Oracle® Fusion Middleware
Developing Applications for Event Processing
with Oracle Stream Analytics

12¢ Release (12.2.1.3.0)
E98693-01
August 2018

ORACLE"

Oracle Fusion Middleware Developing Applications for Event Processing with Oracle Stream Analytics, 12¢
Release (12.2.1.3.0)

E98693-01
Copyright © 2007, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xiii
Documentation Accessibility Xiii
Related Documents Xiii
Conventions Xiv

What's New in This Guide

1 Introduction to Application Development
1.1 EPN Diagram 1-1
1.2 Component Configuration 1-2
1.3 Streams and Relations 1-4
1.4 Application Scalability and High Availability 1-5
1.5 Application Life Cycle 1-5
1.6 API Overview 1-8
1.7 Spring Framework 1-12
1.8 OSGi Service Platform 1-12

2 Application and Resource Configuration

2.1 Application Configuration 2-1
2.2 Assembly File Structure 2-2
2.2.1 Nested Stages in an EPN Assembly File 2-3
2.2.2 Foreign Stages in an EPN Assembly File 2-4

2.3 Component Configuration File Structure 2-5
2.4 Component and Server Configuration 2-5
2.5 Resource Access Configuration 2-6
2.5.1 Resource Access Annotations 2-7
2.5.2 Static Resource Injection 2-7
25.2.1 Static Resource Names 2-7

2.5.2.2 Dynamic Resource Names 2-8

ORACLE iii

2.5.3 Dynamic Resource Injection 2-9
2.5.4 Dynamic Resource Lookup Using JNDI 2-9
25,5 Resource Name Resolution 2-10

3 Events and Event Types

3.1 How Events Function 3-1
3.2 Choose a Data Structure for the Event Type 3-1
3.3 Design Constraints 3-3
3.4 Event Type Repository 3-5
3.5 Properties 3-6
3.6 Interval and Time Stamp Properties 3-6
3.6.1 Interval Properties 3-6
3.6.2 Time Stamp with Local Time Zone Properties 3-7
3.7 Create and Register a JavaBean Event Type 3-8
3.7.1 Data Types 3-8
3.7.2 Create a JavaBean Event Type Declaratively 3-8
3.7.3 Create a JavaBean Event Type Programmatically 3-9
3.7.4 Usages 3-9
3.8 Create and Register a Tuple Event Type 3-10
3.8.1 Create a Tuple Event Type in the Assembly File 3-11
3.8.2 Use a Tuple Event Type in Java Code 3-11
3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code 3-12
3.9 Create and Register a Map Event Type 3-12
3.10 Access the Event Type Repository 3-14
3.10.1 EPN Assembly File 3-14
3.10.2 Spring-DM @ServiceReference Annotation 3-15
3.10.3 Oracle Stream Analytics @Service Annotation 3-15
3.11 Share Event Types Between Application Bundles 3-15
3.12 Control Event Type Instantiation with an Event Type Builder Class 3-16
3.12.1 Implement an Event Type Builder Class 3-16
3.12.2 An Event Type that Uses an Event Type Builder 3-17
4 Adapters
4.1 Create Adapters 4-1
4.2 Cluster Distribution Service 4-2
4.3 Password Encryption 4-2
4.4 JAXB Support 4-3
4.4.1 EclipseLink Moxy 4-3
442 APIs 4-3

ORACLE iv

4.5 CSV Adapters
4.6 EDN Adapters
4.6.1 Usage
4.6.2 Create EDN Adapters
4.7 File Adapter
4.8 HTTP Publish-Subscribe Adapter
4.9 HTTP Publish-Subscribe Adapter Custom Converter Bean
4.9.1 Bayeux Protocol
4.9.2 Create a Custom Converter Bean
4.10 JMS Adapters
4.10.1 Service Providers
4.10.2 Inbound Adapter Configuration
4.10.2.1 Single and Multithreaded Inbound JMS Adapters

4,10.2.2 Configure a JMS Adapter for Durable Subscriptions

4.10.3 Outbound Adapter Configuration
4.11 JMS Custom Message Converter Bean
4.11.1 Implement Interfaces
4.11.2 Implement the Inbound JMS Adapter
4.11.3 Implement the Outbound JMS Adapter
4,12 Oracle Business Rules Adapter
4.13 QuickFix Adapter

4.13.1 Supported QuickFIX Versions and Unsupported Message Types

4.13.2 Configure QuickFix Adapters
4.13.3 Configure a Socket-Based Acceptor Failover
4.14 REST Adapter
4,15 RMI Adapters
4.16 Twitter Adapter
4.16.1 Configuration of the Twitter Adapter
4.16.2 Dependencies for the Twitter Adpater
4.16.3 Twitter Inbound Adapter
4.16.4 Example with the Filter Option
4.17 MQTT Adapter
4.17.1 MQTT Configuration Parameters
4.17.2 MQTT Receiver EPN
4.17.3 MQTT Sender EPN
4.18 Kafka Adapter
4.18.1 Inbound Adapter receiving messages from Kafka
4.18.2 Outbound Adapter sending messages to Kafka
4.18.3 Kafka Configuration
4.19 Coherence Adapter
4.19.1 Coherence Inbound Adapter

ORACLE

4-6

4-7
4-8
4-9
4-9

4-10

4-10

4-11

4-12

4-12

4-13

4-13

4-13

4-14

4-14

4-15

4-15

4-16

4-17

4-19

4-19

4-20

4-21

4-21

4-23

4-24

4-24

4-24

4-24

4-26

4-27

4-29

4-33

4-33

4-34

4-35

4-35

4-36

4-38

4-39

4.19.2 Coherence Outbound Adapter 4-40
4.19.3 OracleCoherenceCache 4-41
4.19.4 EmployeeEvent 4-41

5 Channels

5.1 When to Use a Channel 5-1
5.2 Channel Configuration 5-2
5.2.1 Assembly File 5-2
5.2.2 Configuration File 5-3

5.3 Control Which Queries Output to a Downstream Channel 5-3
5.4 Batch Processing Channels 5-4
5.5 Fault Handling 5-4
5.6 EventPartitioner Channels 5-5
5.7 Distributed Flows 5-5
5.7.1 Examples of Distributed Flows 5-6
5.7.2 Local Partitioning Channel 5-6

6 Oracle CQL Processors

6.1 Processor Data Sources 6-1
6.2 Assembly and Configuration Files 6-2
6.3 Queries 6-2
6.3.1 Stream Channels 6-3
6.3.2 Time-Based Relations (Windows) 6-3
6.3.2.1 Stream to Relation Operators 6-4

6.3.2.2 Relation to Stream Operators 6-6

6.3.2.3 NOW and Last Event Windows 6-7

6.3.3 Processor Output Control (Slides) 6-7
6.3.4 Views 6-8

6.4 CQL Aggregations 6-10
6.5 Configure a Table Source 6-10
6.5.1 Assembly File 6-10
6.5.2 Configuration File 6-11

6.6 Configure an Oracle CQL Processor for Parallel Query Execution 6-12
6.6.1 Set Up Parallel Query Execution Support 6-12
6.6.2 The ordering-constraint Attribute 6-13
6.6.3 Using patrtition-order-capacity with Partitioning Queries 6-13
6.6.4 Limitations 6-15

6.7 Fault Handling 6-15
6.7.1 Implement a Fault Handler Class 6-16

ORACLE vi

6.7.2 Register a Fault Handler 6-18
V4 Event Beans
7.1 Event Beans and Spring Beans 7-1
7.1.1 Threading Behavior 7-2
7.1.2 Receive Heartbeat Events 7-2
7.1.3 Create an Event Bean 7-2
7.1.4 Create a Spring Bean 7-3
7.2 Event Sink Interfaces 7-4
7.2.1 Implement StreamSink 7-4
7.2.2 Implement RelationSink 7-5
7.3 Event Source Interfaces 7-6
7.3.1 Implement StreamSender 7-7
7.3.2 Implement RelationSender 7-8
8 Cached Event Data
8.1 Caching Defined 8-1
8.1.1 Supported Caching Implementations 8-2
8.1.2 Use Cases 8-2
8.2 Configure an Oracle Coherence Caching System and Cache 8-3
8.2.1 Assembly File 8-4
8.2.2 Configuration File 8-5
8.2.3 Cache Loader Bean 8-7
8.3 Configure a Local Caching System and Cache 8-8
8.3.1 Assembly File 8-8
8.3.2 Configuration File 8-8
8.4 Configure a Cache as an Event Listener 8-10
8.5 Index a Cache with a Key 8-10
8.5.1 Assembly File 8-10
8.5.2 Metadata Annotation 8-11
8.5.3 Composite Key 8-11
8.6 Configure a Cache as an Event Source 8-11
8.7 Configure a Cache with a Cache Listener 8-12
8.8 Configure a Third-Party Caching System and Cache 8-12
8.9 Exchange Data Between a Cache and Another Data Source 8-14
8.9.1 Load Cache Data from a Read-Only Data Source 8-15
8.9.2 Exchange Data with a Read-Write Data Source 8-16
8.10 Access a Cache from Application Code 8-17
8.10.1 Access a Cache from an Oracle CQL Statement 8-18

ORACLE

Vii

8.10.2 Access a Cache from an Adapter 8-21
8.10.3 Access a Cache From a Business POJO 8-21
8.10.4 Access a Cache From an Oracle CQL User-Defined Function 8-22
8.10.5 Access a Cache with IMX 8-23
8.10.5.1 How to Access a Cache With JMX Using Oracle Stream
Analytics Visualizer 8-23
8.10.5.2 How to Access a Cache With IMX Using Java 8-23
O EclipseLink, JPA, and Oracle Coherence
9.1 High-Level Procedure 9-1
9.2 HelloWorld Example 9-2
9.2.1 persistence.xml Configuration File 9-2
9.2.2 HelloWorldAdapter.java 9-2
9.2.3 HelloWorldEvent.java 9-4
9.2.4 HelloWorldBean.java 9-4
9.3 JPA Coherence Example 9-6
9.3.1 persistence.xml Configuration File 9-6
9.3.2 Classes 9-6
9.3.2.1 CoherenceMapListener.java 9-7
9.3.2.2 PriceTarget.java 9-8
9.3.2.3 PriceTargetLoader.java 9-8
9.3.2.4 SaleEvent.java 9-10
9.3.2.5 SaleEventsGenerator.java 9-10
10 Web Services
10.1 Supported Platforms 10-1
10.2 Invoke a Web Service From an Application 10-1
10.3 Expose an Application as a Web Service 10-2
11 Parameterized Applications
11.1 Application Parameters 11-1
11.2 Object Class Definitions 11-1
11.3 Attribute Descriptions 11-2
11.4 Targeting 11-2
11.5 Example metatype File 11-3
11.6 Where You Can Use Parameterized Applications 11-4
11.6.1 Document an Application 11-4
11.6.2 Channel Configuration 11-4
11.6.3 Oracle CQL Processor Query 11-5

ORACLE

viii

11.7 Deploy the HelloWorld Application 11-5
12 Internationalization
12.1 Message Catalogs 12-1
12.1.1 Hierarchy 12-2
12.1.2 Naming 12-2
12.1.3 Message Arguments 12-3
12.1.4 Formats 12-4
12.1.5 Message Catalog Localization 12-5
12.2 Generate Localization Classes 12-6
13 Assemble and Deploy
13.1 OSGi bundles 13-1
13.2 Application Dependencies 13-2
13.3 Application Libraries 13-3
13.3.1 Library Directory 13-3
13.3.2 Library Extensions Directory 13-3
13.4 Deployment Order 13-3
13.5 Configuration History 13-4
13.6 Assemble an OSGi Bundle with appC 13-4
13.7 Assemble an OSGi Bundle with bundle.sh 13-6
13.7.1 Prepare and Organize the Files 13-7
13.7.2 Create the MANIFEST.MF File 13-7
13.7.3 Include Third-Party JAR Files 13-9
13.7.4 Access Third-Party JAR Files with -Xbootclasspath 13-10
13.7.5 Reference Foreign Stages 13-10
13.7.6 Assemble an OSGi Bundle that Activates 13-11
13.7.6.1 Command Location, Syntax, and Arguments 13-11
13.7.6.2 Assemble an OSGi Bundle 13-13
13.8 Deploy an OSGi Bundle 13-14
14 Testing 1-2-3
14.1 Load Generator and the csvgen Adapter 14-1
14.1.1 Create the Properties File 14-2
14.1.2 Create the Data Feed File 14-2
14.1.3 Configure the csvgen Adapter in Your Application 14-3
14.2 Event Inspector Service 14-4
14.2.1 Event Types 14-5
14.2.2 HTTP Publish-Subscribe Channel and Server 14-6
ORACLE ix

14.2.3 Configure a Local or Remote Server 14-7

14.2.4 Inject Events 14-8
14.2.5 Trace Events 14-9
14.2.6 Event Inspector API 14-9
14.3 EPN Shell 14-10
14.3.1 Oracle CQL Queries 14-11
14.3.2 Management Commands 14-12
14.3.3 Regression Testing 14-13
14.3.4 EPN Variable 14-13
14.3.5 EPN Commands 14-14
14.3.6 Management Commands 14-14
14.4 EPN Command Interface 14-15
14.4.1 Session Variables 14-15
14.4.2 Methods 14-15
14.4.3 Example 14-17

15 Debug with Event Record and Playback

15.1 Event Flow 15-1
15.2 Berkeley DB 15-2
15.3 Record Events 15-2
15.4 Play Back Events 15-3
15.5 Configure Berkeley DB 15-3
15.6 Configure a Component to Record Events 15-4
15.7 Configure a Component to Play Back Events 15-7
15.8 Start and Stop the Record and Playback of Events 15-9

16 Performance Tuning

16.1 Channel and JMS Performance Tuning 16-1
16.2 High Availability Performance Tuning 16-1

17 High Availability Applications

17.1 Oracle Coherence 17-1
17.2 Architecture 17-1
17.3 Life Cycle and Failover 17-2
17.3.1 Secondary Failure 17-3
17.3.2 Primary Failure and Failover 17-3
17.3.3 Rejoining the High Availability MultiServer Domain 17-4
17.4 Deployment Group and Notification Group 17-4
17.5 High Availability Adapters 17-5

ORACLE X

17.5.1 High Availability Input Adapter
17.5.2 Buffering Output Adapter
17.5.3 Broadcast Output Adapter
17.5.4 Correlating Output Adapter
17.6 High Availability and Scalability
17.7 Choose a Quality of Service Option

17.7.1 Simple Failover

17.7.2 Simple Failover with Buffering
17.7.3 Light-Weight Queue Trimming
17.7.4 Precise Recovery with IMS

17.8 Design Applications for High Availability

17.8.1 Primary High Availability Use Case
17.8.2 High Availability Design Patterns

17.8.2.1

17.8.2.2

17.8.2.3
17.8.2.4
17.8.2.5
17.8.2.6
17.8.2.7
17.8.2.8
17.8.2.9

Select the Minimum High Availability Your Application can

Tolerate

Use High Availability Components at All Ingress and Egress

Points

Preserve What You Need

Limit Oracle Stream Analytics Application State
Choose an Adequate warm-up-window-length Time
Ensure Applications are ldempotent

Source Event Identity Externally

Understand the Importance of Event Ordering

Write Oracle CQL Queries with High Availability in Mind

17.8.2.10 Avoid Coupling Servers

17.8.2.11

Plan for Server Recovery

17.8.3 Oracle CQL Query Restrictions

17.8.3.1
17.8.3.2
17.8.3.3
17.8.3.4
17.8.3.5
17.8.3.6

Range-Based Windows

Tuple-Based Windows

Partitioned Windows

Sliding Windows

DURATION Clause and Non-Event Detection
Prefer Application Time

17.9 Configure High Availability Quality of Service

17.9.1 Configure a Simple Failover

17.9.2 Configure Simple Failover With Buffering

17.9.3 Configure Light-Weight Queue Trimming
17.9.4 Configure Precise Recovery With JMS

17.10 Configure High Availability Adapters
17.10.1 Configure the High Availability Input Adapter
17.10.2 Configure the Buffering Output Adapter
17.10.3 Configure the Broadcast Output Adapter

ORACLE

17-6
17-7
17-7
17-7
17-8
17-9
17-9
17-10
17-10
17-11
17-12
17-13
17-13

17-14

17-14
17-14
17-14
17-14
17-16
17-16
17-16
17-17
17-17
17-18
17-18
17-18
17-18
17-18
17-18
17-18
17-19
17-19
17-19
17-21
17-23
17-29
17-34
17-34
17-36
17-38

Xi

17.10.4 Configure the Correlating Output Adapter 17-40

18 Scalable Applications

18.1 Default Channel Scalability Settings 18-1
18.1.1 Configure Partitioning on the Channel 18-2
18.1.2 Configure Parallel Processing on the Channel 18-2
18.1.3 Configure Parallel Processing on the Upstream Adapter 18-3
18.1.4 Define a Local Partition Channel 18-3

18.2 Partition an Incoming JMS Event Stream 18-4
18.2.1 Configure Partitioning without High Availability 18-4
18.2.2 Configure Partitioning with High Availability 18-6

18.3 Natification Group Naming Conventions 18-11

18.4 Custom Channel Event Partitioner 18-12
18.4.1 EventPartitioner Interface 18-12
18.4.2 Implement the EventPartitioner Interface 18-13

ORACLE Xii

Preface

This document describes how to create, deploy, and debug Oracle Stream Analytics
applications.

Audience

This document is intended for developers who want to create Oracle Stream Analytics
applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: / / www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

For more information, see the following:

ORACLE

Known Issues for Oracle SOA Products at: http://www.oracle.com//technetwork/
middleware/soasuite/documentation/soaknownissues122120-3111966.html.

Administering Oracle Stream Analytics

Getting Started with Event Processing for Oracle Stream Analytics
Schema Reference for Oracle Stream Analytics

Using Visualizer for Oracle Stream Analytics

Customizing Event Processing for Oracle Stream Analytics
Developing Applications with Oracle CQL Data Cartridges

Oracle CQL Language Reference

Java API Reference for Oracle Stream Analytics

Using Oracle Stream Analytics

Getting Started with Oracle Stream Analytics

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com//technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html
http://www.oracle.com//technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html

Preface

* Oracle Database SQL Language Reference at: http://docs. oracl e. conf cd/
E16655_01/server. 121/e€17209/toc. ht m

* SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

e Oracle Stream Analytics Forum: http://foruns. oracl e. com f or uns/ f orum j spa?
forum D=820.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xiv

http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://forums.oracle.com/forums/forum.jspa?forumID=820
http://forums.oracle.com/forums/forum.jspa?forumID=820

What's New Iin This Guide

ORACLE

Screens shown in this guide may differ from your implementation, depending on the
skin used. Any differences are cosmetic.

The following changes have been made in this guide for the 12¢ 12.2.1 release:

* Renamed product from Oracle Stream Explorer to Oracle Stream Analytics.
e Support for new adapters.

» Deprecated support for QuickFix Adapter.

XV

Introduction to Application Development

An Oracle Stream Analytics application monitors and processes streaming data in real
time. Streaming data flows into, through, and out of an application. Raw data flows into
the application and is converted into events. Events flow through application stages for
processing and filtering according to your application requirements. At the end, the
application converts the processed and filtered events back to data in a format that is
suitable for the destination, which could be, for example, storage, display on a web
page, or further processing by another application.

The getting started guide presents an overview of Oracle Stream Analytics, provides
hands-on walkthroughs, and describes the sample applications. This guide explains
how to create, configure, and deploy an Oracle Stream Analytics application with the
components provided in the platform.

This chapter includes the following sections:
 EPN Diagram

e Component Configuration

* Streams and Relations

» Application Scalability and High Availability
* Application Life Cycle

* API Overview

e Spring Framework

* OSGi Service Platform.

1.1 EPN Diagram

ORACLE

Oracle Stream Analytics application development centers on the Event Processing
Network (EPN) application model. The EPN diagram represents how event data flows
into, through, and out of an Oracle Stream Analytics application. You assemble the
EPN diagram in Oracle JDeveloper by selecting and configuring EPN components and
providing logic as needed. In an EPN diagram, event data flows from left to right.

The figure shows the EPN diagram for the TradeReport application. Data enters the

EPN through the StockTradeCSV adapter on the left, which handles data in the form
of comma-separated values (CSV). The StockTradeCSVadapter logic translates the

incoming CSV data into Oracle Stream Analytics events. The AdapterOutputChannel
carries the newly generated events to the Oracle CQL processor.

The GetHighVolumeProcessor component queries the events as they stream through
and selects stock trades that have a volume greater than 4000. The
ProcessorOutputChannel component sends the selected events to the ListenerBean
component, which prints their stock symbol and volume information to the command
line.

1-1

Chapter 1
Component Configuration

%g EPN Dizgram

@ S 100% ~ ZeFull EPN ~ 8@

S — V—<=_+—@

AdapterOutputChannel ProcessorOutputChannel
StockTradeCSVAdapter GetHighWolumeProcessor _—

I

ListenerBean

EPM Diagram Ewent Types [|

A walkthough of the TradeReport application and a fraud detection application are
included.

1.2 Component Configuration

ORACLE

When you develop an Oracle Stream Analytics application, you assemble and
configure a network of components into an EPN.

Each component has a role in processing the data. The following sections describe
EPN components and their roles.

Events and Event Types

An event type is a data structure that defines the data contained in an event. Event
types are the foundation of the EPN because they determine how event data funnels
through the EPN and the operations that can be performed on it. When you start your
application, the first thing to do is to create the event type or types for your EPN
because you will need to configure components such as adapters, channels, relational
database tables, and big data storage with the appropriate event type.

Adapters

Oracle Stream Analytics provides a selection of input and output adapters to
accommodate every type of data that might flow into and out of the EPN. For example,
you can access Java Message Service (JMS) objects, an HTTP Publish-Subscribe
server, and financial market feeds. You can also develop your own adapters to
integrate systems that are not supported by default.

You configure adapters with an event type and other relevant configuration
information. The specific configuration depends on whether the adapter handles event
input or output and the source of the data. For example, in the TradeReport
application, the input CSV adapter configuration specifies the location of the CSV file,
and values that tell the adapter when to start reading the CSV file and how long to wait
between consecutive readings.

Channels

You configure a channel with an event type so that it can transfer events of that type to
the next stage in the EPN that is appropriate for the given event type. A channel can
represent either a stream or a relation.

A stream or relation channel inserts events into a collection and sends the resulting
stream to the next EPN stage. Events in a stream can never be deleted from the
stream. Events in a relation can be inserted into, deleted from, and updated in the
relation. For insert, delete, and update operations, events in a relation must always be
referenced to a particular point in time. See Streams and Relations for more
information.

1-2

ORACLE

Chapter 1
Component Configuration

Oracle CQL Processors

You configure Oracle CQL processors with Oracle CQL query code to examine events
as they pass through. The Oracle JDeveloper Components window provides CQL
Patterns to facilitate the formation of Oracle CQL queries. The wizard for each CQL
Pattern prompts you for the correct configuration data to ensure that you form a valid
Oracle CQL query.

Beans

A bean defines application event logic written in the Java programming language that
conforms to standard Spring-based beans.

An event bean is a Java class that implements logic to listen for and work on events.
This type of Java class is called a listener Java class. A listener that receives events
(event sink) might create new events when it finds a certain type of data and send the
new events to the next stage for further processing. A listener event sink can also
initiate other processes in the same or in another application based on the event data.

Spring beans are managed by the Spring framework, and are a good choice if you
want to integrate your bean to an existing Spring deployment. Event beans use Oracle
Stream Analytics conventions for configuring beans so that they are managed by the
Oracle Stream Analytics server. With an event bean, for example, you get the support
of Oracle Stream Analytics server features such as monitoring and event record and
playback. You can use event record and playback to debug an application.

Caching

You can integrate a cache system with your Oracle Stream Analytics application to
make a cache available as source or destination for data and event data that your
application uses. Integrating a cache can provide access to relatively static data at a
speed that is suited to an application that handles streaming data.

A cache is a temporary storage area for events that you can create to improve the
overall performance of your Oracle Stream Analytics application. A cache is not
necessary for the application to function correctly. To increase the availability of the
events and increase the performance of their applications, Oracle Stream Analytics
applications can publish to or consume events from a cache.

A caching system defines a named set of configured caches. Oracle Stream Analytics
distributes the configuration for remote cache communications across multiple servers.
The Spring context file supports caching configuration. Listeners that are configured
with a Spring context file receive events from the cache.

Data-Related Components

Table: The Table component provides access to a relational database. You configure
the Table component with an ID, event type, and a data source to feed specific events
into a relational database table. Oracle Stream Analytics provides the Hadoop and
NoSQLDB data cartridges for accessing big data storage.

Hadoop: A data cartridge extension for an Oracle CQL processor to access large
guantities of data in a Hadoop distributed file system (HDFS). HDFS is a non-relational
data store. The Oracle CQL processor provides the Oracle CQL query code for the big
data access. You configure Hadoop with an ID, event type, the path to the database,
and the file separator character.

1-3

Chapter 1
Streams and Relations

NoSQLDB: A data cartridge extension for an Oracle CQL processor to access large
guantities of data in an Oracle NoSQL Database. The Oracle NoSQLDB Database
stores data in key-value pairs. The Oracle CQL processor provides the Oracle CQL
guery code for the big data access. You configure NoSQLDB with an ID, event type,
store name, and store locations.

1.3 Streams and Relations

ORACLE

An Oracle Stream Analytics application handles events that arrive in a stream as raw
event data. The raw event data enters the EPN through an adapter that converts the
raw event data into an event. An event is an ordered set of values (tuple).

Events are similar to a table row in a relational database in that an event has a
schema. The event schema defines the properties and types for each event value.
Events are unlike a table row in a database in that a table row contains static data. In a
stream of events, when an event arrives, including which event arrives before or after
another event, can make a difference. Your application needs to be able to account for
time and sequence.

For example, in an application that processes stock trades, events made up of stock
symbol, price, last price, percentage change, and volume information would arrive one
after the other in the order in which each trade was executed. Your application logic
might look for trades of one stock that occurred immediately after trades of another.

In an event processing application, the sequence in which events occur in a stream is
as important as the data types and values of each event property. Oracle Stream
Analytics programming conventions reflect the importance of time and sequence.

Your code needs to discover which events are related to one another based on certain
criteria, such as a shared stock symbol. Your code also needs to discover sequence
patterns, such as trades within fifteen seconds of one another. To account for both the
sequential and relational aspects of event data, Oracle Stream Analytics implements
the concepts of streams and relations through low latency channels.

e A stream is a potentially infinite sequence of events where each event has its own
time stamp. In a stream, the events must be ordered by time, one after the other,
so that time stamps do not decrease from one event to the next. There can be
events in a stream that have the same time stamp.

* In arelation, sequence might be unimportant. Instead, events in a relation are
related because they meet certain criteria. For example, events in a relation might
be the result of a query executed against a stream of stock trades, where the
guery looks for trade volumes above a particular level.

In a stream of stock trade events, the events arrive in sequence and each event has
its own time stamp. To isolate the share price for trades that occurred within 5 seconds
of one another, configure an Oracle CQL processor to query the stream when it arrives
from the channel with the following Oracle CQL code:

sel ect price from StockTradeChannel [range 5 seconds]

Because the query uses the [range 5 seconds] window to isolate the events, the output
of this query is a relation. Although the events returned from the query have time
stamps, they are unordered in the relation. Because the incoming events are in a
stream, the query executes continuously against every 5 seconds' worth of events as
they pass into the Oracle CQL processor. As new events come along, those meeting

1-4

Chapter 1
Application Scalability and High Availability

the query terms are inserted into the relation, while those that do not meet the query
terms are deleted from the relation.

This is important because the integrity of the order in a stream is important.
Technically, a stream is a continuously moving and ordered set of events. In a stream,
every event is inserted into the stream one after the other. When you get a subset of
the stream from a CQL query, you no longer have the order. Before you pass a
relation to the next stage in the EPN, you can convert the relation back into a stream
with the | St reamoperator.

1.4 Application Scalability and High Availability

A scalable Oracle Stream Analytics application incorporates Oracle Stream Analytics
design patterns with implementation and configuration conventions to ensure that the
application operation scales as the event load increases.

You can achieve scalability and high availability by integrating application design
patterns, server resources, and configuration conventions so that your deployed
application continues to operate even in the event of software or hardware failures.

For more information, see the following:
High Availability Applications.

Scalable Applications.

1.5 Application Life Cycle

ORACLE

The state names (STARTI NG, | NI TI ALI ZI NG, RUNNI NG, SUSPENDI NG, SUSPENDED, and FAI LED)
correspond to the Appl i cati onRunt i neMBean method get St at e return values. These
states are specific to Oracle Stream Analytics. They are not OSGi bundle states

Figure 1-1 shows a state diagram for the Oracle Stream Analytics application life
cycle.

1-5

ORACLE

Chapter 1
Application Life Cycle

Figure 1-1 Oracle Stream Analytics Application Life Cycle State Diagram

[Start Server With

Deployed Application] (_ [Deplay Application]

v v

Starting |+————

Initializing

s

[Resume
Application
Runining pplication]
[Error] [Uninstall [Suspend

Application] Application]

Suspending

Suspended

#

[Unregister ApplicationRuntimeMBean
‘=~ and Uninstall Completed]

| Failed

This section describes the life cycle of an application deployed to the Oracle Stream
Analytics server and the sequence of com bea. wl evs. ede. api API callbacks. The
information explains how Oracle Stream Analytics manages an application's life cycle
so that you can better use the life cycle APIs in your application. For a description of
these life cycle APIs (such as Runnabl eBean and Suspendabl eBean), see:

* API Overview

e Java API Reference for Oracle Stream Analytics.

The life cycle description is broken down into actions that a user performs, including
those described in the following sections.

Install an Application or Start the Server with the Application Deployed
Oracle Stream Analytics performs the following actions:

1. Oracle Stream Analytics installs the application as an OSGI bundle. OSGI
resolves the imports and exports, and publishes the service.

2. Oracle Stream Analytics creates beans (for both standard Spring beans and those
that correspond to the Oracle Stream Analytics tags in the EPN assembly file). For
each bean, Oracle Stream Analytics:

* Sets the properties on the Spring beans. The <w evs: i nst ance- property>
values are set on adapters and event-beans.

* Injects appropriate dependencies into services specified by @ser vi ce or
@er vi ceRef er ence annotations.

* Injects appropriate dependencies into static configuration properties.
e CallstheInitializingBean. afterPropertiesSet method.

» Calls configuration callbacks (@r epar e,@ct i vat e) on Spring beans as well as
factory-created stages.

1-6

ORACLE

Chapter 1
Application Life Cycle

For more information, see Resource Access Configuration.
3. Application state is now | NI TI ALI ZI NG.
4. Oracle Stream Analytics registers the MBeans.

5. Oracle Stream Analytics calls the Acti vat abl eBean. af t er Confi gur ati onActi ve
method on all Acti vat abl eBeans.

6. Oracle Stream Analytics calls the Resunabl eBean. bef or eResune method on all
Resunabl eBeans.

7. For each bean that implements Runnabl eBean, Oracle Stream Analytics starts it
running in a thread.

8. Application state is now RUNNI NG.

Suspend the Application
Oracle Stream Analytics performs the following actions:

1. Oracle Stream Analytics calls the Suspendabl eBean. suspend method on all
Suspendabl eBeans.

2. Application state is now SUSPENDED.

Resume the Application
Oracle Stream Analytics performs the following actions:

1. Oracle Stream Analytics calls the Resumabl eBean. bef or eResume method on all
Resumabl eBeans

2. For each bean that implements Runnabl eBean, starts it running in a thread.

3. Application state is now RUNNI NG.

Uninstall the Application
Oracle Stream Analytics performs the following actions:

1. Oracle Stream Analytics calls the Suspendabl eBean. suspend method on all
Suspendabl eBeans.

2. Oracle Stream Analytics unregisters MBeans.
3. calls the Di sposabl eBean. di spose method on all Di sposabl eBeans.

4. Oracle Stream Analytics uninstalls application bundle from OSGI.
Updating the application
This is equivalent to first uninstalling an application and then installing it again.

See those user actions in this list.

Call Methods of Stream and Relation Sources and Sinks

You cannot call a method on a stream or relation source or sink from a life cycle
callback because components might not be ready to receive events until after these
phases of the application life cycle completes.

For example, you cannot call St reanSender method sendl nsert Event from a life cycle
callback such as such as aft er Confi gurati onActi ve or bef or eResune.

1-7

Chapter 1
API Overview

You can call a method on a stream or relation source or sink from the run method of
beans that implement Runnabl eBean.

See Event Beans.

1.6 API Overview

ORACLE

The APIs enable you to programmatically implement functionality for all aspects of
Oracle Stream Analytics applications as described in this documentation set.

This section presents an overview of the API packages in terms of their intended
usages and includes cross-references to where you can learn more.

For the full reference documentation (Javadocs) for all classes and interfaces, see
Java API Reference for Oracle Stream Analytics.

* Configuration

e Adapters

* ChannelsEvent Repositories
* Event-Driven Environment
* Event Bean Life Cycle

« JAXB

e Caching

e Cache Loader

e Cluster Group Management
« Management Beans

¢ High Availability

» Testing and Utility Tools

e Cartridge Framework

e Spring Support.
Configuration

The com bea. wi evs. confi guration package provides interfaces to activate, prepare, and
roll back configuration objects. When you implement the Prepar e interface, provide a
method that accepts, checks, and stores a configuration object. The Java type of the
configuration object is determined by JAXB. By default, the Java class name is the
same as the name of the XML Schema complex type that describes the configuration
data for the applicable stage. See the / Oracl e/ M ddl ewar e/ ny_oep/ oep/ xsd/

w evs_appl i cation_confi g. xsd schema for schema details. See also Application and
Resource Configuration.

Adapters

Oracle Stream Analytics provides several packages that provide interfaces and
classes for managing adapter behavior. See Adapters.

Packages:

1-8

Chapter 1
API Overview

e com bea. w evs. adapt er s. htt ppubsub. api package provides interfaces for converting
inbound JavaScript Object Notation (JSON) messages to event types and back
again. To customize the way inbound and outbound JSON messages are
converted to an event type and back to JSON format, create a custom converter
bean and use this API.

e com bea. w evs. adapt er s. ht t ppubsub. support package provides classes for
establishing a connection to an HTTP publish-subscribe server.

* combea.w evs. adapters.jns. api package provides interfaces for converting
inbound JMS messages to event types and back again. If you want to customize
the way inbound and outbound JMS messages are converted to an event type and
back, create a custom converter bean. and use this API.

e com bea. w evs. ede. api : package provides interfaces for creating custom adapters.
See Oracle Fusion Middleware Customizing Oracle Stream Analytics
Components.

Channels

The com bea. w evs. channel package provides an interface for implementing event
partitioning and a class for managing the number of events in channels. See Channels
and Scalable Applications.

Event Repositories

To manage events and event types, Oracle Stream Analytics uses an event store
repository and an event type repository. The event store repository persists the event
and the event type repository persists the event type.

Packages:

e com bea. w evs. event st or e package provides interfaces and classes to manage the
event store repository.

* com bea. w evs. ede. api package provides the Event TypeReposi t ory interface to
manage the event type repository. See Events and Event Types.

Event-Driven Environment

The com bea. w evs. ede. api package provides interfaces for creating and customizing
Oracle Stream Analytics application code that responds to events. The package
provides interfaces for creating event beans and adapters and making them event
sinks and event sources. Other interfaces in this package enable you to manage all
aspects of how events flow through the EPN, such as event creation, event flow
through channels, event metadata and properties, the event type repository, external
data sources, EPN stages, fault handling, event bean life cycle, and so on.

For sample Java code that uses some of these APIs, see Events and Event Types and
Event Beans. See also Resource Access Configuration for information about using
Oracle Stream Analytics annotations and deployment XML to configure resource
injection.

Event Bean Life Cycle

The com bea. wi evs. ede. api package also enables control over event bean life cycle.
You can manage event bean initialization, configure dynamic activation, use threading,
suspend and resume processing, and release resources when the application is

ORACLE 1-9

ORACLE

Chapter 1
API Overview

undeployed. See Application Life Cycle for information about the event bean and
application life cycles.

Note that the Spring framework implements similar bean life cycle interfaces.
However, the equivalent Spring interfaces do not allow you to manipulate beans that
were created by factories, while the Oracle Stream Analytics interfaces do.

JAXB

Oracle Stream Analytics provides a simplified interface for using Java Architecture for
XML Binding (JAXB) mapping capabilities in adapters and event beans to marshall
and unmarshall event data between XML and Java objects. See JAXB Support.

Packages:

e comoracl e. cep. mppers. api package provides interfaces for marshalling and
unmarshalling event data for most applications requirements.

e comoracl e. cep. mappers. j axb package provides interfaces that provide specialized
method signatures for marshalling and unmarshalling.

Caching

You can configure a caching system so that applications have ready access to event
data. The caches in the system can be a combination of Oracle Coherence distributed
caching, Oracle Stream Analytics local caching, and caching solutions provided by
third parties. You can access the events in the caches with Oracle CQL and Java
classes. See Cached Event Data.

Packages:

e com bea. w evs. cache. spi package provides interfaces that enable you to create a
caching system that can be used by Oracle Stream Analytics applications.

e com bea. w evs. cache. spi . coher ence package provides interfaces that enable you to
extend the caching system to include Oracle Coherence caching.

Cache Loader

The com oracl e. cep. cachel oader package provides the CsvCacheLoader class for loading
CSV events into a Coherence cache. See Cached Event Data.

Cluster Group Management

The com bea. w evs. ede. api . ¢l uster package provides interfaces for managing server
groups within multiserver domains (clusters). You can get information about the
configuration, implement event beans and adapters to listen for cluster membership
changes, set the group name for the containing EPN, and get information about a
group server.

Management Beans

Management beans (MBeans) enable you to programmatically access configuration
and runtime information to perform tasks. There are two types of MBeans (tasks):
configuration and run time. Configuration MBeans contain information about EPN
component configuration. Run time MBeans contain information about component
throughput and latency. See MBean Management Commands in Administering Oracle
Stream Analytics.

Packages:

1-10

ORACLE

Chapter 1
API Overview

com bea. w evs. managenent package contains interfaces for managing constants
used by client applications and to provide a super-interface for all Oracle
WebLogic Event Server MBeans.

com bea. w evs. managenent . confi gurati on package provides interfaces for managing
applications, adapters, caches, configuration, Oracle CQL processors, event
beans, stages, streams, and table sinks and sources.

com bea. wl evs. managenent . di agnost i ¢ package provides interfaces for managing
diagnostic profiles. A diagnostic profile is an XML file that contains application
stage information for testing throughput and latency.

com bea. w evs. managenent . di agnosti c. notificati on package provides a class for
wrapping diagnostic change notifications sent by background probes.

com bea. w evs. di agnosti ¢ package provides interfaces and classes for listening for
newly deployed applications and removed applications. When applications are
deployed and undeployed a profile manager (group of diagnostic profiles) is also
created and removed and corresponding profile manager events are issued.

com bea. w evs. managenent . runti me package provides interfaces for getting runtime
information about the application, the application Oracle CQL processors, the
domain, the server, and EPN stages.

com bea. w evs. noni t or package provides interfaces for monitoring the throughput
and latency of application endpoints in the event server.

com bea. w evs. moni t or . managenent package provides interfaces for receiving
monitoring metrics for an application stage and for monitoring latency between
endpoints in the EPN.

com bea. w evs. depl oynent . nbean package provides interfaces to manage
application deployment.

com bea. wl evs. event i nspect or . managenment package provides interfaces and classes
for controlling the behavior of event tracing and event injection. See Testing 1-2-3.

comoracl e. cep. cl uster. ha. adapt er. managenent package provides interfaces and
classes for managing JMX communications in a high availability environment.

High Availability

Oracle Stream Analytics provides application design patterns and high availability
adapters, to enable you to increase the backup and failover processing capabilities of
your applications. See High Availability Applications.

Packages:

comoracl e. cep. cluster. ha. adapt er package provides interfaces and classes for
queue trimming.

comoracl e. cep. cl uster. ha. adapt er. i nbound package provides classes for creating
a high availability broadcast inbound adapter. This adapter is for applications that
use system time and need to be highly available.

comoracl e. cep. cl uster. ha. adapt er. managenent package provides interfaces and
classes for managing JMX communications in a high availability environment.

comoracl e. cep. cl uster. ha. adapt er. runti ne package provides interfaces and class
implementations for managing JMX interfaces to other high availability interfaces.

comoracl e. cep. cl uster. ha. api package provides interfaces and classes for simple
fail over functionality.

1-11

Chapter 1
Spring Framework

e comoracl e. cep. cl uster. hagroups package provides interfaces and classes for
creating event beans and adapter that listen for property group membership
changes, make the changes available, and enable subscriptions to broadcast
group members.

e comoracle. cep. cluster. hagroups. runtine package provides interfaces and classes
to get notification group information.

Testing and Utility Tools

Oracle Stream Analytics provides different ways to test your application depending on
what and how you want to test. See Testing 1-2-3.

Packages:

e com bea. w evs. eventi nspect or. managenent package provides interfaces and classes
for managing event tracing and injection.

» comoracl e. cep. shel | package provides interfaces and classes for
programmatically invoking commands for testing Oracle Stream Analytics
applications.

e combea.w evs. uti| package provides interfaces and classes for marking methods
as requiring an OSGi service reference, getting and setting error messages,
parsing parameters, returning OSGi importer services cardinality, and loading a
service class.

Cartridge Framework

The com oracl e. cep. cartri dge package provides interfaces and classes that form the
Data Cartridge Framework. The Data Cartridge Framework is a service provider
interface (SPI) that enables users and vendors to create cartridges to extend Oracle
CQL functionality.

Spring Support

The com bea. w evs. spring. support package provides interfaces and classes for using
Spring functionality in Oracle Stream Analytics applications.

1.7 Spring Framework

The Spring Framework provides Java-based APIs and a configuration model that you
can use to create portable and flexible enterprise applications.

For more information about Spring:

e Spring Framework API 3.1.1:http://docs. spring.i o/ spring/docs/ 3. 1. 1. RELEASE/
j avadoc- api /

e The Spring Framework - Reference Documentation 3.1:http://docs. spring. i o/
spring/docs/ 3. 1. 1. RELEASE/ spri ng- f ramewor k-r ef erence/ ht m /

1.8 OSGI Service Platform

ORACLE

The OSGi Service Platform provides a dynamic application execution environment
where you can install, update, ore remove OSGI bundles (modules) dynamically.

For more information about OSGi:

1-12

http://docs.spring.io/spring/docs/3.1.1.RELEASE/javadoc-api/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/javadoc-api/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-reference/html/
http://docs.spring.io/spring/docs/3.1.1.RELEASE/spring-framework-reference/html/

ORACLE

Service Annotations

Chapter 1

OSGi Service Platform

OSGi Release 4 Service Platform Javadoc: http://www.osgi.org/Release4/Javadoc

OSGi Release 4 Core Specification: https://www.osgi.org/developer/specifications/

Use the com bea. wl evs. util . Service (@ervi ce) annotation to specify a component
method that is injected with an OSGi service reference. You typically add this
annotation to JavaBean setter methods where needed. The @ervi ce annotation has
the following attributes.

Table 1-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

___|
Required

Name

Description

Data
Type

?

servi ceBeanName

The name of the bean that backs the injected
service. Can be null.

String

No.

cardinality

Valid values for this attribute are:
e ServiceCardinality.C0__1
e ServiceCardinality.C0__N
e ServiceCardinality.Cl_1
e ServiceCardinality.Cl__N
Default value is Servi ceCardinality.Cl__1.

enum

No.

cont ext O assl oader

Valid values for this attribute are:

e Serviced assl oader. CLI ENT

e Serviced assl oader. SERVI CE_PROVI DER
e Serviced assl oader . UNVANAGED

Default value is Servi ceC assl oader. CLI ENT.

enum

No.

ti meout

Timeout for service resolution in milliseconds.
Default value is 30000.

i nt

No.

servi ceType

Interface (or class) of the service to be injected
Default value is Servi ce. cl ass.

d ass

No.

filter

Specifies the filter used to narrow service
matches. Value may be nul | .

String

No.

The following example shows how to use the @er vi ce annotation. For another
example, see Access the Event Type Repository.

@ervice(filter = "(Name=St ockDs)")
public void setDataSourceServi ce(Dat aSourceService dss) {
i nitStockTabl e(dss. get Dat aSource());

}

1-13

http://www.osgi.org/Release4/Javadoc
https://www.osgi.org/developer/specifications/

Application and Resource Configuration

An Oracle Stream Analytics EPN has two types of configuration files: assembly files
and component configuration files. The assembly file is a context file that describes the
EPN diagram stages and structure. The configuration file describes component
configuration and the dynamic parameters of the EPN stages. Dynamic parameters
are parameters that can be changed at runtime through the Oracle Stream Analytics
Visualizer or programmatically through the JIMX APIs.

This chapter includes the following sections:

* Application Configuration

* Assembly File Structure

e Component Configuration File Structure
* Component and Server Configuration

* Resource Access Configuration.

2.1 Application Configuration

ORACLE

Oracle Stream Analytics application configuration settings are stored in XML files that
are based on standard schemas. When you install Oracle Stream Analytics, the XSD
files for the schemas are installed in the Oracl e/ M ddl ewar e/ oep/ xsd directory.

By default, Oracle JDeveloper generates one assembly file named <Pr oj ect -

Narme>. cont ext . xm , and one default configuration file named processor. xm . An
application can have one or more assembly files and one or more configuration files.
You decide how many configuration files to use and what to name them when you
build the EPN. Your project must have one configuration file named prcessor. xn to
contain the Oracle CQL processor configuration settings.

When you create components such as adapters, the processor. xnl file displays as the
default configuration file in the new component wizard. If you take the default, the
component configuration information is stored in the default procesor. xm . To put all of
your adapter configurations in one file named adapt er. xnl , change processor. xnl to
adapt ers. xnl in the wizard.

In the component configuration wizard, if you specify a new file name such as

adapt ers. xnl , but use only default settings, Oracle JDeveloper does not generate the
new file because there are no configuration settings to store in it. You can either create
the component again with a custom setting or use the File menu to create a new
empty configuration file.

The assembly and configuration files are stored in the following locations within your
project:

* Assembly files: <Proj ect - Name>/ META- | NF/ spri ng/ *. xnd .
* Configuration files: <Proj ect - Name>/ META- | N/ wl evs/ *. xm .

2-1

Chapter 2
Assembly File Structure

You can modify the configuration by editing the application assembly file or by editing
the component configuration file. You can edit anything you want in the files, but you
have to be careful to keep the assembly file ID value consistent with the configuration
file name value. If you change the ID value in the assembly file, you have to change
the name value in the configuration file to match, and vice versa. You can change any
other information in one file only. Oracle JDeveloper uses the ID and name value
pairing to keep the information in the application assembly and component
configuration files synchronized.

The following components have a configuration file that defaults to processor. xm .
Oracle CQL patterns must be placed in the processor. xnl file, but all other components
in this list can use a configuration file by another name.

e All adapters

¢ Channels

e Oracle CQL Patterns

e Local Cache System

* Cache

* RMIOutbound extension

The Coherence Cache System has a default coher ence- cache- file. You can change the
name of this file.

Component configuration files are deployed as part of the Oracle Stream Analytics
application bundle. You can later update this configuration at runtime using Oracle
Stream Analytics Visualizer, the w evs. Adni n utility, or by manipulating the appropriate
JMX MBeans.

2.2 Assembly File Structure

The spring-w evs-v12_1_3 0.xsd schema file describes the EPN assembly file
structure.

This schema file is installed in the Oracl e/ M ddI ewar e/ osa/ xsd directory.

The EPN assembly file has a top-level root element named beans that contains a
sequence of sub-elements. Each individual sub-element contains the configuration
data for an Oracle Stream Analytics component.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. org/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xm ns: osgi ="http://ww. springframework. or g/ schema/ osgi "
xm ns: w evs="http:// wwmv. bea. conf ns/w evs/ spring"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframewor k. or g/ schema/ osgi
http://ww. springframewor k. or g/ schema/ osgi / spring- osgi . xsd
http://ww. bea. com ns/w evs/ spring
http://ww:. bea. com ns/w evs/ spring/spring-w evs-v12_1 3 0.xsd">

<w evs: event -t ype-repository>
<wl evs: event-type type-name="Hel | oWor| dEvent ">
<w evs: cl ass>com bea. w evs. event . exanpl e. hel | owor | d. Hel | oWor | dEvent </
w evs: cl ass>

ORACLE 2-2

Chapter 2
Assembly File Structure

</w evs: event - type>
</w evs: event-type-repository>

<wl evs: adapt er id="hel | owor| dAdapter"
cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oWr | dAdapter” >
<wl evs:instance-property name="nessage" value="HelloWrld - the current tine
is:"/>
</w evs: adapt er >

<wl evs: channel id="helloworl dl nput Channel " event-type="Hel | oWr| dEvent" >
<wl evs: |istener ref="hell oworl| dProcessor"/>
<wl evs: source ref="hel | owor| dAdapter"/>

</ wl evs: channel >

<wl evs: processor id="hel | owor| dProcessor" />

<w evs: channel id="hel | owor| dCQut put Channel "
event-type="Hel | oWr| dEvent" advertise="true">
<wl evs: | istener>

<bean cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >

</wevs:|istener>
<wl evs: source ref="hel | owor| dProcessor"/>

</ wl evs: channel >

</ beans>

2.2.1 Nested Stages in an EPN Assembly File

ORACLE

When you define a child stage within a parent stage in an EPN, the child stage is said
to be nested. Only the parent stage can specify the child stage as a listener.

The following example shows the EPN assembly source in which Hel | oWr | dBean is
nested within the hel | owor | dQut put Channel . Only the parent hel | owor | dQut put Channel
may specify the nested bean as a listener.

<wl evs: adapter id="hel | owor| dAdapter"
cl ass="com bea. w evs. adapt er . exanpl e. hel | owor | d. Hel | oWr | dAdapter” >
<wl evs:instance-property name="nessage" value="HelloWrld - the current tine
is:"l>
</w evs: adapt er >

<wl evs: channel id="helloworldl nput Channel " event-type="Hel | oWr| dEvent" >
<wl evs: |istener ref="hell oworl dProcessor"/>
<wl evs: source ref="hel | owor| dAdapter"/>

</ wl evs: channel >

<w evs: processor id="hel | owor|dProcessor" />

<w evs: channel id="hel | owor| dQut put Channel " event-type="Hel | oWr| dEvent"
advertise="true">
<wl evs: | istener>
<bean cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >
</wevs:|istener>
<wl evs: source ref="hel | owor| dProcessor"/>
</ wl evs: channel >

Alternatively, you can define this EPN so that all stages are nested as Example 2-1
shows. The hel | owor | dAdapt er, the outermost parent stage, is the only stage
accessible to other stages in the EPN.

2-3

Chapter 2
Assembly File Structure

Example 2-1 EPN Assembly File with All Stages Nested

<w evs: adapt er id="hel | owor| dAdapter"
cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oWr | dAdapter” >
<wl evs:instance-property name="nessage"
val ue="Hel | oWorld - the current time is:"/>
<w evs:|istener>
<wl evs: channel id="hel | oworldl nput Channel " event-type="Hel | oWr| dEvent" >
<w evs:|istener>
<w evs: processor id="hel | owor| dProcessor">
<w evs:|istener>
<w evs: channel id="hel | owor| dCQut put Channel "
event - t ype="Hel | oWr| dEvent " >
<w evs:|istener>
<bean
cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWr |
dBean"/ >
</wevs:|istener>
</ w evs: channel >
</wevs:|istener>
</w evs: processor >
</wevs:|istener>
</ w evs: channel >
</wevs:|istener>
</w evs: adapt er >

2.2.2 Foreign Stages in an EPN Assembly File

You can refer to a stage that is in another Oracle Stream Analytics application. A stage
from another application is considered a foreign stage. You do this by i d attribute
when you define both the source and target stage in the same application.

Note:

You cannot connect an Oracle CQL processor stage to a channel that is a
foreign stage.

To refer to a stage you define in a different application, you use the following syntax:

FOREI G\- APPLI CATI ON- NAME: FOREI G\- STAGE- | D

Where FOREI G\- APPLI CATI ON- NAME is the name of the application in which you defined
the foreign stage and FOREI G\ STAGE- | Dis the i d attribute of the foreign stage.

The following example shows how the reference in appl i cati onl to the foreign stage
Hel | oWor | dBeanSour ce that you define in application appl i cati on2.

<wW evs: streamid="hel | owor| dl nstreant >

<w evs: |istener ref="helloworldProcessor"/>

<wl evs: source ref="application2: Hel | oWr | dBeanSource"/ >
</W evs: streanmp

<w evs: event - bean i d="Hel | oWr | dBeanSour ce"

cl ass="com bea. W evs. exanpl e. hel | owor| d. Hel | oWr | dBeanSour ce"
advertise="true"/>

ORACLE 2.4

Chapter 2
Component Configuration File Structure

The following stages cannot be foreign stages:

e Cache

When creating Oracle Stream Analytics applications with foreign stages, you must
consider foreign stage dependencies when assembling, deploying, and redeploying
your application. For more information, see Reference Foreign Stages.

2.3 Component Configuration File Structure

The w evs_appl i cati on_confi g. xsd schema file describes the structure of component
configuration files.

When you install Oracle Stream Analytics, XSD files such as this one are included in
the directory Oracl e/ M ddl ewar e/ oep/ xsd.

This XSD schema imports the following schemas:

* wevs_base_config. xsd: Defines common elements that are shared between
application configuration files and the server configuration file

* wevs_eventstore_config.xsd: Defines event store-specific elements.
e wevs_diagnostic_config.xsd: Defines diagnostic elements.

The structure of application configuration files is as follows. There is a top-level root
element named confi g that contains a sequence of sub-elements. Each individual sub-
element contains the configuration data for an Oracle Stream Analytics component
(Oracle CQL processor, channel, or adapter). For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<nl:config xmns:nl="http://ww. bea.con ns/w evs/config/application”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<processor >
<name>hel | owor | dPr ocessor </ name>
<rul es>
<query id="hel | owor| dRul e">
<I'[CDATA[select * from helloworldl nput Channel [Now >
</ query>
</rul es>
</ processor >
<channel >
<nane>hel | owor | dl nput Channel </ nanme>
<max- si ze>10000</ max- si ze>
<max-t hr eads>2</ max-t hr eads>
</ channel >
<channel >
<name>hel | owor | dQut put Channel </ name>
<max- si ze>10000</ max- si ze>
<max-t hr eads>2</ max-t hr eads>
</ channel >
</nl:config>

2.4 Component and Server Configuration

Use the Confi gurati onPropertyPl acehol der Confi gurer class to reference existing
configuration file properties, in both component configuration and server configuration
files, using a symbolic placeholder.

ORACLE 2-5

Chapter 2
Resource Access Configuration

This allows you to define a value in one place and refer to that one definition rather
than hard-coding the same value in many places.

You might want to do this if you want to configure Java Message Service (JMS)
without hard-coding JMS information such as the factory name in the assembly file for
your Oracle Stream Analytics application.

Use the com bea. W evs. spring. support. Confi gurati onPropertyPl acehol der Confi gurer
class, to create a JMS adapter and provide placeholders for the server connection
factory name, user name, password, and the location to a separate file that contains
the actual factory name, user name, and password values. The

Confi gurati onPropertyPl acehol der Confi gurer class is implemented on top of the Spring
framework.

The server configuration file is used by Oracle Stream Analytics server administrators.
This file contains configuration information that is specific to a domain, and is located
in/ Oracl e/ M ddl ewar e/ ny_oep/ user _pr oj ect s/ domai ns/ <donmai n_nane>/ <ser ver _nane>/
configl.

To use reference existing configuration file properties, insert a
Confi gurati onPropertyPl acehol der Confi gurer bean in the assembly file for your project
as shown below.

<bean cl ass="com bea. W evs. spri ng. support. Confi gurationPropertyPl acehol der Confi gurer"/>

For complete details, see the
com bea. wl evs. spring. support. Confi gurationPropertyPl acehol der Confi gurer class in the
Java API Reference for Oracle Stream Analytics.

2.5 Resource Access Configuration

ORACLE

Because Oracle Stream Analytics applications are low latency high-performance
event-driven applications, they run on a lightweight container and are developed with a
POJO-based programming model.

In POJO (Plain Old Java Object) programming, business logic is implemented in the
form of POJOs, and then injected with the services they need. This is popularly called
dependency injection. The injected services can range from those provided by Oracle
Stream Analytics services, such as configuration management, to those provided by
another Oracle product such as Oracle Kodo, to those provided by a third party.

By using Oracle Stream Analytics and standard Java annotations and deployment
XML, you can configure the Oracle Stream Analytics Spring container to inject
resources (such as data sources or persistence managers, and so on) into your Oracle
Stream Analytics application components.

The Spring container typically injects resources during component initialization.
However, it can also inject and re-inject resources at runtime and supports the use of
JNDI lookups at runtime.

Oracle Stream Analytics supports the following types of resource access:

* Resource Access Annotations
e Static Resource Injection
» Dynamic Resource Injection

» Dynamic Resource Lookup Using JNDI

2-6

Chapter 2
Resource Access Configuration

* Resource Name Resolution.

In the following sections, consider the example resource that Example 2-2 shows. This
is a data source resource named St ockDS that you specify in the Oracle Stream
Analytics server file.

Example 2-2 Sample Resource: Data Source StockDS

<config ...>
<dat a- sour ce>
<nane>St ockDs</ nane>

<driver - parans>
<url >j dbc: der by: </ url >

<driver - parans>
</ dat a- sour ce>

</ config>

2.5.1 Resource Access Annotations

Use the j avax. annot at i on. Resour ce (@Resour ce) annotation to configure resource
access at design time and the corresponding deployment XML to override this
configuration at deploy time.

2.5.2 Static Resource Injection

Static resource injection refers to the injection of resources during the initialization
phase of the component life cycle. Once injected, resources are fixed, or static, while
the component is active or running.

You can configure static resource injection using:

e Static Resource Names

* Dynamic Resource Names.

2.5.2.1 Static Resource Names

ORACLE

When you configure static resource injection using static resource names, the
resource name you use in the @esour ce annotation or Oracle Stream Analytics
assembly XML file must exactly match the name of the resource as you defined it. The
resource name is static in the sense that you cannot change it without recompiling.

To configure static resource injection using static resource names at design time, you
use the standard j avax. annot at i on. Resour ce annotation as shown in the example
below.

To override design time configuration at deploy time, you use Oracle Stream Analytics
assembly file XML.

In the following examples the resource name St ockDs exactly matches the name of the
data source in the Oracle Stream Analytics server file.

< w evs: event - bean id="sinpl eBean" class="...Sinpl eBean"/>
<wl evs:resource property="dataSource" nanme="StockDs"/>
</w evs: event - bean>

2-7

Chapter 2
Resource Access Configuration

If the name of the EventBean set method matches the name of the resource, then the
@Resour ce annotation nane attribute is not needed. Similarly, in this case, the
w evs: resour ce element nane attribute is not needed.

i mport javax.annotation. Resour ce;
public class SinpleBean inplenments EventBean {

@Resource ()
public void setStockDs (DataSource dataSource){
this. dataSource = dat aSource;
}
}

< w evs: event - bean i d="si npl eBean" cl ass="...Sinpl eBean"/>
<wl evs:resource property="dataSource"/>
</w evs: event - bean>

Example 2-3 Static Resource Injection Using Static Resource Names:
Annotations

i nport javax.annotation. Resour ce;
public class SinpleBean inplenments EventBean {

@resour ce (name="St ockDs")
public void setDataSource (DataSource dataSource){
this. dat aSource = dat aSour ce;
}
}

2.5.2.2 Dynamic Resource Names

ORACLE

A dynamic resource name is one that is specified as part of the dynamic or external
configuration of an application. Using a dynamic resource name, the deployer or
administrator can change the resource name without requiring that the application
developer modify the application code or the Spring application context.

To add a dynamic resource name to a component, such as an adapter or POJO, you
must first specify custom configuration for your component that contains the resource
name.

<si npl e- bean>

<nane>Si npl eBean</ nane>

<t rade- dat asour ce>St ockDs</ t r ade- dat asour ce>
</ si npl e- bean>

To configure static resource injection using dynamic resource names at design time,
use the standard j avax. annot at i on. Resour ce annotation.

To override design time configuration at deploy time, you use Oracle Stream Analytics
assembly file XML.

i mport javax.annotation. Resour ce;
public class SinpleBean inplenments EventBean {
@Resour ce (name="trade- dat asource")

public void setDataSource (DataSource dataSource){
this. dat aSource = dat aSour ce;

2-8

Chapter 2
Resource Access Configuration

}

< w evs: event - bean id="sinpl eBean" class="...Sinpl eBean"/>
<wl evs:resource property="dataSource" nane="trade-datasource"/>
</w evs: event - bean>

2.5.3 Dynamic Resource Injection

Dynamic resource injection refers to the injection of resources dynamically while the
component is active in response to a dynamic configuration change using Spring
container method injection.

To configure dynamic resource injection at design time, use the standard
j avax. annot ati on. Resour ce annotation as Example 2-4 shows.

The component calls the get Dat aSour ce method at runtime whenever it needs to
retrieve a new instance of the resource that the resource name tr ade- dat asour ce refers
to.

Typically, the component calls the get Dat aSour ce method during the @r epare or
@\ctivat e methods when dynamic configuration changes are handled.

Another strategy is to always call the get Dat aSour ce prior to using the data source. That
is, the application code does not store a reference to the data source as a field in the
component.

Example 2-4 Dynamic Resource Injection: Annotations

i nport javax.annotations. Resource;
public class SinpleBean inplenments EventBean {

@Resour ce ("trade-datasource")
public abstract DataSource getDataSource ();

}

2.5.4 Dynamic Resource Lookup Using JNDI

Oracle Stream Analytics supports the use of JNDI to look up resources dynamically.
i mport javax.naning.Initial Context;
public class SinpleBean inplenments EventBean {

. public abstract void getDataSource () throws Exception {

Initial Context initial Context= new InitialContext ();
return initial Context.lookup ("StockDs");

}

The JNDI name St ockDs must exactly match the name of the data source in the Oracle
Stream Analytics server file.

ORACLE 2-9

Chapter 2
Resource Access Configuration

Note:

You must disable security when starting the Oracle Stream Analytics server
in order to use JNDI. Oracle does not recommend the use of JNDI for this

reason.

2.5.5 Resource Name Resolution

Oracle Stream Analytics server resolves resource names by examining the naming
scopes that Table 2-1 lists.

Table 2-1 Resource Name Resolution

Naming Contents Resolution

Scope Behavior

Component The property names of the component's custom Mapping
configuration

Application The names of the configuration elements in the Matching

application configuration files

Server The names of the configuration elements in the server Matching
configuration file

JNDI The names registered in the server's JNDI registry Matching

Each naming scope contains a set of unique names. The name resolution behavior is
specific to a naming scope. Some naming scopes resolve names by simple matching.
Other scopes resolve hames by mapping the name used to do the lookup into a new
name. Once a hame is mapped, lookup proceeds recursively beginning with the
current scope.

ORACLE 2-10

Events and Event Types

An event type is a data structure that defines the data contained in an event. When
raw event data comes into the Oracle Stream Analytics application, the application

binds that data to an event of a particular event type. In your application, you define
the event type in terms of its data set and the corresponding data types.

This chapter includes the following sections:

* How Events Function

e Choose a Data Structure for the Event Type
* Design Constraints

* Event Type Repository

e Properties

e Interval and Time Stamp Properties

* Create and Register a JavaBean Event Type
* Create and Register a Tuple Event Type

* Create and Register a Map Event Type

* Access the Event Type Repository

* Share Event Types Between Application Bundles

* Control Event Type Instantiation with an Event Type Builder Class.

3.1 How Events Function

An event is structured data that relates to something that happens or is happening. For
example, if your application reacts to changes to a cluster of servers, events capture
shapshot data that is collected by the device that monitors the servers.

Or if your application monitors trends and patterns related to stock market trades,
events contain event data that corresponds to stock trades.

Event data can arrive at an application in many forms. By creating an event type to
represent the data inside the application, you create a predictable way for application
logic to work with the data.

Events carry event data through the event processing network (EPN). When you
design the event type, keep in mind how you plan to access, process, and manipulate
the event data in your code.

3.2 Choose a Data Structure for the Event Type

An event type can get its structure from a JavaBean class, a tuple, or ajava. util. Mp
class. Oracle recommends that you use JavaBean classes to structure event types.

ORACLE 3-1

ORACLE

Chapter 3
Choose a Data Structure for the Event Type

JavaBeans provide greater flexibility within your application and simplify integration
with existing systems.

JavaBean event types are flexible. For example, you assign a JavaBean event type to
a property of a tuple or j ava. util. Map event type. The following code shows the event
type St udent that defines its addr ess property as the JavaBean event type Addr ess.

<w evs: event -t ype-repository>
<wl evs: event-type type-name="Student">
<wl evs: properties>
<wl evs: property name="nanme" type="char"/>
<w evs: property name="address" type="cl asspackage. Address"/>
</wW evs: properties>
</w evs: event -t ype>
</ wl evs: event -t ype-reposi t ory>

JavaBeans also enable you to closely control event type instantiation by implementing
an event type builder class. For more information on event type builder classes, see
Control Event Type Instantiation with an Event Type Builder Class.

Table 3-1 compares JavaBean classes, tuples, and j ava. uti| . Map classes.

Table 3-1 Data Types for Event Types
|

Data Type Description Benefits and Limitations

JavaBean A Java class written to JavaBean Benefits: This type is the best practice
conventions. In addition to being because it provides the greatest flexibility
used by logic you write, the type's and ease of use for application logic that
accessor (get and set) methods will handles events. You access property
be used by the Oracle Stream values directly through accessor methods.
Analytics server and Oracle CQL A JavaBean class is more likely to be
processor to retrieve and set event useful when integrating your Oracle
property values. Stream Analytics application with other

systems. For control over how the type is
instantiated, you can implement an event
type builder class.

Limitations: Requires writing a JavaBean
class, rather than simply declaring the
event type in a configuration file. Oracle
CQL does not support JavaBean
properties in GROUP BY, PARTITION
BY, and ORDER BY, although you can
work around this by using an Oracle CQL

view.

Tuple A structure that you create and Benefits: Requires no Java programming
register declaratively in the EPN to create the event type. An event type is
assembly file. created by declaring it in the EPN
For more information, see Create assembly file. Useful for quick prototyping.
and Register a Tuple Event Type. Limitations: Using instances of this type

in Java application logic requires
programmatically accessing the event
type repository to get the instance's
property values. A tuple is also unlikely to
be useful when integrating the Oracle
Stream Analytics with other systems.

3-2

Chapter 3
Design Constraints

Table 3-1 (Cont.) Data Types for Event Types
|

Data Type Description Benefits and Limitations
java.util. Based on an instance of Benefits: Requires no Java programming
Map java.util.Mp. You don'timplement to create the type. An event type is

or extend the Map interface. Rather, created by declaring it in the EPN

you specify that the interface should assembly file. Useful for quick prototyping.
be used when configuring the event | jmitations: Does not perform as well as
type in the EPN assembly file. If you gther types.

write Java code to access the type

instance, you treat it as a Map

instance.

For more information, see Create
and Register a Map Event Type.

3.3 Design Constraints

ORACLE

Keep in mind the following CSV adapter and database table constraints when you
design event types.

CSV Adapter Constraints

When you declaratively specify the properties of an event type for use with CSV
adapters, you can only use the data types that Table 3-2 describes.

Table 3-2 CSV Adapter Types
|

Type Usage
char Single or multiple character values. Use for both char and j ava. | ang. String
values.

Optionally, you may use the | engt h attribute to specify the maximum length of
the char value for the property with name i d. The default length is 256
characters. If you need more than 256 characters you should specify an
adequate length.

i nt Numeric values in the range that j ava. | ang. | nt eger specifies.
fl oat Numeric values in the range that j ava. | ang. Fl oat specifies.

| ong Numeric values in the range that j ava. | ang. Long specifies.
doubl e Numeric values in the range that j ava. | ang. Doubl e specifies.

For more information, see:
e Testing 1-2-3
Database Table Constraints

You can use a relational database table as a source of event data, binding data from
the table to your event type instance at runtime. When your event data source is a
database table, you must follow the guidelines represented by the following tables.

When an event type will receive data from a database table, a property configured for
the type will each receive data from a particular column in the database. When

3-3

ORACLE

Chapter 3
Design Constraints

configuring the event type, note that its property child elements have attributes that
have particular meanings and value constraints, as described in Table 3-3.

Table 3-3 EPN Assembly File event-type Element Property Attributes

__|
Attribute Description

nane The name of the table column you want to access as specified in the SQL
create table statement. You do not need to specify all columns.

type The Oracle Stream Analytics Java type from Table 3-4 that corresponds to the
column's SQL data type.

I ength The column size as specified in the SQL create table statement.

When you specify the properties of an event type for use with a relational database
table, you must observe the additional JDBC type restrictions listed in Table 3-4.

When you join a stream with the Derby database, where the join condition compares
two timestamp values - one value is from the stream attribute and the other value is
from the Derby data source attribute, the Derby database performs the predicate
evaluation. However, the Derby database supports only the yyyy- M dd-

HH. mm ss[. nnnnnn] format. For the Derby database to perform the evaluation correctly,
the stream timestamp value must use the Derby database format.

Table 3-4 SQL Column Types and Oracle Stream Analytics Type Equivalents
|

SQL Type Oracle Stream com.bea.wlevs.ede.a Description

Analytics Java pi.Type

Type
ARRAY [Lj ava. | ang. Cbj ec Array, of depth 1, of

t java.lang. Obj ect.
Bl G NT java.math.Biglnte bigint An instance of

ger j ava. mat h. Bi gl nt eger.
Bl NARY byte[] Array, of depth 1, of byte.
BIT java. |l ang. Bool ean bool ean An instance of

j ava.l ang. Bool ean.
BLOB byte[] Array, of depth 1, of byte.
BOOLEAN j ava. | ang. Bool ean bool ean An instance of
j ava. |l ang. Bool ean.

CHAR java.lang. Charact char An instance of

er java.lang. Character.
CLOB byte[] Array, of depth 1, of byt e.
DATE java.sql . Date timestanp An instance of j ava. sql . Dat e.
DECI MAL j ava. mat h. Bi gDeci An instance of

mal j ava. mat h. Bi gDeci nal .
Bl NARY_DOUBL j ava. | ang. Double doubl e An instance of
E or DOUBLE java. |l ang. Doubl e
Bl NARY_FLOAT java.lang.Double float An instance of
or FLOAT java. |l ang. Doubl e
| NTEGER java.lang. I nteger int An instance of

java.lang. I nteger.

3-4

Chapter 3
Event Type Repository

Table 3-4 (Cont.) SQL Column Types and Oracle Stream Analytics Type

Equivalents

SQL Type Oracle Stream com.bea.wlevs.ede.a Description
Analytics Java pi.Type
Type
JAVA_OBJECT java.lang.Chject object An instance of
java.lang. Object.
LONGWARCHAR char[] char Array, of depth 1, of char.
LONGVARBI NAR byt e[] Array, of depth 1, of byte.
Y
LONGVARCHAR char[] char Array, of depth 1, of char.
NCHAR char[] char Array, of depth 1, of char.
NCLOB byte[] Array, of depth 1, of byt e.
NUMERI C j ava. mat h. Bi gDeci An instance of
mal j ava. mat h. Bi gDeci nal .
NVARCHAR char[] char Array, of depth 1, of char.
OTHER java.lang. Object object An instance of
java.lang. Qbj ect.
REAL java. |l ang. Fl oat fl oat An instance of j ava. | ang. Fl oat
SMALLI NT java.lang. Integer int An instance of
java.lang. I nteger.
SQLXM. xm type xm type
TI MVE java.sgl.Time An instance of j ava. sql . Ti ne.
TI MESTAMP java.sql. Timestam timestanp An instance of
p java. sql. Ti mest anp.
TI NYI NT java.lang. Integer int An instance of
java.lang. I nteger.
VARBI NARY byte[] Array, of depth 1, of byt e.
VARCHAR char[] char Array, of depth 1, of char.

For more information, see: Configure a Table Source.

3.4 Event Type Repository

Oracle Stream Analytics manages event types in an event type repository. The Oracle
Stream Analytics server accesses the assembly file at run time to retrieve the

ORACLE

information it needs to manage the application.

The following example shows an event type entry in the repository:

<wl evs: event -t ype-repository>
<wl evs: event-type type-name="TradeEvent">

<wl evs: cl ass>tradereport. TradeEvent </ w evs: cl ass>

</wl evs: event -t ype>
</w evs: event-type-repository>

3-5

Chapter 3
Properties

To define and edit event types, you can use the Oracle JDeveloper Event tab, work in
the assembly file directly, or call APIs from your application code. The Event tab
displays when you open the EPN diagram for an Oracle JDeveloper project.

For more information, see Access the Event Type Repository.

3.5 Properties

When you create an event type, you add the <w evs: properti es>and <wl evs: property>
elements to the <w evs: event -t ype> element to define the event type properties.

Properties have nane and t ype attributes that define the kind of information, such as
ticker name, ticker symbol, and closing price, and the corresponding data type, such
as String, String, and Doubl e.

Assembly File

The following assembly file entries show a simple event type with one event type and
one property defined by the <w evs: cl ass> element. The properties for this event type
are defined in a JavaBean class.

<w evs: event - t ype-reposi tory>
<wl evs: event-type type-name="TradeEvent">
<w evs: cl ass>tradereport. TradeEvent </ W evs: cl ass>
</w evs: event -type>
</w evs: event - t ype-repository>

The following assembly file entries show a message count event type with properties
defined by the <w evs: properti es> element, which encloses three <w evs: property>
elements.

<wl evs: event -t ype-repository>
<wl evs: event-type id="nmessagecounts" type-nanme="Si npl eEvent ">
<wl evs: properties>

<wl evs: property name="nsg" type="char" />
<wl evs: property name="count" type="long" />
<wl evs: property name="time_stanp" type="timestanp" />

</w evs: properties>

</w evs: event -t ype>

</w evs: event -type-repository>

3.6 Interval and Time Stamp Properties

Event types also support the day-to-second and year-to-month interval properties and
the time stamp with local time zone properties.

3.6.1 Interval Properties

The following assembly file entries show the interval properties.

<w evs: event -type-repository>
<wl evs: event-type type-name="Interval Dat aTypeEvent" >
<w evs: properties>
<wl evs: property name="Comment" type="char" |ength="256" />
<wl evs: property nanme="interval Prop" type="interval day(l) to second(2)"/>

ORACLE 3-6

Chapter 3
Interval and Time Stamp Properties

<wl evs: property nanme="interval ynProp" type="interval year(2) to month"/>
<wl evs: property nanme="interval dhProp" type="interval day to hour"/>
<wl evs: property nanme="interval dnProp" type="interval day to ninute"/>
<wl evs: property name="interval hsProp" type="interval hour(1)
to second(2)"/>
<wl evs: property name="interval hnProp" type="interval hour to mnute"/>
<wl evs: property nane="interval nsProp" type="interval ninute(2)
to second(2)"/>
<wl evs: property name="interval dProp" type="interval day(1)"/>
<wl evs: property name="interval yProp" type="interval year(2)"/>
<wl evs: property name="interval nProp" type="interval nonth"/>
</w evs: properties>
</wl evs: event -t ype>
</ w evs: event -t ype-repository>

Day-to-second combinations:

| NTERVAL DAY] (day_preci sion)]
TO SECOND[(fractional _seconds_preci sion)]

day_pr eci si on is the number of digits in the DAY date-time field. Accepted values are 0
to 9. The default is 2.

fractional _seconds_preci si on is the number of digits in the fractional part of the SECOND
date-time field. Accepted values are 0 to 9. The default value is 6.

Year-to-month combinations:

I NTERVAL YEAR [(year _precision)] TO MONTH

year _preci si on is the number of digits in the YEAR date-time field. The default value for
year _precision is 2.

3.6.2 Time Stamp with Local Time Zone Properties

ORACLE

The following assembly file entries show the time stamp with local time zone
properties.

<w evs: event -t ype-repository>
<w evs: event-type type-name="Interval Dat aTypeEvent ">
<w evs: properties>
<w evs: property name="Comment" type="char" |ength="256" />
< evs: property name="tinestanptzProp" type="tinestamp with time zone"/>
<l evs: property name="tinestanpltzProp" type="tinestanp with |ocal time zone"/>
</w evs: properties>
</w evs: event-type>
</w evs: event-type-repository>

With time zone:
TI MESTAMP [(fractional _seconds_precision)] WTH TI ME ZONE

fractional _seconds_preci si on optionally specifies the number of digits Oracle stores in
the fractional part of the SECOND datetime field. When you create a column of this data
type, the value can be a number in the range 0 to 9. The default value is 6.

With local time zone:

TI MESTAMP [(fractional _seconds_precision)] WTH LOCAL TI ME ZONE

3-7

Chapter 3
Create and Register a JavaBean Event Type

fractional _seconds_preci si on optionally specifies the number of digits Oracle stores in
the fractional part of the SECOND datetime field. When you create a column of this data
type, the value can be a number in the range 0 to 9. The default value is 6.

3.7 Create and Register a JavaBean Event Type

First, identify the event data that the event type carries and then decide the properties
the event type requires.

This section walks you through the following steps. To make the JavaBean an event
source or sink, see Event Beans .

3.7.1 Data Types

You can use the following Java types for the properties:

* The fully qualified name of a Java class. The name must conform to the
O ass. f or Name rules and be available in the application class loader.

e A Java primitive such asint orfloat.

* An array by appending square brackets ([]) to the primitive or class name. For
example, short[] orjava.lang.|nteger[].

3.7.2 Create a JavaBean Event Type Declaratively

1. Create a JavaBean class to represent your event type.

package com bea.w evs. exanpl e. al got radi ng. event ;

public final class MarketEvent {
private final Long tinestanp;
private final String synbol;
private final Double price;
private final Long vol ume;
private final Long |atencyTinestanp;

public MarketEvent() {}

public Double getPrice() {
return this.price;

public void setPrice(Double price) {
this.price = price;

}

public String get Synmbol () {
return this.synbol;

}

public void set Synbol (String symbol) {
this. synbol = synbol;

}

public Long getTimestamp() {
return this.tinestanp;

public void setTinestanmp(Long tinmestanp) {
this.tinmestamp = tinestanp;

}

public Long getlLatencyTi mestanp() {
return this.latencyTinestanp;

ORACLE 3-8

Chapter 3
Create and Register a JavaBean Event Type

public void setlLatencyTi mestanp(Long | atencyTi mestanp) {
this.latencyTi mestanp = | atencyTi mest anp;

}

public Long getVolunme() {
return this.vol ung;

public void setVol une(Long vol ume) {
this.volume = vol une;

}

/1 1mplenentation for hashCode and equal s nethods.

}
2. Compile the JavaBean class.

3. Register your JavaBean event type in the Oracle Stream Analytics event type
repository:

<wl evs: event -t ype-repository>
<wl evs: event-type type-name="Market Event ">
<w evs: cl ass>
com bea. W evs. exanpl e. al got radi ng. event . Mar ket Event
</w evs: cl ass>
</wl evs: event-type>
</ wl evs: event -t ype-reposi tory>

3.7.3 Create a JavaBean Event Type Programmatically

Steps 1 and 2 are the same as steps 1 and 2 in Create a JavaBean Event Type
Declaratively. Then, for step 3, do the following.

To register a JavaBean event type programmatically, use the Event TypeReposi t ory
class as shown:

Event TypeRepository rep = get Event TypeRepository();
rep. regi st er Event Type(" Mar ket Event ",
com bea. W evs. exanpl e. al gotradi ng. event . Mar ket Event . get G ass()

K

For more information, see Access the Event Type Repository.

3.7.4 Usages

ORACLE

Once you create a JavBean even type, you can reference it in your application Java
code. The following code references the Market Event event type in the onl nsert Event
method implementation. The onl nsert Event method is from an event sink class that

receives events. For more information on event sinks, see Event Sink Interfaces.

public void onlnsertEvent ((bject event) throws EventRejectedException {
if (event instanceof MarketEvent){
Mar ket Event market Event = (Market Event) event;
Systemout.printin("Price: " + marketEvent.getPrice());

}

The following Oracle CQL rule shows how to reference the Mar ket Event event type in a
SELECT statement. It assumes an upstream channel called mar ket Event Channel with a
Mar ket Event event type.

<query id="hel | owor| dRul e">

<! [CDATAl SELECT Mar ket Event. price FROM market Event Channel [NOW >
</ query>

3-9

Chapter 3
Create and Register a Tuple Event Type

Also, with property data types implemented as JavaBeans, Oracle CQL code can get
values within those properties by using standard JavaBean-style property access. For
example, the following configuration snippet declares a St udent Type event type that is
implemented as a JavaBean class. The school . Student class is a JavaBean with an
addr ess property that is an Address JavaBean class. The following query suggests how
you might access values of the Addr ess object underlying the address property. This
guery selects student addresses whose postal code begins with 97.

<query id="student Addresses" >
FOR Student Type SELECT student. address
FROM
St udent Type as student
WHERE
student . addr ess. post al Code LIKE '~97'
</ query>

EventRejectedException Behavior in onlhsertEvent Implementations

You need to explicitly throw Event Rej ect edExcepti on in onl nsert Event implementations
for exceptions you do not want to get dropped. You can raise an

Event Processi ngExcept i on and it is propagated all the way to the source of the error
through a CQL processor. An EventRejectedException can chain exceptions from its
downstream listeners, in case there is more than one exception. The CQL processor
converts the Event Rej ect edExcept i on to a soft exception. See Fault Handling for more
information.

3.8 Create and Register a Tuple Event Type

ORACLE

First, identify the event data that the event type carries and then decide the properties
the event type requires.

When you design your event, you must restrict the properties to the data types
described in Design Constraints.

With a tuple-based event type, your Java code must always set and get its property
values with the Event TypeReposi t ory APIs.

Note:

The order in which the EPN processes tuples with the same time stamp is
not guaranteed when the EPN is made up of multiple streams.

Data Types

When you specify the tuple event type properties declaratively in the application
assembly file, you can use any of the native Oracle CQL data types in the property

type.
The following XML shows the use of different types in the application assembly file.

<w evs: event - t ype-reposi tory>
<w evs: event-type type-name="Si npl eEvent ">
<wl evs: properties>
<wl evs: property name="id" type="char" |ength="1000" />
<wl evs: property name="nsg" type="char" />

3-10

Chapter 3
Create and Register a Tuple Event Type

<wl evs: property name="count" type="double" />
<wl evs: property nane="tine_stanp" type="timestanmp" />
</w evs: properties>
</w evs: event -t ype>

</w evs: event-type-repository>

Procedures

* Create a Tuple Event Type in the Assembly File
e Use a Tuple Event Type in Java Code
* Use a Tuple Event Type Instance in Oracle CQL Code

3.8.1 Create a Tuple Event Type in the Assembly File

Register your event type declaratively in the Oracle Stream Analytics event type
repository with the wi evs: event - t ype-reposi t ory element and the w evs: event - t ype
child element.

Create a Tuple Event Type in the Assembly File

The following XML stanzas create a the CrossRat eEvent tuple event type with the
properties price, fronRate, and t oRat e.

<wl evs: event -type-repository>
<w evs: event-type type-name="CrossRat eEvent ">
<wl evs: properties>
<wl evs: property nanme="price" type="double"/>
<wl evs: property nane="fronRate" type="char"/>
<wl evs: property nane="toRate" type="char"/>
</wl evs: properties>
</wl evs: event -t ype>
</ wl evs: event -t ype-repository>

3.8.2 Use a Tuple Event Type in Java Code

ORACLE

Before you can use a tuple event type in Java code, you must create an event type
repository. You use the event type repository to get the property names and values so
you can work on them in your code. To create an event type repository, include the
com bea. w evs. ede. api . Event TypeReposi tory class.

The following code is part of an event sink class. The code creates an event type
repository with a call to the set Event TypeResposi t ory method. The Oracle Stream
Analytics server then calls the onl nsert Event method with an event parameter. The

onl nsert Event method gets information about the event from the event type repository.

For more information about creating an Event TypeReposi t ory object, see Access the
Event Type Repository.

@ervice

/1 Create an event type repository

public void set Event TypeRepository(Event TypeRepository etr) {
etr_ = etr;
}

/1 Called by the server to pass in the event type instance.
public void onlnsertEvent (Chject event) throws EventRejectedException {

Il CGet the event type for the current event instance

3-11

Chapter 3
Create and Register a Map Event Type

Event Type event Type = etr_. get Event Type(event);

/1 Get the event type nane
String event TypeNane = event Type. get TypeNane();

/1 Get the event property names
String[] propNames = event Type. get PropertyNanmes();

Il See if property you're looking for is present
i f(event Type.isProperty("fronRate")) {

Il Get property value

Qbj ect propVal ue =

event Type. get Property("fronRate"). get Val ue(event);

}
/1 Throw com bea. w evs. ede. api . Event Rej ect edException to have an
/'l exception propagated up to senders. Qther errors will be
/1 1ogged and dropped.

}

3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code

The following Oracle CQL rule shows how to reference the CrossRat eEvent in a SELECT
statement. FxQuot eSt reamis a channel with the Cr ossRat eEvent event type.

<query id="FindCrossRat esRul e"><! [CDATA[
select ((a.price * b.price) + 0.05) as internal Price,
a.fromRate as crossRatel,
b.toRate as crossRate2
from FxQuoteStream [range 1] as a, FxQuoteStream[range 1] as b
wher e
NOT (a.price I'S NULL)
and
NOT (b.price IS NULL)
and
a.toRate = b.fronRate
></ query>

3.9 Create and Register a Map Event Type

ORACLE

First, identify the event data that the event type carries and then decide the properties
the event type requires. You create a java. util. mp event type by adding the
configuration XML to the application assembly file.

An event type based on a hash map is called a map-based event type.
e Data Types
e To create and register a java.util.Map event type:

 Usages
Data Types

You can use the following Java types for the properties:

* The fully qualified name of a Java class. The name must conform to the
C ass. f or Name rules and be available in the application class loader.

e A Java primitive such asint or float.

* An array by appending square brackets ([]) to the primitive or class name. For
example, short[] orjava.lang.|nteger[].

3-12

Chapter 3
Create and Register a Map Event Type

The following XML code shows examples of event property declarations in the event
repository.

<wl evs: event -t ype-repository>
<wl evs: event -t ype type-nane="Anot her Event ">
<wl evs: properties type="map">
<wl evs: property>
<entry key="name" val ue="java.lang. String"/>
<entry key="enpl oyeel d" val ue="java.lang.Integer[]"/>
<entry key="sal ary" value="float"/>
<entry key="projectlds" val ue="short[]"/>
</wl evs: property>
<wl evs: properties>
</w evs: event-type>
</ wl evs: event -t ype-repository>

To create and register a java.util.Map event type:

First, identify the event data that the event type carries and then decide the properties
the event type requires.

* Toregister declaratively, edit the EPN assembly file using the wi evs: event - t ype-
reposi tory element w evs: event - t ype child element as shown:

<wl evs: event -t ype-repository>
<w evs: event -type type-name="Anot her Event">
<wl evs: properties type="map">
<wl evs: property name="nanme" val ue="java.lang. String"/>
<wl evs: property nane="age" val ue="java.l ang. I nteger"/>
<wl evs: property nane="address" val ue="java.lang. String"/>
</w evs: properties >
</w evs: event-type>
</ wl evs: event -t ype-repository>

At runtime, Oracle Stream Analytics generates a bean instance of the Anot her Event
class for you. The Anot her Event class has three properties: nane, age, and addr ess.

* To register programmatically, use the Event TypeReposi t ory class as shown:

Event TypeRepository rep = get Event TypeRepository();
java.util.Map map = new Map({nane, java.lang.String},

{age, java.lang.Integer}, {address, java.lang.String});
rep. regi sterEvent Type(" Anot her Event", map);

Usages

public void onlnsertEvent (Cbject event)
throws Event Rej ect edException {

java.util.Mp anEvent = (java.util.Mp) event;
Systemout.printlin("Age: " + anEvent.get("age"));

}

The following Oracle CQL rule shows how you can reference the Market Event in a
SELECT statement:

<query id="hel | owor| dRul e">

<[CDATAl sel ect age from event Channel [now >
</ query>

ORACLE 3-13

Chapter 3
Access the Event Type Repository

3.10 Access the Event Type Repository

The Oracle Stream Analytics event type repository keeps track of the event types
defined for your application. When you create an event type in Oracle JDeveloper, it
becomes available to the Oracle Stream Analytics application.

In some cases, you might need to write code that explicitly accesses the repository.
For example, when your event type is created as a tuple, Java logic that accesses
instance of the type will need to first retrieve the type definition using the repository
API, then use the API to access the instance property values.

The Event TypeReposi t ory is a singleton OSGi service. Because it is a singleton, you
only need to specify its interface name to identify it. You can get a service from OSGi
in any of the following ways:

e« EPN Assembly File
e Spring-DM @ServiceReference Annotation
e Oracle Stream Analytics @Service Annotation

For more information, see Java API Reference for Oracle Stream Analytics.

3.10.1 EPN Assembly File

ORACLE

You can access the Event TypeReposi t ory by specifying an osgi : ref erence in the EPN
assembly file.

<osgi:reference id="etr" interface="com bea.w evs. ede. api . Event TypeReposi tory" />
<bean i d="out put Bean" cl ass="com acne. MyBean" >

<property name="event TypeRepository" ref="etr" />
</ bean>

Then, in the MyBean class, you can access the Event TypeReposi t ory using the
event TypeReposi t ory property initialized by Spring.

package com acne;

inport com bea. w evs. ede. api . Event TypeReposi tory;
inport com bea. w evs. ede. api . Event Type;

public class MyBean {
private Event TypeRepository event TypeRepository;

public void setEvent TypeReposi t ory(Event TypeRepository event TypeRepository) {
this. event TypeRepository = event TypeRepository;
}

public void onlnsertEvent (Cbject event) throws EventRejectedException {
/'l get the event type for the current event instance
Event Type event Type = event TypeReposi tory. get Event Type(event);

/1 Throw com bea. wl evs. ede. api . Event Rej ect edException to have an
/| exception propagated up to senders. Cther errors will be
/'l 1ogged and dropped.

3-14

Chapter 3
Share Event Types Between Application Bundles

3.10.2 Spring-DM @ServiceReference Annotation

You can access the Event TypeReposi t ory by using the Spring-DM @er vi ceRef er ence
annotation to initialize a property in your Java source.

inport org.springframework. osgi . ext ensi ons. annot at i on. Servi ceRef er ence;
inport com bea. w evs. ede. api . Event TypeReposi tory;

@er vi ceRef erence
set Event TypeReposi t ory(Event TypeRepository etr) {

}

3.10.3 Oracle Stream Analytics @Service Annotation

You can access the Event TypeReposi t ory with the Oracle Stream Analytics @er vi ce
annotation to initialize a property in your Java source.

inport com bea.w evs. util. Service;
inport com bea. w evs. ede. api . Event TypeReposi tory;

@ervi ce
set Event TypeReposi t ory(Event TypeRepository etr) {

}

3.11 Share Event Types Between Application Bundles

ORACLE

Each Oracle Stream Analytics application gets its own Java classloader and loads
application classes using that class loader. This means that, by default, one
application cannot access the classes in another application.

However, because the event type repository is a singleton service, you can configure
the repository in one bundle and then explicitly export the event type classes so that
applications in separate bundles (deployed to the same Oracle Stream Analytics
server) can use these shared event types.

The event type names in this case are scoped to the entire Oracle Stream Analytics
server instance. This means that you will get an exception if you try to create an event
type that has the same name as an event type that has been shared from another
bundle, but the event type classes are different.

To share event type classes, add their package name to the Export - Package header of
the MANI FEST. M file of the bundle that contains the event type repository you want to
share.

Be sure you deploy the bundle that contains the event type repository before all
bundles that contain applications that use the shared event types, or you will get a
deployment exception.

For more information, see:

e Choose a Data Structure for the Event Type
Reference Foreign Stages

e Java API Reference for Oracle Stream Analytics.

3-15

Chapter 3
Control Event Type Instantiation with an Event Type Builder Class

3.12 Control Event Type Instantiation with an Event Type
Builder Class

You can create an event type builder to have more control over how event type
instances are created. For example, using an event type builder you can ensure that
the properties of a configured event are correctly bound to the properties of an event
type class, such as one you have implemented as a JavaBean.

You would need an event type builder in a case, for example, where event property
names assumed in CQL code are different from the names of properties declared in
the class.

For example, assume the event type has a fi r st name property, but the CQL rule that
executes on the event type assumes the property is called f name. Assume also that
you cannot change either the event type class (because you are using a shared event
class from another bundle, for example) or the CQL rule to make them compatible with
each other. In this case you can use an event type builder factory to change the way
the event type instance is created so that the property is named f nane rather than
firstnane.

At runtime, an event type builder class receives property values from the Oracle Event
Processing server and uses those values to create an instance of the event type class
you created. Your event type builder then returns the instance to the server. In this
way, your builder class is in effect an intermediary, instantiating event types in cases
where the server is unable to determine how to map configured properties to event
type properties.

Creating and using an event type builder involves implementing the builder class and
configuring a JavaBean event type to use the builder, as described in the following
sections:

e Implement an Event Type Builder Class

e An Event Type that Uses an Event Type Builder

3.12.1 Implement an Event Type Builder Class

ORACLE

When you program the event type builder factory, you must implement the

Event Bui | der. Fact ory inner interface of the com bea. w evs. ede. api . Event Bui | der
interface; see the Java API Reference for Oracle Stream Analytics for details about the
methods you must implement, such as creat eBui | der and creat eEvent .

The following example of an event type builder factory class is taken from the FX
sample:

package com bea. w evs. exanpl e. fx;

inmport java.util.HashMap;

inmport java.util.Mp;

i mport com bea. w evs. ede. api . Event Bui | der;

i mport com bea. w evs. exanpl e. f x. Qut put Bean. For ei gnExchangeEvent ;

public class Forei gnExchangeBui | der Factory inpl ements EventBuil der. Factory {

/1 Called by the server to get an instance of this builder.
public EventBuil der createBuilder() {

3-16

Chapter 3
Control Event Type Instantiation with an Event Type Builder Class

return new Forei gnExchangeBui | der ();

}

/1 Inner interface inplementation that is the builder.
static class Forei gnExchangeBui | der inplenents EventBuil der {

/1 A Map instance to hold properties until the event type is instantiated.
private Map<String, Object> val ues = new HashMap<Stri ng, Obj ect >(10);

/] Called by the server to put an event type property. Values fromthe map

/1 will be used to instantiate the event type.

public void put(String property, Cbject value) throws Il egal StateException {
val ues. put (property, value);

}

/1 Called by the server to create the event type instance once property
/'l val ues have been received.
public Cbject createEvent() {
return new Forei gnExchangeEvent (
(String) val ues.get("synbol"),

(Doubl €) val ues. get("price"),
(String) values.get("fronRate"),
(String) values.get("toRate"));

}

3.12.2 An Event Type that Uses an Event Type Builder

ORACLE

When you register the event type in the EPN assembly file, use the <w evs: property
nane="bui | der Fact ory" > child element of the wl evs: event -t ype element to specify the
name of the event type builder class. The hard-coded bui | der Fact ory value of the nane
attribute alerts Oracle Stream Analytics that it should use the specified factory class,
rather than its own default factory, when creating instances of this event. For example,
in the FX example, the builder factory is registered as shown in bold:

<wl evs: event -t ype-repository>
<w evs: event - type type-name="Forei gnExchangeEvent ">
<wl evs: cl ass>com bea. W evs. exanpl e. f x. Qut put Bean$For ei gnExchangeEvent </ W evs: cl ass>
<w evs: property name="buil der Fact ory" >
<bean i d="bui | der Factory"
cl ass="com bea. W evs. exanpl e. f x. For ei gnExchangeBui | der Factory"/>
</w evs: property>
</w evs: event-type>
</w evs: event -t ype-reposi tory>

3-17

Adapters

Adapters manage data entering and leaving the EPN. Oracle Stream Analytics
provides a number of different kinds of inbound and outbound adapters to handle
different types of data such as CSV, RMI, and HTTP. All adapters have a provi der
property that is a reference to the OSGi-registered adapter factory service and defines
the type of data that the adapter handles.

Inbound adapters receive event data from a data stream entering the EPN, assign the
data to an event according to the event type, and send the data to the next stage in
the EPN. Outbound adapters receive events processed by the EPN, convert the
events to their output form, and send the converted data to an output data source such
as another EPN, a non-EPN application, a CSV file, or a web page.

This chapter includes the following sections:

e Create Adapters

* Cluster Distribution Service

e Password Encryption

* JAXB Support

e CSV Adapters

- EDN Adapters

e File Adapter

e HTTP Publish-Subscribe Adapter

e HTTP Publish-Subscribe Adapter Custom Converter Bean
e JMS Adapters

e JMS Custom Message Converter Bean
e Oracle Business Rules Adapter

e REST Adapter

* RMI Adapters.

For information about the high availability adapters, see High Availability Applications.

See Testing 1-2-3 for information about how to use the csvgen adapter with the load
generator to simulate a data feed to test your application.

4.1 Create Adapters

The best way to create most adapters is with Oracle JDeveloper. The Oracle
JDeveloper components window provides the following inbound and outbound
adapters: CSV, EDN, RMI, HTTP, and JMS.

ORACLE 4-1

Chapter 4
Cluster Distribution Service

For the other adapters, edit the configuration files directly. Each adapter section in this
chapter provides example assembly and configuration file configurations so that you
can see the settings.

This chapter describes some of the assembly and configuration file settings for the
different types of adapters. See also the Oracl e/ M ddl ewar e/ ny_oep/ oep/

w evs_appl i cati on_confi g. xsd directory in your Oracle Stream Analytics installation for
adapter schema information.

4.2 Cluster Distribution Service

The cluster distribution feature provides a mechanism for various Oracle Stream
Analytics adapter types to distribute incoming events to all of the servers in a cluster.

An individual adapter or event bean instance can be configured to distribute events,
and in this case, all input events processed by that adapter are sent (distributed) to all
servers in the cluster.

The distribution adapter ensures that all input events are sent (distributed) to all
servers in the cluster. To convert an input adapter to a distribution adapter, add the
di stributel nput element and set it to true as follows. The di stri buti onThr eadsCount
property is optional and defaults to 1.

<wl evs: adapt er id="nyLoadgenAdapter" provider="|oadgen">
<w evs:instance-property name="distributeToC usterGoup" val ue="true"/>
<wl evs:instance-property nanme="distributionThreadsCount" val ue="1"/>
</w evs: adapt er >

Oracle Stream Analytics supports the Cluster Distribution service for the loadgen, CSV
inbound, and JMS inbound (queue) adapters. Oracle Stream Analytics does not
support the Cluster Distribution service for the CSV outbound, JMS inbound (topic),
JMS outbound, and HTTP publish-subscribe adapters. It is an error to configure topic
destinations for input distribution. A topic configuration generates a warning log
message and is ignored.

In addition to the adapter types listed above, you can also configure an event bean to
distribute all of the events it receives to all cluster members by specifying the provider
for the bean to be cl ust er G oupDi st ri but or as shown in the following example:

<wl evs: event -bean id="di stributor-bean" provider="cl usterGoupDistributor">
<wl evs:instance-property name="di stributionThreadsCount" val ue="1"/>
. other event bean properties ...
</w evs: event - bean>

Oracle JDeveloper does not currently provide a component for the Cluster Distribution
service. However, you can create a Cluster Distribution service by adding entries to
the assembly and configuration files for your Oracle Stream Analytics application.

4.3 Password Encryption

Some of the adapters have user name and password child elements. Oracle Stream
Analytics provides the encrypt MSAConfi g command so that you can encrypt the file that
contains the password.

ORACLE 4-2

Chapter 4
JAXB Support

4.4 JAXB Support

Oracle Stream Analytics provides a simplified interface for using Java Architecture for
XML Binding (JAXB) mapping capabilities in adapters and event beans to marshall
and unmarshall event data between XML and Java objects.

The JAXB interface supports the JAXB 2.2 specification and EclipseLink Moxy
provider extensions.

You can configure the mapping operations in the following ways:

* Map from an XML schema to Java objects to output a set of annotated Java
classes.

* Map from one set of Java objects to another set of Java Objects or to XML using
JAXB annotations.

* Map from an existing XML schema to an existing, predefined Java object
representation. This approach uses the EclipseLink Moxy extensions and requires
an external net adat a file that contains the mapping details. The et adat a file is
referenced by the application configuration.

4.4.1 EclipseLink Moxy

4.4.2 APIs

ORACLE

EclipseLink Moxy provides extensions that enable you to map between an existing
XML schema and a predefined set of Java classes without modifying the XML schema
or the Java classes without providing annotations. You provide the mapping
information in an external metadata file using a XPath syntax.

The flexible EclipseLink Moxy extensions enable you to perform complex operations.
For example, you can map a subset of complex XML data to a much simpler event
representation. You can also flatten a deeply nested XML document into a flat Java
bean event format for processing by Oracle CQL.

You specify EclipseLink Moxy external met adat a in XML. Access the schema at:
http://ww. eclipse.org/eclipselink/xsds/eclipselink oxm2 2.xsd.

The adapter or event bean that requires JAXB functionality obtains the functionality by
injection of a bean that implements the com or acl e. cep. mapper s. api . Mapper interface.
The Mapper interface follows:

public interface Mapper {
Marshal | er createMarshal ler() throws MapperException;
Unmar shal | er createUnmarshal l er() throws MapperException;

}

The adapter or other EPN component code uses the injected bean to create
marshalling and unmarshalling objects. The com or acl e. cep. mapper s. api . Marshal | er
and com oracl e. cep. mappers. api . Unmar shal | er interfaces shown below work for most
applications.

public interface Marshaller {
voi d marshal (Qbj ect object, javax.xnl.transformResult result)
throws Mapper Exception;

4-3

http://www.eclipse.org/eclipselink/xsds/eclipselink_oxm_2_2.xsd

ORACLE

Chapter 4
JAXB Support

public interface Unmarshaller {
bj ect unmarshal (j avax. xn . transform Source source)
throws Mapper Exception;

}

Some applications might need specialized method signatures for marshalling and
unmarshalling such as an unmarshall method that takes the target class as an
argument. In these cases, use the com oracl e. cep. mappers. j axb. JAXBMar shal | er | npl
and com or acl e. cep. mappers. j axb. JAXBUnnar shal | er | npl interfaces instead. These
interfaces provide methods that correspond to the full set of marshall and unmarshall
methods that are supported by the j avax. xm . bi nd. Marshal | er and

javax. xni . bi nd. Unnmar shal | er interfaces.

Assembly File

The following assembly file entries call a mapper bean with properties to specify the
event type and the metadata file.

<bean i d="mapperBean" cl ass="com oracl e. cep. mappers.j axb. JAXBVapper | mpl " >
<property name="event TypeNane" val ue="Cal | CenterActivity" />
<property name="netadata" val ue="external _metadata_casel.xm" />

</ bean>

If you want to call a factory to make the mapper bean, specify the following for the
bean element:

<bean i d="mapperBean" cl ass="com oracl e. cep. nappers.j axb. JAXBVapper Fact ory"
factorymethod="create"/>

Configuration File
The following configuration file entries specify properties for the mapper bean.
<j axh- mapper >

<nanme>mepper Bean</ nane>

<event -type-nane>Cal | Cent er Acti vi ty</ event -t ype- name>

<net adat a>ext ernal _net adat a_casel. xnl </ net adat a>
</ j axb- mapper >

Properties

A mapper bean supports properties. All of the properties except net adat aMap can be
configured as assembly file properties or as elements in the configuration file.

4-4

Chapter 4
JAXB Support

Table 4-1 Mapper Bean Properties and Elements

Assembly File
Property Name

Configuration File
Element Name

Description

eventTypeName

event-type-name

The name of an event type registered by the
application in the event type repository. The
event type corresponds to a Java class. The
package name of this class is used as the
context path when initializing the JAXBContext
represented by the mapper bean.

The configuration must specify either an
event TypeNane or a cont ext Pat h to be used in
constructing the context path for the

JAXBCont ext represented by the mapper. The
packages must exist on the cl asspat h of the
application and contain either schema
generated classes, JAXB annotated classes,
or classes referenced by Moxy external
metadata. The classes will be used as the
Java object graph for marshalling and
unmarshalling operations.

cont ext Pat h

cont ext - path

A colon-separated list of Java package names.
The specified context path to initialize the
JAXBCont ext represented by the mapper bean.

The configuration must specify either an
event TypeNane or a cont ext Pat h to be used in
constructing the context path for the

JAXBCont ext represented by the mapper. The
packages must exist on the cl asspat h of the
application and contain either schema
generated classes, JAXB annotated classes,
or classes referenced by Moxy external
metadata. The classes will be used as the
Java object graph for marshalling and
unmarshalling operations.

val i date

val i date

Bool ean value that defaults to f al se. When
t rue, you must provide the schema. Schema
validation occurs during marshalling and
unmarshalling.

schema

schema

The file name of the XML schema file used for
validation. Package the schema file with the
application in the META- | NF/ wl evs/ mapper s/

j axb directory.

met adat a

met adat a

The name of the file that contains the
EclipseLink Moxy external metadate for
mapping customization. Package the file with
the application in the Met a- | NF/ wl evs/
mappers/jaxb directory.

met adat aMap

N/A

The Spring <map> element that contains one
entry that corresponds to each component of
the cont ext Pat h. For each entry, the key is
the package name from the cont ext Pat h and
the corresponding value is the name of a file
that contains the EclipseLink Moxy external
met adat a for that package.

ORACLE

4-5

Chapter 4
CSV Adapters

If the application uses EclipseLink Moxy-specific external net adat a, the location of the
net adat a is specified by either the net adat a property or the net adat avap property. The
net adat aMap property is required when there is more than one package on the

cont ext Pat h. There is no support for specifying the met adat avap property in a
component configuration file.

4.5 CSV Adapters

ORACLE

CSV adapters handle inbound and outbound data that is separated by commas. Use a
CSVInbound adapter to accept data in the form of comma-separated values entering
the EPN, and use a CSVOutbound adapter to send data in comma-separated values
out of the EPN.

You can test an Oracle Stream Analytics Application that uses CSV inbound adapters
with the load generator provided in your Oracle Stream Analytics installation. The load
generator reads an ASCII file that contains sample data. You must use the CSV
Inbound adapter because it is coded to decipher the data packets generated by the
load generator. See Load Generator and the csvgen Adapter.

Note:

With the j ava. sql . Ti neSt anp type, the CSV adapter reads and writes data in
the format yyyy-mm-dd‘T*'hh:mm:ss].fffffffff]. For example,
"2012-12-12T12:12:12. 120".

The best way to create CSV adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the CSV inbound and outbound adapter configurations.

Assembly File

The inbound CSV adapter translates data read from the St ockDat a. csv file into an
event with the TradeEvent event type.

The wi evs: | i stener element specifies the component that listens to the inbound CSV
adapter for TradeEvent activity. In this example, the listener is Adapt er Qut put Channel .
The Adapt er Qut put Channel component listens for and receives trade events from

St ockTr adeCSVI nboundAdapt er to send to the next stage.

<wl evs: adapt er id="StockTradeCSVI nboundAdapt er" provider="csv-inbound">
<wl evs: |istener ref="Adapt erQut put Channel "/ >
<wl evs:instance-property name="event Type" val ue="TradeEvent"/>
<wl evs:instance-property name="sourcelUr|"
val ue="fil e:/scratch/ npaw an/ oep9- 19/ oep/ uti | s/ | oad- generat or/ St ockDat a. csv"/>
</wl evs: adapt er>

The outbound adapter assembly file configuration is similar to the inbound adapter, but
includes an append attribute. When set to t rue, Oracle Stream Analytics appends data
to an existing output file. When set to f al se, Oracle Stream Analytics creates a new file
or overwrites an existing file of the same name.

<wl evs: adapt er id="StockTradeCSVQut boundAdapter" provi der="csv-out bound">
<wl evs:instance-property name="event Type" val ue="TradeEvent"/>
<wl evs:instance-property nanme="outputFile" val ue="/scratch/npaw an/ oep9- 19/ oep/

4-6

Chapter 4
EDN Adapters

utils/load-generator/StockData.csv"/>
<w evs:instance-property name="append" val ue="fal se"/>
</wl evs: adapt er>

You can provide an absolute or relative path for the out put Fi | e value. For the relative
path, you can specify ../filenanme.csv. ./result.csv, or upl oad/ resul t.csv. When you
specify a relative path, make sure that the abstract path includes the parent directory.
For example, in UNIX, specify a file in the current directory as . /resul t. csv instead of
simply resul t. csv.

Configuration File

The adapter elements in the configuration file show the adapter nane attribute and its
value. The adapter name must match the adapter i d attribute in the assembly file.

<csv-adapt er >
<name>St ockTr adeCSVI nboundAdapt er </ name>
<event-interval units="nanoseconds">5</event-interval >
</ csv-adapt er >

<csv-adapt er >
<name>St ock Tr adeCSVQut boundAdapt er </ name>
</ csv-adapt er >

4.6 EDN Adapters

Event Delivery Network (EDN) inbound and outbound adapters use JAXB to enable an
EPN to interface with an Oracle SOA Suite event network.

The EDN adapters have a raw xnl - cont ent configuration element that specifies
whether to represent the EDN XML data transmission as raw XML (if true) or as a
Java object using JAXB. In the JAXB case, the adapter expects the Oracle Stream
Analytics application bundle to include the appropriate set of schema (xj ¢) generated
classes on its class path.

You configure an EDN adapter with an event type and a reference to an EDL file.
During initialization, the adapter searches the EDL file that contains an event definition
QName that matches the configured event type. If the configured event type is found
in the EDL, the adapter registers a subscription with EDN for the corresponding
QName.

4.6.1 Usage

ORACLE

Use an EDNInbound adapter to receive incoming data from the Oracle SOA Suite
event network. The EDN input adapter subscribes to a specified EDN event type and
converts the incoming EDN events to an Oracle Stream Analytics event type for
processing by an Oracle Stream Analytics application.

Use an EDNOutbound adapter to send outbound data to the Oracle SOA Suite event
network. The EDN output adapter converts the Oracle Stream Analytics events into
corresponding EDN events and publishes them to the EDN. The published events can
be new events that originate in the Oracle Stream Analytics application or EDN events
that were received by the EDN input adapter, processed by the Oracle Stream
Analytics application, and sent to the EDN output adapter.

4-7

Chapter 4
EDN Adapters

4.6.2 Create EDN Adapters

ORACLE

The best way to create EDN adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the EDN inbound and outbound adapter configurations.

Assembly File

e The input EDN adapter listens to the EDN input channel for events of type
FraudCheckRequest .

e The EDN output adapter sends events of type FraudCheckRequest to the next stage
in the EPN.

<wl evs: adapt er id="edn-inbound-adapter" provider="edn-inbound">

<wl evs: | i stener ref="ednl nput Channel "/>

<wl evs:instance-property nane="event Type" val ue="FraudCheckRequest"/>
</ wl evs; adapt er >

<wl evs: adapt er id="edn-out bound-adapter" provider="edn-outbound">
<wl evs:instance-property nane="event Type" val ue="FraudCheckResponse"/>
</ wl evs: adapt er >

Configuration file

Note:

You must put the EDL and schema (xsd) files in the fixed path of the bundled
JAR file.

<edn- adapt er >
<name>edn- out bound- adapt er </ name>
<edl - fil e>FraudCheckEvent . edl </edl -file>
<val i dat e>f al se</val i dat e>
<raw xn - cont ent >f al se</raw xnl - cont ent >
<j ndi - provider-url>t3://local host: 7101</j ndi - provi der-ur| >
<j ndi - fact ory>webl ogi c. j ndi . W.I ni tial ContextFact ory</jndi-factory>
<user >webl ogi c</ user>
<passwor d>wel conel</ passwor d>
</ edn- adapt er>

<edn- adapt er >
<nane>edn-i nbound- adapt er </ nanme>
<edl -fil e>FraudCheckEvent . edl </edl -file>
<schema-fi | e>FraudCheckType. xsd</ schema-fil e>
<val i dat e>f al se</val i dat e>
<raw xn - cont ent >f al se</raw xnl - cont ent >
<j ndi - provider-url>t3://1ocal host: 7101</j ndi - provi der-ur| >
<j ndi - fact ory>webl ogi c. j ndi . W.I ni tial Cont ext Fact ory</jndi - f act ory>
<user >webl ogi c</ user>
<passwor d>wel conel</ passwor d>
</ edn- adapt er>

4-8

Chapter 4
File Adapter

4.7 File Adapter

The File adapter reads data from a file into the EPN and converts the data to an event.

Oracle JDeveloper does not currently provide a component for the File adapter.
However, you can create a File adapter by adding entries to the assembly and
configuration files for your Oracle Stream Analytics application.

Assembly File

The pat h property provides the location of the input file. As the adapter reads the data
from the input file, it converts the incoming data to an event of type O der Arri val Event .
There is aninitial Del ay of 5000 nanoseconds before the File adapters starts to read
the file. The downstream O der Arrival channel listens for events of type

OrderArrival Event .

<wl evs: adapter id="inputAdapter" provider="file" >
<wl evs:instance-property nane="path"
val ue="@M evs. domai n. home@i npOrderArrival . txt"/>
<wl evs:instance-property name="event Type" val ue="OrderArrival Event"/>
<wl evs:instance-property name="initial Del ay" val ue="5000"/>
<w evs:listener ref="OrderArrival"/>
</ wl evs: adapt er>

Configuration File

<adapt er >
<nane>i nput Adapt er </ nane>
</ adapt er >

4.8 HTTP Publish-Subscribe Adapter

Use the HTTP Publisher adapter to send JavaScript Object Notation (JSON) event
data out of the EPN to a web-based user interface. Use the HTTP Subscriber adapter
to accept JavaScript Object Notation (JSON) event data entering the EPN. JSON
event data comes from an HTTP server where user actions generate events.

The HTTP Publish-Subscribe server in Oracle Stream Analytics is based on the
Bayeux protocol that is proposed by the cometd project. The Bayeux protocol defines
a contract between the client and the server for communicating with asynchronous
messages over HTTP.

You can create a remote or a local HTTP Publisher adapter, and a remote HTTP
Subscriber adapter. Whether an HTTP adapter is local or remote is determined by the
local or remote URL you supply to the required <server-url > child element.

The best way to create HTTP publish and subscribe adapters is to use Oracle
JDeveloper.

Note:

Byte arrays are not supported as property types in event types used with the
HTTP Publish and Subscribe adapters.

ORACLE 4-9

Chapter 4
HTTP Publish-Subscribe Adapter Custom Converter Bean

Assembly File
<wl evs: adapter id="http-pub-adapter" provider="httppub"/>

<wl evs: adapter id="http-sub-adapter” provider="httpsub" />

Configuration File

For every local and remote adapter, provide a URL to the server in the server-url
property. The server can be an Oracle Stream Analytics server, a WebLogic Server
instance, or any third-party HTTP Publish-Subscribe server.

For every local adapter for publishing, add a server - cont ext - pat h element to specify
the path to the local HTTP Publish-Subscribe server associated with the Oracle
Stream Analytics instance hosting the current Oracle Stream Analytics application.

By default, each Oracle Stream Analytics server is configured with an HTTP Publish-
Subscribe server with path / pubsub. If you have created a new local HTTP Publish-
Subscribe server or changed the default configuration, then specify the location of the
server in the server file. In the file specify the htt p- pubsub element pat h value with the
location of the server. You can locate the server file in your Oracle Stream Analytics
installation at: / Oracl e/ M ddl ewar e/ my_oep/ exanpl es/ donmai ns/ <ny_domai n>/ def aul t ser ver

The channel child element specifies the channel that the adapter publishes or
subscribes to.

<htt p- pub- sub- adapt er >
<name>ht t p- pub- adapt er </ name>
<server-url>http://nyhost.com 9102/ pubsub</server-url >
<channel >/ channel 2</ channel >
<event -t ype>com myconpany. ht t ppubsub. PubsubEvent </ event - t ype>
<user >w evs</ user >
<passwor d>w evs</ passwor d>

</ htt p- pub- sub- adapt er >

<htt p- pub- sub- adapt er >
<name>ht t p- sub- adapt er </ name>
<server-url>http://nyhost.com 9102/ pubsub</server-url| >
<channel >/ channel 2</ channel >
<event -t ype>com myconpany. ht t ppubsub. PubsubEvent </ event - t ype>
</ htt p- pub- sub- adapt er >

4.9 HTTP Publish-Subscribe Adapter Custom Converter

Bean

The HTTP Publish-Subscribe adapter converts incoming JavaScript Object Notation
(JSON) messages to event types and back again. To customize the way inbound and
outbound JSON messages are converted to an event type and back, create a custom
converter bean.

4.9.1 Bayeux Protocol

ORACLE

The HTTP Publish-Subscribe (pub-sub) server is based on the Bayeux protocol that is
proposed by the cometd project. The Bayeux protocol defines a contract between the
client and the server for communicating with asynchronous messages over HTTP. The

4-10

Chapter 4
HTTP Publish-Subscribe Adapter Custom Converter Bean

pub-sub server can communicate with any client that understands the Bayeux
protocol.

You can develop your web client with the following frameworks:

e Dojo JavaScript library that supports the Bayeux protocol. Oracle Stream Analytics
does not provide this library. You can find information about it at: http://
dojotoolkit.org/.

e WebLogic Workshop Flex plug-in that enables development of a Flex client that
uses the Bayeux protocol to communicate with a pub-sub server.

4.9.2 Create a Custom Converter Bean

ORACLE

A custom converter bean is a Java class that implements the following interfaces:
* InboundMessageConverter interface to convert inbound JSON messages to events.
e QutboundMessageConverter interface to convert events to JSON messages.

See the Java API Reference for Oracle Stream Analytics for a full description of these
APIs.

Inbound HTTP Pub-Sub JSON Message

The custom converter bean for an inbound HTTP pub-sub JSON message implements
the com bea. W evs. adapt er s. ht t ppubsub. api . I nboundMessageConvert er interface. This
interface has only the convert method:

public List convert(JSONGhj ect nessage) throws Exception;

The message parameter is the inbound HTTP pub-sub message in JSON format. The
return value is a Li st of events to pass to the next node in the EPN.

Outbound HTTP Pub-Sub JSON Message

The custom converter bean for an outbound HTTP pub-sub message implements the
com bea. w evs. adapt ers. ht t ppubsub. api . Qut boundMessageConvert er interface. This
interface has only the convert method:

public List<JSONObj ect> convert(Cbject event) throws Exception;

The event parameter is an event received by the outbound HTTP pub-sub adapter
from the source node in the EPN. The return value is a Li st of JSON messages.

Example

The following example shows a custom converter bean that implements both the
I nboundMessageConvert er and Qut boundMessageConvert interfaces. You can use this bean
for both inbound and outbound HTTP pub-sub adapters.

< Note:

You can use the GSON Java library to convert Java objects to JSON format.
For more information, see http://www. j son.org and http://
code. googl e. conl p/ googl e- gson.

4-11

http://dojotoolkit.org/
http://dojotoolkit.org/
http://www.json.org
http://code.google.com/p/google-gson
http://code.google.com/p/google-gson

4.10 IMS

Chapter 4
JMS Adapters

package com sanpl e. htt ppubsub;
i mport com bea.w evs. adapt ers. htt ppubsub. api . | nboundMessageConverter;
i mport com bea.w evs. adapt ers. ht t ppubsub. api . Qut boundMessageConverter;
i mport com bea. ht t ppubsub. j son. JSONObj ect ;
inmport java.util.List;
inmport java.util.ArraylList;
import java.util.HashMap;
import java.util.Mp;
public class TestConverter inplements |nboundMessageConverter, QutboundMessageConverter {
public List convert(JSONOoj ect message) throws Exception {
Li st eventCollection = new ArrayList();
PubsubTest Event event = new PubsubTest Event ();
event. set Message(" From Test Converter: " + nessage);
event Col | ecti on. add(event);
return event Col | ection;
}
public List<JSONGbject> convert(CObject event) throws Exception {
Li st <JSONGbj ect > list = new ArrayLi st <JSONCbj ect >(1);
Map map = new HashMap();
map. put (" message”, ((PubsubTestEvent) event).get Message());
|'ist.add(new JSONObj ect (map));
return |ist;
}
}

Adapters

Use JMS adapters to connect the Java Message Service (JMS) with an Oracle Stream
Analytics EPN to receive and send JMS messages.

The Oracle Stream Analytics JMS adapters support any JMS service provider that
provides a Java client that is compliant with Java EE.

The JMS Inbound adapter converts the incoming JMS messages to Oracle Stream
Analytics events and the JMS outbound adapter converts Oracle Stream Analytics
events to JMS messages. You can customize the inbound conversion by writing your
own Java class.

The best way to create JMS adapters is through the Oracle JDeveloper components
window. The following assembly and configuration files generated by Oracle
JDeveloper show the JMS inbound and outbound adapter configurations.

Note:

An exception that occurs in the MessageConvert er object associated with a
outbound JMS adapter does not cause the underlying JMS transaction to roll
back. If the exception occurs outside of the MessageConvert er object within the
outbound JMS adapter, then an existing JMS transaction is rolled back.

4.10.1 Service Providers

ORACLE

Oracle Stream Analytics is tested against the following service providers:

e WebLogic T3 Client, which is a Java RMI client that uses Oracle T3 protocol to
communicate with Oracle WebLogic Server.

e Version 10.0, 10.3, and 10.3.1 of Oracle WebLogic Server JMS

4-12

Chapter 4
JMS Adapters

e The current version of Tibco EMS JMS

If the service provider you want to use is not in the list, you can configure Oracle
Stream Analytics JMS adapters for use with your service provider by contacting your
service provider and getting the j ndi - provi der-url and j ndi - f act ory information
needed for the j ms- adapt er configuration.

4.10.2 Inbound Adapter Configuration

Assembly File

<wl evs: adapter id="jms-inbound-adapter" provider="jns-inbound" />

Configuration File

The inbound adapter converts incoming JMS messages to a TradeEvent . The JNDI
factory and service provider are webl ogi c. j ndi . W.I ni ti al Cont ext Factory and t3://

I ocal host : 7101. The incoming client finds the adapter with the JNDI name of JNDI Nane.
After the JMS adapter converts the JMS message to an event, the adapter sends the
events to the JNDI destination of Queuel.

The optional connecti on-j ndi - nane element provides the JNDI name of the IMS
connection factory. The required dest i nati on-j ndi - name element provides the JNDI
name of the JMS destination. The sessi on-transact ed element when f al se indicates
that the session is not transactional.

<j ns- adapt er >
<name>j ms- i nbound- adapt er </ name>
<event -type>TradeEvent </ event - t ype>
<jndi - provider-url>t3://local host: 7101</j ndi - provi der-url >
<j ndi - factory>webl ogi c.jndi. Wl nitial ContextFactory</jndi-factory>
<connect i on-j ndi - name>JNDI Name</ connect i on-j ndi - nane>
<destinati on-j ndi - name>Queuel</ desti nati on-j ndi - name>
<sessi on-transact ed>f al se</ sessi on-transact ed>
</j ms-adapt er >

4.10.2.1 Single and Multithreaded Inbound JMS Adapters

By default, an inbound JMS adapter is single-threaded. When the inbound JMS
adapter is single-threaded, event order is guaranteed.

To improve scalability, you can configure an inbound JMS adapter to use multiple
threads to read messages from the JMS destination. When the inbound JMS adapter
is multi-threaded, event order is not guaranteed. To use multiple threads, configure the
adapter with a work manager with the wor k- manager child element. You can specify a
dedicated work manager to be used only by the adapter, or you can share a work
manager among several components such as other adapters and Jetty.

4.10.2.2 Configure a JIMS Adapter for Durable Subscriptions

ORACLE

You can configure an inbound JMS adapter to be a client in a durable subscription to a
JMS topic. A durable subscription ensures that the adapter receives published
messages even when the adapter becomes inactive. When the inbound adapter
connects to the JMS server, it registers the durable subscription and subsequent
messages sent to the topic are retained during periods when the subscriber is
disconnected (unless they expire) and delivered when the subscriber reconnects.

4-13

Chapter 4
JMS Custom Message Converter Bean

A durable subscription assumes that the publisher that is publishing IMS messages to
the topic is using the persistent delivery mode. Note that publisher might be the Oracle
Stream Analytics outbound JMS adapter (in other words, its del i ver y- node value must
be persi st ent, the default value).

Create a Durable Subscription in the Adapter

1. Ensure that the JMS message publisher is delivering messages in persistent
mode.

2. Specify a client ID for the connection factory. On Oracle WebLogic Server, the
client ID can be set on the connection factory administratively with the console.
You should have a dedicated connection factory configured for each adapter
instance that is using durable subscribers.

3. Set the following three j ns- adapt er properties:
° destination-type to TOPI C.
° durabl e-subscriptiontotrue.

e durabl e-subscri pti on-nane to a unique subscription identifier.

4.10.3 Outbound Adapter Configuration

The outbound JMS adapter converts events into a JMS map message and sends the
JMS message to a JMS destination. You can also customize this conversion by writing
your own Java class to specify exactly how you want the event types to be converted
into outgoing JMS messages.

Assembly File

<wl evs: adapter id="j ms-out bound-adapter" provider="jns-outbound"/>

Configuration File

The JMS Outbound adapter configuration is almost the same as the JMS Inbound
adapter configuration. The outbound adapter specifies a JMS destination and provides
a user name and password to access the JMS destination. This session is
transactional and non-persistent.

<j ms- adapt er >
<nane>j ms- out bound- adapt er </ nane>
<event -t ype>TradeEvent </ event - t ype>
<j ndi -provider-url>t3://local host: 7101</j ndi - provi der-url >
<j ndi - f act or y>webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory</j ndi - fact ory>
<connect i on-j ndi - nane>Topi c</ connecti on-j ndi - nane>
<destination-j ndi - nane>Queue2</ dest i nati on-j ndi - nane>
<user >webl ogi c</ user >
<passwor d>wel conel</ passwor d>
<sessi on-transact ed>t rue</ sessi on-transact ed>
<del i very- mode>nonper si st ent </ del i very- node>

</j ms-adapt er >

4.11 JMS Custom Message Converter Bean

To customize the conversion between JMS messages and event types, create
inbound and outbound converter beans and package them with your Oracle Stream
Analytics Application.

ORACLE 4-14

Chapter 4
JMS Custom Message Converter Bean

4.11.1 Implement Interfaces

The inbound and outbound converter beans implement methods in the following two
inbound and outbound interfaces. See the Java API Reference for Oracle Stream
Analytics for a full description of these APIs.

Inbound: com bea. w evs. adapt ers. j ns. api . | nboundMessageConverter. You have to
implement its convert method. The ret urn value is a Li st of events to be passed
downstream.

public List convert(Message nessage)
throws MessageConverter Exception, JMSExcepti on;

nmessage parameter: Corresponds to the incoming JMS message.

Outbound: com bea. wl evs. adapt ers. j ms. api . Qut boundMessageConverter interface.
You have to implement its convert method. The return value is a Li st of IMS
messages.

public List<Message> convert(Session session, Chject event)
throws MessageConverter Exception, JNMSExcepti on;

sessi on parameter: The j avax. j ns. Sessi on to use to create the messages.

event parameter: An event received by the outbound JMS adapter from the source
stage in the EPN.

4.11.2 Implement the Inbound JMS Adapter

This example shows you how to implement the convert method for the inbound JMS
adapter.

ORACLE

1.
2.

In Oracle JDeveloper, add a Java class to your application project.
Implement the com bea. Wl evs. adapt ers. j ms. api . | nboundMessageConvert er interface.

The following example shows a possible implementation.

package com customer;
i mport com bea.w evs. adapt ers. j ms. api . | nboundMessageConverter;
i mport com bea. w evs. adapt ers. j ns. api . MessageConvert er Excepti on;
i mport com bea.w evs. adapt ers. j ms. api . Qut boundMessageConverter;
i mport javax.jms. JMSException;
i mport javax.jms. Message;
i mport javax.jms. Session;
import javax.jms. Text Message;
inmport java.util.ArraylList;
import java.util.List;
public class MessageConverter inplenents |nboundMessageConverter,
Qut boundMessageConverter {
public List convert(Message nessage) throws MessageConverterException, JMSException {
Test Event event = new TestEvent();
Text Message text Message = (Text Message) nessage;
event. set String_1(textMessage. get Text());
List events = new ArrayList(1);
events. add(event);
return events;
}
public List<Message> convert(Session session, Object inputEvent)
throws MessageConverterException, JMSException {
Test Event event = (TestEvent) inputEvent;
Text Message message = session. creat eText Message(
"Text message: " + event.getString_1()

4-15

ORACLE

3.

1.

}

Chapter 4
JMS Custom Message Converter Bean

):

Li st <Message> nessages = new Arrayli st <Message>();
messages. add(nessage) ;

return messages;

Specify the converter in your application EPN assembly file.

* Register the converter class using a bean element.

e Associate the converter class with the JMS adapter by adding a
w evs: i nst ance- property with nane set to converterBean and ref settotheid of
bean.

The following example shows how to register and associate the converter class.

<bean id="nyConverter" class="com custoner.MessageConverter"/>
<wl evs: adapter id="jnslnbound" provider="jns-inbound">

<wl evs:instance-property nane="converterBean" ref="nyConverter"/>
<w evs:listener ref="nySink"/>

</w evs: adapt er >

4.11.3 Implement the Outbound JMS Adapter

This example shows you how to implement the convert method for the outbound JMS
adapter.

Using the Oracle JDeveloper (or your preferred IDE), add a Java class to your
application project.

Implement the com bea. wl evs. adapt ers. j ns. api . Qut boundMessageConverter interface.

The example shows a possible implementation.

package com custoner;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

com bea. W evs. adapt ers. j ns. api . | nboundMessageConverter;
com bea. W evs. adapt ers. j ms. api . MessageConvert er Except i on;
com bea. W evs. adapt ers. j ns. api . Qut boundMessageConverter;
javax. j ms. JMSExcepti on;

javax. j ms. Message;

javax. j ms. Sessi on;

javax. j ms. Text Message;

java. util.ArrayList;

java.util.List;

public class MessageConverter inplenents | nboundMessageConverter,
Qut boundMessageConverter {
public List convert(Message nessage) throws MessageConverterException, JMSException {

Test Event event = new TestEvent();

Text Message text Message = (Text Message) nessage;
event.set String_1(textMessage. get Text());

List events = new ArrayList(1);

events. add(event);

return events;

public List<Message> convert(Session session, Object inputEvent)

throws MessageConverterException, JMSException {

Test Event event = (TestEvent) inputEvent;

Text Message message = session. creat eText Message(
"Text message: " + event.getString_1()

);

Li st <Message> nessages = new ArraylLi st <Message>();

messages. add(nessage) ;

return messages;

4-16

Chapter 4
Oracle Business Rules Adapter

3. Specify the converter in your application EPN assembly file.
* Register the converter class using a bean element.

» Associate the converter class with the JMS adapter by adding a
w evs: i nst ance- property with nane set to converterBean and ref setto theid of
bean.

The following example shows how to register and associate the converter class.

<bean id="nyConverter" class="com custoner. MessageConverter"/>
<wl evs: adapt er id="jmsQutbound" provider="j ns-out bound" >
<wl evs:instance-property nane="converterBean" ref="nyConverter"/>
</w evs: adapt er >

4.12 Oracle Business Rules Adapter

The Oracle Business Rules (OBR) adapter is an event bean that wraps the business
rules engine from the Oracle Business Rules product. The OBR adapter lets you
assert and retract events as facts to trigger business rules.

You can configure OBR rules to generate events and add business logic to an Oracle
CQL processor downstream to process the events. For example you can invoke
StreanSender . sendl nsert Event within the rules file to send data out of an OBR adapter
as an event.

Oracle JDeveloper does not provide a drag and drop component for the assembly file
or the EPN diagram, but it does provide a drag-and-drop component for the
configuration file.

You can create an OBR adapter by adding entries to the assembly file and by
dragging and dropping the OBR adapter into the configuration file. For more
information about creating OBR adapters by adding entries, see the OBR
documentation at: http: // ww. or acl e. conl t echnet wor k/ mi dd| ewar e/ busi ness-rul es/
docunent ati on/i ndex. htnl .

Assembly File

The event -t ype-reposi t ory element specifies the event type repository for the
application. In the following example, the repository has a single event type named
Hel | oWor | dEvent and is implemented by the Hel | oWor | dEvent . j ava class.

The next adapter specifies an i d equal to hel | owor | dAdapt er ID with a value of the

Hel | oWor | dAdapt er Java class. An adapter is created from the Hel | oWr | dAdapt er Java
class. The OBR adapter configuration includes a message element with the specified
message text. The Hel | oWr | dAdapt er class prints the nessage during application
execution. In this example, the Hel | oWr | dAdapt er class is the event source.

The OBR adapter declaration comes after the channel and Oracle CQL processor
configurations: <w evs: adapt er i d="C0BRAdapter" provider = "obr"> followed by the

deci si onFunct i on and di cti onar yURL properties. The di cti onaryURL property is the path
to the OBR dictionary file that contains the rules, and deci si onFuncti on property is the
OBR function you want to use. The handl er 1 property is a handle for other components
to access this information.

ORACLE 4-17

http://www.oracle.com/technetwork/middleware/business-rules/documentation/index.html
http://www.oracle.com/technetwork/middleware/business-rules/documentation/index.html

ORACLE

Chapter 4
Oracle Business Rules Adapter

Note:

The OBR adapter does not handle automatic Fact retraction. If the upstream
processor outputs a stream, retract the Fact in the rule file when appropriate
or when the last rule is triggered according to rule priority.

At the bottom is the Hel | oWr | dBeand configuration. The Hel | oWr | dBean is a Java class
that instantiates the Hel | owor | dEvent and Hel | oWr | dAdapt er classes.

<wl evs: event -type-repository>
<wl evs: event-type type-name="Hel | oWor| dEvent ">
<wl evs: cl ass>com bea. W evs. event . exanpl e. hel | owor | d. Hel | oWr | dEvent
</w evs: cl ass>
</wl evs: event -t ype>
</ wl evs: event -t ype-repository>
<wl evs: adapt er id="hel | owor| dAdapter"
cl ass="com bea. w evs. adapt er. exanpl e. hel | owor | d. Hel | oWr | dAdapter” >
<wl evs:instance-property nane="nessage" val ue="HelloWrld - The tine is:"/>
</ wl evs: adapt er >

<wl evs: channel id="helloworldl nput Channel " event-type="Hel | oWr| dEvent" >
<w evs: |istener ref="helloworldProcessor"/>
<wl evs: source ref="hel | owor| dAdapter"/>

</w evs: channel >

<wl evs: processor id="hel | owor| dProcessor" />

<wl evs: channel id="hel |l owor| dQut put Channel " event-type="Hel | oWr| dEvent"
advertise="true" max-threads="0" nax-size="0" >

<wl evs: |istener ref="0BRAdapter"/>

<w evs: source ref="hel | owor| dProcessor"/>

</W evs: channel >

<wl evs: adapt er id="OBRAdapter" provider = "obr">

<wl evs:instance-property nane="deci si onFunction" val ue="handl er1" />

<wl evs:instance-property name="dictionaryUl" value="file:helloworld.rules"/>
<wl evs: |istener ref="QutputBean"/>

</ wl evs: adapt er >

<wl evs: event - bean i d="CQut put Bean"
class="com bea. w evs. exanpl e. hel | owor | d. Hel | o\Wr | dBean" >
</w evs: event - bean>

Configuration File

The configuration file declares the Oracle CQL processor and query rules to use to
process the Hel | owor | dEvent received from the OBR adapter. It also provides the OBR
adapter handler (handl er 1) for accessing the OBR rules. The di ctionary-url element
specifies the path to the OBR dictionary file that contains the rules and decision
function you want to use. The deci si on-f uncti on element specifies the name of the
OBR decision function you want to use.

<processor >
<name>hel | owor | dPr ocessor </ name>
<rul es>
<query id="hel | owor| dRul e" >
<I[CDATA[select * from helloworldlnput Channel [range 10 slide 5]]] >

4-18

Chapter 4
QuickFix Adapter

select * from hel | owor | dl nput Channel [now
</ query>
</rul es>
</ processor >
<obr - adapt er >
<name>0BRAdapt er </ nanme>
<dictionary-url>file:helloworld.rules</dictionary-url>
<deci si on-funct i on>handl er 1</ deci si on- f unct i on>
</ obr - adapt er >

4.13 QuickFix Adapter

The QuickFix Adapter is a full-featured messaging engine for handling the real-time
electronic exchange of securities transactions according to the Financial Information
eXchange (FIX) standard.

The QuickFix adapter listens for FIX messages, converts the FIX messages to Oracle
Stream Analytics events, and sends the events to the next stage for processing.

The QuickFix adapter supports all of the configuration data that the underlying
QuickFIX engine provides. For information about FIX configuration data, see the
“QuickFIX/J User Manual" at http://www.quickfixj.org/documentation/.

Note:

Oracle Stream Analytics does not support QuickFIX dynamic acceptor
sessions in the 12c release.

The QuickFix adapter does not support SSL.

4.13.1 Supported QuickFIX Versions and Unsupported Message

Types

ORACLE

The QuickFIX engine supports a wide-range of message types and validates the data
in those message types. If your Oracle Stream Analytics application requires a
message that is not supported by the QuickFIX engine, you must create a custom
handler by extending the default QuickFIX message handler and overriding the
appropriate handler method(s).

The QuickFIX adapter supports the following QuickFIX versions. The messages listed
under each QuickFIX version are not supported.

QuickFIX Version 4.0
The following message types are not supported in this version:

Heartbeat, Logon, TestRequest, ResendRequest, Reject, SequenceReset, Logout.

QuickFIX Version 4.1
The following message types are not supported in this version:

Heartbeat, Logon, TestRequest, ResendRequest, Reject, SequenceReset, Logout.

4-19

http://www.quickfixj.org/documentation/

Chapter 4
QuickFix Adapter

QuickFIX Version 4.2
The following message types are not supported in this version:

Heartbeat, Logon, TestRequest, ResendRequest, Reject, SequenceReset, Logout.
QuickFIX Version 4.3

The following message types are not supported in this version:

Heartbeat, Logon, TestRequest, ResendRequest, Reject, SequenceReset, Logout.

QuickFIX Version 4.4
The following message types are not supported in this version:

Heartbeat, Logon, TestRequest, ResendRequest, Reject, SequenceReset, Logout.

4.13.2 Configure QuickFix Adapters

ORACLE

Oracle JDeveloper does not currently provide a component for the QuickFix adapter.
However, you can create a QuickFix adapter by adding entries to the assembly and
configuration files for your Oracle Stream Analytics application.

Assembly File

<wl evs: adapt er id="Qui ckFl XI nbound" provi der="qui ckfi x-i nbound"/ >

Configuration File

The configuration requires at least one def aul t - sessi on element and can have zero or
more session elements. The sessi on element represents a group of configuration
settings that is used for a particular QuickFix Session. If there are more than one
sessions required, then common configurations are grouped into the def aul t - sessi on
element. All of the sessi on tags, by default, inherit all of the elements declared in the
defaul t - sessi on tag.

The Begi nSt ri ng value in the confi g- nane element indicates the FIX message version
used. BeginString data is not validated by the QuickFIX engine.

According to the documentation at htt p: // qui ckfi xj . or g/ qui ckfi xj / user manual / 1. 5. 3/
usage/ configuration. htni, the required and supported identifier fields are Begi nStri ng,
Sender Conpl D and Tar get Conpl D.

Other fields such as Sender Subl D, Sender Locat i onl D, Tar get Subl D and Tar get Locat i onl D
are not mandatory and are not supported in release 12.1.3.

<qui ckfi x- adapt er >
<nane>qui ckfi xAdpat er </ name>
<event -t ype>MyConf i gEvent </ event - t ype>
<defaul t-session description="default configuration">

<configuration description="identifier-nessage format">
<confi g- name>Begi nSt ri ng</ confi g- name>
<confi g- val ue>FI XT. 0. 1</ confi g- val ue>
</ confi guration>
</ defaul t - sessi on>
<session description="ordertracker configuration">
<configuration description="identifier-acceptor">

4-20

http://quickfixj.org/quickfixj/usermanual/1.5.3/usage/configuration.html
http://quickfixj.org/quickfixj/usermanual/1.5.3/usage/configuration.html

Chapter 4
REST Adapter

<conf i g- name>Sender Conpl D</ conf i g- name>
<confi g- val ue>QA</ confi g- val ue>

</ confi guration>

<configuration description="identifier-initiator">
<confi g- name>Tar get Conpl D</ conf i g- name>
<confi g- val ue>ORACLE</ confi g- val ue>

</ confi guration>

</ sessi on>
</ qui ckfi x- adapt er >

4.13.3 Configure a Socket-Based Acceptor Failover

You can configure a simple failover scheme for socket-based acceptors by running
two acceptor processes with a shared MessageSt or e. One process is the active
acceptor and the other process is the standby for any session. When one acceptor
process dies, the client having been configured with failover addresses, attempts to
log on to the other acceptor. Upon successful logon, the message store for that
session refreshes and the failover session continues normally.

The following configuration settings are required for a successful failover scheme.

Ref reshMessageSt or eAt Logon=Y
Socket Connect Port 1=8392

Socket Connect Host 1=8.8. 8. 8
Socket Connect Port 2=2932

Socket Connect Host 2=12. 12. 12. 12

4.14 REST Adapter

ORACLE

The Representational State Transfer (REST) inbound adapter receives HTTP Post
data from an external client through the HTTP protocol. A REST adapter can accept
data in XML, CSV, and JavaScript Object Notation (JSON) and convert that data into
the Oracle Stream Analytics event configured on the inbound REST adapter.

To convert data to events, the REST adapter requires a Java Architecture for XML
Binding (JAXB) mapper and a CSV mapper. A mapper is a JavaBean class that
implements the marshalling and unmarshalling of the incoming data.

Oracle JDeveloper does not currently provide a component for the REST adapter.
However, you can create a REST adapter by adding entries to the assembly and
configuration files for your Oracle Stream Analytics application.

Assembly File

The following assembly file shows the settings for an inbound REST adapter that
handles input data of type XML, CSV, and JSON.

<bean i d="xnl Mapper Bean" cl ass="com oracl e. cep. mappers. j axb. JAXBMapper Fact or y"
factory-nethod="create" />
<bean i d="csvMapper Bean" cl ass="com oracl e. cep. mappers. csv. CSVMapper" />

<bean i d="j sonMapper Bean"
class="com oracl e. cep. mappers. j axb. JAXBVapper Fact ory"
factory-nethod="create" />

<wl evs: adapter id="restlnbound" provider="rest-inbound">

<wl evs:instance-property name="napper" ref="xn MapperBean" />

<wl evs:instance-property name="csvMapper" ref="csvMapperBean" />

<wl evs:instance-property nane="event TypeName" val ue="Cal | CenterActivity" />

4-21

ORACLE

Chapter 4
REST Adapter

<wl evs:instance-property nane="contextPath" val ue="/testhttpadapter" />
</w evs: adapt er >

The following assembly file shows the settings for an outbound REST adapter that
unmarshalls an event to the XML or JSON content types.

<wl evs: adapt er id="restXnl Qut bound" provi der="rest - out bound">
<wl evs:instance-property name="napper" ref="xm Mapper Bean" />
<w evs: i nstance- property
name="url" val ue="http://I ocal host: 9002/t est adapter" />
</w evs: adapt er >

<wl evs: adapter id="restJsonCQutbound" provider="rest-outbound">
<wl evs:instance-property nane="rmapper" ref="jsonMapperBean" />
<w evs:instance-property name="url"
val ue="http://1 ocal host: 9002/t est adapter" />
</w evs: adapt er >

Configuration File

The following configuration file shows the rest - adapt er configuration for receiving POST
data, and the j axb- mapper configuration for handling incoming XML and JSON data.

<rest-adapt er>
<nane>r est | nbound</ nane>
<event -t ype- nane>Cal | Cent er Acti vi t y</ event - t ype- nane>
<cont ext - pat h>/ t est ht t padapt er </ cont ext - pat h>
</rest-adapter>
<j axb- mapper >
<nane>xm Mapper Bean</ nane>
<event -t ype- nane>Cal | Cent er Acti vi t y</ event - t ype- nane>
<nmet adat a>ext er nal _net adat a_casel. xm </ net adat a>
</ j axb- mapper >
<j son- mapper >
<name>j sonMapper Bean</ name>
<event -t ype- nane>Cal | Cent er Act i vi t y</ event - t ype- nane>
<nedi a- t ype>appl i cation/j son</ nedi a- t ype>
</ j son- mapper >

The following configuration file shows the settings for an outbound REST adapter that
unmarshalls an event to the XML or JSON content types.

<rest -adapt er>

<nanme>r est Xml Qut bound</ name>

<url>http://1ocal host:9002/testrestadapter</url>
</rest-adapter>

<rest - adapt er>

<nanme>r est JsonQut bound</ nanme>

<url>http://1ocal host:9002/testrestadapter</url>
</rest-adapter>

<j axb- mapper >
<nane>xm Mapper Bean</ nane>
<event -t ype- nane>Cal | Cent er Acti vi t y</ event - t ype- name>
<net adat a>ext er nal _net adat a_casel. xnl </ net adat a>

</ j axb- mapper >

<j son- mapper >

<name>j sonMapper Bean</ nanme>
<event -t ype- nane>Cal | Cent er Acti vi t y</ event - t ype- name>

4-22

Chapter 4
RMI Adapters

<medi a- t ype>appl i cati on/ j son</ nedi a- t ype>
</ j son- mapper >

Note:

To support XML content type in the REST inbound and outbound adapters,
use the XML Mapper. Adding XML annotations or generating JAXB bindings
file automatically is not supported in this release.

4.15 RMI Adapters

Use the RMI Inbound and Outbound adapters to read event information from and write
event information to an RMI connection. The best way to create RMI adapters is
through the Oracle JDeveloper components window.

The following assembly and configuration files generated by Oracle JDeveloper show
the RMI inbound and outbound adapter configurations.

Note:

The RMI client connection cannot be closed. See question F1 at http://
docs. oracl e. conl j avase/ 8/ docs/ t echnot es/ gui des/rni/faqg. htm .

Assembly File

The inbound RMI adapter has a JNDI name to enable inbound clients to locate the
EPN.

<wl evs: adapter id="rm -inbound-adapter" provider="rni-inbound">
<wl evs: i nstance-property nane="j ndi Nanme"
val ue="TradeReport Appl i cati on. TradeReport/rni-i nbound- adapter"/>
</wl evs: adapt er >
<wl evs: adapter id="rm -outbound-adapter" provider="rni-outhound"/>

Configuration File

The JNDI name enables the RMI outbound adapter to locate the output resource for
the event data. The JNDI provider enables directory service implementations to be
plugged into the JNDI framework.

In this example, the JNDI provider is the default Oracle WebLogic T3 client. Oracle
WebLogic T3 clients are Java RMI clients that use the Oracle T3 protocol to
communicate with Oracle WebLogic Server. T3 clients typically outperform other client

types.

<rni-adapter>
<name>r mi - out bound- adapt er </ name>
<j ndi - name>RM Qut boundJNDI Nane</ j ndi - nane>
<j ndi - provider-url>t3://local host: 7001</j ndi - provi der-url >
<j ndi - f act or y>webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory</j ndi - fact ory>
</rni-adapter>

ORACLE 4-23

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html

Chapter 4
Twitter Adapter

4.16 Twitter Adapter

You can use the inbound Twitter adapter to read tweets.

The inbound adapter reads tweets from the Twitter using Twitter API and sends these
tweets to the processor through the inbound channel. The adapter also filters tweets
based on various filter options such as hashtag, users, and language. The input for
these operations comes from the inbound adapter.

The Twitter adapters enable you to create an EPN diagram with a Twitter Inbound
Adapter and connect it to any Outbound Adapter.

This section includes the following sections:
» Configuration of the Twitter Adapter

» Dependencies for the Twitter Adpater

e Twitter Inbound Adapter

* Example with the Filter Option

4.16.1 Configuration of the Twitter Adapter

You need to do minimal configuration for both the inbound and outbound adapters.

<wl evs:instance-property name="oaut hConsuner Key" val ue=" XXXXXXXXXXXX" />

<wl evs:instance-property name="oaut hConsumer Secret” val ue="XXXXXXXXXXX" [>

<wl evs:instance-property nanme="oaut hAccessToken" val ue="XXXX- XXXXXXX" />

<wl evs:instance-property name="oaut hAccessTokenSecret" val ue="XXXXXXXXX" />

<wl evs:instance-property name="httpProxyHost" val ue="ww« proxy. us. oracl e.cont' />
<wl evs:instance-property name="httpProxyPort" val ue="80" />

4.16.2 Dependencies for the Twitter Adpater

Twitter adapters depend on the following twi tter4j libraries.
° twitterdj-core
° twitterdj-async

° twitterdj-stream

4.16.3 Twitter Inbound Adapter

The Twitter inbound adapter provides filter streaming mode to receive tweets from
Twitter.

The following filter options are available. Comma separated values (csv) can be used
for multiple values:

* Filter: Filters tweets based on the filter options provided at time of adapter
configuration. The following filter options are available.

— hashtagsToTrack: Specify a string for hashtag to track without the # symbol.

— usersToTrack: Specify a long Twitter userID or the user handle to track user
tweets.

ORACLE 4-24

ORACLE

— languag

4

Note:

Chapter 4
Twitter Adapter

esToTrack: Specify language codes to filter specific language tweets.

Note:

At least one of the hasht agsToTrack or usersToTrack properties must
be specified at the time the adapter is configured.

NOT_SUPPORTED:

The logical operator OR is used when you specify both
hasht agsToTrack and user sToTrack. For more information, see https://
dev.twitter.com/streaming/reference/post/statuses/filter.

The Twitter API has API Rate Limits. For more information, see https://
dev.twitter.com/rest/public/rate-limiting.

Supported Languages

Languages supported by Twitter for Websites widgets and buttons are listed in the

following table:

Table 4-2 Su

pported Languages and Language Codes

Name Language Code
English (default) en
Arabic ar
Bengali bn
Czech cs
Danish da
German de
Greek el
Spanish es
Persian fa
Finnish fi
Filipino fil
French fr
Hebrew he
Hindi hi
Hungarian hu
Indonesian id
Italian it

4-25

https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting

Chapter 4
Twitter Adapter

Table 4-2 (Cont.) Supported Languages and Language Codes
|

Name Language Code
Japanese ja
Korean ko
Malay msa
Dutch nl
Norwegian no
Polish pl
Portuguese pt
Romanian ro
Russian ru
Swedish sV
Thai th
Turkish tr
Ukrainian uk
Urdu ur
Viethamese Vi
Chinese (Simplified) zh-cn
Chinese (Traditional) zh-tw
¢ Note:

Based on the Twitter website, zh- cn language code is for Simplified Chinese
and zh-twis for Traditional Chinese. However, the Twitter metadata defines
zh only for Chinese. So, the Twitter Inbound adapter uses zh language code
both for Simplified Chinese and Traditional Chinese language.

For more information, see https://dev.twitter.com/web/overview/languages.

4.16.4 Example with the Filter Option

ORACLE

This example is a context file that uses the filter option.

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springframework. org/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance”

xm ns: osgi ="http://ww:. springfranmework. or g/ schema/ osgi "

xm ns: w evs="http://wwmv. bea. conf ns/w evs/ spring"

xm ns: jdbc="http://ww:. oracl e. com ns/ ocep/j dbc"

xn ns: hadoop="htt p: / / www. or acl e. conf ns/ oep/ hadoop"

xm ns: nosql db="htt p: // www. or acl e. cont ns/ oep/ nosql db"

xsi: schemaLocation=" http://ww. springframework. or g/ schema/ beans
http://ww:. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww:. springframework. or g/ schema/ osgi

http://ww:. springframework. or g/ schema/ osgi / spring- osgi . xsd

4-26

https://dev.twitter.com/web/overview/languages
https://dev.twitter.com/web/overview/languages

Chapter 4
MQTT Adapter

http://ww. bea. com ns/w evs/ spring
http://ww:. bea. com ns/w evs/ spring/ ocep-epn. xsd
http://ww:. oracl e. com ns/ ocep/ j dbc
http://ww:. oracl e. com ns/ ocep/ j dbc/ ocep-j dbc. xsd
http://ww:. oracl e. con ns/ oep/ hadoop
http://ww:. oracl e. com ns/ oep/ hadoop/ oep- hadoop. xsd
http://ww:. oracl e. con ns/ oep/ nosql db
http://ww:. oracl e. com ns/ oep/ nosql db/ oep- nosql db. xsd" >
<w evs: event-type-repository>
<w evs: event-type type-name="tweet Event">
<wl evs: cl ass>com bea. Wl evs. sanpl e. Tweet </ wl evs: cl ass>
</ wl evs: event -t ype>
</wl evs: event -t ype-repository>
<wl evs: adapter id="twitteradapter" provider="twi tter-inbound">
<w evs:|istener ref="inboundchannel"/>
<wl evs:instance-property name="stream nghbde" val ue="filter" />
<wl evs:instance-property name="hashtagsToTrack" val ue="IndvsSA" />
<wl evs:instance-property name="usersToTrack" val ue="338674755" />
<wl evs:instance-property name="|anguagesToTrack" val ue="en"/>
<wl evs:instance-property name="oaut hConsumer Key" val ue="XXXXXX" />
<wl evs:instance-property name="oaut hConsumer Secret" val ue="XXXXXX" />
<wl evs:instance-property name="oaut hAccessToken" val ue="XXXX- XXXX" />
<wl evs:instance-property name="oaut hAccessTokenSecret" val ue="XXXXXXXX" />
<wl evs:instance-property name="httpProxyHost" val ue="wwmw proxy. us. oracl e. cont />
<wl evs:instance-property name="httpProxyPort" val ue="80" />
</ wl evs: adapt er>
<wl evs: channel id="inboundchannel" event-type="tweet Event">

<wl evs: |istener ref="tweetprocessor"/>
</w evs: channel >
<wl evs: processor id="tweetprocessor"/>

<wl evs: channel id="outboundchannel" event-type="tweet Event">

<wl evs:listener ref="twiteroutbountadapter"/>
<wl evs: source ref="tweetprocessor"/>

</w evs: channel >
<wl evs: adapter id="twiteroutbountadapter" class="com bea.w evs. sanpl e. Qut put Bean"
advertise="true"/>
</ beans>

4.17 MQTT Adapter

ORACLE

The MQTT Inbound/Outbound adapter receives any MQTT messages from the topics
set up on the MQTT broker on the configured host, converts them, and sends them
downstream.

The MQTT broker is in charge of the infrastructure required for topics used for the
message flow. The MQTT messages are received by the Inbound Adapter and are
converted to the Oracle Stream Analytics event type. The converted messages are
transmitted downstream where they are processed into a Complex event or filtered
based on a cql query. They are then output to the Oracle Stream Analytics sink. If you
provide multiple broker URLSs, the MQTT Adpter sends the messages to the broker
which MQTT is able to connect first based on the broker URLs present in the
serverURIs list. As part of serverURIs you may provide multiple broker URLSs. You set
these URIs in MgttConnectOptions.setServerURIs() in MQTT adapter which is used to
build connection with the broker.

When an attempt to connect is initiated the client starts with the first serverURI in the
list and works through the list until a connection is established with a server. If a
connection cannot be made to any of the servers then the connect attempt fails.
Specifying a list of servers that a client may connect to has several uses:

4-27

Chapter 4
MQTT Adapter

* High Availability and reliable message delivery.

* Some MQTT servers support a high availability feature where two or more "equal”
MQTT servers share state.

* An MQTT client can connect to any of the "equal”" servers and be assured that
messages are reliably delivered and durable subscriptions are maintained no
matter which server the client connects to.

* The cl eansessi on flag must be set to false if durable subscriptions and/or reliable
message delivery is required.

Hunt List

A set of servers may be specified that are not "equal” (as in the high availability
option). As no state is shared across the servers reliable message delivery and
durable subscriptions are not valid. The cl eansessi on flag must be set to true if the
hunt list mode is used.

Dependencies

The main external dependency is on the MQTT client jar file:
org. eclipse.paho.ngtt-client-0.4.0.jar

This supports MQTT 3.1.1.

Installation

There are no special installation requirements for the MQTT adapter. This is similar to
any other adapter jar. The jar name is com oracl e. cep. adapters. ngtt.jar.

This jar will be available as part of the installer at <I NSTALL_HOVE>/ oep/ nodul es folder. To
have it as part of the server, you must add it to thebundl el oader. xn file.

<bundl e>

<startlevel >3</start| evel >

<l ocat i on>0ep/ modul es</| ocati on>

<name>com or acl e. cep. adapt ers. mgtt. j ar </ name>
</ bundl e>

The OSGi bundle starts at level 3.

Inbound Adapter

The Inbound Adapter converts messages using built-in mapper or a custom converter.
If the message data is likely to be CSV, JSON and XML, a default mapper can be
used.

Outbound Adapter

The Outbound Adapter can publish EventProcessing events to MQTT topics. The
converted topics can then be picked up by another inbound adapter or any other
system.

You can use the MQTT Inbound/Outbound adapter as part of either EPN or Oracle
Stream Analytics applications.

ORACLE 4-28

4.17.1 MQTT Configuration Parameters

ORACLE

Note:

Chapter 4
MQTT Adapter

The MQTT broker must be installed to use the MQTT Adapter.

Both the Inbound and Outbound adapters have parameters that must be configured.
These tables indicate which are required and which are optional.

MQTT Inbound Configuration

The configuration parameters for the Inbound MQTT Adapter are as follows:

Table 4-3 MQTT Inbound Adapter Configuration Parameters

Property Name Data Type

Requir

ed?

Description

server URl's java.lang. Strin
g

Yes

Comma separated list of server URIs that the
client may connect to. Example:

tcp://iot.eclipse.org: 1883

t opi cNane java.lang. Strin
g

Yes

Comma separated list of topics that the client
will subscribe to. Each value can include
wildcards.

qual i tyOf Servic java.lang. Strin
e g

No

Comma separated list of QoS's for each of the
specified topics. Valid values are 0 (At Most
Once), 1 (At Least Once) and2 (Exactly
Once) . If nothing is specified, it defaults to 1.

| oadBal anceEnab j ava. | ang. Bool e
| ed an

No

Set this property to true to force every member
in the cluster to work collectively to handle the
load. By default, this property is false.

clientld java.lang. Strin
g

No

The unique client identifier. If not specified, it
will be generated automatically.

persi stenceType java.lang.Strin
g

No

The persistent data store for the in-flight
messages, enabling the delivery to the QoS
specified. Valid values are nenory and fil e. If
nothing is specified, it defaults to memory.

directory java.lang. Strin
g

Yes

If the persistenceType property is set to “file",
then this property is required. It specifies
which folder must be used to store messages.

mapper com or acl e. cep.
mapper s. api . Map
per

No

Mapper object used to convert the messages
from the topic to event types. Normally,
SX/OEP developers will set up instances of
the built-in mappers such as CSV, JSON and
XML, but the adapter can handle custom
mapper implementations.

event TypeName java.lang. Strin
g

"Wes"

If the mapper property is set to use a CSV
mapper, then this property is required. It
specifies which event type is being handled

4-29

ORACLE

Chapter 4
MQTT Adapter

Table 4-3 (Cont.) MQTT Inbound Adapter Configuration Parameters
|

Property Name Data Type Requir Description
ed?
converter oracl e. ateam sx No Converter object used to convert the
.adapters.mtt. messages from the topic to event types.
api . | nboundConv Converters provide ways for developers to
erter implement their conversion logic. It also allows
the reading of message metadata such as
QoS, duplicate and retained.
cl eanSessi on java.lang. Boole No Specifies whether the client and server should
an remember their state across restarts and
reconnects. It defaults to true which means
that the subscriptions are non-durable.
user Nane java.lang. Strin No The user name to use for the connection.
g
password java.lang. Strin No The password to use for the connection.
g
ssl Context Provi java.lang.Strin No The SSL context provider to use for the
der g connection.
ssl KeySt ore java.lang. Strin No The SSL key store to use for the connection.
g
ssl KeyStorePass java.lang.Strin No The SSL key store password to use for the
wor d g connection.
ssl KeyStoreType java.lang.Strin No The SSL key store type to use for the
g connection.
ssl KeyStoreProv java.lang.Strin No The SSL key store provider to use for the
i der g connection.
ssl Trust Store java.lang. Strin No The SSL trust store to use for the connection.
g
ssl Trust StorePa java.lang.Strin No The SSL trust store password to use for the
ssword g connection.
ssl TrustStoreTy java.lang.Strin No The SSL trust store type to use for the
pe g connection.
ssl Trust StorePr java.lang.Strin No The SSL trust store provider to use for the
ovi der g connection.
aut oReconnect java.lang. Bool e No Specifies that if the connection is lost, if it
an should reconnect automatically. It defaults to
true.
connectionTimeo java.lang.Integ No The connection timeout value. This value,

ut

er

measured in seconds, defines the maximum
time interval the client will wait for the network
connection to the MQTT server to be
established. The default value is 30 seconds.

4-30

ORACLE

Chapter 4
MQTT Adapter

Table 4-3 (Cont.) MQTT Inbound Adapter Configuration Parameters

Property Name Data Type Requir

ed?

Description

keepAlivelnterv java.lang.Integ No
al er

The "keep alive" interval. This value,
measured in seconds, defines the maximum
time interval between messages sent or
received. It enables the client to detect if the
server is no longer available, without having to
wait for the TCP/IP timeout. The default value
is 60 seconds.

connectionWaitT java.lang.Integ No
inme er

The amount of time, measured in seconds, to
wait until a connection can be established. It
allows time for the adapter connect properly.
The default value is 1 second.

connecti onAttem java.lang.Integer No
pts

The number of attempts that the adapter will
try to connect. The default value is 3 attempts.
If set to zero ("0") then it tries forever.

connectionDelay java.lang.Integ No
er

The amount of time, measured in seconds, to
wait after a tentative connection fail. This delay
takes place for every tentative connection. The
default value is 5 seconds.

MQTT Outbound Configuration

The configuration parameters for the Oubound MQTT Adapter are as follows:

Table 4-4 MQTT Outbound Adapter Configuration Parameters
|

Property Name Data Type Requir Description
ed?
server URl's java.lang. Strin Yes Comma separated list of server URIs that the
g client may connect to. Example:
tcp://iot.eclipse.org: 1883
t opi cNane java.lang. Strin Yes Comma separated list of topics that the client
g will subscribe to. Each value can include

wildcards.

qual ityOf Servic java.lang. Strin No
e g

Comma separated list of QoS's for each of the
specified topic. Valid values are 0 (At Most
Once), 1 (At Least Once) and 2 (Exactly
Once) . If nothing is specified, it defaults to 1.

clientld java.lang. Strin No
g

The unique client identifier. If not specified, it
will be generated automatically.

persi stenceType java.lang.Strin No
g

The persistent data store for the in-flight
messages, enabling the delivery to the QoS
specified. Valid values are: nenory and fil e. If
nothing is specified, it defaults to memory.

directory java.lang. Strin Yes
g

If the persistenceType property is set to “file",
then this property is required. It specifies
which folder must be used to store messages.

4-31

ORACLE

Chapter 4
MQTT Adapter

Table 4-4 (Cont.) MQTT Outbound Adapter Configuration Parameters
|

Property Name Data Type Requir Description
ed?
mapper comoracle.cep. No Mapper object used to convert the event types
mappers. api . Map into messages. Normally, SX/OEP developers
per will set up instances of the built-in mappers
such as JSON and XML, but the adapter can
handle any type of JAXB-based mapper
provided.
converter oracle.ateamsx No Converter object used to convert the event
.adapters.mgtt. types into messages. Converters provide ways
api . Qut boundCon for developers to implement their conversion
verter logic. It also allows the writing of message
metadata such as QoS, duplicate and
retained.
cl eanSessi on java.lang.Boole No Specifies whether the client and server should
an remember their state across restarts and
reconnects. It defaults to true which means
that the subscriptions are non-durable.
user Nane java.lang. Strin No The user name to use for the connection.
g
password java.lang. Strin No The password to use for the connection.
g
ssl Context Provi java.lang.Strin No The SSL context provider to use for the
der g connection.
ssl KeyStore java.lang. Strin No The SSL key store to use for the connection.
g
ssl KeyStorePass java.lang.Strin No The SSL key store password to use for the
wor d g connection.
ssl KeySt oreType java.lang.Strin No The SSL key store type to use for the
g connection.
ssl KeyStoreProv java.lang.Strin No The SSL key store provider to use for the
i der g connection.
ssl Trust Store java.lang. Strin No The SSL trust store to use for the connection.
g
ssl TrustStorePa java.lang.Strin No The SSL trust store password to use for the
ssword g connection.
ssl Trust StoreTy java.lang.Strin No The SSL trust store type to use for the
pe g connection.
ssl Trust StorePr java.lang.Strin No The SSL trust store provider to use for the
ovi der g connection.
aut oReconnect java.lang. Bool e No Specifies that if the connection is lost, if it
an should reconnect automatically. It defaults to
true.
connectionTimeo java.lang.Integ No The connection timeout value. This value,

ut

er

measured in seconds, defines the maximum
time interval the client will wait for the network
connection to the MQTT server to be
established. The default value is 30 seconds.

4-32

Chapter 4
MQTT Adapter

Table 4-4 (Cont.) MQTT Outbound Adapter Configuration Parameters

Property Name Data Type Requir Description
ed?
keepAlivelnterv java.lang.Integ No The "keep alive" interval. This value,
al er measured in seconds, defines the maximum

time interval between messages sent or
received. It enables the client to detect if the
server is no longer available, without having to
wait for the TCP/IP timeout. The default value
is 60 seconds.

connectionWaitT java.lang.Integ No The amount of time, measured in seconds, to

ime er wait until a connection can be established. It
allows time for the adapter connect properly.
The default value is 1 second.

4.17.2 MQTT Receiver EPN

This sample EPN demonstrates how to use an MQTT inbound adapter and subscribe
to MQTT topics.

This EPN subscribes to a topic named t enper at ures on the MQTT Broker. The MQTT
Broker runs on the specified server URIs. This shows the high availability feature.
Even if one of the servers fails, it safely switches over to the other server.

For an Inbound Adapter add provi der ="yt t -i nbound" in the adapter definition in the
context file.

<wl evs: adapter id="mgttlnbound" provider="nytt-inbound">
<wl evs: |istener ref="inboundTenperatures"/>
<w evs:instance-property name="server URI's" val ue="tcp://
10.191. 195. 134: 1883, tcp: //10. 191. 211. 254: 1884" | >
<wl evs:instance-property name="topi cNane" val ue="tenperatures" />
<wl evs:instance-property name="qual i tyCf Service" val ue="0" />
<wl evs:instance-property name="napper" ref="jsonMapper" />
</ wl evs: adapt er >

4.17.3 MQTT Sender EPN

ORACLE

This sample EPN demonstrates how to use an MQTT outbound adapter and publish
events to MQTT topics.

This EPN publishes to a topic named t enper at ures on the MQTT Broker. The MQTT
Broker runs on the specified server URIs. This shows the High Availability feature.
Even if one of the servers fails, it safely switches over to the other server.

For an Outbound Adapter add provi der ="t t - out bound" in the adapter definition in the
context file.

<wl evs: adapter id="ngttQutbound" provider="ngtt-outbound">
<w evs:instance-property name="server URI s" val ue="tcp://
10.191. 195. 134: 1883, tcp: //10. 191. 211. 254: 1884" | >
<w evs:instance-property name="topi cNane" val ue="tenperatures" />
<wl evs:instance-property name="qual i tyCf Service" val ue="0" />
<wl evs:instance-property name="napper" ref="jsonMapper" />
</ wl evs: adapt er >

4-33

Chapter 4
Kafka Adapter

4.18 Kafka Adapter

ORACLE

You can create EPN diagrams with any available inbound adapter, including kafka
inbound, or a custom inbound adapter and connect it to Kafka outbound adapter.

The Kafka inbound adapter can read messages from one or multiple Kafka topics. It
converts these messages to events using mapper properties like CSV, JSON or XML.
The Kafka outbound adapter can publish events by converting them to messages
using mapper properties like JSON and XML to Kafka topics.

event TypeNane property in the Spring file is required only when the CSV mapper is
chosen as the mapper strategy, it points to kaf ka- i nbound and kaf ka- out bound adapter
config.

Whenever JSON and XML mappers are configured, they are associated with event
types using Java classes. The Tuple Events (declaratively defined) can be used if
these are not used with mappers. The following is a sample context content:

<wl evs: event - t ype-reposi tory>
<wl evs: event - type type-name="sx- 34- 2- Expl or e_kaf ka_wi t h_bi gdeci mal - 2" >
<w evs: cl ass>
oracle.w evs. strex. generated. sx_34_2_Expl ore_kaf ka_wi t h_bi gdeci mal _2
</w evs: cl ass>
</w evs: event -t ype>
</w evs: event-type type-name="sx- 34-2- Expl ore_kaf ka_wi t h_bi gdeci nal - 3">
<wl evs: properties>
<wl evs: property nanme="sensor|d" type="java.lang.String"/>
<w evs: property nanme="sensor Val ue" type="bi gdeci mal "/ >
</w evs: properties>
</w evs: event -t ype>
<wl evs: event - type type-name="sx- 34- 2- Expl or e_kaf ka_wi t h_bi gdeci mal - 1">
<wl evs: properties>
<wl evs: property name="sensor|d" type="java.lang.String"/>
<wl evs: property nanme="sensor Val ue" type="bi gdeci mal "/ >
</w evs: properties>
</w evs: event - type>
</w evs: event -t ype-repository>
<bean cl ass="com oracl e. cep. mappers. csv. CSVMapper" i d="csvMapper Bean"/ >
<bean cl ass="com oracl e. cep. mappers. j axb. JAXBMapper Fact ory" fact ory- net hod="creat e"
i d="j sonMapper Bean" >
<property nane="event TypeNane" val ue="sx- 34-2- Expl ore_kaf ka_wi t h_bi gdeci mal - 2"/ >
<property nane="nedi aType" val ue="application/json"/>
</ bean>

Dependencies

Kafka inbound and outbound adapters depend on the following libraries.

Table 4-5 Kafka Adapter Dependencies
|

Library Version Library name

Apache Kafka 2.10-0.8.2.1 kafka_2.10-0.8.2.1.jar
Apache kafka-clients 0.8.2.1 kaf ka-clients-0.8.2.1.jar
Metrics Core Library 2.2.0 metrics-core-2.2.0.jar
Scala Standard Library 2.104 scala-library-2.10.4.jar

4-34

Chapter 4
Kafka Adapter

Table 4-5 (Cont.) Kafka Adapter Dependencies

Library Version Library name
ZooKeeper 3.4.6 zookeeper-3.4.6.jar
ZKkClient 0.3 zkclient-0.3.jar

Installation Requirements

Zookeeper and Kafka need to be installed and running to use Oracle Stream Analytics
Kafka adapters. The following steps can be used to set-up Kafka in a local
development Linux environment.

1. Download Apache Kafka from http://kafka.apache.org/downloads.html.
2. Extract the contents of the downloaded file into a folder.

3. Open a terminal window.
4

In the terminal window, navigate to the bi n folder from where you extracted the
contents.

o

Execute ./ zookeeper-server-start.sh ../confi g/ zookeeper. properties.
6. Open another terminal window. This will be the second terminal.

7. In the terminal window, navigate to the bi n folder from where you extracted the
contents.

8. [Execute ./kafka-server-start.sh ../config/server.properties.

You can create a deployment with the following characteristics:

e One Zookeeper instance running on localhost and listening on port 2181

e One Kafka broker instance running on localhost and listening on port 9092.

4.18.1 Inbound Adapter receiving messages from Kafka

This is a sample application that subscribes to a topic named st ocks and continuously
fetches messages.

When a message arrives, it is automatically transformed from the JSON format into
the expected event type. A CQL processor sends the events downstream to an output
channel. Finally, the output channel sends these events to a custom adapter that
writes the contents in the standard output console.

<wl evs: adapt er id="kaf kal nbound" provi der="kaf ka- i nbound">
<w evs: | istener ref="inboundStockQuotes"/>
<w evs:instance-property name="zookeeper" val ue="local host:2181" />
<w evs:instance-property name="topi cNane" val ue="stocks" />
<wl evs:instance-property nanme="napper" ref="jsonMapper" />
</ wl evs: adapt er>

4.18.2 Outbound Adapter sending messages to Kafka

This is a sample application that continuously creates stock quotes with randomly
generated prices. The interval between each generation is one second.

ORACLE 4-35

http://kafka.apache.org/downloads.html

Chapter 4
Kafka Adapter

These stock quotes are queried by a CQL processor that sends out the events into an
output channel. Finally, the output channel sends these events to the Kafka outbound
adapter, which writes these events in a topic named st ocks in JSON format.

<w evs: adapt er id="kaf kaQut bound" provi der="kaf ka- out bound" >

<wl evs:instance-property name="hoot strapServers" val ue="|ocal host: 9091, | ocal host:
9092" />

<wl evs:instance-property nanme="topi cName" val ue="stocks" />

<wl evs:instance-property name="napper" ref="jsonMapper" />
</w evs: adapt er >

4.18.3 Kafka Configuration

Kafka Adapter must be configured for both Inbound and Outbound Adapters.

The supported adapter properties for Kakfa inbound and outbound adapters are listed
in the sections below.

Kafka Inbound Adapter Configuration

The configuration parameters for the Inbound Kafka Adapter are as follows:

Table 4-6 Kafka Inbound Adapter Properties
|

Property Name Data Type Requir Description
ed
zookeeper java.lang. Strin Yes Informs the adapter how to connect to the
g Zookeeper server. If more than one Zookeeper

server exists for HA, than it should mention all
of them separated by comma.

Typical value for this property is: | ocal host :

2181
t opi cNane java.lang. Strin Yes The name of the Kafka topic.
g
groupld java.lang. Strin No Each consumer process must belong to a
g group. Thus, this property informs to which
group bind to. If no value is set in this property,
the adapter will automatically generate one,
using the following notation: ser ver Nane +
" + appNane + "-" + adapterld.
mapper comoracle.cep. No Mapper object used to convert the messages
mappers. api .Map from the topic to event types. Normally, Oracle
per Stream Analytics developers will set up
instances of the built-in mappers such as CSV,
JSON and XML, but the adapter can handle
custom mapper implementations.
event TypeNane comoracle.cep. No Required only when the CSV mapper is
mappers. api . Map chosen as the mapper strategy. This property
per should state which event type is being

handled.

ORACLE 4-36

Chapter 4
Kafka Adapter

Table 4-6 (Cont.) Kafka Inbound Adapter Properties
|

Property Name Data Type Requir Description
ed
converter comoracle.cep. No Converter object used to convert the
adapters.kaf ka. a messages from the topic to event types.
pi .InboundConve Converters provide ways to developers to
rter implement their conversion logic. It also allows

the reading of message metadata such as key,
partition and offset.

consuner Threads java.lang.Integ No To increase message consumption
er throughput, this property can be adjusted to
create more listener threads.

It defaults to one if nothing is specified.

The total number of threads (computed as the
sum of all threads within the Oracle Stream
Analytics cluster) must keep up with the
number of partitions set in the topic on the
cluster side.

wor kManager Name java.lang. Strin No If no value is specified, the default work
g manager is used to schedule the threads used
to listen messages from Kafka topics. To
change this behavior, this property can define
a custom work manager. The value must be
the work manager name, the same one setin
the confi g. xml configuration file.

consumer Configs java.util.Prope No Allow Oracle Stream Analytics developers to
rties set any native Kafka property Related to the
consumer API. A complete list of possible
properties is available at: http://
kafka.apache.org/082/
documentation.html#consumerconfigs.

Kafka Outbound Adapter Configuration

The configuration parameters for the Outbound Kafka Adapter are as follows:

Table 4-7 Kafka Outbound Adapter Properties
|

Property Name Data Type Requir Description

ed
boot strapServer java.lang.Strin Yes Informs the adapter how to connect to the
S g Kafka cluster, by mentioning one or more

servers (separated by comma) that performs
the initial bootstrap discovery of the members.
Typical value for this property is: localhost:
9091,localhost:9092

t opi cNane java.lang. Strin Yes The name of the Kafka topic.
9

ORACLE 4-37

http://kafka.apache.org/082/documentation.html#consumerconfigs
http://kafka.apache.org/082/documentation.html#consumerconfigs
http://kafka.apache.org/082/documentation.html#consumerconfigs

Chapter 4
Coherence Adapter

Table 4-7 (Cont.) Kafka Outbound Adapter Properties
|

Property Name Data Type Requir Description
ed
mapper comoracle.cep. No Mapper object used to convert the event types
mapper s. api .Map into messages. Normally, Oracle Stream
per Analytics developers will set up instances of

the built-in mappers such as JSON and XML,
but the adapter can handle any type of JAXB-
based mapper provided.

converter comoracle.cep. No Converter object used to convert the event
adapters.kaf ka. a types into messages. Converters provide ways
pi .OutboundCon to developers to implement their conversion
verter logic. It also allows the writing of message
metadata such as key and partition.
partitionProper java.lang.Strin No Specifies which property of the event type
ty g holds the information about which partition the

message will be sent. Developers must take
care of only using the java.lang.Integer type to
set the value of the partition.

keyProperty java.lang. Strin No Specifies which property of the event type
g holds the information about the key that will be
used to figure out the partition. Developers can
chose between byte[] and String to set the
value of the key, but any other type will throw

an error.
producer Configs java.util.Prope No Allow Oracle Stream Analytics developers To
rties set any native Kafka property Related to the

producer API. A complete list of possible
Properties is available at: http://
kafka.apache.org/082/
documentation.html#producerconfigs.

4.19 Coherence Adapter

ORACLE

Coherence Cache is an in-memory distributed cache used for providing fast access to
frequently used data. The Event Processing provides the capability to process
incoming stream of events in real-time. In a coherence cache, data is stored in a
distributed in-memory cache. Each entry in cache is a key-value pair. Every cache
data operation requires user to specify both key and value.

Coherence cache supports following operations:
* | NSERT: adds a new {key,value} pair

e DELETE: deletes an existing {key,value} pair

* UPDATE: modifies an existing {key,value} pair.

Oracle Stream Analytics provides two out of the box adapters which can either listen
change events of a cache as incoming data stream or write output stream into a
cache.

4-38

http://kafka.apache.org/082/documentation.html#producerconfigs
http://kafka.apache.org/082/documentation.html#producerconfigs
http://kafka.apache.org/082/documentation.html#producerconfigs

Chapter 4
Coherence Adapter

4.19.1 Coherence Inbound Adapter

ORACLE

Coherence Inbound Adapter provides the capability to listen change events from a
cache. Coherence inbound adapter registers itself as a listener to coherence cache.
On every data operation in cache, cache notifies inbound adapter with the change
details. Coherence inbound adapter receives the change events and transforms them
to Event Processing events and pushes to downstream for further event processing.

Cache supports the following three types of change events depending on type of data
operation:

e I NSERT: to insert a new {key, val ue} pair into cache
e DELETE: to remove an existing { key, val ue} pair from cache

e UPDATE: to update an existing {key, ol d-val ue} pair with {key, newval ue} pair.

" Note:

Currently coherence inbound adapter only listens to | NSERT change events,
i.e., the adapter listens to all new {key, val ue} pairs incoming into cache. Any
change event that is generated as a result of UPDATE or DELETE operation of
cache will be ignored by inbound adapter.

Sequence of Events

The Oracle Stream Analytics coherence inbound adapter can receive insert events
from cache. There are two methods to insert data into the cache which are inherited
from the Map class:

° put(K key, V value). See https://docs.oracle.com/javase/8/docs/api/java/util/
Map.html#put-K-V.

° putAll(Mp<? extends K, ? extends V>M . See https://docs.oracle.com/javase/8/
docs/api/java/util/Map.html#putAll-java.util.Map.

If you are particular caring about the sequence of the inserted events, use

Li nkedHashMap to do batch insert operation for the cache. The Li nkedHashMap class
remembers the sequence of events inserted. The EventProcessing can receive events
in the same sequence as each event is inserted into the Li nkedHashMap. User caring
about inserting sequence should use Li nkedHashMap to do batch insert operation for the
cache.

Example for batch insert operation for the cache using Li nkedHashMap:

Map batch = new Li nkedHashMap();
whi | e(condi tion)

{
bat ch. put (k1, vi)
bat ch. put (k2, v2)
bat ch. put (k3, v3)
}

cohrenceCache. put Al | (bat ch)

4-39

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#putAll-java.util.Map
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#putAll-java.util.Map

Chapter 4
Coherence Adapter

The EventProcessing coherence inbound adapter can receive events from the cache
in sequence which preserve the original order: k1, k2, k3.

Configuration

The following is the configuration element to define a coherence inbound adapter in
Oracle Stream Analytics application:

<wl evs: adapt er id="coherencel nboundAdapt er" provi der="coherence-i nbound">
<wl evs:instance-property name="cache" ref="0racl eCoherenceCache"/>
<wl evs:instance-property nane="event Type" val ue="Enpl oyeeEvent"/>

</ wl evs: adapt er>

where O acl eCoher enceCache is a cache element defined already in application EPN
configuration. See OracleCoherenceCache and EmployeeEvent.

Configuration Parameters

The following are the details about the various configuration element attributes and
properties:

e cache — this property specifies the cache whose change events user wants to
listen. The value must refer to a coherence cache element which is defined in the
EPN configuration. This is a mandatory property of the adapter configuration.

* event Type — this property specifies the type of events propagated by the inbound
adapter to the downstream stage. The event type should be already defined in the
event type repository of the application. This is also a mandatory property of the
adapter configuration.

As soon as an event is entered into coherence cache by user, cache notifies the
adapter and provides the change event to listening inbound adapter. Coherence cache
pushes the change event to listening inbound adapter that maintains an unbounded
buffer queue. The reason to maintain buffer queue is to return the callback thread
which invokes map listener interface implemented by inbound adapter. Coherence
adapter dequeues these events in its own thread and pushes it to the downstream
stage. After adapter dequeues the change event, it converts the received object to
event object of type provided in event Type.

Note:

The change event (object inserted into cache) should be of type
java.util.Mp where map entries are attribute name and value pair.

4.19.2 Coherence Outbound Adapter

ORACLE

Coherence outbound adapter provides the capability to write events into a coherence
cache. As cache is a map and every entry in cache is in form of {key, val ue} pair,
outbound adapter determines the key for every event and put that event into cache
using the calculated key.

The following is the configuration element to define a coherence inbound adapter in
Oracle Stream Analytics application:

<wl evs: adapt er id="coherenceCut boundAdapter" provi der="coherence-out bound" >
<wl evs:instance-property name="cache" ref="0racl eCoherenceCache"/>

4-40

Chapter 4
Coherence Adapter

<wl evs:instance-property nane="event Type" val ue="Enpl oyeeEvent"/>
<wl evs:instance-property nane="key" val ue="id"/>
</ wl evs: adapt er>

where O acl eCoher enceCache is a cache element defined already in application EPN
configuration. See OracleCoherenceCache and EmployeeEvent.

Configuration Parameters

The following are the details about the various configuration element attribute and
properties:

» cache — this property specifies the destination cache where user wants to write
output stream. The value should refer to a coherence cache element which is
defined in the EPN configuration. This is a mandatory property of adapter
configuration.

e event Type — this property specifies the type of events propagated by the outbound
adapter to downstream cache. The event type should be already defined in the
event type repository of application. This is also a mandatory property of adapter
configuration.

* key — this property specifies the key attribute in the event type definition for the
outgoing event to destination cache.

After an outgoing event arrives at outbound adapter, the adapter will fetch the value of
key attribute from event. Now adapter will form a {key, val ue} pair to write into
destination cache where key will be the value of key attribute in the event. And value is
an instance of j ava. uti| . Map created using outgoing event object. Outbound adapter
also works in asynchronous manner and it maintains a buffer queue where it stores alll
outgoing events. A separate output thread dequeues event from this buffer and push
into coherence cache. The reason for having buffer queue is because of the behavior
of put operation of coherence cache. Coherence cache invokes all map listener on
each put operation and it may increase latency if any downstream map listener on
cache consume a significant time on each put operation initiated by outbound adapter.

4.19.3 OracleCoherenceCache

Coherence O acl eCoher enceCache is defined in EPN configuration file using wlevs:cache
element as follows:

<wl evs: cachi ng- syst em i d="coher enceCachi ngSyst ent' provi der="coherence">
</ wl evs: cachi ng- syst em

<w evs: cache id="0Oracl eCoherenceCache" >
<wl evs: cachi ng- syst em r ef =" coher enceCachi ngSyst ent'/ >

</w evs: cache>

4.19.4 EmployeeEvent

ORACLE

Enpl oyeeEvent is defined as follows:

public class Enpl oyeeEvent
{
private int id;
private String nane;
private String dept;
private int phone;

4-41

Chapter 4
Coherence Adapter

public int getld()
{

return id;

public void setld(int id)

{
this.id =id;

1
public String getNane()
{

return name,

public void setName(String nane)

{

this.name = nang;

1
public String getDept()
{

return dept;

public void setDept(String dept)

{
this.dept = dept;

1
public int getPhone()

{

return phone;

}

ORACLE 4-42

Channels

A channel represents the logical conduit through which events flow between other
types of components (stages). For example, between adapters and Oracle CQL
processors or between Oracle CQL processors and event beans.

This chapter includes the following sections:

* When to Use a Channel

e Channel Configuration

e Control Which Queries Output to a Downstream Channel
* Batch Processing Channels

* Fault Handling

* EventPartitioner Channels

e Distributed Flows.

5.1 When to Use a Channel

ORACLE

Channels provide buffering, queuing, and concurrency capabilities that enable you to
tune the performance of your application later in the design life cycle.

By default, the channel nax- t hr eads attribute is set to 0, which means the channel is in
pass-through mode and incurs no performance penalty.

When constructing your EPN, consider the following rules:

* A channel is mandatory when you connect an Oracle CQL processor to a
downstream stage.

* A channel is mandatory when you connect a stream or relation to an Oracle CQL
processor.

Note that based on the previous two points, it is mandatory to have a channel
between an adapter and a processor. When you use Oracle JDeveloper to
connect an adapter to a processor, the channel wizard displays for you to create
the channel.

» A channel is optional when you connect any of the following components to an
Oracle CQL processor: an external relation, cache, or table source.

A channel is not needed between a pull source, such as a cache or table, and a
processor because the pull source represents an external relation. For an external
relation, the only valid operation is a join between a stream and a NOW window
operator, and hence it is considered a pull source. The join actually happens outside of
the Oracle CQL processor. Because it is a pull, the Oracle CQL processor does not
need to be aware of its shape (that is, no DDL is required) and does not need the
channel to act as intermediary.

In general, use a channel between components when:

5-1

Chapter 5
Channel Configuration

» Buffering is needed between the emitting component and the receiver.
* Queueing or concurrency is needed for the receiving component.

» If a custom adapter is used and thread control is necessary.

5.2 Channel Configuration

When you add a channel to your Event Processing Network (EPN), it has a default
configuration. The default channel has a name, an ID, is a system time-stamped
stream channel, and has a default heartbeat time out of 100 milliseconds or
100,000,000 nanoseconds.

The default configuration is adequate for most applications.You can modify the
configuration by editing the application assembly file or by editing the component
configuration file.

When a channel is time stamped by the system, Oracle Stream Analytics assigns a
new time from the CPU clock when a new event arrives and when the configurable
heartbeat time out expires.

When a channel is time stamped by an application, the time stamp of an event is
determined by the wi evs: expr essi on element. A common example of an expression is a
reference to a property on the event. If no expression is specified, then the time stamp
can be propagated from a prior event. For example, when a channel that is time
stamped by the system from one Oracle CQL processor feeds events into a channel
that is time stamped by an application of another downstream Oracle CQL processor.
In addition, an application can use the StreanSender. sendHear t beat method to send an
event of type heart - beat downstream to StreanSi nk listeners in the EPN.

Note:

When a channel is both application time stamped and map-based (uses a
hash map event type), Oracle Stream Analytics adds a time stamp. A delete
or update operation without a key does not work on a channel with this
configuration because application time stamped events hold an always
changing ti mest anp property.

This chapter describes some of the assembly and configuration file channel settings.

5.2.1 Assembly File

ORACLE

The assembly file shows the channel settings for the helloworldinputChannel. The
settings indicate that helloworldProcessor listens to the channel for events, and that
events flow into the channel from helloworldAdapter.

<w evs: channel id="hel | owor!| dl nput Channel " event-type="Hel | oWr| dEvent" >
<w evs: listener ref="helloworl|dProcessor"/>
<w evs: source ref="hel | owor| dAdapter"/>

</ wl evs: channel >

To configure the channel as a relation, add the i s-rel ati on setting to the assembly file
as follows:

5-2

Chapter 5
Control Which Queries Output to a Downstream Channel

<wl evs: channel id="helloworl dl nput Channel " event-type="Hel | oWor| dEvent"
is-relation="true" primary-key="nypri marykey" />

If you make the channel a relation, you must also configure the pri mary- key attribute.
The primary key is a list of event property names separated by white space or a
comma that uniquely identifies each event.

To configure the channel to be application time stamped, add the appl i cati on-

ti mest anped and expr essi on elements to the assembly file as follows. When you set the
i s-total -order element to true, the application time published is always strictly greater
than the last value used.

<wl evs: application-tinestanped is-total-order="true">
<wl evs: expressi on>nyti me+10</ W evs: expr essi on>
</w evs: application-tinestanped>

5.2.2 Configuration File

The configuration file shows the channel configuration settings. The settings customize
the channel to buffer process events asynchronously (max- si ze), to use a maximum of
4 threads (max-threads), and to use a heartbeat time out of 10000 nhanoseconds
(heartbeat).

<channel >
<nane>hel | owor | dI nput Channel </ name>
<max- si ze>10000</ max- si ze>
<max-t hr eads>4</ max-t hr eads>
<hear t beat >10000</ name>
</ channel >

5.3 Control Which Queries Output to a Downstream

Channel

ORACLE

If you configure an Oracle CQL processor with more than one query, then by default,
all queries send their results to the downstream channel. You can control which
gueries send their results to the downstream channel with the sel ect or element.

Figure 5-1 shows an EPN with channel fi | t er edSt reamconnected to the upstream
Oracle CQL processor, fil t eredFanout Processor.

Figure 5-1 EPN With Oracle CQL Processor and Downstream Channel

: (o |
— ») > - >

priceStream filteredStream

PriceAdapter

filterFanoutProcessor

The following example shows the queries configured for the Oracle CQL processor.

<processor >
<name>fi |t er Fanout Processor </ name>
<rul es>
<query id="Yr3Sect or"><![CDATA]
sel ect cusip, bid, srcld, bidQy, ask, askQy, seq
from priceStream where sector="3_YEAR'
></ query>

5-3

5.4 Batch

Chapter 5
Batch Processing Channels

<query id="Yr2Sect or"><![CDATA]
sel ect cusip, bid, srcld, bidQy, ask, askQy, seq
from priceStream where sector="2_YEAR'
></ query>
<query id="Yr1Sect or"><![CDATA]
sel ect cusip, bid, srcld, bidQy, ask, askQy, seq
from priceStream where sector="1_YEAR'
></ query>
</rul es>
</ processor>

If you specify more than one query for an Oracle CQL processor, then by default, all
guery results are output to the Oracle CQL processor outbound channel
(filteredStreamin Figure 5-1). Optionally, in the component configuration source, you
can use the channel element sel ector child element to specify a space-delimited list of
one or more Oracle CQL query names that can output their results to the channel. In
the following example, query results for query Yr3Sect or and Yr 2Sect or are output to
filteredStreambut not query results for query Yr 1Sect or.

<channel >

<name>filteredStreank/ nane>

<sel ector>Yr3Sect or Yr2Sect or </ sel ect or >
</ channel >

You can configure a channel element with a sel ect or before you create the queries in
the upstream Oracle CQL processor. In this case, you must specify query hames that
match the names in the sel ector .

Note:

The sel ect or child element is only applicable if the upstream stage is an
Oracle CQL processor. For more information, see Oracle CQL Processors .

Processing Channels

By default, a channel processes events as they arrive. You can configure a channel to
batch events that have the same time stamp and were output from the same query by
setting the w evs: channel attribute bat chi ng to true.

Batching events can improve application performance.

<wl evs: channel id="priceStreant event-type="PriceEvent" batching="true">
<wl evs:|istener ref="filterFanoutProcessor" />
<wl evs: source ref="PriceAdapter" />

</ wl evs: channel >

See also Implement RelationSender.

5.5 Fault Handling

ORACLE

You can write code to handle exceptions that occur in stages that are downstream
from a channel and thrown to the channel.

By default, the fault-handling behavior for a channel is as follows:

e If the channel nax- t hr eads setting is 0 (a pass-through channel), then the exception
is thrown again to the next upstream stage in the EPN.

5-4

Chapter 5
EventPartitioner Channels

» If the channel nax- t hr eads setting is greater than 0, then the exception is logged
and dropped. any events associated with the fault are also logged and dropped.

You can write a fault handling class and associate the handler with a channel with max-
threads values that are greater than 0. With a fault handler associated with the
channel, exceptions thrown to the channel are received by the handler, which contains
code to either handle the fault or throw it again. If your fault handling code throws the
exception again, the exception is logged, but events related to the exception are lost. If
you want to keep track of events involved in these exceptions, you must persist them
with your code, such as by writing the event data to a data source connected to your
EPN.

Note:

To handle an exception thrown by a multithreaded channel, the fault handler
must be registered in a component that is upstream from the channel such
as a processor. If you do not register the fault handler with an upstream
component, the exception is passed upstream, but the fault handler is not
invoked.

For information on writing fault handlers, see Fault Handling.

5.6 EventPartitioner Channels

By default, a channel broadcasts each event to every listener.

When you configure a channel to use an Event Parti ti oner, each time an incoming
event arrives, the channel selects a listener and dispatches the event to that listener
instead of broadcasting each event to every listener. You can use an Event Partiti oner
on a channel to improve scalability.

5.7 Distributed Flows

ORACLE

The static relationship of an EPN can be represented as an acyclic directed graph, that
is, any pair (N,C), where N is a set of the nodes (vertices), and C is a two-place
relation over N representing the connections (arcs) from a source node to a
destination node.

This is known as a distributed flow.

Distributed Flow refers to a set of events in an application. A distributed flow serves
the same purpose as that of variables or parameters in computer programming
languages. The distributed flow represents a state that is communicated by a software
layer. A distributed flow is dynamic in nature. A distributed flow expresses the high-
level logical relationship between parts of distributed protocols.

A few scenarios in which distributed flows can be used are listed below:

» Events that are not extremely latency bound
« Events that can be logically partitioned

* Events that can be logically divided into separate individual components/tasks that
can be executed in parallel.

5-5

Chapter 5
Distributed Flows

Properties of Distributed Flow
A distributed flow usually has the following properties:

1. Asynchronous and one-way — each event represents a single instance

2. Homogeneous and uniform — all events in the flow are uniform and are similar
in nature.

3. Concurrent and distributed — the events in the flow occur at different times
(concurrent) and at different nodes (distributed).

5.7.1 Examples of Distributed Flows

5.7.2 Local

ORACLE

A few scenarios in which distributed flow can be used in real-life are listed below:

Word Count

In a scenario where you need to count the number of words, the application maps
incoming sentences into meaningful terms and then reduces these terms to a count
(per term). With stream processing, you can count a real-time flow of words, such as
the one coming stream from Twitter. However, if it is done through stream processing,
handling such a high volume of words becomes an issue. The distributed processing
subscribes to disparate parallel twitter streams and converges the results (number of
words).

Smart Meter Energy Consumption

It is common for households today to collect their energy consumption through the use
of smart meters located in their premises. Typically, these smart meters output energy
consumption sensor data in the form of events periodically through out the day (e.g.
every 1 minute). This sensor data is captured by downstream management systems in
regional processing centres and is used to calculate useful descriptive statistics, such
as the average energy consumption of a house, or neighborhood, and how it relates to
historical data for the region. These running aggregations can be partitioned to
efficiently calculate the energy consumption. A distributed flow can be used to identify
outliers (for example, households that are above or below the general consumption)
and to predict future consumption. This data can be used to control the buying and
selling process of energy with their partners.

Risk Analysis

Distributed flow can be used for real-time calculation of exposure of financial portfolio
and thus analyze the risks.

Partitioning Channel

Local Partitioning is a technique that helps in partitioning the events within a
distributed flow. In a local partition channel, you must use an ordered set of event
properties as the patrtition criteria. The channel partitioning is present in the
management console as a part of the channel and the channel configuration. See
Figure 5-2.

As local partitioning aims at improving the input throughput, if you want to measure the
speed rate, you must measure the events per second that an adapter is able to send
to the processor.

5-6

ORACLE

Chapter 5
Distributed Flows

< Note:

You must choose the nax- t hr eads value appropriately based on the hardware
capacity of the machine you are using.

Figure 5-2 EPN with Oracle CQL Processor and Downstream Channel

2
MyEventPartitioner

@ ¥ s

LocalPartitionChannel OutputChannel
StockAdapter StockAggregateProcessor .

Security

Secure Sockets Layer (SSL) is used to secure network traffic between the distributed
EPN nodes.

Configuration

You must configure the Oracle CQL Processor to support local partitioning. See Define
a Local Partition Channel and Configure an Oracle CQL Processor for Parallel Query
Execution.

Examples
Here are a few examples of a simple EPN:
Example 5-1 EPN Example 1

An event is defined as the relation P of any pair (PN, PV), representing property
names and property values. For the purpose of this document, there is no need to
define the domain of property names and property values.

EPN1 = ({adapterl, channel 1, processor, channel 2, adapter2},
{(adapter1, channel 1), (channell, processor), (processor, channel?2), (channel?2,
adapter2)})

Example 5-2 EPN Example 2

As an EPN node may contain more than one event, we define the set E as an ordered
sequence of events.

Note:

E is ordered which is different from other cases.

The runtime state S = (N,E) of the EPN can thus be presented as a two-place relation
from N to E. Note that the relation S is not injective, meaning that the same event(s)

5-7

Chapter 5
Distributed Flows

may be present in more than one node. However, it is surjective, as all events of the
total set of events in the EPN must be in at least one node.

(price, 10), (volume, 200), (synbol, 'ORCL')}

el
2 (p1, v1), (p2, v2), (p3, v3)}

={
={

ORACLE 5-8

Oracle CQL Processors

An Oracle CQL Processor processes incoming events from various input channels and
other data sources. You use Oracle CQL to write the business logic in the form of
continuous queries that process incoming events. Oracle CQL filters, aggregates,
correlates, and processes events in real time.

" Note:

You can create a Java class with methods that enhance the functionality
available in Oracle CQL. Within Oracle CQL you reference the compiled
class by name and call its methods from a SELECT statement.

This chapter includes the following sections:

* Processor Data Sources

* Assembly and Configuration Files

e Queries

* CQL Aggregations

» Configure a Table Source

» Configure an Oracle CQL Processor for Parallel Query Execution
* Fault Handling.

This chapter presents an overview of Oracle CQL with examples to help you
understand the basic concepts. See Cached Event Data for information about
performing CQL queries on caches.

Oracle JDeveloper provides Oracle CQL Pattern components that provide templates
for creating common Oracle CQL queries.

This chapter describes some of the assembly and configuration file Oracle CQL
Processor settings.

6.1 Processor Data Sources

ORACLE

Oracle CQL queries can define one or more statements to process incoming event
data from one or more input sources and send the outgoing event data to one or more
output channels.

Each channel (input or output) and data source has an associated event type.

For example, one input can be a channel and another input can be a Coherence
cache. The channel and Coherence cache have different event types because the
Coherence cache provides additional information to the Oracle CQL processor query
that is related to, but not the same as, the event data coming from the input channel.

6-1

Chapter 6
Assembly and Configuration Files

If you configure an Oracle CQL processor with more than one query, by default, all
gueries output their results to all of the output channels. You can control which queries
output their results to which output channels by putting a sel ect or element on the
downstream channel or channels. Use the sel ect or element to specify a space
delimited list of one or more query names that can output their results to that channel.
The Oracle CQL query assigned to the output channel has the correct attributes to
match the event type defined on the output channel. For more information, see Control
Which Queries Output to a Downstream Channel.

6.2 Assembly and Configuration Files

When you add an Oracle CQL processor to your EPN, the assembly file shows the
following entry.

<wl evs: processor id="processor"/>

When you add an Oracle CQL Pattern such as the Averaging Rule to the EPN in
Oracle JDeveloper, the assembly file shows the following entries.

<wl evs: processor id="processor"/>
<wl evs: processor id="averaging-rule"/>

Configuration File

When you add the Oracle CQL processor to your EPN, the configuration file shows the
following entry. By default, you get a template for rules that contains a template for one
query.
<processor >
<name>pr ocessor </ nane>
<rul es>
<query id="Exanpl eQuery"><![CDATAl
select * from MyChannel [now] >
</ query>
</rul es>
</ processor>

* The rul es element groups the Oracle CQL statements that the Oracle CQL
statements this processor executes.

e The query element contains Oracle CQL select statements. The query element i d
attribute defines the query name.

* The XML CDATA type indicates where to put the Oracle CQL rule.

e The sel ect statement is the actual query. The template provides the [now] operator
so that you can perform a now operation as described in NOW and Last Event
Windows.

6.3 Queries

How to perform basic Oracle CQL processor queries on stock trade events is
explained.

e Stream Channels
e Time-Based Relations (Windows)

* Processor Output Control (Slides)

ORACLE 6-2

Chapter 6
Queries

Objective

The objective for this section is understand how to use windows, slides, and views in
Oracle CQL queries.

» Windows convert event streams to time-based event relations to make it possible
to perform Oracle CQL operations on the events. See Time-Based Relations
(Windows).

« Slides enable you to batch events to control how the rate at which the CQL
processor outputs events. See Processor Output Control (Slides).

* Views enable you to create an Oracle CQL statement that can be reused by other
Oracle CQL queries. See Views.

Event Type Definition

The stock trade events used in the examples for this section are type
St ockTr adeEvent Type with the following field and type definitions:

* tickerSynbol: String
e price: Doubl e

e dailyH gh: Doubl e

e dailyLow: Doubl e

* closingVal ue: Doubl e

6.3.1 Stream Channels

A stream channel inserts events into a collection and sends the stream to the next
EPN stage. Events in a stream flow continuously, can never be deleted from the
stream, and have no end. You can perform queries on the continuous stream of
events flowing into your application.

A query on the input stream channel, St ockTr adel Channel , to retrieve all stock trade
events with the Oracle ticker symbol follows.

SELECT ti cker Synbol
FROM St ockTr adel St r eanChannel
VWHERE ti cker Synbol = ORCL

The following configuration file entry shows the query. | STREAMis a relation to stream
operator described in Relation to Stream Operators.

<processor >
<rul es>
<query id=rul el <![CDATA[| STREAM (SELECT ti cker Synbol
FROM St ockTr adel StreanChannel WHERE ticker Synbol = ORCL) >
</ query>
</rul es>
</ processor >

6.3.2 Time-Based Relations (Windows)

ORACLE

A relation channel inserts events into a collection and sends the relation to the next
EPN stage. A relation is a window of time on the stream that has a beginning and an
end. Events in a relation can be inserted into, deleted from, and updated in the

6-3

Chapter 6
Queries

relation. For insert, delete, and update operations, events in a relation must be
referenced to a particular point in time to ensure the operation takes place on the
correct event. All operations on a relation are time based.

Most applications do not use relation channels. You can put a window of time on
events coming from a stream channel to create a relation for time-based processing
operations. To find the average price for a particular stock, you must determine a time
frame (window) in which to calculate the average. When you define a window on a
stream, you have a collection of data that is not flowing, and unlike a stream, has a
beginning and an end. The window is an in-memory relation on which you can apply a
function such as AVG and also perform insert, update, and delete operations.

Operators that put a window of time on a stream are called stream to relation
operators. The output of stream to relation operations are relations. You use relation to
stream operators to convert a relation back to a stream to output a stream that
contains every event, only inserted events, or only deleted events.

Oracle CQL processor output typically goes to a stream channel and on to the next
stage in the EPN.

6.3.2.1 Stream to Relation Operators

ORACLE

The stream to relation operators are RANGE and ROW

RANGE Operator

You can specify a window of time with the time-based window operator, RANGE, as
follows:

SELECT AVG pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 M NUTE]

In this example and to keep the example easy to understand, the range is 1 minute,
ticks in seconds, and one input event is received every second. The query starts
averaging the prices contained in the events at zero seconds and outputs a value of 0
because there is no event in the relation at zero seconds. When the next event arrives
at 1 second, the average price is the price in the first event. When the next event
arrives at 2 seconds, the average price is the average of the two events in the relation.
This continues until 59 seconds (1 minute) is reached.

An important concept with time-based window operators is that the window shifts over
the event stream based on time. When 60 seconds have elapsed, the window shifts by
one-second to average the prices in the events from 1 to 60 seconds, and when 60
more seconds are reached, the window shifts by one more second to average the
prices in the events from 2 to 61 seconds. The window shifting over the relation
behavior continues as long as the application runs.

The following configuration file entry shows the query. | STREAMis a relation to stream
operator described in Relation to Stream Operators.

<processor >
<rul es>
<query id=rul e2 <![CDATA[| STREAM (SELECT AVQ pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 MN >
</ query>
</rul es>
</ processor >

6-4

ORACLE

Chapter 6
Queries

Note:

Very large numbers must be suffixed. Without the suffix, Java treats very
large numbers like an integer and the value might be out of range for an
integer, which throws an error.

Add a suffix as follows:
| or L for Longf or F for floatd or D for doublen or N for big decimal

For example: SELECT * FROM channel O] RANGE 1368430107027000000I
nanoseconds]

ROW Operator
You can specify a tuple-based window with the time-based ROWS operator as follows:

SELECT AVG price)
FROM St ockTr adel StreanChannel [ROAS 3]

A tuple is an event, so the ROAs 3 operation means to average the price on three
events in the relation starting when the first event arrives. The way it works is that the
average operation is performed on the first event that enters the relation. When the
second event enters the relation, the average operation is performed on the two
events. When the third event enters the relation, the average operation is performed
on the three events. No averaging occurs again until the fourth event enters the
relation. When the fourth event enters the relation, the second, third, and fourth events
are averaged. Likewise, when the fifth event enters the relation, the third, fourth, and
fifth events are averaged.

The prior examples have averaged the price for all stocks. To compute the average for
specific stocks in the stream, the following query uses a partitioned window.

SELECT AVG price), tickerSynbol
FROM St ockTr adel StreanChannel [PARTI TION by ticker Synbol ROAS 3]
GROUP BY ti cker Symbol

A partitioned window creates separate relation-windows for each partition. So in this
example with the PARTI TI ON by ticker Synbol clause, stocks with the same ticker
symbol are grouped by three events and averaged. Without the partition and using
only the GROUP BY clause, the tuple keeps the last three events as expected, but the
ticker symbols in the tuple do not always match, which introduces averaging errors.

The following is the configuration file entry for this query. | STREAMIs a relation to stream
operator described in Relation to Stream Operators.

<procesor >
<rul es>
<query id="Exanpl e"><![CDATA[| STREAM sel ect tickerSynbol, AV price)
from StockTradel Stream
[PARTI TION by tickerSymbol ROWS 3]
GROUP BY tickerSymbol) >
</ query>
</rul es>
</ processor >

6-5

Chapter 6
Queries

6.3.2.2 Relation to Stream Operators

ORACLE

The relation to stream operators are | STREAM DSTREAM, and RSTREAM

ISTREAM Operator

The | STREAMoperator puts an insert event from the relation into the output stream.
Events that were deleted or updated in the relation are ignored. When the average
changes, the query sends a del et e event to the relation to remove the previous
average and then sends an i nsert event to the relation to add the new average into
the relation. The following example uses the | STREAM operator to update the output
stream when a new average is calculated.

| STREAM (SELECT AVQ pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 M NUTE])

The following configuration file entry shows the | STREAMoperator.

<processor >
<rul es>
<query id=rul e2 <![CDATA[| STREAM (SELECT AVQ pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 M N >
</ query>
</rul es>
</ processor >

DSTREAM Operator

Use the DSTREAMoperator to find out when a situation is no longer useful such as when
a stock has been delisted from the exchange. The following example uses the DSTREAM
operator to update the output stream with the old average after the new average is
calculated in the relation.

DSTREAM (SELECT AVQ pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 M NUTE])

The following configuration file entry shows the DSTREAM operator.

<processor >
<rul es>
<query id=rul e2 <![CDATA[DSTREAM (SELECT AVQ pri ce)
FROM St ockTr adel StreanChannel [RANGE 1 MN >
</ query>
</rul es>
</ processor >

RSTREAM Operator

The RSTREAMoOperator inserts all events into the output stream regardless of whether
events were deleted or updated. Use this operator when you need to take downstream
action on every output. The following examples uses the RSTREAM operator to select all
events in the input stream, wait for two events to arrive in the relation, and put the two
events from the relation into the output stream.

RSTREAM (SELECT *
FROM St ockTr adel StreanChannel [ROAS 2])

The following configuration file entry shows the RSTREAM operator.

6-6

Chapter 6
Queries

<processor >
<rul es>
<query id=rul e2 <![CDATA[RSTREAM (SELECT *
FROM St ockTr adel StreanChannel [ROAS 2 >
</ query>
</rul es>
</ processor >

6.3.2.3 NOW and Last Event Windows

A Nowwindow to contain the event that happened at the last tick of the system. With
the NOwoperator, the last input event can be deleted in the next time tick (the new NOW
so you might not have captured what you want. If you truly the last input event, use a
last event window. The following example shows how to construct a NOVwindow.

SELECT * FROM St ockTradel St reanf NOA

The following configuration file entry shows the NOwoperator.

<processor >
<rul es>
<query id=rul e2 <![CDATA[| STREAM (SELECT *
FROM St ockTr adel St reanChannel [NOW
</ query>
</rul es>
</ processor >

A last event window captures the last event received. The following example shows
how to construct a last event window.

SELECT * FROM St ockTradel St reanf ROAS 1]

The following configuration file entry shows a last event window.

<processor >
<rul es>
<query id=rul e2 <![CDATA[| STREAM (SELECT *
FROM St ockTr adel StreanChannel [ROAS 1 >
</ query>
</rul es>
</ processor >

6.3.3 Processor Output Control (Slides)

Instead of outputting query results as they happen, you can use the SLI DE operator in a
subclause to batch the output events. You can batch the events based on the number
of events when you use the ROWoperator or an amount of time (time window) when you
use the RANGE operator.

Note:

When a slide value is not specified, the query assumes the default value of 1
row for tuple-based windows, and 1 time tick for time-based windows.

ORACLE .

6.3.4 Views

ORACLE

Chapter 6
Queries

Batch by Number of Events
The following example outputs every 2 events (2, 4, 6, 8, ...).

SELECT * FROM St ockTradel StreantChannel [ROAS 3 SLI DE 2]

The output from the SLI DE operator includes deleted events. When the first two events
arrive in the relation, the query outputs both events to the stream. When the next event
arrives, there are three events in the relation, but output happens next at the fourth
event. When the fourth event arrives, the first event is deleted and output with the third
and fourth events.

The following example shows how to use a slide with the RSTREAMoperator. In this
case, when the fourth event arrives, events 2, 3, and 4 are sent to the output stream.
The RSTREAMoperator sends all events to the output stream regardless of whether
events were deleted or updated.

RSTREAM SELECT * FROM St ockTr adel StreanChannel [ROAS 3 SLIDE 2])

The following configuration file entry uses an RSTREAMto batch by numbers.

<processor >
<rul es>
<query id=rul e2 <![CDATA] RSTREAM (SELECT *
FROM St ockTr adel StreanChannel [ROAS 3 SLIDE 2 >
</ query>
</rul es>
</ processor >

Batch by Time Window

With a time window, Oracle Stream Analytics batches events by a time interval (RANGE
operator). When you specify the time interval, Oracle CQL sends the events to the
output stream at a time that is a multiple of the number you specified. For example, if
you specify 5 seconds, the events are sent at 5, 10, 15, 20, and so on seconds. In the
case where the first event arrives at 1, 2, or 3 seconds into the interval, the first output
will be smaller than the others.

The following example specifies a range of 5 minutes with a slide every 30 seconds.

SELECT * FROM StockTradel Strean{ RANGE 5 M N SLI DE 30 SECONDS]

The following configuration file entry shows a time-based slide.

<processor >
<rul es>
<query id=rul e2 <![CDATA[RSTREAM (SELECT *
FROM St ockTradel StreanChannel [RANGE 5 M N 30 SECONDS >
</ query>
</rul es>
</ processor >

Views enable you to create an Oracle CQL statement that can be reused by other
Oracle CQL queries. A vi ew element contains Oracle CQL subquery statements. The
vi ew element i d attribute defines the view name. A top-level SELECT statement that you
create in a vi ewelement is called a view.

6-8

Chapter 6
Queries

Note:

Subqueries are used with binary set operators such as union, union all, and
minus). You must use parentheses in the subqueries so that the right
precedence is applied to the query.

The following example shows view v1 and query g1 on the view. The view selects from
stream S1 of xm t ype stream elements. The view v1 uses the XM.TABLE clause to parse
data from the xni t ype stream elements with XPat h expressions. The query gl selects
from view v1 as it would from any other data source. The XM.TABLE clause also supports
XML name spaces.

An xni t ype stream contains XML data. With the Oracle CQL XM.TABLE clause, you can
parse data from an xnl t ype stream into columns using XPath expressions and access
the data by column name. XPath expressions enable you to navigate through
elements and attributes in an XML document.

" Note:

The data types in the view's schema match the data types of the parsed data
in the COLUMNS clause.

<view id="v1" schema="orderld Last Shares LastPrice"><![CDATAl
SELECT
X. Orderld,
X. Last Shares,
X. LastPrice
FROM S1, XM.TABLE (
“FILL"
PASSI NG BY VALUE
Sl.cl as "."
COLUWNS
Orderld char(16) PATH "fn:data(../@D)",
Last Shares integer PATH "fn:data(@ast Shares)",
LastPrice float PATH "fn:data(@astPx)"
) as X
></ vi ew>

<query id="qgl"><![CDATA[
| Stream
sel ect
orderld,
sun(Last Shares * LastPrice),
sun(Last Shares * LastPrice) / sun(LastShares)
from
vi[now
group by orderld
)

></ query>

ORACLE 6-9

Chapter 6
CQL Aggregations

6.4 CQL Aggregations

Oracle CQL supports aggregate functions such as AVG, COUNT, SUM which are calculated
incrementally and MAX, and M N, which are not incremental.

The aggregate functions aggregate events into a Java collection so that you can use
the Collection APIs to manipulate the events.

You can check for conditions on the aggregated results with the HAVI NG clause. In the
following example only averages higher than 50 are output.

SELECT AVG price) FROM StockTradel StreanChannel [RANGE 1 HOUR|
HAVI NG AVG(price) > 50

Oracle CQL provides a variety of built-in single-row functions and aggregate functions
based on the Colt open source libraries for high performance scientific and technical
computing. The functions which are available as part of Colt library will not support Big
Decimal data type and NULL input values. Also the value computation of the functions
are not incremental. See the COLT website for details.

6.5 Configure a Table Source

You can access a relational database table from an Oracle CQL query by creating a
table component with an associated data source. Oracle Stream Analytics relational
database table event sources are pull data sources, which means that Oracle Stream
Analytics periodically polls the event source.

* You can join a stream only with a Nowwindow and only to a single database table.

Because changes in the table source are not coordinated in time with stream data,
you can only join the table source to an event stream with a Now window, and you
can only join to a single database table.

* With Oracle JDBC data cartridge, you can integrate arbitrarily complex SQL
gueries and multiple tables and data sources with your Oracle CQL queries.

Note:

Oracle recommends the Oracle JDBC data cartridge for accessing
relational database tables from an Oracle CQL statement.

Whether you use the Nowwindow or the data cartridge, you must define data sources
in the Oracle Stream Analytics server file.

6.5.1 Assembly File

ORACLE

The following assembly file entry shows the setting for a table source with anid
attribute of St ock.

<wl evs:table id="Stock" event-type="TradeEvent" data-source="StockDat aSource"/>

Oracle Stream Analytics uses the event type and the data source to map a relational
table row to the event type. The TradeEvent event type is created from a Java class

6-10

Chapter 6
Configure a Table Source

that has the following five private fields that map to columns in the relational database:
synbol , price, | ast Pri ce, per cChange, and vol une.

Note:

The XMLTYPE property is not supported for table sources.

6.5.2 Configuration File

<dat a- sour ce>
<name>St ockDs</ name>
<connecti on- pool - par ans>
<initial-capacity>l</initial-capacity>
<max- capaci t y>10</ max- capaci t y>
</ connecti on- pool - par ams>
<dri ver- par ans>
<url >j dbc: derby: </ url >
<dri ver-name>or g. apache. der by. j dbc. EnbeddedDri ver </ dri ver - nane>
<properties>
<el ement >
<name>dat abaseName</ name>
<val ue>db</ val ue>
</ el enent >
<el ement >
<name>cr eat e</ name>
<val ue>t rue</val ue>
</ el enent >
</ properties>
</driver-params>
<dat a- sour ce- par ans>
<j ndi - nanes>
<el ement >St ockDs</ el ement >
</jndi - names>
<gl obal -t ransacti ons- prot ocol >None</ gl obal -t ransact i ons- pr ot ocol >
</ dat a- sour ce- par ans>
</ dat a- sour ce>

After configuration, you can define Oracle CQL queries that access the St ock table as
if it were another event stream.

In the following example, the query joins the St ockTr adel St r eanChannel event stream to
the St ock table:

SELECT StockTradel StreanChannel . synbol, StockTradel StreanChannel . pri ce,
StockTradel Stream | astPrice, StockTradel Stream percChange,
St ockTr adel Stream vol une, Stock

FROM StockTracel StreantChannel [Now], Stock

VWHERE St ockTradel St reantChannel . synbol = Stock. synbol

Because changes in the table source are not coordinated in time with stream data, you

can only join the table source to an event stream with a Now window, and you can only
join to a single database table.

ORACLE 6-11

Chapter 6
Configure an Oracle CQL Processor for Parallel Query Execution

6.6 Configure an Oracle CQL Processor for Parallel Query

Execution

For improved performance, you can enable a CQL query to execute in parallel rather
than serially, as it does by default.

When the CQL code supports it, you can configure a query so that it can process
incoming events in parallel when multiple threads are available to the CQL processor.

You should enable parallel query execution only in cases where the relative order of
the query output events is unimportant to the query's downstream client. For example,
event ordering probably is not important if your query is intended primarily to filter
events, such as to deliver to clients a set of stock transactions involving a particular
company, where the transaction sequence is irrelevant.

By default (without enabling parallel execution), queries process events from a
channel serially. For events routed through a channel that uses a system time stamp,
event order is the order in which events are received; through a channel that is time
stamped by an application, event order is the order determined by a time stamp value
included in the event. Relaxing the total order constraint allows the configured query to
not consider event order for that query, processing events in parallel where possible.

6.6.1 Set Up Parallel Query Execution Support

While specifying support for parallel query execution is at its core a simple
configuration task, be sure to follow the other steps below so that you get the most out
of the feature.

ORACLE

Use the ordering-constraint attribute to support parallel execution.

Make sure you have enough threads calling into the processor to meet your
performance goals. The maximum amount of parallel query execution is
constrained by the number of threads available to the CQL processor. For
example, if an adapter upstream of the processor supports the number of threads
you need and there is a channel between the adapter and the processor, try
configuring the channel with a max- t hr eads count of O so that it acts as a pass-
through.

If you don't want a pass-through, be sure to configure the query's upstream
channel with a nax- t hr eads value greater than 1. (To make a max-t hreads value
setting useful, you'll need to also set the max- si ze attribute to a value greater than
0.) For more information, see Channels .

Follow other guidelines related to setting the nax- t hr eads attribute value. For
example, to make a max- t hr eads value setting useful, you'll need to also set the
nax- si ze attribute to a value greater than 0.

Ensure, if necessary, that a bean receiving the query results is thread-aware, such
as by using synchronized blocks. For example, you might need to do so if the
bean's code builds a list from results received from queries executed on multiple
threads.

6-12

Chapter 6
Configure an Oracle CQL Processor for Parallel Query Execution

6.6.2 The ordering-constraint Attribute

You enable parallel query execution by relaxing the default ordering constraint that
ensures that events are processed serially. You do this by setting the or deri ng-
constraint attribute on a query or vi ew element.

In the following example, the orderi ng- constrai nt attribute is set to UNORDERED so that
the query will execute in parallel whenever possible:

<query id="nyquery" ordering-constraint="UNORDERED" >
SELECT synbol FROM S WHERE price > 10
</ query>

The ordering-constraint attribute supports the following three values:

* ORDERED means that the order of output events (as implied by the order of input
events) is important. The CQL engine will process events serially. This is the
default behavior.

e UNORDERED means that order of the output events is not important to the consumer
of the output events. This gives the freedom to the CQLProcessor to process
events in parallel on multiple threads. When possible, the query will execute in
parallel on multiple threads to process the events.

e PARTI TI ON_ORDERED means that you're specifying that order of output events within a
partition is to be preserved (as implied by the order of input events) while order of
output events across different partitions is not important to the consumer of the
output events. This relaxation provides some freedom to the CQL engine to
process events across partitions in parallel (when possible) on multiple threads.

Use the PARTI TI ON_ORDERED value when you want to specify that events conforming to a
given partition are processed serially, but that order can be disregarded across
partitions and events belonging to different partitions may be processed in parallel.
When using the PARTI TI ON_ORDERED value, you must also add the partiti on- expression
attribute to specify which expression for partitioning should be the basis for relaxing
the cross-partition ordering constraint.

In the following example, the GROUP BY clause partitions the output based on symbol
values. The partition-expression attribute specifies that events in a given subset of
events corresponding to a particular symbol value should be handled serially. Across
partitions, on the other hand, order can be disregarded.

<query id="myquery" ordering-constraint="PARTI TI ON_ORDERED'
partitioning-expression="synbol ">
SELECT
COUNT(*) as c, symbol
FROM
S[RANGE 1 ninute]
GROUP BY
synbol
</ query>

6.6.3 Using partition-order-capacity with Partitioning Queries

In general, you will probably see improved performance for queries by making more
threads available and setting the orderi ng-const rai nt attribute so that they're able to

ORACLE 6-13

ORACLE

Chapter 6
Configure an Oracle CQL Processor for Parallel Query Execution

execute in parallel when possible. As with most performance tuning techniques, a little
trial and error with these settings should yield a combination that gets better results.

However, in some cases where your queries use partitioning -- and you've set the
ordering-constraint attribute to PARTI TI ON_ORDERED -- you might not see the amount of
scaling you'd expect. For example, consider a case in which running with four threads
doesn't improve performance very much over running with two threads. In such a
case, you can try using the partition-order-capacity value to get the most out of CQL
engine characteristics at work with queries that include partitions.

The partition-order-capacity value specifies the maximum amount of parallelism that
will be permitted within a given processor instance when processing a

PARTI TI ON_ORDERED query. When available threads are handling events belonging to
different partitions, the value sets a maximum number of threads that will be allowed to
simultaneously run in the query.

As with other aspects of performance tuning, getting the most out of partiti on-order-
capaci ty may take a bit of experimentation. When tuning with partiti on- order-

capaci ty, a good starting point is to set it equal to the maximum number of threads you
expect to have active in any CQL processor instance. In some cases (for example, at
high data rates or with expensive processing downstream from the CQL processor), it
may be helpful to set the partition-order-capacity value even higher than the
available number of threads. However, you should only do this if performance testing
confirms that it's helpful for a given application and load.

The partition-order-capacity value is set from one of four places, two of which you
can fall back on when you do not explicitly set it yourself.

These are, in order of precedence.

1. Thepartition-order-capacity element set on a channel configuration. If you
specify this on the input channel for a processor, it takes effect for any
PARTI TI ON_ORDERED queries in that processor.

2. The partition-order-capacity property in server configuration. This value will be
used for all PARTI TI ON_ORDERED queries running on the server unless the value is set
on a channel.

3. The max-t hreads value set on a channel configuration. If you specify this on the
input channel for a processor, it takes effect for any PARTI TI ON_ORDERED queries in
that processor

4. A system default value (currently set to 4) is used if you don't specify either a
partition-order-capacity value or max-t hreads value, or if the nax-t hreads value is
set to 0 (meaning it's a pass-through channel).

When using partition-order-capacity, keep in mind the following:

e The partition-order-capacity value is only useful when you're setting the
ordering-constraint attribute to PARTI TI ON_ORDERED.

e Increasing partition-order-capacity generally increases parallelism and scaling.
For example, if your profiling reveals lock contention bottlenecks, you might find it
helpful to increase partition-order-capacity to see if contention is reduced.

e Setting partition-order-capacity even higher than the number of available threads
can be helpful in some cases because of the particular way partitioning is done in
the CQL processor.

* There is some resource cost in memory used by specifying very high values.

6-14

Chapter 6
Fault Handling

» Tuning this parameter is very dependent on details of the application and the input
rate. Tuning by experimentation may be necessary to determine an optimal value.

6.6.4 Limitations

Think of parallel query execution as a performance enhancement feature that you
specify support for so that the CQL processor can use it whenever possible. Not all
gueries can be executed in parallel. This includes queries using certain CQL language
features.

For example, if your query uses some form of aggregation -- such as to find the
maximum value from a range of values -- the CQL processor may not be able to fully
execute the query in parallel (this is needed to guarantee the correct result considering
the ordering constraint). Some query semantics in themselves also constrain the query
to ordered processing. Such queries will be executed serially regardless of whether
you specify support for parallel execution.

Also, the | Stream RSt reamand DSt r eamoperators maintain the state of their operand for
processing, making it necessary for the CQL processor to synchronize threads in order
to execute the query.

Note that the CQL processor always respects the semantic intention of your query. In
cases where the ordering-constraint attribute would change this intention, the
attribute is coerced to a value that keeps the intention intact.

If you're using the partiti oni ng- expressi on attribute, keep in mind that the attribute
supports a single expression only. Entering multiple property names for the value is
not supported.

6.7 Fault Handling

ORACLE

You can write code to handle faults that occur in code that does not have an inherent
fault handling mechanism. This includes Oracle CQL code and multithreaded EPN
channels.

By default, the CQL language has no mechanism for handling errors that occur, as
does Java with its try/catch structure. To handle faults that occur in CQL, you can write
a fault handler, then connect the handler to the EPN stage for which it handles faults,
such as an Oracle CQL processor.

You can also associate a fault handler with a multithreaded channel, which is a
channel whose nax-t hr eads setting is greater than 0. This provides fault handling in the
case of exceptions that are thrown to the channel from a stage that is downstream of
the channel. Note that channels whose nmax-t hr eads setting is 0 are pass-through
channels that already rethrow exceptions to their upstream stages. For additional
information specific to fault handlers for channels, see Fault Handling.

A fault handler is a Java class that implements the com bea. W evs. ede. api . Faul t Hand| er
interface. You connect the class to an EPN stage by registering your fault handler as
an OSGi service and associating it with the stage. For more information about OSGi,
see Spring Framework.

Without a custom fault handler, you get the following default fault handling behavior:

* When an exception occurs in Oracle CQL, the CQL engine catches the exception
and stops the query processor.

6-15

Chapter 6
Fault Handling

» If an exception occurs in a stage that is downstream to the processor, then that
stage is dropped as a listener.

» Exceptions are logged (under the CQLServer category) and the events that are
part of the exception clause are discarded.

* Upstream stages are not notified of the failure.

When using custom fault handlers you write, you can:

» Associate a fault handler with an Oracle CQL processor or multithreaded channel
so that faults in those stages are thrown as exceptions to the handler. There, you
can handle or rethrow the exception.

* Allow query processing to continue as your code either handles the exception or
rethrows it to the stage that is next upstream.

* Save event data from being lost while handling a fault. For example, if you have
configured a connection to a data source, you could save event data there.

* Log fault and event information when faults occur.

* Use multiple fault handlers where needed in an EPN so that exceptions thrown
upstream are handled when they reach other Oracle CQL processors and
channels.

Consider associating a fault handler with a stage that does not have its own
mechanism for responding to faults, including Oracle CQL processors and
multithreaded channels. Other stages, such as custom adapters that have their own
exception-handling model, do not benefit from a fault handler.

Queries can continue as your fault handling code evaluates the fault to determine what
action should be taken, including rethrowing the fault to a stage that is upstream from
the Oracle CQL processor.

For example, the upstream stage of the Oracle CQL processor could be the IMS
subscriber adapter, which can roll back the JMS transaction (if the session is
transacted) to allow the event to be redelivered. It can also commit the transaction if
the event has been re-delivered already and found that the problem is not solvable.

Note that when you use a custom fault handler, the query state is reset after a fault as
if the query had been stopped and restarted. In contrast the default behavior stops the
guery and drops all subsequent events.

6.7.1 Implement a Fault Handler Class

ORACLE

You create a fault handler class by implementing the

com bea. w evs. ede. api . Faul t Handl er interface. After you have written the class, you
associate it with the stage for which it handles faults by registering it as an OSGi
service. For more information, see Register a Fault Handler.

Your implementation of the handl eFaul t method receives exceptions for the EPN stage
with which the handler is associated. The exception itself is either an instance of

com bea. wl evs. ede. api . Event Processi ngExcept i on or, if there has been a JVM error, an
instance of j ava. | ang. Error.

The method also receives a string array that contains the names of upstream stages,
or catchers, to which the exception goes when your code rethrows it. If there is more
than one catcher in the array, your rethrown exception goes to all of them. There are
two cases when the catchers array is empty: when the exception occurs while
executing a temporal query and when the exception is thrown to a channel's fault

6-16

Chapter 6
Fault Handling

handler. In these cases, the fault handler executes in the context of a background
thread, and there is no linkage to upstream stages.

An exception that is rethrown from a fault handler travels through upstream EPN
stages until it is either caught or reaches a stage that cannot catch it (such as a
processor or multithreaded channel that does not have an associated fault handler).
Note that if you rethrow an exception, any channels in the catcher's list must have an
associated fault handler to catch the exception.

The Event Processi ngExcept i on instance could also be one of the exception types that
extend that class, including CQLExecut i onExcepti on, Arit hneti cExecuti onException, and
others. See the Java API Reference for Oracle Stream Analytics. The

Event Processi ngExcept i on instance provides methods with which your code can retrieve
insert, delete, and update events that were involved in generating the fault.

Your implementation of the method should do one of the following:

e Consume the fault in the way that a Java try and cat ch statement might. If your
implementation does not rethrow the fault, then event processing continues with
subsequent events. However, query processing continues with its state reset as if
the query had been restarted. The processing state is lost and processing begins
fresh with events that follow those that provoked the fault.

» Rethrow the fault so that it is received by upstream stages (or their fault handlers).
As when the fault is consumed, queries continue processing events, although the
guery state is reset with subsequent events. The upstream stage receiving the
fault always has the option of explicitly stopping the offending query by using the
CQL processor's MBean interface.

Note:

When you update an Oracle CQL query with an MBean, do not send
events during the update procedure. If you send events during some
queries, the order of the events in the output stream is not guaranteed.
For example, when you update an Oracle CQL query from unordered to
ordered in an Oracle CQL parallelism execution.

In the following example the code provides a high-level illustration of handling a fault.

package com exanpl e. faul t handl er;
i mport com bea. w evs. ede. api . Faul t Handl er;

public class SinpleFaul tHandl er inplenents Faul t Handl er

{
private String suppress;
/] Called by the server to pass in fault information.
@verride
public void handl eFaul t (Throwabl e fault, String[] catchers) throws Throwabl e
{
/1 Log the fault.
return;
}
}

ORACLE 6-17

Chapter 6
Fault Handling

6.7.2 Register a Fault Handler

ORACLE

After you have written a fault handling class, you can associate it with an EPN stage
by registering it as an OSGi service. The simplest way to do this is to register the
handler declaratively in the EPN assembly file.

" Note:

Due to inherent OSGi behavior, runtime fault handler registration from your
configuration happens asynchronously, meaning that a small amount of
warm-up time might be required before the handler can receive faults. To be
sure your handler is ready for the first events that enters the network, add a
wait period before the application begins to receive events.

In the following example, the EPN assembly file excerpt shows a servi ce element
stanza that registers the Si npl eFaul t Handl er class as the fault handler for the Oracle
CQL processor with an i d of exanpl eProcessor .

<osgi: service interface="combea. w evs. ede. api . Faul t Handl er ">
<0sgi : service-properties>
<entry key="application.identity" val ue="nyapp"/>
<entry key="stage.identity" val ue="exanpl eProcessor"/>
</ 0sgi : service-properties>
<bean cl ass="com exanpl e. faul t handl er. Si npl eFaul t Handl er"/ >
</ 0sgi : servi ce>

<I-- A processor with a user-defined function. -->
<wl evs: processor i d="exanpl eProcessor" >

</ wl evs: processor >

For more on the schema for registering OSGi services, see http://
static.springsource.org/osgi/docs/ 1. 1. x/reference/ ht i/ appendi x-schema. ht nl . For
more on OSGi, see http://en. wi ki pedi a. org/ wi ki /OSG .

6-18

http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html
http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html
http://en.wikipedia.org/wiki/OSGi

Event Beans

Java is the language you use to write logic for event bean and Spring bean
components to add to the EPN. Use an event bean in your EPN to define application
logic that works on event data. Use a Spring bean in your EPN when your deployment
context and the features you want to use are based on Spring.

Event bean application logic functions as an event sink, an event source, or both. An
event sink receives and works on large quantities of event data. An event source
sends large quantities of event data. In an EPN, you can configure event beans and
adapters with logic to make them behave as event sources, event sinks, or both. In the
case of an event bean, the event sink and event source logic comes from its
associated JavaBean. In the case of an adapter, the event sink and event source logic
comes from its JavaBean event type. See Events and Event Types for information
about creating a JavaBean event type.

You can use JAXB in event bean logic. See JAXB Support for information.
This chapter includes the following sections:

e Event Beans and Spring Beans

* Event Sink Interfaces

Event Source Interfaces

7.1 Event Beans and Spring Beans

Event beans and Spring beans are based on Java classes. The Java class you use for
an event or Spring bean can conform to the JavaBean specification or not conform,
depending on your application requirements.

An event bean is an Oracle extension to the regular Spring-based bean.

An event bean can be an event sink, event source, or both an event sink and an event
source. You can add event sinks and sources to adapters and event beans.

 Aneventsink is a JavaBean or Java class that listens for and works on events. An
event sink can receive events, retrieve data from the events, and create a new
event from the data to send to a downstream component.

* An event source is a JavaBean or Java class that sends events.

If your deployment context and the features you want to use are based on Spring, use
a Spring bean. Otherwise, use an event bean. Table 7-1 lists the features provided by
event beans and Spring beans.

ORACLE 7-1

Chapter 7
Event Beans and Spring Beans

Table 7-1 Comparison of Event Beans and Spring Beans

___|
Bean Type Description

Event bean Useful as an EPN stage to actively use the capabilities of the Oracle Stream

Analytics server container. An event bean:

* Is atype of Oracle Stream Analytics EPN stage.

e Can be monitored by the Oracle Stream Analytics monitoring framework.

e Can make use of the configuration metadata annotations.

» Can be set to record and play back events that pass through it.

e Can participate in the Oracle Stream Analytics server bean life cycle by
specifying methods in its XML declaration, rather than by implementing
Oracle Stream Analytics server API interfaces.

Spring bean Useful for legacy integration to Spring. A Spring bean:
» Is useful if you have a Spring bean you want to add to an EPN.
* Is not a type of Oracle Stream Analytics EPN stage.
e Cannot be monitored by the Oracle Stream Analytics monitoring
framework.
« Cannot use the configuration metadata annotations.
* Cannot be set to record and play back events that pass through it.

7.1.1 Threading Behavior

Event beans are executed in parallel when they implement either the Runnabl e or the
Runnabl eBean interface. The infrastructure uses a work manager associated with the
application for spawning the thread.

You can associate a work manager to an application by naming the work manager
with the same name as the application. If you do not explicitly specify a work manager
for your application, then Oracle Stream Analytics creates a work manager with default
values for the minimum (M N) and maximum (MAX) number of threads.

If you need finer control over the threading, a custom event bean can implement the
interface com bea. w evs. ede. spi . Wr kManager Awar e. In this case, the event bean is
injected with the work manager of the application during initialization. The work
manager can be used to explicitly manage the threading for the event bean instance.

7.1.2 Receive Heartbeat Events

Implement the com bea. wl evs. ede. api . Hear t beat Awar e interface if you want your event
bean to receive heartbeat events. A heartbeat event is an event of type heart beat that
you can use to model the advance of time. This interface has the onHeart beat (| ong

ti mest anp) callback method to implement.

7.1.3 Create an Event Bean

ORACLE

An event bean is an EPN component that applies logic to events as they pass through.
The event bean logic is defined by its JavaBean event type.

This chapter describes some of the assembly and configuration file event bean
settings.

7-2

Chapter 7
Event Beans and Spring Beans

Assembly File

The following event bean assembly file entry shows the event bean i d, associated
cl ass, and that the event bean listens for events from the upstream BeanQut put Channel
component.

<wl evs: event - bean id="event Bean" class="tradereport. TradeEvent" >
<w evs: | istener ref="BeanQut put Channel "/>
<w evs: event - bean>

Configuration File

The following event bean configuration file entry shows an event bean configured with
the recor d- par anet er s child element:

<event - bean>
<nane>event Bean</ nane>
<recor d- par anet er s>
<dat aset - name>t r ader eport _sanpl e</ dat aset - name>
<event-type-list>
<event -type>TradeEvent </ event -t ype>
</ event-type-list>
<bat ch- si ze>1</ bat ch-si ze>
<bat ch-ti me- out >10</ bat ch-t i ne- out >
</record- paranet er s>
</ event - bean>

7.1.4 Create a Spring Bean

ORACLE

You can configure a Java class as a Spring bean to include the class in an event
processing network. This is a good option if you have an existing Spring bean that you
want to incorporate into the EPN or if you want to incorporate Spring features into your
Java code.

In a Spring bean you plan to add to an EPN, you can implement the various life cycle
interfaces. These include I ni ti al i zi ngBean, Di sposabl eBean, and the active interfaces,
such as Runnabl eBean. The Spring bean event source can also use configuration
metadata annotations such as @r epare, @ol | back, and @\cti vate.

A Spring bean is a Java class managed by the Spring framework. You add a class as
a Spring bean by configuring it in the EPN assembly file using the standard bean
element.

A Spring bean is not an Oracle Stream Analytics stage. You cannot monitor a Spring
bean with the Oracle Stream Analytics monitoring framework, you cannot use the
configuration metadata annotations in a Spring bean, and you cannot set a Spring
bean to record and play back events that pass through it.

Assembly File

In the assembly file, you use the bean element to declare a custom Spring bean as a
component in the event processor network. For example:

<bean id="TradeLi st ener Bean"
class="com oracl e. cep. exanpl e. tradereport . TradeLi st ener" >
</ bean>

7-3

Chapter 7
Event Sink Interfaces

7.2 Event Sink Interfaces

You create an event sink to receive events in an EPN and apply logic that responds to
the event data. A Java class that is an event sink implements one of the interfaces
described in this section.

Each of these interfaces provides methods that the Oracle Event Processing server
uses to pass events to the class as the events exit the EPN stage connected upstream
from the Java class, which is typically a channel.

The interfaces described here provide support for events arriving either as streams or
relations. However, interfaces for relations also support receiving events arriving as
streams. As described in the following table, the interfaces are hierarchically related.

Interface Description

com bea. w evs. ede. api . Streanfi nk Implement to receive events sequentially in a
stream.

com bea. w evs. ede. api . Rel ati onSi nk Implement to receive events sequentially in a
relation. Extends St r eanSi nk to receive events
in a stream.

com bea. w evs. ede. api . Bat chStreanSi nk Implement to receive batched events in a
stream. Events might arrive batched by time
stamp when the upstream channel allows
batching. Extends St r eanti nk to support
receiving events unbatched.

com bea. w evs. ede. api . Bat chRel ati onSi nk Implement to receive batched events as a
relation. Events might arrive batched by time
stamp when the upstream channel allows
batching. Extends Rel at i onSi nk to support
receiving events unbatched as streams or
relations.

EventRejectedException Behavior in onlnsertEvent Implementations

You need to explicitly throw Event Rej ect edExcepti on in onl nsert Event implementations
for exceptions you do not want to get dropped. You can raise an

Event Processi ngExcepti on and it is propagated all the way to the source of the error
through a CQL processor. An EventRejectedException can chain exceptions from its
downstream listeners, in case there is more than one exception. The CQL processor
converts the Event Rej ect edExcept i on to a soft exception. See Fault Handling for more
information.

7.2.1 Implement StreamSink

ORACLE

A class that receives events as a stream only receive events that are, from the Oracle
Stream Analytics standpoint, inserted. That is because in a stream, events are always
appended to the end of a sequence. Events in a stream are also always received in
ascending time order so that their time stamps have non-decreasing values from one
event to the one that follows. Non-decreasing time stamps enables the time stamp of
one event to be the same as the time stamp of the event that precedes it, but not
earlier than that preceding time stamp. The time stamp is either the same or later.

7-4

Chapter 7
Event Sink Interfaces

As a result, the interfaces that support receiving events as a stream have one method
each for receiving events. The interfaces for receiving events as a relation support
receiving multiple kinds of events.

Implement the St reansi nk interface if your class receives unbatched events as a
stream. The Streansi nk interface has a single method, onl nsert Event , which the Oracle
Stream Analytics server calls to pass in each event from the stream as events leave
the upstream stage that is connected to your class.

In Example 7-1, a simple Streansi nk implementation that receives stock trade events
where each event is an vj ect instance, and tests to see whether the event is an
instance of a particular event type. If so, then the code retrieves values of properties
known to be members of that type.

You implement the Bat chSt r eanSi nk interface if you expect your class to receive
batched events as a stream. The interface has a single method, onl nsert Event s, which
the Oracle Stream Analytics server calls to pass in a collection of events received from
the upstream stage. The Bat chSt r ean®i nk interface extends St reanfi nk, SO can receive
unbatched events also.

For more information about event batching, see Batch Processing Channels.
Example 7-1 Implement the StreamSink Interface

public class Tradelistener inplenents Streantink {

public void onlnsertEvent (Qbject event) throws EventRejectedException {
if (event instanceof TradeEvent){
String symbol Prop = ((TradeEvent) event). get Synmbol ();
I nteger vol uneProp = ((TradeEvent) event). get Vol ume();
/1 Code to do something with the property val ues.

}

7.2.2 Implement RelationSink

A class that receives events as a relation can receive any of the kinds of events
possible in a relation, which are insert events, delete events, and update events.
Unlike a stream, events in a relation are unordered and include events that have been
updated or deleted by code that created or operated on the relation.

As a result, the interfaces that support receiving events as a relation have methods
through which your class can receive insert, delete, or update events.

You implement the Rel at i onSi nk interface if your class receives unbatched events as a
relation. The Rel ati onSi nk interface has three methods, one of which it inherits from
the StreanSi nk interface: onl nsert Event , onDel et eEvent , and onUpdat eEvent . At runtime,
the Oracle Stream Analytics server calls the appropriate method depending on which
type of event is received from the upstream channel connected to your class.

public class TradelListener inplenents RelationSink {

public void onlnsertEvent(Qhject event) throws EventRejectedException {
if (event instanceof TradeEvent){
String symbol Prop = ((TradeEvent) event). get Synmbol ();
I nteger vol uneProp = ((TradeEvent) event). get Vol ume();
/1 Do sonething with the inserted event.

ORACLE 7-5

Chapter 7
Event Source Interfaces

}

@verride
public void onDel et eEvent (Ohj ect event) throws EventRejectedException {
if (event instanceof TradeEvent){
/1 Do sonething with the deleted event.

}
}

@verride
public void onUpdat eEvent (Ohj ect event) throws EventRejectedException {
if (event instanceof TradeEvent){
/1 Do sonething with the updated event.

}
}

Implement the Bat chRel at i onSi nk interface if your class receives batched events as a
relation. It has an onEvent s method designed to receive all three types of events from
the batch injava. util. Col | ecti on instances:

onEvents(insertEvents, deleteEvents, updateEvents)

In addition, the BatchRelationSink interface extends the Rel ati onSi nk interface to
support receiving unbatched events.

At runtime, the Oracle Stream Analytics server calls the appropriate method to pass in
events received from the upstream stage connected to your class.

For more information about event batching, see Batch Processing Channels.

For complete API reference information about the Oracle Stream Analytics APIs
described in this section, see the Java API Reference for Oracle Stream Analytics.

7.3 Event Source Interfaces

You can create a Java class that sends events to a downstream stage in an event
processing network. You can create an event source, for example, to send events your
Java code has created or altered from event data flowing through the EPN.

A Java class that is an event source implements one of the interfaces described in this
section. Each of these interfaces provides a method used by the Oracle Stream
Analytics server to pass into your class an instance of a sender class.

The sender instance your event source receives implements one of the sender
interfaces described in this section. The sender interfaces provide methods your code
can call to send events as streams or relations, and batched or unbatched to the
downstream EPN stage that follows, such as a channel.

The interfaces described here support sending events either as streams or relations.
Interfaces for relation also support sending events as streams.

ORACLE 7-6

Chapter 7
Event Source Interfaces

Table 7-2 Interfaces for Implementing an Event Source

Interface

Description

com bea. w evs. ede. api . StreanfBSour ce

Implement this interface to send events as a
stream. At runtime, the Oracle Stream Analytics
server injects an instance of a stream sender
class.

com bea. w evs. ede. api . Rel ati onSour ce

Implement this interface to send events as a
relation or stream. At runtime, the Oracle Stream
Analytics server injects an instance of a relation
sender class. Extends St r eanBour ce, so it also
supports stream events.

The interfaces listed in Table 7-3 are implemented by sender classes your event
source class receives from the Oracle Stream Analytics server.

Table 7-3 Interfaces Implemented by Sender Classes

Interface

Description

com bea. w evs. ede. api . St r eanBSender

Provides a method to send events as a
stream.

com bea. w evs. ede. api . Rel ati onSender

Provides methods to send events as a
relation. Extends St r eanSender , so it also
support stream events.

com bea. w evs. ede. api . Bat chSt r eanSender

Provides a method with which your code
can send batched events as a stream. You
might send events batched by time stamp if
the downstream stage to which you're
sending them is a channel configured for
batched events. Extends St r eanfSender , so
it also provides support for sending events
unbatched.

com bea. w evs. ede. api . Bat chRel ati onSender Provides a method to send batched events

as a relation. You can send events batched
by time stamp when the downstream stage
is a channel configured for batched events.
Extends Rel ati onSender to support
unbatched events.

7.3.1 Implement StreamSender

A class that is a source of stream events should send only events that are, from the
Oracle Stream Analytics standpoint, inserted. Sending only inserted events models a
stream, rather than a relation. Events sent from a stream source should also have
non-decreasing time stamps from one event to the event that follows. The time stamp
of an event that follows another should either be the same as, or later than, the event

ORACLE

that preceded it.

When you implement St r eanSour ce, your code can send events batched or unbatched.
Your implementation of the St r eanBour ce set Event Sender method receives a sender
instance that you can cast to one of the types described in Table 7-3. Use the sender
instance in your code to send events as expected by the downstream stage.

7-7

Chapter 7
Event Source Interfaces

If your code sends events to a channel that enables batching, use one of the batched
event senders to batch events by time stamp before sending them. For more
information, see Batch Processing Channels.

The sender instance provides a sendHear t beat method to send a heartbeat when the
receiving channel is configured to be application time stamped.

7.3.2 Implement RelationSender

ORACLE

A class that is a source of events as a relation can send insert, delete, and update
events to the downstream stage. When you implement the Rel at i onSour ce interface,
your code can send events batched or unbatched. Your implementation of the

Rel ati onSour ce set Event Sender method receives a sender instance that you can cast to
one of the types described in Table 7-3. Use the sender instance to send events to the
downstream stage.

Keep in mind the following constraints for handling the sender instance your class
receives:

e For sendDel et eEvent , you must send an instance of the same event type as that
configured for the channel.

» For sendl nsert Event, a unique constraint violation exception is raised and the input
event discarded if an event with the same primary key is already in the relation.

e For sendUpdat eEvent , an invalid update tuple exception will be raised and the input
event will be discarded if an event with the given primary key is not in the relation.

In the following example, a simple Rel at i onSour ce implementation receives a

St reanSender, then casts the sender to a Rel ati onSender to send events as a relation.
This class creates a new TradeEvent instance from the event type configured in the
repository, but the sendEvent s method could as easily have received an instance as a
parameter from another part of the code.

package com oracl e. cep. exanpl e. tradereport;

i mport com bea. w evs. ede. api . Event Type;

i mport com bea. w evs. ede. api . Event TypeReposi tory;
i mport com bea. w evs. ede. api . Rel ati onSender;

i mport com bea. w evs. ede. api . Rel ati onSour ce;

i mport com bea. w evs. ede. api . St reanSender ;

i mport com bea.w evs. util. Service;

public class TradeEvent Source inplenments RelationSource {

/1 Variables for event type respository and event sender. Both
Il will be set by the server.

Event TypeRepository mrepos = null;

Rel ati onSender m sender = null;

/1 Called by the server to set the repository instance.

@er vi ce

public void setEvent TypeRepository(Event TypeRepository repos) {
m repos = repos;

}

/] Called by the server to set the sender instance.

@verride
public void setEvent Sender (StreanSender sender) {
/] Cast the received StreanSender to a Rel ationSender

7-8

Chapter 7
Event Source Interfaces

m sender = (Rel ationSender)sender;

}

/**

* Sends events to the next EPN stage using the sender

* received fromthe server. This code assumes that an event

* instance isn't received fromanother part of the class,

* instead creating a new instance fromthe repository.

*/

private void sendEvents(){
Event Type event Type = mrepos. get Event Type(" TradeEvent");
TradeEvent tradeEvent = (TradeEvent)event Type. createEvent();
m sender . sendDel et eEvent (tradeEvent);

ORACLE' 7.9

Cached Event Data

You can configure a caching system so that applications have ready access to event
data. The caches in the system can be a combination of Oracle Coherence distributed
caching, Oracle Stream Analytics local caching, and caching solutions provided by
third parties. You can access the events in the caches with Oracle CQL and Java
classes.

This chapter includes the following sections:

e Caching Defined

* Configure an Oracle Coherence Caching System and Cache
e Configure a Local Caching System and Cache

e Configure a Cache as an Event Listener

* Index a Cache with a Key

* Configure a Cache as an Event Source

* Configure a Cache with a Cache Listener

* Configure a Third-Party Caching System and Cache

» Exchange Data Between a Cache and Another Data Source

e Access a Cache from Application Code.

8.1 Caching Defined

ORACLE

A cache is a temporary storage area for event data. To increase the availability of
event data and to increase application performance, you can create a cache so that
applications can publish to or consume events from the cache.

An application can also access the processed event data written to the cache by other
applications.

You can configure any stage in an Oracle Stream Analytics application that generates
events to publish its events to the cache. A cache does not have to be a stage in the
EPN. Another component or Spring bean can access events in the cache
programmatically with the caching APlIs.

A caching system is a configured instance of a caching implementation. A caching
system defines a named set of configured caches and the configuration for remote
communication when any of the caches are distributed across multiple machines.

Oracle Stream Analytics caching enables an application to perform the following tasks.
All of these tasks happen incrementally without halting the application or causing
latency spikes.

* Pre-load a cache with event data before an application is deployed.
» Periodically refresh, invalidate, and flush the event data in a cache.

* Dynamically update a cache configuration.

8-1

Chapter 8
Caching Defined

8.1.1 Supported Caching Implementations

Oracle Stream Analytics supports the following caching implementations:

Oracle Stream Analytics local cache: a local, in-memory single-JVM cache. This
implementation is best for local use (it cannot be used in a cluster). It might also
be useful for development in the early stages because it is relatively simple to set

up.

Oracle Coherence: a JCache-compliant in-memory distributed data grid solution
for clustered applications and application servers. It coordinates updates to the
data using cluster-wide concurrency control, replicates data modifications across
the cluster using the highest performing clustered protocol available, and delivers
notifications of data modifications to any servers that request them. You take
advantage of Oracle Coherence features using the standard Java collections API
to access and modify data, and use the standard JavaBean event model to
receive data change notifications.

Note:

Before you can use Oracle Stream Analytics with Oracle Coherence, you
must obtain a valid Oracle Coherence license such as a license for
Coherence Enterprise Edition, Coherence Grid Edition, or Oracle
WebLogic Application Grid.

For more information on Oracle Coherence, see http://docs. oracl e. conf
m ddl ewar e/ 1213/ coher ence/ i ndex. ht nl .

Third-party caches: you can create a plug-in to allow Oracle Stream Analytics to
work with other, third-party cache implementations.

8.1.2 Use Cases

Caching technology is a great fit for streaming data use cases, where high throughput
can be particularly important. Getting data from a cache is usually much faster than
getting the same data from a relational database.

ORACLE

The following scenarios describe common use cases for caching in Oracle Stream
Analytics applications.

Publish events to a cache

A financial application publishes events to a cache while the financial market is
open, and then processes data in the cache after the market closes. Publishing
events to a cache makes them available to the application or available to other
Oracle Stream Analytics applications running in the server. Publishing events to a
cache also allows for asynchronous writes to a secondary storage by the cache
implementation.

Consume data from a cache

Oracle Stream Analytics applications sometimes need to access non-streaming
data. By caching this data, you can increase the performance of the application.
The standard components of an Oracle Stream Analytics application that are

8-2

http://docs.oracle.com/middleware/1213/coherence/index.html
http://docs.oracle.com/middleware/1213/coherence/index.html

Chapter 8
Configure an Oracle Coherence Caching System and Cache

allowed direct programming access to a cache are input- and output-adapters and
business POJOs.

Additionally, applications can access a cache from Oracle CQL either by a user-
defined function or directly from an Oracle CQL statement. In the case of a user-
defined function, programmers use Spring to inject the cache resource into the
implementation of the function. For more information, see Application and
Resource Configuration.

Applications can also query a cache directly from Oracle CQL statements that run
in a processor. In this case, the cache functions as another type of data source to
a processor so that querying a cache is similar to querying a channel except that
data is pulled from a cache.

An example of using Oracle CQL to query a cache is from a financial application
that publishes orders and the trades used to execute the orders to a cache. At the
end of the day when the markets close, the application queries the cache to find all
the trades related to a particular order.

* Update and delete data in a cache

An Oracle Stream Analytics application can update and delete data in a cache
when required. For example, a financial application might need to update an order
in the cache each time individual trades that fulfill the order are executed, or an
order might need to be deleted if it has been cancelled. The components of an
application that are allowed to consume data from a cache are also allowed to
update it.

 Use a cache in a multiserver domain

If you build an Oracle Stream Analytics application that uses a cache, and you
plan to deploy that application in a multiserver domain, then you must use a
caching system that supports a distributed cache. In this case, you must use either
Oracle Coherence or a third-party caching system that supports a distributed
cache.

For more information, see:
— Configure an Oracle Coherence Caching System and Cache

— Configure a Third-Party Caching System and Cache

8.2 Configure an Oracle Coherence Caching System and
Cache

You can configure your application to use the Oracle Coherence caching system and
cache. Use this caching system if you plan to deploy your application to a multiserver
domain.

When you configure with Oracle Coherence, only the first caching-system can be
configured in a server. The Oracle Stream Analytics server ignores other caching
systems that you have configured.

ORACLE 8-3

Chapter 8
Configure an Oracle Coherence Caching System and Cache

Note:

Before you can legally use Oracle Stream Analytics with Oracle Coherence,
you must obtain a valid Coherence license such as a license for Coherence
Enterprise Edition, Coherence Grid Edition, or Oracle WebLogic Application
Grid.

For more information on Oracle Coherence, see http://docs. oracl e. conf
m ddl ewar e/ 1213/ coher ence/ i ndex. htnl .

The following assembly and configuration file settings configure an Oracle Coherence
caching system and cache for an Oracle CQL processor. The cache uses an event
type to specify the key properties for locating table rows in the relational database.
This caching system is advertised, which means other applications can access the
data in its caches.

8.2.1 Assembly File

The assembly file settings configure the caching system and cachel. The val ue-type
setting is the event type into which you want to load the database values. This cache
is advertised.

<wl evs: cache i d="cachel" val ue-type="TradeReport" advertise="true">
<w evs: cachi ng- syst em r ef =" coher ence- cachi ng- systenf'/ >
</w evs: cache>
<wl evs: cachi ng- syst em i d="coher ence- cachi ng- systent provider="coherence"/>

Note:

When you change the i d setting for a coherence cache in the EPN diagram,
the i d changes in the assembly file and in the coherence-cache- file.
However, if you change the i d setting in the assembly file source editor, the

i d changes in the assembly file only. In this case, you must manually change
the cache- nane setting in the coher ence- cache- to match the id setting in the
assembly file. You also have to change all references to that cache.

When the cache is advertised, a component in the EPN of an application in a separate
bundle can reference the advertised cache. The following example shows how a
processor in one bundle can use the cache- sour ce element to reference a cache
source in another bundle with a cache-i d of cacheprovi der :

<wl evs: processor i d="myProcessor2">
<wl evs: cache-source ref="cacheprovider:cache-id">
</ wl evs: processor >

ORACLE 8-4

http://docs.oracle.com/middleware/1213/coherence/index.html
http://docs.oracle.com/middleware/1213/coherence/index.html

Chapter 8
Configure an Oracle Coherence Caching System and Cache

Note:

When you have Oracle Coherence caches in the EPN assembly files of one
or more applications deployed to the same Oracle Stream Analytics server,
never configure multiple instances of the same cache with a loader or a
store.

You can inadvertently do this by employing multiple applications that each
configure the same Oracle Coherence cache with a loader or store in their
respective EPN assembly file. If you configure multiple instances of the same
cache with a loader or a store, Oracle Stream Analytics throws an exception.

8.2.2 Configuration File

ORACLE

The coher ence- cache- confi g. xnl file is the basic Oracle Coherence configuration file
and must conform to the Oracle Coherence DTDs, as is true for any Oracle Coherence
application.

See the Oracle Coherence documentation for information about coher ence- cache-
config.xm : http://docs. oracl e. conl m ddl ewar e/ 1213/ coher ence/ i ndex. ht ni .

An Oracle Stream Analytics Oracle Coherence factory must be declared when you use
Spring to configure a loader or store for a cache. You specify the factory with the
cachest or e- scheme element and include a factory class that enables Oracle Coherence
to call into Oracle Stream Analytics and retrieve a reference to the loader or store that
is configured for the cache. The only difference between configuring a loader or store
is that the net hod- name element has a value of get Loader when a loader is used and

get St ore when a store is being used. You pass the cache name to the factory as an
input parameter.

<cache-config>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>nyCoher enceCache</ cache- name>
<schene- name>new- r epl i cat ed</ scheme- nane>
</ cache- mappi ng>
<cache- mappi ng>
<cache- nane>nyLoader Cache</ cache- nane>
<schene- nane>t est - | oader - schene</ schene- name>
</ cache- mappi ng>
<cache- mappi ng>
<cache- nane>ny St or eCache</ cache- name>
<schemne- nane>t est - st or e- schene</ schene- nane>
</ cache- mappi ng>
<cache- mappi ng>
<cache- name>
cachel
</ cache- nane>
<schene- nane>
new-replicated
</ schene- nane>
</ cache- mappi ng>
</ cachi ng- scheme- mappi ng>
<cachi ng- schemes>
<repli cat ed- scheme>
<schene- name>new- r epl i cat ed</ scheme- nane>

8-5

http://docs.oracle.com/middleware/1213/coherence/index.html

ORACLE

Chapter 8
Configure an Oracle Coherence Caching System and Cache

<servi ce- name>Repl i cat edCache</ servi ce- name>
<backi ng- map- scheme>
<cl ass- schenme>
<schene-ref >ny-| ocal - scheme</ scheme-
ref>
</ cl ass- schenme>
</ backi ng- map- scheme>
</replicated-scheme>
<cl ass- schenme>
<schene- nane>ny- | ocal - schene</ schene- nane>
<cl ass- nane>com t angosol . net. cache. Local Cache</ cl ass- name>
<evi ction-pol i cy>LRU/ evi cti on- pol i cy>
<hi gh- uni t $>100</ hi gh- uni t s>
<l ow- uni t $>50</ | ow uni t s>
</ cl ass- schenme>
<l ocal - schene>
<schene- nane>t est - | oader - scheme</ scheme- name>
<evi ction-pol i cy>LRU/ evi cti on- pol i cy>
<hi gh- uni t $>100</ hi gh- uni t s>
<l ow- uni t $>50</ | ow uni t s>

<I-- A cachestore-schene el enment that gets a l|oader starts here -->
<cachest or e- schenme>
<cl ass- schene>
<cl ass-fact ory- name>com bea. w evs. cache. coherence. confi guration. SpringFact ory
</ cl ass-factory-nane>
<net hod- nane>get Loader </ net hod- name>
<init-parans>
<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>nyCoher enceCache</ par am val ue>
</init-paranm
<init-paranp
<paramtype>
java.lang. String
</ paramtype>
<par am val ue>
cachel
</ par am val ue>
</init-paranm
</init-parans>
</ cl ass- schenme>
</ cachest or e- scheme>
<lI-- The cachestore-schene el enent ends here -->
</l ocal - schene>

<l ocal - schene>
<scheme- name>t est - st or e- schene</ schene- name>
<evi ction-pol i cy>LRU/ evi cti on- pol i cy>
<hi gh- uni t s>100</ hi gh- uni t s>
<l ow uni t s>50</ | ow uni t s>

<l-- A cachestore-schene el ement that gets a store starts here -->
<cachest or e- schenme>
<cl ass- schene>
<cl ass-fact ory- name>com bea. w evs. cache. coherence. confi guration. SpringFact ory
</ cl ass-factory-nane>
<net hod- nane>get St or e</ net hod- nane>
<init-parans>

8-6

Chapter 8
Configure an Oracle Coherence Caching System and Cache

<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>nyCoher enceCache</ par am val ue>
</init-paranm
<init-paranp
<paramtype>
java.lang. String
</ paramtype>
<par am val ue>
cachel
</ par am val ue>
</init-paranm
</init-parans>
</ cl ass- schenme>
</ cachest or e- scheme>
<l-- The cachestore-schene el enent ends here -->
</l ocal - schene>
</ cachi ng- schenes>
</ cache-confi g>

tangosol-coherence-override.xml File (optional)

The tangosol - coherence-override. xm file is a global per-server file. It contains what is
referred to as the operational configuration in the Oracle Coherence documentation.
This file contains global, server-wide configuration settings for Oracle Coherence
caching. You create this file in an XML editor and put it in the Oracle Stream Analytics
server confi g directory for the server you want to configure.

" Note:

Do not include the t angosol - coher ence-overri de. xni file when you use Oracle
Coherence for clustering.

Add the following XML to the Oracle Coherence configuration file to reference the
tangosol - coher ence- override. xnl file. Include the cl ust er - name element to prevent
Oracle Coherence from attempting to join existing Oracle Coherence clusters when
Oracle Stream Analytics starts up. This can cause problems and sometimes prevent
Oracle Stream Analytics from starting.

<coherence xm -override="/tangosol - coherence-override.xm ">
<cl uster-config>
<menber-i dentity>
<cl ust er - name>com bea. W evs. exanpl e. provi der </ cl ust er - name>
</ menber-identity>

</ coherence>

8.2.3 Cache Loader Bean

The com oracl e. cep. cachel oader package provides the CsvCacheLoader class for loading
CSV events into a Coherence cache. You use a cache loader with an inbound adapter
by replacing the sourceUr| property.

ORACLE .

Chapter 8
Configure a Local Caching System and Cache

The first assembly file CSV adapter configuration shows a CSV inbound adapter that
loads a file with the sourceUrl property. The second assembly file CSV adapter entry
shows a CSV inbound adapter that loads a cache loader bean.

Load Events in a CSV file

<wl evs: adapt er id="StockTradeCSVI nboundAdapter" provider="csv-inbound">
<wl evs: | istener ref="AdapterQut put Channel "/ >
<wl evs:instance-property nane="event Type" val ue="TradeEvent"/>
<wl evs: instance-property nane="sourcelr|"
val ue="file:/scratch/ npaw an/ oep9- 19/ oep/ uti | s/ | oad- generat or/ St ockDat a. csv"/>
</ wl evs: adapt er >

Load Events with a Cache Loader

<wl evs: cache id="csvcache" key-properties="sequenceNo"
val ue-type="TradeEvent" advertise="true">
<wl evs: cachi ng- system ref ="cachesys" />
</w evs: cache>
<bean id="csvl oader" class="com oracl e. cep. cachel oader. CsvCacheLoader" >
<property name="cacheNane" val ue="csvcache"/>
<property name="sourcelr|"
val ue="file:///scratch/juhel/view storage/trade.csv"/>
</ bean>

8.3 Configure a Local Caching System and Cache

You can configure your application to use the Oracle Stream Analytics local caching
system and cache. The Oracle Stream Analytics local caching system is appropriate
when you do not plan to deploy your application to a multiserver domain.

If you plan to deploy your application to a multiserver domain, use an Oracle
Coherence cache.

This chapter describes some of the configuration settings.

8.3.1 Assembly File

The following assembly file settings configure the local caching system and cache.
The val ue-t ype setting is the event type into which you want to load the database
values.

<wl evs: cache id="1ocal cache" val ue-type="Hel | oWor| dEvent ">
<wl evs: cachi ng- syst em ref =" cachi ng- syst ent'/ >
</w evs: cache>
<wl evs: cachi ng- system i d="cachi ng- system' provider="w evs" advertise="fal se"/>

8.3.2 Configuration File

The following configuration file settings specify a maximum size and eviction policy for
the local caching system.The maximum size specifies the number of cache elements
in memory after which the eviction policy occurs. The example also specifies the
maximum amount of time in milliseconds that an entry is cached. Default ti ne-to-1ive
value is infinite. This example specifies 3600 milliseconds.

<cachi ng- syst en»
<name>cachi ng- syst enx/ name>
<cache>

ORACLE 8-8

ORACLE

Chapter 8
Configure a Local Caching System and Cache

<nane>l ocal cache</ nane>
<mex- si ze>64</ max- si ze>
<evi ction-pol i cy>LFW</ evi cti on- pol i cy>
<time-to-live>3600</time-to-live>
</ cache>
</ cachi ng- syst enp

The following configuration file settings add a wri t e- behi nd element as a child element
of cache. The wri t e- behi nd element means Oracle Stream Analytics invokes the cache
store from a separate thread after a create or update of a cache entry. The child
elements of write-behind indicate the following:

e The number of updates that are picked up from the store buffer to write back to the
backing store (batch-size). The default value is 100.

e The number of attempts that the user thread makes to write to the store buffer.
The user thread is the thread that creates or updates a cache entry. If all attempts
by the user thread to write to the store buffer fail, it will invoke the store
synchronously (bat ch-write-attenpts). The default value is 1.

* The time in milliseconds the user thread waits before aborting an attempt to write
to the store buffer (buf fer-write-timeout). The attempt to write to the store buffer
fails only when the buffer is full. After the time out, further attempts can be made to
write to the buffer based on the value of buffer-wite-attenpts. The default value
is 100.

<cachi ng- syst en»
<nane>cachi ng- syst em i d</ nane>
<cache>
<nane>cache-i d</ name>
<max- si ze>100000</ max- si ze>
<evi ction-pol i cy>LRU/ evi cti on- pol i cy
<tine-to-live>3600</tinme-to-live>
<wri t e- behi nd>
<buf f er-si ze>200</ buf f er - si ze>
<buffer-wite-attenpts>2</buffer-wite-attenpts>
<buffer-wite-tinmeout>200</buffer-wite-tineout>
</write-behind>
</ cache>
</ cachi ng- syst en»

The following configuration file settings add a | i st eners child element to configure the
behavior of components that listen to the cache. The | i stener element has an
asynchronous attribute that you can set to either tr ue (listeners are invoked
asynchronously) or fal se (listeners are invoked synchronously).

The wor k- manager - nane child element specifies the work manager to use to
asynchronously invoke listeners. This value is ignored if synchronous invocations are
enabled. If a work manager is specified for the cache, this value overrides that setting
for invoking listeners only. The value of the wor k- manager - nane element corresponds to
the nane element of the wor k- manager setting in the Oracle Stream Analytics confi g. xni
server configuration file.

<cachi ng- syst en»
<nanme>cachi ng- syst em i d</ name>
<cache>
<nane>cache-i d</ name>
<max- si ze>100000</ max- si ze>
<evi ction-policy>LRU</ eviction-policy
<time-to-1ive>3600</tine-to-live>

8-9

Chapter 8
Configure a Cache as an Event Listener

<write-behi nd>
<buf f er-si ze>200</ buf f er - si ze>
<buffer-wite-attenpts>2</buffer-wite-attenpts>
<buffer-wite-timeout >200</buffer-wite-timeout>

</write-behind>

<listeners asynchronous="true">
<wor k- manager - name>cachi ngWWvk/ wor k- nanager - name>

</listeners>

</ cache>
</ cachi ng- syst en»

8.4 Configure a Cache as an Event Listener

You can configure a cache to receive events as they pass through the network. For
example, to specify that a cache listens to a channel, configure the channel with a
w evs: |istener element that has a reference to the cache.

In the following example, as the channel sends new events to the cache, the events
are inserted into the cache. If the channel sends a remove event (an old event that
exits the output window), then the event is removed from the cache.

<wl evs: cachi ng- system i d="cachi ng-systemid"/>

<wl evs: cache id="cache-id" name="al ternative-cache-nang">
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</ W evs: cache>

<wl evs: channel id="tradeStreanm >
<wl evs:listener ref="cache-id"/>
</w evs: channel >

8.5 Index a Cache with a Key

The following sections describe the options available to you to specify the key that is
used to index the cache.

When you do not explicitly specify a key, the event object serves as both the key and
value when the event is inserted into the cache. In this case, the event class must
include a valid implementation of the equal s and hashcode methods that take into
account the values of the key properties.

8.5.1 Assembly File

ORACLE

Specify a property name for the key property in the assembly file with the key-
properties attribute, as shown in the following example:

<wl evs: cache id="nyCache" key-properties="key-property-nang">
<w evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</w evs: cache>

In this case, all events that are inserted into the cache are required to have a property
of this name at runtime, otherwise Oracle Stream Analytics throws an exception. For
example, assume the event type being inserted into the cache looks something like
the following; note the key property (only relevant Java source shown):

public class M/Event {
private String key;
public MEvent() {}
public MyEvent (String key) { this.key = key; }

8-10

Chapter 8
Configure a Cache as an Event Source

public String getKey() { return key;}
public void setKey(String key) { this.key = key;}
}

The corresponding declaration in the assembly file looks like the following:

<wl evs: cache id="nyCache" key-properties="key">
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</w evs: cache>

8.5.2 Metadata Annotation

you can use the metadata annotation com bea. w evs. ede. api . Key to annotate the event
property in the Java class that implements the event type. This annotation does not
have any attributes.

To use a metadata annotation to specify a key:

1. Import the com bea. W evs. ede. api . Key package.
2. Apply the @ey annotation to a method.

The following example shows how to specify that the key property of the MyEvent
event type is the key; only relevant code is shown:

i mport com bea. w evs. ede. api . Key;
public class MEvent {
private String key;
public MyEvent() {}
public MyEvent(String key) { this.key = key; }
public String getKey() { return key; }
@ey
public void setKey(String key) { this.key = key; }

}

8.5.3 Composite Key

You can use the key- cl ass attribute of the w evs: cache element to specify a composite
key in which multiple properties form the key. The value of the key- cl ass attribute must
be a JavaBean class with public fields that match the fields of the event class. The
JavaBean class must override the equal s and hashCode methods from the

java.lang. Obj ect class. The matching is done according to the field name. For
example:

<wl evs: cache id="nyCache" key-class="key-cl ass- nane">

<w evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</w evs: cache>

For a cache with a composite key composed of key-field1l and key-field2, you can
execute both of the following queries:

SELECT streamfield2, cache.key-fieldl fromstrean]NOW, cache WHERE
stream fiel d2=cache. key-fiel dl AND stream fiel d2=cache. key-fi el d2

SELECT streamfieldl, cache.key-fieldl fromstrean]NOW, cache WHERE
stream fiel dl=cache. key-fiel d1

8.6 Configure a Cache as an Event Source

You can configure a cache as an event source. To use a cache as an event source,
you need to implement the com bea. Wl evs. ede. api . St reanti nk interface.

ORACLE 8-11

Chapter 8
Configure a Cache with a Cache Listener

The configuration follows:

<w evs: cache id="cache-id" name="al t ernative-cache- nang"
cachi ng- syst en¥" cachi ng- systemid">
<wl evs: |istener ref="cache-listener-id" />

</W evs: cache>

8.7 Configure a Cache with a Cache Listener

You can configure a cache as a source of events to which another component in the
event processing network listens. The listening component can be an adapter or a
bean.

A class that listens to a cache must implement an interface that provides methods for
receiving events, as follows:

* Aclass that listens to a Coherence cache must implement the
com tangosol . util. MapLi stener interface.

e Aclass that listens to an Oracle Stream Analytics local cache must implement the
com bea. cache. j cache. CacheLi st ener interface.

<wl evs: cachi ng- system i d="cachi ng-systemid"/>

<wl evs: cache id="cache-id" name="al ternative-cache-nane">
<wl evs: cachi ng- syst em ref =" cachi ng-systemid"/>
<wl evs: cache-listener ref="cache-listener-id" />

</ wl evs: cache>

<bean i d="cacheListenerld" class="com bea.w evs. exanpl e. provi der. coherence"/ >

In the example, the cachelLi st ener | d Spring bean listens to events coming from the
cache. In this case, the user-defined class that implements this component,

com bea. w evs. exanpl e. M/CachelLi st ener, is listening to an Oracle Coherence cache. It
must implement the appropriate Oracle Coherence-specific Java interfaces, including
com tangosol . util. MaplLi st ener. The following example illustrates this implementation.

package com bea.w evs. exanpl e. provi der. coher ence;

i mport comtangosol . util.MpEvent;
i mport comtangosol . util.MapListener;

public class Local Listener inplements MapListener {
public static int deleted = 0;
public static int inserted = 0;
public static int updated = 0;

public void entryDel et ed(MapEvent event) { del eted++; }
public void entrylnserted(MpEvent event) { inserted++ }
public void entryUpdat ed(MapEvent event) { updated++; }

8.8 Configure a Third-Party Caching System and Cache

ORACLE

You can configure your application to use a third-party caching system and cache.

Configure a Third-Party Caching System and Cache

1. Create a plug-in to define the third-party caching system as an Oracle Stream
Analytics caching system provider:

e Implement the com bea. w evs. cache. spi . Cachi ngSyst eminterface

8-12

ORACLE

Chapter 8
Configure a Third-Party Caching System and Cache

» Create a factory that creates caching systems of this type.
* Register the factory with an attribute that identifies its provider type.
Declare the caching system in the EPN assembly file.

Use the wl evs: cachi ng- syst emelement to declare a third-party implementation; use
the cl ass or provi der attribute to specify additional information.

For simplicity, you can include the third-party implementation code inside the
Oracle Stream Analytics application bundle itself to avoid having to import or
export packages and manage the life cycle of a separate bundle that contains the
third-party implementation. In this case the w evs: cachi ng- syst emelement appears
in the EPN assembily file as shown in the following example:

<wl evs: cachi ng- system i d="cachi ng- systemid"
class="third-party-inplenentation-class"/>

The cl ass attribute specifies a Java class that must implement the
com bea. wl evs. cache. spi . Cachi ngSyst eminterface. For details about this interface,
see the Java API Reference for Oracle Stream Analytics.

Sometimes you might not be able to or want to include the third-party caching
implementation in the same bundle as the Oracle Stream Analytics application that
is using it. In this case, you must create a separate bundle with a Spring
application context that includes the w evs: cachi ng- syst emelement, with the
mandatory adverti se attribute:

<wl evs: cachi ng-systemid ="cachi ng-systemid"
class="third-party-inplenentation-class" advertise="true"/>

Alternately, if you want to decouple the implementation bundle from the bundle
that references it, or you are plugging in a caching implementation that supports
multiple caching systems per Java process, you can specify a factory as a
provider:

<w evs: cachi ng-systemid ="cachi ng-systemid" provider="cachi ng-provider"/>

<factory id="factory-id" provider-name="cachi ng-provider">

<cl ass>the.factory. cl ass. nane</ cl ass>
</factory>

The factory class (t he. fact ory. cl ass. nane) must implement the
com bea. wl evs. cache. spi . Cachi ngSyst enFact ory interface. This interface has the
creat e method that returns a com bea. W evs. cache. spi . Cachi ngSyst eminstance.

You must deploy this bundle with the application bundle so that the application
bundle can start using it.

Add one or more caches for this caching system in the EPN assembly file.

<wl evs: cachi ng-systemid ="caching-systemid" provider="caching-provider"/>

<wl evs: cache id="cache-id" name="al ternative-cache-nang">
<w evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</ W evs: cache>

Specify the optional nane attribute only when the name of the cache in the caching
system is different from its ID. The w evs: cachi ng- syst emchild element references
the already-declared caching system that contains the cache. You must specify
this child element only when there is more than one caching system declared
(either implicitly or explicitly) or when the caching system is in a different
application or bundle.

8-13

Chapter 8
Exchange Data Between a Cache and Another Data Source

You can export both the caching system and the cache as an OSGI service with
the adverti se attribute.

<wl evs: cachi ng- system i d="cachi ng-systemid" advertise="true"/>

<wl evs: cache id="cache-id" name="al ternative-cache-nane" advertise="true" >
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</ W evs: cache>

If the cache is advertised, then a component in the EPN of an application in a
separate bundle can reference it. The following example shows how a processor
in one bundle can use as a cache source the cache with ID cache-i d located in a
separate bundle (called cachepr ovi der):

<wl evs: processor id="myProcessor2">

<w evs: cache-source ref="cacheprovi der: cache-id"/>
</w evs: processor >

The caching system creates the cache associated with a particular name and
returns a reference to the cache. The resulting cache bean implements the
java.util.Mp interface.

Configure the third-party caching system and its caches by updating the third-party
caching configuration file or files for the application.

Refer to your third-party cache documentation.

Optionally, override the default third-party cache configuration by updating the
appropriate configuration file with one or more additional cache element child
elements. Refer to your third-party cache documentation.

* Specify that a cache is an event sink by configuring it as a listener to another
component in the event processing network.

» Specify that a cache is an event source to which another component in the
event processing network listens.

» Configure a cache loader or store.

When you assemble your application, verify that the META- | NF/ MANI FEST. M file
includes the following import:;

com bea. W evs. cache. spi; version ="<version>"

If the MANI FEST. M files does not include this import, update the MANI FEST. MF file to
add this import before deploying your application.

8.9 Exchange Data Between a Cache and Another Data

Source

ORACLE

You can have a cache in an EPN exchange data with another data source, including a
database. For example, you can load a cache with data when the application starts or
create a read/write relationship between the cache and a database.

If the cache will only be reading data, including when the backing store is read-only,
you should use a cache loader. If the cache will read and write data, use a cache
store. In both cases, creating the relationship involves specific configuration and a
Java class that knows how to communicate with the data source.

8-14

Chapter 8
Exchange Data Between a Cache and Another Data Source

8.9.1 Load Cache Data from a Read-Only Data Source

ORACLE

Using a cache loader, you can have a cache in your EPN load data from a read-only
data source. A cache loader is a Java class that loads cache objects into a cache. You
create a cache loader by writing a Java class that implements the appropriate
interfaces to enable the loader class to communicate with the cache. Then you
configure a cache loader by using the wi evs: cache- 1 oader child element of the

w evs: cache element to specify the bean that does the loading work.

If the backing store is read-write, use a cache store instead (see Exchange Data with a
Read-Write Data Source).

When creating a cache loader, you implement interfaces as follows:

* To load cache data into an Oracle Coherence cache, create a class that
implements the appropriate Oracle Coherence-specific Java interfaces, including
com t angosol . net. cache. CacheLoader . See Example 8-2 for an example.

e To load cache data into an Oracle Stream Analytics local cache, create a class
that implements com bea. cache. j cache. CacheLoader interface. This interface
includes the | oad method to customize loading a single object into the cache;
Oracle Stream Analytics calls this method when the requested object is not in the
cache. The interface also includes | oadAl | methods that you implement to
customize the loading of the entire cache.

In Example 8-1, the | ocal Loader bean loads events into an Oracle Coherence cache
when the backing store is read-only.

When working with a Coherence cache, note that if you specify a cache loader in your
configuration file, you must also specify the corresponding class factory method name
in your Coherence cache configuration file. For a cache loader, you specify the

get Loader method of com bea. w evs. cache. coher ence. confi gurati on. SpringFactory. For
example code, see Configure an Oracle Coherence Caching System and Cache.

Example 8-1 Oracle Coherence Cache EPN Assembly File for a Cache Loader

<wl evs: cachi ng- system i d="cachi ng-systemid"/>
<wl evs: cache id="nyCache" advertise="fal se">
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
<w evs: cache-1 oader ref="1ocal Loader"/>
</ W evs: cache>
<bean id="1ocal Loader"
cl ass="com bea. W evs. exanpl e. provi der. coher ence. Local Loader "/ >

Example 8-2 Oracle Coherence Cache LocalLoader Implementation
package com bea.w evs. exanpl e. provi der. coher ence;

import java.util.Collection;
import java.util.HashMap;
inport java.util.HashSet;
import java.util.Mp;

inport java.util.Set;

i mport com bea. w evs. exanpl e. provi der. event. Provi der Dat a;
i mport com tangosol . net. cache. CachelLoader;

public class Local Loader inplenents CacheLoader {
public static int loadCount = 0;
public static Set keys = new HashSet();

public Local Loader() {

8-15

Chapter 8
Exchange Data Between a Cache and Another Data Source

}
public Object |oad(Object key) {
| oadCount ++;
keys. add(key);
return new ProviderData((String) key);
}
public Map | oadA | (Collection keys) {
Map result = new HashMap();

for (Object key : keys) {
resul t. put (key, |oad(key));
}

return result;

}

8.9.2 Exchange Data with a Read-Write Data Source

ORACLE

Using a cache store, you can have a cache in your EPN exchange data with a read-
write data source. A cache store is a Java class that exchanges cache objects with a
cache. You create a cache store by writing a Java class that implements the
appropriate interfaces to enable it to communicate with the data source. Then you add
the cache store to the EPN by using the w evs: cache- st ore child element of the

w evs: cache element to specify the bean that communicates with the data source.

If the backing store is read-only, use a cache loader instead (see Load Cache Data
from a Read-Only Data Source).

When creating a cache store, you implement interfaces as follows:

* To exchange cache data with an Oracle Coherence cache, create a class that
implements the appropriate Oracle Coherence-specific Java interfaces, including
com t angosol . net. cache. CacheSt ore. See Example 8-4for an example.

e To exchange cache data with an Oracle Stream Analytics local cache, create a
class that implements the com bea. cache. j cache. CacheSt or e interface. This
interface includes the st ore method that stores the data in the backing store using
the passed key; Oracle Stream Analytics calls this method when it inserts data into
the cache. The interface also includes the st oreAl | method for storing a batch of
data to a backing store in the case that you have configured asynchronous writes
for a cache with the wri t e- behi nd configuration element.

In Example 8-3, the | ocal St or e bean loads events into the cache when the backing
store is read-write.

Note that if you specify a cache store in your Spring configuration file, you must also
specify the corresponding class factory method name in your Coherence cache
configuration file. For a cache store, you specify the get St or e method of

com bea. wl evs. cache. coher ence. confi gurati on. Spri ngFact ory. For example code, see
Configure an Oracle Coherence Caching System and Cache.

Example 8-3 Oracle Coherence Cache EPN Assembly File for a Cache Store

<wl evs: cachi ng- system i d="cachi ng-systemid"/>
<wl evs: cache id="nyCache" advertise="fal se">
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
<w evs: cache-store ref="|ocal Store"/>
</ W evs: cache>
<bean id="Iocal Store"
cl ass="com bea. W evs. exanpl e. provi der. coherence. Local St ore"/>

8-16

Chapter 8

Access a Cache from Application Code

Example 8-4 Oracle Coherence Cache LocalStore Implementation

package com bea.w evs. exanpl e. provi der. coher ence;

import java.util.Collection;
import java.util.HashMap;
import java.util.Mp;

import java.util.Set;

i mport com bea. w evs. exanpl e. provi der. event . Provi der Dat a;
i mport com tangosol . net. cache. CacheStore;

public class Local Store inplenents CacheStore {

public static int eraseCount = 0;
public static int storeCount = 0;
public static int loadCount = 0;

public void erase(hject key) {
eraseCount ++;

public void eraseA |l (Collection keys) {
for (Object key : keys) {
erase(key);

}

public void store(hject key, Object value) {
I
/1 Do the store operation here.
I

public void storeA |l (Mp entries) {
for (Map.Entry entry : (Set <Map.Entry>)entries.entrySet()) {
store(entry.getKey(), entry.getValue());

}

public Object |oad(Object key) {
| oadCount ++;
return new ProviderData((String) key);

}
public Map loadAl |l (Collection keys) {
Map result = new HashMap();
for (Object key : keys) {
resul t. put (key, |oad(key));
}

return result;

8.10 Access a Cache from Application Code

Once you have configured a cache, you can access the cache from several
components in an Oracle Stream Analytics application.

ORACLE

This section describes how to do that.

For more information, see the following sections:

Access a Cache from an Oracle CQL Statement

Access a Cache from an Adapter

Access a Cache From a Business POJO

Access a Cache From an Oracle CQL User-Defined Function
Access a Cache with JIMX.

8-17

Chapter 8
Access a Cache from Application Code

Before you assemble and deploy the application, edit your META- | N/ MANI FEST. M file to
import packages that are required in your implementation. For example, if your
application implements cache listeners, loaders or stores, your manifest should import
com tangosol . net. cache packages, which contain the Coherence APIs.

Oracle Stream Analytics provides caching APIs that you can use in your application to
perform certain tasks. The APIs are in the com bea. cache. j cache package, which
includes the APIs used to access a cache and create cache loader, listeners, and
stores. If you want to use the loader, listener, and store functionality, then import the
com tangosol . net and com t angosol . net. cache packages.

You create, configure, and wire caching systems and caches with the EPN assembly
file and component configuration files. This means that you typically never explicitly
use the Cache and Cachi ngSyst eminterfaces in your application. The only reason to use
them is when you have additional requirements over the standard configuration. For
example, if you want to provide integration with a third-party cache provider, then you
must use the Cachi ngSyst eminterface. If you want to perform operations on a cache
that are not part of the java. util . Map interface, then you can use the Cache interface.

If you create cache listeners, loaders, or stores for an Oracle Stream Analytics local
cache, then the beans you write must implement the CachelLi st ener, CacheLoader, or
CacheSt or e interfaces.

If you create cache listeners, loaders, or stores for an Oracle Coherence cache, then
the beans you write must implement the appropriate Oracle Coherence interfaces.

If you create cache listeners, loaders, or stores for a third-party cache, then the beans
you write must implement the appropriate third-party cache interfaces.

8.10.1 Access a Cache from an Oracle CQL Statement

ORACLE

You can reference a cache from an Oracle CQL statement in much the same way you
reference an event source such as a channel; this feature enables you to enrich
standard streaming data with data from a separate source. The code in the following
example shows a valid Oracle CQL query that joins trade events from a standard
channel named S1 with stock symbol data from a cache named st ockCache.

You must abide by these restrictions when using a cache in an Oracle CQL query:

e Whenever you query a cache, you must join against the [Now] window.

This guarantees that the query will execute against a snapshot of the cache. If you
join against any other window type, then if the cache changes before the window
expires, the query will be incorrect.

The following example shows an invalid Oracle CQL query that joins a Range
window against a cache. If the cache changes before this window expires, the
qguery will be incorrect. Consequently, this query will raise Oracle Stream Analytics
server error “external relation must be joined with s[now."

SELECT trade. synbol, trade.price, trade. nunberCf Shares, conpany.nane
FROM TradeStream [Range 8 hours] as trade, CompanyCache as conpany
VWHERE trade. synbol = conpany.id

When you use data from a cache in an Oracle CQL query, Oracle Stream
Analytics pulls the data rather than it being pushed, as is the case with a channel.
This means that, continuing with the query executes only when a channel pushes
atrade event to the query; the stock symbol data in the cache never causes a
query to execute, it is only pulled by the query when needed.

8-18

ORACLE

Chapter 8
Access a Cache from Application Code

* You must specify the key property needed to do a lookup based on the cache key.

Consider two streams S and C with schemas (i d, group, val ue) where the cache key
isid. Avalid query is:

select count(*) as n fromS [now, C
where S.id = Cid

* Joins must be executed only by referencing the cache key.
* You cannot use a cache in a view. Instead, use a join.

* Only a single channel source may occur in the FROMclause of an Oracle CQL
statement that joins cache data source(s).

e If the cache is a processor source, you connect the cache directly to the channel
on the EPN.

e If the cache is a processor sink, it can be connected directly to a processor.

Access a Cache from an Oracle CQL Statement

This procedure assumes that you have already configured the caching system and
caches. For more information, see:

» Configure a Local Caching System and Cache
* Configure an Oracle Coherence Caching System and Cache
» Configure a Third-Party Caching System and Cache

1. If you have not already done so, create the event type that corresponds to the
cache data and register it in the event repository.

See Events and Event Types.
2. Specify the key properties for the data in the cache.

3. Inthe EPN assembly file, update the configuration of the cache to declare the
event type of its values; use the val ue- t ype attribute of the w evs: cache element.
For example:

<wl evs: cachi ng- system i d="cachi ng- systemid"/>

<wl evs: cache id="cache-id"
nane="al t ernati ve- cache- name"
val ue-t ype="ConpanyEvent " >
<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</ w evs: cache>

The value-type attribute specifies the type for the values contained in the cache.
This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL query.
This is because the query processor needs to know the type of events in the
cache.

4. Inthe EPN assembly file, update the configuration of the processor that executes
the Oracle CQL query that references a cache:

a. Ifthe cache is a processor source: you connect the cache directly to the
processor on the EPN as Figure 8-1 shows.

8-19

Chapter 8
Access a Cache from Application Code

Figure 8-1 Cache as Processor Source
@ 51 e
adapter "}@ S s &
52
@ cacheProcessor Bean

skockCache

Update the w evs: processor element a w evs: cache- sour ce child element that
references the cache. For example:

<w evs: channel id="S1"/>

<wl evs: processor id="cacheProcessor">
<wl evs: source ref="S1">
<wl evs: cache-source ref="cache-id">
</ wl evs: processor >

In the example, the processor will have data pushed to it from the S1 channel
as usual; however, the Oracle CQL queries that execute in the processor can
also pull data from the cache-i d cache. When the query processor matches an
event type in the FROMclause to an event type supplied by a cache, such as
ConpanyEvent , the processor pulls instances of that event type from the cache.

b. If the cache is a processor sink: you must connect the processor to the cache
using a channel on the EPN (that is, there must be a channel between the
processor and the cache sink) as Figure 8-2 shows.

Figure 8-2 Cache as Processor Sink

% S i _) |

channelt : channel2 .
adapter processor cache-id

In this case, the application assembly file looks like this:

<wl evs: channel id="channel 1" event-type="StockTi ck">
<wl evs: |istener ref="processor" />

</ wl evs: channel >

<wl evs: processor id="processor">
<w evs:|istener ref="channel 2" />

</ wl evs: processor >

<wl evs: channel id="channel 2" event-type="StockTi ck">
<w evs:|istener ref="cache-id" />

</ wl evs: channel >

SELECT Sl.synbol, Sl.lastPrice, stockCache.description
FROM S1 [Nowj, stockCache
WHERE Sl1.synbol = stockCache. synbol

ORACLE 8-20

Chapter 8
Access a Cache from Application Code

8.10.2 Access a Cache from an Adapter

An adapter can also be injected with a cache using the standard Spring mechanism for
referencing another bean. A cache bean implements the j ava. util . Map interface which
is what the adapter uses to access the injected cache.

First, the configuration of the adapter in the EPN assembly file must be updated with a
w evs: i nstance- property child element, as shown in the following example:

<wl evs: cachi ng- system i d="cachi ng-systemid"/>

<wl evs: cache id="cache-id" name="al ternative-cache-nane">
<wl evs: cachi ng- syst em ref =" cachi ng- systemid"/>
</ wl evs: cache>

<w evs: adapter id="nyAdapter" provider="nyProvider">
<w evs:instance-property name="map" ref="cache-id"/>
</w evs: adapt er >

In the example, the ref attribute of wi evs: i nst ance- property references the i d value of
the wi evs: cache element. Oracle Stream Analytics automatically injects the cache,
implemented as ajava. util. Mp, into the adapter.

In the adapter Java source, add a set Map (Map) method with the code that implements
whatever you want the adapter to do with the cache:

package com bea.w evs. exanpl e;

import java.util.Mp;
public class MyAdapter inplenents Runnable, Adapter, EventSource, Suspendabl eBean {

. public void setMap (Map map) {...}
}

8.10.3 Access a Cache From a Business POJO

ORACLE

A business POJO, configured as a standard Spring bean in the EPN assembly file,
can be injected with a cache using the standard Spring mechanism for referencing
another bean. In this way the POJO can view and manipulate the cache. A cache
bean implements the j ava. uti|. Map interface which is what the business POJO uses to
access the injected cache. A cache bean can also implement a vendor-specific sub-
interface of j ava. uti | . Map, but for portability it is recommended that you implement Map.

First, the configuration of the business POJO in the EPN assembly file must be
updated with a property child element, as shown in the following example based on
the Output bean of the FX example:

<w evs: cachi ng- system i d="cachi ng-systemid"/ >

<wl evs: cache id="cache-i d" name="al ternative-cache-nane">
<w evs: cachi ng- syst em ref =" cachi ng- systemid"/>
</ wl evs: cache>

<bean cl ass="com bea. w evs. exanpl e. hel | owor | d. Hel | oWr | dBean" >
<property name="map" ref="cache-id"/>
</ bean>

In the example, the ref attribute of the property element references the i d value of the
w evs: cache element. Oracle Stream Analytics automatically injects the cache,
implemented as ajava. util. Map, into the business POJO bean.

8-21

Chapter 8
Access a Cache from Application Code

In the business POJO bean Java source, add a set Map (Map) method with the code that
implements whatever you want the POJO to do with the cache:

package com bea.w evs. exanpl e. hel | owor| d;

inport java.util.Mp;
public class Hel | oWrl dBean inpl ements EventSink {

' public void setMap (Map map) {...}
}

8.10.4 Access a Cache From an Oracle CQL User-Defined Function

ORACLE

In addition to standard event streams, Oracle CQL rules can also invoke the member
methods of a user-defined function.

These user-defined functions are implemented as standard Java classes and are
declared in the component configuration file of the Oracle CQL processor, as shown in
the following example:

<bean id="orderFunction" class="orderFunction-inpl-class"/>

The processor in which the relevant Oracle CQL rule runs must then be injected with
the user-defined function using the w evs: f uncti on child element, referencing the
Spring bean with the ref attribute:

<wl evs: processor id= "tradeProcessor">
<wl evs: function ref="orderFunction"/>
</ wl evs: processor >

Alternatively, you can specify the bean class in the w evs: functi on element:

<wl evs: processor id="testProcessor">
<w evs:|istener ref="providerCache"/>
<wl evs: |istener ref="outputCache"/>
<wl evs: cache-source ref="testCache"/>
<wl evs: function function-name="nymod" exec-nethod="execute" />
<bean cl ass="com bea. W evs. exanpl e. functi on. MyMbd"/ >
</w evs: function>
</ w evs: processor >

The following Oracle CQL rule, assumed to be configured for the t r adePr ocessor
processor, shows how to invoke the exi st sOr der method of the or der Functi on user-
defined function:

I NSERT | NTO Institutional O der

SELECT er.orderKey AS key, er.synbol AS synbol, er.shares as cunul ativeShares
FROM Execut i onRequest er [Range 8 hours]

VWHERE NOT order Functi on. exi st sOrder (er. or der Key)

You can also configure the user-defined function to access a cache by injecting the
function with a cache using the standard Spring mechanism for referencing another
bean. A cache bean implements the j ava. uti | . Map interface which is what the user-
defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be
updated with a wi evs: property child element, as shown in the following example:

<wl evs: cachi ng- system i d="cachi ng- systemid"/>

<w evs: cache id="cache-id" name="al ternative-cache-nang">

8-22

Chapter 8
Access a Cache from Application Code

<wl evs: cachi ng- syst em ref ="cachi ng- systemid"/>
</w evs: cache>

<bean id="orderFunction" class="orderFunction-inpl-class">
<wl evs: property name="cache" ref="cache-id"/>
</ bean>

In the example, the ref attribute of the w evs: property element references the i d value
of the w evs: cache element. Oracle Event Processing automatically injects the cache,
implemented as ajava. util. Mp, into the user-defined function.

In the user-defined function's Java source, add a set Map (Map) method with the code
that implements whatever you want the function to do with the cache:

package com bea. w evs. exanpl e;

inport java.util.Mp;
public class OderFunction {

public void setMap (Map map) {...}
}

8.10.5 Access a Cache with IMX

At runtime, you can access a cache programmatically using JMX and the MBeans that
Oracle Stream Analytics deploys for the caching systems and caches you define.

8.10.5.1 How to Access a Cache With JMX Using Oracle Stream Analytics

Visualizer

The simplest and least error-prone way to access a caching system or cache with JMX
is to use the Oracle Stream Analytics Visualizer.

8.10.5.2 How to Access a Cache With JMX Using Java

ORACLE

The simplest and least error-prone way to access a caching system or cache with JIMX
is to use the Oracle Stream Analytics Visualizer (see How to Access a Cache With
JMX Using Oracle Stream Analytics Visualizer). Alternatively, you can access a
caching system or cache with JMX using Java code that you write.

Oracle Stream Analytics creates a St ageMBean for each cache that your application
uses as a stage. The Type of this MBean is St age.

To access a cache with JMX using Java:

1. Connect to the JMX service that Oracle Stream Analytics server provides.
2. Get alist of cache St ageMean using either of:

e Cachi ngSyst emvBean. get CacheMBeans()

° ApplicationMBean. get St ageMBeans()

3. Get the Obj ect Nane for a given St ageMBean that represents a cache in your caching
system:

bj ect Nane cacheNane = (bj ect Nane. get | nstance (
' com bea. W evs: Nane =

8-23

Chapter 8
Access a Cache from Application Code

newCache, Type=St age, Cachi ngSyst emrnewCachi ngSyst em Appl i cati on=provi der"'
)
4. Get a proxy instance for the St ageMBean with this oj ect Nare:

St ageMBean cache = (StageMBean) MBeanServerl|nvocationHandl er. newPr oxyl nst ance(
server, cacheNanme, StageMBean.class, false

)
5. Use the methods of the St ageMBean to access the cache.

ORACLE 8-24

EclipseLink, JPA, and Oracle Coherence

The Oracle Stream Analytics installation includes the EclipseLink 2.4.2 open source
mapping and persistence framework to support the use of the Java Persistence API
(JPA) in your applications. JPA is the standard for object-relational mapping (ORM)
and enterprise Java persistence.

This chapter presents two sample Oracle Stream Analytics applications, Hel | oWr | d
and JPA- Coher ence- Sanpl e- Code, that use EclipseLink and JPA to read from and
write to a database. The JPA-Coherence-Sample-Code also uses a coherence cache
for coordinated data updates in an environment with clustered applications and
servers.

This chapter includes the following sections:

* High-Level Procedure
* Helloworld Example

* JPA Coherence Example.

9.1 High-Level Procedure

ORACLE

Use the following high-level steps to create an Oracle Stream Analytics application
that includes EclipseLink.

1. Create your Oracle Stream Analytics application including JPA and Oracle
Coherence as needed.

2. Create apersistence. xm file with the correct JPA configuration. This file contains
the properties that control runtime operation.

3. Putthe persistence. xm file in the META- | NF directory of your application.
4. Bundle and deploy the application.

Learn more about EclipseLink at http://eclipse. org/ eclipselink/.

" Note:

Coherence socket exception occurs when you run CQL sample on AlX 6.1
Japanese platform. To resolve this issue:

Add the - Dj ava. net . pref er| Pv4St ack=t r ue parameter to the last line of the
startw evs. sh script.

" Note:

Spatial sample is not supported on AlX Platform.

9-1

http://eclipse.org/eclipselink/

Chapter 9
HelloWorld Example

9.2 HelloWorld Example

The HelloWorld example uses EclipseLink to establish a read and write JDBC
connection to the data source to access and store HelloWorld events.

In this example, HelloWorld events contain date and time information.
The example is comprised of the following files, which are discussed in this section:

» persistence.xml Configuration File
* HelloWorldAdapter.java
* HelloWorldEvent.java

* HelloWorldBean.java

9.2.1 persistence.xml Configuration File

The following per si st ence. xnl file has one persistence unit (per si st ence-uni t) called
hel | owor | d. The helloworld persistence unit has a transacti on-type of RESOURCE_LQCAL
because Oracle Stream Analytics is a Java SE environment. The EclipseLink
properties specify the settings for database read and write operations and logging. For
this example, the managed persistable class that represents objects in the database is
com bea. w evs. event .. exanpl e. hel | owor | d. Hel | oWor | dEvent .

This persi stence. xni file has entries for JPA logging that are commented out and set
to fal se. You can uncomment these settings and set them to t r ue to debug or
otherwise monitor the application behavior. For information on property settings, see
http://eclipse.org/eclipselink/documentation/2.4/]pal extensions/toc. htm

<?xm version="1.0" encodi ng="UTF-8" ?>
<persi stence xm ns:xsi ="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xsi : schemaLocation="http://java. sun. conf xm / ns/ persi st ence http://
j ava. sun. conf xm / ns/ per si st ence/ persi stence_2_0. xsd"
version="2.0" xm ns="http://java. sun.com xn / ns/ persi stence">
<persistence-unit name="hel |l owor| d" transaction-type="RESOURCE_LOCAL" >
<cl ass>com bea. W evs. event. exanpl e. hel | owor | d. Hel | oWr | dEvent </ cl ass>
<properties>
<property name="eclipselink.jdbc.read-connections.mn" value="1"/>
<property name="eclipselink.jdbc.wite-connections.nin" value="1"/>
<l--
<property name="eclipselink.|ogging.timestanp" val ue="fal se"/>
<property nane="eclipselink.|ogging.thread" val ue="fal se"/>
<property nane="eclipselink.|ogging. session" val ue="fal se"/>
<property nane="eclipselink.|ogging. exceptions" val ue="fal se"/>
<property nane="eclipselink.|ogging.connection" val ue="fal se"/>
<property nane="eclipselink.|ogging.level" val ue="FI NER'/>
-->
</ properties>
</ persi stence-unit>
</ persi st ence>

9.2.2 HelloWorldAdapter.java

The Hel | oWr | dAdapt er . j ava class is a custom threaded adapter that continuously
creates events of type Hel | oWr | dEvent . The application constructs message text of

ORACLE 9-2

http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm

ORACLE

Chapter 9
HelloWorld Example

type Dat eFor mat , which is used by the gener at eHel | oMessage method to create events of
type Hel | oWr | dEvent .

The Oracle Stream Analytics framework calls the set Event Sender method to initialize
the event Sender private variable with a StreanSender instance. The St reanSender
instance sends events emitted by a StreanSour ce instance to a St rean®i nk listener. In
this example the Streansi nk listener is the Hel | owr | dBean instance.

package com bea.w evs. adapt er. exanpl e. hel | owor | d;

i mport java.text.DateFormat;

import java.util.Date;

i mport com bea. w evs. ede. api . Runnabl eBean;

i mport com bea. w evs. ede. api . St reanSender ;

i mport com bea. w evs. ede. api . St reanfour ce;

i mport com bea. w evs. event. exanpl e. hel | owor | d. Hel | oWr | dEvent ;

public class Hel | oWrl dAdapter inplements Runnabl eBean, StreanfSource {
private static final int SLEEP_MLLIS = 300;
private DateFormat dateFormat;
private String nessage;
private bool ean suspended,
private StreanBender event Sender;

public HelloWrl dAdapter() {
super ();
dat eFormat = Dat eFor mat . get Ti mel nstance();

public void run() {
suspended = fal se;
while (!isSuspended()) { // GCenerate messages forever...
gener at eHel | oMessage() ;
try {
synchroni zed (this) {
wai t (SLEEP_M LLI S);

} catch (InterruptedException e) {
e.printStackTrace();
}

}

public void setMessage(String message) {
this. message = nessage;
}

private void generateHel | oMessage() {
String message = this.nessage + dateFornat.format(new Date());
Hel | oWor| dEvent event = new Hel | oWor | dEvent ();
event . set Message(nessage) ;
event Sender . sendl nsert Event (event);

public void setEvent Sender (StreanSender sender) {
event Sender = sender;

public synchronized voi d suspend() {
suspended = true;
}

private synchroni zed bool ean isSuspended() {
return suspended;
}

9-3

Chapter 9
HelloWorld Example

9.2.3 HelloWorldEvent.java

The Hel | oWr | dEvent . j ava class creates an event from a message. The
HelloWorldAdapter.generateHelloMessage method calls the

Hel | oWor | dEvent . set Message nethod to create an event froma nessage. The

Hel | oWor | dBean class stores the nessage and its generated i d to and retrieves them
from the data store.

package com bea.w evs. event. exanpl e. hel | owor | d;

i mport javax. persistence.Entity;

i mport javax. persistence. Generat edVal ue;
i mport j avax. persistence. GenerationType;
i mport javax. persistence.|d;

@ntity
public class Hel | oWrl dEvent {
@d
@ener at edVal ue(strategy = GenerationType. | DENTI TY)
private long id;
private String nessage;

public String getMssage() {
return message;

}

public void setMessage (String message) {
this. message = nmessage;
1
}

9.2.4 HelloWorldBean.java

ORACLE

The Hel | oWr | dBean. j ava class is an event sink and source that retrieves events from
Hel | oWor | dEvent and performs read and write operations on the database with JPA.

The Oracle Stream Analytics framework calls the set Event Sender method to initialize
the m event Sender private variable with a StreanSender instance. The onl nser Event
method sends the events emitted by the St r eanour ce instance downstream to

St reansi nk listeners.

package com bea.w evs. exanpl e. hel | owor | d;

inport java.util.HashMap;

import java.util.List;

i mport javax.annotation. Resour ce;

i mport javax.sql. Dat aSource;

i nport javax. persistence. EntityManager;

i mport javax. persistence. EntityManager Factory;

i mport javax. persi stence. Persi stence;

i nport javax. persistence. Query;

i mport org.springframework. beans. f act ory. Di sposabl eBean;

i mport org.eclipse. persistence. config. PersistenceUnitProperties;
i mport com bea. w evs. ede. api . StreanSi nk;

i mport com bea. w evs. ede. api . St reanfSour ce;

i nport com bea. w evs. ede. api . St reanSender ;

i mport com bea. w evs. event. exanpl e. hel | owor | d. Hel | oWor | dEvent ;

9-4

ORACLE

Chapter 9
HelloWorld Example

public class Hel | oWrl dBean inplenments StreanSfink, StreanSource, Disposabl eBean {
private static final String PERSI STENCE_UNI T_NAME = "hel | owor | d";
private EntityManagerFactory mentityMrFactory;
private EntityManager mentityMr;
private DataSource mds;
private bool ean m shutti ngDown;
private StreanSender m event Sender;

public void setEvent Sender (StreanfSender sender){

}

m event Sender = sender;

private void setupEntityMnager(){

if (mentityMyr!=null)

return;
HashMap props = new HashMap();
props. put (Persi stenceUnit Properties. NON_JTA DATASOURCE, mds);
props. put ("eclipselink.ddl -generation", "create-tables");
props. put ("eclipselink. ddl -generation. out put-node", "database");
m entityMyrFactory = Persistence. createEntityMinagerFactory

(PERSI STENCE_UNI T_NAME, props);

mentityMyr = mentityMrFactory. createEntityManager();

public void onlnsertEvent (Chject event){

}

if (mshuttingDown)
return;
set upEnt it yManager () ;
if (event instanceof HelloWrldEvent) {
Hel | oWor | dEvent hel | oWor | dEvent = (Hel | oWor| dEvent) event;
Systemout. println("Message: " + helloWrl dEvent. get Message());
m entityMr. get Transaction(). begin();
try {
m entityMr. persist(hell oWrl dEvent);
m entityMr. get Transaction().comit();
} finally {
if (mentityMyr.getTransaction().isActive())
m entityMr. get Transaction().rol |l back();
}
}
Query q = mentityMr.createQuery("select t fromHelloWrldEvent t");
Li st <Hel | oWor | dEvent> hwlist = q.getResultList();
Systemout.printIn("Stored " + hwist.size() + " helloworld events");
m event Sender . sendl nsert Event (event);

@Resour ce(nanme="der byDS")
public void setDataSource(DataSource ds){

mds = ds;

}
public void destroy(){

m shut ti ngDown = true;

if (mentityMr!=null){
mentityMr.close();
mentityMyr=null;

}

if (mentityMrFactory!=null){
m entityMrFactory. close();
m entityMr Fact ory=nul | ;

9-5

Chapter 9
JPA Coherence Example

9.3 JPA Coherence Example

The JPA Coherence example demonstrates the usage of the EclipseLink JPA
implementation for the Coherence CachelLoader or CacheSt or e interfaces.

9.3.1 persistence.xml Configuration File

The EclipseLink properties specify the settings for database read and write operations
and logging. The managed persistable classes that represents objects in the database
are com oracl e. cep. sanpl e. Pri ceTarget and com oracl e. cep. sanpl e. Sal eEvent .

This persi stence. xni file has entries for JPA logging that are commented out and set
to f al se. You can uncomment these settings and set them to t rue to debug or
otherwise monitor the application behavior. For information on property settings, see
http://eclipse.org/eclipselink/documentation/2.4/jpal extensions/toc. htm

<?xm version="1.0" encodi ng="UTF-8" ?>
<persistence xmns:xsi="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xsi : schemaLocation="http://java. sun. com xm / ns/ persi st ence http://
j ava. sun. conmf xm / ns/ per si st ence/ persi stence_2_0. xsd"
version="2.0" xm ns="http://java. sun.com xm / ns/ persi stence">
<persi stence-unit name="derby" transaction-type="RESCURCE_LOCAL" >
<cl ass>com oracl e. cep. sanpl e. Pri ceTar get </ cl ass>
<cl ass>com oracl e. cep. sanpl e. Sal eEvent </ cl ass>
<properties>
<property name="eclipselink.jdbc.read-connections.mn" val ue="1"/>
<property name="eclipselink.jdbc.wite-connections. mn" value="1"/>
<property name="j avax. persi stence.jdbc.driver"
val ue="org. apache. derby. j dbc. EnbeddedDri ver"/>
<property name="j avax. persi stence.jdbc.url"
val ue="j dbc: derby: test1; create=true"/>
<property name="eclipselink.ddl -generation” val ue="create-tables"/>
<property name="eclipselink.ddl - generation. out put - node" val ue="dat abase"/>
<l--
<property name="eclipselink.|ogging.timestanmp" val ue="fal se"/>
<property name="eclipselink.|ogging.thread" val ue="fal se"/>
<property name="eclipselink.|ogging. session" val ue="fal se"/>
<property name="eclipselink.|ogging. exceptions" val ue="fal se"/>
<property name="eclipselink.|ogging. connection" val ue="fal se"/>
<property name="eclipselink.|ogging.level" val ue="FI NER'/>
-->
</ properties>
</ per si st ence- unit >
</ persi st ence>

9.3.2 Classes

ORACLE

The example is comprised of the following classes:

e CoherenceMaplListener.java
e PriceTarget.java

* PriceTargetLoader.java

» SaleEvent.java

» SaleEventsGenerator.java

9-6

http://eclipse.org/eclipselink/documentation/2.4/jpa/extensions/toc.htm

Chapter 9
JPA Coherence Example

In this example, an initial set of items go on sale and the requested target prices are
set up in a data store. The data store is available in the Pri ceTar get . j ava Coherence
cache because it is set up to be used with CacheLoader . A stream of Sal eEvents is
generated from the Sal eEvent sGener at or adapter. If the sale prices match the target
prices, they are stored in Sal eEvent Coherence cache. A Coherence MapLi st ener
implementation verifies that the Sal eEvent s stored in the cache are actually available in
the data store as well.

9.3.2.1 CoherenceMapListener.java

The Coher enceMapLi st ener . j ava class listens for events published to the coherence
cache.

package com oracl e. cep. sanpl e;

inmport java.util.List;

i mport javax. persistence. EntityManager;

i mport javax. persistence. EntityManager Factory;
i mport j avax. persi stence. Persi st ence;

i mport javax. persistence. Query;

i mport org.springframework. beans. f act ory. Di sposabl eBean;
i mport com tangosol . util.MpListener;

i mport com tangosol . util.MpEvent;

import com tangosol . util.Cbservabl eMap;

import com bea.w evs. ede. api.InitializingBean;
i mport com bea. w evs. ede. api . St reanfSour ce;

i mport com bea. w evs. ede. api . St reanSender ;

public class CoherenceMaplListener inplements Maplistener,
I'nitializingBean, St reanSour ce {
private static final String PERSI STENCE UNI T_NAME = "derby";
private EntityManagerFactory mentityMrFactory;
private EntityManager mentityMr;
private Observabl eMap m sal eEvent Cache;
private StreanSender m sender;

public void afterPropertiesSet()

{
m sal eEvent Cache. addMaplLi st ener (this);

public void setEvent Sender (StreanSender sender)

{

m sender = sender;

public void setSal eEvent Cache(Gbservabl eMap cache)
{

m sal eEvent Cache = cache;

public void entrylnserted(MipEvent event)

{
}

private void verifyEvent|nStore(MpEvent event){
if (!(event.getNewval ue() instanceof SaleEvent)){
System out. println("Unexpected type in Sal eEvent cache");
return;

verifyEventInStore(event);

}

if (mentityMyr==null){
setupEntityMr();

}

ORACLE o

}

Chapter 9
JPA Coherence Example

Sal eEvent sale = (Sal eEvent) event.get Newal ue();
Query q = mentityMr.createQuery("SELECT s FROM Sal eEvent s
VWHERE s.item D = :item D');
g.setParaneter("item D', sale.getltemX));
Li st <Sal eEvent > sal eEvents = . getResul tList();
if (saleEvents.size()==0)
Systemout. println("ERROR Matched Sal eEvent not found in store");
el se {
Systemout. printin("Found sale event for " +
sal eEvents.get(0).getltem D() + " for $" +
sal eEvents. get (0).get Sal ePrice());
m sender . sendl nsert Event (sal e);
}
}
private void setupEntityMr() {
m entityMyrFactory = Persistence. createEntityManager Fact ory(
PERSI STENCE_UNI T_NAME) ;
mentityMyr = mentityMrFactory. createEntityManager();

public void entryUpdat ed(MapEvent event){
verifyEventInStore(event);

public void entryDel et ed(MapEvent event){
Systemout. println("Sal eEvent cache entry del eted.
Shoul d not see this event for this sanple");

9.3.2.2 PriceTarget.java

package com oracle. cep. sanpl e;

i nport javax.persistence. Entity;
i nport javax. persistence.|d;

@ntity
public class PriceTarget inplements java.io. Serializable {

}

@d
private String iten D
private double targetPrice;

public String getltem D() {
return item D

public void setltem D(String item D) {
this.itemD = itemD;

public doubl e getTargetPrice(){
return targetPrice;

public void setTargetPrice(double targetPrice){
this.targetPrice = targetPrice;
}

9.3.2.3 PriceTargetLoader.java

package com oracle. cep. sanpl e;

inport java.util.Arraylist;

ORACLE

9-8

ORACLE

Chapter 9
JPA Coherence Example

import java.util.List;

i nport javax. persistence. EntityManager;

i mport javax. persistence. EntityManager Factory;

i nport j avax. persi stence. Persi stence;

i nport javax. persistence. Query;

i mport org.springframework. beans. fact ory. Di sposabl eBean;
i mport com bea. w evs. ede. api . InitializingBean;

public class PriceTargetLoader inplements Disposabl eBean, InitializingBean {

private static final String PERSI STENCE UNI T_NAME = "derby";
static ArraylList<PriceTarget> s_entriesToLoad = new ArrayList<PriceTarget>();
static {

set UpEntri esToLoad();

}

private EntityManagerFactory mentityMrFactory;
private EntityManager mentityMr;

public void afterPropertiesSet() {
mentityMyrFactory = Persistence. createEntityMinagerFactory(
PERSI STENCE_UNI T_NAVME) ;
mentityMyr = mentityMrFactory. createEntityManager();
m entityMr. get Transaction(). begin();
tryf
Query q = mentityMr.createQuery("SELECT t FROM PriceTarget t
VHERE t.item D = :itenm D');
for (PriceTarget target : s_entriesToLoad){
q.setParaneter("item D', target.getltem D());
Li st<PriceTarget> targetList = q.getResul tList();
if (targetlList.size()==0){
Systemout.printIn("Persisting target " + target.getltem D());
m entityMr. persist(target);
} else {
Systemout.printIn("Found target " + target.getltem D());

}
}
m entityMyr. get Transaction().comit();
}
finally {

if(mentityMyr.get Transaction().isActive())
m entityMr. get Transaction().rollback();

}

}

public void destroy() {
if(mentityMyr!=null) {
m entityMr. cl ose()
m entityMyr=nul|;
1
if(mentityMyrFactory!=null){
m entityMrFactory. close();
m entityMrFact ory=nul | ;
}
1

private static void setUpEntriesToLoad(){
/1 'smth', ipad2, $400

PriceTarget target = new PriceTarget();
target.setltem D("i pad2");
target.setTarget Price(400);
s_entriesTolLoad. add(target);

/1 '"doe', kindle, $100

9-9

target = new PriceTarget();
target.setltem D("kindle");
target.setTarget Price(100);
s_entriesTolLoad. add(target);
Il wal ker, rebel, $400
target = new PriceTarget();
target.setltem D("rebel");
target.setTarget Price(400);
s_entriesTolLoad. add(target);
[l willians, |askol320, $25
target = new PriceTarget();
target.setltem D("l asko1320");
target.setTarget Price(25);
s_entriesTolLoad. add(target);
1
}

9.3.2.4 SaleEvent.java

package com oracle. cep. sanpl e;
i nport javax.persistence. Entity;
i nport javax. persistence.|d;

@ntity

public class Sal eEvent inplenents java.io.Serializable {
@d
private String iten D
private doubl e sal ePrice;

public Sal eEvent() { }

public Sal eEvent(String item D, double salePrice){
this.itemD = item D
this.salePrice = sal ePrice;

}
public String getltem D(){
return item D

public void setltem D(String item D){
this.itemD = itemD;

}
public doubl e getSal ePrice(){
return sal ePrice;

public void setSal ePrice(double salePrice) {
this.salePrice = sal ePrice;

}
public String toString() {
}

return "Sal eEvent (" + itemdD + ":" + salePrice +")"

}

9.3.2.5 SaleEventsGenerator.java

ORACLE

package com oracle. cep. sanpl e;

inport java.util.Mp;

inmport java.util.Random

i nport com bea. w evs. ede. api . Runnabl eBean;
i mport com bea. w evs. ede. api . St r eanSender ;
i mport com bea. w evs. ede. api . St r eanfSour ce;

Chapter 9
JPA Coherence Example

9-10

ORACLE

Chapter 9
JPA Coherence Example

i mport com bea. w evs. ede. api . InitializingBean;

public class Sal eEvent sGeneraton inplenments Runnabl eBean, StreanSource,

I'nitializingBean{

private static final int SLEEP_MLLIS = 1000;
private static final String[] s_itemDs = {

"kodaksport",

"i podt ouch- 8GB",

"i pad2",

"kindl e",

"garm nl1690",

"rebel ",

"1 ogi tech1080",

"tontont,

"i pad2",

“cuisinart10s",

"keurig-b70",

"l asko1320" };
private static final double[] s_prices = {

60. 0,

200. 0,

450. 0,

99,

120,

400,

70,

100,

399,

100,

150,

20 };

private bool ean m suspended;
private Thread mthread;
private StreanSender m sender;
private Map m priceTarget Cache;

public void setPriceTarget Cache(Map cache){
m pri ceTar get Cache = cache;

public void afterPropertiesSet() {
/'l pre-load PriceTarget cache
for (PriceTarget target : PriceTargetLoader.s_entriesToLoad)
{
Systemout.printIn("Getting : " + target.getltem D());
m priceTarget Cache. get (target.getltem I)());
}

}
public void run() {
m thread = Thread. current Thread();
m suspended = fal se;
/1 send random sal e events
Random random = new Randon{ System currentTineM I lis());
while (!isSuspended())
{
int index = random nextlnt(s_iten Ds.|ength);
Sal eEvent event = new Sal eEvent (s_item Ds[index], s_prices[index]);
m sender . sendl nsert Event (event);
try {
synchroni zed (this) { wait(SLEEP_MLLIS); }
} catch (InterruptedException e) {

9-11

Chapter 9
JPA Coherence Example

if (isSuspended())
return;

}

public void setEvent Sender (StreanSender sender) {
m sender = sender;

public synchronized voi d suspend() {
m suspended = true;
if (mthread!=null)
mthread.interrupt();
}
private synchroni zed bool ean i sSuspended() {
return msuspended,;

}

ORACLE 9-12

Web Services

You can use web services platforms to integrate an Oracle Stream Analytics
application with other systems. This chapter explains how to invoke services from an
application and how to expose an application as a web service.

This chapter includes the following sections:
e Supported Platforms

* Invoke a Web Service From an Application

* Expose an Application as a Web Service.

10.1 Supported Platforms

Oracle Stream Analytics supports version 2.0 of the JAX-WS API standard using the
Glassfish reference implementation of JAX-WS 2.0

This includes:

* JAX-WS 2.0 (Java API for XML Web Services, defined in JSR 224)
* WS-I| Basic Profile 1.1

* WS-I Attachments Profile 1.0 (SOAP Messages with Attachments)
* WS-I Simple SOAP Binding Profile 1.0

e SOAP 1.1 and 1.2 (Simple Object Access Protocol)

¢ MTOM (Message Transmission Optimization Mechanism)

e WSDL 1.1 (Web Services Definition Language)

* JAXB 2.0 (Java API for XML Binding, references through a separate JAXB
module)

* SAAJ 1.3 (SOAP with Attachments API for Java).

10.2 Invoke a Web Service From an Application

This procedure describes how to create an application that invokes a web service.

In this scenario, the application is the web service client.

Invoke a Web Service from an Application:

1. Create or obtain the web service definition language (WSDL) file for the web
service.

This example uses a WSDL named EchoSer vi ce. WBDL.

2. Generate the compiled class files you need to invoke the Web Service with the
following command. Keep the entire command on one line:

ORACLE 10-1

Chapter 10
Expose an Application as a Web Service

java -cp /Oracl e/ M ddl ewar e/ ny_oep/ modul es/
com bea. core. ws. gl assfish.jaxws.tools_12.0.0.0.jar comsun.tools.ws. Wl nport
EchoSer vi ce. WSDL

Archive the generated class files the Oracle Stream Analytics application JAR file.

Add the Export - Package header and packages to the MANI FEST. M file to export the
web services Java packages for the client code:

Export - Package: com oracl e. ocep. sanpl e. echoServi ce;
Add the following packages to the MANI FEST. M file with the | npor t - Package header:

Mani f est-Version: 1.0

Export - Package: echo

Bundl e- Vendor: %r oj ect . vendor

Bundl e- O assPath: ., lib/echo.jar

Bundl e-Version: 1.0.0

Bundl e- Local i zation: bundl e

Bundl e- Mani f est Versi on: 2

Bundl e- Narre: %pr oj ect . nane

| mport - Package: com bea. w evs. configuration;version="11.1.1", com bea. w
| evs. ede; version="11. 1. 1", com bea. W evs. ede. api ; versi on="11. 1. 1", com
bea.w evs. ede. i npl ; version="11.1. 1", com bea. W evs. ede. spi ; versi on="11
.1.1", com bea. W evs. nanagenent . spi ; version="11. 1. 1", com bea. wl evs. spr
ing;version="11.1.1", com bea. w evs. spring. support;version="11.1.1", co
m bea.w evs. util;version="11.1.1", com ctc.wstx. stax; version="4.0.5",c
om sun. xm . bi nd. v2; versi on="2. 1. 14", com sun. xm . bi nd. v2. nodel . annot at
i on;version="2.1.14", com sun. xm . nessagi ng. saaj . soap; versi on="2. 1. 0"
com sun. xnl . messagi ng. saaj . soap. verl_1;version="2.1.0",javax.jws,java
x.xm , javax. xm . bi nd, j avax. xn . bi nd. annot ati on, j avax. xm . namespace, j a
vax. xnl . transform stream oracl e. jdbc;version="1.1.0.0_11-2-0-2-0", 0ora
cle.sql;version="1.1.0.0_11-2-0-2-0", org. apache. conmons. | oggi ng; vers
on="1.1.0", org. springframework. beans; version="2.5. 6", org. spri ngf ranmew
ork. beans. factory; version="2.5. 6", org. springframework. beans. factory.c
onfig; version="2.5.6", org.springfranework. core. annot ati on; versi on="2
5.6", org. springfranework. ej b. config, org. springfranmework. osgi.context;
version="1.2.0", org. springfranework. osgi . ext ensi ons. annotati on; versi o
n="1.2.0", org. springfranmework. osgi.service;version="1.2.0", org. spring
framework. util;version="2.5.6",org.xm .sax, org. xnl.sax. ext, weblogic.]j
dbc. ext ensi ons; version="1.10. 0. 0", webl ogi ¢c. xnl . st ax; versi on="1.10. 0.0

Add the following lines of code to your application to invoke the web service:

EchoServi ce service = new EchoService();
EchoPort port = service. get EchoServi cePort();
String echo = port.echo("foo0");

10.3 Expose an Application as a Web Service

In this example, the application is the web service provider.

ORACLE

To Expose an Application as a Web Service:

1.

Create or obtain the WSDL for the web service.
This example uses a WSDL named EchoSer vi ce. WSDL.
Implement the service.

Consider using the j ava. j ws annotations @ébSer vi ce and @ébMet hod.

10-2

ORACLE

3.

4.

Chapter 10
Expose an Application as a Web Service

Add a bea-j axws. xni file to your application bundle. Table 10-1 describes the
attributes in this file.

<endpoi nt s>
<endpoi nt >
<nanme>EchoSer vi ce</ nane>
<i npl enent ati on-cl ass>
com bea. W evs. test. echo.inpl.EchoServicel np
</inpl ement ati on-cl ass>
<url-pattern>/ echo</url-pattern>
<wsdl - ocati on>
| META- 1 NF/ wsdl / echo. wsd
</wsdl -1 ocati on>
<servi ce- nane>
{http://wsdl.oracle.cont exanpl es/ cep/ echo} EchoSer vi ce
</ servi ce- nane>
<port - nane>
{http://wsdl.oracl e. conf exanpl es/ cep/ echo} EchoSer vi cePort
</ port - nane>
</ endpoi nt >
</ endpoi nt s>

Table 10-1 bea-jaxws.xml File Attributes
]

Attribute Description

nane The name of the web service.

i npl ement ati on-cl ass The class that implements the service.
url-pattern The url pattern to access the web service.
wsdl -1 ocation Relative path to the wsdl in the bundle.
servi ce-nane QName of the service.

port - name QName of the port.

Reference the bea-j axws. xni file in the MANI FEST. M file with the BEA- JAXWE-
Descri ptor header:

BEA- JAXWS- Descri ptor: META-I NF/ bea-j axws. xnl ;

Add the | nport - Package header and packages to the MANI FEST. M file to import the
following packages to the application:

I nport - Package: com ctc. wst x. st ax,
com bea. core. ws. gl assfi sh. j axws,
com sun. xn . bi nd. v2,
com sun. xm . nessagi ng. saaj . soap,
com sun. xni . ws,
javax. jws,
javax. xni . bi nd,
javax. xni . bi nd. annot ati on,

j avax. xnl . nanespace,

javax. xnl . soap,

javax. xnl . transform

javax. xnl . transform stream
javax. xnl . ws,

javax. xnl . ws. spi,

org. xnl . sax,

webl ogi c. xni . st ax

10-3

ORACLE

Chapter 10
Expose an Application as a Web Service

Add a gl assfi sh-ws element to the Oracle Stream Analytics server DOVAIN_DI R/
config/config. xm file that describes your Oracle Stream Analytics domain, where
DOVAI N_DI R refers to your domain directory:

<gl assfish-ws>

<nanme>JAXWE</ name>

<ht t p- servi ce- name>Jet t yServer </ htt p- servi ce- nane>
</ gl assfi sh-ws>

10-4

Parameterized Applications

Parameterized Applications contain special parameters (variables) that must be
configured before the application starts. Generally, you configure a parameterized
application when you deploy the application with the Oracle Stream Analytics EPN
shell. After a parameterized applications is configured, it functions as a regular
application.

This chapter includes the following sections:

* Application Parameters

e Object Class Definitions

e Attribute Descriptions

e Targeting

* Example metatype File

* Where You Can Use Parameterized Applications

* Deploy the HelloWorld Application.

11.1 Application Parameters

Application parameters define property values that can be set when the user launches
an application. You can parameterize properties for adapters, channels, event beans,
Spring beans, and Oracle CQL parameterized queries with and without views.

You define application parameters (attributes) by grouping attribute definitions (ADs)
into object class definitions (OCDs). You create one OCD for each application
component that you want to parameterize. An OCD contains one or more ADs to
specify the component properties to parameterize and the prompt text.

Place the OCDs in an XML document (metatype file) in the OSG - | NF/ et at ype directory
within the Oracle Stream Analytics application. The metatype file uses and complies
with the schema defined by the specification at: ht t p: / / ww. osgi . or g/ xm ns/ net at ype/
v1. 1.0/ net at ype. xsd.

See Example metatype File for an example configuration.

Oracle Stream Analytics parameterized applications conform to the OSGi MetaType
specification at htt p: // ww. osgi . or g. See the Apache implementation at http://
felix.apache. org/ docunment ati on/ subproj ect s/ apache-f el i x- net at ype-servi ce. htm .

11.2 Object Class Definitions

Every OCD requires the nane, id, and descri pti on parameters. The following example
is an OCD with no ADs.

ORACLE 11-1

http://www.osgi.org/xmlns/metatype/v1.1.0/metatype.xsd
http://www.osgi.org/xmlns/metatype/v1.1.0/metatype.xsd
http://www.osgi.org
http://felix.apache.org/documentation/subprojects/apache-felix-metatype-service.html
http://felix.apache.org/documentation/subprojects/apache-felix-metatype-service.html

Chapter 11
Attribute Descriptions

This OCD defines application metadata, but because there are no ADs, the description
displays, but the user is not prompted for input. This type of OCD documents the
application.

<OCD name="Hel | oWorl d Sanpl e" id="com oracl e. cep. sanpl e. hel | owor| d"
description="The helloworld OEP application is a sanple application
for Oracle Event Processing.">

</ OCD>

11.3 Attribute Descriptions

Every AD requires the nane, id, and descri pti on parameters. The following example is
an OCD with two ADs.

The OCD provides a common definition for the channel component and provides
parameterized attributes (ADs) for the maximum number of threads and the maximum
buffer size of the channel.

When the user runs the application, the application displays the description and the
other information that you provided, and waits for the user to enter the requested
information and press the Return key.

<CCD name="Channel Configuration" id="com oracle.cep.channel"
description="The channel definition in the OCEP Application”
ocep: bi ndi ng="j mx: Event Channel ">
<AD nanme="Max Threads" id=".maxThreads" type="Integer" required="true"
defaul t="0" mn="0" max="100"
description="Nunber of threads generating messages."
ocep: bi ndi ng="MaxThr eads" />
<AD nanme="Max Size" id=".maxSize" type="Integer" required="true"
defaul t="0" mn="0" max="100"
description="The maxi mum size of the FIFO buffer for this channel."
ocep: bi ndi ng="MaxSi ze" />
</ oCD>

¢ Note:

To avoid errors, always define Max Threads before Max Size in the metatype
file.

For the 12c release, the only supported binding is Java Management Extension (JMX).
This means that the AD attributes must be bound to a corresponding JMX attribute.
See Targeting.

11.4 Targeting

ORACLE

You can connect an OCD and an application component with the Desi gnat e element.
The application class definition can then be a target for multiple designates
(components of the same type) to enable the reuse of definitions.

To prevent ambiguities, each designate can be associated with one object class
definition only.

Oracle Stream Analytics supports the following designates:

11-2

Chapter 11
Example metatype File

* Adapter, Oracle CQL Processor, event bean, or Spring bean.

» Oracle CQL processor rules such as a query or a view. In the case of a rule, the
designate ID must identify the parent component followed by the subcomponent.
For example, hel | owor | dProcessor: gl.

Oracle Stream Analytics assigns a parameter to an application component after the
call to the afterPropertiesSet life cycle method, but prior to the call to

afterConfi gurationActive life cycle method. This timing enables an application to treat
an application parameter as a proper application configuration and to distinguish an
application parameter from a bean property.

An ocep: bi ndi ng attribute determines how Oracle Stream Analytics assigns the
parameter to the application. Put the ocep:binding attribute in the OCD or in the AD.
When you put it in the OCD, the meta-object is bound to an implementation object
such as JMX bj ect I nst ance. When you put the OCD in an AD, the meta-attribute is
bound to an implementation attribute scoped to the implementation object, such as
JMX MBean attribute.

11.5 Example metatype File

ORACLE

The entire metatype file is shown in this section.

<Met aData xm ns="http://ww. osgi . or g/ xm ns/ net at ype/ v1. 1. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocat i on=
"http://ww. osgi.org/xm ns/ netatype/vl.1.0;
http://ww:. osgi.org/ xm ns/ et atype/ v1. 1. 0/ net at ype. xsd">

<OCD name="Hel | oWor|d Sanple" id="com oracle. cep. sanpl e. hel | owor| d"
description="The helloworld CEP application is a sanple application
for Oracle Event Processing.">

</ 0CD>

<OCD nanme="Hel | oWor|d Channel " id="com oracl e. cep. sanpl e. hel | owor| d. channel " >
<AD nane="Max Threads" id="Event Channel.MaxThreads" type="Integer"
requi red="true" default="0" nmin="0" nmax="100"
description="Nunber of threads generating helloworld nessages." />

<AD nanme="Max Size" i d=". maxSi ze" type="Integer" required="true"
defaul t="0" min="0" max="100" description="The maxi num size of the FIFO
buffer for this channel." ocep: bi ndi ng="MaxSi ze" />
</ OCD>>

<OCD nanme="Hel | oWor|d Message Filtering"
i d="com oracl e. cep. sanpl e. hel | oworl d.filter" >
<AD name="Filter" id="CQLProcessor.paraneters" type="String"
description="Message filter." />
</ OCD>

<Desi gnate pi d="helloworld" >
<(bj ect ocdref="com oracle. cep. sanpl e. hel | owor | d" />
</ Desi gnat e>

<Desi gnat e pi d="hel | owor| dl nput Channel " >
<(bj ect ocdref="com oracle. cep. sanpl e. hel | owor | d. channel " />
</ Desi gnat e>

<Desi gnat e pi d="hel | owor | dProcessor. hel | owor| dRul e" >
<(bj ect ocdref="comoracle.cep.sanple.helloworld.filter" />

11-3

Chapter 11
Where You Can Use Parameterized Applications

</ Desi gnat e>
</ Met aDat a>

11.6 Where You Can Use Parameterized Applications

You can use parameterized applications in the following three ways.

e Document an Application
e Channel Configuration

e Oracle CQL Processor Query

11.6.1 Document an Application

The following example documents the com or acl e. cep. par anet eri zedapp application.
The pi d attribute of the desi gnat e element corresponds to the Bundle-SymbolicName
in the MANI FEST. M.

<OCD name="Paraneteri zed App Testing" id="com oracle. cep. paraneterizedapp"
description="The application is for paraneterized app testing.">
</ OCD>

<Desi gnat e pi d="paranet eri zedapp" >
<bj ect ocdref="com oracl e. cep. paranet eri zedapp" />
</ Desi gnat e>

11.6.2 Channel Configuration

ORACLE

The following example shows how to use an OCD with ADs to configure a channel.
The pi d attribute of the desi gnat e element corresponds to the channel component in
the EPN file.

<QCD name="Channel Configuration" id="com oracle.cep.channel"
description="The channel definition in the OCEP Application”
ocep: bi ndi ng="j mx: Event Channel ">
<AD nanme="Max Threads" id=".maxThreads" type="Integer" required="true"
default="0" mn="0" max="100"
description="Nunber of threads generating messages."
ocep: bi ndi ng="MaxThr eads" />
<AD nanme="Max Size" id=".maxSize" type="Integer" required="true"
default="0" mn="0" max="100"
description="The maxi mum size of the FIFO buffer for this channel."
ocep: bi ndi ng="MaxSi ze" />
<AD nanme="HEARTBEAT" id=".heartbeat" type="Long" required="fal se"
def aul t ="5000000000" m n="0" max="100000000000"
description="The value for the heartheat timeout on this channel
The default time unit is nanoseconds.”
ocep: bi ndi ng="Hear t beat Ti meout" />
</ OCD>

<Desi gnat e pi d="hel | owor | dl nput Channel ">
<bj ect ocdref="com oracl e. cep. channel " />
</ Desi gnat e>

<Desi gnat e pi d="hel | owor | dCut put Channel ">

<bj ect ocdref="com oracl e. cep. channel " />
</ Desi gnat e>

11-4

Chapter 11
Deploy the HelloWorld Application

11.6.3 Oracle CQL Processor Query

The following example shows how to configure an Oracle CQL processor query. The
ADs definition correspond to query parameters 1 and 2 in the sequence.

<OCD name="Product Filter" id="com oracle.cep.solution.product.filter"
ocep: bi ndi ng="j mx: CQLProcessor" ocep: nul ti-val ued="true">
<AD nane="range" id=".range" type="Integer" required="true" min="0"
max="1000000000" defaul t="10"
description="The range scope"
ocep: bi ndi ng="Par aneters" />
<AD nane="field" id=".field" type="String" required="true"
defaul t=""remainingQy""
description="sel ect one field you want to do range controlling"
ocep: bi ndi ng=""Par anet ers" >
<Option | abel ="remainingQy" val ue="remaini ngQty" />
<Option |abel ="total Qy" value="total Qy" />
<Option |abel ="price" value="price" />
</ AD>
</ OCD>

<Desi gnat e pi d="product Processor. product Rul e">
<(hj ect ocdref="com oracl e. cep.solution.product.filter" />
</ Desi gnat e>

Add a processor element to the config. xnl file that defines the product Processor, as
follows. Note that the ADs definitions correspond to query parameters :1 and :2 in the
sequence.

<processor >
<nane>pr oduct Processor </ nane>
<rul es>
<query id="productRul e">
<! [CDATA[
| Stream (sel ect FROM product | nput Channel [RANGE : 1 on :2)]]
>
</ query>
</rul es>
</ processor >

11.7 Deploy the HelloWorld Application

The following example uses the EPN shell with Apache Felix Gogo to deploy the
parameterized HellowWorld application. The EPN shell interfaces with OSGi Bundle
Repository (OBR) and uses introspection to locate the available metadata and to form
the applicable prompts to the user.

The following example shows the HelloWorld application output when it is deployed
with the EPN shell.

ORACLE 11-5

ORACLE

Chapter 11
Deploy the HelloWorld Application

Note:

Parametrized applications are not supported on a clustered domain. Also you
can deploy only through the EPN shell. For this release, parameterized
application deployment is not supported in Oracle JDeveloper or in Oracle
Stream Analytics Visualizer.

.Istartw eves. sh -shell
Oracl e CEP Shell (using Apache Felix Gogo)
shel | >
shel | > depl oyapp file:///Users/ nyuserid/ helloworld.jar
- HelloWrld Sanple ----
The hel loworld OEP application is a sanmple application for Oacle CEP.
Enter Y/N [default is Y] if you would Iike to set the paranmeter "Mix Threads" :
-- Application paraneter "Mix Threads"
--Description : Nunmber of threads generating helloworld nessages.
Type: Integer
Default value: 2
Enter value for "Max Threads" or enpty for default value :
Using default value of "2".
-- Application paraneter "Filter"
--Description : Message filter.
Type: String
Options for parameter "Filter" are :
(0) Select all nessages starting with 'Hello'
(1) Select all messages starting with 'H'Select option by entering nunber
[0,1] or enpty for default value :
<Jan 23, 2012 7:20:40 AM EST> <Noti ce> <Depl oyment > <BEA- 2045000>
<The application bundl e "helloworld" was depl oyed successful ly>
<Jan 23, 2012 7:20:41 AM EST> <Noti ce> <Spring> <BEA-2047000>
<The application context for "helloworld" was started successfully>
Message: HelloWrld - the current time is:7:20:41 AM
Message: HelloWrld - the current tinme is:7:20:42 AM

11-6

Internationalization

You can use message catalogs to internationalize message text that your application
sends to the server log or displays to the user. The messages can provide information
about anything occurring in the application, such as which user invoked specific
application components, error conditions, or help you debug an application before its
release.

This chapter includes the following sections:

* Message Catalogs

e Generate Localization Classes

12.1 Message Catalogs

ORACLE

A message catalog is a single XML file that contains a collection of messages, with
each message indexed by a unique ID. All internationalized text is externalized and
defined in message catalogs and each message catalog defines a collection of log
messages or simple text.

With message catalogs, message strings can be converted to multiple locales without
changing or recompiling the application code.

Message IDs are unique across all log message or locale message catalogs. Within
the message catalog file, each localized version of the message is assigned a unique
message ID and message text specific to the error. Ideally, a message is logged from
only one location within the system so that a support team can easily find it. Message
IDs in simple text catalogs are unique within each simple text catalog.

There are the following three types of message catalogs:

* Log message catalogs: Informational or error messages that your application logs
to the server logs.

* Simple text message catalogs: Simple messages that your application displays to
the user.

* Locale message catalogs: A collection of locale-specific messages that
correspond to a top-level log message catalog or a simple text catalog that
contains the English version of the messages. There are corresponding locale-
specific catalogs with one catalog for each additional supported locale.

The top-level English version catalog has all of the information needed to define
the message. The locale-specific catalogs contain only the message ID, the date
changed, and the translation of the message for the specific locale.

You create your own catalog of log or simple text messages and use Oracle WebLogic
utilities to generate Java classes that have logging methods. You import the Java
classes into your application code, and implement your application code to supply
runtime values to the logging methods. The log messages generated by the logging
methods are integrated with and treated in the same way as log messages that are
generated by the Oracle Stream Analytics server.

12-1

Chapter 12
Message Catalogs

The message catalog files are defined by one of the following XML document type
definition (DTD) files:

e nsgcat. dtd: Describes the syntax of top-level, default catalogs.
e 110n_nsgcat . dt d: Describes the syntax of locale-specific catalogs.

The DTDs are stored in / Oracl e/ M ddl ewar e/ W evser ver/ modul es/
com bea. core. i 18n. gener at or _VERSI ON. j ar . VERSI ON points to a particular version that
changes.

You can create a single log message catalog for all logging requirements, or create
smaller catalogs based on a subsystem or on Java packages. Oracle recommends
using multiple subsystem catalogs so you can focus on specific portions of the log
during viewing. For simple text catalogs, Oracle recommends that you create a single
catalog for each utility to be internationalized

12.1.1 Hierarchy

All messages must be defined in the default, top-level catalog. Catalogs that provide
different localizations of the base catalogs are defined in nsgcat subdirectories named
for the locale, for example, nsgcat / de for Germany. You might have a top-level catalog
named nycat . xnl , and a German translation called . . de/ nycat . xni . Typically the top-
level catalog is English. However, English is not required for any catalogs.

Locale designations, for example, de, also have a hierarchy as defined in the
java.util.Local e documentation. A locale can include a language, country, and
variant. Language is the most common locale designation. Language can be extended
with a country code. For example, en\ US, indicates American English. The name of the
associated catalog is . . en\ US\ nycat . xnl . Variants are specific to a vendor or browser
and are used to introduce minor differences, such as collation sequences, between
two or more locales defined by either language or country.

12.1.2 Naming

ORACLE

Because the name of a message catalog file, without the . xm extension, is used to
generate runtime class and property names, choose the name carefully. Follow these
guidelines for naming message catalogs:

* Do not choose a message catalog name that conflicts with the names of existing
classes in the target package for which you are creating the message catalog.

* Choose message catalogs names that contain only characters that are allowed in
class names.

* Follow class naming standards.

For example, the resulting class names for a catalog named Xyz. xm are
XyzLogLocal i zer and XyzLogger .

The following considerations also apply to message catalog files:

* Log message IDs are generally six-character strings with leading zeros. Some
interfaces also support integer representations.

e Simple text catalogs message IDS can consist of any string value.

e Java lets you group classes into a collection called a package. Oracle
recommends that a package name be consistent with the name of the subsystem

12-2

Chapter 12
Message Catalogs

in which a particular catalog resides. Consistent naming makes OSGi imports
easier to define.

* The log Localizer classes are actually Resour ceBundl e property files.

12.1.3 Message Arguments

ORACLE

The message body, message detail, cause, and action sections of a log message can
include message arguments, as described by j ava. t ext . MessageFor mat . Make sure
your message content conforms to the patterns defined by j ava. t ext . MessageFor mat .

Arguments are values that can be dynamically set at runtime. These values are
passed to routines, such as a routine for printing a message. A message can support
up to 10 arguments, numbered 0-9. You can include any subset of these arguments in
any text section of the message definition (message body, message detail, probable
cause), although the message body must include all of the arguments.

* Only the message body section in a simple text message can include arguments.

* You must assign a severity level for log messages. Log messages are generated
through the generated Logger methods, as defined by the method attribute.

You insert message arguments into a message definition during development, and
these arguments are replaced by the appropriate message content at runtime when
the message is logged.

¢ Arguments are type String or representable as a Stri ng type.
* Numeric data is represented as {n, nunber}.
e Dates are supported as {n, dat e} .

The following excerpt from an XML log message definition shows how to use message
arguments. The argument number must correspond to one of the arguments specified
in the method attribute. Specifically, {0} with the first argument, {1} with the second,
and so on. In the following example, {0} represents the file that cannot be opened,
while {1} represents the file that is opened in its place.

<nessagebody>Unabl e to open file, {0}. Opening {1}. Al arguments nust be in body. </ messagebody>
<nessagedetail > File, {0} does not exist. The server will restore the file
contents from {1}, resulting in the use of default values for all future
requests. </ nmessagedetail >

<cause>The file was del et ed</cause>

<action>lf this error repeats then investigate unauthorized access to the
file system</action>

An example of a method attribute is as follows:
-net hod="1 ogNoFi | e(String name, String path)"
The message example expects two arguments, {0} and {1}:

e Both are used in the <nessagebody>
» Both are used in the <messagedet ai | >

e Neither is used in <cause> or <act i on>

12-3

Chapter 12
Message Catalogs

12.1.4 Formats

The catalog format for top-level and locale-specific catalog files differs. Top-level
catalogs define the textual messages for the base locale. Locale-specific catalogs only
provide translations of text defined in the top-level version. Also, log message catalogs
are defined differently from simple text catalogs.

Log Message Catalog

This example shows the MUt i | Log. xni message catalog that has one log message to
show how to use the nmessagebody, nessagedet ai | , cause, and act i on elements.

<?xnl version="1.0"?>
<I DOCTYPE nessage_cat al og PUBLI C "webl ogi c- nessage- cat al og- dt d"
"http://ww. bea. cont servers/w s90/ dt d/ msgcat . dtd">
<nessage_cat al og
| 10n_package="prograns. utils"
i 18n_package="prograns. utils"
subsyst en=" MYUTI L"
version="1.0"
basei d="600000"
endi d="600100"
<l 0g_nessage
messagei d="600001"
severity="warni ng"
met hod="1 ogNoAut hori zati on(String arg0, java.util.Date argl,int arg2)"
<nessagebody>
Coul d not open file, {0} on {1,date} after {2, nunber} attenpts
</ messagebody>
<nessagedet ai | >
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
infile, {0}, created on {1,date}, but is not readable
</ messagedet ai | >
<cause>
The user is not authorized to use custom configurations. Custom
configuration information resides in file, {0}, created on
{1,date}, but is not readable.The attenpt has been |ogged to
</ cause>
the security |og.
<action>
The user needs to gain approriate authorization or learn to
live with the default settings
</ action>
</l 0g_message>
</ message_cat al 0og>

Simple Text Catalog

This example shows the WUt i | Label s. xnl text catalog with one text definition.

<?xnl version="1.0"?>
<I DOCTYPE nessage_cat al og PUBLI C "webl ogi c- nessage- cat al og- dt d"
"http://ww. bea. conl servers/w s90/ dt d/ msgcat . dtd" >
<nessage_cat al og>
| 10n_package="prograns. utils"
i 18n_package="progranms. utils"
subsyst en=" MYUTI L"
version="1.0"
<message>
messagei d="Fi | eMenuTi t! e"
<nessagebody>
File
</ messagebody>

ORACLE 12-4

Chapter 12
Message Catalogs

</ message>
</ message_cat al 0og>

Locale-Specific Catalog

This example shows a French translation of a message that is in the . .\ nsgcat\fr
\ MUt il Label s. xm file.

<?xnl version="1.0"?>
<! DOCTYPE nessage_catal og PUBLIC
"webl ogi c- | ocal e- nessage- cat al og- dt d"
"http://www bea. conf servers/w s90/ dtd/ 1 10n_nsgcat . dt d" >
<l ocal e_nessage_cat al og
| 10n_package="prograns. utils"
subsyst en=" MYUTI L"
version="1.0">
<message>
<nessagei d="Fil eMenuTitle">
<nessagebody> Fi chi er </nmessagebody>
</ nessage>
</l ocal e_nessage_cat al 0og>

When you enter text in the nessagebody, nessagedet ai | , cause, and acti on elements, use
a tool that generates valid Unicode Transformation Format-8 (UTF-8) characters, and
have appropriate keyboard mappings installed. UTF-8 is an efficient encoding of
Unicode character-strings that optimizes the encoding ASCII characters. Message
catalogs always use UTF-8 encoding.

12.1.5 Message Catalog Localization

ORACLE

Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes,
for example, j a for Japanese and fr for French. You can find supported language
codes in the java. util . Local e Javadoc.

You can achieve variations to language codes with uppercase, two-letter ISO 3166
country codes and variants, each of which are subordinate to the language code. The
generic syntax is | ang\ count ry\vari ant .

For example, zh is the language code for Chinese. CNis a country code for simplified
Chinese, whereas Twis the country code for traditional Chinese. Therefore zh\ CN and
zh\ Tware two distinct locales for Chinese.

Variants are helpful when there is a functional difference in platform vendor handling of
specific locales. Examples of vendor variants are W N, MAC, and PCs| X. There may be
two variants used to further qualify the locale. In this case, the variants are separated
with an underscore (for example, Traditi onal _Mac as opposed to Mbder n_MAC).

" Note:

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\ TW W N, identifying traditional Chinese on a
Win32 platform. Message catalogs to support the above locale involve the following
files:

* *.xnl - default catalogs

12-5

Chapter 12
Generate Localization Classes

e \zh*.xnl - Chinese localizations
e \zh\TW*.xnl - Traditional Chinese localizations
e \zhATWWN*.xnl - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent
localizations.

12.2 Generate Localization Classes

After you create your message catalog XML files, use the webl ogi c. i 18ngen utility to
create the Logger and Text For matt er classes that localize the text in log messages. The
weblogic.il8ngen utility creates or updates the i 18n_user . properti es properties file that
loads the message ID lookup hashtable webl ogi c. i 18n. L10nLookup.

Any errors, warnings, or informational messages are sent to stderr.

For user catalogs to be recognized, the i 18n_user . properti es file must reside in a
directory identified in the Oracle Stream Analytics server class path. Oracle
recommends that the i 18n_user. properti es file reside in the Oracle Stream Analytics
server class path. If the i 18n_user. properties file is in target directory, then
targetdirectory should be in the Oracle Stream Analytics server class path.

Parse a Message Catalog to Generate the Logger and TextFormatter Classes

The following steps summarize how to create an internationalized message to use with
the Oracle Stream Analytics server.

1. Create or edit a top-level log message catalog or simple text message catalog by
defining the messages in the catalog.

In addition to message text, include information about the type and placement of
runtime values that the message contains.

2. Run webl ogi c. i 18ngen to validate the catalog you created or edited in Step 1 to
generate the Logger and Text Formatter classes.

java webl ogic.i18ngen [options] [filelist]

The generated classes contain a method for each message. The class is defined
according to information specified in the message catalog entry. The classes
include methods for logging or getting message text, depending on the type of
catalog. The class name ends with Logger or TextFormatter. For details, see
weblogic.il8ngen Utility.

Table 12-1 weblogic.il8ngen Utility Options

___|
Option Description

-buil d Generates all necessary files and compiles them. Combines the -
i 18n, -1 10n, - keepgener at ed, and - conpi | e options.

ORACLE 12-6

ORACLE

Chapter 12
Generate Localization Classes

Table 12-1 (Cont.) weblogic.il8ngen Utility Options

___|
Option Description

-d Specifies the root directory for the generated Java source files. User

targetdirectory catalog properties are placed ini 18n_user. properti es, relative to the
targetdirectory. Files are placed in appropriate directories based on
the i 18n_package and | 10n_package values in the corresponding
message catalog. The default target directory is the current directory
and is created as necessary.

If this argument is omitted, all classes are generated in the current
directory, without regard to any class hierarchy described in the
message catalog.

-n Parse and validate, but do not generate classes.

-keepgener at ed Keep generated Java source (located in the same directory as the
class files).

-ignore Ignore errors.

-i18n Generates internationalizers (for example, Logger s and
Text For mat t er s).

-110n Generates localizers (for example, LogLocalizers and TextLocalizers).

-conpile Compiles generated Java files using the current CLASSPATH. The

resulting classes are placed in the directory identified by the -d option.
The resulting classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or
properties file being created. i18ngen exits with a bad exit status.

-nobui | d Parse and validate only.
- debug Debugging mode.
-dates Causes webl ogi c. i 18ngen to update message time stamps in the

catalog. If the catalog is writable and time stamps have been updated,
the catalog is rewritten.

filelist Process the files and directories in this list of files. If directories are
listed, the command processes all XML files in the listed directories.
The names of all files must include an XML suffix. All files must
conform to the msgcat.dtd syntax. weblogic.il8ngen prints the fully-
qualified list of names (Java source) to the stdout log for those files
actually generated.

Create locale-specific catalogs as needed for the message catalog you created in
Step 1.

Run webl ogi c. | 10ngen to process the locale-specific catalogs you created in Step
3.

Code your application to use the Logger or Text Formatter classes you generated in
Step 2.

Use the OSGi import statements in the application MANI FEST. M file to import the
following packages into your Oracle Stream Analytics application:

webl ogi ¢. i 18n. | oggi ng webl ogi c. | oggi ng

When your application calls one of the Logger or Text For matt er methods to log or
return a message, the method writes the localized version of the message text to
the target location. A Logger method writes the localized version of the message to
the localized log files, and a Text For mat t er method writes the localized version of
the message to the display.

12-7

Chapter 12
Generate Localization Classes

6. Make sure that the i 18n_user. properti es file is in the Oracle Stream Analytics
server class path.

The webl ogi c. i 18ngen utility generates the i 18n_user. properti es file that loads the
message ID lookup hashtable webl ogi c. i 18n. L10nLookup.

ORACLE 12-8

Assemble and Deploy

To deploy and run an Oracle Stream Analytics application, you assemble the
application files into an OSGi bundle and deploy the OSGi bundle to a domain on an
Oracle Stream Analytics server. A deployed application processes client requests in
the domain to which it is deployed.

You can assemble and deploy an application in Oracle JDeveloper, with Oracle
Stream Analytics Visualizer, and manually. This chapter explains how to assemble and
deploy an application wrapped in an OSGi bundle manually

This chapter includes the following sections:

* OSGi bundles

e Application Dependencies

e Application Libraries

* Deployment Order

» Configuration History

* Assemble an OSGi Bundle with appC

* Assemble an OSGi Bundle with bundle.sh
* Deploy an OSGi Bundle.

13.1 OSGi bundles

ORACLE

An OSGi bundle contains one or more JAR files that contain the Java classes,
packages, and libraries that define an Oracle Stream Analytics application and its
services and resources (dependencies).

You can make the application services and resources available to other bundles. You
can also create an OSGi bundle that contains only services and resources that are
used by other bundled applications. For example, an OSGi bundle can contain a JDBC
driver that is accessed by other applications that execute in the same domain.

An OSGi bundle that contains an application and its resources is an application
bundle, and an OSGi bundle that contains only resources is an application library
bundle.

An OSGi application bundle contains the following files:

» The compiled Java class files that implement the application components, such as
event types and event beans.

» One or more Oracle Stream Analytics configuration files that contain the
component configurations.

Place the configuration files in the META- | NF/ wl evs directory of the OSGi bundle
JAR file to deploy. For example, / Oracl e/ M ddl ewar e/ ny_oep/ user _pr oj ect s/
domai ns/ <domai n>/ <server >/ appl i cati ons/ <OSG _Bundl e_Synbol i c_Nane>.

13-1

Chapter 13
Application Dependencies

If you have an application already in the domain directory, then extract the
configuration files in the same directory as the application files.

An assembly file that describes all of the application components and how they
connect to each other.

Place the assembly file in the OSGi bundle JAR file META- | NF/ spri ng directory.

A MANI FEST. M file that describes the contents of the JAR file. This file enables you
to make the application resources available to other bundles.

The following directory structure shows the structure of an OSGi application bundle:

Figure 13-1 OSGi Application Bundle Structure

Tree > ¥ | Name ¥ Size Type
= [Helloworld ~ b [classes 3 items folder
< [classes b deploy 1item folder
= B com » B lib 1 item folder
v B bea b META-INF 3 items folder
v S wlevs 3 src 1item folder
b adapter
b event = Helloworld.jpr 11.9 KB)Builder project
b B example
b META-INF
» 3 .data
b 3 deploy
3 lib
~ [B9 META-INF
> [spring
- 5 wlevs
b B edn
< 4 mappers
b [jaxb
< B9 src
~ B9 com
~ [bea
~ B9 wlevs

b B3 adapter
b B3 event
b B3 example -

13.2 Application Dependencies

Applications depend on imported packages and libraries, which can be shared with
other applications executing in the same domain.

ORACLE

You specify OSGi bundle dependencies in the MANI FEST- MF as follows:

Use the I nport - Package attribute to list imported packages and libraries.

Use the Export - Package attribute to list packages that other OSGi bundles need to
access. These packages are not bundled in and deployed with the application
OSGi bundle, but are deployed to the Oracle Stream Analytics server application
library directory.

13-2

Chapter 13
Application Libraries

13.3 Application Libraries

Application libraries make services and resources available to other applications
executing in the same domain. You can use application libraries to add functionality
such as drivers or foreign stages to your application.

A foreign stage is a stage that is in another Oracle Stream Analytics application.

You can add an application library to a project as an embedded JAR file, but using an
OSGI application library has the following advantages:

» Simplified application assembly and maintenance activities, such as deploying an
updated version of the library.

* Artifact reuse.
* Reduced server disk space consumption.

You deploy application libraries to the Oracle Stream Analytics server into the library
and library extensions directories.

13.3.1 Library Directory

By default, the Oracle Stream Analytics server library directory is DOVAIN_DI R/
server nane/ nodul es, for example:

[Oracl e/ M ddl ewar e/ my_oep/ user _proj ect s/ domai ns/ nydonai n/ nyser ver/ nodul es

Oracle Stream Analytics loads the libraries in the library directory after the components
in the library extensions directory, but before the Oracle Stream Analytics applications.
If your library is a driver, such as a JDBC driver, put the library in the library extensions
directory so it activates in the correct order.

13.3.2 Library Extensions Directory

By default, the Oracle Stream Analytics server library extensions directory is
DOVAI N_DI R/ ser ver nane/ modul es/ ext . For example:

/ Oracl e/ M ddI ewar e/ ny_oep/ user _proj ect s/ domai ns/ mydonmai n/ nyser ver/ modul es/ ext

Oracle Stream Analytics loads the libraries in the library extensions directory first at
the same time as the Oracle Stream Analytics server core modules. Put drivers in the
library extensions library to activate them first to override an older driver or to provide
access to an alternative driver. If your library is not a driver, put it in the library
directory.

13.4 Deployment Order

The Oracle Stream Analytics server loads components in the following order at Oracle
Stream Analytics server start up time.

1. Load libraries in the library extensions directory.
2. Load libraries in the library directory.

3. Load Oracle Stream Analytics applications.

ORACLE 13-3

Chapter 13
Configuration History

The Oracle Stream Analytics server loads libraries from both the library extensions
directory and the library directory based on the lexical order of the library names.
Lexical ordering includes the relative directory name plus JAR file name. For example:

e nodul es/a.jar starts before modul es/b. jar.

* nodul es/ 0/ ny. jar starts before nodul e/ ny. j ar because 0/ ny. jar comes before
ny.jar in lexical order.

This convention enables you to control the order in which the Oracle Stream Analytics
server deploys JAR files by organizing JAR files into appropriately named
subdirectories of either the library extensions directory or library directory.

As soon as the application deploys, the Oracle Stream Analytics server creates an
application configuration history, and the configured adapters start to listen for events.

13.5 Configuration History

Configuration changes that you make to Oracle CQL rules or to the Oracle Stream
Analytics high availability adapter configuration are recorded in the history.

You can view and roll-back (undo) these changes with the Oracle Stream Analytics
Visualizer or w evs. Adni n command-line tool.

You can export the change history to a file and use that file to update your application
source with changes made at runtime.

13.6 Assemble an OSGi Bundle with appC

The appC utility is a command-line tool that enables you to build, validate, and compile
an application.

You can create or modify the various files that comprise an Oracle Stream Analytics
project. The appC tool validates against the following schema versions: spri ng-w evs-
v12_1 3 0.xsd and spri ng- beans. xsd and spri ng- osgi . xsd. You must have the JDK
installed for this command to work because it depends on the Java compiler.

¢ Note:

The appC tool does not support multiple component configuration files and
multiple assembly files. In this case, use the bundl e. sh script or Oracle
JDeveloper.

The appC tool validates the configuration and assembly files and the created OSGi
bundle to ensure Oracle CQL validation and that the OSGi bundle deploys
successfully.

Note:

Currently, appC performs only schema validations with no extensive
semantic validations. Custom adapter providers are not validated.

ORACLE 13-4

Chapter 13
Assemble an OSGi Bundle with appC

The appC. j ar file is located in / Oracl e/ M ddl ewar e/ ny_oep/ bi n.

Syntax

java -jar appC.jar -cnd [cnd option] -basedir <path to workspace> [argunents]
cmd options

Choose one of the following command options to execute with the - cnd argument.

bui | dAl | : Creates the template, generates the manifest, and validates the component
configuration file and the assembly file.

creat eTenpl at e: Creates the workspace file structure with either input XML files or
template XML files.

gener at eMani f est: Compiles the input source files and generates the OSGi manifest
file based on resulting class files.

val i dat e: Validates the component configuration and assembly files against their
schemas.

arguments

-cnd: Execute one of the command options. Specify the root directory with - basedi r to
indicate the root of the project workspace.

- hel p: Prints help information for the command options and arguments to the
command line.

-basedi r: The root of the project workspace that you set up previous to using the appC
utility.

-cp: The class path to use to compile the bundle classes.
-confi g: The full path to the component configuration file.
-cont ext : The full to the assembly file.

-mani f est : An optional input manifest file. When no manifest file is specified, the appC
utility generates one.

" Note:

The underlying BND package used in Oracle Stream Analytics to generate
the manifest cannot find reflection usage.

-nane: The name of the project (OSGi bundle name).
-dest di r: The full path to the directory for the output JAR file. The default is basedi r.
-srcdir: The full path to the source root directory.

-excl udedi rs: A comma-separated list of directory names to exclude from the source
tree. These directories are subdirectories of the source directory root (srcdir).

ORACLE 13-5

Chapter 13
Assemble an OSGi Bundle with bundle.sh

Examples
Compile the input source files and generate the OSGi MANI FEST. M- file.

java -jar appC.jar -cnd generateManifest -basedir

Create the template, generate the MANI FEST. M- file, and validate the component
configuration file and the assembly file.

java -jar appC.jar -cnd buil dALL -basedir

13.7 Assemble an OSGi Bundle with bundle.sh

ORACLE

Oracle Stream Analytics provides the bundl er. sh UNIX shell script that you can use to
manually assemble an OSGi bundle that provides services and packages to other
bundles.

For example, you can deploy a JDBC driver in an OSGi bundle JAR file to make it
available to other OSGi applications.

¢ Note:

There is no Windows support (no bundl er. cnd).

The bundl e. sh shell script reads the source JAR files and creates a target JAR file that
includes the content of the source JAR files and a MANI FEST. M file with the appropriate
bundle-related entries specified. All Java packages found in the source archive are
exported to the target bundle.

With bundl er. sh, you can also generate a bundle activator. A bundler activator
instantiates one or more classes in the JAR file and registers each instantiated object
as an OSGi service. This feature enables component bundles to access and
manipulate multiple versions of specific factory classes during execution.

The procedure to manually assembly an OSGi bundle consists of the following steps:
* Prepare and Organize the Files

* Create the MANIFEST.MF File

e Include Third-Party JAR Files

* Reference Foreign Stages

 Assemble an OSGi Bundle that Activates.

Note:

See the HelloWorld example source directory for a sample bui | d. xni Ant file
that performs many of the steps described below.

The bui I d. xn file is located in Oracl e/ M ddl ewar e/ ny_oep/ oep/ exanpl es/
source/ appl i cations/hel | oworl d.

13-6

Chapter 13
Assemble an OSGi Bundle with bundle.sh

13.7.1 Prepare and Organize the Files

To bundle an application or library into an OSGi bundle manually, you first need to
prepare and organize the files to be bundled. For simplicity, this procedure creates a
temporary directory that contains the required artifacts, and then jars the contents of
this temporary directory. This is a suggested approach, and you are not required to
assemble the application this way.

ORACLE

1.

Create an empty directory, such as out put :

pronpt > mkdir out put

Compile all application Java files into the out put directory.
Create an out put / META- | NF/ spri ng directory.

Copy the EPN assembly file that describes the components of your application
and how they are connected into the out put / META- | NF/ spri ng directory.

Create an out put / META- | NF/ wl evs directory.

Copy the XML files that configure the components of your application, such as the
processors or adapters, into the out put / META- | NF/ wl evs directory.

Create a MANI FEST. MF file that contains information about the bundle.
See Create the MANIFEST.MF File.

If you need to access third-party JAR files from your Oracle Stream Analytics
application, see Include Third-Party JAR Files.

Create a JAR file that contains the contents of the out put directory.

Be sure to specify the MANI FEST. MF file you created in the previous step rather than
the default manifest file.

You can name the JAR file anything you want. In the Oracle Stream Analytics
examples, the name of the JAR file is a combination of Java package name and
version, such as:

com bea. W evs. exanpl e. hel I oworld_1.0.0.0.jar

Consider using a similar naming convention to clarify which bundles are deployed
to the server.

10. If your application depends on foreign stages, see Reference Foreign Stages.

13.7.2 Create the MANIFEST.MF File

The structure and contents of the MANI FEST. M file is specified by the OSGi Framework.
Although the value of many of the headers in the file is specific to your application or
business, many of the headers are required by Oracle Stream Analytics.

In particular, the MANI FEST. M- file defines the following:

Application name: Specified with the Bundl e- Nane header.
Symbolic application name: Specified with the Bundl e- Synbol i cNane header.

Many of the Oracle Stream Analytics tools, such as the w evs. Adni n utility and JMX
subsystem, use the symbolic name of the bundle when referring to the application.

Application version: Specified with the Bundl e- Ver si on header.

13-7

ORACLE

Chapter 13
Assemble an OSGi Bundle with bundle.sh

* Imported packages: Specified with the | nport - Package header.

Oracle Stream Analytics requires that you import the following packages at a
minimum:

| mport - Package:
com bea. W evs. adapt er. def aul t provi der; version="11.1.1",
com bea. wl evs. ede; version="11.1.1",
com bea. W evs. ede. api ; versi on="11. 1. 1",
com bea. W evs. ede. i npl ; version="11.1. 1",
org.osgi . framework; version="1.3.0",
org. springframework. beans. factory; version="2.5. 6",
org. apache. comons. | oggi ng; version="1.1. 0",
com bea. W evs. spring; version="11.1.1",
com bea.w evs. util;version="11.1.1",
org. springframework. beans; versi on="2.5. 6",
org.springframework.util;version="2.0",
org. springframework. core. annot ati on; versi on="2. 5. 6",
org. springframework. beans. factory; version="2.5. 6",
org. springframework. beans. factory. confi g; version="2.5. 6",
org. springframework. osgi . context;version="1.2.0",
org. springframework. osgi . servi ce; version="1.2.0"

e Exported packages: Specified with the Export - Package header. You should specify
this header only when you need to share one or more application classes with
other deployed applications. A typical example is sharing an event bean.

If possible, you should export packages that include only the interfaces, and not
the implementation classes themselves. If other applications use the exported
classes, you cannot fully undeploy the application that is exporting the classes.

Exported packages are server-wide, so be sure their names are unique across the
server.

The following is the MANI FEST. M- file from the HelloWorld example application.

Note:

Oracle Stream Analytics requires the following MANI FEST. M setting to deploy
to an Oracle WebLogic Server container: Bundl e- Mani f est Versi on 2. This is
because Oracle Stream Analytics uses Felix in the Oracle WebLogic Server
container.

Mani f est-Version: 1.0
Bundl e- Mani f est Versi on: 2
Bundl e- Version: 1.0.0
Bundl e- Vendor: Oracle Corporation
Bundl e- Copyri ght: Copyright (c) 2006-2009 by Oracle.
Export - Package: com bea.w evs. event. exanpl e. hel | owor| d; versi on="12. 1. 2",
com bea. w evs. exanpl e. hel | owor| d; versi on="12. 1. 2"
I nport - Package: com bea. wl evs. confi guration;version="12.1.2"
com bea. W evs. ede. api ; versi on="12. 1. 2",
com bea. w evs. ede. i npl ; version="12.1.2",
com bea. W evs. ede. spi; version="12.1. 2",
com bea. w evs. ede; versi on="12. 1. 2",
com bea. W evs. managenent . spi ; versi on="12. 1. 2",
com bea. w evs. spring. support;version="12.1.2",
com bea. w evs. spring; version="12.1. 2",
com bea. w evs. util;version="12.1.2",
org. apache. conmons. | oggi ng; versi on="1.1. 0",
org. springframework. beans. factory. config; version="2.5.6",

13-8

Chapter 13
Assemble an OSGi Bundle with bundle.sh

org. springframework. beans. fact ory; versi on="2. 5. 6",
org. springframework. beans; versi on="2.5. 6",
org. springframework. core. annot ati on; versi on="2.5. 6",
org. springframework. osgi . context; version="1.2.0",
org. springframework. osgi . ext ensi ons. annot ati on; versi on="1.2.0",
org. springframework. osgi . service; version="1.2.0",
org.springframework. util;version="2.5.6"
Bundl e- Name: exanpl e. hel | owor | d
Bundl e- Description: OCEP exanpl e hel | oworld
Bundl e- Synbol i cName: hel | owor | d

13.7.3 Include Third-Party JAR Files

ORACLE

When you create your Oracle Stream Analytics applications, you might need to access
legacy libraries within existing third-party JAR files. You can ensure access to this
legacy code with any of the following approaches:

* Bundle-Classpath
e Operating System Path

» -Xbootclasspath

Bundle-Classpath

The recommended approach is to package the third-party JAR files in your Oracle
Stream Analytics application JAR file. You can put the JAR files anywhere you want.

Note:

This approach gives you little control over the order in which JAR files are
loaded and it is possible that dependency conflicts may occur. For this
reason, Oracle recommends that you use the Oracle Stream Analytics server
application library approach instead.

To ensure that your Oracle Stream Analytics application finds the classes in the third-
party JAR file, you must update the application class path by adding the Bundl e-

O asspat h header to the MANI FEST. M file. Set Bundl e- O asspat h to a comma-separate list
of the JAR file path names that should be searched for classes and resources. Use a
period (.) to specify the bundle itself. For example:

Bundl e- O asspath: ., commons-1ogging.jar, nyExcitingJar.jar, myQ herExcitingJar.jar

If you need to access native libraries, you must also package them in your JAR file
and use the Bundl e- Nat i veCode header of the MANI FEST. M file to specify their location in
the JAR.

Operating System Path

You can create an application library that depends on native code libraries that you do
not choose to package as application libraries. In this case, you can put the native
code libraries in the operating system path (boot cl asspat h) of the Oracle Stream
Analytics server. When the server starts, the library bundles that need to call this
native code load the native code libraries.

13-9

Chapter 13
Assemble an OSGi Bundle with bundle.sh

-Xbootclasspath

If the JAR files include libraries used by all applications deployed to Oracle Stream
Analytics, such as JDBC drivers, you can add the JAR file to the server's boot class
path by specifying the - Xboot cl asspat h/ a option to the j ava command in the scripts
used to start up an instance of the server.

Note:

This approach gives you little control over the order in which JAR files are
loaded and dependency conflicts can occur. Oracle recommends that you
use the Oracle Stream Analytics server application library approach instead.
For more information, see Operating System Path approach instead.

The name of the server start script is startw evs. cnd (Windows) or startw evs. sh
(UNIX), and the script is located in the server directory of your domain directory. The
out-of-the-box sample domains are located in ORACLE_CEP_HOME/ ocep_11. 1/ sanpl es/
domai ns, and the user domains are located in ORACLE_CEP_HOME/ user _pr oj ect s/ donai ns,
where ORACLE_CEP_HOME refers to the main Oracle Stream Analytics installation
directory, such as d:\ oracl e_cep.

13.7.4 Access Third-Party JAR Files with -Xbootclasspath

Update the start script by adding the - Xboot cl asspat h/ a option to the j ava command
that executes the wl evs_2. 0. j ar file. Set the - Xboot cl asspat h/ a option to the full path
name of the third-party JAR files you want to access system-wide.

For example, if you want all deployed applications to be able to access a JAR file
called e: \j ars\ myExci ti ngJAR j ar, update the j ava command in the start script as
follows. The updated section is shown in bold (in practice, the command should be on
one line):

Y%JAVA_HOVE% bi n\j ava - Dwl evs. home=%JSER_| NSTALL_DI R% - Dbea. honme=9%BEA HOVE%
- Xboot cl asspath/ a: e:\jars\ nyExcitingJAR. j ar
-jar "9JSER INSTALL DI R bin\w evs_2.0.jar" -disablesecurity % % %3 % % %

13.7.5 Reference Foreign Stages

You can refer to a stage that is in another Oracle Stream Analytics application. A stage
from another application is called a foreign stage. When you assemble applications
that depend on foreign stages, be aware of class path dependencies. Consider the
application dependency graph that Figure 13-2 shows.

ORACLE 13-10

Chapter 13
Assemble an OSGi Bundle with bundle.sh

Figure 13-2 Foreign Stage Dependency Graph

package com.foo.

public final cl

Import Import Declare and Export
Application A —-| Application B —— Application C

In this example, Application A depends on Application B, Application B depends on
Application C, and Application C depends on Application A. Application C declares and
exports the Mar ket Event class. Applications A and B import the Mar ket Event class that
Application C provides. In this example the MANI FEST. M- files of the OSGi bundles A
and B should contain Requi re-Bundl e: C.

Note the following:

* When you redeploy a foreign stage, you must redeploy all foreign stages that
depend on that application or foreign stage.

For example, if you redeploy Application B, you must redeploy Application A.

* Ifthere is a class path dependency between one foreign stage and another, when
you deploy the foreign stage that declares and exports the shared class, you must
redeploy all foreign stages that import the shared class.

For example, if you redeploy Application C, you must also redeploy Application A
and B because Application A and B have a class path dependency on Application
C (Mar ket Event).

13.7.6 Assemble an OSGi Bundle that Activates

Once you prepare and organize the files, you can use the bundl e. sh shell script to
assemble the files into an OSGi bundle and define the activator classes. You can find
the bundl e. sh script in the / Oracl e/ M ddl ewar e/ ny_osa/ bi n directory.

13.7.6.1 Command Location, Syntax, and Arguments

ORACLE

You can find the bundl er. sh script in the / Oracl e/ M ddl ewar e/ ny_oep/ bi n directory. The
following shows the bundler.sh command syntax. Table 13-1 describes the command
arguments.

bundl er -source JAR -nane NAME -version VERSI ON

[-factory CLASS+] [-service | NTERFACE+] [-fragmenthost HOST]
[-stagedir PATH [-targetdir PATH]

[+ nport PACKAGE| REGEX+] [-inods REGEX; MODS+] [-inport PACKAGE+]
[+export PACKAGE| REGEX+] [-enmpds REGEX; MODS+|

[-dinport PACKAGE+] [-explode] [-verbose]

13-11

ORACLE

Chapter 13
Assemble an OSGi Bundle with bundle.sh

Table 13-1 bundler.sh Command-Line Options

-ver si on VERSI ON

-fact ory CLASS+

-servi ce | NTERFACE+

-fragnent host HOST

-stagedir PATH

-targetdir PATH

+i nport PACKAGE|REGEX+

- i nods REGEX;MODS+

-import PACKAGE

+export PACKACE|REGEX+

- ennds REGEX;MODS+

- di nport PACKAGE+

Argument Description
-source JAR The path of the source JAR file to be bundled.
-nanme NAME The symbolic name of the bundle. The root of the target JAR file

name is derived from the name value.

The bundle version number. All exported packages are qualified
with a version attribute with this value. The target JAR file name
contains the version number.

An optional argument that specifies a space-delimited list of one or
more factory classes that are to be instantiated and registered as
OSGi services. Each service is registered with the OSGi service
registry with name (- nane) and version (- ver si on) properties.

This argument is incompatible with the - f ragnent host argument.

An optional argument that specifies a space-delimited list of one or
more Java interfaces that are used as the object class of each
factory object service registration. If no interface names are
specified, or the number of interfaces specified does not match the
number of factory classes, then each factory object will be
registered under the factory class name.

An optional argument indicating that the resultant bundle is a
fragment bundle and specifies the symbolic name of the host
bundle.

This argument is incompatible with the - f act ory argument.

An optional argument that specifies where to write temporary files
when creating the target JAR file.

Default: . / bundl er. tnp

An optional argument that specifies the location of the generated
bundle JAR file.

Default: current working directory (.).

A space-delimited list of one or more packages or regular

expressions that select the packages to exclude from the manifest
| npor t - Package attribute.

By default, all dependent packages will be imported (except
java.*).

The import modifiers are applied to the packages matching regular
expression.

Additional packages to include on the manifest | nport - Package
attribute.

Note that any specified import modifiers will not be applied.

A space-delimited list of one or more packages or regular

expressions that select the packages to exclude from the manifest
Export - Package attribute.

By default, all bundle packages will be exported.

The export modifiers will be applied to the packages matching
regular expression.

Packages to include on the manifest Dynani cl nport - Package
attribute.

13-12

Chapter 13
Assemble an OSGi Bundle with bundle.sh

Table 13-1 (Cont.) bundler.sh Command-Line Options
|

Argument Description

-expl ode This optional flag specifies that the content of the source JAR

-verbose An optional flag to enable verbose output.

should be exploded into the target JAR file.

By default, the source JAR is nested within the target JAR file and
the generated bundle manifest will contain an appropriate Bundl e-
d asspat h attribute.

13.7.6.2 Assemble an OSGi Bundle

ORACLE

1.

Execute the bundl er. sh script to create an OSGi bundle. See Command Location,
Syntax, and Arguments.

The following bundl e. sh command shows how to use the bundl er. sh to create an
OSGi bundle for an Oracle JDBC driver.

bundl er.sh \
-source C\drivers\comoracle.ojdbcl4 11.2.0.jar \
-nane oracl el2c \
-version 12.1.3.0 \
-factory oracle.jdbc. xa.client. O acl eXADat aSour ce oracl e.jdbc. Oracl eDriver \
-service javax.sql. XADat aSour ce java.sql.Driver \
-targetdir C\stage

The -source option specifies a JAR file that is an Oracle driver located in directory
C:\drivers. The name of the generated bundle JAR is the concatenation of the -
name and - ver si on arguments (oracl e1l0g_11.2.0.jar) and is created in the C:\ st age
directory. The bundle JAR contains the following files:

1465 Thu Jun 29 17:54:04 EDT 2006 META-| NF/ MANI FEST. MF
1540457 Thu May 11 00: 37:46 EDT 2006 com oracl e.ojdbcl4_11.2.0.jar
1700 Thu Jun 29 17:54:04 EDT 2006 com beal core/tool s/ bundl er/Activator.class

The -fact ory option specifies that there are two factory classes to be instantiated
and registered as an OSGi service when the bundle activates, each under a
separate object class as Table 13-2 shows.

Table 13-2 Factory Class and Service Interfaces
|

Factory Class Service Interface
oracle.jdbc. xa. client. O acl eXADat aSour ce j avax. sql . XADat aSour ce
oracl e.jdbc. Oracl eDriver java.sql.Driver

The - servi ce option registers services with a name property set to oracl el2c and a
versi on property with a value of 12. 1. 3. 0. The following example shows the Oracle
Stream Analytics server log messages with the service registrations:

INFG [Jun 29, 2006 5:54:18 PM Service REG STERED: { version=12.1.3.0,
name=or acl e12c, objectd ass=[javax.sql.XADataSource], service.id=23 }
INFG [Jun 29, 2006 5:54:18 PM Service REG STERED: { version=12.1.3.0,
name=or acl el2c, objectC ass=[java.sql.Driver], service.id=24}

13-13

Chapter 13
Deploy an OSGi Bundle

INFG [Jun 29, 2006 5:54:18 PM Bundl e oracl ellg STARTED

2. Copy the application library JAR to the appropriate Oracle Stream Analytics server
application library directory:

a. If your bundle is a driver, you put it in the library extensions directory.
See Library Extensions Directory.

b. If your bundle is not a driver, you can put it in the library directory.
See Library Directory

3. Stop and start the Oracle Stream Analytics server.

13.8 Deploy an OSGi Bundle

ORACLE

After you assemble your Oracle Stream Analytics application or library into an OSGi
bundle, you deploy it to an Oracle Stream Analytics server domain. You can deploy an
application with Oracle JDeveloper, Oracle Stream Analytics Visualizer, and with the
Deployer utility.

This section explains how to use the Deployer utility.

With the Deployer utility, you can deploy an application to either a stand-alone or
multiserver domain. You can only deploy to a group when the server is part of a
multiserver domain (clustering is enabled). You cannot deploy to a group when the
server is part of a standalone server domain (clustering is disabled).

Oracle Stream Analytics uses the depl oynents. xni file to internally maintain a list of
deployed OSGi bundles. This file is located in the DOVAI N DI R/ ser ver name directory,
where DOVAI N_DI R refers to the main domain directory corresponding to the server
instance to which you are deploying your application and ser ver nane refers to the
actual server. This information is provided for your information only; Oracle does not
recommend updating the depl oynent s. xni file manually.

Before you Begin

Be sure you have configured Jetty for the Oracle Stream Analytics instance to which
you are deploying your application.

Open a command window and update your CLASSPATH variable to include the
w evsdepl oy. jar JARfile, which is in the following directory. The Deployer utility is in the
JAR file.

[Oracl e/ M ddl ewar e/ my_osa/ bin

Deploy an OSGi Bundle with the Deployer Utility

After the OSGi bundle successfully installs and all initialization tasks complete, Oracle
Stream Analytics starts the application and the adapter components listen for incoming
events.

1. Assemble your OSGi bundle as described in Assemble an OSGi Bundle with
bundle.sh.

2. Open a command window and run the Deployer utility as follows. Keep everything
on one line.

13-14

ORACLE

Chapter 13
Deploy an OSGi Bundle

pronpt> java -jar wevsdeploy.jar -url http://host:port/w evsdepl oyer
-user user -password password -install application_jar_file

host : The name of the computer where the Oracle Stream Analytics server is
running.

port: The port number where Oracle Stream Analytics listens. The default value is
9002. This port is specified in the DOVAI N_DI R/ confi g/ file that describes the Oracle
Stream Analytics domain. The port number is the value of the <Port > child element
of the <Neti 0> element in the file:

<Neti 0>
<Nanme>Net | O</ Nane>
<Port >9002</ Port >
</ Neti 0>

user : The user name of the Oracle Stream Analytics administrator.
passwor d: The password of the Oracle Stream Analytics administrator.

application_jar_file: The OSGi bundle. The OSGi bundle must be located on the
same computer where you execute the Deployer utility. For example, if Oracle
Stream Analytics is running on host ari el , listening on port 9002, user name and
password of the administrator is w evs/ w evs, and your application JAR file is
called nyapp_1.0.0.0.jar and is located in the / appl i cati ons directory, then the
command is the following. Keep everything on one line.

pronpt> java -jar wevsdeploy.jar -url http://ariel:9002/w evsdepl oyer
-user w evs -password wevs -install /applications/nyapp_1.0.0.0.jar

The Deployer utility provides additional options over what was described here to
resume, suspend, update, uninstall and deploy an OSGi bundle to a specified group of
multiserver domains.

13-15

Testing 1-2-3

Oracle Stream Analytics provides different ways to test your application depending on
what and how you want to test.

This chapter includes the following sections:

* Load Generator and the csvgen Adapter
* Event Inspector Service
* EPN Shell

e EPN Command Interface.

14.1 Load Generator and the csvgen Adapter

ORACLE

The load generator utility simulates a data feed so that you can test your application
without connecting to a real-world data feed. To test your application with the load
generator, you must use the csvgen adapter in your application because the csvgen
adapter is specifically coded to decipher the data packets generated by the load
generator.

Once you have tested your application with the csvgen adapter, you can replaced it
with the appropriate input adapter for your application as described in Adapters.

The load generator reads an ASCII file that contains the sample data feed information
and sends each line of data in order to a port. The csvgen adapter listens for data at
the same port.

A load generator properties file indicates the name of the data file, the port where the
server listens, the server host, and the packet type. You can also set the data rate and
how long it takes for the load generator to ramp up to a specified final rate.

The following steps present an overview of how to configure and run the load
generator utility. Detailed information for each step follows.

1. Create a properties file that contains the configuration properties for particular run
of the load generator. Oracle Stream Analytics provides a default property file you
can use if the default property values are adequate. See Create the Properties
File.

2. Create a file that contains the actual data feed values. See Create the Data Feed
File.

3. Configure the csvgen adapter so that it correctly reads the data feed generated by
the load generator. See Configure the csvgen Adapter in Your Application.

4. Run the load generator and specify the properties file you created in step 1 to
begin the simulated data feed. For example, if the name of your properties file is c:
\| oadgen\ nyDat aFeed. pr op, execute the following command:

pronpt > runl oadgen. cnd c:\ | oadgen\ myDat aFeed. prop

If you redeploy your application, you must also restart the load generator.

14-1

Chapter 14

Load Generator and the csvgen Adapter

5. To stop and load generator, go to directory where you have load generator running

and typectrl-c.

14.1.1 Create the Properties File

Oracle Stream Analytics provides a default properties file called csvgen. prop in the /
Oracl e/ M ddl ewar e/ my_oep/ util s/ oad- generat or directory. The format of the file is
simple: each property-value pair is on its own line.

The following example shows the default csvgen. prop file; Oracle recommends you use
this file as a template for your own property file:

nane of file containing your test data
test. csvDat aFil e=test.csv
port the server will listen on for client connection
test. port=9001
server host (localhost if not specified)
test. host=
do not change the packet Type

t est. packet Type=CSV

Table 14-1 Load Generator Properties

test.startRatetotest.rate.
The default value is 0.

Property Description Data Required
Type ?

test.csvDataFile Specifies the file that contains the data feed String Yes
values.

test. port The port number to which the load generator I nt eger Yes
sends the data feed.
Each input adapter must be associated with its
owntest.port.

test.secs Total duration of the load generator run, in I nt eger No
seconds.
The default value is 30.

test.rate Final data rate, in messages per second. I nt eger No
The default value is 1.

test.startRate Initial data rate, in messages per second. I nt eger No
The default value is 1.

test.ranpUpSecs Number of seconds to ramp up from I nt eger No

14.1.2 Create the Data Feed File

A load generator data feed file contains the sample data feed values that correspond

ORACLE

to the event type registered for your Oracle Stream Analytics application.

The following example show an Enpl oyeeEvent and a load generator data feed file
corresponding to this event type.

<w evs: event -t ype-reposi tory>
<wl evs: event -type type-name="Enpl oyeeEvent ">
<wl evs: properties>

14-2

Chapter 14
Load Generator and the csvgen Adapter

<wl evs: property nane="nanme" type="char" />
<wl evs: property name="age" type="int" />
<wl evs: property nanme="birthplace" type="char" |ength="512" />
</w evs: properties>
</w evs: event -t ype>

</w evs: event-type-repository>
Lucy, 23, Madagascar
Ni ck, 44, Canada
Amanda, 12, Mal aysi a

Juliet, 43, Spain
Horati o, 80, Argent i na

A load generator data feed file follows a simple format:

e Put each data feed item is on its own line.
e Separate the fields of a data feed item with commas.
* Do not include commas in a string field.

Do not include extraneous spaces before or after the commas, unless the space is
literally part of the field value.

* Include only string and numerical data in a data feed file such as integer, long,
double, and float.

* Keep within the maximum string length of 256 characters or specify a long string
length. To specify a longer string, set the | engt h attribute of the char property in
your event-type for the birt hpl ace property.

Note:

The load generator does not fully comply with the CSV specification at
http://ww. creativyst.com Doc/ Articl es/ CSV/ CSVO1. ht m

For more information about CSV adapter constraints, see Design Constraints.

14.1.3 Configure the csvgen Adapter in Your Application

ORACLE

When using the load generator utility, you must use the csvgen adapter in your
application because this Oracle Stream Analytics-provided adapter is specifically
coded to read the data packets generated by the load generator.

You register the csvgen adapter using the w evs: adapt er element in the EPN assembly
file of your application, as with all adapters. Set the provi de attribute to csvgen to
specify that the provider is the csvgen adapter, rather than your own adapter.
Additionally, you must specify the following child tags:

* wevs:instance-property element with nane attribute port and val ue attribute
configured_port, where confi gured_port corresponds to the value of the test. port
property in the load generator property file. See Create the Properties File.

* wevs:instance-property element with nane attribute event TypeNane and val ue
attribute event _type_nane, where event _type_nane corresponds to the name of the
event type that represents an item from the load-generated feed.

14-3

http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

Chapter 14
Event Inspector Service

* wevs:instance-property element with nane attribute event Propert yNanes and val ue
attribute ordered_|ist_of properties, where ordered_|ist_of properties lists the
names of the properties in the order that the load generator sends them, and
consequently the csvgen adapter receives them.

Before showing an example of how to configure the adapter, first assume that your
application registers an event type called Per sonType in the EPN assembly file using
the wl evs: net ada element shown below:

<wl evs: event -t ype-repository>
<w evs: event -type type-name="PersonType">
<wl evs: properties>
<wl evs: property nane="nane" type="char"/>
<<wl evs: property nane="age" type="int"/>
<<wl evs: property name="birthpl ace" type="char"/>
</w evs: properties>
</w evs: event-type>
</ wl evs: event -t ype-repository>

This event type corresponds to the data feed file shown in Create the Data Feed File.

To configure the csvgen adapter that receives this data, use the following w evs: adapt er
element:

<wl evs: adapter id="csvgenAdapter" provider="csvgen">

<wl evs:instance-property nane="port" val ue="9001"/>

<wl evs:instance-property nane="event TypeNane" val ue="PersonType"/>

<wl evs:instance-property nane="event PropertyNanes" val ue="nane, age, bi rthpl ace"/ >
</w evs: adapt er >

Note how the bold values in the adapter configuration example correspond to the
Per sonType event type registration.

If you use the w evs: cl ass element to specify your own JavaBean when registering the
event type, then the event Proper t yNanes value corresponds to the JavaBean properties.
For example, if your JavaBean has a get Nane method, then one of the properties of
your JavaBean is nane.

For more information on event types, see Events and Event Types.

14.2 Event Inspector Service

ORACLE

Use the Event Inspector service to test and debug Oracle CQL queries during
development. With the Event Inspector service you can view (trace) the events that
flow out of any EPN stage and inject events into any EPN stage.

The Event Inspector service uses a common HTTP pub-sub channel and server to
trace and inject events.

" Note:

Do not use the Event Inspector service on a production Oracle Stream
Analytics server. Use this service during development only.

A trace event must have its bi ndi ng attribute set to out bound, and an injected event
must have its bi ndi ng attribute set to i nbound. Using an Event Inspector client, you can
inject:

14-4

Chapter 14
Event Inspector Service

» Asingle, simple event by type, such as the St ockTi ck event. The specific event
property types that you can use depends on the client.

e Asingle event directly to the HTTP pub-sub channel as a JSON-formatted
character string. You can use any event property that JSON can represent.

e Multiple events using a file that contains one or more JSON-formatted character
strings. You can use any event property that JSON can represent. The Event
Inspector service client parses the file and injects all of its JSON strings to the
HTTP pub-sub channel.

You can use the GSON Java library to help you convert Java objects to JSON format
when creating your input file. For more information, see:

e http://ww.json.org/
* http://code. googl e. cont p/ googl e- gson

The Event Inspector service supports Oracle Stream Analytics Visualizer.

14.2.1 Event Types

ORACLE

The Event Inspector service supports all Oracle Stream Analytics event types:
JavaBean class, Map, and tuple. The Event Inspector service converts events to the
JavaScript Object Notation (JSON) format before publishing to the trace channel. You
must inject events in JSON format.

Note:

Byte arrays are not supported as property types in event types used with the
event inspector.

JSON-formatted events must conform to the structure. Table 14-1 lists the required
attributes.

{
"event-type": "nyEvent Type",
"operation": "insert",
"bi nding": "outbound",
"val ue": {
"firstname": "Jane",
"l astname": "Doe",
"phone": {
"code": 12345,
"nunmber": "office"

I3

Table 14-2 Event Inspector JSON Event Required Attributes

| Attribute Description |

event-type The name of the Oracle Stream Analytics event as you defined it in the |

application assembly file's event -t ype-repository.

14-5

http://www.json.org/
http://code.google.com/p/google-gson

Chapter 14
Event Inspector Service

Table 14-2 (Cont.) Event Inspector JSON Event Required Attributes

e
Attribute Description

operation Specify the type of event:

* insert:insert event.

* del ete: delete event

e updat e: update event

* heartbeat: heartbeat event
bi ndi ng One of:

* inbound: injected event.

e outbound: trace event.

val ue One or more JSON-formatted event properties as defined by the event -t ype.

14.2.2 HTTP Publish-Subscribe Channel and Server

ORACLE

The Event Inspector service uses a dynamic HTTP publish-subscribe (HTTP pub-sub)
channel with the following name that is defined in the server confi g. xnl file:

| SERVERNAVE/ APPL| CATI ONNAME/ STAGENAME/ DI RECTI ON

SERVERNAME: The name of the Oracle Stream Analytics server where the EPN stage
runs.

APPLI CATI ONNAME: the name of the Oracle Stream Analytics application.
STAGENAME: the name of the EPN stage.

DI RECTI ON: one of either:

e input: Event injection.

e output: Event tracing.

For example:

/ server -1/ myapp/ M/l nput Adapt er /i nput

The Event Inspector service uses an HTTP pub-sub server. This can be any of:

* Local: You configure the server file with an event - i nspect or element and configure
its pubsub- ser ver - name child element with the name of the local pubsub server that
is running on this machine.

* Remote: You configure the server file with an event -i nspect or element and
configure its pubsub-server-url child element with a URL to an HTTP pub-sub
server that is running on a remote machine.

» Default: if there is only one HTTP pub-sub server defined in the server file, and
you do not specify a local or remote HTTP pub-sub server, the Event Inspector
service uses the local HTTP pub-sub server by default.

The Event Inspector service uses the same HTTP pub-sub channel and server for
tracing and injecting events.

14-6

Chapter 14
Event Inspector Service

14.2.3 Configure a Local or Remote Server

ORACLE

You can configure the Event Inspector service with a local or remote HTTP pub-sub
server. You configure the Event Inspector HTTP pub-sub server in a component
configuration file. When there is only one HTTP pub-sub server defined in the server,
and you do not specify a local or remote HTTP pub-sub server, the Event Inspector
service uses the local HTTP pub-sub server by default.

Configure for a Local HTTP Publish-Subscribe Server

For any component configuration file that has a component that you want to test, add
the event -i nspect or name element as follows.

<event -i nspect or >

<nane>nyEvent | nspect or Conf i g</ name>

<pubsub- ser ver - nane>nmyPubSub</ pubsub- ser ver - name>
</ event - i nspect or >

The pubsub- server - nane value nyPubSub is the value of the htt p- pubsub element name
child element as defined in the local Oracle Stream Analytics server file as the
following example shows.

<ht t p- pubsub>
<name>nyPubSub</ name>
<pat h>/ pubsub</ pat h>
<pub- sub- bean>
<server-config>
<suppor t ed- t ransport >
<types>
<el ement > ong- pol | i ng</ el ement >
</types>
</ supported-transport>
<publ i sh-wi t hout - connect - al | owed>t r ue</ publ i sh-wi t hout - connect - al | owed>
</ server-config>
<channel s>

</ channel s>

</ pub- sub- bean>
</ htt p- pubsub>

Configure for a Remote HTTP Publish-Subscribe Server

For any component configuration file that has a component that you want to test, add
the event -i nspect or name element as follows.

<event - i nspect or >

<name>nyEvent | nspect or TraceConf i g</ name>

<pubsub- server-url >http://HOST: PORT/ PATH</ pubsub- server-ur| >
</ event - i nspect or >

HOST: The host name or IP address of the remote Oracle Stream Analytics server.

PORT: The remote Oracle Stream Analytics server neti o port as defined in the remote
Oracle Stream Analytics server file. Default: 9002.

PATH: The value of the ht t p- pubsub element pat h child element as defined in the remote
Oracle Stream Analytics server file.

Given the ht t p- pubsub configuration that the example shows, a valid pubsub- server - ur|
would be as follows:

14-7

Chapter 14
Event Inspector Service

http://remot ehost: 9002/ pubsub

The pubsub- server - nane value nyPubSub is the value of the htt p- pubsub element name
child element as defined in the local Oracle Stream Analytics server file as the
following example shows.

<ht t p- pubsub>
<name>nyPubSub</ name>
<pat h>/ pubsub</ pat h>
<pub- sub- bean>
<server-config>
<suppor t ed- t ransport >
<types>
<el ement >l ong- pol | i ng</ el ement >
</types>
</ supported-transport>
<publ i sh-wi t hout - connect - al | owed>t r ue</ publ i sh-wi t hout - connect - al | owed>
</ server-config>
<channel s>

</ channel s>
</ pub- sub- bean>
</ htt p- pubsub>

14.2.4 Inject Events

ORACLE

After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to inject events. To configure event injection, you can use the
Oracle Stream Analytics Visualizer, or you can edit a component configuration file in
your application to specify injection settings that are in place when the application is
deployed or redeployed.

Configure event injection in Oracle Stream Analytics Visualizer with settings that can
be discarded when the application is redeployed.

For event injection configuration settings that are in place when the application is
deployed or redeployed, configure injection by editing component configuration
settings for the stage to which you want to inject.

For example, the component configuration excerpt shown in the example illustrates
how you might configure a processor for event injection. The i nj ect - par amet er s
element's acti ve child element specifies that injection is on, while the channel - nane
element specifies the HTTP pub-sub channel from which injected elements should be
sent.

<processor >
<nane>Fi ndCr ossRat es</ nanme>
<i nj ect - paramet er s>
<active>true</active>
<channel - nanme>/ NonQ ust er edSer ver/ f x/ Fi ndCr ossRat es/ out put </ channel - nane>
</inject-paraneters>
<rul es>
<I-- Query rules onmitted. -->
</rul es>
</ processor >

For reference information about the elements, see Schema Reference for Oracle
Stream Analytics.

14-8

Chapter 14
Event Inspector Service

14.2.5 Trace Events

After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to trace events flowing out of any stage of your EPN. To trace
events, you can either use the Oracle Stream Analytics Visualizer to configure tracing
or you can edit a component configuration file in your application to specify trace
settings that are in place when the application is deployed or redeployed.

Configure event tracing in Oracle Stream Analytics Visualizer with settings that can be
discarded when the application is redeployed.

For event tracing configuration settings that are in place when the application is
deployed or redeployed, configure tracing by editing component configuration settings
for the stage from which you want to trace.

For example, the component configuration excerpt shown in the example illustrates
how you might configure a processor for event tracing. The trace- par anet ers element's
active child element specifies that tracing is on, while the channel-name element
specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor >
<name>Fi ndCr ossRat es</ name>
<trace-parameters>
<active>true</active>
<channel - nanme>/ NonC ust er edSer ver/ f x/ Fi ndCr ossRat es/ out put </ channel - nane>
</trace-parameters>
<rul es>
<l-- Query rules onitted. -->
</rul es>
</ processor >

14.2.6 Event Inspector API

ORACLE

You can use the Event Inspector API to inject and trace events. The Oracle Stream
Analytics API provides the Event | nspect or MBean interface that you can implement to
control the event tracing and injection behavior. Only the administrator and monitor
administrator roles can invoke the start | nject, stoplnject, start Trace, and st opTrace
methods. See Java API Reference for Oracle Stream Analytics for information about
the Event | nspect or MBean interface and its methods.

Once you implement the Event | nspect or MBean interface, you can call its methods from
your application to inject and trace events as follows.

Inject Events

1. Get an instance of com bea. w evs. eventi nspect or. management . Event | nspect or MBean
from the server through JMX.

2. Call the Event I nspect or MBean. start | nj ect method to start event injection on the
stage specified in the server config. xm file configuration for an HTTP publish-
Subscribe channel as explained in HTTP Publish-Subscribe Channel and Server.

3. Publish events to the specified HTTP publish-subscribe channel.

4. Use the Event | nspect or MBean. i sl nj ecti ng method to verify that event injection has
started on the stage.

5. Call the Event I nspect or MBean. st opl nj ect method to stop event injection.

14-9

Chapter 14
EPN Shell

Trace Events

1. Get an instance of com bea. w evs. eventi nspect or . managenent . Event | nspect or MBean
from the server through JMX.

2. Call the EventinspectorMBean.startTrace method to start event tracing on the
stage specified in the server config.xml file configuration for an HTTP publish-
subscribe channel as explained in HTTP Publish-Subscribe Channel and Server.

3. Use the Event I nspect or MBean.isTracing method to verify that event tracing has
started on the HTTP Publish-Subscribe channel.

4. Call the Event | nspect or MBean. st opTrace method to stop event tracing.

14.3 EPN Shell

The EPN shell provides shell commands for testing

Oracle Stream Analytics applications. See EPN Command Interface for information
about how to perform EPN operations programmatically.

The EPN shell extends the Apache Felix Gogo shell, which provides a standard shell
command prompt for OSGi frameworks. See the Apache Felix Gogo documentation
at: http://felix.apache. org/ docunentati on/ subproj ects/ apache-felix-gogo. htni.

To start the server in the EPN shell, go to / Oracl e/ M ddl ewar e/ ny_oep/ user _pr oj ect s/
domai ns/ <ny_domai n>/ <ser ver > and start the Oracle Stream Analytics server in the EPN
shell as follows:

UNIX:

.Istartw evs.sh -shell

o

Windows:

startw evs. cnd -shel |

o

When the EPN shell starts, you see the g! prompt. Type hel p to display a list of all of

the commands. The commands specific to EPN, are prefixed by epn: , for example,
epn: channel .

g! help

To display help about a particular command, type hel p <conmand>. For example, to see
help about the begi n command, type the following:

g! help begin
begin - Begins new session for invoking EPN commands
scope: epn
par anet er s
CommandSessi on

ORACLE 14-10

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html

Chapter 14
EPN Shell

Note:

Some of the Apache Felix Gogo commands have a ConmandSessi on
argument, which is an internal shell argument that does not execute with the
Apache Felix Gogo commands. When you do a help listing for some of the
EPN shell commands, the ConmandSessi on parameter is listed by the help, but
does not work.

14.3.1 Oracle CQL Queries

ORACLE

By default, an EPN session has an implicit Oracle CQL processor that is connected to
an event sink that prints all outputs to the shell console. To test Oracle CQL queries,
create an input channel, define the queries, and send events as follows:

g! begin

g! channel MyChannel [nmsg=String]
MyChannel

g! query "select * from MyChannel "
q0

g! send MyChannel [nmsg="H ']
11:14:26 618 -> insert event: {msg=Hi}
q! end

Use the begi n command to start an EPN session and the end command to end an EPN
session. Ending a session destroys all EPN components that were created during that
session. A session is not multithread aware.

The channel command creates MyChannel with an event -t ype that has the nsg property
of type String. You can also specify a Java class name for the event - t ype.

The query command registers the "sel ect * query from M/Channel * in the implicit
Oracle CQL processor for this session. You can remove the query from the processor
with the renove command.

The send command dispatches aninsert event to MyChannel . If the session has a single
channel only, then the name of the channel is optional. For example, the following two
commands are equivalent: “send MyChannel [nsg="H ']" and “send [nmsg="H"']".

The syntax “[nsg="'H ']" creates a map that contains a single key-value pair, with a
key of “nsg" and a value of “H ". This matches the event - t ype created in the first line
with channel MyChannel [nsg=String].

You can use the updat e and del et e commands to send an update event and a delete
event to a relation-based channel. The i nsert command is equivalent to the send
command. Also, you can check the current registered statements in a session with the
stat ement command and find out the channels you have created in a session with the
channel s command. The event t ypes commands enables you to display the structure of
all event -t ypes in the server.

For more information about Oracle CQL processor queries, see Oracle CQL
Processors .

14-11

Chapter 14
EPN Shell

14.3.2 Management Commands

ORACLE

Management commands enable you to list the deployed Oracle Stream Analytics
applications, list libraries, install an application, send events to an existing application,
subscribe to channel events, list all public stages, retrieve an OSGi service and call
standard Java methods, perform JMX operations, and shut down the server.

List all deployed Oracle Stream Analytics applications in the running server:

g! listapps
com bea. wl evs. dat aservi ces

List all Oracle Stream Analytics libraries. This commen lists all of the bundles that are
unzipped in the modules directory to run the EPN shell.

gl Ilistlibs

org. apache. felix. bundl erepository
org. apache. felix.gogo.runtime

com oracl e. cep. shel

org. apache. fel i x. gogo. command
org. apache. felix. gogo. shel

Install a new application. The following example deploys and immediately starts the
application.

g! deployapp file:///Users./oepapps/hw | oworld.jar

Undeploy an application:

g! deployapp file:///Users./oepapps/hw | oworld.jar
g! undepl oyapp file:///Users./oepapps/ hw | oworld. | ar

Send events to an existing Oracle Stream Analytics application by specifying the full
name of the channel when you use the send, i nsert, updat e, and del et e commands.
This example sends an event to the hel | owor | dI nput Channel in the hel | owor | d
application. For this to work, you must advertise the channel so the EPN shell can find
it. To adverti se the channel, set the adverti se attribute to true in the assembly file first.

Assembly file setting:

<wl evs: channel id="helloworl dl nput Channel " event-type="Hel | oWr| dEvent"
advertise="true" >

EPN shell commands:

g! eventl=createevent HelloWrl dEvent
g! $eventl nessage "H Shell"
g! send hel |l oworl d: hel | owor | dl nput Channel $event 1

Subscribe to a channel. The events subscribed to are sent either to the shell console
or to a file when you specify a file name. Make sure the channel is advertised by
setting the adverti se attribute to true in the assembly file. The following command
subscribes to all output from the helloworld application and send the output to the shell
console:

g! subscribe helloworld: hel | owor | dQut put Channel

List all public (advertised) stages in the application.

14-12

Chapter 14
EPN Shell

g'introspect helloworld
Application 'helloworld provides the follow ng OCEP services:
Event Channel 'helloworl dQutput Channel' for Event Type 'Hel | oWrl dEvent'

Retrieve the CQLProcessor MBean for the hel | owor | d Oracle CQL processor and invoke
the get Al | Queri es operation.

g! proc = nbean hel | oworl d: hel | owor| dProcessor CQLProcessor
g! $proc all Queries

hel | owor | dRul e

sel ect * from hel | oworl dl nput Channel

You can use the retrieved mbean with the nbean command to test and manipulate JIMX
operations.

Stop the server.

g! stop

14.3.3 Regression Testing

You can automate application testing by running the shell headless and using scripts.
For example, you can execute the following script named send- event . oep by specifying
the gosh. args system property in the startw evs command.

begin

channel -a [a=Long]
query "select * fromcho"
send 0 [a=1]

send 1 [a=2]

end

Note:

In a script, use double quotes to enclose a String tuple value with the send
command. For example, send [msg="Enter a val ue."]. Single quotes do not
work in a script.

To execute the send- event . oep script when you start the server, edit the last line of the
startw evs command as follows:

"$JAVA HOME/ bi n/j ava" - Dgosh. ar gs=send- event. oep $JVM ARGS $DEBUG ARGS -
Dwl evs. hone="$USER | NSTALL DI R' - Dbea. home="$BEA HOME' -jar "$
{USER I NSTALL_DI R}/ bi n/wl evs.jar" $ARGS

One approach is to have a test driver script that invokes other scripts and directs their
output, as follows:

source send-event.oep | tac test-output/|og/send-event. out
source test-delete.oep | tac test-output/log/test-delete.out

14.3.4 EPN Variable

You can set the time stamp format or turn time stamps off for an EPN session.

QUT_TIME: FORMATTED | PLAIN | OFF

ORACLE 14-13

Chapter 14
EPN Shell

To turn off the time stamp on output events, enter the following:
g! OUT_TI NE=OFF
To indicate formatted time stamping.

h! QUT_TI ME=FORMATTED

14.3.5 EPN Commands

The EPN commands are shown and described in the following list.
epn: begi n: Begins a new session for invoking EPN commands.
epn: channel : Performs different actions based on the parameters:

e Create a channel with a map-based event type.

e Create a named relation channel with update keys and a Java class event type.
e Create a named channel with a map-based event type.

e Create a named channel with a Java class event type.

e Create a channel with a Java class event type.

e Create a named relation channel with update keys and a map-based event type.

epn: channel s: Lists all channels within the EPN scope.

epn: creat eevent : Creates an event of the provided event type.

epn: end: Ends the EPN session.

epn: event t ypes: Lists all event types

epn: heart beat : Sends a heartbeat to channel that is time stamped by an application.
epn: query: Registers an Oracle CQL query.

epn: renove: Removes all statements that are registered within the EPN scope.

epn: send: Sends an insert event to a named channel. Same as the sendi nsert
command.

epn: senddel et e: Deletes a named event in a named channel.

epn: sendi nsert : Sends an insert event to a named channel. Same as the send
command.

epn: sendupdat e: Updates an OSGi bundle with the bundle at the provided URL.
epn: st at enent s: Lists all registered Oracle CQL statements within the EPN scope.
epn: subscri be: Subscribe to an event channel and output events to a file.

epn: unsubscri be: Unsubscribe from an event channel.

epn: vi ew. Register an Oracle CQL view.

14.3.6 Management Commands

The management commands are shown and described in the following list.

ORACLE 14-14

14.4 EPN

Chapter 14
EPN Command Interface

mngt:deployapp: Deploys an application with optional parameters.
mngt:deployrepapp: Deploys an application from the respository.
mngt:introspect: Introspects an application for its public interfaces.
mngt:listapps: Lists all deployed applications.

mngt:listlibs: Lists all deployed libraries.

mngt:mbean: Retrieves the MBean stage from the local MBean server
mngt:shutdown: Shuts the server down.

mngt:undeployapp: Undeploys the specified application.

Command Interface

The EpnCommand interface is a Java API on top of the Oracle Stream Analytics EPN CQL
programming model. You can use the EpnConmand interface in a Java application to
manipulate EPN components.

You can programmatically start an EPN session and execute EPN commands similar
to using the command-line EPN shell described in EPN Shell.

Use bhegi nSessi on() to start an EPN session and endSessi on() to end an EPN session.
Ending a session destroys all EPN components that were created during that session.
A session is not multithread aware and must be synchronized in your application code.

To use EPN commands in an Oracle Stream Analytics application, first retrieve the
EpnCommand OSGi service, which registers the service as an OSGi service factory. Once
you retrieve the OSGi service, you can create test cases similar to Juni t test cases for
testing EPN components and Oracle CQL statements. Only the commands exposed in
the EpnCommand class as methods can be use for Juni t -like test cases.

You can also use the EpnCommand interface to create an Oracle Stream Analytics
application through programming.

14.4.1 Session Variables

You can set session variables to indicate the time stamp format to use for output
events. The time stamping can be FORMATTED, PLAI N, or OFF.

14.4.2 Methods

ORACLE

voi d begi nSessi on() : Begins a new session for invoking commands. Only a single
session can be active at one time. The following list shows the EpnCommand methods
and parameters. Refer the EpnConmand Javadoc for more information.

endSessi on() : Ends the current session. Only a single session can be active at one
time.

voi d get Event Channel s() : Returns all channels created in the current session.

Event Channel [] get Event Channel (String channel Nane) : Returns the named event
channel.

14-15

ORACLE

Chapter 14
EPN Command Interface

Event Channel get Event Channel (String channel Nane) : Retrieves the named event
channel.

Create different types of channels based on the parameters.

e EventChannel createChannel (String channel Nane, O ass<?> clazz): Create a new
system time stamped channel with a Java class event type.

° EventChannel createChannel (bool ean relation, String applicationTi nestanpProp,
bool ean total Order, List<String> keys, String channel Nane, C ass<?> class):
Create a new channel with a Java class event type.

* EventChannel createChannel (bool ean relation, String applicationTi mestanpProp,
bool ean total Order, List<String> keys, String channel Name, O ass<?> cl ass,
Event Bui | der. Factory factory): Create a new channel with a Java class event
type.

* EventChannel createChannel (String channel Nane, Map<String, String> netadata):
Create a new system timestamped channel with a metadata-based event type.

* EventChannel createChannel (bool ean relation, String applicationTi mestanpProp,
bool ean total Order, List<String> keys, String channel Name, Map<String, String>
net adat a) : Create a new channel with a metadata-based event type.

* EventChannel createChannel (bool ean relation, String applicationTi mestanpProp,
bool ean total Order, List<String> keys, String channel Name, Map<String, String>
net adata, EventBuil der.Factory factory): Create a new channel with a metadata-
based event type.

Processor[] getProcessors(): Returns all Oracle CQL processors created in the current
session.

Processor createProcessor(): Creates an Oracle CQL processor in the current session.

StreanBour ce |ink(StreanSource fronStage, StreanSink toStage): Connects a stage to
stage.

voi d unlink(StreanSource source, StreanSink sink): Disconnects the source from the
sink.

Statenment createView Processor processor, String id, String StatenentVal ue):
Creates an Oracle CQL view.

Statement createQuery(Processor processor, String id, String statenentValue):
Creates an Oracle CQL query.

Obj ect createEvent (String event TypeNane) : Creates an event based on the event type
name. The event is created only when it is available in the Event Type repository.

MapEvent Obj ect creat eMapEvent (Event Channel channel, Map<String, Object> event):
Create a map event for a metadata-based channel.

voi d sendl nsert (String channel Nane, Object event): Send an insert event to the
channel.

voi d sendUpdat e(String channel Nane, Cbject event): Send an update event to the
channel.

voi d sendDel ete(String channel Name, Object event): Send a delete event to the
channel.

14-16

Chapter 14
EPN Command Interface

voi d sendHeart beat (Long tinestanp, String channel Nane): Send a heartbeat to the
channel.

14.4.3 Example

The following example shows a basic Juni t test case.

/1Cet the OSGE service
Servi ceRef erence ref = ctx. get Servi ceRef erence(EpnConmand. cl ass. get Nanme()) ;
conmandSessi on = (EpnConmand) ctx. get Service(ref);

//Begin a session
conmandSessi on. begi n();

//Create an Oracle CQL processor
Processor pl = conmandSessi on. creat eProcessor ("pl");

//Create two stream channels fromthe M/Event Java class.
Event Channel chl = commandSessi on. creat eChannel (fal se, "cl", MEvent.class);
Event Channel ch2 = commandSessi on. creat eChannel (fal se, "c2", MEvent.class);

//Create a listener to retrieve events that equal event el
|/ The MyEvent Li stener class inplenents the Streanfink or RelationSink interface
MyEvent Li stener |istener = new MyEventListener();

/I Connect channel chl and processor pl
conmandSessi on. | i nk((StreanSource) chl, (StreanSink) pl);

/I Connect channel pl and processor ch2
conmandSessi on. | i nk((StreanSource) pl, (StreanSink) ch2);

/[Connect channel ch2 and processor |istener
conmandSessi on. i nk((StreanmSource) ch2, (StreanSink) |istener);

//Create the query in processor pl
conmandSessi on. creat eQuery(pl, "ql", "select * fromcl");

//Create event el and assign two properties, a and 1.
vj ect el = new WEvent("a", 1);

/1Send insert event el to channel chl
chl. sendl nsertEvent (el);

|/ Test whether event el equals the event retrieved by the |istener
assert Equal s(el, |istener.getEvent());

//End the session
conmandSessi on. end() ;

ORACLE 14-17

Debug with Event Record and Playback

You can use the event record and playback feature to debug a running Oracle Stream
Analytics application. While the application runs, you record the events that flow out of
an EPN component into a persistent store. You play the events back at a later stage in
the application such as in an event bean. In the event bean, you query the events and
make fixes to your application based on your findings.

The sample code in this chapter is from the event record and playback example in /
Oracl e/ M ddl ewar e/ ny_osa/ exanpl es/ sour ce/ appl i cations/recpl ay.

This chapter includes the following sections:

* Event Flow

° Berkeley DB

* Record Events

* Play Back Events

* Configure Berkeley DB

» Configure a Component to Record Events

» Configure a Component to Play Back Events

e Start and Stop the Record and Playback of Events.

15.1 Event Flow

ORACLE

The si npl eEvent Sour ce adapter is configured to record events. The recording happens
as events flow out of the adapter. The event St reamchannel is configured to play back
events. The playback happens where events flow into the channel.

The following graphic shows the EPN of the event record and playback example to
demonstrate where you can record events and where you can play events back.

Figure 15-1 Configuring Record and Playback in an EPN

Oy
- e,
evertStream

simpleEventSource \recplayEvemSink playbackHitpPublisher
\ Legend

=adapters =channels P
=names=simpleEvertSource=iname= =name=evertStream=/inames h — e
=record-parameters: =playhack-parameters= S B .@
=frecord-parameters= =hlayback-parameters= Boiapter Channel b sa s

=fadapter= «ichannel=

15-1

Chapter 15
Berkeley DB

15.2 Berkeley DB

Berkeley DB is a fast, scalable, transactional database with industrial grade reliability
and availability.

When you record events, by default the Oracle Stream Analytics server stores them in
Berkeley DB, which is a persistent event store that is bundled with the Oracle Stream
Analytics server. For more information about Berkeley DB, see:

http://ww. oracl e. conl t echnet wor k/ dat abase/ dat abase-t echnol ogi es/ ber kel eydb/
overvi ew i ndex. htni .

When you deploy an application that is configured to use the record and playback
feature, the Oracle Stream Analytics server creates the database schema and an
instance of Berkeley DB in the following directory.

/ Oracl e/ M ddl ewar e/ my_oep/ / user _proj ect s/ domai ns/ dormai nnane/ ser ver nane/ bdb

Note:

The database key is the record time plus the sequence number.

You can use the default Berkeley database configuration as is. You only need to make
configuration changes to customize the location of the Berkeley database instance or
to tune performance. See Configure Berkeley DB for information about how to
configure Berkeley DB.

You can use the event store API to query a store for past events given a record time
range and the component from which the events were recorded. The actual query you
use depends on the event repository provider; for example, you would use Oracle CQL
for the default persistent event store provider included with Oracle Stream Analytics.
You can also use these APIs to delete old events from the event store.

15.3 Record Events

ORACLE

You can configure recording for any component in the EPN that produces events, such
as processors, adapters, channels, and event beans. Processors and channels always
produce events.

Adapters and event beans must implement the Event Sour ce interface.

You can configure events from different components in the EPN to be stored in
different persistent stores, or that all events go to the same store. Only events that are
output by the component are recorded.

You enable the recording of events for a component by updating its configuration file
and adding the recor d- par anet er s element. Using the child elements of r ecor d-

par anet er s, you specify the event store to which the events are recorded, an initial time
period when recording should take place, the list of event types you want to store, and
S0 on.

After you deploy the application and events start flowing through the network,
recording begins either automatically because you configured it to start at a certain

15-2

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

15.4 Play

Chapter 15
Play Back Events

time or because you dynamically start it using administration tools. For each
component you have configured for recording, Oracle Stream Analytics stores the
events that flow out of it to the appropriate store along with a time stamp of the time it
was recorded.

Back Events

You can configure playback for any component in the EPN: processors, adapters,
streams, and event beans. Typically the playback component is a stage later in the
network than the stage that recorded the events.

You enable the playback of events for a component by updating its configuration file
and adding the pl ayback- par anet er s element. Using the child elements of pl ayback-

par anet er s, you specify the event store from which the events are played back, the list
of event types you want to play back (by default all are played back), the time range of
the recorded events you want to play back, and so on. By default, Oracle Stream
Analytics plays back the events in a time accurate manner. However, you can
configure that the events get played back either faster or slower than they originally
flowed out of the component from which they were recorded.

After you deploy the application and events start flowing through the network, you
must start the playback with Oracle Stream Analytics Visualizer or w evs. Adni n. Oracle
Stream Analytics reads the events from the persistent store and inserts them into the
appropriate place in the EPN.

When a component receives a playback event, the playback event looks exactly like
the original event. If a downstream component is configured to record events, then
Oracle Stream Analytics records the arriving playback events and real-time events.

15.5 Configure Berkeley DB

ORACLE

You can use the default Berkeley DB configuration as is. You only need to make
configuration changes to customize the location of the Berkeley database instance or
to set the cache size to tune performance.

To configure an event store for Oracle Stream Analytics server:

1. Stop the Oracle Stream Analytics server instance, if it is running.
2. Open the server config. xn file for editing.

The file is located in / Oracl e/ M ddl ewar e/ my_oep/ user _proj ects/ domai ns/
<domai n_name>/ <server _name>/ config

3. Edit the bdb- confi g element in the config. xn file.
The following example shows a fully configured bdb- confi g element.

<bdb- confi g>
<db- env- pat h>bdb</ db- env- pat h>
<cache-si ze>1000</ cache- si ze>
</ bdb- confi g>

Table 15-1 lists the bdb-confi g child elements.

15-3

Chapter 15
Configure a Component to Record Events

Table 15-1 Child Elements of bdb-config

__|
Child Element Description

db- env-path Specifies the subdirectory in which OracleEvent Processing server
creates the Berkeley DB instances relative to the confi g directory
of your server.

Default: bdb

cache-si ze Specifies the amount of memory, in bytes, available for Berkeley
DB cache entries. You can adjust the cache size to tune Berkeley
database performance. The cache size must be a power of 2, but it
is otherwise limited only by available memory and performance
considerations.

Default: j e. maxMenor yPer cent * JVM maxi num menory.

4. Restart the Oracle Stream Analytics server.

15.6 Configure a Component to Record Events

You can configure any processor, adapter, channel, or event bean in your application
to record events.

This section updates an adapter configuration to record events.

1. Open the component configuration file and add a recor d- par anet er s child element
to the component you want to configure to record events, as follows:

<csv-adapt er>
<nane>St ockTr adeCSVAdapt er </ name>
<recor d- par anet er s>

</ record- paramet er s>
</ csv-dapter>

2. Add child elements to recor d- par anet er s to specify a data set name, the list of one
or more events to be stored, the recording start and stop times, and so on:

<csv-adapt er>
<nane>St ockTr adeCSVAdapt er / name>
<recor d- par anet er s>
<dat aset - nane>r ecpl ay_sanpl e</ dat aset - name>
<event-type-list>
<event -t ype>Tr adeEvent </ event - t ype>
</ event-type-list>

<time-range>
<start>2010- 01- 20T05: 00: 00</ start>
<end>2010- 01- 20T18: 00: 00</ end>
</time-range>

</record- paranet er s>
</ csv- adapt er >

Table 15-2 lists the child elements of recor d- par anet er s that you can specify. Only
dat aset - nane is required.

ORACLE 15-4

ORACLE

Chapter 15
Configure a Component to Record Events

Table 15-2 Child Elements of record-parameters

Child Element

Description

dat aset - nane

event -type-1li st

tine-range

Berkeley DB: Identifies the recorded data and places it in a directory of
this name below the directory specified by the db- env- pat h setting in
the server confi g. xm file.

Oracle RDBMS-based provider: Specifies the database area, or
schema, in which the tables that store the recorded events are
created. When you configure the Oracle RDBMS-based provider, you
must specify this element.

Berkeley DB: Specifies the event types that are recorded to the event
store. If this element is not specified, then Oracle Stream Analytics
records all event types that flow out of the component.

Oracle RDBMS-based provider: You must specify this element.

Specifies the time period during which recording takes place.
Configure the time period with a st art child element to specify a start
time and an end child element to specify the end time.

Express the start and end time as XML Schema dat eTi ne values of
the form:

yyyy- mm ddThh: nm ss

For example, to have recording start on January 20, 2010, at 5:00 am
and end on January 20, 2010, at 6:00 pm, enter the following:

<time-range>
<start>2010- 01- 20T05: 00: 00</start>
<end>2010- 01- 20T18: 00: 00</ end>
</time-range>

For complete details of the XML Schema dat eTi ne format, see
http:// ww. w3. or g/ TR/ xm schema- 2/ #dat eTi me- | exi cal -
representation.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording happens only after you
explicitly start it with Oracle Stream Analytics Visualizer or

w evs. Admi n.

You can specify ti me-range or ti me-range- of f set, but not both.

15-5

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Chapter 15
Configure a Component to Record Events

Table 15-2 (Cont.) Child Elements of record-parameters

Child Element

Description

time-range- of f set

bat ch-si ze

bat ch-ti me- out

max- si ze

max-t hr eads

Specifies the time period during which recording takes place.
Configure the time period with a st art child element to specify a start
time, and a dur at i on child element to specify the length of time to run
the recording.

Express the start time as an XML Schema dat eTi me value of the form:

yyyy- mm ddThh: nm ss

Express the duration in the form:

hh: mm ss

For example, to have recording start on January 20, 2010, at 5:00 am
and continue for 3 hours, enter the following:

<time-range-of f set >
<start>2010-01- 20T05: 00: 00</ start>
<dur at i on>03: 00: 00</ dur at i on>
</time-range-of f set>

For complete details of the XML Schema dat eTi ne format, see
http:// ww. w3. or g/ TR/ xm schema- 2/ #dat eTi me- | exi cal -
representation.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording happens only after you
explicitly start it with Oracle Stream Analytics Visualizer or

wl evs. Admi n.

You can specify ti me-range or ti me-range- of f set, but not both.
Specifies the number of events that Oracle Stream Analytics picks up
in a single batch from the event buffer to write the event store.
Default value is 1000.

Specifies the number of seconds that Oracle Stream Analytics waits

for the event buffer window to fill up with the bat ch- si ze number of
events before writing to the event store.

Default value is 60
When specified, Oracle Stream Analytics uses a stream when writing

to the event store, and this element specifies the size of the stream.
Non-zero values indicate asynchronous writes.

Default value is 1024.
When specified, Oracle Stream Analytics uses a stream when writing
to the event store, and this element specifies the maximum number of

threads to be used to process events for this stream. Setting this value
has no effect when nmax- si ze is 0.

The default value is 1.

ORACLE

15-6

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Chapter 15
Configure a Component to Play Back Events

15.7 Configure a Component to Play Back Events

ORACLE

You can configure any processor, adapter, channel, or event bean in your application
to play back events. The component must downstream from the recording component
so that the playback component can receive the events and play them back.

This section updates a channel configuration to play back events.

1. Open the component configuration XML file and add a pl ayback- par amet er s child
element to the component you want to configure to playback events. For example,
to configure a channel called event St ream

<channel >
<nane>event St r eanx/ nane>
<pl ayback- par anmet er s>

</ pl ayback- par anmet er s>
</ channel >

2. Add child elements to pl ayback- par amet er s to specify a data set, one or more
events to be played back, and so on. For example:

<channel >
<nane>event St r eanx/ name>
<pl ayback- par amet er s>
<dat aset - nane>r ecpl ay_sanpl e</ dat aset - name>
<event-type-list>
<event -t ype>Si npl eEvent </ event -t ype>
</ event-type-list>
</ pl ayback- par amet er s>
</ channel >

Table 15-3 lists the child elements of pl ayback- par anet er s that you can specify. Only
dat aset - nane is required.

Table 15-3 Child Elements of playback-parameters

|
Child Element Description

dat aset - nane Berkeley DB: Identifies the recorded data and places it in a directory of
this name below the directory specified by the db- env- pat h setting in
the server confi g. xm file.

Oracle RDBMS-based provider: Specifies the database area, or
schema, in which the tables that store the recorded events are
created. When you configure the Oracle RDBMS-based provider, you
must specify this element. When you configure the Oracle RDBMS-
based provider, you must specify this element.

event-type-1li st Berkeley DB: Specifies the event types that are played back from the
event store. If this element is not specified, then Oracle Stream
Analytics plays back all event types.

Oracle RDBMS-based provider: You must specify this element.

15-7

ORACLE

Chapter 15
Configure a Component to Play Back Events

Table 15-3 (Cont.) Child Elements of playback-parameters

Child Element

Description

tine-range

time-range-of f set

Specifies the time period during which play back takes place with a
start and end time. Configure the time period with a start child
element to specify a start time and an end child element to specify the
end time.

Express the start and end time as XML Schema dat eTi ne values of
the form:

yyyy- mm ddThh: nm ss

For example, to specify that play back to start on January 20, 2010, at
5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

<time-range>
<start>2010- 01- 20T05: 00: 00</ start>
<end>2010- 01- 20T18: 00: 00</ end>
</time-range>

For complete details of the XML Schema dat eTi ne format, see
http:// ww. w3. or g/ TR/ xm schema- 2/ #dat eTi me- | exi cal -
representation.

If you do not specify a time period, then no events are played back
when the application is deployed and play back happens only after you
explicitly start it using Oracle Stream Analytics Visualizer or

wl evs. Admi n.

You can specify ti me-range or ti me-range- of f set, but not both.
Specifies the time period during which play back takes place with a
start time and a duration. Configure the time period with a start child

element to specify a start time and a dur at i on child element to specify
the length of time to play back events.

Express the start time as an XML Schema dat eTi e value of the form:

yyyy- mm ddThh: nm ss

Express the duration in the form:

hh: nm ss

For example, to specify that play back should start on January 20,
2010, at 5:00am and continue for 3 hours, enter the following

<time-range-of f set >
<start>2010- 01- 20T05: 00: 00</ start >
<dur at i on>03: 00: 00</ dur ati on>
</time-range-of f set>

For complete details of the XML Schema dat eTi ne format, see
http://ww. w3. or g/ TR/ xm schema- 2/ #dat eTi nme- | exi cal -
representation.

If you do not specify a time period, then no events are played back
when the application is deployed and playback happens after you
explicitly start it using Oracle Stream Analytics Visualizer or

w evs. Admi n.

You can specify ti me-range or ti me-range- of f set, but not both.

15-8

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Chapter 15
Start and Stop the Record and Playback of Events

Table 15-3 (Cont.) Child Elements of playback-parameters

e
Child Element Description

pl ayback- speed Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A value of
2 means that events are played back 2 times faster than the original
record speed. A value of 0.5 means that events will be played back at
half the speed.

r epeat Specifies whether to playback events again after the playback of the
specified time interval completes.

Valid values are true and f al se. Default value is f al se. A value of

t rue means that the repeat of playback continues an infinite number of
times until it is deliberately stopped. Fal se means that events are
played back once.

max- si ze If specified, Oracle Stream Analytics uses a stream when playing back
events from the event store. This element specifies the size of the
stream with non-zero values indicating asynchronous writes.

Default value is 1024.

max-t hr eads If specified, Oracle Stream Analytics uses a stream to play back
events from the event store. This element specifies the maximum
number of threads to use to process events for the stream. This value
has no effect when nax- si ze is 0.

The default value is 1.

15.8 Start and Stop the Record and Playback of Events

After you configure the record and playback functionality for the components of an
application, and you deploy the application to Oracle Stream Analytics, the server
starts to record events only when you have configured explicit star and stop
information in the configuration file.

For example, if you included the following element in a component configuration, then
recording starts on January 20, 2010 at 5:00 am:

<time-range>
<start>2010- 01-20T05: 00: 00</ start >
<end>2010- 01- 20T18: 00: 00</ end>
</time-range>

To enable the recording and playback of events, use Oracle Stream Analytics
Visualizer or wi evs. Adni n. Once recording and playback are enabled, they start and
stop according to their configuration settings.

For more information, see:
e Start Playback in Administering Oracle Stream Analytics
» Stop Playback in Administering Oracle Stream Analytics

Visualizer and w evs. Adni n use managed beans (MBeans) to dynamically start and
stop event recording and playback and manage the event store configuration. A
managed bean is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Java EE solution for monitoring and managing resources on a

ORACLE 15-9

Chapter 15
Start and Stop the Record and Playback of Events

network. You can create your own administration tool and use JMX to manage event
store functionality with com bea. wl evs. managenent . conf i gur ati on. St ageMBean.

For more information, see:

» Java API Reference for Oracle Stream Analytics.

ORACLE 15-10

Performance Tuning

This chapter describes techniques for improving Oracle Stream Analytics application
performance by using partitioning and batching, and includes information specific to
high availability performance tuning.

This chapter includes the following sections:

e Channel and JMS Performance Tuning

* High Availability Performance Tuning.

16.1 Channel and JMS Performance Tuning

You can tune application performance of by configuring an event partitioner channel,
batching events, and partitioning an incoming Java Message Service (JMS) stream.

Event partitioner channel: You can improve scalability by configuring an event
partitioner channel. When you configure a channel to use an event partitioner, each
time an incoming event arrives, the channel selects a listener and dispatches the
event to that listener instead of broadcasting each event to every listener for
partitioning events on a channel across its output event sinks.

Batching channel: By default, a channel processes events as they arrive.
Alternatively, you can configure a channel to batch events that have the same time
stamp and were output from the same query by setting the w evs: channel attribute
bat chi ng to t rue. See Batch Processing Channels for an example.

Scalability with ActiveActiveGroupBean. Use

com oracl e. cep. cl ust er. hagr oups. Act i veAct i veG oupBean to partition an incoming JMS
stream in Oracle Event Processing applications with the notification groups that the
Acti veAct i veG oupBean creates. For more information, see Scalable Applications.

16.2 High Availability Performance Tuning

ORACLE

When creating high-availability applications for deployment to multiserver domains,
consider the following performance tuning options.

Host configuration: To maximize high availability performance, ensure that all hosts
in the multiserver domain are configured with equivalent processing capacity (similar
number and type of CPUs), and that all hosts have sufficient memory and disk for the
needs of the application

High availability input adapter and quality of service: The Oracle Stream Analytics
high availability input adapter is applicable to all high availability quality of service
options. However, because the high availability input adapter increases performance
overhead, it is not appropriate for some high availability quality of service options, such
as those described in Simple Failover and Simple Failover with Buffering. If you are
using application time from the event, then you do not need to use the input adapter.
Application time from the event is always preferable from a performance standpoint.

16-1

ORACLE

Chapter 16
High Availability Performance Tuning

High availability input adapter configuration: Consider increasing the bat ch- si ze to
reduce the amount of time the primary server spends broadcasting event messages
and to reduce the amount of time the secondary servers spend processing these
messages. Increasing the bat ch-si ze can increase the likelihood of missed and
duplicate events when the primary fails before broadcasting an event message with a
large number of events.

Broadcast output adapter configuration: Decrease the tri mi ng-interval to reduce
the amount of time the primary server spends broadcasting trimming messages and to
reduce the amount of time the secondary servers spend processing these messages.
Decreasing the tri nmi ng-i nt erval may increase recovery time as the new primary
server's in-memory queue will be more out of date relative to the old primary.

Oracle Coherence performance tuning options. When you configure Oracle
Coherence in a high-availability architecture, consider the following options:

* Increase the Oracle Coherence heartbeat time out machine frequency to reduce
the number of heartbeats before failure. See Oracle Coherence Developer's Guide
at http://downl oad. oracl e. com docs/ cd/ E15357_01/ coh. 360/ 15723/
tune_perftune. htm

* Implement the Oracle Coherence Portable Object Format (POF) for serialization to
improve messaging performance. POF is a language agnostic binary format that
was designed to be very efficient in both space and time. Using POF instead of
Java serialization can greatly improve performance.

16-2

http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_perftune.htm
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_perftune.htm

High Availability Applications

High availability is critical to Oracle Stream Analytics applications because they
continuously monitor streaming data. Oracle Stream Analytics provides application
design patterns and high availability adapters, to enable you to increase the backup
and failover processing capabilities of you applications.

This chapter includes the following sections:

* Oracle Coherence

* Architecture

» Life Cycle and Failover

e Deployment Group and Notification Group
e High Availability Adapters

e High Availability and Scalability

e Choose a Quality of Service Option

* Design Applications for High Availability

* Configure High Availability Quality of Service
» Configure High Availability Adapters.

17.1 Oracle Coherence

Oracle Stream Analytics high availability options depend on Oracle Coherence. You
cannot implement Oracle Stream Analytics high availability options without Oracle
Coherence.

When considering performance tuning, be sure to evaluate your Oracle Coherence
configuration in addition to your Oracle Stream Analytics application.

17.2 Architecture

ORACLE

Oracle Stream Analytics supports an active-active high availability architecture. This
approach has the advantages of high performance, simplicity, and short failover time
to mitigate the likelihood and impact of data and service faults.

Deploy high availability applications to a group of two or more Oracle Stream Analytics
servers running in a multiserver domain. Oracle Stream Analytics chooses one server
in the group to be the active primary server. The other servers become active
secondary servers.

The primary and secondary servers are configured to receive the same input events

and process them in parallel but only the primary server outputs events to the Oracle
Stream Analytics application client. Depending on the quality of service you choose,

the secondary servers buffer their output events using in-memory queues and the

17-1

Chapter 17
Life Cycle and Failover

primary server keeps the secondary servers up to date with which events the primary
has already output.

Figure 17-1 shows a typical configuration with one active server and two primary
servers.

Figure 17-1 Oracle Stream Analytics High Availability: Primary and Secondary
Servers

Input Streams

Multi-Server Domain
{Deployment Group and
Motification Group)

l , l
Server 1 Server 2 Server 3
a
State State
Primary Secondary Secondary
i Clusue Queus

| Cutput Streams

17.3 Life Cycle and Failover

You cannot specify the initial primary server. Initially, the first server in the multiserver
domain to start up becomes the primary so by starting servers in a particular order,
you can influence primary selection. There is no way to force a particular, running
server to become the primary. If a primary fails and comes back up, then it does not
automatically become the primary again unless the current primary fails and causes a
failover.

Figure 17-2 shows a state diagram for the Oracle Stream Analytics high availability life
cycle. In this diagram, the state names (SECONDARY, BECOM NG_PRI MARY, and PRI MARY)
correspond to the Oracle Stream Analytics high availability adapter Runt i neMBean
method get St at e return values. These states are specific to Oracle Stream Analytics.
See High Availability Input Adapter for more information about the high availability
adapter.

ORACLE 17-2

Chapter 17
Life Cycle and Failover

Figure 17-2 Oracle Stream Analytics High Availability Life Cycle State Diagram

[Start Server With .
Deployed Application] kl [Deploy Application)

econdary «————

F._r

[Current Primary Fails]

Becoming_Primary

[Configureable Readiness
Threshold Met]

Primary

o

[Host Fails and
Rejoins Domain]

[Unregister ApplicationRuntimeMBean
and Uninstall Completed]

-

17.3.1 Secondary Failure

In general, when a secondary server fails, there is no effect on Oracle Stream
Analytics application operation as Figure 17-3 shows. Regardless of the quality of
service you choose, there are no missed or duplicate events.

Figure 17-3 Secondary Failure

‘ Input Streams

Multi-Server Domain
(Deployment Group and
Matification Group)

! l

Server 1 Server 2 Server 3

Primary Secondary

i

Queue
Output Streams

Queue

17.3.2 Primary Failure and Failover

When a primary server fails, as Figure 17-4 shows, Oracle Stream Analytics performs
a failover that can cause missed or duplicate events, depending on the quality of

service you choose.

ORACLE' 17-3

Chapter 17
Deployment Group and Notification Group

Figure 17-4 Primary Failure and Failover

| Input Streams
Multi-Server Domain
(Deployment Group and
Maotification Group)
Server 1 Server 2 Server 3
State State
Primary Secondary

B

Cueue
Output Streams

During failover, Oracle Stream Analytics selects a new primary and the new primary
transitions from the SECONDARY state to the BECOM NG PRI MARY state. Depending on the
quality of service you choose, the new primary does not transition to PRI MARY state until
a configurable readiness threshold is met. For details, see the specific quality of
service option in Choose a Quality of Service Option.

17.3.3 Rejoining the High Availability MultiServer Domain

When a new Oracle Stream Analytics server is added to an Oracle Stream Analytics
high availability multiserver domain or an existing failed server restarts, the server
does not fully join the Oracle Stream Analytics high availability deployment and
notification groups until all applications deployed to it have fully joined. The type of
application determines when it can fully join.

If the application must generate exactly the same sequence of output events as
existing secondaries (a Type 1 application), then it must be able to rebuild its internal
state by processing input streams for some finite period of time (the war m up- wi ndow

I engt h period). This war m up-w ndow- | engt h time determines the minimum time it takes
for the application to fully join the Oracle Stream Analytics high availability deployment
and notification groups.

If the application does not need to generate exactly the same sequence of output
events as existing secondaries (a Type 2 application), then it does not require a war m
up- wi ndow | engt h time and fully joins the Oracle Stream Analytics high availability
deployment and notification groups when it deploys.

For more information, see Choose an Adequate warm-up-window-length Time.

17.4 Deployment Group and Notification Group

All of the servers in the multiserver domain belong to the same deployment group. the
deployment group is the group to which you deploy an application. For the purposes of
Oracle Stream Analytics high availability, you must deploy the same application to all
of the servers in this group.

ORACLE 17-4

Chapter 17
High Availability Adapters

By default, all of the servers in the multiserver domain also belong to the same
notification group. The servers listen to the notification group for membership
notifications that indicate when a server fails (and exits the group) or resumes
operation (and rejoins the group), and for synchronization notifications from the
primary.

If you need to scale your Oracle Stream Analytics high availability application, use the
Acti veActi veG oupBean to define a notification group that allows two or more servers to
function as a primary server unit while retaining the convenience of a single
deployment group that spans all servers (primaries and secondaries).

You must use Oracle Coherence-based clustering to create the multiserver domain
deployment group. You can use either default groups or custom groups.

For more information, see:

e High Availability and Scalability

» Oracle Coherence

17.5 High Availability Adapters

ORACLE

To implement Oracle Stream Analytics high availability, add the optional high
availability input adapter and the required high availability output adapters to the EPN.

High Availability Input Adapter

The optional high availability input adapter in the primary server communicates with
the corresponding high availability input adapters in each secondary server to
normalize event time stamps. Oracle Stream Analytics high availability provides one
type of high availability input adapter.

See High Availability Input Adapter.

High Availability Output Adapters

To have high availability functionality in your application, put a high availability output
adapter before each output adapter in your EPN. The high availability output adapter
in the primary server outputs events to the output streams that connect the Oracle
Stream Analytics application to its downstream client.

The high availability output adapter in the primary also communicates with the
corresponding high availability output adapters in each secondary, and depending on
the high availability quality of service you choose, can instruct the secondary output
adapters to trim their in-memory queues of output events.

For information about the high availability output adapters, see Buffering Output
Adapter, Broadcast Output Adapter, and Correlating Output Adapter. Which output
adapter you choose is determined by the high availability quality of service you
choose. See Choose a Quality of Service Option.

Figure 17-5 shows a simplified EPN with all possible high availability adapters in place.
The figure shows no channels and one processor.

17-5

Chapter 17
High Availability Adapters

Figure 17-5 High Availability Adapters in the EPN

HaInputadapter Processor HAaoutputadapter

COutputAdapter

InputAdapter

Server 2
Secondary

|
| @weue Trimming
Messages

Streams | (Opiii:na\)

Hey, Timestamp
Input Messages

Cutput
Streams

HaInputadapter Processor HAoutputAdapter

CutputAdapter

InputAdapter

Serveri
Primary

Multi-Server Domain
(Deployment Group and Motification Groug)

17.5.1 High Availability Input Adapter

ORACLE

Each event is associated with a point in time at which the event occurred. There are
two different approaches to generating event timestamps: application timestamps and
system timestamps (see Channels for information about application and system time
stamps). Application time means that a time value is assigned to each event externally
by the application before the event enters a CQL processor. System time means that a
time value is associated with an event automatically by Oracle Stream Analytics when
it arrives at a CQL processor.

Application time is generally the best approach for applications that need to be highly
available. The application time is associated with an event before the event is sent to
Oracle Stream Analytics, so it is consistent across active primary and secondary
instances. System time can cause application instances to generate different results
because the time value associated with an event can be different on each instance
due to system clocks not being synchronized.

Using system time is not a problem for applications whose CQL queries do not use
time-based windows. Applications that use only event-based windows depend only on
the arrival order of events rather than the arrival time, so system time can be used in
this case.

For applications that use time-based windows and do not have externally generated
(application) time stamps, the optional Oracle Stream Analytics high availability input
adapter can be used to provide a consistent time value across all servers. The input
adapter instance on the primary server assigns a time (in nanoseconds) to events as
they arrive at the adapter and forwards the time values assigned for each event to all
secondary servers.

Because a time value is assigned to each event before the event reaches any
downstream channels in the EPN, downstream channels should be configured to use
application time so that they do not assign a new time value to events as they arrive at
the channel.

17-6

Chapter 17
High Availability Adapters

Input events must have a key that uniquely identifies each event in order to use this
adapter.

You can configure the Oracle Stream Analytics high availability input adapter to send
heartbeat events.

The Oracle Stream Analytics high availability input adapter is applicable to all high
availability quality of service options. However, because the high availability input
adapter increases performance overhead, it is not appropriate for some high
availability quality of service options (such as Simple Failover and Simple Failover with
Buffering). For these options, you should instead consider using application time with
some incoming event property.

For more information, see:
* Light-Weight Queue Trimming
* Precise Recovery with IMS

* Configure the High Availability Input Adapter.

17.5.2 Buffering Output Adapter

The Oracle Stream Analytics high availability buffering output adapter implements a
buffered queue trimming strategy. The buffer is a sliding window of output events from
the stream. The size of the window is measured in milliseconds.

The Oracle Stream Analytics high availability buffering output adapter applies to
simple failover, and simple failover with buffering high availability quality of service
options.

For more information, see:

e Simple Failover
* Simple Failover with Buffering

» Configure the Buffering Output Adapter.

17.5.3 Broadcast Output Adapter

The Oracle Stream Analytics high availability broadcast output adapter implements a
distributed queue trimming strategy. The active primary instance broadcasts
messages to the active secondary instances in the notification group telling them when
to trim their local representation of the queue.

The Oracle Stream Analytics high availability broadcast output adapter applies to the
light-weight queue trimming high availability quality of service option.

For more information, see:
e Light-Weight Queue Trimming
* Configure the Broadcast Output Adapter.

17.5.4 Correlating Output Adapter

The Oracle Stream Analytics high availability correlating output adapter correlates two
event streams, usually from JMS. This adapter correlates an inbound buffer of events
with a second source of the same event stream, outputting the buffer if correlation fails

ORACLE 177

Chapter 17
High Availability and Scalability

after a configurable time interval. Correlated events are trimmed from the queue.
Correlated events are assumed to be in-order.

The Oracle Stream Analytics high availability correlating output adapter applies to
precise recovery with IMS high availability quality of service option.

For more information, see:

* Precise Recovery with IMS

» Configure the Correlating Output Adapter.

17.6 High Availability and Scalability

If you need to scale your Oracle Stream Analytics high availability application, use the
notification groups Spring bean, Acti veActi veG oupBean to increase scalability in IMS
applications.

The Acti veActi veG oupBean defines a notification group that allows two or more servers
to function as a high availability unit while retaining the convenience of a single
deployment group that spans all servers (primaries and secondaries).

Figure 17-6 shows three Oracle Stream Analytics application scenarios progressing
from the simplest configuration, to high availability, and then to both high availability
and scalability.

Figure 17-6 High Availability and Scalability

Single-Server Domain High Availability High Availability and Scalability
jrTmTmmmm ey [t
1 Deployment ¢ + Deployment '
E Group E v Group '
[L] : :
i | Host 1 i ! | Notification !
Host 1 1 | Primary H | Group 1 '
)) ’ "
Event Event H i | Event I :
— > — V 0st 1 !
Input Output : i Qutput ¢ || Primary :
Event : : I ' | Event
Input E Host 2 E . Output
i | Secondary ' '
i I P | Host2
i i | | Secondary
b '
Event '
Input | | | Netification
v | Group 2
P | Host 3 |
o | | Primary :
' i | Event
' | Output
i || Host 4
* || Secondary
el
S ——

ActiveActiveGroupBean
generated Motification Group

ORACLE 17-8

Chapter 17
Choose a Quality of Service Option

Most applications begin in a single-server domain without high availability. In this case,
the simplest scenario, which is an Oracle Stream Analytics application running on one
Oracle Stream Analytics server processes an input event stream and produces output
events.

High availability scenario: The application is configured to use Oracle Stream
Analytics high availability options, is deployed to the deployment group of a multiserver
domain composed of two server, and only the primary server outputs events.

High availability and scalability scenario: The high availability application is
configured to use the Acti veAct i veG oupBean to define notification groups. Each
notification group contains two or more servers that function as a single, high
availability unit. In this scenario, only the primary server in each notification group
outputs events. Should the primary server in a notification group go down, an Oracle
Stream Analytics high availability fail over occurs and a secondary server in that
notification group is declared the new primary and resumes outputting events
according to the Oracle Stream Analytics high availability quality of service you
configure.

For more information, see Configure Partitioning with High Availability.

17.7 Choose a Quality of Service Option

Choose the quality of service option that suits your application's tolerance for missed
and duplicate events and expected event throughput. Note that primary and secondary
server hardware requirements increase as the quality of service becomes more
precise.

You can choose any of the quality of service options that Table 17-1 lists.

Table 17-1 Oracle Stream Analytics High Availability Quality of Service

High Availability Option Missed Duplicate Performanc
Events? Events? e Overhead

Simple Failover Yes (many) Yes (few) Negligible
Simple Failover with Buffering Yes (few) Yes (many) Low
Light-Weight Queue Trimming No Yes (few) Low-Medium
Precise Recovery with IMS No No High

17.7.1 Simple Failover

ORACLE

The simple failover high availability quality of service is characterized by the lowest
performance overhead (fastest recovery time) and the least data integrity (both missed
events and duplicate events are possible during failover).

The primary server outputs events and secondary servers discard their output events
because they do not buffer output events. If the current active primary fails, a new
active primary is chosen and begins sending output events once it is notified.

During failover, many events can be missed or duplicated by the new primary
depending on whether it is running ahead of or behind the old primary, respectively.

During the failover window, events can be missed. For example, if you process 100
events per second and failover takes 10 seconds, then you miss 1000 events

17-9

Chapter 17
Choose a Quality of Service Option

The new primary server enters the PRI MARY state immediately. There is no configurable
readiness threshold that must be met before the new primary server transitions out of
the BECOM NG_PRI MARY state. When an Oracle Event Processing server rejoins the
multiserver domain, it is immediately available as a secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter (with a sliding window of size zero) before
each output adapter. To reduce performance overhead, rather than use a high
availability input adapter, use application time with some incoming event property.

For more information, see Configure a Simple Failover.

17.7.2 Simple Failover with Buffering

The simple failover with buffering high availability quality of service is characterized by
a low performance overhead (faster recovery time) and increased data integrity (no
missed events but many duplicate events are possible during failover).

The primary server outputs events and the secondary servers buffer their output
events. If the current active primary fails, a new active primary is chosen and begins
sending output events once it is notified.

During the failover window, events might be missed. For example, if you are
processing 100 events per second and failover takes 10 seconds, then you miss 1000
events. If the secondary buffers are large, a significant number of duplicates can be
output. On the other hand, a larger buffer reduces the chances of missed messages.

When an Oracle Stream Analytics server rejoins the multiserver domain, if your
application is an Oracle Stream Analytics high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), then it must wait the war m up- wi ndow- | engt h time you configure for the
Oracle Stream Analytics high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter with a sliding window of size greater than zero
before each output adapter. To reduce performance overhead, rather than use a high
availability input adapter, use application time with some incoming event property.

For more information, see:

* Choose an Adequate warm-up-window-length Time

» Configure Simple Failover With Buffering.

17.7.3 Light-Weight Queue Trimming

ORACLE

This high availability quality of service is characterized by a low performance overhead
(faster recovery time) and increased data integrity (no missed events but a few
duplicate events are possible during failover).

The active primary communicates to the secondaries the events that it has actually
processed. This enables the secondaries to trim their buffer of output events so that it
contains only those events that have not been sent by the primary at a particular point
in time. Because events are only trimmed after they have been sent by the current
primary, this allows the secondary to avoid missing any output events when there is a
failover.

17-10

Chapter 17
Choose a Quality of Service Option

The frequency with which the active primary sends queue trimming messages to
active secondaries is configurable:

* Every n events (n>0)
This limits the number of duplicate output events to at most n events at failover.
* Every n milliseconds (n>0)

The queue trimming adapter requires a way to identify events consistently among the
active primary and secondaries. The recommended approach is to use application
time to identify events, but any key value that uniquely identifies events works.

The advantage of queue trimming is that output events are never lost. There is a slight
performance overhead at the active primary, however, for sending the trimming
messages that need to be communicated. This overhead increases as the frequency
of queue trimming messages increases.

During failover, the new primary enters the BECOM NG_PRI MARY state and does not
transition into the PRI MARY state until its event queue (that it was accumulating as a
secondary) has been flushed. During this transition, new input events are buffered and
some duplicate events can be output.

When an Oracle Stream Analytics server rejoins the multiserver domain, if your
application is an Oracle Stream Analytics high availability Type 1 application (an
application that must generate exactly the same sequence of output events as existing
secondaries), then it must wait the war m up-wi ndow- | engt h time you configure for the
Oracle Stream Analytics high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability input adapter after each input adapter and a high availability broadcast
output adapter before each output adapter.

For more information, see Configure Light-Weight Queue Trimming.

17.7.4 Precise Recovery with IMS

The precise recovery with JIMS high availability quality of service is characterized by a
high performance overhead (slower recovery time) and maximum data integrity (no
missed events and no duplicate events during failover). This high availability quality of
service is compatible with only JMS input and output adapters.

In the precise recovery with JIMS high availability quality of service, the focus is not on
transactional guarantees along the event path for a single-server, but on guaranteeing
a single output from a set of servers. To achieve guarantee, secondary servers listen
over JMS to the event stream being published by the primary. As Figure 17-7 shows,
this incoming event stream is a source of reliable queue-trimming messages that the
secondaries use to trim their output queues. If IMS is configured for reliable delivery,
we can be sure that the stream of events seen by the secondary is precisely the
stream of events output by the primary and so failover allows the new primary server
to output precisely those events not delivered by the old primary server.

ORACLE 17-11

Chapter 17
Design Applications for High Availability

Figure 17-7 Precise Recovery with JMS

Input Streams

! , !

Server 1 Server 2 Server 3
State State State
Secondary Primary Secondary

[. [

Queus Queue
Output Streams

Trim Event Trim Event

JMS Providar

During failover, the new primary server enters the BECOM NG_PRI MARY state and does not
transition into the PRI MARY state in its event queue (that was accumulating as a
secondary) has been flushed. During this transition, new input events are buffered and
no duplicate events are output.

When an Oracle Stream Analytics server rejoins the multiserver domain, if your
application is an Oracle Stream Analytics high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), it must wait the war m up- wi ndow- | engt h time you configure for the Oracle
Stream Analytics high availability output adapter before it is available as a secondary
server.

To implement the precise recovery with JIMS high availability quality of service, you
configure your EPN with a high availability input adapter after each input adapter and a
high availability correlating output adapter before each output adapter.

To increase scalability, you can also use the cluster groups bean with high availability
quality of service.

For more information, see:

» Configure Precise Recovery With IMS

* Partition an Incoming JMS Event Stream.

17.8 Design Applications for High Availability

ORACLE

When you design your application for high availability, consider the primary use case,
design patterns, and Oracle CQL query restrictions discussed here.

Although you can implement Oracle Stream Analytics high availability declaratively, to
fully benefit from the high availability quality of service you choose, you must design
your Oracle Stream Analytics application to take advantage of the high availability
options that Oracle Stream Analytics provides.

17-12

Chapter 17
Design Applications for High Availability

17.8.1 Primary High Availability Use Case

You can adapt high availability options to various Oracle Stream Analytics application
designs but in general, Oracle Stream Analytics high availability is designed for the
following use case:

An application receives input events from one or more external systems.

The external systems are publish-subscribe style systems that allow multiple
instances of the application to connect simultaneously and receive the same
stream of messages.

The application does not update any external systems in a way that would cause
conflicts when multiple copies of the application run concurrently.

The application sends output events to an external downstream system. Multiple
instances of the application can connect to the downstream system
simultaneously, although only one instance of the application can send messages
at any one time.

Within these constraints, the following different cases are of interest:

The application is allowed to skip sending some output events to the downstream
system when there is a failure. Duplicates are also allowed. Use the "Simple
Failover" high availability quality of service option.

The application is allowed to send duplicate events to the downstream system, but
must not skip any events when there is a failure. Use the Simple Failover with
Buffering and Light-Weight Queue Trimming high availability quality of service
options.

The application must send exactly the same stream of messages/events to the
downstream system when there is a failure, modulo a brief pause during which
events may not be sent when there is a failure. Use the Precise Recovery with
JMS high availability quality of service option.

17.8.2 High Availability Design Patterns

When designing your Oracle Stream Analytics application for use with Oracle Stream
Analytics high availability options, observe the following design patterns:

ORACLE

Select the Minimum High Availability Your Application can Tolerate
Use High Availability Components at All Ingress and Egress Points
Preserve What You Need

Limit Oracle Stream Analytics Application State

Choose an Adequate warm-up-window-length Time

Ensure Applications are Idempotent

Source Event Identity Externally

Understand the Importance of Event Ordering

Write Oracle CQL Queries with High Availability in Mind

Avoid Coupling Servers

Plan for Server Recovery.

17-13

Chapter 17
Design Applications for High Availability

17.8.2.1 Select the Minimum High Availability Your Application can Tolerate

Be sure that the extra cost of precise recovery (per-stage throughput decrease) is
actually necessary for your application.

17.8.2.2 Use High Availability Components at All Ingress and Egress Points

Use a high availability input adapter after each regular input adapter and use a high
availability output adapter before each regular output adapter.

17.8.2.3 Preserve What You Need

Oracle Stream Analytics systems receive a large number of raw input events that are
gueried to generate a smaller number of relevant events. In general it makes sense to
preserve the relevant event because there are fewer of them, and they are more
valuable.

17.8.2.4 Limit Oracle Stream Analytics Application State

Oracle Stream Analytics systems enable you to query windows of events. It can be
tempting to build systems with very large windows, but this increases the state that
needs to be rebuilt when failure occurs. In general it is better to think of long-term state
as something kept in stable storage, such as a distributed cache or a database to
leverage the high availability facilities of these technologies.

17.8.2.5 Choose an Adequate warm-up-window-length Time

When a new Oracle Stream Analytics server is added to a high availability multiserver
domain or when an existing failed server restarts, the server does not fully join the
Oracle Stream Analytics high availability deployment and notification groups until all
applications deployed to it have fully joined. The type of application determines when it
fully joins.

Oracle Stream Analytics high availability applications can be described as Type 1 or
Type 2 applications as Table 17-2 shows.

Table 17-2 Oracle Stream Analytics High Availability Application Types

Application Must generate exactly Must be able to rebuild Must wait this period of
Type the same sequence of internal state by time before it has fully
output events? processing input joined?
streams within a finite
period of time?

Type 1 Yes Yes Yes
Type 2 No No No

For more information, see Rejoining the High Availability MultiServer Domain.

ORACLE 17-14

Chapter 17
Design Applications for High Availability

17.8.2.5.1 Type 1 Applications

A Type 1 application requires the new secondary server to generate exactly the same
sequence of output events as existing secondary servers once it fully joins the high
availability deployment and notification groups.

A Type 1 application must be able to rebuild its internal state by processing its input
streams for a finite period of time (war m up-wi ndow- | engt h time), after which it generates
the same stream of output events as other secondary servers running the application.

Configure the war m up- wi ndow | engt h time on a high availability output adapter. Specify
the length of the war m up- wi ndow- | engt h time length in seconds or minutes. For
example, if the application contains Oracle CQL queries with range-based windows of
5, 7, and 15 minutes, then the minimum war m up- wi ndow- | engt h time is 15 minutes (the
maximum range-based window size). Oracle recommends that the maximum window
length be padded with a few minutes to ensure that the necessary state is available.
So, in the previous example 17 minutes or 20 minutes would be a good length for the
war m up-wi ndow | engt h time.

The server uses system time during the war m up-wi ndow- | engt h time period, so the
server time is not directly correlated with the application time associated with events
being processed.

Type 1 applications must only be interested in events that occurred during a finite
amount of time. All range-based Oracle CQL windows must be shorter than the war m
up- wi ndow | engt h time and tuple-based windows must be qualified by time. For
example, the application should only query the last 10 events if they occurred within
the last five minutes. Applications that do not have this property cannot be Type 1
applications and cannot use the war m up-wi ndow- | engt h period.

For example, an application that uses an tuple-based partitioned window that has no
time qualification cannot use the war m up- wi ndow | engt h period because an arbitrary
amount of time is required to rebuild the state of the window.

If a Type 1 application uses the high availability broadcast output adapter, it can trim
events with a unique application-specific key, or a monotonic key like application time.
Trimming events with application time is encouraged because it is more robust and
less susceptible to bugs in the application that can cause an output event to not be
generated.

For more information, see:

e Oracle CQL Query Restrictions
» Buffering Output Adapter

* Broadcast Output Adapter

e Correlating Output Adapter

17.8.2.5.2 Type 2 Applications

ORACLE

A Type 2 application does not require the new secondary server to generate the same
sequence of output events as existing secondary servers once it fully joins the high
availability deployment and notification groups. It simply requires that the new cluster
member generate valid output events with respect to the point in time at which it
begins processing input events.

17-15

Chapter 17
Design Applications for High Availability

A Type 2 application does not require a war m up-wi ndow | engt h period.

Most applications are Type 2 applications. It is common for an application to be
brought up at an arbitrary point in time (on the primary Oracle Stream Analytics
server), begin processing events from input streams at that point, and generate valid
output events. The input stream is not paused while the application starts and input
events are constantly being generated and arriving. You can assume that in many
cases a secondary stage that does the same thing, but at a slightly different time, also
produces output events that are valid from the point of view of the application,
although not necessarily identical to those events produced by the primary server
because of slight timing differences.

For example, a financial application that only runs while the market is open might
operate as a Type 2 application as follows: All servers can be brought up before the
market opens and begin processing incoming events at the same point in the market
data stream. Multiple secondary servers can be run to protect against failure, and if the
number of secondary servers is sufficient while the market is open, then do not restart
secondary servers that fail or add additional secondary servers because no secondary
server needs to recover its state.

17.8.2.6 Ensure Applications are Idempotent

You scan run two copies of an application on different servers and the copies do not
conflict in a shared cache or database. If you use an external relation (such as a cache
or table), then you must ensure that when a server rejoins the cluster, your application
accesses the same cache or table as before. The application must join to the same
external relation again. The data source defined on the server must not have been
changed to ensure that you are pulling data from same data source.

17.8.2.7 Source Event Identity Externally

Many high availability solutions require that events be correlated between different
servers. To correlate events, the events must be universally identifiable. The best way
to make event universally identifiable is use external information, preferably a time
stamp, to seed the event. For more information, see Prefer Application Time .

17.8.2.8 Understand the Importance of Event Ordering

ORACLE

Primary and secondary servers must generate the same output events and in exactly
the same order when you choose high availability quality of service options that use
gueue trimming and equality-based event identify (non-monotonic event identifiers that
do not increase continually). Generating output events in different orders can cause
missed output events or unnecessary duplicate output events when a failure occurs.

Consider the output event streams shown in Figure 17-8. The primary server has
output events a, b, and c. After outputting event c, the primary sends the secondary a
gueue trimming message.

Figure 17-8 Event Order

Output Everit Stream —p-
Primary: ife,d c ba}
Trim

Secondary: {f,c,d e b,at

17-16

Chapter 17
Design Applications for High Availability

The secondary server trims all events in its queue generated prior to event ¢ including
event c itself. In this case, the set of events trimmed will be {a, b, e, d, c}, whichis
wrong because the primary server has not yet output events d and e. If a failover
occurs after processing the trimming message for event c, events are lost.

17.8.2.8.1 Prefer Deterministic Behavior

For an application to generate events in the same order when run on multiple
instances, it must be deterministic. The application must not rely on things like:

* Random number generators that can return different results on different machines.

e Methods like System get TimeM | | i s or Syst em nanoTi ne that can return different
results on different machines because the system clocks are not synchronized.

17.8.2.8.2 Avoid Multithreading

Because thread scheduling algorithms are very timing dependent, multithreading can
be a source of nondeterministic behavior in applications. Different threads can be
scheduled at different times on different machines.

For example, avoid creating an EPN in which multiple threads send events to a high
availability adapter in parallel. If such a channel is an event source for a high
availability adapter, it would cause events to be sent to the adapter in parallel by
different threads and could make the event order nondeterministic. Also, do not send
events to the mediator (JMS server) with multiple threads, which acts as an event
source.

17.8.2.8.3 Prefer Monotonic Event Identifiers

Event identifiers can be monotonic or non-monotonic. A monotonic identifier is one
that increases continually (such as a time value). A non-monotonic identifier does not
increase continually and may contain duplicates.

In general, design your application with monotonic event identifiers. With a monotonic
event identifier, the Oracle Stream Analytics high availability adapter can handle an
application that may produce events out of order.

17.8.2.9 Write Oracle CQL Queries with High Availability in Mind

Not all Oracle CQL query usage is supported when using Oracle Stream Analytics
high availability. You might need to redefine your Oracle CQL queries to address these
restrictions. For more information, see Oracle CQL Query Restrictions .

17.8.2.10 Avoid Coupling Servers

ORACLE

The best high availability performance for Oracle Stream Analytics systems comes
when servers can run without requiring coordination. Generally this can be done when
there is no shared state, and the downstream system can tolerate duplicates.

Increasing levels of high availability are targeted at increasing the fidelity of event

stream that the downstream system sees, but the increase in fidelity has a

performance penalty.

17-17

Chapter 17
Design Applications for High Availability

17.8.2.11 Plan for Server Recovery

When a secondary server rejoins the multiserver domain, the server needs time to
rebuild the application state to match the current primary and active secondaries. See
Choose an Adequate warm-up-window-length Time.

The time it takes for a secondary server to become available as an active secondary
server after it rejoins the multiserver domain is a factor in the number of active
secondary servers you require.

If a secondary is declared to be the new primary server before it is ready, the
secondary server throw an exception.

17.8.3 Oracle CQL Query Restrictions

In a high availability application, Oracle CQL queries have the following restrictions.

17.8.3.1 Range-Based Windows

In a Type 1 application where the application must generate exactly the same
sequence of output events as existing secondaries, all range-based Oracle CQL
windows must be shorter than the war m up- wi ndow- | engt h time. See Choose an
Adequate warm-up-window-length Time.

Channels must use application time when Oracle CQL queries contain range-based
Windows. See Prefer Application Time .

17.8.3.2 Tuple-Based Windows

In a Type 1 application where the application must generate exactly the same
sequence of output events as existing secondaries, all tuple-based windows must be
qualified by time. See Choose an Adequate warm-up-window-length Time.

17.8.3.3 Partitioned Windows

Avoid partitioned windows because there are situations in which a partition cannot be
rebuilt. If you do use partitioned windows, configure a war m up-wi ndow- | engt h time long
enough to give the Oracle Stream Analytics server time to rebuild the partition. See
Choose an Adequate warm-up-window-length Time.

17.8.3.4 Sliding Windows
Oracle CQL queries should not use sliding windows when new stages that join the

multiserver domain are expected to generate exactly the same output events as
existing stages. See Rejoining the High Availability MultiServer Domain.

17.8.3.5 DURATION Clause and Non-Event Detection

You must use application time when Oracle CQL queries contain a DURATI ON clause for
non-event detection. See Prefer Application Time .

ORACLE 17-18

Chapter 17
Configure High Availability Quality of Service

17.8.3.6 Prefer Application Time

In Oracle Stream Analytics each event is associated with a point in time at which the
event occurred. Oracle CQL recognizes two types of time:

* Application time: A time value assigned to each event outside of Oracle CQL by
the application before the event enters the Oracle CQL processor.

e System time: A time value associated with an event when it arrives at the Oracle
CQL processor, essentially by calling Syst em nanoTi ne() .

Application time is generally the best approach for applications that need to be highly
available. The application time is associated with an event before the event is sent
downstream, so it is consistent across active primary and secondary servers.

System time can cause application instances to generate different results because the
time value associated with an event can be different on each server due to system
clocks not being synchronized. You can use system time for applications when Oracle
CQL queries do not use time-based windows. Applications that use only event-based
windows depend only on the arrival order of events rather than the arrival time, so you
can use system time in this case.

If you must use system time with Oracle CQL queries that do use time-based
windows, then you must use a Oracle Stream Analytics high availability input adapter
that intercepts incoming events and assigns a consistent time that spans primary and
secondary servers.

17.9 Configure High Availability Quality of Service

You configure Oracle Stream Analytics high availability quality of service in the
assembly and component configuration files.

After you make Oracle Stream Analytics high availability configuration changes, you
must redeploy your Oracle Stream Analytics application.

This section includes the following procedures:

e Configure a Simple Failover

e Configure Simple Failover With Buffering
e Configure Light-Weight Queue Trimming
e Configure Precise Recovery With JMS.

17.9.1 Configure a Simple Failover

You configure simple failover with the Oracle Stream Analytics high availability
buffering output adapter with a sliding window size of zero (0).

This procedure starts with the example EPN that Figure 17-9 shows and adds the
required components to configure it for a simple failover.

ORACLE 17-19

ORACLE

Chapter 17
Configure High Availability Quality of Service

Figure 17-9 Simple Failover EPN

helloworldInputChannel . E helloworldoutputChannel |

helloworldadapter helloworldProcessor HellotorldBean

Configure a simple failover:

1. Create a multiserver domain using Oracle Coherence.
2. Create an Oracle Stream Analytics application.
3. Edit the MANI FEST. M file to add the following I nport - Package entries:
° combea.w evs. ede. api . cl uster
e comoracle.cep.cluster.hagroups
e comoracle.cep.cluster.ha. adapter
e comoracle.cep.cluster.ha. api

4. Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability buffering output adapter as the following
assembly file entries show.

e Add aw evs: adapt er element with provi der set to ha-buf f eri ng after channel
hel | owor | dQut put Channel .

* Update the w evs: | i st ener element in channel hel | owor | dQut put Channel to
reference the ha- buf f eri ng adapter by its i d.

 Addawevs:listener element to the ha- buf f eri ng adapter that references the
Hel | oWor | dBean class.

<wl evs: event-type-repository>
<wl evs: event -type type-nanme="Hel | oWor| dEvent ">
<w evs: cl ass>com bea. w evs. event. exanpl e. hel | owor | d. Hel | oWor | dEvent
</w evs: cl ass>
</w evs: event -t ype>
</ wl evs: event -t ype-reposi tory>

<w evs: adapter id="hel | owor| dAdapter"

cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oWr | dAdapter” >
<w evs:instance-property name="nessage" val ue="Hell oWrld -

the current tinme is:"/>
</w evs: adapt er >

<wl evs: channel id="hel | owor!dl nput Channel " event-type="Hel | oWor| dEvent" >
<wl evs: |istener ref="helloworldProcessor"/>
</ wl evs: channel >

<w evs: processor id="hel | owor|dProcessor" />

<wl evs: channel id="hel | owor| dQut put Channel " event-type="Hel | oWr| dEvent"
advertise="true">
<w evs: |istener ref="nyHaSlidi ngW ndowAdapter"/>
<w evs: source ref="hel | owor| dProcessor"/>
</w evs: channel >

<w evs: adapter id="nyHaSl i di ngW ndowAdapt er" provider="ha-buffering" >
<w evs:|istener>
<bean cl ass="com bea. w evs. exanpl e. hel | owor| d. Hel | oWr | dBean"/ >
</w evs:|istener>
</w evs: adapt er >

17-20

Chapter 17
Configure High Availability Quality of Service

5. Optionally, configure the channel downstream from the input adapter
(hel I owor | dI nput Channel) to configure an application time stamp based on an
appropriate event property as assembly file entries show.

For simple failover, you can use system time stamps because events are not
correlated between servers. However, it is possible that slightly different results
might be output from the buffer if application time stamps are not used.

In this example, event property arri val Ti me is used.
The wi evs: expr essi on should be set to this event property.

<wl evs: channel id="hell oworldl nput Channel" event-type="Hel | oWrl dEvent" >
<wl evs: |istener ref="helloworldProcessor"/>
<wl evs: source ref="nyHal nput Adapter"/>
<wl evs: application-timestanped>
<wl evs: expression>arrival Ti me</w evs: expr essi on>
</w evs: application-tinestanped>
</w evs: channel >

6. Configure the Oracle Stream Analytics high availability buffering output adapter.
Set the instance property w ndowLengt h to zero (0) as shown.

<wl evs: adapter id="nyHaSlidi ngW ndowAdapt er" provi der="ha-buffering" >
<w evs: | i stener>
<bean cl ass="com bea. w evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >
</w evs:|istener>
<wl evs:instance-property name="w ndowLength" val ue="0"/>
</w evs: adapt er >

7. Optionally, configure the component configuration file to include the Oracle Stream
Analytics high availability buffering output adapter as shown.

<processor >
<nane>hel | owor | dPr ocessor </ nanme>
<rul es>
<query id="hel | owor| dRul e">
<!I [CDATA select * from hel |l oworldl nput Channel [Now] >
</ query>
</rul es>
</ processor>

<ha: ha- buf f eri ng- adapt er >
<nane>nmyHas! i di ngW ndowAdapt er </ nane>
<wi ndow | engt h>0</ wi ndow | engt h>

</ ha: ha- buf f eri ng- adapt er >

8. Deploy your application to the deployment group you created in step 1.

Oracle Stream Analytics automatically selects one of the Oracle Stream Analytics
servers as the primary.

17.9.2 Configure Simple Failover With Buffering

You configure simple failover using the Oracle Stream Analytics buffering output
adapter with a sliding window size greater than zero (0).

This procedure starts with the example EPN that Figure 17-10 shows and adds the
required components to configure it for simple failover with buffering.

ORACLE 17-21

ORACLE

Chapter 17
Configure High Availability Quality of Service

Figure 17-10 Simple Failover With Buffering EPN

helloworldInputChannel . E helloworldoutputChannel |

helloworldadapter helloworldProcessor HellotorldBean

Configure simple failover with buffering:

1. Create a multiserver domain using Oracle Coherence.
2. Create an Oracle Stream Analytics application.
3. Edit the MANI FEST. M file to add the following I nport - Package entries:
° combea.w evs. ede. api . cl uster
e comoracle.cep.cluster.hagroups
e comoracle.cep.cluster.ha. adapter
e comoracle.cep.cluster.ha. api

4. Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability buffering output adapter as the following
assembly file entries show.

e Add aw evs: adapt er element with provi der set to ha-buf f eri ng after channel
hel | owor | dQut put Channel .

* Update the w evs: | i st ener element in channel hel | owor | dQut put Channel to
reference the ha- buf f eri ng adapter by its i d.

 Addawevs:listener element to the ha- buf f eri ng adapter that references the
Hel | oWor | dBean class.

<wl evs: event-type-repository>
<wl evs: event -type type-nanme="Hel | oWor| dEvent ">
<wl evs: cl ass>com bea. wl evs. event. exanpl e. hel | owor | d. Hel | oWor | dEvent </ wl evs: cl ass>
</w evs: event -t ype>
</wl evs: event -t ype-reposi tory>

<w evs: adapter id="hel | owor| dAdapter"

cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oVWr | dAdapter” >

<wl evs:instance-property nane="message" val ue="HelloWrld - the current tine is:"/>
</w evs: adapt er >

<wl evs: channel id="hel | owor|dl nput Channel " event-type="Hel | oWor| dEvent" >
<wl evs: |istener ref="helloworldProcessor"/>
</ wl evs: channel >

<w evs: processor id="hel | oworldProcessor" />

<wl evs: channel id="hel | owor| dQut put Channel " event-type="Hel | oWor| dEvent" advertise="true">
<w evs:|istener ref="nyHaSl i di ngW ndowAdapter"/>
<wl evs: source ref="hel | owor | dProcessor"/>

</ wl evs: channel >

<wl evs: adapt er i d="nyHaSl i di ngW ndowAdapt er" provi der="ha-buffering" >
<wl evs: | i st ener >
<bean cl ass="com bea. w evs. exanpl e. hel | owor| d. Hel | oWr | dBean"/ >
</w evs:|istener>
</w evs: adapt er >

17-22

Chapter 17
Configure High Availability Quality of Service

5. Optionally, configure the channel downstream from the input adapter
(hel I owor | dI nput Channel) to configure an application time stamp based on an
appropriate event property as shown.

For simple failover with buffering, you can use system time stamps because
events are not correlated between servers. However, it is possible that slightly
different results might be output from the buffer if application time stamps are not
used.

In this example, event property arri val Ti me is used.

The wi evs: expr essi on should be set to this event property.

<wl evs: channel id="hell oworldl nput Channel" event-type="Hel | oWrl dEvent" >
<w evs: |istener ref="helloworldProcessor"/>
<w evs: sour ce ref="nyHal nput Adapter"/>
<wl evs: appl i cation-timest anped>
<wl evs: expression>arrival Ti me</w evs: expr essi on>
</w evs: application-timestanped>
</ W evs: channel >

6. Configure the Oracle Stream Analytics high availability buffering output adapter.
Set the instance property wi ndowLengt h to a value greater than zero (0) as shown.

<wl evs: adapter id="nyHaSlidi ngW ndowAdapt er" provi der="ha-buffering" >
<w evs: | i stener>
<bean cl ass="com bea. w evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >
</wevs:|istener>
<wl evs:instance-property name="w ndowLength" val ue="15000"/>
</w evs: adapt er >

7. Optionally, configure the component configuration file to include the Oracle Stream
Analytics high availability buffering output adapter as shown.
<processor>
<name>hel | owor | dPr ocessor </ name>
<rul es>
<query id="hel | owor| dRul e">
<I [CDATA select * from hel | oworldl nput Channel [Now] >
</ query>
</rul es>
</ processor>

<ha: ha- buf f eri ng- adapt er >
<nane>nmyHas! i di ngW ndowAdapt er </ nane>
<wi ndow- | engt h>15000</ wi ndow- | engt h>
</ ha: ha- buf f eri ng- adapt er >

8. If your application is an Oracle Stream Analytics high availability Type 1
application where the application must generate exactly the same sequence of
output events as existing secondaries) configure the war m up-wi ndow- | engt h for the
buffering output adapter.

For more information, see Choose an Adequate warm-up-window-length Time
9. Deploy your application to the deployment group you created in step 1.

Oracle Stream Analytics automatically selects one of the Oracle Stream Analytics
servers as the primary.

17.9.3 Configure Light-Weight Queue Trimming

You configure light-weight queue trimming using the Oracle Stream Analytics high
availability input adapter and the broadcast output adapter.

ORACLE 17-23

ORACLE

Chapter 17
Configure High Availability Quality of Service

This procedure starts with the example EPN that Figure 17-11 shows and adds the
required components to configure it for light-weight queue trimming.

Figure 17-11 Light-Weight Queue Trimming EPN

helloworldInputChannel 2 helloworldoutputChannel
helloworldadapter helloworldProcessor HellotworldBean

Configure light-weight queue trimming:
1. Create a multiserver domain using Oracle Coherence.
2. Create an Oracle Stream Analytics application.
3. Edit the MANI FEST. M file to add the following I nport - Package entries:
* com bea. w evs. ede. api . cl uster
° comoracle. cep. cluster.hagroups
* comoracle.cep.cluster. ha. adapt er
e comoracle.cep.cluster.ha.api

4. Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability input adapter as the following example
shows.

e Add aw evs: adapt er element with provi der set to ha-i nbound after the regular
input adapter hel | owor | dAdapt er .

e« Addawevs:|istener element to the regular input adapter hel | owor | dAdapt er
that references the ha-i nbound adapter by its i d.

e Add aw evs: source element to the hel | owor | di nput Channel that references the
ha- i nbound adapter by its i d.

<wl evs: event -t ype-repository>
<w evs: event -type type-nane="Hel | oWr| dEvent ">
<wl evs: cl ass>com bea. wl evs. event . exanpl e. hel | owor | d. Hel | oWr | dEvent </
w evs: cl ass>
</w evs: event -type>
</w evs: event -t ype-repository>

<wl evs: adapt er id="hel | owor| dAdapter"
cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oWr | dAdapter" >
<wl evs:instance-property nane="nessage" val ue="Hel |l oWrld -
the current time is:"/>
<w evs:|istener ref="nyHal nput Adapter"/>
</w evs: adapt er >

<wl evs: adapt er i d="myHal nput Adapter" provi der="ha-inbound" >
</w evs: adapt er >

<l evs: channel id="hel |l owor!dl nput Channel " event-type="Hel | oWrl dEvent" >
<wW evs: |istener ref="helloworldProcessor"/>
<w evs: sour ce ref="nyHal nput Adapter"/>

</w evs: channel >

<wl evs: processor id="helloworl dProcessor" />

<w evs: channel id="hel | owor| dQut put Channel " event-type="Hel | oWr| dEvent"
advertise="true">

17-24

ORACLE

Chapter 17
Configure High Availability Quality of Service

<wl evs: |istener>

<bean cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWor | dBean"/ >
</wevs:|istener>

<wl evs: source ref="hel | owor| dProcessor"/>
</w evs: channel >

Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability broadcast output adapter as shown.

e Add aw evs: adapt er element with provi der set to ha- broadcast after channel
hel | owor | dQut put Channel .

e Update the w evs: | i st ener element in channel hel | owor | dQut put Channel to
reference the ha- broadcast adapter by its i d.

 Addawevs:listener element to the ha-broadcast adapter that references the
Hel | oVor | dBean class.

<wl evs: event -t ype-repository>
<w evs: event-type type-name="Hel | oWr| dEvent ">
<w evs: cl ass>com bea. W evs. event. exanpl e. hel | owor | d. Hel | oWor | dEvent
</w evs: cl ass>
</w evs: event-type>
</w evs: event -t ype-repository>

<w evs: adapt er id="hel | owor| dAdapter"
cl ass="com bea. W evs. adapt er. exanpl e. hel | owor | d. Hel | oWor | dAdapt er" >
<wl evs:instance-property name="nmessage" val ue="Hel | oWrld -
the current time is:"/>
<w evs: |istener ref="nyHal nput Adapter"/>
</w evs: adapt er >

<wl evs: adapt er id="nyHal nput Adapter" provi der="ha-inbound" >
</ w evs: adapt er >

<wl evs: channel id="hel | owor|dl nput Channel " event-type="Hel | oWrl dEvent" >
<wW evs: |istener ref="helloworldProcessor"/>
<w evs: sour ce ref="nyHal nput Adapter"/>

</ w evs: channel >

<wl evs: processor id="helloworldProcessor" />

<w evs: channel id="hel | owor| dQut put Channel " event-type="Hel | oWr| dEvent"
advertise="true">
<wl evs: |istener ref="myHaBroadcast Adapter"/>
<w evs: source ref="hel | owor| dProcessor"/>

</w evs: channel >

<wl evs: adapt er i d="myHaBr oadcast Adapter" provider="ha-broadcast" >
<w evs: | i stener>
<bean cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >
</wWevs:|istener>
</ wl evs: adapt er >

Configure the Oracle Stream Analytics high availability input adapter.
Consider using one of the following example configurations.

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrival Ti ne.

<w evs: adapter id="nyHal nput Adapter" provider="ha-inbound" >
<wl evs:instance-property name="ti meProperty" value="arrival Time"/>
</w evs: adapt er >

17-25

ORACLE

Chapter 17
Configure High Availability Quality of Service

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrival Ti ne. Because the events are tuple-based events, you
must specify the event type (MEvent Type) using the event Type property.

<w evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >
<w evs:instance-property name="tineProperty" val ue="arrival Ti ne"/>
<w evs:instance-property nane="event Type" val ue="MEvent Type"/ >
</w evs: adapt er >

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named i d) and the event property
that the high availability input adapter assigns a time value to is an event property
named arri val Ti ne.

<w evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >

<wl evs:instance-property nane="keyProperties" value="id"/>

<wl evs:instance-property name="ti meProperty" value="arrival Time"/>
</ wl evs: adapt er >

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties or der | Dand
account | D) and the event property that the high availability input adapter assigns a
time value to is an event property named arri val Ti ne.

<w evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >

<wl evs:instance-property name="ti meProperty" value="arrival Ti me"/ >

<wl evs:instance-property name="keyd ass" val ue="com acme. MyCompoundKeyCl ass"/ >
</w evs: adapt er >

A compound key Java class (com acme. MyConpoundKeyd ass) is mandatory and its
implementation is shown. The hashCode and equal s methods are required. When
you specify a keyd ass, the keyProperti es instance property is ignored: Oracle
Stream Analytics assumes that the compound key is based on all the getter
methods in the keyd ass.

package com acne;

public class MyConpoundKeyd ass {
private int orderlD;
private int accountlD,

public MyConpoundKeyd ass() {}

public int getOderlD() {
return orderlD;
}

public setOrderID(int orderlD) {
this.orderI D = orderl D
}

public int getAccountlD() {
return account|D;
1

public setOrderID(int accountlD) {
this.account! D = account|D,
}

public int hashCode() {

int hash = 1;

hash = hash * 31 + order|D. hashCode();

hash = hash * 31 + (accountID == null ? 0 : account!D. hashCode());
return hash;

}

public bool ean equal s(Object obj) {

17-26

ORACLE

Chapter 17
Configure High Availability Quality of Service

if (obj ==this) return true;

if (obj == null) return false;

if (!(obj instanceof MyConpoundKeyC ass)) return false;
MyConpoundKeyd ass k = (MyConpoundKeyd ass) obj ;

return k.account!D == account|D && k.order| D == orderlD;

}

Configure the channel downstream from the high availability input adapter
(hel I owor | dI nput Channel) to configure an application time stamp based on the high
availability input adapter ti neProperty setting as the following example shows.

The w evs: expr essi on should be set to the ti meProperty value.

<wl evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >
<wl evs:instance-property nane="keyProperties" value="id"/>
<wl evs:instance-property name="event Type" val ue="Hel | oWr| dEvent"/>
<wl evs:instance-property name="tineProperty" value="arrival Time"/>
</ wl evs: adapt er >

<wl evs: channel id="hel |l oworldl nput Channel " event-type="Hel | oWrl dEvent" >
<w evs: |istener ref="helloworldProcessor"/>
<w evs: sour ce ref="nyHal nput Adapter"/>
<wl evs: appl i cation-timest anped>
<wl evs: expression>arrival Ti me</w evs: expr essi on>
</w evs: application-timestanped>
</ W evs: channel >

Configure the Oracle Stream Analytics high availability broadcast output adapter.
Consider using one of the following example configurations:

This example shows a broadcast output adapter configuration using all defaults.
The mandatory key is based on all event properties, key values are non-monotonic
(do not increase continually) and total order (unique).

<wl evs: adapter id="nyHaSlidi ngW ndowAdapt er” provi der="ha- broadcast" >
<w evs:|istener>
<bean cl ass="com bea. w evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >
</w evs:|istener>
</w evs: adapt er >

This example shows a broadcast output adapter configuration where the
mandatory key is based on one event property (named ti meProperty), key values
are monotonic (they do increase continually) and not total order (not unique).

<wl evs: adapter id="nmyHaSlidi ngW ndowAdapt er" provi der="ha- broadcast" >

<w evs:|istener>
<bean cl ass="com bea. w evs. exanpl e. hel | owor | d. Hel | oWr | dBean"/ >

</w evs:|istener>
<w evs:instance-property nanme="keyProperties" val ue="timeProperty"/>
<w evs:instance-property nanme="monotonic" val ue="true"/>
<w evs:instance-property nane="total Order" val ue="fal se"/>

</w evs: adapt er >

This example shows a broadcast output adapter configuration where the
mandatory key is based on more than one event property (properties ti meProperty
and account I D), key values are monotonic (they do increase continually) and total
order (unique).

<wl evs: adapter id="nyHaSlidi ngW ndowAdapt er" provi der="ha- broadcast" >
<w evs: |istener>
<bean cl ass="com bea. W evs. exanpl e. hel | owor | d. Hel | oWor | dBean"/ >

</wevs:|istener>
<wl evs:instance-property nanme="keyC ass" val ue="com acme. MyConpoundKeyCl ass" />
<w evs:instance-property nanme="monotonic" val ue="true"/>
<w evs:instance-property name="total Order" val ue="true"/>

</w evs: adapt er >

17-27

ORACLE

10.

Chapter 17
Configure High Availability Quality of Service

A compound key Java class (com acne. MyConpoundKeyd ass) is mandatory and its
implementation is shown in the following example. The hashCode and equal s
methods are required. When you specify a keyd ass, the keyProperti es instance
property is ignored: Oracle Stream Analytics assumes that the compound key is
based on all the getter methods in the keyd ass.

package com acne;

public class MyConpoundKeyd ass {
private int timeProperty;
private int accountlD;

public MyConpoundKeyd ass() {}

public int getTimeProperty() {
return orderlD;

public setTimeProperty(int timeProperty) {
this.timeProperty = tinmeProperty;

public int getAccountlD() {
return accountlD;

}

public setOrderlD(int accountlD) {
this.account!D = account|D;

}

public int hashCode() {

int hash = 1;

hash = hash * 31 + tineProperty. hashCode();

hash = hash * 31 + (account!D == null ? 0 : account!|D. hashCode());
return hash;

}
public bool ean equal s(bject obj) {
if (obj ==this) return true;
if (obj ==null) return false;
if (!(obj instanceof MyConpoundKeyd ass)) return false;
MyConpoundKeyd ass k = (MyConpoundKeyd ass) obj;
return k.account! D == account|D && k. order| D == order|D;
}

}

Optionally, configure the component configuration file to include the Oracle Stream
Analytics high availability input adapter and buffering output adapter as shown.

<processor >
<nane>hel | owor | dPr ocessor </ name>
<rul es>
<query id="hel | owor| dRul ">
<I[CDATAl select * from helloworldlnputChannel [Now] >
</ query>
</rul es>
</ processor>

<ha: ha- i nbound- adapt er >
<name>nyHal nput Adapt er </ name>
</ ha: ha-i nbound- adapt er >

<ha: ha- br oadcast - adapt er >

<nane>nyHaBr oadcast Adapt er </ nane>

<trimmng-interval units="events">10</trimm ng-interval>
</ ha: ha- br oadcast - adapt er >

If your application is an Oracle Stream Analytics high availability Type 1
application where the application must generate exactly the same sequence of

17-28

Chapter 17
Configure High Availability Quality of Service

output events as existing secondaries, configure the war m up- wi ndow- | engt h for the
broadcast output adapter.

11. Oracle Stream Analytics automatically selects one of the Oracle Stream Analytics
servers as the primary.

17.9.4 Configure Precise Recovery With JMS

You configure precise recovery with JMS using the Oracle Stream Analytics high
availability input adapter and correlating output adapter.

This procedure describes how to create the example EPN that Figure 17-12 shows.
For more information about this Oracle Stream Analytics high availability quality of
service, see Precise Recovery with JMS.

Note:

The JMS destination used by JMS adapters for precise recovery must be
topics, rather than queues.

Figure 17-12 Precise Recovery With JMS EPN

2

JIMSInboundadapter

JMsInboundAdapterz

ORACLE

g
e ——f—cm— e
2 . 2 3
channell channelz
myHalnputAdapter processorl myHaCorrelatingadapter IM50utboundAdapter

clusterCaorrelatingOutstream

Configure precise recovery with JIMS

1. Create a multiserver domain using Oracle Coherence.
2. Create an Oracle Stream Analytics application.
3. Edit the MANI FEST. M file to add the following I nport - Package entries:
° combea.w evs. ede. api . cl uster
e comoracle.cep.cluster.hagroups
e comoracle.cep.cluster.ha. adapter
e comoracle.cep.cluster.ha. api

4. Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability input adapter as shown:

e Add aw evs: adapt er element with provi der set to ha-i nbound after the regular
input adapter JVSI nboundAdapt er .

 Addawevs:listener element to the regular input adapter JMSI nboundAdapt er
that references the ha- i nbound adapter by its i d.

 Add aw evs: source element to the channel channel 1 that references the ha-
i nbound adapter by its i d.

17-29

ORACLE

Chapter 17
Configure High Availability Quality of Service

<w evs: event -t ype-repository>
<w evs: event -type type-name="St ockTi ck">
<wl evs: properties>
<wl evs: property nanme="|astPrice" type="double" />
<wl evs: property nanme="synbol " type="char" />
</w evs: properties>
</w evs: event-type>
</w evs: event-type-repository>

<wl evs: adapter id="JMsI nboundAdapt er" provider="j ns-inbound">
<wl evs: |istener ref="nyHal nput Adapter"/>
</w evs: adapt er >

<wl evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >
</W evs: adapt er >

<w evs: channel id="channel 1" event-type="St ockTi ck">
<wl evs: |istener ref="processorl" />
<wl evs: source ref="nyHal nput Adapter"/>

</w evs: channel >

Configure your Oracle Stream Analytics application EPN assembly file to add an
Oracle Stream Analytics high availability correlating output adapter as shown.

e Add aw evs: adapt er element with provi der set to ha-correl ating after channel
channel 2.

* Update the w evs: | i st ener element in channel channel 2 to reference the ha-
correl ating adapter by its i d.

 Addawevs:listener element to the ha-correl ati ng adapter that references
the regular output adapter JMsQut boundAdapt er .

<wl evs: event -t ype-repository>
<w evs: event -type type-name="St ockTi ck">
<wl evs: properties>
<wl evs: property nane="|astPrice" type="double" />
<wl evs: property nane="synbol " type="char" />
</wl evs: properties>
</w evs: event -t ype>
</ wl evs: event -t ype-reposi tory>

<wl evs: adapt er i d="JMBI nboundAdapt er” provider="j ns-inbound">
<wl evs: |istener ref="nyHal nput Adapter"/>
</ wl evs: adapt er >

<wl evs: adapt er id="nyHal nput Adapter" provi der="ha-inbound" >
</ wl evs: adapt er >

<wl evs: channel id="channel 1" event-type="StockTi ck">
<wl evs:|istener ref="processorl" />
<wl evs: sour ce ref="nyHal nput Adapter"/>

</w evs: channel >

<wl evs: processor id="processorl">
<wl evs:|istener ref="channel 2" />
</ wl evs: processor >

<wl evs: channel id="channel 2" event-type="StockTi ck">
<wl evs:|istener ref="nyHaCorrel atingAdapter" />
</w evs: channel >

<wl evs: adapt er id="nmyHaCorrel ati ngAdapter" provider="ha-correlating" >
<w evs: |istener ref="JMSQut boundAdapter"/>
</ w evs: adapt er >

<wl evs: adapt er id="JMsQut boundAdapter" provider="j ns-out bound" >
</w evs: adapt er >

17-30

ORACLE

Chapter 17
Configure High Availability Quality of Service

Configure the Oracle Stream Analytics high availability input adapter.
Consider using one of the following example configurations:

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrival Ti ne.

<wl evs: adapt er id="myHal nput Adapter" provider="ha-inbound" >
<wl evs:instance-property name="tineProperty" value="arrival Time"/>
</ w evs: adapt er >

This example shows a high availability input adapter configuration using all
defaults. The mandatory key is based on all event properties and the event
property that the high availability input adapter assigns a time value to is an event
property named arrival Ti ne. Because the events are tuple-based events, you
must specify the event type (M/Event Type) using the event Type property.

<wl evs: adapt er id="myHal nput Adapter" provi der="ha-inbound" >
<wl evs:instance-property nanme="timeProperty" value="arrival Time"/>
<wl evs:instance-property nanme="event Type" val ue="MEvent Type"/>
</w evs: adapt er >

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named sequenceNo) and the event
property that the high availability input adapter assigns a time value to is an event
property named i nboundTi ne.

<wl evs: adapt er i d="nyHal nput Adapter" provi der="ha-inbound" >
<wl evs:instance-property nane="keyProperties" val ue="sequenceNo"/>
<wl evs:instance-property nane="tineProperty" val ue="inboundTi me"/>
</ wl evs: adapt er >

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties or der | Dand
account | D) and the event property that the high availability input adapter assigns a
time value to is an event property named arri val Ti ne.

A compound key Java class (com acme. MyConpoundKeyd ass) is mandatory and its
implementation is shown. The hashCode and equal s methods are required. When
you specify a keyd ass, the keyProperti es instance property is ignored: Oracle
Stream Analytics assumes that the compound key is based on all the getter
methods in the keyd ass.

<wl evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >
<wl evs:instance-property name="tineProperty" value="arrival Time"/>
<wl evs:instance-property name="keyCd ass" val ue="com acme. MyConpoundKeyCl ass"/ >
</ w evs: adapt er >
package com acne;
public class MyConpoundKeyd ass {
private int orderlD;
private int accountlD;
public MyConpoundKeyd ass() {}

public int getOrderlD() {
return orderlD;

public setOrderID(int orderlD) {
this.orderI D = orderlD;

public int getAccountlD() {

17-31

Chapter 17
Configure High Availability Quality of Service

return accountlD;

}

public setOrderlD(int accountlD) {
this.account|D = account|D;

}

public int hashCode() {

int hash = 1;

hash = hash * 31 + order|D. hashCode();

hash = hash * 31 + (accountID == null ? 0 : account!D. hashCode());
return hash;

}

public bool ean equal s(Object obj) {
if (obj ==this) return true;
if (obj == null) return false;

if (!(obj instanceof MyConpoundKeyC ass)) return false;
MyConpoundKeyd ass k = (MyConpoundKeyd ass) obj ;
return k.account!D == account|D && k.order| D == orderlD;

}

7. Configure the channel downstream from the high availability input adapter
(channel 1) to configure an application time stamp based on the high availability
input adapter ti neProperty setting as the following example shows.

The w evs: expressi on should be set to the ti meProperty value.

<wl evs: adapt er id="nyHal nput Adapter" provider="ha-inbound" >
<w evs:instance-property nanme="event Type" val ue="Hel | oWr| dEvent"/>
<wl evs:instance-property nanme="keyProperties" val ue="sequenceNo"/>
<wl evs:instance-property nanme="tineProperty" val ue="inboundTi me"/>
</ wl evs: adapt er >

<wl evs: channel id="channel 1" event-type="StockTi ck">
<w evs:|istener ref="processorl" />
<w evs: sour ce ref="nyHal nput Adapter"/>
<wl evs: appl i cation-timest anped>
<wl evs: expressi on>i nboundTi me</ wl evs: expr essi on>
</w evs: application-timestanped>
</ W evs: channel >

8. Configure the Oracle Stream Analytics high availability correlating output adapter
fail QverDel ay.

The following example shows a correlating output adapter configuration where the
fail Over Del ay is 2000 milliseconds.

<wl evs: adapter id="nyHaCorrel atingAdapter" provider="ha-correlating" >
<w evs: |istener ref="JMSQut boundAdapter"/>
<wl evs:instance-property name="fail Over Del ay" val ue="2000"/>

</ w evs: adapt er >

9. Create a second regular JMS input adapter.
The following example shows a JMS adapter named JMSI nboundAdapt er 2.

<wl evs: adapt er id="JMBI nboundAdapt er2" provi der="j ns-i nbound" >
</w evs: adapt er >

The following JMS input adapter must be configured identically to the first IMS
input adapter (in this example, JMSI nboundAdapt er). The following example shows
the component configuration file for both the JMS input adapters. Note that both
have exactly the same configuration, including the same provider.
<j ns- adapt er>
<nane>JM8l nboundAdapt er </ nane>

<jndi -provider-url>t3://1ocal host: 7001</] ndi - provi der-url >
<destination-jndi - nane>. / Topi c1</ desti nati on-j ndi - nane>

ORACLE 17-32

Chapter 17
Configure High Availability Quality of Service

<user >webl ogi c</ user>

<passwor d>webl ogi c</ passwor d>

<wor k- manager >Jet t yWor kManager </ wor k- manager >

<concur rent - consuner s>1</ concur r ent - consuner s>
</ j ms- adapt er >

<j ms- adapt er >
<nanme>JMS| nboundAdapt er 2</ nane>
<j ndi - provider-url>t3://1ocal host: 7001</ | ndi - provi der-url >
<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<user >webl ogi c</ user>
<passwor d>webl ogi c</ passwor d>
<wor k- manager >Jet t yWor kManager </ wor k- manager >
<concur rent - consuner s>1</ concur r ent - consuner s>
</ j ms- adapt er >

</w evs: config>
10. Create a channel to function as the correlated source.

You must configure this channel with the second regular JMS input adapter as its
source.

The following example shows a correlated source named
cl uster Correl ati ngQut st reamwhose source is JMSI nboundAdapt er 2.

<wl evs: adapt er id="JMBI nboundAdapt er2" provi der="j ns-i nbound" >
</w evs: adapt er >

<w evs: channel id="clusterCorrelatingQutstrean event-type="StockTick"
advertise="true">
<w evs: sour ce ref="JMSI nboundAdapt er2"/ >
</w evs: channel >

11. Configure the Oracle Stream Analytics high availability correlating output adapter
with the correl at edSour ce.

The following example shows a correlating output adapter configuration where the
correl at edSour ce is cl ust er Correl ati ngQut st ream

<wl evs: adapter id="nyHaCorrel atingAdapter" provider="ha-correlating" >
<w evs: |istener ref="JMSQut boundAdapter"/>
<wl evs:instance-property nanme="fail Over Del ay" val ue="2000"/>
<wl evs: instance-property name="correl at edSource"
ref="clusterCorrel ati ngQut streant'/>
</w evs: adapt er >

12. If your application is an Oracle Stream Analytics high availability Type 1
application where the application must generate exactly the same sequence of
output events as existing secondaries, configure the war m up- wi ndow- | engt h for the
correlating output adapter.

13. Configure the component configuration file to enable sessi on-transact ed for both
inbound JMS adapters and the outbound JMS adapter as the following example
shows:

<j ns- adapt er >
<nane>JMBl nboundAdapt er </ nane>
<j ndi - provider-url>t3://1ocal host: 7001</ | ndi - provi der-url >
<destination-j ndi - nane>. / Topi c1</ desti nati on-j ndi - nane>
<user >webl ogi c</ user>
<passwor d>webl ogi c</ passwor d>
<wor k- manager >Jet t yWor kManager </ wor k- manager >
<concur rent - consuner s>1</ concur r ent - consuner s>
<sessi on-transact ed>t rue</ sessi on-transact ed>
</ j ns- adapt er >

<j ns- adapt er >

ORACLE 17-33

Chapter 17
Configure High Availability Adapters

<nanme>JMS| nboundAdapt er 2</ nane>
<j ndi - provider-url>t3://1ocal host: 7001</ | ndi - provi der-url >
<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<user >webl ogi c</ user>
<passwor d>webl ogi c</ passwor d>
<wor k- manager >Jet t yWor kManager </ wor k- manager >
<concur rent - consuner s>1</ concur r ent - consuner s>
<sessi on-transact ed>t rue</ sessi on-transact ed>

</ j ms- adapt er >

<j ms- adapt er>
<nanme>JMsQut boundAdapt er </ nane>
<event -t ype>JMsEvent </ event - t ype>
<j ndi - provider-url>t3://1ocal host: 7001</ | ndi - provi der-ur| >
<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<del i very- mode>nonper si st ent </ del i very- mode>

<sessi on-transact ed>t r ue</ sessi on-transact ed>
</ j ms- adapt er >

</w evs: confi g>

14. Optionally, configure the component configuration file to include the Oracle Stream
Analytics high availability input adapter and correlating output adapter as shown.

<ha: ha- i nbound- adapt er >
<nane>nyHal nput Adapt er </ nane>
</ ha: ha-i nbound- adapt er >

<ha: ha- correl ati ng- adapt er>
<nane>nyHaBr oadcast Adapt er </ nane>
<fail-over-del ay>2000</fai | - over - del ay>
</ ha: ha-correl ati ng-adapt er>
15. Optionally, add an Acti veAct i veG oupBean to your EPN to improve scalability.
For more information, see Partition an Incoming JMS Event Stream.

16. Oracle Stream Analytics automatically selects one of the Oracle Stream Analytics
servers as the primary.

17.10 Configure High Availability Adapters

You configure Oracle Stream Analytics high availability adapters in the EPN assembly
file and component configuration files, similar to how you configure other components
in the EPN, such as channels or processors.

After making any Oracle Stream Analytics high availability configuration changes, you
must redeploy your Oracle Stream Analytics application. See Deploy an OSGi Bundle.

This section includes the following procedures:

* Configure the High Availability Input Adapter
» Configure the Buffering Output Adapter

» Configure the Broadcast Output Adapter

e Configure the Correlating Output Adapter.

17.10.1 Configure the High Availability Input Adapter

The Oracle Stream Analytics high availability broadcast input adapter is implemented
by the Broadcast | nput Adapt er interface.

ORACLE 17-34

ORACLE

Chapter 17
Configure High Availability Adapters

Assembly File

The root element to declare an Oracle Stream Analytics high availability input adapter
is wl evs: adapt er with the provi der element set to ha-i nbound. You also specify a
wlevs:listener element for the Oracle Stream Analytics high availability input adapter in
the input adapter.

<w evs: adapter id="jnsAdapter" provider="jns-inbound"
<wl evs: |istener ref="nyHal nput Adapter"/>
</w evs: adapt er >

<wl evs: adapt er id="nyHal nput Adapter" provider="ha-inbound">
<wl evs:instance-property name="keyProperties" value="id"/>
<w evs:instance-property name="timeProperty" val ue="arrival Ti me"/>
<wl evs:instance-property name="event Type" val ue="MEvent Type"/>

</ wl evs: adapt er >

<wl evs: channel id="inputChannel" event-type="MHEvent Type ">
<wl evs: source ref="nyHal nput Adapter"/>
<wl evs: appl i cation-tinmestanped>
<wl evs: expressi on>arrival Ti me</w evs: expr essi on>
</w evs: appl i cation-tinest anped>
</w evs: channel >

Table 17-3 describes the additional child element.

Table 17-3 Child Elements of wlevs:adapter for the High Availability Input
Adapter

Child Element Description
wl evs: i nstance- Specify one or more i nst ance- property element nane and val ue
property attributes.

Table 17-4 lists the supported instance properties with their name and value attributes.

Table 17-4 High Availability Input Adapter Instance Properties

|
Name Value

timeProperty Specify the name of the event property to which the high availability
input adapter assigns a time value.
This is the same property that you use in the wl evs: appl i cati on-
ti mest anped element of the downstream EPN component to which
the high availability input adapter is connected.

keyProperties Specify a space delimited list of one or more event properties that
the Oracle Stream Analytics high availability input adapter uses to
identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.
keyd ass Specify the fully qualified Java class name of to use for the
compound key.

By default, all JavaBean properties in the keyC ass are assumed to
be keyProperti es, unless the keyProperti es setting is used.

17-35

Chapter 17
Configure High Availability Adapters

Table 17-4 (Cont.) High Availability Input Adapter Instance Properties

e
Name Value

event Type Specify the type name of the events that the Oracle Stream
Analytics high availability input adapter receives from the actual
input adapter. This is the same event type that you use in the
downstream EPN component to which the high availability input
adapter is connected.

For tuple events, this property is mandatory. For all other Java

class-based event types, this property is optional.

Configuration File

The root element for configuring an Oracle Stream Analytics high availability input
adapter is ha-i nbound- adapt er . The nane child element must match the i d attribute of
the corresponding w evs: adapt er element in the assembly file as shown.

<ha: ha- i nbound- adapt er >
<name>nyHal nput Adapt er </ nane>
<heartbeat units="nillis">1000</heartbeat>
<bat ch- si ze>10</ bat ch- si ze>

</ ha: ha- i nbound- adapt er >

Table 17-5 describes the additional child elements.

Table 17-5 Child Elements

|
Child Element Description

hear t beat Specify the length of time that the high availability input adapter can
be idle before it generates a heartbeat event to advance time.

Valid integer values for the uni t s attribute:
e nanos: wait the specified number of nanoseconds.
e mllis: wait the specified number of milliseconds.
e secs: wait the specified number of seconds.
Default: Heartbeats are not sent.
bat ch-si ze Specify the number of events in each timing message that the
primary broadcasts to its secondaries. A value of n means that n

{key, tine} pairs are sentin each message. You can use this
property for performance tuning.

Default: 1 (disable batching).

17.10.2 Configure the Buffering Output Adapter

ORACLE

The Oracle Stream Analytics high availability buffering output adapter is implemented
by the Sli di ngW ndowQueueTr i mmi ngAdapt er interface.

Assembly File

The root element for declaring an Oracle Stream Analytics high availability buffering
output adapter is w evs: adapt er with provi der element set to ha- buf feri ng as the
following example shows.

17-36

ORACLE

Chapter 17
Configure High Availability Adapters

<wl evs: adapter id="nySlidi ngWndow ngAdapter" provider ="ha-buffering">
<w evs: |istener>
<bean cl ass="com bea. w evs. exanpl e. cl ust er. O ust er Adapt er Bean"/ >
</wevs:|istener>
<wl evs:instance-property name="wi ndowLength" val ue="15000"/>
</w evs: adapt er >

Table 17-6 describes the additional child elements.

Table 17-6 Child Elements
- |

Child Element Description

wl evs: | i stener Specify the regular output adapter downstream from this Oracle
Stream Analytics high availability buffering output adapter.

wl evs: i nstance- Specify one or more i nst ance- property element nane and val ue

property attributes as Table 17-7 describes.

Table 17-7 lists the instance properties.

Table 17-7 Instance Properties
|

Name Value
wi ndowLengt h Specify the sliding window size as an integer number of
milliseconds.

Default: 15000.

Configuration File

The root element for configuring an Oracle Stream Analytics high availability buffering
output adapter is ha- buf f eri ng- adapt er . The nane child element for a particular adapter
must match the i d attribute of the corresponding w evs: adapt er element in the
assembly file as shown.

<ha: ha- buf f eri ng- adapter >

<name>ny Sl i di ngW ndow ngAdapt er </ nane>

<wi ndow- | engt h>15000</ wi ndow | engt h>

<war m up- wi ndow | engt h uni t s="ni nut es" >6</ war m up-w ndow- | engt h>
</ ha: ha- buf f eri ng- adapter >

Table 17-8 describes the additional child elements of ha- buf f eri ng- adapt er you can
configure for an Oracle Stream Analytics high availability buffering output adapter.

Table 17-8 Child Elements

| Child Element Description |

wi ndow | engt h Specify the sliding window size as an integer number of
milliseconds.

Default: 15000.

17-37

Chapter 17
Configure High Availability Adapters

Table 17-8 (Cont.) Child Elements

e
Child Element Description

war m up-wi ndow | engt h Specify the length of time that the high availability input adapter can
be idle before it generates a heartbeat event to advance tim

Valid integer values for the uni t s attribute:

e seconds: wait the specified number of seconds.
e mnutes: wait the specified number of minutes.
Default: uni t's is seconds.

17.10.3 Configure the Broadcast Output Adapter

The Oracle Stream Analytics high availability broadcast output adapter is implemented
by the G oupBr oadcast QueueTri mmi ngAdapt er class.

Assembly File

The root element to declare an Oracle Stream Analytics high availability broadcast
output adapter is wi evs: adapt er with the provi der element set to ha- broadcast as
shown.

<wl evs: adapt er id="nyBroadcast Adapter" provider="ha-broadcast">
<wl evs: |istener ref="actual Adapter"/>
<wl evs:instance-property name="keyProperties" value="time"/>
<wl evs:instance-property name="nonotonic" val ue="true"/>

</ wl evs: adapt er>

Table 17-9 describes the additional child elements.

Table 17-9 Child Elements
|

Child Element Description

w evs: | i stener Specify the regular output adapter downstream from this Oracle
Stream Analytics high availability broadcast output adapter.

w evs: i nst ance- Specify one or more i nst ance- property element nane and val ue

property attributes as Table 17-10 describes.

Table 17-10 lists the instance properties.

Table 17-10 Instance Properties

e
Name Value

keyProperties Specify a space delimited list of one or more event properties that
the Oracle Stream Analytics high availability broadcast output
adapter uses to identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.

ORACLE 17-38

Chapter 17
Configure High Availability Adapters

Table 17-10 (Cont.) Instance Properties

e
Name Value

keyd ass Specify the fully qualified class name of a Java class used as a
compound key.

By default, all JavaBean properties in the keyC ass are assumed to
be keyProperti es, unless the keyPr operti es setting is used.

A compound key may be monotonic and may be totalOrder.
monot oni ¢ Specify whether the key value is constantly increasing (like a time

value).

Valid values are:

e true: the key is constantly increasing.

- fal se: the key is not constantly increasing.

Default: f al se.
total Order Specify whether event keys are unique. Applicable only when

instance property monotonic is setto true.

Valid values are:

e true: event keys are unique.

» fal se: event keys are not unique.

Default: t rue.

Configuration File

The root element for configuring an Oracle Stream Analytics high availability broadcast
output adapter is ha- broadcast - adapt er. The nane child element for a particular adapter
must match the i d attribute of the corresponding w evs: adapt er element in the EPN
assembly file that declares this adapter as shown.

<ha: ha- br oadcast - adapt er >

<name>nyBr oadcast Adapt er </ name>

<trimmng-interval units="events">10</trimm ng-interval>

<war m up-w ndow| engt h uni t s="ni nut es">6</ war m up-w ndow- | engt h>
</ ha: ha- br oadcast - adapt er >

Table 17-11 describes the additional child elements.

Table 17-11 Child Elements

|
Child Element Description

trimmng-interval Specify the interval at which trimming messages are broadcast as
an integer number of uni ts. You can use this property for
performance tuning (see High Availability Performance Tuning).

Valid values for attribute uni ts:

e events: broadcast trimming messages after the specified
number of events are processed.

e nmillis: broadcast trimming messages after the specified
number milliseconds.

Default: units is event s.

ORACLE 17-39

Chapter 17
Configure High Availability Adapters

Table 17-11 (Cont.) Child Elements

e
Child Element Description

war m up-wi ndow | engt h Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary is
added.
Valid integer values for the uni t s attribute:
e seconds: wait the specified number of seconds.
e mnutes: wait the specified number of minutes.
Default: uni ts is seconds.

For more information, see Choose an Adequate warm-up-window-
length Time.

17.10.4 Configure the Correlating Output Adapter

ORACLE

The Oracle Stream Analytics high availability correlating output adapter is
implemented by the Correl at edQueueTri mmi ngAdapt er interface.

Assembly File

The root element to declare an Oracle Stream Analytics high availability correlating
output adapter is w evs: adapt er with the provi der element set to ha-correl ating as
shown.

<wl evs: adapter id="nyCorrel atingAdapter" provider="ha-correl ating">
<wl evs: | i stener>
<bean cl ass="com bea. w evs. exanpl e. cl ust er. d ust er Adapt er Bean"/ >
</w evs:|istener>
<wl evs:instance-property nanme="correl at edSource" ref="cl usterCorrQutstreant/>
<wl evs:instance-property nane="fail OverDel ay" val ue="2000"/>
</ wl evs: adapt er >

Table 17-12 describes the additional child elements.

Table 17-12 Child Elements
- |

Child Element Description

w evs: |istener Specify the regular output adapter downstream from this Oracle
Stream Analytics high availability buffering output adapter.

w evs: i nstance- Specify one or more i nst ance- property element name and val ue

property attributes as Table 17-13 describes.

Table 17-13 lists the instance properties.

Table 17-13 Instance Properties

| Name Value |

correl at edSour ce Specify the event source to correlate against. Events seen from this
source are purged from the trimming queue. Events still in the
queue at failover are replayed.

17-40

Chapter 17
Configure High Availability Adapters

Table 17-13 (Cont.) Instance Properties

Name Value

fail Over Del ay Specify the delay timeout in milliseconds that is used to decide how
soon after failover correlation should restart.
Default: 0 ms.

Configuration File

The root element for configuring an Oracle Stream Analytics high availability
correlating output adapter is ha- correl at i ng- adapt er . The nane child element for a
particular adapter must match the i d attribute of the corresponding w evs: adapt er
element in the EPN assembly file that declares this adapter as shown.

<ha: ha-correl ati ng- adapt er >

<nane>nyCorr el at i ngAdapt er </ nane>

<wi ndow- | engt h>15000</ wi ndow | engt h>

<war m up-w ndow| engt h unit s="ni nut es">6</ war m up-w ndow- | engt h>
</ ha: ha-correl ati ng- adapt er>

Table 17-14 describes the child elements.

Table 17-14 Child Elements

Child Element Description

fail-over-delay Specify the delay timeout in milliseconds that is used to decide how
soon after failover correlation should restart.
Default: 0 ms.

war m up-w ndow-| ength Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary is
added as an integer number of uni ts.

Valid values for attribute uni ts:

e seconds: wait the specified number of seconds.

e minutes: wait the specified number of minutes.

Default: uni t's is seconds.

For more information, see Choose an Adequate warm-up-window-

length Time.
window-length The length of the saved buffer of events in milliseconds.
trimming-interval The interval at which events should be trimmed from a secondary

buffer. Units can be events ornillis.

heartbeat The value (n) for the heartbeat time out on this adapter. A heartbeat
is generated when n time units go by without any event being
generated on this adapter. The default time unit is nanoseconds.

batch-size The batch size in terms of events for sending event time stamps to
the secondary. By default, batching is disabled.

ORACLE 17-41

Scalable Applications

You can build scalability into your application design with partitioning and parallel
processing, and by taking high availability options into consideration. Oracle Stream
Analytics enables you to use default or custom partitioning and parallel processing
settings on channels and the upstream adapter. You can also partition an incoming
JMS event stream and configure the JSMS Event stream group pattern matching.

This chapter includes the following sections:

» Default Channel Scalability Settings

e Partition an Incoming JMS Event Stream
* Notification Group Naming Conventions

e Custom Channel Event Partitioner.

18.1 Default Channel Scalability Settings

You can configure a channel to use the default event property-based event partitioner.
With this default configuration, every time an incoming event arrives, the channel
selects a listener and dispatches the event to that listener instead of broadcasting
every event to every listener.

Note:

Batching is not supported when you configure a channel with an event
partitioner.

Figure 18-1 shows an EPN that uses an event partitioner property to partition a
channel. In this example, the inbound adapter sends events of type Pri ceEvent, which
has two properties: stock symbol and stock price. The example partitions the channel
on the synmbol property and shows you how to add multithreading to either the channel
or the upstream adapter.

Figure 18-1 EventPartitioner EPN

processorl

O ety 3
7 {3 —
e, D
EventPartitionerChannel i channel
inbound processor? outbound

processar3

ORACLE 18-1

Chapter 18
Default Channel Scalability Settings

» Configure Partitioning on the Channel
* Configure Parallel Processing on the Channel
» Configure Parallel Processing on the Upstream Adapter

» Define a Local Partition Channel.

18.1.1 Configure Partitioning on the Channel

1. Add a channel to your EPN.

In Figure 18-1, the channel is Event Parti ti oner Channel .

2. Connect the channel to an upstream adapter.

In Figure 18-1, the upstream adapter is i nbound.

3. Connect the channel to two or more listeners.

In Figure 18-1, the channel is connected to Oracle CQL processors processor 1,
processor 2, and processor 3.

4. Edit the assembly file to add a partitionByEvent Property instance property to the
channel element.

The val ue of this i nstance- property is the name of the event property by which the
channel partitions events.

In this example, the channel partitions events by the event property synbol .

<wl evs: event -t ype-repository>
<wl evs: event-type type-name="PriceEvent">
<wl evs: properties>
<w evs: property name="symbol " type="char" />
<wl evs: property nane="price" type="long" />
</wl evs: properties>
</w evs: event -type>
</ wl evs: event -t ype-repository>

<w evs: channel id="EventPartitionerChannel" event-type="PriceEvent">
<wl evs:instance-property nane="partitionByEventProperty" val ue="synbol" />
<w evs:|istener ref="processorl" />
<wl evs: |istener ref="processor2" />
<wl evs:|istener ref="processor3" />
<w evs: source ref="inbound" />
</ wl evs: channel >

18.1.2 Configure Parallel Processing on the Channel

ORACLE

If you want the channel to allocate threads, set the max-threads property to the
number of listeners in the EPN.

If you want to provide increased concurrency downstream from the channel, you can
associate a thread pool with the channel by setting the max-t hr eads property on the
channel. The best value for the maximum number of threads can depend on many
factors including the details of the Oracle CQL queries in downstream processors (do
the queries allow parallel execution), and the behavior observed while running the
application (are all the CPU cores utilized). As a starting point in tuning the maximum
number of threads, it is reasonable to set it equal to the number of listeners on the
channel.

In this example, there are 3 listeners.

18-2

Chapter 18
Default Channel Scalability Settings

<w evs: channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="3" >

<w evs:instance-property nanme="eventPartitioner" value="true" />
<w evs:|istener ref="processorl" />

<w evs:|istener ref="processor2" />

<w evs:|istener ref="processor3" />

<w evs: source ref="inbound" />

</ W evs: channel >

18.1.3 Configure Parallel Processing on the Upstream Adapter

1.

Edit the EPN assembly file to configure the channel to set the nax-t hreads attribute
to 0.

<wl evs: channel id="EventPartitionerChannel" event-type="PriceEvent"
mex-t hreads="0" >
<wl evs:instance-property name="eventPartitioner" value="true" />
<w evs:|istener ref="processorl" />
<wl evs:|istener ref="processor2" />
<wl evs:|istener ref="processor3" />
<w evs: source ref="inbound" />

</w evs: channel >

Edit the Oracle Stream Analytics server file to add a wor k- manager element.

Selecting the appropriate mi n-t hr eads- const rai nt and max-t hr eads- constrai nt for
the work manager can depend on a number of factors, including the factors
discussed in Configure Parallel Processing on the Channel for setting thread
counts on a channel and whether the work manager is dedicated to a specific
adapter or shared with other components (other adapters or the Jetty service). As
a starting point in tuning, it' is reasonable to set the ni n-t hr eads- const rai nt and
max- t hr eads- constrai nt properties equal to the number of listeners downstream
from the adapter if the work manager is dedicated to a single adapter instance.

If this work manager is not shared by more than one component (that is, it is
dedicated to the upstream adapter in this configuration), then set the ni n-t hr eads-
constraint and max-t hreads- constraint elements equal to the number of listeners.
<wor k- manager >

<nane>adapt er Wr kManager </ nane>

<mi n-t hreads- const rai nt >3</ ni n-t hr eads- constr ai nt >

<max-t hr eads- const r ai nt >3</ nax-t hr eads- constrai nt >
</ wor k- manager >

Edit the component configuration file to configure the upstream adapter with this
wor k- manager .

<adapt er >
<nane>i nbound</ nane>
<wor k- manager - nane>adapt er Wr kManager </ wor k- manager - nane>

</ adapt er >

18.1.4 Define a Local Partition Channel

You must configure the Oracle CQL Processor to support local partitioning.

ORACLE

Use the sample code given below to define local partitioning:

Example 18-1 Assembly File

<wl evs: channel id="Local PartitionChannel" event-type="StockEvent" is-Iocal -
partitioner="true" max-threads="3">

<wl evs:instance-property name="partitionByEventProperty" val ue="synbol" />
</w evs: channel >

18-3

Chapter 18
Partition an Incoming JMS Event Stream

Important Channel Properties
The local partition channel has the following important properties:

e | S-LOCAL PARTI TI ONER: Defines channel to be a local partitioning channel
* MAX- THREADS: Specifies the degree of parallelism
* MAX- Sl ZE: Determines the maximum number of buffered events per partition

* PARTI TI ONI NG ATTRI BUTE: Specifies the attribute of the stream which will be
used to partition the stream.

Example 18-2 Configuration

<processor >
<name>St ockAggr egat ePr ocessor </ nanme>
<rul es>
<query id="hel | owor| dRul e">
<!'[CDATA|
sel ect count(*) as synbol Count, synbol from Local PartitionChannel group
by synbol]]>
</ query>
</rul es>
</ processor >

18.2 Partition an Incoming JMS Event Stream

You can add the Acti veActi veG oupBean class to the assembly file to partition an
incoming JMS event stream by a selector in a multiserver domain.

* Configure Partitioning without High Availability
* Configure Partitioning with High Availability

18.2.1 Configure Partitioning without High Availability

1. Create a multiserver domain.
In this example, the deployment group name is MyDepl oyment G oup.

2. Configure the Oracle Stream Analytics server configuration file on each Oracle
Stream Analytics server to add the appropriate Act i veActi veG oupBean notification
group to the groups child element of the cl uster element.

The Oracle Stream Analytics server configuration file is located in / Or acl e/
M ddl ewar e/ ny_oep/ user _proj ect s/ donai ns/ <domai n_nanme>/ <server _nane>/ confi g.

Table 18-2 shows cl ust er elements for Oracle Stream Analytics servers ocep-
server-1, ocep- server-2, ocep-server-3, and ocep- server - 4. The deployment group
is MyDepl oynent Group and the notification groups are defined using default

Acti veAct i veG oupBean notification group naming.

Optionally, you can specify your own group naming convention as Notification
Group Naming Conventions describes.

ORACLE 18-4

ORACLE

Chapter 18
Partition an Incoming JMS Event Stream

Table 18-1 Server Configuration File Groups Element Configuration

Partition cluster Element

ocep-server-1 <cluster>

ocep-server-2 <cluster>

ocep-server-3 <cluster>

ocep-server-4 <cluster>

<server - name>ocep- server - 1</ server - nane>
<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynent G oup, ActiveActiveG oupBean_groupl</groups>
</cluster>

<server - name>ocep- server - 2</ server - nane>
<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynment G- oup, ActiveActiveG oupBean_group2</ groups>
</cluster>

<server - name>ocep- server - 3</ ser ver - nanme>
<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynent G oup, ActiveActiveG oupBean_group3</groups>
</ cl uster>

<server - name>ocep- server - 4</ server - nane>
<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynent G oup, ActiveActiveG oupBean_group4</ groups>
</cluster>

Create an Oracle Stream Analytics application.

Add an Acti veActi veG oupBean element to the assembly file as follows.

<bean id="cl usterAdapter" class="com oracle.cep.cluster.hagroups.ActiveActiveG oupBean">
</ bean>

Define a parameterized message- sel ect or in the j ms- adapt er element for the JIMS
inbound adapters.

a.

<

Edit the component configuration file to add gr oup- bi ndi ng child elements to
the j ns- adapt er element for the JMS inbound adapters.

Add one group- bi ndi ng element for each possible IMS message-selector
value as shown.

ms- adapt er >
<nane>JMBl nboundAdapt er </ nane>
<event -t ype>St ockTi ck</ event -t ype>
<jndi -provi der-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-jndi - name>. / Topi c1</ dest i nati on-j ndi - name>
<user>webl ogi c</ user>
<passwor d>webl ogi c1</ passwor d>
<wor k- manager >Jet t yWor kManager </ wor k- manager >
<concur rent - consumer s>1</ concur r ent - consuner s>
<sessi on-transact ed>t r ue</ sessi on-transact ed>
<message- sel ect or >${ CONDI TI ON} </ message- sel ect or >
<bi ndi ngs>
<group- bi ndi ng group-id="ActiveActiveG oupBean_groupl">

18-5

Chapter 18
Partition an Incoming JMS Event Stream

<param i d="CONDI TI ON">acctid > 400</ paran>

</ group- bi ndi ng>

<group- bi ndi ng group-id="ActiveActiveG oupBean_group2">
<param i d="CONDI TI ON">acctid BETWEEN 301 AND 400</ par an>

</ group- bi ndi ng>

<group- bi ndi ng group-id="ActiveActiveG oupBean_group3">
<param i d="CONDI TI ON">acctid BETWEEN 201 AND 300</ par an>

</ group- bi ndi ng>

<group- bi ndi ng group-id="ActiveActiveG oupBean_group4" >
<param i d="CONDI TI ON">acctid <= 200</ paran>

</ group- bi ndi ng>

</ bi ndi ngs>
</ j ms- adapt er >

In this configuration, when the application is deployed to an Oracle Stream
Analytics server with a cl ust er element groups child element that contains

Acti veAct i veG oupBean_groupl, then the CONDI TI ON parameter is defined as acctid >
400 and the application processes events whose accti d property is greater than
400.

< Note:

Each in-bound JMS adapter must listen to a different topic. For more
information, see Adapters.

Deploy your application to the deployment group of your multiserver domain.

At runtime, each Oracle Stream Analytics server configures its instance of the
application with the message- sel ect or that corresponds to its Acti veAct i veG oupBean
notification group. This partitions the JMS topic so that each instance of the
application processes a subset of the total number of messages in parallel.

18.2.2 Configure Partitioning with High Availability

This procedure uses the example application from Configure Precise Recovery With
JMS. Figure 18-2 shows the EPN diagram, and Example 18-3 and Example 18-4 show
the corresponding assembly and configuration files.

Figure 18-2 Precise Recovery With JMS EPN

2

JIMSInboundadapter

2

JMsInboundAdapterz

ORACLE

Jigasy
e ——f—cm— e
2 . 2 3
channell channelz
myHalnputAdapter processorl myHaCorrelatingadapter IM50utboundAdapter

clusterCaorrelatingOutstream

The procedure creates the Oracle Stream Analytics high availability configuration
shown in Figure 18-3.

18-6

Chapter 18
Partition an Incoming JMS Event Stream

Figure 18-3 ActiveActiveGroupBean With High Availability

Deployment Group

Notification Group 1

b | Host 1 ;
: Primary :

<<IMS Selector>> : i | Event

‘{ acctid <= 1000 ’ ™ ' Output

i | Host2 i
¢ | | Secondary '
<<JMS Selector>> | ;
acctid <= 1000 T !
: '
Event i
Input | v | Notification Group 2
bl | Hosta
i Primary !

<<JMS Selectors> ' ' | Event

] acctid > 1000 ST | output
']
' 1
" Host 4 i
: Secondary !
<<JMS Selectors= il i
acctid > 1000 ;

ActiveActiveGroupBean
generated Motification Group

Configure Scalability in a JMS Application with High Availability

1. Create a multiserver domain.
In this example, the deployment group is named MyDepl oynent G oup.

2. Configure the Oracle Stream Analytics server configuration file on each Oracle
Stream Analytics server to add the appropriate Acti veActi veG oupBean notification
group to the groups child element of the cl ust er element.

The Oracle Stream Analytics server configuration file is located in / Oracl e/
M ddl ewar e/ ny_oep/ user _proj ect s/ donmai ns/ <domai n_nane>/ <server _nane>/ confi g.

Table 18-2 shows cl ust er elements for Oracle Stream Analytics servers ocep-
server-1, ocep- server-2, ocep- server-3, and ocep- server - 4. The deployment group
is MyDepl oynent G oup and notification groups are defined using default

Acti veActi veG oupBean notification group names.

Note that ocep- server-1 and ocep- server - 2 use the same notification group name
(Acti veActiveG oupBean_groupl) and ocep- server-3 and ocep- server -4 use the same
notification group name (Acti veAct i veG oupBean_gr oup2).

ORACLE 18-7

ORACLE

Chapter 18
Partition an Incoming JMS Event Stream

Table 18-2 Server Configuration File Groups Element Configuration

|
Partition cluster Element

ocep-server-1 <cluster>
<server-nanme>ocep- server- 1</ server - name>

<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynent G oup, ActiveActiveG oupBean_groupl</groups>
</cluster>

ocep-server-2 <cluster>
<server-nanme>ocep- server- 2</ server - nane>

<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynment G- oup, ActiveActiveG oupBean_groupl</groups>
</cluster>

ocep-server-3 <cluster>
<server-nanme>ocep- server- 3</ server - nanme>

<enabl ed>coher ence</ enabl ed>

<groups>MyDepl oyment G oup, ActiveActiveG oupBean_group2</ groups>
</cluster>

ocep-server-4 <cluster>
<server-nanme>ocep- server- 4</ server - name>

<enabl ed>coher ence</ enabl ed>

<gr oups>M/Depl oynent G oup, ActiveActiveG oupBean_group2</ groups>
</cluster>

Create an Oracle Stream Analytics high availability application.
For more information, see High Availability Applications.
Add an Acti veActi veG oupBean element to the assembly file as shown.

<bean id="cl usterAdapter" class="com oracle.cep.cluster.hagroups.ActiveActiveG oupBean">
</ bean>

Edit the component configuration file to configure a j ns- adapt er element for the
inbound JMS adapters as shown.

You must set each inbound JMS adapter to listen to a different topic and set
sessi on-transacted to true.

<?xnl version="1.0" encodi ng="UTF-8"?>

<w evs: config
xm ns:w evs="http://ww. bea. com ns/w evs/ confi g/ appl i cation"
xm ns: ha="http://ww. oracl e. conl ns/ cep/ confi g/ cl uster">

<j ns- adapt er>
<nane>JMBl nboundAdapt er </ nane>
<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der - url >
<destination-jndi - nane>. / Topi c1</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>
</ j ms- adapt er >
<j ns- adapt er>
<nane>JMBl nboundAdapt er 2</ nane>

18-8

ORACLE

Chapter 18
Partition an Incoming JMS Event Stream

<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>
</ j ms- adapt er >
</w evs: config>

Define a parameterized message- sel ect or in the j ms- adapt er element for each JMS
inbound adapter.

a. Edit the component configuration file to add gr oup- bi ndi ng child elements to
the j ns- adapt er element for the JMS inbound adapters.

b. Add one group- hi ndi ng element for each possible JMS nessage- sel ect or value
as shown.

<j ms- adapt er >
<name>JMs| nboundAdapt er </ nane>
<event -t ype>St ockTi ck</ event -t ype>
<jndi -provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-j ndi - name>. / Topi c1</ desti nati on-j ndi - name>
<sessi on-transact ed>t rue</ sessi on-transact ed>
<nmessage- sel ect or >${ CONDI TI ON} </ message- sel ect or >
<bi ndi ngs>
<group- bi ndi ng group-id="ActiveActiveG oupBean_groupl">
<param i d="CONDI TI ON'>acctid <= 1000</ par am>
</ gr oup- bi ndi ng>
<group- bi ndi ng group-id="ActiveActiveG oupBean_group2">
<param i d="CONDI TI ON'>acctid > 1000</ par an>
</ gr oup- bi ndi ng>
</ bi ndi ngs>
</ j ms- adapt er >

In this configuration, when the application is deployed to an Oracle Stream
Analytics server with a cl ust er element groups child element that contains

Acti veActi veG oupBean_groupl, then the CONDI TI ON parameter is defined as accti d
<= 1000 and the application processes events whose accti d property is less than
or equal to 1000. Similarly, when the application is deployed to an Oracle Stream
Analytics server with a cl ust er element groups child element that contains

Acti veActi veG oupBean_group2, then the CONDI TI ON parameter is defined as acctid >
1000 and the application processes events whose accti d property is greater than
1000.

Edit the component configuration file to configure a j ns- adapt er element for the
outbound JMS adapter as shown:

Configure the out-bound JMS adapter with the same topic as the correlating in-
bound adapter (in this example, JMSI nboundAdapt er 2: . / Topi ¢2), and set sessi on-
transacted to true.

<?xnl version="1.0" encodi ng="UTF-8"?>

<w evs: config
xm ns:w evs="http://ww. bea. com ns/w evs/ confi g/ appl i cation"
xm ns: ha="http://ww. oracl e. conl ns/ cep/ confi g/ cl uster">

<j ns- adapt er>
<nane>JMBl nboundAdapt er </ nane>
<event -t ype>St ockTi ck</ event - t ype>
<jndi -provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-jndi - name>. / Topi c1</ dest i nati on-j ndi - name>
<sessi on-transact ed>t r ue</ sessi on-transact ed>
</ j ms- adapt er >
<j ns- adapt er>
<nane>JMBl nboundAdapt er 2</ nane>
<event -t ype>St ockTi ck</ event -t ype>
<jndi -provi der-url>t3://ppurich-pc: 7001</j ndi - provi der-url >

18-9

ORACLE

Chapter 18
Partition an Incoming JMS Event Stream

<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>
</ j ms- adapt er >
<j ms- adapt er>
<nanme>JMsQut boundAdapt er </ nane>
<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-j ndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<sessi on-transact ed>t rue</ sessi on-transact ed>
</ j ms- adapt er >
</w evs: config>

Deploy your application to the deployment group of your multiserver domain.

At runtime, each Oracle Stream Analytics server configures its instance of the
application with the nessage- sel ect or that corresponds to its Acti veActi veG oupBean
notification group. This partitions the JMS topic so that each instance of the
application processes a subset of the total number of messages in parallel.

If the active Oracle Stream Analytics server in an Acti veAct i veG oupBean group
goes down, the Oracle Stream Analytics server performs an Oracle Stream
Analytics high availability failover to the standby Oracle Stream Analytics server in
that Acti veAct i veG oupBean group.

Example 18-3 Precise Recovery With JIMS EPN Assembly File

<?xm version="1.0" encodi ng="UTF-8"?>
<beans ... >

<w evs: event -t ype-repository>
<w evs: event -type type-name="St ockTi ck">
<wl evs: properties>
<wl evs: property nanme="|astPrice" type="double" />
<wl evs: property nanme="synbol " type="char" />
</w evs: properties>
</w evs: event-type>
</w evs: event -type-repository>

<wl evs: adapter id="JMsI nboundAdapt er” provider="j ns-inbound">
<w evs: |istener ref="nyHal nput Adapter"/>
</w evs: adapt er >

<wl evs: adapter id="nyHal nput Adapter” provider="ha-inbound" >
<wl evs:instance-property nanme="keyProperties" val ue="sequenceNo"/>
<wl evs:instance-property nanme="ti meProperty" val ue="inboundTi me"/>
</w evs: adapt er >

<w evs: channel id="channel 1" event-type="StockTi ck">
<w evs:|istener ref="processorl" />
<w evs: sour ce ref="nyHal nput Adapter"/>
<wl evs: appl i cation-timestanped>
<wl evs: expressi on>i nboundTi me</w evs: expr essi on>
</w evs: application-timestanped>
</w evs: channel >

<w evs: processor id="processorl">
<w evs:|istener ref="channel 2" />
</w evs: processor >

<w evs: channel id="channel 2" event-type="StockTi ck">
<w evs:|istener ref="nyHaCorrel atingAdapter" />
</w evs: channel >

<wl evs: adapter id="nyHaCorrel atingAdapter" provider="ha-correlating" >
<wl evs:instance-property nanme="correl at edSource" ref="clusterCorrel atingQutstreant/>
<w evs:instance-property nanme="fail Over Del ay" val ue="2000"/>
<w evs: |istener ref="JMSQut boundAdapter"/>

</w evs: adapt er >

18-10

Chapter 18
Notification Group Naming Conventions

<wl evs: adapter id="JMsQut boundAdapter" provider="j ns- out bound" >
</w evs: adapt er >

<w evs: adapt er id="JMsI nboundAdapt er 2" provi der="j ns-i nbound" >
</w evs: adapt er >

<w evs: channel id="clusterCorrelatingQutstreant event-type="StockTick" advertise="true">
<w evs: sour ce ref="JMSI nboundAdapt er 2"/ >
</w evs: channel >
</ beans>

Example 18-4 Precise Recovery With JMS Component Configuration Assembly
File

<?xnl version="1.0" encodi ng="UTF-8"?>
<w evs: config
xm ns:w evs="http://ww. bea. com ns/w evs/ confi g/ appl i cation"
xm ns: ha="http://ww. oracl e. conl ns/ cep/ confi g/ cl uster">
<processor >
<nane>pr ocessor 1</ nane>
<rul es>
<query id="hel | owor| dRul e">
<!|[CDATA] select * fromchannel 1 [Now >
</ query>
</rul es>
</ processor>
<j ns- adapt er>
<nane>JMS| nboundAdapt er </ nane>
<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-jndi - nane>. / Topi c1</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>

</ j ms- adapt er >

<j ns- adapt er>
<nane>JMB| nboundAdapt er 2</ nane>
<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-jndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>

</ j ms- adapt er >

<j ns- adapt er>
<nane>JMsQut boundAdapt er </ nane>
<event -t ype>St ockTi ck</ event - t ype>
<j ndi - provider-url>t3://ppurich-pc: 7001</j ndi - provi der-url >
<destination-jndi - nane>. / Topi c2</ desti nati on-j ndi - nane>
<sessi on-transact ed>t r ue</ sessi on-transact ed>

</ j ms- adapt er >
</wl evs: config>

18.3 Notification Group Naming Conventions

ORACLE

By default, the Acti veActi veG oupBean class creates notification groups with the
following name where X is a string.

ActiveActiveG oupBean_X

At runtime, Acti veActi veG oupBean scans the existing groups defined on the Oracle
Event Processing server and applies the following default pattern match. When
ActiveActiveGroupBean finds a match, it creates a notification group with that name.

ActiveActiveG oupBean_\\w+

18-11

Chapter 18
Custom Channel Event Partitioner

Optionally, you can define your own group pattern to specify a different notification
group naming pattern.

1. Configure the assembly file to add a groupPat t er n attribute to your
Acti veActi veG oupBean element as shown.
<bean id="cl usterAdapter" class="com oracle. cep.cluster.hagroups.ActiveActiveG oupBean">

<property name="groupPattern" val ue="MNotificationG oupPattern*"/>
</ bean>

2. Specify a value for the groupPat t er n attribute that matches the cluster group
naming convention you want to use for notification groups.

18.4 Custom Channel Event Partitioner

Most channels use the default event partitioning, where if no partitioner is specified
and if the partiti onByEvent Property element is not present, the channel sends events
to all listeners. The partitionByEvent Property element provides a level of customization
by partitioning on the specified event with a default partitioning algorithm

This section explains how you can further customize how events are dispatched to the
channel listeners by programmatically configuring a custom partitioner that provides
finer control over the default partitioning algorithm. For example, you can create an
event partitioner that is based on a property range

18.4.1 EventPartitioner Interface

Use the com.bea.wlevs.channel.EventPartitioner interface to partition events across a
channel to customize how events are dispatched to the channel listener.

" Note:

When you implement custom partitioning and parallel processing, make sure
to add code to preserve event order and to carefully manage multithreading.

Figure 18-4 shows an EPN that uses an event partitioner to partition a channel. In this
example, the inbound adapter sends events of type Pri ceEvent, which has two
properties: stock symbol and stock price. The example partitions the channel on the
synbol property and shows you how to add multithreading to the channel or to the
upstream adapter.

Figure 18-4 Event Partitioner EPN

23 3

outbound

EventPartitionerChannel channel

inbound

processor3

ORACLE 18-12

Chapter 18
Custom Channel Event Partitioner

18.4.2 Implement the EventPartitioner Interface

ORACLE

In Oracle JDeveloper, open your Oracle Stream Analytics application.
Edit your MANI FEST. MF file to import package com bea. wl evs. channel .
Select the project and select File > New > From Gallery.

The New Gallery dialog displays.

In the New Gallery dialog, select General in the left panel and Java Class in the
right panel, and click OK.

The Create Java Class dialog displays.

In the Create Java Class dialog, provide a class name, package name, and
extends information.

Under Optional Attributes and Implements, use the Add (+) button to locate the
com bea. w evs. channel . Event Partitioner interface.

Click OK.
A new Event Partitioner class is created.

Complete the implementation of your Event Partitioner as shown.

package com acne;

inport com bea.w evs. channel . Event Partiti oner;
inport com bea. w evs. ede. api . Event Processi ngExcept i on;
inport com bea.w evs. ede. api . Event Type;

public class M/EventPartitioner inplements EventPartitioner {

private final EventType event Type;
private int numberCfPartitions;

@verride

public void activateConfiguration(int numberCfPartitions, EventType event Type) {
this. nunberOf Partitions = nunber OfPartitions;
this. event Type = event Type;

1
@verride

public int partition(CObject event) throws EventProcessingException {
int dispatchToListener = 0;
. Il Your inplenentation.
return di spat chToLi stener;

}
}

The acti vat eConfi gurati on method is a callback that the Oracle Stream Analytics
server invokes before Acti vat abl eBean. af t er Confi gurati onActi ve and before your
Event Partitioner class's partition method is invoked.

When you associate this Event Parti ti oner with a channel, the channel will invoke
your Event Partitioner class's partition method each time the channel receives an
event.

Your partition method must return the index of the listener to which the channel
should dispatch the event. The index must be an i nt between 0 and
nunber Of Partitions - 1.

Add a channel to your EPN.

18-13

ORACLE

10.

11.

12.

Chapter 18
Custom Channel Event Partitioner

In Figure 18-4, the channel is Event Parti ti oner Channel .
Connect the channel to an upstream adapter.

In Figure 18-4, the upstream adapter is i nbound.
Connect the channel to two or more listeners.

In Figure 18-4, the channel is connected to Oracle CQL processors processor 1,
processor 2, and processor 3.

If you want to the channel to perform load balancing, each listener must be
identical.

Edit the EPN assembly file to add an event Parti ti oner instance property to the
channel element.

The val ue of this i nst ance- property is the fully qualified class name of the
Event Partitioner instance the channel will use to partition events. This class must
be on your Oracle Stream Analytics application class path.

In this example, the channel uses Event Parti ti oner instance
com acrme. MyEvent Parti ti oner to partition events.

<wl evs: channel id="EventPartitionerChannel" event-type="PriceEvent" max-threads="0" >
<wl evs:instance-property name="eventPartitioner"
val ue="com acrme. M/Event Partitioner" />
<wl evs:listener ref="filterFanout Processorl" />
<wl evs:|istener ref="filterFanoutProcessor2" />
<wl evs:listener ref="filterFanoutProcessor3" />
<wl evs: source ref="PriceAdapter" />
</ wl evs: channel >

18-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	1 Introduction to Application Development
	1.1 EPN Diagram
	1.2 Component Configuration
	1.3 Streams and Relations
	1.4 Application Scalability and High Availability
	1.5 Application Life Cycle
	1.6 API Overview
	1.7 Spring Framework
	1.8 OSGi Service Platform

	2 Application and Resource Configuration
	2.1 Application Configuration
	2.2 Assembly File Structure
	2.2.1 Nested Stages in an EPN Assembly File
	2.2.2 Foreign Stages in an EPN Assembly File

	2.3 Component Configuration File Structure
	2.4 Component and Server Configuration
	2.5 Resource Access Configuration
	2.5.1 Resource Access Annotations
	2.5.2 Static Resource Injection
	2.5.2.1 Static Resource Names
	2.5.2.2 Dynamic Resource Names

	2.5.3 Dynamic Resource Injection
	2.5.4 Dynamic Resource Lookup Using JNDI
	2.5.5 Resource Name Resolution

	3 Events and Event Types
	3.1 How Events Function
	3.2 Choose a Data Structure for the Event Type
	3.3 Design Constraints
	3.4 Event Type Repository
	3.5 Properties
	3.6 Interval and Time Stamp Properties
	3.6.1 Interval Properties
	3.6.2 Time Stamp with Local Time Zone Properties

	3.7 Create and Register a JavaBean Event Type
	3.7.1 Data Types
	3.7.2 Create a JavaBean Event Type Declaratively
	3.7.3 Create a JavaBean Event Type Programmatically
	3.7.4 Usages

	3.8 Create and Register a Tuple Event Type
	3.8.1 Create a Tuple Event Type in the Assembly File
	3.8.2 Use a Tuple Event Type in Java Code
	3.8.3 Use a Tuple Event Type Instance in Oracle CQL Code

	3.9 Create and Register a Map Event Type
	3.10 Access the Event Type Repository
	3.10.1 EPN Assembly File
	3.10.2 Spring-DM @ServiceReference Annotation
	3.10.3 Oracle Stream Analytics @Service Annotation

	3.11 Share Event Types Between Application Bundles
	3.12 Control Event Type Instantiation with an Event Type Builder Class
	3.12.1 Implement an Event Type Builder Class
	3.12.2 An Event Type that Uses an Event Type Builder

	4 Adapters
	4.1 Create Adapters
	4.2 Cluster Distribution Service
	4.3 Password Encryption
	4.4 JAXB Support
	4.4.1 EclipseLink Moxy
	4.4.2 APIs

	4.5 CSV Adapters
	4.6 EDN Adapters
	4.6.1 Usage
	4.6.2 Create EDN Adapters

	4.7 File Adapter
	4.8 HTTP Publish-Subscribe Adapter
	4.9 HTTP Publish-Subscribe Adapter Custom Converter Bean
	4.9.1 Bayeux Protocol
	4.9.2 Create a Custom Converter Bean

	4.10 JMS Adapters
	4.10.1 Service Providers
	4.10.2 Inbound Adapter Configuration
	4.10.2.1 Single and Multithreaded Inbound JMS Adapters
	4.10.2.2 Configure a JMS Adapter for Durable Subscriptions

	4.10.3 Outbound Adapter Configuration

	4.11 JMS Custom Message Converter Bean
	4.11.1 Implement Interfaces
	4.11.2 Implement the Inbound JMS Adapter
	4.11.3 Implement the Outbound JMS Adapter

	4.12 Oracle Business Rules Adapter
	4.13 QuickFix Adapter
	4.13.1 Supported QuickFIX Versions and Unsupported Message Types
	4.13.2 Configure QuickFix Adapters
	4.13.3 Configure a Socket-Based Acceptor Failover

	4.14 REST Adapter
	4.15 RMI Adapters
	4.16 Twitter Adapter
	4.16.1 Configuration of the Twitter Adapter
	4.16.2 Dependencies for the Twitter Adpater
	4.16.3 Twitter Inbound Adapter
	4.16.4 Example with the Filter Option

	4.17 MQTT Adapter
	4.17.1 MQTT Configuration Parameters
	4.17.2 MQTT Receiver EPN
	4.17.3 MQTT Sender EPN

	4.18 Kafka Adapter
	4.18.1 Inbound Adapter receiving messages from Kafka
	4.18.2 Outbound Adapter sending messages to Kafka
	4.18.3 Kafka Configuration

	4.19 Coherence Adapter
	4.19.1 Coherence Inbound Adapter
	4.19.2 Coherence Outbound Adapter
	4.19.3 OracleCoherenceCache
	4.19.4 EmployeeEvent

	5 Channels
	5.1 When to Use a Channel
	5.2 Channel Configuration
	5.2.1 Assembly File
	5.2.2 Configuration File

	5.3 Control Which Queries Output to a Downstream Channel
	5.4 Batch Processing Channels
	5.5 Fault Handling
	5.6 EventPartitioner Channels
	5.7 Distributed Flows
	5.7.1 Examples of Distributed Flows
	5.7.2 Local Partitioning Channel

	6 Oracle CQL Processors
	6.1 Processor Data Sources
	6.2 Assembly and Configuration Files
	6.3 Queries
	6.3.1 Stream Channels
	6.3.2 Time-Based Relations (Windows)
	6.3.2.1 Stream to Relation Operators
	6.3.2.2 Relation to Stream Operators
	6.3.2.3 NOW and Last Event Windows

	6.3.3 Processor Output Control (Slides)
	6.3.4 Views

	6.4 CQL Aggregations
	6.5 Configure a Table Source
	6.5.1 Assembly File
	6.5.2 Configuration File

	6.6 Configure an Oracle CQL Processor for Parallel Query Execution
	6.6.1 Set Up Parallel Query Execution Support
	6.6.2 The ordering-constraint Attribute
	6.6.3 Using partition-order-capacity with Partitioning Queries
	6.6.4 Limitations

	6.7 Fault Handling
	6.7.1 Implement a Fault Handler Class
	6.7.2 Register a Fault Handler

	7 Event Beans
	7.1 Event Beans and Spring Beans
	7.1.1 Threading Behavior
	7.1.2 Receive Heartbeat Events
	7.1.3 Create an Event Bean
	7.1.4 Create a Spring Bean

	7.2 Event Sink Interfaces
	7.2.1 Implement StreamSink
	7.2.2 Implement RelationSink

	7.3 Event Source Interfaces
	7.3.1 Implement StreamSender
	7.3.2 Implement RelationSender

	8 Cached Event Data
	8.1 Caching Defined
	8.1.1 Supported Caching Implementations
	8.1.2 Use Cases

	8.2 Configure an Oracle Coherence Caching System and Cache
	8.2.1 Assembly File
	8.2.2 Configuration File
	8.2.3 Cache Loader Bean

	8.3 Configure a Local Caching System and Cache
	8.3.1 Assembly File
	8.3.2 Configuration File

	8.4 Configure a Cache as an Event Listener
	8.5 Index a Cache with a Key
	8.5.1 Assembly File
	8.5.2 Metadata Annotation
	8.5.3 Composite Key

	8.6 Configure a Cache as an Event Source
	8.7 Configure a Cache with a Cache Listener
	8.8 Configure a Third-Party Caching System and Cache
	8.9 Exchange Data Between a Cache and Another Data Source
	8.9.1 Load Cache Data from a Read-Only Data Source
	8.9.2 Exchange Data with a Read-Write Data Source

	8.10 Access a Cache from Application Code
	8.10.1 Access a Cache from an Oracle CQL Statement
	8.10.2 Access a Cache from an Adapter
	8.10.3 Access a Cache From a Business POJO
	8.10.4 Access a Cache From an Oracle CQL User-Defined Function
	8.10.5 Access a Cache with JMX
	8.10.5.1 How to Access a Cache With JMX Using Oracle Stream Analytics Visualizer
	8.10.5.2 How to Access a Cache With JMX Using Java

	9 EclipseLink, JPA, and Oracle Coherence
	9.1 High-Level Procedure
	9.2 HelloWorld Example
	9.2.1 persistence.xml Configuration File
	9.2.2 HelloWorldAdapter.java
	9.2.3 HelloWorldEvent.java
	9.2.4 HelloWorldBean.java

	9.3 JPA Coherence Example
	9.3.1 persistence.xml Configuration File
	9.3.2 Classes
	9.3.2.1 CoherenceMapListener.java
	9.3.2.2 PriceTarget.java
	9.3.2.3 PriceTargetLoader.java
	9.3.2.4 SaleEvent.java
	9.3.2.5 SaleEventsGenerator.java

	10 Web Services
	10.1 Supported Platforms
	10.2 Invoke a Web Service From an Application
	10.3 Expose an Application as a Web Service

	11 Parameterized Applications
	11.1 Application Parameters
	11.2 Object Class Definitions
	11.3 Attribute Descriptions
	11.4 Targeting
	11.5 Example metatype File
	11.6 Where You Can Use Parameterized Applications
	11.6.1 Document an Application
	11.6.2 Channel Configuration
	11.6.3 Oracle CQL Processor Query

	11.7 Deploy the HelloWorld Application

	12 Internationalization
	12.1 Message Catalogs
	12.1.1 Hierarchy
	12.1.2 Naming
	12.1.3 Message Arguments
	12.1.4 Formats
	12.1.5 Message Catalog Localization

	12.2 Generate Localization Classes

	13 Assemble and Deploy
	13.1 OSGi bundles
	13.2 Application Dependencies
	13.3 Application Libraries
	13.3.1 Library Directory
	13.3.2 Library Extensions Directory

	13.4 Deployment Order
	13.5 Configuration History
	13.6 Assemble an OSGi Bundle with appC
	13.7 Assemble an OSGi Bundle with bundle.sh
	13.7.1 Prepare and Organize the Files
	13.7.2 Create the MANIFEST.MF File
	13.7.3 Include Third-Party JAR Files
	13.7.4 Access Third-Party JAR Files with -Xbootclasspath
	13.7.5 Reference Foreign Stages
	13.7.6 Assemble an OSGi Bundle that Activates
	13.7.6.1 Command Location, Syntax, and Arguments
	13.7.6.2 Assemble an OSGi Bundle

	13.8 Deploy an OSGi Bundle

	14 Testing 1-2-3
	14.1 Load Generator and the csvgen Adapter
	14.1.1 Create the Properties File
	14.1.2 Create the Data Feed File
	14.1.3 Configure the csvgen Adapter in Your Application

	14.2 Event Inspector Service
	14.2.1 Event Types
	14.2.2 HTTP Publish-Subscribe Channel and Server
	14.2.3 Configure a Local or Remote Server
	14.2.4 Inject Events
	14.2.5 Trace Events
	14.2.6 Event Inspector API

	14.3 EPN Shell
	14.3.1 Oracle CQL Queries
	14.3.2 Management Commands
	14.3.3 Regression Testing
	14.3.4 EPN Variable
	14.3.5 EPN Commands
	14.3.6 Management Commands

	14.4 EPN Command Interface
	14.4.1 Session Variables
	14.4.2 Methods
	14.4.3 Example

	15 Debug with Event Record and Playback
	15.1 Event Flow
	15.2 Berkeley DB
	15.3 Record Events
	15.4 Play Back Events
	15.5 Configure Berkeley DB
	15.6 Configure a Component to Record Events
	15.7 Configure a Component to Play Back Events
	15.8 Start and Stop the Record and Playback of Events

	16 Performance Tuning
	16.1 Channel and JMS Performance Tuning
	16.2 High Availability Performance Tuning

	17 High Availability Applications
	17.1 Oracle Coherence
	17.2 Architecture
	17.3 Life Cycle and Failover
	17.3.1 Secondary Failure
	17.3.2 Primary Failure and Failover
	17.3.3 Rejoining the High Availability MultiServer Domain

	17.4 Deployment Group and Notification Group
	17.5 High Availability Adapters
	17.5.1 High Availability Input Adapter
	17.5.2 Buffering Output Adapter
	17.5.3 Broadcast Output Adapter
	17.5.4 Correlating Output Adapter

	17.6 High Availability and Scalability
	17.7 Choose a Quality of Service Option
	17.7.1 Simple Failover
	17.7.2 Simple Failover with Buffering
	17.7.3 Light-Weight Queue Trimming
	17.7.4 Precise Recovery with JMS

	17.8 Design Applications for High Availability
	17.8.1 Primary High Availability Use Case
	17.8.2 High Availability Design Patterns
	17.8.2.1 Select the Minimum High Availability Your Application can Tolerate
	17.8.2.2 Use High Availability Components at All Ingress and Egress Points
	17.8.2.3 Preserve What You Need
	17.8.2.4 Limit Oracle Stream Analytics Application State
	17.8.2.5 Choose an Adequate warm-up-window-length Time
	17.8.2.5.1 Type 1 Applications
	17.8.2.5.2 Type 2 Applications

	17.8.2.6 Ensure Applications are Idempotent
	17.8.2.7 Source Event Identity Externally
	17.8.2.8 Understand the Importance of Event Ordering
	17.8.2.8.1 Prefer Deterministic Behavior
	17.8.2.8.2 Avoid Multithreading
	17.8.2.8.3 Prefer Monotonic Event Identifiers

	17.8.2.9 Write Oracle CQL Queries with High Availability in Mind
	17.8.2.10 Avoid Coupling Servers
	17.8.2.11 Plan for Server Recovery

	17.8.3 Oracle CQL Query Restrictions
	17.8.3.1 Range-Based Windows
	17.8.3.2 Tuple-Based Windows
	17.8.3.3 Partitioned Windows
	17.8.3.4 Sliding Windows
	17.8.3.5 DURATION Clause and Non-Event Detection
	17.8.3.6 Prefer Application Time

	17.9 Configure High Availability Quality of Service
	17.9.1 Configure a Simple Failover
	17.9.2 Configure Simple Failover With Buffering
	17.9.3 Configure Light-Weight Queue Trimming
	17.9.4 Configure Precise Recovery With JMS

	17.10 Configure High Availability Adapters
	17.10.1 Configure the High Availability Input Adapter
	17.10.2 Configure the Buffering Output Adapter
	17.10.3 Configure the Broadcast Output Adapter
	17.10.4 Configure the Correlating Output Adapter

	18 Scalable Applications
	18.1 Default Channel Scalability Settings
	18.1.1 Configure Partitioning on the Channel
	18.1.2 Configure Parallel Processing on the Channel
	18.1.3 Configure Parallel Processing on the Upstream Adapter
	18.1.4 Define a Local Partition Channel

	18.2 Partition an Incoming JMS Event Stream
	18.2.1 Configure Partitioning without High Availability
	18.2.2 Configure Partitioning with High Availability

	18.3 Notification Group Naming Conventions
	18.4 Custom Channel Event Partitioner
	18.4.1 EventPartitioner Interface
	18.4.2 Implement the EventPartitioner Interface

