
Oracle® Fusion Middleware
Developing Applications for Oracle CQL Data
Cartridges

12c Release (12.2.1.3.0)
E98670-01
August 2018

Oracle Fusion Middleware Developing Applications for Oracle CQL Data Cartridges, 12c Release (12.2.1.3.0)

E98670-01

Copyright © 2007, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions viii

Syntax Diagrams viii

 What's New in This Guide

1 Introduction to Data Cartridges

1.1 Oracle CQL Data Cartridge Framework 1-1

1.2 Names 1-1

1.3 Application Context 1-2

2 Configure Oracle JDBC and Oracle Spatial Data Cartridges

2.1 How to Configure Oracle Spatial Application Context 2-1

2.2 How to Configure Oracle JDBC Data Cartridge Application Context 2-3

3 Oracle JDBC Data Cartridge

3.1 Understanding the Oracle Stream Explorer JDBC Data Cartridge 3-1

3.1.1 Data Cartridge Name 3-2

3.1.2 Scope 3-2

3.1.3 Parameter Specification 3-2

3.1.4 Oracle Stream Explorer JDBC Data Cartridge Application Context 3-3

3.1.4.1 Declare a JDBC Cartridge Context in the EPN File 3-3

3.1.4.2 Configure the JDBC Cartridge Context in the Application
Configuration File 3-4

3.2 Using the Event Processing JDBC Data Cartridge 3-5

3.2.1 Defining SQL Statements: function Element 3-6

iii

3.2.1.1 function Element Attributes 3-7

3.2.1.2 function Element Child Elements 3-7

3.2.1.3 function Element Usage 3-9

3.2.2 Defining Oracle CQL Queries With the Oracle Stream Analytics JDBC
Data Cartridge 3-12

3.2.2.1 Using SELECT List Aliases 3-12

3.2.2.2 Using the TABLE Clause 3-13

3.2.2.3 Using a Native CQL Type as a return-component-type 3-15

4 Oracle Spatial Data Cartridge

4.1 Understanding Oracle Spatial 4-1

4.1.1 Data Cartridge Name 4-1

4.1.2 Scope 4-2

4.1.2.1 Geometry Types 4-4

4.1.2.2 Element Info Array 4-5

4.1.2.3 Ordinates and Coordinate Systems and the SDO_SRID 4-6

4.1.2.4 Geometric Index 4-7

4.1.2.5 Geometric Relation Operators 4-7

4.1.2.6 Geometric Filter Operators 4-8

4.1.2.7 Geometric Aggregations 4-8

4.1.2.8 Geometry API 4-8

4.1.3 Datatype Mapping 4-10

4.1.4 Oracle Spatial Application Context 4-10

4.2 Using Oracle Spatial 4-11

4.2.1 How to Access Oracle Spatial Java API Geometry Types 4-11

4.2.2 How to Create a Geometry 4-12

4.2.3 How to Access Geometry Type Public Methods and Fields 4-13

4.2.4 How to Use Geometry Relation Operators 4-14

4.2.5 How to Use Geometry Filter Operators 4-14

4.2.6 How to Use Geometry Aggregate Operators 4-15

4.2.7 How to Use the Default Geodetic Coordinates 4-15

4.2.8 How to Use Other Geodetic Coordinates 4-15

5 Oracle Big Data Cartridges

5.1 What is Big Data? 5-1

5.2 Hadoop Data Cartridge 5-2

5.2.1 Understanding the Oracle Stream Analytics Hadoop Data Cartridge 5-2

5.2.1.1 Usage Scenario: Using Purchase Data to Develop Buying
Incentives 5-3

5.2.1.2 Data Cartridge Name 5-4

iv

5.2.2 Using Hadoop Data Sources in Oracle CQL 5-4

5.2.2.1 Configuring Integration of Oracle Stream Analytics and Hadoop 5-4

5.2.2.2 Integrating a File from a Hadoop System Into an EPN 5-4

5.2.2.3 Using Hadoop Data in Oracle CQL 5-6

5.3 NoSQL Data Cartridge 5-6

5.3.1 Oracle CQL Processor Queries 5-7

5.3.2 Data Cartridge Name 5-7

5.3.3 Using a NoSQL Database in Oracle CQL 5-7

5.3.3.1 Integrating a NoSQL Database Into an EPN 5-7

5.3.3.2 Using NoSQL Data in Oracle CQL 5-9

5.4 HBase Big Data Cartridge 5-10

5.4.1 Understanding HBase Cartridge 5-11

5.4.2 Using HBase Cartridge 5-11

5.4.3 Limitations of HBase Cartridge in 12.2.1 Release 5-13

6 Oracle Java Data Cartridge

6.1 Understanding the Oracle Java Data Cartridge 6-1

6.1.1 Data Cartridge Name 6-1

6.1.2 Class Loading 6-2

6.1.2.1 Application Class Space Policy 6-2

6.1.2.2 No Automatic Import Class Space Policy 6-2

6.1.2.3 Server Class Space Policy 6-3

6.1.2.4 Class Loading Example 6-3

6.1.3 Method Resolution 6-4

6.1.4 Datatype Mapping 6-5

6.1.4.1 Java Data Type String and Oracle CQL Data Type CHAR 6-6

6.1.4.2 Literals 6-6

6.1.4.3 Arrays 6-6

6.1.4.4 Collections 6-7

6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge 6-7

6.2 Using the Oracle Java Data Cartridge 6-7

6.2.1 How to Query Using the Java API 6-7

6.2.2 How to Query Using Exported Java Classes 6-8

6.2.3 Java Cast Function 6-10

7 Data Cartridge Framework

7.1 About the SPI 7-1

7.2 Interfaces 7-1

7.2.1 Interface Descriptions 7-2

v

7.2.2 Exceptions 7-3

7.3 Cartridge Examples 7-3

7.3.1 Arithmetic Cartridge 7-3

7.3.2 Data Source Cartridge 7-4

7.4 Source Code 7-4

7.4.1 Arithmetic Cartridge 7-4

7.4.2 Data Source Cartridge 7-8

A Oracle Spatial Command and API Reference

A.1 ANYINTERACT A-2

A.2 buffer A-2

A.3 bufferPolygon A-3

A.4 CONTAIN A-4

A.5 convertTo2D A-4

A.6 convertTo3D A-5

A.7 createCircle A-5

A.8 createElemInfo A-6

A.9 createGeometry A-8

A.10 createLinearLineString A-8

A.11 createLinearMultiLineString A-9

A.12 createLinearPolygon A-10

A.13 createMultiPoint A-10

A.14 createPoint A-11

A.15 createRectangle A-12

A.16 distance A-12

A.17 einfogenerator A-13

A.18 FILTER A-15

A.19 get2dMbr A-15

A.20 INSIDE A-16

A.21 INSIDE3D A-16

A.22 NN A-17

A.23 ordsgenerator A-18

A.24 to_Geometry A-18

A.25 to_J3D_Geometry A-19

A.26 to_JGeometry A-19

A.27 WITHINDISTANCE A-19

vi

Preface

A complete description of the Oracle Continuous Query Language (Oracle CQL), a
query language based on SQL with added constructs that support streaming data.
Using Oracle CQL, you can express queries on data streams to perform event
processing. Oracle CQL is a new technology but it is based on a subset of SQL99 is
provided.

Audience
This document is intended for all users of Oracle CQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following:

• Known Issues for Oracle SOA and BPM Products at: http://www.oracle.com/
technetwork/middleware/soasuite/documentation/
soaknownissues122120-3111966.html.

• Oracle Fusion Middleware Administering Oracle Stream Analytics

• Oracle Fusion Middleware Developing Applications for Event Processing with
Oracle Stream Analytics

• Oracle Fusion Middleware Getting Started with Event Processing for Oracle
Stream Analytics

• Oracle Fusion Middleware Schema Reference for Oracle Stream Analytics

• Oracle Fusion Middleware Using Visualizer for Oracle Stream Analytics

• Oracle Fusion Middleware Customizing Event Processing for Oracle Stream
Analytics

• Oracle Fusion Middleware Oracle CQL Language Reference

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html

• Oracle Fusion Middleware Java API Reference for Oracle Stream Analytics

• Oracle Fusion Middleware Using Oracle Stream Analytics

• Oracle Fusion Middleware Getting Started with Oracle Stream Analytics

• SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

• Oracle Stream Analytics Forum: http://forums.oracle.com/forums/forum.jspa?
forumID=820

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Diagrams
Syntax descriptions are provided in this book for various Oracle CQL, SQL, PL/SQL,
or other command-line constructs in graphic form or Backus Naur Form (BNF).

Preface

viii

http://forums.oracle.com/forums/forum.jspa?forumID=820
http://forums.oracle.com/forums/forum.jspa?forumID=820

What's New in This Guide

Screens shown in this guide may differ from your implementation, depending on the
skin used. Any differences are cosmetic.

The product has been renamed from Oracle Stream Explorer to in this release.

Sections Changes Made

HBase Big Data Cartridge New section that describes the HBase Data Cartridge

ix

1
Introduction to Data Cartridges

Oracle Stream Explorer data cartridges extend Oracle Continuous Query Language
(Oracle CQL) to support domain-specific abstract data types of the following forms:
simple types, complex types, array types, and domain-specific functions.

This chapter includes the following sections:

• Oracle CQL Data Cartridge Framework

• Names

• Application Context.

1.1 Oracle CQL Data Cartridge Framework
The Oracle CQL data cartridge framework enables you to tightly integrate arbitrary
domain data types and functions with the Oracle CQL language. The tight integration
means that you can use the data cartridge extensions within Oracle CQL queries in
the same way that you use Oracle CQL native types and built-in functions. The
framework supports both simple and complex data types. Complex data types allow
you to use object-oriented programming.

Currently, Oracle Stream Explorer provides the following data cartridges:

• Oracle JDBC data cartridge: This data cartridge allows you to incorporate arbitrary
SQL functions against multiple tables and data sources in Oracle CQL queries and
views as you would Oracle CQL native types.

• Oracle Spatial: This data cartridge exposes Oracle Spatial types, methods, fields,
and constructors that you can use in Oracle CQL queries and views as you would
Oracle CQL native types.

• Hadoop Big Data cartridge: This data cartridge extends an Oracle CQL processor
to access large quantities of data in a Hadoop distributed file system (HDFS).

• NoSQLDB Big Data cartridge: This data cartridge extends an Oracle CQL
processor to access large quantities of data in an Oracle NoSQL Database

• Oracle Java data cartridge: This data cartridge exposes Java types, methods,
fields, and constructors that you can use in Oracle CQL queries and views as you
would Oracle CQL native types.

1.2 Names
Each data cartridge is identified by a unique data cartridge name that defines a name
space for the data cartridge implementation. Use the data cartridge name to
disambiguate references to types, methods, fields, and constructors.

How you access data cartridge types, methods, fields, and constructors using Oracle
CQL is the same for all data cartridge implementations. For example, you can
reference a data-cartridge function with func_expr, which optionally takes a link name.

1-1

What you access in each data cartridge is unique to each data cartridge
implementation. For more information, see:

• Oracle Java Data Cartridge

• Oracle Spatial Data Cartridge

• Oracle Big Data Cartridges.

Note:

To simplify Oracle data cartridge type names, you can use aliases as
described in Oracle Fusion Middleware Oracle CQL Language Reference for
Oracle Stream Analytics.

1.3 Application Context
Depending on the data cartridge implementation, you might be able to define an
application context that the Oracle Stream Analytics server propagates to the functions
and types that an instance of the data cartridge provides. For example, you might be
able to configure an Oracle Stream Analytics server resource or a default data
cartridge option and associate this application context information with a particular
data cartridge instance.

Depending on the data cartridge implementation, you might be able to define an
application context that the Oracle Stream Analytics server propagates to an instance
of the data cartridge and the complex objects it provides.

The following figure illustrates this application context.

Figure 1-1 Data Cartridge Application Context

For example, you might be able to configure an Oracle Stream Analytics server
resource or a default data cartridge option and associate this application context
information with a particular data cartridge instance.

You define an application context for an instance of an Oracle Spatial data cartridge
using a data cartridge implementation-provided element (call it DATA_CARTRIDGE_CONTEXT)
in your Oracle Stream Analytics application's Event Processing Network (EPN)
assembly file as the following example shows.

<DATA_CARTRIDGE_CONTEXT id="MyContext" ATTRIBUTE="" ... />

Chapter 1
Application Context

1-2

Where DATA_CARTRIDGE_CONTEXT is the name of the data cartridge implementation-
provided element and ATTRIBUTE is one of one or more attributes that the data cartridge
exposes for configuration.

In your Oracle CQL query, you use the id of the DATA_CARTRIDGE_CONTEXT (MyContext in
the following example) in links instead of the DATA_CARTRIDGE_NAME alone. The Oracle
Stream Analytics server will set the context object into the data cartridge instance
before locating the data cartridge complex object.

Note:

The id value must not equal the DATA_CARTRIDGE_NAME.

In the following example, the default link (@DATA_CARTRIDGE_NAME) propagates the default
application context to the myMethod call.

<view id="view1">
 select com.mypackage.MyType.myMethod@DATA_CARTRIDGE_NAME(...)
 from S[NOW]
</view>

In the following example, the link (@MyContext) propagates the user-defined application
context to the myMethod call.

<view id="view1">
 select com.mypackage.MyType.myMethod@MyContext(...)
 from S[NOW]
</view>

You can configure an application context for the following data cartridges:

• Oracle Spatial data cartridge

• Oracle JDBC data cartridge

Chapter 1
Application Context

1-3

2
Configure Oracle JDBC and Oracle Spatial
Data Cartridges

How to configure the Oracle JDBC cartridge and Oracle Spatial cartridge, which
extend Oracle Continuous Query Language (CQL) for use with Oracle Stream
Explorer is described.

This chapter includes the following sections:

• How to Configure Oracle Spatial Application Context

• How to Configure Oracle JDBC Data Cartridge Application Context.

2.1 How to Configure Oracle Spatial Application Context
You define an application context for an instance of Oracle Spatial using element
spatial:context in your Oracle Stream Analytics application's Event Processing
Network (EPN) assembly file.

All constructors and methods from com.oracle.cartridge.spatial.Geometry and Oracle
Spatial functions are aware of spatial:context. For example, the SRID is automatically
set from the value in the Oracle Spatial application context.

For more information, see "SDO_SRID" in the Oracle Spatial Developer's Guide at:
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/

sdo_objrelschema.htm#SPATL492

To configure Oracle Spatial application context:

1. In Oracle JDeveloper, open the EPN diagram.

2. Import the package com.oracle.cep.cartridge.spatial into your Oracle Stream
Analytics application's MANIFEST.MF file.

3. Right-click the EPN node and select Configure Spatial Context > New Spatial
Context.

4. Edit the EPN file to add the required namespace and schema location entries as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/ocep-epn.xsd

2-1

http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492

http://www.oracle.com/ns/ocep/spatial
 http://www.oracle.com/ns/ocep/spatial/ocep-spatial.xsd">

5. Edit the EPN file to add a spatial:context element as follows.

<spatial:context id="SpatialGRS80" />

6. Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries.

Note:

The id value must not equal the Oracle Spatial name spatial.

7. Configure the other attributes of the spatial:context element to suit your
application requirements.

Table 2-1 lists the attributes of the spatial:context element.

Table 2-1 spatial:context Element Attributes

Attribute Description

anyinteract-tolerance The default tolerance for contain or inside operator.

Default: 0.0000005

rof Defines the Reciprocal Of Flattening (ROF) parameter used
for buffering and projection.

Default: 298.257223563

sma Defines the Semi-Major Axis (SMA) parameter used for
buffering and projection.

Default: 6378137.0

srid SRID integer. Valid values are:

• CARTESIAN: for cartesian coordinate system.
• LAT_LNG_WGS84_SRID: for WGS84 coordinate system.
• An integer value from the Oracle Spatial SDO_COORD_SYS

table COORD_SYS_ID column.
Default : LAT_LNG_WGS84_SRID

tolerance The minimum distance to be ignored in geometric operations
including buffering.

Default: 0.000000001

The following example shows how to create a spatial context named SpatialGRS80
in an EPN assembly file using the Geodetic Reference System 1980 (GRS80)
coordinate system (srid="4269").

<spatial:context id="SpatialGRS80" srid="4269" sma="63787.0"
rof="298.25722101" />

8. Create Oracle CQL queries that reference this application context by name.

The following example shows how to reference a spatial:context in an Oracle
CQL query. In this case, the query uses link name SpatialGRS80 to propagate this
application context to the Oracle Spatial. The spatial:context attribute settings of

Chapter 2
How to Configure Oracle Spatial Application Context

2-2

SpatialGRS80 are applied to the createPoint method call. Because the application
context defines the SRID, you do not need to pass that argument into the
createPoint method.

<view id="createPoint">
 select
com.oracle.cep.cartridge.spatial.Geometry.createPoint@SpatialGRS80(lng, lat, 0d)
 from CustomerPos[NOW]
</view>

2.2 How to Configure Oracle JDBC Data Cartridge
Application Context

You define an application context for an instance of an Oracle JDBC data cartridge.

• A jdbc:jdbc-context element in the EPN assembly file.

• A jc:jdbc-ctx element in the component configuration file.

The jc:jdbc-ctx element:

– references one and only one jdbc:jdbc-context

– references one and only one data-source

– defines one or more SQL functions

Note:

You must provide alias names for every SELECT list column in the SQL
function.

To configure Oracle JDBC data cartridge application context:

1. Open the EPN editor in the Oracle JDeveloper.

2. Right-click the EPN node and select Configure Spatial Context > New Spatial
Context.

3. Edit the EPN file to add the required namespace and schema location entries as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/ocep-epn.xsd
 http://www.oracle.com/ns/ocep/jdbc
 http://www.oracle.com/ns/ocep/jdbc/ocep-jdbc.xsd">

4. Edit the EPN file to add a jdbc:jdbc-context element as follows.

Chapter 2
How to Configure Oracle JDBC Data Cartridge Application Context

2-3

<jdbc:jdbc-context id="JdbcCartridgeOne"/>

5. Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries.

Note:

The id value must not equal the Oracle JDBC data cartridge name jdbc.

6. Right-click the desired processor and select Go to Configuration Source.

7. Edit the component configuration file to add the required namespace entries as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc
 xsi:schemaLocation="
 http://www.oracle.com/ns/ocep/config/jdbc
 http://www.oracle.com/ns/ocep/config/jdbc/ocep_jdbc_context_config.xsd">

8. Edit the component configuration file to add a jc:jdbc-ctx element as follows.

<jc:jdbc-ctx>
</jc:jdbc-ctx>

9. Add a name child element whose value is the name of the Oracle JDBC
application context you defined in the EPN assembly file as follows.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
</jc:jdbc-ctx>

10. Add a data-source child element whose value is the name of a datasource defined
in the Oracle Stream Analytics server config.xml file.

The following example shows how to specify the data source named StockDS.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
</jc:jdbc-ctx>

11. Create one or more SQL functions using the function child element as follows.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE

Chapter 2
How to Configure Oracle JDBC Data Cartridge Application Context

2-4

 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>

Note:

You must provide alias names for every SELECT list column in the SQL
query.

12. Create Oracle CQL queries that invoke the SQL functions using the Oracle JDBC
data cartridge application context.

The following example shows how to reference a jdbc:jdbc-context in an Oracle
CQL query. In this case, the query uses link name JdbcCartridgeOne to propagate
this application context to the Oracle JDBC data cartridge. The Oracle CQL query
in invokes the function getDetailsByOrderIdName defined by Oracle JDBC data
cartridge context JdbcCartridgeOne.

<processor>
 <name>Proc</name>
 <rules>
 <query id="q1"><![CDATA[
 RStream(
 select
 currentOrder.orderId,
 details.orderInfo.employeeName,
 details.orderInfo.employeeemail,
 details.orderInfo.description
 from
 OrderArrival[now] as currentOrder,
 TABLE(getDetailsByOrderIdName@JdbcCartridgeOne(
 currentOrder.orderId, currentOrder.empName
) as orderInfo
) as details
)
 ></query>
 </rules>
</processor>

Chapter 2
How to Configure Oracle JDBC Data Cartridge Application Context

2-5

3
Oracle JDBC Data Cartridge

You can use the Oracle Stream Explorer JDBC data cartridge to execute a SQL query
against a database and use the returned results in a CQL query.

When using functionality provided by the cartridge, you are associating a SQL query
with a JDBC cartridge function definition. Then, from a CQL query, you can call the
JDBC cartridge function, which executes the associated SQL query against the
database. The function call must be enclosed in the TABLE clause, which lets you use
the SQL query results as a CQL relation in the CQL query making that function call.

Note:

Oracle recommends the Oracle JDBC data cartridge for accessing relational
database tables from an Oracle CQL statement.

For information the TABLE clause, see Using the TABLE Clause.

This chapter includes the following sections:

• Understanding the Oracle Stream Explorer JDBC Data Cartridge

• Using the Event Processing JDBC Data Cartridge.

3.1 Understanding the Oracle Stream Explorer JDBC Data
Cartridge

Oracle Stream Explorer streams contain streaming data, and a database typically
stores historical data. Use the Oracle Stream Explorer JDBC data cartridge to
associate historical data (stored in one or more tables) with the streaming data coming
from Oracle Stream Explorer streams.

The Oracle Stream Explorer JDBC data cartridge executes arbitrary SQL query
against a database and uses the results in the CQL query. This section describes how
to associate streaming and historical data using the Oracle Stream Explorer JDBC
data cartridge.

This section describes:

• Data Cartridge Name

• Scope

• Parameter Specification

• Oracle Stream Explorer JDBC Data Cartridge Application Context.

3-1

3.1.1 Data Cartridge Name
The Oracle Stream Explorer JDBC data cartridge uses the cartridge ID
com.oracle.cep.cartridge.jdbc. This ID is reserved and cannot be used by any other
cartridges.

For more information, see Oracle Stream Explorer JDBC Data Cartridge Application
Context.

3.1.2 Scope
The Oracle Stream Analytics JDBC data cartridge supports arbitrarily complex SQL
statements with the following restrictions:

• You can use only native SQL types in the SELECT list of the SQL query.

• You cannot use user-defined types and complex database types in the SELECT list.

• You can provide alias names for every SELECT list column in the SQL query. If you
provide alias names, make sure the select list is consistent with the return type
property names.

Note:

To use the Oracle Stream Analytics JDBC data cartridge, your data source
must use Oracle JDBC driver version 11.2 or higher.

3.1.3 Parameter Specification
Use the param element to specify the parameters for JDBC functions. The parameters
are specified as name and value pairs. The name attribute specifies event data of the
specified type. The type attribute can be any Oracle CQL data type. See Oracle Fusion
Middleware Oracle CQL Language Reference for information about Oracle CQL data
types.

The following example shows an example configuration file that uses param and type
pairs to specify parameters for the getDetailsByOrderIdName function.

Note:

The RetEvent class used in the example is an example of how to return a
complex type as a table function. The full code for this class is shown in
Using the Event Processing JDBC Data Cartridge.

...
<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />

Chapter 3
Understanding the Oracle Stream Explorer JDBC Data Cartridge

3-2

 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>
...

3.1.4 Oracle Stream Explorer JDBC Data Cartridge Application
Context

To use the Oracle Stream Explorer JDBC data cartridge, you must declare and
configure one or more application-scoped JDBC cartridge context while developing an
application, as described in the following steps:

• Declare a JDBC Cartridge Context in the EPN File

• Configure the JDBC Cartridge Context in the Application Configuration File.

3.1.4.1 Declare a JDBC Cartridge Context in the EPN File
To declare a JDBC cartridge context in the EPN file:

1. Edit your Oracle Stream Explorer application EPN assembly file to add the
required namespace and schema location entries.

2. Add an entry with the tag jdbc-context in the EPN file and specify the id attribute.
The id represents the name of this application-scoped context and is used in CQL
queries that reference functions defined in this context. The id is also used when
this context is configured in the application configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/http://www.bea.com/ns/wlevs/spring/ocep-epn.xsd
 http://www.oracle.com/ns/ocep/jdbc
 http://www.oracle.com/ns/ocep/jdbc/ocep-jdbc.xsd">

The following example shows how to create an Oracle Stream Explorer JDBC data
cartridge application context named JdbcCartridgeOne in an EPN assembly file.

<jdbc:jdbc-context id="JdbcCartridgeOne"/>

Chapter 3
Understanding the Oracle Stream Explorer JDBC Data Cartridge

3-3

3.1.4.2 Configure the JDBC Cartridge Context in the Application Configuration
File

To configure the JDBC cartridge context, add the configuration details in the
component configuration file that is typically placed under the application's /wlevs
directory. This configuration is similar to configuring other EPN components such as
channel and processor.

To configure the JDBC cartridge context in the application configuration file:

1. Before adding the JDBC context configuration, add the required namespace entry
to the configuration XML file, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<jdbcctxconfig:config xmlns:jdbcctxconfig="http://www.bea.com/ns/wlevs/config/
application"
 xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc">

2. The JDBC cartridge context configuration is done under the parent level tag jdbc-
ctx. A context defines one or more functions, each of which is associated with a
single SQL query. The configuration also specifies the data source representing
the database against which the SQL queries are to be executed. Each function
can have input parameters that are used to pass arguments to the SQL query
defining the function, and each function specifies the return-component-type.
Since the call to this function is always enclosed within a TABLE clause, the
function always returns a Collection type. The return-component-type property
indicates the type of the component of that collection.

The value of the name property must match the value used for the id attribute in the
EPN file.

Note:

The RetEvent class used in the example is an example of how to return a
complex type as a table function. The full code for this class is shown in
Using the Event Processing JDBC Data Cartridge.

...
<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND

Chapter 3
Understanding the Oracle Stream Explorer JDBC Data Cartridge

3-4

 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>
...
<processor>
 <name>Proc</name>
 <rules>
 <query id="q1"><![CDATA[
 RStream(
 select
 currentOrder.orderId,
 details.orderInfo.employeeName,
 details.orderInfo.employeeemail,
 details.orderInfo.description
 from
 OrderArrival[now] as currentOrder,
 TABLE(getDetailsByOrderIdName@JdbcCartridgeOne(
 currentOrder.orderId, currentOrder.empName
) as orderInfo
) as details
)
 ></query>
 </rules>
</processor>
...

3.2 Using the Event Processing JDBC Data Cartridge
The different ways in which an Event Processing JDBC Data Cartridge can be used
are explained.

In general, you use the Oracle Event Processing JDBC data cartridge as follows:

1. Declare and define an Oracle Event Processing JDBC cartridge application-
scoped context.

For more information, see Oracle Stream Explorer JDBC Data Cartridge
Application Context.

2. Define one or more SQL statements in the jc:jdbc-ctx element in the component
configuration file.

For more information, see Defining SQL Statements: function Element.

3. If you specify the function element return-component-type child element as a Java
bean, implement the bean and ensure that the class is on your Oracle Event
Processing application classpath.

The following example shows a typical implementation.

Note:

The RetEvent class is an example of how to return a complex type as a
table function.

package com.oracle.cep.example.jdbc_cartridge;

public class RetEvent
{

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-5

 public String employeeName;
 public String employeeEmail;
 public String description;

 /* Default constructor is mandatory */
 public RetEvent1() {}

 /* May contain getters and setters for the fields */

 public String getEmployeeName() {
 return this.employeeName;
 }

 public void setEmployeeName(String employeeName) {
 this.employeeName = employeeName;
 }

 ...

 /* May contain other helper methods */

 public int getEmployeeNameLength() {
 return employeeName.length();
 }
}

You must declare the fields as public.

The return-component-type class for a JDBC cartridge context function must have
a one-to-one mapping for fields in the SELECT list of the SQL query that defines
the function. In other words, every field in the SELECT list of the SQL query
defining a function must have a corresponding field (matching name) in the Java
class that is declared to be the return-component-type for that function; otherwise
Oracle Event Processing throws an error.

For more information, see return-component-type.

4. Define one or more Oracle CQL queries that call the SQL statements defined in
the jc:jdbc-ctx element using the Oracle CQL TABLE clause and access the
returned results by SQL SELECT list alias names.

For more information, see Defining Oracle CQL Queries With the Oracle Stream
Analytics JDBC Data Cartridge.

3.2.1 Defining SQL Statements: function Element
Within the jc:jdbc-cxt element in the component configuration file, you can define a
JDBC cartridge context function using the function child element.

...
<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-6

 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>
...

You may define one or more function elements within a given jc:jdbc-cxt element.

This section describes:

• function Element Attributes

• function Element Child Elements

• function Element Usage.

3.2.1.1 function Element Attributes
Each function element supports the attributes that Table 3-1 lists.

Table 3-1 function Element Attributes

Attribute Description

name The name of the JDBC cartridge context function.

The combination of name and signature must be unique within a given
Oracle Stream Analytics JDBC data cartridge application context. For
more information, see Overloading JDBC Cartridge Context Functions.

3.2.1.2 function Element Child Elements
Each function element supports the following child elements:

• param

• return-component-type

• sql.

3.2.1.2.1 param
The param child element specifies an optional input parameter.

The SQL statement may take zero or more parameters. Each parameter is defined in
a param element.

The param child element supports the attributes that Table 3-2 lists.

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-7

Table 3-2 param Element Attributes

Attribute Description

name The name of the input parameter.

A valid parameter name is formed by a combination of A-Z,a-z,0-9 and
_ (underscore).

type The data type of the parameter.

Datatype Support – You may specify only Oracle CQL native
com.bea.wlevs.ede.api.Type data types for the input parameter param element type
attribute.

Note:

Datatype names are case sensitive. Use the case that the
com.bea.wlevs.ede.api.Type class specifies.

For more information, see Table 3-3.

3.2.1.2.2 return-component-type
The return-component-type child element specifies the return type of the function. This
child element is mandatory.

This represents the component type of the collection type returned by the JDBC data
cartridge function. Because the function is always called from within an Oracle CQL
TABLE clause, it always returns a collection type.

For more information, see Using the TABLE Clause.

Datatype Support – You may specify any one of the following types as the value of
the return-component-type element:

• Oracle CQL native com.bea.wlevs.ede.api.Type datatype.

• Oracle CQL extensible Java cartridge type, such as a Java bean.

For more information, see:

• Table 3-3

• Oracle Java Data Cartridge.

3.2.1.2.3 sql
The sql child element specifies a SQL statement. This child element is mandatory.

Each function element may contain one and only one, single-line, SQL statement. You
define the SQL statement itself within a <![CDATA[> block.

Within the SQL statement, you specify input parameters by param element name
attribute using a colon (:) prefix.

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-8

Note:

You must provide alias names for every SELECT list column in the JDBC
cartridge context function.

Datatype Support – Table 3-3 lists the SQL types you may use in your Oracle Stream
Analytics JDBC data cartridge context functions and their corresponding Oracle
Stream Analytics Java type and com.bea.wlevs.ede.api.Type type.

Table 3-3 SQL Column Types and Oracle Stream Analytics Type Equivalents

SQL Type Oracle Stream Analytics Java Type com.bea.wlevs.ede.a
pi.Type

NUMBER java.math.BigDecimal bigdecimal

NUMBER long bigint

RAW byte[] byte

CHAR, VARCHAR java.lang.String char

NUMBER double double

FLOAT, NUMBER float float

INTEGER, NUMBER int int

TIMESTAMP java.sql.Timestamp timestamp

Note:

In cases where the size of the Java type exceeds that of the SQL type, your
Oracle Stream Analytics application must restrict values to the maximum size
of the SQL type. The choice of type to use on the CQL side should be driven
by the range of values in the database column. For example, if the SQL
column is a number that contains values in the range of integer, use the "int"
type on CQL side. If you choose an incorrect type and encounter out-of-
range values, Oracle Stream Analytics throws a numeric overflow error.

Note:

The Oracle Stream Analytics JDBC data cartridge does not support Oracle
Spatial data types.

For more information, see function Element Usage.

3.2.1.3 function Element Usage
This section provides examples of different JDBC cartridge context functions you can
define using the Oracle Stream Explorer JDBC data cartridge, including:

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-9

• Multiple Parameter JDBC Cartridge Context Functions

• Invoking PL/SQL Functions

• Complex JDBC Cartridge Context Functions

• Overloading JDBC Cartridge Context Functions.

3.2.1.3.1 Multiple Parameter JDBC Cartridge Context Functions
Using the Oracle Stream Explorer JDBC data cartridge, you can define JDBC cartridge
context functions that take multiple input parameters.

The following example shows an Oracle Stream Explorer JDBC data cartridge
application context that defines an JDBC cartridge context function that takes two input
parameters.

...
<function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
</function>
...

3.2.1.3.2 Invoking PL/SQL Functions
Using the Oracle Stream Explorer JDBC data cartridge, you can define JDBC cartridge
context functions that invoke PL/SQL functions that the database defines.

The following example shows an Oracle Stream Explorer JDBC data cartridge
application context that defines a JDBC cartridge context function that invokes PL/SQL
function getOrderAmt.

...
<function name="getOrderAmount">
 <param name="inpId" type="int" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT getOrderAmt(:inpId) as orderAmt
 FROM dual
 ></sql>
</function>
...

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-10

3.2.1.3.3 Complex JDBC Cartridge Context Functions
Using the Oracle Stream Explorer JDBC data cartridge, you can define arbitrarily
complex JDBC cartridge context functions including subqueries, aggregation, GROUP BY,
ORDER BY, and HAVING.

The following example shows an Oracle Stream Explorer JDBC data cartridge
application context that defines a complex JDBC cartridge context function.

...
<function name="getHighValueOrdersPerEmp">
 <param name="limit" type="int"/>
 <param name="inpName" type="char"/>
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 select description as description, sum(amt) as totalamt, count(*) as numTimes
 from OrderDetails
 where orderid in (
 select orderid from PlacedOrders where empid in (
 select empid from Employee where empName = :inpName
)
)
 group by description
 having sum(amt) > :limit
 ></sql>
</function>
...

3.2.1.3.4 Overloading JDBC Cartridge Context Functions
Using the Oracle Stream Explorer JDBC data cartridge, you can define JDBC cartridge
context functions with the same name in the same application context provided that
each function has a unique signature.

The following example shows an Oracle Stream Explorer JDBC data cartridge
application context that defines two JDBC cartridge context functions named
getDetails. Each function is distinguished by a unique signature.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetails">
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName=:inpName
 ORDER BY
 description desc
 ></sql>
 </function>
 <function name="getDetails">

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-11

 <param name="inpOrderId" type="int" />
 <sql><![CDATA[return-component-type
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId= Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>

3.2.2 Defining Oracle CQL Queries With the Oracle Stream Analytics
JDBC Data Cartridge

This section describes how to define Oracle CQL queries that invoke SQL statements
using the Oracle Stream Analytics JDBC data cartridge, including:

• Using SELECT List Aliases

• Using the TABLE Clause

• Using a Native CQL Type as a return-component-type.

3.2.2.1 Using SELECT List Aliases
Consider the Oracle Stream Explorer JDBC data cartridge context function.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>

You must assign an alias to each column in the SELECT list. When you invoke the JDBC
cartridge context function in an Oracle CQL query, you access the columns in the
result set by their SQL SELECT list aliases.

For more information, see Using the TABLE Clause.

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-12

3.2.2.2 Using the TABLE Clause
Consider the Oracle Stream Analytics JDBC data cartridge SQL statement.

...
<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>StockDS</data-source>
 <function name="getDetailsByOrderIdName">
 <param name="inpOrderId" type="int" />
 <param name="inpName" type="char" />
 <return-component-type>
 com.oracle.cep.example.jdbc_cartridge.RetEvent
 </return-component-type>
 <sql><![CDATA[
 SELECT
 Employee.empName as employeeName,
 Employee.empEmail as employeeEmail,
 OrderDetails.description as description
 FROM
 PlacedOrders, OrderDetails , Employee
 WHERE
 PlacedOrders.empId = Employee.empId AND
 PlacedOrders.orderId = OrderDetails.orderId AND
 Employee.empName = :inpName AND
 PlacedOrders.orderId = :inpOrderId
 ></sql>
 </function>
</jc:jdbc-ctx>
...

The Oracle CQL query in the below example invokes the JDBC cartridge context
function defined in the above example.

<processor>
 <name>Proc</name>
 <rules>
 <query id="q1"><![CDATA[
 RStream(
 select
 currentOrder.orderId,
 details.orderInfo.employeeName,
 details.orderInfo.employeeEmail,
 details.orderInfo.description
 details.orderInfo.getEmployeeNameLength()
 from
 OrderArrival[now] as currentOrder,
 TABLE(getDetailsByOrderIdName@JdbcCartridgeOne(
 currentOrder.orderId, currentOrder.empName
) as orderInfo
) as details
)
 ></query>
 </rules>
</processor>

You must wrap the Oracle Stream Analytics JDBC data cartridge context function
invocation in an Oracle CQL query TABLE clause.

You access the result set using:

TABLE_CLAUSE_ALIAS.JDBC_CARTRIDGE_FUNCTION_ALIAS.SQL_SELECT_LIST_ALIAS
or
TABLE_CLAUSE_ALIAS.JDBC_CARTRIDGE_FUNCTION_ALIAS.METHOD_NAME

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-13

Where:

• TABLE_CLAUSE_ALIAS: the outer AS alias of the TABLE clause.

• JDBC_CARTRIDGE_FUNCTION_ALIAS: the inner AS alias of the JDBC cartridge context
function.

• SQL_SELECT_LIST_ALIAS: the JDBC cartridge context function SELECT list alias.

• METHOD_NAME: the name of the method that the return-component-type class
provides.

You access the JDBC cartridge context function result set in the Oracle CQL query
using:

details.orderInfo.employeeName
details.orderInfo.employeeEmail
details.orderInfo.description
details.orderInfo.getEmployeeNameLength()

The component type of the collection type returned by the JDBC data cartridge
function is defined by the function element return-component-type child element.
Because the function is always called from within an Oracle CQL TABLE clause, it
always returns a collection type.

You can access both fields and methods of the return-component-type in an Oracle
CQL query.

package com.oracle.cep.example.jdbc_cartridge;

public class RetEvent
{
 String employeeName;
 String employeeEmail;
 String description;

 /* Default constructor is mandatory */
 public RetEvent1() {}

 /* May contain getters and setters for the fields */

 public String getEmployeeName() {
 return this.employeeName;
 }

 public void setEmployeeName(String employeeName) {
 this.employeeName = employeeName;
 }

 ...

 /* May contain other helper methods */

 public int getEmployeeNameLength() {
 return employeeName.length();
 }
}

This class provides helper methods, like getEmployeeNameLength, that you can invoke
within the Oracle CQL query.

For more information, see return-component-type.

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-14

3.2.2.3 Using a Native CQL Type as a return-component-type
Following is a JDBC cartridge context that defines a function that has a native CQL
type bigint as return-component-type.

<jc:jdbc-ctx>
 <name>JdbcCartridgeOne</name>
 <data-source>myJdbcDataSource</data-source>
 <function name="getOrderAmt">
 <param name="inpId" type="int" />
 <return-component-type>bigint</return-component-type> <!-- native CQL as
return component type -->
 <sql><![CDATA[
 SELECT
 getOrderAmt(:inpId) as orderAmt
 FROM (select :inpId as iid from
 dual)>
 </sql>
 </function>
</jc:jdbc-ctx>

The following example shows how the getOrderAmt function in the above example can
be used in a CQL query.

<query id="q1"><![CDATA[
 RStream(
 select
 currentOrder.orderId,
 details.orderInfo as orderAmt
 from
 OrderArrival[now] as currentOrder,
 TABLE(getOrderAmt@JdbcCartridgeTwo(currentOrder.orderId) as
orderInfo of bigint) as details
)
 ></query>

Note that the alias orderInfo itself is of type bigint and can be accessed as
details.orderInfo as orderAmt in the select list of the CQL query.

The "of bigint" clause used inside the TABLE construct is optional. If specified, the type
mentioned should match the return-component-type.

Chapter 3
Using the Event Processing JDBC Data Cartridge

3-15

4
Oracle Spatial Data Cartridge

A reference and guide to using the Oracle Spatial cartridge, which extends Oracle
Continuous Query Language (Oracle CQL) to provide advanced spatial features for
location-enabled applications is provided.

You can use Oracle Spatial types, methods, fields, and constructors in Oracle CQL
queries and views as you would Oracle CQL native types when you create Oracle
Stream Explorer applications.

This chapter includes the following sections:

• Understanding Oracle Spatial

• Using Oracle Spatial.

4.1 Understanding Oracle Spatial
Oracle Spatial is an Oracle Database option that provides advanced spatial features to
support high-end geographic information systems (GIS) and location-enabled business
intelligence solutions (LBS).

Oracle Spatial is an optional data cartridge that enables you to write Oracle CQL
queries and views that seamlessly interact with Oracle Spatial classes in your Oracle
Stream Explorer application.

With Oracle Spatial, you can configure Oracle CQL queries that perform the most
important geographic domain operations such as storing spatial data, performing
proximity and overlap comparisons on spatial data, and integrating spatial data with
the Oracle Stream Explorer server by providing the ability to index on spatial data.

To use Oracle Spatial, you require a working knowledge of the Oracle Spatial API. For
more information about Oracle Spatial, see:

• Oracle Spatial documentation: http://www.oracle.com/pls/db112/portal.portal_db?
selected=7&frame=#oracle_spatial_and_location_information

• Oracle Spatial Java API reference: http://download.oracle.com/docs/cd/E11882_01/
appdev.112/e11829/toc.htm

This section describes:

• Data Cartridge Name

• Scope

• Datatype Mapping

• Oracle Spatial Application Context.

4.1.1 Data Cartridge Name
Oracle Spatial uses the cartridge ID com.oracle.cep.cartrdiges.spatial and registers
the server-scoped reserved link name spatial.

4-1

http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11829/toc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11829/toc.htm

Use the spatial link name to associate an Oracle Spatial method call with the Oracle
Spatial application context.

For more information, see:

• Oracle Spatial Application Context

• Geometry API.

4.1.2 Scope
Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle
Spatial functionality in the com.oracle.cep.cartridge.spatial.Geometry class. Oracle
Spatial functionality that is not in the Oracle Spatial Java API is not accessible from
Oracle Spatial.

Using Oracle Spatial, your Oracle CQL queries can access the Oracle Spatial
functionality that Table 4-1 describes.

Chapter 4
Understanding Oracle Spatial

4-2

Table 4-1 Oracle Spatial Scope

Oracle Spatial Feature Scope

Geometry Types The following geometry types from the Oracle Spatial
Java API:

• 2D points.
• 2D circles, which support the Cartesian coordinate

system and the geodetic (geographical)
coordinates.

• 2D simple polygons.
• 2D rectangles.
• Compound 2D geometries, which includes

compound line strings and compound polygons.
• 3D geometries, excluding 3D circles and compound

3D geometries.

You can create a compound 3D geometry with the
Geometry3D.createGeometry generic method. Be
aware that spatial operations on the resulting
compound 3D object raise an exception.

• Solid (filled) 3D geometries
The following geometry operations:

• Creating geometry types
• Accessing geometry type public member functions

and public fields
• Inside and contain operations on all 2D geometry

objects. A 2D geometry object is inside when all of
its points are within an outer geometry without
touching any of the outer geometry boundaries.

• Spatial operations between any two types of 2D
geometries. You can execute spatial operations on
any two arbitrary 2D geometries such as check
whether a rectangle is inside a polygon. Note that
any geometry that consists of arcs such as a
compound polygon must use a non-zero tolerance
to densify its arcs first.

• Spatial operations on the following 3D geometries:
3D points, 3D lines, 3D rectangles, and 3D
polygons.

For more information, see:

• Geometry Types
• Element Info Array

Coordinate Systems • Cartesian and WGS84 geodetic coordinates
(default)

• Specifying the default coordinate system through
SRID

• Using other geodetic coordinates
For more information, see Ordinates and Coordinate
Systems and the SDO_SRID.

Geometric Index • R-Tree
For more information, see Geometric Index.

Chapter 4
Understanding Oracle Spatial

4-3

Table 4-1 (Cont.) Oracle Spatial Scope

Oracle Spatial Feature Scope

Geometric Relation Operators • ANYINTERACT
• CONTAIN
• INSIDE
• INSIDE3D
• WITHINDISTANCE
For more information, see Geometric Relation
Operators.

Geometric Filter Operators • FILTER
• NN
For more information, see Geometric Filter Operators.

Geometry API For a complete list of the methods that
com.oracle.cep.cartridge.spatial.Geometry
provides, see Geometry API.

Geometric Aggregations • MBR (minimum bounding rectangle)
For more information, see Geometric Aggregations.

For more information on how to access these Oracle Spatial features using Oracle
Spatial, see Using Oracle Spatial.

4.1.2.1 Geometry Types
The Oracle Spatial data model consists of geometries. A geometry is an ordered
sequence of vertices. The semantics of the geometry are determined by its type.
Oracle Spatial enables you to access the following Oracle Spatial types directly in
Oracle CQL queries and views:

• SDO_GTYPES: Oracle Spatial supports the following geometry types:

– 2D points

– 2D simple polygons

– 2D rectangles

– 3D points

– 3D lines

– 3D rectangles

– 3D polygons

Table 4-2 describes the geometry types from the
com.oracle.cep.cartridge.spatial.Geometry class that you can use.

Table 4-2 Oracle Spatial Geometry Types

Geometry Type Description

GTYPE_POINT Point geometry type that contains one point.

Chapter 4
Understanding Oracle Spatial

4-4

Table 4-2 (Cont.) Oracle Spatial Geometry Types

Geometry Type Description

GTYPE_CURVE Curve geometry type that contains one line string that can contain
straight or circular arc segments, or both.

LINE and CURVE are synonymous in this context.

GTYPE_POLYGON

GTYPE_SURFACE

Polygon geometry type that contains one polygon.

Polygon or surface geometry type that contains one polygon with or
without holes or one surface consisting of one or more polygons. In
a three-dimensional polygon, all points must be on the same plane.

GTYPE_COLLECTION Collection geometry type that is a heterogeneous collection of
elements.

COLLECTION is a superset that includes all other types.

GTYPE_MULTIPOINT Multipoint geometry type that has one or more points. MULTIPOINT
is a superset of POINT.

GTYPE_MULTICURVE Multiline or multicurve geometry type that has one or more line
strings.

MULTILINE and MULTICURVE are synonymous in this context, and
each is a superset of both LINE and CURVE.

GTYPE_MULTIPOLYGON

GTYPE_MULTISURFACE

Multipolygon or multisuraface geometry type that can have multiple,
disjoint polygons (more than one exterior boundary) or surfaces.

MULTIPOLYGON is a superset of POLYGON, and MULTISURFACE is a
superset of SURFACE.

GTYPE_SOLID Solid geometry that consists of multiple surfaces and is completely
enclosed in a three-dimensional space. Can be a cuboid or a
frustum.

GTYPE_MULTISOLID Multisolid geometry that consists of multiple, disjoint solids (more
than one exterior boundary).

MULTISOLID is a superset of SOLID.

• SDO_ELEMENT_INFO: You can create the Element Info array using:

– com.oracle.cep.cartridge.spatial.Geometry.createElemInfo static method

– einfogenerator function

For more information, see Element Info Array.

• ORDINATES: You can create the ordinates using the Oracle Spatial ordsgenerator
function.

For more information, see Ordinates and Coordinate Systems and the SDO_SRID.

For more information, see:

• How to Access Oracle Spatial Java API Geometry Types

• How to Create a Geometry

• How to Access Geometry Type Public Methods and Fields .

4.1.2.2 Element Info Array
The Element Info attribute is defined using a varying length array of numbers. This
attribute specifies how to interpret the ordinates stored in the Ordinates attribute.

Chapter 4
Understanding Oracle Spatial

4-5

Oracle Spatial provides the following helper function for generating Element Info
attribute values:

com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(int SDO_STARTING_OFFSET,
int SDO_ETYPE , int SDO_INTERPRETATION)

You can also use the einfogenerator function.

For more information, see:

• createElemInfo

• einfogenerator.

4.1.2.3 Ordinates and Coordinate Systems and the SDO_SRID
Table 4-3 lists the coordinate systems that Oracle Spatial supports by default and the
SDO_SRID value that identifies each coordinate system.

Table 4-3 Oracle Spatial Coordinate Systems

Coordinate System SDO_SRID Description

Cartesian 0 Cartesian coordinates are coordinates that measure the
position of a point from a defined origin along axes that
are perpendicular in the represented space.

Geodetic (WGS84) 8307 Geodetic coordinates (sometimes called geographic
coordinates) are angular coordinates (longitude and
latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic
datum.

This is the default coordinate system in Oracle Spatial.

You can specify the SDO_SRID value as an argument to each Oracle Spatial method and
constructor you call or you can configure the SDO_SRID in the Oracle Spatial application
context once and use com.oracle.cep.cartridge.spatial.Geometry methods without
having to set the SDO_SRID as an argument each time. Using the application context,
you can also specify any coordinate system that Oracle Spatial supports.

Chapter 4
Understanding Oracle Spatial

4-6

Note:

If you use a com.oracle.cep.cartridge.spatial.Geometry method that does
not take an SDO_SRID value, then you must use the Oracle Spatial application
context. For example, the following method call causes a runtime exception:

com.oracle.cep.cartridge.spatial.Geometry.createPoint(lng, lat)

Instead, you must use the spatial link name to associate the method call
with the Oracle Spatial application context:

com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat)

If you use a Geometry method that takes an SDO_SRID value, then the use of
the spatial link name is optional. For example, both the following method
calls are valid:

com.oracle.cep.cartridge.spatial.Geometry.createPoint(8307, lng, lat)
com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(lng, lat)

For more information, see Oracle Spatial Application Context.

Ordinates define the array of coordinates for a geometry using a double array. Oracle
Spatial provides the ordsgenerator helper function for generating the array of
coordinates. For syntax, see ordsgenerator.

For more information, see:

• How to Use the Default Geodetic Coordinates

• How to Use Other Geodetic Coordinates .

4.1.2.4 Geometric Index
Oracle Spatial uses a spatial index to implement the primary filter. The purpose of the
spatial index is to quickly create a subset of the data and reduce the processing
burden on the secondary filter.

A spatial index, like any other index, provides a mechanism to limit searches, but in
this case the mechanism is based on spatial criteria such as intersection and
containment.

Oracle Spatial uses R-Tree indexing for the default indexing mechanism. A spatial R-
tree index can index spatial data of up to four dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the Minimum Bounding Rectangle, or MBR)

For more information, see: Geometric Filter Operators.

4.1.2.5 Geometric Relation Operators
Oracle Spatial supports the following Oracle Spatial geometric relation operators:

• ANYINTERACT

• CONTAIN

Chapter 4
Understanding Oracle Spatial

4-7

• INSIDE

• INSIDE3D

• WITHINDISTANCE

You can use any of these operators in either the Oracle CQL query projection clause
or where clause.

When you use a geometric relation operator in the where clause of an Oracle CQL
query, Oracle Spatial enables Rtree indexing on the relation specified in the where
clause.

Oracle Spatial supports only geometric relations between point and other geometry
types.

For more information, see How to Use Geometry Relation Operators .

4.1.2.6 Geometric Filter Operators
Oracle Spatial supports the following Oracle Spatial geometric filter operators:

• FILTER

• NN

These filter operators perform primary filtering and so they may only appear in an
Oracle CQL query where clause.

These filter operators use the spatial index to identify the set of spatial objects that are
likely to interact spatially with the given object.

For more information, see:

• Geometric Index

• How to Use Geometry Filter Operators .

4.1.2.7 Geometric Aggregations
The geometry aggregation operator MBR may only appear in an Oracle CQL query
projection clause.

For more information, see, How to Use Geometry Aggregate Operators .

4.1.2.8 Geometry API
Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle
Spatial functionality in the com.oracle.cep.cartridge.spatial.Geometry class. This
Geometry class also extends oracle.spatial.geometry.J3D_Geometry. Oracle Spatial
supports 2D and 3D geometries and automatically zero-pads the Z coordinates for
J3D_Geometry methods.

Oracle Spatial functionality inaccessible from the Geometry class (or not conforming to
the scope and geometry types that Oracle Spatial supports) is inaccessible from
Oracle Spatial.

This section describes:

• com.oracle.cep.cartridge.spatial.Geometry Methods

Chapter 4
Understanding Oracle Spatial

4-8

• oracle.spatial.geometry.JGeometry Methods

For more information, see:

• Scope

• ordsgenerator

4.1.2.8.1 com.oracle.cep.cartridge.spatial.Geometry Methods
Table 4-4 lists the public methods that the Geometry class provides.

Table 4-4 Oracle Spatial Geometry Methods

Type Method

Buffers • buffer
• bufferPolygon

Circles • createCircle

Conversions • convertTo2D
• convertTo3D

Distance • distance

Element information • createElemInfo

Geometries • createGeometry

Linear line and multi line strings • createLinearLineString
• createLinearMultiLineString

Linear polygons • createLinearPolygon

Minimum Bounding Rectangle (MBR) • get2dMbr

Points • createMultiPoint
• createPoint

Rectangles • createRectangle

Type and type conversion • createGeometry
• to_J3D_Geometry
• to_JGeometry

Note:

Geometry class methods are case sensitive and you must use them in the
case shown.

4.1.2.8.2 oracle.spatial.geometry.JGeometry Methods
The following JGeometry public methods are applicable to Oracle Spatial:

• double area(double tolerance): returns the total planar surface area of a 2D
geometry.

• double length(double tolerance): returns the perimeter of a 2D geometry. All edge
lengths are added.

Chapter 4
Understanding Oracle Spatial

4-9

• double[] getMBR(): returns the Minimum Bounding Rectangle (MBR) of this
geometry. It returns a double array containing the minX, minY, maxX, and maxY value
of the MBR for 2D.

For more information, see:

• http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/
JGeometry.html

• http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/
J3D_Geometry.html

4.1.3 Datatype Mapping
The Oracle Spatial cartridge supports one data type:
com.oracle.cep.cartridge.spatial.Geometry.

The Geometry class extends oracle.spatial.geometry.J3D_Geometry and supports all
the public methods, fields, and constructors that J3D_Geometry and its parent class
oracle.spatial.geometry.JGeometry provide.

For a complete list of the methods that com.oracle.cep.cartridge.spatial.Geometry
provides, see Geometry API.

4.1.4 Oracle Spatial Application Context
You can define an application context for an instance of Oracle Spatial and propagate
this application context at runtime. This allows you to associate specific Oracle Spatial
application defaults (such as an SDO_SRID) with a particular Oracle Spatial instance.

Before you can define an Oracle Spatial application context, edit your Oracle Stream
Analytics application EPN assembly file to add the required namespace and schema
location entries:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
 http://www.oracle.com/ns/ocep/spatial
 http://www.oracle.com/ns/ocep/spatial/ocep-spatial.xsd">

The following example shows how to create a spatial context named SpatialGRS80 in
an EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate
system.

<spatial:context id="SpatialGRS80" srid="4269" sma="6378137" rof="298.25722101" />

The following example shows how to reference a spatial:context in an Oracle CQL
query. In this case, the query uses link name SpatialGRS80 (defined in the above

Chapter 4
Understanding Oracle Spatial

4-10

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/JGeometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/JGeometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/J3D_Geometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/J3D_Geometry.html

example) to propagate this application context to Oracle Spatial. The spatial:context
attribute settings of SpatialGRS80 are applied to the createPoint method call.

<view id="createPoint">
 select com.oracle.cep.cartridge.spatial.Geometry.createPoint@SpatialGRS80(
 lng, lat)
 from CustomerPos[NOW]
</view>

4.2 Using Oracle Spatial
Common use-cases that highlight how you can use Oracle Spatial in your Oracle
Stream Explorer applications are described.

• How to Access Oracle Spatial Java API Geometry Types

• How to Create a Geometry

• How to Access Geometry Type Public Methods and Fields

• How to Use Geometry Relation Operators

• How to Use Geometry Filter Operators

• How to Use Geometry Aggregate Operators

• How to Use the Default Geodetic Coordinates

• How to Use Other Geodetic Coordinates

For more information, see Geometry API.

4.2.1 How to Access Oracle Spatial Java API Geometry Types
This procedure describes how to access Oracle Spatial geometry types SDO_GTYPE,
SDO_ELEMENT_INFO, and ORDINATES using Oracle Spatial in an Oracle CQL query.

To access the geometry types that the Oracle Spatial Java API supports:

1. Import the package com.oracle.cep.cartridge.spatial into your Oracle Stream
Analytics application's MANIFEST.MF file.

2. Define your Oracle Stream Analytics application event type using the appropriate
Oracle Spatial data types.

The following example shows how to define event type MySpatialEvent with two
event properties x and y of type com.oracle.cep.cartridge.spatial.Geometry.

<wlevs:event-type-repository>
 <wlevs:event-type type-name="MySpatialEvent">
 <wlevs:properties>
 <wlevs:property name="x" type="com.oracle.cep.cartridge.spatial.Geometry"/>
 <wlevs:property name="y" type="com.oracle.cep.cartridge.spatial.Geometry"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

You can use these event properties in an Oracle CQL query like this:

CONTAIN@spatial(x, y, 20.0d)

For more information, see Oracle Fusion Middleware Developing Applications for
Event Processing with Oracle Stream Analytics.

Chapter 4
Using Oracle Spatial

4-11

3. Choose an SDO_GTYPE, for example, GTYPE_POLYGON.

For more information, see Geometry Types.

4. Choose the Element Info appropriate for your ordinates.

For more information, see Element Info Array

5. Define your coordinate values.

For more information, see Ordinates and Coordinate Systems and the SDO_SRID.

6. Create your Oracle CQL query as the following example shows.

view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(1, 1003, 1),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)
) as geom
 from ShopDesc
</view>

4.2.2 How to Create a Geometry
You can use Oracle Spatial to create a geometry in an Oracle CQL query by invoking:

• static methods in com.oracle.cartridge.spatial.Geometry

• methods in oracle.spatial.geometry.JGeometry that conform to the scope and
geometry types that Oracle Spatial supports.

• constructor methods in oracle.spatial.geometry.J3D_Geometry

• static methods from oracle.spatial.geometry.J3D_Geometry

For more information, see Geometry API.

Using a Static Method in the Oracle Spatial Geometry Class

The following example shows how to create a point geometry using a static method in
com.oracle.cartridge.spatial.Geometry. In this case, you must use a link (@spatial) to
identify the data cartridge that provides this class. The advantage of using this
approach is that the Oracle Spatial application context is applied to set the SRID and
other Oracle Spatial options, either by default or based on an application context you
configure (see Oracle Spatial Application Context).

<view id="CustomerPosGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(
 lng, lat) as geom
 from CustomerPos[NOW]
</view>

Using an Oracle Spatial J3D_Geometry Constructor

The following example shows how to create a geometry using a constructor method in
oracle.spatial.geometry.J3D_Geometry. In this case, you do not use a link (@spatial)
because J3D_Geometry is just a Java class. The disadvantage of this approach
compared with using com.oracle.cartridge.spatial.Geometry is that you must set the
SRID because no application context is available.

Chapter 4
Using Oracle Spatial

4-12

<view id="CustomerPosGeom">
 select oracle.spatial.geometry.J3D_Geometry(
 oracle.spatial.geometry.GTYPE_POINT, srid, x, y, z) as geom
 from CustomerPos[NOW]
</view>

Using a Static Method in the Oracle Spatial J3D_Geometry

The following example shows how to create a geometry using a static method in
oracle.spatial.geometry.J3D_Geometry.

<view id="CustomerPosGeom">
 select oracle.spatial.geometry.J3D_Geometry.createArc@spatial(
 x1, y1, x2, y2, x3, y3) as geom
 from CustomerPos[NOW]
</view>

For more information, see Geometry Types.

4.2.3 How to Access Geometry Type Public Methods and Fields
Using Oracle Spatial, you can access the public member functions and public member
fields of Oracle Spatial classes directly in Oracle CQL.

Oracle Spatial functionality inaccessible from the Geometry class (or not conforming to
the scope and geometry types that Oracle Spatial supports) is inaccessible from
Oracle Spatial.

In the following example, the view ShopGeom creates an Oracle Spatial geometry called
geom. The view shopMBR calls JGeometry static method getMBR which returns a double[] as
stream element mbr. The query qshopMBR accesses this double[] using regular Java
API.

<view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(1, 1003, 1),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)
) as geom
 from ShopDesc
</view>
<view id="shopMBR">
 select geom.getMBR() as mbr
 from ShopGeom
</view>
<query id="qshopMBR">
 select mbr[0], mbr[1], mbr[2], mbr[3]
 from shopMBR
</query>

For more information, see:

• Geometry Types

• Oracle Java Data Cartridge.

Chapter 4
Using Oracle Spatial

4-13

4.2.4 How to Use Geometry Relation Operators
Using Oracle Spatial, you can access the following Oracle Spatial geometry relation
operators in either the WHERE or SELECT clause of an Oracle CQL query:

• ANYINTERACT

• CONTAIN

• INSIDE

• INSIDE3D

• WITHINDISTANCE

In the following example, the view op_in_where uses the CONTAIN geometry relation
operator in the WHERE clause: in this case, Oracle Spatial uses R-Tree indexing. The
view op_in_proj uses CONTAIN in the SELECT clause.

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 CONTAIN@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 CONTAIN@spatial(shop.geom, loc.curLoc, 5.0d)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

For more information, see Geometric Relation Operators.

4.2.5 How to Use Geometry Filter Operators
Using Oracle Spatial, you can access the following Oracle Spatial geometry filter
operators in the WHERE clause of an Oracle CQL query:

• FILTER

• NN

In the following example, the view filter uses the FILTER geometry filter operator in
the WHERE clause.

<view id="filter">
 RStream(
 select loc.customerId, shop.shopId
 from LocGeomStream[NOW] as loc, ShopGeomRelation as shop

Chapter 4
Using Oracle Spatial

4-14

 where FILTER@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>

For more information, see Geometric Filter Operators.

4.2.6 How to Use Geometry Aggregate Operators
Using the Oracle Spatial data cartridge, you can access the following Oracle Spatial
aggregate operators in the SELECT clause of an Oracle CQL query:

• MBR

In the following example, the view vaggrmbr uses the MBR geometry aggregate operator
in the SELECT clause. The query qaggrmbr access the double[] returned by the MBR
geometry aggregate operator directly using standard Java API.

<view id="vaggrmbr">
 select MBR@spatial1(shop.geom) as mbr
 from ShopGeomRelation as shop
</view>
<query id="qaggrmbr">
 select mbr[0], mbr[1], mbr[2], mbr[3], mbr[4], mbr[5], mbr[6]
 from vaggrmbr
</query>

For more information, see Geometric Filter Operators.

4.2.7 How to Use the Default Geodetic Coordinates
When you create an Oracle CQL query using the default Oracle Spatial application
context, the default SRID will be set to CARTESIAN.

The following example shows, the createPoint method call uses the default link
(@spatial). This guarantees that the default Oracle Spatial application context is
applied.

<view id="createPoint">
 select com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(
 lng, lat)
 from CustomerPos[NOW]
</view>

For more information, see:

• Oracle Spatial Application Context

• Ordinates and Coordinate Systems and the SDO_SRID.

4.2.8 How to Use Other Geodetic Coordinates
This procedure describes how to use the Oracle Spatial application context to specify
a geodetic coordinate system other than the default Cartesian geodetic coordinate
system in an Oracle CQL query:

For more information, see:

• Oracle Spatial Application Context

Chapter 4
Using Oracle Spatial

4-15

• Ordinates and Coordinate Systems and the SDO_SRID.

To use other geodetic coordinates:

1. Create an Oracle Spatial application context and define the srid attribute for the
geodetic coordinate system you want to use.

The following example shows how to create a spatial context named SpatialGRS80
in an EPN assembly file using the Geodetic Reference System 1980 (GRS80)
coordinate system.

<spatial:context id="SpatialGRS80" srid="4269" sma="6378137"
rof="298.25722101" />

2. In your Oracle CQL query, use the id of this spatial:context in your links.

The following example shows how to reference a spatial:context in an Oracle
CQL query. In this case, the query uses link name SpatialGRS80 to propagate this
application context to Oracle Spatial. The spatial:context attribute settings of
SpatialGRS80 are applied to the createPoint method call.

<view id="createPoint">
 select com.oracle.cep.cartridge.spatial.Geometry.createPoint@SpatialGRS80(
 lng, lat)
 from CustomerPos[NOW]
</view>

Chapter 4
Using Oracle Spatial

4-16

5
Oracle Big Data Cartridges

Oracle Stream Explorer supports Big Data with the Hadoop, NoSQLDB, and HBase
cartridges. Hadoop cartridge is extension for an Oracle CQL processor to access large
quantities of data in a Hadoop distributed file system (HDFS). HDFS is a non-relational
data store. NoSQL cartridge is extension for an Oracle CQL processor to access large
quantities of data in an Oracle NoSQL database. The Oracle NoSQL database stores
data in key-value pairs. HBase cartridge is extension for an Oracle CQL processor to
access large quantities of data in a HBase database. HBase is a distributed column-
oriented database built on top of the Hadoop file system.

This chapter includes the following sections:

• What is Big Data?

• Hadoop Data Cartridge

• NoSQL Data Cartridge

• HBase Big Data Cartridge.

5.1 What is Big Data?
Big Data is huge and complex data sets for which the traditional data processing
applications are insufficient. Big Data describes a holistic information management
strategy that includes and integrates many new types of data and data management
alongside traditional data.

Big data has also been defined by the four Vs:

• Volume — the amount of data. While volume indicates more data, it is the
granular nature of the data that is unique. Big Data requires processing high
volumes of low-density, unstructured Hadoop data—that is, data of unknown
value, such as Twitter data feeds, click streams on a web page and a mobile
application, network traffic, sensor-enabled equipment capturing data at the speed
of light, and many more. It is the task of Big Data to convert such Hadoop data into
valuable information.

• Velocity — the fast rate at which data is received and acted upon. The highest
velocity data normally streams directly into memory versus being written to disk.

• Variety — new unstructured data types. Unstructured and semi-structured data
types, such as text, audio, and video require additional processing to both derive
meaning and the support metadata. Once understood, unstructured data has
many of the same requirements as structured data, such as summarization,
lineage, auditability, and privacy.

• Value — data has intrinsic value, but it must be discovered. There are a range of
quantitative and investigative techniques to derive value from data.

5-1

5.2 Hadoop Data Cartridge
Hadoop is an open source technology that provides access to large data sets that are
distributed across clusters. One strength of the Hadoop software is that it provides
access to large quantities of data not stored in a relational database. The Oracle
Stream Explorer data cartridge is based on the Cloudera distribution for Hadoop
(CDH), version 3u5.

The content in this guide assumes that you are already familiar with, and likely
running, a Hadoop system. If you need more information about Hadoop, start with the
Hadoop project web site at http://hadoop.apache.org/.

Note:

You can use the Hadoop data cartridge on UNIX and Windows even through
Hadoop itself runs only in the Linux environment.

5.2.1 Understanding the Oracle Stream Analytics Hadoop Data
Cartridge

You can use the Hadoop data cartridge to integrate an existing Hadoop data source
into an event processing network that can process data from files on the Hadoop
distributed file system. With the data source integrated, you can write Oracle CQL
query code that incorporates data from files on the Hadoop system.

When integrating a Hadoop system, keep the following guidelines in mind:

• The Hadoop cluster must have been started through its own mechanism and must
be accessible. The cluster is not managed directly by Oracle Stream Analytics.

• A file from a Hadoop system supports only joins using a single key in Oracle CQL.
However, any property of the associated event type may be used as key. In other
words, with the exception of a key whose type is byte array, you can use keys
whose type is other than a String type.

• Joins must use the equals operator. Other operators are not supported in a join
condition.

• For the event type you define to represent data from the Hadoop file, only tuple-
based event types are supported.

• The order of properties in the event type specification must match the order of
fields in the Hadoop file.

• To avoid throwing a NullPointerExeption, wait for the Hadoop Data Cartridge to
finish processing before attempting to shut down the server or undeploy.

• Only the following Oracle CQL to Hadoop types are supported. Any other type will
cause a configuration exception to be raised.

Chapter 5
Hadoop Data Cartridge

5-2

http://hadoop.apache.org/

Table 5-1 Mapping Between Datatypes for Oracle CQL and Hadoop

Oracle CQL Datatype Hadoop Datatype

int int

bigint long

float float

double double

char chararray

java.lang.String chararray

byte bytearray

5.2.1.1 Usage Scenario: Using Purchase Data to Develop Buying Incentives
To understand how a Hadoop data source might be used with an Oracle Stream
Explorer application, consider a scenario with an application that requires quick access
to a very large amount of customer purchase data in real time.

In this case, the data stored in Hadoop includes all purchases by all customers from all
stores. Values in the data include customer identifiers, store identifiers, product
identifiers, and so on. The purchase data includes information about which products
are selling best in each store. To render the data to a manageable state, a
MapReduce function is used to examine the data and produce a list of top buyers
(those to whom incentives will be sent).

This data is collected and managed by a mobile application vendor as part of a service
designed to send product recommendations and incentives (including coupons) to
customers. The data is collected from multiple retailers and maintained separately for
each retailer.

The Oracle Stream Explorer application provides the middle-tier logic for a client-side
mobile application that is designed to offer purchase incentives to top buyers. It works
in the following way:

1. Retailers arrange with the mobile application vendor to provide purchase data as
part of a program to offer incentives to top buyers. The data, regularly refreshed
from store sales data, is stored in a Hadoop system and a MapReduce function is
used to identify top buyers.

2. The mobile application vendor provides the application for download, noting which
retailers support the program.

3. App users each create a user ID that is correlated by the app vendor to data about
customers from the retailers.

4. The mobile application is designed to send location data to the Oracle Stream
Explorer application, along with the user ID. This information -- location
coordinates and user ID -- forms the event data received by the Oracle Stream
Explorer application.

5. As the Oracle Stream Explorer application receives event data from the mobile
application, it uses Oracle CQL queries to:

• Determine whether the user is near a store from a participating retailer.

• Establish (from Hadoop-based data) whether the user is a top buyer for the
retailer.

Chapter 5
Hadoop Data Cartridge

5-3

• Locate purchase information related to that user as a buyer from that retailer.

• If the user is a top buyer, the application correlates products previously
purchased with incentives currently being offered to buyers of those products.

6. The Oracle Stream Explorer application pushes an incentive announcement to the
user.

5.2.1.2 Data Cartridge Name
The Oracle Stream Explorer Hadoop cartridge uses the cartridge ID
com.oracle.cep.cartridge.hadoop.

5.2.2 Using Hadoop Data Sources in Oracle CQL
You use the Hadoop support included with Oracle Stream Explorer by integrating a file
in an existing Hadoop system into an event processing network. With the file
integrated, you have access to data in the file from Oracle CQL code.

This section describes the following:

• Configuring Integration of Oracle Stream Analytics and Hadoop

• Integrating a File from a Hadoop System Into an EPN

• Using Hadoop Data in Oracle CQL.

5.2.2.1 Configuring Integration of Oracle Stream Analytics and Hadoop
In order to use Hadoop from Oracle Stream Analytics, you must first make
configuration changes on both the Oracle Stream Analytics and Hadoop servers:

• On the Oracle Stream Analytics server, add the following Hadoop configuration
files at the server's bootclasspath: core-site.xml, hdfs.xml, and
mapred.xml.

• To the Hadoop server, copy the Pig JAR file to the lib directory and include it as
part of the HADOOP_CLASSPATH defined in the hadoop-env.sh file.

Note:

A connection with a Hadoop data source through the cartridge might require
many input/output operations, such that undeploying the application can time
out or generate errors that prevent the application from being deployed
again. Before undeploying an application that uses a Hadoop cartridge, be
sure to discontinue event flow into the application.

5.2.2.2 Integrating a File from a Hadoop System Into an EPN
Integrating a file from an existing Hadoop system is similar to the way you might
integrate a table from an existing relational database. For a Hadoop file, you use the
file XML element from the Oracle Stream Explorer schema specifically added for
Hadoop support.

Chapter 5
Hadoop Data Cartridge

5-4

The file element is from the http://www.oracle.com/ns/ocep/hadoop namespace. So
your EPN assembly file needs to reference that namespace. The file element
includes the following attributes:

• id -- Uniquely identifies the file in the EPN. You will use this attribute's value to
reference the data source in a processor.

• event-type -- A reference to the event-type to which data from the file should be
bound. The event-type must be defined in the EPN.

• path -- The path to the file in the Hadoop file system.

• separator -- Optional. The character delimiter to use when parsing the lines in the
Hadoop file into separate fields. The default delimiter is the comma (',') character.

• operation-timeout -- Optional. The maximum amount of time, in milliseconds, to
wait for the operation to complete.

With the Hadoop file to integrate specified with the file element, you use the table-
source element to add the file as a data source for the Oracle CQL processor in which
you will be using the file's data.

In the following example, note that the http://www.oracle.com/ns/ocep/hadoop
namespace (and hadoop prefix) is referenced in the beans element. The file element
references a CustomerDescription.txt file for data, along with a CustomerDescription
event type defined in the event type repository.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:hadoop="http://www.oracle.com/ns/ocep/hadoop"
 xsi:schemaLocation="
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/ocep-epn.xsd
 http://www.oracle.com/ns/ocep/hadoop
 http://www.oracle.com/ns/ocep/hadoop/ocep-hadoop.xsd">
<!-- Some schema references omitted for brevity. -->

 <!-- Event types that will be used in the query. -->
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="SalesEvent">
 <wlevs:class>com.bea.wlevs.example.SalesEvent</wlevs:class>
 </wlevs:event-type>
 <wlevs:event-type type-name="CustomerDescription">
 <wlevs:properties>
 <wlevs:property name="userId" type="char"/>
 <wlevs:property name="creditScore" type="int"/>
 <wlevs:property name="address" type="char"/>
 <wlevs:property name="customerName" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Input adapter omitted for brevity. -->

 <!-- Channel sending SalesEvent instances to the processor. -->
 <wlevs:channel id="S1" event-type="SalesEvent" >
 <wlevs:listener ref="P1"/>
 </wlevs:channel>

 <!-- The file element to integrate CustomerDescription.txt file from
 the Hadoop system into the EPN. -->

Chapter 5
Hadoop Data Cartridge

5-5

 <hadoop:file id="CustomerDescription" event-type="CustomerDescription"
 path="CustomerDescription.txt" />

 <!-- The file from the Hadoop system tied into the query processor
 with the table-source element. -->
 <wlevs:processor id="P1">
 <wlevs:table-source ref="CustomerDescription" />
 </wlevs:processor>

 <!-- Other stages omitted for brevity. -->

</beans>

5.2.2.3 Using Hadoop Data in Oracle CQL
After you have integrated a Hadoop file into an event processing network, you can
query the file from Oracle CQL code.

The following example illustrates how you can add a file from a Hadoop system into an
EPN. With the file added to the EPN, you can query it from Oracle CQL code, as
shown in the following example.

In the following example, the processor receives SalesEvent instances from a channel,
but also has access to a file in the Hadoop system as CustomerDescription instances.
The Hadoop file is essentially a CSV file that lists customers. Both event types have a
userId property.

<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>P1</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT customerName, creditScore, price, item
 FROM S1 [Now], CustomerDescription as cust
 WHERE S1.userId = cust.userId
 AND S1.price > 1000
 ></query>
 </rules>
 </processor>
</n1:config>

5.3 NoSQL Data Cartridge
The Oracle NoSQL Database is a distributed key-value database. In it, data is stored
as key-value pairs, which are written to particular storage node(s). Storage nodes are
replicated to ensure high availability, rapid failover in the event of a node failure and
optimal load balancing of queries.

The content in this guide assumes that you are already familiar with, and likely
running, an Oracle NoSQL database. If you need more information about Oracle
NoSQL, be sure to see its Oracle Technology Network page at http://www.oracle.com/
technetwork/database/database-technologies/nosqldb/documentation/index.html.

Chapter 5
NoSQL Data Cartridge

5-6

http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html

Note:

To use the NoSQL Data Cartridge, you must have a license for NoSQL
Enterprise Edition.

5.3.1 Oracle CQL Processor Queries
You can use the Oracle Stream Explorer NoSQL Database data cartridge to refer to
data stored in Oracle NoSQL Database as part of an Oracle CQL query. The cartridge
makes it possible for queries to retrieve values from an Oracle NoSQL Database store
by specifying a key in the query and then referring to fields of the value associated
with the key.

When integrating an Oracle NoSQL database, keep the following guidelines in mind:

• The NoSQL database must have been started through its own mechanisms and
must be accessible. It is not managed directly by Oracle Stream Explorer.

• This release of the cartridge provides access to the database using release 2.1.54
of the Oracle NoSQL Database API.

• The property used as a key in queries must be of type String. Joins can use a
single key only.

• Joins must use the equals operator. Other operators are not supported in a join
condition.

• Runaway queries that involve the NoSQL database are not supported. A runaway
query has an execution time that takes longer than the execution time estimated
by the optimizer.

5.3.2 Data Cartridge Name
The Oracle Stream Explorer NoSQL cartridge uses the cartridge ID
com.oracle.cep.cartridge.nosqldb.

5.3.3 Using a NoSQL Database in Oracle CQL
To use the Oracle Stream Explorer NoSQL Database data cartridge in a CQL
application, you must declare and configure it in one or more application-scoped
cartridge contexts for the application.

5.3.3.1 Integrating a NoSQL Database Into an EPN
Integrating an existing NoSQL database is similar to the way you might integrate a
table from a relational database. For a NoSQL database, you update the EPN
assembly file in the following ways (see the example in step 3):

1. Add namespace declarations to support for the store element for referencing the
NoSQL data source.

Your changes should add a namespace schema location to the schemaLocation
attribute, along with a namespace and prefix declaration:

Chapter 5
NoSQL Data Cartridge

5-7

• http://www.oracle.com/ns/oep/nosqldb http://www.oracle.com/ns/oep/nosqldb/

oep-nosqldb.xsd

• xmlns:nosqldb="http://www.oracle.com/ns/oep/nosqldb"

2. Add the store element to integrate the NoSQL database into the event processing
network as a relation source.

The store element supports the following attributes, all of which are required:

• id -- The name that will be used to refer to the key-value store in CQL queries.

• store-name -- The name of the key-value store, which should match the name
specified in the KVStoreConfig class when creating the store.

• store-locations -- One or more host names and ports of active nodes in the
store. The attribute value is a space-separated list in which each entry is
formatted as "hostname:port". Nodes with the specified host name and port
values will be contacted in order when connecting to the store initially.

• event-type -- The object type for all objects retrieved for this relation from
values in the store. The attribute value should correspond to the name of a
wlevs:event-type entry specified in a wlevs:event-type-repository entry.

3. Add a table-source element to connect the NoSQL database to the processor in
which queries will be executed.

The following example illustrates how you can connect an event processing network to
a NoSQL database. The store element provides access to a store named "kvstore-
customers", using port 5000 on host kvhost-alpha or port 5010 on host kvhost-beta to
make the initial connection. It defines Oracle CQL processor P1 and makes the data in
the key-value store available to it as a relation named "CustomerDescription".

The store can be referred to within Oracle CQL queries using the name
"CustomerDescription". All values retrieved from the store should be serialized
instances of the CustomerDescription class.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:nosqldb="http://www.oracle.com/ns/oep/nosqldb"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/ocep-epn.xsd
 http://www.oracle.com/ns/oep/nosqldb
 http://www.oracle.com/ns/oep/nosqldb/oep-nosqldb.xsd">

 <!-- Provide access to the CustomerDescription class, which represents
 the type of values in the store. -->
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="CustomerDescription">
 <wlevs:class>com.bea.wlevs.example.CustomerDescription</wlevs:class>
 </wlevs:event-type>
 <wlevs:event-type type-name="SalesEvent">
 <wlevs:class>com.bea.wlevs.example.SalesEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

Chapter 5
NoSQL Data Cartridge

5-8

 <!-- The store element declares the key-value store, along with the
 event type to which incoming NoSQL data will be bound. -->
 <nosqldb:store store-name="kvstore-customers"
 store-locations="kvhost-alpha:5000 kvhost-beta:5010"
 id="CustomerDescription"
 event-type="CustomerDescription"/>

 <wlevs:channel id="S1" event-type="SalesEvent">
 <wlevs:listener ref="P1"/>
 </wlevs:channel>

 <!- The table-source element links the store to the CQL processor. -->
 <wlevs:processor id="P1">
 <wlevs:table-source ref="CustomerDescription" />
 </wlevs:processor>

</beans>

If Oracle CQL queries refer to entries in a store specified by a store element, then the
values of those entries must be serialized instances of the type specified by the event-
type attribute. The event type class must implement java.io.Serializable.

If a query retrieves a value from the store that is not a valid serialized form, or if the
value is not the serialized form for the specified class, then Oracle Stream Analytics
throws an exception and event processing is halted. You can declare multiple store
elements to return values of different types from the same or different stores.

5.3.3.2 Using NoSQL Data in Oracle CQL
After you have integrated a NoSQL database into an event processing network, you
can access data from Oracle CQL code. The query can look up an entry from the store
by specifying an equality relation in the query's WHERE clause.

<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>P1</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT customerName, creditScore, price, item
 FROM S1 [Now], CustomerDescription as cust
 WHERE S1.userId = cust.userId
 AND creditScore > 5
 ></query>
 </rules>
 </processor>
</n1:config>

In this example, the event type instances representing data from the S1 channel and
CustomerDescription NoSQL data source are both implemented as JavaBeans
classes. Because both event types are JavaBeans classes, the Oracle CQL query can
access the customer description associated with a particular event by equating the
event's user ID with that of the customer description in the WHERE clause, treating both
as JavaBeans properties:

Chapter 5
NoSQL Data Cartridge

5-9

WHERE S1.userId = CustomerDescription.userId

This clause requests that an entry be retrieved from the store that has the key
specified by the value of the event's userId field. Only equality relations are supported
for obtaining entries from the store.

Once an entry from the store has been selected, fields from the value retrieved from
the store can be referred to in the SELECT portion of the query or in additional clauses in
the WHERE clause.

The creditScore value specified in the SELECT clause will include the value of the
creditScore field of the CustomerDescription object retrieved from the store in the query
output. The reference to creditScore in the WHERE clause will also further restrict the
query to events where the value of the CustomerDescription creditScore field is greater
than 5.

5.3.3.2.1 Formatting the Key Used to Obtain Entries from the NoSQL Store
The key used to obtain entries from the store can be formatted in one of two ways: by
beginning the value with a forward slash ('/') or by omitting a slash.

If the value specified on the left hand side of the equality relation starts with a forward
slash, then the key is treated as a full key path that specifies one or more major
components, as well as minor components if desired. For more details on the syntax of
key paths, see the information about the oracle.kv.Key class in the Oracle NoSQL
Database API documentation at http://docs.oracle.com/cd/NOSQL/html/javadoc/
index.html.

For example, if the userId field of a SalesEvent object has the value "/users/user42/-/
custDesc", then that value will be treated as a full key path that specifies "users" as the
first major component, the user ID "user42" as the second major component, and a
minor component named "custDesc".

As a convenience, if the value specified on the left hand side of the equality relation
does not start with a forward slash, then it is treated as a single major component that
comprises the entire key.

Note that keys used to retrieve entries from the store must be specified in full by a
single field accessed by the Oracle CQL query. In particular, if a key path with multiple
components is required to access entries in the key-value store, then the full key path
expression must be stored in a single field that is accessed by the query.

5.4 HBase Big Data Cartridge
HBase Big Data Cartridge is an integration of HBase with Oracle Stream Explorer.
HBase is a type of NOSQL database that is distributed, versioned, and a non-
relational database.

HBase Big Data Cartridge does not support SQL as a primary means to access data.
HBase provides Java APIs to retrieve the data. Every row has a key. All columns
belong to particular column family. Each column family consists of one or more
qualifiers. Hence, a combination of row key, column family and column qualifier is
required to retrieve the data. HBase is suitable for storing Big Data without an
RDBMS.

Every table has a row key like a relational database. The HBase column qualifier is
similar to the concept of minor keys in NoSqlDB. For example, the major key for

Chapter 5
HBase Big Data Cartridge

5-10

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

records could be the name of a person, whereas the minor key would be the different
pieces of information that you want to store for the person.

5.4.1 Understanding HBase Cartridge
In HBase, the priority is to store Big Data efficiently and not perform any complex data
retrieval operations.

The code snippets below give an idea of how data can be stored and retrieved in
HBase:

HBaseConfiguration config = new HBaseConfiguration();
batchUpdate.put("myColumnFamily:columnQualifier1",
"columnQualifier1value".getBytes());
Cell cell = table.get("myRow", "myColumnFamily:columnQualifier1");
String valueStr = new String(cell.getValue());

HBase is used to store metadata for various applications. For example, a company
may store customer information associated with various sales in an HBase database.
In this case, you can use the HBase Big Data Cartridge that enables you to write CQL
queries using HBase as an external data source.

The HBase database store EPN component is provided as a data cartridge. The
HBase database cartridge provides a <store> EPN component with the following
properties:

• id: id of the EPN component.

• store-location: location in the form of domain:client port of an HBase
database server.

• event-type: schema for store as seen by the CQL processor. The event type
must be a Java class that implements the java.io.Serializable interface.

• table-name: name of the HBase table.

The EPN component has a related <column-mappings> component to specify the
mappings from the CQL event attributes to the HBase column family/qualifier. This
component is declared in an HBase Big Data Cartridge configuration file similar to the
JDBC cartridge configuration. This component has the following properties:

• name: the id of the <store> EPN component for which the mappings are being
declared.

• rowkey: the row key attribute used for the HBase table. This must be a String.

• cql-attribute: the CQL attribute name used in the CQL query. This name
should match with a corresponding field declared in the Java event type.

• hbase-family: the HBase column family.

• hbase-qualifer: the HBase column qualifier.

5.4.2 Using HBase Cartridge
To use a HBase Cartidge, you need to specify the hbase-family and hbase-qualifier if
the cql-attribute is a primitive data type.

The <hbase:store> component is linked to a CQL processor using the 'table-source'
element, as in the following example:

Chapter 5
HBase Big Data Cartridge

5-11

<hbase:store id="User" table-name="User" event-type="UserEvent" store-
location="localhost:5000">
</hbase:store>
<wlevs:processor id="P1">
 <wlevs:table-source ref="User"/>
</wlevs:processor>

You must specify the column mappings for the <hbase:store> component in the Oracle
Stream Analytics HBase configuration file as shown in the following example:

Example 5-1 HBase Cartridge Column Mappings

In the example below, the CQL column address is a map as it holds all the column
qualifiers from the address column family. The CQL columns firstname, lastname, email
and role hold primitive data types. These are the specific column qualifiers from the
data column family. The userName field from the event type is the row key and hence it
does not have any mapping to an HBase column family or qualifier.

<hbase:column-mappings>
 <name>User</name>
 <rowkey>userName</rowkey>
 <mapping cql-attribute="address" hbase-family="address"/>
 <mapping cql-attribute="firstname" hbase-family="data" hbase-
qualifier="firstname"/>
 <mapping cql-attribute="lastname" hbase-family="data" hbase-
qualifier="lastname"/>
 <mapping cql-attribute="email" hbase-family="data" hbase-qualifier="email"/>
 <mapping cql-attribute="role" hbase-family="data" hbase-qualifier="role"/>
</hbase:column-mappings>

The <UserEvent> class has the following fields:

String userName;
java.util.Map address;
String first name;
String lastname;
String email;
String role;

The HBase schema is dynamic in nature and additional column families and/or column
qualifiers can be added at any point after an HBase table is created. Oracle Stream
Analytics allows you to retrieve the event fields as a map which contains all
dynamically added column qualifiers. In this case, you need to declare a java.util.Map
as one of the event fields in the Java event type. Hence the UserEvent event type must
have a java.util.Map field with name and address. The cartridge does not support
dynamically added column families. So, the event type needs to be modified if the
Oracle Stream Analytics application needs to use a newly added column family.

An HBase database may be run as a cluster. The hostname and client port of the
master node need to be configured.

Supported Operators

Currently, only the =, !=, like, <, and > operators are supported. The first sub-clause in
the query must be an equality join with the HBase data source based on row key.

S1.userName = user.userName

The like operator accepts a Java regular expression as argument. This operator is for
String only.

Chapter 5
HBase Big Data Cartridge

5-12

user.firstname like Y.*

The < and > operators are for integer and double data types only.

5.4.3 Limitations of HBase Cartridge in 12.2.1 Release
The HBase Cartridge has a few limitations in the 12.2.1 release.

The limitations of the HBase Cartridge are as listed below:

1. Only the HBase server version 0.94.8 supported.

2. When an HBase server is unreachable, you cannot deploy a HBase cartridge
application to the Oracle Stream Explorer server.

3. You cannot reconnect to an HBase server unless you restart the Oracle Stream
Explorer server, when a HBase server is shut down after a HBase application is
deployed to the Oracle Stream Explorer.

4. The event property data type must be String when you want to join it with the
HBase table rowkey.

5. In HBase cartridge application, the name of both store id and table-name must be
the same for HBase cartridge in the spring file. Else, the table identification will fail.

6. Use the wrapper data type integer or double for the HBase event property data
type to avoid runtime exceptions.

7. A clear error message is not shown when there is a syntax error in the CQL query
with HBase cartridge application.

8. A runtime exception is thrown when you try to join a null string value with HBase
rowkey.

9. The first sub-clause in the CQL query must be an equality join with the HBase data
source based on row key.

10. You must suffix the letter d to the double data type value when you use = or !=
operator for double data type in the CQL query.

Chapter 5
HBase Big Data Cartridge

5-13

6
Oracle Java Data Cartridge

How to use the Oracle Java Data Cartridge, an extension of Oracle Continuous Query
Language (Oracle CQL). You can use Oracle CQL to write CQL code that interacts
with Java classes in your Oracle Stream Explorer application is described.

This chapter describes the types, methods, fields, and constructors that the Oracle
Java data cartridge exposes. You can use these types, methods, fields, and
constructors in Oracle CQL queries and views as you would Oracle CQL native types.

This chapter includes the following sections:

• Understanding the Oracle Java Data Cartridge

• Using the Oracle Java Data Cartridge.

6.1 Understanding the Oracle Java Data Cartridge
The Oracle Java data cartridge is a built-in Java cartridge that enables you to write
Oracle CQL queries and views that interact with the Java classes in your Oracle
Stream Explorer application.

• Data Cartridge Name

• Class Loading

• Method Resolution

• Datatype Mapping

• Oracle CQL Query Support for the Oracle Java Data Cartridge.

6.1.1 Data Cartridge Name
The Oracle Java data cartridge uses the cartridge ID com.oracle.cep.cartrdiges.java.

The Oracle Java data cartridge is the default Oracle Stream Analytics data cartridge.

For types under the default Java package name or types under the system package of
java.lang, you can reference the Java type in an Oracle CQL query unqualified by
package or data cartridge name:

<query id="q1"><![CDATA[
 select String(“foo") …
></query>

Note:

To simplify Oracle Java data cartridge type names, you can use aliases as
described in Oracle Fusion Middleware Oracle CQL Language Reference for
Oracle Stream Analytics.

6-1

For more information, see: Class Loading.

6.1.2 Class Loading
The Oracle Java data cartridge supports the following policies for loading the Java
classes that your Oracle CQL queries reference:

• Application Class Space Policy

• No Automatic Import Class Space Policy

• Server Class Space Policy

For more information, see:

• Class Loading Example

• Method Resolution

6.1.2.1 Application Class Space Policy
This is the default class loading policy.

In this mode, the Oracle Java data cartridge uses the class-space of the application in
scope when searching for a Java class.

This is only applicable when a type is specified only by its local name, that is, there is
a single identifier, and no other identifiers are being used for its package. That is:

select String(“foo") …

And not:

select java.lang.String(“foo") …

In this case the procedure is as follows:

• Attempt to load the class defined by the single identifier (call it ID1) using the
application's class-space as usual; if this fails then:

• Verify if the application defines any class within its bundle's internal class-path
whose name matches ID1, independent of the package; if this fails then:

• Verify if application specifies an Import-Package MANIFEST header statement which
in conjunction with ID1 can be used to load a Java class.

For an example, see Class Loading Example.

6.1.2.2 No Automatic Import Class Space Policy
This is an optional class loading policy. To use this policy, you must include the
following MANIFEST header entry in your Oracle Stream Explorer application:

OCEP_JAVA_CARTRIDGE_CLASS_SPACE: APPLICATION_NO_AUTO_IMPORT_CLASS_SPACE

This mode is similar to the application class space policy except that Oracle Event
Processing does not attempt to combine the package with ID1.

For more information, see Application Class Space Policy.

Chapter 6
Understanding the Oracle Java Data Cartridge

6-2

6.1.2.3 Server Class Space Policy
This is an optional class loading policy. To use this policy, you must include the
following MANIFEST header entry in your Oracle Stream Explorer application:

OCEP_JAVA_CARTRIDGE_CLASS_SPACE: SERVER_CLASS_SPACE

An Oracle CQL query can reference any exported Java class, regardless of whether or
not the class package is imported into the application or bundle

The query can also access all classes visible to the OSGi framework's parent class-
loader, which includes the runtime JDK classes.

This means that an Oracle CQL application may contain an Oracle CQL query that
references classes defined by other Oracle Stream Explorer applications, as long as
they are exported. This behavior facilitates the creation of Java-based cartridges
whose sole purpose is to provide new Java libraries.

Note:

You can only reference a Java class that is part of the internal class path of
an Oracle Stream Explorer application if it is exported, even when a
processor within this application defines the Oracle CQL query.

For an example, see Class Loading Example.

6.1.2.4 Class Loading Example
Consider the example that Figure 6-1 shows: application B1 imports package package2
that application B2 exports.

Figure 6-1 Example Oracle Stream Analytics Event Processing Applications

Table 6-1 summarizes which classes these two different applications can access
depending on whether they are running in the application class space or server class
space.

Chapter 6
Understanding the Oracle Java Data Cartridge

6-3

Table 6-1 Class Accessibility by Class Loading Policy

Class Loading Policy Application B1 Application B2

Application Class Space • mypackage1.A

• myprivatepackage1.B

• package2.C

• package2.C

• privatepackage2
.D

Server Class Space • package2.C • package2.C

In application B1, you can use any of the Java classes A, B, and C in your Oracle CQL
queries:

select A …
select B …
select C …

However, in application B2, you cannot use Java classes A and B in your Oracle CQL
queries. You can only use Java classes C and D:

select C …
select D …

6.1.3 Method Resolution
An Oracle CQL expression that accesses a Java method uses the following algorithm
to resolve the method:

1. All parameter types are converted to Java types as Datatype Mapping describes.

For example, an Oracle CQL INTEGER is converted to a Java primitive int.

2. Standard Java method resolution rules are applied as the Java Language
Specification, Third Edition, Section 15.12, "Method Invocation Expressions"
describes.

Note:

Variable arity methods are not supported. For more information, see the Java
Language Specification, Third Edition, Section 12.12.2.4.

As an example, consider the following Oracle CQL expression:

attribute.methodA(10)

Where attribute is of type mypackage.MyType which defines the following overloaded
methods:

• methodA(int)

• methodA(Integer)

• methodA(Object)

• methodA(long)

As the literal 10 is of the primitive type int, the order of precedence is:

Chapter 6
Understanding the Oracle Java Data Cartridge

6-4

• methodA(int)

• methodA(long)

• methodA(Integer)

• methodA(Object)

For more information, see Class Loading.

6.1.4 Datatype Mapping
The Oracle Java data cartridge applies a fixed, asymmetrical mapping between Oracle
CQL native data types and Java data types.

• Table 6-2 lists the mappings between Oracle CQL native data types and Java data
types.

• Table 6-3 lists the mappings between Java data types and Oracle CQL native data
types.

Table 6-2 Oracle Java Data Cartridge: Oracle CQL to Java Data Type Mapping

Oracle CQL Native Data Type Java Data Type

BIGINT long

BOOLEAN boolean

BYTE byte[]

CHAR java.lang.String

DOUBLE double

FLOAT float

INTEGER int

INTERVAL long

INTERVAL_DAY long, java.lang.String

INTERVAL_DAY_TO_SECOND java.lang.String

INTERVAL_YEAR long, java.lang.String

INTERVAL_MONTH long, java.lang.String

INTERVAL_YEAR_TO_MONTH java.lang.String

XMLTYPE java.lang.String

Table 6-3 Oracle Java Data Cartridge: Java Data Type to Oracle CQL Mapping

Java Datatype Oracle CQL Native Data Type

long BIGINT

boolean BOOLEAN

byte[] BYTE

java.lang.String CHAR

double DOUBLE

float FLOAT

Chapter 6
Understanding the Oracle Java Data Cartridge

6-5

Table 6-3 (Cont.) Oracle Java Data Cartridge: Java Data Type to Oracle CQL
Mapping

Java Datatype Oracle CQL Native Data Type

int INTEGER

java.sql.Date

java.sql.Timestamp

INTERVAL

java.sql.SQLXML XMLTYPE

All other Java classes are mapped as a complex type.

For more information on these datatype mappings:

• Java Data Type String and Oracle CQL Data Type CHAR

• Literals

• Arrays

• Collections

6.1.4.1 Java Data Type String and Oracle CQL Data Type CHAR
Oracle CQL data type CHAR is mapped to java.lang.String and java.lang.String is
mapped to Oracle CQL data type CHAR. This means you can access java.lang.String
member fields and methods for an attribute defined as Oracle CQL CHAR. For example,
if a1 is declared as type Oracle CQL CHAR, then you can write a query like this:

<query id="q1"><![CDATA[

 select a1.substring(1,2)

></query>

6.1.4.2 Literals
You cannot access member fields and methods on literals, even Oracle CQL CHAR
literals. For example, the following query is not allowed:

<query id="q1-forbidden"><![CDATA[

 select "hello".substring(1,2)

></query>

6.1.4.3 Arrays
Java arrays are converted to Oracle CQL data cartridge arrays, and Oracle CQL data
cartridge arrays are converted to Java arrays. This applies to both complex types and
simple types.

You can use the data cartridge TABLE clause to access the multiple rows returned by a
data cartridge function in the FROM clause of an Oracle CQL query.

For more information, see Collections.

Chapter 6
Understanding the Oracle Java Data Cartridge

6-6

6.1.4.4 Collections
Typically, the Oracle Java data cartridge converts an instance that implements the
java.util.Collection interface to an Oracle CQL complex type.

An Oracle CQL query can iterate through the members of the java.util.Collection.

You can use the data cartridge TABLE clause to access the multiple rows returned by a
data cartridge function in the FROM clause of an Oracle CQL query.

For more information, see Arrays.

6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge
You may use Oracle Java data cartridge types in expressions within a SELECT clause
and WHERE clause.

You may not use Oracle Java data cartridge types in expressions within an ORDER BY
clause.

For more information, see Using the Oracle Java Data Cartridge.

6.2 Using the Oracle Java Data Cartridge
Common use-cases that highlight how you can use the Oracle Java data cartridge in
your Oracle Stream Analytics applications are described.

• How to Query Using the Java API

• How to Query Using Exported Java Classes

For more information, see Oracle CQL Query Support for the Oracle Java Data
Cartridge.

6.2.1 How to Query Using the Java API
This procedure describes how to use the Oracle Java data cartridge in an Oracle
Stream Explorer application that uses one event type defined as a tuple (Student) that
has an event property type defined as a Java class (Address.java).

To query with Java classes:

1. Implement the Address.java class.

package test;

class Address {
 String street;
 String state;
 String city;
 String [] phones;
}

In this example, assume that the Address.java class belongs to this application.

Chapter 6
Using the Oracle Java Data Cartridge

6-7

If the Address.java class belonged to another Oracle Stream Explorer application,
it must be exported in its parent application. For more information, see How to
Query Using Exported Java Classes.

2. Define the event type repository.

<event-type-repository>
 <event-type name="Student">
 <properties>
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </properties>
 </event-type>

 <event-type name="Address">
 <class-name>test.Address</class-name>
 </event-type>
<event-type-repository>

Because the test.Address class belongs to this application, it can be declared in
the event type repository. This automatically makes the class globally accessible
within this application; its package does not need to be exported.

3. Assume that an adapter is providing Student events to channel StudentStream:

<channel id="StudentStream" event-type="Student"/>

4. Assume that the StudentStream is connected to a processor with the Oracle CQL
query q1.

<processor>
 <rules>

 <query id="q1"><![CDATA[

 select
 name,
 address.street as street,
 address.phones[0] as primary_phone
 from
 StudentStream

 ></query>

 </rules>
</processor>

The Oracle Java data cartridge allows you to access the address event property
from within the Oracle CQL query using normal Java API.

6.2.2 How to Query Using Exported Java Classes
This procedure describes how to use the Oracle Java data cartridge in an Oracle
Stream Analytics application that uses one event type defined as a tuple (Student) that
has an event property type defined as a Java class (Address.java). In this procedure,
the Address.java class belongs to a separate Oracle Stream Analytics application. It is
exported in its parent application to make it accessible to other Oracle Stream
Analytics applications deployed to the same Oracle Stream Analytics server.

Chapter 6
Using the Oracle Java Data Cartridge

6-8

To query with Java classes:

1. Implement the Address.java class.

package test;

class Address {
 String street;
 String state;
 String city;
 String [] phones;
}

2. Export the test package that contains the Address.java class.

For more information, see Oracle Fusion Middleware Developing Applications for
Event Processing with Oracle Stream Analytics.

The test package may be part of this Oracle Stream Analytics application or it may
be part of some other Oracle Stream Analytics application deployed to the same
Oracle Stream Analytics server as this application.

3. Define the event type repository.

<event-type-repository>
 <event-type name="Student">
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </event-type>
<event-type-repository>

4. Assume that an adapter is providing Student events to channel StudentStream:

<channel id="StudentStream" event-type="Student"/>

5. Assume that the StudentStream is connected to a processor with the Oracle CQL
query q1.

<processor>
 <rules>

 <query id="q1"><![CDATA[

 select
 name,
 address.street as street,
 address.phones[0] as primary_phone
 from
 StudentStream

 ></query>

 </rules>
</processor>

The Oracle Java data cartridge allows you to access the address event property
from within the Oracle CQL query using normal Java API.

Chapter 6
Using the Oracle Java Data Cartridge

6-9

6.2.3 Java Cast Function
The Java cartridge provides the Java Cast function that enables a Java extensible
type to be cast to another Java extensible type, providing the latter can be assigned
from the former. To use this function, you must have the Java cartridge installed.

Syntax

T cast@java(l-value, class-literal<T>)

Parameters

l-value: A event attribute that contains the data that you want to cast. If l-value cannot
be assigned from T, then Java Cartridge raises a RuntimeInvocationException during
the invocation of the cast function

class-literal<T>: The name of the class to which you want to cast. For example, if you
want to cast an int to long, then class-literal<T> is Long.class.

Example

Consider the following class hierarchy:

public class Parent
{
...
}

public class Child extends Parent
{
...
}

The following example casts an object of type Child.

cast@java(S.parent, Child.class)

Chapter 6
Using the Oracle Java Data Cartridge

6-10

7
Data Cartridge Framework

The Data Cartridge Framework is a service provider interface (SPI) that enables users
and vendors to create cartridges to extend Oracle CQL functionality. The Hadoop and
NoSQL cartridges described in Oracle Big Data Cartridges are examples of cartridges
created with the Data Cartridge Framework.

For example, with the Data Cartridge Framework, you can extend Oracle CQL
functionality to support the development of telematic applications. Telematic
applications encompass telecommunications (electrical signals and electromagnetic
waves), automotive technologies, transportation, electrical engineering (sensors,
instrumentation, and wireless communications), and computer science (Internet of
Things).

This chapter includes the following sections:

• About the SPI

• Interfaces

• Cartridge Examples

• Source Code

7.1 About the SPI
An Oracle Stream Analytics cartridge is a single manageable unit that defines external
functions, types, indexes, Java classes, and data sources.

The user of the cartridge references the available functions, types, indexes, Java
classes, and data sources from Oracle CQL code with links of the following form:

myFunction@myCartridge(arg1)

A cartridge created with the Oracle Stream Analytics Data Cartridges Framework is an
Oracle Stream Analytics library. This means that you deploy the cartridge the same
way that you deploy a library, which is from the command line or in Oracle JDeveloper.
Once you deploy a cartridge, all of the external functions, types, indexes, Java
classes, and data sources are available to use in Oracle CQL queries. You must
deploy a cartridge before you deploy the application. You can update the cartridge
without updating your application.

7.2 Interfaces
The com.oracle.cep.cartridge package contains the Cartridge Framework Java
interfaces.

This section describes what you can do and what you must do when you use the
interfaces. Brief descriptions of the interfaces and exceptions follow.

7-1

You Can:

• Use any type system for the table and stream attribute types in Oracle CQL.

• Provide your own index data structure for invoking functions.

• Provide new Java classes that are visible within an Oracle CQL query. When you
deploy the cartridge, include the application or library that has the new Java
classes. Applications that access the new Java classes, must import the correct
Java packages in their MANIFEST.MF file with the Import-Package header entry.

You Must:

• Provide an MBean for all deployed cartridges that contains a list of all functions
that the cartridge supports. When the cartridge is undeployed the MBean instance
is unregistered.

• Implement the ExternalFunctionProvider.listFunctions method.

• Provide a bean-stage MBean for table sources that you tie to a cartridge external
data source. This MBean provides a list of the table source custom properties
including its id and provider name.

Optionally, a table source Spring bean factory can implement the
com.bea.wlevs.management.configuration.spring.StageFactoryAccess interface to
customize how to access the table source properties.

7.2.1 Interface Descriptions
The com.oracle.cep.cartridge package provides the following Java interfaces.

CapabilityProvider: An ExternalConnection can implement this interface to specify the
supported capabilities such as less than <, AND, OR, and so on.

ExternalConnection: Connect to an ExternalDataSource.

ExternalConstants: Define general constants used by the data cartridge. This interface
provides two constants: EQUALS for external connection capabilities, and
SERVER_CONTEXT_LINK_ID to denote an ExternalFunctionProvider link id.

ExternalDataSource: Use the getConnnection method to connect to an external source of
contextual data to join with Oracle CQL processor events. The external data source
must support the configuration of its properties. For example, a NoSQLDB data source
supports the configuration of a host, a port, and a store name.

The external data source specifies the functions it supports. By default, all external
data sources support the equality function, for example:

SELECT * FROM S[NOW], MyExternalDataSource
WHERE S.id = MyExternalDataSource.id

To make the data source available to Oracle CQL processors, register a Spring Bean
that implements the com.oracle.cep.cartridge.ExternalDataSource interface and make
that Spring bean the target of a table source (wlevs:table-source tag).

ExternalFunction: A function provided by an ExternalFunctionProvider or other external
entity.

Chapter 7
Interfaces

7-2

ExternalFunctionDefinition: Specify the metadata for functions used in Oracle CQL
queries and views that are provided by an ExternalFunctionProvider or other external
entity.

ExternalFunctionProvider: Defines a set of functions that can be directly accessed from
Oracle CQL queries and views. Use the getID method to register an external function
provider as an OSGi service. Also, the provider must specify the
ExternalContants.SERVER_CONTEXT_LINK_ID service property to indicate the link ID to use
in Oracle CQL queries and views to identify the provider.

ExternalPredicate: Represent prepared statement predicates with attributes and a
predicate clause.

ExternalPreparedStatement: Represent a prepared statement from an external function
provider to execute the same or similar functions repeatedly and efficiently.

7.2.2 Exceptions
The com.oracle.cep.cartridge package provides the following exceptions:

AmbiguousFunctionException: Thrown when referenced function cannot be determined
by the ExternalFunctionProvider due to ambiguity.

CartridgeException: Root cartridge exception.

FunctionNotFoundException: Thrown when the referenced function in an Oracle CQL
statement is not supported by ExternalFunctionProvider.

7.3 Cartridge Examples
To make the cartridges available for Oracle CQL queries within Oracle Stream
Explorer applications, deploy each cartridge as a separate application library. After you
deploy the cartridges, deploy the Oracle Stream Explorer application or applications
that use the cartridges.

This section describes two cartridge examples: an arithmetic cartridge and a data
source cartridge. The arithmetic cartridge makes arithmetic functions available to
Oracle CQL queries similar to the spatial cartridge, which contains only functions,
described in Oracle Spatial Data Cartridge. The data cartridge defines a data source
similar to Hadoop described in Oracle Big Data Cartridges.

7.3.1 Arithmetic Cartridge
The arithmetic cartridge has the following function classes:

• A set of Java classes that provide the functionality for addition, array, and
exception operations.

• The ExceptionFunction.java and ArrayFunciton.java classes to provide array and
exception functionality so that you can use arrays and throw exceptions from an
Oracle CQL query.

• An ArithmeticActivator.java class starts and stops the cartridge bundle.

All of the function classes implement the
com.oracle.cep.cartridge.ExternalFunctionProvider interface and have a getName
method that returns the name of the function to use in an Oracle CQL query.

Chapter 7
Cartridge Examples

7-3

For example the AddFunction.java and AddLongFunction.java getName methods return
plus for the function name. You use the function name in the Oracle CQL query to call
the function. The following query uses the plus function in the arithmetic cartridge to
add two integers from inputChannel.

SELECT plus@arithmetic(typeInt, typeInt2) AS typeInt FROM inputChannel

7.3.2 Data Source Cartridge
Data Source Cartridge Files

The cartridge example uses a set of Java classes that define the data source.

The MyCartridgeSource.java class implements the
com.oracle.cep.cartridge.ExternalDataSource interface. It defines the data source
connection functionality, and reads event data from and writes event data to the
database.

The MyActivator.java class implements org.osgi.framework.BundleActivator and
provides code to start and stop the cartridge bundle.

The MyHandler.java class implements
org.springframework.beans.factory.xml.NamespaceHandler, and provides code to
manage the cartridge name space and register the Udds factory bean.

The UddsDefinitionParser.java class extends
org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser and
provides code to parse and register UddsFactoryBean objects.

The UddsFactoryBean.java class extends
org.springframework.beans.factory.config.AbstractFactoryBean and provides code to
manage events and the event type repository.

7.4 Source Code
The source code for the data source application and cartridge, and the arithmetic
cartridge is provided.

• Arithmetic Cartridge

• Data Source Cartridge.

7.4.1 Arithmetic Cartridge
• AddFunction.java

• ArithmeticActivator.java

• ArrayFunction.java

• ExceptionFunction.java

• UserDefineFunctionClass.java

AddFunction.java

package tests.functional.cartridge.userdefine.common.libs.arithmetic;

import java.util.Map;

Chapter 7
Source Code

7-4

import com.oracle.cep.cartridge.ExternalFunction;

public class AddFunction implements ExternalFunction{

 @Override
 public String getName() {
 return "plus";
 }

 @Override
 public Class<?>[] getParameterTypes() {
 Class<?>[] parameters = new Class<?>[2];
 parameters[0] = java.lang.Integer.class;
 parameters[1] = java.lang.Integer.class;
 return parameters;
 }

 @Override
 public Class<?> getReturnType() {
 return java.lang.Integer.class;
 }

 @Override
 public Object execute(Object[] args, String caller, Map<String, Object> context)
 throws Exception {
 if(args.length != 2)
 throw new IllegalArgumentException("add function need an 2 parameters");
 if(!(args[0] instanceof java.lang.Integer && args[1]
 instanceof java.lang.Integer)) {
 throw new IllegalArgumentException("add function only
 support java.lang.Integer");
 }
 java.lang.Integer arg1 = (Integer) args[0];
 java.lang.Integer arg2 = (Integer) args[1];
 return new java.lang.Integer(arg1 + arg2);
 }
}

ArithmeticActivator.java

package tests.functional.cartridge.userdefine.common.libs.arithmetic;

import java.util.Hashtable;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;
import com.oracle.cep.cartridge.ExternalFunctionProvider;

public class ArithmeticActivator implements BundleActivator {
 private ServiceRegistration reg;

 @Override
 public void start(BundleContext context) throws Exception {
 Hashtable props = new Hashtable();
 props.put("server.context.link.id", "arithmetic");

 this.reg = context.registerService(ExternalFunctionProvider.class.getName(),
 new UserDefineFunction(), props);
 }

 @Override

Chapter 7
Source Code

7-5

 public void stop(BundleContext arg0) throws Exception {
 this.reg.unregister();
 }
}

ArrayFunction.java

package tests.functional.cartridge.userdefine.common.libs.arithmetic;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import com.oracle.cep.cartridge.ExternalFunction;

public class ArrayFunction implements ExternalFunction {

 @Override
 public String getName() {
 return "array";
 }

 @Override
 public Class<?>[] getParameterTypes() {
 Class<?>[] parameters = new Class<?>[2];
 parameters[0] = Integer.class; parameters[1] = Integer.class;
 return parameters;
 }

 @Override
 public Class<?> getReturnType() {
 return List.class;
 }

 @Override
 public Object execute(Object[] args, String caller, Map<String, Object> context)
 throws Exception {
 if(args.length == 0) {
 return null;
 }
 if(!(args[0] instanceof java.lang.Integer)) {
 throw new IllegalArgumentException("median function only supports
 java.lang.Integer");
 }
 List ret = new ArrayList();
 for(Object obj:args) {
 ret.add(obj);
 }
 return ret;
 }
}

ExceptionFunction.java

package tests.functional.cartridge.userdefine.common.libs.arithmetic;

import java.util.Map;
import com.oracle.cep.cartridge.ExternalFunction;

public class ExceptionFunction implements ExternalFunction{

 @Override

Chapter 7
Source Code

7-6

 public String getName() {
 return "exception"
 }

 @Override
 public Class<?>[] getParameterTypes() {
 return new Class<?>[]{Integer.class};
 }

 @Override
 public Class<?> getReturnType() {
 return Integer.class;
 }

 @Override
 public Object execute(Object[] args, String caller, Map<String, Object> context)
 throws Exception {
 throw new NullPointerException("I am an excpetion");
 }
}

UserDefineFunctionClass.java

package tests.functional.cartridge.userdefine.common.libs.arithmetic;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import com.oracle.cep.cartridge.AmbiguousFunctionException;
import com.oracle.cep.cartridge.ExternalFunction;
import com.oracle.cep.cartridge.ExternalFunctionProvider;
import com.oracle.cep.cartridge.FunctionNotFoundException;

public class UserDefineFunction implements ExternalFunctionProvider {

 private ArrayList<ExternalFunction> functions = new
 ArrayList<ExternalFunction>();

 public UserDefineFunction() {
 functions.add(new AddFunction());
 functions.add(new ArrayFunction());
 functions.add(new ExceptionFunction());
 }

 @Override
 public ExternalFunction getFunction(String functionName, Class<?> []
 parameterTypes, String caller, Map<String, Object> context)
 throws AmbiguousFunctionException, FunctionNotFoundException {
 if("plus".equalsIgnoreCase(functionName)) {
 return new AddFunction();
 } else if("array".equalsIgnoreCase(functionName)) {
 return new ArrayFunction();
 } else if("exception".equalsIgnoreCase(functionName)) {
 return new ExceptionFunction();
 }
 throw new FunctionNotFoundException(functionName+" is not supported in
 arithmetic");
 }

 @Override

Chapter 7
Source Code

7-7

 public String getId() {
 return "arithmetic";
 }

 @Override
 public List<ExternalFunction> listFunctions(String caller,
 Map<String, Object> context) {
 ArrayList<ExternalFunction> functionList = new ArrayList<ExternalFunction>();
 functionList.addAll(functions);
 return functionList;
 }
}

7.4.2 Data Source Cartridge
The Data Source cartridge is comprised of the following Java class files:

• MyCartridgeSource.java

• MyActivator.java

• MyHandler.java

• UddsFactoryBean.java

MyCartridgeSource.java

package tests.functional.cartridge.userdefine.common.libs.datasource;

import java.math.BigDecimal;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import oracle.cep.dataStructures.external.TupleValue;
import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventProperty;
import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.Type;
import com.bea.wlevs.management.configuration.spring.StageFactoryAccess;
import com.oracle.cep.cartridge.ExternalConnection;
import com.oracle.cep.cartridge.ExternalDataSource;
import com.oracle.cep.cartridge.ExternalPredicate;
import com.oracle.cep.cartridge.ExternalPreparedStatement;

public class MyCartridgeSource implements StageFactoryAccess,
 ExternalDataSource {
 //
 @Override
 public Map<?, ?> getCacheDataSource() {
 return null;
 }

 private EventTypeRepository etr;

 @ServiceReference

Chapter 7
Source Code

7-8

 public void setEventTypeRepository(EventTypeRepository etr) {
 this.etr = etr;
 }

 private String eventType;

 @Override
 public String getEventType() {
 System.out.println("event type:" + this.eventType);
 return eventType;
 }

 public void setEventType(String eventType) {
 this.eventType = eventType;
 }

 private long maxThreshhold = 0;

 @Override
 public long getExternalRowsThreshold() {
 return maxThreshhold;
 }

 public void setExternalRowsThreshold(long maxThreshhold) {
 this.maxThreshhold = maxThreshhold;
 }

 private String pattern;

 public String getPattern() {
 return pattern;
 }

 public void setPattern(String pattern) {
 this.pattern = pattern;
 }

 private String singularity;

 public String getSingularity() {
 return singularity;
 }

 public void setSingularity(String singularity) {
 this.singularity = singularity;
 }

 private String id;

 @Override
 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 @Override
 public String getJDBCDataSource() {
 return null;

Chapter 7
Source Code

7-9

 }

 private Class keyClass;

 @Override
 public Class getKeyClass() {
 return Long.class;
 }

 public void setKeyClass(String className) throws ClassNotFoundException {
 this.keyClass = Class.forName(className);
 }

 private String[] keyPropertyNames;

 @Override
 public String[] getKeyPropertyNames() {
 return keyPropertyNames;
 }

 public void setKeyProperty(String names) {
 keyPropertyNames = names.split(",");
 }

 @Override
 public String getTableName() {
 return null;
 }

 public Class getObjectType() {
 return ExternalDataSource.class;
 }

 @Override
 public ExternalConnection getConnection() throws Exception {
 MyExternalConnection connection = new
 MyExternalConnection(this.etr.getEventType(this.eventType));
 connection.setPattern(pattern);
 connection.setSingularity(singularity);
 return connection;
 }

 public static class MyExternalConnection implements ExternalConnection {

 private final EventType targetEventType;

 public MyExternalConnection(EventType eventtype) {
 this.targetEventType = eventtype;
 }
 private String pattern;

 public void setPattern(String pattern) {
 this.pattern = pattern;
 }
 private String singularity;

 public void setSingularity(String singularity) {
 this.singularity = singularity;
 }

 @Override

Chapter 7
Source Code

7-10

 public void close() throws Exception {
 }

 @Override
 public ExternalPreparedStatement prepareStatement(String relationName,
 List<String> relationAttrs, ExternalPredicate predicate)
 throws Exception {
 return new MyExternalPreparedStatement(this.targetEventType,
 predicate,this.pattern,this.singularity);
 }

 @Override
 public boolean supportsPredicate(ExternalPredicate predicate)
 throws Exception {
 return true;
 }
}

public static class MyExternalPreparedStatement implements
 ExternalPreparedStatement {
 private ExternalPredicate predicate;
 private Object[] keys = new Object[10];
 private final EventType targetEventType;
 private Pattern pattern;
 private Pattern singularity;

 public MyExternalPreparedStatement(EventType targetEventType,
 ExternalPredicate predicate,String pattern,String singularity) {
 this.targetEventType = targetEventType;
 this.predicate = predicate;
 if (pattern == null) {
 this.pattern = Pattern.compile(".*");
 } else {
 this.pattern = Pattern.compile(pattern);
 }
 if (singularity == null) {
 this.singularity = Pattern.compile("$.^");
 } else {
 this.singularity = Pattern.compile(singularity);
 }
 }

 @Override
 public void close() throws Exception {}

 @Override
 public Iterator<Object> executeQuery() throws Exception {
 List<Object> result = new ArrayList<Object>();
 List attrs = predicate.getAttributes();
 String value="";
 for(int i = 0;i<attrs.size();i++) {
 if(keys[i+1] ==null) {
 System.out.println("empty="+keys[i+1]);
 return result.iterator();
 }
 value = keys[i+1].toString();
 Matcher m = this.pattern.matcher(value);
 if(!m.matches()) {
 System.out.println("empty="+value);
 return result.iterator();
 }

Chapter 7
Source Code

7-11

 }
 TupleValue event = (TupleValue) this.targetEventType.createEvent();
 EventProperty[] properties = this.targetEventType.getProperties();
 for (int i = 0; i < properties.length; i++) {
 properties[i].setValue(event, createValue(properties[i], value));
 }
 System.out.println("one="+value);
 result.add(event);

 Matcher s = this.singularity.matcher(value);
 if(s.matches()) {
 System.out.println("double="+value);
 result.add(event);
 }
 return result.iterator();
}

 private Object createValue(EventProperty property, String value) {
 Type propertyType = property.getType();
 Object ret;
 if (Type.INT == propertyType) {
 ret = Integer.valueOf(value);
 } else if (Type.BIGINT == propertyType) {
 ret = Long.valueOf(value);
 } else if (Type.FLOAT == propertyType) {
 ret = Float.valueOf(value);
 } else if (Type.DOUBLE == propertyType) {
 ret = Double.valueOf(value);
 } else if (Type.BYTE == propertyType) {
 ret = value.getBytes();
 } else if (Type.BOOLEAN == propertyType) {
 ret = false;
 } else if (Type.TIMESTAMP == propertyType) {
 ret = new Date();
 } else if (Type.INTERVAL == propertyType) {
 ret = Long.valueOf(value);
 } else {
 ret = value;
 }
 return ret;
 }

 @Override
 public void setBigDecimal(int paramIndex, BigDecimal x)
 throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setBoolean(int paramIndex, boolean x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setBytes(int paramIndex, byte[] x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setDouble(int paramIndex, double x) throws Exception {
 this.keys[paramIndex] = x;

Chapter 7
Source Code

7-12

 }

 @Override
 public void setFloat(int paramIndex, float x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setInt(int paramIndex, int x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setLong(int paramIndex, long x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setNull(int paramIndex, int x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setString(int paramIndex, String x) throws Exception {
 this.keys[paramIndex] = x;
 }

 @Override
 public void setTimestamp(int paramIndex, Timestamp x) throws Exception {
 this.keys[paramIndex] = x;
 }
}

 // @Override
 public Class getBeanClass() {
 return this.getClass();
 }

 // @Override
 public Map getInstancePropertiesAsMap() {
 return null;
 }

 // @Override
 public String getProvider() {
 return null;
 }
}

MyActivator.java

package tests.functional.cartridge.userdefine.common.libs.datasource;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

public class MyActivator implements BundleActivator {
 private ServiceRegistration reg;

 @Override

Chapter 7
Source Code

7-13

 public void start(BundleContext context) throws Exception {
 }

 @Override
 public void stop(BundleContext arg0) throws Exception {
 }

 }

MyHandler.java

package tests.functional.cartridge.userdefine.common.libs.datasource;

import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.xml.NamespaceHandler;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

import
tests.functional.cartridge.externaldatasource.common.apps.cart2.spring.FileDefinition
Parser;

public class MyHandler implements NamespaceHandler {
 private NamespaceHandlerSupport support = new NamespaceHandlerSupport() {
 public void init() {
 registerBeanDefinitionParser("udds", new UddsDefinitionParser());
 }
 };

 @Override
 public BeanDefinitionHolder decorate(Node node, BeanDefinitionHolder definition,
 ParserContext parserContext) {
 return this.support.decorate(node, definition, parserContext);
 }

 @Override
 public void init() {
 this.support.init();
 }

 @Override
 public BeanDefinition parse(Element element, ParserContext parserContext) {
 return this.support.parse(element, parserContext);
 }
}

UddsDefinitionParser.java

package tests.functional.cartridge.userdefine.common.libs.datasource;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.core.Conventions;
import org.w3c.dom.Attr;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;

public class UddsDefinitionParser extends AbstractSingleBeanDefinitionParser {

Chapter 7
Source Code

7-14

 protected Class<?> getBeanClass(Element element) {
 return UddsFactoryBean.class;
 }

 protected void doParse(Element element, BeanDefinitionBuilder builder) {
 NamedNodeMap attributes = element.getAttributes();

 for (int x = 0; x < attributes.getLength(); x++) {
 Attr attribute = (Attr) attributes.item(x);
 String name = attribute.getLocalName();

 if ("id".equals(name))
 continue;
 builder.addPropertyValue(
 Conventions.attributeNameToPropertyName(name),
 attribute.getValue());
 }
 }
}

UddsFactoryBean.java

package tests.functional.cartridge.userdefine.common.libs.datasource;

import org.osgi.framework.BundleContext;
import org.springframework.beans.factory.BeanNameAware;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.config.AbstractFactoryBean;
import org.springframework.osgi.context.BundleContextAware;
import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventTypeRepository;

public class UddsFactoryBean extends AbstractFactoryBean<MyCartridgeSource>
 implements InitializingBean, BeanNameAware, BundleContextAware {

 private EventTypeRepository etr;
 private BundleContext bundleContext;
 private String beanName;
 private String eventType;
 private String pattern;
 private String singularity;

 @ServiceReference
 public void setEventTypeRepository(EventTypeRepository etr) {
 this.etr = etr;
 }

 @Override
 public void setBundleContext(BundleContext context) {
 this.bundleContext = context;
 }

 @Override
 public void setBeanName(String name) {
 this.beanName = name;
 }

 public String getEventType() {
 return this.eventType;
 }

Chapter 7
Source Code

7-15

 public void setEventType(String eventType) {
 this.eventType = eventType;
 }

 private String keyProperty;

 public String getKeyProperty() {
 return keyProperty;
 }

 public void setKeyProperty(String names) {
 keyProperty = names;
 }

 @Override
 protected MyCartridgeSource createInstance() throws Exception {
 MyCartridgeSource ret = new MyCartridgeSource();
 System.out.println("id="+this.beanName+",eventType="+this.eventType);
 ret.setId(this.beanName);
 ret.setEventType(this.eventType);
 ret.setPattern(this.pattern);
 ret.setSingularity(singularity);
 ret.setKeyProperty(keyProperty);
 return ret;
 }

 @Override
 public Class<?> getObjectType() {
 return MyCartridgeSource.class;
 }

 public void setPattern(String pattern) {
 this.pattern = pattern;
 }

 public String getPattern() {
 return pattern;
 }

 public void setSingularity(String singularity) {
 this.singularity = singularity;
 }

 public String getSingularity() {
 return singularity;
 }
}

Chapter 7
Source Code

7-16

A
Oracle Spatial Command and API
Reference

Syntax and example information for Oracle Spatial commands and APIs that apply to
Event Processing are provided.

• ANYINTERACT

• buffer

• bufferPolygon

• CONTAIN

• convertTo2D

• convertTo3D

• createCircle

• createElemInfo

• createGeometry

• createLinearLineString

• createLinearMultiLineString

• createLinearPolygon

• createMultiPoint

• createPoint

• createRectangle

• distance

• einfogenerator

• FILTER

• get2dMbr

• INSIDE

• INSIDE3D

• NN

• ordsgenerator

• to_Geometry

• to_J3D_Geometry

• to_JGeometry

• WITHINDISTANCE.

A-1

A.1 ANYINTERACT
The ANYINTERACT Oracle Spatial geometric relation operator returns true when the key
interacts with the geometry (geom), and false otherwise.

Syntax

ANYINTERACT@spatial(geom, key, tol)

• geom: Any supported geometry type.

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

The geometry type of this geometry must be GTYPE_POINT or a RUNTIME_EXCEPTION
will be thrown.

• tol: The tolerance as a double value. The tolerance value expands the thickness of
the boundaries.

Example

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 ANYINTERACT@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 ANYINTERACT@spatial(shop.geom, loc.curLoc, 5.0d)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

A.2 buffer
The com.oracle.cep.cartridge.spatial.Geometry buffer method returns a new
oracle.spatial.geometry.JGeometry object that is the buffered version of the input
geometry.

Syntax

• bufferWidth: The distance value used for this buffer as a double.

Appendix A
ANYINTERACT

A-2

This value is assumed to be in the same unit as the Unit of Projection for projected
geometry. If the geometry is geodetic, this buffer width should be in meters.

• SMA: The Semi Major Axis as a double.

Set this parameter when the geometry is geodetic.

• iFlat: The Flattening from CS parameters as a double.

Set this parameter when the geometry is geodetic.

• arcT: The arc_tolerance for geodetic arc densification as a double.

com.oracle.cep.cartridge,spatial.geometry.buffer(bufferWidth, SMA, iFlat, actT)

Example

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.buffer(13, 2, 4, 7)
 from
 CustomerLocStream
</view>

A.3 bufferPolygon
The com.oracle.cep.cartridge.spatial.Geometry bufferPolygon method returns a
com.oracle.cep.cartridge.spatial.Geometry object that is the buffered version of the
input oracle.spatial.geometry.JGeometry polygon. This method creates buffered
polygons to a specified distance around the input features.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.bufferPolygon(polygon, distance)

• polygon: An oracle.spatial.geometry.JGeometry polygon.

• distance: A double value that specifies the distance around the input features.

The distance value is assumed to be in the same unit as the Unit of Projection for
projected geometry. If the geometry is geodetic, the buffer distance should be in
meters.

Example

This method obtains parameters from the Oracle Spatial application context. You must
use the spatial link name (@spatial) to associate the method call with the Oracle
Spatial application context See Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.bufferPolygon@spatial(geom, 1300)

The following example creates a buffered polygon. Because this example depends on
the Oracle Spatial application context, it uses the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.bufferPolygon@spatial(geom, 13)
 from
 CustomerLocStream
</view>

Appendix A
bufferPolygon

A-3

A.4 CONTAIN
The Oracle Spatial geometric relation CONTAIN operator returns true when a geometry
is contained by another geometry, and false otherwise.

Syntax

CONTAIN@spatial(geom, key)

• geom: Any supported geometry type.

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

Example

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 CONTAIN@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 CONTAIN@spatial(shop.geom, loc.curLoc, 5.0d)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

A.5 convertTo2D
The com.oracle.cep.cartridge.spatial.Geometry convertTo2D method converts an
oracle.spatial.geometry.JGeometry 3D object to an oracle.spatial.geometry.JGeometry
2D object.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.convertTo2D(geom)

The geom parameter is an oracle.spatial.geometry.JGeometry 3D object.

Example

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,

Appendix A
CONTAIN

A-4

 com.oracle.cep.cartridge.spatial.Geometry.convertTo2D(geom)
 from
 CustomerLocStream
</view>

A.6 convertTo3D
The com.oracle.cep.cartridge.spatial.Geometry convertTo3D method converts an
oracle.spatial.geometry.JGeometry 2D object into an
oracle.spatial.geometry.JGeometry 3D object. The conversion pads z coordinates to
zero.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.convertTo3D(geom)

The geom parameter is an oracle.spatial.geometry.JGeometry 2D object.

Example

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.convertTo3D(geom)
 from
 CustomerLocStream
</view>

A.7 createCircle
The com.oracle.cep.cartridge.spatial.Geometry createCircle method returns a
com.oracle.cep.cartridge.spatial.Geometry object that is a 2D or 3D circle.

Create a 2D Circle Syntax

com.oracle.cep.cartridge.spatial.Geometry.createCircle(x, y, radius)
com.oracle.cep.cartridge.spatial.Geometry.createCircle(x, y, radius, srid)

• x: The x ordinate of the circle's center as a double.

• y: The y ordinate of the circle's center as a double.

• radius: The arc_tolerance for geodetic arc densification as a double.

• srid: The optional SDO_SRID of the circle as an int. When the srid parameter is
omitted, add the spatial link name as shown in the examples.

Create a 3D Circle Syntax

com.oracle.cep.cartridge.spatial.Geometry.createCircle(x1, y1, x2, y2, x3, y3)
com.oracle.cep.cartridge.spatial.Geometry.createCircle(srid, x1, y1, x2, y2, x3,
 y3)

Specify three coordinates to form the circumference with the following arguments:

• x1: The x ordinate of point 1 as a double.

• y1: The y ordinate of point 1 as a double.

• x2: The x ordinate of point 2 as a double.

Appendix A
convertTo3D

A-5

• y2: The y ordinate of point 2 as a double.

• x3: The x ordinate of point 3 as a double.

• y3: The y ordinate of point 3 as a double.

• srid: The optional SRID of the circle as an int. When you omit the srid parameter,
add the spatial link name (@spatial) as shown in the examples.

Examples

If you omit the optional srid parameter, then the method obtains parameters from the
Oracle Spatial data cartridge application context. In this case, use the spatial link
name (@spatial) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context

com.oracle.cep.cartridge.spatial.Geometry.createCircle@spatial(x, y)

The following example creates a 2D circle with the srid parameter. Because this
example uses the srid parameter, it does not need the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createCircle(x, y, 300, srid)
 from
 CustomerLocStream
</view>

A.8 createElemInfo
The com.oracle.cep.cartridge.spatial.Geometry createElemInfo method returns a
single element info value as an int[] from the given arguments. See einfogenerator
for an alternative.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(offset, etype, interp)

• soffset: The offset, as an int, within the ordinates array where the first ordinate for
this element is stored.

SDO_STARTING_OFFSET values start at 1 and not at 0. Thus, the first ordinate for the
first element will be at SDO_GEOMETRY.Ordinates(1). If there is a second element, its
first ordinate will be at SDO_GEOMETRY.Ordinates(n * 3 + 2), where n reflects the
position within the SDO_ORDINATE_ARRAY definition.

• etype: The type of the element as an int.

Oracle Spatial supports SDO_ETYPE values 1, 1003, and 2003 are considered simple
elements (not compound types). They are defined by a single triplet entry in the
element info array. These types are:

– 1: point.

– 1003: exterior polygon ring (must be specified in counterclockwise order).

– 2003: interior polygon ring (must be specified in clockwise order).

These types are further qualified by the SDO_INTERPRETATION.

Appendix A
createElemInfo

A-6

Note:

Do not mix 1-digit and 4-digit SDO_ETYPE values in the same geometry.

• interp: The interpretation as an int.

For an SDO_ETYPE that is a simple element (1, 1003, or 2003), the
SDO_INTERPRETATION attribute determines how the sequence of ordinates for this
element is interpreted. For example, a polygon boundary may be made up of a
sequence of connected straight line segments.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the ordinates varying length array.

Table A-1 describes the relationship between SDO_ETYPE and SDO_INTERPREATION.

Table A-1 SDO_ETYPE and SDO_INTERPRETATION

SDO_ETYP
E

SDO_INTERPRETA
TION

Description

0 Any numeric value Use to model geometry types not supported by
Oracle Spatial.

1 1 Point type.

1 0 Orientation for an oriented point.

1003 or
2003

1 Simple polygon with vertices connected by straight
line segments. You must specify a point for each
vertex; and the last point specified must be exactly
the same point as the first (within the tolerance
value), to close the polygon.

For example, for a 4-sided polygon, specify 5 points,
with point 5 the same as point 1.

1003 or
2003

3 Rectangle type (optimized rectangle). A bounding
rectangle such that only two points, the lower-left and
the upper-right, are required to describe it. The
rectangle type can be used with geodetic or non-
geodetic data. However, with geodetic data, use this
type only to create a query window (not for storing
objects in the database).

Example

<view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(1, 1003, 1),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)
) as geom
 from ShopDesc
</view>

Appendix A
createElemInfo

A-7

A.9 createGeometry
The com.oracle.cep.cartridge.spatial.Geometry createGeometry method returns a new
2D oracle.cep.cartridge.spatial.Geometry object.

Syntax

com.oracle.cep.cartridge.spatial.Geometry(gtype, elemInfo, ordinates)
com.oracle.cep.cartridge.spatial.Geometry(gtype, srid, elemInfo, ordinates)

• gtype: The geometry type as an int.

For more information, see Table A-2.

• eleminfo: The geometry element info as an int[].

For more information, see createElemInfo.

• ordinates: The geometry ordinates as a double[].

• srid: The optional SDO_SRID of the geometry as an int. When you omit the srid
parameter, add the spatial link name (@spatial) as shown in the examples.

Examples

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spatial link name to
associate the method call with the Oracle Spatial application context: For more
information, see Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(gtype, eleminfo,
 ordinates)

The following examples creates a geometry with the srid parameter. Because this
example uses the srid argument, it does not need the @spatial link name.

<view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 srid,
 com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(1, 1003, 1,
 srid),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)
) as geom
 from ShopDesc
</view>

A.10 createLinearLineString
The com.oracle.cep.cartridge.spatial.Geometry createLinearLineString method
returns a new 3D com.oracle.cep.cartridge.spatial.Geometry geometry that is a linear
line string with element info of {1, 2, 1}. If the dimensionality of the given coordinates
is 2, the z coordinates are padded to zero.

Appendix A
createGeometry

A-8

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createLinearLineString(coords, dim)
com.oracle.cep.cartridge.spatial.Geometry.createLinearLineString(srid, coords,
 dim)

• coords: The coordinates of the linear line string as a double[].

• dim: The dimensionality of the given coordinates as an int.

• srid: The optional SDO_SRID of the geometry as an int. When the srid parameter is
omitted, add the spatial link name as shown in the examples.

For more information, see Oracle Spatial Application Context.

Examples

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. You must use the spatial link name
(@spatial) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createLinearLineString@spatial(coords,
 dim)

The following examples creates a linear line string with the srid paramter. Because this
example uses the srid parameter, it does not use the @spatial link.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createLinearLineString(coords, dim, srid)
 from
 CustomerLocStream
</view>

A.11 createLinearMultiLineString
The com.oracle.cep.cartridge.spatial.Geometry createMultiLineString method returns
a new 3D com.oracle.cep.cartridge.spatial.Geometry geometry that is a linear
multiline string. If the dimensionality of the given coordinates is 2, then the z
coordinates are padded to zero.

Syntax

com.oracle.oep.cartridge.spatial.Geometry.createMultiLineString(coords, dim)
com.oracle.cep.cartridge.spatial.Geometry.createMultiLineString(srid, coords, dim)

• coords: the coordinates of the linear line string as a double[][].

• dim: the dimensionality of the given coordinates as an int.

• srid: the optional SRID of the geometry as an int. When you omit the srid
parameter, add the spatial link name (@spatial) as shown in the examples.

Examples

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. You must use the spatial link name

Appendix A
createLinearMultiLineString

A-9

(@spatial) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createLinearMultiLineString@spatial(
 coords, dim)

The following example creates a linear multiline linear string. Because this example
uses the srid argument, it does not use the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createLinearMultiLineString(coords, dim,
 srid)
 from
 CustomerLocStream
</view>

A.12 createLinearPolygon
The com.oracle.cep.cartridge.spatial.Geometry createLinearPolygon method returns a
new com.oracle.cep.cartridge.spatial.Geometry object that is a 2D simple linear
polygon without holes. If the coordinate array does not close itself (the last coordinate
is not the same as the first), then this method copies the first coordinate and appends
this coordinate value to the end of the input coordinates array.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createLinearPolygon(coords{])
com.oracle.cep.cartridge.spatial.Geometry.createLinearPolygon(srid, coords[])

• coords: the coordinates of the linear polygon as a double[].

• srid: the optional SRID of the geometry as an int. When you omit the srid
parameter, add the spatial link name (@spatial) as shown in the examples.

Examples

If you omit the srid parameter, then the method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spatial link name (@spatial)
to associate the method call with the Oracle Spatial application context. See Oracle
Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createLinearPolygon@spatial(coords)

The following example creates a linear polygon with the srid parameter. Because this
example uses the srid argument, it does not use the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createLinearPolygon(coords, srid)
 from
 CustomerLocStream
</view>

A.13 createMultiPoint
The com.oracle.cep.cartridge.spatial.Geometry createMultiPoint method returns a
com.oracle.cep.cartridge.spatial.Geometry object which is a multipoint geometry

Appendix A
createLinearPolygon

A-10

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createMultiPoint(coords[][], dim)
com.oracle.cep.cartridge.spatial.Geometry.createMultiPoint(srid, coords[][], dim)

• coords: the array of arrays of type double each containing one point.

• dim: the dimensionality of each point as an int.

• srid: the optional SRID of the geometry as an int. When you omit the srid
parameter, add the spatial link name (@spatial) as shown in the examples.

Examples

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. In this case, you must use the spatial link
name (@spatial) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createMultiPoint@spatial(coords, dim)

The following example creates a multipoint geometry with the srid parameter.
Because this example uses the srid parameter, it does not use the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createMultiPoint(coords, dim, srid)
 from
 CustomerLocStream
</view>

A.14 createPoint
The com.oracle.cep.cartridge.spatial.Geometry createPoint method returns a new
com.oracle.cep.cartridge.spatial.Geometry object that is a 3D point.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createPoint(x, y)
com.oracle.cep.cartridge.spatial.Geometry.createPoint(srid, x, y)

• x: the x coordinate of the lower left as a double.

• y: the y coordinate of the lower left as a double.

• srid: the optional SRID of the geometry as an int. When you omit the srid
parameter, add the spatial link name (@spatial) as shown in the examples.

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spatial link name (@spatial)
to associate the method call with the Oracle Spatial application context. See Oracle
Spatial Application Context

com.oracle.cep.cartridge.spatial.Geometry.createPoint@spatial(x, y)

The following example creates a point with the srid parameter. Because this example
uses the srid parameter, it does not use the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select

Appendix A
createPoint

A-11

 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createPoint(lng, lat, srid)
 from
 CustomerLocStream
</view>

A.15 createRectangle
The com.oracle.cep.cartridge.spatial.Geometry createRectangle method returns a new
com.oracle.cep.cartridge.spatial.Geometry object that is a 2D rectangle

Syntax

com.oracle.cep.cartridge.spatial.Geometry.createRectangle(x1, y1, x2, y2)
com.oracle.cep.cartridge.spatial.Geometry.createRectangle(srid, x1, y1, x2, y2)

• x1: the x coordinate of the lower left as a double.

• y1: the y coordinate of the lower left as a double.

• x2: the x coordinate of the upper right as a double.

• y2: the y coordinate of the upper right as a double.

• srid: the optional SRID of the geometry as an int.

Examples

If you omit the srid parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spatial link name (@spatial)
to associate the method call with the Oracle Spatial application context. See Oracle
Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.createRectangle@spatial(x1, y1, x2, y2)

The following example creates a rectangle. Because this example uses the srid
parameter, it does not need the spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createRectangle(x1, y1, x2, y2, srid)
 from
 CustomerLocStream
</view>

A.16 distance
The com.oracle.cep.cartridge.spatial.Geometry distance method calculates the
distance between two geometries as a double.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.distance(g1, g2)
com.oracle.cep.cartridge.spatial.Geometry.distance(geoParam, g1, g2)

To calculate the distance between a com.oracle.cep.cartridge.spatial.Geometry object
and another, use the non-static distance method of the current Geometry object with the
following arguments:

• g: the other com.oracle.cep.cartridge.spatial.Geometry object.

Appendix A
createRectangle

A-12

To calculate the distance between two com.oracle.cep.cartridge.spatial.Geometry
objects, use the static distance method with the following arguments:

• g1: the first com.oracle.cep.cartridge.spatial.Geometry object.

• g2: the second com.oracle.cep.cartridge.spatial.Geometry object.

Examples

This method obtains parameters from the Oracle Spatial application context. You must
use the spatial link name to associate the method call with the Oracle Spatial
application context. See Oracle Spatial Application Context.

com.oracle.cep.cartridge.spatial.Geometry.distance@spatial(geom)
com.oracle.cep.cartridge.spatial.Geometry.distance@spatial(geom1, geom2)

The following example calculates the distance between two geometries. Because the
distance method depends on the Oracle Spatial application context, it must use the
spatial link name.

<view id="LocGeomStream" schema="customerId curLoc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.createRectangle(x1, y1, x2, y2, srid)
 from
 CustomerLocStream
 where
 com.oracle.cep.cartridge.spatial.Geometry.distance@spatial(geom1, geom2) < 5
</view>

A.17 einfogenerator
The einfogenerator Oracle CQL function returns a single info element value as in
int[] from the given arguments. Alternately, see createElemInfo if you prefer to use
the com.oracle.cep.cartridge.spatial.Geometry.createElemInfo method.

Syntax

einfogenerator@spatial(offset, etype, interp)

• offset: the offset, as an int, within the ordinates array where the first ordinate for
this element is stored.

SDO_STARTING_OFFSET values start at 1 and not at 0. Thus, the first ordinate for the
first element will be at SDO_GEOMETRY.Ordinates(1). If there is a second element, its
first ordinate will be at SDO_GEOMETRY.Ordinates(n * 3 + 2), where n reflects the
position within the SDO_ORDINATE_ARRAY definition.

• etype: the type of the element as an int.

Oracle Spatial supports SDO_ETYPE values 1, 1003, and 2003 are considered simple
elements (not compound types). They are defined by a single triplet entry in the
element info array. These types are:

– 1: point.

– 1003: exterior polygon ring (must be specified in counterclockwise order).

– 2003: interior polygon ring (must be specified in clockwise order).

These types are further qualified by the SDO_INTERPRETATION.

Appendix A
einfogenerator

A-13

Note:

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single geometry.

• interp: the interpretation as an int.

For an SDO_ETYPE that is a simple element (1, 1003, or 2003) the
SDO_INTERPRETATION attribute determines how the sequence of ordinates for this
element is interpreted. For example, a polygon boundary may be made up of a
sequence of connected straight line segments.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the ordinates varying length array.

Table A-2 describes the relationship between SDO_ETYPE and SDO_INTERPREATION.

Table A-2 SDO_ETYPE and SDO_INTERPRETATION

SDO_ETYP
E

SDO_INTERPRETA
TION

Description

0 Any numeric value Used to model geometry types not supported by
Oracle Spatial.

1 1 Point type.

1 0 Orientation for an oriented point.

1003 or
2003

1 Simple polygon whose vertices are connected by
straight line segments. You must specify a point for
each vertex; and the last point specified must be
exactly the same point as the first (within the
tolerance value), to close the polygon.

For example, for a 4-sided polygon, specify 5 points,
with point 5 the same as point 1.

1003 or
2003

3 Rectangle type (sometimes called optimized
rectangle). A bounding rectangle such that only two
points, the lower-left and the upper-right, are required
to describe it. The rectangle type can be used with
geodetic or non-geodetic data. However, with
geodetic data, use this type only to create a query
window (not for storing objects in the database).

Examples

This is an Oracle CQL function so you invoke this function with the spatial link name
and without a package prefix. The following example creates the element information
for a geometry.

view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 einfogenerator@spatial(1, 1003, 1),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)

Appendix A
einfogenerator

A-14

) as geom
 from ShopDesc
</view>

A.18 FILTER
The FILTER Oracle Spatial geometric filter operator returns true for object pairs that are
non-disjoint, and false otherwise.

FILTER@spatial(key, tol)

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

• tol: the tolerance as a double value.

Example

This is an Oracle Spatial geometric filter operator so you invoke this function with the
spatial link name and without a package prefix. The following example test for object
pairs that are non-disjoint.

<view id="filter">
 RStream(
 select loc.customerId, shop.shopId
 from LocGeomStream[NOW] as loc, ShopGeomRelation as shop
 where FILTER@spatial(loc.curLoc, 5.0d) = true
)
</view>

A.19 get2dMbr
The com.oracle.cep.cartridge.spatial.Geometry get2dMbr method returns the Minimum
Bounding Rectangle (MBR) of a given Geometry as a double[][].

Syntax

com.oracle.cep.cartridge.spatial.Geometry.get2DMbr(geom)

The geom parameter is a com.oracle.cep.cartridge.spatial.Geometry object for which
the method returns the bounding rectangle. The returned bounding rectangle contains
the following values:

• [0][0]: minX

• [0][1]: maxX

• [1][0]: minY

• [1][1]: maxY

Examples

The following example returns a bounding rectangle for geom.

<view id="LocGeomStream" schema="customerId mbr">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.get2dMbr(geom)

Appendix A
FILTER

A-15

 from
 CustomerLocStream
 where
 com.oracle.cep.cartridge.spatial.Geometry.distance@spatial(geom1, geom2) < 5
</view>

A.20 INSIDE
The INSIDE Oracle Spatial geometric relation returns true if GTYPE_POINT is inside the
geometry, and false otherwise.

Syntax

INSIDE@spatial(geom, key)

• geom: any supported geometry type.

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

Example

The following Oracle CQL query tests whether a point is inside the geometry.

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 INSIDE@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 INSIDE@spatial(shop.geom, loc.curLoc, 5.0d)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

A.21 INSIDE3D
The INSIDE3D Oracle Spatial geometric relation returns true if the 3D geometry, geom1,
is inside the 3D space of geom2, and false otherwise.

Syntax

INSIDE3D@spatial(geom1, geom2)
INSIDE3D@spatial(geom1, geom2)

Appendix A
INSIDE

A-16

• geom1: The contained geometry, which can be any supported 3D geometry.

• geom2: The containing geometry, which can be any supported 3D geometry.

Example

The following Oracle CQL query tests whether a point is inside a 3D geometry.

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 INSIDE3D@spatial(shop.geom1, shop.geom2) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 INSIDE@spatial(shop.geom1, shop.geom2)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

A.22 NN
The NN Oracle Spatial geometric filter operator returns the objects (nearest neighbors)
from geom that are nearest to the key. To determine how near two geometry objects
are to each other, Oracle Event Processing uses the shortest possible distance
between any two points on the surface of each object used.

Syntax

NN@spatial(geom, key, tol)

• geom: any supported geometry type.

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

• tol: the tolerance as a double value.

Examples

The following Oracle CQL query tests for nearest neighbors.

<view id="filter">
 RStream(
 select loc.customerId, shop.shopId
 from LocGeomStream[NOW] as loc, ShopGeomRelation as shop
 where NN@spatial(shop.geom, loc.curLoc, 5.0d) = true

Appendix A
NN

A-17

)
</view>

A.23 ordsgenerator
The ordsgenerator Oracle CQL function returns a double array of 2D coordinates from
coordinate parameter values.

Syntax

ordsgenerator@spatial(x1, y1, ..., xN, yN)

The parameter values form a comma-separated list of coordinate values. This function
returns a double array of 2D coordinates from the input.

Example

The following example creates an Oracle Spatial double array out of six double
coordinate values.

view id="ShopGeom">
 select com.oracle.cep.cartridge.spatial.Geometry.createGeometry@spatial(
 com.oracle.cep.cartridge.spatial.Geometry.GTYPE_POLYGON,
 com.oracle.cep.cartridge.spatial.Geometry.createElemInfo(1, 1003, 1),
 ordsgenerator@spatial(
 lng1, lat1, lng2, lat2, lng3, lat3,
 lng4, lat4, lng5, lat5, lng6, lat6
)
) as geom
 from ShopDesc
</view>

A.24 to_Geometry
The com.oracle.cep.cartridge.spatial.Geometry to_Geometry method converts an
oracle.spatial.geometry.JGeometry type to a 3D
com.oracle.cep.cartridge.spatial.Geometry type.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.to_Geometry(geom)

The geom parameter is the oracle.spatial.geometry.JGeometry object to convert. If the
given geometry is already a Geometry type and a 3D geometry, then no conversion is
done. If the given geometry is a 2D geometry, then the given geometry is converted to
3D by padding z coordinates.

Example

The following example converts the 2D geometry, geo, to a 3D geometry.

<view id="LocStream" schema="customerId loc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.to_Geometry(geom)
 from
 CustomerLocStream
</view>

Appendix A
ordsgenerator

A-18

A.25 to_J3D_Geometry
The com.oracle.cep.cartridge.spatial.Geometry to_J3D_Geometry method converts a
com.oracle.cep.cartridge.spatial.Geometry object to an
oracle.spatial.geometry.J3D_Geometry object.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.to_J3D_Geometry(g)

The g parameter is the com.oracle.cep.cartridge.spatial.Geometry object to convert.

Example

The following example shows how to use the to_J3D_Geometry method.

<view id="LocStream" schema="customerId loc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.to_J3D_Geometry(geom)
 from
 CustomerLocStream
</view>

A.26 to_JGeometry
The com.oracle.cep.cartridge.spatial.Geometry.to_JGeometry method converts a
com.oracle.cep.cartridge.spatial.Geometry object to an
oracle.spatial.geometry.JGeometry 2D type.

Syntax

com.oracle.cep.cartridge.spatial.Geometry.to_JGeometry(g)

The g parameter is the com.oracle.cep.cartridge.spatial.Geometry object to convert.

Example

The following example converts the 2D geometry object, geom, to a 2D JGeometry
object.

<view id="LocStream" schema="customerId loc">
 select
 customerId,
 com.oracle.cep.cartridge.spatial.Geometry.to_JGeometry(geom)
 from
 CustomerLocStream
</view>

A.27 WITHINDISTANCE
The WITHINDISTANCE Oracle CQL query returns true when the GTYPE_POINT is within the
given distance of the geometry, and false otherwise.

Syntax

WITHINDISTANCE@spatial(geom, key, dist)

Appendix A
to_J3D_Geometry

A-19

• geom: any supported geometry type.

• key: A GTYPE_POINT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE, GTYPE_COLLECTION,
GTYPE_MULTIPOINT, GTYPE_MULTICURVE, GTYPE_MULTIPOLYGON, GTYPE_SOLID, or
GTYPE_MULTISOLID geometry type.

• dist: the distance as a double value.

Example

The following Oracle CQL query tests whether loc.curLoc is within the 5.0d distance of
shop.geom.

<view id="op_in_where">
 RStream(
 select
 loc.customerId,
 shop.shopId
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
 where
 WITHINDISTANCE@spatial(shop.geom, loc.curLoc, 5.0d) = true
)
</view>
<view id="op_in_proj">
 RStream(
 select
 loc.customerId,
 shop.shopId,
 WITHINDISTANCE@spatial(shop.geom, loc.curLoc, 5.0d)
 from
 LocGeomStream[NOW] as loc,
 ShopGeomRelation as shop
)
</view>

Appendix A
WITHINDISTANCE

A-20

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Syntax Diagrams

	What's New in This Guide
	1 Introduction to Data Cartridges
	1.1 Oracle CQL Data Cartridge Framework
	1.2 Names
	1.3 Application Context

	2 Configure Oracle JDBC and Oracle Spatial Data Cartridges
	2.1 How to Configure Oracle Spatial Application Context
	2.2 How to Configure Oracle JDBC Data Cartridge Application Context

	3 Oracle JDBC Data Cartridge
	3.1 Understanding the Oracle Stream Explorer JDBC Data Cartridge
	3.1.1 Data Cartridge Name
	3.1.2 Scope
	3.1.3 Parameter Specification
	3.1.4 Oracle Stream Explorer JDBC Data Cartridge Application Context
	3.1.4.1 Declare a JDBC Cartridge Context in the EPN File
	3.1.4.2 Configure the JDBC Cartridge Context in the Application Configuration File

	3.2 Using the Event Processing JDBC Data Cartridge
	3.2.1 Defining SQL Statements: function Element
	3.2.1.1 function Element Attributes
	3.2.1.2 function Element Child Elements
	3.2.1.2.1 param
	3.2.1.2.2 return-component-type
	3.2.1.2.3 sql

	3.2.1.3 function Element Usage
	3.2.1.3.1 Multiple Parameter JDBC Cartridge Context Functions
	3.2.1.3.2 Invoking PL/SQL Functions
	3.2.1.3.3 Complex JDBC Cartridge Context Functions
	3.2.1.3.4 Overloading JDBC Cartridge Context Functions

	3.2.2 Defining Oracle CQL Queries With the Oracle Stream Analytics JDBC Data Cartridge
	3.2.2.1 Using SELECT List Aliases
	3.2.2.2 Using the TABLE Clause
	3.2.2.3 Using a Native CQL Type as a return-component-type

	4 Oracle Spatial Data Cartridge
	4.1 Understanding Oracle Spatial
	4.1.1 Data Cartridge Name
	4.1.2 Scope
	4.1.2.1 Geometry Types
	4.1.2.2 Element Info Array
	4.1.2.3 Ordinates and Coordinate Systems and the SDO_SRID
	4.1.2.4 Geometric Index
	4.1.2.5 Geometric Relation Operators
	4.1.2.6 Geometric Filter Operators
	4.1.2.7 Geometric Aggregations
	4.1.2.8 Geometry API
	4.1.2.8.1 com.oracle.cep.cartridge.spatial.Geometry Methods
	4.1.2.8.2 oracle.spatial.geometry.JGeometry Methods

	4.1.3 Datatype Mapping
	4.1.4 Oracle Spatial Application Context

	4.2 Using Oracle Spatial
	4.2.1 How to Access Oracle Spatial Java API Geometry Types
	4.2.2 How to Create a Geometry
	4.2.3 How to Access Geometry Type Public Methods and Fields
	4.2.4 How to Use Geometry Relation Operators
	4.2.5 How to Use Geometry Filter Operators
	4.2.6 How to Use Geometry Aggregate Operators
	4.2.7 How to Use the Default Geodetic Coordinates
	4.2.8 How to Use Other Geodetic Coordinates

	5 Oracle Big Data Cartridges
	5.1 What is Big Data?
	5.2 Hadoop Data Cartridge
	5.2.1 Understanding the Oracle Stream Analytics Hadoop Data Cartridge
	5.2.1.1 Usage Scenario: Using Purchase Data to Develop Buying Incentives
	5.2.1.2 Data Cartridge Name

	5.2.2 Using Hadoop Data Sources in Oracle CQL
	5.2.2.1 Configuring Integration of Oracle Stream Analytics and Hadoop
	5.2.2.2 Integrating a File from a Hadoop System Into an EPN
	5.2.2.3 Using Hadoop Data in Oracle CQL

	5.3 NoSQL Data Cartridge
	5.3.1 Oracle CQL Processor Queries
	5.3.2 Data Cartridge Name
	5.3.3 Using a NoSQL Database in Oracle CQL
	5.3.3.1 Integrating a NoSQL Database Into an EPN
	5.3.3.2 Using NoSQL Data in Oracle CQL
	5.3.3.2.1 Formatting the Key Used to Obtain Entries from the NoSQL Store

	5.4 HBase Big Data Cartridge
	5.4.1 Understanding HBase Cartridge
	5.4.2 Using HBase Cartridge
	5.4.3 Limitations of HBase Cartridge in 12.2.1 Release

	6 Oracle Java Data Cartridge
	6.1 Understanding the Oracle Java Data Cartridge
	6.1.1 Data Cartridge Name
	6.1.2 Class Loading
	6.1.2.1 Application Class Space Policy
	6.1.2.2 No Automatic Import Class Space Policy
	6.1.2.3 Server Class Space Policy
	6.1.2.4 Class Loading Example

	6.1.3 Method Resolution
	6.1.4 Datatype Mapping
	6.1.4.1 Java Data Type String and Oracle CQL Data Type CHAR
	6.1.4.2 Literals
	6.1.4.3 Arrays
	6.1.4.4 Collections

	6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge

	6.2 Using the Oracle Java Data Cartridge
	6.2.1 How to Query Using the Java API
	6.2.2 How to Query Using Exported Java Classes
	6.2.3 Java Cast Function

	7 Data Cartridge Framework
	7.1 About the SPI
	7.2 Interfaces
	7.2.1 Interface Descriptions
	7.2.2 Exceptions

	7.3 Cartridge Examples
	7.3.1 Arithmetic Cartridge
	7.3.2 Data Source Cartridge

	7.4 Source Code
	7.4.1 Arithmetic Cartridge
	7.4.2 Data Source Cartridge

	A Oracle Spatial Command and API Reference
	A.1 ANYINTERACT
	A.2 buffer
	A.3 bufferPolygon
	A.4 CONTAIN
	A.5 convertTo2D
	A.6 convertTo3D
	A.7 createCircle
	A.8 createElemInfo
	A.9 createGeometry
	A.10 createLinearLineString
	A.11 createLinearMultiLineString
	A.12 createLinearPolygon
	A.13 createMultiPoint
	A.14 createPoint
	A.15 createRectangle
	A.16 distance
	A.17 einfogenerator
	A.18 FILTER
	A.19 get2dMbr
	A.20 INSIDE
	A.21 INSIDE3D
	A.22 NN
	A.23 ordsgenerator
	A.24 to_Geometry
	A.25 to_J3D_Geometry
	A.26 to_JGeometry
	A.27 WITHINDISTANCE

