
Oracle® Fusion Middleware
Oracle CQL Language Reference

12c Release (12.2.1.3.0)
E98671-01
August 2018

Oracle Fusion Middleware Oracle CQL Language Reference, 12c Release (12.2.1.3.0)

E98671-01

Copyright © 2007, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvi

Documentation Accessibility xvi

Related Documents xvi

Conventions xvii

Syntax Diagrams xvii

 What's New in This Guide

1 Introduction to Oracle CQL

1.1 Fundamentals of Oracle CQL 1-1

1.1.1 Streams and Relations 1-3

1.1.1.1 Streams 1-4

1.1.1.2 Relations 1-6

1.1.1.3 Relations and Oracle Event Processing Tuple Kind Indicator 1-7

1.1.2 Relation-to-Relation Operators 1-7

1.1.3 Stream-to-Relation Operators (Windows) 1-8

1.1.3.1 Range, Rows, and Slide 1-9

1.1.3.2 Partition 1-11

1.1.3.3 Default Stream-to-Relation Operator 1-11

1.1.4 Relation-to-Stream Operators 1-11

1.1.4.1 Default Relation-to-Stream Operator 1-12

1.1.5 Stream-to-Stream Operators 1-13

1.1.6 Queries, Views, and Joins 1-13

1.1.7 Pattern Recognition 1-14

1.1.8 Event Sources and Event Sinks 1-14

1.1.8.1 Event Sources 1-14

1.1.8.2 Event Sinks 1-15

1.1.8.3 Connecting Event Sources and Event Sinks 1-15

1.1.9 Table Event Sources 1-16

1.1.9.1 Relational Database Table Event Sources 1-16

iii

1.1.9.2 XML Table Event Sources 1-16

1.1.9.3 Function Table Event Sources 1-16

1.1.10 Table Event Sink 1-17

1.1.10.1 Spring Assembly File 1-18

1.1.10.2 Application Configuration File 1-18

1.1.11 Cache Event Sources 1-19

1.1.12 Functions 1-19

1.1.13 Time 1-21

1.2 Oracle CQL Statements 1-21

1.2.1 Lexical Conventions 1-22

1.2.2 Syntactic Shortcuts and Defaults 1-23

1.2.3 Documentation Conventions 1-24

1.3 Oracle CQL and SQL Standards 1-24

1.4 Oracle Event Processing Server 1-24

2 Basic Elements of Oracle CQL

2.1 Data Types 2-1

2.1.1 Oracle CQL Built-in Data Types 2-2

2.1.2 Handling Other Data Types Using Oracle CQL Data Cartridges 2-3

2.1.3 Handling Other Data Types Using a User-Defined Function 2-3

2.2 Data Type Comparison Rules 2-4

2.2.1 Numeric Values 2-4

2.2.2 Date Values 2-4

2.2.3 Character Values 2-4

2.2.4 Data Type Conversion 2-5

2.2.4.1 Implicit Data Type Conversion 2-5

2.2.4.2 Explicit Data Type Conversion 2-6

2.2.4.3 SQL Data Type Conversion 2-7

2.2.4.4 Oracle Data Cartridge Data Type Conversion 2-7

2.2.4.5 User-Defined Function Data Type Conversion 2-7

2.3 Literals 2-8

2.3.1 Text Literals 2-8

2.3.2 Numeric Literals 2-8

2.3.2.1 Integer Literals 2-9

2.3.2.2 Floating-Point Literals 2-9

2.3.3 Datetime Literals 2-10

2.3.4 Interval Literals 2-11

2.3.4.1 INTERVAL DAY TO SECOND 2-11

2.3.4.2 INTERVAL YEAR TO MONTH 2-12

2.4 Format Models 2-13

iv

2.4.1 Number Format Models 2-13

2.4.2 Datetime Format Models 2-14

2.5 Nulls 2-14

2.5.1 Nulls in Oracle CQL Functions 2-14

2.5.2 Nulls with Comparison Conditions 2-15

2.5.3 Nulls in Conditions 2-15

2.6 Comments 2-15

2.7 Aliases 2-15

2.7.1 Defining Aliases Using the AS Operator 2-16

2.7.1.1 Aliases in the relation_variable Clause 2-16

2.7.1.2 Aliases in Window Operators 2-16

2.7.2 Defining Aliases Using the Aliases Element 2-17

2.7.2.1 How to Define a Data Type Alias Using the Aliases Element 2-17

2.8 Schema Object Names and Qualifiers 2-19

2.8.1 Schema Object Naming Rules 2-19

2.8.2 Schema Object Naming Guidelines 2-21

2.8.3 Schema Object Naming Examples 2-21

3 Pseudocolumns

3.1 Introduction to Pseudocolumns 3-1

3.2 ELEMENT_TIME Pseudocolumn 3-1

3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn 3-1

3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream 3-1

3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream 3-2

3.2.1.3 ELEMENT_TIME for an Inline CQL View 3-3

3.2.1.4 ELEMENT_TIME for a Subquery 3-3

3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries 3-3

3.2.2.1 Using ELEMENT_TIME With SELECT 3-3

3.2.2.2 Using ELEMENT_TIME With GROUP BY 3-4

3.2.2.3 Using ELEMENT_TIME With PATTERN 3-5

3.3 ORA_QUERY_ID Pseudocolumn 3-5

4 Operators

4.1 Introduction to Operators 4-1

4.1.1 What You May Need to Know About Unary and Binary Operators 4-1

4.1.2 What You May Need to Know About Operator Precedence 4-1

4.2 Arithmetic Operators 4-2

4.3 Concatenation Operator 4-3

4.4 Alternation Operator 4-4

v

4.5 Range-Based Stream-to-Relation Window Operators 4-5

4.5.1 S[now] 4-6

4.5.1.1 Examples 4-6

4.5.2 S[range T] 4-6

4.5.2.1 Examples 4-6

4.5.3 S[range T1 slide T2] 4-7

4.5.3.1 Examples 4-8

4.5.4 S[range unbounded] 4-8

4.5.4.1 Examples 4-8

4.5.5 S[range C on E] 4-9

4.5.5.1 Examples 4-9

4.6 Tuple-Based Stream-to-Relation Window Operators 4-11

4.6.1 S [rows N] 4-11

4.6.1.1 Examples 4-11

4.6.2 S [rows N1 slide N2] 4-12

4.6.2.1 Examples 4-13

4.7 Partitioned Stream-to-Relation Window Operators 4-13

4.7.1 S [partition by A1,..., Ak rows N] 4-14

4.7.1.1 Examples 4-14

4.7.2 S [partition by A1,..., Ak rows N range T] 4-15

4.7.2.1 Examples 4-15

4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2] 4-16

4.7.3.1 Examples 4-16

4.8 User-Defined Stream-to-Relation Window Operators 4-17

4.8.1 Implementing a User-Defined Window 4-17

4.8.1.1 How to Implement a User-Defined Generic Time Window 4-18

4.9 IStream Relation-to-Stream Operator 4-19

4.10 DStream Relation-to-Stream Operator 4-19

4.11 RStream Relation-to-Stream Operator 4-20

5 Expressions

5.1 Introduction to Expressions 5-1

5.2 aggr_distinct_expr 5-2

5.2.1 Examples 5-2

5.3 aggr_expr 5-3

5.3.1 Examples 5-4

5.4 arith_expr 5-4

5.4.1 Examples 5-5

5.5 arith_expr_list 5-6

5.5.1 Examples 5-6

vi

5.6 case_expr 5-6

5.6.1 Examples 5-7

5.7 decode 5-9

5.7.1 Examples 5-10

5.8 func_expr 5-11

5.8.1 Examples 5-14

5.9 object_expr 5-14

5.9.1 Examples 5-17

5.10 order_expr 5-18

5.10.1 Examples 5-19

5.11 xml_agg_expr 5-19

5.11.1 Examples 5-20

5.12 xmlcolattval_expr 5-20

5.12.1 Examples 5-20

5.13 xmlelement_expr 5-21

5.13.1 Examples 5-22

5.14 xmlforest_expr 5-23

5.14.1 Examples 5-23

5.15 xml_parse_expr 5-24

5.15.1 Examples 5-25

6 Conditions

6.1 Introduction to Conditions 6-1

6.1.1 Condition Precedence 6-2

6.2 Comparison Conditions 6-2

6.3 Logical Conditions 6-4

6.4 LIKE Condition 6-6

6.4.1 Examples 6-7

6.5 Range Conditions 6-8

6.6 Null Conditions 6-9

6.7 Compound Conditions 6-9

6.8 IN Condition 6-10

6.8.1 Using IN and NOT IN as a Membership Condition 6-10

6.8.2 NOT IN and Null Values 6-11

7 Common Oracle CQL DDL Clauses

7.1 Introduction to Common Oracle CQL DDL Clauses 7-1

7.2 array_type 7-2

7.3 attr 7-3

vii

7.4 attrspec 7-5

7.5 complex_type 7-6

7.6 const_bigint 7-8

7.7 const_int 7-9

7.8 const_string 7-9

7.9 const_value 7-10

7.10 identifier 7-11

7.11 l-value 7-14

7.12 methodname 7-14

7.13 non_mt_arg_list 7-14

7.14 non_mt_attr_list 7-15

7.15 non_mt_attrname_list 7-16

7.16 non_mt_attrspec_list 7-16

7.17 non_mt_cond_list 7-17

7.18 out_of_line_constraint 7-18

7.19 param_list 7-18

7.20 qualified_type_name 7-19

7.21 query_ref 7-20

7.22 time_spec 7-20

7.23 xml_attribute_list 7-21

7.24 xml_attr_list 7-22

7.25 xqryargs_list 7-23

8 Built-In Single-Row Functions

8.1 Introduction to Oracle CQL Built-In Single-Row Functions 8-1

8.2.1 concat 8-2

8.2.2 hextoraw 8-3

8.2.3 length 8-4

8.2.4 lk 8-5

8.2.5 nvl 8-6

8.2.6 prev 8-7

8.2.7 rawtohex 8-10

8.2.8 systimestamp 8-11

8.2.9 to_bigint 8-11

8.2.10 to_boolean 8-12

8.2.11 to_char 8-13

8.2.12 to_double 8-14

8.2.13 to_float 8-14

8.2.14 to_timestamp 8-15

8.2.15 xmlcomment 8-16

viii

8.2.16 xmlconcat 8-17

8.2.17 xmlexists 8-18

8.2.18 xmlquery 8-19

9 Built-In Aggregate Functions

9.1 Introduction to Oracle CQL Built-In Aggregate Functions 9-1

9.1.1 Built-In Aggregate Functions and the Where, Group By, and Having
Clauses 9-2

9.2.1 avg 9-2

9.2.2 count 9-3

9.2.3 first 9-4

9.2.4 last 9-6

9.2.5 listagg 9-8

9.2.6 max 9-9

9.2.7 min 9-10

9.2.8 sum 9-11

9.2.9 xmlagg 9-12

10

Colt Single-Row Functions

10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt Functions 10-1

10.2.1 beta 10-3

10.2.2 beta1 10-4

10.2.3 betaComplemented 10-5

10.2.4 binomial 10-5

10.2.5 binomial1 10-7

10.2.6 binomial2 10-8

10.2.7 binomialComplemented 10-9

10.2.8 bitMaskWithBitsSetFromTo 10-10

10.2.9 ceil 10-10

10.2.10 chiSquare 10-11

10.2.11 chiSquareComplemented 10-12

10.2.12 errorFunction 10-13

10.2.13 errorFunctionComplemented 10-14

10.2.14 factorial 10-14

10.2.15 floor 10-15

10.2.16 gamma 10-16

10.2.17 gamma1 10-16

10.2.18 gammaComplemented 10-17

10.2.19 getSeedAtRowColumn 10-18

10.2.20 hash 10-19

ix

10.2.21 hash1 10-19

10.2.22 hash2 10-20

10.2.23 hash3 10-21

10.2.24 i0 10-21

10.2.25 i0e 10-22

10.2.26 i1 10-23

10.2.27 i1e 10-23

10.2.28 incompleteBeta 10-24

10.2.29 incompleteGamma 10-25

10.2.30 incompleteGammaComplement 10-26

10.2.31 j0 10-26

10.2.32 j1 10-27

10.2.33 jn 10-28

10.2.34 k0 10-28

10.2.35 k0e 10-29

10.2.36 k1 10-30

10.2.37 k1e 10-30

10.2.38 kn 10-31

10.2.39 leastSignificantBit 10-32

10.2.40 log 10-32

10.2.41 log10 10-33

10.2.42 log2 10-34

10.2.43 logFactorial 10-35

10.2.44 logGamma 10-35

10.2.45 longFactorial 10-36

10.2.46 mostSignificantBit 10-37

10.2.47 negativeBinomial 10-37

10.2.48 negativeBinomialComplemented 10-38

10.2.49 normal 10-39

10.2.50 normal1 10-40

10.2.51 normalInverse 10-41

10.2.52 poisson 10-42

10.2.53 poissonComplemented 10-43

10.2.54 stirlingCorrection 10-44

10.2.55 studentT 10-44

10.2.56 studentTInverse 10-45

10.2.57 y0 10-46

10.2.58 y1 10-47

10.2.59 yn 10-47

x

11

Colt Aggregate Functions

11.1 Introduction to Oracle CQL Built-In Aggregate Colt Functions 11-1

11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments 11-3

11.1.2 Colt Aggregate Functions and the Where, Group By, and Having
Clauses 11-4

11.2.1 autoCorrelation 11-4

11.2.2 correlation 11-5

11.2.3 covariance 11-6

11.2.4 geometricMean 11-7

11.2.5 geometricMean1 11-8

11.2.6 harmonicMean 11-9

11.2.7 kurtosis 11-10

11.2.8 lag1 11-11

11.2.9 mean 11-12

11.2.10 meanDeviation 11-13

11.2.11 median 11-14

11.2.12 moment 11-16

11.2.13 pooledMean 11-17

11.2.14 pooledVariance 11-18

11.2.15 product 11-19

11.2.16 quantile 11-20

11.2.17 quantileInverse 11-21

11.2.18 rankInterpolated 11-22

11.2.19 rms 11-23

11.2.20 sampleKurtosis 11-24

11.2.21 sampleKurtosisStandardError 11-25

11.2.22 sampleSkew 11-25

11.2.23 sampleSkewStandardError 11-26

11.2.24 sampleVariance 11-27

11.2.25 skew 11-28

11.2.26 standardDeviation 11-29

11.2.27 standardError 11-30

11.2.28 sumOfInversions 11-31

11.2.29 sumOfLogarithms 11-32

11.2.30 sumOfPowerDeviations 11-33

11.2.31 sumOfPowers 11-34

11.2.32 sumOfSquaredDeviations 11-35

11.2.33 sumOfSquares 11-36

11.2.34 trimmedMean 11-37

11.2.35 variance 11-38

11.2.36 weightedMean 11-39

xi

11.2.37 winsorizedMean 11-40

12

java.lang.Math Functions

12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions 12-1

12.2.1 abs 12-2

12.2.2 abs1 12-3

12.2.3 abs2 12-4

12.2.4 abs3 12-4

12.2.5 acos 12-5

12.2.6 asin 12-5

12.2.7 atan 12-6

12.2.8 atan2 12-7

12.2.9 cbrt 12-7

12.2.10 ceil1 12-8

12.2.11 cos 12-9

12.2.12 cosh 12-9

12.2.13 exp 12-10

12.2.14 expm1 12-11

12.2.15 floor1 12-12

12.2.16 hypot 12-12

12.2.17 IEEEremainder 12-13

12.2.18 log1 12-14

12.2.19 log101 12-15

12.2.20 log1p 12-15

12.2.21 pow 12-16

12.2.22 rint 12-17

12.2.23 round 12-17

12.2.24 round1 12-18

12.2.25 signum 12-19

12.2.26 signum1 12-19

12.2.27 sin 12-20

12.2.28 sinh 12-21

12.2.29 sqrt 12-21

12.2.30 tan 12-22

12.2.31 tanh 12-23

12.2.32 todegrees 12-23

12.2.33 toradians 12-24

12.2.34 ulp 12-25

12.2.35 ulp1 12-25

xii

13

User-Defined Functions

13.1 Introduction to Oracle CQL User-Defined Functions 13-1

13.1.1 Types of User-Defined Functions 13-1

13.1.1.1 User-Defined Single-Row Functions 13-2

13.1.1.2 User-Defined Aggregate Functions 13-2

13.1.2 User-Defined Function Data Types 13-2

13.1.3 User-Defined Functions and the Oracle Event Processing Server
Cache 13-2

13.2 Implementing a User-Defined Function 13-2

13.2.1 How to Implement a User-Defined Single-Row Function 13-3

13.2.2 How to Implement a User-Defined Aggregate Function 13-3

14

Oracle CQL Queries, Views, and Joins

14.1 Introduction to Oracle CQL Queries, Subqueries, Views, and Joins 14-1

14.2 Queries 14-2

14.2.1 Query Building Blocks 14-3

14.2.1.1 Select, From, Where Block 14-4

14.2.1.2 Select Clause 14-4

14.2.1.3 From Clause 14-5

14.2.1.4 Where Clause 14-6

14.2.1.5 Group By Clause 14-6

14.2.1.6 Order By Clause 14-6

14.2.1.7 Having Clause 14-6

14.2.1.8 Binary Clause 14-7

14.2.1.9 IDStream Clause 14-7

14.2.2 Simple Query 14-7

14.2.3 Built-In Window Query 14-7

14.2.4 User-Defined Window Query 14-8

14.2.5 MATCH_RECOGNIZE Query 14-8

14.2.6 Relational Database Table Query 14-8

14.2.7 XMLTABLE Query 14-8

14.2.8 Function TABLE Query 14-9

14.2.9 Cache Query 14-10

14.2.10 Sorting Query Results 14-10

14.2.11 Detecting Differences in Query Results 14-11

14.2.12 Parameterized Queries 14-12

14.2.12.1 Parameterized Queries in Oracle CQL Statements 14-13

14.2.12.2 The bindings Element 14-14

14.2.12.3 Run-Time Query Naming 14-14

14.2.12.4 Lexical Conventions for Parameter Values 14-14

xiii

14.2.12.5 Parameterized Queries at Runtime 14-16

14.2.12.6 Replacing Parameters Programmatically 14-16

14.2.13 Subqueries 14-16

14.3 Views 14-16

14.3.1 Views and Joins 14-18

14.3.2 Views and Schemas 14-18

14.4 Joins 14-18

14.4.1 Inner Joins 14-19

14.4.2 Outer Joins 14-19

14.4.2.1 Left Outer Join 14-20

14.4.2.2 Right Outer Join 14-20

14.4.2.3 Outer Join Look-Back 14-20

14.5 Oracle CQL Queries and the Oracle Event Processing Server Cache 14-20

14.5.1 Creating Joins Against the Cache 14-21

14.5.1.1 Cache Key First and Simple Equality 14-21

14.5.1.2 No Arithmetic Operations on Cache Keys 14-21

14.5.1.3 No Full Scans 14-21

14.5.1.4 Multiple Conditions and Inequality 14-22

14.6 Oracle CQL Queries and Relational Database Tables 14-22

14.7 Oracle CQL Queries and Oracle Data Cartridges 14-23

15

Pattern Recognition With MATCH_RECOGNIZE

15.1 Understanding Pattern Recognition With MATCH_RECOGNIZE 15-1

15.1.1 MATCH_RECOGNIZE and the WHERE Clause 15-2

15.1.2 Referencing Singleton and Group Matches 15-3

15.1.3 Referencing Aggregates 15-4

15.1.3.1 Running Aggregates and Final Aggregates 15-4

15.1.3.2 Operating on the Same Correlation Variable 15-5

15.1.3.3 Referencing Variables That Have not Been Matched Yet 15-5

15.1.3.4 Referencing Attributes not Qualified by Correlation Variable 15-5

15.1.3.5 Using count With *, identifier.*, and identifier.attr 15-6

15.1.3.6 Using first and last 15-7

15.1.4 Using prev 15-8

15.2 MEASURES Clause 15-8

15.2.1 Functions Over Correlation Variables in the MEASURES Clause 15-9

15.3 PATTERN Clause 15-10

15.3.1 Pattern Quantifiers and Regular Expressions 15-11

15.3.2 Grouping and Alternation in the PATTERN Clause 15-12

15.4 DEFINE Clause 15-13

15.4.1 Functions Over Correlation Variables in the DEFINE Clause 15-15

xiv

15.4.2 Referencing Attributes in the DEFINE Clause 15-15

15.4.3 Referencing One Correlation Variable From Another in the DEFINE
Clause 15-16

15.5 PARTITION BY Clause 15-17

15.6 ALL MATCHES Clause 15-18

15.7 WITHIN Clause 15-20

15.8 DURATION Clause 15-21

15.8.1 Fixed Duration Non-Event Detection 15-22

15.8.2 Recurring Non-Event Detection 15-23

15.9 INCLUDE TIMER EVENTS Clause 15-24

15.10 SUBSET Clause 15-24

15.11 MATCH_RECOGNIZE Examples 15-27

15.11.1 Pattern Detection 15-28

15.11.2 Pattern Detection With PARTITION BY 15-29

15.11.3 Pattern Detection With Aggregates 15-30

15.11.4 Pattern Detection With the WITHIN Clause 15-31

15.11.5 Fixed Duration Non-Event Detection 15-32

16

Oracle CQL Statements

16.1 Introduction to Oracle CQL Statements 16-1

16.2.1 Query 16-1

16.2.1.1 Query Semantics 16-7

16.2.1.2 Query Examples 16-12

16.2.2 View 16-24

xv

Preface

This reference contains a complete description of the Oracle Continuous Query
Language (Oracle CQL), a query language based on SQL with added constructs that
support streaming data. Using Oracle CQL, you can express queries on data streams
to perform event processing using Oracle Event Processing. Oracle CQL is a new
technology but it is based on a subset of SQL99.

Audience
This document is intended for all users of Oracle CQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following:

• Known Issues for Oracle SOA and BPM Products at: http://www.oracle.com/
technetwork/middleware/soasuite/documentation/
soaknownissues122120-3111966.html.

• Oracle Fusion Middleware Administering Oracle Stream Analytics

• Oracle Fusion Middleware Developing Applications for Event Processing with
Oracle Stream Analytics

• Oracle Fusion Middleware Getting Started with Event Processing for Oracle
Stream Analytics

• Oracle Fusion Middleware Schema Reference for Oracle Stream Analytics

• Oracle Fusion Middleware Using Visualizer for Oracle Stream Analytics

• Oracle Fusion Middleware Customizing Event Processing for Oracle Stream
Analytics

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknownissues122120-3111966.html

• Oracle Fusion Middleware Developing Applications with Oracle CQL Data
Cartridges

• Oracle Fusion Middleware Java API Reference for Oracle Stream Analytics

• Oracle Fusion Middleware Using Oracle Stream Analytics

• Oracle Fusion Middleware Getting Started with Oracle Stream Analytics

• SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

• Oracle Event Processing Forum: https://community.oracle.com/community/
fusion_middleware/soa_and_process_management/complex_event_processing.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Diagrams
Syntax descriptions are provided in this book for various Oracle CQL, SQL, PL/SQL,
or other command-line constructs in graphic form or Backus Naur Form (BNF).

Preface

xvii

https://community.oracle.com/community/fusion_middleware/soa_and_process_management/complex_event_processing
https://community.oracle.com/community/fusion_middleware/soa_and_process_management/complex_event_processing

What's New in This Guide

The product has been renamed from Oracle Stream Explorer to Oracle Stream
Analytics in the 12c (12.2.1.0.0) release.

Screens shown in this guide may differ from your implementation, depending on the
skin used. Any differences are cosmetic.

What's New in This Guide

xviii

1
Introduction to Oracle CQL

Oracle Continuous Query Language (Oracle CQL), a query language based on SQL
with added constructs that support streaming data is introduced. Using Oracle CQL,
you can express queries on data streams with Oracle Stream Analytics.

1.1 Fundamentals of Oracle CQL
Databases are best equipped to run queries over finite stored data sets. However,
many modern applications require long-running queries over continuous unbounded
sets of data. By design, a stored data set is appropriate when significant portions of
the data are queried repeatedly and updates are relatively infrequent. In contrast, data
streams represent data that is changing constantly, often exclusively through
insertions of new elements. It is either unnecessary or impractical to operate on large
portions of the data multiple times.

Many types of applications generate data streams as opposed to data sets, including
sensor data applications, financial tickers, network performance measuring tools,
network monitoring and traffic management applications, and clickstream analysis
tools. Managing and processing data for these types of applications involves building
data management and querying capabilities with a strong temporal focus.

To address this requirement, Oracle introduces Oracle Event Processing, a data
management infrastructure that supports the notion of streams of structured data
records together with stored relations.

To provide a uniform declarative framework, Oracle offers Oracle Continuous Query
Language (Oracle CQL), a query language based on SQL with added constructs that
support streaming data.

Oracle CQL is designed to be:

• Scalable with support for a large number of queries over continuous streams of
data and traditional stored data sets.

• Comprehensive to deal with complex scenarios. For example, through
composability, you can create various intermediate views for querying.

Figure 1-1 shows a simplified view of the Oracle Event Processing architecture. Oracle
Event Processing server provides the light-weight Spring container for Oracle Event
Processing applications. The Oracle Event Processing application shown is composed
of an event adapter that provides event data to an input channel. The input channel is
connected to an Oracle CQL processor associated with one or more Oracle CQL
queries that operate on the events offered by the input channel. The Oracle CQL
processor is connected to an output channel to which query results are written. The
output channel is connected to an event Bean: a user-written Plain Old Java Object
(POJO) that takes action based on the events it receives from the output channel.

1-1

Figure 1-1 Oracle Event Processing Architecture

Using Oracle Event Processing, you can define event adapters for a variety of data
sources including JMS, relational database tables, and files in the local filesystem. You
can connect multiple input channels to an Oracle CQL processor and you can connect
an Oracle CQL processor to multiple output channels. You can connect an output
channel to another Oracle CQL processor, to an adapter, to a cache, or an event
Bean.

Using Oracle JDeveloper and Oracle Event Processing Visualizer, you:

• Create an Event Processing Network (EPN) as Figure 1-1 shows.

• Associate one more Oracle CQL queries with the Oracle CQL processors in your
EPN.

• Package your Oracle Event Processing application and deploy it to Oracle Event
Processing server for execution.

Consider the typical Oracle CQL statements in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq, ask.srcId as askSrcId, ask.ask,
bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq, bba.askSrcId, bba.ask,
 bba.bidQty, bba.askQty, "BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as
priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>

Chapter 1
Fundamentals of Oracle CQL

1-2

 </rules>
</processor>

This example defines multiples views (the Oracle CQL-equivalent of subqueries) to
create multiple relations, each building on previous views. Views always act on an
inbound channel such as inputChannel. The first view, named lastEvents, selects
directly from inputChannel. Subsequent views may select from inputChannel directly or
select from previously defined views. The results returned by a view's select statement
remain in the view's relation: they are not forwarded to any outbound channel. That is
the responsibility of a query. This example defines query BBAQuery that selects from
both the inputChannel directly and from previously defined views. The results returned
from a query's select clause are forwarded to the outbound channel associated with it:
in this example, to outputChannel. The BBAQuery uses a tuple-based stream-to-relation
operator (or sliding window).

For more information on these elements, see:

• Streams and Relations

• Relation-to-Relation Operators

• Stream-to-Relation Operators (Windows)

• Relation-to-Stream Operators

• Stream-to-Stream Operators

• Queries, Views, and Joins

• Pattern Recognition

• Event Sources and Event Sinks

• Functions

• Time

• Oracle CQL Statements

• Lexical Conventions

• Documentation Conventions

For more information on Oracle Event Processing server and tools, see Oracle Event
Processing Server .

1.1.1 Streams and Relations
This section introduces the two fundamental Oracle Event Processing objects that you
manipulate using Oracle CQL:

• Streams

• Relations

Using Oracle CQL, you can perform the following operations with streams and
relations:

• Relation-to-Relation Operators: to produce a relation from one or more other
relations

• Stream-to-Relation Operators (Windows): to produce a a relation from a stream

• Relation-to-Stream Operators: to produce a stream from a relation

Chapter 1
Fundamentals of Oracle CQL

1-3

• Stream-to-Stream Operators: to produce a stream from one or more other
streams.

1.1.1.1 Streams
A stream is the principle source of data that Oracle CQL queries act on.

Stream S is a bag (or multi-set) of elements (s,T) where s is in the schema of S and T
is in the time domain.

Stream elements are tuple-timestamp pairs, which can be represented as a sequence
of timestamped tuple insertions. In other words, a stream is a sequence of
timestamped tuples. There could be more than one tuple with the same timestamp.
The tuples of an input stream are required to arrive at the system in the order of
increasing timestamps. For more information, see Time.

A stream has an associated schema consisting of a set of named attributes, and all
tuples of the stream conform to the schema.

The term "tuple of a stream" denotes the ordered list of data portion of a stream
element, excluding timestamp data (the s of <s,t>). The following example shows how
a stock ticker data stream might appear, where each stream element is made up of
<timestamp value>, <stock symbol>, and <stock price>:

...
<timestampN> NVDA,4
<timestampN+1> ORCL,62
<timestampN+2> PCAR,38
<timestampN+3> SPOT,53
<timestampN+4> PDCO,44
<timestampN+5> PTEN,50
...

In the stream element <timestampN+1> ORCL,62, the tuple is ORCL,62.

By definition, a stream is unbounded.

This section describes:

• Streams and Channels

• Channel Schema

• Querying a Channel

• Controlling Which Queries Output to a Downstream Channel.

For more information, see:

• Event Sources and Event Sinks

• Introduction to Oracle CQL Queries, Subqueries, Views, and Joins

1.1.1.1.1 Streams and Channels
Oracle Event Processing represents a stream as a channel as Figure 1-2 shows.
Using Oracle JDeveloper, you connect the stream event source (PriceAdapter) to a
channel (priceStream) and the channel to an Oracle CQL processor
(filterFanoutProcessor) to supply the processor with events. You connect the Oracle
CQL processor to a channel (filteredStream) to output Oracle CQL query results to
down-stream components (not shown in Figure 1-2).

Chapter 1
Fundamentals of Oracle CQL

1-4

Figure 1-2 Stream in the Event Processing Network

Note:

In Oracle Event Processing, you must use a channel to connect and push
event source to an Oracle CQL processor and to connect an Oracle CQL
processor to an event sink. A channel is optional with other Oracle Event
Processing components.

1.1.1.1.2 Channel Schema
The event source you connect to a stream determines the stream's schema. The
PriceAdapter adapter determines the priceStream stream's schema. The following
example shows the PriceAdapter Event Processing Network (EPN) assembly file: the
wlevs:event-type element defines event type PriceEvent. The wlevs:property element
defines the property names and types for each property in this event type.

...
<wlevs:event-type-repository>
 <wlevs:event-type type-name="PriceEvent">
 <wlevs:properties>
 <wlevs:property name="cusip" type="char" />
 <wlevs:property name="bid" type="double" />
 <wlevs:property name="srcId" type="char" />
 <wlevs:property name="bidQty" type="int" />
 <wlevs:property name="ask" type="double" />
 <wlevs:property name="askQty" type="int" />
 <wlevs:property name="seq" type="bigint" />
 <wlevs:property name="sector" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="PriceAdapter" provider="loadgen">
 <wlevs:instance-property name="port" value="9011"/>
 <wlevs:listener ref="priceStream"/>
</wlevs:adapter>

<wlevs:channel id="priceStream" event-type="PriceEvent">
 <wlevs:listener ref="filterFanoutProcessor"/>
</wlevs:channel>

<wlevs:processor id="filterFanoutProcessor" provider="cql">
 <wlevs:listener ref="filteredStream"/>
</wlevs:processor>

...

Chapter 1
Fundamentals of Oracle CQL

1-5

1.1.1.1.3 Querying a Channel
Once the event source, channel, and processor are connected, you can write Oracle
CQL statements that make use of the stream. The following example shows the
component configuration file that defines the Oracle CQL statements for the
filterFanoutProcessr.

<processor>
 <name>filterFanoutProcessor</name>
 <rules>
 <query id="Yr3Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="3_YEAR"
]]></query>
 <query id="Yr2Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="2_YEAR"
]]></query>
 <query id="Yr1Sector"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from priceStream where sector="1_YEAR"
]]></query>
 </rules>
</processor>

1.1.1.1.4 Controlling Which Queries Output to a Downstream Channel
If you specify more than one query for a processor, then all query results are output to
the processor's out-bound channel (filteredStream).

Optionally, in the component configuration file, you can use the channel element
selector attribute to control which query's results are output. In this example, query
results for query Yr3Sector and Yr2Sector are output to filteredStream but not query
results for query Yr1Sector.

<channel>
 <name>filteredStream</name>
 <selector>Yr3Sector Yr2Sector</selector>
</channel>

You may configure a channel element with a selector before creating the queries in the
upstream processor. In this case, you must specify query names that match the
names in the selector.

1.1.1.2 Relations
Time varying relation R is a mapping from the time domain to an unbounded bag of
tuples to the schema of R.

A relation is an unordered, time-varying bag of tuples: in other words, an
instantaneous relation. At every instant of time, a relation is a bounded set. It can also
be represented as a sequence of timestamped tuples that includes insertions,
deletions, and updates to capture the changing state of the relation.

Like streams, relations have a fixed schema to which all tuples conform.

Oracle Event Processing supports both base and derived streams and relations. The
external sources supply data to the base streams and relations.

Chapter 1
Fundamentals of Oracle CQL

1-6

A base (explicit) stream is a source data stream that arrives at an Oracle Event
Processing adapter so that time is non-decreasing. That is, there could be events that
carry same value of time.

A derived (implicit) stream/relation is an intermediate stream/relation that query
operators produce. Note that these intermediate operators can be named (through
views) and can therefore be specified in further queries.

A base relation is an input relation.

A derived relation is an intermediate relation that query operators produce. Note that
these intermediate operators can be named (through views) and can therefore be
specified in further queries.

In Oracle Event Processing, you do not create base relations yourself. The Oracle
Event Processing server creates base relations for you as required.

When we say that a relation is a time-varying bag of tuples, time refers to an instant in
the time domain. Input relations are presented to the system as a sequence of
timestamped updates which capture how the relation changes over time. An update is
either a tuple insertion or deletion. The updates are required to arrive at the system in
the order of increasing timestamps.

For more information, see Time.

1.1.1.3 Relations and Oracle Event Processing Tuple Kind Indicator
By default, Oracle Event Processing includes time stamp and an Oracle Event
Processing tuple kind indicator in the relations it generates.

Timestamp Tuple Kind Tuple
 1000: + ,abc,abc
 2000: + hihi,abchi,hiabc
 6000: - ,abc,abc
 7000: - hihi,abchi,hiabc
 8000: + hi1hi1,abchi1,hi1abc
 9000: + ,abc,abc
13000: - hi1hi1,abchi1,hi1abc
14000: - ,abc,abc
15000: + xyzxyz,abcxyz,xyzabc
20000: - xyzxyz,abcxyz,xyzabc

The Oracle Event Processing tuple kind indicators are:

• + for inserted tuple

• - for deleted tuple

• U for updated tuple indicated when invoking com.bea.wlevs.ede.api.RealtionSink
method onUpdateEvent (for more information, see Oracle Fusion Middleware Java
API Reference for Oracle Stream Analytics).

1.1.2 Relation-to-Relation Operators
The relation-to-relation operators in Oracle CQL are derived from traditional relational
queries expressed in SQL.

Anywhere a traditional relation is referenced in a SQL query, a relation can be
referenced in Oracle CQL.

Chapter 1
Fundamentals of Oracle CQL

1-7

Consider the following examples for a stream CarSegStr with schema: car_id integer,
speed integer, exp_way integer, lane integer, dir integer, and seg integer.

In the following example, at any time instant, the output relation of this query contains
the set of vehicles having transmitted a position-speed measurement within the last 30
seconds.

<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="CurCarSeg" schema="car_id exp_way lane dir seg"><![CDATA[
 select distinct
 car_id, exp_way, lane, dir, seg
 from
 CarSegStr [range 30 seconds]
]]></query>
 </rules>
</processor>

The distinct operator is the relation-to-relation operator. Using distinct, Oracle Event
Processing returns only one copy of each set of duplicate tuples selected. Duplicate
tuples are those with matching values for each expression in the select list. You can
use distinct in a select_clause and with aggregate functions.

For more information on distinct, see:

• Built-In Aggregate Functions

• Select Clause.

1.1.3 Stream-to-Relation Operators (Windows)
Oracle CQL supports stream-to-relation operations based on a sliding window. In
general, S[W] is a relation. At time T the relation contains all tuples in window W applied
to stream S up to T.

Queries that have the same source (stream) and window specifications are optimized
by the system to share common memory space. When a new query is added with
these parameters, it automatically receives the content (events) of this shared window.
This optimization can cause the query to output initial events even though it might not
have received newly added events.

window_type::=

Figure 1-3 window_type

Chapter 1
Fundamentals of Oracle CQL

1-8

Oracle CQL supports the following built-in window types:

• Range: time-based

S[Range T], or, optionally,

S[Range T1 Slide T2]

• Range: time-based unbounded

S[Range Unbounded]

• Range: time-based now

S[Now]

• Range: constant value

S[Range C on ID]

• Tuple-based:

S[Rows N], or, optionally,

S[Rows N1 Slide N2]

• Partitioned:

S[Partition By A1 ... Ak Rows N] or, optionally,

S[Partition By A1 ... Ak Rows N Range T], or

S[Partition By A1 ... Ak Rows N Range T1 Slide T2]

This section describes the following stream-to-relation operator properties:

• Range, Rows, and Slide

• Partition

• Default Stream-to-Relation Operator.

For more information, see:

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators.

1.1.3.1 Range, Rows, and Slide
The keywords Range and Rows specify how much data you want to query:

• Range specifies as many tuples as arrive in a given time period

• Rows specifies a number of tuples

The Slide keyword specifies how frequently you want to see output from the query,
while the Range keyword specifies the time range from which to query events. Using
Range and Slide together results in a set of events from which to query, with that set
changing based on where the query window slides to.

So the set time is the time from which events get drawn for the query.So the time
interval is the actual amount of time (as measured by event timestamps) divided by the
amount of time specified for sliding. If the remainder from this is 0, then the set time is
the time interval multiplied by the amount of time specified for the slide. If the

Chapter 1
Fundamentals of Oracle CQL

1-9

remainder is greater than 0, then the set time is the time interval + 1 multiplied by the
amount of time specified for the slide.

Another way to express this is the following formula: timeInterval = actualTime /
slideSpecification if((actualTime % slideSpecification) == 0) // No remainder

setTime = timeInterval * slideSpecification else setTime = (timeInterval + 1) *

slideSpecification.

In Figure 1-4, the Range specification indicates "I want to look at 4 seconds worth of
data" and the Slide specification indicates "I want a result every 4 seconds". In this
case, the query returns a result at the end of each Slide specification (except for
certain conditions, as Range, Rows, and Slide at Query Start-Up and for Empty
Relations describes).

Figure 1-4 Range and Slide: Equal (Steady-State Condition)

In Figure 1-4, the Range specification indicates "I want to look at 8 seconds worth of
data" and the Slide specification indicates "I want a result every 4 seconds". In this
case, the query returns a result twice during each Range specification (except for
certain conditions, as Range, Rows, and Slide at Query Start-Up and for Empty
Relations describes)

Figure 1-5 Range and Slide: Different (Steady-State Condition)

Table 1-1 lists the default Range, Range unit, and Slide (where applicable) for range-
based and tuple-based stream-to-relation window operators:

Table 1-1 Default Range and Tuple-Based Stream-to-Relation Operators

Window Operator Default
Range

Default
Range Unit

Default Slide

Range-Based Stream-to-Relation Window
Operators

Unbounde
d

seconds 1 nanosecond

Tuple-Based Stream-to-Relation Window Operators N/A N/A 1 tuple

1.1.3.1.1 Range, Rows, and Slide at Query Start-Up and for Empty Relations
Table 1-2 lists the behavior of Range, Rows, and Slide for special cases such as query
start-up time and for an empty relation.

Chapter 1
Fundamentals of Oracle CQL

1-10

Table 1-2 Range, Rows, and Slide at Query Start-Up and Empty Relations

Operator or Function Result

COUNT(*) or
COUNT(expression)

Immediately returns 0 for an empty relation (when there is no GROUP
BY), before Range or Rows worth of data has accumulated and before
the first Slide.

SUM(attribute) and
other aggregate
functions

Immediately returns null for an empty relation, before Range or Rows
worth of data has accumulated and before the first Slide.

For more information and detailed examples, see:

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators

• Functions

• Using count With *, identifier.*, and identifier.attr.

1.1.3.2 Partition
The keyword Partition By logically separates an event stream S into different
substreams based on the equality of the attributes given in the Partition By
specification. For example, the S[Partition By A,C Rows 2] partition specification
creates a sub-stream for every unique combination of A and C value pairs and the Rows
specification is applied on these sub-streams. The Rows specification indicates "I want
to look at 2 tuples worth of data".

For more information, see Range, Rows, and Slide.

1.1.3.3 Default Stream-to-Relation Operator
When you reference a stream in an Oracle CQL query where a relation is expected
(most commonly in the from clause), a Range Unbounded window is applied to the stream
by default. For example, the queries in the following examples are identical:

<query id="q1"><![CDATA[
 select * from InputChannel
]]></query>

<query id="q1"><![CDATA[
 IStream(select * from InputChannel[RANGE UNBOUNDED])
]]></query>

For more information, see Relation-to-Stream Operators.

1.1.4 Relation-to-Stream Operators
You can convert the result of a stream-to-relation operation back into a stream for
further processing.

In the following example, the select will output a stream of tuples satisfying the filter
condition (viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID). The now

Chapter 1
Fundamentals of Oracle CQL

1-11

window converts the viewq3 into a relation, which is kept as a relation by the filter
condition. The IStream relation-to-stream operator converts the output of the filter back
into a stream.

<processor>
 <name>cqlProcessor</name>
 <rules>
 <query id="q3Txns"><![CDATA[
 IStream(
 select
 TxnId,
 ValidLoopCashForeignTxn.ACCT_INTRL_ID,
 TRXN_BASE_AM,
 ADDR_CNTRY_CD,
 TRXN_LOC_ADDR_SEQ_ID
 from
 viewq3[NOW], ValidLoopCashForeignTxn
 where
 viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID
)
]]></query>
 </rules>
</processor>

Oracle CQL supports the following relation-to-stream operators:

• IStream: insert stream.

IStream(R) contains all (r,T) where r is in R at time T but r is not in R at time T-1.

For more information, see IStream Relation-to-Stream Operator.

• DSteam: delete stream.

DStream(R) contains all (r,T) where r is in R at time T-1 but r is not in R at time T.

For more information, see DStream Relation-to-Stream Operator.

• RStream: relation stream.

RStream(R) contains all (r,T) where r is in R at time T.

For more information, see RStream Relation-to-Stream Operator.

By default, Oracle Event Processing includes an operation indicator in the relations it
generates so you can identify insertions, deletions, and, when using UPDATE SEMANTICS,
updates. For more information, see Relations and Oracle Event Processing Tuple Kind
Indicator.

1.1.4.1 Default Relation-to-Stream Operator
Whenever an Oracle CQL query produces a relation that is monotonic, Oracle CQL
adds an IStream operator by default.

A relation R is monotonic if and only if R(t1) is a subset of R(t2) whenever t1 <= t2.

Oracle CQL use a conservative static monotonicity test. For example, a base relation
is monotonic if it is known to be append-only: S[Range Unbounded] is monotonic for any
stream S.

If a relation is not monotonic (for example, it has a window like S[range 10 seconds]), it
is impossible to determine what the query author intends (IStream, DStream, or RStream),
so Oracle CQL does not add a relation-to-stream operator by default in this case.

Chapter 1
Fundamentals of Oracle CQL

1-12

1.1.5 Stream-to-Stream Operators
Typically, you perform stream to stream operations using the following:

• A stream-to-relation operator to turn the stream into a relation. For more
information, see Stream-to-Relation Operators (Windows).

• A relation-to-relation operator to perform a relational filter. For more information,
see Relation-to-Relation Operators.

• A relation-to-stream operator to turn the relation back into a stream. For more
information, see Relation-to-Stream Operators.

However, some relation-relation operators (like filter and project) can also act as
stream-stream operators. Consider the query assuming that the input S is a stream,
the query will produce a stream as an output where stream element c1 is greater than
50.

<processor>
 <name>cqlProcessor</name>
 <rules>
 <query id="q0"><![CDATA[
 select * from S where c1 > 50
]]></query>
 </rules>
</processor>

This is a consequence of the application of the default stream-to-relation and relation-
to-stream operators. The stream S gets a default [Range Unbounded] window added to it.
Since this query then evaluates to a relation that is monotonic, an IStream gets added
to it.

For more information, see:

• Default Stream-to-Relation Operator

• Default Relation-to-Stream Operator

In addition, Oracle CQL supports the following direct stream-to-stream operators:

• MATCH_RECOGNIZE: use this clause to write various types of pattern recognition
queries on the input stream. For more information, see Pattern Recognition.

• XMLTABLE: use this clause to parse data from the xmltype stream elements using
XPath expressions. For more information, see XMLTABLE Query.

1.1.6 Queries, Views, and Joins
An Oracle CQL query is an operation that you express in Oracle CQL syntax and
execute on an Oracle Event Processing CQL processor to retrieve data from one or
more streams, relations, or views. A top-level SELECT statement that you create in a
<query> element is called a query. For more information, see Queries.

An Oracle CQL view represents an alternative selection on a stream or relation. In
Oracle CQL, you use a view instead of a subquery. A top-level SELECT statement that
you create in a <view> element is called a view. For more information, see Views.

Each query and view must have an identifier unique to the processor that contains it.
The following example shows a query with an id of q0. The id value must conform with
the specification given.

Chapter 1
Fundamentals of Oracle CQL

1-13

<processor>
 <name>cqlProcessor</name>
 <rules>
 <query id="q0"><![CDATA[
 select * from S where c1 > 50
]]></query>
 </rules>
</processor>

A join is a query that combines rows from two or more streams, views, or relations.
For more information, see Joins.

For more information, see Oracle CQL Queries, Views, and Joins.

1.1.7 Pattern Recognition
The Oracle CQL MATCH_RECOGNIZE construct is the principle means of performing pattern
recognition.

A sequence of consecutive events or tuples in the input stream, each satisfying certain
conditions constitutes a pattern. The pattern recognition functionality in Oracle CQL
allows you to define conditions on the attributes of incoming events or tuples and to
identify these conditions by using String names called correlation variables. The
pattern to be matched is specified as a regular expression over these correlation
variables and it determines the sequence or order in which conditions should be
satisfied by different incoming tuples to be recognized as a valid match.

For more information, see Pattern Recognition With MATCH_RECOGNIZE.

1.1.8 Event Sources and Event Sinks
An Oracle Event Processing event source identifies a producer of data that your
Oracle CQL queries operate on. An Oracle CQL event sink identifies a consumer of
query results.

This section explains the types of event sources and sinks you can access in your
Oracle CQL queries and how you connect event sources and event sinks.

1.1.8.1 Event Sources
An Oracle Event Processing event source identifies a producer of data that your
Oracle CQL queries operate on.

In Oracle Event Processing, the following elements may be event sources:

• adapter (JMS, HTTP, and file)

• channel

• processor

• cache.

Chapter 1
Fundamentals of Oracle CQL

1-14

Note:

In Oracle Event Processing, you must use a channel to connect a push event
source to an Oracle CQL processor and to connect an Oracle CQL
processor to an event sink. A channel is optional with other Oracle Event
Processing component types. For more information, see Streams and
Relations.

Oracle Event Processing event sources are typically push data sources: that is, Oracle
Event Processing expects the event source to notify it when the event source has data
ready.

Oracle Event Processing relational database table and cache event sources are pull
data sources: that is, Oracle Event Processing pulls the event source on arrival of an
event on the data stream.

For more information, see:

• Table Event Sources

• Cache Event Sources.

1.1.8.2 Event Sinks
An Oracle CQL event sink connected to a CQL processor is a consumer of query
results.

In Oracle Event Processing, the following elements may be event sinks:

• adapter (JMS, HTTP, and file)

• channel

• processor

• cache

• table.

You can associate the same query with more than one event sink and with different
types of event sink.

1.1.8.3 Connecting Event Sources and Event Sinks
In Oracle Event Processing, you define event sources and event sinks using Oracle
JDeveloper to create the Event Processing Network (EPN) as Figure 1-6 shows. In
this EPN, adapter PriceAdapter is the event source for channel priceStream; channel
priceStream is the event source for Oracle CQL processor filterFanoutProcessor.
Similarly, Oracle CQL processor filterFanoutProcessor is the event sink for channel
priceStream.

Chapter 1
Fundamentals of Oracle CQL

1-15

Figure 1-6 Event Sources and Event Sinks in the Event Processing Network

For more information, see:

• Streams and Relations

• Introduction to Oracle CQL Queries, Subqueries, Views, and Joins

1.1.9 Table Event Sources
Using Oracle CQL, you can access tabular data, including:

• Relational Database Table Event Sources

• XML Table Event Sources

Function Table Event Sources

For more information, see Event Sources and Event Sinks.

1.1.9.1 Relational Database Table Event Sources
Using an Oracle CQL processor, you can specify a relational database table as an
event source. You can query this event source, join it with other event sources, and so
on.

For more information, see Oracle CQL Queries and Relational Database Tables.

1.1.9.2 XML Table Event Sources
Using the Oracle CQL XMLTABLE clause, you can parse data from an xmltype stream
into columns using XPath expressions and conveniently access the data by column
name.

For more information, see XMLTABLE Query.

1.1.9.3 Function Table Event Sources
Use the TABLE clause to access, as a relation, the multiple rows returned by a built-in or
user-defined function, as an array or Collection type, in the FROM clause of an Oracle
CQL query.

For more information, see:

• Function TABLE Query

• Functions.

Chapter 1
Fundamentals of Oracle CQL

1-16

1.1.10 Table Event Sink
The table event sink feature supports the insert, delete or update events from the EPN
upstream, and send the events to the downstream connected to the table.

Spring Assembly File

By default, the adapter sends the SampleEvent type event and all other stages receive
this type event. If the event type changes to other types, it must follow the
configuration given below:

Example 1-1 Event Type

<wlevs:event-type type-name="SampleEvent">
 <wlevs:properties>
 <wlevs:property name="eventId" type="int"/>
 <wlevs:property name="msg" type="char[]" length="64"/>
 </wlevs:properties>
</wlevs:event-type>

Example 1-2 Table Tag

<wlevs:table id="tableSink" event-type="SampleEvent" data-source="test-ds" key-
properties="eventId" table-name="TTest">
 <wlevs:listener ref="tableRelationSinkBean"/>
</wlevs:table>

For other channels, the attributes are the same.

Example 1-3 Channel

The outputChannel is defined as below.

<wlevs:channel id="outputChannel" event-type="SampleEvent" is-relation="true"
primary-key="eventId>
 <wlevs:listener ref="outputChannelRelationSinkBean"/>
 <wlevs:listener ref="tableSink"/>
 <wlevs:source ref="processor"/>
</wlevs:channel>

Example 1-4 Application Configuration File

To support table-sink, you must configure the processor.

<processor>
 <name>processor</name>
 <rules>
 <query id="getAllEventsRule">
 <![CDATA[select * from inputChannel]]>
 </query>
 </rules>
</processor>

During the Adapter initialization phase, it connects to the data source defined in the
server configuration file and create the table with the SQL statement:

CREATE TABLE TTest (eventId INTEGER,msg VARCHAR(64))

As an adapter implements RunnableBean and RelationSource, inside the run() method, it
sends insert, delete, or update events by case.

Chapter 1
Fundamentals of Oracle CQL

1-17

The three event sink beans implement the same Java class BatchRelationSink which
receives both non-batch and batch events.

Example 1-5 Server Configuration File

The data source test-ds needs to be defined in the configuration file:

<data-source>
 <name>test-ds</name>
 <connection-pool-params>
 <initial-capacity>15</initial-capacity>
 <max-capacity>50</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:testTableSinkDB;create=true</url>
 <driver-name>
 org.apache.derby.jdbc.EmbeddedDriver
 </driver-name>
 </driver-params>
</data-source>

1.1.10.1 Spring Assembly File
By default, the adapter sends the SampleEvent type event and all other stages receive
this type event.

If the event type changes to other types, it must follow the configuration given below:

Example 1-6 Event Type

<wlevs:event-type type-name="SampleEvent">
 <wlevs:properties>
 <wlevs:property name="eventId" type="int"/>
<wlevs:property name="msg" type="char[]" length="64"/>
 </wlevs:properties>
</wlevs:event-type>

Example 1-7 Table Tag

The outputChannel is as defined below:

<wlevs:table id="tableSink" event-type="SampleEvent" data-source="test-ds" key-
properties="eventId" table-name="TTest">
<wlevs:listener ref="tableRelationSinkBean"/>
</wlevs:table>

For other channels, the attributes are the same.

Example 1-8 Channel

<wlevs:channel id="outputChannel" event-type="SampleEvent" is-relation="true"
primary-key="eventId>
 <wlevs:listener ref="outputChannelRelationSinkBean"/>
 <wlevs:listener ref="tableSink"/>
< <wlevs:source ref="processor"/>
</wlevs:channel>

1.1.10.2 Application Configuration File
To support the table sink, you must configure the processor.

Chapter 1
Fundamentals of Oracle CQL

1-18

Example 1-9 Application Configuration

The configuration must be as follows:

<processor>
 <name>processor</name>
 <rules>
 <query id="getAllEventsRule">
 <![CDATA[select * from inputChannel]]>
 </query>
 </rules>
</processor>

During the Adapter initialization phase, it will connect to the data source defined in the
server configuration file and create the table with the SQL statement:

CREATE TABLE TTest (eventId INTEGER,msg VARCHAR(64))

As an adapter implements RunnableBean and RelationSource, inside the run() method, it
sends insert, delete or update events by case.

The three event sink beans implement the same Java class BatchRelationSink which
receives both non-batch and batch events. The data source named test-ds is defined
in the following configuration file:

Example 1-10 Server-configuration File

<data-source>
 <name>test-ds</name>
 <connection-pool-params>
 <initial-capacity>15</initial-capacity>
 <max-capacity>50</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:testTableSinkDB;create=true</url>
 <driver-name>
 org.apache.derby.jdbc.EmbeddedDriver
 </driver-name>
 </driver-params>
</data-source>

1.1.11 Cache Event Sources
Using an Oracle CQL processor, you can specify an Oracle Event Processing cache
as an event source. You can query this event source and join it with other event
sources using a now window only.

For more information, see:

• Event Sources and Event Sinks

• Cache Query

• S[now].

1.1.12 Functions
Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

Chapter 1
Fundamentals of Oracle CQL

1-19

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (refer to
Pseudocolumns). However, a pseudocolumn typically returns a different value for each
tuple in a relation, whereas a function without any arguments typically returns the
same value for each tuple.

Oracle CQL provides a wide variety of built-in functions to perform operations on
stream data, including:

• single-row functions that return a single result row for every row of a queried
stream or view

• aggregate functions that return a single aggregate result based on group of tuples,
rather than on a single tuple

• single-row statistical and advanced arithmetic operations based on the Colt open
source libraries for high performance scientific and technical computing.

• aggregate statistical and advanced arithmetic operations based on the Colt open
source libraries for high performance scientific and technical computing.

• statistical and advanced arithmetic operations based on the java.lang.Math class

If Oracle CQL built-in functions do not provide the capabilities your application
requires, you can easily create user-defined functions in Java by using the classes in
the oracle.cep.extensibility.functions package. You can create aggregate and
single-row user-defined functions. You can create overloaded functions and you can
override built-in functions.

If you call an Oracle CQL function with an argument of a data type other than the data
type expected by the Oracle CQL function, then Oracle Event Processing attempts to
convert the argument to the expected data type before performing the Oracle CQL
function.

Oracle CQL provides a variety of built-in single-row functions and aggregate functions
based on the Colt open source libraries for high performance scientific and technical
computing. The functions which are available as part of Colt library will not support Big
Decimal data type and NULL input values. Also the value computation of the functions
are not incremental. See the COLT website for details.

Note:

Function names are case sensitive:

• Built-in functions: lower case.

• User-defined functions: welvs:function element function-name attribute
determines the case you use.

For more information, see:

• Built-In Single-Row Functions

• Built-In Aggregate Functions

• Colt Single-Row Functions

• Colt Aggregate Functions

Chapter 1
Fundamentals of Oracle CQL

1-20

• java.lang.Math Functions

• User-Defined Functions

• Data Type Conversion.

1.1.13 Time
Timestamps are an integral part of an Oracle Event Processing stream. However,
timestamps do not necessarily equate to clock time. For example, time may be defined
in the application domain where it is represented by a sequence number. Timestamps
need only guarantee that updates arrive at the system in the order of increasing
timestamp values.

Note that the timestamp ordering requirement is specific to one stream or a relation.
For example, tuples of different streams could be arbitrarily interleaved. The order of
processing tuples with the same time-stamps is not guaranteed in the case where
multiple streams are processing. In addition, there is no defined behavior for negative
timestamps. For t = 0, the event will be outputted immediately, assuming total order.

Oracle Event Processing can observe application time or system time.

For system timestamped relations or streams, time is dependent upon the arrival of
data on the relation or stream data source. Oracle Event Processing generates a
heartbeat on a system timestamped relation or stream if there is no activity (no data
arriving on the stream or relation's source) for more than a specified time: for example,
1 minute. Either the relation or stream is populated by its specified source or Oracle
Event Processing generates a heartbeat every minute. This way, the relation or stream
can never be more than 1 minute behind.

For system timestamped streams and relations, the system assigns time in such a way
that no two events have the same value of time. However, for application timestamped
streams and relations, events could have same value of time.

If you know that the application timestamp will be strictly increasing (as opposed to
non-decreasing) you may set wlevs:channel attribute is-total-order to true. This
enables the Oracle Event Processing engine to do certain optimizations and typically
leads to reduction in processing latency.

The Oracle Event Processing scheduler is responsible for continuously executing each
Oracle CQL query according to its scheduling algorithm and frequency.

1.2 Oracle CQL Statements
Oracle CQL provides statements for creating queries and views.

This section describes:

• Lexical Conventions

• Syntactic Shortcuts and Defaults

• Documentation Conventions.

For more information, see:

• Oracle CQL Queries, Views, and Joins

• Oracle CQL Statements.

Chapter 1
Oracle CQL Statements

1-21

1.2.1 Lexical Conventions
Using Oracle JDeveloper or Oracle Event Processing Visualizer, you write Oracle CQL
statements in the XML configuration file associated with an Oracle Event Processing
CQL processor. This XML file is called the configuration source.

The configuration source must conform with the wlevs_application_config.xsd schema
and may contain only rule, view, or query elements.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>
 <name>cqlProcessor</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><!
[CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from inputChannel[partition by srcId, cusip rows 1]
]]></view>
 <view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
 <view ...><![CDATA[
 ...
]]></view>
 ...
 <view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId
ask bidQty askQty"><![CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,
ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
 <query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
 bba.askSrcId, bba.ask, bba.bidQty, bba.askQty, "BBAStrategy" as
intermediateStrategy,
 p.seq as correlationId, 1 as priority
 from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip =
p.cusip)
]]></query>
 </rules>
</processor>

When writing Oracle CQL queries in an Oracle CQL processor component
configuration file, observe the following rules:

• You may specify one Oracle CQL statement per view or query element.

• You must not terminate Oracle CQL statements with a semicolon (;).

• You must enclose each Oracle CQL statement in <![CDATA[and]]>.

Chapter 1
Oracle CQL Statements

1-22

• When you issue an Oracle CQL statement, you can include one or more tabs,
carriage returns, or spaces anywhere a space occurs within the definition of the
statement. pcbpel/cep/test/sql/tklinroadbm3hrs_5000000.cqlx.new

<processor>
 <name>cqlProcessor</name>
 <rules>
 <query id="QTollStr"><![CDATA[
 RSTREAM(select cars.car_id, SegToll.toll from CarSegEntryStr[now] as
cars, SegToll
 where (cars.exp_way = SegToll.exp_way and cars.lane =
SegToll.lane
 and cars.dir = SegToll.dir and cars.seg = SegToll.seg))
]]></query>
 </rules>
</processor>

<processor>
 <name>cqlProcessor</name>
 <rules>
 <query id="QTollStr"><![CDATA[
 RSTREAM(
 select
 cars.car_id,
 SegToll.toll
 from
 CarSegEntryStr[now]
 as
 cars, SegToll
 where (
 cars.exp_way = SegToll.exp_way and
 cars.lane = SegToll.lane and
 cars.dir = SegToll.dir and
 cars.seg = SegToll.seg
)
)
]]></query>
 </rules>
</processor>

• Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in function names, text literals, and quoted names.

For more information, see:

– Functions

– Literals

– Schema Object Names and Qualifiers.

• Comments are not permitted in Oracle CQL statements. For more information, see
Comments.

1.2.2 Syntactic Shortcuts and Defaults
When writing Oracle CQL queries, views, and joins, consider the syntactic shortcuts
and defaults that Oracle CQL provides to simplify your queries.

For more information, see:

• Default Stream-to-Relation Operator

Chapter 1
Oracle CQL Statements

1-23

• Default Relation-to-Stream Operator

1.2.3 Documentation Conventions
All Oracle CQL statements in this reference (see Oracle CQL Statements) are
organized into the following sections:

Syntax

The syntax diagrams show the keywords and parameters that make up the statement.

Caution:

Not all keywords and parameters are valid in all circumstances. Be sure to
refer to the "Semantics" section of each statement and clause to learn about
any restrictions on the syntax.

Purpose

The "Purpose" section describes the basic uses of the statement.

Prerequisites

The "Prerequisites" section lists privileges you must have and steps that you must take
before using the statement.

Semantics

The "Semantics" section describes the purpose of the keywords, parameter, and
clauses that make up the syntax, and restrictions and other usage notes that may
apply to them. (The conventions for keywords and parameters used in this chapter are
explained in the Preface of this reference.)

Examples

The "Examples" section shows how to use the various clauses and parameters of the
statement.

1.3 Oracle CQL and SQL Standards
Oracle CQL is a new technology but it is based on a subset of SQL99.

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Oracle is actively pursuing Oracle CQL standardization.

1.4 Oracle Event Processing Server
Oracle Event Processing server provides the light-weight Spring container for Oracle
Event Processing applications and manages server and application lifecycle and a
wide variety of essential services such as security, Jetty, JMX, JDBC, HTTP publish-
subscribe, and logging and debugging.

Chapter 1
Oracle CQL and SQL Standards

1-24

2
Basic Elements of Oracle CQL

A reference for fundamental parts of Oracle Continuous Query Language (Oracle
CQL), including data types, literals, nulls, and more. Oracle CQL is the query language
used in Oracle Stream Analytics applications is provided.

2.1 Data Types
Each value manipulated by Oracle Event Processing has a data type. The data type of
a value associates a fixed set of properties with the value. These properties cause
Oracle Event Processing to treat values of one data type differently from values of
another. For example, you can add values of INTEGER data type, but not values of CHAR
data type.When you create a stream, you must specify a data type for each of its
elements. When you create a user-defined function, you must specify a data type for
each of its arguments. These data types define the domain of values that each
element can contain or each argument can have. For example, attributes with
TIMESTAMP as data type cannot accept the value February 29 (except for a leap year) or
the values 2 or 'SHOE'.Oracle CQL provides a number of built-in data types that you
can use. The syntax of Oracle CQL data types appears in the diagrams that follow.

If Oracle CQL does not support a data type that your events use, you can use an
Oracle CQL data cartridge or a user-defined function to evaluate that data type in an
Oracle CQL query.

For more information, see:

• Oracle CQL Built-in Data Types

• Handling Other Data Types Using Oracle CQL Data Cartridges

• Handling Other Data Types Using a User-Defined Function

• Data Type Comparison Rules

• Literals

• Format Models

• How to Define a Data Type Alias Using the Aliases Element.

datatype::=

variable_length_datatype::=

2-1

fixed_length_datatype::=

2.1.1 Oracle CQL Built-in Data Types
Table 2-1 summarizes Oracle CQL built-in data types. Refer to the syntax in the
preceding sections for the syntactic elements.

Consider these data type and data type literal restrictions when defining event types.

Table 2-1 Oracle CQL Built-in Data Type Summary

Oracle CQL Data
Type

Description

BIGINT Fixed-length number equivalent to a Java Long type.

For more information, see Numeric LiteralsNumeric LiteralsNumeric
LiteralsNumeric LiteralsNumeric Literals.

BOOLEAN Fixed-length boolean equivalent to a Java Boolean type. Valid values
are true or false.

BYTE[(size)] Variable-length character data of length size bytes. Maximum size is
4096 bytes. Default and minimum size is 1 byte.

For more information, see Numeric Literals.

CHAR[(size)]

Oracle CQL supports
single-dimension
arrays only.

Variable-length character data of length size characters. Maximum
size is 4096 characters. Default and minimum size is 1 character.

For more information, see Text Literals.

DOUBLE Fixed-length number equivalent to a Java double type.

For more information, see Numeric Literals.

FLOAT Fixed-length number equivalent to a Java float type.

For more information, see Numeric Literals.

INTEGER Fixed-length number equivalent to a Java int type.

For more information, see Numeric Literals.

Chapter 2
Data Types

2-2

Table 2-1 (Cont.) Oracle CQL Built-in Data Type Summary

Oracle CQL Data
Type

Description

INTERVAL Fixed-length INTERVAL data type specifies a period of time. Oracle
Event Processing supports DAY TO SECOND and YEAR TO MONTH.
Maximum length is 64 bytes. This corresponds to a Java long type.

For more information, see Interval Literals.

TIMESTAMP Fixed-length TIMESTAMP data type stores a datetime literal that
conforms to one of the java.text.SimpleDateFormat format models
that Oracle CQL supports. Maximum length is 64 bytes.

For more information, see Datetime Literals.

XMLTYPE Use this data type for stream elements that contain XML data.
Maximum length is 4096 characters.

XMLTYPE is a system-defined type, so you can use it as an argument of
a function or as the data type of a stream attribute. This corresponds to
a Java java.lang.String type.

For more information, see SQL/XML (SQLX).

OBJECT This stands for any Java object (that is, any subclass of
java.lang.Object).

We refer to this as opaque type support in Oracle Event Processing
since the Oracle Event Processing engine does not understand the
contents of an OBJECT field.

You typically use this type to pass values, from an adapter to its
destination, as-is; these values need not be interpreted by the Oracle
Event Processing engine (such as Collection types or any other user-
specific Java type) but that are associated with the event whose other
fields are referenced in a query.

2.1.2 Handling Other Data Types Using Oracle CQL Data Cartridges
If your event uses a data type that Oracle CQL does not support, you can use an
Oracle CQL data cartridge to evaluate that data type in an Oracle CQL query.

2.1.3 Handling Other Data Types Using a User-Defined Function
If your event uses a data type that Oracle CQL does not support, you can create a
user-defined function to evaluate that data type in an Oracle CQL query.

package com.oracle.app;

public enum ProcessStatus {
 OPEN(1),
 CLOSED(0)}
}

package com.oracle.app;

import com.oracle.capp.ProcessStatus;

public class ServiceOrder {
 private String serviceOrderId;
 private String electronicSerialNumber;
 private ProcessStatus status;

Chapter 2
Data Types

2-3

...
}

package com.oracle.app;

import com.oracle.capp.ProcessStatus;
public class CheckIfStatusClosed {
 public boolean execute(Object[] args) {
 ProcessStatus arg0 = (ProcessStatus)args[0];
 if (arg0 == ProcessStatus.OPEN)
 return Boolean.FALSE;
 else
 return Boolean.TRUE;
 }
}

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="statusClosed" exec-method="execute" />
 <bean class="com.oracle.app.CheckIfStatusClosed"/>
 </wlevs:function>
</wlevs:processor>

<query id="rule-04"><![CDATA[
 SELECT
 meter.electronicSerialNumber,
 meter.exceptionKind
 FROM
 MeterLogEvent AS meter,
 ServiceOrder AS svco
 WHERE
 meter.electronicSerialNumber = svco.electronicSerialNumber and
 svco.serviceOrderId IS NULL OR statusClosed(svco.status)
]]></query>

For more information, see User-Defined Functions.

2.2 Data Type Comparison Rules
This section describes how Oracle Event Processing compares values of each data
type.

2.2.1 Numeric Values
A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

2.2.2 Date Values
A later date is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and '05-JAN-2006 1:35pm'
is greater than '05-JAN-2005 10:09am'.

2.2.3 Character Values
Oracle CQL supports Lexicographic sort based on dictionary order.

Chapter 2
Data Type Comparison Rules

2-4

Internally, Oracle CQL compares the numeric value of the char. Depending on the
encoding used, the numeric values will differ, but in general, the comparison will
remain the same. For example:

'a' < 'b'
'aa' < 'ab'
'aaaa' < 'aaaab'

2.2.4 Data Type Conversion
Generally an expression cannot contain values of different data types. For example,
an arithmetic expression cannot multiply 5 by 10 and then add 'JAMES'. However,
Oracle Event Processing supports both implicit and explicit conversion of values from
one data type to another.

Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

• Oracle CQL statements are easier to understand when you use explicit data type
conversion functions.

• Implicit data type conversion can have a negative impact on performance.

• Implicit conversion depends on the context in which it occurs and may not work
the same way in every case.

• Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

This section describes:

• Implicit Data Type Conversion

• Explicit Data Type Conversion

• SQL Data Type Conversion

• Oracle Data Cartridge Data Type Conversion

• User-Defined Function Data Type Conversion.

2.2.4.1 Implicit Data Type Conversion
Oracle Event Processing automatically converts a value from one data type to another
when such a conversion makes sense.

Table 2-2 is a matrix of Oracle implicit conversions. The table shows all possible
conversions (marked with an X). Unsupported conversions are marked with a --.

Table 2-2 Implicit Type Conversion Matrix

from/to to
CHA
R

to
BYTE

to
BOO
LEAN

to
INTE
GER

to
DOU
BLE

to
BIGI
NT

to
FLOA
T

to
TIME
STA
MP

to
INTE
RVA
L

from CHAR -- -- -- -- -- -- -- X --

from BYTE X -- -- -- -- -- -- -- --

from BOOLEAN -- -- X -- -- -- -- -- --

Chapter 2
Data Type Comparison Rules

2-5

Table 2-2 (Cont.) Implicit Type Conversion Matrix

from/to to
CHA
R

to
BYTE

to
BOO
LEAN

to
INTE
GER

to
DOU
BLE

to
BIGI
NT

to
FLOA
T

to
TIME
STA
MP

to
INTE
RVA
L

from INTEGER X -- -- -- X X X -- --

from DOUBLE X -- -- -- X -- -- -- --

from BIGINT X -- -- -- X -- X -- --

from FLOAT X -- -- -- X -- -- -- --

from TIMESTAMP X -- -- -- -- -- -- -- --

from INTERVAL X -- -- -- -- -- -- -- --

The following rules govern the direction in which Oracle Event Processing makes
implicit data type conversions:

• During SELECT FROM operations, Oracle Event Processing converts the data from the
stream to the type of the target variable if the select clause contains arithmetic
expressions or condition evaluations.

For example, implicit conversions occurs in the context of expression evaluation,
such as c1+2.0, or condition evaluation, such as c1 < 2.0, where c1 is of type
INTEGER.

• Conversions from FLOAT to BIGINT are exact.

• Conversions from BIGINT to FLOAT are inexact if the BIGINT value uses more bits of
precision that supported by the FLOAT.

• When comparing a character value with a TIMESTAMP value, Oracle Event
Processing converts the character data to TIMESTAMP.

• When you use a Oracle CQL function or operator with an argument of a data type
other than the one it accepts, Oracle Event Processing converts the argument to
the accepted data type wherever supported.

• When making assignments, Oracle Event Processing converts the value on the
right side of the equal sign (=) to the data type of the target of the assignment on
the left side.

• During concatenation operations, Oracle Event Processing converts from
noncharacter data types to CHAR.

• During arithmetic operations on and comparisons between character and
noncharacter data types, Oracle Event Processing converts from numeric types to
CHAR as Table 2-2 shows.

2.2.4.2 Explicit Data Type Conversion
You can explicitly specify data type conversions using Oracle CQL conversion
functions. Table 2-3 shows Oracle CQL functions that explicitly convert a value from
one data type to another. Unsupported conversions are marked with a --.

Chapter 2
Data Type Comparison Rules

2-6

Table 2-3 Explicit Type Conversion Matrix

from/to to
CHAR

to BYTE to
BOOL
EAN

to
INTEG
ER

to
DOUB
LE

to
BIGIN
T

to
FLOA
T

to
TIMEST
AMP

to
INTE
RVA
L

from
CHAR

-- hextoraw -- -- -- -- -- to_timesta
mp

--

from
BYTE

-- rawtohex -- -- -- -- -- -- --

from
BOOLEAN

-- -- -- -- -- -- -- -- --

from
INTEGER

to_char -- to_boole
an

-- to_doubl
e

to_bigint to_float -- --

from
DOUBLE

to_char -- -- -- -- -- -- -- --

from
LONG

-- -- -- -- -- -- -- to_timesta
mp

--

from
BIGINT

to_char -- to_boole
an

-- to_doubl
e

-- to_float -- --

from
FLOAT

to_char -- -- -- to_doubl
e

-- -- -- --

from
TIMESTA
MP

to_char -- -- -- -- -- -- -- --

from
INTERVA
L

to_char -- -- -- -- -- -- -- --

2.2.4.3 SQL Data Type Conversion
.

Using an Oracle CQL processor, you can specify a relational database table as an
event source. You can query this event source, join it with other event sources, and so
on. When doing so, you must observe the SQL and Oracle Event Processing data type
equivalents that Oracle Event Processing supports.

For more information, see Relational Database Table Query.

2.2.4.4 Oracle Data Cartridge Data Type Conversion
At run time, Oracle Event Processing maps between Oracle CQL and data cartridge
data types according to the data cartridge's implementation.

2.2.4.5 User-Defined Function Data Type Conversion
At run time, Oracle Event Processing maps between the Oracle CQL data type you
specify for a user-defined function's return type and its Java data type equivalent.

Chapter 2
Data Type Comparison Rules

2-7

For more information, see User-Defined Function Data Types.

2.3 Literals
The terms literal and constant value are synonymous and refer to a fixed data value.
For example, 'JACK', 'BLUE ISLAND', and '101' are all text literals; 5001 is a numeric
literal.

Oracle Event Processing supports the following types of literals in Oracle CQL
statements:

• Text Literals

• Numeric Literals

• Datetime Literals

• Interval Literals.

2.3.1 Text Literals
Use the text literal notation to specify values whenever const_string,
quoted_string_double_quotes, or quoted_string_single_quotes appears in the syntax of
expressions, conditions, Oracle CQL functions, and Oracle CQL statements in other
parts of this reference. This reference uses the terms text literal, character literal,
and string interchangeably.

Text literals are enclosed in single or double quotation marks so that Oracle Event
Processing can distinguish them from schema object names.

You may use single quotation marks (') or double quotation marks ("). Typically, you
use double quotation marks. However, for certain expressions, conditions, functions,
and statements, you must use the quotation marks as specified in the syntax given in
other parts of this reference: either quoted_string_double_quotes or
quoted_string_single_quotes.

If the syntax uses simply const_string, then you can use either single or double
quotation marks.

If the syntax uses the term char, then you can specify either a text literal or another
expression that resolves to character data. When char appears in the syntax, the
single quotation marks are not used.

Oracle Event Processing supports Java localization. You can specify text literals in the
character set specified by your Java locale.

For more information, see:

• Lexical Conventions

• Schema Object Names and Qualifiers

• const_string.

2.3.2 Numeric Literals
Use numeric literal notation to specify fixed and floating-point numbers.

Chapter 2
Literals

2-8

2.3.2.1 Integer Literals
You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, Oracle CQL functions, and Oracle CQL statements described
in other parts of this reference.

The syntax of integer follows:

integer::=

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 32 digits of precision.

Here are some valid integers:

7
+255

2.3.2.2 Floating-Point Literals
You must use the number or floating-point notation to specify values whenever number
or n appears in expressions, conditions, Oracle CQL functions, and Oracle CQL
statements in other parts of this reference.

The syntax of number follows:

number::=

where

• + or - indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

• digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

• f or F indicates that the number is a 32-bit binary floating point number of type
FLOAT.

• d or D indicates that the number is a 64-bit binary floating point number of type
DOUBLE. pcbpel/cep/src/oracle/cep/common/Constants.BIGINT_LENGTH

If you omit f or F and d or D, then the number is of type INTEGER.

The suffixes f or F and d or D are supported only in floating-point number literals,
not in character strings that are to be converted to INTEGER. For example, if Oracle

Chapter 2
Literals

2-9

Event Processing is expecting an INTEGER and it encounters the string '9', then it
converts the string to the Java Integer 9. However, if Oracle Event Processing
encounters the string '9f', then conversion fails and an error is returned.

A number of type INTEGER can store a maximum of 32 digits of precision. If the literal
requires more precision than provided by BIGINT or FLOAT, then Oracle Event
Processing truncates the value. If the range of the literal exceeds the range supported
by BIGINT or FLOAT, then Oracle Event Processing raises an error.

If your Java locale uses a decimal character other than a period (.), then you must
specify numeric literals with 'text' notation. In these cases, Oracle Event Processing
automatically converts the text literal to a numeric value.

Note:

You cannot use this notation for floating-point number literals.

For example, if your Java locale specifies a decimal character of comma (,), specify
the number 5.123 as follows:

'5,123'

Here are some valid NUMBER literals:

25
+6.34
0.5
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

2.3.3 Datetime Literals
Oracle Event Processing supports datetime data type TIMESTAMP.

Datetime literals must not exceed 64 bytes.

All datetime literals must conform to one of the java.text.SimpleDateFormat format
models that Oracle CQL supports. For more information, see Datetime Format Models.

Currently, the SimpleDateFormat class does not support xsd:dateTime. As a result,
Oracle CQL does not support XML elements or attributes that use this type.

For example, if your XML event uses an XSD, Oracle CQL cannot parse the
MyTimestamp element.

<xsd:element name="ComplexTypeBody">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="MyTimestamp" type="xsd:dateTime"/>
 <xsd:element name="ElementKind" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="node" type="SimpleType"/>
 </xsd:sequence>

Chapter 2
Literals

2-10

 </xsd:complexType>
</xsd:element>

Oracle recommends that you define your XSD to replace xsd:dateTime with xsd:string.

<xsd:element name="ComplexTypeBody">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="MyTimestamp" type="xsd:string"/>
 <xsd:element name="ElementKind" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="node" type="SimpleType"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Using the XSD, Oracle CQL can process events as long as the Timestamp element's
String value conforms to the java.text.SimpleDateFormat format models that Oracle
CQL supports. For more information, see Datetime Format Models.

<ComplexTypeBody xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ...>
 <MyTimestamp>2000-01-15T00:00:00</MyTimestamp>
 <ElementKind>plus</ElementKind>
 <name>complexEvent</name>
 <node>
 <type>complexNode</type>
 <number>1</number>
 </node>
</ComplexTypeBody>

For more information on using XML with Oracle CQL, see SQL/XML (SQLX).

2.3.4 Interval Literals
An interval literal specifies a period of time. Oracle Event Processing supports interval
literal DAY TO SECOND. This literal contains a leading field and may contain a trailing field.
The leading field defines the basic unit of date or time being measured. The trailing
field defines the smallest increment of the basic unit being considered. Part ranges
(such as only SECOND or MINUTE to SECOND) are not supported.

Interval literals must not exceed 64 bytes.

pcbpel/cep/src/oracle/cep/common/Constants.BIGINT_LENGTH

2.3.4.1 INTERVAL DAY TO SECOND
Stores time in terms of days, hours, minutes, and seconds.

Specify DAY TO SECOND interval literals using the following syntax:

interval_value::=

where const_string is a TIMESTAMP value that conforms to the appropriate datetime
format model (see Datetime Format Models).

Chapter 2
Literals

2-11

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is
the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

• SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO
SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds, and
222 thousandths of a second.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal and compare one interval literal to another. In this example, stream tkdata2_SIn1
has schema (c1 integer, c2 interval).

<query id="tkdata2_q295"><![CDATA
select * from tkdata2_SIn1 where (c2 + INTERVAL "2 1:03:45.10" DAY TO SECOND) > INTERVAL "6
12:23:45.10" DAY TO SECOND
]]></query>

Using INTERVAL DAY TO SECOND in the define clause of pattern match:

query 'select its.itemId from ch0
MATCH_RECOGNIZE (
PARTITION BY itemId
MEASURES A.itemId as itemId
PATTERN (A B* C)
DEFINE A AS (A.temp >= 25),
B AS ((B.temp >= 25) and
(to_timestamp(B.element_time) - to_timestamp(A.element_time) <
INTERVAL "00:00:05.00" HOUR TO SECOND)),
C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time)
>= INTERVAL "00:05.00" MINUTE TO SECOND)
) as its'

Input:

send [itemId=2 temp=30]
send [itemId=2 temp=55]
thread:sleep 5000
send [itemId=2 temp=125]

Output:

-> insert event: {itemId=2}

2.3.4.2 INTERVAL YEAR TO MONTH
Stores time in terms of years and months.

Examples of the various forms of INTERVALYEARTOMONTH literals follow:

Chapter 2
Literals

2-12

Form of Interval Literal Interpretation

INTERVAL "12-10" YEAR TO MONTH 12 years and 10 months.

Note:

If used in the query DDL, the INTERVAL YEAR TO MONTH notation is used to
specify constant in the CQL query. Specify a constant interval value instead
of a variable.

The code sample given below uses the tuples listed below:

<event-type type-name="IntervalInputTupleEvent">
 <properties>
 <property name="interval_inputevent" type="interval year to month"/>
 </properties>
</event-type>

<event-type type-name="IntervalOutputTupleEvent">
 <properties>
 <property name="interval_outputevent" type="interval year to month"/>
 </properties>
</event-type>

The following is a sample query for INTERVAL YEARS TO MONTH:

Query:

select interval_inputevent as interval_outputevent from inputChannel

Input:

send [interval_inputevent='INTERVAL "212-10" YEAR(3) TO MONTH']

Output:

-> insert event: {interval_outputevent=+212-10}

2.4 Format Models
A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. When you convert a character string into a date or
number, a format model determines how Oracle Event Processing interprets the string.
The following format models are relevant to Oracle CQL queries:

• Number Format Models

• Datetime Format Models.

2.4.1 Number Format Models
You can use number format models in the following functions:

• In the function to translate a value of int data type to bigint data type.

Chapter 2
Format Models

2-13

• In the to_float function to translate a value of int or bigint data type to float data
type

2.4.2 Datetime Format Models
Oracle CQL supports the format models that the java.text.SimpleDateFormat specifies.

Table 2-4 lists the java.text.SimpleDateFormat models that Oracle CQL uses to
interpret TIMESTAMP literals. For more information, see Datetime Literals.

Table 2-4 Datetime Format Models

Format Model Example

MM/dd/yyyy HH:mm:ss Z 11/21/2005 11:14:23 -0800

MM/dd/yyyy HH:mm:ss z 11/21/2005 11:14:23 PST

MM/dd/yyyy HH:mm:ss 11/21/2005 11:14:23

MM-dd-yyyy HH:mm:ss 11-21-2005 11:14:23

dd-MMM-yy 15-DEC-01

yyyy-MM-dd'T'HH:mm:ss 2005-01-01T08:12:12

You can use a datetime format model in the following functions:

• to_timestamp: to translate the value of a char data type to a TIMESTAMP data type.

2.5 Nulls
If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in tuples of any data type that are not restricted by primary key
integrity constraints. Use a null when the actual value is not known or when a value
would not be meaningful.

Oracle Event Processing treats a character value with a length of zero as it is, not like
SQL. However, do not use null to represent a numeric value of zero, because they are
not equivalent.

Any arithmetic expression containing a null always evaluates to null. For example, null
added to 10 is null. In fact, all operators (except concatenation) return null when given
a null operand.

For more information, see:

• nvl.

• out_of_line_constraint.

2.5.1 Nulls in Oracle CQL Functions
All scalar functions (except nvl and concat) return null when given a null argument. You
can use the nvl function to return a value when a null occurs. For example, the
expression NVL(commission_pct,0) returns 0 if commission_pct is null or the value of
commission_pct if it is not null.

Chapter 2
Nulls

2-14

Most aggregate functions ignore nulls. For example, consider a query that averages
the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

2.5.2 Nulls with Comparison Conditions
To test for nulls, use only the null comparison conditions (see null_conditions::=). If
you use any other condition with nulls and the result depends on the value of the null,
then the result is UNKNOWN. Because null represents a lack of data, a null cannot be
equal or unequal to any value or to another null. However, Oracle Event Processing
considers two nulls to be equal when evaluating a decode expression. See decode::=
for syntax and additional information.

2.5.3 Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
tuples. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT FALSE
evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-5 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement,
then no rows would be returned for that query.

Table 2-5 Conditions Containing Nulls

Condition Value of A Evaluation

a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 FALSE

a != NULL 10 FALSE

a = NULL NULL FALSE

a != NULL NULL FALSE

a = 10 NULL FALSE

a != 10 NULL FALSE

For more information, see Null Conditions .

2.6 Comments
Oracle CQL does not support comments.

2.7 Aliases
Oracle CQL allows you to define aliases (or synonyms) to simplify and improve the
clarity of your queries.

Chapter 2
Comments

2-15

This section describes:

• Defining Aliases Using the AS Operator

• Defining Aliases Using the Aliases Element.

2.7.1 Defining Aliases Using the AS Operator
Using the AS operator, you can specify an alias in Oracle CQL for queries, relations,
streams, and any items in the SELECT list of a query.

This section describes:

• Aliases in the relation_variable Clause

• Aliases in Window Operators.

For more information, see Oracle CQL Queries, Views, and Joins.

2.7.1.1 Aliases in the relation_variable Clause
You can use the relation_variable clause AS operator to define an alias to label the
immediately preceding expression in the select list so that you can reference the result
by that name. The alias effectively renames the select list item for the duration of the
query. You can use an alias in the ORDER BY clause (see Sorting Query Results), but not
other clauses in the query.

The following example shows how to define alias badItem for a stream element
its.itemId in a SELECT list and alias its for a MATCH_RECOGNIZE clause.

<query id="detectPerish"><![CDATA[
 select its.itemId as badItem
 from tkrfid_ItemTempStream MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as itemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) -
to_timestamp(A.element_time) < INTERVAL "0 00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0
00:00:05.00" DAY TO SECOND)
) as its
]]></query>

For more information, see From Clause.

2.7.1.2 Aliases in Window Operators
You can use the AS operator to define an alias to label the immediately preceding
window operator so that you can reference the result by that name.

You may not use the AS operator within a window operator but you may use the AS
operator outside of the window operator.

The following example shows how to define aliases bid and ask after partitioned range
window operators.

<query id="Rule1"><![CDATA[
SELECT
 bid.id as correlationId
 bid.cusip as cusip

Chapter 2
Aliases

2-16

 max(bid.b0) as bid0
 bid.srcid as bidSrcId,
 bid.bq0 as bid0Qty,
 min(ask.a0) as ask0,
 ask.srcid as askSrcId,
 ask.aq0 as ask0Qty
FROM
 stream1[PARTITION by bid.cusip rows 100 range 4 hours] as bid,
 stream2[PARTITION by ask.cusip rows 100 range 4 hours] as ask
GROUP BY
 bid.id, bid.cusip, bid.srcid,bid.bq0, ask.srcid, ask.aq0
]]></query>

For more information, see Stream-to-Relation Operators (Windows).

2.7.2 Defining Aliases Using the Aliases Element
Aliases are required to provide location transparency. Using the aliases element, you
can define an alias and then use it in an Oracle CQL query or view. You configure the
aliases element in the component configuration file of a processor.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="q1">
 <![CDATA[
 select str(msg) from cqlInStream [rows 2];
]]>
 </query>
 </rules>
 <aliases>
 <type-alias>
 <source>str</source>
 <target>java.lang.String </target>
 </type-alias>
 </aliases>
 </processor>
</n1:config>

The scope of the aliases element is the queries and views defined in the rules
element of the processor to which the aliases element belongs.

Note the following:

• If the alias already exists then, Oracle Event Processing will throw an exception.

• If a query or view definition references an alias, then the alias must already exist.

This section describes:

• How to Define a Data Type Alias Using the Aliases Element.

2.7.2.1 How to Define a Data Type Alias Using the Aliases Element
Using the aliases element child element type-alias, you can define an alias for a data
type. You can create an alias for any built-in or data cartridge data type.

For more information, see Data Types.

Chapter 2
Aliases

2-17

To define a type alias using the aliases element:

1. Edit the component configuration file of a processor.

2. Add an aliases element.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="q1">
 <![CDATA[
 select str(msg) from cqlInStream [rows 2];
]]>
 </query>
 </rules>
 <aliases>
 </aliases>
 </processor>
</n1:config>

3. Add a type-alias child element to the aliases element.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="q1">
 <![CDATA[
 select str(msg) from cqlInStream [rows 2];
]]>
 </query>
 </rules>
 <aliases>
 <type-alias>
 </type-alias>
 </aliases>
 </processor>
</n1:config>

4. Add a source and target child element to the type-alias element, where:

• source specifies the alias.

You can use any valid schema name. For more information, see Schema
Object Names and Qualifiers.

• target specifies the data type the alias refers to.

For Oracle CQL data cartridge types, use the fully qualified type name.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="q1">
 <![CDATA[
 select str(msg) from cqlInStream [rows 2];
]]>
 </query>

Chapter 2
Aliases

2-18

 </rules>
 <aliases>
 <type-alias>
 <source>str</source>
 <target>java.lang.String</target>
 </type-alias>
 </aliases>
 </processor>
</n1:config>

5. Use the alias in the queries and views you define for this processor.

You can use the alias in exactly the same way you would use the data type it
refers to. As shown in the following example, you can access methods and fields
of the aliased type.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="q1">
 <![CDATA[
 select str(msg).length() from cqlInStream [rows 2];
]]>
 </query>
 </rules>
 <aliases>
 <type-alias>
 <source>str</source>
 <target>java.lang.String</target>
 </type-alias>
 </aliases>
 </processor>
</n1:config>

2.8 Schema Object Names and Qualifiers
Some schema objects are made up of parts that you can or must name, such as the
stream elements in a stream or view, integrity constraints, streams, views, and user-
defined functions or user-defined windows. This section provides:

• Schema Object Naming Rules

• Schema Object Naming Guidelines

• Schema Object Naming Examples

For more information, see Lexical Conventions.

2.8.1 Schema Object Naming Rules
Every Oracle Event Processing object has a name. In a Oracle CQL statement, you
represent the name of an object with an nonquoted identifier, meaning an identifier
that is not surrounded by any punctuation.

You must use nonquoted identifiers to name an Oracle Event Processing object.

The following list of rules applies to identifiers:

• Identifiers cannot be Oracle Event Processing reserved words.

Chapter 2
Schema Object Names and Qualifiers

2-19

Depending on the Oracle product you plan to use to access an Oracle Event
Processing object, names might be further restricted by other product-specific
reserved words.

The Oracle CQL language contains other words that have special meanings.
These words are not reserved. However, Oracle uses them internally in specific
ways. Therefore, if you use these words as names for objects and object parts,
then your Oracle CQL statements may be more difficult to read and may lead to
unpredictable results.

For more information, see

– identifier.

• Oracle recommends that you use ASCII characters in schema object names
because ASCII characters provide optimal compatibility across different platforms
and operating systems.

• Identifiers must begin with an alphabetic character (a letter) from your database
character set.

• Identifiers can contain only alphanumeric characters from your Java locale's
character set and the underscore (_). In particular, space, dot and slash are not
permitted.

For more information, see:

– const_string

– identifier.

• In general, you should choose names that are unique across an application for the
following objects:

– Streams

– Queries

– Views

– User-defined functions.

Specifically, a query and view cannot have the same name.

• Identifier names are case sensitive.

• Stream elements in the same stream or view cannot have the same name.
However, stream elements in different streams or views can have the same name.

• Functions can have the same name, if their arguments are not of the same
number and data types (that is, if they have distinct signatures). Creating multiple
functions with the same name with different arguments is called overloading the
function.

If you register or create a user-defined function with the same name and signature
as a built-in function, your function replaces that signature of the built-in function.
Creating a function with the same name and signature as that of a built-in function
is called overriding the function.

Built-in functions are public where as user-defined functions belong to a particular
schema.

For more information, see:

– User-Defined Functions.

Chapter 2
Schema Object Names and Qualifiers

2-20

2.8.2 Schema Object Naming Guidelines
Here are several guidelines for naming objects and their parts:

• Use full, descriptive, pronounceable names (or well-known abbreviations).

• Use consistent naming rules.

• Use the same name to describe the same entity or attribute across streams,
views, and queries.

When naming objects, balance the goal of keeping names short and easy to use with
the goal of making names as descriptive as possible. When in doubt, choose the more
descriptive name, because the objects in Oracle Event Processing may be used by
many people over a period of time. Your counterpart ten years from now may have
difficulty understanding a stream element with a name like pmdd instead of
payment_due_date.

Using consistent naming rules helps users understand the part that each stream plays
in your application. One such rule might be to begin the names of all streams
belonging to the FINANCE application with fin_.

Use the same names to describe the same things across streams. For example, the
department number stream element of the employees and departments streams are both
named department_id.

2.8.3 Schema Object Naming Examples
The following examples are valid schema object names:

last_name
horse
a_very_long_and_valid_name

All of these examples adhere to the rules listed in Schema Object Naming Rules.

Chapter 2
Schema Object Names and Qualifiers

2-21

3
Pseudocolumns

A reference for Oracle Continuous Query Language (Oracle CQL) pseudocolumns,
which you can query for but which are not part of the data from which an event was
created is provided.

3.1 Introduction to Pseudocolumns
You can select from pseudocolumns, but you cannot modify their values. A
pseudocolumn is also similar to a function without arguments (see Functions).

Oracle CQL supports the following pseudocolumns:

• ELEMENT_TIME Pseudocolumn.

3.2 ELEMENT_TIME Pseudocolumn
In CQL, every stream event is associated with a timestamp. The ELEMENT_TIME pseudo
column returns the timestamp of the stream event. The datatype of ELEMENT_TIME
pseudo column is Oracle CQL native bigint type. The unit of timestamp value returned
by ELEMENT_TIME is in nanoseconds.

Note:

ELEMENT_TIME is not supported on members of an Oracle CQL relation. For
more information, see Streams and Relations.

This section describes:

• Understanding the Value of the ELEMENT_TIME Pseudocolumn

• Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries.

For more information, see:

• to_timestamp.

3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn
The value of ELEMENT_TIME for each stream event is the timestamp of that event. The
timestamp of stream event depends on the stream definition and source.

3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream
If source stream is a system timestamped stream, then the timestamp for a stream
event is assigned by computing System.nanoTime(). For each event, ELEMENT_TIME
pseudo column outputs the event's timestamp.

3-1

For example, consider a system timestamped stream defined as: tktest_S1(c1
integer).

select ELEMENT_TIME, to_timestamp(ELEMENT_TIME) from tktest_S1

Input (c1) Output (timestamp: element_time,
to_timestamp(element_time))
10 12619671878392750:+
12619671878392750,05/26/1970 18:27:51
20 12619671889193750:+
12619671889193750,05/26/1970 18:27:51
30 12619671890093750:+
12619671890093750,05/26/1970 18:27:51
40 12619671891399750:+
12619671891399750,05/26/1970 18:27:51
50 12619671896472750:+
12619671896472750,05/26/1970 18:27:51

Note:

The output may vary for each execution and also depends on the machine
as timestamp is computed by calculating System.nanoTime().

3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream
If source stream is an application timestamped stream, then timestamp for stream
event is assigned by computing the application timestamp expression. The unit of
computed timestamp value is always in nanoseconds. ELEMENT_TIME pseudo column
outputs the event's timestamp.

For example, consider an application timestamped stream defined as tktest_S1(C1
integer, c2 bigint) and application timestamp expression as: c2*1000000000L.

select ELEMENT_TIME, to_timestamp(ELEMENT_TIME) from tktest_S1

Input(c1,c2) Output(timestamp: element_time, to_timestamp(element_time))
10, 10 10000000000:+ 10000000000,12/31/1969 17:00:10
20, 20 20000000000:+ 20000000000,12/31/1969 17:00:20
30, 30 30000000000:+ 30000000000,12/31/1969 17:00:30
40, 40 40000000000:+ 40000000000,12/31/1969 17:00:40
50, 50 50000000000:+ 50000000000,12/31/1969 17:00:50

In the above query, the timestamp of each event is computed by computing
c2*1000000000L for each event. You can see that ELEMENT_TIME is same as timestamp of
the event.

3.2.1.2.1 Derived Timestamp Expression Evaluates to int or bigint
If the derived timestamp expression evaluates to an Oracle CQL native type of int,
then it is cast to and returned as a corresponding bigint value. If the expression
evaluates to an Oracle CQL native type of bigint, that value is returned as is.

3.2.1.2.2 Derived Timestamp Expression Evaluates to timestamp
If the derived timestamp expression evaluates to an Oracle CQL native type of
timestamp, it is converted to a long value by expressing this time value as the number

Chapter 3
ELEMENT_TIME Pseudocolumn

3-2

of milliseconds since the standard base time known as "the epoch", namely January 1,
1970, 00:00:00 GMT.

3.2.1.3 ELEMENT_TIME for an Inline CQL View

If source stream is received from an inline CQL view, then the timestamp of stream
event is computed by the view query. ELEMENT_TIME outputs the timestamp of event.
The unit of ELEMENT_TIME is always in nanosecond and the datatype is a CQL native
bigint type.

For example, consider an application timestamped stream defined as tktest_S1(C1
integer, c2 bigint) and application timestamp expression as: c2*1000000000L.

The view V is defined using the query ISTREAM(SELECT * FROM SYSTS_STREAM[RANGE 1
MINUTE SLIDE 15 SECONDS].

select ELEMENT_TIME, to_timestamp(ELEMENT_TIME) from V

Input(c1,c2) Output(timestamp: element_time, to_timestamp(element_time))
10, 10 15000000000:+ 15000000000,12/31/1969 17:00:15
20, 20 30000000000:+ 30000000000,12/31/1969 17:00:30
30, 30 30000000000:+ 30000000000,12/31/1969 17:00:30
40, 40 45000000000:+ 45000000000,12/31/1969 17:00:45
50, 50 50000000000:+ 50000000000,12/31/1969 17:00:55

3.2.1.4 ELEMENT_TIME for a Subquery
If source stream is received from a subquery, then CQL does not support ELEMENT_TIME
on the subquery results.

The following example depicts the scenario which is not supported.

SELECT ELEMENT_TIME FROM (ISTREAM(SELECT * FROM SYSTS_STREAM[RANGE 1 HOUR SLIDE 5
MINUTES])

3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL
Queries

This section describes how to use ELEMENT_TIME in various queries, including:

• Using ELEMENT_TIME With SELECT

• Using ELEMENT_TIME With GROUP BY

• Using ELEMENT_TIME With PATTERN.

3.2.2.1 Using ELEMENT_TIME With SELECT
The following example shows how you can use the ELEMENT_TIME pseudocolumn in a
select statement. Stream S1 has schema (c1 integer). Note that the function
to_timestamp is used to convert the Long values to timestamp values.

<query id="q4"><![CDATA[
 select
 c1,
 to_timestamp(element_time)
 from

Chapter 3
ELEMENT_TIME Pseudocolumn

3-3

 S1[range 10000000 nanoseconds slide 10000000 nanoseconds]
]]></query>

Timestamp Tuple
 8000 80
 9000 90
13000 130
15000 150
23000 230
25000 250

Timestamp Tuple Kind Tuple
 8000 + 80,12/31/1969 17:00:08
 8010 - 80,12/31/1969 17:00:08
 9000 + 90,12/31/1969 17:00:09
 9010 - 90,12/31/1969 17:00:09
13000 + 130,12/31/1969 17:00:13
13010 - 130,12/31/1969 17:00:13
15000 + 150,12/31/1969 17:00:15
15010 - 150,12/31/1969 17:00:15
23000 + 230,12/31/1969 17:00:23
23010 - 230,12/31/1969 17:00:23
25000 + 250,12/31/1969 17:00:25
25010 - 250,12/31/1969 17:00:25

If your query includes a GROUP BY clause, you cannot use the ELEMENT_TIME
pseudocolumn in the SELECT statement directly. Instead, use a view as Using
ELEMENT_TIME With GROUP BY describes.

3.2.2.2 Using ELEMENT_TIME With GROUP BY
You cannot use ELEMENT_TIME in the SELECT statement of the query because of the GROUP
BY clause.

<query id="Q1"><![CDATA[

 SELECT
 R.queryText AS queryText,
 COUNT(*) AS queryCount
 FROM
 queryEventChannel [range 30 seconds] AS R
 GROUP BY
 queryText

]]></query>

Instead, create a view. The derived stream corresponding to V1 will contain a stream
element each time (queryText, queryCount, maxTime) changes for a specific queryText
group.

<view id="V1"><![CDATA[

 ISTREAM (
 SELECT
 R.queryText AS queryText,
 COUNT(*) AS queryCount,
 MAX(R.ELEMENT_TIME) as maxTime
 FROM
 queryEventChannel [range 30 seconds] AS R
 GROUP BY
 queryText
)

]]></view>

Chapter 3
ELEMENT_TIME Pseudocolumn

3-4

Note:

The element time associated with an output element of view V1 need not be
the same as the value of the attribute maxTime for that output event.

For example, as the window slides and an element from the queryEventChannel input
stream expires from the window, the queryCount for that queryText group would change
resulting in an output. However, since there was no new event from the input stream
queryEventChannel entering the window, the maxTime among all events in the window
has not changed, and the value of the maxTime attribute for this output event would be
the same as the value of this attribute in the previous output event.

However, the ELEMENT_TIME of the output event corresponds to the instant where the
event has expired from the window, which is different than the latest event from the
input stream, making this is an example where ELEMENT_TIME of the output event is
different from value of maxTimeattribute of the output event.

To select the ELEMENT_TIME of the output events of view V1, create a query.

<query id="Q1"><![CDATA[

 SELECT
 queryText,
 queryCount,
 ELEMENT_TIME as eventTime
 FROM
 V1

]]></query>

3.2.2.3 Using ELEMENT_TIME With PATTERN
The following example shows how the ELEMENT_TIME pseudocolumn can be used in a
pattern query. Here a tuple or event matches correlation variable Nth if the value of
Nth.status is >= F.status and if the difference between the Nth.ELEMENT_TIME value of
that tuple and the tuple that last matched F is less than the given interval as a
java.lang.Math.Bigint(Long).

...
PATTERN (F Nth+? L)
 DEFINE
 Nth AS
 Nth.status >= F.status
 AND
 Nth.ELEMENT_TIME - F.ELEMENT_TIME < 10000000000L,
 L AS
 L.status >= F.status
 AND
 count(Nth.*) = 3
 AND L.ELEMENT_TIME - F.ELEMENT_TIME < 10000000000L
...

3.3 ORA_QUERY_ID Pseudocolumn
To partition the incoming events, you need to have the information of the query name
or identifier in the output. The query name or identifier should be part of tuple attribute
and it should be accessed by calling TupleValue’s getter APIs.

Chapter 3
ORA_QUERY_ID Pseudocolumn

3-5

For this purpose, Oracle CQL provides a new pseudo column ORA_QUERY_ID to
access the query name in the output of a query.

You can get the query name in the output tuples by using the above pseudo column in
the CQL query’s SELECT list as follows:

CREATE QUERY Q1 AS SELECT ORA_QUERY_ID from STREAM;

Each output event of the above query Q1 has only one attribute whose value is equal to
query’s name or identifier. In the above query, for each incoming event to STREAM, the
application sends an output tuple with one attribute that has the value Q1.

CREATE QUERY Q1 AS
SELECT ORA_QUERY_ID, stock_quote, stock_price FROM StockStream;

The input and output values are listed below:

Input(stock_quote, stock_price) Output(ORA_QUERY_ID, stock_quote,
stock_price)
ORCL, 34 Q1, ORCL, 34
MSFT, 38 Q1, MSFT, 38
CSCO, 21 Q1, CSCO, 21
INTC, 24 Q1, INTC, 24
FB, 48 Q1, FB, 48

Chapter 3
ORA_QUERY_ID Pseudocolumn

3-6

4
Operators

A reference for operators in Oracle Continuous Query Language (Oracle CQL). An
operator manipulates data items and returns a result is provided. Syntactically, an
operator appears before or after an operand or between two operands.

4.1 Introduction to Operators
Operators manipulate individual data items called operands or arguments. Operators
are represented by special characters or by keywords. For example, the multiplication
operator is represented by an asterisk (*).

Oracle CQL provides the following operators:

• Arithmetic Operators

• Concatenation Operator

• Alternation Operator

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators

• User-Defined Stream-to-Relation Window Operators

• IStream Relation-to-Stream Operator

• DStream Relation-to-Stream Operator

• RStream Relation-to-Stream Operator.

4.1.1 What You May Need to Know About Unary and Binary Operators
The two general classes of operators are:

• unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand

• binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:

operand1 operator operand2

Other operators with special formats accept more than two operands. If an operator is
given a null operand, then the result is always null. The only operator that does not
follow this rule is concatenation (||).

4.1.2 What You May Need to Know About Operator Precedence
Precedence is the order in which Oracle Event Processing evaluates different
operators in the same expression. When evaluating an expression containing multiple

4-1

operators, Oracle Event Processing evaluates operators with higher precedence
before evaluating those with lower precedence. Oracle Event Processing evaluates
operators with equal precedence from left to right within an expression.

Table 4-1 lists the levels of precedence among Oracle CQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 Oracle CQL Operator Precedence

Operator Operation

+, - (as unary operators) Identity, negation

*, / Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation

Oracle CQL conditions are evaluated after Oracle
CQL operators

See Conditions.

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so
Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

4.2 Arithmetic Operators
Table 4-2 lists arithmetic operators that Oracle Event Processing supports. You can
use an arithmetic operator with one or two arguments to negate, add, subtract,
multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric data types or to any data type that can be implicitly converted to a numeric
data type.

In certain cases, Oracle Event Processing converts the arguments to the data type as
required by the operation. For example, when an integer and a float are added, the
integer argument is converted to a float. The data type of the resulting expression is a
float. For more information, see Implicit Data Type Conversion.

Table 4-2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive or
negative expression, they are unary
operators.

<query id="q1"><![CDATA[
 select * from orderitemsstream
 where quantity = -1
]]></query>

Chapter 4
Arithmetic Operators

4-2

Table 4-2 (Cont.) Arithmetic Operators

Operator Purpose Example

+ - When they add or subtract, they are
binary operators.

<query id="q1"><![CDATA[
 select hire_date
 from employees
 where sysdate - hire_date
 > 365
]]></query>

* / Multiply, divide. These are binary
operators.

<query id="q1"><![CDATA[
 select hire_date
 from employees
 where bonus > salary * 1.1
]]></query>

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. You should separate
consecutive minus signs with a space or parentheses.

Oracle Event Processing supports arithmetic operations using numeric literals and
using datetime and interval literals.

For more information, see:

• Numeric Literals

• Datetime Literals

• Interval Literals.

4.3 Concatenation Operator
The concatenation operator manipulates character strings. Table 4-3 describes the
concatenation operator.

Table 4-3 Concatenation Operator

Operator Purpose Example

|| Concatenates character strings. <query id="q263"><![CDATA[
 select length(c2 || c2) + 1 from S10
where length(c2) = 2
]]></query>

The result of concatenating two character strings is another character string. If both
character strings are of data type CHAR, then the result has data type CHAR and is limited
to 2000 characters. Trailing blanks in character strings are preserved by
concatenation, regardless of the data types of the string.

Although Oracle Event Processing treats zero-length character strings as nulls,
concatenating a zero-length character string with another operand always results in
the other operand, so null can result only from the concatenation of two null strings.
However, this may not continue to be true in future versions of Oracle Event

Chapter 4
Concatenation Operator

4-3

Processing. To concatenate an expression that might be null, use the NVL function to
explicitly convert the expression to a zero-length string.

See Also:

• Data Types

• concat

• xmlconcat

• nvl.

The following example shows how to use the concatenation operator to append the
String "xyz" to the value of c2 in a select statement.

<query id="q264"><![CDATA[
 select c2 || "xyz" from S10
]]></query>

4.4 Alternation Operator
The alternation operator allows you to refine the sense of a PATTERN clause. Table 4-4
describes the concatenation operator.

Table 4-4 Alternation Operator

Operator Purpose Example

| Changes the sense of a PATTERN
clause to mean one or the other
correlation variable rather than
one followed by the other
correlation variable.

<query id="q263"><![CDATA[
select T.p1, T.p2, T.p3 from S
MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A+ | B+)
 DEFINE
 A as A.c1 = 10,
 B as B.c1 = 20
) as T
]]></query>

The alternation operator is applicable only within a PATTERN clause.

The following example shows how to use the alternation operator to change the sense
of the PATTERN clause to mean "A one or more times followed by either B one or more
times or C one or more times, whichever comes first".

<query id="q264"><![CDATA[
select T.p1, T.p2, T.p3 from S MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A+ (B+ | C+))
 DEFINE

Chapter 4
Alternation Operator

4-4

 A as A.c1 = 10,
 B as B.c1 = 20
 C as C.c1 = 30
) as T
]]></query>

For more information, see Grouping and Alternation in the PATTERN Clause.

4.5 Range-Based Stream-to-Relation Window Operators
Oracle CQL supports the following range-based stream-to-relation window operators:

Note:

Very large numbers must be suffixed. Without the suffix, Java treats very
large numbers like an integer and the value might be out of range for an
integer, which throws an error.

Add a suffix as follows:

l or L for Long

f or F for float

d or D for double

n or N for big decimal

For example:

SELECT * FROM channel0[RANGE 1368430107027000000l nanoseconds]

window_type_range::=

• S[now]

• S[range T]

• S[range T1 slide T2]

• S[range unbounded]

• S[range C on E].

For more information, see:

• Query

• Stream-to-Relation Operators (Windows)

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-5

• Aliases in Window Operators.

4.5.1 S[now]
This time-based range window outputs an instantaneous relation. So at time t the
output of this now window is all the tuples that arrive at that instant t. The smallest
granularity of time in Oracle Event Processing is nanoseconds and hence all these
tuples expire 1 nanosecond later.

For an example, see S [now] Example.

4.5.1.1 Examples

S [now] Example

Consider the query and the data stream S. Timestamps are shown in nanoseconds (1
sec = 10^9 nanoseconds). The following example shows the relation that the query
returns at time 5000 ms. At time 5002 ms, the query would return an empty relation.

<query id="q1"><![CDATA[
 SELECT * FROM S [now]
]]></query>

Timestamp Tuple
 1000000000 10,0.1
 1002000000 15,0.14
 5000000000 33,4.4
 5000000000 23,56.33
 10000000000 34,4.4
200000000000 20,0.2
209000000000 45,23.44
400000000000 30,0.3
h 800000000000

Timestamp Tuple Kind Tuple
5000000000 + 33,4.4
5000000000 + 23,56.33
5000000001 - 33,4.4
5000000001 - 23,56.33

4.5.2 S[range T]
This time-based range window defines its output relation over time by sliding an
interval of size T time units capturing the latest portion of an ordered stream.

For an example, see S [range T] Example.

4.5.2.1 Examples

S [range T] Example

Consider the query q1. Given the data stream S, the query returns the relation. By
default, the range time unit is second, so S[range 1] is equivalent to S[range 1 second].
Timestamps are shown in milliseconds (1 s = 1000 ms). As many elements as there
are in the first 1000 ms interval enter the window, namely tuple (10,0.1). At time 1002
ms, tuple (15,0.14) enters the window. At time 2000 ms, any tuples that have been in the
window longer than the range interval are subject to deletion from the relation, namely
tuple (10,0.1). Tuple (15,0.14) is still in the relation at this time. At time 2002 ms, tuple

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-6

(15,0.14) is subject to deletion because by that time, it has been in the window longer
than 1000 ms.

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

<query id="q1"><![CDATA[
 SELECT * FROM S [range 1]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 200000 20,0.2
 400000 30,0.3
h 800000
100000000 40,4.04
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 2000: - 10,0.1
 2002: - 15,0.14
 200000: + 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 401000: - 30,0.3
100000000: + 40,4.04
100001000: - 40,4.04

4.5.3 S[range T1 slide T2]
This time-based range window allows you to specify the time duration in the past up to
which you want to retain the tuples (range) and also how frequently you want to see
the output of the tuples (slide).

Suppose a tuple arrives at a time represented by t. Assuming a slide value
represented by T2, the tuple will be visible and sent to output at one of the following
timestamps:

• t -- If the timestamp t is a multiple of slide T2

• Math.ceil(t/T2)*T2 -- If the timestamp is not a multiple of slide T2

Assuming a range value represented by T1, a tuple that arrives at timestamp t will
expire at timestamp t + T1. However, if a slide is specified and its value is non-zero,
then the expired tuple will not necessarily output at timestamp t + T1.

The expired tuple (expired timestamp is t + T1) will be visible at one of the following
timestamps:

• (t + T1) -- If the timestamp (t+T1) is a multiple of slide T2.

• Math.ceil((t+T1)/T2)*T2 -- If the timestamp (t+T1) is not a multiple of slide T2.

For an example, seeS [range T1 slide T2] Example.

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-7

4.5.3.1 Examples

S [range T1 slide T2] Example

Consider the query q1. Given the data stream S, the query returns the relation. By
default, the range time unit is second, so S[range 10 slide 5] is equivalent to S[range
10 seconds slide 5 seconds]. Timestamps are shown in milliseconds (1 s = 1000 ms).
Tuples arriving at 1000, 1002, and 5000 all enter the window at time 5000 since the slide
value is 5 sec and that means the user is interested in looking at the output after every
5 sec. Since these tuples enter at 5 sec=5000 ms, they are expired at 15000 ms as the
range value is 10 sec = 10000 ms.

<query id="q1"><![CDATA[
 SELECT * FROM S [range 10 slide 5]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 5000 33,4.4
 8000 23,56.33
 10000 34,4.4
200000 20,0.2
209000 45,23.44
400000 30,0.3
h 800000

Timestamp Tuple Kind Tuple
 5000: + 10,0.1
 5000: + 15,0.14
 5000: + 33,4.4
 10000: + 23,56.33
 10000: + 34,4.4
 15000: - 10,0.1
 15000: - 15,0.14
 15000: - 33,4.4
 20000: - 23,56.33
 20000: - 34,44.4
200000: + 20,0.2
210000: - 20,0.2
210000: + 45,23.44
220000: - 45,23.44
400000: + 30,0.3
410000: - 30,0.3

4.5.4 S[range unbounded]
This time-based range window defines its output relation such that, when T = infinity,
the relation at time t consists of tuples obtained from all elements of S up to t.
Elements remain in the window indefinitely.

For an example, see S [range unbounded] Example.

4.5.4.1 Examples

S [range unbounded] Example

Consider the query q1 and the data stream . Timestamps are shown in milliseconds (1
s = 1000 ms). Elements are inserted into the relation as they arrive. No elements are

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-8

subject to deletion. The following example shows the relation that the query returns at
time 5000 ms and the relation that the query returns at time 205000 ms.

<query id="q1"><![CDATA[
 SELECT * FROM S [range unbounded]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 5000 33,4.4
 8000 23,56.33
 10000 34,4.4
200000 20,0.2
209000 45,23.44
400000 30,0.3
h 800000

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 5000: + 33,4.4

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 5000: + 33,4.4
 8000: + 23,56.33
 10000: + 34,4.4
200000: + 20,0.2

4.5.5 S[range C on E]
This constant value-based range window defines its output relation by capturing the
latest portion of a stream that is ordered on the identifier E made up of tuples in which
the values of stream element E differ by less than C. A tuple is subject to deletion when
the difference between its stream element E value and that of any tuple in the relation
is greater than or equal to C.

For examples, see:

• S [range C on E] Example: Constant Value

• S [range C on E] Example: INTERVAL and TIMESTAMP.

4.5.5.1 Examples

S [range C on E] Example: Constant Value

Consider the query tkdata56_q0 and the data stream tkdata56_S0 . Stream tkdata56_S0
has schema (c1 integer, c2 float). The following example shows the relation that the
query returns. In this example, at time 200000, the output relation contains the
following tuples: (5,0.1), (8,0.14), (10,0.2). The difference between the c1 value of
each of these tuples is less than 10. At time 250000, when tuple (15,0.2) is added,
tuple (5,0.1) is subject to deletion because the difference 15 - 5 = 10, which not less
than 10. Tuple (8,0.14) remains because 15 - 8 = 7, which is less than 10. Likewise,
tuple (10,0.2) remains because 15 - 10 = 5, which is less than 10. At time 300000,
when tuple (18,0.22) is added, tuple (8,0.14) is subject to deletion because 18 - 8 =
10, which is not less than 10.

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-9

<query id="tkdata56_q0"><![CDATA[
 select * from tkdata56_S0 [range 10 on c1]
]]></query>

Timestamp Tuple
 100000 5, 0.1
 150000 8, 0.14
 200000 10, 0.2
 250000 15, 0.2
 300000 18, 0.22
 350000 20, 0.25
 400000 30, 0.3
 600000 40, 0.4
 650000 45, 0.5
 700000 50, 0.6
1000000 58, 4.04

Timestamp Tuple Kind Tuple
 100000: + 5,0.1
 150000: + 8,0.14
 200000: + 10,0.2
 250000: - 5,0.1
 250000: + 15,0.2
 300000: - 8,0.14
 300000: + 18,0.22
 350000: - 10,0.2
 350000: + 20,0.25
 400000: - 15,0.2
 400000: - 18,0.22
 400000: - 20,0.25
 400000: + 30,0.3
 600000: - 30,0.3
 600000: + 40,0.4
 650000: + 45,0.5
 700000: - 40,0.4
 700000: + 50,0.6
1000000: - 45,0.5
1000000: + 58,4.04

S [range C on E] Example: INTERVAL and TIMESTAMP

Similarly, you can use the S[range C on ID] window with INTERVAL and TIMESTAMP.
Consider the query tkdata56_q2 in and the data stream tkdata56_S1. Stream
tkdata56_S1 has schema (c1 timestamp, c2 double). The following example shows the
relation that the query returns.

<query id="tkdata56_q2"><![CDATA[
 select * from tkdata56_S1 [range INTERVAL "530 0:0:0.0" DAY TO SECOND on c1]
]]></query>

Timestamp Tuple
 10 "08/07/2004 11:13:48", 11.13
2000 "08/07/2005 12:13:48", 12.15
3400 "08/07/2006 10:15:58", 22.25
4700 "08/07/2007 10:10:08", 32.35

Timestamp Tuple Kind Tuple
 10: + 08/07/2004 11:13:48,11.13
2000: + 08/07/2005 12:13:48,12.15
3400: - 08/07/2004 11:13:48,11.13
3400: + 08/07/2006 10:15:58,22.25
4700: - 08/07/2005 12:13:48,12.15
4700: + 08/07/2007 10:10:08,32.35

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-10

4.6 Tuple-Based Stream-to-Relation Window Operators
Oracle CQL supports the following tuple-based stream-to-relation window operators:

window_type_tuple::=

• S [rows N]

For more information, see:

• Range-Based Stream-to-Relation Window Operators

• Query

• Stream-to-Relation Operators (Windows)

• Aliases in Window Operators.

4.6.1 S [rows N]
A tuple-based window defines its output relation over time by sliding a window of the
last N tuples of an ordered stream.

For the output relation R of S [rows N], the relation at time t consists of the N tuples of S
with the largest timestamps <= t (or all tuples if the length of S up to t is <= N).

If more than one tuple has the same timestamp, Oracle Event Processing chooses
one tuple in a non-deterministic way to ensure N tuples are returned. For this reason,
tuple-based windows may not be appropriate for streams in which timestamps are not
unique.

By default, the slide is 1.

For examples, see S [rows N] Example.

4.6.1.1 Examples

S [rows N] Example

Consider the query q1 and the data stream S. Timestamps are shown in milliseconds (1
s = 1000 ms). Elements are inserted into and deleted from the relation as in the case of
S [Range 1] (see S [range T] Example).

The following example shows the relation that the query returns at time 1002 ms. Since
the length of S at this point is less than or equal to the rows value (3), the query returns
all the tuples of S inserted by that time, namely tuples (10,0.1) and (15,0.14).

The following example shows the relation that the query returns at time 1006 ms. Since
the length of S at this point is greater than the rows value (3), the query returns the 3
tuples of S with the largest timestamps less than or equal to 1006 ms, namely tuples
(15,0.14), (33,4.4), and (23,56.33).

Chapter 4
Tuple-Based Stream-to-Relation Window Operators

4-11

The following example shows the relation that the query returns at time 2000 ms. At this
time, the query returns the 3 tuples of S with the largest timestamps less than or equal
to 2000 ms, namely tuples (45,23.44), (30,0.3), and (17,1.3).

<query id="q1"><![CDATA[
 SELECT * FROM S [rows 3]
]]></query>

Timestamp Tuple
1000 10,0.1
1002 15,0.14
1004 33,4.4
1006 23,56.33
1008 34,4.4
1010 20,0.2
1012 45,23.44
1014 30,0.3
2000 17,1.3

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 1004: + 33,4.4
 1006: - 10,0.1
 1006: + 23,56.33

Timestamp Tuple Kind Tuple
 1000 + 10,0.1
 1002 + 15,0.14
 1004 + 33,4.4
 1006 - 10,0.1
 1006 + 23,56.33
 1008 - 15,0.14
 1008 + 34,4.4
 1008 - 33,4.4
 1010 + 20,0.2
 1010 - 23,56.33
 1012 + 45,23.44
 1012 - 34,4.4
 1014 + 30,0.3
 2000 - 20,0.2
 2000 + 17,1.3

4.6.2 S [rows N1 slide N2]
A tuple-based window that defines its output relation over time by sliding a window of
the last N1 tuples of an ordered stream.

For the output relation R of S [rows N1 slide N2], the relation at time t consists of the
N1 tuples of S with the largest timestamps <= t (or all tuples if the length of S up to t is
<= N).

If more than one tuple has the same timestamp, Oracle Event Processing chooses
one tuple in a non-deterministic way to ensure N tuples are returned. For this reason,
tuple-based windows may not be appropriate for streams in which timestamps are not
unique.

You can configure the slide N2 as an integer number of stream elements. Oracle Event
Processing delays adding stream elements to the relation until it receives N2 number of
elements.

Chapter 4
Tuple-Based Stream-to-Relation Window Operators

4-12

For examples, see S [rows N] Example.

4.6.2.1 Examples

S [rows N1 slide N2] Example

Consider the query tkdata55_q0 and the data stream tkdata55_S55. Stream
tkdata55_S55 has schema (c1 integer, c2 float).

At time 100000, the output relation is empty because only one tuple (20,0.1) has
arrived on the stream. By time 150000, the number of tuples that the slide value
specifies (2) have arrived: at that time, the output relation contains tuples (20,0.1) and
(15,0.14). By time 250000, another slide number of tuples have arrived and the
output relation contains tuples (20,0.1), (15,0.14), (5,0.2), and (8,0.2). By time
350000, another slide number of tuples have arrived. At this time, the oldest tuple
(20,0.1) is subject to deletion to meet the constraint that the rows value imposes:
namely, that the output relation contain no more than 5 elements. At this time, the
output relation contains tuples (15,0.14), (5,0.2), (8,0.2), (10,0.22), and (20,0.25). At
time 600000, another slide number of tuples have arrived. At this time, the oldest
tuples (15,0.14) and (5,0.2) are subject to deletion to observe the rows value
constraint. At this time, the output relation contains tuples (8,0.2), (10,0.22),
(20,0.25), (30,0.3), and (40,0.4).

<query id="tkdata55_q0"><![CDATA[
 select * from tkdata55_S55 [rows 5 slide 2]
]]></query>

Timestamp Tuple
 100000 20, 0.1
 150000 15, 0.14
 200000 5, 0.2
 250000 8, 0.2
 300000 10, 0.22
 350000 20, 0.25
 400000 30, 0.3
 600000 40, 0.4
 650000 45, 0.5
 700000 50, 0.6
100000000 8, 4.04

Timestamp Tuple Kind Tuple
150000: + 20,0.1
150000: + 15,0.14
250000: + 5,0.2
250000: + 8,0.2
350000: - 20,0.1
350000: + 10,0.22
350000: + 20,0.25
600000: - 15,0.14
600000: - 5,0.2
600000: + 30,0.3
600000: + 40,0.4
700000: - 8,0.2
700000: - 10,0.22
700000: + 45,0.5
700000: + 50,0.6

4.7 Partitioned Stream-to-Relation Window Operators
Oracle CQL supports the following partitioned stream-to-relation window operators:

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-13

window_type_partition::=

• S [partition by A1,..., Ak rows N]

• S [partition by A1,..., Ak rows N range T]

For more information, see:

• Tuple-Based Stream-to-Relation Window Operators

• Query

• Stream-to-Relation Operators (Windows)

• Aliases in Window Operators.

4.7.1 S [partition by A1,..., Ak rows N]
This partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes
A1,... Ak (similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N independently on each
substream.

For an example, see S[partition by A1, ..., Ak rows N] Example.

4.7.1.1 Examples

S[partition by A1, ..., Ak rows N] Example

Consider the query qPart_row2 and the data stream SP1. Stream SP1 has schema (c1
integer, name char(10)). The query returns the relation. By default, the range (and
slide) is 1 second. Timestamps are shown in milliseconds (1 s = 1000 ms).

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

<query id="qPart_row2"><![CDATA[
 select * from SP1 [partition by c1 rows 2]
]]></query>

Timestamp Tuple
1000 1,abc
1100 2,abc

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-14

1200 3,abc
2000 1,def
2100 2,def
2200 3,def
3000 1,ghi
3100 2,ghi
3200 3,ghi
h 3800
4000 1,jkl
4100 2,jkl
4200 3,jkl
5000 1,mno
5100 2,mno
5200 3,mno
h 12000
h 200000000

Timestamp Tuple Kind Tuple
1000: + 1,abc
1100: + 2,abc
1200: + 3,abc
2000: + 1,def
2100: + 2,def
2200: + 3,def
3000: - 1,abc
3000: + 1,ghi
3100: - 2,abc
3100: + 2,ghi
3200: - 3,abc
3200: + 3,ghi
4000: - 1,def
4000: + 1,jkl
4100: - 2,def
4100: + 2,jkl
4200: - 3,def
4200: + 3,jkl
5000: - 1,ghi
5000: + 1,mno
5100: - 2,ghi
5100: + 2,mno
5200: - 3,ghi
5200: + 3,mno

4.7.2 S [partition by A1,..., Ak rows N range T]
This partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes
A1,... Ak (similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N and range T independently on
each substream.

For an example, see S[partition by A1, ..., Ak rows N range T] Example.

4.7.2.1 Examples

S[partition by A1, ..., Ak rows N range T] Example

Consider the query qPart_range2 and the data stream SP5. Stream SP5 has schema (c1
integer, name char(10)). The query returns the relation. By default, the range time unit
is second, so range 2 is equivalent to range 2 seconds. Timestamps are shown in
milliseconds (1 s = 1000 ms).

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-15

<query id="qPart_range2"><![CDATA[
 select * from SP5 [partition by c1 rows 2 range 2]
]]></query>

Timestamp Tuple
1000 1,abc
2000 1,abc
3000 1,abc
4000 1,abc
5000 1,def
6000 1,xxx
h 200000000

Timestamp Tuple Kind Tuple
1000: + 1,abc
2000: + 1,abc
3000: - 1,abc
3000: + 1,abc
4000: - 1,abc
4000: + 1,abc
5000: - 1,abc
5000: + 1,def
6000: - 1,abc
6000: + 1,xxx
7000: - 1,def
8000: - 1,xxx

4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2]
This partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes
A1,... Ak (similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N, range T1, and slide T2
independently on each substream.

For an example, see S[partition by A1, ..., Ak rows N] Example.

4.7.3.1 Examples

S[partition by A1, ..., Ak rows N range T1 slide T2] Example

Consider the query qPart_rangeslide and the data stream SP1. Stream SP1 has schema
(c1 integer, name char(10)). The query returns the relation. By default, the range and
slide time unit is second so range 1 slide 1 is equivalent to range 1 second slide 1
second. Timestamps are shown in milliseconds (1 s = 1000 ms).

<query id="qPart_rangeslide"><![CDATA[
 select * from SP1 [partition by c1 rows 1 range 1 slide 1]
]]></query>

Timestamp Tuple
1000 1,abc
1100 2,abc
1200 3,abc
2000 1,def
2100 2,def
2200 3,def
3000 1,ghi
3100 2,ghi
3200 3,ghi
h 3800

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-16

4000 1,jkl
4100 2,jkl
4200 3,jkl
5000 1,mno
5100 2,mno
5200 3,mno
h 12000
h 200000000

Timestamp Tuple Kind Tuple
1000: + 1,abc
2000: + 2,abc
2000: + 3,abc
2000: - 1,abc
2000: + 1,def
3000: - 2,abc
3000: + 2,def
3000: - 3,abc
3000: + 3,def
3000: - 1,def
3000: + 1,ghi
4000: - 2,def
4000: + 2,ghi
4000: - 3,def
4000: + 3,ghi
4000: - 1,ghi
4000: + 1,jkl
5000: - 2,ghi
5000: + 2,jkl
5000: - 3,ghi
5000: + 3,jkl
5000: - 1,jkl
5000: + 1,mno
6000: - 2,jkl
6000: + 2,mno
6000: - 3,jkl
6000: + 3,mno
6000: - 1,mno
7000: - 2,mno
7000: - 3,mno

4.8 User-Defined Stream-to-Relation Window Operators
You can write user-defined (or extensible) windows in Java to create stream-to-relation
operators that are more advanced or application-specific than the built-in stream-to-
relation operators that Oracle Event Processing provides. User-defined windows can
appear in Oracle CQL statements wherever a built-in stream-to-relation window
operator can occur.

Note:

You can also create user-defined functions (see User-Defined Functions).

4.8.1 Implementing a User-Defined Window
Using the classes in the oracle.cep.extensibility.windows package you can create the
following types of user-defined windows:

• generic time window.

Chapter 4
User-Defined Stream-to-Relation Window Operators

4-17

4.8.1.1 How to Implement a User-Defined Generic Time Window
You implement a user-defined generic time window by implementing a Java class that
implements the GenericTimeWindow interface.

To implement a user-defined generic time window:

1. Implement a Java class.

import java.io.IOException;
import java.sql.Timestamp;

import oracle.cep.extensibility.windows.GenericTimeWindow;

public class MyRangeSlideWindow implements GenericTimeWindow {
 private long range;
 private long slide;

 public void setInputParams(Object[] obj) throws IOException{
 if(obj.length != 2)
 throw new IOException("inappropriate number of arguments");
 range = (((Integer)obj[0]).intValue())*1000;
 slide = (((Integer)obj[1]).intValue())*1000;
 }

 public boolean visibleW(Timestamp t, Timestamp visTs) {
 long actual = t.getTime();
 if(getVisibleTs(actual) < actual)
 return false;
 visTs.setTime(getVisibleTs(actual));
 return true;
 }

 private long getVisibleTs(long time) {
 if(slide > 1) {
 long t = time / slide;
 if((time % slide) == 0)
 return(t*slide);
 else
 return((t+1)*slide);
 } else
 return time;
 }

 public boolean canOutputTsGTInputTs() {
 if(slide > 1)
 return true;
 return false;
 }

 public boolean expiredW(Timestamp ts, Timestamp expTs) {
 long actual = ts.getTime();
 long visibleTs = getVisibleTs(actual);
 long expiredTs = visibleTs + range;
 expTs.setTime(expiredTs);
 // This is the border line case, when range > slide and visibleTs < range
 if(visibleTs < range)
 return false;
 return true;
 }
}

2. Register the window in Oracle CQL.

...
<rule id="range_slide"><![CDATA[
 register window range_slide(winrange int, winslide int) implement using

Chapter 4
User-Defined Stream-to-Relation Window Operators

4-18

"MyRangeSlideWindow"
]]></rule>
...
<query id="q79"><![CDATA[
 select * from S12 [range_slide(10,5)]
]]></query>
...

3. Use the user-defined window in the FROM clause.

4.9 IStream Relation-to-Stream Operator
Istream (for "Insert stream") applied to a relation R contains (s,t) whenever tuple s is in
R(t) - R(t-1), that is, whenever s is inserted into R at time t. If a tuple happens to be
both inserted and deleted with the same timestamp then IStream does not output the
insertion.

The now window converts the viewq3 into a relation, which is kept as a relation by the
filter condition. The IStream relation-to-stream operator converts the output of the filter
back into a stream.

<query id="q3Txns"><![CDATA[
 Istream(
 select
 TxnId,
 ValidLoopCashForeignTxn.ACCT_INTRL_ID,
 TRXN_BASE_AM,
 ADDR_CNTRY_CD,
 TRXN_LOC_ADDR_SEQ_ID
 from
 viewq3[NOW],
 ValidLoopCashForeignTxn
 where
 viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID
)
]]></query>

You can combine the Istream operator with a DIFFERENCES USING clause to succinctly
detect differences in the Istream.

For more information, see:

• Detecting Differences in Query Results.

4.10 DStream Relation-to-Stream Operator
Dstream (for Delete stream) applied to a relation R contains (s,t) whenever tuple s is in
R(t-1) - R(t), that is, whenever s is deleted from R at time t. If a tuple happens to be
both inserted and deleted with the same timestamp, then IStream does not output the
insertion.

In the following example, the query delays the input on stream S by 10 minutes. The
range window operator converts the stream S into a relation, whereas the Dstream
converts it back to a stream.

<query id="BBAQuery"><![CDATA[
 Dstream(select * from S[range 10 minutes])
]]></query>

Chapter 4
IStream Relation-to-Stream Operator

4-19

Assume that the granularity of time is minutes. Table 4-5 illustrates the contents of the
range window operator's relation (S[Range 10 minutes]) and the Dstream stream for the
following input stream TradeInputs:

Time Value
05 1,1
25 2,2
50 3,3

Table 4-5 DStream Example Output

Input Stream S Relation Output Relation Contents DStream Output

05 1,1 + 05 1,1 {1, 1}

05 1,1 - 15 1,1 {} +15 1,1

25 2,2 + 25 2,2 {2,2}

25 2,2 - 35 2,2 {} +35 2,2

50 3,3 + 50 3,3 {3,3}

50 3,3 - 60 3,3 {} +60 3,3

Note that at time 15, 35, and 60, the relation is empty {} (the empty set).

You can combine the Dstream operator with a DIFFERENCES USING clause to succinctly
detect differences in the Dstream.

For more information, see:

• Detecting Differences in Query Results.

4.11 RStream Relation-to-Stream Operator
The Rstream operator maintains the entire current state of its input relation and outputs
all of the tuples as insertions at each time step.

Since Rstream outputs the entire state of the relation at every instant of time, it can be
expensive if the relation set is not very small.

In the following example, Rstream outputs the entire state of the relation at time Now and
filtered by the where clause.

<query id="rstreamQuery"><![CDATA[
 Rstream(
 select
 cars.car_id, SegToll.toll
 from
 CarSegEntryStr[now] as cars, SegToll
 where (cars.exp_way = SegToll.exp_way and
 cars.lane = SegToll.lane and
 cars.dir = SegToll.dir and
 cars.seg = SegToll.seg)
)
]]></query>

Chapter 4
RStream Relation-to-Stream Operator

4-20

5
Expressions

A reference to expressions in Oracle Continuous Query Language (Oracle CQL) is
provided. An expression is a combination of one or more values and one or more
operations, including a constant having a definite value, a function that evaluates to a
value, or an attribute containing a value.

Every expression maps to a data type. This simple expression evaluates to 4 and has
data type NUMBER (the same data type as its components):

2*2

The following expression is an example of a more complex expression that uses both
functions and operators. The expression adds seven days to the current date,
removes the time component from the sum, and converts the result to CHAR data type:

TO_CHAR(TRUNC(SYSDATE+7))

5.1 Introduction to Expressions
Oracle Event Processing provides the following expressions:

• Aggregate distinct expressions: aggr_distinct_expr.

• Aggregate expressions: aggr_expr.

• Arithmetic expressions: arith_expr.

• Arithmetic expression list: arith_expr_list

• Case expressions: case_expr.

• Decode expressions: decode.

• Function expressions: func_expr.

• Object expressions: object_expr

• Order expressions: order_expr.

• XML aggregate expressions: xml_agg_expr

• XML column attribute value expressions: xmlcolattval_expr.

• XML element expressions: xmlelement_expr.

• XML forest expressions: xmlforest_expr

• XML parse expressions: xml_parse_expr.

You can use expressions in:

• The select list of the SELECT statement

• A condition of the WHERE clause and HAVING clause

Oracle Event Processing does not accept all forms of expressions in all parts of all
Oracle CQL statements. Refer to the individual Oracle CQL statements in Oracle CQL
Statements for information on restrictions on the expressions in that statement.

5-1

You must use appropriate expression notation whenever expr appears in conditions,
Oracle CQL functions, or Oracle CQL statements in other parts of this reference. The
sections that follow describe and provide examples of the various forms of
expressions.

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

5.2 aggr_distinct_expr
Use an aggr_distinct_expr aggregate expression when you want to use an aggregate
built-in function with distinct. When you want to use an aggregate built-in function
without distinct, see aggr_expr.

aggr_distinct_expr::=

(arith_expr::=)

You can specify an arith_distinct_expr as the argument of an aggregate expression.

You can use an aggr_distinct_expr in the following Oracle CQL statements:

• arith_expr::=

For more information, see Built-In Aggregate Functions.

5.2.1 Examples
The following example shows how to use a COUNT aggregate distinct expression.

create view viewq2Cond1(ACCT_INTRL_ID, sumForeign, countForeign) as
 select ACCT_INTRL_ID, sum(TRXN_BASE_AM), count(distinct ADDR_CNTRY_CD)
 from ValidCashForeignTxn[range 48 hours]
 group by ACCT_INTRL_ID
 having ((sum(TRXN_BASE_AM) * 100) >= (1000 * 60) and
 (count(distinct ADDR_CNTRY_CD >= 2)))

Chapter 5
aggr_distinct_expr

5-2

5.3 aggr_expr
Use an aggr_expr aggregate expression when you want to use aggregate built-in
functions. When you want to use an aggregate built-in function with distinct, see
aggr_distinct_expr.

aggr_expr::=

(arith_expr::= and xml_agg_expr::=)

You can specify an arith_expr as the argument of an aggregate expression.

The count aggregate built-in function takes a single argument made up of any of the
values that Table 5-1 lists and returns the int value indicated.

Table 5-1 Return Values for COUNT Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not null.

* The number of tuples matching all the correlation variables in the pattern,
including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable identifier,
including duplicates and nulls.

identifier.attr The number of tuples that match correlation variable identifier, where
attr is not null.

The first and last aggregate built-in functions take a single argument made up of the
following period separated values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

You can use an aggr_expr in the following Oracle CQL statements:

Chapter 5
aggr_expr

5-3

• arith_expr::=

For more information, see:

• Built-In Aggregate Functions

• Using count With *, identifier.*, and identifier.attr

• first

• last.

5.3.1 Examples
The following example shows how to use a COUNT aggregate expression.

<view id="SegVol" schema="exp_way lane dir seg volume"><![CDATA[
 select
 exp_way,
 lane,
 dir,
 seg,
 count(*) as volume
 from
 CurCarSeg
 group by
 exp_way,
 lane,
 dir,
 seg
 having
 count(*) > 50
]]></view>

5.4 arith_expr
Use an arith_expr arithmetic expression to define an arithmetic expression using any
combination of stream element attribute values, constant values, the results of a
function expression, aggregate built-in function, case expression, or decode. You can
use all of the normal arithmetic operators (+,-,*, and /) and the concatenate operator
(||).

Chapter 5
arith_expr

5-4

arith_expr::=

(func_expr::=, aggr_expr::=, aggr_distinct_expr::=, case_expr::=, decode::=,
arith_expr::=)

You can use an arith_expr in the following Oracle CQL statements:

• aggr_distinct_expr::=

• aggr_expr::=

• arith_expr::=

• case_expr::=

• searched_case::=

• simple_case::=

• condition::=

• between_condition::=

• param_list

• measure_column::=.

For more information, see Arithmetic Operators.

5.4.1 Examples
The following example shows how to use an arith_expr expression.

<view id="SegVol" schema="exp_way lane dir seg volume"><![CDATA[
 select
 exp_way,

Chapter 5
arith_expr

5-5

 speed * 1.5 as adjustedSpeed,
 dir,
 max(seg) as maxSeg,
 count(*) as volume
 from
 CurCarSeg
 having
 adjustedSpeed > 50
]]></view>

5.5 arith_expr_list
Use an arith_expr_list arithmetic expression list to define one or more arithmetic
expressions using any combination of stream element attribute values, constant
values, the results of a function expression, aggregate built-in function, case
expression, or decode. You can use all of the normal arithmetic operators (+,-,*, and /)
and the concatenate operator (||).

arith_expr_list::=

(arith_expr::=)

You can use an arith_expr_list in the following Oracle CQL statements:

• xmlelement_expr::=

For more information, see Arithmetic Operators.

5.5.1 Examples
The following example shows how to use a arith_expr_list expression.

<query id="q1"><![CDATA[
 select
 XMLELEMENT("Emp", XMLELEMENT("Name", e.job_id||' '||e.last_name),XMLELEMENT("Hiredate",
e.hire_date)
)
 from
 tkdata51_S0 [range 1] as e
]]></query>

5.6 case_expr
Use a case_expr case expression to evaluate stream elements against multiple
conditions.

case_expr::=

Chapter 5
arith_expr_list

5-6

(searched_case_list::=, arith_expr::=, simple_case_list::=)

searched_case_list::=

(searched_case::=)

searched_case::=

(arith_expr::=)

simple_case_list::=

(simple_case::=)

simple_case::=

(arith_expr::=)

The case_expr is similar to the DECODE clause of an arithmetic expression (see decode).

In a searched_case clause, when the non_mt_cond_list evaluates to true, the
searched_case clause may return either an arithmetic expression or null.

In a simple_case clause, when the arithmetic expression is true, the simple_case clause
may return either another arithmetic expression or null.

You can use a case_expr in the following Oracle CQL statements:

• arith_expr::=.

5.6.1 Examples
This section describes the following case_expr examples:

• case_expr with SELECT *

• case_expr with SELECT.

Chapter 5
case_expr

5-7

case_expr with SELECT *

Consider the query q97 and the data stream S0. Stream S1 has schema (c1 integer, c2
float). The query returns the relation.

<query id="q97"><![CDATA[
 select * from S0
 where
 case
 when c2 < 25 then c2+5
 when c2 > 25 then c2+10
 end > 25
]]></query>

Timestamp Tuple
 1000 0.1,10
 1002 0.14,15
 200000 0.2,20
 400000 0.3,30
 500000 0.3,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple Kind Tuple
400000:+ 0.3,30
500000:+ 0.3,35
600000:+ ,35
100000000:+ 4.04,40

case_expr with SELECT

Consider the query q96 and the data streams S0 and S1. Stream S0 has schema (c1
float, c2 integer) and stream S1 has schema (c1 float, c2 integer). The query
returns the relation.

<query id="q96"><![CDATA[
 select
 case to_float(S0.c2+10)
 when (S1.c2*100)+10 then S0.c1+0.5
 when (S1.c2*100)+11 then S0.c1
 else S0.c1+0.3
 end
 from
 S0[rows 100],
 S1[rows 100]
]]></query>

Timestamp Tuple
 1000 0.1,10
 1002 0.14,15
 200000 0.2,20
 400000 0.3,30
 500000 0.3,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 200000 20,0.2
 300000 ,0.2

Chapter 5
case_expr

5-8

 400000 30,0.3
100000000 40,4.04

Timestamp Tuple Kind Tuple
 1000: + 0.6
 1002: + 0.44
 1002: + 0.4
 1002: + 0.14
 200000: + 0.5
 200000: + 0.5
 200000: + 0.4
 200000: + 0.44
 200000: + 0.7
 300000: + 0.4
 300000: + 0.44
 300000: + 0.7
 400000: + 0.6
 400000: + 0.6
 400000: + 0.6
 400000: + 0.6
 400000: + 0.4
 400000: + 0.44
 400000: + 0.5
 400000: + 0.8
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 600000: +
 600000: +
 600000: +
 600000: +
 600000: +
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 0.4
100000000: + 0.44
100000000: + 0.5
100000000: + 0.6
100000000: + 0.6
100000000: +
100000000: + 4.34

5.7 decode
Use a decode expression to evaluate stream elements against multiple conditions.

decode::=

expr, search1, result1, search2, result2, ... , searchN, result N, default

DECODE compares expr to each search value one by one. If expr equals a search value,
the DECODE expressions returns the corresponding result. If no match is found, the
DECODE expressions returns default. If default is omitted, the DECODE expressions
returns null.

Chapter 5
decode

5-9

The arguments can be any of the numeric (INTEGER, BIGINT, FLOAT, or DOUBLE) or
character (CHAR) data types. For more information, see Data Types).

The search, result, and default values can be derived from expressions. Oracle Event
Processing uses short-circuit evaluation. It evaluates each search value only before
comparing it to expr, rather than evaluating all search values before comparing any of
them with expr. Consequently, Oracle Event Processing never evaluates a search i, if
a previous search j (0 < j < i) equals expr.

Oracle Event Processing automatically converts expr and each search value to the
data type of the first search value before comparing. Oracle Event Processing
automatically converts the return value to the same data type as the first result.

In a DECODE expression, Oracle Event Processing considers two nulls to be equivalent.
If expr is null, then Oracle Event Processing returns the result of the first search that is
also null.

The maximum number of components in the DECODE expression, including expr,
searches, results, and default, is 255.

The decode expression is similar to the case_expr (see case_expr::=).

You can use a decode expression in the following Oracle CQL statements:

• arith_expr::=.

5.7.1 Examples
Consider the query q and the input relation R. Relation R has schema (c1 float, c2
integer). The query returns the relation.

<query id="q"><![CDATA[
...
 SELECT DECODE (c2, 10, c1+0.5, 20, c1+0.1, 30, c1+0.2, c1+0.3) from R
]]></query>

Timestamp Tuple Kind Tuple
 1000: + 0.1,10
 1002: + 0.14,15
 2000: - 0.1,10
 2002: - 0.14,15
 200000: + 0.2,20
 201000: - 0.2,20
 400000: + 0.3,30
 401000: - 0.3,30
 500000: + 0.3,35
 501000: - 0.3,35
 600000: + 0.3,35
 601000: - 0.3,35
100000000: + 4.04,40
100001000: - 4.04,40

Timestamp Tuple Kind Tuple
 1000: + 0.6
 1002: + 0.44
 2000: - 0.1,10
 2002: - 0.14,15
 200000: + 0.3
 201000: - 0.2,20
 400000: + 0.5
 401000: - 0.3,30
 500000: + 0.6
 501000: - 0.3,35

Chapter 5
decode

5-10

100000000: + 4.34
100001000: - 4.34

5.8 func_expr
Use the func_expr function expression to define a function invocation using any Oracle
CQL built-in, user-defined, or Oracle data cartridge function.

func_expr::=

(xml_parse_expr::=, xmlelement_expr::=, xmlforest_expr::=, xmlcolattval_expr::=,
func_name:=, link::=, arith_expr::=)

func_name:=

func_name

You can specify the identifier of a function explicitly:

• with or without a link, depending on the type of Oracle data cartridge function.

For more information, see link::=.

• with an empty argument list.

• with an argument list of one or more arguments.

• with a distinct arithmetic expression.

For more information, see aggr_distinct_expr.

Chapter 5
func_expr

5-11

PREV

The PREV function takes a single argument made up of the following period-separated
identifier arguments:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

The PREV function also takes the following const_int arguments:

• const_int: the index of the stream element before the current stream element to
compare against. Default: 1.

• const_bigint: the timestamp of the stream element before the current stream
element to compare against. To obtain the timestamp of a stream element, you
can use the ELEMENT_TIME pseudocolumn (see ELEMENT_TIME Pseudocolumn).

For more information, see prev. For an example, see func_expr PREV Function
Example.

XQuery: XMLEXISTS and XMLQUERY

You can specify an XQuery that Oracle Event Processing applies to the XML stream
element data that you bind in xqryargs_list. For more information, see:

• xmlexists

• xmlquery.

An xqryargs_list is a comma separated list of one or more xqryarg instances made up
of an arithmetic expression involving one or more stream elements from the select list,
the AS keyword, and a const_string that represents the XQuery variable or operator
(such as the "." current node operator).

For an example, see func_expr XMLQUERY Function Example.

For more information, see SQL/XML (SQLX).

XMLCONCAT

The XMLCONCAT function returns the concatenation of its comma-delimited xmltype
arguments as an xmltype.

For more information, see:

• xmlconcat

• SQL/XML (SQLX).

SQL/XML (SQLX)

The SQLX specification extends SQL to support XML data.

Oracle CQL supports event types containing properties of type SQLX. In this case,
Oracle Event Processing server converts from SQLX to String when within Oracle CQL,
and converts from String to SQLX on output.

Oracle CQL provides the following expressions (and functions) to manipulate data
from an SQLX stream. For example, you can construct XML elements or attributes

Chapter 5
func_expr

5-12

with SQLX stream elements, combine XML fragments into larger ones, and parse
input into XML content or documents.

Note:

Oracle CQL does not support external relations with columns of type XMLTYPE
(for example, a join with a relational database management system). For
more information, see Oracle CQL Built-in Data Types.

For more information on Oracle CQL SQLX expressions, see:

• xml_agg_expr

• xmlcolattval_expr

• xmlelement_expr

• xmlforest_expr

• xml_parse_expr.

For more information on Oracle CQL SQLX functions, see:

• XQuery: XMLEXISTS and XMLQUERY

• xmlcomment

• xmlconcat

• xmlagg.

For more information on data type restrictions when using Oracle CQL with XML, see:

• Datetime Literals

FIRST and LAST

The FIRST and LAST functions each take a single argument made up of the following
period-separated values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

For more information, see:

• first

• last

You can specify the identifier of a function explicitly with or without a non_mt_arg_list:
a list of arguments appropriate for the built-in or user-defined function being invoked.
The list can have single or multiple arguments.

You can use a func_expr in the following Oracle CQL statements:

• arith_expr::=

For more information, see Functions.

Chapter 5
func_expr

5-13

5.8.1 Examples
This section describes the following func_expr examples:

• func_expr PREV Function Example

• func_expr XMLQUERY Function Example

func_expr PREV Function Example

The following example shows how to compose a func_expr to invoke the PREV function.

<query id="q36"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 PARTITION BY
 c2
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = PREV(A.c1,3,5000))
) as T
]]></query>

func_expr XMLQUERY Function Example

The following example shows how to compose a func_expr to invoke the XMLQUERY
function.

<query id="q1"><![CDATA[
 select
 xmlexists(
 "for $i in /PDRecord where $i/PDId <= $x return $i/PDName"
 passing by value
 c2 as ".",
 (c1+1) as "x"
 returning content
) xmldata
 from
 S1
]]></query>

The following example shows how to compose a func_expr to invoke the SUM function.

<query id="q3"><![CDATA[
 select sum(c2) from S1[range 5]
]]></query>

5.9 object_expr
Use the object_expr expression to reference the members of a data cartridge complex
type.

You can use an object_expr anywhere an arithmetic expression can be used. For
more information, see arith_expr.

object_expr::=

Chapter 5
object_expr

5-14

external_qualified_identifier::=

()

external_identifier::=

nested_method_field_expr::=

array_expr::=

method_expr::=

Optionally, you can use a link (@) in the object_expr to specify the data cartridge name.
Use a link to specify the location of an Oracle CQL data cartridge complex type class,
method, field, or constructor to disambiguate the reference, if necessary. The location
must reference a data cartridge by its name. For example, if two data cartridges

Chapter 5
object_expr

5-15

(myCartridge and yourCartridge) both define a complex type com.package.ThisClass,
then you must use the link clause to explicitly identify which com.package.ThisClass
you want to use.

Note:

A link is not required when using the types that the default Java data
cartridge provides.

link::=

data_cartridge_name::=

data_cartridge_name

Each Oracle CQL data cartridge implementation is identified by a unique data
cartridge name.

Data cartridge names include:

• java: identifies the Oracle CQL Java data cartridge.

This is the default data cartridge name. If you omit a data cartridge name in field or
constructor references, Oracle CQL will try to resolve the reference using the java
data cartridge name. This means the following statements are identical:

SELECT java.lang.String@java(“foo") …
SELECT java.lang.String(“foo") …

If you omit a data cartridge name in a method reference, Oracle CQL will try to
resolve the reference against its built-in functions (see Functions).

• spatial: identifies the Oracle CQL Oracle Spatial.

For syntax, see data_cartridge_name::= (parent: link::=).

Type Declaration

You declare an event property as a complex type using
qualified_type_name@data_cartridge_name.

For examples, see Type Declaration Example: link

Chapter 5
object_expr

5-16

Field Access

You cannot specify a link when accessing a complex type field because the type of the
field already identifies its location. The following is not allowed:

SELECT java.lang.String(“foo").CASE_INSENSITIVE_ORDER@java …

For examples, see Field Access Example: link.

Method Access

You cannot specify a link when accessing complex type method because the type of
the method already identifies its location. The following is not allowed:

SELECT java.lang.String(“foo").substring@java(0,1) …

For examples, see Method Access Example: link.

Constructor Invocation

You invoke a complex type constructor using
qualified_type_name@data_cartridge_name(param_list).

For examples, see Constructor Invocation Example: link.

5.9.1 Examples
The following examples illustrate the various semantics that this statement supports:

• Object Expression Example

• Type Declaration Example: link

• Field Access Example: link

• Method Access Example: link.

• Constructor Invocation Example: link

Object Expression Example

The following example shows object_expr:

getContainingGeometries@spatial (InputPoints.point)

This object_expr uses a data cartridge TABLE clause that invokes the Oracle Spatial
method getContainingGeometries, passing in one parameter (InputPoints.point). The
return value of this method, a Collection of Oracle Event Processing IType records, is
aliased as validGeometries. The table source itself is aliased as R2.

<query id="q1"><![CDATA[
RSTREAM (
 SELECT
 R2.validGeometries.shape as containingGeometry,
 R1.point as inputPoint
 FROM
 InputPoints[now] as R1,
 TABLE (getContainingGeometries@spatial (InputPoints.point) as validGeometries) AS R2
)
]]></query>

Chapter 5
object_expr

5-17

Type Declaration Example: link

The following example shows how to create an event type as a Java class that
specifies an event property as an Oracle CQL data cartridge complex type MyType
defined in package com.mypackage that belongs to the Oracle CQL data cartridge
myCartridge. If a com.myPackage.MyType is defined in some other Oracle CQL data
cartridge (with data cartridge name otherCatridge), specifying the type for the a1
property using a link with the data cartridge name myCartridge allows Oracle CQL to
reference the correct complex type.

package com.myapplication.event;

import java.util.Date;
import // Oracle CQL data cartridge package(s)?

public final class MarketEvent {
 private final String symbol;
 private final Double price;
 private final com.myPackage.MyType@myCartridge a1;

 public MarketEvent(...) {
 ...
 }
 ...
}

Field Access Example: link

The following example shows how to instantiate complex type MyType and access the
static field MY_FIELD. The link clause explicitly references the com.myPackage.MyType
class that belongs to the Oracle CQL data cartridge myCartridge.

<query id="q1"><![CDATA[
 SELECT com.myPackage.MyType@myCartridge(“foo").MY_FIELD ...
]]></query>

Method Access Example: link

The following example shows how to instantiate complex type MyType and access the
method myMethod. The link clause explicitly references the com.myPackage.MyType class
that belongs to the Oracle CQL data cartridge myCartridge.

<query id="q1"><![CDATA[
 SELECT com.myPackage.MyType@myCartridge(“foo").myMethod("bar") ...
]]></query>

Constructor Invocation Example: link

The following example shows how to instantiate complex type MyType. The link clause
explicitly references the com.myPackage.MyType class that belongs to the Oracle CQL
data cartridge myCartridge.

<query id="q1"><![CDATA[
 SELECT com.myPackage.MyType@myCartridge(“foo") ...
]]></query>

5.10 order_expr
Use the order_expr expression to specify the sort order in which Oracle Event
Processing returns tuples that a query selects.

Chapter 5
order_expr

5-18

order_expr::=

You can specify a stream element by attr name.

Alternatively, you can specify a stream element by its const_int index where the index
corresponds to the stream element position you specify at the time you register or
create the stream.

5.10.1 Examples
Stream S3 has schema (c1 bigint, c2 interval, c3 byte(10), c4 float). This
example shows how to order the results of query q210 by c1 and then c2 and how to
order the results of query q211 by c2, then by the stream element at index 3 (c3) and
then by the stream element at index 4 (c4).

<query id="q210"><![CDATA[
 select * from S3 order by c1 desc nulls first, c2 desc nulls last
]]></query>
<query id="q211"><![CDATA[
 select * from S3 order by c2 desc nulls first, 3 desc nulls last, 4 desc
]]></query>

5.11 xml_agg_expr
Use an xml_agg_expr expression to return a collection of XML fragments as an
aggregated XML document. Arguments that return null are dropped from the result.

xml_agg_expr::=

(arith_expr)

You can specify an xml_agg_expr as the argument of an aggregate expression.

You can use an xml_agg_expr in the following Oracle CQL statements:

• aggr_expr::=

For more information, see:

• Built-In Aggregate Functions

• xmlagg

Chapter 5
xml_agg_expr

5-19

5.11.1 Examples
Consider the query tkdata67_q1 and the input relation tkdata67_S0. Relation
tkdata67_S0 has schema (c1 integer, c2 float). The query returns the relation.

<query id="tkdata67_q1"><![CDATA[
 select
 c1,
 xmlagg(xmlelement("c2",c2))
 from
 tkdata67_S0[rows 10]
 group by c1
]]></query>

Timestamp Tuple
 1000 15, 0.1
 1000 20, 0.14
 1000 15, 0.2
 4000 20, 0.3
10000 15, 0.04
h 12000

Timestamp Tuple Kind Tuple
1000: + 15,<c2>0.1</c2>
 <c2>0.2</c2>
1000: + 20,<c2>0.14</c2>
4000: - 20,<c2>0.14</c2>
4000: + 20,<c2>0.14</c2>
 <c2>0.3</c2>
10000: - 15,<c2>0.1</c2>
 <c2>0.2</c2>
10000: + 15,<c2>0.1</c2>
 <c2>0.2</c2>
 <c2>0.04</c2>

5.12 xmlcolattval_expr
Use an xmlcolattval_expr expression to create an XML fragment and then expand the
resulting XML so that each XML fragment has the name column with the attribute
name.

xmlcolattval_expr::=

You can specify an xmlcolattval_expr as the argument of a function expression. It is
especially useful when processing SQLX streams. For more information, see
SQL/XML (SQLX).

You can use an xmlcolattval_expr in the following Oracle CQL statements
func_expr::=.

5.12.1 Examples
Consider the query tkdata53_q1 and the input relation tkdata53_S0. Relation
tkdata53_S0 has schema (c1 integer, c2 float). The query returns the relation.

Chapter 5
xmlcolattval_expr

5-20

<query id="tkdata53_q1"><![CDATA[
 select
 XMLELEMENT("tkdata53_S0", XMLCOLATTVAL(tkdata53_S0.c1, tkdata53_S0.c2))
 from
 tkdata53_S0 [range 1]
]]></query>

Timestamp Tuple
 1000: 10, 0.1
 1002: 15, 0.14
 200000: 20, 0.2
 400000: 30, 0.3
h 800000
100000000: 40, 4.04
h 200000000

Timestamp Tuple Kind Tuple
 1000: + <tkdata53_S0>
 <column name="c1">10</column>
 <column name="c2">0.1</column>
 </tkdata53_S0>
 1002: + <tkdata53_S0>
 <column name="c1">15</column>
 <column name="c2">0.14</column>
 </tkdata53_S0>
 2000: - <tkdata53_S0>
 <column name="c1">10</column>
 <column name="c2">0.1</column>
 </tkdata53_S0>
 2002: - <tkdata53_S0>
 <column name="c1">15</column>
 <column name="c2">0.14</column>
 </tkdata53_S0>
 200000: + <tkdata53_S0>
 <column name="c1">20</column>
 <column name="c2">0.2</column>
 </tkdata53_S0>
 201000: - <tkdata53_S0>
 <column name="c1">20</column>
 <column name="c2">0.2</column>
 </tkdata53_S0>
 400000: + <tkdata53_S0>
 <column name="c1">30</column>
 <column name="c2">0.3</column>
 </tkdata53_S0>
 401000: - <tkdata53_S0>
 <column name="c1">30</column>
 <column name="c2">0.3</column>
 </tkdata53_S0>
100000000: + <tkdata53_S0>
 <column name="c1">40</column>
 <column name="c2">4.04</column>
 </tkdata53_S0>
100001000: - <tkdata53_S0>
 <column name="c1">40</column>
 <column name="c2">4.04</column>
 </tkdata53_S0>

5.13 xmlelement_expr
Use an xmlelement_expr expression when you want to construct a well-formed XML
element from stream elements.

Chapter 5
xmlelement_expr

5-21

xmlelement_expr::=

(arith_expr::= and arith_expr_list::=)

You can specify an xmlelement_expr as the argument of a function expression. It is
especially useful when processing SQLX streams. For more information, see
"SQL/XML (SQLX)".

You can use an xmlelement_expr in the following Oracle CQL statements:

• func_expr::=

5.13.1 Examples
Consider the query tkdata51_q0 and the input relation tkdata51_S0. Relation
tkdata51_S0 has schema (c1 integer, c2 float). The query returns the relation.

<query id="tkdata51_q0"><![CDATA[
 select
 XMLELEMENT(
 NAME "S0",
 XMLELEMENT(NAME "c1", tkdata51_S0.c1),
 XMLELEMENT(NAME "c2", tkdata51_S0.c2)
)
 from
 tkdata51_S0 [range 1]
]]></query>

Timestamp Tuple
 1000: 10, 0.1
 1002: 15, 0.14
 200000: 20, 0.2
 400000: 30, 0.3
h 800000
100000000: 40, 4.04
h 200000000

Timestamp Tuple Kind Tuple
 1000: + <S0>
 <c1>10</c1>
 <c2>0.1</c2>

Chapter 5
xmlelement_expr

5-22

 </S0>
 1002: + <S0>
 <c1>15</c1>
 <c2>0.14</c2>
 </S0>
 2000: - <S0>
 <c1>10</c1>
 <c2>0.1</c2>
 </S0>
 2002: - <S0>
 <c1>15</c1>
 <c2>0.14</c2>
 </S0>
 200000: + <S0>
 <c1>20</c1>
 <c2>0.2</c2>
 </S0>
 201000: - <S0>
 <c1>20</c1>
 <c2>0.2</c2>
 </S0>
 400000: + <S0>
 <c1>30</c1>
 <c2>0.3</c2>
 </S0>
 401000: - <S0>
 <c1>30</c1>
 <c2>0.3</c2>
 </S0>
100000000: + <S0>
 <c1>40</c1>
 <c2>4.04</c2>
 </S0>
100001000: - <S0>
 <c1>40</c1>
 <c2>4.04</c2>
 </S0>

5.14 xmlforest_expr
Use an xmlforest_expr to convert each of its argument parameters to XML, and then
return an XML fragment that is the concatenation of these converted arguments.

xmlforest_expr::=

You can specify an xmlforest_expr as the argument of a function expression. It is
especially useful when processing SQLX streams. For more information, see
SQL/XML (SQLX).

You can use an xmlforest_expr in the following Oracle CQL statements:

• func_expr::=

5.14.1 Examples
Consider the query tkdata52_q0and the input relation tkdata52_S0. Relation tkdata52_S0
has schema (c1 integer, c2 float). The query returns the relation.

Chapter 5
xmlforest_expr

5-23

<query id="tkdata52_q0"><![CDATA[
 select
 XMLFOREST(tkdata52_S0.c1, tkdata52_S0.c2)
 from
 tkdata52_S0 [range 1]
]]></query>

Timestamp Tuple
 1000: 10, 0.1
 1002: 15, 0.14
 200000: 20, 0.2
 400000: 30, 0.3
h 800000
100000000: 40, 4.04
h 200000000

Timestamp Tuple Kind Tuple
 1000: + <c1>10</c1>
 <c2>0.1</c2>
 1002: + <c1>15</c1>
 <c2>0.14</c2>
 2000: - <c1>10</c1>
 <c2>0.1</c2>
 2002: - <c1>15</c1>
 <c2>0.14</c2>
 200000: + <c1>20</c1>
 <c2>0.2</c2>
 201000: - <c1>20</c1>
 <c2>0.2</c2>
 400000: + <c1>30</c1>
 <c2>0.3</c2>
 401000: - <c1>30</c1>
 <c2>0.3</c2>
100000000: + <c1>40</c1>
 <c2>4.04</c2>
100001000: - <c1>40</c1>
 <c2>4.04</c2>

5.15 xml_parse_expr
Use an xml_parse_expr expression to parse and generate an XML instance from the
evaluated result of arith_expr.

xml_parse_expr::=

(arith_expr::=)

When using an xml_parse_expr expression, note the following:

• If arith_expr resolves to null, then the expression returns null.

• If you specify content, then arith_expr must resolve to a valid XML value. For an
example, see xml_parse_expr Document Example

• If you specify document, then arith_expr must resolve to a singly rooted XML
document. For an example, see xml_parse_expr Content Example.

• When you specify wellformed, you are guaranteeing that value_expr resolves to a
well-formed XML document, so the database does not perform validity checks to

Chapter 5
xml_parse_expr

5-24

ensure that the input is well formed. For an example, see xml_parse_expr
Wellformed Example.

You can specify an xml_parse_expr as the argument of a function expression. It is
especially useful when processing SQLX streams. For more information, see
SQL/XML (SQLX).

You can use an xml_parse_expr in the following Oracle CQL statements:

• func_expr::=

5.15.1 Examples
This section describes the following xml_parse_expr examples:

• xml_parse_expr Content Example

• xml_parse_expr Document Example

• xml_parse_expr Wellformed Example

xml_parse_expr Content Example

Consider the query tkdata62_q3 and the input relation tkdata62_S1. Relation
tkdata62_S1 has schema (c1 char(30)). The query returns the relation.

<query id="tkdata62_q3"><![CDATA[
 select XMLPARSE(CONTENT c1) from tkdata62_S1
]]></query>

Timestamp Tuple
1000 "<a>3"
1000 "<e3>blaaaaa</e3>"
1000 "<r>4</r>"
1000 "<a>
1003 "<a>s3"
1004 "<d>b6</d>"

Timestamp Tuple Kind Tuple
1000: + <a>3
1000: + <e3>blaaaaa</e3>
1000: + <r>4</r>
1000: + <a/>
1003: + <a>s3
1004: + <d>b6</d>

xml_parse_expr Document Example

Consider the query tkdata62_q4 and the input relation tkdata62_S1. Relation
tkdata62_S1 has schema (c1 char(30)). The query returns the relation.

<query id="tkdata62_q4"><![CDATA[
 select XMLPARSE(DOCUMENT c1) from tkdata62_S1
]]></query>

Timestamp Tuple
1000 "<a>3"
1000 "<e3>blaaaaa</e3>"
1000 "<r>4</r>"
1000 "<a>
1003 "<a>s3"
1004 "<d>b6</d>"

Timestamp Tuple Kind Tuple
1000: + <a>3

Chapter 5
xml_parse_expr

5-25

1000: + <e3>blaaaaa</e3>
1000: + <r>4</r>
1000: + <a/>
1003: + <a>s3
1004: + <d>b6</d>

xml_parse_expr Wellformed Example

Consider the query tkdata62_q2 and the input relation tkdata62_S. Relation tkdata62_S
has schema (c char(30)). The query returns the relation.

<query id="tkdata62_q2"><![CDATA[
 select XMLPARSE(DOCUMENT c WELLFORMED) from tkdata62_S
]]></query>

Timestamp Tuple
1000 "<a>3"
1000 "<e3>blaaaaa</e3>"
1000 "<r>4</r>"
1000 "<a/>"
1003 "<a>s3"
1004 "<d>b6</d>"

Timestamp Tuple Kind Tuple
1000: + <a>3
1000: + <e3>blaaaaa</e3>
1000: + <r>4</r>
1000: + <a/>
1003: + <a>s3
1004: + <d>b6</d>

Chapter 5
xml_parse_expr

5-26

6
Conditions

A reference to conditions in Oracle Continuous Query Language (Oracle CQL) is
provided. A condition specifies a combination of one or more expressions and logical
operators and returns a value of TRUE, FALSE, or UNKNOWN.

6.1 Introduction to Conditions
You must use appropriate condition syntax whenever condition appears in Oracle
CQL statements.

You can use a condition in the WHERE clause of these statements:

• SELECT

You can use a condition in any of these clauses of the SELECT statement:

• WHERE

• HAVING

See Also:

Query.

A condition could be said to be of a logical data type.

The following simple condition always evaluates to TRUE:

1 = 1

The following more complex condition adds the salary value to the commission_pct
value (substituting the value 0 for null using the nvl function) and determines whether
the sum is greater than the number constant 25000:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For
example, you can use the AND condition to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = 'SMITH'
S0.department_id = S2.department_id
hire_date > '01-JAN-88'
commission_pct IS NULL AND salary = 2100

6-1

6.1.1 Condition Precedence
Precedence is the order in which Oracle Event Processing evaluates different
conditions in the same expression. When evaluating an expression containing multiple
conditions, Oracle Event Processing evaluates conditions with higher precedence
before evaluating those with lower precedence. Oracle Event Processing evaluates
conditions with equal precedence from left to right within an expression.

Table 6-1 lists the levels of precedence among Oracle CQL condition from high to low.
Conditions listed on the same line have the same precedence. As the table indicates,
Oracle evaluates operators before conditions.

Table 6-1 Oracle CQL Condition Precedence

Type of Condition Purpose

Oracle CQL operators are evaluated before
Oracle CQL conditions

See What You May Need to Know About
Operator Precedence .

=, <>, <, >, <=, >= comparison

IS NULL, IS NOT NULL, LIKE, BETWEEN, IN, NOT
IN

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction

XOR disjunction

6.2 Comparison Conditions
Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or NULL.

When comparing numeric expressions, Oracle Event Processing uses numeric
precedence to determine whether the condition compares INTEGER, FLOAT, or BIGINT
values.

Two objects of nonscalar type are comparable if they are of the same named type and
there is a one-to-one correspondence between their elements.

A comparison condition specifies a comparison with expressions or view results.

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions

Type of
Condition

Purpose Example

= Equality test. <query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE salary = 2500
]]></query>

Chapter 6
Comparison Conditions

6-2

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition

Purpose Example

<> Inequality test. <query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE salary <> 2500
]]></query>

>

<

Greater-than and less-than
tests.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary > 2500
]]></query>
<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary < 2500
]]></query>

>=

<=

Greater-than-or-equal-to and
less-than-or-equal-to tests.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary >= 2500
]]></query>
<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary <= 2500
]]></query>

like Pattern matching tests on
character data.

For more information, see LIKE
Condition .

<query id="q291"><![CDATA[
 select * from SLk1
 where first1 like "^Ste(v|ph)en$"
]]></query>

is [not] null Null tests.

For more information, see Null
Conditions .

<query id="Q1"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NULL
]]></query>

<query id="Q2"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NOT NULL
]]></query>

Chapter 6
Comparison Conditions

6-3

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition

Purpose Example

[not] in Set and membership tests.

For more information, see IN
Condition.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE job_id NOT IN
 ('PU_CLERK','SH_CLERK')
]]></query>
<view id="V1" schema="salary"><![CDATA[
 SELECT salary
 FROM S0
 WHERE department_id = 30
]]></view>
<view id="V2" schema="salary"><![CDATA[
 SELECT salary
 FROM S0
 WHERE department_id = 20
]]></view>
<query id="Q2"><![CDATA[
 V1 IN V2
]]></query>

condition::=

(aggr_expr::= and non_mt_arg_list_set::=.

6.3 Logical Conditions
A logical condition combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 6-3 lists
logical conditions.

Chapter 6
Logical Conditions

6-4

Table 6-3 Logical Conditions

Type of
Condition

Operation Examples

NOT Returns TRUE if the following condition is
FALSE. Returns FALSE if it is TRUE. If it is
UNKNOWN, then it remains UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE NOT (job_id IS NULL)
]]></query>

AND Returns TRUE if both component conditions are
TRUE. Returns FALSE if either is FALSE.
Otherwise returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 AND dept_id = 30
]]></query>

OR Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE.
Otherwise returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 OR department_id = 10
]]></query>

XOR Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE.
Otherwise returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 XOR department_id = 10
]]></query>

Table 6-4 shows the result of applying the NOT condition to an expression.

Table 6-4 NOT Truth Table

-- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 6-5 shows the results of combining the AND condition to two expressions.

Table 6-5 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

For example, in the WHERE clause of the following SELECT statement, the AND logical
condition returns values only when both product.levelx is BRAND and v1.prodkey
equals product.prodkey:

<view id="v2" schema="region, dollars, month_"><![CDATA[
 select

Chapter 6
Logical Conditions

6-5

 v1.region,
 v1.dollars,
 v1.month_
 from
 v1,
 product
 where
 product.levelx = "BRAND" and v1.prodkey = product.prodkey
]]></view>

Table 6-6 shows the results of applying OR to two expressions.

Table 6-6 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns the internal account identifier for RBK or RBR
accounts with a risk of type 2:

<view id="ValidAccounts" schema="ACCT_INTRL_ID"><![CDATA[
 select ACCT_INTRL_ID from Acct
 where (
 ((MANTAS_ACCT_BUS_TYPE_CD = "RBK") OR (MANTAS_ACCT_BUS_TYPE_CD = "RBR")) AND
 (ACCT_EFCTV_RISK_NB != 2)
)
]]></view>

Table 6-7 shows the results of applying XOR to two expressions.

Table 6-7 XOR Truth Table

XOR TRUE FALSE UNKNOWN

TRUE FALSE TRUE UNKNOWN

FALSE TRUE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

For example, the following query returns c1 and c2 when c1 is 15 and c2 is 0.14 or
when c1 is 20 and c2 is 100.1, but not both:

<query id="q6"><![CDATA[
 select
 S2.c1,
 S3.c2
 from
 S2[range 1000], S3[range 1000]
 where
 (S2.c1 = 15 and S3.c2 = 0.14) xor (S2.c1 = 20 and S3.c2 = 100.1)
]]></query>

6.4 LIKE Condition
The LIKE condition specifies a test involving regular expression pattern matching.
Whereas the equality operator (=) exactly matches one character value to another, the

Chapter 6
LIKE Condition

6-6

LIKE conditions match a portion of one character value to another by searching the first
value for the regular expression pattern specified by the second. LIKE calculates
strings using characters as defined by the input character set.

The LIKE condition with the syntax of the comparison String supports % for 0 or more
characters and - for any single character in coherence.

like_condition::=

(arith_expr::=)

In this syntax:

• arith_expr is an arithmetic expression whose value is compared to const_string.

• const_string is a constant value regular expression to be compared against the
arith_expr.

If any of arith_expr or const_string is null, then the result is unknown.

The const_string can contain any of the regular expression assertions and quantifiers
that java.util.regex supports: that is, a regular expression that is specified in string
form in a syntax similar to that used by Perl.

Table 6-8 describes the LIKE conditions.

Table 6-8 LIKE Conditions

Type of
Condition

Operation Example

x LIKE y TRUE if x does match the pattern y,
FALSE otherwise.

<query id="q291"><![CDATA[
 select * from SLk1 where first1
like "^Ste(v|ph)en$"
]]></query>

<query id="q292"><![CDATA[
 select * from SLk1 where first1
like ".*intl.*"
]]></query>

See Also:

lk

For more information on Perl regular expressions, see http://perldoc.perl.org/
perlre.html.

6.4.1 Examples
This condition is true for all last_name values beginning with Ma:

Chapter 6
LIKE Condition

6-7

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

last_name LIKE '^Ma'

All of these last_name values make the condition true:

Mallin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so last_name values beginning with MA, ma, and mA make the
condition false.

Consider this condition:

last_name LIKE 'SMITH[A-Za-z]'

This condition is true for these last_name values:

SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the [A-Z] must match exactly one character of
the last_name value.

Consider this condition:

last_name LIKE 'SMITH[A-Z]+'

This condition is false for SMITH but true for these last_name values because the [A-Z]+
must match 1 or more such characters at the end of the word.

SMITHSTONIAN, SMITHY, SMITHS

For more information, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/
Pattern.html.

6.5 Range Conditions
A range condition tests for inclusion in a range.

between_condition::=

(arith_expr::=)

Table 6-9 describes the range conditions.

Table 6-9 Range Conditions

Type of Condition Operation Example

BETWEEN x AND y Greater than or equal to x and
less than or equal to y.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary
 BETWEEN 2000 AND 3000
]]></query>

Chapter 6
Range Conditions

6-8

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

6.6 Null Conditions
A NULL condition tests for nulls. This is the only condition that you should use to test for
nulls.

null_conditions::=

(Expressions).

Table 6-10 lists the null conditions.

Table 6-10 Null Conditions

Type of
Condition

Operation Example

IS [NOT] NULL Tests for nulls.

See Also: Nulls
<query id="Q1"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NULL
]]></query>

<query id="Q2"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NOT NULL
]]></query>

6.7 Compound Conditions
A compound condition specifies a combination of other conditions.

compound_conditions::=

See Also:

Logical Conditions for more information about NOT, AND, and OR conditions.

Chapter 6
Null Conditions

6-9

6.8 IN Condition
You can use the IN and NOT IN condition in the following ways:

• in_condition_set: Using IN and NOT IN as a Membership Condition

• in_condition_membership: Using IN and NOT IN as a Membership Condition.

Note:

You cannot combine these two usages.

When using the NOT IN condition, be aware of the effect of null values as NOT IN and
Null Values describes.

6.8.1 Using IN and NOT IN as a Membership Condition
In this usage, the query will be a SELECT-FROM-WHERE query that either tests whether or
not one argument is a member of a list of arguments of the same type or tests whether
or not a list of arguments is a member of a set of similar lists.

in_condition_membership::=

(arith_expr::= and non_mt_arg_list_set::=)

non_mt_arg_list_set::=

When you use IN or NOT IN to test whether or not a non_mt_arg_list is a member of a
set of similar lists, then you must use a non_mt_arg_list_set. Each non_mt_arg_list in
the non_mt_arg_list_set must match the non_mt_arg_list to the left of the condition in
number and type of arguments.

Consider the query Q1 and the data stream S0. Stream S0 has schema (c1 integer, c2
integer). The following example shows the relation that the query returns. In Q1, the
non_mt_arg_list_set is ((50,4),(4,5)). Note that each non_mt_arg_list that it contains
matches the number and type of arguments in the non_mt_arg_list to the left of the
condition, (c1, c2).

Chapter 6
IN Condition

6-10

<query id="Q1"><![CDATA[
 select c1,c2 from S0[range 1] where (c1,c2) in ((50,4),(4,5))
]]></query>

Timestamp Tuple
1000 50, 4
2000 30, 6
3000 , 5
4000 22,
h 200000000

Timestamp Tuple Kind Tuple
1000: + 50,4
2000: - 50,4

6.8.2 NOT IN and Null Values
If any item in the list following a NOT IN operation evaluates to null, then all stream
elements evaluate to FALSE or UNKNOWN, and no rows are returned. For example, the
following statement returns c1 and c2 if c1 is neither 50 nor 30:

<query id="check_notin1"><![CDATA[
 select c1,c2 from S0[range 1]
 where
 c1 not in (50, 30)
]]></query>

However, the following statement returns no stream elements:

<query id="check_notin1"><![CDATA[
 select c1,c2 from S0[range 1]
 where
 c1 not in (50, 30, NULL)
]]></query>

The preceding example returns no stream elements because the WHERE clause
condition evaluates to:

c1 != 50 AND c1 != 30 AND c1 != null

Because the third condition compares c1 with a null, it results in an UNKNOWN, so the
entire expression results in FALSE (for stream elements with c1 equal to 50 or 30). This
behavior can easily be overlooked, especially when the NOT IN operator references a
view.

Moreover, if a NOT IN condition references a view that returns no stream elements at
all, then all stream elements will be returned, as shown in the following example. Since
V1 returns no stream elements at all, Q1 will return all V2 stream elements.

<view id="V1" schema="c1"><![CDATA[
 select * from S1[range 10 slide 10] where 1=2
]]></view>
<view id="V2" schema="c1"><![CDATA[
 select * from S1[range 10 slide 10] where c1=2
]]></view>
<query id="Q1"><![CDATA[
 V2 not in V1
]]></query>

Chapter 6
IN Condition

6-11

7
Common Oracle CQL DDL Clauses

A reference to clauses in the data definition language (DDL) in Oracle Continuous
Query Language (Oracle CQL) is provided.

7.1 Introduction to Common Oracle CQL DDL Clauses
Oracle CQL supports the following common DDL clauses:

• array_type

• attr

• attrspec

• complex_type

• const_int

• const_string

• const_value

• identifier

• l-value

• methodname

• non_mt_arg_list

• non_mt_attr_list

• non_mt_attrname_list

• non_mt_attrspec_list

• non_mt_cond_list

• param_list

• qualified_type_name

• query_ref

• time_spec

• xml_attribute_list

• xml_attr_list

• xqryargs_list.

For more information on Oracle CQL statements, see Oracle CQL Statements.

7-1

7.2 array_type
Purpose

Use the array_type clause to specify an Oracle CQL data cartridge type composed of a
sequence of complex_type components, all of the same type.

Note:

Oracle CQL supports single-dimension arrays only. That is, you can use
java.lang.String[] but not java.lang.String[][].

Prerequisites

None.

Syntax

array_type::=

Semantics

Array Declaration

You declare an array type using the qualified_type_name of the Oracle CQL data cartridge
complex_type. Only arrays of complextype are supported: you cannot declare an array of
Oracle CQL simple types unless there is an equivalent type defined in the Oracle CQL
Java data cartridge.

Array Access

You access a complex_type array element by integer index. The index begins at 0 or 1
depending on the data cartridge implementation.

There is no support for the instantiation of new array type instances directly in Oracle
CQL at the time you access an array. For example, the following is not allowed:

SELECT java.lang.String[10] ...

Examples

The following example shows how to create an event type as a Java class that
specifies an event property as an array of Oracle CQL data cartridge complex type
MyClass defined in package com.mypackage.

package com.myapplication.event;

import java.util.Date;

public final class MarketEvent {

Chapter 7
array_type

7-2

 private final String symbol;
 private final Double price;
 private final com.mypackage.MyClass[] a1;

 public MarketEvent(...) {
 ...
 }
 ...
}

Array Declaration Example: Oracle CQL Simple Type

Only arrays of Oracle CQL data cartridge types are supported: you cannot declare an
array of Oracle CQL simple types.

int[] a1

However, you can work around this by using the Oracle CQL Java data cartridge and
referencing the Java equivalent of the simple type, if one exists:

int@java[] a1

For more information on the @ syntax, see link::=.

Array Access Examples

The following example shows how to register the following queries that use Oracle
CQL data cartridge complex type array access:

• View v1 accesses the third element of the array a1. This array contains instances
of Oracle CQL data cartridge complex type com.mypackage.MyClass.

• Query q1 accesses the first element of the array field1. This array is defined on
Oracle CQL data cartridge complex type a1.

<view id="v1" schema="symbol price a1"><![CDATA[
 IStream(select symbol, price, a1[3] from S1[range 10 slide 10])
]]></view>
<query id="q1"><![CDATA[
 SELECT a1.field1[1] …
]]></query>

7.3 attr
Purpose

Use the attr clause to specify a stream element or pseudocolumn.

You can use the attr clause in the following Oracle CQL statements:

• arith_expr::=

• order_expr::=.

Prerequisites

None.

Chapter 7
attr

7-3

Syntax

Figure 7-1 attr::=

identifier::= and Example 7-1.

Semantics

identifier

Specify the identifier of the stream element.

You can specify

• StreamOrViewName.ElementName

• ElementName

• CorrelationName.PseudoColumn

• PseudoColumn.

For examples, see Examples.

Example 7-1 pseudo_column

Specify the timestamp associated with a specific stream element, all stream elements,
or the stream element associated with a correlation name in a MATCH_RECOGNIZE clause.

For examples, see:

• Examples

• Using ELEMENT_TIME With SELECT

• Using ELEMENT_TIME With GROUP BY

• Using ELEMENT_TIME With PATTERN.

For more information, see Pseudocolumns.

Examples

Given the stream, valid attribute clauses are:

• ItemTempStream.temp

• temp

• B.element_time

Chapter 7
attr

7-4

• element_time

<view id="ItemTempStream" schema="itemId temp"><![CDATA[
 IStream(select * from ItemTemp)
]]></view>
<query id="detectPerish"><![CDATA[
 select its.itemId
 from ItemTempStream MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as itemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL "0
00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY TO
SECOND)
) as its
]]></query>

7.4 attrspec
Purpose

Use the attrspec clause to define the identifier and data type of a stream element.

Prerequisites

None.

Syntax

Figure 7-2 attrspec::=

(fixed_length_datatype::= and variable_length_datatype::=).

Semantics

identifier

Specify the identifier of the stream element.

fixed_length_datatype

Specify the stream element data type as a fixed-length data type.

For syntax, see fixed_length_datatype::= .

variable_length_datatype

Specify the stream element data type as a variable-length data type.

For syntax, see variable_length_datatype::=.

integer

Specify the length of the variable-length data type.

Chapter 7
attrspec

7-5

7.5 complex_type
Purpose

Use the complex_type clause to specify an Oracle CQL data cartridge type that defines:

• member fields (static or instance)

• member methods (static or instance)

• constructors.

The type of a field, and the return type and parameter list of a method may be complex
types or simple types.

A complex type is identified by its qualified type name (set of identifiers separated by a
period ".") and the optional name of the data cartridge to which it belongs (see link::=).
If you do not specify a link name, then Oracle Event Processing assumes that the
complex type is a Java class (that is, Oracle Event Processing assumes that the
complex type belongs to the Java data cartridge).

Prerequisites

The Oracle CQL data cartridge that provides the complextype must be loaded by
Oracle Event Processing server at runtime.

Syntax

complex_type::=

(link::=)

Semantics

fieldname

Use the fieldname clause to specify a static field of an Oracle CQL data cartridge
complex type.

Field Access

You cannot use a complex type l-value generated in expressions within an ORDER BY
clause. Currently, only expressions within a SELECT clause and a WHERE clause may
generate a complex type l-value.

Chapter 7
complex_type

7-6

You may access only a static field using qualified_type_name. To access a non-static field,
you must first instantiate the complex type.

Method Access

Accessing complex type setter methods may cause side effects. Side effects decrease
the opportunities for concurrency and sharing. For example, if you invoke a setter
method and change the value of a view attribute (such as an event property) shared
by different queries that depend on the view, then the query results may change as a
side effect of your method invocation.

You may access only a static method using qualified_type_name. To access a non-static
field, you must first instantiate the complex type.

Constructor Invocation

You may access only a static fields and static methods using qualified_type_name. To
access a non-static field or non-static method, you must first instantiate the complex
type by invoking one of its constructors.

Examples

Field Access Examples: complex_type

The following example shows how to register the following queries that use Oracle
CQL data cartridge complex type field access:

• Query q1 accesses field myField from Oracle CQL data cartridge complex type a1.

• Query q2 accesses field myField defined on the Oracle CQL data cartridge complex
type returned by the method function-returning-object.

Query q3 accesses field myNestedField defined on the Oracle CQL data cartridge
complex type myField which is defined on Oracle CQL data cartridge complex type
a1.

• Query q4 accesses the static field myStaticField defined in the class MyType in
package com.myPackage. Note that a link (@myCartridge) is necessary in the case of
a static field.

<query id="q1"><![CDATA[
 SELECT a1.myField …
]]></query>
<query id="q2"><![CDATA[
 SELECT function-returning-object().myField …
]]></query>
<query id="q3"><![CDATA[
 SELECT a1.myField.myNestedField …
]]></query>
<query id="q4"><![CDATA[
 SELECT com.myPackage.MyType.myStaticField@myCartridge …
]]></query>

Method Access Examples: complex_type

The following example shows how to register the following queries that use Oracle
CQL data cartridge complex type method access:

• Query q1 accesses method myMethod defined on Oracle CQL data cartridge
complex type a1. This query accesses the method with an empty parameter list.

Chapter 7
complex_type

7-7

• Query q2 accesses method myMethod defined on Oracle CQL data cartridge
complex type a1 with a different signature than in query q1. In this case, the query
accesses the method with a three-argument parameter list.

• Query q3 accesses static method myStaticMethod defined on Oracle CQL data
cartridge complex type MyType. This query accesses the method with a single
parameter. Note that a link (@myCartridge) is necessary in the case of a static
method.

<query id="q1"><![CDATA[
 SELECT a1.myMethod() …
]]></query>
<query id="q2"><![CDATA[
 SELECT a1.myMethod(a2, “foo", 10) …
]]></query>
<query id="q3"><![CDATA[
 SELECT myPackage.MyType.myStaticMethod@myCartridge("foo") …
]]></query>

Constructor Invocation Examples: complex_type

The following example shows how to register the following queries that use Oracle
CQL data cartridge complex type constructor invocation:

• Query q1 invokes the constructor String defined in package java.lang. In this case,
the query invokes the constructor with an empty argument list.

• Query q2 invokes the constructor String defined in package java.lang. In this case,
the query invokes the constructor with a single argument parameter list and
invokes the non-static method substring defined on the returned String instance.

<query id="q1"><![CDATA[
 SELECT java.lang.String() …
]]></query>
<query id="q2"><![CDATA[
 SELECT java.lang.String(“food").substring(0,1) …
]]></query>

7.6 const_bigint
Purpose

Use the const_bigint clause to specify a big integer numeric literal.

You can use the const_bigint clause in the following Oracle CQL statements:

• func_expr::=

For more information, see Numeric Literals.

Prerequisites

None.

Syntax

const_bigint::=

Chapter 7
const_bigint

7-8

7.7 const_int
Purpose

Use the const_int clause to specify an integer numeric literal.

You can use the const_int clause in the following Oracle CQL statements:

• func_expr::=

• order_expr::=

For more information, see Numeric Literals.

Prerequisites

None.

Syntax

const_int::=

7.8 const_string
Purpose

Use the const_string clause to specify a constant String text literal.

You can use the const_string clause in the following Oracle CQL statements:

• func_expr::=

• order_expr::=

• condition::=

• Figure 7-4

• Figure 16-26

• Figure 16-31.

For more information, see Text Literals.

Prerequisites

None.

Syntax

Figure 7-3 const_string::=

Chapter 7
const_int

7-9

7.9 const_value
Purpose

Use the const_value clause to specify a literal value.

You can use the const_value clause in the following Oracle CQL statements:

• arith_expr::=

• condition::=

For more information, see Literals.

Prerequisites

None.

Syntax

Figure 7-4 const_value::=

Example 7-2.

Figure 7-5 interval_value

Example 7-2 interval_value

Specify an interval constant value as a quoted string. For example:

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

For more information, see Interval Literals.

const_string

Specify a quoted String constant value.

For more information, see Text Literals.

Chapter 7
const_value

7-10

null

Specify a null constant value.

For more information, see Nulls.

const_int

Specify an int constant value.

For more information, see Numeric Literals.

bigint

Specify a bigint constant value.

For more information, see Numeric Literals.

float

Specify a float constant value.

For more information, see Numeric Literals.

7.10 identifier
Purpose

Use the identifier clause to reference an existing Oracle CQL schema object.

You can use the identifier clause in the following Oracle CQL statements:

• Figure 16-20

• aggr_expr::=

• func_expr::=

• Figure 7-1

• Figure 7-2

• Figure 7-9

• Figure 7-8

• Figure 16-8

• measure_column::=

• Query

• Figure 16-5

• View.

Prerequisites

The schema object must already exist.

Chapter 7
identifier

7-11

Syntax

Figure 7-6 identifier::=

const_string and Example 7-3.

Chapter 7
identifier

7-12

Example 7-3 unreserved_keyword::=

Semantics

const_string

Specify the identifier as a String.

For more information, see Schema Object Naming Rules.

[A-Z]

Specify the identifier as a single uppercase letter.

unreserved_keyword

These are names that you may use as identifiers.

For more information, see:

• Schema Object Naming Rules.

reserved_keyword

These are names that you may not use as identifiers, because they are reserved
keywords: add, aggregate, all, alter, and, application, as, asc, avg, between, bigint,
binding, binjoin, binstreamjoin, boolean, by, byte, callout, case, char, clear, columns,
constraint, content, count, create, day, days, decode, define, derived, desc, destination,
disable, distinct, document, double, drop, dstream, dump, duration, duration,
element_time, else, enable, end, evalname, event, events, except, external, false, first,
float, from, function, group, groupaggr, having, heartbeat, hour, hours, identified,
implement, in, include, index, instance, int, integer, intersect, interval, is, istream,
java, key, language, last, level, like, lineage, logging, match_recognize, matches, max,
measures, metadata_query, metadata_system, metadata_table, metadata_userfunc,
metadata_view, metadata_window, microsecond, microseconds, millisecond, milliseconds,
min, minus, minute, minutes, monitoring, multiples, nanosecond, nanoseconds, not, now,
null, nulls, object, of, on, operator, or, order, orderbytop, output, partition,
partitionwin, partnwin, passing, path, pattern, patternstrm, patternstrmb, prev, primary,
project, push, query, queue, range, rangewin, real, register, relation, relsrc, remove,
return, returning, rows, rowwin, rstream, run, run_time, sched_name, sched_threaded,
schema, second, seconds, select, semantics, set, silent, sink, slide, source, spill, start,
stop, storage, store, stream, strmsrc, subset, sum, synopsis, system, systemstate, then,
time, time_slice, timeout, timer, timestamp, timestamped, to, true, trusted, type,
unbounded, union, update, using, value, view, viewrelnsrc, viewstrmsrc, wellformed, when,
where, window, xmlagg, xmlattributes, xmlcolattval, xmlconcat, xmldata, xmlelement,
xmlexists, xmlforest, xmlparse, xmlquery, xmltable, xmltype, or xor.

Chapter 7
identifier

7-13

7.11 l-value
Purpose

Use the l-value clause to specify an integer literal.

Prerequisites

None.

Syntax

l-value::=

7.12 methodname
Purpose

Use the methodname clause to specify a method of an Oracle CQL data cartridge
complex type.

Prerequisites

None.

Syntax

methodname::=

(link::=)

7.13 non_mt_arg_list
Purpose

Use the non_mt_arg_list clause to specify one or more arguments as arithmetic
expressions involving stream elements.

You can use the non_mt_arg_list clause in the following Oracle CQL statements:

• decode::=

• func_expr::=

• condition::=

Chapter 7
l-value

7-14

• non_mt_arg_list_set::=.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

non_mt_arg_list::=

(arith_expr::=)

Semantics

arith_expr

Specify the arithmetic expression that resolves to the argument value.

7.14 non_mt_attr_list
Purpose

Use the non_mt_attr_list clause to specify one or more arguments as stream
elements directly.

You can use the non_mt_attr_list clause in the following Oracle CQL statements:

• Figure 15-6

• Figure 16-9

• Figure 16-12.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

Figure 7-7 non_mt_attr_list::=

Semantics

attr

Specify the argument as a stream element directly.

Chapter 7
non_mt_attr_list

7-15

7.15 non_mt_attrname_list
Purpose

Use the non_mt_attrname_list clause to one or more stream elements by name.

You can use the non_mt_attrname_list clause in the following Oracle CQL statements:

• View

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

Figure 7-8 non_mt_attrname_list::=

Semantics

identifier

Specify the stream element by name.

7.16 non_mt_attrspec_list
Purpose

Use the non_mt_attrspec_list clause to specify one or more attribute specifications
that define the identifier and data type of stream elements.

You can use the non_mt_attrspec_list clause in the following Oracle CQL statements:

• View.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

non_mt_attrspec_list::=

Semantics

attrspec

Chapter 7
non_mt_attrname_list

7-16

Specify the attribute identifier and data type.

7.17 non_mt_cond_list
Purpose

Use the non_mt_cond_list clause to specify one or more conditions using any
combination of logical operators AND, OR, XOR and NOT.

You can use the non_mt_cond_list clause in the following Oracle CQL statements:

• Figure 15-5

• searched_case::=

• Figure 16-11

• Figure 16-19.

For more information, see Conditions.

Prerequisites

None.

Syntax

non_mt_cond_list::=

(condition::=, between_condition::=)

Semantics

condition

Specify a comparison condition.

For more information, see Comparison Conditions .

For syntax, see condition::=.

between_condition

Specify a condition that tests for inclusion in a range.

For more information, see Range Conditions .

For syntax, see between_condition::=.

Chapter 7
non_mt_cond_list

7-17

7.18 out_of_line_constraint
Purpose

Use this out_of_line_constraint clause to restrict a tuple of any data type by a primary
key integrity constraint.

If you plan to configure a query on a relation with USE UPDATE SEMANTICS, you must
declare one or more stream elements as a primary key. Use this constraint to specify a
compound primary key made up of one or more stream element values.

You can use the out_of_line_constraint clause in the following Oracle CQL
statements:

• Query.

For more information, see:

• Nulls.

Prerequisites

A tuple that you specify with an out_of_line_constraint may not contain a null value.

Syntax

out_of_line_constraint::=

Semantics

non_mt_attrname_list

Specify one or more tuples to restrict by a primary key integrity constraint.

7.19 param_list
Purpose

Use the param_list clause to specify a comma-separated list of zero or more
parameters, similar to a function parameter list, for an Oracle CQL data cartridge
complex type method or constructor.

You can use the param_list clause in the following Oracle CQL data cartridge
statements:

• link::=

Prerequisites

None.

Chapter 7
out_of_line_constraint

7-18

Syntax

param_list::=

(arith_expr::=).

7.20 qualified_type_name
Purpose

Use the qualified_type_name clause to specify a fully specified type name of an Oracle
CQL data cartridge complex type, for example java.lang.String. Use the
qualified_type_name when invoking Oracle CQL data cartridge static fields, static
methods, or constructors.

There is no default package. For example, using the Java data cartridge, you must
specify java.lang when referencing the class String. To be able to distinguish a
reserved word from a qualified type, all qualified types must have at least two
identifiers, that is, there must be at least one period (.) in a qualified name.

Prerequisites

None.

Syntax

qualified_type_name::=

(arith_expr::= and link::=)

Semantics

package_name

Use the package_name clause to specify the name of an Oracle CQL data cartridge
package.

Chapter 7
qualified_type_name

7-19

class_name

Use the class_name clause to specify the name of an Oracle CQL data cartridge Class.

7.21 query_ref
Purpose

Use the query_ref clause to reference an existing Oracle CQL query by name.

You can reference a Oracle CQL query in the following Oracle CQL statements:

• View

Prerequisites

The query must already exist (see Query).

Syntax

Figure 7-9 query_ref::=

Semantics

identifier

Specify the name of the query. This is the name you use to reference the query in
subsequent Oracle CQL statements.

7.22 time_spec
Purpose

Use the time_spec clause to define a time duration in days, hours, minutes, seconds,
milliseconds, or nanoseconds.

Default: if units are not specified, Oracle Event Processing assumes [second|seconds].

You can use the time_spec clause in the following Oracle CQL statements:

• Figure 15-9

• windows_type in Query Semantics

Prerequisites

None.

Syntax

Figure 7-10 time_spec::=

Chapter 7
query_ref

7-20

Figure 7-11 time_unit::=

Semantics

integer

Specify the number of time units.

time_unit

Specify the unit of time.

7.23 xml_attribute_list
Purpose

Use the xml_attribute_list clause to specify one or more XML attributes.

You can use the xml_attribute_list clause in the following Oracle CQL statements:

• xmlelement_expr.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

xml_attribute_list::=

Chapter 7
xml_attribute_list

7-21

Semantics

xml_attr_list

Specify one or more XML attributes.

<query id="tkdata51_q1"><![CDATA[
 select XMLELEMENT(NAME "S0", XMLATTRIBUTES(tkdata51_S0.c1 as "C1", tkdata51_S0.c2 as "C2"),
 XMLELEMENT(NAME "c1_plus_c2", c1+c2), XMLELEMENT(NAME "c2_plus_10", c2+10.0)) from
tkdata51_S0 [range 1]
]]>
</query>

7.24 xml_attr_list
Purpose

Use the xml_attr_list clause to specify one or more XML attributes..

You can use the xml_attr_list clause in the following Oracle CQL statements:

• xml_attribute_list

• xmlforest_expr

• xml_agg_expr.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

xml_attr_list::=

(arith_expr::=)

Semantics

xml_attr

Specify an XML attribute.

Chapter 7
xml_attr_list

7-22

7.25 xqryargs_list
Purpose

Use the xqryargs_list clause to specify one or more arguments to an XML query.

You can use the non_mt_arg_list clause in the following Oracle CQL statements:

• xmlexists

• xmlquery.

• func_expr::=

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

xqryargs_list::=

(arith_expr::=)

Semantics

xqryarg

A clause that binds a stream element value to an XQuery variable or XPath operator.

You can bind any arithmetic expression that involves one or more stream elements
(see arith_expr::=) to either a variable in a given XQuery or an XPath operator such as
"." as a quoted string.

Chapter 7
xqryargs_list

7-23

8
Built-In Single-Row Functions

A reference to single-row functions in Oracle Continuous Query Language (Oracle
CQL) is provided. Single-row functions return a single result row for every row of a
queried stream or view.

8.1 Introduction to Oracle CQL Built-In Single-Row
Functions

Table 8-1 lists the built-in single-row functions that Oracle CQL provides.

Table 8-1 Oracle CQL Built-in Single-Row Functions

Type Function

Character (returning character values) • concat

Character (returning numeric values) • length

Datetime • systimestamp

Conversion • to_bigint
• to_boolean
• to_char
• to_double
• to_float
• to_timestamp

XML and SQLX • xmlcomment
• xmlconcat
• xmlexists
• xmlquery

Encoding and Decoding • hextoraw
• rawtohex

Null-related • nvl

Pattern Matching • lk
• prev

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

8-1

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

8.2.1 concat
Syntax

Purpose

concat returns char1 concatenated with char2 as a char[] or byte1 concatenated with
byte2 as a byte[]. The char returned is in the same character set as char1. Its data
type depends on the data types of the arguments.

Using concat, you can concatenate any combination of character, byte, and numeric
data types. The concat performs automatic numeric to string conversion.

This function is equivalent to the concatenation operator (||).

To concatenate xmltype arguments, use xmlconcat. For more information, see
xmlconcat.

Examples

concat Function

Consider the query chr_concat in concat and data stream S4 in concat. Stream S4 has
schema (c1 char(10)). The query returns the relation in concat.

Example 8-1 concat Function Query

<query id="chr_concat"><![CDATA[
select
concat(c1,c1),
concat("abc",c1),
concat(c1,"abc")
from
S4[range 5]
]]></query>

Example 8-2 concat Function Stream Input

Timestamp Tuple
1000
2000 hi
8000 hi1
9000
15000 xyz
h 200000000

Chapter 8
concat

8-2

Example 8-3 concat Function Relation Output

Timestamp Tuple Kind Tuple
1000: + ,abc,abc
2000: + hihi,abchi,hiabc
6000: - ,abc,abc
7000: - hihi,abchi,hiabc
8000: + hi1hi1,abchi1,hi1abc
9000: + ,abc,abc
13000: - hi1hi1,abchi1,hi1abc
14000: - ,abc,abc
15000: + xyzxyz,abcxyz,xyzabc
20000: - xyzxyz,abcxyz,xyzabc

Concatenation Operator (||)

Consider the query q264 in Example 8–4 and the data stream S10 in Example 8–5.
Stream S10 has schema (c1 integer, c2 char(10)). The query returns the relation in
Example 8–6.

Example 8-4 Concatenation Operator (||) Query

<query id="q264">
select
c2 || "xyz"
from
S10
]]></query>

Example 8-5 Concatenation Operator (||) Stream Input

Timestamp Tuple
1 1,abc
2 2,ab
3 3,abc
4 4,a
h 200000000

Example 8-6 Concatenation Operator (||) Relation Output

Timestamp Tuple Kind Tuple
1: + abcxyz
2: + abxyz
3: + abcxyz
4: + axyz

8.2.2 hextoraw
Syntax

Purpose

hextoraw converts char containing hexadecimal digits in the char character set to a raw
value.

Chapter 8
hextoraw

8-3

See Also:

rawtohex.

Examples

Consider the query q6 and the data stream SByt. Stream SByt has schema (c1 integer,
c2 char(10)). The query returns the relation.

<query id="q6"><![CDATA[
 select * from SByt[range 2]
 where
 hextoraw(c2) between and hextoraw("5600")
]]></query>

Timestamp Tuple
1000 1,"51c1"
2000 2,"52"
3000 3,"53aa"
4000 4,"5"
5000 ,"55ef"
6000 6,
h 8000
h 200000000

Timestamp Tuple Kind Tuple
3000 + 3,"53aa"
5000 - 3,"53aa"
5000 + ,"55ef"
7000 - ,"55ef"

8.2.3 length
Syntax

Purpose

The length function returns the length of its char or byte expression as an int. length
calculates length using characters as defined by the input character set.

For a char expression, the length includes all trailing blanks. If the expression is null,
this function returns null.

Examples

Consider the query chr_len and the data stream S2. Stream S2 has schema (c1
char(10), c2 integer). The query returns the relation.

<query id="chr_len"><![CDATA[
 select length(c1) from S2[range 5]
]]></query>

Timestamp Tuple
 1000

Chapter 8
length

8-4

 2000 hi
 8000 hi1
 9000
15000 xyz
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 0
 2000: + 2
 6000: - 0
 7000: - 2
 8000: + 3
 9000: + 0
13000: - 3
14000: - 0
15000: + 3
20000: - 3

8.2.4 lk
Syntax

Purpose

lk boolean true if char1 matches the regular expression char2, otherwise it returns
false.

This function is equivalent to the LIKE condition. For more information, see .

Examples

Consider the query q291 and the data stream SLk1. Stream SLk1 has schema (first1
char(20), last1 char(20)). The query returns the relation.

<query id="q291"><![CDATA[
 select * from SLk1
 where
 lk(first1,"^Ste(v|ph)en$") = true
]]></query>

Timestamp Tuple
1 Steven,King
2 Sten,Harley
3 Stephen,Stiles
4 Steven,Markles
h 200000000

Timestamp Tuple Kind Tuple
1: + Steven,King
3: + Stephen,Stiles
4: + Steven,Markles

Chapter 8
lk

8-5

8.2.5 nvl
Syntax

Purpose

nvl lets you replace null (returned as a blank) with a string in the results of a query. If
expr1 is null, then NVL returns expr2. If expr1 is not null, then NVL returns expr1.

The arguments expr1 and expr2 can have any data type. If their data types are
different, then Oracle Event Processing implicitly converts one to the other. If they
cannot be converted implicitly, Oracle Event Processing returns an error. The implicit
conversion is implemented as follows:

• If expr1 is character data, then Oracle Event Processing converts expr2 to
character data before comparing them and returns VARCHAR2 in the character set of
expr1.

• If expr1 is numeric, then Oracle Event Processing determines which argument has
the highest numeric precedence, implicitly converts the other argument to that
data type, and returns that data type.

Examples

Consider the query q281 and the data stream SNVL. Stream SNVL has schema (c1
char(20), c2 integer). The query returns the relation.

<query id="q281"><![CDATA[
 select nvl(c1,"abcd") from SNVL
]]></query>

Timestamp Tuple
1 ,1
2 ab,2
3 abc,3
4 ,4
h 200000000

Timestamp Tuple Kind Tuple
1: + abcd
2: + ab
3: + abc
4: + abcd

Chapter 8
nvl

8-6

8.2.6 prev
Syntax

Purpose

prev returns the value of the stream attribute (function argument identifier2) of the
event that occurred previous to the current event and which belongs to the partition to
which the current event belongs. It evaluates to NULL if there is no such previous event.

The type of the specified stream element may be any of:

• integer

• bigint

• float

• double

• byte

• char

• interval

• timestamp.

The return type of this function depends on the type of the specified stream attribute
(function argument identifier2).

Where:

• identifier1.identifier2 : identifier1 is the name of a correlation variable used in
the PATTERN clause and defined in the DEFINE clause and identifier2 is the name of
a stream attribute whose value in the previous event should be returned by prev.

• const_int: if this argument has a value n, then it specifies the nth previous event in
the partition to which the current event belongs. The value of the attribute
(specified in argument identifier2) in the nth previous event will be returned if
such an event exists, NULL otherwise.

• const_bigint: specifies a time range duration in nanoseconds and should be used
if you are interested in previous events that occurred only within a certain range of
time before the current event.

If the query uses PARTITION BY with the prev function and input data will include many
different partition key values (meaning many partitions), then total memory consumed
for storing the previous event(s) per partition could be large. In such cases, consider
using the time range duration (the third argument, possibly with a large range value)
so that this memory can be reclaimed wherever possible.

Chapter 8
prev

8-7

Examples

prev(identifier1.identifier2)

Consider query q2 and the data stream S1. Stream S1 has schema (c1 integer). This
example defines pattern A as A.c1 = prev(A.c1). In other words, pattern A matches
when the value of c1 in the current stream element matches the value of c1 in the
stream element immediately before the current stream element. The query returns the
stream.

<query id="q2"><![CDATA[
 select
 T.Ac1,
 T.Cc1
 from
 S1
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as Ac1,
 C.c1 as Cc1
 PATTERN(A B+ C)
 DEFINE
 A as A.c1 = prev(A.c1),
 B as B.c1 = 10,
 C as C.c1 = 7
) as T
]]></query>

Timestamp Tuple
1000 35
3000 35
4000 10
5000 7

Timestamp Tuple Kind Tuple
5000: + 35,7

prev(identifier1.identifier2, const_int)

Consider query q35 and the data stream S15. Stream S15 has schema (c1 integer, c2
integer). This example defines pattern A as A.c1 = prev(A.c1,3). In other words,
pattern A matches when the value of c1 in the current stream element matches the
value of c1 in the third stream element before the current stream element. The query
returns the stream.

<query id="q35"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = prev(A.c1,3))
) as T
]]></query>

Timestamp Tuple
 1000 45,20
 2000 45,30
 3000 45,30
 4000 45,30
 5000 45,30
 6000 45,20
 7000 45,20
 8000 45,20

Chapter 8
prev

8-8

 9000 43,40
10000 52,10
11000 52,30
12000 43,40
13000 52,50
14000 43,40
15000 43,40

Timestamp Tuple Kind Tuple
 4000: + 45
 5000: + 45
 6000: + 45
 7000: + 45
 8000: + 45
12000: + 43
13000: + 52
15000: + 43

prev(identifier1.identifier2, const_int, const_bigint)

Consider query q36 and the data stream S15. Stream S15 has schema (c1 integer, c2
integer). This example defines pattern A as A.c1 = prev(A.c1,3,5000000000L). In other
words, pattern A matches when:

• the value of c1 in the current event equals the value of c1 in the third previous
event of the partition to which the current event belongs, and

• the difference between the timestamp of the current event and that third previous
event is less than or equal to 5000000000L nanoseconds.

The query returns the output stream. Notice that in the output stream, there is no
output at 8000. The following example shows the contents of the partition (partitioned
by the value of the c2 attribute) to which the event at 8000 belongs.

Timestamp Tuple
1000 45,20
6000 45,20
7000 45,20
8000 45,20

As the following example shows, even though the value of c1 in the third previous
event (the event at 1000) is the same as the value c1 in the current event (the event at
8000), the range condition is not satisfied. This is because the difference in the
timestamps of these two events is more than 5000000000 nanoseconds. So it is treated
as if there is no previous tuple and prev returns NULL so the condition fails to match.

<query id="q36"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 PARTITION BY
 c2
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = prev(A.c1,3,5000000000L))
) as T
]]></query>

Timestamp Tuple
 1000 45,20
 2000 45,30
 3000 45,30
 4000 45,30
 5000 45,30
 6000 45,20

Chapter 8
prev

8-9

 7000 45,20
 8000 45,20
 9000 43,40
10000 52,10
11000 52,30
12000 43,40
13000 52,50
14000 43,40
15000 43,40

Timestamp Tuple Kind Tuple
5000: + 45

8.2.7 rawtohex
Syntax

Purpose

rawtohex converts byte containing a raw value to hexadecimal digits in the CHAR
character set.

See Also:

hextoraw.

Examples

Consider the query byte_to_hex and the data stream S5. Stream S5 has schema (c1
integer, c2 byte(10)). This query uses the rawtohex function to convert a ten byte raw
value to the equivalent ten hexadecimal digits in the character set of your current
locale. The query returns the relation.

<query id="byte_to_hex"><![CDATA[
 select rawtohex(c2) from S5[range 4]
]]></query>

Timestamp Tuple
1000 1,"51c1"
2000 2,"52"
2500 7,"axc"
3000 3,"53aa"
4000 4,"5"
5000 ,"55ef"
6000 6,
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 51c1
 2000: + 52
 3000: + 53aa
 4000: + 05
 5000: - 51c1
 5000: + 55ef

Chapter 8
rawtohex

8-10

 6000: - 52
 6000: +
 7000: - 53aa
 8000: - 05
 9000: - 55ef
10000: -

8.2.8 systimestamp
Syntax

Purpose

systimestamp returns the system date, including fractional seconds and time zone, of
the system on which the Oracle Event Processing server resides. The return type is
TIMESTAMP WITH TIME ZONE.

Examples

Consider the query q106 and the data stream S0. Stream S0 has schema (c1 float, c2
integer). The query returns the relation.

<query id="q106"><![CDATA[
 select * from S0
 where
 case c2
 when 10 then null
 when 20 then null
 else systimestamp()
 end > "07/06/2007 14:13:33"
]]></query>

Timestamp Tuple
 1000 0.1 ,10
 1002 0.14,15
 200000 0.2 ,20
 400000 0.3 ,30
 500000 0.3 ,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple Kind Tuple
 1002: + 0.14,15
 400000: + 0.3 ,30
 500000: + 0.3 ,35
 600000: + ,35
100000000: + 4.04,40

8.2.9 to_bigint
Syntax

Chapter 8
systimestamp

8-11

Purpose

Input/Output Types

The input/output types for this function are as follows:

Input Type Output Type

INTEGER BIGINT

TIMESTAMP BIGINT

CHAR BIGINT

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1 integer,
name char(10)). The query returns the relation.

<query id="q282"><![CDATA[
 select nvl(to_bigint(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1,abc
2000 ,ab
3400 3,abc
4700 ,a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 10: + 1
2000: + 5.2
3400: + 3
4700: + 5.2

8.2.10 to_boolean
Syntax

Purpose

to_boolean returns a value of true or false for its bigint or integer expression
argument.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1 integer,
name char(10)). The query returns the relation.

<view id="v2" schema="c1 c2" ><![CDATA[
 select to_boolean(c1), c1 from tkboolean_S3 [now] where c2 = 0.1
]]></view><query id="q1"><![CDATA[

Chapter 8
to_boolean

8-12

 select * from v2
]]></query>

Timestamp Tuple
1000 -2147483648, 0.1
2000 2147483647, 0.2
3000 12345678901, 0.3
4000 -12345678901, 0.1
5000 9223372036854775799, 0.2
6000 -9223372036854775799, 0.3
7000 , 0.1
8000 10000000000, 0.2
9000 60000000000, 0.3
h 200000000

Timestamp Tuple Kind Tuple
1000 + true,-2147483648
1000 - true,-2147483648
4000 + true,-12345678901
4000 - true,-12345678901
7000 + ,
7000 - ,

8.2.11 to_char
Syntax

Purpose

to_char returns a char value for its integer, double, bigint, float, timestamp, or interval
expression argument. If the bigint argument exceeds the char precision, Oracle Event
Processing returns an error.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1 integer,
name char(10)). The query returns the relation.

<query id="q1"><![CDATA[
 select to_char(c1), to_char(c2), to_char(c3), to_char(c4), to_char(c5), to_char(c6)
 from S1
]]></query>

Timestamp Tuple
1000 99,99999, 99.9, 99.9999, "4 1:13:48.10", "08/07/2004 11:13:48", cep

Timestamp Tuple Kind Tuple
1000: + 99,99999,99.9,99.9999,4 1:13:48.10,08/07/2004 11:13:48

Chapter 8
to_char

8-13

8.2.12 to_double
Syntax

Purpose

to_double returns a double value for its bigint, integer, or float expression argument.
If the bigint argument exceeds the double precision, Oracle Event Processing returns
an error.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1 integer,
name char(10)). The query returns the relation.

<query id="q282"><![CDATA[
 select nvl(to_double(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1,abc
2000 ,ab
3400 3,abc
4700 ,a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 10: + 1
2000: + 5.2
3400: + 3
4700: + 5.2

8.2.13 to_float
Syntax

Purpose

to_float returns a float number equivalent of its bigint or integer argument. If the
bigint argument exceeds the float precision, Oracle Event Processing returns an
error.

Chapter 8
to_double

8-14

Examples

Consider the query q1 and the data stream S11. Stream S1 has schema (c1 integer,
name char(10)). The query returns the relation.

<query id="q1"><![CDATA[
 select nvl(to_float(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1, abc
2000 , ab
3400 3, abc
4700 , a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
10:+ 1.02000:+ 5.23400:+ 3.04700:+ 5.2

8.2.14 to_timestamp
Syntax

Purpose

to_timestamp converts char literals that conform to java.text.SimpleDateFormat format
models to timestamp data types. There are two forms of the to_timestamp function
distinguished by the number of arguments:

• char: this form of the to_timestamp function converts a single char argument that
contains a char literal that conforms to the default java.text.SimpleDateFormat
format model (MM/dd/yyyy HH:mm:ss) into the corresponding timestamp data type.

• char1, char2: this form of the to_timestamp function converts the char1 argument
that contains a char literal that conforms to the java.text.SimpleDateFormat format
model specified in the second char2 argument into the corresponding timestamp
data type.

• long: this form of the to_timestamp function converts a single long argument that
represents the number of nanoseconds since the standard base time known as
"the epoch", namely January 1, 1970, 00:00:00 GMT, into the corresponding
timestamp data type represented as a number in milliseconds since "the epoch"
with a date format that conforms to the default java.text.SimpleDateFormat format
model (MM/dd/yyyy HH:mm:ss).

Examples

Consider the query q277 and the data stream STs2. Stream STs2 has schema (c1
integer, c2 char(20)). The query returns the relation.

<query id="q277"><![CDATA[
 select * from STs2

Chapter 8
to_timestamp

8-15

 where
 to_timestamp(c2,"yyMMddHHmmss") = to_timestamp("09/07/2005 10:13:48")
]]></query>

Timestamp Tuple
1 1,"040807111348"
2 2,"050907101348"
3 3,"041007111348"
4 4,"060806111248"
h 200000000

Timestamp Tuple Kind Tuple
2: + 2,050907101348

8.2.15 xmlcomment
Syntax

Purpose

xmlcomment returns its double-quote delimited constant String argument as an xmltype.

Using xmlcomment, you can add a well-formed XML comment to your query results.

This function takes the following arguments:

• quoted_string_double_quotes: a double-quote delimited String constant.

The return type of this function is xmltype. The exact schema depends on that of the
input stream of XML data.

Examples

Consider the query tkdata64_q1 and data stream tkdata64_S. Stream tkdata64_S has
schema (c1 char(30)). The query returns the relation.

<query id="tkdata64_q1"><![CDATA[
 select xmlconcat(xmlelement("parent", c1), xmlcomment("this is a comment"))
from tkdata64_S
]]></query>

Timestamp Tuple
c 30
1000 "san jose"
1000 "mountain view"
1000
1000 "sunnyvale"
1003
1004 "belmont"

Timestamp Tuple Kind Tuple
1000: + <parent>san jose</parent>
 <!--this is a comment-->
1000: + <parent>mountain view</parent>
 <!--this is a comment-->
1000: + <parent/>
 <!--this is a comment-->
1000: + <parent>sunnyvale</parent>
 <!--this is a comment-->
1003: + <parent/>

Chapter 8
xmlcomment

8-16

 <!--this is a comment-->
1004: + <parent>belmont</parent>
 <!--this is a comment-->

8.2.16 xmlconcat
Syntax

Purpose

xmlconcat returns the concatenation of its comma-delimited xmltype arguments as an
xmltype.

Using xmlconcat, you can concatenate any combination of xmltype arguments.

This function takes the following arguments:

• non_mt_arg_list: a comma-delimited list of xmltype arguments. For more
information, see .

The return type of this function is xmltype. The exact schema depends on that of the
input stream of XML data.

This function is especially useful when processing SQLX streams. For more
information, see .

To concatenate data types other than xmltype, use CONCAT. For more information, see
concat.

Examples

Consider the query tkdata64_q1 and the data stream tkdata64_S. Stream tkdata64_S
has schema (c1 char(30)). The query returns the relation.

<query id="tkdata64_q1"><![CDATA[
 select
 xmlconcat(xmlelement("parent", c1), xmlcomment("this is a comment"))
 from tkdata64_S
]]></query>

Timestamp Tuple
c 30
1000 "san jose"
1000 "mountain view"
1000
1000 "sunnyvale"
1003
1004 "belmont"

Timestamp Tuple Kind Tuple
1000: + <parent>san jose</parent>
 <!--this is a comment-->
1000: + <parent>mountain view</parent>
 <!--this is a comment-->
1000: + <parent/>
 <!--this is a comment-->
1000: + <parent>sunnyvale</parent>
 <!--this is a comment-->
1003: + <parent/>

Chapter 8
xmlconcat

8-17

 <!--this is a comment-->
1004: + <parent>belmont</parent>
 <!--this is a comment-->

8.2.17 xmlexists
Syntax

Purpose

xmlexists creates a continuous query against a stream of XML data to return a boolean
that indicates whether or not the XML data satisfies the XQuery you specify.

This function takes the following arguments:

• const_string: An XQuery that Oracle Event Processing applies to the XML stream
element data that you bind in xqryargs_list. For more information, see .

• xqryargs_list: A list of one or more bindings between stream elements and
XQuery variables or XPath operators. For more information, see .

The return type of this function is boolean: true if the XQuery is satisfied; false
otherwise.

This function is especially useful when processing SQLX streams. For more
information, see .

See Also:

• xmlquery.

Examples

Consider the query q1 and the XML data stream S. Stream S has schema (c1 integer,
c2 xmltype). In this example, the value of stream element c2 is bound to the current
node (".") and the value of stream element c1 + 1 is bound to XQuery variable x. The
query returns the relation.

<query id="q1"><![CDATA[
 SELECT
 xmlexists(
 "for $i in /PDRecord where $i/PDId <= $x return $i/PDName"
 PASSING BY VALUE
 c2 as ".",
 (c1+1) AS "x"
 RETURNING CONTENT
) XMLData
 FROM
 S
]]></query>

Timestamp Tuple
3 1, "<PDRecord><PDName>hello</PDName></PDRecord>"
4 2, "<PDRecord><PDName>hello</PDName><PDName>hello1</PDName></PDRecord>"

Chapter 8
xmlexists

8-18

5 3, "<PDRecord><PDId>4</PDId><PDName>hello1</PDName></PDRecord>"
6 4, "<PDRecord><PDId>46</PDId><PDName>hello2</PDName></PDRecord>"

Timestamp Tuple Kind Tuple
3: + false
4: + false
5: + true
6: + false

8.2.18 xmlquery
Syntax

Purpose

xmlquery creates a continuous query against a stream of XML data to return the XML
data that satisfies the XQuery you specify.

This function takes the following arguments:

• const_string: An XQuery that Oracle Event Processing applies to the XML stream
element data that you bind in xqryargs_list. For more information, see .

• xqryargs_list: A list of one or more bindings between stream elements and
XQuery variables or XPath operators. For more information, see .

The return type of this function is xmltype. The exact schema depends on that of the
input stream of XML data.

This function is especially useful when processing SQLX streams. For more
information, see .

See Also:

• xmlexists

Examples

Consider the query and the XML data stream S. Stream S has schema (c1 integer, c2
xmltype). In this example, the value of stream element c2 is bound to the current node
(".") and the value of stream element c1 + 1 is bound to XQuery variable x. The query
returns the relation.

<query id="q1"><![CDATA[
 SELECT
 xmlquery(
 "for $i in /PDRecord where $i/PDId <= $x return $i/PDName"
 PASSING BY VALUE
 c2 as ".",
 (c1+1) AS "x"
 RETURNING CONTENT
) XMLData
 FROM

Chapter 8
xmlquery

8-19

 S
]]></query>

Timestamp Tuple
3 1, "<PDRecord><PDName>hello</PDName></PDRecord>"
4 2, "<PDRecord><PDName>hello</PDName><PDName>hello1</PDName></PDRecord>"
5 3, "<PDRecord><PDId>4</PDId><PDName>hello1</PDName></PDRecord>"
6 4, "<PDRecord><PDId>46</PDId><PDName>hello0</PDName></PDRecord>"
7 5, "<PDRecord><PDId>5</PDId><PDName>hello2</PDName></PDRecord>"

Timestamp Tuple Kind Tuple
3: +
4: +
5: + "<PDName>hello1</PDName>"
6: +
7: + "<PDName>hello2</PDName>"

Chapter 8
xmlquery

8-20

9
Built-In Aggregate Functions

A reference to built-in aggregate functions included in Oracle Continuous Query
Language (Oracle CQL) is provided. Built-in aggregate functions perform a summary
operation on all the values that a query returns.

9.1 Introduction to Oracle CQL Built-In Aggregate Functions
Table 9-1 lists the built-in aggregate functions that Oracle CQL provides:

Table 9-1 Oracle CQL Built-in Aggregate Functions

Type Function

Aggregate • listagg
• max
• min
• xmlagg

Aggregate (incremental computation) • avg
• count
• sum

Extended aggregate • first
• last

Specify distinct if you want Oracle Event Processing to return only one copy of each
set of duplicate tuples selected. Duplicate tuples are those with matching values for
each expression in the select list. For more information, see .

Oracle Event Processing does not support nested aggregations.

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

For more information, see:

9-1

• Built-In Aggregate Functions and the Where_ Group By_ and Having Clauses

9.1.1 Built-In Aggregate Functions and the Where, Group By, and
Having Clauses

In Oracle CQL, the where clause is applied before the group by and having clauses.
This means the Oracle CQL statement is invalid:

<query id="q1"><![CDATA[
 select * from InputChanel[rows 4 slide 4] as ic where count(*) = 4
]]></query>

Instead, you must use the Oracle CQL statement:

<query id="q1"><![CDATA[
 select * from InputChanel[rows 4 slide 4] as ic where count(*) = 4
]]></query>

9.2.1 avg
Syntax

Purpose

avg returns average value of expr.

This function takes as an argument any bigint, float, or int data type. The function
returns a float regardless of the numeric data type of the argument.

Input/Output Types

The following tables lists the input types and the corresponding output types:

Input Type Output Type

INT FLOAT

BIGINT FLOAT

FLOAT FLOAT

DOUBLE DOUBLE

BIGDECIMAL BIGDECIMAL

Chapter 9
avg

9-2

Examples

Consider the query float_avg and the data stream S3. Stream S3 has schema (c1
float). The query returns the relation. Note that the avg function returns a result of NaN
if the average value is not a number.

<query id="float_avg"><![CDATA[
 select avg(c1) from S3[range 5]
]]></query>

Timestamp Tuple
 1000
 2000 5.5
 8000 4.4
 9000
15000 44.2
h 200000000

Timestamp Tuple Kind Tuple
 1000: -
 1000: + 0.0
 2000: - 0.0
 2000: + 5.5
 6000: - 5.5
 6000: + 5.5
 7000: - 5.5
 8000: -
 8000: + 4.4
 9000: - 4.4
 9000: + 4.4
13000: - 4.4
13000: + NaN
14000: - NaN
14000: +
15000: -
15000: + 44.2
20000: - 44.2
20000: +

9.2.2 count
Syntax

Purpose

count returns the number of tuples returned by the query as an int value.

The return value depends on the argument as Table 9-2 shows.

Chapter 9
count

9-3

Table 9-2 Return Values for COUNT Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not null.

* The number of all tuples, including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable identifier,
including duplicates and nulls.

identifier.attr The number of tuples that match correlation variable identifier, where
attr is not null.

count never returns null.

Example

Consider the query q2 and the data stream S2. Stream S2 has schema (c1 integer, c2
integer). The query returns the relation.

<query id="q2"><![CDATA[
 SELECT COUNT(c2), COUNT(*) FROM S2 [RANGE 10]
]]></query>

Timestamp Tuple
1000 1,2
2000 1,
3000 1,4
6000 1,6

Timestamp Tuple Kind Tuple
-9223372036854775808: + 0,0
1000: - 0,0
1000: + 1,1
2000: - 1,1
2000: + 1,2
3000: - 1,2
3000: + 2,3
6000: - 2,3
6000: + 3,4

9.2.3 first
Syntax

Purpose

first returns the value of the specified stream element the first time the specified
pattern is matched.

The type of the specified stream element may be any of:

• bigint

• integer

Chapter 9
first

9-4

• byte

• char

• float

• interval

• timestamp.

The return type of this function depends on the type of the specified stream element.

This function takes a single argument made up of the following period-separated
values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

See Also:

• last.

Examples

Consider the query q9 and the data stream S0. Stream S0 has schema (c1 integer, c2
float). This example defines pattern C as C.c1 = 7. It defines firstc as first(C.c2). In
other words, firstc will equal the value of c2 the first time c1 = 7. The query returns
the relation.

<query id="q9"><![CDATA[
 select
 T.firstc,
 T.lastc,
 T.Ac1,
 T.Bc1,
 T.avgCc1,
 T.Dc1
 from
 S0
 MATCH_RECOGNIZE (
 MEASURES
 first(C.c2) as firstc,
 last(C.c2) as lastc,
 avg(C.c1) as avgCc1,
 A.c1 as Ac1,
 B.c1 as Bc1,
 D.c1 as Dc1
 PATTERN(A B C* D)
 DEFINE
 A as A.c1 = 30,
 B as B.c2 = 10.0,
 C as C.c1 = 7,
 D as D.c1 = 40
) as T
]]></query>

Timestamp Tuple
 1000 33,0.9
 3000 44,0.4
 4000 30,0.3
 5000 10,10.0

Chapter 9
first

9-5

 6000 7,0.9
 7000 7,2.3
 9000 7,8.7
11000 40,6.6
15000 19,8.8
17000 30,5.5
20000 5,10.0
23000 40,6.6
25000 3,5.5
30000 30,2.2
35000 2,10.0
40000 7,5.5
44000 40,8.9

Timestamp Tuple Kind Tuple
11000: + 0.9,8.7,30,10,7.0,40
23000: + ,,30,5,,40
44000: + 5.5,5.5,30,2,7.0,40

9.2.4 last
Syntax

Purpose

last returns the value of the specified stream element the last time the specified
pattern is matched.

The type of the specified stream element may be any of:

• bigint

• integer

• byte

• char

• float

• interval

• timestamp.

The return type of this function depends on the type of the specified stream element.

This function takes a single argument made up of the following period-separated
values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

See Also:

• first.

Chapter 9
last

9-6

Examples

Consider the query q9 and the data stream S0. Stream S1 has schema (c1 integer, c2
float). This example defines pattern C as C.c1 = 7. It defines lastc as last(C.c2). In
other words, lastc will equal the value of c2 the last time c1 = 7. The query returns the
relation.

<query id="q9"><![CDATA[
 select
 T.firstc,
 T.lastc,
 T.Ac1,
 T.Bc1,
 T.avgCc1,
 T.Dc1
 from
 S0
 MATCH_RECOGNIZE (
 MEASURES
 first(C.c2) as firstc,
 last(C.c2) as lastc,
 avg(C.c1) as avgCc1,
 A.c1 as Ac1,
 B.c1 as Bc1,
 D.c1 as Dc1
 PATTERN(A B C* D)
 DEFINE
 A as A.c1 = 30,
 B as B.c2 = 10.0,
 C as C.c1 = 7,
 D as D.c1 = 40
) as T
]]></query>

Timestamp Tuple
 1000 33,0.9
 3000 44,0.4
 4000 30,0.3
 5000 10,10.0
 6000 7,0.9
 7000 7,2.3
 9000 7,8.7
11000 40,6.6
15000 19,8.8
17000 30,5.5
20000 5,10.0
23000 40,6.6
25000 3,5.5
30000 30,2.2
35000 2,10.0
40000 7,5.5
44000 40,8.9

Timestamp Tuple Kind Tuple
11000: + 0.9,8.7,30,10,7.0,40
23000: + ,,30,5,,40
44000: + 5.5,5.5,30,2,7.0,40

Chapter 9
last

9-7

9.2.5 listagg
Syntax

Purpose

listagg returns a java.util.List containing the Java equivalent of the function's
argument.

Note that when a user-defined class is used as the function argument, the class must
implement the equals method.

Examples

<view id="v1"><![CDATA[
 ISTREAM(select c1, listAgg(c3) as l1,
 java.util.LinkedHashSet(listAgg(c3)) as set1
 from S1
 group by c1)
]]></view>

<query id="q1"><![CDATA[
 select v1.l1.size(), v1.set1.size()
 from v1
]]></query>

Timestamp Tuple
1000 orcl, 1, 15, 400
1000 msft, 1, 15, 400
2000 orcl, 2, 20, 300
2000 msft, 2, 20, 300
5000 orcl, 4, 5, 200
5000 msft, 4, 5, 200
7000 orcl, 3, 10, 100
7000 msft, 3, 20, 100
h 20000000

Timestamp Tuple Kind Tuple
 1000: + 1,1
 1000: + 1,1
 2000: + 2,2

Chapter 9
listagg

9-8

 2000: + 2,2
 5000: + 3,3
 5000: + 3,3
 7000: + 4,4
 7000: + 4,3

9.2.6 max
Syntax

Purpose

max returns maximum value of expr. Its data type depends on the data type of the
argument.

Examples

Consider the query test_max_timestampand the data stream S15 . Stream S15 has
schema (c1 int, c2 timestamp). The query returns the relation.

<query id="test_max_timestamp"><![CDATA[
 select max(c2) from S15[range 2]
]]></query>

Timestamp Tuple
 10 1,"08/07/2004 11:13:48"
2000 ,"08/07/2005 11:13:48"
3400 3,"08/07/2006 11:13:48"
4700 ,"08/07/2007 11:13:48"
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 0: +
 10: -
 10: + 08/07/2004 11:13:48
2000: - 08/07/2004 11:13:48
2000: + 08/07/2005 11:13:48
2010: - 08/07/2005 11:13:48
2010: + 08/07/2005 11:13:48
3400: - 08/07/2005 11:13:48
3400: + 08/07/2006 11:13:48
4000: - 08/07/2006 11:13:48
4000: + 08/07/2006 11:13:48
4700: - 08/07/2006 11:13:48
4700: + 08/07/2007 11:13:48
5400: - 08/07/2007 11:13:48
5400: + 08/07/2007 11:13:48
6700: - 08/07/2007 11:13:48
6700: +

Chapter 9
max

9-9

9.2.7 min
Syntax

Purpose

min returns minimum value of expr. Its data type depends on the data type of its
argument.

Examples

Consider the query test_min_timestamp and the data stream S15. Stream S15 has
schema (c1 int, c2 timestamp). The query returns the relation.

<query id="test_min_timestamp"><![CDATA[
 select min(c2) from S15[range 2]
]]></query>

Timestamp Tuple
 10 1,"08/07/2004 11:13:48"
2000 ,"08/07/2005 11:13:48"
3400 3,"08/07/2006 11:13:48"
4700 ,"08/07/2007 11:13:48"
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 0: +
 10: -
 10: + 08/07/2004 11:13:48
2000: - 08/07/2004 11:13:48
2000: + 08/07/2004 11:13:48
2010: - 08/07/2004 11:13:48
2010: + 08/07/2005 11:13:48
3400: - 08/07/2005 11:13:48
3400: + 08/07/2005 11:13:48
4000: - 08/07/2005 11:13:48
4000: + 08/07/2006 11:13:48
4700: - 08/07/2006 11:13:48
4700: + 08/07/2006 11:13:48
5400: - 08/07/2006 11:13:48
5400: + 08/07/2007 11:13:48
6700: - 08/07/2007 11:13:48
6700: +

Chapter 9
min

9-10

9.2.8 sum
Syntax

Purpose

sum returns the sum of values of expr. This function takes as an argument any bigint,
float, or integer expression. The function returns the same data type as the numeric
data type of the argument.

Examples

Consider the query q3 and the data stream S1. Stream S1 has schema (c1 integer, c2
bigint). The query returns the relation. For more information on range, see .

<query id="q3"><![CDATA[
 select sum(c2) from S1[range 5]
]]></query>

Timestamp Tuple
1000 5,
1000 10,5
2000 ,4
3000 30,6
5000 45,44
7000 55,3
h 200000000

Timestamp Tuple Kind Tuple
 1000: -
 1000: + 5
 2000: - 5
 2000: + 9
 3000: - 9
 3000: + 15
 5000: - 15
 5000: + 59
 6000: - 59
 6000: + 54
 7000: - 54
 7000: + 53
 8000: - 53
 8000: + 47
10000: - 47
10000: + 3
12000: - 3
12000: +

Chapter 9
sum

9-11

9.2.9 xmlagg
Syntax

Purpose

xmlagg returns a collection of XML fragments as an aggregated XML document.
Arguments that return null are dropped from the result.

You can control the order of fragments using an ORDER BY clause.

Examples

xmlagg Function and the xmlelement Function

Consider the query tkdata67_q1 and the input relation. Stream tkdata67_S0 has schema
(c1 integer, c2 float). This query uses xmlelement to create XML fragments from
stream elements and then uses xmlagg to aggregate these XML fragments into an XML
document. The query returns the relation.

<query id="tkdata67_q1"><![CDATA[
 select
 c1,
 xmlagg(xmlelement("c2",c2))
 from
 tkdata67_S0[rows 10]
 group by c1
]]></query>

Timestamp Tuple
 1000 15, 0.1
 1000 20, 0.14
 1000 15, 0.2
 4000 20, 0.3
10000 15, 0.04
h 12000

Timestamp Tuple Kind Tuple
1000: + 15,<c2>0.1</c2>
 <c2>0.2</c2>
1000: + 20,<c2>0.14</c2>
4000: - 20,<c2>0.14</c2>
4000: + 20,<c2>0.14</c2>
 <c2>0.3</c2>
10000: - 15,<c2>0.1</c2>
 <c2>0.2</c2>
10000: + 15,<c2>0.1</c2>
 <c2>0.2</c2>
 <c2>0.04</c2>

xmlagg Function and the ORDER BY Clause

Consider the query tkxmlAgg_q5 and the input relation. Stream tkxmlAgg_S1 has schema
(c1 int, c2 xmltype). These query selects xmltype stream elements and uses
XMLAGG to aggregate them into an XML document. This query uses an ORDER BY
clause to order XML fragments. The query returns the relation.

Chapter 9
xmlagg

9-12

<query id="tkxmlAgg_q5"><![CDATA[
 select
 xmlagg(c2),
 xmlagg(c2 order by c1)
 from
 tkxmlAgg_S1[range 2]
]]></query>

Timestamp Tuple
1000 1, "<a>hello"
2000 10, "hello1"
3000 15, "<PDRecord><PDName>hello</PDName></PDRecord>"
4000 5, "<PDRecord><PDName>hello</PDName><PDName>hello1</PDName></PDRecord>"
5000 51, "<PDRecord><PDId>6</PDId><PDName>hello1</PDName></PDRecord>"
6000 15, "<PDRecord><PDId>46</PDId><PDName>hello2</PDName></PDRecord>"
7000 55, "<PDRecord><PDId>6</PDId><PDName>hello2</PDName><PDName>hello3</PDName></
PDRecord>"

Timestamp Tuple Kind Tuple
 0: +
1000: -
1000: + <a>hello
 ,<a>hello
2000: - <a>hello
 ,<a>hello
2000: + <a>hello
 hello1
 ,<a>hello
 hello1
3000: - <a>hello
 hello1
 ,<a>hello
 hello1
3000: + hello1
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
 ,hello1
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
4000: - hello1
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
 ,hello1
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
4000: + <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
 <PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 ,<PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
5000: - <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
 <PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>

Chapter 9
xmlagg

9-13

 </PDRecord>
 ,<PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDName>hello</PDName>
 </PDRecord>
5000: + <PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
 ,<PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
6000: - <PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
 ,<PDRecord>
 <PDName>hello</PDName>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
6000: + <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>46</PDId>
 <PDName>hello2</PDName>
 </PDRecord>
 ,<PDRecord>
 <PDId>46</PDId>
 <PDName>hello2</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
7000: - <PDRecord>
 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>
 <PDRecord>
 <PDId>46</PDId>
 <PDName>hello2</PDName>
 </PDRecord>
 ,<PDRecord>
 <PDId>46</PDId>
 <PDName>hello2</PDName>
 </PDRecord>
 <PDRecord>

Chapter 9
xmlagg

9-14

 <PDId>6</PDId>
 <PDName>hello1</PDName>
 </PDRecord>

Chapter 9
xmlagg

9-15

10
Colt Single-Row Functions

A reference to Colt single-row functions included in Oracle Continuous Query
Language (Oracle CQL) is provided. Colt single-row functions are based on the Colt
open source libraries for high performance scientific and technical computing.

For more information, see Functions.

10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt
Functions

Table 10-1 lists the built-in single-row Colt functions that Oracle CQL provides.

Table 10-1 Oracle CQL Built-in Single-Row Colt-Based Functions

Colt Package Function

cern.jet.math.Arithmetic

A set of basic polynomials, rounding, and calculus
functions.

• binomial
• binomial1
• ceil
• factorial
• floor
• log
• log2
• log10
• logFactorial
• longFactorial
• stirlingCorrection

cern.jet.math.Bessel

A set of Bessel functions.

• i0
• i0e
• i1
• i1e
• j0
• j1
• jn
• k0
• k0e
• k1
• k1e
• kn
• y0
• y1
• yn

10-1

Table 10-1 (Cont.) Oracle CQL Built-in Single-Row Colt-Based Functions

Colt Package Function

cern.jet.random.engine.RandomSeedTable

A table with good seeds for pseudo-random
number generators. Each sequence in this table
has a period of 10**9 numbers.

• getSeedAtRowColumn

cern.jet.stat.Gamma

A set of Gamma and Beta functions.

• beta
• gamma
• incompleteBeta
• incompleteGamma
• incompleteGammaComplement
• logGamma

cern.jet.stat.Probability

A set of probability distributions.

• beta1
• betaComplemented
• binomial2
• binomialComplemented
• chiSquare
• chiSquareComplemented
• errorFunction
• errorFunctionComplemented
• gamma1
• gammaComplemented
• negativeBinomial
• negativeBinomialComplemented
• normal
• normal1
• normalInverse
• poisson
• poissonComplemented
• studentT
• studentTInverse

cern.colt.bitvector.QuickBitVector

A set of non polymorphic, non bounds checking,
low level bit-vector functions.

• bitMaskWithBitsSetFromTo
• leastSignificantBit
• mostSignificantBit

cern.colt.map.HashFunctions

A set of hash functions.

• hash
• hash1
• hash2
• hash3

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Chapter 10
Introduction to Oracle CQLBuilt-In Single-Row Colt Functions

10-2

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

For more information, see:

• Functions

• Data Types

• http://dsd.lbl.gov/~hoschek/colt/.

10.2.1 beta
Syntax

Purpose

beta is based on cern.jet.stat.Gamma. It returns the beta function (see Figure 10-1) of
the input arguments as a double.

Figure 10-1 cern.jet.stat.Gamma beta

This function takes the following arguments:

• double1: the x value.

• double2: the y value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Beta.html#Beta(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt28. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation .

<query id="qColt28"><![CDATA[
 select beta(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 10
beta

10-3

http://dsd.lbl.gov/~hoschek/colt/
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 3.1415927
1000: + 1.899038
1200: + 1.251922
2000: + 4.226169

10.2.2 beta1
Syntax

Purpose

beta1 is based on cern.jet.stat.Probability. It returns the area P(x) from 0 to x under
the beta density function (see Figure 10-2) as a double.

Figure 10-2 cern.jet.stat.Probability beta1

This function takes the following arguments:

• double1: the alpha parameter of the beta distribution a.

• double2: the beta parameter of the beta distribution b.

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Beta.html#Beta(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt35. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt35"><![CDATA[
 select beta1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894

Chapter 10
beta1

10-4

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)

1200: + 0.873397
2000: + 0.44519535

10.2.3 betaComplemented
Syntax

Purpose

betaComplemented is based on cern.jet.stat.Probability. It returns the area under the
right hand tail (from x to infinity) of the beta density function (see Figure 10-2) as a
double.

This function takes the following arguments:

• double1: the alpha parameter of the beta distribution a.

• double2: the beta parameter of the beta distribution b.

• double3: the integration end point x.

For more information, see:

• incompleteBeta

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#betaComplemented(double, double, double).

Examples

Consider the query qColt37. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt37"><![CDATA[
 select betaComplemented(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894
1200: + 0.873397
2000: + 0.44519535

10.2.4 binomial
Syntax

Chapter 10
betaComplemented

10-5

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#betaComplemented(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#betaComplemented(double,%20double,%20double)

Purpose

binomial is based on cern.jet.math.Arithmetic. It returns the binomial coefficient n
over k (see Figure 10-3) as a double.

Figure 10-3 Definition of binomial coefficient

This function takes the following arguments:

• double1: the n value.

• long2: the k value.

Table 10-2 lists the binomial function return values for various values of k.

Table 10-2 cern.jet.math.Arithmetic binomial Return Values

Arguments Return Value

k < 0 0

k = 0 1

k = 1 n

Any other value of k Computed binomial coefficient as given in Figure 10-3.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#binomial(double, long).

Examples

Consider the query qColt6. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 long), the query returns the relation.

<query id="qColt6"><![CDATA[
 select binomial(c2,c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.013092041
1000: + -0.012374863
1200: + -0.0010145549
2000: + -0.0416

Chapter 10
binomial

10-6

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#binomial(double,%20long)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#binomial(double,%20long)

10.2.5 binomial1
Syntax

Purpose

binomial1 is based on cern.jet.math.Arithmetic. It returns the binomial coefficient n
over k (see Figure 10-3) as a double.

This function takes the following arguments:

• long1: the n value.

• long2: the k value.

Table 10-3 lists the BINOMIAL function return values for various values of k.

Table 10-3 cern.jet.math.Arithmetic Binomial1 Return Values

Arguments Return Value

k < 0 0

k = 0 || k = n 1

k = 1 || k = n-1 n

Any other value of k Computed binomial coefficient as given in Figure 10-3.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Binomial.html#Binomial(int, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt7. Given the data stream SColtFunc with schema (c1 integer,
c2 float, c3 long), the query returns the relation.

<query id="qColt7"><![CDATA[
 select binomial1(c3,c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

Chapter 10
binomial1

10-7

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Binomial.html#Binomial(int,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Binomial.html#Binomial(int,%20double,%20cern.jet.random.engine.RandomEngine)

10.2.6 binomial2
Syntax

Purpose

binomial2 is based on cern.jet.stat.Probability. It returns the sum of the terms 0
through k of the binomial probability density (see Figure 10-4) as a double.

Figure 10-4 cern.jet.stat.Probability binomial2

This function takes the following arguments (all arguments must be positive):

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0, 1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#binomial(int, int, double).

Examples

Consider the query qColt34. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt34"><![CDATA[
 select binomial2(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

Chapter 10
binomial2

10-8

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomial(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomial(int,%20int,%20double)

10.2.7 binomialComplemented
Syntax

Purpose

binomialComplemented is based on cern.jet.stat.Probability. It returns the sum of the
terms k+1 through n of the binomial probability density (see Figure 10-5) as a double.

Figure 10-5 cern.jet.stat.Probability binomialComplemented

This function takes the following arguments (all arguments must be positive):

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0, 1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#binomialComplemented(int, int, double).

Examples

Consider the query qColt38. Given the data stream SColtFunc with schema (integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt38"><![CDATA[
 select binomialComplemented(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

Chapter 10
binomialComplemented

10-9

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomialComplemented(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomialComplemented(int,%20int,%20double)

10.2.8 bitMaskWithBitsSetFromTo
Syntax

Purpose

bitMaskWithBitsSetFromTo is based on cern.colt.bitvector.QuickBitVector. It returns a
64-bit wide bit mask as a long with bits in the specified range set to 1 and all other bits
set to 0.

This function takes the following arguments:

• integer1: the from value; index of the start bit (inclusive).

• integer2: the to value; index of the end bit (inclusive).

Precondition (not checked): to - from + 1 >= 0 && to - from + 1 <= 64.

If to - from + 1 = 0 then returns a bit mask with all bits set to 0.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#bitMaskWithBitsSetFromTo(int, int)

• leastSignificantBit

• mostSignificantBit.

Examples

Consider the query qColt53. Given the data stream SColtFunc with schema (c1
integer, c2 float, c3 bigint), the query returns the relation.

query id="qColt53"><![CDATA[
 select bitMaskWithBitsSetFromTo(c1,c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 2
1000: + 16
1200: + 8
2000: + 256

10.2.9 ceil
Syntax

Chapter 10
bitMaskWithBitsSetFromTo

10-10

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#bitMaskWithBitsSetFromTo(int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#bitMaskWithBitsSetFromTo(int,%20int)

Purpose

ceil is based on cern.jet.math.Arithmetic. It returns the smallest long greater than or
equal to its double argument.

This method is safer than using (float) java.lang.Math.ceil(long) because of
possible rounding error.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#ceil(double)

• ceil1.

Examples

Consider the query qColt1. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt1"><![CDATA[
 select ceil(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 1

10.2.10 chiSquare
Syntax

Purpose

chiSquare is based on cern.jet.stat.Probability. It returns the area under the left
hand tail (from 0 to x) of the Chi square probability density function with v degrees of
freedom (see Figure 10-6) as a double.

Figure 10-6 cern.jet.stat.Probability chiSquare

Chapter 10
chiSquare

10-11

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#ceil(double)

This function takes the following arguments (all arguments must be positive):

• double1: the degrees of freedom v.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#chiSquare(double, double).

Examples

Consider the query qColt39. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation .

<query id="qColt39"><![CDATA[
 select chiSquare(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

10.2.11 chiSquareComplemented
Syntax

Purpose

chiSquareComplemented is based on cern.jet.stat.Probability. It returns the area under
the right hand tail (from x to infinity) of the Chi square probability density function with v
degrees of freedom (see Figure 10-6) as a double.

This function takes the following arguments (all arguments must be positive):

• double1: the degrees of freedom v.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#chiSquareComplemented(double, double).

Examples

Consider the query qColt40. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation .

<query id="qColt40"><![CDATA[
 select chiSquareComplemented(c2,c2) from SColtFunc
]]></query>

Chapter 10
chiSquareComplemented

10-12

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquare(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquare(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquareComplemented(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquareComplemented(double,%20double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

10.2.12 errorFunction
Syntax

Purpose

errorFunction is based on cern.jet.stat.Probability. It returns the error function of
the normal distribution of the double argument as a double, using the integral that
Figure 10-7 shows.

Figure 10-7 cern.jet.stat.Probability errorFunction

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#errorFunction(double).

Examples

Consider the query qColt41. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt41"><![CDATA[
 select errorFunction(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5204999
1000: + 0.6778012
1200: + 0.79184324
2000: + 0.42839235

Chapter 10
errorFunction

10-13

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunction(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunction(double)

10.2.13 errorFunctionComplemented
Syntax

Purpose

errorFunctionComplemented is based on cern.jet.stat.Probability. It returns the
complementary error function of the normal distribution of the double argument as a
double, using the integral that Figure 10-8 shows.

Figure 10-8 cern.jet.stat.Probability errorfunctioncompelemented

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#errorFunctionComplemented(double).

Examples

Consider the query qColt42. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt42"><![CDATA[
 select errorFunctionComplemented(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47950011
1000: + 0.3221988
1200: + 0.20815676
2000: + 0.57160765

10.2.14 factorial
Syntax

Chapter 10
errorFunctionComplemented

10-14

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunctionComplemented(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunctionComplemented(double)

Purpose

factorial is based on cern.jet.math.Arithmetic. It returns the factorial of the positive
integer argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#factorial(int).

Examples

Consider the query qColt8. Given the data stream SColtFunc with schema (c1 integer,
c2 float, c3 bigint), the query returns the relation.

<query id="qColt8"><![CDATA[
 select factorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 24.0
1200: + 6.0
2000: + 40320.0

10.2.15 floor
Syntax

Purpose

floor is based on cern.jet.math.Arithmetic. It returns the largest long value less than
or equal to the double argument.

This method is safer than using (double) java.lang.Math.floor(double) because of
possible rounding error.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#floor(double)

• floor1

Examples

Consider the query qColt2. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt2"><![CDATA[
 select floor(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8

Chapter 10
floor

10-15

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#factorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#factorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#floor(double)

1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 0
1200: + 0
2000: + 0

10.2.16 gamma
Syntax

Purpose

gamma is based on cern.jet.stat.Gamma. It returns the Gamma function of the double
argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#gamma(double, double, double).

Examples

Consider the query qColt29. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt29"><![CDATA[
 select gamma(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.7724539
1000: + 1.2980554
1200: + 1.0768307
2000: + 2.2181594

10.2.17 gamma1
Syntax

Purpose

gamma1 is based on cern.jet.stat.Probability. It returns the integral from zero to x of
the gamma probability density function (see Figure 10-9) as a double.

Chapter 10
gamma

10-16

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gamma(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gamma(double,%20double,%20double)

Figure 10-9 cern.jet.stat.Probability gamma1

This function takes the following arguments:

• double1: the gamma distribution alpha value a

• double2: the gamma distribution beta or lambda value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Gamma.html#Gamma(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt36. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt36"><![CDATA[
 select gamma1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5204999
1000: + 0.55171627
1200: + 0.59975785
2000: + 0.51785487

10.2.18 gammaComplemented
Syntax

Purpose

gammaComplemented is based on cern.jet.stat.Probability. It returns the integral from x
to infinity of the gamma probability density function (see Figure 10-10) as a double.

Figure 10-10 cern.jet.stat.Probability gammaComplemented

Chapter 10
gammaComplemented

10-17

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Gamma.html#Gamma(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Gamma.html#Gamma(double,%20double,%20cern.jet.random.engine.RandomEngine)

This function takes the following arguments:

• double1: the gamma distribution alpha value a

• double2: the gamma distribution beta or lambda value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#gammaComplemented(double, double, double).

Examples

Consider the query qColt43. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt43"><![CDATA[
 select gammaComplemented(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47950011
1000: + 0.44828376
1200: + 0.40024218
2000: + 0.48214513

10.2.19 getSeedAtRowColumn
Syntax

Purpose

getSeedAtRowColumn is based on cern.jet.random.engine.RandomSeedTable. It returns a
deterministic seed as an integer from a (seemingly gigantic) matrix of predefined
seeds.

This function takes the following arguments:

• integer1: the row value; should (but need not) be in [0,Integer.MAX_VALUE].

• integer2: the column value; should (but need not) be in [0,1].

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
engine/RandomSeedTable.html#getSeedAtRowColumn(int, int).

Examples

Consider the query qColt27. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt27"><![CDATA[
 select getSeedAtRowColumn(c1,c1) from SColtFunc
]]></query>

Chapter 10
getSeedAtRowColumn

10-18

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gammaComplemented(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gammaComplemented(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/engine/RandomSeedTable.html#getSeedAtRowColumn(int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/engine/RandomSeedTable.html#getSeedAtRowColumn(int,%20int)

Tmestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 253987020
1000: + 1289741558
1200: + 417696270
2000: + 350557787

10.2.20 hash
Syntax

Purpose

hash is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified double value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(double).

Examples

Consider the query qColt56. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt56"><![CDATA[
 select hash(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1071644672
1000: + 1608935014
1200: + 2146204385
2000: + -1613129319

10.2.21 hash1
Syntax

Chapter 10
hash

10-19

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(double)

Purpose

hash1 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified float value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(float).

Examples

Consider the query qColt57. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt57"><![CDATA[
 select hash1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1302214522
1000: + 1306362078
1200: + 1309462552
2000: + 1300047248

10.2.22 hash2
Syntax

Purpose

hash2 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified integer value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(int).

Examples

Consider the query qColt58. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt58"><![CDATA[
 select hash2(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1

Chapter 10
hash2

10-20

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(float)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(float)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(int)

1000: + 4
1200: + 3
2000: + 8

10.2.23 hash3
Syntax

Purpose

hash3 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified long value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(long).

Examples

Consider the query qColt59. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt59"><![CDATA[
 select hash3(c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 8
1000: + 6
1200: + 12
2000: + 4

10.2.24 i0
Syntax

Purpose

i0 is based on cern.jet.math.Bessel. It returns the modified Bessel function of order 0
of the double argument as a double.

The function is defined as i0(x) = j0(ix).

The range is partitioned into the two intervals [0,8] and (8,infinity).

For more information, see:

Chapter 10
hash3

10-21

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(long)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(long)

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0(double)

• j0.

Examples

Consider the query qColt12. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt12"><![CDATA[
 select i0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0634834
1000: + 1.126303
1200: + 1.2080469
2000: + 1.0404018

10.2.25 i0e
Syntax

Purpose

i0e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of order 0 of the double argument as a double.

The function is defined as: i0e(x) = exp(-|x|) j0(ix).

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0e(double)

• j0

Examples

Consider the query qColt13. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt13"><![CDATA[
 select i0e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.64503527

Chapter 10
i0e

10-22

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0e(double)

1000: + 0.55930555
1200: + 0.4960914
2000: + 0.6974022

10.2.26 i1
Syntax

Purpose

i1 is based on cern.jet.math.Bessel. It returns the modified Bessel function of order 1
of the double argument as a double.

The function is defined as: i1(x) = -i j1(ix).

The range is partitioned into the two intervals [0,8] and (8,infinity). Chebyshev
polynomial expansions are employed in each interval.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1(double)

• j1.

Examples

Consider the query qColt14. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt14"><![CDATA[
 select i1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.2578943
1000: + 0.37187967
1200: + 0.49053898
2000: + 0.20402676

10.2.27 i1e
Syntax

Chapter 10
i1

10-23

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1(double)

Purpose

i1e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of order 1 of the double argument as a double.

The function is defined as i1(x) = -i exp(-|x|) j1(ix).

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1e(double)

• j1.

Examples

Consider the query qColt15. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt15"><![CDATA[
 select i1e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.1564208
1000: + 0.18466999
1200: + 0.20144266
2000: + 0.13676323

10.2.28 incompleteBeta
Syntax

Purpose

incompleteBeta is based on cern.jet.stat.Gamma. It returns the Incomplete Beta
Function evaluated from zero to x as a double.

This function takes the following arguments:

• double1: the beta distribution alpha value a

• double2: the beta distribution beta value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteBeta(double, double, double).

Examples

Consider the query qColt30. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
incompleteBeta

10-24

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteBeta(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteBeta(double,%20double,%20double)

<query id="qColt30"><![CDATA[
 select incompleteBeta(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894
1200: + 0.873397
2000: + 0.44519535

10.2.29 incompleteGamma
Syntax

Purpose

incompleteGamma is based on cern.jet.stat.Gamma. It returns the Incomplete Gamma
function of the arguments as a double.

This function takes the following arguments:

• double1: the gamma distribution alpha value a.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteGamma(double, double).

Examples

Consider the query qColt31. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt31"><![CDATA[
 select incompleteGamma(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.6826895
1000: + 0.6565891
1200: + 0.6397422
2000: + 0.7014413

Chapter 10
incompleteGamma

10-25

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGamma(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGamma(double,%20double)

10.2.30 incompleteGammaComplement
Syntax

Purpose

incompleteGammaComplement is based on cern.jet.stat.Gamma. It returns the
Complemented Incomplete Gamma function of the arguments as a double.

This function takes the following arguments:

• double1: the gamma distribution alpha value a.

• double2: the integration start point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteGammaComplement(double, double).

Examples

Consider the query qColt32. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt32"><![CDATA[
 select incompleteGammaComplement(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.3173105
1000: + 0.34341094
1200: + 0.3602578
2000: + 0.29855874

10.2.31 j0
Syntax

Purpose

j0 is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of
order 0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#j0(double).

Chapter 10
incompleteGammaComplement

10-26

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGammaComplement(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGammaComplement(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j0(double)

Examples

Consider the query qColt16. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt16"><![CDATA[
 select j0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.9384698
1000: + 0.8812009
1200: + 0.8115654
2000: + 0.9603982

10.2.32 j1
Syntax

Purpose

j1 is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of
order 1 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#j1(double).

Examples

Consider the query qColt17. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt17"><![CDATA[
 select j1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.24226846
1000: + 0.32899573
1200: + 0.40236986
2000: + 0.19602658

Chapter 10
j1

10-27

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j1(double)

10.2.33 jn
Syntax

Purpose

jn is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of
order n of the argument as a double.

This function takes the following arguments:

• integer1: the order of the Bessel function n.

• double2: the value to compute the bessel function of x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#jn(int, double).

Examples

Consider the query qColt18. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt18"><![CDATA[
 select jn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.24226846
1000: + 6.1009696E-4
1200: + 0.0139740035
2000: + 6.321045E-11

10.2.34 k0
Syntax

Purpose

k0 is based on cern.jet.math.Bessel. It returns the modified Bessel function of the third
kind of order 0 of the double argument as a double.

The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev
polynomial expansions are employed in each interval.

Chapter 10
jn

10-28

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#jn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#jn(int,%20double)

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k0(double).

Examples

Consider the query qColt19. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt19"><![CDATA[
 select k0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.92441905
1000: + 0.6605199
1200: + 0.49396032
2000: + 1.1145291

10.2.35 k0e
Syntax

Purpose

k0e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of the third kind of order 0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k0e(double).

Examples

Consider the query qColt20. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt20"><![CDATA[
 select k0e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.5241094
1000: + 1.3301237
1200: + 1.2028574
2000: + 1.662682

Chapter 10
k0e

10-29

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0e(double)

10.2.36 k1
Syntax

Purpose

k1 is based on cern.jet.math.Bessel. It returns the modified Bessel function of the third
kind of order 1 of the double argument as a double.

The range is partitioned into the two intervals [0,2] and (2, infinity). Chebyshev
polynomial expansions are employed in each interval.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k1(double).

Examples

Consider the query qColt21. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt21"><![CDATA[
 select k1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.6564411
1000: + 1.0502836
1200: + 0.7295154
2000: + 2.1843543

10.2.37 k1e
Syntax

Purpose

k1e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of the third kind of order 1 of the double argument as a double.

The function is defined as: k1e(x) = exp(x) * k1(x).

For more information, see:

Chapter 10
k1

10-30

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1(double)

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1e(double)

• k1.

Examples

Consider the query qColt22. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt22"><![CDATA[
 select k1e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 2.7310097
1000: + 2.1150115
1200: + 1.7764645
2000: + 3.258674

10.2.38 kn
Syntax

Purpose

kn is based on cern.jet.math.Bessel. It returns the modified Bessel function of the third
kind of order n of the argument as a double.

This function takes the following arguments:

• integer1: the n value order of the Bessel function.

• double2: the x value to compute the bessel function of.

The range is partitioned into the two intervals [0,9.55] and (9.55, infinity). An
ascending power series is used in the low range, and an asymptotic expansion in the
high range.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#kn(int, double).

Examples

Consider the query qColt23. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt23"><![CDATA[
 select kn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 10
kn

10-31

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#kn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#kn(int,%20double)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.6564411
1000: + 191.99422
1200: + 10.317473
2000: + 9.7876858E8

10.2.39 leastSignificantBit
Syntax

Purpose

leastSignificantBit is based on cern.colt.bitvector.QuickBitVector. It returns the
index (as an integer) of the least significant bit in state true of the integer argument.
Returns 32 if no bit is in state true.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#leastSignificantBit(int)

• bitMaskWithBitsSetFromTo

• mostSignificantBit.

Examples

Consider the query qColt54. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt54"><![CDATA[
 select leastSignificantBit(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 2
1200: + 0
2000: + 3

10.2.40 log
Syntax

Chapter 10
leastSignificantBit

10-32

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#leastSignificantBit(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#leastSignificantBit(int)

Purpose

log is based on cern.jet.math.Arithmetic. It returns the computation that Figure 10-11
shows as a double.

Figure 10-11 cern.jet.math.Arithmetic log

This function takes the following arguments:

• double1: the base.

• double2: the value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log(double, double).

Examples

Consider the query qColt3. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt3"><![CDATA[
 select log(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

10.2.41 log10
Syntax

Purpose

log10 is based on cern.jet.math.Arithmetic. It returns the base 10 logarithm of a
double value as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log10(double).

Chapter 10
log10

10-33

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log10(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log10(double)

Examples

Consider the query qColt4. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt4"><![CDATA[
 select log10(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.30103
1000: + -0.15490197
1200: + -0.050610002
2000: + -0.39794

10.2.42 log2
Syntax

Purpose

log2 is based on cern.jet.math.Arithmetic. It returns the base 2 logarithm of a double
value as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log2(double).

Examples

Consider the query qColt9. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt9"><![CDATA[
 select log2(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -1.0
1000: + -0.5145732
1200: + -0.16812278
2000: + -1.321928

Chapter 10
log2

10-34

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log2(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log2(double)

10.2.43 logFactorial
Syntax

Purpose

logFactorial is based on cern.jet.math.Arithmetic. It returns the natural logarithm
(base e) of the factorial of its integer argument as a double

For argument values k<30, the function looks up the result in a table in O(1). For
argument values k>=30, the function uses Stirlings approximation.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#logFactorial(int).

Examples

Consider the query qColt10. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt10"><![CDATA[
 select logFactorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 3.1780539
1200: + 1.7917595
2000: + 10.604603

10.2.44 logGamma
Syntax

Purpose

logGamma is based on cern.jet.stat.Gamma. It returns the natural logarithm (base e) of
the gamma function of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#logGamma(double).

Chapter 10
logFactorial

10-35

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#logFactorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#logFactorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#logGamma(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#logGamma(double)

Examples

Consider the query qColt33. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt33"><![CDATA[
 select logGamma(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5723649
1000: + 0.26086727
1200: + 0.07402218
2000: + 0.7966778

10.2.45 longFactorial
Syntax

Purpose

longFactorial is based on cern.jet.math.Arithmetic. It returns the factorial of its
integer argument (in the range k >= 0 && k < 21) as a long.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#longFactorial(int).

Examples

Consider the query qColt11. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt11"><![CDATA[
 select longFactorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 24
1200: + 6
2000: + 40320

Chapter 10
longFactorial

10-36

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#longFactorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#longFactorial(int)

10.2.46 mostSignificantBit
Syntax

Purpose

mostSignificantBit is based on cern.colt.bitvector.QuickBitVector. It returns the
index (as an integer) of the most significant bit in state true of the integer argument.
Returns -1 if no bit is in state true.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#mostSignificantBit(int)

• bitMaskWithBitsSetFromTo

• leastSignificantBit.

Examples

Consider the query qColt55. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt55"><![CDATA[
 select mostSignificantBit(c1) from SColtFunc
]]></view>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 2
1200: + 1
2000: + 3

10.2.47 negativeBinomial
Syntax

Purpose

negativeBinomial is based on cern.jet.stat.Probability. It returns the sum of the
terms 0 through k of the Negative Binomial Distribution (see Figure 10-12) as a double.

Chapter 10
mostSignificantBit

10-37

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#mostSignificantBit(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#mostSignificantBit(int)

Figure 10-12 cern.jet.stat.Probability negativeBinomial

This function takes the following arguments:

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0,1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#negativeBinomial(int, int, double).

Examples

Consider the query qColt44. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt44"><![CDATA[
 select negativeBinomial(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.75
1000: + 0.94203234
1200: + 0.99817264
2000: + 0.28393665

10.2.48 negativeBinomialComplemented
Syntax

Purpose

negativeBinomialComplemented is based on cern.jet.stat.Probability. It returns the
sum of the terms k+1 to infinity of the Negative Binomial distribution (see Figure 10-13)
as a double.

Figure 10-13 cern.jet.stat.Probability negativeBinomialComplemented

Chapter 10
negativeBinomialComplemented

10-38

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomial(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomial(int,%20int,%20double)

This function takes the following arguments:

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0,1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#negativeBinomialComplemented(int, int, double).

Examples

Consider the query qColt45. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt45"><![CDATA[
 select negativeBinomialComplemented(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.25
1000: + 0.05796766
1200: + 0.0018273441
2000: + 0.7160633

10.2.49 normal
Syntax

Purpose

normal is based on cern.jet.stat.Probability. It returns the area under the Normal
(Gaussian) probability density function, integrated from minus infinity to the double
argument x (see Figure 10-14) as a double.

Figure 10-14 cern.jet.stat.Probability normal

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#normal(double).

Chapter 10
normal

10-39

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomialComplemented(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomialComplemented(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double)

Examples

Consider the query qColt46. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt46"><![CDATA[
 select normal(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.69146246
1000: + 0.7580363
1200: + 0.81326705
2000: + 0.65542173

10.2.50 normal1
Syntax

Purpose

normal1 is based on cern.jet.stat.Probability. It returns the area under the Normal
(Gaussian) probability density function, integrated from minus infinity to x (see
Figure 10-15) as a double.

Figure 10-15 cern.jet.stat.Probability normal1

This function takes the following arguments:

• double1: the normal distribution mean.

• double2: the variance of the normal distribution v.

• double3: the integration limit x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#normal(double, double, double).

Examples

Consider the query qColt47. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
normal1

10-40

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double,%20double,%20double)

<query id="qColt47"><![CDATA[
 select normal1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.5
1200: + 0.5
2000: + 0.5

10.2.51 normalInverse
Syntax

Purpose

normalInverse is based on cern.jet.stat.Probability. It returns the double value, x, for
which the area under the Normal (Gaussian) probability density function (integrated
from minus infinity to x) equals the double argument y (assumes mean is zero and
variance is one).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#normalInverse(double).

Examples

Consider the query qColt48. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt48"><![CDATA[
 select normalInverse(c2) from SColtFunc
]]></view>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.5244005
1200: + 1.226528
2000: + 0.2533471

Chapter 10
normalInverse

10-41

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normalInverse(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normalInverse(double)

10.2.52 poisson
Syntax

Purpose

poisson is based on cern.jet.stat.Probability. It returns the sum of the first k terms of
the Poisson distribution (see Figure 10-16) as a double.

Figure 10-16 cern.jet.stat.Probability poisson

This function takes the following arguments:

• integer1: the number of terms k.

• double2: the mean of the Poisson distribution m.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#poisson(int, double).

Examples

Consider the query qColt49. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt49"><![CDATA[
 select poisson(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.909796
1000: + 0.9992145
1200: + 0.9870295
2000: + 1.0

Chapter 10
poisson

10-42

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poisson(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poisson(int,%20double)

10.2.53 poissonComplemented
Syntax

Purpose

poissonComplemented is based on cern.jet.stat.Probability. It returns the sum of the
terms k+1 to Infinity of the Poisson distribution (see Figure 10-17) as a double.

Figure 10-17 cern.jet.stat.Probability poissonComplemented

This function takes the following arguments:

• integer1: the start term k.

• double2: the mean of the Poisson distribution m.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#poissonComplemented(int, double).

Examples

Consider the query qColt50. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt50"><![CDATA[
 select poissonComplemented(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.09020401
1000: + 7.855354E-4
1200: + 0.012970487
2000: + 5.043364E-10

Chapter 10
poissonComplemented

10-43

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poissonComplemented(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poissonComplemented(int,%20double)

10.2.54 stirlingCorrection
Syntax

Purpose

stirlingCorrection is based on cern.jet.math.Arithmetic. It returns the correction term
of the Stirling approximation of the natural logarithm (base e) of the factorial of the
integer argument (see Figure 10-18) as a double.

Figure 10-18 cern.jet.math.Arithmetic stirlingCorrection

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#stirlingCorrection(int).

Examples

Consider the query qColt5. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt5"><![CDATA[
 select stirlingCorrection(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.08106147
1000: + 0.020790672
1200: + 0.027677925
2000: + 0.010411265

10.2.55 studentT
Syntax

Chapter 10
stirlingCorrection

10-44

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#stirlingCorrection(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#stirlingCorrection(int)

Purpose

studentT is based on cern.jet.stat.Probability. It returns the integral from minus
infinity to t of the Student-t distribution with k > 0 degrees of freedom (see
Figure 10-19) as a double.

Figure 10-19 cern.jet.stat.Probability studentT

This function takes the following arguments:

• double1: the degrees of freedom k.

• double2: the integration end point t.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#studentT(double, double).

Examples

Consider the query qColt51. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt51"><![CDATA[
 select studentT(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.621341
1000: + 0.67624015
1200: + 0.7243568
2000: + 0.5930112

10.2.56 studentTInverse
Syntax

Purpose

studentTInverse is based on cern.jet.stat.Probability. It returns the double value, t,
for which the area under the Student-t probability density function (integrated from

Chapter 10
studentTInverse

10-45

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentT(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentT(double,%20double)

minus infinity to t) equals 1-alpha/2. The value returned corresponds to the usual
Student t-distribution lookup table for talpha[size]. This function uses the studentt
function to determine the return value iteratively.

This function takes the following arguments:

• double1: the probability alpha.

• integer2: the data set size.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#studentTInverse(double, int)

• studentT.

Examples

Consider the query qColt52. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt52"><![CDATA[
 select studentTInverse(c2,c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 0.4141633
1200: + 0.15038916
2000: + 0.8888911

10.2.57 y0
Syntax

Purpose

y0 is based on cern.jet.math.Bessel. It returns the Bessel function of the second kind
of order 0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#y0(double).

Examples

Consider the query qColt24. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt24"><![CDATA[
 select y0(c2) from SColtFunc
]]></query>

Chapter 10
y0

10-46

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentTInverse(double,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentTInverse(double,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y0(double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.44451874
1000: + -0.19066493
1200: + -0.0031519707
2000: + -0.60602456

10.2.58 y1
Syntax

Purpose

y1 is based on cern.jet.math.Bessel. It returns the Bessel function of the second kind
of order 1 of the float argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#y1(double).

Examples

Consider the query qColt25. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt25"><![CDATA[
 select y1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -1.4714724
1000: + -1.1032499
1200: + -0.88294965
2000: + -1.780872

10.2.59 yn
Syntax

Chapter 10
y1

10-47

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y1(double)

Purpose

yn is based on cern.jet.math.Bessel. It returns the Bessel function of the second kind
of order n of the double argument as a double.

This function takes the following arguments:

• integer1: the n value order of the Bessel function.

• double2: the x value to compute the Bessel function of.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#yn(int, double).

Examples

Consider the query qColt26. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt26"><![CDATA[
 select yn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -1.4714724
1000: + -132.63406
1200: + -8.020442
2000: + -6.3026547E8

Chapter 10
yn

10-48

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#yn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#yn(int,%20double)

11
Colt Aggregate Functions

A reference to Colt aggregate functions provided in Oracle Continuous Query
Language (Oracle CQL) is provided. Colt aggregate functions are based on the Colt
open source libraries for high performance scientific and technical computing.

For more information, see Functions.

11.1 Introduction to Oracle CQL Built-In Aggregate Colt
Functions

Table 11-1 lists the built-in aggregate Colt functions that Oracle CQL provides.

11-1

Table 11-1 Oracle CQL Built-in Aggregate Colt-Based Functions

Colt Package Function

cern.jet.stat.Descriptive

A set of basic descriptive statistics functions.

• autoCorrelation
• correlation
• covariance
• geometricMean
• geometricMean1
• harmonicMean
• kurtosis
• lag1
• mean
• meanDeviation
• median
• moment
• pooledMean
• pooledVariance
• product
• quantile
• quantileInverse
• rankInterpolated
• rms
• sampleKurtosis
• sampleKurtosisStandardError
• sampleSkew
• sampleSkewStandardError
• sampleVariance
• skew
• standardDeviation
• standardError
• sumOfInversions
• sumOfLogarithms
• sumOfPowerDeviations
• sumOfPowers
• sumOfSquaredDeviations
• sumOfSquares
• trimmedMean
• variance
• weightedMean
• winsorizedMean

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Chapter 11
Introduction to Oracle CQL Built-In Aggregate Colt Functions

11-2

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

In relation output examples, the first tuple output is:

-9223372036854775808:+

This value is -Long.MIN_VALUE() and represents the largest negative
timestamp possible.

For more information, see:

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments

• Colt Aggregate Functions and the Where, Group By, and Having Clauses

• Functions

• Data Types

• http://dsd.lbl.gov/~hoschek/colt/.

11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple
Arguments

Note that the signatures of the Oracle CQL Colt aggregate functions do not match the
signatures of the corresponding Colt aggregate functions.

Consider the following Colt aggregate function:

double autoCorrelation(DoubleArrayList data, int lag, double mean, double variance)

In this signature, data is the Collection over which aggregates will be calculated and
mean and variance are the other two parameter aggregates which are required to
calculate autoCorrelation (where mean and variance aggregates are calculated on
data).

In Oracle Event Processing, data will never come in the form of a Collection. The
Oracle CQL function receives input data in a stream of tuples.

So suppose our stream is defined as S:(double val, integer lag). On each input
tuple, the Oracle CQL autoCorrelation function will compute two intermediate
aggregates, mean and variance, and one final aggregate, autoCorrelation.

Since the function expects a stream of tuples having a double data value and an
integer lag value only, the signature of the Oracle CQL autoCorrelation function is:

double autoCorrelation (double data, int lag)

Chapter 11
Introduction to Oracle CQL Built-In Aggregate Colt Functions

11-3

http://dsd.lbl.gov/~hoschek/colt/

11.1.2 Colt Aggregate Functions and the Where, Group By, and
Having Clauses

In Oracle CQL, the where clause is applied before the group by and having clauses.
This means the Oracle CQL statement is invalid:

<query id="q1"><![CDATA[
 select * from InputChannel[rows 4 slide 4] as ic where geometricMean(c3) > 4
]]></query>

Instead, you must use the Oracle CQL statement shown in the following example:

<query id="q1"><![CDATA[
 select * from InputChannel[rows 4 slide 4] as ic, myGeoMean = geometricMean(c3)
where myGeoMean > 4
]]></query>

For more information, see:

• Figure 16-11

• Figure 16-12

• Figure 16-19.

11.2.1 autoCorrelation
Syntax

Purpose

autoCorrelation is based on
cern.jet.stat.Descriptive.autoCorrelation(DoubleArrayList data, int lag, double

mean, double variance). It returns the auto-correlation of a data sequence of the input
arguments as a double.

Note:

This function has semantics different from lag1.

This function takes the following tuple arguments:

• double1: data value.

• int1: lag.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList, int, double, double)

Chapter 11
autoCorrelation

11-4

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList,%20int,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList,%20int,%20double,%20double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr1. Given the data stream SColtAggrFunc with schema (c3
double), the query returns the relation.

<query id="qColtAggr1"><![CDATA[
 select autoCorrelation(c3, 0) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 5.441341838866902
1000 6.1593756700951054
1200 3.7269733222923676
1400 4.625160266213489
1600 3.490061774090248
1800 3.6354484064421917
2000 5.635401664977703
2200 5.006087562207967
2400 3.632574304861612
2600 7.618087248962962
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 1.0
1200: - 1.0
1200: + 1.0
1400: - 1.0
1400: + 1.0
1600: - 1.0
1600: + 1.000000000000002
1800: - 1.000000000000002
1800: + 1.0
2000: - 1.0
2000: + 0.9999999999999989
2200: - 0.9999999999999989
2200: + 0.999999999999999
2400: - 0.999999999999999
2400: + 0.9999999999999991
2600: - 0.9999999999999991
2600: + 1.0000000000000013

11.2.2 correlation
Syntax

Purpose

correlation is based on cern.jet.stat.Descriptive.correlation(DoubleArrayList
data1, double standardDev1, DoubleArrayList data2, double standardDev2) . It returns
the correlation of two data sequences of the input arguments as a double.

This function takes the following tuple arguments:

Chapter 11
correlation

11-5

• double1: data value 1.

• double2: data value 2.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#correlation(cern.colt.list.DoubleArrayList, double,

cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr2. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr2"><![CDATA[
 select correlation(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 2.0
1200: - 2.0
1200: + 1.5
2000: - 1.5
2000: + 1.333333333333333

11.2.3 covariance
Syntax

Purpose

covariance is based on cern.jet.stat.Descriptive.covariance(DoubleArrayList data1,
DoubleArrayList data2). It returns the correlation of two data sequences (see
Figure 11-1) of the input arguments as a double.

Figure 11-1 cern.jet.stat.Descriptive.covariance

Chapter 11
covariance

11-6

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)

This function takes the following tuple arguments:

• double1: data value 1.

• double2: data value 2.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#covariance(cern.colt.list.DoubleArrayList,

cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr3. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr3"><![CDATA[
 select covariance(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 50.0
1200: - 50.0
1200: + 100.0
2000: - 100.0
2000: + 166.66666666666666

11.2.4 geometricMean
Syntax

Purpose

geometricMean is based on cern.jet.stat.Descriptive.geometricMean(DoubleArrayList
data). It returns the geometric mean of a data sequence (see Figure 11-2) of the input
argument as a double.

Figure 11-2 cern.jet.stat.Descriptive.geometricMean(DoubleArrayList data)

Chapter 11
geometricMean

11-7

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)

This function takes the following tuple arguments:

• double1: data value.

Note that for a geometric mean to be meaningful, the minimum of the data values must
not be less than or equal to zero.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr6. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr6"><![CDATA[
 select geometricMean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 34.64101615137755
1200: - 34.64101615137755
1200: + 28.844991406148168
2000: - 28.844991406148168
2000: + 22.133638394006436

11.2.5 geometricMean1
Syntax

Purpose

geometricMean1 is based on cern.jet.stat.Descriptive.geometricMean(double
sumOfLogarithms). It returns the geometric mean of a data sequence (see Figure 11-3)
of the input arguments as a double.

Figure 11-3 cern.jet.stat.Descriptive.geometricMean1(int size, double
sumOfLogarithms)

Chapter 11
geometricMean1

11-8

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr7. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr7"><![CDATA[
 select geometricMean1(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + Infinity
1000: - Infinity
1000: + Infinity
1200: - Infinity
1200: + Infinity
2000: - Infinity
2000: + Infinity

11.2.6 harmonicMean
Syntax

Purpose

harmonicMean is based on cern.jet.stat.Descriptive.harmonicMean(int size, double
sumOfInversions). It returns the harmonic mean of a data sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#harmonicMean(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Chapter 11
harmonicMean

11-9

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)

Examples

Consider the query qColtAggr8. Given the data stream SColtAggrFunc with schema (c3
double), the query returns the relation.

<query id="qColtAggr8"><![CDATA[
 select harmonicMean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 5.441341838866902
1000 6.1593756700951054
1200 3.7269733222923676
1400 4.625160266213489
1600 3.490061774090248
1800 3.6354484064421917
2000 5.635401664977703
2200 5.006087562207967
2400 3.632574304861612
2600 7.618087248962962
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 5.441341876983643
1000: - 5.441341876983643
1000: + 5.778137193205395
1200: - 5.778137193205395
1200: + 4.882442561720335
1400: - 4.882442561720335
1400: + 4.815475325819701
1600: - 4.815475325819701
1600: + 4.475541862878903
1800: - 4.475541862878903
1800: + 4.309563447664887
2000: - 4.309563447664887
2000: + 4.45944509362759
2200: - 4.45944509362759
2200: + 4.5211563834502515
2400: - 4.5211563834502515
2400: + 4.401525382790638
2600: - 4.401525382790638
2600: + 4.595562422157167

11.2.7 kurtosis
Syntax

Purpose

kurtosis is based on cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data,
double mean, double standardDeviation). It returns the kurtosis or excess (see
Figure 11-4) of a data sequence as a double.

Chapter 11
kurtosis

11-10

Figure 11-4 cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double
mean, double standardDeviation)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr12. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr12"><![CDATA[
 select kurtosis(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + -2.0
1200: - -2.0
1200: + -1.5000000000000002
2000: - -1.5000000000000002
2000: + -1.3600000000000003

11.2.8 lag1
Syntax

Purpose

lag1 is based on cern.jet.stat.Descriptive.lag1(DoubleArrayList data, double mean).
It returns the lag - 1 auto-correlation of a dataset as a double.

Chapter 11
lag1

11-11

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)

Note:

This function has semantics different from autoCorrelation.

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#lag1(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr14. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr14"><![CDATA[
 select lag1(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + -0.5
1200: - -0.5
1200: + 0.0
2000: - 0.0
2000: + 0.25

11.2.9 mean
Syntax

Purpose

mean is based on cern.jet.stat.Descriptive.mean(DoubleArrayList data). It returns the
arithmetic mean of a data sequence (see Figure 11-5) as a double.

Chapter 11
mean

11-12

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#lag1(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#lag1(cern.colt.list.DoubleArrayList,%20double)

Figure 11-5 cern.jet.stat.Descriptive.mean(DoubleArrayList data)

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#mean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr16. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr16"><![CDATA[
 select mean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.10 meanDeviation
Syntax

Chapter 11
meanDeviation

11-13

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#mean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#mean(cern.colt.list.DoubleArrayList)

Purpose

meanDeviation is based on cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList
data, double mean). It returns the mean deviation of a dataset (see Figure 11-6) as a
double.

Figure 11-6 cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList data,
double mean)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr17. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr17"><![CDATA[
 select meanDeviation(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 5.0
1200: - 5.0
1200: + 6.666666666666667
2000: - 6.666666666666667
2000: + 10.0

11.2.11 median
Syntax

Chapter 11
median

11-14

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList,%20double)

Purpose

median is based on cern.jet.stat.Descriptive.median(DoubleArrayList sortedData). It
returns the median of a sorted data sequence as a double.

The following table lists the input types and the corresponding output types:

Table 11-2 Input and Output Types

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

Note:

If the input type is INT, then return type will also be INT and it will be floor of
the divided value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#median(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr18. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr18"><![CDATA[
 select median(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

Chapter 11
median

11-15

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#median(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#median(cern.colt.list.DoubleArrayList)

11.2.12 moment
Syntax

Purpose

moment is based on cern.jet.stat.Descriptive.moment(DoubleArrayList data, int k,
double c). It returns the moment of the k-th order with constant c of a data sequence
(see Figure 11-7) as a double.

Figure 11-7 cern.jet.stat.Descriptive.moment(DoubleArrayList data, int k,
double c)

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

• double2: c.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#moment(cern.colt.list.DoubleArrayList, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr21. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr21"><![CDATA[
 select moment(c3, c1, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0

Chapter 11
moment

11-16

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#moment(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#moment(cern.colt.list.DoubleArrayList,%20int,%20double)

1000: + 5000.0
1200: - 5000.0
1200: + 3000.0
2000: - 3000.0
2000: + 1.7045E11

11.2.13 pooledMean
Syntax

Purpose

pooledMean is based on cern.jet.stat.Descriptive.pooledMean(int size1, double
mean1, int size2, double mean2). It returns the pooled mean of two data sequences
(see Figure 11-8) as a double.

Figure 11-8 cern.jet.stat.Descriptive.pooledMean(int size1, double mean1, int
size2, double mean2)

This function takes the following tuple arguments:

• double1: mean 1.

• double2: mean 2.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#pooledMean(int, double, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr22. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr22"><![CDATA[
 select pooledMean(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+

Chapter 11
pooledMean

11-17

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledMean(int,%20double,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledMean(int,%20double,%20int,%20double)

 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.14 pooledVariance
Syntax

Purpose

pooledVariance is based on cern.jet.stat.Descriptive.pooledVariance(int size1,
double variance1, int size2, double variance2). It returns the pooled variance of two
data sequences (see Figure 11-9) as a double.

Figure 11-9 cern.jet.stat.Descriptive.pooledVariance(int size1, double
variance1, int size2, double variance2)

This function takes the following tuple arguments:

• double1: variance 1.

• double2: variance 2.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#pooledVariance(int, double, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr23. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr23"><![CDATA[
 select pooledVariance(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Chapter 11
pooledVariance

11-18

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledVariance(int,%20double,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledVariance(int,%20double,%20int,%20double)

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 66.66666666666667
2000: - 66.66666666666667
2000: + 125.0

11.2.15 product
Syntax

Purpose

product is based on cern.jet.stat.Descriptive.product(DoubleArrayList data). It
returns the product of a data sequence (see Figure 11-10) as a double.

Figure 11-10 cern.jet.stat.Descriptive.product(DoubleArrayList data)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#product(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr24. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr24"><![CDATA[
 select product(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -

Chapter 11
product

11-19

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#product(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#product(cern.colt.list.DoubleArrayList)

 10: + 40.0
1000: - 40.0
1000: + 1200.0
1200: - 1200.0
1200: + 24000.0
2000: - 24000.0
2000: + 240000.0

11.2.16 quantile
Syntax

Purpose

quantile is based on cern.jet.stat.Descriptive.quantile(DoubleArrayList sortedData,
double phi). It returns the phi-quantile as a double; that is, an element elem for which
holds that phi percent of data elements are less than elem.

This function takes the following tuple arguments:

• double1: data value.

• double2: phi; the percentage; must satisfy 0 <= phi <= 1.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#quantile(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr26. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr26"><![CDATA[
 select quantile(c3, c2) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 36.99999988079071
1200: - 36.99999988079071
1200: + 37.799999713897705
2000: - 37.799999713897705
2000: + 22.000000178813934

Chapter 11
quantile

11-20

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantile(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantile(cern.colt.list.DoubleArrayList,%20double)

11.2.17 quantileInverse
Syntax

Purpose

quantileInverse is based on
cern.jet.stat.Descriptive.quantileInverse(DoubleArrayList sortedList, double

element). It returns the percentage phi of elements <= element (0.0 <= phi <= 1.0) as a
double. This function does linear interpolation if the element is not contained but lies in
between two contained elements.

This function takes the following tuple arguments:

• double1: data.

• double2: element.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr27. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr27"><![CDATA[
 select quantileInverse(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1.0
1000: - 1.0
1000: + 0.5
1200: - 0.5
1200: + 0.3333333333333333
2000: - 0.3333333333333333
2000: + 0.25

Chapter 11
quantileInverse

11-21

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList,%20double)

11.2.18 rankInterpolated
Syntax

Purpose

rankInterpolated is based on
cern.jet.stat.Descriptive.rankInterpolated(DoubleArrayList sortedList, double

element). It returns the linearly interpolated number of elements in a list less or equal to
a given element as a double.

The rank is the number of elements <= element. Ranks are of the form{0, 1, 2,...,

sortedList.size()}. If no element is <= element, then the rank is zero. If the element
lies in between two contained elements, then linear interpolation is used and a non-
integer value is returned.

This function takes the following tuple arguments:

• double1: data value.

• double2: element.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr29. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr29"><![CDATA[
 select rankInterpolated(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1.0
1000: - 1.0
1000: + 1.0
1200: - 1.0
1200: + 1.0
2000: - 1.0
2000: + 1.0

Chapter 11
rankInterpolated

11-22

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)

11.2.19 rms
Syntax

Purpose

rms is based on cern.jet.stat.Descriptive.rms(int size, double sumOfSquares). It
returns the Root-Mean-Square (RMS) of a data sequence (see Figure 11-11) as a
double.

Figure 11-11 cern.jet.stat.Descriptive.rms(int size, double sumOfSquares)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#rms(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr30. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr30"><![CDATA[
 select rms(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.35533905932738
1200: - 35.35533905932738
1200: + 31.09126351029605
2000: - 31.09126351029605
2000: + 27.386127875258307

Chapter 11
rms

11-23

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)

11.2.20 sampleKurtosis
Syntax

Purpose

sampleKurtosis is based on cern.jet.stat.Descriptive.sampleKurtosis(DoubleArrayList
data, double mean, double sampleVariance). It returns the sample kurtosis (excess) of
a data sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList, double,

double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr31. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr31"><![CDATA[
 select sampleKurtosis(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + NaN
1200: - NaN
1200: + NaN
2000: - NaN
2000: + -1.1999999999999993

Chapter 11
sampleKurtosis

11-24

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)

11.2.21 sampleKurtosisStandardError
Syntax

Purpose

sampleKurtosisStandardError is based on
cern.jet.stat.Descriptive.sampleKurtosisStandardError(int size). It returns the
standard error of the sample Kurtosis as a double.

This function takes the following tuple arguments:

• int1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sampleKurtosisStandardError(int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr33. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr33"><![CDATA[
 select sampleKurtosisStandardError(c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + Infinity
1200: - Infinity
1200: + Infinity
2000: - Infinity
2000: + 2.6186146828319083

11.2.22 sampleSkew
Syntax

Chapter 11
sampleKurtosisStandardError

11-25

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)

Purpose

sampleSkew is based on cern.jet.stat.Descriptive.sampleSkew(DoubleArrayList data,
double mean, double sampleVariance). It returns the sample skew of a data sequence
as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr34. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr34"><![CDATA[
 select sampleSkew(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + NaN
1200: - NaN
1200: + 0.0
2000: - 0.0
2000: + 0.0

11.2.23 sampleSkewStandardError
Syntax

Purpose

sampleSkewStandardError is based on
cern.jet.stat.Descriptive.sampleSkewStandardError(int size). It returns the standard
error of the sample skew as a double.

This function takes the following tuple arguments:

Chapter 11
sampleSkewStandardError

11-26

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sampleSkewStandardError(int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr36. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr36"><![CDATA[
 select sampleSkewStandardError(c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + -0.0
1000: - -0.0
1000: + Infinity
1200: - Infinity
1200: + 1.224744871391589
2000: - 1.224744871391589
2000: + 1.01418510567422

11.2.24 sampleVariance
Syntax

Purpose

sampleVariance is based on cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList
data, double mean). It returns the sample variance of a data sequence (see
Figure 11-12) as a double.

Figure 11-12 cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList data,
double mean)

This function takes the following tuple arguments:

Chapter 11
sampleVariance

11-27

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr38. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr38"><![CDATA[
 select sampleVariance(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 50.0
1200: - 50.0
1200: + 100.0
2000: - 100.0
2000: + 166.66666666666666

11.2.25 skew
Syntax

Purpose

skew is based on cern.jet.stat.Descriptive.skew(DoubleArrayList data, double mean,
double standardDeviation). It returns the skew of a data sequence of a data sequence
(see Figure 11-13) as a double.

Figure 11-13 cern.jet.stat.Descriptive.skew(DoubleArrayList data, double
mean, double standardDeviation)

This function takes the following tuple arguments:

Chapter 11
skew

11-28

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#skew(cern.colt.list.DoubleArrayList, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr41. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr41"><![CDATA[
 select skew(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 0.0
1200: - 0.0
1200: + 0.0
2000: - 0.0
2000: + 0.0

11.2.26 standardDeviation
Syntax

Purpose

standardDeviation is based on cern.jet.stat.Descriptive.standardDeviation(double
variance). It returns the standard deviation from a variance as a double.

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

Chapter 11
standardDeviation

11-29

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#skew(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#skew(cern.colt.list.DoubleArrayList,%20double,%20double)

DOUBLE DOUBLE

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#standardDeviation(double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr44. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr44"><![CDATA[
 select standardDeviation(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 5.0
1200: - 5.0
1200: + 8.16496580927726
2000: - 8.16496580927726
2000: + 11.180339887498949

11.2.27 standardError
Syntax

Purpose

standardError is based on cern.jet.stat.Descriptive.standardError(int size, double
variance). It returns the standard error of a data sequence (see Figure 11-14) as a
double.

Figure 11-14 cern.jet.stat.Descriptive.cern.jet.stat.Descriptive.standardError(int
size, double variance)

Chapter 11
standardError

11-30

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#standardError(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr45. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr45"><![CDATA[
 select standardError(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 3.5355339059327378
1200: - 3.5355339059327378
1200: + 4.714045207910317
2000: - 4.714045207910317
2000: + 5.5901699437494745

11.2.28 sumOfInversions
Syntax

Purpose

sumOfInversions is based on
cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data, int from, int to).
It returns the sum of inversions of a data sequence (see Figure 11-15) as a double.

Figure 11-15 cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data,
int from, int to)

Chapter 11
sumOfInversions

11-31

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr48. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr48"><![CDATA[
 select sumOfInversions(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.025
1000: - 0.025
1000: + 0.058333333333333334
1200: - 0.058333333333333334
1200: + 0.10833333333333334
2000: - 0.10833333333333334
2000: + 0.20833333333333334

11.2.29 sumOfLogarithms
Syntax

Purpose

sumOfLogarithms is based on
cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data, int from, int to).
It returns the sum of logarithms of a data sequence (see Figure 11-16) as a double.

Figure 11-16 cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data,
int from, int to)

This function takes the following tuple arguments:

Chapter 11
sumOfLogarithms

11-32

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList,%20int,%20int)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr49. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr49"><![CDATA[
 select sumOfLogarithms(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 3.6888794541139363
1000: - 3.6888794541139363
1000: + 7.090076835776092
1200: - 7.090076835776092
1200: + 10.085809109330082
2000: - 10.085809109330082
2000: + 12.388394202324129

11.2.30 sumOfPowerDeviations
Syntax

Purpose

sumOfPowerDeviations is based on
cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList data, int k, double

c). It returns sum of power deviations of a data sequence (see Figure 11-17) as a
double.

Figure 11-17 cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList
data, int k, double c)

This function is optimized for common parameters like c == 0.0, k == -2 .. 4, or both.

Chapter 11
sumOfPowerDeviations

11-33

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList,%20int,%20int)

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

• double2: c.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList, int,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr50. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr50"><![CDATA[
 select sumOfPowerDeviations(c3, c1, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 10000.0
1200: - 10000.0
1200: + 9000.0
2000: - 9000.0
2000: + 6.818E11

11.2.31 sumOfPowers
Syntax

Purpose

sumOfPowers is based on cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data,
int k). It returns the sum of powers of a data sequence (see Figure 11-18) as a
double.

Figure 11-18 cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data, int
k)

Chapter 11
sumOfPowers

11-34

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr52. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr52"><![CDATA[
 select sumOfPowers(c3, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 3370000.0
1200: - 3370000.0
1200: + 99000.0
2000: - 99000.0
2000: + 7.2354E12

11.2.32 sumOfSquaredDeviations
Syntax

Purpose

sumOfSquaredDeviations is based on
cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double variance). It
returns the sum of squared mean deviation of a data sequence (see Figure 11-19) as
a double.

Figure 11-19 cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double
variance)

Chapter 11
sumOfSquaredDeviations

11-35

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList,%20int)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/

Descriptive.html#sumOfSquaredDeviations(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr53. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr53"><![CDATA[
 select sumOfSquaredDeviations(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 133.33333333333334
2000: - 133.33333333333334
2000: + 375.0

11.2.33 sumOfSquares
Syntax

Purpose

sumOfSquares is based on cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList
data). It returns the sum of squares of a data sequence (see Figure 11-20) as a
double.

Figure 11-20 cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList data)

This function takes the following tuple arguments:

Chapter 11
sumOfSquares

11-36

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquaredDeviations(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquaredDeviations(int,%20double)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr54. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr54"><![CDATA[
 select sumOfSquares(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1600.0
1000: - 1600.0
1000: + 2500.0
1200: - 2500.0
1200: + 2900.0
2000: - 2900.0
2000: + 3000.0

11.2.34 trimmedMean
Syntax

Purpose

trimmedMean is based on cern.jet.stat.Descriptive.trimmedMean(DoubleArrayList
sortedData, double mean, int left, int right). It returns the trimmed mean of an
ascending sorted data sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

• int1: left.

• int2: right.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList, double, int, int)

Chapter 11
trimmedMean

11-37

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr55. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr55"><![CDATA[
 select trimmedMean(c3, c1, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 0, 0.5, 40.0, 8
1000 0, 0.7, 30.0, 6
1200 0, 0.89, 20.0, 12
2000 1, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
10: -
10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.35 variance
Syntax

Purpose

variance is based on cern.jet.stat.Descriptive.variance(int size, double sum,
double sumOfSquares). It returns the variance of a data sequence (see Figure 11-21) as
a double.

Figure 11-21 cern.jet.stat.Descriptive.variance(int size, double sum, double
sumOfSquares)

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

Chapter 11
variance

11-38

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,
double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr57. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr57"><![CDATA[
 select variance(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 66.66666666666667
2000: - 66.66666666666667
2000: + 125.0

11.2.36 weightedMean
Syntax

Purpose

weightedMean is based on cern.jet.stat.Descriptive.weightedMean(DoubleArrayList
data, DoubleArrayList weights). It returns the weighted mean of a data sequence (see
Figure 11-22) as a double.

Figure 11-22 cern.jet.stat.Descriptive.weightedMean(DoubleArrayList data,
DoubleArrayList weights)

Chapter 11
weightedMean

11-39

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,%20double,%20double)

This function takes the following tuple arguments:

• double1: data value.

• double2: weight value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,
cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr58. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr58"><![CDATA[
 select weightedMean(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.714285714285715
1200: - 35.714285714285715
1200: + 32.22222222222222
2000: - 32.22222222222222
2000: + 30.0

11.2.37 winsorizedMean
Syntax

Purpose

winsorizedMean is based on cern.jet.stat.Descriptive.winsorizedMean(DoubleArrayList
sortedData, double mean, int left, int right). It returns the winsorized mean of a
sorted data sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

• int1: left.

Chapter 11
winsorizedMean

11-40

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)

• int2: right.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList, double, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr60. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr60"><![CDATA[
 select winsorizedMean(c3, c1, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 0, 0.7, 30.0, 6
1200 1, 0.89, 20.0, 12
2000 1, 0.4, 10.0, 4
h 8000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
10: -
10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.000000000000004
2000: - 30.000000000000004
2000: + 25

Chapter 11
winsorizedMean

11-41

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)

12
java.lang.Math Functions

A reference to the java.lang.Math functions provided in Oracle Continuous Query
Language (Oracle CQL) is provided.

For more information, see .

12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions
Table 12-1 lists the built-in java.lang.Math functions that Oracle CQL provides.

Table 12-1 Oracle CQL Built-in java.lang.Math Functions

Type Function

Trigonometric • sin
• cos
• tan
• asin
• acos
• atan
• atan2
• cosh
• sinh
• tanh

Logarithmic • log1
• log101
• log1p

Euler's Number • exp
• expm1

Roots • cbrt
• sqrt
• hypot

Signum Function • signum
• signum1

Unit of Least Precision • ulp
• ulp1

12-1

Table 12-1 (Cont.) Oracle CQL Built-in java.lang.Math Functions

Type Function

Other • abs
• abs1
• abs2
• abs3
• ceil1
• floor1
• IEEEremainder
• pow
• rint
• round
• round1
• todegrees
• toradians

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html.

12.2.1 abs
Syntax

Purpose

abs returns the absolute value of the input integer argument as an integer.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(int).

Chapter 12
abs

12-2

http://java.sun.com/javase/6/docs/api/java/lang/Math.html
http://java.sun.com/javase/6/docs/api/java/lang/Math.html
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(int)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(int)

Examples

Consider the query q66. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q66"><![CDATA[
 select abs(c1) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 -4,0.7,6
1200 -3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 4
1200: + 3
2000: + 8

12.2.2 abs1
Syntax

Purpose

abs1 returns the absolute value of the input long argument as a long.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(long).

Examples

Consider the query q67. Given the data stream SFunc with schema (c1 integer, c2
float, c3 long), the query returns the stream.

<query id="q67"><![CDATA[
 select abs1(c3) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,-6
1200 3,0.89,-12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 8
1000: + 6
1200: + 12
2000: + 4

Chapter 12
abs1

12-3

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(long)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(long)

12.2.3 abs2
Syntax

Purpose

abs2 returns the absolute value of the input float argument as a float.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(float).

Examples

Consider the query q68. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q68"><![CDATA[
 select abs2(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.7
1200: + 0.89
2000: + 0.4

12.2.4 abs3
Syntax

Purpose

abs3 returns the absolute value of the input double argument as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(double).

Examples

Consider the query q69. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint, c4 double), the query returns the stream.

Chapter 12
abs2

12-4

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(double)

<query id="q69"><![CDATA[
 select abs3(c4) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8,0.25334
1000 4,0.7,6,-4.64322
1200 3,0.89,12,-1.4672272
2000 8,0.4,4,2.66777

Timestamp Tuple Kind Tuple
 10: + 0.25334
1000: + 4.64322
1200: + 1.4672272
2000: + 2.66777

12.2.5 acos
Syntax

Purpose

acos returns the arc cosine of a double angle, in the range of 0.0 through pi, as a
double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#acos(double).

Examples

Consider the query q73. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q73"><![CDATA[
 select acos(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0471976
1000: + 0.79539883
1200: + 0.4734512
2000: + 1.1592795

12.2.6 asin
Syntax

Chapter 12
acos

12-5

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#acos(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#acos(double)

Purpose

asin returns the arc sine of a double angle, in the range of -pi/2 through pi/2, as a
double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#asin(double).

Examples

Consider the query q74. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q74"><![CDATA[
 select asin(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5235988
1000: + 0.7753975
1200: + 1.0973451
2000: + 0.41151685

12.2.7 atan
Syntax

Purpose

atan returns the arc tangent of a double angle, in the range of -pi/2 through pi/2, as a
double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#atan(double).

Examples

Consider the query q75. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q75"><![CDATA[
 select atan(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
atan

12-6

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#asin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#asin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan(double)

Timestamp Tuple Kind Tuple
 10: + 0.4636476
1000: + 0.61072594
1200: + 0.7272627
2000: + 0.3805064

12.2.8 atan2
Syntax

Purpose

atan2 converts rectangular coordinates (x,y) to polar (r,theta) coordinates.

This function takes the following arguments:

• double1: the ordinate coordinate.

• double2: the abscissa coordinate.

This function returns the theta component of the point (r,theta) in polar coordinates
that corresponds to the point (x,y) in Cartesian coordinates as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#atan2(double,%20double).

Examples

Consider the query q63. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q63"><![CDATA[
 select atan2(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.7853982
1000: + 0.7853982
1200: + 0.7853982
2000: + 0.7853982

12.2.9 cbrt
Syntax

Chapter 12
atan2

12-7

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan2(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan2(double,%20double)

Purpose

cbrt returns the cube root of the double argument as a double.

For positive finite a, cbrt(-a) == -cbrt(a); that is, the cube root of a negative value is
the negative of the cube root of that value's magnitude.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cbrt(double).

Examples

Consider the query q76. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q76"><![CDATA[
 select cbrt(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.7937005
1000: + 0.887904
1200: + 0.9619002
2000: + 0.73680633

12.2.10 ceil1
Syntax

Purpose

ceil1 returns the smallest (closest to negative infinity) double value that is greater than
or equal to the double argument and equals a mathematical integer.

To avoid possible rounding error, consider using (long)
cern.jet.math.Arithmetic.ceil(double).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ceil(double).

Examples

Consider the query q77. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q77"><![CDATA[
 select ceil1(c2) from SFunc
]]></query>

Chapter 12
ceil1

12-8

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cbrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cbrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ceil(double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

12.2.11 cos
Syntax

Purpose

cos returns the trigonometric cosine of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cos(double).

Examples

Consider the query q61. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q61"><![CDATA[
 select cos(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.87758255
1000: + 0.7648422
1200: + 0.62941206
2000: + 0.921061

12.2.12 cosh
Syntax

Purpose

cosh returns the hyperbolic cosine of a double value as a double.

Chapter 12
cos

12-9

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cos(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cos(double)

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cosh(double).

Examples

Consider the query q78. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

tkdata140.cqlx, data/inpSColtFunc.txt, log/outSColtcosh.txt

<query id="q78"><![CDATA[
 select cosh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.127626
1000: + 1.255169
1200: + 1.4228927
2000: + 1.0810723

12.2.13 exp
Syntax

Purpose

exp returns Euler's number e raised to the power of the double argument as a double.

Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the
true result of Euler's number e raised to the power of x than EXP(x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#exp(double)

• expm1.

Examples

Consider the query q79. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q79"><![CDATA[
 select exp(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
exp

12-10

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cosh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cosh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#exp(double)

Timestamp Tuple Kind Tuple
 10: + 1.6487212
1000: + 2.0137527
1200: + 2.4351296
2000: + 1.4918247

12.2.14 expm1
Syntax

Purpose

expm1 returns the computation that Figure 12-1 shows as a double, where x is the
double argument and e is Euler's number.

Figure 12-1 java.lang.Math Expm1

Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the
true result of Euler's number e raised to the power of x than exp(x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#expm1(double)

• exp.

Examples

Consider the query q80. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q80"><![CDATA[
 select expm1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.6487213
1000: + 1.0137527
1200: + 1.4351296
2000: + 0.49182472

Chapter 12
expm1

12-11

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#expm1(double)

12.2.15 floor1
Syntax

Purpose

floor1 returns the largest (closest to positive infinity) double value that is less than or
equal to the double argument and equals a mathematical integer.

To avoid possible rounding error, consider using (long)
cern.jet.math.Arithmetic.floor(double).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#floor(double).

Examples

Consider the query q81. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q81"><![CDATA[
 select floor1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

12.2.16 hypot
Syntax

Purpose

hypot returns the hypotenuse (see Figure 12-2) of the double arguments as a double.

Figure 12-2 java.lang.Math hypot

Chapter 12
floor1

12-12

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#floor(double)

This function takes the following arguments:

• double1: the x value.

• double2: the y value.

The hypotenuse is computed without intermediate overflow or underflow.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#hypot(double,%20double).

Examples

Consider the query q82. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q82"><![CDATA[
 select hypot(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.98994946
1200: + 1.2586501
2000: + 0.56568545

12.2.17 IEEEremainder
Syntax

Purpose

IEEEremainder computes the remainder operation on two double arguments as
prescribed by the IEEE 754 standard and returns the result as a double.

This function takes the following arguments:

• double1: the dividend.

• double2: the divisor.

The remainder value is mathematically equal to f1 - f2 × n, where n is the
mathematical integer closest to the exact mathematical value of the quotient f1/f2,
and if two mathematical integers are equally close to f1/f2, then n is the integer that is
even. If the remainder is zero, its sign is the same as the sign of the first argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#IEEEremainder(double,%20double).

Chapter 12
IEEEremainder

12-13

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#hypot(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#hypot(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#IEEEremainder(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#IEEEremainder(double,%20double)

Examples

Consider the query q72. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q72"><![CDATA[
 select IEEEremainder(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

12.2.18 log1
Syntax

Purpose

log1 returns the natural logarithm (base e) of a double value as a double.

Note that for small values x, the result of log1p(x) is much closer to the true result of
ln(1 + x) than the floating-point evaluation of log(1.0+x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log(double)

• log1p.

Examples

Consider the query q83. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q83"><![CDATA[
 select log1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.6931472
1000: + -0.35667497
1200: + -0.11653383
2000: + -0.9162907

Chapter 12
log1

12-14

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log(double)

12.2.19 log101
Syntax

Purpose

log101 returns the base 10 logarithm of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#log10(double).

Examples

Consider the query q84. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q84"><![CDATA[
 select log101(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.30103
1000: + -0.15490197
1200: + -0.050610002
2000: + -0.39794

12.2.20 log1p
Syntax

Purpose

log1p returns the natural logarithm of the sum of the double argument and 1 as a
double.

Note that for small values x, the result of log1p(x) is much closer to the true result of
ln(1 + x) than the floating-point evaluation of log(1.0+x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log1p(double)

Chapter 12
log101

12-15

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log10(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log10(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log1p(double)

• log1.

Examples

Consider the query q85. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q85"><![CDATA[
 select log1p(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.4054651
1000: + 0.53062826
1200: + 0.63657683
2000: + 0.33647224

12.2.21 pow
Syntax

Purpose

pow returns the value of the first double argument (the base) raised to the power of the
second double argument (the exponent) as a double.

This function takes the following arguments:

• double1: the base.

• double2: the exponent.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#pow(double,%20double).

Examples

Consider the query q65. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q65"><![CDATA[
 select pow(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.7790559

Chapter 12
pow

12-16

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#pow(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#pow(double,%20double)

1200: + 0.9014821
2000: + 0.69314486

12.2.22 rint
Syntax

Purpose

rint returns the double value that is closest in value to the double argument and equals
a mathematical integer. If two double values that are mathematical integers are equally
close, the result is the integer value that is even.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#rint(double).

Examples

Consider the query q86. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q86"><![CDATA[
 select rint(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 1.0
1200: + 1.0
2000: + 0.0

12.2.23 round
Syntax

Purpose

round returns the closest integer to the argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#round(float).

Chapter 12
rint

12-17

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#rint(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#rint(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)

Input/Output Types

The input/output types for this function are as follows:

Input Type Output Type

DOUBLE DOUBLE

INTEGER INTEGER

FLOAT FLOAT

BIGINT BIGINT

BIGDECIMAL BIGDECIMAL

Examples

Consider the query q87. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q87"><![CDATA[
 select round(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 0

12.2.24 round1
Syntax

Purpose

round1 returns the closest integer to the float argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#round(float).

Examples

Consider the query q88. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q88"><![CDATA[
 select round1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8

Chapter 12
round1

12-18

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)

1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 0

12.2.25 signum
Syntax

Purpose

signum returns the signum function of the double argument as a double:

• zero if the argument is zero

• 1.0 if the argument is greater than zero

• -1.0 if the argument is less than zero

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#signum(double).

Examples

Consider the query q70. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q70"><![CDATA[
 select signum(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + -1.0
1200: + -1.0
2000: + 1.0

12.2.26 signum1
Syntax

Chapter 12
signum

12-19

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(double)

Purpose

signum1 returns the signum function of the float argument as a float:

• zero if the argument is zero

• 1.0 if the argument is greater than zero

• -1.0 if the argument is less than zero.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#signum(float).

Examples

Consider the query q71. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="q71"><![CDATA[
 select signum1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + -1.0
1200: + -1.0
2000: + 1.0

12.2.27 sin
Syntax

Purpose

sin returns the trigonometric sine of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sin(double).

Examples

Consider the query q60. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q60"><![CDATA[
 select sin(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 12
sin

12-20

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sin(double)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47942555
1000: + 0.64421767
1200: + 0.7770717
2000: + 0.38941833

12.2.28 sinh
Syntax

Purpose

sinh returns the hyperbolic sine of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sinh(double).

Examples

Consider the query q89. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q89"><![CDATA[
 select sinh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5210953
1000: + 0.75858366
1200: + 1.012237
2000: + 0.41075233

12.2.29 sqrt
Syntax

Purpose

sqrt returns the correctly rounded positive square root of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sqrt(double).

Chapter 12
sinh

12-21

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sinh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sinh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sqrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sqrt(double)

Examples

Consider the query q64. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q64"><![CDATA[
 select sqrt(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.83666
1200: + 0.9433981
2000: + 0.6324555

12.2.30 tan
Syntax

Purpose

tan returns the trigonometric tangent of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#tan(double).

Examples

Consider the query q62. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q62"><![CDATA[
 select tan(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5463025
1000: + 0.8422884
1200: + 1.2345995
2000: + 0.42279324

Chapter 12
tan

12-22

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tan(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tan(double)

12.2.31 tanh
Syntax

Purpose

tanh returns the hyperbolic tangent of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#tanh(double).

Examples

Consider the query q90. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q90"><![CDATA[
 select tanh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.46211717
1000: + 0.6043678
1200: + 0.7113937
2000: + 0.37994897

12.2.32 todegrees
Syntax

Purpose

todegrees converts a double angle measured in radians to an approximately equivalent
angle measured in degrees as a double.

The conversion from radians to degrees is generally inexact; do not expect
COS(TORADIANS(90.0)) to exactly equal 0.0.

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toDegrees(double)

Chapter 12
tanh

12-23

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tanh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tanh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toDegrees(double)

• toradians.

• cos.

Examples

Consider the query q91. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q91"><![CDATA[
 select todegrees(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 28.64789
1000: + 40.107044
1200: + 50.993244
2000: + 22.918312

12.2.33 toradians
Syntax

Purpose

toradians converts a double angle measured in degrees to an approximately equivalent
angle measured in radians as a double.

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toRadians(double)

• todegrees

• cos.

Examples

Consider the query q92. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q92"><![CDATA[
 select toradians(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.008726646

Chapter 12
toradians

12-24

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toRadians(double)

1000: + 0.012217305
1200: + 0.0155334305
2000: + 0.006981317

12.2.34 ulp
Syntax

Purpose

ulp returns the size of an ulp of the double argument as a double. In this case, an ulp of
the argument value is the positive distance between this floating-point value and the
double value next larger in magnitude.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#ulp(double).

Examples

Consider the query q93. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q93"><![CDATA[
 select ulp(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.110223E-16
1000: + 1.110223E-16
1200: + 1.110223E-16
2000: + 5.551115E-17

12.2.35 ulp1
Syntax

Purpose

ulp1 returns the size of an ulp of the float argument as a float. An ulp of a float value
is the positive distance between this floating-point value and the float value next larger
in magnitude.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#ulp(float).

Chapter 12
ulp

12-25

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(float)

Examples

Consider the query q94. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="q94"><![CDATA[
 select ulp1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 5.9604645E-8
1000: + 5.9604645E-8
1200: + 5.9604645E-8
2000: + 2.9802322E-8

Chapter 12
ulp1

12-26

13
User-Defined Functions

How you can write user-defined functions for use in Oracle Continuous Query
Language (Oracle CQL) to perform more advanced or application-specific operations
on stream data than is possible using built-in functions is described.

For more information, see Functions.

13.1 Introduction to Oracle CQL User-Defined Functions
You can write user-defined functions in Java to provide functionality that is not
available in Oracle CQL or Oracle CQL built-in functions. You can create a user-
defined function that returns an aggregate value or a single (non-aggregate) value.

For example, you can use user-defined functions in the following:

• The select list of a SELECT statement

• The condition of a WHERE clause

Note:

You can also create user-defined windows (see User-Defined Stream-to-
Relation Window Operators).

To make your user-defined function available for use in Oracle CQL queries, the JAR
file that contains the user-defined function implementation class must be in the Oracle
Event Processing server class path or the Oracle Event Processing server class path
must be modified to include the JAR file.

For more information, see:

• Types of User-Defined Functions

• User-Defined Function Data Types

• User-Defined Functions and the Oracle Event Processing Server Cache

• Implementing a User-Defined Function

• Functions.

13.1.1 Types of User-Defined Functions
You can create the following types of user-defined functions:

• User-Defined Single-Row Functions

• User-Defined Aggregate Functions.

You can create overloaded functions and you can override built-in functions.

13-1

13.1.1.1 User-Defined Single-Row Functions
A user-defined single-row function is a function that returns a single result row for
every row of a queried stream or view (for example, like the concat built-in function
does).

For more information, see How to Implement a User-Defined Single-Row Function.

13.1.1.2 User-Defined Aggregate Functions
A user-defined aggregate is a function that implements
com.bea.wlevs.processor.AggregationFunctionFactory and returns a single aggregate
result based on group of tuples, rather than on a single tuple (for example, like the sum
built-in function does).

Consider implementing your aggregate function so that it performs incremental
processing, if possible. This will improve scalability and performance because the cost
of (re)computation on arrival of new events will be proportional to the number of new
events as opposed to the total number of events seen thus far.

For more information, see How to Implement a User-Defined Aggregate Function.

13.1.2 User-Defined Function Data Types
User-defined functions support any of the built-in Oracle CQL data types listed in
Oracle CQL Built-in Data Types. See the table in that section for a list of Oracle CQL
data types and their Java equivalents.

The Oracle CQL data types shown there list the data types you can specify in the
Oracle CQL statement you use to register your user-defined function. The Java
equivalents are the Java data types you can use in your user-defined function
implementation.

At run time, Oracle Event Processing maps between the Oracle CQL data type and
the Java data type. If your user-defined function returns a data type that is not in this
list, Oracle Event Processing will throw a ClassCastException.

For more information about data conversion, see Data Type Conversion.

13.1.3 User-Defined Functions and the Oracle Event Processing
Server Cache

You can access an Oracle Event Processing cache from an Oracle CQL statement or
user-defined function.

13.2 Implementing a User-Defined Function
This section describes:

• How to Implement a User-Defined Single-Row Function

• How to Implement a User-Defined Aggregate Function.

For more information, see Introduction to Oracle CQL User-Defined Functions.

Chapter 13
Implementing a User-Defined Function

13-2

13.2.1 How to Implement a User-Defined Single-Row Function
You implement a user-defined single-row function by implementing a Java class that
provides a public constructor and a public method that is invoked to execute the
function.

To implement a user-defined single-row function:

1. Implement a Java class.

Ensure that the data type of the return value corresponds to a supported data type
as User-Defined Function Data Types describes.

For more information on accessing the Oracle Event Processing cache from a
user-defined function, see User-Defined Functions and the Oracle Event
Processing Server Cache.

package com.bea.wlevs.example.function;

public class MyMod {
 public Object execute(int arg0, int arg1) {
 return new Integer(arg0 % arg1);
 }
}

2. Compile the user-defined function Java implementation class and register the
class in your Oracle Event Processing application assembly file.

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="mymod" exec-method="execute" />
 <bean class="com.bea.wlevs.example.function.MyMod"/>
 </wlevs:function>
</wlevs:processor>

Specify the method that is invoked to execute the function using the
wlevs:function element exec-method attribute. This method must be public and
must be uniquely identifiable by its name (that is, the method cannot have been
overridden).

3. Invoke your user-defined function in the select list of a SELECT statement or the
condition of a WHERE clause.

...
<view id="v1" schema="c1 c2 c3 c4"><![CDATA[
 select
 mymod(c1, 100), c2, c3, c4
 from
 S1
]]></view>
...
<query id="q1"><![CDATA[
 select * from v1 [partition by c1 rows 1] where c4 - c3 = 2.3
]]></query>
...

13.2.2 How to Implement a User-Defined Aggregate Function
You implement a user-defined aggregate function by implementing a Java class that
implements the com.bea.wlevs.processor.AggregationFunctionFactory interface.

Chapter 13
Implementing a User-Defined Function

13-3

To implement a user-defined aggregate function:

1. Implement a Java class as shown in the below example.

Consider implementing your aggregate function so that it performs incremental
processing, if possible. This will improve scalability and performance because the
cost of (re)computation on arrival of new events will be proportional to the number
of new events as opposed to the total number of events seen thus far. The user-
defined aggregate function supports incremental processing.

Ensure that the data type of the return value corresponds to a supported data type
as User-Defined Function Data Types describes.

For more information on accessing the Oracle Event Processing cache from a
user-defined function, see User-Defined Functions and the Oracle Event
Processing Server Cache.

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

 private int count;
 private float sum;
 private float sumSquare;

 public Class<?>[] getArgumentTypes() {
 return new Class<?>[] {Integer.class};
 }

 public Class<?> getReturnType() {
 return Float.class;
 }

 public AggregationFunction newAggregationFunction() {
 return new Variance();
 }

 public void releaseAggregationFunction(AggregationFunction function) {
 }

 public Object handleMinus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count--;
 sum -= param;
 sumSquare -= (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Object handlePlus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count++;
 sum += param;
 sumSquare += (param * param);
 }

Chapter 13
Implementing a User-Defined Function

13-4

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Float getVariance() {
 float avg = sum / (float) count;
 float avgSqr = avg * avg;
 float var = sumSquare / (float)count - avgSqr;
 return var;
 }

 public void initialize() {
 count = 0;
 sum = 0.0F;
 sumSquare = 0.0F;
 }

}

2. Compile the user-defined function Java implementation class and register the
class in your Oracle Event Processing application assembly file.

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var" is-incremental="true">
 <bean class="com.bea.wlevs.test.functions.Variance"/>
 </wlevs:function>
 </wlevs:processor>

You must set the is-incremental attribute of the function element to true to
indicate that the user-defined function, var, has an incremental implementation.
Setting the is-incremental function to true guarantees that Oracle Event
Processing calls the handleMinus method when it purges events from the current
processing window. If this attribute is set to false (default), then the handleMinus
function is never called and instead Oracle Event Processing provides the full set
of events of the current window with every call to the handlePlus method.

3. Invoke your user-defined function in the select list of a SELECT statement or the
condition of a WHERE clause.

...
<query id="uda6"><![CDATA[
 select var(c2) from S4[range 3]
]]></query>
...

At run-time, when the user-defined aggregate is executed, and a new event
becomes active in the window of interest, the aggregations will have to be
recomputed (since the set over which the aggregations are defined has a new
member). To do so, Oracle Event Processing passes only the new event (rather
than the entire active set) to the appropriate handler context by invoking the
appropriate handlePlus* method. This state can now be updated to include the new
event. Thus, the aggregations have been recomputed in an incremental fashion.

Similarly, when an event expires from the window of interest, the aggregations will
have to be recomputed (since the set over which the aggregations are defined has
lost a member). To do so, Oracle Event Processing passes only the expired event
(rather than the entire active set) to the appropriate handler context by invoking
the appropriate handleMinus method. As before, the state in the handler context

Chapter 13
Implementing a User-Defined Function

13-5

can be incrementally updated to accommodate expiry of the event in an
incremental fashion.

Chapter 13
Implementing a User-Defined Function

13-6

14
Oracle CQL Queries, Views, and Joins

A reference and usage guidelines for queries, views, and joins in Oracle Continuous
Query Language (Oracle CQL) is provided. You select, process, and filter element
data from streams and relations using Oracle CQL queries and views.

A top-level SELECT statement that you create using the QUERY statement is called a
query.

A subquery is a nested or embedded query inside another, via the mechanism of views.

A top-level VIEW statement that you create using the VIEW statement is called a view.

A join is a query that combines rows from two or more streams, views, or relations.

For more information, see:

• Lexical Conventions

• Documentation Conventions

• Basic Elements of Oracle CQL

• Common Oracle CQL DDL Clauses

• Oracle CQL Statements.

14.1 Introduction to Oracle CQL Queries, Subqueries,
Views, and Joins

An Oracle CQL query is an operation that you express in Oracle CQL syntax and
execute on an Oracle Event Processing CQL Processor to process data from one or
more streams or views. For more information, see Queries.

An Oracle subquery is the nesting or embeddeding of one query inside another via the
mechanism of views. For more information, see Views.

An Oracle CQL view represents an alternative selection on a stream or relation. For
more information, see Views.

Oracle Event Processing performs a join whenever multiple streams appear in the FROM
clause of the query. For more information, see Joins.

The following example shows typical Oracle CQL queries defined in an Oracle CQL
processor component configuration file for the processor named proc.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>proc</name>
 <rules>

14-1

 <view id="lastEvents" schema="cusip mbid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, mod(bid) as mbid, srcId, bidQty, ask, askQty, seq
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
 <query id="q1"><![CDATA[
 SELECT *
 FROM lastEvents [Range Unbounded]
 WHERE price > 10000
]]></query>
 </rules>
 </processor>
</n1:config>

The rules element contains each Oracle CQL statement in a view or query child
element:

• rule: contains Oracle CQL statements that register or create user-defined
windows. The rule element id attribute must match the name of the window.

The rule element specifies an Oracle CQL statement that registers a user-defined
window named range_slide. The rule element id must match the name of the
window.

• view: contains Oracle CQL view statements (the Oracle CQL equivalent of
subqueries). The view element id attribute defines the name of the view.

The view element specifies an Oracle CQL view statement (the Oracle CQL
equivalent of a subquery).

• query: contains Oracle CQL select statements. The query element id attribute
defines the name of the query.

The query element specifies an Oracle CQL query statement. The query q1 selects
from the view lastEvents. By default, the results of a query are output to a down-
stream channel. You can control this behavior in the channel configuration using a
selector element.

Each Oracle CQL statement is contained in a <![CDATA[...]]> tag and does not end in
a semicolon (;).

For more information, see:

• Lexical Conventions

• Oracle CQL Statements.

14.2 Queries
Queries are the principle means of extracting information from data streams and
views.

query::=

Chapter 14
Queries

14-2

The query clause itself is made up of one of the following parts:

• sfw_block: use this select-from-where clause to express a CQL query.

For more information, see Select, From, Where Block.

• idstream_clause: use this clause to specify an input IStream or delete DStream
relation-to-stream operator that applies to the query.

For more information, see IDStream Clause.

• rstream: use this clause to specify an RStream relation-to-stream operator that
applies to the query.

For more information, see RStream Relation-to-Stream Operator.

• binary: use this clause to perform set operations on the tuples that two queries or
views return.

For more information, see Binary Clause.

The following sections discuss the basic query types that you can create:

• Simple Query

• Built-In Window Query

• User-Defined Window Query

• MATCH_RECOGNIZE Query

• Relational Database Table Query

• XMLTABLE Query

• Function TABLE Query

• Cache Query.

For more information, see:

• Sorting Query Results

• Detecting Differences in Query Results

• Parameterized Queries.

14.2.1 Query Building Blocks
This section summarizes the basic building blocks that you use to construct an Oracle
CQL query, including:

• Select, From, Where Block

• Select Clause

• From Clause

• Where Clause

• Group By Clause

• Order By Clause

• Having Clause

• Binary Clause

• IDStream Clause.

Chapter 14
Queries

14-3

14.2.1.1 Select, From, Where Block
Use the sfw_block to specify the select, from, and optional where clauses of your
Oracle CQL query.

sfw_block::=

The sfw_block is made up of the following parts:

• Select Clause

• From Clause

• Where Clause

• Group By Clause

• Order By Clause

• Having Clause.

14.2.1.2 Select Clause
Use this clause to specify the stream elements you want in the query's result set. The
select_clause may specify all stream elements using the * operator or a list of one or
more stream elements.

select_clause::=

Chapter 14
Queries

14-4

The list of expressions that appears after the SELECT keyword and before the
from_clause is called the select list. Within the select list, you specify one or more
stream elements in the set of elements you want Oracle Event Processing to return
from one or more streams or views. The number of stream elements, and their data
type and length, are determined by the elements of the select list.

Optionally, specify distinct if you want Oracle Event Processing to return only one
copy of each set of duplicate tuples selected. Duplicate tuples are those with matching
values for each expression in the select list.

For more information, see Figure 16-3.

14.2.1.3 From Clause
Use this clause to specify the streams and views that provide the stream elements you
specify in the select_clause (see Select Clause).

The from_clause may specify one or more comma-delimited relation_variable clauses.

from_clause::=

relation_variable::=

You can select from any of the data sources that your relation_variable clause
specifies.

You can use the relation_variable clause AS operator to define an alias to label the
immediately preceding expression in the select list so that you can reference the result
by that (see Aliases in the relation_variable Clause).

If you create a join (see Joins) between two or more streams, view, or relations that
have some stream element names in common, then you must qualify stream element
names with the name of their stream, view, or relation. The following example shows
how to use stream names to distinguish between the customerID stream element in the
OrderStream and the customerID stream element in the CustomerStream.

<query id="q0"><![CDATA[
 select * from OrderStream, CustomerStream
 where
 OrderStream.customerID = CustomerStream.customerID
]]></query>

Chapter 14
Queries

14-5

Otherwise, fully qualified stream element names are optional. However, Oracle
recommends that you always qualify stream element references explicitly. Oracle
Event Processing often does less work with fully qualified stream element names.

For more information, see:

• MATCH_RECOGNIZE Query

• XMLTABLE Query

• Function TABLE Query.

14.2.1.4 Where Clause
Use this optional clause to specify conditions that determine when the select_clause
returns results (see Select Clause).

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

14.2.1.5 Group By Clause
Use this optional clause to group (partition) results. This clause does not guarantee
the order of the result set. To order the groupings, use the order by clause.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

For more information, see:

• Group By Clause

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

14.2.1.6 Order By Clause
Use this optional clause to order all results or the top-n results.

For more information, see Sorting Query Results.

14.2.1.7 Having Clause
Use this optional clause to restrict the groups of returned stream elements to those
groups for which the specified condition is TRUE. If you omit this clause, then Oracle
Event Processing returns summary results for all groups.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

Chapter 14
Queries

14-6

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

14.2.1.8 Binary Clause
Use the binary clause to perform set operations on the tuples that two queries or views
return, including:

• EXCEPT

• MINUS

• INTERSECT

• UNION and UNION ALL

• IN and NOT IN.

14.2.1.9 IDStream Clause
Use this clause to take either a select-from-where clause or binary clause and return
its results as one of IStream or DStream relation-to-stream operators.

You can succinctly detect differences in query output by combining an IStream or
Dstream operator with the using_clause.

For more information, see:

• IStream Relation-to-Stream Operator

• DStream Relation-to-Stream Operator

• Detecting Differences in Query Results.

14.2.2 Simple Query
The following example shows a simple query that selects all stream elements from a
single stream.

<query id="q0"><![CDATA[
 select * from OrderStream where orderAmount > 10000.0
]]></query>

For more information, see Query.

14.2.3 Built-In Window Query
The following example shows a query that selects all stream elements from stream S2,
with schema (c1 integer, c2 float), using a built-in tuple-based stream-to-relation
window operator.

tkdata2.cqlx

<query id="BBAQuery"><![CDATA[
 select * from S2 [range 5 minutes] where S2.c1 > 10
]]></query>

For more information, see:

Chapter 14
Queries

14-7

• Stream-to-Relation Operators (Windows).

14.2.4 User-Defined Window Query
The following example shows a query that selects all stream elements from stream
S12, with schema (c1 integer, c2 float), using a user-defined window of type
range_slide based on user-defined Java class MyRangeSlideWindow.java.

<rule id="range_slide"><![CDATA[
 register window range_slide(winrange int, winslide int) implement using "MyRangeSlideWindow"
]]></rule>
<query id="q79"><![CDATA[
 select * from S12 [range_slide(10,5)]
]]></query>

For more information, see User-Defined Stream-to-Relation Window Operators.

14.2.5 MATCH_RECOGNIZE Query
The following example shows a query that uses the MATCH_RECOGNIZE clause to express
complex relationships among the stream elements of ItemTempStream.

<query id="detectPerish"><![CDATA[
 select its.itemId
 from tkrfid_ItemTempStream MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as itemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL "0
00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY TO
SECOND)
) as its
]]></query>

For more information, see:

• Pattern Recognition With MATCH_RECOGNIZE.

14.2.6 Relational Database Table Query
Using an Oracle CQL processor, you can specify a relational database table as an
event source. You can query this event source, join it with other event sources, and so
on.

For more information, see, Oracle CQL Queries and Relational Database Tables.

14.2.7 XMLTABLE Query
Use this query to map the results of an XPath or XQuery expression into tuples.

XMLTABLE has the following sub-clauses:

• XMLNAMESPACES -- Optional. A string with a set of XML namespace
declarations that can be used in the query expression.

• XQuery_string -- A string with the XQuery or XPath string to use to query the XML.

• PASSING BY VALUE -- Points to the XML that is being used for input.

Chapter 14
Queries

14-8

• COLUMNS -- Optional. Defines the output properties of the result.

– PATH -- Optional. A subclause of COLUMNS that specifies an XPath
expression that points to where values for that property should be drawn from
the XML.

The following example shows a view v1 and a query q1 on that view. The view selects
from a stream S1 of xmltype stream elements. The view v1 uses the XMLTABLE clause to
parse data from the xmltype stream elements using XPath expressions. Note that the
data types in the view's schema match the data types of the parsed data in the COLUMNS
clause. The query q1 selects from this view as it would from any other data source.
The XMLTABLE clause also supports XML namespaces.

<view id="v1" schema="orderId LastShares LastPrice"><![CDATA[
 SELECT
 X.OrderId,
 X.LastShares,
 X.LastPrice
 FROM S1,
 XMLTABLE (
 '//FILL'
 PASSING BY VALUE
 S1.c1 as "."
 COLUMNS
 OrderId char(16) PATH "fn:data(../@ID)",
 LastShares integer PATH "fn:data(@LastShares)",
 LastPrice float PATH "fn:data(@LastPx)"
) as X
]]></view>

<query id="q1"><![CDATA[
 IStream(
 select
 orderId,
 sum(LastShares * LastPrice),
 sum(LastShares * LastPrice) / sum(LastShares)
 from
 v1[now]
 group by orderId
)
]]></query>

For more information, see:

• Stream-to-Stream Operators

• SQL/XML (SQLX).

14.2.8 Function TABLE Query
Use the TABLE clause to access the multiple rows returned by a built-in or user-defined
function in the FROM clause of an Oracle CQL query. The TABLE clause converts the set
of returned rows into an Oracle CQL relation. Because this is an external relation, you
must join the TABLE function clause with a stream.

table_clause::=

(object_expr, identifier, datatype::=)

Chapter 14
Queries

14-9

Note the following:

• The function must return an array type or Collection type.

• You must join the TABLE function clause with a stream.

The following example shows a data cartridge TABLE clause that invokes the Oracle
Spatial method getContainingGeometries, passing in one parameter
(InputPoints.point). The return value of this method, a Collection, is aliased as
validGeometries. The relation that the TABLE clause returns is aliased as R2.

<query id="q1"><![CDATA[
RSTREAM (
 SELECT
 R2.validGeometries.shape as containingGeometry,
 R1.point as inputPoint
 FROM
 InputPoints[now] as R1,
 TABLE (getContainingGeometries@spatial (InputPoints.point) as validGeometries) AS R2
)
]]></query>

The following example shows an invalid data cartridge TABLE query that fails to join the
data cartridge TABLE clause with another stream because the function
getAllGeometries@spatial was called without any parameters. Oracle Event Processing
invokes the data cartridge method only on the arrival of elements on the joined stream.

<query id="q2"><![CDATA[
RSTREAM (
 SELECT
 R2.validGeometries.shape as containingGeometry
 FROM
 TABLE (getAllGeometries@spatial () as validGeometries) AS R2
)
]]></query>

For more examples, see Functions.

14.2.9 Cache Query
Using an Oracle CQL processor, you can specify a cache as an event source. You can
query this event source and join it with other event sources using a Now window only.

Oracle Event Processing cache event sources are pull data sources: that is, Oracle
Event Processing polls the event source on arrival of an event on the data stream.

For more information, see Oracle CQL Queries and the Oracle Event Processing
Server Cache.

14.2.10 Sorting Query Results
Use the ORDER BY clause to order the rows selected by a query.

order_by_clause::=

Sorting by position is useful in the following cases:

Chapter 14
Queries

14-10

• To order by a lengthy select list expression, you can specify its position in the
ORDER BY clause rather than duplicate the entire expression.

• For compound queries containing set operators UNION, INTERSECT, MINUS, or UNION
ALL, the ORDER BY clause must specify positions or aliases rather than explicit
expressions. Also, the ORDER BY clause can appear only in the last component
query. The ORDER BY clause orders all rows returned by the entire compound query.

The mechanism by which Oracle Event Processing sorts values for the ORDER BY clause
is specified by your Java locale.

14.2.11 Detecting Differences in Query Results
Use the DIFFERENCE USING clause to succinctly detect differences in the IStream or
DStream of a query.

using_clause::=

Consider the query.

<query id="q0">
 ISTREAM (
 SELECT c1 FROM S [RANGE 1 NANOSECONDS]
) DIFFERENCE USING (c1)
</query>

Table 14-1 shows sample input for this query. The Relation column shows the
contents of the relation S [RANGE 1 NANOSECONDS] and the Output column shows the
query results after the DIFFERENCE USING clause is applied. This clause allows you to
succinctly detect only differences in the IStream output.

Table 14-1 DIFFERENCE USING Clause Affect on IStream

Input Relation Output

1000: +5 {5} +5

1000: +6 {5, 6} +6

1000: +7 {5, 6, 7} +7

1001: +5 {5, 6, 7, 5}

1001: +6 {5, 6, 7, 5, 6}

1001: +7 {5, 6, 7, 5, 6, 7}

1001: +8 {5, 6, 7, 5, 6, 7, 8} +8

1002: +5 {5, 6, 7, 5, 6, 7, 8, 5}

1003: -5 {5, 6, 7, 5, 6, 7, 8}

1003: -5 {5, 6, 7, 6, 7, 8}

1003: -5 {6, 7, 6, 7, 8}

1003: -6 {6, 7, 7, 8}

Chapter 14
Queries

14-11

Table 14-1 (Cont.) DIFFERENCE USING Clause Affect on IStream

Input Relation Output

1003: -6 {7, 7, 8}

1003: -7 {7, 8}

1003: -7 {8}

1003: -8 {}

1004: +5 {5} +5

When you specify the usinglist in the DIFFERENCE USING clause, you may specify
columns by:

• attribute name: use this option when you are selecting by attribute name.

• alias: use this option when you want to include the results of an expression where
an alias is specified.

• position: use this option when you want to include the results of an expression
where no alias is specified.

Specify position as a constant, positive integer starting at 1, reading from left to
right.

The following example specifies the result of expression funct(c2, c3) by its
position (3) in the DIFFERENCE USING clause usinglist.

<query id="q1">
 ISTREAM (
 SELECT c1, log(c4) as logval, funct(c2, c3) FROM S [RANGE 1 NANOSECONDS]
) DIFFERENCE USING (c1, logval, 3)
</query>

You can use the DIFFERENCE USING clause with both IStream and DStream operators.

For more information, see:

• IStream Relation-to-Stream Operator

• DStream Relation-to-Stream Operator.

14.2.12 Parameterized Queries
You can parameterize an Oracle CQL query and bind parameter values at run time
using the :n character string as a placeholder, where n is a positive integer that
corresponds to the position of the replacement value in a params element.

Note:

You cannot parameterize a view.

The following example shows a parameterized Oracle CQL query.

<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Chapter 14
Queries

14-12

 ...
 <processor>
 <name>myProcessor</name>
 <rules>
 <query id="MarketRule"><![CDATA[
 SELECT symbol, AVG(price) AS average, :1 AS market
 FROM StockTick [RANGE 5 SECONDS]
 WHERE symbol = :2
]]></query>
 </rules>
 <bindings>
 <binding id="MarketRule">
 <params id="nasORCL">NASDAQ, ORCL</params>
 <params id="nyJPM">NYSE, JPM</params>
 <params id="nyWFC">NYSE, WFC</params>
 </binding>
 </bindings>
 </processor>
 <processor>
 <name>summarizeResults</name>
 <rules>
 <query id="SummarizeResultsRule"><![CDATA[
 select
 crossRate1 || crossRate2 as crossRatePair,
 count(*) as totalCount,
 :1 as averageInternalPrice
 from CrossRateStream
 group by crossRate1,crossRate2
 having :2
]]></query>
 </rules>
 <bindings>
 <binding id="SummarizeResultsRule">
 <params id="avgcount">avg(internalPrice), count(*) > 0</params>
 </binding>
 </bindings>
 </processor>
</n1:config>

In this example, the:

• MarketRule query specifies two parameters: the third term in the SELECT and the
value of symbol in the WHERE clause

• SummarizeResultsRule query specifies two parameters: the third term in the SELECT
and the value of the HAVING clause.

This section describes:

• Parameterized Queries in Oracle CQL Statements

• The bindings Element

• Run-Time Query Naming

• Lexical Conventions for Parameter Values

• Parameterized Queries at Runtime

• Replacing Parameters Programmatically.

14.2.12.1 Parameterized Queries in Oracle CQL Statements
You may specify a placeholder anywhere an arithmetic expression or a String literal is
legal in an Oracle CQL statement. For example:

• SELECT list items

Chapter 14
Queries

14-13

• WHERE clause predicates

• WINDOW constructs (such as RANGE, SLIDE, ROWS, and PARTITION BY)

• PATTERN duration clause.

For more information, see:

• arith_expr

• Literals.

14.2.12.2 The bindings Element
Parameter values are contained by a bindings element. There may be one bindings
element per processor element.

For each parameterized query, the bindings element must contain a binding element
with the same id as the query.

The binding element must contain one or more params elements. Each params element
must have a unique id and must contain a comma separated list of parameter values
equal in number to the number of placeholder characters (:n) in the corresponding
query.

The order of the parameter values corresponds to placeholder characters (:n) in the
parameterized query, such that :1 corresponds to the first parameter value, :2
corresponds to the second parameter value, and so on. You may use placeholder
characters (:n) in any order. That is, :1 corresponds to the first parameter value
whether it precedes or follows :2 in a query. A placeholder number can be used only
once in a query.

For more information, see:

• Lexical Conventions for Parameter Values

• Parameterized Queries at Runtime.

14.2.12.3 Run-Time Query Naming
When a binding instantiates a parameterized query, Oracle Event Processing creates
a new query at run time with the name queryId_paramId. For example, the run-time
name of the first query instantiated by the MarketRule binding is MarketRule_nasORCL.

To avoid run-time naming conflicts, be sure query ID and parameter ID combinations
are unique.

14.2.12.4 Lexical Conventions for Parameter Values
Each params element must have a unique id and must contain a comma separated list
of parameter values equal in number to the number of placeholder characters (:n) in
the corresponding query.

Chapter 14
Queries

14-14

Table 14-2 Parameterized Query Parameter Value Lexical Conventions

Convention Example Replacement Value

Primitive type
literals

<params id="p1">NASDAQ, 200.0</params> :1 = NASDAQ

:2 = 200.0

Oracle CQL
fragments

<params id="p1">count(*), avg(val)</params> :1 = count(*)

:2 = avg(val)

Quotes <params id="p1">'alert', "Seattle, WA",
'fun' || "house", one "two" 3</params>

:1 = 'alert'

:2 = "Seattle, WA"

:3 = 'fun' || "house"

:4 = one "two" 3

In an Oracle CQL query, a placeholder within single or double quotes is a String
literal. The following query is not a parameterized query:

SELECT ":1" as symbol, price FROM StockTick [RANGE 5 SECONDS]

Oracle Event Processing parses this query as assigning the String literal ":1" to alias
symbol. To make this query into a parameterized query, use:

SELECT :1 as symbol, price FROM StockTick [RANGE :2 SECONDS]

And define a params element like this:

<params id="p1">"ORCL", 5</params>

Because the parameter value (ORCL) does not contain a comma, the quotes are not
required. You could specify a params element like this:

<params id="p1">ORCL, 5</params>

However, if the parameter value does contain a comma, then you must use quotes
around the parameter value. Consider this parameterized query:

SELECT :1 = cityAndState AS cityOfInterest FROM channel1 [RANGE :2 SECONDS]

Where cityAndState has values like "Seattle, WA" or "Ottawa, ON". In this case, you
must specify a params element like this:

<params id="p1">"Seattle, WA", 5</params>
<params id="p1">"Ottawa, ON", 5</params>

Commas are allowed only in quoted parameter values that signify string values.
Commas are not allowed as a separator character in unquoted parameter values. For
example:

"Seattle, WA" is valid, because the comma is part of the string.

PARTITION BY fromRate,toRate ROWS 10 is invalid. Create the following two parameters
instead:

PARTITION BY fromRate ROWS 10
PARTITION BY toRate ROWS 10

Chapter 14
Queries

14-15

14.2.12.5 Parameterized Queries at Runtime
Each params element effectively causes a new Oracle CQL query to execute with the
new parameters. At rule execution time, Oracle CQL substitutes parameter values for
placeholder characters, from left to right.

SELECT symbol, AVG(price) AS average, NASDAQ AS market
FROM StockTick [RANGE 5 SECONDS]
WHERE symbol = ORCL

SELECT symbol, AVG(price) AS average, NYSE AS market
FROM StockTick [RANGE 5 SECONDS]
WHERE symbol = JPM

SELECT symbol, AVG(price) AS average, NYSE AS market
FROM StockTick [RANGE 5 SECONDS]
WHERE symbol = WFC

You can dynamically modify or delete single parameter sets by the id attribute of the
params element using JMX or wlevs.Admin.

14.2.12.6 Replacing Parameters Programmatically
If you use the CQLProcessorMBean.replaceAllBoundParameters() method to
programmatically replace parameters in a parameterized query, any existing
parameters not replaced by the method are automatically removed from the query.

14.2.13 Subqueries
A subquery can be specified in the FROM clauses of a queries where sources
relations/streams are specified. Subquery support will also be extended to SET
queries.

CREATE QUERY q0 AS
SELECT prodid, sum(sales)
FROM (SELECT prodid AS prodid, sales AS sales FROM sales_stream [RANGE 24 HOURS]) AS
foo
GROUP BY prodid;

14.3 Views
Queries are the principle means of extracting information from data streams and
relations. A view represents an alternative selection on a stream or relation that you
can use to create subqueries.

A view is only accessible by the queries that reside in the same processor and cannot
be exposed beyond that boundary.

You can specify any query type in the definition of your view. For more information,
see Queries.

For complete details on the view statement, see View.

Chapter 14
Views

14-16

Note:

Subqueries are used with binary set operators such as union, union all, and
minus. Use parentheses in the subqueries to ensure the right precedence is
applied to the query.

The query BBAQuery selects from view MAXBIDMINASK which in turn selects from other
views such as BIDMAX which in turn selects from other views. Finally, views such as
lastEvents select from an actual event source: filteredStream. Each such view
represents a separate derived stream drawn from one or more base streams.

<view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
 select cusip, bid, srcId, bidQty, ask, askQty, seq
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
<view id="bidask" schema="cusip bid ask"><![CDATA[
 select cusip, max(bid), min(ask)
 from lastEvents
 group by cusip
]]></view>
<view id="bid" schema="cusip bid seq"><![CDATA[
 select ba.cusip as cusip, ba.bid as bid, e.seq
 from bidask as ba, lastEvents as e
 WHERE e.cusip = ba.cusip AND e.bid = ba.bid
]]></view>
<view id="bid1" schema="cusip maxseq"><![CDATA[
 select b.cusip, max(seq) as maxseq
 from bid as b
 group by b.cusip
]]></view>
<view id="BIDMAX" schema="cusip seq srcId bid bidQty"><![CDATA[
 select e.cusip, e.seq, e.srcId, e.bid, e.bidQty
 from bid1 as b, lastEvents as e
 where (e.seq = b.maxseq)
]]></view>
<view id="ask" schema="cusip ask seq"><![CDATA[
 select ba.cusip as cusip, ba.ask as ask, e.seq
 from bidask as ba, lastEvents as e
 WHERE e.cusip = ba.cusip AND e.ask = ba.ask
]]></view>
<view id="ask1" schema="cusip maxseq"><![CDATA[
 select a.cusip, max(seq) as maxseq
 from ask as a
 group by a.cusip
]]></view>
<view id="ASKMIN" schema="cusip seq srcId ask askQty"><![CDATA[
 select e.cusip, e.seq, e.srcId, e.ask, e.askQty
 from ask1 as a, lastEvents as e
 where (e.seq = a.maxseq)
]]></view>
<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><!
[CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq, ask.srcId as askSrcId,
ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>
<query id="BBAQuery"><![CDATA[
 ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq, bba.askSrcId,
bba.ask, bba.bidQty, bba.askQty, "BBAStrategy" as intermediateStrategy, p.seq as correlationId,
1 as priority
 from MAXBIDMINASK as bba, filteredStream[rows 1] as p where bba.cusip = p.cusip)
]]></query>

Chapter 14
Views

14-17

Using this technique, you can achieve the same results as in the subquery case.
However, using views you can better control the complexity of queries and reuse
views by name in other queries.

14.3.1 Views and Joins
If you create a join between two or more views that have some stream element names
in common, then you must qualify stream element names with names of streams. The
following example shows how to use view names to distinguish between the seq
stream element in the BIDMAX view and the seq stream element in the ASKMIN view.

<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty askQty"><!
[CDATA[
 select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq, ask.srcId as askSrcId,
ask.ask, bid.bidQty, ask.askQty
 from BIDMAX as bid, ASKMIN as ask
 where bid.cusip = ask.cusip
]]></view>

Otherwise, fully qualified stream element names are optional. However, it is a best
practice to always qualify stream element references explicitly. Oracle Event
Processing often does less work with fully qualified stream element names.

For more information, see Joins.

14.3.2 Views and Schemas
You may define the optional schema of the view using a space delimited list of event
attribute names.

<view id="MAXBIDMINASK" schema="cusip bidseq"><![CDATA[
 select ...
]]></view>

14.4 Joins
A join is a query that combines rows from two or more streams, views, or relations.
Oracle Event Processing performs a join whenever multiple streams appear in the FROM
clause of the query. The select list of the query can select any stream elements from
any of these streams. If any two of these streams have a stream element name in
common, then you must qualify all references to these stream elements throughout the
query with stream names to avoid ambiguity.

If you create a join between two or more streams, view, or relations that have some
stream element names in common, then you must qualify stream element names with
the name of their stream, view, or relation. The following example shows how to use
stream names to distinguish between the customerID stream element in the OrderStream
stream and the customerID stream element in the CustomerStream stream.

<query id="q0"><![CDATA[
 select * from OrderStream[range 5] as orders, CustomerStream[range 3] as customers where
 orders.customerID = customers.customerID
]]></query>

Otherwise, fully qualified stream element names are optional. However, Oracle
recommends that you always qualify stream element references explicitly. Oracle
Event Processing often does less work with fully qualified stream element names.

Oracle Event Processing supports the following types of joins:

Chapter 14
Joins

14-18

• Inner Joins

• Outer Joins.

Note:

When joining against a cache, you must observe additional query restrictions
as Creating Joins Against the Cache describes.

14.4.1 Inner Joins
By default, Oracle Event Processing performs an inner join (sometimes called a simple
join): a join of two or more streams that returns only those stream elements that satisfy
the join condition.

The following example shows how to create a query q4 that uses an inner join between
streams S0, with schema (c1 integer, c2 float), and S1, with schema (c1 integer, c2
float).

<query id="q4"><![CDATA[
 select *
 from
 S0[range 5] as a,
 S1[range 3] as b
 where
 a.c1+a.c2+4.9 = b.c1 + 10
]]></query>

14.4.2 Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table for
which no rows from the other satisfy the join condition.

You specify an outer join in the FROM clause of a query using LEFT or RIGHT OUTER
JOIN ... ON syntax.

from_clause::=

The following example shows how to create a query q5 that uses a left outer join
between streams S0, with schema (c1 integer, c2 float), and S1, with schema (c1
integer, c2 float).

<query id="q5"><![CDATA[
 SELECT a.c1+b.c1
 FROM S0[range 5] AS a LEFT OUTER JOIN S1[range 3] AS b ON b.c2 = a.c2
 WHERE b.c2 > 3
]]></query>

Use the ON clause to specify a join condition. Doing so lets you specify join conditions
separate from any search or filter conditions in the WHERE clause.

Chapter 14
Joins

14-19

You can perform the following types of outer join:

• Left Outer Join

• Right Outer Join

• Outer Join Look-Back.

14.4.2.1 Left Outer Join
To write a query that performs an outer join of streams A and B and returns all stream
elements from A (a left outer join), use the LEFT OUTER JOIN syntax in the FROM clause.
For all stream elements in A that have no matching stream elements in B, Oracle
Event Processing returns null for any select list expressions containing stream
elements of B.

<query id="q5"><![CDATA[
 SELECT a.c1+b.c1
 FROM S0[range 5] AS a LEFT OUTER JOIN S1[range 3] AS b ON b.c2 = a.c2
 WHERE b.c2 > 3
]]></query>

14.4.2.2 Right Outer Join
To write a query that performs an outer join of streams A and B and returns all stream
elements from B (a right outer join), use the RIGHT OUTER JOIN syntax in the FROM
clause. For all stream elements in B that have no matching stream elements in A,
Oracle Event Processing returns null for any select list expressions containing stream
elements of A.

<query id="q5"><![CDATA[
 SELECT a.c1+b.c1
 FROM S0[range 5] AS a RIGHT OUTER JOIN S1[range 3] AS b ON b.c2 = a.c2
 WHERE b.c2 > 3
]]></query>

14.4.2.3 Outer Join Look-Back
You can create an outer join that refers or looks-back to a previous outer join.

<query id="q5"><![CDATA[
 SELECT R1.c1+R2.c1
 FROM S0[rows 2] as R1 LEFT OUTER JOIN S1[rows 2] as R2 on R1.c2 = R2.c2 RIGHT OUTER JOIN
S2[rows 2] as R3 on R2.c2 = R3.c22
 WHERE R2.c2 > 3
]]></query>

14.5 Oracle CQL Queries and the Oracle Event Processing
Server Cache

You can access an Oracle Event Processing cache from an Oracle CQL statement or
user-defined function.

This section describes:

• Creating Joins Against the Cache

Chapter 14
Oracle CQL Queries and the Oracle Event Processing Server Cache

14-20

14.5.1 Creating Joins Against the Cache
When writing Oracle CQL queries that join against a cache, you must observe the
following restrictions:

• Cache Key First and Simple Equality

• No Arithmetic Operations on Cache Keys

• No Full Scans

• Multiple Conditions and Inequality.

For more information, see Joins.

14.5.1.1 Cache Key First and Simple Equality
The complex predicate's first subclause (from the left) with a comparison operation
over a cache key attribute may only be a simple equality predicate.

The following predicate is invalid because the predicate is not the first sub-clause
(from the left) which refers to cache attributes:

... S.c1 = 5 AND CACHE.C2 = S.C2 AND CACHE.C1 = S.C1 ...

However, the following predicate is valid:

... S.c1 = 5 AND CACHE.C1 = S.C1 AND CACHE.C2 = S.C2 ...

14.5.1.2 No Arithmetic Operations on Cache Keys
The subclause may not have any arithmetic operations on a cache key attribute.

The following predicate is invalid because arithmetic operations are not allowed on
cache key attributes:

... CACHE.C1 + 5 = S.C1 AND CACHE.C2 = S.C2 ...

14.5.1.3 No Full Scans
The complex predicate must not require a full scan of the cache.

Assume that your cache has cache key C1.

The following predicates are invalid. Because they do not use the cache key attribute
in comparisons, they must scan through the whole cache which is not allowed.

... CACHE.C2 = S.C1 ...

... CACHE.C2 > S.C1 ...

... S.C1 = S.C2 ...

... S.C1 = CACHE.C2 AND S.C2 = CACHE.C2 ...

The following predicates are also invalid. Although they do use the cache key attribute
in comparisons, they use inequality operations that must scan through the whole
cache which is not allowed.

... CACHE.C1 != S.C1 ...

Chapter 14
Oracle CQL Queries and the Oracle Event Processing Server Cache

14-21

... CACHE.C1 > 5 ...

... CACHE.C1 + 5 = S.C1 ...

The following predicate is also invalid. Although they do use the cache key attribute in
comparisons, the first subclause referring to the cache attributes does not refer to the
cache key attribute (in this example, C1). That is, the first subclause refers to C2 which
is not a cache key and the cache key comparison subclause (CACHE.C1 = S.C1)
appears after the non-key comparison subclause.

 ... CACHE.C2 = S.C2 AND CACHE.C1 = S.C1 ...

14.5.1.4 Multiple Conditions and Inequality
To support multiple conditions, inequality, or both, you must make the first sub-clause
an equality predicate comparing a cache key value and specify the rest of the
predicate subclauses separated by one AND operator.

The following are valid predicates:

... S.c1 = 5 AND CACHE.C1 = S.C1 AND CACHE.C2 > S.C2 ...

... CACHE.C1 = S.C1 AND CACHE.C2 = S.C2 ...

... S.c1 = 5 AND CACHE.C1 = S.C1 AND CACHE.C2 != S.C2 ...

14.6 Oracle CQL Queries and Relational Database Tables
You can access a relational database table from an Oracle CQL query using:

• table source: using a table source, you may join a stream only with a NOW window
and only to a single database table.

Note:

Because changes in the table source are not coordinated in time with
stream data, you may only join the table source to an event stream using
a Now window and you may only join to a single database table. For more
information, see S[now].

To integrate arbitrarily complex SQL queries and multiple tables with
your Oracle CQL queries, consider using the Oracle JDBC data cartridge
instead.

• Oracle JDBC data cartridge: using the Oracle JDBC data cartridge, you may
integrate arbitrarily complex SQL queries and multiple tables and datasources with
your Oracle CQL queries.

Note:

XMLTYPE is not supported for table sources.

In all cases, you must define datasources in the Oracle Event Processing server
config.xml file.

Chapter 14
Oracle CQL Queries and Relational Database Tables

14-22

Oracle Event Processing relational database table event sources are pull data
sources: that is, Oracle Event Processing polls the event source on arrival of an event
on the data stream.

14.7 Oracle CQL Queries and Oracle Data Cartridges
You can access Oracle CQL data cartridge types in Oracle CQL queries just as you
would Oracle CQL native types.

Chapter 14
Oracle CQL Queries and Oracle Data Cartridges

14-23

15
Pattern Recognition With
MATCH_RECOGNIZE

A reference and usage information about the MATCH_RECOGNIZE clause in Oracle
Continuous Query Language (Oracle CQL) is provided. This clause and its sub-
clauses perform pattern recognition in Oracle CQL queries.

Pattern matching with multiple streams in FROM clause is also supported.

15.1 Understanding Pattern Recognition With MATCH_RECOGNIZE
The MATCH_RECOGNIZE clause performs pattern recognition in an Oracle CQL query. This
query will export (make available for inclusion in the SELECT) the MEASURES clause values
for events (tuples) that satisfy the PATTERN clause regular expression over the DEFINE
clause conditions.

<query id="detectPerish"><![CDATA[
 select its.badItemId
 from tkrfid_ItemTempStream
 MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as badItemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL "0
00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY TO
SECOND)
) as its
]]></query>

pattern_recognition_clause::=

(Figure 15-6, Figure 15-1, pattern_def_dur_clause::=)

pattern_def_dur_clause::=

15-1

(Figure 15-2, Figure 15-7, Figure 15-3, Figure 15-9, Figure 15-11)

Using MATCH_RECOGNIZE, you define conditions on the attributes of incoming events and
identify these conditions by using identifiers called correlation variables. The
previous example defines correlation variables A, B, and C. A sequence of consecutive
events in the input stream satisfying these conditions constitutes a pattern.

The output of a MATCH_RECOGNIZE query is always a stream.

The principle MATCH_RECOGNIZE sub-clauses are:

• MEASURES: exports (makes available for inclusion in the SELECT) attribute values of
events that successfully match the pattern you specify.

See MEASURES Clause.

• PATTERN: specifies the pattern to be matched as a regular expression over one ore
more correlation variables.

See PATTERN Clause.

• DEFINE: specifies the condition for one or more correlation variables.

See DEFINE Clause.

To refine pattern recognition, you may use the optional MATCH_RECOGNIZE sub-clauses,
including:

• PARTITION BY Clause

• ALL MATCHES Clause

• WITHIN Clause

• DURATION Clause

• INCLUDE TIMER EVENTS Clause

• SUBSET Clause.

For more information, see:

• MATCH_RECOGNIZE and the WHERE Clause

• Referencing Singleton and Group Matches

• Referencing Aggregates.

– Using count With *, identifier.*, and identifier.attr

– Using first and last.

• Using prev

• MATCH_RECOGNIZE Examples.

15.1.1 MATCH_RECOGNIZE and the WHERE Clause
In Oracle CQL (as in SQL), the FROM clause is evaluated before the WHERE clause.

Consider the following Oracle CQL query:

SELECT ... FROM S MATCH_RECOGNIZE (....) as T WHERE ...

In this query, the S MATCH_RECOGNIZE (....) as T is like a subquery in the FROM clause
and is evaluated first, before the WHERE clause.

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-2

Consequently, you rarely use both a MATCH_RECOGNIZE clause and a WHERE clause in the
same Oracle CQL query. Instead, you typically use a view to apply the required WHERE
clause to a stream and then select from the view in a query that applies the
MATCH_RECOGNIZE clause.

The following example shows two views, e1p1 and e2p2, each applying a WHERE clause
to stream S to pre-filter the stream for the required events. The query q then selects
from these two views and applies the MATCH_RECOGNIZE on this filtered stream of events.

<view id="e1p1">
 SELECT * FROM S WHERE eventName = 'E1' and path = 'P1' and statName = 'countValue'
</view>
<view id="e2p2">
 SELECT * FROM S WHERE eventName = 'E2' and path = 'P2' and statName = 'countValue'
</view>

<query id="q">
 SELECT
 T.e1p1Stat as e1p1Stat, T.e2p2Stat as e2p2Stat
 FROM
 e1p1, e2p2
 MATCH_RECOGNIZE(
 ALL MATCHES
 PATTERN(A+)
 DURATION 60 MINUTES
 DEFINE
 A as (A.e1p1Stat < 1000 and A.e2p2Stat > 2000 and count(A) > 3)
) as T
</query>

15.1.2 Referencing Singleton and Group Matches
The MATCH_RECOGNIZE clause identifies the following types of matches:

• singleton: a correlation variable is a singleton if it occurs exactly once in a pattern,
is not defined by a SUBSET, is not in the scope of an alternation, and is not
quantified by a pattern quantifier.

References to such a correlation variable refer to this single event.

• group: a correlation variable is a group if it occurs in more than one pattern, is
defined by a SUBSET, is in the scope of an alternation, or is quantified by a pattern
quantifier.

References to such a correlation variable refer to this group of events.

When you reference singleton and group correlation variables in the MEASURES and
DEFINE clauses, observe the following rules:

• For singleton correlation variables, you may reference individual event attributes
only, not aggregates.

• For group correlation variables:

– If you reference an individual event attribute, then the value of the last event to
match the correlation variable is returned.

If the correlation variable is not yet matched, NULL is returned. In the case of
count(A.*), if the correlation variable A is not yet matched, 0 is returned.

If the correlation variable is being referenced in a definition of the same
variable (such as DEFINE A as A.balance > 1000), then the value of the current
event is returned.

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-3

– If you reference an aggregate, then the aggregate is performed over all events
that have matched the correlation variable so far.

For more information, see:

• Using count With *, identifier.*, and identifier.attr

• Pattern Quantifiers and Regular Expressions

• Referencing Attributes in the DEFINE Clause.

15.1.3 Referencing Aggregates
You can use any built-in, Colt, or user-defined aggregate function in the MEASURES and
DEFINE clause of a MATCH_RECOGNIZE query.

When using aggregate functions, consider the following:

• Running Aggregates and Final Aggregates

• Operating on the Same Correlation Variable

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable.

For more information, see:

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Introduction to Oracle CQL Built-In Aggregate Functions

• Introduction to Oracle CQL Built-In Aggregate Colt Functions

• User-Defined Aggregate Functions

• MEASURES Clause

• DEFINE Clause.

15.1.3.1 Running Aggregates and Final Aggregates
In the DEFINE clause, any aggregate function on a correlation variable X is a running
aggregate: that is, the aggregate includes all preceding matches of X up to and
including the current match. If the correlation variable X has been completely matched
so far, then the aggregate is final, otherwise it is running.

In the MEASURES clause, because it is evaluated after the match has been found, all
aggregates are final because they are computed over the final match.

When using a SUBSET clause, be aware of the fact that you may inadvertently imply a
running aggregate.

...
PATTERN (X+ Y+)
SUBSET Z = (X, Y)
DEFINE
 X AS X.price > 100,
 Y AS sum(Z.price) < 1000
...

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-4

Because correlation variable Z involves Y, the definition of Y involves a running
aggregate on Y.

For more information, see:

• MEASURES Clause

• DEFINE Clause

• SUBSET Clause.

15.1.3.2 Operating on the Same Correlation Variable
In both the MEASURES and DEFINE clause, you may only apply an aggregate function to
attributes of the same correlation variable.

For example: the use of aggregate function correlation.

...
MEASURES xycorr AS correlation(X.price, Y.price)
PATTERN (X+ Y+)
DEFINE
 X AS X.price <= 10,
 Y AS Y.price > 10
...

The correlation aggregate function may not operate on more than one correlation
variable.

15.1.3.3 Referencing Variables That Have not Been Matched Yet
In the DEFINE clause, you may reference a correlation variable that has not been
matched yet. However, you should use caution when doing so.

PATTERN (X+ Y+)
DEFINE
 X AS count(Y.*) >= 3
 Y AS Y.price > 10,

Although this syntax is legal, note that in this particular example, the pattern will never
match because at the time X is matched, Y has not yet been matched, and count(Y.*)
is 0.

To implement the desired behavior ("Match when the price of Y has been greater than
10, 3 or more times in a row"), implement this pattern.

PATTERN (Y+ X+)
DEFINE
 Y AS Y.price > 10,
 X AS count(Y.*) >= 3

For more information, see Using count With *, identifier.*, and identifier.attr.

15.1.3.4 Referencing Attributes not Qualified by Correlation Variable
In the DEFINE clause, if you apply an aggregate function to an event attribute not
qualified by correlation variable, the aggregate is a running aggregate.

PATTERN ((RISE FALL)+)
DEFINE

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-5

 RISE AS count(RISE.*) = 1 or RISE.price > FALL.price,
 FALL AS FALL.price < RISE.price and count(*) > 1000

This query detects a pattern in which a price alternately goes up and down, for as long
as possible, but for at least more than 1000 matches.

For more information, see:

• Running Aggregates and Final Aggregates

• Using count With *, identifier.*, and identifier.attr.

15.1.3.5 Using count With *, identifier.*, and identifier.attr
The built-in aggregate function count has syntax:

(arith_expr::=)

The return value of count depends on the argument as Table 15-1 shows.

Table 15-1 Return Values for count Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not NULL.

* The number of tuples matching all the correlation variables in the
pattern, including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable
identifier, including duplicates and nulls.

Note the following:

• count(A.*) = 1 is true for the first event that matches A.
• count(A.*) = 0 is true while A has not been matched yet.

identifier.attr The number of tuples that match correlation variable identifier,
where attr is not NULL.

Assume that the schema of S includes attributes account and balance. This query
returns an event for each account that has not received 3 or more events in 60
minutes.

select
 T.account,
 T.Atime
FROM S
 MATCH_RECOGNIZE(
 PARTITION BY account
 MEASURES
 A.account has account
 A.ELEMENT_TIME as Atime
 ALL MATCHES

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-6

 INCLUDE TIMER EVENTS
 PATTERN (A+)
 DURATION 60 MINUTES
 DEFINE
 A AS count(A.*) < 3
) as T

The PATTERN (A+) specifies the pattern "Match A one or more times".

The DEFINE clause specifies the condition:

A AS count(A.*) < 3

This condition for A places no restrictions on input tuples (such as A.balance > 1000).
The only restrictions are imposed by the PARTITION BY account and DURATION 60 MINUTES
clauses. In the DEFINE clause, the A.* means, "Match all input tuples for the group A+".
This group includes the one or more input tuples with a particular account received in
the 60 minutes starting with the first input tuple. The count(A.*) is a running aggregate
that returns the total number of events in this group.

If the DEFINE clause specifies the condition:

A AS A.balance > 1000 and count(A.*) < 3

Then A.* still means "Match all input tuples for the group A+". In this case, this group
includes the one or more input tuples with a particular account received in the 60
minutes starting with the first input tuple and with balance > 1000.

In contrast:

• count(*) means "The number of tuples matching all the correlation variables in the
pattern, including duplicates and nulls."

• count(A.balance) means "The number of all tuples that match the correlation
variable A where the balance is not NULL".

For more information, see:

• count

• Range, Rows, and Slide at Query Start-Up and for Empty Relations

• Referencing Singleton and Group Matches

• Referencing Aggregates

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable.

15.1.3.6 Using first and last
Use the first and last built-in aggregate functions to access event attributes of the
first or last event match, respectively:

first returns the value of the first match of a group in the order defined by the ORDER BY
clause or the default order.

last returns the value of the last match of a group in the order defined by the ORDER BY
clause or the default order.

Chapter 15
Understanding Pattern Recognition With MATCH_RECOGNIZE

15-7

The first and last functions accept an optional non-negative, constant integer
argument (N) that indicates the offset following the first and the offset preceding the
last match of the variable, respectively. If you specify this offset, the first function
returns the N-th matching event following the first match and the last function returns
the N-th matching event preceding the last match. If the offset does not fall within the
match of the variable, the first and last functions return NULL.

For more information, see:

• first

• last

• Referencing Aggregates.

15.1.4 Using prev
Use the prev built-in single-row function to access event attributes of a previous event
match. If there is no previous event match, the prev function returns NULL.

The prev function accepts an optional non-negative, constant integer argument (N) that
indicates the offset to a previous match. If you specify this offset, the prev function
returns the N-th matching event preceding the current match. If there is no such
previous match, the prev functions returns NULL.

When you use the prev function in the DEFINE clause, this function may only access the
currently defined correlation variable.

For example: the correlation variable definition:

Y AS Y.price < prev(Y.price, 2)

However, the correlation variable definition is invalid because while defining correlation
variable Y, it references correlation variable X inside the prev function.

Y AS Y.price < prev(X.price, 2)

For more information, see:

• prev

DEFINE Clause.

15.2 MEASURES Clause
The MEASURES clause exports (makes available for inclusion in the SELECT) attribute
values of events that successfully match the pattern you specify.

You may specify expressions over correlation variables that reference partition
attributes, order by attributes, singleton variables and aggregates on group variables,
and aggregates on the attributes of the stream that is the source of the
MATCH_RECOGNIZE clause.

You qualify attribute values by correlation variable to export the value of the attribute
for the event that matches the correlation variable's condition. For example, within the
MEASURES clause, A.c1 refers to the value of event attribute c1:

• In the tuple that last matched the condition corresponding to correlation variable A,
if A is specified in the DEFINE clause.

Chapter 15
MEASURES Clause

15-8

• In the last processed tuple, if A is not specified in the DEFINE clause.

This is because if A is not specified in the DEFINE clause, then A is considered as
TRUE always. So effectively all the tuples in the input match to A.

You may include in the SELECT statement only attributes you specify in the MEASURES
clause.

Figure 15-1 pattern_measures_clause::=

(non_mt_measure_list::=)

non_mt_measure_list::=

(measure_column::=)

measure_column::=

(arith_expr::=)

The pattern_measures_clause is:

MEASURES
 A.itemId as itemId

This section describes:

• Functions Over Correlation Variables in the MEASURES Clause.

For more information, see:

• Referencing Singleton and Group Matches

• Referencing Aggregates

• DEFINE Clause

• Functions.

15.2.1 Functions Over Correlation Variables in the MEASURES
Clause

In the MEASURES clause, you may apply any single-row or aggregate function to the
attributes of events that match a condition.

Chapter 15
MEASURES Clause

15-9

The following example applies the last function over correlation variable Z.c1 in the
MEASURES clause.

<query id="tkpattern_q41"><![CDATA[
 select
 T.firstW, T.lastZ
 from
 tkpattern_S11
 MATCH_RECOGNIZE (
 MEASURES A.c1 as firstW, last(Z.c1) as lastZ
 ALL MATCHES
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Note the following in the MEASURES clause:

• A.c1 will export the value of c1 in the first and only the first event that the query
processes because:

– A is not specified in the DEFINE clause, therefor it is always true.

– A has no pattern quantifiers, therefor it will match exactly once.

• The built-in aggregate function last will export the value of c1 in the last event that
matched Z at the time the PATTERN clause was satisfied.

For more information, see:

• Referencing Aggregates

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Using prev.

15.3 PATTERN Clause
The PATTERN clause specifies the pattern to be matched as a regular expression over
one ore more correlation variables.

Incoming events must match these conditions in the order given (from left to right).

The regular expression may contain correlation variables that are:

• Defined in the DEFINE clause: such correlation variables are considered true only if
their condition definition evaluates to TRUE.

See DEFINE Clause.

• Not defined in the DEFINE clause: such correlation variables are considered as
always TRUE; that is, they match every input.

Figure 15-2 pattern_clause::=

Chapter 15
PATTERN Clause

15-10

(regexp::=, Figure 15-8)

This section describes:

• Pattern Quantifiers and Regular Expressions

• Grouping and Alternation in the PATTERN Clause.

For more information, see:

• Pattern Detection

• Pattern Detection With PARTITION BY

• Pattern Detection With Aggregates.

15.3.1 Pattern Quantifiers and Regular Expressions
You express the pattern as a regular expression composed of correlation variables
and pattern quantifiers.

regexp::=

(correlation_name::=, pattern_quantifier::=)

correlation_name::=

pattern_quantifier::=

Table 15-2 lists the pattern quantifiers (pattern_quantifier::=) Oracle CQL supports.

Chapter 15
PATTERN Clause

15-11

Table 15-2 MATCH_RECOGNIZE Pattern Quantifiers

Maximal Minimal Description

* *? 0 or more times

+ +? 1 or more times.

? ?? 0 or 1 time.

None None An unquantified pattern, such as A, is
assumed to have a quantifier that requires
exactly 1 match.

Use the pattern quantifiers to specify the pattern as a regular expression, such as A* or
A+?.

The one-character pattern quantifiers are maximal or "greedy"; they will attempt to
match as many instances of the regular expression on which they are applied as
possible.

The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to
match as few instances of the regular expression on which they are applied as
possible.

Consider the following pattern_clause:

PATTERN (A B* C)

This pattern clause means a pattern match will be recognized when the following
conditions are met by consecutive incoming input tuples:

1. Exactly one tuple matches the condition that defines correlation variable A,
followed by

2. Zero or more tuples that match the correlation variable B, followed by

3. Exactly one tuple that matches correlation variable C.

While in state 2, if a tuple arrives that matches both the correlation variables B and C
(since it satisfies the defining conditions of both of them) then as the quantifier * for B is
greedy that tuple will be considered to have matched B instead of C. Thus due to the
greedy property B gets preference over C and we match a greater number of B. Had the
pattern expression be A B*? C, one that uses a lazy or reluctant quantifier over B, then
a tuple matching both B and C will be treated as matching C only. Thus C would get
preference over B and we will match fewer B.

For more information, see:

• Referencing Singleton and Group Matches

• Grouping and Alternation in the PATTERN Clause.

15.3.2 Grouping and Alternation in the PATTERN Clause
As shown in the regexp_grp_alt syntax, you can use:

• open and close round brackets ((and)) to group correlation variables

• alternation operators (|) to match either one correlation variable (or group of
correlation variables) or another

Chapter 15
PATTERN Clause

15-12

regexp_grp_alt::=

(correlation_name::=, pattern_quantifier::=, regexp::=)

Consider the following pattern_clause:

PATTERN (A+ B+)

This means "A one or more times followed by B one or more times".

You can group correlation variables. For example:

PATTERN (A+ (C+ B+)*)

This means "A one or more times followed by zero or more occurrences of C one or
more times and B one or more times".

Using the PATTERN clause alternation operator (|), you can refine the sense of the
pattern_clause. For example:

PATTERN (A+ | B+)

This means "A one or more times or B one or more times, whichever comes first".

Similarly, you can both group correlation variables and use the alternation operator.
For example:

PATTERN (A+ (C+ | B+))

This means "A one or more times followed by either C one or more times or B one or
more times, whichever comes first".

To match every permutation you can use:

PATTERN ((A B) | (B A))

This means "A followed by B or B followed by A, which ever comes first".

For more information, see:

• Pattern Quantifiers and Regular Expressions

• Alternation Operator.

15.4 DEFINE Clause
The DEFINE clause specifies the boolean condition for each correlation variable.

You may specify any logical or arithmetic expression and apply any single-row or
aggregate function to the attributes of events that match a condition.

On receiving a new tuple from the base stream, the conditions of the correlation
variables that are relevant at that point in time are evaluated. A tuple is said to have
matched a correlation variable if it satisfies its defining condition. A particular input can

Chapter 15
DEFINE Clause

15-13

match zero, one, or more correlation variables. The relevant conditions to be
evaluated on receiving an input are determined by logic governed by the PATTERN
clause regular expression and the state in pattern recognition process that we have
reached after processing the earlier inputs.

The condition can refer to any of the attributes of the schema of the stream or view
that evaluates to a stream on which the MATCH_RECOGNIZE clause is being applied.

A correlation variable in the PATTERN clause need not be specified in the DEFINE clause:
the default for such a correlation variable is a predicate that is always true. Such a
correlation variable matches every event. It is an error to specify a correlation variable
in the DEFINE clause which is not used in a PATTERN clause

No correlation variable defined by a SUBSET clause may be defined in the DEFINE clause.

Figure 15-3 pattern_definition_clause::=

(Figure 15-4)

Figure 15-4 non_mt_corrname_definition_list::=

(Figure 15-5)

Figure 15-5 correlation_name_definition::=

(correlation_name::=, non_mt_cond_list)

This section describes:

• Functions Over Correlation Variables in the DEFINE Clause

• Referencing Attributes in the DEFINE Clause

• Referencing One Correlation Variable From Another in the DEFINE Clause.

For more information, see:

• Referencing Singleton and Group Matches

• Referencing Aggregates

• Using first and last

• Using prev

• PATTERN Clause

Chapter 15
DEFINE Clause

15-14

• SUBSET Clause

• Functions.

15.4.1 Functions Over Correlation Variables in the DEFINE Clause
You can use functions over the correlation variables while defining them.

The following example applies the to_timestamp function to correlation variables.

...
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL "0
00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY TO
SECOND)
...

The following example applies the count function to correlation variable B to count the
number of times its definition was satisfied. A match is recognized when
totalCountValue is less than 1000 two or more times in 30 minutes.

...
 MATCH_RECOGNIZE(
 ...
 PATTERN(B*)
 DURATION 30 MINUTES
 DEFINE
 B as (B.totalCountValue < 1000 and count(B.*) >= 2)
...

For more information, see:

• Referencing Aggregates

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Using prev.

15.4.2 Referencing Attributes in the DEFINE Clause
You can refer to the attributes of a base stream:

• Without a correlation variable: c1 < 20.

• With a correlation variable: A.c1 < 20.

When you refer to the attributes without a correlation variable, a tuple that last
matched any of the correlation variables is consulted for evaluation.

Consider the following definitions:

• DEFINE A as c1 < 20

• DEFINE A as A.c1 < 20

Both refer to c1 in the same tuple which is the latest input tuple. This is because on
receiving an input we evaluate the condition of a correlation variable assuming that the
latest input matches that correlation variable.

Chapter 15
DEFINE Clause

15-15

If you specify a correlation name that is not defined in the DEFINE clause, it is
considered to be true for every input.

The correlation variable A appears in the PATTERN clause but is not specified in the
DEFINE clause. This means the correlation name A is true for every input. It is an error
to define a correlation name which is not used in a PATTERN clause.

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

For more information, see:

• Referencing One Correlation Variable From Another in the DEFINE Clause

• Referencing Singleton and Group Matches

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable

• PATTERN Clause.

15.4.3 Referencing One Correlation Variable From Another in the
DEFINE Clause

A definition of one correlation variable can refer to another correlation variable.
Consider the query:

...
Select
 a_firsttime, d_lasttime, b_avgprice, d_avgprice
FROM
 S
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 first(a.time) as a_firsttime,
 last(d.time) as d_lasttime,
 avg(b.price) as b_avgprice,
 avg(d.price) as d_avgprice
 PATTERN (A B+ C+ D)
 DEFINE
 A as A.price > 100,
 B as B.price > A.price,
 C as C.price < avg(B.price),
 D as D.price > prev(D.price)

Chapter 15
DEFINE Clause

15-16

)
...

Note the following:

• Because correlation variable A defines a single attribute, B can refer to this single
attribute.

• Because B defines more than one attribute, C cannot reference a single attribute of
B. In this case, C may only reference an aggregate of B.

• D is defined in terms of itself: in this case, you may refer to a single attribute or an
aggregate. In this example, the prev function is used to access the match of D prior
to the current match.

For more information, see:

• Referencing Attributes in the DEFINE Clause

• Referencing Singleton and Group Matches

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable

• Referencing Attributes in the DEFINE Clause.

15.5 PARTITION BY Clause
Use this optional clause to specify the stream attributes by which a MATCH_RECOGNIZE
clause should partition its results.

Without a PARTITION BY clause, all stream attributes belong to the same partition.

Figure 15-6 pattern_partition_clause::=

(non_mt_attr_list)

The pattern_partition_clause is:

PARTITION BY
 itemId

The partition by clause in pattern means the input stream is logically divided based on
the attributes mentioned in the partition list and pattern matching is done within a
partition.

Consider a stream S with schema (c1 integer, c2 integer) with the input data.

 c1 c2
1000 10, 1
2000 10, 2
3000 20, 2
4000 20, 1

Consider the MATCH_RECOGNIZE query.

select T.p1, T.p2, T.p3 from S MATCH_RECOGNIZE(
 MEASURES

Chapter 15
PARTITION BY Clause

15-17

 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A B)
 DEFINE
 A as A.c1 = 10,
 B as B.c1 = 20
) as T

This query would output the following:

3000:+ 2000, 3000, 2

If we add PARTITION BY c2 to the query, then the output would change to:

3000:+ 2000, 3000, 2
4000:+ 1000, 4000, 1

This is because by adding the PARTITION BY clause, matches are done within partition
only. Tuples at 1000 and 4000 belong to one partition and tuples at 2000 and 3000
belong to another partition owing to the value of c2 attribute in them. In the first
partition A matches tuple at 1000 and B matches tuple at 4000. Even though a tuple at
3000 matches the B definition, it is not presented as a match for the first partition since
that tuple belongs to different partition.

15.6 ALL MATCHES Clause
Use this optional clause to configure Oracle Event Processing to match overlapping
patterns.

With the ALL MATCHES clause, Oracle Event Processing finds all possible matches.
Matches may overlap and may start at the same event. In this case, there is no
distinction between greedy and reluctant pattern quantifiers. For example, the
following pattern:

ALL MATCHES
PATTERN (A* B)

produces the same result as:

ALL MATCHES
PATTERN (A*? B)

Without the ALL MATCHES clause, overlapping matches are not returned, and quantifiers
such as the asterisk determine which among a set of candidate (and overlapping)
matches is the preferred one for output. The rest of the overlapping matches are
discarded.

Figure 15-7 pattern_skip_match_clause::=

Consider the query tkpattern_q41 that uses ALL MATCHES and the data stream
tkpattern_S11. Stream tkpattern_S11 has schema (c1 integer, c2 integer). The query
returns the stream.

Chapter 15
ALL MATCHES Clause

15-18

The query tkpattern_q41 will report a match when the input stream values, when
plotted, form the shape of the English letter W. The relation shows an example of
overlapping instances of this W-pattern match.

There are two types of overlapping pattern instances:

• Total: Example of total overlapping: Rows from time 3000-9000 and 4000-9000 in
the input, both match the given pattern expression. Here the longest one
(3000-9000) will be preferred if ALL MATCHES clause is not present.

• Partial: Example of Partial overlapping: Rows from time 12000-21000 and
16000-23000 in the input, both match the given pattern expression. Here the one
which appears earlier is preferred when ALL MATCHES clause is not present. This is
because when ALL MATCHES clause is omitted, we start looking for the next instance
of pattern match at a tuple which is next to the last tuple in the previous matched
instance of the pattern.

<query id="tkpattern_q41"><![CDATA[
 select
 T.firstW, T.lastZ
 from
 tkpattern_S11
 MATCH_RECOGNIZE (
 MEASURES A.c1 as firstW, last(Z.c1) as lastZ
 ALL MATCHES
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Timestamp Tuple
 1000 1,8
 2000 2,8
 3000 3,8
 4000 4,6
 5000 5,3
 6000 6,7
 7000 7,6
 8000 8,2
 9000 9,6
10000 10,2
11000 11,9
12000 12,9
13000 13,8
14000 14,5
15000 15,0
16000 16,9
17000 17,2
18000 18,0
19000 19,2
20000 20,3
21000 21,8
22000 22,5
23000 23,9
24000 24,9
25000 25,4
26000 26,7
27000 27,2
28000 28,8
29000 29,0
30000 30,4
31000 31,4
32000 32,7

Chapter 15
ALL MATCHES Clause

15-19

33000 33,8
34000 34,6
35000 35,4
36000 36,5
37000 37,1
38000 38,7
39000 39,5
40000 40,8
41000 41,6
42000 42,6
43000 43,0
44000 44,6
45000 45,8
46000 46,4
47000 47,3
48000 48,8
49000 49,2
50000 50,5
51000 51,3
52000 52,3
53000 53,9
54000 54,8
55000 55,5
56000 56,5
57000 57,9
58000 58,7
59000 59,3
60000 60,3

Timestamp Tuple Kind Tuple
 9000: + 3,9
 9000: + 4,9
11000: + 6,11
11000: + 7,11
19000: + 12,19
19000: + 13,19
19000: + 14,19
20000: + 12,20
20000: + 13,20
20000: + 14,20
21000: + 12,21
21000: + 13,21
21000: + 14,21
23000: + 16,23
23000: + 17,23
28000: + 24,28
30000: + 26,30
38000: + 33,38
38000: + 34,38
40000: + 36,40
48000: + 42,48
50000: + 45,50
50000: + 46,50

The ALL MATCHES clause reports all the matched pattern instances on receiving a
particular input. For example, at time 20000, all of the tuples {12,20}, {13,20}, and
{14,20} are output.

For more information, see Pattern Quantifiers and Regular Expressions.

15.7 WITHIN Clause
The WITHIN clause is an optional clause that outputs a pattern_clause match if and only
if the match occurs within the specified time duration.

Chapter 15
WITHIN Clause

15-20

Figure 15-8 within_clause::=

(time_spec)

That is, if and only if:

TL - TF < WD

Where:

• TL - Timestamp of last event matching the pattern.

• TF - Timestamp of first event matching the pattern.

• WD - Duration specified in the WITHIN clause.

The WITHIN INCLUSIVE clause tries to match events at the boundary case as well. That
is, it outputs a match if and only if:

TL - TF <= WD

If the match completes within the specified time duration, then the event is output as
soon as it happens. That is, if the match can be output, it is output with the timestamp
at which it completes. The WITHIN clause does not wait for the time duration to expire
as the DURATION clause does.

When the WITHIN clause duration expires, it discards any potential candidate matches
which are incomplete.

For more information, see Pattern Detection With the WITHIN Clause.

Note:

You cannot use a WITHIN clause with a DURATION clause. For more
information, see DURATION Clause.

15.8 DURATION Clause
The DURATION clause is an optional clause that you should use only when writing a
query involving non-event detection. Non-event detection is the detection of a situation
when a certain event which should have occurred in a particular time limit does not
occur in that time frame.

Figure 15-9 duration_clause::=

(Figure 7-10)

Chapter 15
DURATION Clause

15-21

Using this clause, a match is reported only when the regular expression in the PATTERN
clause is matched completely and no other event or input arrives until the duration
specified in the DURATION clause expires. The duration is measured from the time of
arrival of the first event in the pattern match.

You must use the INCLUDE TIMER EVENTS clause when using the DURATION clause. For
more information, see INCLUDE TIMER EVENTS Clause.

This section describes:

• Fixed Duration Non-Event Detection

• Recurring Non-Event Detection.

Note:

You cannot use a DURATION clause with a WITHIN clause. For more
information, see WITHIN Clause.

15.8.1 Fixed Duration Non-Event Detection
The duration can be specified as a constant value, such as 10. Optionally, you may
specify a time unit such as seconds or minutes (see Figure 7-11); the default time unit
is seconds.

Consider the query tkpattern_q59 that uses DURATION 10 to specify a delay of 10 s
(10000 ms) and the data stream tkpattern_S19. Stream tkpattern_S19 has schema (c1
integer). The query returns the stream.

<query id="BBAQuery"><![CDATA[
 select
 T.p1, T.p2
 from
 tkpattern_S19
 MATCH_RECOGNIZE (
 MEASURES A.c1 as p1, B.c1 as p2
 include timer events
 PATTERN(A B*)
 duration 10
 DEFINE A as A.c1 = 10, B as B.c1 != A.c1
) as T
]]></query>

Timestamp Tuple
 1000 10
 4000 22
 6000 444
 7000 83
 9000 88
11000 12
11000 22
11000 15
12000 13
15000 10
27000 11
28000 10
30000 18
40000 10
44000 19

Chapter 15
DURATION Clause

15-22

52000 10
h 100000

Timestamp Tuple Kind Tuple
11000: + 10,88
25000: + 10,
38000: + 10,18
50000: + 10,19
62000: + 10,

The tuple at time 1000 matches A.

Since the duration is 10 we output a match as soon as input at time 1000+10000=11000
is received (the one with the value 12). Since the sequence of tuples from 1000
through 9000 match the pattern AB* and nothing else a match is reported as soon as
input at time 11000 is received.

The next match starts at 15000 with the tuple at that time matching A. The next tuple
that arrives is at 27000. So here also we have tuples satisfying pattern AB* and nothing
else and hence a match is reported at time 15000+10000=25000. Further output is
generated by following similar logic.

For more information, see Fixed Duration Non-Event Detection.

15.8.2 Recurring Non-Event Detection
When you specify a MULTIPLES OF clause, it indicates recurring non-event detection. In
this case an output is sent at the multiples of duration value as long as there is no
event after the pattern matches completely.

Consider the query tkpattern_q75 that uses DURATION MULTIPLES OF 10 to specify a
delay of 10 s (10000 ms) and the data stream tkpattern_S23. Stream tkpattern_S23
has schema (c1 integer). The query returns the stream.

<query id="tkpattern_q75"><![CDATA[
 select
 T.p1, T.p2, T.p3
 from
 tkpattern_S23
 MATCH_RECOGNIZE (
 MEASURES A.c1 as p1, B.c1 as p2, sum(B.c1) as p3
 ALL MATCHES
 include timer events
 PATTERN(A B*)
 duration multiples of 10
 DEFINE A as A.c1 = 10, B as B.c1 != A.c1
) as T
]]></query>

Timestamp Tuple
 1000 10
 4000 22
 6000 444
 7000 83
 9000 88
11000 12
11000 22
11000 15
12000 13
15000 10
27000 11
28000 10
30000 18
44000 19

Chapter 15
DURATION Clause

15-23

62000 20
72000 10
h 120000

Timestamp Tuple Kind Tuple
 11000: + 10,88,637
 25000: + 10,,
 38000: + 10,18,18
 48000: + 10,19,37
 58000: + 10,19,37
 68000: + 10,20,57
 82000: + 10,,
 92000: + 10,,
102000: + 10,,
112000: + 10,,

The execution here follows similar logic to that of the example above for just the
DURATION clause (see Fixed Duration Non-Event Detection). The difference comes for
the later outputs. The tuple at 72000 matches A and then there is nothing else after
that. So the pattern AB* is matched and we get output at 82000. Since we have the
MULTIPLES OF clause and duration 10 we see outputs at time 92000, 102000, and so
on.

15.9 INCLUDE TIMER EVENTS Clause
Use this clause in conjunction with the DURATION clause for non-event detection
queries.

Typically, in most pattern match queries, a pattern match output is always triggered by
an input event on the input stream over which pattern is being matched. The only
exception is non-event detection queries where there could be an output triggered by a
timer expiry event (as opposed to an explicit input event on the input stream).

Figure 15-10 pattern_inc_timer_evs_clause::=

(Figure 15-2, Figure 15-7, Figure 15-3, Figure 15-9, Figure 15-11)

For more information, see DURATION Clause.

15.10 SUBSET Clause
Using this clause, you can group together one or more correlation variables that are
defined in the DEFINE clause. You can use this named subset in the MEASURES and
DEFINE clauses just like any other correlation variable.

For example:

SUBSET S1 = (Z,X)

The right-hand side of the subset ((Z,X)) is a comma-separated list of one or more
correlation variables as defined in the PATTERN clause.

The left-hand side of the subset (S1) is the union of the correlation variables on the
right-hand side.

Chapter 15
INCLUDE TIMER EVENTS Clause

15-24

You cannot include a subset variable in the right-hand side of a subset.

Figure 15-11 subset_clause::=

(Figure 15-12)

Figure 15-12 non_mt_subset_definition_list::=

(Figure 15-13)

Figure 15-13 subset_definition::=

(Figure 15-14, Figure 15-15)

Figure 15-14 subset_name::=

(Figure 7-3)

Figure 15-15 non_mt_corr_list::=

(correlation_name::=)

Consider the query q55 inExample 15-1 and the data stream S11 in Example 15-2.
Stream S11 has schema (c1 integer, c2 integer). This example defines subsets S1
through S6. This query outputs a match if the c2 attribute values in the input stream
form the shape of the English letter W. Now suppose we want to know the sum of the
values of c2 for those tuples which form the incrementing arms of this W shape. The
correlation variable X represents tuples that are part of the first incrementing arm and Z
represent the tuples that are part of the second incrementing arm. So we need some
way to group the tuples that match both. Such a requirement can be captured by
defining a SUBSET clause as the example shows.

Chapter 15
SUBSET Clause

15-25

Subset S4 is defined as (X,Z). It refers to the tuples in the input stream that match
either X or Z. This subset is used in the MEASURES clause statement sum(S4.c2) as
sumIncrArm. This computes the sum of the value of c2 attribute in the tuples that match
either X or Z. A reference to S4.c2 in a DEFINE clause like S4.c2 = 10 will refer to the
value of c2 in the latest among the last tuple that matched X and the last tuple that
matched Z.

Subset S6 is defined as (Y). It refers to all the tuples that match correlation variable Y.

The query returns the stream.

Example 15-1 SUBSET Clause Query

<query id="q55"><![CDATA[
 select
 T.firstW,
 T.lastZ,
 T.sumDecrArm,
 T.sumIncrArm,
 T.overallAvg
 from
 S11
 MATCH_RECOGNIZE (
 MEASURES
 S2.c1 as firstW,
 last(S1.c1) as lastZ,
 sum(S3.c2) as sumDecrArm,
 sum(S4.c2) as sumIncrArm,
 avg(S5.c2) as overallAvg
 PATTERN(A W+ X+ Y+ Z+)
 SUBSET S1 = (Z) S2 = (A) S3 = (A,W,Y) S4 = (X,Z) S5 = (A,W,X,Y,Z) S6 = (Y)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as S6.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Example 15-2 SUBSET Clause Example

Timestamp Tuple
 1000 1,8
 2000 2,8
 3000 3,8
 4000 4,6
 5000 5,3
 6000 6,7
 7000 7,6
 8000 8,2
 9000 9,6
10000 10,2
11000 11,9
12000 12,9
13000 13,8
14000 14,5
15000 15,0
16000 16,9
17000 17,2
18000 18,0
19000 19,2
20000 20,3
21000 21,8
22000 22,5
23000 23,9
24000 24,9
25000 25,4

Chapter 15
SUBSET Clause

15-26

26000 26,7
27000 27,2
28000 28,8
29000 29,0
30000 30,4
31000 31,4
32000 32,7
33000 33,8
34000 34,6
35000 35,4
36000 36,5
37000 37,1
38000 38,7
39000 39,5
40000 40,8
41000 41,6
42000 42,6
43000 43,0
44000 44,6
45000 45,8
46000 46,4
47000 47,3
48000 48,8
49000 49,2
50000 50,5
51000 51,3
52000 52,3
53000 53,9
54000 54,8
55000 55,5
56000 56,5
57000 57,9
58000 58,7
59000 59,3
60000 60,3

Timestamp Tuple Kind Tuple
 9000: + 3,9,25,13,5.428571
21000: + 12,21,24,22,4.6
28000: + 24,28,15,15,6.0
38000: + 33,38,19,12,5.1666665
48000: + 42,48,13,22,5.0

For more information, see:

• Running Aggregates and Final Aggregates

• MEASURES Clause

• PATTERN Clause

• DEFINE Clause.

15.11 MATCH_RECOGNIZE Examples
The following examples illustrate basic MATCH_RECOGNIZE practices:

• Pattern Detection

• Pattern Detection With PARTITION BY

• Pattern Detection With Aggregates

• Fixed Duration Non-Event Detection.

Chapter 15
MATCH_RECOGNIZE Examples

15-27

15.11.1 Pattern Detection
Consider the stock fluctuations that Figure 15-16 shows. This data can be represented
as a stream of stock ticks (index number or time) and stock price. Figure 15-16 shows
a common trading behavior known as a double bottom pattern between days 1 and 9
and between days 12 and 19. This pattern can be visualized as a W-shaped change in
stock price: a fall (X), a rise (Y), a fall (W), and another rise (Z).

Figure 15-16 Pattern Detection: Double Bottom Stock Fluctuations

Example 15-3 shows a query q on stream S2 of stock price events with schema symbol,
stockTick, and price. This query detects double bottom patterns on the incoming stock
trades using the PATTERN clause (A W+ X+ Y+ Z+). The correlation names in this clause
are:

• A: corresponds to the start point of the double bottom pattern.

Because correlation name A is true for every input, it is not defined in the DEFINE
clause. If you specify a correlation name that is not defined in the DEFINE clause, it
is considered to be true for every input.

• W+: corresponds to the first decreasing arm of the double bottom pattern.

It is defined by W.price < prev(W.price). This definition implies that the current
price is less than the previous one.

• X+: corresponds to the first increasing arm of the double bottom pattern.

• Y+: corresponds to the second decreasing arm of the double bottom pattern.

• Z+: corresponds to the second increasing arm of the double bottom pattern.

Example 15-3 Pattern Detection

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 MEASURES

Chapter 15
MATCH_RECOGNIZE Examples

15-28

 A.stockTick as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.price < prev(W.price),
 X as X.price > prev(X.price),
 Y as Y.price < prev(Y.price),
 Z as Z.price > prev(Z.price)
) as T
 WHERE
 S2.symbol = "oracle"
]]></query>

15.11.2 Pattern Detection With PARTITION BY
Consider the stock fluctuations that Figure 15-17 shows. This data can be represented
as a stream of stock ticks (index number or time) and stock price. In this case, the
stream contains data for more than one stock ticker symbol. Figure 15-17 shows a
common trading behavior known as a double bottom pattern between days 1 and 9
and between days 12 and 19 for stock BOFA. This pattern can be visualized as a W-
shaped change in stock price: a fall (X), a rise (Y), a fall (W), and another rise (Z).

Figure 15-17 Pattern Detection With Partition By: Stock Fluctuations

Example 15-4 shows a query q on stream S2 of stock price events with schema symbol,
stockTick, and price. This query detects double bottom patterns on the incoming stock
trades using the PATTERN clause (A W+ X+ Y+ Z+). The correlation names in this clause
are:

• A: corresponds to the start point of the double bottom pattern.

• W+: corresponds to the first decreasing arm of the double bottom pattern as
defined by W.price < prev(W.price), which implies that the current price is less
than the previous one.

• X+: corresponds to the first increasing arm of the double bottom pattern.

• Y+: corresponds to the second decreasing arm of the double bottom pattern.

• Z+: corresponds to the second increasing arm of the double bottom pattern.

The query partitions the input stream by stock ticker symbol using the PARTITION BY
clause and applies this PATTERN clause to each logical stream.

Chapter 15
MATCH_RECOGNIZE Examples

15-29

Example 15-4 Pattern Detection With PARTITION BY

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 PARTITION BY
 A.symbol
 MEASURES
 A.stockTick as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.price < prev(W.price),
 X as X.price > prev(X.price),
 Y as Y.price < prev(Y.price),
 Z as Z.price > prev(Z.price)
) as T
]]></query>

15.11.3 Pattern Detection With Aggregates
Consider the query q1 and the data stream S. Stream S has schema (c1 integer). The
query returns the stream.

<query id="q1"><![CDATA[
 SELECT
 T.sumB
 FROM
 S
 MATCH_RECOGNIZE (
 MEASURES
 sum(B.c1) as sumB
 PATTERN(A B* C)
 DEFINE
 A as ((A.c1 < 50) AND (A.c1 > 35)),
 B as B.c1 > avg(A.c1),
 C as C.c1 > prev(C.c1)
) as T
]]></query>

Timestamp Tuple
 1000 40
 2000 52
 3000 60
 4000 58
 5000 57
 6000 56
 7000 55
 8000 59
 9000 30
10000 40
11000 52
12000 60
13000 58
14000 57
15000 56
16000 55
17000 30
18000 10
19000 20
20000 30
21000 10
22000 25

Chapter 15
MATCH_RECOGNIZE Examples

15-30

23000 25
24000 25
25000 25

Timestamp Tuple
8000 338
12000 52

15.11.4 Pattern Detection With the WITHIN Clause
Consider the queries and the data stream S. Stream S has schema (c1 integer, c2
integer). Table 15-3 compares the output of these queries.

<query id="queryWithin"><![CDATA[
 SELECT T.Ac2, T.Bc2, T.Cc2
 FROM S
 MATCH_RECOGNIZE(
 MEASURES A.c2 as Ac2, B.c2 as Bc2, C.c2 as Cc2
 PATTERN (A (B+ | C)) within 3000 milliseconds
 DEFINE
 A as A.c1=10 or A.c1=25,
 B as B.c1=20 or B.c1=15 or B.c1=25,
 C as C.c1=15
) as T
]]></query>

<query id="queryWithinInclusive"><![CDATA[
 SELECT T.Ac2, T.Bc2, T.Cc2
 FROM S
 MATCH_RECOGNIZE(
 MEASURES A.c2 as Ac2, B.c2 as Bc2, C.c2 as Cc2
 PATTERN (A (B+ | C)) within inclusive 3000 milliseconds
 DEFINE
 A as A.c1=10 or A.c1=25,
 B as B.c1=20 or B.c1=15 or B.c1=25,
 C as C.c1=15
) as T
]]></query>

Timestamp Tuple
 1000 10,100
h 2000
 3000 15,200
 3000 20,300
 4000 25,400
 5000 20,500
 6000 20,600
 7000 35,700
 8000 10,800
 9000 15,900
h 11000
 11000 20,1000
 11000 50,1100

Table 15-3 WITHIN and WITHIN INCLUSIVE Query Output

Query queryWithin Query queryWithinInclusive

Timestamp Tuple Kind Tuple

3000: + 100,300,
6000: + 400,600,
9000: + 800,900,

Timestamp Tuple Kind Tuple

 4000: + 100,400,
11000: + 800,1000,

Chapter 15
MATCH_RECOGNIZE Examples

15-31

As Table 15-3 shows for the queryWithin query, the candidate match starts with the
event at TimeStamp=1000 and since the WITHIN clause duration is 3 seconds, the query
will output the match only if it completes before the event at TimeStamp=4000. When the
query receives the event at TimeStampe=4000, the longest match up to that point (since
we are not using ALL MATCHES) is output. Note that although the event at TimeStamp=4000
matches B, it is not included in the match. The next match starts with the event at
TimeStamp=4000 since that event also matches A and the previous match ends at
TimeStamp=3000.

As Table 15-3 shows for the queryWithinInclusive query, the candidate match starts
with the event at TimeStamp=1000. When the query receives the event at TimeStamp=4000,
that event is included in the match because the query uses WITHIN INCLUSIVE and the
event matches B. Note that although the event at TimeStamp=5000 matches B, the pattern
is not grown further since it exceeds the duration (3 seconds) measured from the start
of the match (TimeStamp=1000). Since this match ends at TimeStamp=4000 and we are not
using ALL MATCHES, the next match does not start at TimeStamp=4000, even though it
matches A.

For more information, see:

• WITHIN Clause

• ALL MATCHES Clause.

15.11.5 Fixed Duration Non-Event Detection
Consider an object that moves among five different rooms. Each time it starts from
room 1, it must reach room 5 within 5 minutes. Figure 15-18 shows the object's
performance. This data can be represented as a stream of time and room number.
Note that when the object started from room 1 at time 1, it reached room 5 at time 5,
as expected. However, when the object started from room 1 at time 6, it failed to reach
room 5 at time 11; it reached room 5 at time 12. When the object started from room 1
at time 15, it was in room 5 at time 20, as expected. However, when the object started
from room 1 at time 23, it failed to reach room 5 at time 28; it reached room 5 at time
30. The successes at times 5 and 20 are considered events: the arrival of the object in
room 5 at the appropriate time. The failures at time 11 and 28 are considered non-
events: the expected arrival event did not occur. Using Oracle CQL, you can query for
such non-events.

Chapter 15
MATCH_RECOGNIZE Examples

15-32

Figure 15-18 Fixed Duration Non-Event Detection

The following example shows query q on stream S (with schema c1 integer
representing room number) that detects these non-events. Each time the object fails to
reach room 5 within 5 minutes of leaving room 1, the query returns the time of
departure from room 1.

<query id="q"><![CDATA[
select T.Atime FROM S
 MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as Atime
 INCLUDE TIMER EVENTS
 PATTERN (A B*)
 DURATION 5 MINUTES
 DEFINE
 A as A.c1 = 1,
 B as B.c1 != 5
) as T
]]></query>

For more information, see DURATION Clause.

Chapter 15
MATCH_RECOGNIZE Examples

15-33

16
Oracle CQL Statements

Data definition language (DDL) statements in Oracle Continuous Query Language
(Oracle CQL) is described.

16.1 Introduction to Oracle CQL Statements
Oracle CQL supports the following DDL statements:

• Query

• View.

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform Oracle Event Processing that no further
input will have a timestamp lesser than the heartbeat value.

For more information, see:

• Lexical Conventions

• Syntactic Shortcuts and Defaults

• Documentation Conventions

• Basic Elements of Oracle CQL

• Common Oracle CQL DDL Clauses

• Oracle CQL Queries, Views, and Joins.

16.2.1 Query
Purpose

Use the query statement to define a Oracle CQL query that you reference by
identifier in subsequent Oracle CQL statements.

Prerequisites

If your query references a stream or view, then the stream or view must already exist.

If the query already exists, Oracle Event Processing server throws an exception.

For more information, see:

• View

• Oracle CQL Queries, Views, and Joins

16-1

Syntax

You express a query in a <query></query> element.

The query element has one attribute:

• id: Specify the identifier as the query element id attribute.

<query id="q0"><![CDATA[
 select * from OrderStream where orderAmount > 10000.0
]]></query>

Figure 16-1 query::=

Figure 16-2 sfw_block::=

Chapter 16
Query

16-2

Figure 16-3 select_clause::=

Figure 16-4 non_mt_projterm_list::=

Figure 16-5 projterm::=

(arith_expr)

Figure 16-6 from_clause::=

Figure 16-7 non_mt_relation_list::=

Figure 16-8 relation_variable::=

Chapter 16
Query

16-3

Figure 16-9 window_type::=

Figure 16-10 table_clause::=

Figure 16-11 opt_where_clause::=

Figure 16-12 opt_group_by_clause::=

Figure 16-13 order_by_clause::=

Figure 16-14 order_by_top_clause::=

Figure 16-15 order_by_list::=

Chapter 16
Query

16-4

Figure 16-16 orderterm::=

Figure 16-17 null_spec::=

Figure 16-18 asc_desc::=

Figure 16-19 opt_having_clause::=

Figure 16-20 binary::=

Figure 16-21 idstream_clause::=

Figure 16-22 using_clause::=

Chapter 16
Query

16-5

Figure 16-23 usinglist::=

Figure 16-24 usingterm::=

Figure 16-25 usingexpr::=

Figure 16-26 xmltable_clause::=

Figure 16-27 xmlnamespace_clause::=

Figure 16-28 xmlnamespaces_list::=

Figure 16-29 xml_namespace::=

Figure 16-30 xtbl_cols_list::=

Chapter 16
Query

16-6

Figure 16-31 xtbl_col::=

16.2.1.1 Query Semantics
named_query

Specify the Oracle CQL query statement itself.

For syntax, see Query.

query

You can create an Oracle CQL query from any of the following clauses:

• sfw_block: a select, from, and other optional clauses.

• binary: an optional clause, often a set operation.

• xstream_clause: apply an optional relation-to-stream operator to your sfw_block or
binary clause to control how the query returns its results.

sfw_block

Specify the select, from, and other optional clauses of the Oracle CQL query. You can
specify any of the following clauses:

• select_clause: the stream elements to select from the stream or view you specify.

• from_clause: the stream or view from which your query selects.

• opt_where_clause: optional conditions your query applies to its selection

• opt_group_by_clause: optional grouping conditions your query applies to its result

order_by_clause: optional ordering conditions your query applies to its results

• order_by_top_clause: optional ordering conditions your query applies to the top-n
elements in its results

• opt_having_clause: optional clause your query uses to restrict the groups of
returned stream elements to those groups for which the specified condition is TRUE

select_clause

Specify the select clause of the Oracle CQL query statement.

If you specify the asterisk (*), then this clause returns all tuples, including duplicates
and nulls.

Otherwise, specify the individual stream elements you want.

Optionally, specify distinct if you want Event Processing to return only one copy of
each set of duplicate tuples selected. Duplicate tuples are those with matching values
for each expression in the select list.

Chapter 16
Query

16-7

non_mt_projterm_list

Specify the projection term or comma separated list of projection terms in the select
clause of the Oracle CQL query statement.

projterm

Specify a projection term in the select clause of the Oracle CQL query statement. You
can select any element from any of stream or view in the from_clause using the
identifier of the element.

Optionally, you can specify an arithmetic expression on the projection term.

Optionally, use the AS keyword to specify an alias for the projection term instead of
using the stream element name as is.

from_clause

Specify the from clause of the Oracle CQL query statement by specifying the individual
streams or views from which your query selects.

To perform an outer join, use the LEFT or RIGHT OUTER JOIN ... ON syntax. To perform
an inner join, use the WHERE clause.

non_mt_relation_list

Specify the stream or view or comma separated list of streams or views in the from
clause of the Oracle CQL query statement.

relation_variable

Use the relation_variable statement to specify a stream or view from which the
Oracle CQL query statement selects.

You can specify a previously registered or created stream or view directly by its
identifier you used when you registered or created the stream or view. Optionally,
use the AS keyword to specify an alias for the stream or view instead of using its name
as is.

To specify a built-in stream-to-relation operator, use a window_type clause. Optionally,
use the AS keyword to specify an alias for the stream or view instead of using its name
as is.

To apply advanced comparisons optimized for data streams to the stream or view, use
a pattern_recognition_clause . Optionally, use the AS keyword to specify an alias for
the stream or view instead of using its name as is.

To process xmltype stream elements using XPath and XQuery, use an
xmltable_clause. Optionally, use the AS keyword to specify an alias for the stream or
view instead of using its name as is.

To access, as a relation, the multiple rows returned by a data cartridge function in the
FROM clause of an Oracle CQL query, use a table_clause.

For more information, see:

• View.

Chapter 16
Query

16-8

window_type

Specify a built-in stream-to-relation operator.

For more information, see Stream-to-Relation Operators (Windows).

table_clause

Use the data cartridge TABLE clause to access the multiple rows returned by a data
cartridge function in the FROM clause of an Oracle CQL query.

The TABLE clause converts the set of returned rows into an Oracle CQL relation.
Because this is an external relation, you must join the TABLE function clause with a
stream. Oracle Event Processing invokes the data cartridge method only on the arrival
of elements on the joined stream.

Use the optional OF keyword to specify the type contained by the returned array type or
Collection type.

Use the AS keyword to specify an alias for the object_expr and for the returned relation.

Note the following:

• The data cartridge method must return an array type or Collection type.

• You must join the TABLE function clause with a stream.

time_spec

Specify the time over which a range or partitioned range sliding window should slide.

Default: if units are not specified, Oracle Event Processing assumes [second|seconds].

For more information, see Range-Based Stream-to-Relation Window Operators and
Partitioned Stream-to-Relation Window Operators.

opt_where_clause

Specify the (optional) where clause of the Oracle CQL query statement.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

In Oracle CQL (as in SQL), the FROM clause is evaluated before the WHERE clause.
Consider the following Oracle CQL query:

SELECT ... FROM S MATCH_RECOGNIZE (....) as T WHERE ...

In this query, the S MATCH_RECOGNIZE (....) as T is like a subquery in the FROM clause
and is evaluated first, before the WHERE clause. Consequently, you rarely use both a
MATCH_RECOGNIZE clause and a WHERE clause in the same Oracle CQL query. Instead,
you typically use views to apply the required WHERE clause to a stream and then select
from the views in a query that applies the MATCH_RECOGNIZE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses

Chapter 16
Query

16-9

• MATCH_RECOGNIZE and the WHERE Clause.

opt_group_by_clause

Specify the (optional) GROUP BY clause of the Oracle CQL query statement. Use the
GROUP BY clause if you want Oracle Event Processing to group the selected stream
elements based on the value of expr(s) and return a single (aggregate) summary result
for each group.

Expressions in the GROUP BY clause can contain any stream elements or views in the
FROM clause, regardless of whether the stream elements appear in the select list.

The GROUP BY clause groups stream elements but does not guarantee the order of the
result set. To order the groupings, use the ORDER BY clause.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

order_by_clause

Specify the ORDER BY clause of the Oracle CQL query statement as a comma-delimited
list of one or more order terms. Use the ORDER BY clause to specify the order in which
stream elements on the left-hand side of the rule are to be evaluated. The expr must
resolve to a dimension or measure column. This clause returns a stream.

Both ORDER BY and ORDER BY ROWS support specifying the direction of sort as
ascending or descending by using the ASC or DESC keywords. They also support
specifying whether null items should be listed first or last when sorting by using NULLS
FIRST or NULLS LAST.

For more information, see:

• Sorting Query Results

order_by_top_clause

Specify the ORDER BY clause of the Oracle CQL query statement as a comma-delimited
list of one or more order terms followed by a ROWS keyword and integer number (n) of
elements. Use this form of the ORDER BY clause to select the top-n elements over a
stream or relation. This clause returns a relation.

Consider the following example queries:

• At any point of time, the output of the following example query will be a relation
having top 10 stock symbols throughout the stream.

select stock_symbols from StockQuotes order by stock_price rows 10

• At any point of time, the output of the following example query will be a relation
having top 10 stock symbols from last 1 hour of data.

select stock_symbols from StockQuotes[range 1 hour] order by stock_price rows 10

For more information, see:

Chapter 16
Query

16-10

• Sorting Query Results.

order_by_list

Specify a comma-delimited list of one ore more order terms in an (optional) ORDER BY
clause.

orderterm

A stream element or positional index (constant int) to a stream element. Optionally,
you can configure whether or not nulls are ordered first or last using the NULLS
keyword.

order_expr

order_expr can be an attr or constant_int. The attr can be any stream element or
pseudo column.

null_spec

Specify whether or not nulls are ordered first (NULLS FIRST) or last (NULLS LAST) for a
given order term.

asc_desc

Specify whether an order term is ordered in ascending (ASC) or descending (DESC)
order.

opt_having_clause

Use the HAVING clause to restrict the groups of returned stream elements to those
groups for which the specified condition is TRUE. If you omit this clause, then Oracle
Event Processing returns summary results for all groups.

Specify GROUP BY and HAVING after the opt_where_clause. If you specify both GROUP BY and
HAVING, then they can appear in either order.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify
an aggregate function in the SELECT clause, you must test the aggregate function result
in a HAVING clause, not the WHERE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

binary

Use the binary clause to perform operations on the tuples that two streams or views
return. Most of these perform set operations, receiving two relations as operands.
However, the UNION ALL operator can instead receive two streams, which are by
nature unbounded.

idstream_clause

Use an idstream_clause to specify an IStream or DStream relation-to-stream operator
that applies to the query.

For more information, see Relation-to-Stream Operators.

Chapter 16
Query

16-11

using_clause

Use a DIFFERENCE USING clause to succinctly detect differences in the IStream or DStream
of a query.

For more information, see Detecting Differences in Query Results.

usinglist

Use a usinglist clause to specify the columns to use to detect differences in the
IStream or DStream of a query. You may specify columns by:

• attribute name: use this option when you are selecting by attribute name.

• alias: use this option when you want to include the results of an expression where
an alias is specified.

• position: use this option when you want to include the results of an expression
where no alias is specified.

Specify position as a constant, positive integer starting at 1, reading from left to
right.

The following example specifies the result of expression funct(c2, c3) by its
position (3) in the DIFFERENCE USING clause usinglist.

<query id="q1">
 ISTREAM (
 SELECT c1, log(c4) as logval, funct(c2, c3) FROM S [RANGE 1 NANOSECONDS]
) DIFFERENCE USING (c1, logval, 3)
</query>

For more information, see Detecting Differences in Query Results.

xmltable_clause

Use an xmltable_clause to process xmltype stream elements using XPath and XQuery.
You can specify a comma separated list of one or more XML table columns, with or
without an XML namespace.

pattern_recognition_clause

Use a pattern_recognition_clause to perform advanced comparisons optimized for
data streams.

For more information and examples, see Pattern Recognition With
MATCH_RECOGNIZE.

16.2.1.2 Query Examples
For more examples, see Oracle CQL Queries, Views, and Joins.

Simple Query Example

The following example shows how to register a simple query q0 that selects all (*)
tuples from stream OrderStream where stream element orderAmount is greater than
10000.

Chapter 16
Query

16-12

<query id="q0"><![CDATA[
 select * from OrderStream where orderAmount > 10000.0
]]></query>

HAVING Example

Consider the query q4 and the data stream S2. Stream S2 has schema (c1 integer, c2
integer). The query returns the relation.

<query id="q4"><![CDATA[
 select
 c1,
 sum(c1)
 from
 S2[range 10]
 group by
 c1
 having
 c1 > 0 and sum(c1) > 1
]]></query>

Timestamp Tuple
1000 ,2
2000 ,4
3000 1,4
5000 1,
6000 1,6
7000 ,9
8000 ,

Timestamp Tuple Kind Tuple
5000: + 1,2
6000: - 1,2
6000: + 1,3

BINARY Example: UNION and UNION ALL

The UNION and UNION ALL operators both take two operands and combine their
elements. The result of the UNION ALL operator includes all of the elements from the
two operands, including duplicates. The result of the UNION operator omits duplicates.

The UNION operator accepts only two relations and produces a relation as its output.
This operator cannot accept streams because in order to remove duplicates, the
Oracle CQL engine must keep track of all of the elements contained in both operands.
This is not possible with streams, which are by nature unbounded.

The UNION ALL operator accepts either two streams (and producing a stream) or two
relations (producing a relation) as its operands. Using one stream and one relation as
operands is invalid for both operators.

Given the relations R1 and R2, respectively, the UNION query q1 returns the relation and
the UNION ALL query q2 returns the relation.

<query id="q1"><![CDATA[
 R1 UNION R2
]]></query>
<query id="q2"><![CDATA[
 R1 UNION ALL R2
]]></query>

Timestamp Tuple Kind Tuple
 200000: + 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 401000: - 30,0.3

Chapter 16
Query

16-13

100000000: + 40,4.04
100001000: - 40,4.04

Timestamp Tuple Kind Tuple
 1002: + 15,0.14
 2002: - 15,0.14
 200000: + 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 401000: - 30,0.3
100000000: + 40,4.04
100001000: - 40,4.04

Timestamp Tuple Kind Tuple
 1002: + 15,0.14
 2002: - 15,0.14
 200000: + 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 401000: - 30,0.3
100000000: + 40,4.04
100001000: - 40,4.04

Note:

UNION is one of the binary operator which removes duplicates in its output.
The above is a trivial case where the attributes are of CQL native types. In
case of an input relation with an OBJECT type attribute, user must add a
correct implementation of hashCode() and equals() method in their Object
definition class so that CQL Engine can compute the equality of member
object attributes in two comparing tuples.

The following output is from using UNION ALL with two relations as operands.

Timestamp Tuple Kind Tuple
 1002: + 15,0.14
 2002: - 15,0.14
 200000: + 20,0.2
 200000: + 20,0.2
 20100: - 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 400000: + 30,0.3
 401000: - 30,0.3
 401000: - 30,0.3
100000000: + 40,4.04
100000000: + 40,4.04
 10001000: - 40,4.04
100001000: - 40,4.04

Timestamp Tuple
 100000: 20,0.1
 150000: 15,0.1
 200000: 5,0.2
 400000: 30,0.3
100000000: 8,4.04

Timestamp Tuple
 1001: 10,0.1
 1002: 15,0.14
 200000: 20,0.2
 400000: 30,0.3
100000000: 40,4.04

Chapter 16
Query

16-14

The following output is from using UNION ALL with the two preceding streams as
operands. Note that all of the elements are inserted events.

Timestamp Tuple Kind Tuple
 1001: + 10,0.1
 1002: + 15,0.14
 100000: + 20,0.1
 150000: + 15,0.14
 200000: + 20,0.2
 200000: + 5,0.2
 400000: + 30,0.3
 400000: + 30,0.3
100000000: + 40,4.04
100000000: + 8,4.04

BINARY Example: INTERSECT

The INTERSECT operator returns a relation (with duplicates removed) with only those
elements that appear in both of its operand relations.

Given the relations R1 and R2, respectively, the INTERSECT query q1 returns the relation.

<query id="q1"><![CDATA[
 R1 INTERSECT R2
]]></query>

Timestamp Tuple Kind Tuple
1000: + 10,30
1000: + 10,40
2000: + 11,20
3000: - 10,30
3000: - 10,40

Timestamp Tuple Kind Tuple
1000: + 10,40
2000: + 10,30
2000: - 10,40
3000: - 10,30

Timestamp Tuple Kind Tuple
1000: + 10,40
2000: + 10,30
2000: - 10,40
3000: - 10,30

BINARY Example: EXCEPT and MINUS

As in database programming, the EXCEPT and MINUS operators are very similar. They
both take relations as their two operands. Both result in a relation that is essentially
elements of the first operand relation that are not also in the second operand relation.

An important difference between EXCEPT and MINUS is in how they handle duplicate
occurrences between the first and second relation operands, as follows:

• The EXCEPT operator results in a relation made up of elements from the first
relation, removing elements that were also found in the second relation up to the
number of duplicate elements found in the second relation. In other words, if an
element occurs m times in the first relation and n times in the second, the number
of that element in the result will be n subtracted from m, or 0 if there were fewer in
m than n.

• The MINUS operator results in a relation made up of elements in the first relation
minus those elements that were also found in the second relation, regardless of
how many of those elements were found in each. The MINUS operator also

Chapter 16
Query

16-15

removes duplicate elements found in the first relation, so that each duplicate item
is unique in the result.

The following examples illustrate the MINUS operator. Given the relations R1 and R2,
respectively, the MINUS query q1 returns the relation.

<query id="q1BBAQuery"><![CDATA[
 R1 MINUS R2
]]></query>

Timestamp Tuple Kind Tuple
1500: + 10,40
1800: + 10,30
2000: + 10,40
2000: + 10,40
2100: - 10,40
3000: - 10,30

Timestamp Tuple Kind Tuple
1000: + 11,20
2000: + 10,40
3000: - 10,30

Timestamp Tuple Kind Tuple
1500: + 10,40
1800: + 10,30
2000: - 10,40

The following examples illustrate the EXCEPT operator. Given the relations R1 and R2,
respectively, the EXCEPT query q1 returns the relation.

<query id="exceptQuery"><![CDATA[
 R1 EXCEPT R2
]]></query>

Timestamp Tuple Kind Tuple
1500: + 10,40
1800: + 10,30
2000: + 10,40
2000: + 10,40
2100: - 10,40
3000: - 10,30

Timestamp Tuple Kind Tuple
1000: + 11,20
2000: + 10,40
3000: - 10,40

Timestamp Tuple Kind Tuple
1500: + 10,40
1800: + 10,30
2000: + 10,40
2000: - 10,40

BINARY Example: IN and NOT IN

In this usage, the query will be a binary query.

in_condition_set::=

Chapter 16
Query

16-16

Note:

You cannot combine this usage with in_condition_membership as Using IN
and NOT IN as a Membership Condition describes.

Consider the views V3 and V4 and the query Q1 and the data streams S3 (with schema
(c1 integer, c2 integer)) and S4 (with schema (c1 integer, c2 integer)). In this
condition test, the numbers and data types of attributes in left relation should be same
as number and types of attributes of the right relation. The following example shows
the relation that the query returns.

<view id="V3" schema="c1 c2"><![CDATA[
 select * from S3[range 2]
]]></query>
<view id="V4" schema="c1 d1"><![CDATA[
 select * from S4[range 1]
]]></query>
<query id="Q1"><![CDATA[
 v3 not in v4
]]></query>

Timestamp Tuple
1000 10, 30
1000 10, 40
2000 11, 20
3000 12, 40
3000 12, 30
3000 15, 50
h 2000000

Timestamp Tuple
1000 10, 40
2000 10, 30
2000 12, 40
h 2000000

Timestamp Tuple Kind Tuple
1000: + 10,30
1000: + 10,40
1000: - 10,30
1000: - 10,40
2000: + 11,20
2000: + 10,30
2000: + 10,40
2000: - 10,30
2000: - 10,40
3000: + 15,50
3000: + 12,40
3000: + 12,30
4000: - 11,20
5000: - 12,40
5000: - 12,30
5000: - 15,50

Select and Distinct Examples

Consider the query q1. Given the data stream S, the query returns the relation.

<query id="q1"><![CDATA[
 SELECT DISTINCT c1 FROM S WHERE c1 > 10
]]></query>

Chapter 16
Query

16-17

Timestamp Tuple
 1000 23
 2000 14
 3000 13
 5000 22
 6000 11
 7000 10
 8000 9
10000 8
11000 7
12000 13
13000 14

Timestamp Tuple
1000 23
2000 14
3000 13
5000 22
6000 11

XMLTABLE Query Example

Consider the query q1 and the data stream S. Stream S has schema (c1 xmltype). The
query returns the relation.

For a more complete description of XMLTABLE, see XMLTABLE Query.

<query id="q1"><![CDATA[
 SELECT
 X.Name,
 X.Quantity
 FROM S1,
 XMLTABLE (
 "//item" PASSING BY VALUE S1.c2 as "."
 COLUMNS
 Name CHAR(16) PATH "/item/productName",
 Quantity INTEGER PATH "/item/quantity"
) AS X
]]></query>

Timestamp Tuple
3000 "<purchaseOrder><shipTo><name>Alice Smith</name><street>123 Maple Street</
street><city>Mill Valley</city><state>CA</state><zip>90952</zip> </shipTo><billTo><name>Robert
Smith</name><street>8 Oak Avenue</street><city>Old Town</city><state>PA</state> <zip>95819</
zip> </billTo><comment>Hurry, my lawn is going wild!</comment><items>
<item><productName>Lawnmower </productName><quantity>1</quantity><USPrice>148.95</
USPrice><comment>Confirm this is electric</comment></item><item> <productName>Baby Monitor</
productName><quantity>1</quantity> <USPrice>39.98</USPrice> <shipDate>1999-05-21</shipDate></
item></items> </purchaseOrder>"
4000 "<a>hello"

Timestamp Tuple Kind Tuple
3000: + <productName>Lawnmower</productName>,<quantity>1</quantity>
3000: + <productName>Baby Monitor</productName>,<quantity>1</quantity>

XMLTABLE With XML Namespaces Query Example

Consider the query q1 and the data stream S1. Stream S1 has schema (c1 xmltype).
The query returns the relation.

For a more complete description of XMLTABLE, see XMLTABLE Query.

<query id="q1"><![CDATA[
 SELECT *
 FROM S1,
 XMLTABLE (
 XMLNAMESPACES('http://example.com' as 'e'),

Chapter 16
Query

16-18

 'for $i in //e:emps return $i/e:emp' PASSING BY VALUE S1.c1 as "."
 COLUMNS
 empName char(16) PATH 'fn:data(@ename)',
 empId integer PATH 'fn:data(@empno)'
) AS X
]]></query>

Timestamp Tuple
3000 "<emps xmlns=\"http://example.com\"><emp empno=\"1\" deptno=\"10\" ename=\"John\"
salary=\"21000\"/><emp empno=\"2\" deptno=\"10\" ename=\"Jack\" salary=\"310000\"/><emp empno=
\"3\" deptno=\"20\" ename=\"Jill\" salary=\"100001\"/></emps>"
h 4000

Timestamp Tuple Kind Tuple
3000: + John,1
3000: + Jack,2
3000: + Jill,3

Data Cartridge TABLE Query Example: Iterator

Consider a data cartridge (MyCartridge) with method getIterator.

...
 public static Iterator<Integer> getIterator() {
 ArrayList<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 return list.iterator();
 }
...

Consider the query q1. Given the data stream S0, the query returns the relation.

<query id="q1"><![CDATA[

 select S1.c1, S1.c2, S2.c1
 from
 S0[now] as S1,
 table (com.acme.MyCartridge.getIterator() as c1) of integer as S2

]]></query>

Timestamp Tuple
1 1, abc
2 2, ab
3 3, abc
4 4, a
h 200000000

Timestamp Tuple Kind Tuple
1: + 1,abc,1
1: + 1,abc,2
1: - 1,abc,1
1: - 1,abc,2
2: + 2,ab,1
2: + 2,ab,2
2: - 2,ab,1
2: - 2,ab,2
3: + 3,abc,1
3: + 3,abc,2
3: - 3,abc,1
3: - 3,abc,2
4: + 4,a,1
4: + 4,a,2
4: - 4,a,1
4: - 4,a,2

Chapter 16
Query

16-19

Data Cartridge TABLE Query Example: Array

Consider a data cartridge (MyCartridge) with method getArray.

...
 public static Integer[] getArray(int c1) {
 ArrayList<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 return list.toArray(new Integer[2]);;
 }
...

Consider the query q1. Given the data stream S0, the query returns the relation.

<query id="q1"><![CDATA[

 select S1.c1, S1.c2, S2.c1
 from
 S0[now] as S1,
 table (com.acme.MyCartridge.getArrayS1.c1) as c1) of integer as S2

]]></query>

Timestamp Tuple
1 1, abc
2 2, ab
3 3, abc
4 4, a
h 200000000

Timestamp Tuple Kind Tuple
1: + 1,abc,1
1: + 1,abc,2
1: - 1,abc,1
1: - 1,abc,2
2: + 2,ab,2
2: + 2,ab,4
2: - 2,ab,2
2: - 2,ab,4
3: + 3,abc,3
3: + 3,abc,6
3: - 3,abc,3
3: - 3,abc,6
4: + 4,a,4
4: + 4,a,8
4: - 4,a,4
4: - 4,a,8

Data Cartridge TABLE Query Example: Collection

Consider a data cartridge (MyCartridge) with method getCollection.

...
 public HashMap<Integer,String> developers;
 developers = new HashMap<Integer,String>();
 developers.put(2, "Mohit");
 developers.put(4, "Unmesh");
 developers.put(3, "Sandeep");
 developers.put(1, "Swagat");

 public HashMap<Integer,String> qaengineers;

Chapter 16
Query

16-20

 qaengineers = new HashMap<Integer,String>();
 qaengineers.put(4, "Terry");
 qaengineers.put(5, "Tony");
 qaengineers.put(3, "Junger");
 qaengineers.put(1, "Arthur");
...
 public Collection<String> getEmployees(int exp_yrs) {
 LinkedList<String> employees = new LinkedList<String>();
 employees.add(developers.get(exp_yrs));
 employees.add(qaengineers.get(exp_yrs));
 return employees;
 }
...

Consider the query q1. Given the data stream S0, the query returns the relation.

<query id="q1"><![CDATA[

 RStream(
 select S1.c1, S2.c1
 from
 S0[now] as S1,
 table(S1.c2.getEmployees(S1.c1) as c1) of char as S2
)

]]></query>

Timestamp Tuple
1 1, abc
2 2, ab
3 3, abc
4 4, a
h 200000000

Timestamp Tuple Kind Tuple
1: + 1,Swagat
1: + 1,Arthur
2: + 2,Mohit
3: + 3,Sandeep
3: + 3,Junger
4: + 4,Unmesh
4: + 4,Terry

ORDER BY Query Example

Use the ORDER BY clause with stream input to sort events that have duplicate
timestamps. ORDER BY is only valid when the input is a stream and only sorts among
events of the same timestamp. Its output is a stream with the sorted events.

Consider the query q1. Given the data stream S0, the query returns the relation. The
query sorts events of duplicate timestamps in ascending order by tuple values.

<query id="q1"><![CDATA[
 SELECT *
 FROM S0
 ORDER BY c1,c2 ASC
]]></query>

Timestamp Tuple
1000 7, 15
2000 7, 14
2000 5, 23
2000 5, 15
2000 5, 15

Chapter 16
Query

16-21

2000 5, 25
3000 3, 12
3000 2, 13
4000 4, 17
5000 1, 9
h 1000000000

Timestamp Tuple Kind Tuple
1000: + 7,15
2000: + 5,15
2000: + 5,15
2000: + 5,23
2000: + 5,25
3000: + 2,13
3000: + 3,19
4000: + 4,17
5000: + 1,9

ORDER BY ROWS Query Example

Use the ORDER BY clause with the ROWS keyword to use ordering criteria to
determine whether an event received by the query should be included in output.
ORDER BY ROWS accepts either stream or relation input and outputs a relation.

The ORDER BY ROWS clause maintains a set of events whose maximum size is the
number specified by the ROWS keyword. As new events are received, they are
evaluated, based on thr order criteria and the ROWS limit, to determine whether they
will be added to the output.

Note that the output of ORDER BY ROWS is not arranged based on the ordering
criteria, as is the output of the ORDER BY clause. Instead, ORDER BY ROWS uses
the ordering criteria and specified number of rows to determine whether to admit
events into the output as they are received.

Consider the query q1. Given the data stream S0, the query returns the relation.

<query id="q1"><![CDATA[
 SELECT c1 ,c2
 FROM S0
 ORDER BY c1,c2 ROWS 5
]]></query>

Timestamp Tuple
1000 7, 15
2000 7, 14
2000 5, 23
2000 5, 15
2000 5, 15
2000 5, 25
3000 2, 13
3000 3, 19
4000 4, 17
5000 1, 9
h 1000000000

Timestamp Tuple Kind Tuple
1000: + 7,15
2000: + 7,14
2000: + 5,23
2000: + 5,15
2000: + 5,15
2000: - 7,15
2000: + 5,25
3000: - 7,14
3000: + 2,13
3000: - 5,25

Chapter 16
Query

16-22

3000: + 3,19
4000: - 5,23
4000: + 4,17
5000: - 5,15
5000: + 1,9

In the following example, the query uses the PARTITION keyword to specify the tuple
property within which to sort events and constrain output size. Here, the PARTITION
keyword specifies that events in the input should be evaluated based on their symbol
value.

In other words, when determining whether to include an event in the output, the query
looks at the existing set of events in output that have the same symbol. The ROWS
limit is two, meaning that the query will maintain a set of sorted events that has no
more than two events in it. For example, if there are already two events with the ORCL
symbol, adding another ORCL event to the output will require deleting the oldest
element in output having the ORCL symbol.

Also, the query is ordering events by the value property, so that is also considered
when a new event is being considered for output. Here, the DESC keyword specifies
that event be ordered in descending order. A new event that does not come after
events already in the output set will not be included in output.

<query id="q1"><![CDATA[
 SELECT symbol, value
 FROM S0
 ORDER BY value DESC ROWS 2
 PARTITION BY symbol
]]></query>

Timestamp Tuple
1000 ORCL, 500
1100 MSFT, 400
1200 INFY, 200
1300 ORCL, 503
1400 ORCL, 509
1500 ORCL, 502
1600 MSFT, 405
1700 INFY, 212
1800 INFY, 209
1900 ORCL, 512
2000 ORCL, 499
2100 MSFT, 404
2200 MSFT, 403
2300 INFY, 215
2400 MSFT, 415
2500 ORCL, 499
2600 INFY, 211

Timestamp Tuple Kind Tuple
1000 + ORCL,500
1100 + MSFT,400
1200 + INFY,200
1300 + ORCL,503
1400 - ORCL,500
1400 + ORCL,509
1600 + MSFT,405
1700 + INFY,212
1800 - INFY,200
1800 + INFY,209
1900 - ORCL,503

Chapter 16
Query

16-23

1900 + ORCL,512
2100 - MSFT,400
2100 + MSFT,404
2300 - INFY,209
2300 + INFY,215
2400 - MSFT,404
2400 + MSFT,415

16.2.2 View
Purpose

Use view statement to create a view over a base stream or relation that you reference
by identifier in subsequent Oracle CQL statements.

Prerequisites

For more information, see:

• Query

• Oracle CQL Queries, Views, and Joins.

Syntax

You express the a view in a <view></view> element as the example below shows.

The view element has two attributes:

• id: Specify the identifier as the view element id attribute.

The id value must conform with the specification given by Figure 7-6.

• schema: Optionally, specify the schema of the view as a space delimited list of
attribute names.

Oracle Event Processing server infers the types.

<view id="v2" schema="cusip bid ask"><![CDATA[
 IStream(select * from S1[range 10 slide 10])
]]></view>

The body of the view has the same syntax as a query. For more information, see
Query.

Examples

The following examples illustrate the various semantics that this statement supports.
For more examples, see Oracle CQL Queries, Views, and Joins.

The following example shows how to register view v2.

Example 16-1 Registering a View Example

<view id="v2" schema="cusip bid ask"><![CDATA[
 IStream(select * from S1[range 10 slide 10])
]]></view>

Chapter 16
View

16-24

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Syntax Diagrams

	What's New in This Guide
	1 Introduction to Oracle CQL
	1.1 Fundamentals of Oracle CQL
	1.1.1 Streams and Relations
	1.1.1.1 Streams
	1.1.1.1.1 Streams and Channels
	1.1.1.1.2 Channel Schema
	1.1.1.1.3 Querying a Channel
	1.1.1.1.4 Controlling Which Queries Output to a Downstream Channel

	1.1.1.2 Relations
	1.1.1.3 Relations and Oracle Event Processing Tuple Kind Indicator

	1.1.2 Relation-to-Relation Operators
	1.1.3 Stream-to-Relation Operators (Windows)
	1.1.3.1 Range, Rows, and Slide
	1.1.3.1.1 Range, Rows, and Slide at Query Start-Up and for Empty Relations

	1.1.3.2 Partition
	1.1.3.3 Default Stream-to-Relation Operator

	1.1.4 Relation-to-Stream Operators
	1.1.4.1 Default Relation-to-Stream Operator

	1.1.5 Stream-to-Stream Operators
	1.1.6 Queries, Views, and Joins
	1.1.7 Pattern Recognition
	1.1.8 Event Sources and Event Sinks
	1.1.8.1 Event Sources
	1.1.8.2 Event Sinks
	1.1.8.3 Connecting Event Sources and Event Sinks

	1.1.9 Table Event Sources
	1.1.9.1 Relational Database Table Event Sources
	1.1.9.2 XML Table Event Sources
	1.1.9.3 Function Table Event Sources

	1.1.10 Table Event Sink
	1.1.10.1 Spring Assembly File
	1.1.10.2 Application Configuration File

	1.1.11 Cache Event Sources
	1.1.12 Functions
	1.1.13 Time

	1.2 Oracle CQL Statements
	1.2.1 Lexical Conventions
	1.2.2 Syntactic Shortcuts and Defaults
	1.2.3 Documentation Conventions

	1.3 Oracle CQL and SQL Standards
	1.4 Oracle Event Processing Server

	2 Basic Elements of Oracle CQL
	2.1 Data Types
	2.1.1 Oracle CQL Built-in Data Types
	2.1.2 Handling Other Data Types Using Oracle CQL Data Cartridges
	2.1.3 Handling Other Data Types Using a User-Defined Function

	2.2 Data Type Comparison Rules
	2.2.1 Numeric Values
	2.2.2 Date Values
	2.2.3 Character Values
	2.2.4 Data Type Conversion
	2.2.4.1 Implicit Data Type Conversion
	2.2.4.2 Explicit Data Type Conversion
	2.2.4.3 SQL Data Type Conversion
	2.2.4.4 Oracle Data Cartridge Data Type Conversion
	2.2.4.5 User-Defined Function Data Type Conversion

	2.3 Literals
	2.3.1 Text Literals
	2.3.2 Numeric Literals
	2.3.2.1 Integer Literals
	2.3.2.2 Floating-Point Literals

	2.3.3 Datetime Literals
	2.3.4 Interval Literals
	2.3.4.1 INTERVAL DAY TO SECOND
	2.3.4.2 INTERVAL YEAR TO MONTH

	2.4 Format Models
	2.4.1 Number Format Models
	2.4.2 Datetime Format Models

	2.5 Nulls
	2.5.1 Nulls in Oracle CQL Functions
	2.5.2 Nulls with Comparison Conditions
	2.5.3 Nulls in Conditions

	2.6 Comments
	2.7 Aliases
	2.7.1 Defining Aliases Using the AS Operator
	2.7.1.1 Aliases in the relation_variable Clause
	2.7.1.2 Aliases in Window Operators

	2.7.2 Defining Aliases Using the Aliases Element
	2.7.2.1 How to Define a Data Type Alias Using the Aliases Element

	2.8 Schema Object Names and Qualifiers
	2.8.1 Schema Object Naming Rules
	2.8.2 Schema Object Naming Guidelines
	2.8.3 Schema Object Naming Examples

	3 Pseudocolumns
	3.1 Introduction to Pseudocolumns
	3.2 ELEMENT_TIME Pseudocolumn
	3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn
	3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream
	3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream
	3.2.1.2.1 Derived Timestamp Expression Evaluates to int or bigint
	3.2.1.2.2 Derived Timestamp Expression Evaluates to timestamp

	3.2.1.3 ELEMENT_TIME for an Inline CQL View
	3.2.1.4 ELEMENT_TIME for a Subquery

	3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries
	3.2.2.1 Using ELEMENT_TIME With SELECT
	3.2.2.2 Using ELEMENT_TIME With GROUP BY
	3.2.2.3 Using ELEMENT_TIME With PATTERN

	3.3 ORA_QUERY_ID Pseudocolumn

	4 Operators
	4.1 Introduction to Operators
	4.1.1 What You May Need to Know About Unary and Binary Operators
	4.1.2 What You May Need to Know About Operator Precedence

	4.2 Arithmetic Operators
	4.3 Concatenation Operator
	4.4 Alternation Operator
	4.5 Range-Based Stream-to-Relation Window Operators
	4.5.1 S[now]
	4.5.1.1 Examples

	4.5.2 S[range T]
	4.5.2.1 Examples

	4.5.3 S[range T1 slide T2]
	4.5.3.1 Examples

	4.5.4 S[range unbounded]
	4.5.4.1 Examples

	4.5.5 S[range C on E]
	4.5.5.1 Examples

	4.6 Tuple-Based Stream-to-Relation Window Operators
	4.6.1 S [rows N]
	4.6.1.1 Examples

	4.6.2 S [rows N1 slide N2]
	4.6.2.1 Examples

	4.7 Partitioned Stream-to-Relation Window Operators
	4.7.1 S [partition by A1,..., Ak rows N]
	4.7.1.1 Examples

	4.7.2 S [partition by A1,..., Ak rows N range T]
	4.7.2.1 Examples

	4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2]
	4.7.3.1 Examples

	4.8 User-Defined Stream-to-Relation Window Operators
	4.8.1 Implementing a User-Defined Window
	4.8.1.1 How to Implement a User-Defined Generic Time Window

	4.9 IStream Relation-to-Stream Operator
	4.10 DStream Relation-to-Stream Operator
	4.11 RStream Relation-to-Stream Operator

	5 Expressions
	5.1 Introduction to Expressions
	5.2 aggr_distinct_expr
	5.2.1 Examples

	5.3 aggr_expr
	5.3.1 Examples

	5.4 arith_expr
	5.4.1 Examples

	5.5 arith_expr_list
	5.5.1 Examples

	5.6 case_expr
	5.6.1 Examples

	5.7 decode
	5.7.1 Examples

	5.8 func_expr
	5.8.1 Examples

	5.9 object_expr
	5.9.1 Examples

	5.10 order_expr
	5.10.1 Examples

	5.11 xml_agg_expr
	5.11.1 Examples

	5.12 xmlcolattval_expr
	5.12.1 Examples

	5.13 xmlelement_expr
	5.13.1 Examples

	5.14 xmlforest_expr
	5.14.1 Examples

	5.15 xml_parse_expr
	5.15.1 Examples

	6 Conditions
	6.1 Introduction to Conditions
	6.1.1 Condition Precedence

	6.2 Comparison Conditions
	6.3 Logical Conditions
	6.4 LIKE Condition
	6.4.1 Examples

	6.5 Range Conditions
	6.6 Null Conditions
	6.7 Compound Conditions
	6.8 IN Condition
	6.8.1 Using IN and NOT IN as a Membership Condition
	6.8.2 NOT IN and Null Values

	7 Common Oracle CQL DDL Clauses
	7.1 Introduction to Common Oracle CQL DDL Clauses
	7.2 array_type
	7.3 attr
	7.4 attrspec
	7.5 complex_type
	7.6 const_bigint
	7.7 const_int
	7.8 const_string
	7.9 const_value
	7.10 identifier
	7.11 l-value
	7.12 methodname
	7.13 non_mt_arg_list
	7.14 non_mt_attr_list
	7.15 non_mt_attrname_list
	7.16 non_mt_attrspec_list
	7.17 non_mt_cond_list
	7.18 out_of_line_constraint
	7.19 param_list
	7.20 qualified_type_name
	7.21 query_ref
	7.22 time_spec
	7.23 xml_attribute_list
	7.24 xml_attr_list
	7.25 xqryargs_list

	8 Built-In Single-Row Functions
	8.1 Introduction to Oracle CQL Built-In Single-Row Functions
	8.2.1 concat
	8.2.2 hextoraw
	8.2.3 length
	8.2.4 lk
	8.2.5 nvl
	8.2.6 prev
	8.2.7 rawtohex
	8.2.8 systimestamp
	8.2.9 to_bigint
	8.2.10 to_boolean
	8.2.11 to_char
	8.2.12 to_double
	8.2.13 to_float
	8.2.14 to_timestamp
	8.2.15 xmlcomment
	8.2.16 xmlconcat
	8.2.17 xmlexists
	8.2.18 xmlquery

	9 Built-In Aggregate Functions
	9.1 Introduction to Oracle CQL Built-In Aggregate Functions
	9.1.1 Built-In Aggregate Functions and the Where, Group By, and Having Clauses

	9.2.1 avg
	9.2.2 count
	9.2.3 first
	9.2.4 last
	9.2.5 listagg
	9.2.6 max
	9.2.7 min
	9.2.8 sum
	9.2.9 xmlagg

	10 Colt Single-Row Functions
	10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt Functions
	10.2.1 beta
	10.2.2 beta1
	10.2.3 betaComplemented
	10.2.4 binomial
	10.2.5 binomial1
	10.2.6 binomial2
	10.2.7 binomialComplemented
	10.2.8 bitMaskWithBitsSetFromTo
	10.2.9 ceil
	10.2.10 chiSquare
	10.2.11 chiSquareComplemented
	10.2.12 errorFunction
	10.2.13 errorFunctionComplemented
	10.2.14 factorial
	10.2.15 floor
	10.2.16 gamma
	10.2.17 gamma1
	10.2.18 gammaComplemented
	10.2.19 getSeedAtRowColumn
	10.2.20 hash
	10.2.21 hash1
	10.2.22 hash2
	10.2.23 hash3
	10.2.24 i0
	10.2.25 i0e
	10.2.26 i1
	10.2.27 i1e
	10.2.28 incompleteBeta
	10.2.29 incompleteGamma
	10.2.30 incompleteGammaComplement
	10.2.31 j0
	10.2.32 j1
	10.2.33 jn
	10.2.34 k0
	10.2.35 k0e
	10.2.36 k1
	10.2.37 k1e
	10.2.38 kn
	10.2.39 leastSignificantBit
	10.2.40 log
	10.2.41 log10
	10.2.42 log2
	10.2.43 logFactorial
	10.2.44 logGamma
	10.2.45 longFactorial
	10.2.46 mostSignificantBit
	10.2.47 negativeBinomial
	10.2.48 negativeBinomialComplemented
	10.2.49 normal
	10.2.50 normal1
	10.2.51 normalInverse
	10.2.52 poisson
	10.2.53 poissonComplemented
	10.2.54 stirlingCorrection
	10.2.55 studentT
	10.2.56 studentTInverse
	10.2.57 y0
	10.2.58 y1
	10.2.59 yn

	11 Colt Aggregate Functions
	11.1 Introduction to Oracle CQL Built-In Aggregate Colt Functions
	11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments
	11.1.2 Colt Aggregate Functions and the Where, Group By, and Having Clauses

	11.2.1 autoCorrelation
	11.2.2 correlation
	11.2.3 covariance
	11.2.4 geometricMean
	11.2.5 geometricMean1
	11.2.6 harmonicMean
	11.2.7 kurtosis
	11.2.8 lag1
	11.2.9 mean
	11.2.10 meanDeviation
	11.2.11 median
	11.2.12 moment
	11.2.13 pooledMean
	11.2.14 pooledVariance
	11.2.15 product
	11.2.16 quantile
	11.2.17 quantileInverse
	11.2.18 rankInterpolated
	11.2.19 rms
	11.2.20 sampleKurtosis
	11.2.21 sampleKurtosisStandardError
	11.2.22 sampleSkew
	11.2.23 sampleSkewStandardError
	11.2.24 sampleVariance
	11.2.25 skew
	11.2.26 standardDeviation
	11.2.27 standardError
	11.2.28 sumOfInversions
	11.2.29 sumOfLogarithms
	11.2.30 sumOfPowerDeviations
	11.2.31 sumOfPowers
	11.2.32 sumOfSquaredDeviations
	11.2.33 sumOfSquares
	11.2.34 trimmedMean
	11.2.35 variance
	11.2.36 weightedMean
	11.2.37 winsorizedMean

	12 java.lang.Math Functions
	12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions
	12.2.1 abs
	12.2.2 abs1
	12.2.3 abs2
	12.2.4 abs3
	12.2.5 acos
	12.2.6 asin
	12.2.7 atan
	12.2.8 atan2
	12.2.9 cbrt
	12.2.10 ceil1
	12.2.11 cos
	12.2.12 cosh
	12.2.13 exp
	12.2.14 expm1
	12.2.15 floor1
	12.2.16 hypot
	12.2.17 IEEEremainder
	12.2.18 log1
	12.2.19 log101
	12.2.20 log1p
	12.2.21 pow
	12.2.22 rint
	12.2.23 round
	12.2.24 round1
	12.2.25 signum
	12.2.26 signum1
	12.2.27 sin
	12.2.28 sinh
	12.2.29 sqrt
	12.2.30 tan
	12.2.31 tanh
	12.2.32 todegrees
	12.2.33 toradians
	12.2.34 ulp
	12.2.35 ulp1

	13 User-Defined Functions
	13.1 Introduction to Oracle CQL User-Defined Functions
	13.1.1 Types of User-Defined Functions
	13.1.1.1 User-Defined Single-Row Functions
	13.1.1.2 User-Defined Aggregate Functions

	13.1.2 User-Defined Function Data Types
	13.1.3 User-Defined Functions and the Oracle Event Processing Server Cache

	13.2 Implementing a User-Defined Function
	13.2.1 How to Implement a User-Defined Single-Row Function
	13.2.2 How to Implement a User-Defined Aggregate Function

	14 Oracle CQL Queries, Views, and Joins
	14.1 Introduction to Oracle CQL Queries, Subqueries, Views, and Joins
	14.2 Queries
	14.2.1 Query Building Blocks
	14.2.1.1 Select, From, Where Block
	14.2.1.2 Select Clause
	14.2.1.3 From Clause
	14.2.1.4 Where Clause
	14.2.1.5 Group By Clause
	14.2.1.6 Order By Clause
	14.2.1.7 Having Clause
	14.2.1.8 Binary Clause
	14.2.1.9 IDStream Clause

	14.2.2 Simple Query
	14.2.3 Built-In Window Query
	14.2.4 User-Defined Window Query
	14.2.5 MATCH_RECOGNIZE Query
	14.2.6 Relational Database Table Query
	14.2.7 XMLTABLE Query
	14.2.8 Function TABLE Query
	14.2.9 Cache Query
	14.2.10 Sorting Query Results
	14.2.11 Detecting Differences in Query Results
	14.2.12 Parameterized Queries
	14.2.12.1 Parameterized Queries in Oracle CQL Statements
	14.2.12.2 The bindings Element
	14.2.12.3 Run-Time Query Naming
	14.2.12.4 Lexical Conventions for Parameter Values
	14.2.12.5 Parameterized Queries at Runtime
	14.2.12.6 Replacing Parameters Programmatically

	14.2.13 Subqueries

	14.3 Views
	14.3.1 Views and Joins
	14.3.2 Views and Schemas

	14.4 Joins
	14.4.1 Inner Joins
	14.4.2 Outer Joins
	14.4.2.1 Left Outer Join
	14.4.2.2 Right Outer Join
	14.4.2.3 Outer Join Look-Back

	14.5 Oracle CQL Queries and the Oracle Event Processing Server Cache
	14.5.1 Creating Joins Against the Cache
	14.5.1.1 Cache Key First and Simple Equality
	14.5.1.2 No Arithmetic Operations on Cache Keys
	14.5.1.3 No Full Scans
	14.5.1.4 Multiple Conditions and Inequality

	14.6 Oracle CQL Queries and Relational Database Tables
	14.7 Oracle CQL Queries and Oracle Data Cartridges

	15 Pattern Recognition With MATCH_RECOGNIZE
	15.1 Understanding Pattern Recognition With MATCH_RECOGNIZE
	15.1.1 MATCH_RECOGNIZE and the WHERE Clause
	15.1.2 Referencing Singleton and Group Matches
	15.1.3 Referencing Aggregates
	15.1.3.1 Running Aggregates and Final Aggregates
	15.1.3.2 Operating on the Same Correlation Variable
	15.1.3.3 Referencing Variables That Have not Been Matched Yet
	15.1.3.4 Referencing Attributes not Qualified by Correlation Variable
	15.1.3.5 Using count With *, identifier.*, and identifier.attr
	15.1.3.6 Using first and last

	15.1.4 Using prev

	15.2 MEASURES Clause
	15.2.1 Functions Over Correlation Variables in the MEASURES Clause

	15.3 PATTERN Clause
	15.3.1 Pattern Quantifiers and Regular Expressions
	15.3.2 Grouping and Alternation in the PATTERN Clause

	15.4 DEFINE Clause
	15.4.1 Functions Over Correlation Variables in the DEFINE Clause
	15.4.2 Referencing Attributes in the DEFINE Clause
	15.4.3 Referencing One Correlation Variable From Another in the DEFINE Clause

	15.5 PARTITION BY Clause
	15.6 ALL MATCHES Clause
	15.7 WITHIN Clause
	15.8 DURATION Clause
	15.8.1 Fixed Duration Non-Event Detection
	15.8.2 Recurring Non-Event Detection

	15.9 INCLUDE TIMER EVENTS Clause
	15.10 SUBSET Clause
	15.11 MATCH_RECOGNIZE Examples
	15.11.1 Pattern Detection
	15.11.2 Pattern Detection With PARTITION BY
	15.11.3 Pattern Detection With Aggregates
	15.11.4 Pattern Detection With the WITHIN Clause
	15.11.5 Fixed Duration Non-Event Detection

	16 Oracle CQL Statements
	16.1 Introduction to Oracle CQL Statements
	16.2.1 Query
	16.2.1.1 Query Semantics
	16.2.1.2 Query Examples

	16.2.2 View

