding a Decision Table in a Ruleset

12.7.2 Adding Condition Rows to a Decision Table
Using Oracle SOA Composer, you can add condition rows to a Decision Table.

To add condition rows to a Decision Table:

1. In the Decision Table toolbar, from the list next to the Add button, select Add
Condition that displays the Condition Browser window where you can specify or
select conditions.

The selected or specified condition row and a Rules column with the header R1 is
added to the table; the cell below R1 has a "?" symbol (Figure 12-42). The "?"
symbol indicates that the cell does not have a value yet.

Figure 12-42 New Condition Row Added in a New Decision Table

If you are adding a condition to a table that has existing condition rows, similar to
adding a condition to a blank Decision Table, Oracle SOA Composer prompts for
specifying the condition details. Once the details are provided, the specified
condition is added as the last condition row; the condition cells under each rule
column in the new row also have "?" symbols.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-43

Figure 12-43 New Condition Row Added As Last Row in a Decision Table

For information about all symbols that might be used in a decision table, see
Editing Decision Table Cells.

2. If you want to edit a specified condition, in the Conditions area, click the condition
row, and then click the Edit Condition button on the toolbar. This displays the
Condition Browser.

3. Enter an expression by clicking in the Conditions Browser to select a variable, or
click the Expression Builder button to display the Expression Builder.

Expression Builder lets you build expressions.

4. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

If there is no global value set associated with the value, then after you add a
condition row to a Decision Table, you need to either specify an existing global
value set or create a Local List of Values or a Local List of Ranges value set.

To associate a value set for the condition, perform either of the following:

• In the Conditions area, select the condition, and select an existing value set
from the Select Value Set list.

• In the Conditions area, select the condition, and select either Local List of
Values or Local List of Ranges (as relevant) from the Select Value Set list.

You can edit the value set for the selected condition by clicking the Edit Value Set
button.

This displays the Value Set Editor where you can add, edit or delete values. If
editing a Local List of Values value set, you can also reorder values in the value
set.

For more information on number formatting in value sets, see What You May Need
to Know About Localized Number Formatting Support in Oracle SOA Composer.

5. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

For more information on adding condition rows, see How to Add Condition Rows to a
Decision Table.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-44

12.7.3 Adding Actions to a Decision Table
In Oracle SOA Composer, you can add actions to a Decision Table.

To add actions to Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table where you want to add actions.

2. From the list next to the Add button, select Add Action and select an available
action from the list. For example, click Modify as shown in Figure 12-44.

Figure 12-44 Adding Actions to a Decision Table

Table 5-1 in Working with Decision Tables, lists the available actions.

3. In the Action Editor window, select the action target and then specify values for an
action cell.

For more information on number formatting in value sets, see What You May Need
to Know About Localized Number Formatting Support in Oracle SOA Composer.

For more information on adding actions to Decision Tables, see How to Add Actions to
a Decision Table.

12.7.4 Adding Rules to a Decision Table
Using Oracle SOA Composer, you can add a rule to a Decision Table.

To add a rule to a Decision Table:

1. In a session, select a ruleset of interest, select the Decision Table where you want
to add the rule.

2. In the Rules master list, select the Decision Table where you want to add the rule.
Next to the Add button in the detail section, select Add Rule.

A new column for the added rule is displayed.

Notice that the new rule is added as the first rule of the Decision Table and the
other rules have moved as required to keep the values in their defined order. This
is because Order Rules By Bucket is enabled by default, which means rule

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-45

ordering in a Decision Table is set according to the relative position of values
associated with a condition expression. If Order Rules By Bucket is not enabled
when you add a rule, the new rule is added as the last rule of the Decision Table.
In either case, the cells in the new rule column have "?" symbols, indicating the
cells do not have values yet.

For information about all symbols used in a table, see Editing Decision Table
Cells. For additional information about rules ordering, see Controlling the Order of
Rules in a Decision Table.

3. Enter values for the condition cells by clicking the cells.

4. Click an Action row to enter values for the action cells.

Note:

If because of the inadequate column width, you cannot view the complete
contents of a cell in a Decision Table, you can roll your mouse pointer over
the cell to view the contents. Also, click the Maximize tabs section button in
the toolbar to increase the view.

12.7.4.1 Editing Decision Table Cells
Each rule in a Decision Table contains cells pertaining to three sections: Conditions,
Conflicts, and Actions.

Working with Condition Cells

In view mode, a condition cell with a "?" symbol indicates that the cell does not have a
condition value. If a cell has two or more values specified, a semicolon-separated list
of values is displayed in the cell.

In the editable mode the condition cells display specified condition values in
multichoice lists. When editing a new rule or when a condition value is unspecified, the
condition cell is blank.

If you select All:

• When the particular condition cell is clicked, the cell displays "All"

• When the particular condition cell is not selected, the cell displays the "-" symbol

You can select any value that is available in the condition value list.

Note:

When you edit the condition cells, if Order Rules By Bucket is selected, the
Decision Table is refreshed and the edited rule column may shift to the left or
right depending on the selected condition cell value. Click the Tools drop
down to select Order Rules By Bucket.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-46

Note:

You can modify the value set associated with a a condition, by clicking the
condition. This enables the value set list and the Edit Value Set button so
that you can edit the associated value set.

Working with Action Cells

When you add an action, an action row is created with the specified action type. There
are two types of action cells:

• The Action form cells contain check boxes. When a rule fires, only selected
actions are executed. In Figure 12-45, R1 and R3 action check boxes are selected
whereas the other action check boxes are cleared. In this case, if R1 fires, the
action will be executed, but if R2 fires, then the action will not be executed.

Note:

The Edit Action button is enabled only if the action form cell row is
selected. The Edit Action button invokes the Action Editor window.

• The Action parameter cells contain the parameters of the action form. You can
directly enter the action parameter values in the respective field or you can invoke
the Condition Browser window to select a value.

Figure 12-45 displays the Action Editor window where you can select the values for an
action parameter cell. If you select the Always Selected check box, all the check
boxes for the particular action form get selected. All the check boxes pertaining to the
action form are also disabled, because the specified action "is always selected".

Figure 12-45 The Action Editor Window

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-47

Note:

You can delete all the condition cells and all the action cells of a Decision
Table at one go. Clicking the Conditions or the Actions box selects all the
conditions or actions in the Decision Table respectively.

You can then click the Delete button on the Decision Table toolbar to delete
the conditions or actions.

12.7.4.2 Controlling the Order of Rules in a Decision Table
By default the Order Rules by Bucket check box is enabled in a Decision Table. This
means the order of the values in the value set associated with a condition row
determines the order of the condition cells, and thus the order of the rules. Click the
Tools drop down to select Order Rules By Bucket.

To change the order of rules in a Decision Table, you need to change the order of
values in the value set. For example, you can control rule ordering in a Decision Table
by changing the relative position of the values in an LOV value set associated with a
condition row. Note, however, that you cannot reorder range value sets.

When the Order Rules by Bucket check box is selected in a Decision Table and you
add a rule, by default the new rule is added as the first rule column; the other rule
columns move as required to keep the value set values in their defined order. When
the Order Rules by Bucket check box is not enabled and you add a rule, the new rule
is added as the last rule column. If you now select the Order Rules by Bucket check
box, the newly added rule shifts to the first column.

12.7.5 Deleting Rules in a Decision Table
You can delete one or multiple rules in a Decision Table.

To delete rules in a Decision Table:

1. Select the rules column that you want to delete.

If you want to delete more than one rule, press the Ctrl key, and by keeping the
key pressed, select the other rule columns

2. Click the Delete button.

12.7.6 Defining Tests in a Decision Table
In Oracle SOA Composer, you can define tests in a Decision Table by adding
conditions to facts. For more information about defining tests and working with rule
conditions, see Working with Rules.

Note:

To add more complex conditions to facts, see How to Work with Extended
Tests.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-48

To add tests to a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table where you want to add a test.

2. Click the Advanced Properties Editor button next to the Decision Table name. If
Advanced Mode is selected, clear the check box.

3. Click the Click to view tests and variables link under the Decision Table name.

4. Click the down arrow next to the Add button and select any of the options
according to your requirements.

5. Use the field controls or Left Value and Right Value buttons, and the operator list
to create the condition expression.

Note:

If a Decision Table already contains test conditions, you can add new
test conditions by clicking Add at the end of an existing condition and
selecting the required test form type.

12.7.7 Splitting and Compacting a Decision Table
You can modify the contents of a Decision Table to create a table that includes a
complete set of rules for all cases, or a table that provides the least number of rules for
the cases. The split and compact operations enables you to manipulate the contents in
a Decision Table.

The split table operation creates a rule for every combination of values across the
conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 = 4 rules
are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are
created. So, you only use split table when the number of rules created is small enough
that filling in the action cells is feasible.

Using Oracle SOA Composer, split can be applied to an entire Decision Table.
However, you cannot perform split operation on an individual condition row or cell.

To split or compact a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table that you want to split or compact.

2. Click the Split Table button or Compact Table button on the Tools drop down.

Using Oracle SOA Composer, you can compact a Decision Table by merging
conditions of rules with identical actions. So, compacting a table enables you to
remove conditions from a Decision Table. However, using Oracle SOA Composer, you
cannot merge two or more condition cells.

For more information on splitting and compacting Decision Tables, see Introduction to
Decision Table Operations.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-49

12.7.8 Checking for Missing Rules in a Decision Table
In a Decision Table, a missing rule is also called a "gap." A gap in a Decision Table
occurs when a rule does not cover some combinations of values, one from each
condition.

Using Oracle SOA Composer, you can check for missing rules in Decision Tables.

To check for missing rules:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table in which you want to check for missing rules.

2. Select Gap Analysis from the Tools drop down.

The Gap Analysis window is displayed as shown in Figure 12-46. You can select
the rules that need to be added to the Decision Table.

Figure 12-46 The Gap Analysis Window

For more information about checking for missing rules, see How to Perform Decision
Table Gap Checking.

12.7.9 Performing Conflict Resolution in Decision Tables
Rules in a Decision Table can conflict when they overlap and have different actions.
Two rules overlap when at least one of their condition cells has a value in common.
However, overlap without conflict is common and harmless. For more information
about conflicts in Decision Tables, see Understanding Decision Table Conflict
Analysis.

Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.

To perform conflict resolution in a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table on which you want to perform the Conflict
Resolution.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-50

2. Ensure that the Show Conflicts button is selected on the Tools drop down.

3. Click the Advanced Property Editor button next to the Decision Table name.

4. Ensure that Conflict Policy is set to Manual in the Advanced Settings area. This
is the default conflict policy.

Note:

For more information on conflict policies, see Understanding Decision
Table Conflict Analysis.

5. Select the Conflict row and then click the rule that has a conflict to display the
Conflict Resolution window.

6. In the Conflict Resolution window, for each conflicting rule, in the Resolution field
select a resolution from the list and click OK as shown in Figure 12-47.

Figure 12-47 Conflict Resolution Dialog

For more information about the conflict resolution options in Decision Tables, see
Understanding Decision Table Conflict Analysis.

12.7.10 Switching From Rows to Columns
In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by
clicking the Switch Rows to Columns link in the detail area. This enables the rules to
be displayed as rows, and the conditions, actions, and conflicts to be displayed as the
columns.

Switching rows to columns provides ease of navigation when a Decision Table has
many rules because you can see all the rules together and you do not need to "page
the columns" for viewing the rules.

Figure 12-48 displays a Decision Table before the switch operation.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-51

Figure 12-48 A Sample Decision Table

Figure 12-49 displays the sample Decision Table after switching the rows to columns.

Figure 12-49 Switching Rows to Columns

12.7.11 Working with Advanced Mode Options in a Decision Table
In Oracle SOA Composer, you can use advanced mode rules in a Decision Table just
like you can work with advanced mode rules in a ruleset. The Advanced Mode rules
options enable you to create, modify, and delete patterns, as well as add, modify, and
delete conditions and actions within a pattern.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-52

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create
any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and use advanced mode options:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab
and select the Decision Table on which you want to add more complex rules.

2. Click the Advanced Property Editor button next to the Decision Table name.

3. Select Advanced Mode.

The advanced mode options in a Decision Table are similar to the advanced mode
options in a ruleset. For more information, see Working with Advanced Mode
Options.

12.7.12 Deleting a Decision Table
In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more
information on working with Decision Tables, see Introduction to Working with
Decision Tables.

To delete a decision table in a ruleset:

1. In a session, select a ruleset of interest.

2. In the Rules master list, click the Decision Table you want to delete.

3. Click Delete.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.7.13 Editing Decision Tables in Microsoft Excel
Business users may find that editing Decision Tables is easier to do in Microsoft Excel.
New functionality enables both developers and business users to export and edit
Decision Tables in Excel and then import the Decision Tables back into the dictionary.

When exporting Decision Tables in Microsoft Excel, only basic Action types such as
Assert New, Modify, Assign, Retract, and Call are supported.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or
Business Process Composer. At runtime, you can export and edit in SOA Composer.
You can export one or more Decision Tables from a Rule dictionary to the same Excel
workbook.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-53

When you import back into the dictionary, you can create a new dictionary, overwrite
the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to
compare dictionaries.

For more information about comparing dictionaries, see Comparing and Merging
Oracle Business Rules Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a
Value Set sheet, and one sheet for each exported Decision Table, as shown in
Figure 12-50. Only Rules and Value Sets can be edited in Excel. You can export
to .xlsm (default) or .xls.

Figure 12-50 Excel Workbook

When you open the spreadsheet, the macros are disabled by default. If you enable the
macros, a new tab called Oracle Business Rules, appears. This tab enables you to
add or delete rules, merge or split cells, and add or remove values from value sets.
You can also disable or enable highlighting, use a simple or advanced mode and hide
or show the Readme sheet.

You can edit with the macros disabled, though you will not be able to:

• Choose values from drop lists for restricted cells.

• Edit free form cells.

• Copy and paste a range of cells to add a rule or Value Set.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-54

• Delete a range of cells to delete a rule or Value Set.

• Split or merge cells.

• Create Value Sets automatically.

• Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:

• Add and delete rules.

• Split or merge cells.

• Add or delete Value Sets.

• Editable cells include:

– Description for Rules, Conditions, Actions.

– Condition and Action nodes.

– Action state.

– Parameterized options for Action parameters.

• Non-editable cells include:

– Condition expressions.

– Action expressions.

– Action parameters.

If you try to edit these cells, you will get an error message, as shown in
Figure 12-51.

Figure 12-51 Non Modifiable Cell

12.7.13.1 Understanding What is Exported
In the SDK, there are shared Value Sets that can be associated with multiple
conditions across Decision Tables. However, in Excel there are no shared Value
Sets--each condition has its own Value Set--so you can only export a Value Set if it is
modifiable in Excel. The Value Sets that are non-modifiable include:

• Linked Dictionary Value Sets.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-55

• Enums.

• Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions
associated with non-modifiable Value Sets. A highlighting mechanism informs you
which conditions are associated with non-modifiable Value Sets.

12.7.13.2 How to Export Decision Tables
The export functionality is invoked by using the Export to Excel button in the toolbar
options, as shown in Figure 12-52.

Figure 12-52 Actions Toolbar

To export to Excel:

1. In SOA Composer, in a session, click Actions, Export to Excel.

2. In the Export Decision Tables dialog box, select the Format and browse to the
folder where you want to save the worksheet.

3. Select the Decision Table to export and click OK.

4. Check the Read Only Value Set check box to make all of the value sets read-only
in Excel. There will not be any Value Sets sheet in the Excel workbook. All
conditions will have drop down menus from which values can be selected but no
values can be added or removed.

5. Click Export. You can now open the worksheet and edit the Decision Table.

12.7.13.3 How to Import Decision Tables to the Dictionary
You can only import Excel spreadsheets that have been previously exported.

To import edited Decision Tables back to the Dictionary:

1. In Rules Designer, click Actions, Import from Excel.

2. In the Import Decision Tables dialog box, click Browse to browse to the folder
where you saved the worksheet.

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-56

3. The Diff-Merge check box is selected by default. For more information about
using the Diff-Merge, see Comparing and Merging Oracle Business Rules
Dictionaries. Select Create New or Overwrite depending on your requirements.

4. Click Import. The decision table is imported into Rules Designer, where you can
accept or reject changes. Each changed artifact is flagged with a change icon.

Note:

Merges should be done with caution. See Comparing and Merging Oracle
Business Rules Dictionaries

12.7.13.4 How to Edit Decision Tables in Excel
In Excel, enable the macros to view the Oracle Business Rules tab, which provides
you with options to author rules, edit Value Sets, and set preferences.

For more information, see Editing Decision Tables in Microsoft Excel.

12.7.14 What You Need to Know About Rule Test Variables
Oracle SOA Composer enables you to define test variables that provide a way to
shorten lengthy expressions that occur in rule and decision table conditions and
actions. The variable and its value can be represented as an inline business term
definition. The test variables are also called inline aliases.

So, instead of writing:

You can write:

In subsequent test conditions, you can use foo as part of your expressions. The
expression can be anything from a simple to a complex expression.

To define a variable, in the IF section of a rule, you need to click the down arrow
adjacent to Add Test, and select variable from the list.

Apart from variables, you can also define other test form types, such as simple test,
nested tests ((...)), and not nested tests (not (...)).

Chapter 12
Editing Decision Tables in an Oracle Business Rules Dictionary

12-57

12.8 Comparing and Merging Oracle Business Rules
Dictionaries

The Diff Merge feature enables you to review any differences in the latest revision of a
dictionary against a previous revision and be able to save or roll back any changes
since then. At runtime, in SOA Composer, you can use the Diff Merge feature to
compare the File-System, Published Version, or the Saved Version to the dictionary
that you have open.

SOA Composer only supports the compare of the edited version with one prior saved
version and the ability to select items that have changed since the saved version and
to revert them back to their saved values. The differences are viewed from the
perspective of the latest revision.

The Merge feature enables you to review any differences between the two versions
and be able to resolve or merge the differences among them. The differences are
viewed from the perspective of the changed versions.

The Diff Dictionary option is available in the Rules Designer toolbar, as shown in
Figure 12-53.

Figure 12-53 Actions Drop Down List

WARNING:

Before you decide to run this feature, you must be ready to resolve all
changes because the dictionary becomes read-only when in diff or merge
mode.

Merging dictionaries should be done with care.

Chapter 12
Comparing and Merging Oracle Business Rules Dictionaries

12-58

12.8.1 How to see Differences Between Dictionaries
When you want to compare dictionaries, you have the newer dictionary opened and
then use the Diff Merge to select the dictionary to compare with. Anything missing from
the newer dictionary is flagged as a deletion from the newer version.

To see differences between dictionaries:

1. In SOA Composer, with the newer dictionary open, click Actions, Diff Merge.

The Dictionary version dialog appears, as shown in Figure 12-54.

Figure 12-54 Dictionary Version dialog

2. In the Select Dictionary field, select one of the Dictionary version to compare.

• File-System - File-system version give users an option to compare the rules
file available on the local file system against the rules file of the composite
deployed on the server.

• Published Version - Published version is the composite versions which
changes when versions change.

• Saved Version - Saved version is the composite version which changes when
versions change.

3. Click OK to open the dictionary that you want to compare with.

All differences between the two dictionaries are flagged with change icons.

The change icons are shown for all tabs and for the specific artifacts within each
tab. An example is shown in Figure 12-55.

Figure 12-55 Merging or Reverting Changes

4. Click Keep to retain the changes or select Revert to discard the changes made.

You may click each tab and decide to keep or revert the changes.

5. Alternatively, you can choose to Accept All or Reject All in the Actions drop
down list to accept or reject all the changes on one click.

Chapter 12
Comparing and Merging Oracle Business Rules Dictionaries

12-59

Figure 12-56 Accept All or Reject All from the Actions Drop Down

The Diff Merge feature is more fully functional in JDeveloper Rules Designer. For more
information, see How to Compare or Merge Two or More Dictionaries.

12.9 Localizing Names of Resources in Oracle Business
Rules

Oracle BPM allows you to localize the names of some rules components.

Providing a translated version of these aliases enables users to view these aliases
based on the local setting of their browser when using the following applications:

• Oracle SOA Composer

• Oracle Business Process Composer

• Oracle Process Workspace

Note:

Locale dictionaries are stored as resource bundles. You must create the
resource bundle using Oracle JDeveloper. They must be deployed as part of
the SOA composite application.

Resource bundles cannot be created using Oracle SOA Composer.
However, you can use Oracle SOA Composer to edit the localized strings
within a resource bundle.

Oracle SOA Composer enables you to localize the aliases of the following rules
components.

• Values

• Value Sets

• Decision Functions

• Decision Function Facts

• Globals

Chapter 12
Localizing Names of Resources in Oracle Business Rules

12-60

• Links

• Rulesets

• Rules

• Patterns

12.9.1 How to Localize the Alias of a Oracle Business Rules
Component

Using Oracle SOA Composer, in a session, you can add translated versions of the
aliases and their descriptions used to identify rules components.

To localize the alias of a rules component:

1. In Oracle SOA Composer, select the Translations tab. The Translations tab
displays a table with multiple columns. By default, there are two columns one
displaying the untranslated identifier of the rules component. The other displays
the English locale.

If you have defined other locales in your application, these also appear as columns
in this table. See Localizing Oracle Business Rule Resources. for more
information.

2. In the column of the locale you want to edit, double-click in cell corresponding to
the alias you want to translate.

3. Enter the localized text for the alias.

4. Repeat steps 2 and 3 to localize all the aliases required for the locale.

Note:

Offline editing of locale files is not supported. When a locale is added, the
xml file generated does not contain all the keys by default. They are added
when a value is added.

You can also localize from the editor. To localize from the editor click the Translations
button.

The Translations Editor enables you to appears enter the Alias for the rule
components and click OK.

12.10 Synchronizing Rules Dictionary in Oracle JDeveloper
With Runtime Dictionary Updates

Oracle SOA Composer enables you to update rules dictionaries at runtime. However,
the modifications made to the dictionaries through Oracle SOA Composer are not
automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates
made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper,
you must select the Export option in Oracle Enterprise Manager Fusion Middleware

Chapter 12
Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

12-61

Control Console. This utility allows you to export the SOA composite application along
with the dictionary.

To select the Export option in Fusion Middleware Control Console:

1. In Fusion Middleware Control Console, select the composite that contains the
dictionary to be exported.

2. Click SOA Composite drop-down list on the right panel and select Export as
shown in Figure 12-57.

Figure 12-57 Selecting the Export Utility

3. Select Option 1: Export with all post-deploy changes from the Export
Composite page and click Export as shown in Figure 12-58.

Figure 12-58 Exporting All Postdeployment Changes

Chapter 12
Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

12-62

12.11 Validating and Diagnosing an Oracle Business Rules
Dictionary

In Oracle SOA Composer, in a session, you use the bottom tabs to check diagnostics
and validate a dictionary for errors. The diagnostics tab is populated after you publish
a session.

During the publish of the session, if another user has made any changes to the same
artifact (like a dictionary) it will be listed in this section. You then have three options to
handle any conflicts.

12.11.1 Understanding the Validation Log Tab
The Validation Log tab lists all the dictionary-level validation errors.

The Validation Log does not get updated automatically. The validation is only run if
you click Validate and when you save any changes.

For example, when a new rule is added with errors, the Validation Log tab is not
updated automatically. Click the Validate button on the toolbar to update the
Validation Log with the new error entries.

12.11.2 Understanding the Diagnostics Tab
Use the Diagnostics tab see if other users are modifying the same artifacts and
resolve those conflicts, as shown in Figure 12-59.

Figure 12-59 Diagnostics Tab

To resolve changes made by you or other users:

1. For each item in the table, use the Resolution drop down to Ignore, Adopt, or
Overwrite changes.

2. Adopt will try to merge changes.

3. Ignore means your changes will be discarded.

4. Overwrite means that your changes will be made, other users changes will be
discarded.

5. Click Publish when done.

Chapter 12
Validating and Diagnosing an Oracle Business Rules Dictionary

12-63

12.11.3 Understanding the History Center Tab
The History Center tab displays any pending changes that you or other users have
made in a currently active session. You can discard changes from here, for example, if
you want to quickly undo all changes you have made all at once.

12.11.4 Understanding the Save Log Tab
The Save Log tab is updated whenever you save. It adds an entry to the save log if it
succeeds. It it fails it will show the error message here.

12.12 Working with Tasks
Using Oracle SOA Composer, you can view and edit tasks that may be or may not be
associated to Approval Management Extensions (AMX) rules. AMX enables you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.

Additionally, AMX lets you define multi-stage approvals with associated list builders
based on supervisor or position hierarchies. At design time, you can define the
approval task in the Human Task Editor of Oracle JDeveloper, and associate the task
with a BPEL process. For more information about approval management and tasks,
see Using Approval Management in Developing Business Processes with Oracle
Business Process Management Studio.

In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can
view and perform all the task metadata lifecycle operations.

12.12.1 How to View Task Metadata
To view task metadata:

1. In Oracle SOA Composer, to open a task or an AMX rules metadata artifact, from
the Types View, expand the Human Tasks folder, and click an artifact to open it
in a new tab, as shown in Figure 12-60.

Chapter 12
Working with Tasks

12-64

Figure 12-60 Opening a Task

2. If you want to make changes, click Edit Session. When you are ready to apply the
changes to the runtime version, click Publish.

For more information about how to use the session buttons, see Creating and
Publishing Sessions

You can differentiate between traditional rules and AMX rules depending on the
naming convention.

For example, a composite may have the following artifacts:

• <AMX task name>.tsk

• <AMX rule name>Rules.rules

12.12.2 How to Configure a Task or an AMX Rule Metadata
Task Configuration enables business users and administrators to review the rules that
were configured automatically by the workflow designer. These predefined rules can
be changed for a specific customer based on the customer's applicable corporate
policies.

In Oracle SOA Composer, Task Configuration enables you to edit the event-driven
(only tasks) and data-driven rules (tasks with an associated AMX rules) associated
with an approval flow at runtime.

Chapter 12
Working with Tasks

12-65

Figure 12-61 Configuring Tasks

12.12.2.1 Configuring Event-Driven Settings

To configure event-driven settings:

1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit Session on the Oracle SOA Composer menu bar to open the selected
task for editing as shown in Figure 12-62.

Figure 12-62 Opening a Task for Editing

3. Make the relevant edits and click Save Changes in Current Tab When you are
ready to apply the changes to the runtime version, click Publish.

You can configure the following options and settings:

• Task aggregation

• Error notification

• Assignment and routing policy

• Expiration and escalation policy

• Notification settings

Chapter 12
Working with Tasks

12-66

• Task access settings

Setting Approval Aggregation Requirements
Task aggregation requirements can be any of the following:

• None

• Once per task

• Once per stage

Notifying Errors
You can specify the user and group names that need to be notified in case of an error
in the task. You need to click the On Error Notify search button to display the
Configure Error Assignees dialog box where you can specify the user or group names.

Setting Assignment and Routing Policy
You can set the assignment and routing policy by using the options available in Oracle
SOA Composer. Click to select the available options for setting assignment and
routing policy.

For more information about the assignment and routing options available in event-
driven configuration, see Routing Policy Method in Developing SOA Applications with
Oracle SOA Suite.

Setting Expiration and Escalation Policy
You can set the expiration and escalation policy for the task by using the available
items in the Expiration and Escalation Policy list. The available list items are:

• Never Expire

• Expire After

• Escalate After

• Renew After

Configuring Notification Settings
You can configure notification settings for a task by using the options available in the
Notification Settings section of Oracle SOA Composer.

Figure 12-63 displays the different options available to configure notification settings
for a task.

Chapter 12
Working with Tasks

12-67

Figure 12-63 Specifying Notification Settings

Configuring Task Access Settings
You can set access-rule settings to control the actions a user can perform. You can
also specify content and action permissions based on the logical role of a user, such
as creator (initiator), owner, assignee, and reviewers.

In Oracle SOA Composer, you can set access settings by using the options available
under Task Access area and tabs, as shown in Figure 12-64 and Figure 12-65.

Figure 12-64 Specifying Task Access Settings

Chapter 12
Working with Tasks

12-68

Figure 12-65 Specifying Task Actions Settings

For more information on configuring task access, see How to Define Security Access
Rules in Developing Business Processes with Oracle Business Process Management
Studio.

12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

To configure data-driven settings:

1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit Session on the Oracle SOA Composer menu bar to open the selected
AMX rule-associated task for editing as shown in Figure 12-66.

Figure 12-66 Editing a Rule-Associated Task

Chapter 12
Working with Tasks

12-69

3. Make the relevant edits and click Save Changes in Current Tab. If you are ready
to apply the changes to the runtime version, click Publish.

You can perform the following actions:

• Adding, updating, and deleting a rule

• Changing rule assertions (which depend on the type of list builder for which the
rule has been configured)

• Adding a variable

For more information about editing data-driven settings, see How to Edit Data-Driven
Settings in Managing and Monitoring Processes with Oracle Business Process
Management.

Chapter 12
Working with Tasks

12-70

Appendices

This part contain appendices that describe the Oracle Business Rules files and
limitations, built-in classes and functions, and how to troubleshoot Oracle Business
Rules.

This part contains the following appendices:

• Oracle Business Rules Built-in Classes and Functions

• Working with Oracle Business Rules and JSR-94 Execution Sets

• Oracle Business Rules Frequently Asked Questions

• Oracle Business Rules Files and Limitations

• Working with Oracle Business Rules and JSR-94 Execution Sets

A
Oracle Business Rules Files and
Limitations

List of known naming constraints for Rules Designer files and names, and certain
Rules SDK limitations.

• Rules Designer Naming Conventions

A.1 Rules Designer Naming Conventions
This section covers Rules Designer naming conventions.

Some of the naming conventions are for ruleset, dictionary, alias, and, XML schema
target packaging naming.

A.1.1 Ruleset Naming
Rules Designer enforces a limitation for ruleset names; a ruleset name must start with
a letter and contain only letters, numbers, or the following characters: ".", "-", "_","",
":", "/", and single spaces. Letters include the characters (a to z and A to Z) and
numbers (0 to 9).

A.1.2 Dictionary Naming
Rules Designer dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to Z), numbers (0 to 9), and the underscore (_). Special
characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For
example, the dictionary names Dictionary and DICT are both valid. If you create a
dictionary named Test, then you can create another dictionary named TEST only if you
first delete the dictionary named Test.

A.1.3 Alias Naming
Rules Designer alias names must begin with a letter and contain only letters, numbers,
".", "-", "_","", ":", "/", and single spaces.

A.1.4 XML Schema Target Package Naming
The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

A-1

B
Oracle Business Rules Built-in Classes and
Functions

Get the extensive library of Oracle Business Rules (OBR) built-in classes, methods,
and functions that help reasoning about data containing text strings, lists, numbers,
dates, times, and so on.

In the following sections, there are multiple tables whose each row has a Kind column
that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method,
Property, or static Property (Java static final field) respectively). The first row in each
table specifies the class. When the Java Name is the same as the OBR Name (the
rule SDK terms it the Alias), a '-' is displayed. The Signature column provides type
information for methods, functions, and properties. The signature of a property is
actually the type, for example BigDecimal. The signature of a method or function is of
the form return(arg1,arg2,...), where return is the return type and arg1,arg2,...
are the argument types.

• String Classes

• List Classes

• Numeric Classes

• Time and Duration Classes

• Miscellaneous Classes

• Functions

B.1 String Classes
This section covers the String-related classes provided by Oracle Business Rules.

Table Table B-1 lists the String class.

Table B-1 Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference

String Cl - java.lang.String Java immutable
character strings.
Beware, Java uses
0-based indexing
for characters in
strings, and XML
uses 1-based
indexing

http://
java.sun.com/
javase/6/
docs/api/java/
lang/String.html

B-1

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Table B-1 (Cont.) Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference

charAt S char(int) - Returns the char
value at 0-based
index arg1.
"Oracle".charAt(2)=
='a'.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#char
At%28int%29

compareTo M int(String) - Returns the value 0
if the argument
string is equal to this
string; a value less
than 0 if this string is
lexicographically
less than the string
argument; and a
value greater than 0
if this string is
lexicographically
greater than the
string argument.
"a".compareTo("b")<
0.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#comp
areTo
%28java.lang.Str
ing%29

contains M boolean(String) - Tests whether this
string contains arg1.
"Oracle".contains("r
ac")==true.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#cont
ains
%28java.lang.Cha
rSequence%29

endsWith M boolean(String) - Tests whether this
string ends with
arg1.
"Oracle".endsWith("l
e")==true.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#ends
With
%28java.lang.Str
ing%29

equalsIgnoreC
ase

M boolean(String) - Tests whether this
string equals arg1,
ignoring case
consideration.
"Oracle".equalsIgno
reCase("oRaClE")=
=true.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#equa
lsIgnoreCase
%28java.lang.Str
ing%29

B-2

http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29

Table B-1 (Cont.) Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference

indexOf M int(String,int) - Returns the 0-based
index of the start of
arg1 within this
String, but not
before the 0-based
index arg2.
"banana".indexOf("a
n",2)==3.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#inde
xOf
%28java.lang.Str
ing,%20int%29

lastIndexOf M int(String,int) - Returns the 0-based
index within this
string of the last
occurrence of arg1,
searching backward
starting at the index
arg2.
"banana".lastIndexO
f("an","banana".leng
th())==3.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#last
IndexOf
%28java.lang.Str
ing,%20int%29

length M int - Returns the length
of this string.
"Oracle".length()==6
.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#leng
th%28%29

matches M boolean(String) - Tests if this string
matches the given
regular expression.
"banana".matches("
^b.*a$")==true.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#matc
hes
%28java.lang.Str
ing%29

replaceAll M String(String,St
ring)

- Replaces each
substring of this
string that matches
arg1 (a regular
expression) with
arg2.
"banana".replaceAll(
".a","xo")=="xoxoxo"
.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#repl
aceAll
%28java.lang.Str
ing,
%20java.lang.Str
ing%29

B-3

http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29

Table B-1 (Cont.) Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference

replaceFirst M String(String,St
ring)

- Replaces first
substring of this
string that matches
arg1 (a regular
expression) with
arg2.
"banana".replaceFir
st(".a","xo")=="xona
na".

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#repl
aceFirst
%28java.lang.Str
ing,
%20java.lang.Str
ing%29

startsWith M boolean(String) - Tests whether this
string starts with
arg1.
"Oracle".startsWith("
Or")==true.

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#star
tsWith
%28java.lang.Str
ing%29

substring M String(int,int) - Returns the
substring of this
string, starting with
the 0-based index
arg1, and ending
before the 0-based
index arg2.
"Oracle".substring(1
,4)=="rac".

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#subs
tring%28int,
%20int%29

toLowerCase M String() - Converts this string
to lower case.
"Oracle".toLowerCa
se()=="oracle".

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#toLo
werCase%28%29

toUpperCase M String() - Converts this string
to upper case.
"Oracle".toUpperCa
se()=="ORACLE".

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#toUp
perCase%28%29

trim M String() - Removes leading
and trailing
whitespace. "
Oracle
".trim()=="Oracle".

http://
java.sun.com/
javase/6/
docs/api/java/
lang/
String.html#trim
%28%29

B-4

http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29

Table B-2 lists the RL class strings methods.

Table B-2 RL class strings methods

OBR Name Kind Signature Java Name Description Reference

RL Cl - oracle.rules
.rl.extensio
ns.RL

Supplement
standard Java
classes with W3C
RIF functionality.

http://www.w3.org/TR/rif-dtb/

string.join sM String(String..
.)

stringJoin Concatenates first
n-1 args using the
last arg as a
separator.
RL.string.join("a","
b","c","#")=="a#b#
c".

http://www.w3.org/TR/rif-dtb/
#func:string-join

string.substrin
g

sM String(String,i
nt,int)

substring Returns the
substring of arg1,
beginning at the 1-
based index arg2,
and continuing for
arg3 characters.
RL.string.substrin
g("Oracle",
2,3)=="rac".

http://www.w3.org/TR/rif-dtb/
#func:substring

string.suffix sM String(String,i
nt)

substring Returns the suffix
of arg1, beginning
at the 1-based
index arg2.
RL.string.suffix("Or
acle",5)=="le".

http://www.w3.org/TR/rif-dtb/
#func:substring

string.substrin
g before

sM String(String,
String)

substringBef
ore

Returns the
substring of arg1
that occurs before
arg2.
RL.string.substring
before("Oracle","a
c")=="Or".

http://www.w3.org/TR/rif-dtb/
#func:substring-before

string.substrin
g after

sM String(String,
String)

substringAft
er

Returns the
substring of arg1
that occurs after
arg2.
RL.string.substring
after("Oracle","ac"
)=="le".

http://www.w3.org/TR/rif-dtb/
#func:substring-after

string.iri.encod
e path

sM String(String) encodeForU
RI

Encodes
characters not
permitted in an
URI path.
RL.string.iri
encode
path("Oracle
Business
Rules")=="Oracle
%20Business
%20Rules".

http://www.w3.org/TR/rif-dtb/
#func:encode-for-uri

B-5

http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-dtb/#func:string-join
http://www.w3.org/TR/rif-dtb/#func:string-join
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring-before
http://www.w3.org/TR/rif-dtb/#func:substring-before
http://www.w3.org/TR/rif-dtb/#func:substring-after
http://www.w3.org/TR/rif-dtb/#func:substring-after
http://www.w3.org/TR/rif-dtb/#func:encode-for-uri
http://www.w3.org/TR/rif-dtb/#func:encode-for-uri

Table B-2 (Cont.) RL class strings methods

OBR Name Kind Signature Java Name Description Reference

string.iri.to uri sM String(String) iriToUri Encodes some
characters not
permitted in a URI.
RL.string.iri to
uri("http://
www.example.com
/~bébé")=="http://
www.example.com
/~b%C3%A9b
%C3%A9"

http://www.w3.org/TR/rif-dtb/
#func:iri-to-uri

string.iri.to
ascii

sM String(String) escapeHtml
Uri

Encodes non-ascii
characters.
RL.string.iri to
ascii("javascript:if
(navigator.browser
Language == 'fr')
window.open('http:
//
www.example.com
/
~bébé');")=="javas
cript:if
(navigator.browser
Language == 'fr')
window.open('http:
//
www.example.com
/~b%C3%A9b
%C3%A9');"

http://www.w3.org/TR/rif-dtb/
#func:escape-html-uri

string.is
normalized

sM boolean(Strin
g)

isNormalize
dString

A normalized
string does not
contain the
carriage return
(#xD), line feed
(#xA) nor tab (#x9)
characters.
RL.string.is
normalized("
Business Rules
")==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

string.is token sM boolean(Strin
g)

isToken A token is a
normalized string
with no leading or
trailing spaces,
and no double
spaces.
RL.string.is
token("Business
Rules")==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

B-6

http://www.w3.org/TR/rif-dtb/#func:iri-to-uri
http://www.w3.org/TR/rif-dtb/#func:iri-to-uri
http://www.w3.org/TR/rif-dtb/#func:escape-html-uri
http://www.w3.org/TR/rif-dtb/#func:escape-html-uri
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-2 (Cont.) RL class strings methods

OBR Name Kind Signature Java Name Description Reference

string.is
language

sM boolean(Strin
g)

isLanguage A language
identifier.
RL.string.is
language("en")==tr
ue.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

string.is Name sM boolean(Strin
g)

isName A name is a token
with no spaces
(and some other
constraints on its
characters).
RL.string.is
Name("xs:Name"
)==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

string.is
NCName

sM boolean(Strin
g)

isNCName A non-colonized
name. RL.string.is
NCName("xs:NCN
ame")==false.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

string.is
NMTOKEN

sM boolean(Strin
g)

isNMTOKE
N

An NMTOKEN is a
Name with no
restriction on the
initial character.
RL.string.is
NMTOKEN("-
Oracle")==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

string.compar
e

sM int(String,Stri
ng)

compare Returns -1, 0, or 1
if arg1<arg2,
arg1==arg2, or
arg1>arg2,
respectively.
RL.string.compar
e("foo","bar")==1.

http://www.w3.org/TR/rif-dtb/
#func:compare_.
28adapted_from_fn:compare.29

B.2 List Classes
This section covers the List classes provided by Oracle Business Rules.

Table Table B-3 lists the List class.

Table B-3 Table lists the List class

OBR Name Kind Signature Java Name Description Reference

List Cl - java.util.Lis
t

Represents mutable and
immutable lists. Lists use 0-
based indexes. Attempts to
modify an immutable list may
result in
UnsupportedOperationExcepti
ons.

http://java.sun.com/
javase/6/docs/api/
java/util/List.html

B-7

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html

Table B-3 (Cont.) Table lists the List class

OBR Name Kind Signature Java Name Description Reference

append M void(Object) add Appends arg1 to this list.
Modifies this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#add(E)

add M void(int,Obje
ct)

- Inserts arg2 into this list at
position arg1. Modifies this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#add(int,
%20E)

appendAll M void(java.util
.Collection)

addAll Appends the contents of arg1 to
this list. Modifies this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#addAll(java.
util.Collection)

addAll M void(int,java.
util.Collectio
n)

- Inserts the contents of arg2 into
this list at position arg1. Modifies
this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#addAll(int,
%20java.util.Collectio
n)

clear M void() - Removes the contents of this list.
Modifies this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#clear()

contains M boolean(Obj
ect)

- Tests whether this list contains
arg1.
RL.list.create(1,2,3).contains(2)=
=true.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#contains(jav
a.lang.Object)

containsAll M boolean(java
.util.Collectio
n)

- Tests whether this list contains
every element in arg1.
RL.list.create(1,2,3).containsAll(
RL.list.create(3,2,1))==true.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#containsAll(
java.util.Collection)

get M Object(int) - Get the element at position arg1.
RL.list.create(1,2,3).get(1)==2.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#get(int)

indexOf M int(Object) - Returns first index of arg1 in this
list.
RL.list.create(1,2,3).indexOf(2)==
1.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#indexOf(java
.lang.Object)

remove M boolean(Obj
ect)

- Removes first occurrence of arg1
from this list. Returns whether
this list was modified.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#remove(java.
lang.Object)

B-8

http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)

Table B-3 (Cont.) Table lists the List class

OBR Name Kind Signature Java Name Description Reference

remove by
index

M Object(int) remove Removes and return the element
at position arg1. Modifies this list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#remove(int)

removeAll M boolean(java
.util.Collectio
n)

- Removes all elements from this
list that are contained in arg1.
Returns whether this list was
modified.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#removeAll(ja
va.util.Collection)

retainAll M boolean(java
.util.Collectio
n)

- Removes all elements from this
list that are *not* contained in
arg1. Returns whether this list
was modified.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#retainAll(ja
va.util.Collection)

set M Object(int,O
bject)

- Replaces the item in this list at
position arg1 with arg2. Returns
the replaced item. Modifies this
list.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#set(int,
%20E)

size M int() - Returns the size of this list.
RL.list.create(1,2,3).size()==3.

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#size()

subList M List(int,int) - Returns a view of the portion of
this list between arg1, inclusive,
and arg2, exclusive.
RL.list.create(1,2,3,4).subList(1,3
)==RL.list.create(2,3).

http://java.sun.com/
javase/6/docs/api/
java/util/
List.html#subList(int,
%20int)

Table B-4 lists the RL class list methods.

Table B-4 Table lists the RL class list methods

OBR Name Kind Signature Java
Name

Description Reference

RL Cl - oracle.rule
s.rl.extensi
ons.RL

- -

list.append sM List(List,Obje
ct...)

append Returns a new immutable list
containing the contents of arg1,
followed by arg2, arg3, ...
RL.list.append(RL.list.create(1),
2,3)==RL.list.create(1,2,3).

http://www.w3.org/TR/
rif-dtb/#func:append

B-9

http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://www.w3.org/TR/rif-dtb/#func:append
http://www.w3.org/TR/rif-dtb/#func:append

Table B-4 (Cont.) Table lists the RL class list methods

OBR Name Kind Signature Java
Name

Description Reference

list.concatena
te

sM List(List...) concatenat
e

Returns a new immutable list
containing the concatenation of
arg1, arg2, ...
RL.list.concatenate(RL.list.creat
e(1),RL.list.create(2))==RL.list.cr
eate(1,2).

http://www.w3.org/TR/
rif-dtb/
#func:concatenate

list.distinct
values

sM List(List) distinctValu
es

Returns a new immutable list like
arg1 but with duplicates
removed. RL.list.distinct
values(RL.list.create(2,2))==RL.li
st.create(2).

http://www.w3.org/TR/
rif-dtb/
#func:distinct-values

list.except sM List(List,List) except Returns a new immutable list
containing elements from arg1
that are not in arg2.
RL.list.except(RL.list.create(1,2,3
,
4),RL.list.create(1,3))==RL.list.cr
eate(2,4).

http://www.w3.org/TR/
rif-dtb/#func:except

list.get sM Object(List,in
t)

get Returns the element at position
arg2 in arg1. If arg2<0, return the
element at arg1.size()+arg2.
RL.list.get(RL.list.create(1,2,3),-1
)==3.

http://www.w3.org/TR/
rif-dtb/#func:get

list.index of sM List<Integer
>(List,Object
)

indexOf Returns a list of indexes where
the arg2 occurs in arg1.
RL.list.index
of(RL.list.create(1,2,3,2),
2)==RL.list.create(1,3).

http://www.w3.org/TR/
rif-dtb/#func:index-
of

list.insert
before

sM List(List,int,O
bject)

insertBefor
e

Returns a new immutable list
containing arg1 with arg3
inserted before the item at
position arg2. If arg2<0, arg3 is
inserted before the element at
arg1.size()+arg2. RL.list.insert
before(RL.list.create(1,2,3),-1,99
)==RL.list.create(1,2,99,3).

http://www.w3.org/TR/
rif-dtb/#func:insert-
before

list.intersect sM List(List,List) intersect Returns a new immutable list
containing the intersection of
arg1 and arg2.
RL.list.intersect(RL.list.create(1,2
,
3),RL.list.create(3,1))==RL.list.cr
eate(1,3).

http://www.w3.org/TR/
rif-dtb/
#func:intersect

list.create sM List(Object...
)

list Returns a new immutable list
containing the arguments.

http://www.w3.org/TR/
rif-dtb/#func:make-
list

B-10

http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:except
http://www.w3.org/TR/rif-dtb/#func:except
http://www.w3.org/TR/rif-dtb/#func:get
http://www.w3.org/TR/rif-dtb/#func:get
http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:make-list
http://www.w3.org/TR/rif-dtb/#func:make-list
http://www.w3.org/TR/rif-dtb/#func:make-list

Table B-4 (Cont.) Table lists the RL class list methods

OBR Name Kind Signature Java
Name

Description Reference

list.remove sM List(List,int) remove Returns a new immutable list
containing the elements of arg1,
with the element at position arg2
removed. If arg2<0, the element
at arg1.size()+arg2 is removed.
RL.list.remove(RL.list.create(1,2,
3),0)==RL.list.create(2,3).

http://www.w3.org/TR/
rif-dtb/#func:remove

list.reverse sM List(List) reverse Returns a new immutable list
containing the elements of arg1
in reverse order.
RL.list.reverse(RL.list.create(1,2,
3))==RL.list.create(3,2,1).

http://www.w3.org/TR/
rif-dtb/#func:reverse

list.union sM List(List) union Returns a new immutable list
containing the concatenation of
the arguments with duplicates
removed.
RL.list.union(RL.list.create(1,2),R
L.list.create(2,3))==RL.list.create(
1,2,3).

http://www.w3.org/TR/
rif-dtb/#func:union

B.3 Numeric Classes
Oracle Business Rules support the primitive Java numeric types byte, short, int,
long, float, and double.

OBR also supports the "boxed" versions: Short, Int, Long, Float, and Double.
Unlimited precision integers and decimals are supported, using the Java classes
BigInteger and BigDecimal. OBR supports arithmetic expressions (+, -, *, /, **) on
all numeric types. For example, if *bd is BigDecimal, then you can add one to it by
simply writing bd + 1. You do not have to write bd.add(BigDecimal.ONE).

Table Table B-5 lists the Integer class.

Table B-5 Table lists the Integer class

OBR
Name

Kind Signature Java Name Description Reference

Integer Cl - java.lang.Integ
er

An integer object. Unlike
the primitive "int", an
Integer can be null and
can be in Lists.

http://java.sun.com/
javase/6/docs/api/java/
lang/Integer.html

Integer Co Integer(int|
String)

- Creates an Integer from an
int or from its lexical
representation as a String.
new Integer(1)==new
Integer("1").

http://java.sun.com/
javase/6/docs/api/java/
lang/
Integer.html#Integer(int
)

B-11

http://www.w3.org/TR/rif-dtb/#func:remove
http://www.w3.org/TR/rif-dtb/#func:remove
http://www.w3.org/TR/rif-dtb/#func:reverse
http://www.w3.org/TR/rif-dtb/#func:reverse
http://www.w3.org/TR/rif-dtb/#func:union
http://www.w3.org/TR/rif-dtb/#func:union
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)

Table B-5 (Cont.) Table lists the Integer class

OBR
Name

Kind Signature Java Name Description Reference

MIN_VA
LUE

sP int - Smallest primitive int value.
Integer.MIN_VALUE<0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Integer.html#MIN_VALUE

MAX_V
ALUE

sP int - Largest primitive int value.
Integer.MAX_VALUE>0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Integer.html#MAX_VALUE

intValue M int() - Converts this Integer to an
int. new
Integer(1).intValue()==1.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Integer.html#intValue()

toString M String() - Converts this Integer to its
lexical representation. new
Integer(1).toString()=="1".

http://java.sun.com/
javase/6/docs/api/java/
lang/
Integer.html#toString()

Table B-6 lists the Long class.

Table B-6 Table lists the Long class

OBR
Name

Kind Signature Java Name Description Reference

Long Cl - java.lang.Long A long integer object.
Unlike the primitive
"long", a Long can be null
and can be in Lists.

http://java.sun.com/
javase/6/docs/api/java/
lang/Long.html

Long Co Long(long|
String)

- Creates a Long from a long
or from its lexical
representation as a String.
new Long(1)==new
Long("1").

http://java.sun.com/
javase/6/docs/api/java/
lang/
Long.html#Long(long)

MIN_VALU
E

sP long - Smallest primitive long
value. Long.MIN_VALUE<0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Long.html#MIN_VALUE

MAX_VAL
UE

sP long - Largest primitive long value.
Long.MAX_VALUE>0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Long.html#MAX_VALUE

longValue M long() - Converts this Long to a
long. new
Long(1).longValue()==1.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Long.html#longValue()

B-12

http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()

Table B-6 (Cont.) Table lists the Long class

OBR
Name

Kind Signature Java Name Description Reference

toString M String() - Converts this Long to its
lexical representation. new
Long(1).toString()=="1".

http://java.sun.com/
javase/6/docs/api/java/
lang/
Long.html#toString()

Table B-7 lists the Short class.

Table B-7 Table lists the Short class

OBR
Name

Kind Signature Java Name Description Reference

Short Cl - java.lang.Shor
t

A short integer object.
Unlike the primitive
"short", a Short can be
null and can be in Lists.

http://java.sun.com/
javase/6/docs/api/java/
lang/Short.html

Short Co Short(short|
String)

- Creates a Short from a short
or from its lexical
representation as a String.
new Short(1)==new
Short("1").

http://java.sun.com/
javase/6/docs/api/java/
lang/
Short.html#Short(short)

MIN_VALU
E

sP short - Smallest primitive short
value. Short.MIN_VALUE<0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Short.html#MIN_VALUE

MAX_VAL
UE

sP short - Largest primitive short
value.
Short.MAX_VALUE>0.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Short.html#MAX_VALUE

shortValue M short() - Converts this Short to a
short. new
Short(-1).shortValue()==-1.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Short.html#shortValue()

toString M String() - Converts this Short to its
lexical representation. new
Short(-1).toString()=="-1".

http://java.sun.com/
javase/6/docs/api/java/
lang/
Short.html#toString()

Table B-8 lists the Float class.

Table B-8 Table lists the Float class

OBR
Name

Kind Signature Java Name Description Reference

Float Cl - java.lang.Float A Float object. Unlike the
primitive "float", a Float
can be null and can be in
Lists.

http://java.sun.com/
javase/6/docs/api/java/
lang/Float.html

B-13

http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html

Table B-8 (Cont.) Table lists the Float class

OBR
Name

Kind Signature Java Name Description Reference

Float Co Float(float|
double|String)

- Creates a Float from a float,
a double, or from its lexical
representation as a String.
new Float(1.1)==new
Float("1.1").

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#Float(float)

infinite P boolean - The value of this Float is
infinity. new
Float(Float.NEGATIVE_INFI
NITY).infinite==true.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#isInfinite()

naN P boolean - The value of this Float is not
a number. new
Float(Float.NaN).naN==true
.

http://java.sun.com/
javase/6/docs/api/java/
lang/Float.html#isNaN()
()

NaN sP float - Value representing "not a
number".

http://java.sun.com/
javase/6/docs/api/java/
lang/Float.html#NaN

NEGATIV
E_INFINIT
Y

sP float - Value representing negative
infinity.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#NEGATIVE_INF
INITY

POSITIVE
_INFINITY

sP float - Value representing positive
infinity.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#POSITIVE_INF
INITY

floatValue M float() - Converts this Float to a
float. new
Float(1.1f).floatValue()==1.1
f.

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#floatValue()

toString M String() - Converts this Float to its
lexical representation. new
Float(1.1f).toString()=="1.1".

http://java.sun.com/
javase/6/docs/api/java/
lang/
Float.html#toString()

Table B-9 lists the Double class.

Table B-9 Table lists the Double class

OBR Name Kind Signature Java Name Description Reference

Double Cl - java.lang.Dou
ble

A Double object. Unlike the
primitive "double", a Double
can be null and can be in
Lists.

http://java.sun.com/
javase/6/docs/api/
java/lang/Double.html

B-14

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html

Table B-9 (Cont.) Table lists the Double class

OBR Name Kind Signature Java Name Description Reference

Double Co Double(double
|String)

- Creates a Double from a
double or from its lexical
representation as a String.
new Double(1.1)==new
Double("1.1").

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#Double(dou
ble)

infinite P boolean - The value of this Double is
infinity. new
Float(Float.POSITIVE_INFI
NITY).infinite==true.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#isInfinit
e()

naN P boolean - The value of this Double is
not a number. new
Double(double.NaN).naN==
true.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#isNaN()

NaN sP double - Value representing "not a
number".

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#NaN

NEGATIVE
_INFINITY

sP double - Value representing negative
infinity.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#NEGATIVE_I
NFINITY

POSITIVE_
INFINITY

sP double - Value representing positive
infinity.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#POSITIVE_I
NFINITY

doubleValu
e

M double() - Converts this Double to a
double. new
Double(1.1).doubleValue()=
=1.1.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#doubleValu
e()

toString M String() - Converts this Double to its
lexical representation. new
Double(1.1).toString()=="1.1
".

http://java.sun.com/
javase/6/docs/api/
java/lang/
Double.html#toString()

Table B-10 lists the BigInteger class.

Table B-10 Table lists the BigInteger class

OBR Name Kind Signature Java Name Description Reference

BigInteger Cl - java.math.BigI
nteger

Immutable arbitrary-
precision integers.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html

B-15

http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html

Table B-10 (Cont.) Table lists the BigInteger class

OBR Name Kind Signature Java Name Description Reference

BigInteger Co BigInteger(Stri
ng)

- Creates a BigInteger from
its lexical representation as
a String. new
BigInteger("1")==1.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#BigInt
eger(java.lang.String)

doubleValu
e

M double() - Converts this BigInteger to
a double. May lose
precision. new
BigInteger("1").doubleValu
e()==1.0.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#double
Value()

longValue M long() - Converts this BigInteger to
a long. May lose precision.
new
BigInteger("1").longValue()=
=1L.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#longVa
lue()

max M BigInteger(Big
Integer)

- Returns the greater of this
or arg1. new
BigInteger("1").max(2)==2.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#max(ja
va.math.BigInteger)

min M BigInteger(Big
Integer)

- Returns the lesser of this or
arg1. new
BigInteger("1").min(2)==1.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#min(ja
va.math.BigInteger)

toString M String() - Returns the lexical
representation of this
BigInteger. new
BigInteger("123").toString(
)=="123".

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#toStri
ng()

valueOf sM BigInteger(lon
g)

- Converts arg1 (a long) to a
BigInteger.
BigInteger.valueOf(123).toS
tring()=="123".

http://java.sun.com/
javase/6/docs/api/
java/math/
BigInteger.html#valueO
f(long)

Table B-11 lists the BigDecimal class.

Table B-11 Table lists the BigDecimal class

OBR
Name

Kind Signature Java Name Description Reference

BigDecima
l

Cl - java.math.Big
Decimal

Immutable, arbitrary-
precision signed decimal
numbers.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html

B-16

http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Table B-11 (Cont.) Table lists the BigDecimal class

OBR
Name

Kind Signature Java Name Description Reference

BigDecimal Co BigDecimal(lo
ng|double|
String)

- Creates a BigDecimal from
a long, a double, or from its
lexical representation as a
String. new
BigDecimal(1.1)==new
BigDecimal("1.1").

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#BigDec
imal(java.lang.String)

BigDecimal Co BigDecimal(Bi
gInteger,int)

- Creates a BigDecimal from
BigInteger arg1 and scale
arg2. new BigDecimal(new
BigInteger("123"),2)==1.23.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#BigDec
imal(java.math.BigInte
ger,%20int)

doubleValu
e

M double() - Converts this BigDecimal to
a double. May lose
precision. new
BigDecimal("0.1").doubleVal
ue()==0.1.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#double
Value()

longValue M long() - Converts this BigDecimal to
a long. May lose precision.
new
BigDecimal("0.1").longValu
e()==0L.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#longVa
lue()

max M BigDecimal(Bi
gDecimal)

- Returns the greater of this
BigDecimal or arg1. new
BigDecimal("0.1").max(0.2
)==0.2.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#max(ja
va.math.BigDecimal)

min M BigDecimal(Bi
gDecimal)

- Returns the lesser of this
BigDecimal or arg1. new
BigDecimal("0.1").min(0.2)=
=0.1.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#min(ja
va.math.BigDecimal)

scale M int() - Returns the scale--the
number of digits to the right
of the decimal point. new
BigDecimal("1.00").scale()=
=2.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#scale(
)

setScale M BigDecimal(int
)

- Sets the scale, but don't
change the value. new
BigDecimal("1").setScale(2)
.toString()=="1.00".

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#setSca
le(int)

B-17

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)

Table B-11 (Cont.) Table lists the BigDecimal class

OBR
Name

Kind Signature Java Name Description Reference

toEngineeri
ngString

M String() - Returns the literal
representation of this
BigDecimal using
engineering notation if an
exponent is needed. new
BigDecimal("123E2").toEngi
neeringString()=="12.3E+3".

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#toEngi
neeringString()

toPlainStrin
g

M String - Returns the literal
representation of this
BigDecimal without
exponents. new
BigDecimal("123E2").toPlai
nString()=="12300".

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#toPlai
nString()

valueOf sM BigDecimal(lo
ng|double)

- Converts arg1 (a long or
double) to a BigDecimal.
new
BigDecimal(1.3)==BigDecim
al.valueOf(1.3).

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#valueO
f(double)

ROUND_U
P

sP int - Used with divide. new
BigDecimal("11").divide(2,Bi
gDecimal.ROUND_UP)==6.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#ROUND_
UP

ROUND_D
OWN

sP int - Used with divide. new
BigDecimal("11").divide(2,Bi
gDecimal.ROUND_DOWN
)==5.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#ROUND_
DOWN

divide M BigDecimal(Bi
gDecimal,int)

- Returns this/arg1 with scale
the same as this
BigDecimal. If rounding
must be performed to stay
within the result scale, use
the rounding mode given by
arg2 (ROUND_UP or
ROUND_DOWN). new
BigDecimal("11").divide(2,Bi
gDecimal.ROUND_UP)==6.

http://java.sun.com/
javase/6/docs/api/
java/math/
BigDecimal.html#divid
e(java.math.BigDecimal
,%20int)

Table B-12 lists the Number class.

Table B-12 Table lists the Number class

OBR
Name

Kind Signature Java Name Description Reference

Number Cl - - Base class of all numerics
(except primitives).

http://java.sun.com/
javase/6/docs/api/
java/lang/Number.html

B-18

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Number.html

Table B-12 (Cont.) Table lists the Number class

OBR
Name

Kind Signature Java Name Description Reference

doubleValu
e

M double() - Converts this number to a
double.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Float.html#doubleValu
e()

floatValue M float() - Converts this number to a
float.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Float.html#floatValue(
)

intValue M int() - Converts this number to a
int.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Float.html#intValue()

longValue M long() - Converts this number to a
long.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Float.html#longValue()

shortValue M short() - Converts this number to a
short.

http://java.sun.com/
javase/6/docs/api/
java/lang/
Float.html#shortValue(
)

Table B-13 lists the RL class number methods.

Table B-13 Table lists the RL class number methods

OBR Name Kind Signature Java Name Description Reference

RL Cl - oracle.rules.rl.
extensions.RL

- -

number.is
byte

sM boolean(Num
ber)

isByte arg1 is integral and
-128<=arg1<=127.
RL.numeric.is
byte(200)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
short

sM boolean(Num
ber)

isShort arg1 is integral and
-32768<=arg1<=32767.
RL.numeric.is
short(0.1)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is int sM boolean(Num
ber)

isInt arg1 is integral and
-2147483648<=arg1<=2147
483647. RL.numeric.is
int(-1000)==true.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

B-19

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-13 (Cont.) Table lists the RL class number methods

OBR Name Kind Signature Java Name Description Reference

number.is
long

sM boolean(Num
ber)

isLong arg1 is integral and
-9223372036854775808<=
arg1<=9223372036854775
807. RL.numeric.is
integer(new
BigInteger("100")**100)==fa
lse.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
integer

sM boolean(Num
ber)

isInteger arg1 is integral.
RL.numeric.is integer(new
BigInteger("100")**100)==tr
ue.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
decimal

sM boolean(Num
ber)

isDecimal arg1 is neither Double nor
Float. RL.numeric.is
decimal(1.1)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
non-negative
integer

sM boolean(Num
ber)

isNonNegativeI
nteger

arg1 is integral and
arg1>=0. RL.numeric.is
non-negative
integer(-1)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
negative
integer

sM boolean(Num
ber)

isNegativeInteg
er

arg1 is integral and arg1<0.
RL.numeric.is negative
integer(-1)==true.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
non-positive
integer

sM boolean(Num
ber)

isNonPositiveIn
teger

arg1 is integral and
arg1<=0. RL.numeric.is
non-positive
integer(-1)==true.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
positive
integer

sM boolean(Num
ber)

isPositiveIntege
r

arg1 is integral and arg1>0.
RL.numeric.is positive
integer(-1)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
unsigned
byte

sM boolean(Num
ber)

isUnsignedByte arg1 is integral and
0<=arg1<=255.
RL.numeric.is unsigned
byte(200)==true.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
unsigned
short

sM boolean(Num
ber)

isUnsignedSho
rt

arg1 is integral and
0<=arg1<=65535.
RL.numeric.is unsigned
short(0.1)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
unsigned int

sM boolean(Num
ber)

isUnsignedInt arg1 is integral and
0<=arg1<=4294967295.
RL.numeric.is unsigned
int(-1000)==false.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

number.is
unsigned
long

sM boolean(Num
ber)

isUnsignedLon
g

arg1 is integral and
0<=arg1<=1844674407370
9551615.

http://www.w3.org/TR/
rif-dtb/
#Guard_Predicates_for
_Datatypes

B-20

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

B.4 Time and Duration Classes
This section lists the time and duration classes provided by Oracle Business Rules.

Table Table B-14 lists the Calendar class.

Table B-14 Table lists the Calendar class

OBR
Name

Kind Signatur
e

Java Name Description Reference

Calendar Cl - java.util.Calendar A Calendar represents
a datetime and
timezone. A calendar
instance has a
number of mutable int
fields. The first
argument to add, get,
isSet, roll, and set is a
field number. This
class provides a
number of static
properties that should
be used for the field
numbers.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html

ERA sP int - Field number for the
Calendar era. 1 is for
A.D. and 0 is for B.C.
((Calendar)"2010-02-01
").get(Calendar.ERA)==
1.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#ERA

YEAR sP int - Field number for the
Calendar year.
((Calendar)"2010-02-01
").get(Calendar.YEAR)=
=2010.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#YEAR

MONTH sP int - Field number for the
Calendar month.
Months are 0-based.
((Calendar)"2010-02-01
").get(Calendar.MONTH
)==1.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#MONTH

WEEK_OF
_YEAR

sP int - Field number for the
Calendar week.
((Calendar)"2010-02-01
").get(Calendar.WEEK_
OF_YEAR)==6.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#WEEK_OF_
YEAR

DAY_OF_
YEAR

sP int - Field number for the
Calendar day of year.
((Calendar)"2010-02-01
").get(Calendar.DAY_O
F_YEAR)==32.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#DAY_OF_Y
EAR

B-21

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR

Table B-14 (Cont.) Table lists the Calendar class

OBR
Name

Kind Signatur
e

Java Name Description Reference

DAY_OF_
MONTH

sP int - Field number for the
Calendar day of month.
((Calendar)"2010-02-01
").get(Calendar.DAY_O
F_MONTH)==1.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#DAY_OF_M
ONTH

DAY_OF_
WEEK

sP int - Field number for the
Calendar day of the
week.
((Calendar)"2010-02-01
").get(Calendar.DAY_O
F_WEEK)==2.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#DAY_OF_
WEEK

HOUR sP int - Field number for the
Calendar hour, 12 hour
format.
((Calendar)"2010-02-01
T20:15:10").get(Calend
ar.HOUR)==8.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#HOUR

AM_PM sP int - Field number for the
Calendar AM_PM flag.
0 is for AM and 1 is for
PM.
((Calendar)"2010-02-01
T20:15:10").get(Calend
ar.AM_PM)==1.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#AM_PM

HOUR_OF
_DAY

sP int - Field number for the
Calendar hour, 24 hour
format.
((Calendar)"20:15:10").
get(Calendar.HOUR)==
20.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#HOUR_OF_
DAY

MINUTE sP int - Field number for the
Calendar minutes.
JavaDate.from time
string("20:15:10").get(C
alendar.MINUTE)==15.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#MINUTE

SECOND sP int - Field number for
Calendar seconds.
((Calendar)"20:15:10").
get(Calendar.SECOND
)==10.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#SECOND

ZONE_OF
FSET

sP int - Field number for
timezone. Value is
millsecond offset from
GMT.
((Calendar)"20:15:10-0
5:30").get(Calendar.ZO
NE_OFFSET)==-
(5*3600+30*60)*1000.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#ZONE_OFF
SET

B-22

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET

Table B-14 (Cont.) Table lists the Calendar class

OBR
Name

Kind Signatur
e

Java Name Description Reference

add M void(int,int
)

add Adds the amount of
time specified by arg2
to the calendar field
specified by arg1.
Modifies this Calendar.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#add(int,
%20int)

clear M void() clear Clears (unset all fields
in) this Calendar.
Modifies this Calendar.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#clear()

get M int(int) get Gets the value of the
field specified by field
number arg1.
((Calendar)"20:15:10").
get(Calendar.SECOND
)==10.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#get(int)

getInstanc
e

sM Calendar(
)

getInstance Gets a calendar
initialized to the current
time in the default time
zone and locale.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#getInstanc
e()

roll M void(int,int
)

roll Adds the amount of
time specified by arg2
to the calendar field
specified by arg1. Does
not affect any other
calendar field. Modifies
this Calendar.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#roll(int,
%20int)

set M void(int,int
)

set Sets the calendar field
specified by arg1 to the
value specified by arg2.
Modifies this Calendar.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#set(int,
%20int)

time P java.util.D
ate

time Returns a Date object
representing this
Calendar's time value.
((Calendar)"2010-02-01
").time<((Calendar)"201
0-02-02").time.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#getTime()

timeInMillis P long timeInMillis Returns this Calendar's
time value in
milliseconds.
((Calendar)"2010-02-01
").timeInMillis<((Calend
ar)"2010-02-02").timeIn
Millis.

http://java.sun.com/
javase/6/docs/api/java/util/
Calendar.html#getTimeInM
illis()

Table B-15 lists the JavaDate class.

B-23

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()

Table B-15 Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

JavaDate Cl - oracle.ru
les. rl.
extensio
ns.Java
Date

Helper class for
working with
Calendars as
immutable
objects. Treating
Calendars as
immutable
objects can help
prevent errors.

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/JavaDate.html

add years to sM Calendar(
Calendar,
int)

addYear
sTo

Returns a new
Calendar that is
arg2 years later
than arg1.
JavaDate.add
years
to("2009-01-01",
1)=="2010-01-01
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addYearsTo_java_util_Calenda
r__int_

add months
to

sM Calendar(
Calendar,
int)

addMont
hsTo

Returns a new
Calendar that is
arg2 months
later than arg1.
JavaDate.add
months
to("2009-01-01",
1)=="2009-02-01
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addMonthsTo_java_util_Calen
dar__int_

add weeks to sM Calendar(
Calendar,i
nt)

addWee
ksTo

Returns a new
Calendar that is
7*arg2 days later
than arg1.
JavaDate.add
weeks
to("2009-01-01",
1)=="2009-01-08
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addWeeksTo_java_util_Calend
ar__int_

add days to sM Calendar(
Calendar,i
nt)

addDays
To

Returns a new
Calendar that is
arg2 days later
than arg1.
JavaDate.add
days
to("2009-01-01",
1)=="2009-01-02
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addDaysTo_java_util_Calendar
__int_

B-24

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

add hours to sM Calendar(
Calendar,i
nt)

addHour
sTo

Returns a new
Calendar that is
arg2 hours later
than arg1.
JavaDate.add
hours
to("01:01:01",
1)=="02:01:01".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addHoursTo_java_util_Calenda
r__int_

add minutes
to

sM Calendar(
Calendar,i
nt)

addMinu
tesTo

Returns a new
Calendar that is
arg2 minutes
later than arg1.
JavaDate.add
minutes
to("01:01:01",
1)=="01:02:01".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addMinutesTo_java_util_Calen
dar__int_

add seconds
to

sM Calendar(
Calendar,i
nt)

addSeco
ndsTo

Returns a new
Calendar that is
arg2 seconds
later than arg1.
JavaDate.add
seconds
to("01:01:01",
61)=="01:02:02".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addSecondsTo_java_util_Cale
ndar__int_

add
milliseconds
to

sM Calendar(
Calendar,i
nt)

addMillis
econdsT
o

Returns a new
Calendar that is
arg2
milliseconds
later than arg1.
JavaDate.add
milliseconds
to("01:01:01",
61)=="01:01:01.
061".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#addMillsecondsTo_java_util_C
alendar__int_

add duration
to

sM Calendar(
Calendar,
XMLDurat
ion)

addDura
tionTo

Returns a new
Calendar that is
later than arg1
by the duration
arg2.
JavaDate.add
duration
to("2009-12-30T
23:59:00",Durati
on.from
string("P1DT1M"
))=="2010-01-01"
.

http://www.w3.org/TR/rif-dtb/#func:add-day
TimeDuration-to-dateTime_.
28adapted_from_op: add-dayTimeDuration-to-
dateTime.29

http://www.w3.org/TR/rif-dtb/#func: add-
yearMonthDuration-to-dateTime_.
28adapted_from_op: add-yearMonthDuration-
to-dateTime.29

B-25

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

from date
string

sM Calendar(
String)

fromDat
eString

Creates a
Calendar for the
extended ISO
8601 date literal
arg1. Extended
to allow YYYY-
MM-
DD@TimeZoneI
d. JavaDate.from
date
string("2010-02-
06@PST")=="20
10-02-06-08:00".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#fromDateString_java_lang_Stri
ng_

from datetime
string

sM Calendar(
String)

fromDat
eTimeStr
ing

Creates a
Calendar for the
extended ISO
8601 datetime
literal arg1.
Extended to
allow YYYY-MM-
DDTHH:MM:SS
@TimeZoneId.
JavaDate.from
datetime
string("2010-02-
06T14:15:00@P
ST")=="2010-02-
06T14:15:00-08:
00".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#fromDateTimeString_java_lang
String

from time
string

sM Calendar(
String)

fromTim
eString

Creates a
Calendar for the
extended ISO
8601 time literal
arg1. Extended
to allow
HH:MM:SS@Ti
meZoneId.
Warning: the
date portion of
the Calendar will
be initialized to
the current date.
JavaDate.from
time
string("14:15:00
@PST")=="14:1
5:00-08:00".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#fromTimeString_java_lang_Stri
ng_

B-26

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

subtract
years from

sM Calendar(
Calendar,i
nt)

subtract
YearsFr
om

Returns a new
Calendar that is
arg2 years
earlier than arg1.
JavaDate.subtra
ct years
from("2009-01-0
1",
1)=="2008-01-01
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractYearsFrom_java_util_C
alendar__int_

subtract
months from

sM Calendar(
Calendar,i
nt)

subtract
MonthsF
rom

Returns a new
Calendar that is
arg2 months
earlier than arg1.
JavaDate.subtra
ct months
from("2009-01-0
1",
1)=="2008-12-01
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractMonthsFrom_java_util_
Calendar__int_

subtract
weeks from

sM Calendar(
Calendar,i
nt)

subtract
WeeksFr
om

Returns a new
Calendar that is
7*arg2 days
earlier than arg1.
JavaDate.subtra
ct weeks
from("2009-01-0
1",
1)=="2008-12-25
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractWeeksFrom_java_util_
Calendar__int_

subtract days
from

sM Calendar(
Calendar,i
nt)

subtract
DaysFro
m

Returns a new
Calendar that is
arg2 days earlier
than arg1.
JavaDate.subtra
ct days
from("2009-01-0
1",
1)=="2008-12-31
".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractDaysFrom_java_util_C
alendar__int_

subtract
hours from

sM Calendar(
Calendar,i
nt)

subtract
HoursFr
om

Returns a new
Calendar that is
arg2 hours
earlier than arg1.
JavaDate.subtra
ct hours
from("01:01:01",
1)=="00:01:01".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractHoursFrom_java_util_
Calendar__int_

B-27

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

subtract
minutes from

sM Calendar(
Calendar,i
nt)

subtract
Minutes
From

Returns a new
Calendar that is
arg2 minutes
earlier than arg1.
JavaDate.subtra
ct minutes
from("01:01:01",
1)=="01:00:01".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractMinutesFrom_java_util
_Calendar__int_

subtract
seconds from

sM Calendar(
Calendar,i
nt)

subtract
Seconds
From

Returns a new
Calendar that is
arg2 seconds
earlier than arg1.
JavaDate.subtra
ct seconds
from("01:01:01",
61)=="01:00:00".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractSecondsFrom_java_util
_Calendar__int_

subtract
milliseconds
from

sM Calendar(
Calendar,i
nt)

subtract
Milliseco
ndsFrom

Returns a new
Calendar that is
arg2
milliseconds
earlier than arg1.
JavaDate.subtra
ct milliseconds
from("01:01:01",
61)=="01:01:00.
939".

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#subtractMillisecondsFrom_java
_util_Calendar__int_

subtract
duration from

sM Calendar(
Calendar,
XMLDurat
ion)

subtract
Duration
From

Returns a new
Calendar that is
earlier than arg1
by the duration
arg2.
JavaDate.subtra
ct duration
from("2009-12-3
0T23:59:00",Dur
ation.from
string("P1DT1M"
))=="20009-12-2
9T23:58:00".

http://www.w3.org/TR/rif-dtb/#func: add-
dayTimeDuration-to-dateTime_.
28adapted_from_op: subtract-
dayTimeDuration-from-dateTime.29

http://www.w3.org/TR/rif-dtb/#func: subtract-
yearMonthDuration-from-dateTime_.
28adapted_from_op: add-yearMonthDuration-
to-dateTime.29

to date string sM String(Cal
endar)

toDateSt
ring

Returns the ISO
8601 lexical
representation of
arg1, ignoring
time
components.
JavaDate.to date
string("2010-07-
04T12:30:00Z")=
="2010-07-04Z"

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#toDateString_java_util_Calend
ar_

B-28

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signatur
e

Java
Name

Description Reference

to datetime
string

sM String(Cal
endar)

toDateTi
meString

Returns the ISO
8601 lexical
representation of
arg1.
JavaDate.to
datetime
string("2010-07-
04T12:30:00Z")=
="2010-07-04T1
2:30:00.000Z"

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#toDateTimeString_java_util_Ca
lendar_

to time string sM String(Cal
endar)

toTimeSt
ring

Returns the ISO
8601 lexical
representation of
arg1, ignoring
date
components.
JavaDate.to time
string("2010-07-
04T12:30:00Z")=
="12:30:00.000Z
"

http://download.oracle.com/docs/cd/
E12839_01/apirefs.1111/e10663/oracle/
rules/rl/extensions/
JavaDate.html#toTimeString_java_util_Calend
ar_

Table B-16 lists the XMLGregorianCalendar class.

Table B-16 Table lists the XMLGregorianCalendar class.

OBR Name Kind Signature Java Name Descriptio
n

Reference

XMLGregori
anCalendar

Cl - javax.xml.data
type.XMLGreg
orianCalendar

Representa
tion for
W3C XML
Schema 1.0
date/time
datatypes.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html

normalize M XMLGregorian
Calendar()

- Normalizes
this instance
to UTC.
XMLDate.fr
om
string("2000
-03-04T23:0
0:00+03:00"
).normalize(
)==XMLDat
e.from
string("2000
-03-04T20:0
0:00Z")

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#n
ormalize()

B-29

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()

Table B-16 (Cont.) Table lists the XMLGregorianCalendar class.

OBR Name Kind Signature Java Name Descriptio
n

Reference

toGregorianC
alendar

M java.util.Gregori
anCalendar()

- Converts
this
XMLGregori
anCalendar
to a
(superclass
of)
Calendar.
XMLDate.fr
om
string("2010
-02-03").toG
regorianCal
endar()==(C
alendar)"20
10-02-03".

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#to
GregorianCalendar()

year P int - The year of
this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("2011
-12-31").yea
r==2011.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etYear()

month P int - The month
of this
calendar, or
Integer.MIN
_VALUE if
undefined.
Months are
1-based,
e.g. Jan is
month 1.
XMLDate.fr
om
string("2011
-12-31").mo
nth==12.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etMonth()

day P int - The day of
this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("2011
-12-31").day
==31.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etDay()

B-30

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()

Table B-16 (Cont.) Table lists the XMLGregorianCalendar class.

OBR Name Kind Signature Java Name Descriptio
n

Reference

hour P int - The hour of
this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("2011
-12-31").hou
r==Integer.
MIN_VALU
E.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etHour()

minute P int - The minute
of this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("2011
-12-31T09:3
0:00").minut
e==30.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etMinute()

second P int - The second
of this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("09:3
0:05Z").sec
ond==5.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etSecond()

timezone P int - The
timezone
offset in
minutes of
this
calendar, or
Integer.MIN
_VALUE if
undefined.
XMLDate.fr
om
string("09:3
0:00-09:00")
.timezone==
-540.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
XMLGregorianCalendar.html#g
etTimezone()

Table B-17 lists the XMLDate class.

B-31

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()

Table B-17 Table lists the XMLDate class

OBR
Name

Kind Signature Java Name Description Reference

XMLDate Cl - oracle.rules.rl.ex
tensions.XMLDat
e

Helper class for
working with
XMLGregorianCal
endars as
immutable
objects. Treating
calendars as
immutable
objects can help
prevent errors.

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html

add years
to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addYearsTo Returns a new
XMLGregorianCale
ndar that is arg2
years later than
arg1. XMLDate.add
years
to("2009-01-01",
1)=="2010-01-01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addYearsTo_javax_xml_dataty
pe_XMLGregorianCalendar__in
t_

add
months to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addMonthsTo Returns a new
XMLGregorianCale
ndar that is arg2
months later than
arg1. XMLDate.add
months
to("2009-01-01",
1)=="2009-02-01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addMonthsTo_javax_xml_data
type_XMLGregorianCalendar__
int_

add weeks
to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addWeeksTo Returns a new
XMLGregorianCale
ndar that is 7*arg2
days later than
arg1. XMLDate.add
weeks
to("2009-01-01",
1)=="2009-01-08".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addWeeksTo_javax_xml_datat
ype_XMLGregorianCalendar__i
nt_

add days
to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addDaysTo Returns a new
XMLGregorianCale
ndar that is arg2
days later than
arg1. XMLDate.add
days
to("2009-01-01",
1)=="2009-01-02".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addDaysTo_javax_xml_dataty
pe_XMLGregorianCalendar__in
t_

add hours
to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addHoursTo Returns a new
XMLGregorianCale
ndar that is arg2
hours later than
arg1. XMLDate.add
hours
to("01:01:01",
1)=="02:01:01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addHoursTo_javax_xml_datat
ype_XMLGregorianCalendar__i
nt_

B-32

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_

Table B-17 (Cont.) Table lists the XMLDate class

OBR
Name

Kind Signature Java Name Description Reference

add
minutes to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addMinutesTo Returns a new
XMLGregorianCale
ndar that is arg2
minutes later than
arg1. XMLDate.add
minutes
to("01:01:01",
1)=="01:02:01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addMinutesTo_javax_xml_dat
atype_XMLGregorianCalendar_
int

add
seconds to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addSecondsTo Returns a new
XMLGregorianCale
ndar that is arg2
seconds later than
arg1. XMLDate.add
seconds
to("01:01:01",
61)=="01:02:02".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addSecondsTo_javax_xml_dat
atype_XMLGregorianCalendar_
int

add
millisecond
s to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

addMillisecondsT
o

Returns a new
XMLGregorianCale
ndar that is arg2
milliseconds later
than arg1.
XMLDate.add
milliseconds
to("01:01:01",
61)=="01:01:01.06
1".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#addMillisecondsTo_javax_xml
_datatype_XMLGregorianCalen
dar__int_

add
duration to

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,XMLDura
tion)

addDurationTo Returns a new
XMLGregorianCale
ndar that is later
than arg1 by the
duration arg2.
XMLDate.add
duration
to("2009-12-30T23:
59:00",Duration.fro
m
string("P1DT1M"))=
="2010-01-01".

http://www.w3.org/TR/rif-dtb/
#func:add-yearMonthDuration-
to-dateTime_.28
adapted_from_op:add-
yearMonthDuration-to-
dateTime.29

http://www.w3.org/TR/rif-dtb/
#func:add-dayTimeDuration-to-
dateTime_.28
adapted_from_op:add-
dayTimeDuration-to-dateTime.
29

from string sM XMLGregorian
Calendar(Strin
g)

fromString Creates an
XMLGregorianCale
ndar for the ISO
8601 date literal
arg1.
XMLDate.from
string("2010-02-06-
08:00")=="2010-02
-06-08:00".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#fromString_java_lang_String_

B-33

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_

Table B-17 (Cont.) Table lists the XMLDate class

OBR
Name

Kind Signature Java Name Description Reference

subtract
years from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractYearsFro
m

Returns a new
XMLGregorianCale
ndar that is arg2
years earlier than
arg1.
XMLDate.subtract
years
from("2009-01-01",
1)=="2008-01-01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractYearsFrom_javax_xml
_datatype_XMLGregorianCalen
dar__int_

subtract
months
from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractMonthsFr
om

Returns a new
XMLGregorianCale
ndar that is arg2
months earlier than
arg1.
XMLDate.subtract
months
from("2009-01-01",
1)=="2008-12-01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractMonthsFrom_javax_x
ml_datatype_XMLGregorianCal
endar__int_

subtract
weeks
from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractWeeksFro
m

Returns a new
XMLGregorianCale
ndar that is 7*arg2
days earlier than
arg1.
XMLDate.subtract
weeks
from("2009-01-01",
1)=="2008-12-25".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractWeeksFrom_javax_xm
l_datatype_XMLGregorianCalen
dar__int_

subtract
days from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractDaysFrom Returns a new
XMLGregorianCale
ndar that is arg2
days earlier than
arg1.
XMLDate.subtract
days
from("2009-01-01",
1)=="2008-12-31".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractDaysFrom_javax_xml_
datatype_XMLGregorianCalend
ar__int_

subtract
hours from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractHoursFro
m

Returns a new
XMLGregorianCale
ndar that is arg2
hours earlier than
arg1.
XMLDate.subtract
hours
from("01:01:01",
1)=="00:01:01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractHoursFrom_javax_xml
_datatype_XMLGregorianCalen
dar__int_

B-34

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_

Table B-17 (Cont.) Table lists the XMLDate class

OBR
Name

Kind Signature Java Name Description Reference

subtract
minutes
from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractMinutesFr
om

Returns a new
XMLGregorianCale
ndar that is arg2
minutes earlier
than arg1.
XMLDate.subtract
minutes
from("01:01:01",
1)=="01:00:01".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractMinutesFrom_javax_x
ml_datatype_XMLGregorianCal
endar__int_

subtract
seconds
from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractSecondsF
rom

Returns a new
XMLGregorianCale
ndar that is arg2
seconds earlier
than arg1.
XMLDate.subtract
seconds
from("01:01:01",
61)=="01:00:00".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractSecondsFrom_javax_x
ml_datatype_XMLGregorianCal
endar__int_

subtract
millisecond
s from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,int)

subtractMillisecon
dsFrom

Returns a new
XMLGregorianCale
ndar that is arg2
milliseconds earlier
than arg1.
XMLDate.subtract
milliseconds
from("01:01:01",
61)=="01:01:00.93
9".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#subtractMillisecondsFrom_java
x_xml_datatype_XMLGregorian
Calendar__int_

subtract
duration
from

sM XMLGregorian
Calendar(XML
GregorianCale
ndar,XMLDura
tion)

subtractDurationF
rom

Returns a new
XMLGregorianCale
ndar that is earlier
than arg1 by the
duration arg2.
XMLDate.subtract
duration
from("2009-12-30T
23:59:00",Duration.
from
string("P1DT1M"))=
="20009-12-29T23:
58:00".

http://www.w3.org/TR/rif-dtb/
#func:subtract-
yearMonthDuration-from-
dateTime_.28
adapted_from_op:subtract-
yearMonthDuration-from-
dateTime.29

http://www.w3.org/TR/rif-dtb/
#func:subtract-
dayTimeDuration-from-
dateTime_.28
adapted_from_op:subtract-
dayTimeDuration-from-
dateTime.29

to string sM String(XMLGr
egorianCalend
ar)

toString Returns the ISO
8601 lexical
representation of
arg1. XMLDate.to
string("2010-04-15
T11:00:00-09:00")=
="2010-04-15T11:0
0:00-09:00".

http://download.oracle.com/
docs/cd/E12839_01/apirefs.
1111/e10663/oracle/rules/rl/
extensions/XMLDate.html
#toString_javax_xml_datatype_
XMLGregorianCalendar_

B-35

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_

Table B-17 (Cont.) Table lists the XMLDate class

OBR
Name

Kind Signature Java Name Description Reference

is datetime sM boolean(XML
GregorianCale
ndar)

isDateTime Checks if this
calendar have both
date and time
fields. XMLDate.is
datetime("2009-12-
30T23:59:00")==tru
e.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Dataty
pes

is datetime
stamp

sM boolean(XML
GregorianCale
ndar)

isDateTimeStamp Checks if this
calendar have
date, time, and
timezone fields.
XMLDate.is
datetime
stamp("2009-12-30
T23:59:00")==false
.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Dataty
pes

is date sM boolean(XML
GregorianCale
ndar)

isDate Checks if this
calendar have date
fields and no time
fields. XMLDate.is
date("2009-12-30"
)==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Dataty
pes

is time sM boolean(XML
GregorianCale
ndar)

isTime Checks if this
calendar have time
fields and no date
fields. XMLDate.is
time("2009-12-30T
23:59:00")==false.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Dataty
pes

get
timezone

sM XMLDuration(
XMLGregorian
Calendar)

getTimezone Gets the timezone
from the calendar
as a duration.
XMLDate.get
timezone("11:00:00
+05:30")==Duratio
n.from
string("PT5H30M").

-

get
seconds

sM BigDecimal(X
MLGregorianC
alendar)

getSeconds Gets the seconds,
including fractional
part, from the
calendar as a
BigDecimal.
XMLDate.get
seconds("00:00:12.
345")==12.345.

-

Table B-18 lists the OracleDate class.

B-36

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-18 Table lists the OracleDate class

OBR Name Kind Signature Java Name Description

OracleDate Cl - oracle.rules.sdk2.exte
nsions.OracleDate

Helper class for working with
oracle.jbo.domain.Timestamp. For
examples of method use, see like-
named XMLDate methods.

add years to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addYearsTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 years later than arg1.

add months to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addMonthsTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 months later than arg1.

add weeks to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addWeeksTo Returns a new
oracle.jbo.domain.Timestamp that is
7*arg2 days later than arg1.

add days to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addDaysTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 days later than arg1.

add hours to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addHoursTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 hours later than arg1.

add minutes to sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addMinutesTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 minutes later than arg1.

add seconds
to

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addSecondsTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 seconds later than arg1.

add
milliseconds to

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

addMillisecondsTo Returns a new
oracle.jbo.domain.Timestamp that is
arg2 milliseconds later than arg1.

add duration
to

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,XMLDu
ration)

addDurationTo Returns a new
oracle.jbo.domain.Timestamp that is
later than arg1 by the duration arg2.

from string sM oracle.jbo.domain.Tim
estamp(String)

fromString Creates an
oracle.jbo.domain.Timestamp for the
ISO 8601 date literal arg1.

subtract years
from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractYearsFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 years earlier than arg1.

subtract
months from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractMonthsFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 months earlier than arg1.

subtract
weeks from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractWeeksFrom Returns a new
oracle.jbo.domain.Timestamp that is
7*arg2 days earlier than arg1.

subtract days
from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractDaysFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 days earlier than arg1.

B-37

Table B-18 (Cont.) Table lists the OracleDate class

OBR Name Kind Signature Java Name Description

subtract hours
from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractHoursFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 hours earlier than arg1.

subtract
minutes from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractMinutesFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 minutes earlier than arg1.

subtract
seconds from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractSecondsFrom Returns a new
oracle.jbo.domain.Timestamp that is
arg2 seconds earlier than arg1.

subtract
milliseconds
from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,int)

subtractMillisecondsFr
om

Returns a new
oracle.jbo.domain.Timestamp that is
arg2 milliseconds earlier than arg1.

subtract
duration from

sM oracle.jbo.domain.Tim
estamp(oracle.jbo.dom
ain.Timestamp,XMLDu
ration)

subtractDurationFrom Returns a new
oracle.jbo.domain.Timestamp that is
earlier than arg1 by the duration arg2.

to string sM String(oracle.jbo.doma
in.Timestamp)

toString Returns the ISO 8601 lexical
representation of arg1.

Table B-19 lists the Duration class.

Table B-19 Table lists the Duration class

OBR
Name

Kind Signature Java
Name

Description Reference

Duration Cl - oracle.rule
s.sdk2.exte
nsions.Ora
cleDuration

Helper class for
comparing and
subtracting dates. Can
convert the difference of
2 dates into an
XMLDuration. Can also
create an XMLDuration
from its literal (String)
representation. Only
day time and year
month XMLDurations
are supported.

-

compare sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

- Returns -1, 0, or 1
according to whether
arg1<arg2, arg1==arg2,
or arg1>arg2,
respectively.
Duration.compare("201
0-01-01","2010-02-02"
)==-1

http://www.w3.org/TR/rif-dtb/
#pred:date Time-less-than_.
28adapted_from_op:dateTime-
less-than.29

B-38

http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29

Table B-19 (Cont.) Table lists the Duration class

OBR
Name

Kind Signature Java
Name

Description Reference

years
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

yearsBetw
een

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.years
between("2008-01-01",
"2009-02-02")==1.

-

months
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

monthsBet
ween

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.months
between("2009-01-01","
2008-02-02")==-10.

-

weeks
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

weeksBetw
een

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.weeks
between("2000-01-01","
2000-02-04")==4.

-

days
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

daysBetwe
en

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.days
between("2000-01-01","
2000-02-04")==34.

-

B-39

Table B-19 (Cont.) Table lists the Duration class

OBR
Name

Kind Signature Java
Name

Description Reference

hours
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

hoursBetw
een

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.hours
between("2000-01-04T
03:30:00","2000-01-01T
00:00:00")==-75

-

minutes
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

minutesBet
ween

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.minutes
between("03:30:00","04:
45:00")==75.

-

seconds
between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

secondsBe
tween

Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Duration.seconds
between("03:30:00","03:
31:15")==75.

-

millisecond
s between

sM int(Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

millisecond
sBetween

Subtracts arg1 from
arg2, where the args
are some kind of date/
time.
Duration.milliseconds
between("03:30:00","03:
31:15")==75000.

B-40

Table B-19 (Cont.) Table lists the Duration class

OBR
Name

Kind Signature Java
Name

Description Reference

between sM XMLDuration(
Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
, Calendar|
XMLGregorian
Calendar|
oracle.jbo.dom
ain.Timestamp
)

between Subtracts arg1 from
arg2, where the args
are some kind of date/
time. Returns day-time
Duration.
Duration.between("200
9-01-01T01:15:00","200
9-02-02T11:30:00")==D
uration.from
string("P32DT10H15M")
.

http://www.w3.org/TR/rif-dtb/
#func:subtract-date Times_.
28adapted_from_op:subtract-
dateTimes.29

from string sM XMLDuration(
String)

fromString Parses a duration from
an ISO 8601 duration
literal. "P1DT2H3M" is
the duration of 1 day, 2
hours, and 3 minutes.

http://www.w3.org/TR/xpath-
functions/#duration-subtypes

compare
durations

sM int(XMLDurati
on,XMLDurati
on)

compareD
urations

Compares two
durations. Both must be
either day-time or year-
month durations.
Returns -1, 0, or 1
according to whether
arg1<arg2, arg1==arg2,
or arg1>arg2,
respectively.
Duration.compare(Durat
ion.from
string("P1Y"),Duration.fr
om
string("P13M"))==-1.

http://www.w3.org/TR/rif-dtb/
#pred:dayTimeDuration-less-
than_.28
adapted_from_op:dayTimeDuratio
n-less-than.29

http://www.w3.org/TR/rif-dtb/
#pred:yearMonthDuration-less-
than_.28
adapted_from_op:yearMonthDurat
ion-less-than.29

is day-time
duration

sM boolean(XML
Duration)

isDayTime
Duration

Checks if arg1 a day-
time duration. Only day-
time and year-month
durations are
supported. Duration.is
day-time
duration(Duration.from
string("P2DT1S"))==tru
e.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

is year-
month
duration

sM boolean(XML
Duration)

isYearMont
hDuration

Checks if arg1 a year-
month duration. Only
day-time and year-
month durations are
supported. Duration.is
year-month
duration(Duration.from
string("P13M"))==true.

http://www.w3.org/TR/rif-dtb/
#Guard_Predicates_for_Datatype
s

B-41

http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-19 (Cont.) Table lists the Duration class

OBR
Name

Kind Signature Java
Name

Description Reference

get
seconds

sM BigDecimal(X
MLDuration)

getSecond
s

Gets the seconds field
from the duration as a
BigDecimal, including
fractional seconds.
Duration.get
seconds(Duraton.from
string("PT12.345S"))==
12.345.

http://www.w3.org/TR/rif-dtb/
#func:seconds-from-duration_.28
adapted_from_fn:seconds-from-
duration.29

divide sM XMLDuration(
XMLDuration,i
nt|double)

- Divides a duration by an
integral or double
divisor.
Duration.divide(Duratio
n.from string("P1Y"),
4)==Duration.from
string("P3M").

http://www.w3.org/TR/rif-dtb/
#func:divide-dayTimeDuration_.28
adapted_from_op:divide-
dayTimeDuration.29

http://www.w3.org/TR/rif-dtb/
#func:divide-yearMonthDuration_.
28 adapted_from_op:divide-
yearMonthDuration.29

ratio sM BigDecimal(X
MLDuration,X
MLDuration)

- Computes the ratio of 2
durations as a
BigDecimal.
Duration.ratio(Duration.f
rom
string("P1Y"),Duration.fr
om string("P3M"))==4

http://www.w3.org/TR/rif-dtb/
#func:divide-dayTimeDuration-by-
dayTimeDuration_.28
adapted_from_op:divide-
dayTimeDuration-by-
dayTimeDuration.29

http://www.w3.org/TR/rif-dtb/
#func:divide-yearMonthDuration-
by-yearMonthDuration_.28
adapted_from_op:divide-
yearMonthDuration-by-
yearMonthDuration.29

Table B-20 lists the XMLDuration class.

Table B-20 Table lists the XMLDuration class

OBR
Name

Kind Signature Java Name Description Reference

XMLDur
ation

Cl - javax.xml.data
type.Duration

Immutable
representation of
a time span as
defined in the
W3C XML
Schema 1.0
specification.
Only day-time and
year-month
XMLDurations are
supported.

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
Duration.html

http://www.w3.org/TR/xpath-
functions/#duration-subtypes

years P int - Years field of the
duration.
Duration.from
string("P2Y3M").ye
ars==2.

http://www.w3.org/TR/rif-dtb/
#func: years-from-duration_.
28adapted_from_fn:years-from-
duration.29

B-42

http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29

Table B-20 (Cont.) Table lists the XMLDuration class

OBR
Name

Kind Signature Java Name Description Reference

months P int - Months field of the
duration.
Duration.from
string("P2Y3M").m
onths==2.

http://www.w3.org/TR/rif-dtb/
#func: months-from-duration_.
28adapted_from_fn:months-
from-duration.29

days P int - Days field of the
duration.
Duration.from
string("P1DT2H3M
4S").days==1.

http://www.w3.org/TR/rif-dtb/
#func: days-from-duration_.
28adapted_from_fn:days-from-
duration.29

hours P int - Hours field of the
duration.
Duration.from
string("P1DT2H3M
4S").hours==2.

http://www.w3.org/TR/rif-dtb/
#func: hours-from-duration_.
28adapted_from_fn:hours-from-
duration.29

minutes P int - Minutes field of the
duration.
Duration.from
string("P1DT2H3M
4S").minutes==3.

http://www.w3.org/TR/rif-dtb/
#func: minutes-from-duration_.
28adapted_from_fn:minutes-
from-duration.29

seconds P int - Seconds field of
the duration.
Duration.from
string("P1DT2H3M
4S").seconds==4.

http://www.w3.org/TR/rif-dtb/
#func: seconds-from-duration_.
28adapted_from_fn:seconds-
from-duration.29

sign P int - Returns the sign of
this duration in
-1,0, or 1.
Duration.from
string("-
P1Y").sign==-1.

-

add M XMLDuration(
XMLDuration)

- Adds two
durations.
Duration.from
string("P6M").add(
Duration.from
string("P6M"))==Du
ration.from
string("P1Y").

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
Duration.html#add(javax.xml.da
tatype.Duration)

subtract M XMLDuration(
XMLDuration)

- Subtracts two
durations.
Duration.from
string("P6M").subtr
act(Duration.from
string("P6M"))==Du
ration.from
string("P0Y").

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
Duration.html#subtract(javax.x
ml.datatype.Duration)

B-43

http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)

Table B-20 (Cont.) Table lists the XMLDuration class

OBR
Name

Kind Signature Java Name Description Reference

multiply M XMLDuration(
BigDecimal|
int)

- Multiplies arg1
duration by arg2
factor.
Duration.from
string("P6M").multi
ply(2)==Duration.fr
om string("P1Y").

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
Duration.html#multiply(java.mat
h.BigDecimal)

negate M XMLDuration() - Durations can be
negative, e.g. if you
reverse the
arguments to
Duration.between(
arg1,arg2).
Duration.from
string("P6M").negat
e()==Duration.from
string("-P6M").

http://java.sun.com/javase/6/
docs/api/javax/xml/datatype/
Duration.html#negate()

to string M String() toString Gets the ISO8601
literal
representation for
this duration.
Duration.from
string("P6M").to
string()=="P6M".

-

Table B-21 lists the CurrentDate class.

Table B-21 Table lists the CurrentDate class

OBR Name Kind Signature Java Name Description

CurrentDate Cl - oracle.rules.rl.extensi
ons.CurrentDate

Fact type of a holder for the
current date. Can be used in rule
patterns.

date P Calendar - Returns the current date.

B.5 Miscellaneous Classes
This section covers the miscellaneous classes provided by Oracle Business Rules.

Table Table B-22 lists the JAXBElement class.

Table B-22 Table lists the JAXBElement class

OBR Name Kind Signature Java Name Description Reference

JAXBEleme
nt

Cl - javax.xml.bind.JA
XBElement

Represents XML element
information in XML Fact
Types.

http://java.sun.com/
javase/6/docs/api/
javax/xml/bind/
JAXBElement.html

B-44

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

Table B-22 (Cont.) Table lists the JAXBElement class

OBR Name Kind Signature Java Name Description Reference

nil P boolean - A nil element is not the same
thing (in XML) as an absent
element.

http://java.sun.com/
javase/6/docs/api/
javax/xml/bind/
JAXBElement.html#isNi
l()

value P Object - This is a reference to an
XML Fact Type

http://java.sun.com/
javase/6/docs/api/
javax/xml/bind/
JAXBElement.html#getV
alue()

Table B-23 lists the Object class.

Table B-23 Table lists the Object class

OBR
Name

Kind Signat
ure

Java Name Description Reference

Object Cl - java.lang.Ob
ject

Base class of all
Java objects.

http://
java.sun.com/
javase/6/docs/api/
java/lang/
Object.html

B.6 Functions
This section lists the Oracle Business Rules functions.

Table Table B-24 lists the different functions provided by Oracle Business Rules.

Table B-24 Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference in Rules
Language Reference
for Oracle Business
Process
Management

print void(Object) println Prints the string value of
arg1.

println

RL.assert a tree
of facts

Object(Object) assertTree Asserts (insert into working
memory) the tree of visible
fact types with arg1 as the
root. Returns arg1.

assertTree

RL.assert Object(Object) assert Asserts arg1 (insert arg1
into working memory).
Returns arg1.

assert

B-45

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference in Rules
Language Reference
for Oracle Business
Process
Management

RL.retract void(Object) retract Removes the fact
associated with the object
arg1 from working memory.

retract

RL.get fact ID int(Object) id Returns the fact id
associated with the object
arg1. If arg1 is not
associated with a fact,
return -1.

id

RL.get fact by ID Object(int) object Returns the object
associated with the given
fact id. If there is no such
fact id, returns null.

object

RL.get firing rule
name

String - Returns the name of the
currently firing rule if it is
invoked in a rule action.
Returns null otherwise.

-

RL.contains boolean(List,Obje
ct)

contains The contains() function is
similar to the contains()
method on Java Collection
but includes the ability to
handle the presence of
JAXBElement in the
collection.

contains

RL.suppress
rule test errors

boolean(boolean) - Update if errors during rule
test evaluation should be
suppressed by the rules
engine.

-

RL.are rule test
errors
suppressed

boolean() - Query if errors during rule
test evaluation are
suppressed by the rules
engine.

-

RL.ruleset
stack.push

void(String) pushRuleset Pushes arg1, the name of
a ruleset, onto the ruleset
stack.

pushRuleset

RL.ruleset
stack.pop

String() popRuleset Pops and returns the top of
the ruleset stack, the name
of a ruleset.

popRuleset

RL.ruleset
stack.get

String[]() getRulesetStack Returns the ruleset stack
as a String array.

getRulesetStack

RL.ruleset
stack.set

void(String[]) setRulesetStack Sets the ruleset stack to
arg1, a String array.

setRulesetStack

RL.ruleset
stack.clear

void() clearRulesetStack Pops all ruleset names off
the ruleset stack.

clearRulesetStack

B-46

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference in Rules
Language Reference
for Oracle Business
Process
Management

RL.date.get
current

Calendar() getCurrentDate Returns the date
associated with the
CurrentDate fact.

getCurrentDate

RL.date.set
current

void(Calendar) setCurrentDate Sets the date for reasoning
on an engine managed fact
representing the "current"
date (with the CurrentDate
fact).

setCurrentDate

RL.date.get
effective

Calendar() getEffectiveDate Returns the current value
of the effective date.

getEffectiveDate

RL.date.set
effective

void(Calendar) setEffectiveDate Updates the effective date
in the rules engine.

setEffectiveDate

RL.watch.rules void() watchRules Prints information about
rule firings (execution of
activations).

watchRules

RL.watch.activat
ions

void() watchActivations Prints information about
addition or removal of
activations from the
agenda.

watchActivations

RL.watch.facts void() watchFacts Prints information about
assertion, retraction, or
modification of facts in
working memory.

watchFacts

RL.watch.focus void() watchFocus Prints information about
pushing and popping of the
ruleset stack.

watchFocus

RL.watch.compil
ations

void() watchCompilations Prints information about
how the condition parts of a
rule are shared with
existing rules.

watchCompilations

RL.watch.all void() watchAll Prints information about
rules, facts, activations,
focus, and compilations.

watchAll

RL.stop
watching.rules

void() clearWatchRules Stops printing information
about rule firings.

clearWatchRules

RL.stop
watching.activati
ons

void() clearWatchActivations Stops printing information
about addition or removal
of activations from the
agenda.

clearWatchActivations

RL.stop
watching.facts

void() clearWatchFacts Stops printing information
about assertion, retraction,
or modification of facts in
working memory.

clearWatchFacts

B-47

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference in Rules
Language Reference
for Oracle Business
Process
Management

RL.stop
watching.focus

void() clearWatchFocus Stops printing information
about pushing and popping
of the ruleset stack.

clearWatchFocus

RL.stop
watching.compil
ations

void() clearWatchCompilatio
ns

Stops printing information
about how the condition
parts of a rule are shared
with existing rules.

clearWatchCompilatio
ns

RL.stop
watching.all

void() clearWatchAll Stops printing information
about rules, facts,
activations, focus, and
compilations.

clearWatchAll

RL.show.facts void() showFacts Prints all facts in working
memory.

showFacts

RL.show.activati
ons

void() showActivations Prints all activations on the
agenda.

showActivations

B-48

C
Oracle Business Rules Frequently Asked
Questions

Frequently asked questions about Oracle Business Rules.

• Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then
Changed Without Using the Modify Action?

• What are the Differences Between Oracle Business Rules RL Language and
Java?

• How Does a RuleSession Handle Concurrency and Synchronization?

• How Do I Correctly Express a Self-Join?

• How Do I Use a Property Change Listener in Oracle Business Rules?

• What Are the Limitations on a Decision Service with Oracle Business Rules?

• How Do I Put Java Code in a Rule?

• Can I Use Java Based Facts in a Decision Service with BPEL?

• How Do I Enable Debugging in a BPEL Decision Service?

• How Do I Support Versioning with Oracle Business Rules?

• What is the Priority Order Using Priorities with Rules and Decision Tables?

• Why do XML Schema with xsd:string Typed Elements Import as Type
JAXBElement?

• Why Are Changes to My Java Classes Not Reflected in the Data Model?

• How Do I Use Rules SDK to Include a null in an Expression?

• Is WebDAV Supported as a Repository to Store a Dictionary?

• Using a Source Code Control System with Rules Designer

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact
and Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using
the modify action, the object must be re-asserted in the Rules Engine.

Therefore, if a rule associated with the changed Java object does not fire, this means
that the Rules Engine did not reevaluate any rule conditions and did not activate any
rules. Thus, when a Java object changes without using the modify action, the object
must be re-asserted in the Rules Engine.

C-1

C.2 What are the Differences Between Oracle Business Rules RL
Language and Java?

There are many differences between Oracle Business Rules RL Language and Java.

For more information on the differences between Oracle Business Rules RL Language
and Java, see Appendix A in Rules Language Reference for Oracle Business Process
Management.

C.3 How Does a RuleSession Handle Concurrency and
Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such
that calls by multiple threads do not cause exceptions at the RuleSession level.
However, there are no exclusivity or transactional guarantees on the execution of
methods. The lowest-level run method in the Rules Engine is synchronized, so two
threads with a shared RuleSession cannot both simultaneously execute run. One call
to run must wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods,
Oracle Business Rules functions can execute concurrently and it is the programmer's
responsibility to use synchronized blocks to protect access to shared data (for
instance, a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a
RuleSession object because exceptions thrown when calling RuleSession methods
may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or
servlet instance should create and use a local RuleSession object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.

For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument("assert", singleFact1);
ruleSession.callFunctionWithArgument("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, execution of the two threads might proceed as shown below in code
example showing a shared rulesession object in Oracle Business Rules:

Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact1);
Thread-2: ruleSession.callFunction("run");
Thread-2: ruleSession.callFunction("clear");
Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact2);

In the example above, the two facts Thread-1 asserted are never both in the
RuleSession during a call to run. Notice also that only one thread calls the run
method. If you use a design where multiple threads can call run on a shared

C-2

RuleSession, this can create extremely hard to find bugs and there is usually no gain
in performance.

All accesses to a shared RuleSession object must be synchronized to ensure the
intended behavior. However, a RuleSession instance may throw an exception and not
be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for RuleSession
use. In this model, multiple threads assert facts to a shared RuleSession and one
thread periodically calls run, reads any results, and outputs them. This ensures that
thread conflicts cannot occur, because the two code segments must be executed
serially and cannot be intermingled. For example, the code with shared objects,
producer code, and consumer code in Example C-1, Example C-2, and Example C-3.

C.3.1 Sample RuleSession Shared Objects
Example C-1 shows the code with shared objects.

Example C-1 RuleSession Shared Objects

RuleSession ruleSession;
Object ruleSessionLock = new Object();

C.3.2 Sample RuleSession Producer Code
Example C-2 shows the producer code.

Example C-2 RuleSession Producer Code

public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc){
 String status = "";
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunctionWithArgument("assert", fa);
 ruleSession.callFunctionWithArgument("assert", fb);
 status = "success";
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 status = "failure";
 }
 return status;
}

C.3.3 Sample RuleSession Consumer Code
Example C-3 shows the consumer code.

Example C-3 RuleSession Consumer Code

public List exec(){
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunction("run");
 List results = (List)ruleSession.callFunction("getResults");
 ruleSession.callFunction("clearResults");
 return results;
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 return null;

C-3

 }
 }
}

Note:

When multiple threads are sharing a RuleSession object, if more than one of
the threads calls the run method, this can create extremely hard to find bugs
and there is usually no gain in performance.

C.4 How Do I Correctly Express a Self-Join?
When working with facts, there are cases where the runtime behavior of Oracle RL
may produce surprising results.

Consider the Oracle RL code in the following self-join example:

class F {int i; };
rule r1 {
 if (fact F f1 && fact F f2) {
 println("Results: " + f1.i + ", " + f2.i);
 }
}
assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the above example output? The answer is 4 lines because the
same fact instance can match for both f1 and f2.

Thus, the example gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert(new F(i:3));) then nine
lines are printed and if, at the same time, a third term && fact F F3 is added then 27
lines are printed.

C.4.1 Sample Find All Combinations of Fact F
If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C-4.

Example C-4 Find All Combinations of Fact F

rule r1 {
 if (fact F F1 && fact F F2 && F1 != F2) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

The above code gives the following output:

Results: 2, 1
Results: 1, 2

C-4

C.4.2 Sample Finding Combinations of Fact F
The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C-5.

Example C-5 Finding Combinations of Fact F

rule r1 {
 if (fact F F1 && fact F F2 && id(F1) < id(F2)) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

C.4.3 Sample Fast Complete Comparison
The function id() shown in Example C-5 takes longer to execute in a test pattern than
a direct comparison, the fastest method is to test on a unique value in each object. For
example, you could add an integer value property "oid" to your class that is assigned a
unique value for each instance of the class.

Example C-6 shows the same rule using the oid value.

Example C-6 Fast Complete Comparison

rule r1 {
 if (fact F F1 && fact F F2 && F1.oid < F2.oid) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown below:

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1.i == F2.i) {
 retract(F2);
 }
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. The following example shows the correct version of
this rule:

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1 != F2 && F1.i == F2.i) {
 retract(F2);
 }
}

C.5 How Do I Use a Property Change Listener in Oracle Business
Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design pattern.
This allows an instance of a Java fact that uses the PropertyChangeSupport class to
automatically notify the Oracle Rules Engine when property values have changed.

C-5

Java facts are not required to implement this pattern to be used by Oracle Rules
Engine.

Typically, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in
order for rules to be reevaluated with the new property value. For properties that fire
PropertyChangeEvent, changing the value of those properties both changes the value
and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the following:

1. Import this package in the class:

import java.beans.PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

3. In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport(this);

4. Then for each setter, add the call to firePropertyChange:

public void setName(String name){
 String oldVal = m_name;
 m_name = name;
 m_pcs.firePropertyChange("name", oldVal, m_name);
}

5. Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.addPropertyChangeListener(pcl);
}

6. Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.removePropertyChangeListener(pcl);
}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the PropertyChangeListener design pattern, consider
the following:

• Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when
a concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

• Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
results in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the
object. Using an explicit assert instead of the PropertyChangeListener pattern
eliminates this extra computational cost.

• Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the PropertyChangeListener
before a guard condition property is set would cause the rule to refire itself
endlessly.

C-6

• Explicit assert must be used when modifying Oracle RL facts and XML facts,
because these cannot be defined to support the PropertyChangeListener design
pattern.

• PropertyChangeListener-enabled facts allow a Java application to communicate
property changes to the rule engine without having to change the application to
perform explicit asserts. This also means that code that modifies a property of an
object does not need to have a reference to the RuleSession object in scope.

• PropertyChangeListener support prevents the common error of neglecting to re-
assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle
Business Rules?

There are some limitations for using Business Rules with a BPEL process.

Some of the limitations include the following:

• Only visible XML fact types may be specified as the input for a decision service.

• Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see How Are Decision Service Input Output Element
Types Restricted?.

For information on setting XML fact type visible option, see Working with XML Facts.

C.7 How Do I Put Java Code in a Rule?
You do not actually put Java code in a rule.

However, you can invoke a Java method from a rule condition or action.

C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
Oracle BPEL PM can invoke only decision functions exposed as a decision service,
and this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you
convert the input XML facts to Java facts. For example, you could create some rules in
a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the
decision function ruleflow. Similarly, you could create a ruleset to convert from Java
facts to output XML facts and put this ruleset after the Java ruleset in the decision
function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the Java
fact types you can replace the Java fact types with XML fact types as follows:

1. Delete the Java fact types (first making careful note of the aliases of the fact types
and properties).

2. Import similar XML fact types and edit the aliases of the fact types and properties
to be the same as the deleted Java fact types and properties.

C-7

C.9 How Do I Enable Debugging in a BPEL Decision Service?
To enable debugging output during ruleset execution for a BPEL Decision Service, you
enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the
output of watchAll is logged to the SOA diagnostic log. When you change the logging
level using Fusion Middleware Control Console, you do not need to redeploy the
application to use the specified level.

For information on using the SOA oracle.soa.service.rules and
oracle.soa.services.rules.obrtrace loggers, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

C.10 How Do I Support Versioning with Oracle Business Rules?
Versioning is supported in Oracle Business Rules.

The two possible ways are:

• At design time, the dictionary is stored as an XML file in a JDeveloper project. The
dictionary can be versioned in a source control system in the same way as any
other source file.

• At runtime, the dictionary is stored in MDS. If MDS is database backed then
versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they
are made visible to the application in MDS. The rule service engine (decision service)
does this automatically. For non-SCA application, this can be done using the
RuleRepository interface. At this time, they way to support an "in-draft" version is by
using the sandbox feature of MDS. The Oracle Business Rules RuleRepository
interface supports this.

C.11 What is the Priority Order Using Priorities with Rules and
Decision Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority
rule or Decision Table executing first. For example, if you create rules with priorities
1-4, they would be executed in the execution priority order 4,3,2,1.

Using Rules Designer you can select a priority from a predefined named priority list or
enter a positive or negative integer to specify your own priority level. The default
priority is medium (with the integer value 0). For more information, see How to Set a
Priority for a Rule.

Note, however, you should try to avoid priorities as much as possible since they break
the purely declarative model of rules. If you find yourself using a lot of priorities, then
generally it is best to try to restructure your rule patterns and tests to avoid conflicts, or
divide the rules into multiple rulesets using ruleflow if they are intended to be run in a
certain order. A conflict is a case when more than one rule in a ruleset is able to fire.
For example, if a "gold customer" rule says to make a customer that spends
over $1000 a gold customer, and a "silver customer" rule says to make a customer
that spends over $500 a silver customer, then when a customer spends $1100 there is
a conflict. Rather than prioritize the rules, it is more declarative to change the "silver
customer" rule to test for customers that spend between $500 and $1000. This conflict

C-8

analysis and conflict avoidance is particularly easy if you use Decision Tables. For
more information on Decision Tables, see Working with Decision Tables.

You use ruleflow, that is the ruleset stack, to order rulesets. For information on working
with the ruleset stack, see Rules Language Reference for Oracle Business Process
Management.

C.12 Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have
minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the default
mapping of the type defined for the element. For example, xsd:string maps to
JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and xsd:integer
maps to JAXBElement<BigInteger>.

This is because nillable="true" means the user has defined a semantic difference
between a element not being defined in a document, with minOccurs=0, it does not
have to be defined, and an element being defined but having the attribute nil="true".
This is a subtle difference and is often used to define the difference between an
unknown value and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked
for non-null, and then the "value" property or getValue() method can be used retrieve
a value of the underlying type:

fact FactType1 &&
 FactType1.prop1 != null &&
 FactType1.prop1.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements
are mapped to type T rather than JAXBElement<T>. However, this is a lossy
conversion, as you no longer are able to determine the difference between a non-
existent element and a nil one. This does make the nillable attribute less useful, but it
does allow you to explicitly define an element as nil in your document, similarly to how
in Java an Object-typed field is initialized to null by default or you can explicitly
initialize it to null.

There are several ways to do this. In both cases, add these attributes to the top-level
xsd:schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

1. To specify ALL properties to use the binding, add this immediately inside the
xsd:schema opening tag:

<xsd:annotation>
 <xsd:appinfo>
 <jaxb:globalBindings generateElementProperty="false"/>
 </xsd:appinfo>
</xsd:annotation>

2. To specify only specific properties use the binding, add an annotation like this to
each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0"
nillable="true">

C-9

 <xsd:annotation>
 <xsd:appinfo>
 <jaxb:property generateElementProperty="false" />
 </xsd:appinfo>
 </xsd:annotation>
</xsd:element>

3. Add the definitions to an external customizations file and pass it as an argument
when adding the schema to the datamodel. This can only be done when
programmatically calling the SchemaBrowser class and is not exposed in Rule
Designer.

C.13 Why Are Changes to My Java Classes Not Reflected in the Data
Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.

Classes in this directory cannot be reloaded into the data model when they change.

C.14 How Do I Use Rules SDK to Include a null in an Expression?
You can use Rules SDK code to include a null value.

You can use the following Rules SDK code:

SimpleTest test = pattern.getSimpleTestTable().add();

test.getLeft().setValue(attr);
test.setOperator(Util.TESTOP_NE);
test.getRight().setValue("null");

C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
The Web Distributed Authoring and Versioning (WebDAV) repository is not supported
to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1) Oracle
Business Rules. Oracle Business Rules supports using an MDS (file backed or
Database backed) repository for storing dictionaries.

C.16 Using a Source Code Control System with Rules Designer
There are special considerations when you use Rules Designer and a source control
system, such as CVS or Subversion. When you use a source code control system with
Rules Designer you need to specify that rule dictionary files in your project are
recognized as "binary" files instead of "text" files. The rule dictionary files are XML
documents and by default the source code control system treats these files as text
files.

However, rule dictionary files cannot be merged because the files contain semantic
structure. If a rule dictionary file is treated as a text file and then changed, the source
control system attempts to merge the file with a "trivial" merge. Using a trivial merge
creates a semantically invalid dictionary file which cannot be unmarshalled into a
RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files,
you need to make sure the source code control system treats the files as binary files.
There are configuration options you need to set to specify that the system treats

C-10

dictionary files as binary files. For example, in the Subversion source code control
system you can set the MIME type with the svn:mime-type file property. For more
information, see

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-
portability.html#svn.advanced.props.special.mime-type

When you set the source code control system options to specify the binary file type,
this allows the source code control system, for example tortoiseSVN, to treat the rules
dictionary files correctly, as binary files.

C-11

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type
http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type

D
Oracle Business Rules Troubleshooting

Workarounds and solutions for issues you may encounter when using Oracle Business
Rules.

• Getter and Setter Methods are not Visible

• Java Class with Only a Property Setter

• Runtime NoClassDefFound Error

• RL Specific Keyword Naming Conflict Errors

• java.lang.IllegalAccessError from Business Rules Service Runtime

• JAXB 1.0 Dictionaries and RL MultipleInheritanceException

• Why Does XML Schema with Underscores Fail JAXB Compilation?

• How Are Decision Service Input Output Element Types Restricted?

• How Are Decision Service Input Output Schema Restricted?

• How Do I Handle Java Reserved Names in an Imported Fact Type?

D.1 Getter and Setter Methods are not Visible
Rules Designer does not list the methods supporting a Java bean property in choice
lists; only the bean properties are visible. For example, a Java bean with a property
named Y must have at least a getter method getY() and may also have a setter
method setY(y-type-param).

All of properties and methods (including getter and setter that compose the properties)
are displayed when viewing the Java FactType. Only the properties of Java Classes
(not the getter and setter methods) are displayed in choice lists. When attempting to
control the visibility of the property it is best to use the properties visibility flag. Marking
a getter or a setter method as not visible may not remove the properties from choice
lists.

D.2 Java Class with Only a Property Setter
In Java the Java Bean introspector includes write-only properties. Oracle RL does not
include such properties as Beans, because they cannot be reasoned on in a rule.

Thus, in order for Java fact type bean properties to be properly accessed in Oracle RL
they must have both a getter and setter. Properties which have a setter but not a
getter, that is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setProp1(int i), then you cannot
use the following in Oracle RL:

Foo f = new Foo(prop1: 0)

D-1

D.3 Runtime NoClassDefFound Error
Sometimes when working with XML facts, you might receive an error.

You may receive an error of the form:

Exception in thread "main" java.lang.NoClassDefFoundError:

The java.lang.NoClassDefFoundError is very likely due to required classes not in
classpath. Try checking the following:

• Add xml.jar to your classpath when executing.

• Add the directory where the generated and compiled JAXB classes are placed to
the classpath.

D.4 RL Specific Keyword Naming Conflict Errors
Oracle Business Rules escapes RL specific keywords when generating RL from Rules
Designer.

In most cases, RL specific keywords can be used without causing errors. One
exception is using a keyword as the name of a class. This is unlikely for Java classes
because by convention they start with an upper case letter and RL specific keywords
are all lowercase..

D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
There may be errors

Problem: I receive an error such as the following:

java.lang.IllegalAccessError: tried to access class
com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490 caused when unmarshalling
incorrect letter characters when float is expected.

Workaround: the workaround for this problem is to assign a value to the appropriate
element, as shown in Figure D-1 and Figure D-2 where approvalRequired is assigned
a default value false().

Note that the screen shots reflect a previous version, however, the content is
applicable to the current release.

D-2

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input

Figure D-2 Expression Assigned to Input Variable for Business Rules Service

D-3

D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0,
which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries.
Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types.
If your dictionary has Element types marked as visible, generated RL may throw
MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them
from the datamodel. Only the Type classes generated by JAXB should be used to
write rules, so there is no functionality loss from deleting the Element types.

D.7 Why Does XML Schema with Underscores Fail JAXB
Compilation?

The defined behavior of JAXB is to fail when a name of the form '_' + number is
found. In this case JAXB cannot generate an "obvious" Java class name from this
string. The default behavior of JAXB for '_' + char is to treat it as a word boundary
(underscoreBinding="asWordSeparator"), which means the underscore is stripped
and the char is UpperCamelCased. For example, _fooBar is mapped to FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to
generate the names differently. The default value for underscoreBinding is specified
as "asWordSeparator", which does not allow an underscore to be used at the
beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' to be
preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
 <jaxb:globalBindings underscoreBinding="asCharInWord" />
</xsd:appinfo></xsd:annotation>

With this global annotation, the mapping for _1foo_bar_baz is _1Foo_Bar_Baz.

D.8 How Are Decision Service Input Output Element Types
Restricted?

Using the Decision Service to run business rules with XML schema defining the input,
for any given complexType "tFoo" in an XML-Schema file Foo.xsd there can only be
one XML-Schema element "foo" of type "tFoo".

The Decision Service does not allow you to use two elements "foo" and "bar" of the
same type "tFoo".

D.9 How Are Decision Service Input Output Schema Restricted?
When you use the Decision Service a schema must define a complexType or import
another schema which defines a complexType.

You cannot use schemas which do not define complexType, such as the following:

D-4

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="count" type="xsd:int"/>
</xsd:schema>

D.10 How Do I Handle Java Reserved Names in an Imported Fact
Type?

In Oracle Business Rules, when you import fact type properties which would have the
same name as a Java language reserved word are excluded.

For a complete list of Java reserved words, see

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

A workaround is to rename the getter and setter method pair that produce the
excluded property. If these methods names cannot be changed, the methods should
be used in rules instead of the properties.

For example, if a property named continue is excluded, you can create rules that use
getContinue() and setContinue() methods instead of using the property.You can do
this by rewriting a pattern. For example, replace:

fact IncrCount ic && ic.continue == "foo"

with:

fact IncrCount ic && ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] IncrCount(continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()
[call] ic.setContinue("bar")
[assert] ic

D-5

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

E
Working with Oracle Business Rules and
JSR-94 Execution Sets

Overview of the Java Rule Engine API (JSR-94) specification that defines a standard
Java runtime API to access a rule engine from a Java SE or Java EE client.

• Introduction to Oracle Business Rules and JSR-94 Execution Sets

• Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

• Using the JSR-94 Interface with Oracle Business Rules

For more information, see:

• http://jcp.org/en/jsr/detail?id=94

• http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
Oracle Business Rules provides JSR-94 support. This allows you to create more
portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you
can create JSR-94 rule sessions from these execution sets. For more information, see
Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets.

You can access Oracle Business Rules rulesets and execute them against the Oracle
Business Rules Engine using the JSR-94 API. For more information, see Using the
JSR-94 Interface with Oracle Business Rules.

Oracle Business Rules also provides extensions to the JSR-94 API that you may find
useful. For more information, see Using Oracle Business Rules JSR-94 Extensions.

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94
rule execution set.

A JSR-94 rule execution set (rule execution set) is a collection of rules that are
intended to be executed together. You also must register a rule execution set before
running it. A registration associates a rule execution set with a URI; using the URI, you
can create a JSR-94 rule session.

E-1

http://jcp.org/en/jsr/detail?id=94
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

Note:

In Oracle Business Rules, a JSR-94 rule execution set registration is not
persistent. Thus, you must register a rule execution set programmatically
using a JSR-94 RuleExecutionSetProvider interface.

For more information, see Creating a Rule Execution Set with
createRuleExecutionSet.

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language
Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL
text is directly included in the rule execution set. For more information, see Using the
Extended createRuleExecutionSet to Create a Rule Execution Set for information
about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language
text:

1. Specify the RL Language mapping information in an XML document. Table E-1
shows the mapping elements required to construct a rule execution set. The
following code example shows a sample XML document for mapping RL
Language text to a JSR-94 rule execution set.

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-text>
 ruleset DM {
 fact class carrental.Driver {
 hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
 llicIssueDate, numPreAccidents, numPreConvictions,
 numYearsSinceLicIssued, vehicleType;
 };

 final String DeclineMessage = "Rental declined ";

 public class Decision supports xpath {
 public String driverName;
 public String type;
 public String message;
 }

 function assertXPath(String package,
 java.lang.Object element, String xpath) {
 //RL literal statement
 main.assertXPath(package, element, xpath);
 }

 function println(String message) {
 //RL literal statement
 main.println(message);
 }

 function showDecision(DM.Decision decision) {
 //RL literal statement

E-2

 DM.println("Rental decision is " + decision.type +
 " for driver " + decision.driverName +
 " for reason " + decision.message);
 }
 }
 </rl-text>
 </rule-source>
 <rule-source>
 <rl-text>
 ruleset vehicleRent {
 rule UnderAge {
 priority = 0;
 if ((fact carrental.Driver v0_Driver &&
 (v0_Driver.age < 19))) {
 DM.println("Rental declined: " + v0_Driver.name +
 " Under age, age is: " + v0_Driver.age);
 retract(v0_Driver);
 }
 }
 }
 </rl-text>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping
Elements for JSR-94

Element Description

<rule-source> Includes an <rl-text> tag containing explicit RL Language
text containing an Oracle Business Rules ruleset. Multiple
<rule-source> tags can be used to specify multiple rulesets
(specified in the order in which they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack.
The order of the rulesets in the list is from the top of the stack
to the bottom of the stack.

Note:

In the <rl-text> element the contents must escape XML predefined entities.
This includes the characters '&', '>', '<', '"', and '\''.

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
You can use JSR-94 with Oracle RL rulesets specified using a URL. For more
information, see Using the Extended createRuleExecutionSet to Create a Rule
Execution Set for information about JSR-94 extensions that assist you in specifying a
URL.

E-3

To create a rule execution set from Oracle RL text specified in a URL:

1. Specify the Oracle RL mapping information in an XML document. Table E-2 shows
the mapping elements required to construct a rule execution set. The following
code example shows a sample XML document for mapping Oracle RL text to a
JSR-94 rule execution set.

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-url>
 file:rl/DM.r1
 </rl-url>
 </rule-source>
 <rule-source>
 <rl-url>
 file:r1/VehicleRent.r1
 </rl-url>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements
for JSR-94

Element Description

<rule-source> Includes an <rl-url> tag containing a URL that specifies the
location of RL Language text. Multiple <rule-source> tags
can be used to specify multiple rulesets (in the order in which
they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack.
The order of the rulesets in the list is from the top of the stack
to the bottom of the stack.

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources
A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rules Designer defined rulesets and RL Language rulesets.
In this case, the XML element <rule-execution-set> set contains multiple <rule-
source> elements, one for each source of rules. You must list each <rule-source> in
the order in which they are to be interpreted in Rules Engine.

Note:

For this Oracle Business Rules release, a JSR-94 rule execution set can only
reference one Rules Designer dictionary.

E-4

E.3 Using the JSR-94 Interface with Oracle Business Rules
This section describes the Oracle Business Rules specific details for JSR-94
interfaces.

This section contains the following sections:

• Creating a Rule Execution Set with createRuleExecutionSet

• Creating a Rule Session with createRuleSession

• Working with JSR-94 Metadata

• Using Oracle Business Rules JSR-94 Extensions

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
The RuleExecutionSetProvider and LocalRuleExecutionSetProvider interfaces in
javax.rules.admin include the createRuleExecutionSet to create a
RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is interpreted
as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method

Argument Description

org.w3c.dom.Element Specifies an instance of the <rule-execution-set> element
from the configuration schema.

java.lang.String Specifies a URL that specifies the location of an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.InputStream Specifies an input stream that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.Reader Specifies a character reader that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

Note:

JSR-94 also includes createRuleExecutionSet methods that take a
java.lang.Object argument, which is intended to be an abstract syntax tree
for the rule execution set. In Oracle Business Rules for Oracle Fusion
Middleware 11g Release 1 (11.1.1), using these methods with this argument
is not supported. Invoking these methods with a java.lang.Object
argument gives a RuleExecutionSetCreateException exception.

The second argument to the createRuleExecutionSet methods is a java.util.Map of
vendor-specific properties.

E-5

E.3.2 Creating a Rule Session with createRuleSession
Clients create a JSR-94 rule session using the createRuleSession method in the
RuleRuntime class. This method takes a java.util.Map argument of vendor-specific
properties. This argument can be used to pass in any of the properties defined for the
Oracle Business Rules oracle.rules.rl.RuleSession.

If a rule execution set contains URL or repository rule sources, the rules from those
sources are fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata
JSR-94 allows for metadata for rule execution sets and rules within a rule execution
set. The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification.

The rule execution set description is an optional item and thus may not be present. If it
is not present, the empty string is returned. For rules, only the rule name is available
and the description is initialized with an empty string.

E.3.4 Using Oracle Business Rules JSR-94 Extensions
This section covers the extensions provided in the JSR-94 implementation classes.

This section covers the following extensions:

• Using the Extended createRuleExecutionSet to Create a Rule Execution Set

• Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a RuleExecutionSet.

The helper method createRuleExecutionSet is available in the
RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet method has
the following signature:

RuleExecutionSet createRuleExecutionSet(String name,
 String description,
 RuleSource[] sources,
 String[] rulesetStack,
 Map properties)

Table E-4 describes the createRuleExecutionSet arguments.

Table E-4 createRuleExecutionSet Arguments

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

E-6

Table E-4 (Cont.) createRuleExecutionSet Arguments

Argument Description

sources Specifies an array of specifications for the sources of rules. The
RuleSource is an interface that the following classes implement:

• RLTextSource: RL Language text for RL Language text.
• RLUrlSource: RL Language URL for a URL to RL Language text.
For more information, see the oracle.rules.jsr94.admin package in
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

rulesetstack Specifies the initial contents of the RL Language ruleset stack to be set
before each time the rules are executed. The contents of the array should
be ordered from the top of stack (0th element) to the bottom of stack (last
element).

properties Oracle specific properties.

E.3.4.2 Invoking an RL Language Function in JSR-94
In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94
StatefulRuleSession interface provides access to the callFunction methods in the
oracle.rules.rl.RuleSession class.

The following example shows how you can invoke an RL Language function with no
arguments in a JSR-94 StatefulRuleSession.

import javax.rules.*;
...
StatefulRuleSession session;
...
((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

E-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Oracle Business Rules
	1.1 Introduction to Oracle Business Rules
	1.1.1 Why Use Oracle Business Rules?
	1.1.2 Understanding Oracle Business Rules Terminology
	1.1.2.1 What Are Facts and Valuesets?
	1.1.2.2 What Are Rulesets?
	1.1.2.3 What Are Dictionaries?
	1.1.2.4 What Are Globals?
	1.1.2.5 What Are Decision Functions?
	1.1.2.6 What Are Decision Points?
	1.1.2.7 What Are Business Phrases?

	1.2 Understanding Oracle Business Rules Formats
	1.2.1 Rules
	1.2.1.1 What Are Rule Conditions?
	1.2.1.2 What Are Rule Actions?
	1.2.1.3 How are Verbal Rules Different from General Rules?

	1.2.2 Decision Tables

	1.3 Oracle Business Rules Runtime and Design Time Elements
	1.3.1 Decision Component (Business Rules) in a SOA Composite Application
	1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.3.3 Oracle Business Rules RL Language
	1.3.4 Oracle Business Rules SDK
	1.3.5 Rules Designer
	1.3.6 Oracle SOA Composer Application
	1.3.7 Oracle Business Process Composer Application

	1.4 Oracle Business Rules Engine Architecture
	1.4.1 Declarative Rules
	1.4.2 The Rete Algorithm
	1.4.3 The Non-Rete Algorithm
	1.4.3.1 Configuring the Non-Rete Algorithm

	1.4.4 What Is Working Memory?
	1.4.5 Rule Firing and Rule Sessions

	2 Working with Data Model Elements
	2.1 Introduction to Working with Data Model Elements
	2.2 Introduction to Dictionaries and Dictionary Links
	2.2.1 Working with Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.4.1 How to Change the Dictionary Alias
	2.2.4.2 How to Edit the Preferences tab
	2.2.4.3 How to Edit the Data Model tab

	2.2.5 How to Link to a Dictionary
	2.2.6 How to Update a Linked Dictionary
	2.2.7 What You Need to Know About Dictionary Linking
	2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL
	2.2.11 How to Compare or Merge Two or More Dictionaries
	2.2.11.1 How to See Differences Between Dictionaries
	2.2.11.2 How to Merge Dictionaries

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Introduction to Oracle Business Rules Functions
	2.5.1 How to Add an Oracle Business Rules Function

	2.6 Localizing Oracle Business Rule Resources
	2.6.1 How to Localize the Resources in Oracle Business Rules

	3 Working with Facts and Value Sets
	3.1 Introduction to Working with Facts and Value Sets
	3.2 Working with XML Facts
	3.2.1 How to Create XML fact types
	3.2.2 How to Import the XML Schema and Add XML Facts
	3.2.3 How to Display and Edit XML Facts
	3.2.4 How to Reload XML Facts with Updated Schema
	3.2.5 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Value Sets
	3.6.1 How to Define a List of Values Global Value Set
	3.6.2 How to Define a List of Ranges Global Value Set
	3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types
	3.6.5 What You Need to Know About List of Values Value Sets
	3.6.6 What You Need to Know About Range Value Sets
	3.6.7 What You Need to Know About the Value Set Allowed in Actions Option
	3.6.8 What You Need to Know About Values

	3.7 Associating a Value Set with Business Terms
	3.7.1 How to Associate a Value Set with a Fact Property
	3.7.2 How to Associate a Value Set with Functions or Function Arguments
	3.7.2.1 How to Associate a Value Set with a Function Argument

	3.7.3 How to Associate a Value Set with a Global Value

	4 Working with Rulesets and Rules
	4.1 Introduction to Working with Rulesets, Rules, and Business Phrases
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Rule Set
	4.2.3 How to Set the Effective Date for a Rule
	4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset
	4.2.5 Using Auto Complete when Selecting Component Values from a List

	4.3 Working with Rules
	4.3.1 How to Add General Rules
	4.3.2 How to Add Verbal Rules
	4.3.3 How to Define a Test in a Rule
	4.3.4 How to Define a Test in a Verbal Rule
	4.3.5 What You Need to Know About Oracle Business Rules Test Variables
	4.3.6 How to Define Range Tests in Rules
	4.3.7 How to Define Set Tests in Rules
	4.3.8 How to Define an Action in a General Rule
	4.3.8.1 Basic Actions in a General Rule

	4.3.9 How to Define an Action in a Verbal Rule
	4.3.10 What You Need to Know About Rule Actions
	4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning

	4.4 Introduction to Verbal Rules and Business Phrases
	4.4.1 Working with Business Phrases
	4.4.1.1 Business Phrases Tab
	4.4.1.2 Draft Business Phrases and Verbal Rules

	4.4.2 How to Create Business Phrases
	4.4.2.1 Example Business Phrase Creation Scenario
	4.4.2.2 Translating Business Phrases

	4.4.3 Choosing or Adding Business Phrases in Verbal Rules
	4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule
	4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule
	4.4.3.3 Derived Business Phrases
	4.4.3.4 Choosing Which Business Phrases to See in the List

	4.5 Validating Dictionaries
	4.5.1 Understanding Data Model Validation
	4.5.2 Understanding Rule Validation
	4.5.3 Understanding Decision Table Validation
	4.5.4 How to Validate a Dictionary

	4.6 Using Advanced Settings with Rules and Decision Tables
	4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.6.2 How to Select the Advanced Mode Option
	4.6.3 How to Select the Active Option
	4.6.4 How to Select the Logical Option
	4.6.5 How to Set a Priority for a Rule
	4.6.6 How to Specify Effective Dates

	4.7 Working with Nested Tests
	4.8 Working with Advanced Mode Rules
	4.8.1 How to Use Advanced Mode Pattern Matching Options
	4.8.2 How to Use Advanced Mode Matched Fact Naming
	4.8.3 How to Use Advanced Mode Action Forms
	4.8.3.1 Advanced Mode Action Options in Rule Designer

	4.8.4 How to Use Advanced Mode Aggregate Conditions
	4.8.4.1 Using Aggregate Functions

	4.8.5 What You Need to Know About Advanced Mode Rules
	4.8.5.1 How to Clear Advanced Mode Option

	4.9 Working with Extended Tests
	4.9.1 Extended Test Forms

	4.10 Working with Tree Mode Rules
	4.10.1 Sample Abbreviated PO XML Instance
	4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)
	4.10.3 Understanding Advanced Tree Mode Rules
	4.10.4 How to Create Simple Tree Mode Rules
	4.10.5 How to Create Advanced Tree Mode Rules
	4.10.6 What You Need to Know About Tree Mode Rules

	4.11 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.11.1 How to Use the Current Date Fact
	4.11.2 What You Need to Know About Effective Dates
	4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.12 Introduction to Expression Builder
	4.12.1 How to Use the Expression Builder
	4.12.2 What You Need to Know About Working with Expressions

	4.13 Using Value Sets as Constraints for Options Values in Rules
	4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term
	4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property
	4.13.3 How to Use Value Sets to Provide Options for Test Expressions

	4.14 Importing Runtime Rules Changes From Repository Into JDeveloper
	4.15 How to Model Rules When the Data Model is Deep

	5 Working with Decision Tables
	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.1.1 What You Need to Know About Decision Table Conditions
	5.1.1.2 What You Need to Know About Decision Table Actions
	5.1.1.3 What You Need to Know About Decision Table Rules

	5.1.2 Understanding Condition Cell Values
	5.1.3 Understanding Action Cell Values
	5.1.4 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Use or Specify the Value Set for a Decision Table Condition
	5.2.4 How to Add Actions to a Decision Table
	5.2.4.1 How to Set Values for Action Cells in a Decision Table
	5.2.4.2 How to Deselect an Action Cell in a Decision Table

	5.2.5 How to Add a Rule to a Decision Table
	5.2.6 How to Define Tests in a Decision Table

	5.3 Introduction to Decision Table Operations
	5.3.1 Understanding Decision Table Split and Compact Operations
	5.3.1.1 Understanding Decision Table Move Operations
	5.3.1.2 Understanding Decision Table Gap Checking
	5.3.1.3 Understanding Decision Table Conflict Analysis

	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Use the Condition Cell Operations
	5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table
	5.3.4.2 How to Split a Cell in a Condition in a Decision Table
	5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table
	5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:

	5.3.5 How to Perform Decision Table Gap Checking
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Value Sets to the Data Model for Order Approval
	5.4.5.1 How to Add CreditScore Value Set to the Data Model

	5.4.6 How to Associate Value Sets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.7.1 How to Create an action in a Decision Table
	5.4.7.2 Split the Cells in the Decision Table and Add Actions
	5.4.7.3 How to Add Actions for Each Rule in the Decision Table
	5.4.7.4 Compact the Decision Table
	5.4.7.5 Replace Several Specific Rules with One General Rule
	5.4.7.6 Add a General Rule
	5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	5.5 Editing Decision Tables in Microsoft Excel
	5.5.1 Understanding What is Exported
	5.5.2 How to Export Decision Tables
	5.5.3 How to Import Edited Decision Tables Back to the Dictionary
	5.5.4 How to Edit Decision Tables in Excel
	5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells
	5.5.4.2 Adding or Removing Value Sets
	5.5.4.3 Showing or Hiding Value Sets and Editing the Description
	5.5.4.4 Setting Preferences
	5.5.4.5 Using Simple or Advanced Mode
	5.5.4.6 Hiding or Showing the Readme Worksheet
	5.5.4.7 Editing Condition Cells
	5.5.4.8 Editing Actions
	5.5.4.9 Editing Expressions
	5.5.4.10 Editing Action Expression Parameters
	5.5.4.11 Editing Descriptions
	5.5.4.12 Using the Auto-Addition Feature
	5.5.4.13 Aliases of Values in the Value Sets Worksheet
	5.5.4.14 Syncing Value Sets and Conditions

	6 Working with Decision Functions
	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Edit an Existing Decision Function
	6.2.2 How to Change the Order of Inputs
	6.2.3 How to Change the Order of Outputs
	6.2.4 How to Edit a Decision Function

	6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules
	6.4 What You Need to Know to About Decision Function Arguments
	6.5 What You Need to Know About the Decision Function Stateless Option

	7 Testing and Validating Business Rules
	7.1 Overview
	7.1.1 Components of the Test Feature

	7.2 Testing Rules in JDeveloper
	7.2.1 How to Create and Manage Test Suites and Cases
	7.2.2 How to Create Test Templates
	7.2.3 How to Run Test Suites or Cases
	7.2.4 How to Run Ad-hoc Tests from Test Templates
	7.2.5 How to Run Tests for a Specific Decision Function

	7.3 Testing Rules in Business Process Composer
	7.4 Testing Rules in SOA Composer
	7.4.1 How to Create and Manage Test Suites and Cases
	7.4.2 How to Create Test Templates
	7.4.3 How to Run Test Suites or Cases
	7.4.4 How to Run Ad-hoc Tests from Test Templates
	7.4.5 How to Run Tests for a Specific Decision Function

	7.5 Testing Decision Functions Using a Rules Function
	7.5.1 What You Need to Know About Testing Decision Functions

	7.6 Testing Decision Services in SOA Composites

	8 Working with Rules in Standalone (Non SOA/BPM) Scenarios
	8.1 Loading a Dictionary from the Repository
	8.2 Executing a Rule Dictionary
	8.3 Introduction to the Rules SDK Decision Point API
	8.3.1 Working with Decision Point API
	8.3.2 How to Obtain the Car Rental Sample Application
	8.3.3 How to Open the Car Rental Sample Application and Project

	8.4 Creating a Dictionary for Use with a Decision Point
	8.4.1 How to Create Data Model Elements for Use with a Decision Point
	8.4.2 How to View a Decision Function to Call from the Decision Point
	8.4.3 How to Create Rules or Decision Tables for the Decision Function
	8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	8.5 Creating a Java Application Using Rules SDK Decision Point
	8.5.1 How to Add a Decision Point Using Decision Point Builder
	8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary
	8.5.3 How to Use Executor Service to Run Threads with Decision Point
	8.5.4 How to Create and Use Decision Point Instances
	8.5.4.1 Sample Code to Create a Decision Point Instance with getInstance()

	8.6 Running the Car Rental Sample
	8.6.1 Sample Output from Car Rental

	8.7 What You Need to Know About Using Decision Point in a Production Environment
	8.8 What You Need to Know About Decision Point and Decision Tracing
	8.8.1 Sample Usage of Decision Tracing

	9 Creating a Rule-enabled Non-SOA Java EE Application
	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Develop Accessible ADF Faces Pages
	9.2.3 How to Create the Grades Project
	9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4.1 How to generate JAXB 2.0 content model from grades schema

	9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Value Sets for Grades Sample Application
	9.3.2 How to Associate a Value Set with a Fact Property
	9.3.3 How to Add a Decision Table for Grades Sample Application
	9.3.4 How to Add an Action to a Decision Table
	9.3.5 How to Add Rules in the Decision Table for Grades Sample Application
	9.3.6 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

	10 Working with Oracle Business Rules and ADF Business Components
	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type
	10.1.2.1 Sample ActionType Implementation

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.1.1 Setting the Decision Point Transaction
	10.2.1.2 Setting Runtime Properties
	10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
	10.2.1.4 What You Need to Know About Decision Point Invocation
	10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method
	10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method

	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Create ADF Business Components Application for Business Rules
	10.3.3 How to Update View Object Tuning for Business Rules Sample Application
	10.3.4 How to Create a Dictionary for Oracle Business Rules
	10.3.5 How to Add Decision Point Dictionary Links
	10.3.6 How to Import the ADF Business Components Facts
	10.3.6.1 How to Mark a Property as Non-visible
	10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

	10.3.7 How to Add and Run the Outside Manager Ruleset
	10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision Function
	10.3.7.2 How to Create the ActionType Java Implementation Class
	10.3.7.3 How to Import the Message Action Java Fact
	10.3.7.4 How to Add the Find Managers Rule
	10.3.7.5 How to Add the Outside Manager Finder Class
	10.3.7.6 How to Update ADF META INF for Local Dictionary Access
	10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location
	10.3.7.8 How to Build and Run the Project to Check the Outside Manager Finder

	10.3.8 How to Add and Run the Department Manager Ruleset
	10.3.8.1 How to Add the Department Manager Finder Ruleset
	10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset
	10.3.8.3 How to Add Retract Employees Ruleset
	10.3.8.4 How to Add the Find Department Managers Decision Function
	10.3.8.5 How to Add the Department Manager Finder Java Class
	10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location
	10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule

	10.3.9 How to Add and Run the Raises and Retract Employees Rulesets
	10.3.9.1 How to Add the Raises Ruleset
	10.3.9.2 How to Create the Raise ActionType Java Implementation Class
	10.3.9.3 How to Import the Raise Action Java Fact
	10.3.9.4 How to Add the 12 Year Raise Rule
	10.3.9.5 How to Add the Employee Raises Decision Function
	10.3.9.6 How to Add the Employee Raises Java Class
	10.3.9.7 How to Copy Dictionary to MDS Accessible Location
	10.3.9.8 How to Build and Run the Project to Check the Raises Rule

	11 Working with Decision Components in SOA Applications
	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

	12 Using Oracle SOA Composer with Oracle Business Rules at Runtime
	12.1 Introduction to Oracle SOA Composer
	12.1.1 Creating and Publishing Sessions
	12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary
	12.1.1.2 Creating a Bookmark
	12.1.1.3 Reviewing Dictionary Settings

	12.1.2 Using Oracle SOA Composer User Authentication
	12.1.3 What You Need to Know About SOA Composer Access Control and User Authentication

	12.2 Setting Accessibility Options
	12.2.1 How to Set Accessibility Features Before Logging In
	12.2.2 How to Set Accessibility Options After Logging In

	12.3 Opening and Viewing an Oracle Business Rules Dictionary
	12.3.1 How to View and Edit Rulesets
	12.3.1.1 How to Add Verbal Rules in SOA Composer

	12.3.2 How to View and Edit Value Sets
	12.3.3 How to View and Edit Globals
	12.3.4 How to View and Edit Business Phrases
	12.3.5 How to View and Edit Tests
	12.3.6 How to View Explorer
	12.3.7 How to View and Edit Facts
	12.3.8 How to View Decision Functions
	12.3.9 How to View Linked Dictionary Names
	12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary
	12.3.11 How to View and Edit Translations

	12.4 Getting Started with Editing a Dictionary
	12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer
	12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements
	12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary
	12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary
	12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary
	12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.5 Editing Rules in an Oracle Business Rules Dictionary
	12.5.1 Using the Rulesets Tab
	12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary
	12.5.3 How to Add a Rule
	12.5.4 How to Delete a Rule
	12.5.5 How to Show and Edit Advanced Settings for Rules
	12.5.6 How to Add Rule Conditions
	12.5.7 How to Delete Rule Conditions
	12.5.8 How to Modify Rule Conditions
	12.5.9 How to Add Rule Actions
	12.5.10 How to Delete Rule Actions
	12.5.11 How to Modify Rule Actions
	12.5.12 How to Work with Advanced Mode Rules
	12.5.12.1 Working with Advanced Mode Options

	12.5.13 How to Work with Extended Tests
	12.5.14 How to Work with Tree Mode Rules
	12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative Component
	12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.6 Using the Oracle SOA Composer Browser Windows
	12.6.1 Expression Builder
	12.6.2 Condition Browser
	12.6.3 Date Browser
	12.6.4 Right Operand Browser

	12.7 Editing Decision Tables in an Oracle Business Rules Dictionary
	12.7.1 Adding a Decision Table
	12.7.2 Adding Condition Rows to a Decision Table
	12.7.3 Adding Actions to a Decision Table
	12.7.4 Adding Rules to a Decision Table
	12.7.4.1 Editing Decision Table Cells
	12.7.4.2 Controlling the Order of Rules in a Decision Table

	12.7.5 Deleting Rules in a Decision Table
	12.7.6 Defining Tests in a Decision Table
	12.7.7 Splitting and Compacting a Decision Table
	12.7.8 Checking for Missing Rules in a Decision Table
	12.7.9 Performing Conflict Resolution in Decision Tables
	12.7.10 Switching From Rows to Columns
	12.7.11 Working with Advanced Mode Options in a Decision Table
	12.7.12 Deleting a Decision Table
	12.7.13 Editing Decision Tables in Microsoft Excel
	12.7.13.1 Understanding What is Exported
	12.7.13.2 How to Export Decision Tables
	12.7.13.3 How to Import Decision Tables to the Dictionary
	12.7.13.4 How to Edit Decision Tables in Excel

	12.7.14 What You Need to Know About Rule Test Variables

	12.8 Comparing and Merging Oracle Business Rules Dictionaries
	12.8.1 How to see Differences Between Dictionaries

	12.9 Localizing Names of Resources in Oracle Business Rules
	12.9.1 How to Localize the Alias of a Oracle Business Rules Component

	12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates
	12.11 Validating and Diagnosing an Oracle Business Rules Dictionary
	12.11.1 Understanding the Validation Log Tab
	12.11.2 Understanding the Diagnostics Tab
	12.11.3 Understanding the History Center Tab
	12.11.4 Understanding the Save Log Tab

	12.12 Working with Tasks
	12.12.1 How to View Task Metadata
	12.12.2 How to Configure a Task or an AMX Rule Metadata
	12.12.2.1 Configuring Event-Driven Settings
	Setting Approval Aggregation Requirements
	Notifying Errors
	Setting Assignment and Routing Policy
	Setting Expiration and Escalation Policy
	Configuring Notification Settings
	Configuring Task Access Settings

	12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

	Appendices
	A Oracle Business Rules Files and Limitations
	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

	B Oracle Business Rules Built-in Classes and Functions
	B.1 String Classes
	B.2 List Classes
	B.3 Numeric Classes
	B.4 Time and Duration Classes
	B.5 Miscellaneous Classes
	B.6 Functions

	C Oracle Business Rules Frequently Asked Questions
	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.3.1 Sample RuleSession Shared Objects
	C.3.2 Sample RuleSession Producer Code
	C.3.3 Sample RuleSession Consumer Code

	C.4 How Do I Correctly Express a Self-Join?
	C.4.1 Sample Find All Combinations of Fact F
	C.4.2 Sample Finding Combinations of Fact F
	C.4.3 Sample Fast Complete Comparison

	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Put Java Code in a Rule?
	C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.9 How Do I Enable Debugging in a BPEL Decision Service?
	C.10 How Do I Support Versioning with Oracle Business Rules?
	C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.14 How Do I Use Rules SDK to Include a null in an Expression?
	C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.16 Using a Source Code Control System with Rules Designer

	D Oracle Business Rules Troubleshooting
	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Runtime NoClassDefFound Error
	D.4 RL Specific Keyword Naming Conflict Errors
	D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.8 How Are Decision Service Input Output Element Types Restricted?
	D.9 How Are Decision Service Input Output Schema Restricted?
	D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

	E Working with Oracle Business Rules and JSR-94 Execution Sets
	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions
	E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	E.3.4.2 Invoking an RL Language Function in JSR-94

