
Oracle® Fusion Middleware
Developing with Oracle WebCenter Sites

12c (12.2.1.3.0)
E96364-04
October 2020

Oracle Fusion Middleware Developing with Oracle WebCenter Sites, 12c (12.2.1.3.0)

E96364-04

Copyright © 2012, 2020, Oracle and/or its affiliates.

Primary Author: Puneeta Bharani

Contributors: Anil Yamarti, Aswini Kalyanam, Kuldeep Tiwari, Naveen Chintala, Revanth Potnuru, Sailaxmi
Rajanala, Viswadas Leher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xlv

Documentation Accessibility xlv

Related Documents xlv

Conventions xlvi

Part I Getting Started with Oracle WebCenter Sites

1 Introduction to Developing with WebCenter Sites

About Developing with WebCenter Sites 1-1

Typical Tasks for WebCenter Sites Developers 1-2

Data Models for Content Display 1-3

Content Entry Forms for Content Management Sites 1-3

Templates and Elements to Render Content on the Website 1-4

Element Files 1-4

APIs and JSP Tags 1-5

Sessions and Cookies 1-6

WebCenter Sites Systems for Development, Management, Delivery, and Testing 1-6

Approvals and Publishing 1-7

Caching to Optimize Performance 1-8

Page Caching 1-8

Resultset Caching 1-9

Asset Caching 1-9

Satellite Server Caching 1-9

WebCenter Sites Utilities 1-10

WebCenter Sites Interfaces 1-11

Use Case Scenarios for WebCenter Sites 1-13

Developing Informational (Branding) Websites 1-13

Creating Marketing-Oriented Websites 1-15

Creating Mobile Websites 1-15

iii

2 Overview of the Avisports Sample Site

Touring the Avisports Sample Site as a Content Contributor 2-1

Touring the Infrastructure of the Avisports Sample Site 2-2

3 The WebCenter Sites Development Process

Step 1: Set Up the Team 3-1

Step 2: Create Functional and Design Specifications 3-2

Functional Requirements 3-2

Page Design 3-2

Caching Strategy 3-3

Security Strategy (Access Control) 3-3

Separate Format from Content (Elements from Assets) 3-3

Determine the Asset Types (Content) 3-3

Decide How to Handle Images and Other Blobs 3-4

Map Out the Functional Design and Format (Elements) 3-4

Data Design 3-4

Asset Types 3-4

Auxiliary Tables That Support Your Asset Types 3-5

Visitor Data 3-5

Step 3: Set Management System Requirements 3-5

Step 4: Implement the Data Design 3-6

Step 5: Build the Online Site 3-6

Step 6: Set Up the Management System 3-7

Import Content as Assets 3-7

Import Catalog Data and Flex Asset Data 3-7

Instruct the Editorial Team About Site Design 3-7

Step 7: Set Up the Delivery System 3-8

Step 8: Publish to the Delivery System 3-8

Part II Building Your Data Model

4 Understanding the Asset Types and Asset Models

What Are Asset Types? 4-1

Asset Types Delivered with WebCenter Sites 4-3

Asset Types Delivered with Engage 4-4

What Are Asset Models? 4-5

When to Use the Basic Model 4-5

When to Use the Flex Model 4-6

iv

The Basic Asset Model 4-6

Relationships Between Basic Assets 4-7

Associations 4-7

Unnamed Relationships 4-7

Category, Source, and Subtype 4-7

Category 4-8

Source 4-8

Subtype 4-8

Basic Asset Types and the Database 4-10

Template Asset Type and the Database 4-11

Default Columns in the Basic Asset Type Database Table 4-11

The Flex Asset Model 4-15

The Flex Family 4-15

Parent, Child, and Flex Assets 4-17

The Flex Family in the Avisports Sample Site 4-17

Flex Attributes 4-18

Data Types for Attributes 4-18

Default Input Styles for Attributes 4-19

Foreign Attributes 4-19

Flex Parents and Flex Parent Definitions 4-20

Business Rules and Taxonomy 4-21

Flex Assets and Flex Definition Assets 4-22

Flex Families and the Database 4-23

Default Columns in the Flex Asset Type Database Table 4-23

The _Mungo Tables 4-24

The MungoBlobs Table 4-25

The _AMap Tables 4-25

Assetsets and Searchstates 4-26

Search Engines and the Two Asset Models 4-27

Tags and the Two Asset Models 4-27

Summary: Basic and Flex Asset Models 4-27

5 Designing Basic Asset Types

About the AssetMaker Utility 5-1

How AssetMaker Works 5-1

Asset Descriptor Files 5-4

About the Asset Descriptor File 5-4

About Format and Syntax 5-4

About the AssetMaker Tags 5-5

Columns in the Asset Type's Database Table 5-6

v

The Source Column: A Special Case 5-7

Storage Types for the Columns 5-7

Input Types for the Fields 5-7

Data Types for Standard Asset Fields 5-9

Elements and SQL Statements for the Asset Type 5-10

The Elements 5-11

The SQL Statements 5-14

Before You Begin Creating Basic Asset Types 5-15

Planning the Asset Type Design 5-15

Setting Up Your Development System 5-15

Creating Basic Asset Types 5-16

Coding the Asset Descriptor File 5-17

Uploading the Asset Descriptor File to WebCenter Sites 5-24

Creating the Asset Table 5-25

Configuring the Asset Type 5-26

Enabling the Asset Type on Your Site 5-28

Fine-Tuning the Asset Descriptor File 5-28

Customizing the Asset Type Elements (Optional) 5-29

Adding Subtypes (Optional) 5-29

Configuring Association Fields (Optional) 5-30

Configuring Categories (Optional) 5-32

Adding Mimetypes (Conditional) 5-32

Editing Search Elements to Enable Indexed Search (Optional) 5-34

Creating and Assigning Asset Type Icons (Contributor Interface Only) 5-34

Coding Templates for the Asset Type 5-34

Moving the Asset Types to Other Systems 5-34

Deleting Basic Asset Types 5-35

6 Designing Flex Asset Types

About Designing Flex Asset Types 6-1

Design Tips for Flex Families 6-1

Visitors on the Delivery System 6-2

Users on the Management System 6-2

How Many Attribute Types Should You Create? 6-2

Designing Flex Attributes 6-3

Which Data Types Are Available for Attributes 6-3

About Using Attribute Editors 6-3

Where Will Each Attribute Be Used? 6-4

Attribute Dependencies Imposed by Hierarchy 6-4

How Many Definition Types Should You Create? 6-4

vi

Designing Parent Definition and Flex Definition Assets 6-5

Determining Hierarchical Place 6-5

Determining Attribute Inheritance 6-6

How Many Flex Parent Definition Assets? 6-6

How Many Flex Definition Assets? 6-6

The Flex Family Maker Utility 6-7

Flex Asset Elements 6-7

Setting Up Your Development System 6-7

Creating a Flex Asset Family 6-8

Creating a Flex Family 6-8

(Conditional) Creating Additional Flex Family Members 6-11

(Conditional) Configuring the Flex Family Members 6-11

Enabling the New Flex Asset Types 6-12

Create Flex Attributes 6-13

Creating Flex Attributes: Basic Procedure 6-14

Creating Flex Attributes of Type Blob (Upload Field) 6-15

Creating Flex Attributes of Type Asset 6-16

Creating Foreign Flex Attributes 6-16

(Conditional) Creating Flex Filter Assets 6-17

Creating Parent Definition Assets 6-18

Creating Flex Definition Assets 6-20

Creating Flex Parent Assets 6-22

Creating and Assigning Asset Type Icons (Contributor Interface Only) 6-23

Coding Templates for the Flex Assets 6-24

Testing Your Design (Creating Test Flex Assets) 6-24

(Conditional) Creating Flex Asset Associations 6-24

Moving Asset Types to Other Systems 6-25

What You May Need to Know About Editing Flex Attributes, Parents, and Definitions 6-26

What You May Need to Know About Editing Attributes 6-26

What You May Need to Know About Editing Parent Definitions and Flex
Definitions 6-26

What You May Need to Know About Editing Parents and Flex Assets 6-27

Using Product Sets 6-27

About Using Product Sets 6-28

Creating a Product Set 6-28

7 Creating a Hierarchical Flex Family

Hierarchical Organization 7-1

Flex Family Specifications 7-2

Creating a Sample Flex Family Using a Real-World Example 7-2

Creating a Flex Family 7-3

vii

Enabling the New Flex Asset Types 7-4

Adding a Flex Family Tab to the WebCenter Sites Tree 7-4

Creating Parent Definition Assets 7-5

Creating Flex Parent Assets 7-7

Creating Flex Definition Assets 7-9

Creating Flex Assets 7-13

Translating the Formulaic Data Model into a Real-World Data Model 7-15

Developing Your Real-World Model 7-17

8 Creating Flex Filters

About Flex Filter Classes and Assets 8-1

Flex Filter Classes 8-1

Flex Filter Assets 8-3

Defining a Flex Filter Class and Creating a Flex Filter Asset 8-4

Implementation of a Flex Filter Class 8-4

AbstractFlexFilter Class Extension 8-5

Defining a Custom Flex Filter Class 8-6

Creating a Flex Filter Asset 8-8

Document Transformation Flex Filter 8-12

Default Solution 8-12

About Custom Solutions 8-13

Using a Default Transformation Engine 8-13

Customizing Document Transformation Flex Filter 8-13

Writing and Deploying a Document Transformer Flex Filter 8-13

Registering the Transformation Engine 8-14

Registering the Document Transformer 8-15

SampleFlexFilter.java 8-16

9 Designing Attribute Editors

About Attribute Editors 9-1

The presentationobject.dtd File 9-2

The Attribute Editor Asset 9-6

The Syntax and the Default Tags 9-6

CHECKBOXES 9-7

CKEditor 9-9

PICKASSET 9-11

PULLDOWN Example 9-11

RADIOBUTTONS 9-12

TEXTAREA 9-13

viii

TEXTFIELD 9-15

TYPEAHEAD 9-15

UPLOADER 9-17

The Attribute Editor Elements 9-19

Conventions for the Attribute Editor Elements 9-20

Creating Attribute Editors 9-21

Customizing Attribute Editors 9-23

Example: Customized Attribute Editor 9-23

Step 1: Editing the presentationobject.dtd File 9-23

Step 2: Specifying Permission for the Example Attribute Editor 9-24

Step 3: Editing the TEXTAREA Element 9-24

Adding Custom Logic to Validate an Uploaded File 9-27

Considerations About Editing Attribute Editors 9-28

10

Configuring Bundled Attribute Editors

Configuring CKEditor 10-1

Before You Begin 10-1

How to Create a CKEditor Instance and Enable It for a Field 10-2

How to Enable CKEditor for Use in Web Mode 10-3

How to Enable Selected Asset Types for the CKEditor 10-4

How to Set the Approval Dependency for Included Assets 10-5

How to Customize the CKEditor Toolbar 10-6

How to Configure Spell Check Support in CKEditor 10-9

Configuring the Clarkii Online Image Editor 10-9

How to Create a Clarkii OIE Instance and Enable it for a Field 10-11

How to Configure Clarkii OIE Properties 10-14

How to Implement a Field Copier Filter to Classify Assets 10-17

Configuring the Image Picker 10-19

How to Categorize Image Assets for Display in Image Picker 10-20

How to Create Image Picker Attribute Editor Definition Code 10-21

11

Working with the WebCenter Sites Database

Types of Database Tables 11-1

Object Tables 11-2

Tree Tables 11-2

Content Tables 11-3

Foreign Tables 11-4

System Tables 11-4

Identifying a Table's Type 11-5

ix

Types of Columns (Fields) 11-6

Generic Field Types 11-6

Database-Specific Field Types 11-8

Indirect Data Storage with the WebCenter Sites URL Field 11-8

About Adding to the System Tables 11-9

About Property Files and Databases 11-10

12

Managing Data in Non-Asset Tables

Using Methods and Tags to Program Data Management in Non-Asset Tables 12-1

About Writing and Retrieving Data 12-1

Security Through CatalogManager 12-2

Tree Manager Commands for Managing the Tree Tables 12-3

Methods for Querying for Data 12-4

Lists and Listing Data 12-4

Coding Data Entry Forms 12-5

How To Add a Row 12-5

The addrowFORM Element 12-6

Root Element for the addrow Page 12-7

How To Delete a Row 12-9

The deleterowFORM Element 12-9

Root Element for the deleterow Page 12-10

How To Query a Table 12-11

The SelectNameForm Element 12-11

The Root Element for the QueryEditRowForm Page 12-12

The Root Element for the QueryEditRow Page 12-16

How To Query a Table with an Embedded SQL Statement 12-18

QueryInlineSQLForm 12-19

The Root Element for the QueryInlineSQL Page 12-19

Consideration About Deleting Non-Asset Tables 12-22

Part III Developing a Website

13

Website Development with the MVC Framework and APIs

Server-Side and Client-Side Development Methodologies 13-1

Server-Side MVC Framework 13-2

Developer’s Samples Website 13-4

WebCenter Sites MVC Framework Overview 13-4

Controllers 13-5

Views 13-5

x

Pages, Pagelets, and Elements 13-6

Template and CSElement Assets 13-6

Page Assets and Site Navigation 13-7

Date-Based Preview 13-7

Multilingual Support 13-8

Caching in the MVC Framework 13-8

Server-Side Java APIs 13-9

Asset Reader 13-9

Navigation Reader 13-10

Link Builder 13-11

Blob Link Builder 13-12

Searcher 13-14

Recommendation Reader 13-15

Table Reader 13-16

REST APIs 13-17

Sample Websites 13-17

14

Developing a Server-Side Website

About Developing a Server-Side Website 14-1

Working with the Controller Interface 14-1

Creating a Controller 14-10

Creating a Template 14-11

Setting Up the Home Page 14-12

Adding Site Navigation 14-12

15

Developing a Client-Side Website

About Client-Side Websites 15-1

REST Calls for Developing REST-Avisports: Examples 15-1

Getting Navigation Menus 15-2

Getting the Home Page 15-3

Getting an Additional Website Page 15-5

Calling an Article from a Page 15-6

Calling a Collection Resource with Pagination 15-8

Calling a Search Resource 15-10

Calling Page Segments 15-11

Calling a Page Without Segments 15-12

Calling a Page with Segments That Target Specific Visitors 15-13

Calling a Page with Segments That Target Different Visitors 15-15

xi

Calling a Page with Segments That Target More Visitors 15-17

16

Website Development with Tag Technologies

About Choosing a Coding Language 16-1

About the Oracle WebCenter Sites Context 16-2

The ICS Object 16-2

The FTCS tag 16-2

Understanding WebCenter Sites JSP 16-3

About the WebCenter Sites Standard Beginning 16-3

Taglib Directives 16-4

Page Directives 16-4

The cs:ftcs Tag 16-5

About JSP Implicit Objects 16-5

About JSP Syntax 16-6

About JSP Actions 16-6

About JSP Declarations 16-6

About Scriptlets and Expressions 16-6

About JSP Directives 16-7

About Oracle WebCenter Sites Tag Libraries 16-7

Understanding WebCenter Sites XML 16-9

WebCenter Sites Standard Beginning 16-9

XML Version and Encoding 16-10

The DTD File 16-10

The FTCS Tag 16-10

XML Entities and Reserved Characters 16-10

XML Parsing Errors 16-11

Understanding WebCenter Sites Tags 16-11

Tags That Create the WebCenter Sites Context 16-12

Tags That Handle Variables 16-12

Tags That Call Pages and Elements 16-13

Tags That Create URLs 16-14

Tags That Control Caching 16-15

Tags That Set Cookies 16-15

Programming Construct Tags 16-16

Tags That Manage Compositional and Approval Dependencies 16-17

Tags That Retrieve Information About Basic Assets 16-18

Performance Notes About the Asset Tags 16-19

Tags That Create Assetsets (Flex Assets) 16-19

Tags That Create Searchstates (Flex Assets) 16-21

About Variables Supported in WebCenter Sites 16-23

xii

Reserved Variables 16-24

Regular Variables 16-25

Variables with SETVAR 16-25

Variables Using a URL 16-25

Default Variables for Elements and Templates with Explorer 16-26

Variables Using HTML Forms 16-27

Session Variables 16-27

Working With Variables 16-28

Syntax to Read Variables' Values 16-28

Tags to Display Variables' Values 16-28

Assigning of One Variable Value to Another Variable 16-28

Variables in HTML Tags 16-29

Evaluation of Variables with IF/THEN/ELSE 16-30

Variables and Precedence 16-31

Best Practices with Variables 16-31

Other WebCenter Sites Storage Constructs 16-32

Built-ins 16-32

Lists 16-32

Looping Through Lists 16-32

Counters 16-33

About Values for Special Characters 16-34

17

About Sessions and Cookies

About Sessions 17-1

Session Lifetime 17-2

Session Variables Maintained by WebCenter Sites 17-2

Logging In and Logging Out 17-2

Sessions Example 17-3

FeelingsForm Element 17-3

SetFeeling Element 17-4

Meat Element 17-4

About Cookies 17-5

CookieServer 17-5

Cookie Tags 17-5

Cookie Example 17-6

Start.xml 17-6

ColorForm 17-7

CreateCookie 17-7

DisplayWelcome 17-7

Running the Cookie Example 17-8

xiii

Tips and Tricks 17-8

Satellite Server Session Tracking 17-8

Flushing a Session Using a URL 17-8

Flushing Current Session Information 17-9

Flushing Other Session Information 17-9

18

Creating Template, CSElement, and SiteEntry Assets

About Template, CSElement, and SiteEntry Assets 18-1

About Pages 18-2

Elements, Pagelets, and Caching 18-3

Calling Pages and Elements 18-3

Page vs. Pagelet 18-4

Using CSElement, Template, and SiteEntry Assets 18-5

Template Assets 18-6

CSElement Assets 18-7

SiteEntry Assets 18-7

Non-Asset Elements 18-8

Creating Template Assets 18-8

Before You Begin Creating a Template Asset 18-10

Naming a Template Asset 18-10

Designating a Template as Typed or Typeless 18-11

Template Sharing and Site Replication 18-11

Creating a Template Asset 18-12

Open the Template Form 18-13

Name and Describe the Template Asset 18-14

Configure the Template's Element 18-16

Configure SiteEntry 18-20

Configure the Map 18-24

Create a Thumbnail (Optional) 18-25

Inspect the Template 18-26

Creating CSElement Assets 18-28

Before You Begin Creating a CSElement 18-29

Naming the CSElement 18-29

CSElement Sharing and Site Replication 18-29

Creating a CSElement Asset 18-30

Open the CSElement Form 18-30

Name and Describe the CSElement Asset 18-31

Configure the Element 18-32

Configure the Map 18-36

Save and Inspect the CSElement 18-37

xiv

Add the CSElement to Bookmarks 18-38

Creating SiteEntry Assets 18-39

Before You Begin Creating SiteEntry Assets 18-40

Creating a SiteEntry Asset 18-40

Open the SiteEntry Form 18-40

Create the SiteEntry Asset 18-41

Save and Inspect the SiteEntry Asset 18-43

Managing Template, CSElement, and SiteEntry Assets 18-44

Designating Default Approval Templates (Static Publishing Only) 18-44

Editing Template, CSElement, and SiteEntry Assets 18-44

Sharing Template, CSElement, and SiteEntry Assets 18-45

Deleting Template, CSElement, and SiteEntry Assets 18-46

Previewing Template, CSElement, and SiteEntry Assets 18-46

Templates and Preview 18-46

CSElement and SiteEntry Assets and Preview 18-46

Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic 18-47

Creating Templates and CSElements 18-48

Editing Templates and CSElements 18-48

19

Creating Templates and Wrappers

Working with Templates 19-1

Layout Templates 19-1

A layout template can be invoked from a browser 19-2

A layout template can be assigned to an asset 19-2

A layout template typically renders an entire web page 19-3

Use Case 1: Building a Layout Template for Article Assets 19-4

Pagelet Templates 19-9

A pagelet template cannot be invoked directly from a browser 19-9

A pagelet template cannot be assigned to an asset 19-9

A pagelet template renders a page fragment 19-9

Use Case 2: Using Pagelet Templates 19-10

Page Templates 19-12

A Page Template Can be Invoked from a Browser 19-13

A Page Template Cannot be Assigned to an Asset 19-13

A Page Template Can be Used for Previewing 19-13

Working with Wrappers 19-13

Creating a Wrapper Page 19-13

Previewing Wrappers 19-14

xv

20

Coding Elements for Templates and CSElements

About Dependencies 20-1

The Publishing System and Approval Dependencies 20-2

Calculating Approval Dependencies 20-2

Exists vs. Exact vs. None 20-3

Approval Templates for Export to Disk 20-4

Subtypes, Flex Definitions, and Approval Templates 20-5

Page Generation and Compositional Dependencies 20-5

CacheManager and Dynamic Publish Sessions 20-6

CacheManager and the Preview Function 20-6

About Coding to Log Dependencies 20-7

ASSET.LOAD and asset:load 20-7

The ASSETSET (assetset) Tag Family 20-7

Setting the Approval Dependency Type 20-8

RENDER.GETPAGEURL and render:getpageurl 20-8

RENDER.LOGDEP (render:logdep) 20-9

Setting the Approval Dependency Type 20-10

RENDER.FILTER and render:filter 20-10

RENDER.UNKNOWNDEPS and render:unknowndeps 20-10

About Invoking CSElement and SiteEntry Assets 20-11

Coding Elements to Display Basic Assets 20-12

Assets That Represent Simple Content 20-12

Associations 20-13

ImageFile Assets or Other Blob Assets 20-14

Basic Assets That Can Have Embedded Links 20-14

Collections 20-15

Collection Templates and Approval Dependencies 20-15

Collection Templates and Compositional Dependencies 20-16

Query Assets 20-16

Page Assets 20-17

About Coding Elements that Display Flex Assets 20-19

Assetsets 20-20

Searchstate Objects 20-20

Assetsets, Searchstates, and Flex Attribute Asset Types 20-21

Scope 20-21

Coding Templates That Display Flex Assets 20-22

Example Data Set for the Examples in This Section 20-22

Examples of Assetsets with One Product (Flex Asset) 20-23

Create a Searchstate and Apply It to an Assetset 20-24

Get the Price of the Product 20-24

xvi

Display the Price of the Product 20-24

Get the Colors for the Product 20-24

Display the Colors of the Product 20-25

Create a List Object for the ASSETSET.GETMULTIPLEVALUES tag 20-25

Get the Value for Both Price and Color with
ASSETSET.GETMULTIPLEVALUES 20-25

Display the Value of Price and Color for the jeans-2 Product 20-26

Special Cases: Flex Attributes of Type Text, Blob, and URL 20-26

About Flex Attributes of Type Text 20-26

About Flex Attributes of Type Blob 20-26

Creating a BlobServer URL 20-27

Getting and Displaying the Value of a Blob Flex Attribute 20-28

Examples of Assetsets with Multiple Products (Flex Assets) 20-28

Creating a Searchstate and Apply it to an Assetset 20-29

Displaying the Number of Assets in the Assetset 20-29

Displaying the Colors That the Jeans Are Available In 20-29

Displaying Both the Colors and the Styles for the Jeans in the Assetset 20-30

Creating a Table That Displays All the Jeans and Their Attribute Values 20-31

Searching for Jeans Based on a Range of Prices 20-32

Searching for Jeans with a Wildcard for Color 20-32

Searching for Jeans with Specific Colors 20-33

Creating URLs for Hyperlinks 20-34

RENDER.GETPAGEURL (render:getpageurl) 20-34

RENDER.SATELLITEBLOB (render:satelliteblob) 20-34

RENDER.GETBLOBURL (render:getbloburl) 20-35

Using the referURL Variable 20-35

Handling Error Conditions 20-36

Using the Errno Variable 20-36

Ensuring that Incorrect Pages Are Not Cached 20-37

Encoding Page Arguments 20-38

What You May Need to Know About Securing Your Site Against XSS Attacks 20-38

21

Coding Templates for In-Context and Presentation Editing

Coding Templates for In-Context Content Editing 21-1

Attribute Data Types 21-2

Making String Fields Editable 21-2

Variants of the <insite:edit/> Tag 21-4

Making Text Fields Editable 21-4

Making Date Fields Editable 21-5

Date Formatting APIs 21-6

Enabling Date Fields for Editing in Web Mode 21-7

xvii

Making Binary Fields Editable 21-8

Making Asset Fields Editable 21-9

Editing an Association 21-12

Editing a Parent Asset 21-12

Number Fields 21-12

Multivalued Fields 21-14

Example 1: Editing Multivalued Text Fields 21-14

Example 2: Modifying Multivalued Text Fields 21-16

Specifying a Different Ordering 21-19

Editing Mode and Caching 21-19

Coding Templates for Presentation Editing 21-20

Selecting a Different Layout for the Entire Web Page 21-20

Selecting a Different Layout for a Page Fragment 21-21

Defining a Slot for Presentation Editing 21-23

Adjusting the Slot Title 21-25

Controlling Template Arguments 21-26

Editing Presentation and Content Simultaneously 21-27

Understanding Content-Editable Slots and Presentation-Editable Slots 21-27

Combining Content-Editable Slots and Presentation-Editable Slots 21-28

Understanding the Context System Variable 21-30

About Defining the Scope of the Slot 21-31

Using the Context Variable in Action 21-31

Initializing the Context Value 21-32

Overriding Context 21-32

Caching Context 21-32

Using Slots with CSElement and SiteEntry Assets 21-32

Defining a Slot Containing a CSElement Asset 21-32

When to Use CSElement or SiteEntry Assets 21-33

About Defining Legal Arguments 21-33

Consideration About Using Nested Slots 21-33

Constraining Asset Types 21-34

Preventing CSS and JavaScript Conflicts 21-34

Enabling Content Creation for Web Mode 21-35

Defining a Start Menu for In-Context Creation 21-35

Providing Layout Templates for In-Context Creation 21-35

Adjusting Stylesheets 21-36

Adjusting Stylesheets for Slots 21-36

Providing Empty Value Indicators 21-36

Providing Editing-Specific Presentation Logic 21-37

xviii

22

Template Element Examples for Basic Assets

Creating Basic Modular Design 22-1

Home Element 22-2

MainStoryList Element 22-3

LeadSummary Element 22-4

TeaserSummary Element 22-5

Back to LeadSummary 22-5

Back to MainStoryList 22-6

Back to Home 22-6

Coding Links to the Article Assets in a Collection Asset 22-6

SectionFront Element 22-6

PlainList Element 22-8

Using the ct Variable 22-9

SectionFront Element 22-10

TextOnlyLink Element 22-10

ColumnistFront 22-11

Coding Templates for Query Assets 22-11

Home Element 22-12

WireFeedBox Element 22-13

ExecuteQuery Element 22-13

Back to WireFeedBox 22-14

Displaying an Article Asset Without a Template 22-14

Full Element 22-15

AltVersionBlock Element 22-16

EmailFront Element 22-16

Displaying Site Navigation Information 22-17

Home Element 22-17

SiteBanner Element 22-17

TopSiteBar Element 22-18

Creating the Link for the Home Page 22-18

Creating the Links to the Home Page's Child Pages 22-18

Back to SiteBanner 22-20

Displaying Non-Asset Information 22-20

Home Element 22-20

ShowMainDate Element 22-20

23

Creating Collection Assets, Query Assets, and Page Assets

About Creating Assets 23-1

Creating Collection Assets 23-1

Before You Begin 23-2

xix

Creating a Collection Asset 23-2

Sharing a Collection Asset 23-3

Creating Query Assets 23-3

How to Use Query Assets and Other Assets 23-4

How to Store the Query 23-4

Commonly Used Fields for Queries 23-4

Before You Begin Creating Query Assets 23-6

Creating a Query Asset 23-6

Sharing Query Assets 23-7

Previewing and Approving Query Assets 23-8

Creating Page Assets 23-8

Understanding the Page Asset Model 23-9

How To Design Page Attributes 23-9

How to Create a Page Asset 23-9

How To Place Page Assets 23-11

How To Move Page Assets in the Site Tree 23-11

Reordering Child Pages 23-11

Changing Parent Pages 23-12

Considerations About Placing Page Assets and Workflow 23-12

Tips About Editing Page Assets 23-13

Considerations About Deleting Page Assets 23-13

24

Best Practices for Creating Future Site Preview Assets and
Templates

About Implementing Future Site Preview 24-1

Creating Sets of Assets 24-1

Writing Templates for Future Site Preview 24-2

The asset:filterassetsbydate Tag 24-2

The Input List 24-3

Caching Considerations 24-4

25

Configuring Sites for Multilingual Support

About Configuring a Site for Multilingual Support 25-1

Dimensions 25-1

Dimension Sets 25-2

Cross-Site Multilingual Support 25-2

Master Assets, Translations, and Multilingual Sets 25-3

Translations and Asset Relationships 25-4

Approval Dependencies 25-5

xx

Working with Locale Filtering 25-6

Options for Implementing Asset Relationships Through Locale Filtering 25-6

Understanding the Included Locale Filters 25-7

The Simple Filter 25-7

The SimpleLookup Filter 25-7

The Hierarchical Filter 25-8

About Using Custom Locale Filters 25-9

Accounting for Compositional Dependencies 25-9

Asset Lookup Chain 25-9

Caching Rules 25-10

About Adding Filtering Support to Your Site 25-10

About Adding Filtering to Templates 25-11

About Obtaining and Maintaining a Visitor's Locale Preference 25-11

About Filtering Search Results 25-12

Planning Multilingual Support for a Site 25-12

Configuring Multilingual Support for a Site 25-13

Configuration Quick Reference 25-14

Enabling the Dimension and DimensionSet Asset Types 25-15

Enabling the Locale Subtype of the Dimension Asset Type 25-15

How To Create a Locale 25-16

How to Share a Locale to Another Site 25-16

How To Create and Configure a Dimension Set 25-17

How To Share a Dimension Set to Another Site 25-18

How To Configure a Locale Filter 25-18

How to Configure the Fallback Hierarchy of the Hierarchical Filter 25-19

How to Bulk-Assign a Default Locale to Assets in a Site 25-20

Sample Element Code for Bulk-Assigning a Default Locale 25-20

Tips for Using WebCenter Sites Translation Mechanism 25-22

What Do Customers Want? 25-22

Use of WebCenter Sites Translation Mechanism to Effectively Meet Customers'
Requirements 25-22

Part IV Developing Mobile Websites

26

Configuring WebCenter Sites to Support Mobile Websites

Prerequisites for Mobility Developers 26-1

Understanding Key Mobility Concepts 26-1

About Device Repository 26-2

About Device Groups and Suffixes 26-3

About Device Assets 26-4

xxi

About Site Navigations 26-6

About Mobile Templates 26-6

Prerequisites for Configuring Mobility Features 26-7

Configuring Mobility Features 26-8

How to Activate Your Device Repository 26-8

How to Configure the Device Repository 26-9

How to Create Custom Filters for Device Group Criteria 26-10

Using the Default DefaultCustomFIlter.java Custom Filter Provided with
WebCenter Sites 26-10

Creating Your Own DeviceGroupFilter Implementation 26-12

How to Configure Device Groups 26-12

How to Prioritize Device Groups 26-16

How to Create Device Assets 26-19

How to Create Site Navigations 26-21

How to Organize Site Navigations 26-24

Mirror Publishing the Device Repository to Delivery System 26-26

Creating Templates 26-27

Basic Guidelines for Creating Template Variants 26-28

Understanding Mobility Tags 26-28

Tags Modified to Support Device Detection and Page Rendering 26-29

Creating Template Variants 26-30

How to Create a Variant of a Single Template 26-30

How to Create Template Variants in Bulk 26-32

Optimizing Images for Mobile Websites 26-33

How to Optimize Images Using the Image Optimization Filter 26-33

Create a Flex Filter of the ImageOptimizationFilter Type 26-34

Include the Filter in Your Site's Image Definition 26-34

Create Instances of the blob Type Attribute Asset 26-35

Set Image Properties for Optimization 26-35

Apply the Image Optimization Filter on Existing Images 26-36

Verify If the Image Optimization Filter Has Been Applied 26-36

Use the Optimized Images in Your Site 26-38

How to Optimize Images Using a Pluggable Interface 26-38

How Device Detection Works 26-39

Part V Managing Caching

27

Understanding Page Design and Caching

About Modular Page Design 27-1

About Caching 27-2

xxii

WebCenter Sites Caching 27-2

BlobServer and Caching 27-2

Satellite Server Caching 27-3

Cache Expiration 27-3

Caching with the Satellite Servlet 27-4

Viewing the Contents of the Satellite Server Cache 27-7

Double-Buffered Caching 27-10

About Implementing Double-Buffered Caching 27-12

Pagelet Caching Strategies 27-12

Setting cscacheinfo 27-13

Coding for Caching 27-14

Caching and Security 27-14

WebCenter Sites Security 27-14

Satellite Server Security 27-15

28

Working with Resultset Caching and Queries

About Resultset Caching and Queries 28-1

Caching Frameworks 28-2

Database Queries 28-2

How Resultset Caching Works 28-2

Reducing the Load on the Database 28-3

Specifying the Table Name 28-3

SELECTTO 28-4

EXECSQL 28-4

CALLSQL 28-4

Search Forms in the WebCenter Sites Interface 28-5

Query Asset 28-5

SEARCHSTATE 28-5

Flushing the Resultset Cache 28-5

Switching Between Caching Frameworks 28-6

About Resultset Caching Strategy and Properties 28-6

Planning Your Resultset Caching Strategy 28-6

Default Properties 28-7

Table-Specific Properties 28-7

29

Using Cache Management with WebCenter Sites

About the WebCenter Sites Rendering Engine Cache 29-1

About the CacheManager 29-1

Enabling CacheManager 29-2

xxiii

Tier 1 Cache Configuration Properties 29-2

Tier 2 Cache Configuration Properties 29-3

30

Using Advanced Page Caching Techniques

About Advanced Page Caching 30-1

Configuring the WebCenter Sites Cache 30-1

Setting Expiration Time for an Individual Entry 30-2

Explicitly Removing Entries from Cache 30-2

Manual Removal 30-2

Automatic Removal 30-3

Configuring the Blob Server Cache 30-4

Consideration About Configuring Maximum Cache Size 30-4

Setting Expiration Time for an Individual Entry 30-4

Explicitly Removing Entries from Cache 30-4

Manual Removal 30-5

Automatic Removal 30-5

Configuring the Satellite Server Cache 30-5

Configuring Maximum Cache Size 30-5

Explicitly Removing Entries from Cache 30-5

CacheInfo String Syntax 30-6

Caching Best Practices 30-7

Few Pagelets Per Page 30-8

Share Cache Between Pages 30-8

Part VI Migrating Your Work to Your Content Management System

31

Importing Assets of Any Type

About Importing Assets Using the XMLPost Utility 31-1

What the Developer Does 31-2

What XMLPost and WebCenter Sites Do 31-2

Using XMLPost Configuration Files 31-3

Configuration Properties for XMLPost 31-4

Configuration Properties for the Posting Element 31-6

Configuration Properties for the Source Files 31-8

Site Properties 31-8

Asset Type Properties 31-9

Sample XMLPost Configuration File 31-12

Using XMLPost Source Files 31-13

Sample XMLPost Source File 31-14

xxiv

XMLPost and File Encoding 31-14

Using the XMLPost Utility 31-14

Before You Begin 31-15

Running XMLPost from the Command Line 31-15

Identifying Source Files 31-16

A Single File 31-17

A Directory of Files 31-17

A List File 31-18

Running XMLPost as a Batch Process 31-19

Running XMLPost Programmatically 31-19

Customizing RemoteContentPost and PreUpdate 31-20

Setting a Field Value Programmatically 31-20

Setting an Asset Association 31-21

Troubleshooting XMLPost 31-22

XMLPost Does Not Run and Does Not Create a Log File Message 31-22

XMLPost Fails and there is a Missing Entity Statement in the Log File 31-22

Error 105 is Triggered when XMLPost Tries to Save an Asset 31-22

Debugging the Posting Element 31-22

32

Importing Flex Assets

About Importing Flex Assets 32-1

Before You Begin Importing the Data Structure Flex Asset Types 32-1

About Importing the Flex Assets 32-1

When to Use BulkLoader 32-2

When to Use XMLPost 32-2

Overview of the Process to Import Flex Assets 32-2

About Custom Data Delimiters 32-3

Understanding XMLPost and the Flex Asset Model 32-4

About Importing the Structural Asset Types in the Flex Model 32-5

Attribute Editors 32-6

Sample Configuration File: Attribute Editor 32-6

Sample Source File: Attribute Editor 32-7

Flex Attributes 32-7

Sample Configuration File: Flex Attribute 32-9

Sample Source File: Attribute 32-10

Flex Definitions and Flex Parent Definitions: Sample Files 32-10

Sample Configuration File: Flex Definition 32-12

Sample Source File: Flex Definition 32-13

Flex Parents 32-14

Sample Configuration File: Individual Flex Parent 32-14

xxv

Sample Source File: Individual Flex Parent 32-15

Importing Flex Assets with XMLPost 32-15

Configuration File Properties and Source File Tags for Flex Assets 32-16

For the addData Posting Element 32-16

For the RemoteContentPost Posting Element 32-17

Sample Flex Asset Configuration File for addData 32-18

Configuration File Properties and Attributes of Type Blob (or URL) 32-19

Attribute of Type Blob (or URL) As an Upload Field 32-19

Attribute of Type Blob (or URL) As a Text Field 32-19

Sample Flex Asset Source File for addData 32-20

Sample File 32-20

Handling Special Characters 32-21

Flex Assets and Their Parents 32-21

Specifying the Parents of a Flex Asset 32-21

Setting Attribute Values for Parents 32-22

Setting Multiple Values in a Flex Source File 32-22

Sample Flex Asset Configuration File for RemoteContentPost 32-23

Sample Flex Asset Source File for RemoteContentPost 32-24

Editing Flex Assets with XMLPost 32-25

Configuration Files for Editing Flex Assets 32-25

Source Files for Editing Flex Assets 32-26

Changing the Value of an Attribute 32-26

Removing an Attribute Value 32-26

Editing Parent Relationships 32-27

Deleting Assets with XMLPost 32-27

Configuration Files for Deleting Assets 32-28

Source Files for Deleting Assets 32-28

33

Importing Flex Assets with the BulkLoader Utility

About the BulkLoader Utility 33-1

Understanding BulkLoader Features 33-2

How BulkLoader Works 33-2

About Using the BulkLoader Utility 33-3

Importing Flex Assets from Flat Tables 33-3

The Basic Steps 33-3

Driver Requirements 33-4

Requirement for DB2 33-4

When to Use XMLPost to Import Structural Assets 33-4

Creating the Input Table (Data Source) 33-4

Inserts 33-5

xxvi

Updates 33-6

Creating the Mapping Table 33-7

Creating the BulkLoader Configuration File 33-8

BulkLoader Configuration File Properties 33-8

Setting the initID Parameter 33-12

Example Configuration File 33-12

Running the BulkLoader Utility 33-13

Enabling Access to Imported Assets in the Contributor Interface 33-14

Reviewing Feedback Information 33-14

Approving and Publishing the Assets to the Delivery System 33-15

Importing Flex Assets Using a Custom Extraction Mechanism 33-15

IDataExtract Interface 33-15

IPopulateDataSlice 33-19

IFeedback Interface 33-22

Approving Flex Assets with the BulkApprover Utility 33-23

Configuring BulkApprover 33-24

Using BulkApprover 33-25

Part VII Security: Managing Content Management Users

34

Managing Users on the Management System

About the Directory Services API 34-1

Entries 34-2

Hierarchies 34-2

Groups 34-2

Directory Services Tags 34-2

Directory Operations 34-3

Searching 34-4

Looking Up a User 34-4

Listing Users 34-4

Directory Services Code Samples 34-4

Error Handling 34-6

Directory Services Applications Troubleshooting 34-6

Working with Custom User Manager 34-7

What is Custom User Manager? 34-7

Sample Implementation of Custom User Manager 34-8

Integrating the Sample Implementation with WebCenter Sites 34-9

What You May Need to Know About the Custom User Manager 34-10

Controlling User Access 34-10

ACL Tags 34-10

xxvii

USER Tags 34-11

WebCenter Sites and Encryption 34-11

Part VIII Publishing Your Site

35

Publishing Your Content Management Site to Make it Available
Online

36

Guidelines and Limitations for Previewing Assets in Timeline Mode

Guidelines and Limitations 36-1

Part IX Developing Personalized and Targeted Websites with Engage

37

Creating Visitor Data Assets

About Visitor Data Assets 37-1

Visitor Attributes 37-1

History Attributes and History Definitions 37-2

Segments 37-2

Developing Visitor Data Assets: Process Overview 37-4

Creating Visitor Data Assets 37-5

Creating Visitor Attributes 37-6

Configure the Data Type 37-8

Configure the Constraint Criteria 37-8

Save the Attribute 37-9

Creating History Attributes 37-10

Configure the Constraint Criteria 37-12

Save the History Attribute 37-13

Creating History Definitions 37-13

Verifying Visitor Data Assets 37-15

Approving Visitor Data Assets 37-15

38

Understanding Recommendation Assets

About Recommendation Assets 38-1

Development Process for Setting Up Recommendations 38-2

About Creating a Dynamic List Element 38-2

xxviii

39

Working with Memory-Centric Visitor Tracking

About Memory-Centric Visitor Tracking 39-1

Database-Centric Model 39-1

Memory-Centric Model 39-2

Enabling Memory-Centric Visitor Tracking 39-2

Visitor Tracking Property 39-2

Supporting Code 39-3

Batch-Saving History Attributes to the Database 39-3

How Memory-Centric Visitor Tracking Works 39-4

Visitor Detection 39-4

Retrieval of Scalar Values 39-6

Collection of History Attribute Values 39-6

Computation of Sums and Counts 39-7

Computation of Segments 39-8

Display of Recommended Assets 39-9

Logging of Dependencies 39-10

40

Coding Engage Pages

Commerce Context and Visitor Context 40-1

Identification of Visitors and Linking Sessions 40-2

Collection of Visitor Data 40-3

Coding of Site Pages That Collect Visitor Data 40-4

Example 1: Visitor Attributes 40-4

Example 2: History Definition 40-4

Example 3: Visitor Attribute of Type Binary 40-5

Templates and Recommendations 40-5

Creating Templates for Recommendations 40-6

Creation of Templates for Recommendations Using Oracle Real-Time Decisions 40-7

What You May Need to Know About Shopping Carts and Engage 40-8

Debugging Site Pages 40-9

Session Links 40-9

Visitor Data Collection 40-9

Recommendations and Promotions 40-10

Part X Running A/B Testing

Part XI Customizing Blogs

xxix

41

Customizing Blog Components

Customizing the Blog Asset Form 41-1

Creating a Blog Attribute 41-1

Adding a Blog Attribute to the Blog Asset Definition 41-3

Adding Blog Functionality to CM Sites 41-4

Creating Blog Pages 41-5

Adding Blog Code 41-6

Adding Blog Parameters to Your Site's SiteEntry Asset 41-8

Customizing URLs for the RSS Feed 41-9

Part XII Developing WebCenter Sites: Visitor Services

42

Developing WebCenter Sites: Visitor Services

Visitor Services Overview 42-1

Configuring the Visitor Services URL 42-3

Configuring an Identity Provider 42-4

Configuring Identity Provider Settings 42-5

Integrating Oracle Access Manager (OAM) with Visitor Services 42-6

Creating a Custom Identity Provider: Example 42-13

Configuring an Access Provider 42-14

Configuring One or More Profile Providers 42-16

Configuring Profile Provider Settings and Enrichment Rules 42-17

About Configuring Eloqua Profile Provider 42-20

Creating a Custom Profile Provider: Example 42-22

Creating One or More Aggregation Templates 42-23

Optimizing Experiences Using Visitor Services Data 42-26

How WebCenter Sites Components Request Visitor Services Profile Information 42-27

Configuring Visitor Services with Engage 42-29

Linking Visitor Profiles and Managing Cookies 42-30

Storing Additional Information with Extended Attributes and Activities 42-31

About Extended Attributes and Activities 42-31

How to Use Extended Attributes and Activities in Visitor Services 42-32

Visitor Services Reference 42-33

About the Visitor Services Architecture 42-33

Identity Provider Reference 42-34

About the Identity Providers 42-34

How Visitor Services Identifies Visitors to Your Website 42-35

Access Provider Reference 42-35

About Container Protection and Visitor Services Protection 42-36

xxx

How Container Protection Works 42-36

How Visitor Services Protection Works 42-36

Profile Provider Reference 42-37

About the Profile Providers and Enrichment Service 42-37

How Visitor Services Gathers and Enriches Visitor Attributes from Multiple
Channels 42-39

Aggregation Template Reference 42-39

About Aggregation Templates 42-40

How Visitor Services Merges Raw Visitor Profiles into a Single Aggregated
Profile 42-41

How Visitor Services Makes Aggregated Visitor Profiles Available for
Targeting, Testing, and Analysis 42-41

Diagnostics 42-41

About the Visitor Services Data Model 42-43

Glossary 42-45

Part XIII Controlling the Site Capture Process

43

Coding the Crawler Configuration File

About Controlling a Crawler 43-1

BaseConfigurator Methods 43-2

getStartUri 43-2

createLinkExtractor 43-3

Crawler Customization Methods 43-5

getMaxLinks 43-5

getMaxCrawlDepth 43-5

getConnectionTimeout 43-5

getSocketTimeout 43-6

getPostExecutionCommand 43-6

getNumWorkers 43-7

getUserAgent 43-7

createResourceRewriter 43-7

createMailer 43-8

getProxyHost 43-9

getProxyCredentials 43-9

Interfaces 43-9

LinkExtractor 43-10

LinkExtractor Interface 43-10

Using the Default Implementation of LinkExtractor 43-10

Writing and Deploying a Custom Link Extractor 43-12

xxxi

ResourceRewriter 43-13

ResourceRewriter Interface 43-13

Using the Default Implementations of ResourceRewriter 43-14

Writing a Custom ResourceRewriter 43-14

Mailer 43-15

Mailer Interface 43-16

Using the Default Implementation of Mailer 43-16

Writing a Custom Mailer 43-17

Summary of Methods and Interfaces 43-19

Methods 43-19

Interfaces 43-20

Part XIV Integrating with Third-Party Content Sources

44

Integrating Third-Party Content Sources Using Proxy Assets

Proxy Asset Architecture and the Contributor Interface 44-1

Installing Sample Proxy Assets 44-3

Set up a Proxy Asset Directory 44-3

Create a Proxy Asset 44-3

Add the Search Functionality for the Proxy Asset 44-4

Add the Thumbnail Grid Functionality for the Proxy Asset 44-5

Add the Tree Functionality for the Proxy Asset 44-5

Integrating External Content in the Contributor Interface 44-6

Case Study: The ProxyTest Repository 44-7

Registering a New Proxy Asset Type 44-9

About Implementing UI Integration Code 44-10

Customizing Search 44-11

Getting Search Results Using the Provided Third-Party API 44-11

Turning Search Results into Proxy Assets, Filter Incoming Search Results,
Register External Content, and Gather Data for Search Grid Widget 44-12

Building a Data Store for the Grid Widget 44-14

Testing Custom Search 44-14

Additional Customizations 44-16

Implementing a Custom Tree 44-20

Registering the Custom Tree Tab 44-21

Implementing the Tree Code 44-22

Setting Up YouTube Proxy Assets 44-25

User Interface Customizations 44-27

Customizing the Search Start Menu 44-27

Customizing the Content Tree 44-28

xxxii

Information About Embedding Proxy Assets in Web Pages 44-29

Writing a Template for Proxy Assets 44-30

Using Proxy Assets in Slots 44-32

About Caching Proxy Assets 44-34

Part XV Developing Applications with the Web Experience
Management (WEM) Framework

45

About the Web Experience Management (WEM) Framework

About the WEM Framework 45-1

Prerequisites for Application Development 45-3

Technologies 45-4

WebCenter Sites Interfaces, Objects, and APIs 45-4

Documentation 45-4

Sample Applications and Files 45-4

Application Access 45-5

Getting Started 45-5

46

Understanding the WEM Framework and Services

Support for Application Development 46-1

REST Services 46-2

UI Container 46-3

Registration 46-3

WEM Context Object 46-4

Single Sign-On 46-5

Authorization Model 46-6

Custom Applications 46-7

Requirements for REST Resources 46-8

47

Working with the Articles Sample Application

About the Articles Sample Application 47-1

Launching the Articles Sample Application 47-2

Building and Deploying the Articles Application 47-2

Registering the Articles Sample Application 47-4

Testing the Articles Application 47-5

xxxiii

48

Developing Applications with WEM Framework

About the Articles Sample Application's Structure 48-1

About the Articles Sample Application's Configuration Files 48-2

Making REST Calls 48-5

Making REST Calls from JavaScript 48-5

Making REST Calls from Java 48-7

Constructing URLs to Serve Binary Data 48-8

Accessing Parameters from the WEM Framework 48-8

Initializing and Using Context Object in the Same Domain 48-9

Initializing and Using Context Object for Cross-Domain Applications 48-9

Methods Available in Context Object 48-10

Registering Applications with Different Views 48-11

Registering Applications with an iframe View 48-11

Registering Applications with JavaScript and HTML Views 48-12

Rendering JavaScript View 48-13

Rendering HTML View 48-13

49

Developing Custom REST Resources with WEM Framework

Creating REST Resources for WebCenter Sites and Satellite Server: Example 49-1

Building and Deploying the Recommendations Sample Application 49-1

Testing the Recommendations Sample Application 49-2

Creating REST Resources 49-2

About the Recommendations Sample Application's Structure 49-2

Implementing Custom REST Resources 49-3

50

Working with Single Sign-On for Production Sites

Deploying the SSO Sample Application 50-1

Understanding SSO Sample Application's Structure 50-3

Implementing Single Sign-On 50-5

Implementing Single Sign-Out 50-5

51

Using REST Resources with the WEM Framework

Authentication for REST Resources 51-1

Acquiring Tickets from Java Code 51-2

Acquiring Tickets from Other Programming Languages (Over HTTP) 51-2

Using Tickets and Multitickets 51-3

SSO Configuration for Standalone Applications 51-4

Beans and Properties 51-4

xxxiv

Query Parameters Processed by SSO Filter 51-8

About Configuring CAS 51-8

REST Authorization 51-9

Security Model 51-9

Use of the Security Model to Access REST Resources 51-11

About Configuring REST Security 51-11

Privilege Resolution Algorithm 51-11

Management of Assets Over REST 51-12

52

Introducing Customizable Single Sign-On Facility in WEM
Framework

About Customizing Login Behavior for the WEM Framework 52-1

About Components of the Default CSSO Implementation 52-2

Configuring and Deploying Custom SSO Behavior 52-3

About Extending the Default CSSO Classes 52-3

Settings Resolver Credentials 52-5

About Identifying Your Java Classes to Spring for Instantiation 52-6

About Creating a Spring Configuration File 52-6

About Placing Your Spring Configuration File 52-8

Mapping External User Identifiers to WebCenter Sites Credentials 52-9

Restarting the CAS Web Application 52-11

Running the CSSO Sample Implementation 52-11

Sample CSSO Classes 52-12

Sample Spring Configuration File 52-13

Analysis of the Sample Spring Configuration File 52-13

Placing the Sample Spring Configuration File 52-15

Sample CSSO Components 52-15

53

Buffering in WEM Framework

Architecture of Buffering System 53-1

Using Buffering 53-2

54

Registering Applications Manually in WEM Framework

Registering Applications in WEM Framework 54-1

Reference: Registration Asset Types 54-4

FW_View Asset Type 54-4

FW_Application Asset Type 54-5

xxxv

Part XVI Customizing Oracle WebCenter Sites

55

Adding Customizations to WebCenter Sites

56

Customizing the Tree in the Admin Interface

About the Tree in the Admin Interface 56-1

Loading the Tree Tabs 56-3

Applet-Wide Parameters 56-4

Tree-Specific Parameters 56-5

Node Parameters 56-6

Adding a Command Node Context Menu 56-8

Refreshing the Tree 56-9

About Trees and Security 56-9

About Tree Error Logging 56-9

57

About Customizing Components of the Contributor Interface

Before You Begin 57-1

What Can You Customize in the Contributor Interface? 57-1

Where to Find Sample Code? 57-2

Where to Begin? 57-2

58

Understanding the Contributor Interface Framework and UI
Controller

About the Contributor Interface Framework 58-1

UI Controller 58-2

How the UI Controller Processes Requests 58-2

UI Controller Processing an Element Request: Example 58-5

Custom Elements 58-6

Element Storage 58-6

How the UI Controller Locates Elements 58-7

Element Naming Conventions 58-8

59

Customizing the Contributor Interface Dashboard

About Dashboard Customization 59-1

Customizing the Dashboard 59-2

xxxvi

Examples of Customizing the Dashboard 59-3

Adding a Hello World Widget 59-3

Adding a Widget that Shows Recently Modified Assets 59-5

60

Customizing Search Views of the Contributor Interface

About Search View Customization 60-1

Types of Search Views 60-1

What You Can Customize in Search Views 60-2

View-Rendering Process 60-4

Configuration Elements for Search Views 60-5

Customization Processes 60-6

Customizing Undocked Views 60-7

Basic Steps for Customizing Undocked Views 60-7

Setting the Default Undocked View to List or Thumbnail 60-8

Customizing the Undocked List View 60-9

Customizing the Undocked Thumbnail View 60-11

More About the <assettypes> Section in the ThumbnailViewConfig Element 60-14

About Customizing Docked Views 60-17

Customizing Sort Menus and Tooltips 60-17

Customizing Sort Menus 60-17

Customizing Tooltips for Search Results 60-18

Customizing Context Menus 60-20

61

Customizing Global Properties, Toolbar, and Menu Bar in the
Contributor Interface

Customizing Global Configuration Properties 61-1

About the Configuration Properties 61-1

Default Configuration Properties That Can Be Modified 61-2

Adding Custom Configuration Properties 61-3

Adding Custom Global Properties 61-3

Adding Site-Specific Properties 61-4

Customizing the Toolbar 61-5

About Toolbar Customization 61-5

Examples of Toolbar Customization 61-6

Customizing the Toolbar with Standard Actions for Web Mode 61-6

Customizing the Toolbar with Standard Actions for Asset Type and Subtype 61-6

Customizing the Toolbar with Custom Actions 61-7

Customizing the Menu Bar 61-10

About Menu Bar Customization 61-10

xxxvii

Adding a Custom Action to the Menu Bar 61-12

Customizing Context Menus 61-14

62

Customizing Asset Forms for the Contributor Interface

About Asset Forms Customization 62-1

Modifying the Header of Asset Forms 62-1

Building an Attribute Editor 62-1

Creating a Dojo Widget and its Template 62-2

Create a Template for the Dojo Widget 62-2

Creating a Dojo Widget 62-3

Defining the Attribute Editor as a Presentation Object 62-5

Creating the Attribute Editor Element 62-6

Creating the Attribute Editor 62-8

Implementing a Multi-Valued Attribute Editor 62-9

63

Customizing Workflow

Workflow Step Conditions 63-1

Workflow Actions 63-4

Step Action Elements 63-4

Timed Action Elements 63-7

Deadlock Action Elements 63-8

Group Deadlock Action Elements 63-11

Delegation Action Elements 63-14

64

Working with RealTime Publishing Customization Hooks

About RealTime Publishing 64-1

Writing a Custom Transporter 64-3

Writing Your Own Transporter 64-3

Considerations About Overriding AbstractTransporter Methods 64-3

Helper Methods in AbstractTransporter 64-4

Implementing a Transporter: Example 64-4

Code for Writing RealTime Publishing Transporter 64-5

Understanding Edge-Case Scenarios 64-7

Intercepting Asset Publishing Events on the Management Instance 64-7

Distinguishing Between Unpackers and CacheUpdates 64-9

xxxviii

65

Understanding Asset and Publish Events in WebCenter Sites

Asset Events 65-1

Writing an Asset Event Listener 65-1

Registering an Asset Event Listener 65-2

Publishing Events 65-2

Writing a Publishing Event Listener 65-2

Registering a Publishing Event Listener 65-3

66

Customizing Content Audit Reports

About the Content Audit Reports 66-1

Customizing the Content Audit Report 66-2

Creating a Custom Chart for the Content Audit Report 66-2

Create a Chart Asset 66-2

Create Rendering Elements to Implement the Chart 66-3

Add the Chart to a Report 66-5

Modifying the Chart's Rendering Elements 66-5

Adding a Custom Chart to a Report 66-5

Part XVII Troubleshooting

67

Logging and Debugging Errors

About Writing Custom Messages to the WebCenter Sites Log File 67-1

Using Error Codes with Tags 67-2

Part XVIII Reference

68

Using Asset API: Tutorial

Understanding the Asset API 68-1

Primary Interfaces 68-2

Getting Started 68-2

Asset API Read 68-3

A Simple Example: Reading Field Values 68-3

Reading AssetId 68-4

Reading Attributes Given the Asset ID 68-4

Running a Query 68-6

Running a Complex Query 68-7

xxxix

Retrieving the Results by Sorting 68-8

Reading BlobObject 68-9

Retrieving Multi-Valued Attributes 68-9

Multilingual Assets: Retrieving Translations 68-10

Reading Asset and Attribute Definitions 68-11

Reading Key-Value Mappings 68-11

Asset API Write 68-12

Creating New Assets 68-12

Updating Existing Assets 68-15

Deleting Existing Assets 68-15

Multilingual Assets 68-16

Development Strategies 68-16

Data Types and Attribute Data 68-17

Query Types 68-17

Data Types and Valid Query Operations 68-18

Optional: Setting Up to Use the Asset API from Standalone Java Programs 68-19

69

Using Public Site Search

About the Search Framework 69-1

Index Types 69-2

Global Index 69-3

Asset Type Index 69-4

About Search API 69-5

SearchEngine 69-6

QueryExpression 69-6

Configuring Query Expression 69-7

Advanced Configuration 69-7

Configuration of Lucene Parameters 69-8

Configuration of Custom AnalyzerFactory 69-10

Part XIX Coding with Developer Tools

70

About Developer Tools

Introduction to Developer Tools Architecture 70-1

IDE Integration 70-2

The Developer Tools Workspace 70-3

Connecting to WebCenter Sites Instances 70-3

Synchronization 70-3

JSP Management 70-4

xl

Command Line Interface (CLI) 70-4

About Using a Version Control System 70-4

71

Installing and Configuring Developer Tools

Prerequisites 71-1

Setting Up Developer Tools 71-2

How to Install the Developer Tools Plug-in 71-2

How to Verify the Developer Tools Plug-In Installation 71-4

How to Integrate WebCenter Sites with the Eclipse IDE 71-5

How to Enable Code Completion for Remote Hosts 71-8

How to Use Developer Tools to Work with Existing Resources 71-10

How to Manage WebCenter Sites Resources 71-10

How to Work with a Pre-Existing Project in Eclipse 71-10

Updating Developer Tools 71-11

How to Update the Location of the Developer Tools Plug-In 71-11

How to Check for Updates to Existing Plug-Ins 71-13

How To Verify That the Developer Tools Plug-In Has Been Updated 71-13

Managing WebCenter Sites Resources in Eclipse 71-14

How to Create Resources 71-15

How to Display Developer Tools Views in Panels 71-15

How to Export and Import Data Between WebCenter Sites and Developer Tools 71-16

Uninstalling Developer Tools 71-16

72

Introducing Developer Tools Features in Eclipse

About the Oracle WebCenter Sites Perspective 72-1

Understanding the Configuration Form 72-3

Understanding Projects and Workspaces in Eclipse 72-3

About Developer Tools Views 72-4

Workspace 72-5

Log Viewer 72-6

Templates View 72-6

Preview View 72-7

Sites View 72-8

Controllers View 72-8

Logging Configuration View 72-9

Developer Reference View 72-9

Wizards 72-9

Data Synchronization (Export/Import) Tool 72-10

Export (Sync Resources to Workspace from WebCenter Sites) 72-10

xli

Import (Sync Resources to WebCenter Sites from the Workspace) 72-11

73

Developing JSPs with Developer Tools

JSP Development with Developer Tools 73-1

Tag and Java API Completion 73-2

Debugging 73-3

74

Creating Templates for Mobile Websites Using Developer Tools

About Mobility Support in Developer Tools 74-1

Creating Mobile Templates from the Sites Workspace Tab 74-1

Creating Mobile Templates in Sites and Device Groups Views 74-4

75

Synchronizing and Exchanging Data Using Developer Tools

Synchronization Using Developer Tools 75-1

Synchronization Scenarios 75-1

About Dependency Resolution 75-2

ID Mapping 75-3

About ID Mapping 75-3

Overriding a Resource's fw_uid 75-6

What You Should Know About Using Developer Tools with Pre-Existing
Resources 75-7

Working with Site Mappings 75-7

About Natural Site Mappings 75-8

About Overriding Natural Site Mappings With the Command Line Interface (CLI) 75-8

76

Using Workspaces in Developer Tools

Introduction to Workspaces 76-1

Workspace Structure 76-1

Asset Storage Structure 76-2

Code-Based Resource Storage Structure 76-3

Attribute Editor Storage Structure 76-3

Asset Type Storage Structure 76-3

77

Using Developer Tools Command Line Interface (CLI)

Running and Using the Command Line Interface (CLI) 77-1

Example Commands 77-3

About Importing Modules 77-4

xlii

Status Codes for Operations Invoked from the Developer Tools Command Line
Interface (CLI) 77-4

78

Integrating Developer Tools Workspaces with Version Control
Systems

About Version Control With Developer Tools 78-1

About Integrating Developer Tools With a VCS 78-1

Using a Developer Tools-Integrated VCS: Example 78-2

79

Using Developer Tools to Manage and Exchange Resources

Today: Develop a Site and Associated Resources 79-1

Three Days Later... Deployment 79-22

80

Using the Developer Tools Command Line Interface (CLI) to Create
Reusable Modules

Creating a Reusable Model 80-1

List the Resources in the WebCenter Sites Instance 80-2

List Start Menu Items 80-2

Export All Resources to a Workspace 80-3

Inspect the Module's Content 80-4

Archive the Module 80-4

Import the Module to a WebCenter Sites Instance 80-4

Part XX Appendixes for Oracle WebCenter Sites Core

81

Introducing WebCenter Sites Tools and Utilities

Oracle WebCenter Sites Explorer 81-1

Connecting to a WebCenter Sites Database 81-1

CatalogMover 81-3

Starting CatalogMover 81-3

Connecting to WebCenter Sites 81-4

CatalogMover Menu Commands 81-5

Catalog Menu 81-5

Exporting Tables 81-6

Exporting Selected Table Rows 81-7

Selecting Rows for Export 81-7

Exporting to a ZIP File 81-8

xliii

Importing Tables 81-9

Importing HTML Files Previously Exported 81-9

Importing a Previously Exported ZIP File 81-10

Merging Existing CatalogMover Files 81-10

Replacing Existing CatalogMover Files 81-10

Command Line Interface 81-11

Property Management Tool 81-11

Accessing the Property Management Tool 81-12

Setting Properties 81-13

Adding Properties to the wcs_properties.json File 81-13

About Importing with XMLPost 81-13

82

Understanding White Space and Compression

White Space and JSP 82-1

White Space and XML 82-1

Compression 82-2

JSP Design 82-2

83

Using WebCenter Sites URL Assemblers

About WebCenter Sites URL Assemblers 83-1

URL Assembly 83-1

Assembler Discovery and Disassembly 83-2

URL Assembly and Disassembly Using GET and POST Requests 83-2

Assemblers Installed with WebCenter Sites 83-2

Query Assembler 83-3

QueryAsPathInfo Assembler 83-3

Working with Assemblers 83-3

Creating Assemblers 83-3

Registering and Ranking Assemblers 83-4

Link Tags Modification 83-5

Vanity URL Links in a Web Page 83-5

xliv

Preface

This guide contains information about developing Oracle WebCenter Sites to support
content contributors and administrators in creating, managing, and delivering highly
interactive desktop and mobile websites.

Audience
This guide is written primarily for developers. It is assumed that developers have
a clear knowledge of their company's business needs, and a basic understanding
of their roles in the development of the online site and its back end. This guide is
also useful to administrators, who collaborate with developers by setting up content
management sites, site users, workflow processes, publishing methods, and Oracle
WebCenter Sites client options.

Developers must know Java, JavaServer Pages (JSP), XML, and HTML.
Administrators are not required to have programming experience, although a technical
background is assumed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
These additional documents may also be useful:

• Oracle WebCenter Sites Release Notes

• Installing and Configuring Oracle WebCenter Sites

• Using Oracle WebCenter Sites

• Administering Oracle WebCenter Sites

• Property Files Reference for Oracle WebCenter Sites

xlv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that displays on the screen, or text that you enter.

Preface

xlvi

Part I
Getting Started with Oracle WebCenter
Sites

You’ll be introduced to the tasks that you will typically perform in Oracle WebCenter
Sites, tools and technologies that you will use, and development process you’ll follow.
You’ll also become familiar with the sample site that comes packaged with WebCenter
Sites.

Topics:

• Introduction to Developing with WebCenter Sites

• Overview of the Avisports Sample Site

• The WebCenter Sites Development Process

1
Introduction to Developing with WebCenter
Sites

In WebCenter Sites, both templates and information are stored as assets. So, you
begin with designing an asset model; creating asset types and assets. You also design
site layout, page templates, and pagelets. For security and performance, you develop
caching framework and security model. There is more to keep you engaged until you
turn in the site to someone who'll administer it therefrom.

• About Developing with WebCenter Sites

• Typical Tasks for WebCenter Sites Developers

• WebCenter Sites Utilities

• WebCenter Sites Interfaces

• Use Case Scenarios for WebCenter Sites

About Developing with WebCenter Sites
Your role as a WebCenter Sites developer begins with building a core website, but
it doesn't end here. You’ll also tailor WebCenter Sites interfaces as the need arises.
Does your company plan to leverage marketing-oriented components of WebCenter
Sites? Extending these features to marketers so they can collect visitor profile
information and design promotions for those visitors may be one of your key areas.

Your tasks as a developer can be grouped as follows:

• Building a website

To create a website, developers build the website's infrastructure, administrators
create content management site and site navigations, and content contributors
add content to the website.

This guide focuses on how developers can create a website's infrastructure using
WebCenter Sites.

In WebCenter Sites, both templates and information are stored as assets. To
develop infrastructure of a website, first an asset model is designed which
incorporates creating asset types and assets. Once asset types are ready, site
layout, page templates, and pagelets are coded, and caching is implemented for
better performance. For website access, users, ACLs, and roles are created, as
well as the users are assigned to the relevant roles. Various types of content is
imported as assets. The infrastructure is then mirror published to the management
system where administrator and content contributors start designing the site. See
The WebCenter Sites Development Process.

1-1

Note:

Depending upon an organization's setup, either developers or
administrators create a content management site (framework to contain
the content of an online site) and site navigations. Content contributors
add pages and contents to the site navigations, and approve the content
so administrator can publish it to the delivery system where the site goes
online and starts functioning like a website.

For detailed information about building a website, see Getting Started with Oracle
WebCenter Sites, Building Your Data Model, Developing a Website, Developing
Mobile Websites, Coding with Developer Tools, Managing Caching, Migrating Your
Work to Your Content Management System , and Security: Managing Content
Management Users.

• Enhancing the website

Websites can be enhanced depending on the nature of the business and customer
profile. Using WebCenter Sites, online sites can be designed such that they gather
visitor information and personalize promotional messages for each visitor, capture
data about website visitors and their usage of pages. Site pages can be integrated
with Facebook, Twitter, Google, and so on, as well as gadgets and applications
can also be designed and integrated with WebCenter Sites.

For detailed information, see Developing Personalized and Targeted Websites with
Engage, Running A/B Testing, and Developing WebCenter Sites: Visitor Services.

• Customizing WebCenter Sites

To make the development environment and experience efficient and the content
contributor's job easier, you can customize the Oracle WebCenter Sites: Admin
and Oracle WebCenter Sites: Contributor interfaces. You can alter properties,
the dashboard, search views, asset forms, workflows, and so on for higher
efficiency and productivity.

For detailed information, see Customizing Oracle WebCenter Sites.

Typical Tasks for WebCenter Sites Developers
Some of the tasks you accomplish to build your core website are designing your site’s
data model, forms for users to enter information, sample assets, templates to display
content assets, caching for performance.

See these topics for typical developer tasks:

• Data Models for Content Display

• Content Entry Forms for Content Management Sites

• Templates and Elements to Render Content on the Website

• WebCenter Sites Systems for Development, Management, Delivery, and Testing

• Approvals and Publishing

• Caching to Optimize Performance

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-2

Data Models for Content Display
WebCenter Sites developers build a data model for the content they need displayed on
their website. WebCenter Sites supports the following data models:

• Basic Asset Model: This supports a flat data structure, so basic assets cannot
inherit each other's properties (called attributes in this guide). Content is entered
by WebCenter Sites users and is stored as objects called assets in the WebCenter
Sites database. Each type of asset is contained in one primary storage table in the
database, such that basic assets of one type can be associated with basic assets
of another type.

• Flex Asset Model: This is a comprehensive data model in which each asset type
uses several storage tables such that hierarchical data structures can be created,
and child assets inherit attribute values from their parent assets. The flex asset
model also supports flat data structures, within its own framework. Note that the
flex asset model functions independently of the basic asset model; tables created
within the two models do not intersect.

Whether you choose the flex asset model or the basic asset model depends on the
complexity of the data you plan to serve to your visitors. The flex asset model has
historically been used for creating large online catalogs of products. However, it can
be used in less complex situations, and is especially desirable when the intent is
to eventually convert flat data structures to hierarchical structures. The conversion
process does not require you to re-create the data.

Content Entry Forms for Content Management Sites
WebCenter Sites developers use data models to create the content entry forms that
contributors use to create content for the website. Each field in a content entry form
maps to a corresponding column in a database table (or multiple tables). In addition,
developers create the JSPs that render content entry forms in Web Mode and render
published content on the website.

When content is ready for public delivery, it can be published to the website using
either dynamic or static publishing. Formatted content is displayed on the website by
JSPs. This table describes the difference between a dynamic WebCenter Sites page
and typical HTML page.

Table 1-1 Static and Dynamic Pages

Static Page (HTML Page) Dynamic Page (WebCenter Sites Page)

Single disk file, served by a web server. Composed and created upon request.

One-to-one association between the HTML
page and the page the visitor sees in the web
browser.

The web page that the visitor sees can
be composed of multiple components called
pagelets, created from within WebCenter
Sites.

No separation of presentation and content. As
a result, it is difficult to modify presentation
and content independently of each other.

Separation of presentation and content. As
a result, presentation and content can be
modified and maintained independently of
each other.

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-3

Templates and Elements to Render Content on the Website
WebCenter Sites developers use APIs and JSP tags to code templates and elements
used to render content on the website. The following programming components are
used in the process of coding:

• Element Files

• APIs and JSP Tags

• Sessions and Cookies

Element Files
In very simplistic terms, the main function of WebCenter Sites is to separate format
from content. By separating the two, WebCenter Sites enables you to reuse the same
bits of formatting code for many pieces of content. For example, to change the format
of articles, you rewrite the code in one place, rather than having to rewrite code for
every article in your system.

Your formatting code is stored in files called elements. The code extracts the content
from the database and formats the content. Because content is formatted only when a
page is requested, you have the opportunity to design pages that will be constructed
on-the-fly, according to the identity of the visitor requesting them.

Element files are stored in the ElementCatalog table in the WebCenter Sites
database. The names of your pages are stored in the SiteCatalog table. That is,
the SiteCatalog table stores the entries for all the legal page names for your website.
Each row in the SiteCatalog table is a page entry. Each page entry points to an
element in the ElementCatalog table. The element being pointed to by a page entry is
called the root element of the page entry.

WebCenter Sites renders your content into an online page by executing SiteCatalog
page entries. Here is how it works:

1. A visitor enters a URL to your website in a browser.

2. The web server that processes the HTTP request maps that URL to a WebCenter
Sites URL. For example, a WebCenter Sites URL would look like this:

http://www.FiscalNews.com/servlet/ContentServer?pagename=FiscalNews/Home

The text after a WebCenter Sites URL is called the pagename. In this example,
the pagename is Fiscalnews/Home.

3. WebCenter Sites looks up the pagename in the SiteCatalog table, determines its
root element, locates that element in the ElementCatalog table, and then invokes
that element.

The element is executed. Elements that are called from within the root element are
executed in turn.

4. The results (images, articles, and so on, including any HTML tags) are rendered
into HTML code and returned to the visitor's browser.

The result is a page that is dynamically rendered on demand.

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-4

APIs and JSP Tags
WebCenter Sites includes several tag families that you use to code your elements.
The tag families enable you to identify, extract, and then display assets on your
website. WebCenter Sites also provides Java methods and utilities that you can use
for designing your website, for developing your own content management applications,
and for customizing the WebCenter Sites modules/products.

For information about coding pages that display assets that use the basic data
model, see Coding Elements for Templates and CSElements. For information about
WebCenter Sites tags, see the Tag Reference for Oracle WebCenter Sites Reference.

The WebCenter Sites operating system consists of several servlets that run on top of
an application server. Each servlet is invoked when necessary to perform a discrete
set of tasks. Each servlet has a corresponding Java API with Java methods and JSP
tags that you use to invoke the functions.

This figure shows the main WebCenter Sites servlets:

Figure 1-1 Main WebCenter Sites Servlets

The main WebCenter Sites servlets are as follows:

• ContentServer: Generates and serves pages dynamically. This servlet provides
disk caching, session management, event management, searching, and
personalization services.

• CatalogManager: Provides most of the database management for the WebCenter
Sites database, including revision tracking, security, resultset caching, and
publishing services.

• TreeManager: Manages the tree tables, which store hierarchical information about
other tables in the WebCenter Sites database.

• BlobServer: Locates and serves binary large objects (blobs). Blobs are not
processed in any way. They are served as is, as they are stored.

• DebugServer: Provides tools that help you debug your XML code.

• CookieServer: Serves cookies for WebCenter Sites pages, whether those pages
are delivered by the ContentServer servlet or by the Satellite Server application.

• HelloCS: Displays version information about the WebCenter Sites software
installed on your system.

In general, you do not have to know which servlet performs which service or task. You
simply invoke the appropriate Java method or XML or JSP tag and let the WebCenter

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-5

Sites core application determine which servlet to call. The exception to this rule is
when you write code that references a servlet URL. That is, when you include a link
to a blob or to another page on a WebCenter Sites page. Because the ContentServer
servlet and the BlobServer servlet reside at different URLs, you must include the URL
of the appropriate servlet in your <A HREF> tags.

For information about the coding links to blobs and pages, see Website Development
with Tag Technologies and Coding Elements for Templates and CSElements.

Sessions and Cookies
WebCenter Sites automatically creates a session for a visitor when he or she visits
your website for the first time. You can store information about that visitor in session
variables by using the tags and methods in the WebCenter Sites core. Subsequent
elements can then access those variables and respond conditionally to them.

Session variables, however, are volatile. They last only while the session lasts, that is,
until one of the following events occurs:

• The visitor closes his or her browser.

• The session times out after a period of inactivity. You control session timeouts
by setting the cs.timeout property (in the wcs_properties.json file) from the
Property Management Tool in the Admin interface.

• The application server is restarted (except in a cluster).

• The session is disabled in some other way.

Cookies are used to store information in a more permanent manner. You can code
your elements to write cookies that store information about your visitors to their
browsers. Then, you can use the stored information to customize pages and display
the appropriate version of a page to the appropriate visitor when he or she returns to
your website.

See About Sessions and Cookies.

WebCenter Sites Systems for Development, Management, Delivery,
and Testing

When you are working with WebCenter Sites for your content management needs, you
and the others on your team work with up to four different systems:

• Development System: Where developers and designers plan and create the
website. All of the WebCenter Sites products that you have purchased are
installed on this system.

• Management System: Where content providers such as writers, editors, graphic
artists, and marketers are assigned to content management sites to develop
the content that is delivered to visitors of the website. Revision tracking and
workflow features track changes to assets (content), monitoring them until they
are approved to be published to the delivery system.

Content management sites represent the real website. For example, you could
create separate content management sites for separate sections of your website
because the teams who provide content for each section work completely
separately from each other and only members of that team should have access
to that section (content management site). Or, you could create a content

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-6

management site that represents an entire website, as does the avisports
sample site. See Assembling Content Management Sites in Administering Oracle
WebCenter Sites.

• Delivery System: Here the content you are making available or the products that
you are selling are served to your visitors or customers.

To deliver content dynamically, you should install all of the WebCenter Sites
products that you purchased on this system. To deliver content statically, that is, to
serve static HTML pages, your delivery system needs a web server only. That is,
you don't have to install any of the WebCenter Sites products on your system.

• Testing System: Where you or your QA engineers test the performance of both
the management system and the delivery system. Testing can be performed on
either a dedicated system or on the development system itself.

WebCenter Sites developers spend the majority of their time working on the
development system. When the asset types that you develop and the site that you
have designed are ready, you migrate (publish) your work from the development
system to the management system. As assets are created, modified, and approved by
the content providers, they are published from the management system to the delivery
system.

Approvals and Publishing
When you finish developing the website, you publish your work (templates, elements,
asset types, the site navigation, and so on) from the development system to the
management system. Publishing your work makes it available on the management
system. Contributors can then use the asset types and your site design to create
content for the website. When contributors are finished creating the site content, that
content (along with the supporting asset types, templates, elements, site navigation,
and so on) can be approved and published to the website.

When assets are ready to be published, someone first marks them as approved. Then,
when the publishing process is ready to start, it invokes the approval system which
compiles a list of all the approved assets and examines all the dependencies for those
assets. Assets linked to an approved asset must also be approved before the asset
can be published.

The WebCenter Sites publishing and approval systems track and verify all the asset
dependencies to maintain the integrity of the content on your delivery system. The
publishing and approval systems ensure that the assets that are ready for publishing
are the only assets that get published.

When you publish content and elements, WebCenter Sites copies them from one
system (for example, your management system) to another system (for example, the
delivery system). WebCenter Sites delivers two publishing methods that are built from
the WebCenter Sites publishing APIs. These publishing methods interact with the
WebCenter Sites approval system, an underlying system that determines which assets
have been approved.

The WebCenter Sites publishing methods are:

• RealTime: The dynamic publishing method. It is built with the WebCenter Sites
RealTime API to copy approved assets from the WebCenter Sites database on
one system to the WebCenter Sites database on another system.

• Export to Disk: The static publishing method. It renders your approved assets into
static HTML files, using the template elements assigned to them. An administrator

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-7

or automated process then copies those files to your delivery system using FTP or
another file transfer method.

See Also:

• Tips for Configuring Publishing Destination Definitions in Administering
Oracle WebCenter Sites for information about configuring publishing

• Coding Elements for Templates and CSElements for information about
coding elements so that they log dependencies appropriately and how
WebCenter Sites calculates approval dependencies

• Approving and Publishing Content in
Using Oracle WebCenter Sites and Approving Multiple Assets in
Administering Oracle WebCenter Sites for information about how to
approve assets

Caching to Optimize Performance
Developers implement various caching frameworks to optimize the performance.
WebCenter Sites also supports the use of Satellite Server caching, which provides
a second level of caching and can also be used as a remote cache for your web
pages. By default, WebCenter Sites and Satellite Server use inCache as their page
caching framework. The following topics describe caching:

• Page Caching

• Resultset Caching

• Asset Caching

• Satellite Server Caching

Page Caching
Page caching is implemented at the template level and is used to cache pages on the
WebCenter Sites system. Page caching plays a significant role in system performance.
A cached page can be served much faster than it can if it must first be generated.

WebCenter Sites alone (independently of Satellite Server) can separately cache each
page or pagelet that is identified by a page entry in the SiteCatalog table. You can
mark the expiration date of any pagelet in the cache by specifying a value for that
page entry in that table.

Page caching is made especially effective by the addition of Satellite Server. Installing
a Satellite Server application amounts to installing page caches on the servers that
host Satellite Server, thereby extending the WebCenter Sites page cache.

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-8

See Also:

• Understanding Page Design and Caching for information about page
caching

• Configuring Your System for inCache Page Caching in Administering
Oracle WebCenter Sites for information about inCache page caching

• Satellite Server Caching for information about Satellite Server

Resultset Caching
Resultset caching is another feature that can greatly enhance system performance.
When the WebCenter Sites database is queried by any mechanism, the WebCenter
Sites application can cache the resultset that it returns. It keeps track of every table
in the database. Whenever a table is modified, it flushes all the resultsets that were
cached for that table.

See Working with Resultset Caching and Queries.

Asset Caching
Asset caching is a memory-based system that is built on the inCache framework to
optimize the performance of WebCenter Sites by taking up load that would otherwise
affect the database. In WebCenter Sites, programmatic usage of assets consists of
loading and rendering their attributes. Given that assets are loaded by templates,
which are stored in the WebCenter Sites database, AssetCache is used only on
WebCenter Sites nodes. Asset caching includes the AssetCache container component
which functions by caching assets and interacting with existing inCache components.

See Using the inCache Framework in Administering Oracle WebCenter Sites.

Satellite Server Caching
Satellite Server is a caching application. It supplements WebCenter Sites caching
functionality by providing additional page caches. The tandem use of the WebCenter
Sites and Satellite Server caches results in automatic double-buffered caching.

By default, co-resident Satellite Server is installed on the same computer where
WebCenter Sites is installed. You can further improve your system's performance
by installing Satellite Server remotely so it can cache pages and pagelets closer to
their intended audience. Remote Satellite Server hosts are fast, inexpensive caches
of WebCenter Sites pages. They reduce the load on the WebCenter Sites host,
dramatically increase the speed of page delivery to your site visitors, and provide a
simple and inexpensive way to scale your WebCenter Sites system.

HTTP Requests
When the load balancer routes an HTTP request for a page to Satellite Server,
Satellite Server either serves the page if the page is in its cache, or if the page is
not cached, it forwards the HTTP request to WebCenter Sites. The basic chain of
events is the following:

1. Satellite Server checks its cache.

Chapter 1
Typical Tasks for WebCenter Sites Developers

1-9

2. What happens next depends on whether the page is in the Satellite Server cache
(see Table 1-2 for details).

Table 1-2 Pages in or not in the Satellite Server Cache

Page in the Satellite Server Cache Page Not in the Satellite Server Cache

Satellite Server serves the page to the visitor's
browser.

In this case, Satellite Server does not have
to forward the request to the WebCenter
Sites database, thus reducing the load on the
database.

• Satellite Server forwards the request to
WebCenter Sites.

• WebCenter Sites returns the cached
pages from its cache to Satellite Server. It
renders the page which is not in its cache,
caches a copy, and sends the page to
Satellite Server.

• Satellite Server then caches the page and
serves it to the visitor's browser. When
requested again, the page is served
from the Satellite Server cache, which
reduces the load on the WebCenter Sites
database.

Each Satellite Server application is independent of every other Satellite Server
application. An individual Satellite Server application has the following characteristics:

• It maintains its own cache.

• It cannot request pages or pagelets from another Satellite Server application. It
can request pages or pagelets from only the WebCenter Sites core.

Satellite Server Servlets
Satellite Server is made up of several servlets: one that caches and serves pages, and
two that manage the cache:

• Satellite: Caches pages at the pagelet level. The Satellite XML or JSP tags in
your elements indicate which pagelets should be cached, and they control various
Satellite Server settings.

• Inventory: Enables you to examine the Satellite Server cache so you can obtain
the information you need to manually flush individual pages or pagelets from the
cache when necessary.

• FlushServer: Handles all types of cache-flushing. FlushServer can either flush the
entire cache, or can flush individual items from the cache.

For information about coding pages with the Satellite Server tags and page caching in
general, see Understanding Page Design and Caching.

WebCenter Sites Utilities
Many GUI-based WebCenter Sites utilities are available for you to manage
the WebCenter Sites database and various code. Decide which utility you need and
install it on your system.

• Developer Tools, which integrates WebCenter Sites with the Eclipse Integrated
Development Environment (IDE). The Developer Tools kit enables WebCenter
Sites developers to work in a distributed environment using tools such as Eclipse
and version control system (VCS) integration.

Chapter 1
WebCenter Sites Utilities

1-10

• Sites Explorer, for viewing and editing tables in the WebCenter Sites database.

• CatalogMover, for exporting and importing database tables.

• XMLPost, for incrementally importing data into the WebCenter Sites database.

• BulkLoader, for quickly importing large amounts of data into the WebCenter Sites
database.

• Property Management Tool, accessible from the Admin interface, for viewing and
organizing the wcs_properties.json file (system configuration files).

WebCenter Sites Interfaces
You’ll use the Admin interface to accomplish several different tasks. However, it’s a
good idea to get familiar with Contributor and WEM interfaces, too.

• Admin Interface: The Admin interface allows developers and administrators to
manage and configure WebCenter Sites.

Figure 1-2 Admin Interface

The tree panel on the left contains all the content management elements that
developers and administrators have to work with. The workspace area on the right
is where all the tasks and operations are performed.

The Admin interface supports code-based operations, and enables you to
graphically complete the creation of basic asset types. For example, to create
a basic asset type, you would:

1. Write an XML file (called asset descriptor files) to define the basic asset type.

2. Upload the file to WebCenter Sites.

3. Invoke the AssetMaker utility. One of the functions of the interface
(AssetMaker) is to read the asset descriptor file and, from it, create a storage
table for the asset type. Other functions in the interface allow you to configure
the asset type (for example, name its authorized users).

Chapter 1
WebCenter Sites Interfaces

1-11

The same interface is used by administrators to create content management sites,
manage system users, control their permissions to content, establish workflow
processes, and configure WebCenter Sites features (such as Mobility).

• Contributor interface: The Contributor interface is designed specifically for
content providers and business users. It provides ease of use and quick access
to most WebCenter Sites content management functions, such as previewing,
creating, editing, deleting, and approving assets.

Figure 1-3 Contributor Interface

When you work with assets in the Contributor interface, you may see fields
enabled with the following WYSIWYG editors:

– CKEditor: An open source WYSIWYG text editor from CKSource which
requires no client-side installation. Developers can use CKEditor to create
basic assets whose text-entry fields use CKEditor as the input mechanism for
the field. Developers can also create attribute editors for flex attributes that
use CKEditor as the input medium.

– Clarkii Online Image Editor (Clarkii OIE): A popular third-party image editor
from InDis Baltic. Developers can enable Clarkii OIE to allow users to edit
images directly in the Form Mode eliminating the need for an external image
editor.

• WEM Admin Interface: The WEM Admin interface is designed specifically for
administrators to manage the assignment of applications and users to sites using
roles.

Chapter 1
WebCenter Sites Interfaces

1-12

Figure 1-4 WEM Admin Interface

See Also:

Using the Web Experience Management Framework in Administering
Oracle WebCenter Sites and Developing Applications with the Web
Experience Management (WEM) Framework.

Use Case Scenarios for WebCenter Sites
WebCenter Sites provides capabilities for business-user content authoring, delivery of
high-scale dynamic sites, content targeting and optimization, user-generated content,
end-user personalization, marketing and lead generation, and mobile Web delivery.
WebCenter Sites is used in a variety of industries to create informational and branding
websites that run marketing campaigns and generate business leads.

These topics describe WebCenter Sites use cases:

• Developing Informational (Branding) Websites

• Creating Marketing-Oriented Websites

• Creating Mobile Websites

Developing Informational (Branding) Websites
WebCenter Sites provides easy-to-use and efficient features to develop branding
websites for products and services. The starting point is creating the basic
infrastructure using the WebCenter Sites core. Consider the following when designing
a website with WebCenter Sites:

Chapter 1
Use Case Scenarios for WebCenter Sites

1-13

• Content Type: The first thing to determine is how the site content should be
categorized and designed in WebCenter Sites. Which content type should be
structured and which should be binary? Content that content contributors create in
WebCenter Sites through Form or Web mode is structured, but imported content
(such as Microsoft Word files) is binary.

Architects determine the following about content types:

– Which content types should have variable attributes and which should have
fixed attributes? A product model or service type of content may require
variable attributes as companies improve their existing range of offerings from
time to time.

– Which content should be flat and which should be hierarchical? For instance,
images are usually flat or basic type. A product accessory model such as
headphones for a MP3 player can be hierarchical.

– Based on the product or service, which content should inherit attributes from
other content? A product model may need to inherit attributes from the parent
product. Some content types may be standalone.

– Some content types require associated content. For example, you may need
to associate an article about a product model with articles about similar
product models or the parent product.

– How will contents be recovered if a disaster occurs?

These considerations determine the asset model and its implementation. Typically,
websites require a combination of basic and flex assets. For information about
how content types are determined and designed in WebCenter Sites, see
Understanding the Asset Types and Asset Models.

• Content Volume: A website should be designed to handle any volume of content.
It should be scalable.

• Pages: A page contains many pagelets that can be reused. When designing
pages consider reusability benefits as well as caching strategy for better
performance. See Coding Elements for Templates and CSElements and
Understanding Page Design and Caching.

• Page Caching: For better performance, determine when pagelets will be used.
Design page templates to use fewer uncached pagelets per page. See Managing
Caching.

• Templates: Before designing templates, consider those scenarios when template
components might be reused; pagelets can be reused on other pages. Some
examples of pagelets are: Top, LeftNav and Footer as they are likely to be reused
on many pages. See Developing a Website.

• Content Mode: WebCenter Sites lets you include Form mode and Web mode
in your content management site. While Form mode is quick to use, Web mode
enables infrequent users or users who perform a limited role to find, edit, and
submit content directly from the rendered (Preview) version of an asset. Web
mode also enables content contributors to compare two or more versions of a web
page to determine which version is more effective. See Developing a Website.

• Content Management (CM) Sites: A CM site is the source of content for the
online site and can represent either an entire online site or one of its sections.
Consider customers' needs and determine how CM and online sites should be
designed: whether a single CM site and its single online site, or a single CM site
and multiple online site, or multiple CM sites and multiple online sites. See Content
Management Models in Administering Oracle WebCenter Sites.

Chapter 1
Use Case Scenarios for WebCenter Sites

1-14

• Multilingual Requirements: Find out what customers are looking for. Mostly
customers want the ability to create content in a master language, wire it up to
other related content (which may or may not be in the master language), then
either publish it and translate it later. Or, they prefer translating the content and
other related bits and pieces first, and then publishing the whole as a single
package. Determine if customers want certain country-specific rules to apply to the
rendered content. See Configuring Sites for Multilingual Support.

• User permissions: You use Access Control Lists (ACLs) to restrict user access
to the WebCenter Sites database and the rendered pages served on your sites by
WebCenter Sites. WebCenter Sites also provides user tags to log in and log out
users, as well as to create an account or edit user profiles. Some of the common
user permissions are: create, edit, delete, approve content, rights to access WEM,
Admin, and Contributor interfaces. Consider what all types of permissions should
be created for different roles. See Creating and Authorizing Users in Administering
Oracle WebCenter Sites and Security: Managing Content Management Users.

• Security: Before developers begin designing the online site or contemplating
changes to the user interface on the management system, you must determine
and implement your security protocols. The decisions you make about security
configuration affect the way that you code and implement your online site. See
Setting Up External Security in Administering Oracle WebCenter Sites.

• Customization: Customer teams interact with the Contributor interface to edit and
update websites. For their efficiency and convenience, you can customize the
Contributor interface components such as the site tree, dashboard, asset forms,
search views, and so on. See Customizing Oracle WebCenter Sites.

Creating Marketing-Oriented Websites
Oracle WebCenter Sites enables marketers and business users to easily create and
manage contextually relevant website content aimed toward sales and customer
loyalty. It provides components that let you develop personalized and targeted
websites, as well as facilitate analysis of websites' effectiveness to sell products and
create new customers.

Oracle WebCenter Sites: Engage lets you design online sites that gather information
about your site visitors and customers. Marketing uses this information to personalize
product placements and create promotional offerings for each visitor.

The Oracle WebCenter Sites: A/B Testing module provides a feature to compare two
or more versions of a web page to determine the most effective version that can help
converting a website visitor into a website customer through a sale. WebCenter Sites
allows many methods to analyze effectiveness of a page version. Some of them are:
visitor clicking a link, visiting a certain set of pages, remaining on the site for a certain
length of time, adding an item to a shopping cart, and other actions, as well as the sale
of a product. For information, see #unique_60.

For detailed information, see Developing Personalized and Targeted Websites with
Engage.

Creating Mobile Websites
The WebCenter Sites' mobility feature lets you easily extend your web presence
to mobile devices and deliver multi-channel marketing and customer experience
initiatives while saving significant time, money, and effort in managing mobile sites.
Use the mobility feature to create, preview, and deliver websites to a variety of

Chapter 1
Use Case Scenarios for WebCenter Sites

1-15

mobile devices such as phones and tablets. For information about developing mobile
websites, see Developing Mobile Websites.

Chapter 1
Use Case Scenarios for WebCenter Sites

1-16

2
Overview of the Avisports Sample Site

Avisports, a sports-centric sample site, illustrates features such as creating and editing
assets in Form Mode and Web Mode in the Oracle WebCenter Sites: Contributor
interface. It includes articles illustrated with images. Avisports provides you with
sample templates that are coded to render assets’ Create and Edit view in Web Mode.

Topics:

• Touring the Avisports Sample Site as a Content Contributor

• Touring the Infrastructure of the Avisports Sample Site

Touring the Avisports Sample Site as a Content Contributor
To get a glimpse of what you can do with Oracle WebCenter Sites, take a tour of the
avisports demo site. We used WebCenter Sites tools and technologies to design this
site for you. By default, the Contributor interface is launched for you when you log into
the WebCenter Sites instance.

On the left of the Contributor interface is the Site Tree that contains three site
navigations for the avisports site. The avisports site under the Default site navigation
node is meant for desktop and laptop computers. The Touch site navigation node
is meant for touch screen devices, and the NonTouch site navigation node is for
non-touch devices with QWERTY keypads. Expanding these nodes displays the site
pages. Double-clicking a page displays the page in Web Mode, where a content
contributor can edit and preview the content.

You can preview the avisports site in the context of a single or multiple devices. To
preview avisports in the context of a single device, click the Show/Hide Devices
icon on the right and choose a device in which you wish to preview this site. For

2-1

multi-device preview, click the Multi-Device Preview icon. These previews show how
the site will be displayed on site visitors' devices.

See Using Oracle WebCenter Sites.

Touring the Infrastructure of the Avisports Sample Site
Now let’s take a look at the infrastructural elements of the avisports site. To take a tour
of the avisports infrastructure, you need to switch to the Admin interface. The Admin
icon on the top left of the WebCenter Sites interface can quickly take you there.

In the Admin interface, click Site to display its contents. Expand the Site Navigation
node. There are three nodes that contain assets identical to those on the Site Tree in
the Contributor interface. Expand any site navigation node (Default, Touch, NonTouch)
to see that it contains the Home page, navigation pages, articles, and images.

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

2-2

Expand the Site Admin node, and then expand the Asset Type node to view the
assets enabled for the avisports site.

Expand the Site Navigations node. It lets you create new site navigations and reorder
the existing site navigations.

On the General Admin tree, expand the Mobility node. It includes Device Groups,
Devices, Device Repository, and Image Properties nodes. These nodes were used
while designing avisports site for touch screen and QWERTY devices.

To view templates used for the avisports site, click Search on the toolbar. In the
Search dropdown list, choose Suffix and select the default All in the for dropdown
list. These choices display templates used for avisports meant for desktop and laptop
devices, touch screen devices, and non-touch QWERTY devices.

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

2-3

What you are seeing in the Admin interface is the infrastructure of the site that you
previewed in the Contributor interface.

To familiarize yourself with the high-level development process, see The WebCenter
Sites Development Process. To learn what types of websites you can develop with
WebCenter Sites, see Use Case Scenarios for WebCenter Sites.

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

2-4

3
The WebCenter Sites Development
Process

In WebCenter Sites, you design two sites: a content management site(s) that the
content contributors use to add and update information, and an online site that is
delivered to visitors' browsers from your delivery system. Content contributors publish
the online site from the management system to the delivery system.

So you are responsible for the user experience of two sets of end users:

• The site visitors who use your delivery system.

• The content providers who use the management system.

When creating these two closely connected yet separate sites, the development team
performs a series of planning, development, and testing steps. This chapter describes
the development process in one possible sequence of events and in very general
terms. Your own workflow will vary based on your work environment and business
needs.

Topics:

• Step 1: Set Up the Team

• Step 2: Create Functional and Design Specifications

• Step 3: Set Management System Requirements

• Step 4: Implement the Data Design

• Step 5: Build the Online Site

• Step 6: Set Up the Management System

• Step 7: Set Up the Delivery System

• Step 8: Publish to the Delivery System

Step 1: Set Up the Team
People with a variety of skillsets collaborate to assemble a site in WebCenter Sites.
Some people design the site, some code various elements, some manage content,
and so on.

• Solution architects (site designers)

• XML and JSP developers

• Java application developers

• Database administrators

• System network administrators

• Marketers and advertising staff

• Product managers (if you are developing a commerce site)

3-1

• Content providers

You need people such as DBAs, system administrators, and content providers on your
development team in addition to the people (like you) who do the actual coding for
several reasons:

• You need to design a data model in addition to creating a page design, which
means that you need early input from the DBAs who will be supporting the
databases on each system.

• Code and data need to move around on multiple separate systems, several of
which are probably clustered, which means you need early input from system and
network administrators.

• Implementing a WebCenter Sites system is dependant on the work habits of your
content providers being accurately reflected in the design of the management
system. You need early input from those who will use the management system.

Step 2: Create Functional and Design Specifications
An online site delivered from an Oracle WebCenter Sites content management
system is a holistic construct in which everything interacts, intersects, and works
with everything else. So, you need to create a functional specification and a design
specification (to design your online site on paper).

You should accomplish some pieces of this task before you begin coding anything
(although you might do some proof-of-concept coding while working on the design
specification).

Functional Requirements
Before you can begin a design specification, product management and marketing must
provide the functional requirements for the online site.

Page Design
After you obtain the functional requirements from your marketing folks, a good place
to start is to map out all the types of pages that you want to present on the online
site. For example, home page, section page, columnist page, search page, article
page, and so on. To design a commerce site you will need other kinds of pages:
registration page, product category pages, product description page, article page, FAQ
page, invoice page, and so on.

Determine the graphical, navigational, and functional features for each page and the
site overall: navigation bars, buy buttons and shopping carts, tell me more buttons,
search functions, logo placement, animated graphics, and so on.

If you are using Oracle WebCenter Sites: Engage, decide where the merchandising
messages (recommendations) are to be placed on the pages and on which pages
they'll be placed. For example, each product category page may include a New
Products section in the upper-right corner of the page.

Map out the entire structure of the site and create mock-ups.

Chapter 3
Step 2: Create Functional and Design Specifications

3-2

Caching Strategy
One of the major elements in your design is caching: page caching and resultset
caching. No online site can reach performance goals without you planning, testing,
and implementing a caching strategy. While designing the pages that you want to
present on your online site, you must consider how and when page caching can and
should be implemented for each piece on each page. While designing your queries,
you must map out all the tables in the database and determine how the resultset
caching settings should be set for each table.

Security Strategy (Access Control)
You must determine what kinds of access control you want to enforce early in the
design process so that you design your pages correctly. For example, requiring your
visitors to identify themselves before they are allowed to access any part of your online
site. The requirement to check visitors' identities before allowing them access to a
page affects how you would cache the components of that page. You could design a
container page, which is never cached. This page verifies the identity of the visitor and
then assembles the page from cached pagelets only if the verification is successful.

Separate Format from Content (Elements from Assets)
Following the basic proposition of separating content from format, take a look at each
piece of each proposed page in your site and determine whether that piece should be
represented as data or as logic.

A good design is one in which data is designed to be represented as an asset and is
not embedded into element code. Examine every component of design or content, and
then determine what your assets are. You make that determination by deciding which
category a component belongs to: data or logic/code.

Simply speaking, do not code something into an element (embed it in logic) if it is
really data. Data should be in a separate asset.

Here's another way to look at it:

• Assets that represent content are the responsibility of content providers.

• Logic, anything coded into any element, is the responsibility of the developers.

Determine the Asset Types (Content)
Documents, articles, products, and images are easily identified as assets. However,
design components such as headers and footers could also be assets:

• When the content in a header or footer is embedded in the code of an element,
you or another developer has to change the text in it when anything in it changes
(a phone number, a logo, and so on).

• When the content in a header or footer is in an asset, the code in your
elements must be able to obtain the identity of the asset. Its content becomes
the responsibility of a content provider.

Other page components that can be assets include the following:

• Animation and other media

Chapter 3
Step 2: Create Functional and Design Specifications

3-3

• Quote of the day

• Company or stock profiles

• Knowledgebase questions and answers

From your point of view, someone else is responsible for a component's content which
is represented in an asset. You are only responsible for when and where it displays on
your online sites and what it looks like when it displays there.

Decide How to Handle Images and Other Blobs
You have two general options when deciding how to manage the images and other
blobs that you want to use in your online site:

• Treat them as assets: Store them in the WebCenter Sites database and have the
BlobServer servlet serve them.

• Treat them as static files: Put them in a file structure on your web server and let
the web server serve them.

Either method is a valid option. You can create links to image files stored on the web
server with the WebCenter Sites tags. There may be performance benefits when you
allow your web server to deliver your images. However, if you keep your images and
blobs separate from the WebCenter Sites database:

• You must implement a separate file management process. The publishing
methods that move image assets from your management system to your delivery
system cannot move content that is not in the WebCenter Sites database. You
must manage this process on your own.

• None of the native WebCenter Sites security mechanisms will apply. That is, you
cannot use ACLs to limit access to blobs that are not managed by WebCenter
Sites.

Map Out the Functional Design and Format (Elements)
Analyze all of the functionality that you plan to incorporate into your online site. Parts
of a commerce site will no doubt behave more like an application. Outline what code
or logic is required for your visitor registration pages, visitor data collection pages,
shopping carts, personalization, and so on.

Remember that your WebCenter Sites system provides you with coding options: Java,
XML, and JSP. As you look at each of the functions you want to provide, determine
which is the best coding solution for that function.

Data Design
Once you know which pieces of your site should be represented as assets, you can
map out what your asset types should be. Each new asset type will use one or more
database tables (depending on whether it is a basic or flex asset type).

Asset Types
No matter which asset model you are using, basic or flex, consider the following when
you design your asset types:

Chapter 3
Step 2: Create Functional and Design Specifications

3-4

• Asset type design affects both of the user groups that you are designing for
(visitors to the online site and the content providers who enter the data).

• Which types of assets have to be linked or related to other assets of other
types to successfully implement your page design? Be sure to implement these
relationships in the asset type.

• Be sure that your asset types store only the data that you really plan to use so that
content providers do not waste time maintaining data that no one uses.

Auxiliary Tables That Support Your Asset Types
The data design that you want to implement for your system extends beyond the
database tables that hold your assets. Depending on the kinds of information that
you want to provide, you might have to create auxiliary tables that support your asset
types. For example, in a site that has asset types with a Mimetype drop-down list,
a user must select a value from this list. You could create a lookup table named
MimeType and pull these values from this table. Depending on your needs, you might
have to create similar tables for your system.

Your DBAs should be involved in your discussions about the asset types and auxiliary
tables that you plan to create so they can understand from the start the kind of
database tuning issues that might arise on the management and delivery systems.

Visitor Data
If you are using Engage, determine what kinds of visitor data will be gathered. These
data types are represented by the Engage visitor data assets that you use to create
segments for personalizing your site based on the identity of the visitor. For example,
demographics, purchase history, or clickstream information.

After your WebCenter Sites system goes live and starts collecting visitor data, the
tables that store that data grow very quickly. This is another area that you have to
consult your DBAs about.

Step 3: Set Management System Requirements
Don't yet begin coding. Think about how the management system should be
organized. Keep in mind that the design depends on the content management site.

A content management site is an object that you use as an organizational construct
for an actual online site and as an access control tool. When you create Template
assets, WebCenter Sites creates an entry in the SiteCatalog table. The naming
convention for the page entries includes the name of the content management site
that you are creating the Template for. This means that you must be consistent with
site names throughout your entire content management system (development system,
management system, and delivery system), and you must know the names of the sites
that you are using before you begin coding.

Although your primary concern is the name of each site, the system administrators and
business managers must also determine the following:

• How many users and ACLs (access control lists) do you need? (Remember that
you may have to create ACLs to assign to the visitors of the online site, as well.)

• How many site roles you do you need?

Chapter 3
Step 3: Set Management System Requirements

3-5

• Which asset types need a workflow process?

• Which asset types should use revision tracking?

• Who should have access to which asset types on which sites?

Use both this guide and Administering Oracle WebCenter Sites to help you make
these decisions.

Step 4: Implement the Data Design
You’ve created the design specification, and you understand how the management
system is organized. So, it’s time for you to implement the data design.

On the development system, you complete tasks such as these:

• Create content management sites with the same names as those that will be used
on the management system. See Creating a Site From the Admin Interface in
Administering Oracle WebCenter Sites.

• Design and create your asset types. See Creating Basic Asset Types and Creating
a Flex Asset Family.

• Add any lookup tables or other auxiliary tables for the asset types.

• Create sample assets of each type. See Creating an Asset in Form View in Using
Oracle WebCenter Sites.

This step and Step 5: Build the Online Site are iterative and will most likely overlap
a great deal. While you create asset types so that you can create assets before you
create templates for them, it is likely that you will uncover areas that need refinement
in your data design only after you have coded a template and tested the code.

Step 5: Build the Online Site
As soon as you've created your design specification, you can begin coding elements
that do not display assets. And, to start coding templates and building the online site
all you need is the sample assets of one type.

In this step, you complete tasks such as these:

• Create the page, query, and collection assets that implement the functionality of
your online site. See Creating Collection Assets, Query Assets, and Page Assets.

• If you are using Engage, create the visitor data assets, sample segments,
recommendations, and sample promotions. See Developing Personalized and
Targeted Websites with Engage.

• Create Template assets (and code template elements) for all of your asset types.
See Creating Template, CSElement, and SiteEntry Assets.

• For the Web Mode feature of the Oracle WebCenter Sites: Contributor interface,
code the templates using the insite family of tags. See Coding Templates for
In-Context Content Editing.

• Code the CSElements that implement underlying functionality (that do not display
assets). See Creating CSElement Assets.

• For a commerce site, code pages that implement the shopping cart. See What You
May Need to Know About Shopping Carts and Engage.

Chapter 3
Step 4: Implement the Data Design

3-6

• If you are using Engage, code pages that collect visitor data. See Collection of
Visitor Data.

• Test everything.

Perform both usability and market testing for your online site.

See Website Development with Tag Technologies.

Step 6: Set Up the Management System
After your online site becomes functional on the development system, it’s ready to
move to the management system.

The developers complete the following task:

• Publish the content management site and all its components to the management
system. See Working with RealTime Publishing in Administering Oracle
WebCenter Sites.

The system administrators then complete the following kinds of tasks:

• Create users, ACLs, and roles. Assign users their roles for each content
management site. See Working with ACLs and Roles in Administering Oracle
WebCenter Sites.

• Create workflow processes. See Creating and Managing Workflow Processes in
Administering Oracle WebCenter Sites.

• Create StartMenu shortcuts. See Creating a Start Menu Item in Administering
Oracle WebCenter Sites.

• Enable revision tracking. See Enabling Revision Tracking in Administering Oracle
WebCenter Sites.

For information about setting up the management system, see Administering Oracle
WebCenter Sites.

Import Content as Assets
It is likely that you have content in some non-asset format that you want to use. To
import this content into the WebCenter Sites database as assets, use the XMLPost
utility. See About Importing Assets Using the XMLPost Utility.

Import Catalog Data and Flex Asset Data
For the flex asset model, you can import a large amount of pre-existing data with
the BulkLoader utility. See Importing Flex Assets with the BulkLoader Utility. For
systematic updates, however, you use the XMLPost utility. See Using the XMLPost
Utility.

Instruct the Editorial Team About Site Design
Before the editorial team can successfully maintain the online site, they must
understand your design. For example, how frequently are collections supposed to be
rebuilt?

If you are using the basic asset model, content providers have to know the following:

Chapter 3
Step 6: Set Up the Management System

3-7

• Which categories and sources they should assign to their assets in order for their
assets to be located by the appropriate queries and collections.

• Which templates they should assign to which assets.

• Which association fields must be filled out in order for the links on the site pages to
function correctly.

It is a good idea to program as much of this information as possible into the start menu
shortcuts that you and the system administrators create for each asset type.

If you are using the flex asset model, content providers have to know the following:

• The general hierarchy or taxonomy in place for the flex assets.

• Some information about what information a flex asset inherits.

• Which templates they should assign to which assets.

Step 7: Set Up the Delivery System
You're ready to publish all assets on the management system to the delivery system
as soon as you've set up the delivery system. Since the delivery system hosts the
public-facing site, you don’t have to publish Start menus, workflows, revision tracking,
and so on which you configured on the management system for content contributors
and marketers.

On your delivery system, you need to also accomplish these tasks:

• Implement your security strategy. See Setting Up External Security in
Administering Oracle WebCenter Sites.

• On the web server, map the URL of your site (www.example.com) to the WebCenter
Sites URL of your home page. See Mapping a URL Prefix for Your Web Server in
Administering Oracle WebCenter Sites.

For information about setting up the delivery system, see the section on publishing in
Administering Oracle WebCenter Sites.

Step 8: Publish to the Delivery System
Your content is published to the delivery system. Open your site to the public only after
an intensive testing (both performance and load).

See Working with RealTime Publishing in Administering Oracle WebCenter Sites.

Chapter 3
Step 7: Set Up the Delivery System

3-8

Part II
Building Your Data Model

Before you start developing a site, get an insight into designing basic and flex asset
types. Also become familiar with what a flex filter class is, how you would create a flex
filter asset and a flex family, and how you would design attribute editors and configure
their instances. Learn about various kinds of tables and columns in the WebCenter
Sites database, how you can create database tables, and interact with those tables
that do not hold assets.

• Understanding the Asset Types and Asset Models

• Designing Basic Asset Types

• Designing Flex Asset Types

• Creating a Hierarchical Flex Family

• Creating Flex Filters

• Designing Attribute Editors

• Configuring Bundled Attribute Editors

• Working with the WebCenter Sites Database

• Managing Data in Non-Asset Tables

4
Understanding the Asset Types and Asset
Models

You need basic and flex asset models to develop sites. The basic model comprises
simple, unalterable asset types where each type is stored in a single table. The flex
model includes a flex family whose asset types inherit attributes that are changeable
and are stored across multiple tables.

Topics:

• What Are Asset Types?

• What Are Asset Models?

• The Basic Asset Model

• The Flex Asset Model

• Assetsets and Searchstates

• Search Engines and the Two Asset Models

• Tags and the Two Asset Models

• Summary: Basic and Flex Asset Models

Note:

Designing and creating tables that do not hold assets is discussed in
Working with the WebCenter Sites Database.

What Are Asset Types?
Content contributors and marketers can create assets such as articles, images, videos
when you make asset types for those assets available to them. When creating your
asset model, you may want to leverage the asset types available in the avisports
sample site.

An asset type defines the characteristics of asset objects of that type. An asset is an
object that is stored in the WebCenter Sites database and can be created, edited,
inspected, deleted, duplicated, placed into workflow, tracked through revision tracking,
searched for, and published to your delivery (live) site.

This figure shows the WebCenter Sites Content-Entry form and the relationship of field
names and field values to the database table for an asset type.

4-1

Figure 4-1 Asset Types: Database Tables and WebCenter Sites Forms

Developers design and create asset types while designing your content management
system and your online sites. Content providers then create and edit assets of those
types.

In general, assets perform one of the following three roles:

• Provide content that visitors read and examine on your online sites

• Provide the formatting logic or code for displaying the content

• Provide data structure for storing the content in the WebCenter Sites database

The developer's job is to design asset types that are easy for content providers to work
with on the management system and that can be delivered efficiently to visitors from
the delivery system.

Chapter 4
What Are Asset Types?

4-2

Several core asset types are delivered by WebCenter Sites and Oracle WebCenter
Sites: Engage. Because WebCenter Sites has a stack architecture, the core asset
types are made available as follows:

• WebCenter Sites delivers the template, query, collection, SiteEntry, CSElement,
Link, and page asset types. All of the other modules and products use the
template and page asset types.

• WebCenter Sites delivers the attribute editor asset type. It supports any flex
attribute asset types that you create.

• Engage delivers the visitor attribute, history attribute, history definition, segment,
recommendation, and promotion asset types.

Assets of these types provide format or logic for the display of asset types that hold
your content by retrieving, ordering, organizing, and formatting those assets. In other
words, you use the core asset types to organize and format the content on your online
site.

Asset Types Delivered with WebCenter Sites
Asset types delivered with WebCenter Sites provide basic site design logic. You can
create as many individual assets of these types as you need, but you cannot modify
the asset types themselves:

• Query: Stores queries that retrieve a list of assets based on selected
parameters or criteria. You use query assets in page assets, collections, and
recommendations. The database query can be either written directly in the New
or Edit form for the query asset as a SQL query, or written in an element (with
WebCenter Sites query tags or a as a search engine query) that is identified in the
New or Edit form.

• Collection: Stores an ordered list of assets of one type. You build collections
by running one or more queries, selecting items from their resultsets, and then
ranking (ordering) the items that you selected. This ranked, ordered list is the
collection. For example, you could rank a collection of articles about politics so that
the article about last night's election results is number one.

• Page: Stores references to other assets. Arranging and designing page assets is
how you represent the organization or design of your site. You design page assets
by selecting the appropriate collections, articles, imagefiles, queries, and so on
for them. Then, you position your page assets on the Site Navigation node that
represents your site in the tree on the left side of the WebCenter Sites Admin
interface.

Note that a page asset and a WebCenter Sites page are quite different. The page
asset is an organizational construct that you use in the Site Navigation node as a
site design aid and to identify data in your elements. A WebCenter Sites page is a
rendered page that is displayed in a browser or by some other mechanism.

• Template: Stores code (XML or JSP and Java) that renders other assets
into WebCenter Sites pages and pagelets. Developers code a standard set of
templates for each asset type (other than CSElement and SiteEntry) so that all
assets of the same type are formatted in the same way.

Content providers can select templates for previewing their content assets without
having access to the code itself or being required to code.

• CSElement: Stores code (XML or JSP and Java) that does not render assets.
Typically, you use CSElements for common code that you want to call from

Chapter 4
What Are Asset Types?

4-3

multiple templates (a banner perhaps). You also use CSElements to provide the
queries that are needed to create DynamicList recommendations in Engage.

• SiteEntry: Represents a WebCenter Sites page or pagelet and has a CSElement
assigned as the root element that generates the page. Template assets do not
have associated SiteEntry assets because they represent both an element and a
WebCenter Sites page.

• Link: Stores a URL to an external website. You use this asset to embed an
external link within another asset.

• Attribute Editor: Is an attribute editor that specifies how data is entered for a flex
attribute when that attribute is displayed on a New or Edit form for a flex asset or
a flex parent asset. It is similar to a Template asset. However, unlike a Template
asset, you use it to identify the code that you want WebCenter Sites to use when
it displays an attribute in its interface, not when it displays the value of an attribute
on your online site.

Because the data needs of each organization using a WebCenter Sites content
management system are different, there are no default asset types that represent
content. However, the sample sites deliver sample content asset types that you can
examine and modify for use on your sites.

Asset Types Delivered with Engage
The Engage application delivers several core asset types that you use to gather visitor
information so that you can personalize the product placements and promotional
offerings that are displayed for each visitor:

• Visitor Attribute: Holds types of information that specify one characteristic only
(scalar values). For example, you can create visitor attributes named years of
experience, job title, or number of children.

• History Attributes: Are individual information types that you group together to
create a vector of information that Engage treats as a single record. This vector
of data is the history definition. For example, a history type called purchases can
consist of the history attributes SKU, itemname, quantity, and price.

• Segments: Are assets that divide visitors into groups based on common
characteristics (visitor attributes and history types). You build segments by
determining which visitor data assets to base them on and then setting qualifying
values for those criteria. For example, a segment could define people who live in
Alaska and own fly fishing gear, or it could define people who bought a personal
computer in the past six months, and so on.

After you define and categorize the visitor data that you want to collect, you use the
following asset types to select, organize, and display the flex assets that represent
your content on your online site:

• Recommendation: Is like an advanced collection. It collects, assesses, and
sorts flex assets (products or articles, perhaps) and then recommends the most
appropriate ones for the current visitor, based on the segments that visitor belongs
to.

• Promotion: Is a merchandising asset that offers some type of value or discount
to your site visitors based on the flex assets (products, perhaps) that the visitor is
buying and the segments that the visitor qualifies for.

Chapter 4
What Are Asset Types?

4-4

Note:

Engage interacts with assets that are built using the flex asset model
only. You cannot program recommendations and promotions to work with
assets that use the basic asset model.

What Are Asset Models?
Asset models (or data models) consist of asset types that content contributors
and marketers use to create content assets. You can design two types of models,
basic and flex. The asset types in the basic model are unalterable and suitable
for predictable scenarios. The asset types in the flex model are hierarchal and
changeable.

• Basic: Asset types have a simple data structure. They have one primary storage
table and simple parent-child relationships with each other.

Basic asset types are separate, standalone asset types that represent individual
kinds of content: an article, an image file, a page, a query, and so on. You use the
AssetMaker utility (located in the General Admin tree under the Admin node) to
create basic asset types.

• Flex: Asset types have a complex data structure with several database tables and
the ability to support many more fields than do basic asset types. Additionally, they
can have multiple parents, any number of grandparents, and so on, that they can
inherit attribute values from.

Flex asset types comprise families of asset types that define each other and
assign attribute values to each other. You use the Flex Family Maker utility
(located in the General Admin tree under the Admin node) to create a family
of flex asset types.

During the process of designing your online site with the WebCenter Sites content
management system, you and others on your team create the asset types that should
represent the content for your site. The WebCenter Sites template and page asset
types provide the formatting framework for the asset types that represent your data,
whether you use the basic data model or the flex data model.

The asset data model (basic or flex) that you should choose to represent the data
that you want to display on your online site depends on the nature of that data, as
described in the following two sections:

• When to Use the Basic Model

• When to Use the Flex Model

When to Use the Basic Model
The basic model is a good choice when your data has the following characteristics:

• It is fixed, predictable: there will be no need to add attributes to the asset type.

• It is homogenous: all assets of the same type have similar attributes.

• It has a moderate number of attributes. You are limited by your database as to how
many columns/attributes you can have in the asset type table for a basic asset.

Chapter 4
What Are Asset Models?

4-5

• You want to use the static publishing method. There are very limited applications
of the flex asset model in which it makes sense to use the static publishing
method.

• Visitors browse your online site by navigating from link to link.

When the data for an asset type can be imagined as a spreadsheet, as a simple flat
table where each asset of that type is a single record and every record has the same
columns, that asset type should use the basic asset model.

When to Use the Flex Model
The flex model is the right choice when your data has the following characteristics:

• It has lots of attributes. For example, products can have potentially hundreds of
attributes. Because attribute values for the flex family member are stored as rows
rather than columns, and flex assets can physically have many more attributes
than basic assets can.

• It can be represented in a hierarchy in which assets inherit attribute values from
parent assets.

• You cannot predict what attributes might be necessary in the future and your data
might need additional attributes periodically.

• Asset instances of the same type can vary widely. That is, not all assets of that
type should have the same attributes. For example, a bath towel product asset
would have attributes that a toaster product asset would not, but both the bath
towel and the toaster are product assets.

• Visitors browse your online site by navigating through drill-down searches that are
based on the attribute values of your data.

• You want to use Engage.

Products fit into the flex asset model because markets are constantly changing. You
cannot always predict what products you will be selling next year or what attributes
those products will have.

Flex data model is the right fit when you business needs require you to make
modifications to your asset types such as adding or changing their attributes. The
flex asset model gives you the extensibility that you have to represent data whose
characteristics cannot be predicted.

The Basic Asset Model
WebCenter Sites includes the basic asset model by default. This data model uses one
database table per asset type. All basic assets of the same type have the exact same
fields (properties), and all assets of a single type are stored in the same database
table. Most of the core WebCenter Sites asset types use this model.

The AssetMaker utility lets you create basic asset types. You code XML files called
asset descriptor files using a custom tag named PROPERTY and then upload the file with
AssetMaker. A property is both a column and a field. A PROPERTY statement defines
a column in the table that stores assets of that type and defines how data is to be
entered into the corresponding field for that column in the WebCenter Sites forms.

For information about coding asset descriptor files and creating new basic asset types,
see Designing Basic Asset Types.

Chapter 4
The Basic Asset Model

4-6

Familiarize yourself with the following:

• Relationships Between Basic Assets

• Category, Source, and Subtype

• Basic Asset Types and the Database

Relationships Between Basic Assets
Basic asset types have very simple parent-child relationships. You use these
relationships to associate or link assets to each other. When you design the online
pages for your online sites you code template elements that identify, extract, and then
display an asset's children or parent assets in appropriate ways.

The relationships that basic assets can have with each other are called associations
and unnamed relationships. When these relationships occur between individual
assets, they are written to the AssetRelationTree table.

Associations
Associations are defined, asset-type-specific relationships that are represented as
fields in the WebCenter Sites asset forms. After you create an asset type with
AssetMaker, you use the Association form for that asset type to create association
fields.

You use associations to set up relationships that make sense for the asset types in
your system and then you use the names of these relationships to identify the related
assets and display them in appropriate ways on your site pages. For example, in
a site where an asset named article had three associations with an imagefile asset
type, such as Main ImageFile, Teaser ImageFile, and Spot ImageFile, the article
templates would be coded to display the imagefiles that are linked to articles through
these associations. The association is what enables the template to determine which
imagefile is the correct one to display for an individual article asset. When a content
provider selects an image asset in the imagefile field of the New and Edit article forms,
the selected imagefile asset becomes a child of the article asset. (Note that this same
imagefile asset can also be a child of other articles.)

When you create a new association between asset types, WebCenter Sites creates a
row for that type of association in the Association table. Then, when you create an
asset and specify the name of another asset in an association field, that relationship is
written to the AssetRelationTree table.

Unnamed Relationships
Unnamed relationships occur when you build a collection, the items in the collection
become children of the collection.

Category, Source, and Subtype
There are three additional ways to organize or categorize basic assets: category,
source, and subtype. Categories and subtypes are specific to an asset type. Source,
however, applies to all the asset types in a content management site. In other words,
source is site-specific.

Chapter 4
The Basic Asset Model

4-7

Category
Category is a default column and field that you can use to categorize assets according
to a convention that works for your sites. Although all basic asset types have a
category column by default, you do not have to use it (not a required field). For
example, a banking site might have categories named Personal Finance, Banking and
Loans, Rates and Bonds, News, and so on. Articles identified with these categories
are selected by queries that use category as a selection criterion and displayed on
specific site pages, as appropriate.

When you create a new basic asset type, AssetMaker creates one category code for
assets of that type. You then use the Category form for your new asset type to create
additional categories to use this feature.

New categories are written to the Category table, which serves as the lookup table for
the Category field on the New and Edit asset forms for asset types that use the basic
asset model.

The purpose of the Category field and column is for site design. You can use
category, or not, in your queries and query assets for your online site. The WebCenter
Sites application does not base any of its functions on category codes. (With the
exception that you can search for assets based on this field, if you are using it.)

Note:

SQL Server can't differentiate case for attribute categories. For example,
you can't have a category named MyCategory and another category named
mycategory if you are using SQL server.

Source
Source is a column and field that you can use to identify where an asset originated.
Although WebCenter Sites provides administrative support (through the Source form)
for you to use this feature in the design of your online site, the source column does not
exist by default in the primary storage tables for basic asset types other than Article.
To use source with your basic asset types, you must include a property statement in
your asset descriptor file for it.

For example, a banking site might have sources named WireFeed, Asia Pulse, UPI,
and so on. Certain online pages select stories to display based on the results of
queries that search for articles based on the value in their source column.

After you create a new basic asset type, you add new sources in the Source form in
the Admin node on the General Admin tree, if necessary. New sources are written to
the Source table, which serves as the lookup table for the Source field on the New and
Edit asset forms for basic-style assets.

Subtype
The subtype concept provides a way to further classify an asset type. In the flex asset
data model, the definition asset types create subtypes of flex assets and flex parent

Chapter 4
The Basic Asset Model

4-8

assets. In the basic asset data model, the concept of subtype is implemented through
the subtype column in the primary storage table for the asset type.

The WebCenter Sites application uses the value of an asset's Subtype in many ways:

• For Template assets, subtype means the type of asset that the template formats.
Templates that format articles are a different subtype of template than templates
that format images. When you create an article asset, only the templates that
format articles appear as options in the Template field on that asset's New or Edit
form.

In addition, you can use the Oracle WebCenter Sites: Contributor interface to
specify a subtype that is displayed using a given template. For example, if your
website uses two subtypes of article asset, Sports and News, you can create a
template that only displays articles with the Sports subtype.

• For query assets, subtype means the type of asset that the query returns. Query
assets that return articles are a different subtype of query asset than those that
return imagefiles.

• For collection assets, subtype means the type of asset that the collection holds.
Collections that hold articles are a different subtype of collection asset than those
that hold imagefiles.

• For the basic asset types that you design, subtype is designed to classify an asset
based on how it is rendered. You can define a default template for each subtype of
an asset type for each of your publishing targets.

You are required to create subtypes only when a different template should be assigned
to assets of a specific type based on the publishing target for the asset.

The field named Subtype is displayed in those assets' New and Edit forms for whose
asset types you create any subtypes. The drop-down list in the field displays all the
possible subtypes for that asset type.

Note:

In the flex asset model, the definition asset types serve as subtypes. For
example, the flex family in the avisports sample site has a definition named
Article. This means that there is one subtype for article assets: the Article
subtype.

For some asset types, the subtype is set implicitly and cannot be changed. Other
asset types allow users to choose a subtype for the asset using the Contributor
interface. Table 4-1 lists the WebCenter Sites asset types according to whether they
have configurable subtypes.

Chapter 4
The Basic Asset Model

4-9

Table 4-1 Implicit Subtypes vs. Configurable Subtypes

Implicit Subtypes Configurable Subtypes

• All flex assets
• Query assets
• Collection assets
• Template assets
• Page assets

• All custom basic assets (made with AssetMaker)
• Article assets
• Image assets
• Linkset assets
• Recommendation assets
• Link assets

For information about setting configurable subtypes, see Designing Basic Asset Types.

Basic Asset Types and the Database
Although there is one primary storage table for basic asset types, WebCenter Sites
keeps other kinds of supporting information for basic assets in other tables. When you
create a new asset of a basic type, WebCenter Sites writes to the following database
tables:

• The primary database table that holds assets of its type. For example, each page
asset has a row in the Page table and each article asset has a row in the Article
table.

These tables store all of the asset's attribute or field values, such as the asset's
name, its object ID, who created it, which template it uses, and so on. The name of
this table always matches the name of the asset type.

When you create a new basic asset type, the AssetMaker utility creates the
primary storage table (a WebCenter Sites object table) for the asset type as a
part of that process.

• The AssetRelationTree table, if the asset has associations with other assets. The
relationships that basic assets can have are described in Relationships Between
Basic Assets.

• The AssetPublication table, which specifies which content management sites
(publications) give you access to the asset. If the asset is shared among sites
(publications), there is a row entry for each pubid. A pubid is a unique value that
identifies a site (publication).

• The SitePlanTree table, if the asset is a page asset. This table stores information
about the page asset's hierarchical position in your site navigation.

When you develop the templates that display the assets that represent your content,
you code elements with XML or JSP tags that extract and display the information from
the tables in the preceding list.

Be sure to examine the New and Edit forms for the various sample asset types and to
use the Explorer tool to examine the tables in your WebCenter Sites database.

Chapter 4
The Basic Asset Model

4-10

Note:

Do not use the Explorer tool to modify the data in any of these tables. All
editing of assets and their related tables should be done only through the
WebCenter Sites interface.

Template Asset Type and the Database
Although the Template asset type is a core asset type, it does not use the basic asset
model. It is a complex asset type with entries in the following database tables:

• The Template table (primary storage table)

• The SiteCatalog table

• The ElementCatalog tables

When you create a new Template asset, WebCenter Sites automatically creates
entries in both the SiteCatalog and ElementCatalog tables for it.

Default Columns in the Basic Asset Type Database Table
WebCenter Sites needs several default columns for its basic functionality. So,
AssetMaker creates each of the columns described in the following table in the asset
type's primary storage table in addition to the columns defined in the asset descriptor
file for that asset type.

Note that you do not have to code your asset descriptor files to include property
statements for the columns in this table:

Table 4-2 Columns in an Asset Type's Primary Storage Table

Default
Column
(Field)
Name

Description Where It's Displayed in the WebCenter
Sites Interface

id A unique ID for each
asset, automatically generated by
WebCenter Sites when you create
the asset.

You cannot change the value in this
field.

Forms:

• Inspect
• Edit
• Status
• search forms

name A unique name for the asset. Names
are limited to 64 alphanumeric
characters.

Forms:

• New
• Edit
• Inspect,
• Status
Also in the search results lists.

Chapter 4
The Basic Asset Model

4-11

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table

Default
Column
(Field)
Name

Description Where It's Displayed in the WebCenter
Sites Interface

descriptio
n

A short description of the asset that
offers more information than just the
name.

Forms:

• New
• Edit
• Inspect
• Status
Also in the search results lists.

status The status of the asset, one of the
following status codes obtained from
the StatusCode table:

PL: created

ED: edited

RF: received (from XMLPost, for
example)

UP: upgraded from Xcelerate 2.x

VO: deleted (void)

WebCenter Sites controls the value
in this field. This field cannot be
edited manually.

Forms: Status, if the status of an asset is
either PL (created) or ED (edited)

Note that assets with a status of VO
(deleted) are not displayed anywhere in
the WebCenter Sites Windows interface.

createdby The identity of the user who
originally created the asset. This
user name is obtained from the
SystemUsers table.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Forms: Status

Also, the Revision History list if revision
tracking is enabled for assets of this type.

createddat
e

The date and time that the asset was
written to the database for the first
time.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Forms: Status

Also, the Revision History list if revision
tracking is enabled for assets of this type.

updatedby The identity of the user who most
recently modified the asset in any
way. This user name is obtained from
the SystemUsers table.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Forms: Status

Also, the Revision History list if revision
tracking is enabled for assets of this type.

updateddat
e

The date on which the information in
the status field was changed to its
current state.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Forms: Status

Also, the Revision History list if revision
tracking is enabled for assets of this type.

Chapter 4
The Basic Asset Model

4-12

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table

Default
Column
(Field)
Name

Description Where It's Displayed in the WebCenter
Sites Interface

startdate Promotion assets (an Engage asset)
have durations during which they can
be displayed on the visitor pages on
your live system. This column stores
the start time of the promotion's
duration.

The promotion asset type is the only
default asset type that uses this
column.

For information on using startdate
and enddate fields for your asset
types, see Example 5-7 in Creating
Basic Asset Types.

Forms:

• Duration, Edit, and Inspect for
promotion assets.

• New, Edit, Inspect, and Status if you
enable it for other asset types.

enddate For promotion assets (an Engage
asset), this column stores the end
time of the promotion's duration.

The promotion asset type is the only
default asset type that uses this
column.

Forms:

• Duration, Edit, and Inspect for
promotion assets.

• New, Edit, Inspect, and Status if you
enable it for other asset types.

subtype The value of the asset's subtype.
The subtype is set in different ways
for different assets. See Subtype.

Forms:

• New, and Edit for Template assets
(Asset Type field).

• New, and Edit for query assets
(Result of Query field).

• New, and Edit for any asset type that
has subtypes configured for it.

• Set Default Templates.

filename The name to use for the file created
for this asset during the Export to
Disk publishing method.

The page and article asset types are
the only asset types that have this
field enabled by default.

For information on using the
filename field for your asset types,
see Example 5-7 in Creating Basic
Asset Types.

Forms:

• New and Edit for page and article
assets, by default.

• New and Edit for any other asset type
that has the field enabled.

Chapter 4
The Basic Asset Model

4-13

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table

Default
Column
(Field)
Name

Description Where It's Displayed in the WebCenter
Sites Interface

path The directory path to use for
exported page files that are
generated from child assets of this
asset when the Export to Disk
publishing method renders that asset
into a file.

The page and article asset types are
the only asset types that have this
field enabled by default.

For information on using the
filename field for your asset types,
see Example 5-7. in Creating Basic
Asset Types. in Creating Basic Asset
Types.

Forms:

• New and Edit for page and article
assets, by default.

• New and Edit for any other asset type
that has the field enabled.

template The template for the asset.

This is the template that is used to
render the asset when it is either
published with Export to Disk or
rendered on a live dynamic delivery
system.

This template is also used to
calculate the dependencies when the
asset is approved for the Export to
Disk publishing method, unless the
asset type has subtypes and there is
a default approval template assigned
for the asset based on its subtype.

Forms:

• New
• Edit
• Inspect
• Status

category The category code of the category
assigned to the asset, if any.

If you decide to use the category
field to organize assets, you add
category codes in the Asset Types
forms in the Admin node on the
General Admin tree.

Forms:

• New
• Edit
• Inspect
• Status

urlexterna
ldoc

Deprecated

If the asset was entered with
the Sites Desktop interface rather
than the WebCenter Sites interface,
stores the external document that is
the source for the asset.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Not applicable

externaldo
ctype

Deprecated

The mimetype of the file held in the
urlexternaldoc field.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Not applicable

Chapter 4
The Basic Asset Model

4-14

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table

Default
Column
(Field)
Name

Description Where It's Displayed in the WebCenter
Sites Interface

urlexterna
ldocxml

Reserved for future use. Not applicable

The Flex Asset Model
In the flex asset model asset types inherit attributes. You can modify this model to
meet unpredictable content needs. For example, a car company keeps adding new
models. And, all models share some features. Content for such a car site needs the
flex asset model.

The main characteristics of the flex asset model are:

• Flex assets are defined by flex definitions. A flex definition is an asset type that
determines which flex attributes make up an individual flex asset. Flex definitions
create subtypes of the flex asset type.

• The definition asset types create subtypes of flex and flex parent assets, which
allows individual instances of a flex asset or flex parent asset type to vary widely.

• Flex attributes are assets. The flex data model lets you add flex attributes to (or
remove them from) existing flex asset types at any time.

• Flex filters can take the data from one flex attribute, transform or assess it in some
way, and then store the results in another flex attribute when you save the flex
asset. The resulting value from a flex filter action is called a derived attribute value.
See Creating Flex Filters.

• Flex assets can inherit attribute values, even derived values, from their flex
parents, which means that you can represent your data in hierarchies.

You do not create individual flex asset types as you do basic asset types; instead, you
create a flex family of asset types.

See these topics:

• The Flex Family

• The Flex Family in the Avisports Sample Site

• Flex Attributes

• Flex Parents and Flex Parent Definitions

• Flex Assets and Flex Definition Assets

• Flex Families and the Database

The Flex Family
The flex asset data model can be thought of in terms of a family of asset types. There
are six asset types in a flex family. Five are required, the sixth is optional, as indicated
in Table 4-3.

Chapter 4
The Flex Asset Model

4-15

Table 4-3 Flex Family Members

Flex Family Member Number Per Family

flex attribute asset type one

flex parent definition asset type one or more

flex definition asset type one or more

flex parent asset type one or more

flex asset type one or more

flex filter asset type none or more

Whereas some asset types are used exclusively by developers to create the other
asset types in the data model, the flex asset type is always used by the content
providers to create assets of that type. (When necessary, authorized users can be
given access to additional flex family members.)

To create a flex family, you access the Add New Flex Family form by double-clicking
Add New Family, located in the General Admin tree on the Admin node under Flex
Family Maker. under the Flex Family Maker node in the Admin interface. In the form,
you name each of the asset types in the family. For example, a site has a flex family
named product family. The flex asset is called the product asset, the flex attribute is
called the product attribute, and so on.

The key member of a flex family is the flex asset. The flex asset is the unit of data that
you extract from the database and display to the visitors of your online site (delivery
system). All of the other members in the family contribute to the flex asset member in
some way.

While the flex asset is the key, the attributes are the foundation of the flex asset model.
An attribute is an individual component of information. For example, color, height,
author, headline. You use attributes to define the flex assets and the flex parents. Flex
assets inherit attribute values from their parents who inherit attribute values from their
parents and so on.

You decide which attributes describe which flex assets and which flex parents by
creating templates with the flex definition and flex parent definition asset types. Flex
parents and their definitions implement the inheritance of attribute values.

Note that a flex parent or a flex asset cannot be defined by attributes of two types.
A site might have two or more kinds of attributes. For example: product attributes
and content attributes. A product asset (the flex asset member in the product flex
family) can be defined by product attributes only. Its definition cannot include content
attributes.

A flex filter enables you to configure some kind of action to take place on the value
of an attribute and then save the results of the action when the flex asset is saved.
For example, you can configure a filter that converts the text in a Word file into HTML
code.

In summary, the flex asset member of a flex family is the reason for the family, the
unit of content that you want to display. The other members of a flex family provide
data structure for the flex asset. However, because all of the members in the family are
assets, you can take advantage of the standard WebCenter Sites features like revision
tracking, workflow, search, and so on.

Chapter 4
The Flex Asset Model

4-16

Parent, Child, and Flex Assets
When you are using the flex asset data model, the phrase parent-child relationship
refers to the relationship between a flex asset and its flex parent asset(s). This is a
different parent-child relationship than the ones that basic assets have through asset
associations.

Although it is possible for flex assets to have the kinds of parent-child relationships
that basic assets do, it is unlikely for the following reasons:

• WebCenter Sites provides the ASSETSET and SEARCHSTATE tag families, which you
use instead of the collection and query asset types to select the flex assets that
you want to display. For more information about this tag family, see Assetsets and
Searchstates.

• Flex assets have no need for associations. For example, to assign an image file to
a flex asset like a product, you can create an attribute that identifies the image file
and assign it to the definition for the flex asset.

The Flex Family in the Avisports Sample Site
In the avisports sample site there is one flex family that you can examine. To better
understand the following descriptions of the sample flex asset types, examine some
article and image assets in the Contributor interface as you read this section.

The Avisports Flex Family

The flex family in the avisports sample site provides the data structure for the articles
and images shown on the avisports sample site. It creates an online sports news
website.

These are the asset types in the avisports flex family:

• ContentAttribute: The flex attribute asset type used to define the attributes for the
articles, images, and parents in the avisports sample site. For example, there are
attributes named headline, subheadline, author, relatedImage, and so on.

• ContentParentDef: The flex parent definition asset type in the avisports sample
site's flex family. It is used to create subtypes of parents. There is one: Category.

• ContentDef: The flex definition asset type in the avisports sample site's flex
family. It is used to create a subtype for each definition: Article, ArticleImage,
and Image. All of the AVIArticle assets in this site are defined by the Article
definition. The AVIImage assets in this site are defined by either the Image or
ArticleImage definition.

• ImageCategory: A flex parent that represents categories of images such as
Running images, Skiing images, Baseball images, and so on.

• ArticleCategory: A flex parent that represents categories of articles such as
Running Articles, Baseball Articles, Skiing Articles, and so on.

• AVIImage: A flex asset type that stores an uploaded image file. Image assets
represent the images that are shown on the avisports website.

• AVIArticle: A flex asset type that stores the text of an article and information about
it. It has attributes such as headline, byline, subheadline, body, and so on.

Chapter 4
The Flex Asset Model

4-17

Notice that there are three content definitions in the avisports sample site's flex family,
and only two content asset types. The Article definition is used by the AVIArticle
asset type. The Image and ArticleImage definitions are both used by the AVIImage
asset type.

Flex Attributes
Flex attributes are the foundation of the flex asset model. An attribute represents one
unit of information. You use attribute assets to define flex assets and flex parents.
They are then displayed as fields in the New and Edit forms for your flex assets and
their parents.

An attribute is similar to a property for a basic asset. As does a property, an attribute
defines the kind of data that can be stored in a column in a WebCenter Sites database
table and describes a field in the forms. However, while a property defines one column
in an asset type's database table, an attribute is an asset with database tables of its
own.

This data structure (attributes as assets rather than columns) is a one of the main
reasons why flex assets are so flexible.

Once again, a flex parent or a flex asset cannot be defined by attributes of two types.
For example, in a site that has a product flex family and a content flex family, the
product asset type can be defined by product attributes only. Its definition cannot
include content attributes.

Note:

The data stored by flex attributes that you removed is not deleted from the
database (queries continue to return this data).

Data Types for Attributes
The data types for your attributes are defined by the WebCenter Sites database
properties located in the wcs_properties.json file, categorized under Core.

The following table lists the data types for flex attributes, the properties that define the
data types, and the files where the properties are located.

Table 4-4 Data Types for Flex Attributes

Type Property

date cc.datetime

float cc.double

integer cc.integer

money cc.money

string cc.varchar

text cc.bigtext

asset cc.bigint

Chapter 4
The Flex Asset Model

4-18

Table 4-4 (Cont.) Data Types for Flex Attributes

Type Property

blob cc.bigint

Default Input Styles for Attributes
When a flex attribute is displayed as a field on a New or Edit form, it has default input
styles based on its data types. The following list presents the default input styles for
flex attributes:

• Date: input boxes that look like the following:

Figure 4-2 Date Attribute

• Float: A text field with decimal position enforced.

• Integer: A text field.

• Money: A text field with currency format enforced.

• String: A text field that accepts up to 255 characters.

• Text: A text box. The number of characters that it accepts depends on the
database and database driver you are using.

• Asset: A drop-down list of all the assets of the type that was specified.

• Blob: A text field with a Browse button.

Instead of using the default input style, you can create an attribute editor and assign it
to the attribute. Attribute editors are assets but they are also similar to the INPUTFORM
statement in an asset descriptor file for a basic asset -- they specify how data
is entered into the attribute field. For more information about attribute editors, see
Designing Attribute Editors.

Foreign Attributes
You can have flex attributes that are stored in foreign tables, that is, foreign attributes.
They are subject to the following constraints:

• The foreign table must be registered with WebCenter Sites. That is, the foreign
table must be identified to WebCenter Sites in the SystemInfo table.

• The foreign table must have a column that holds an identifier that uniquely
identifies each row. The identifier must have fewer than 20 characters.

• The foreign table must have a column that is reserved for the attribute data value,
which can be of any appropriate data type. For example, for a string type attribute,
the data type must be appropriate for a string.

Chapter 4
The Flex Asset Model

4-19

Flex Parents and Flex Parent Definitions
Flex parents and their flex parent definitions are organizational constructs that do two
things:

• Implement the inheritance of attribute values. The parent definitions set up
(describe) the rules of inheritance and the parents pass on attribute values to
the flex assets according to those rules of inheritance.

• Determine the position of a flex asset on the tabs that display your assets in the
WebCenter Sites interface. The hierarchy of the parents and the flex assets on the
tabs in that tree are based on the hierarchy set up with the parent definitions.

Each parent asset type has its own set of attributes, as specified in its parent
definition. The parent definition creates a form that you see in the WebCenter Sites
interface.

Note:

While creating a parent definition, if you add the parent definition as its own
parent, publishing errors may occur.

You use parents to organize or manage the flex assets by passing on attribute values
that are standard and do not have to vary for each individual child asset of that parent.

Parent asset types affect how you and the content providers see and interact with the
data within the WebCenter Sites interface.

For example, say there is a site named ProductSite that has two parent definitions:
Category and SubCategory. Their sole purpose is to create structure on the Content
Tree (in the Contributor interface).

When the product parent's definition is Category, the product parent is displayed at the
top level on the Content Tree. When the product parent's definition is SubCategory,
the product parent is displayed at the second level and it has a parent of its own, as
shown in the following:

Chapter 4
The Flex Asset Model

4-20

Figure 4-3 Product Node in the Content Tree

In Figure 4-3, there are several top-level product parents: Compact Fluorescent,
Halogen, and so on. They were created with the Category definition. The next-level
product parents, such as Double BIAX and 2-Pin, Double BIAX and 4-pin, and so on
were created with the Subcategory definition.

Business Rules and Taxonomy
The purpose of parent definitions and parent assets is not only to express the
taxonomy of your data. They also allow you to apply business rules (logic) without
risk of input error from end users. If you created a flex asset of a specific definition and
there are dependencies that it should inherit, that flex asset should have a parent.

For example, here is a simple product, a toaster with five attributes:

• SKU = 1234

• Description = toaster

• Price = 20

• CAT1 = Kitchen

• CAT2 = Appliances

When the value of CAT2 is Appliances, the value of CAT1 can only be Kitchen. In
other words, there is a business rule dependency between the value of CAT1 and the
value of CAT2.

In this kind of case, there is no reason to require the content providers to fill in both
fields. Because every field whose data has to be entered manually is a field that might
hold bad data through input error, you would use inheritance to impose the business
rule:

• Make CAT1 and CAT2 parent definitions.

• Make Kitchen a parent created with the CAT1 definition and Appliances a parent
created with the CAT2 definition.

Chapter 4
The Flex Asset Model

4-21

• Make Kitchen the flex parent of Appliances.

Now, when content providers create products and select Appliances for CAT2, the
value for CAT1 is determined automatically through inheritance.

Flex Assets and Flex Definition Assets
A flex asset is the reason for the flex family. It is the asset type that represents the end
goal; a product, a piece of content that is displayed, and so on. For example, in the
avisports sample site there are two flex asset types:

• Article (flex), an asset that holds text.

• Image (flex), an asset that holds an uploaded image file.

All of the other members in the family contribute to the flex asset member in some
way.

A flex definition asset describes one kind of flex asset in a flex family; for example,
a shoe, a toaster, a bowling ball, a brochure, a newsletter, an article, and so on. A
flex definition asset is a template in that it directly affects a form that you see in the
Contributor interface.

The avisports sample site has one definition for articles (Article) and two definitions
for images (Image and ArticleImage). You can create as many flex definitions as
you need. For example, a news site that should offer sports and weather articles will
require a flex definition asset for sports and a different flex definition asset for weather.

Individual flex assets can be created according to only one flex definition asset. You
could not create an image that used both the Image definition and the ArticleImage
definition, but you can create an image that uses the Image definition and then create a
different image that uses the ArticleImage definition.

A flex asset has not only the attributes assigned directly to it when it was created, it
also has the attributes that it inherits from a parent. It can have multiple flex parents
and whether the parents have parents depends on the hierarchical structure that you
design. The following figure shows an example of a site that has three levels of
hierarchy.

Figure 4-4 Levels of Hierarchy

The Other Compact Fluorescent product parent has a parent of its own (Compact
Fluorescent) and several children (10576, 10578, and so on).

Chapter 4
The Flex Asset Model

4-22

Flex Families and the Database
Each asset type in a flex family has several database tables. For example, the flex
asset member has six tables and a flex parent type has five. This data model enables
the flex member in a flex family to support more fields than an asset type in the basic
asset model can support.

The four most important types of tables in the flex model are as follows:

• The primary table for the asset type.

• The _Mungo table, which holds attribute values for flex assets and flex parent
assets only.

• The MungoBlobs table, which holds the values of all the flex attributes of type blob.

• The _AMap table, which holds information about the inheritance of attribute values
for flex asset and flex parents only.

There are several other tables that store supporting data about the relationships
between the flex assets and additional configuration information (details about search
engines, the location of foreign attributes, publishing information, and, if revision
tracking is enabled, version information).

Additionally, certain kinds of site information are held in the same tables that
basic assets use. For example, the AssetPublication table specifies which content
management sites the asset type is enabled for.

When you develop the templates that display flex assets, you code elements that
extract and display information from the _Mungo tables and the MungoBlobs table.

Default Columns in the Flex Asset Type Database Table
As do basic asset types, each of the flex asset types has a primary storage table that
takes its name from the asset type. For example, the primary table for the avisports
sample site asset type named article is AVIArticle and the primary table for this
sample site's image asset type is AVIImage. The primary table for both article and
image attributes is called ContentAttribute.

Unlike the primary table for a basic asset type, the primary table for a flex asset type
has only the default columns. This is because flex asset types that have attribute
values do not store those values in the primary table, attribute values are stored in the
_Mungo table for the asset type.

In general, the default column types in the primary table for a flex asset type are the
same as the default columns in the primary storage table for a basic asset type. For
the general list of default column types, see Default Columns in the Basic Asset Type
Database Table.

However, there are, of course, exceptions and additions, as described in the following
table:

Chapter 4
The Flex Asset Model

4-23

Table 4-5 Default Columns in the Flex Asset Type Database Table

Column Description

category Category is not used in the flex asset model so there is no category
column in any of the primary tables for flex asset types.

Flex assets have no need for the category feature because queries for flex
assets are based on the values of their flex attributes.

template Only the table for the flex asset member in a flex family, product, article
(flex), and image (flex), for example, holds values in this column. This is
because only the flex asset member in the family can have a Template
asset assigned to it and be displayed on your online site.

renderid Holds the object ID of the Template asset assigned to a flex asset.

attributetype An additional column in the primary table for flex attribute types. It holds the
name of the attribute editor that formats the input style of the attribute when
it is displayed in the New and Edit forms (if there is one).

flextemplatei
d

An additional column in the primary table for a flex asset type (the flex asset
member of a flex family.) It holds the ID of the flex definition that the flex
asset was created with.

flexgrouptemp
lateid

An additional column in the primary table for flex parent asset types. It holds
the object ID of the parent definition that the flex parent asset was created
with.

The _Mungo Tables
The flex asset and flex parent asset types have an AssetType_Mungo table, where
AssetType is the name of the flex asset type (and matches the name of the main
storage table). Its purpose is to store the attribute values assigned to an asset
when an asset of this type is created. For example the avisports sample site
table AVIArticle_Mungo holds the attribute values for article assets and the table
AVIImage_Mungo holds the attribute values for the image assets.

Each attribute value has a separate row.

Each row in _Mungo table has a value in each of the columns described in Table 4-6.

Table 4-6 _Mungo Table Rows

Column Description

id A unique ID for each attribute value, automatically generated by WebCenter
Sites when the flex asset is saved and the row is created.

This is the table's primary key.

ownerid The ID of the flex asset that the attribute value belongs to. (From the flex
asset table: Product, for example.)

attrid The ID of the attribute. (From the attribute table: PAttributes, for
example.)

assetgroupid If the attribute value is inherited, the ID of the parent who passed on the
value. (From the parent table: ProductGroups, for example.)

Each row in a _Mungo table also has all of the columns in Table 4-7, but it has a value
(data) in only one of them, depending on the data type of the attribute.

Chapter 4
The Flex Asset Model

4-24

Table 4-7 _Mungo Table Columns

Column Description

floatvalue If the attribute's data type is float, the value of the attribute.

moneyvalue If the attribute's data type is money, the value of the attribute.

textvalue If the attribute's data type is textvalue, the value of the attribute.

datevalue If the attribute's data type is date, the value of the attribute.

intvalue If the attribute's data type is int, the value of the attribute.

blobvalue If the attribute's data type is blob, the ID of the row in the MungoBlobs
table that holds the value of the attribute.

urlvalue If the attribute's data type is url, the path or url entered for the attribute.

assetvalue If the attribute's data type is asset, the ID of the asset.

stringvalue If the attribute's data type is float, the value of the attribute.

Because the _Mungo tables have URL columns (see Indirect Data Storage with the
WebCenter Sites URL Field), a default storage directory (defdir) must be set for it. You
use the cc.urlattrpath property in the wcs_properties.json file to set the defdir for
your _Mungo tables.

The MungoBlobs Table
There is one MungoBlobs table. It holds all the values for all flex attributes of type blob,
for all the flex attribute types in your system. Each attribute value has a separate row
in the table.

The _AMap Tables
Flex asset and flex parent asset types have an AssetType _AMap table. Its purpose is
to map the asset to the attributes it inherits from its parents. Then when you create a
template that displays the asset on a page in your online site, you can query for assets
based on any of their attributes and display any of those attributes, whether they were
inherited or were directly assigned.

The _AMap table has one row for each flex asset that has a value for the inherited
attribute. (However, if an attribute has multiple values, the _Mungo table has a row for
each value.)

An _AMap table has the columns described in Table 4-8.

Table 4-8 _AMap Table Columns

Column Description

id A unique ID for each row, automatically generated by WebCenter
Sites when the flex asset is saved and the row is created. This is
the table's primary key.

inherited The ID of the parent the attribute was inherited from, if it was
inherited. (From the parent table: ProductGroups, for example.)

Chapter 4
The Flex Asset Model

4-25

Table 4-8 (Cont.) _AMap Table Columns

Column Description

attributeid The ID of the attribute. (From the attribute table: PAttributes, for
example)

ownerid The ID of the flex asset that the attribute value belongs to. (From
the flex asset table: Product, for example.)

Assetsets and Searchstates
assetsets display assets, and searchstates identify which flex assets should be
displayed in anassetset.

Assetset

An assetset is a group of flex assets or flex parent assets only, not flex attributes or
flex definitions or flex parent definitions. For example, in the avisports sample site, you
can create assetsets that contain articles and images. When coding your site pages,
you code statements that create assetsets and then display the assets in them.

Searchstate

You identify which flex assets should be in an assetset by using the SEARCHSTATE
method family in the templates for your flex assets. A searchstate is a set of search
constraints that are applied to a list or set of flex assets. A constraint can be either a
filter (restriction) based on the value of an attribute or based on another searchstate
(called a nested searchstate).

A searchstate can search either the _Mungo tables in the database or the attribute
indexes created by a search engine. This means that you can mix database and
rich-text (full-text through an index) searches in the same query.

Because these tags search only the _Mungo table or attribute indexes for that flex asset
type, using them to extract your flex assets is much more efficient than using the ASSET
tags or the query asset.

Assetsets and Attribute Asset Types

WebCenter Sites cannot perform searches across attribute asset types. Because
assetsets are created on the basis of attribute values, only assets that share the same
attribute asset type can be included in the same assetset. This is an important point
to consider when you design your flex families: data is separated for flex asset types
that do not share a common attribute asset type. By creating such flex asset types
you ensure that assets from different types cannot be included in a common assetset.
And displaying assetsets is the mechanism for displaying flex assets on your delivery
system.

For example, you can have two types of flex assets in the same flex family. While they
use the same type of attributes, you can create assetsets that include assets of both
types. Keep in mind, though, that a search across two types of flex assets creates a
join between their _Mungo tables, which can deprecate performance.

Chapter 4
Assetsets and Searchstates

4-26

In the avisports sample site there are two flex asset types: article and image. They
share the same attribute asset type (ContentAttribute). This shared attribute asset
type enables them to be included in the same assetset, even though they are two
different flex asset types.

Search Engines and the Two Asset Models
Basic and flex asset models interact with search engines differently from each other
because of the differences in their data structure. You’ll use a different method in each
model to index asset type fields for search.

• A basic asset type is defined by an asset descriptor file. Its primary storage table
includes all of its properties as columns. To specify which fields of a basic asset
type should be indexed, you must customize certain elements for the asset type.
See Designing Basic Asset Types.

• Because fields for flex assets are flex attributes, which are assets, you decide
which fields are indexed for rich-text search, attribute by attribute. Additionally, the
WebCenter Sites application enables you to specify which attributes should be
indexed with the Search Engine field on the attribute's New and Edit forms. You
do not have to customize any elements to enable this feature.

Tags and the Two Asset Models
The assets you create and manage, ultimately you move them to the delivery system
where the code in the elements extracts the assets from the database and display
them to your site visitors. The WebCenter Sites applications offer various toolsets,
custom tag sets, in both XML and JSP to help extract assets from the database.

The toolset you use to extract assets from the database in your templates depends on
the kind of asset that you are working with.

• For assets with the basic asset model, use the ASSET method family.

• For the flex asset member in a flex family, use the ASSETSET and SEARCHSTATE
method families. Note that you should not use the ASSET.LOAD tag for the flex
asset member in a flex family (product, article, and image, for example). Using
ASSET.LOAD tag for flex assets is extremely inefficient because it retrieves all of the
information for that asset from all of its tables. The SEARCHSTATE methods queries
only the _Mungo table for the asset type of the flex asset and the MungoBlobs table.

• For recommendation assets, use the COMMERCECONTEXT method family.

There are many more method families available with these products and an extensive
set of custom tags from WebCenter Sites itself and several APIs.

For information about WebCenter Sites tags, see the Tag Reference for Oracle
WebCenter Sites Reference.

Summary: Basic and Flex Asset Models
While the basic and flex models are quite different from each other, they are similar,
too, in some ways.

The similarities and differences between the two asset models are as follows:

Chapter 4
Search Engines and the Two Asset Models

4-27

Where the Asset Models Intersect

Even though there are many differences in the way that the basic and flex asset
models function, there are several points of intersection.

• No matter which asset model you are using, basic or flex, you use the template
and page asset types that are delivered with the WebCenter Sites application.

• All asset types have a status code, which means that all assets, whether they are
flex or basic, can be searched for with queries based on status.

• All asset types, whether they are flex or basic, have the following configuration or
administrative traits in common:

– They must be enabled by site.

– They must have start menu items configured for them before anyone can
create individual instances of those types.

– Individual instances of them can be imported with the XMLPost utility.

Where the Asset Models Differ

Table 4-9 summarizes the major differences between the asset models.

Table 4-9 Major Differences Between the Asset Models

Feature Basic Asset Model Flex Asset Model

Number of database
tables

One. Several.

Adding fields to an asset
type

Requires a schema change. Does not require a schema
change.

Links to other assets Through associations and
unnamed relationships.

Through flex family
relationships.

Subtypes Usually available through the
Subtype item on the Admin tab.
See Subtype.

Through flex definitions and flex
parent definitions.

Search engine indexing Must customize certain elements
for the asset type.

Use the Search Engine field in
the flex attribute form.

Main tag families ASSET, SITEPLAN, and RENDER. ASSETSET, SEARCHSTATE, and
RENDER.

Publishing methods Export to Disk.

Mirror to Server.

Export to Server is possible, but
is atypical for the flex model.

Mirror to Server.

Chapter 4
Summary: Basic and Flex Asset Models

4-28

5
Designing Basic Asset Types

The AssetMaker utility is available for you to create basic asset types. You also
need to create an asset descriptor file and asset table, add subtypes, set association
fields, etc., before you migrate the asset types to the management/delivery system for
content and marketing teams.

Topics:

• About the AssetMaker Utility

• Before You Begin Creating Basic Asset Types

• Creating Basic Asset Types

• Deleting Basic Asset Types

About the AssetMaker Utility
To create basic asset types, the AssetMaker utility carries out several operations in
AssetType, SystemInfo, Category, Catalog, and SystemSQL tables using a descriptor
file which you’ll create.

Before the AssetMaker utility can begin its work, it needs a descriptor file that defines
properties for the new asset type. The term property means both a column in a
database table and a field in a WebCenter Sites entry form. So, first define the basic
asset type inWebCenter Sites an XML file–asset descriptor file using AssetMaker XML
tags.

Your next step is to upload the file to WebCenter Sites and create two items using
AssetMaker: a database table for the new asset type, and the WebCenter Sites
elements which generate the forms that you and others use when working with assets
of the new type (creating, editing, copying, and so on).

This section includes the following topics:

• How AssetMaker Works

• Asset Descriptor Files

• Columns in the Asset Type's Database Table

• Elements and SQL Statements for the Asset Type

How AssetMaker Works
Creating a new basic asset type using AssetMaker involves the following steps:

1. Code the asset descriptor file.

This chapter describes asset descriptor files and coding them. For information
about AssetMaker tags, see the Tag Reference for Oracle WebCenter Sites
Reference.

2. Upload the file.

5-1

AssetMaker creates a row in the AssetType table and copies the asset descriptor
file to that row.

3. Create the table.

When you click the Create Asset Table button, AssetMaker does the following:

• Parses the asset descriptor file.

• Creates the primary storage table for assets of that type. The name of the
table matches the name of the asset type identified in the asset descriptor file.
The data type of each column is defined by statements in the file as well.

In addition to the columns defined in the asset descriptor file, AssetMaker
creates default columns that WebCenter Sites needs to function correctly.

• Adds a row for the new table to the SystemInfo table.

All asset tables are object tables so the value in the systable column is set to
obj.

All asset tables have URL columns. So, the value in the defdir column is
set to the value that you specified either in the asset descriptor file or in the
DefDir field in the Create Asset Table form when you create the asset type.

• If you have enabled the Add General Category option, Asset Maker adds one
row to the Category table for the new asset type and names that category
General.

4. Register the elements.

AssetMaker does the following:

• Creates a subdirectory in the ElementCatalog table under OpenMarket/
Xcelerate/AssetType directory for the new asset type.

• Copies elements from the AssetStubCatalog table to the new subdirectory
in the ElementCatalog table. These elements render WebCenter Sites forms
for working with assets of this type and provide the processing logic for the
WebCenter Sites functions.

• Creates SQL statements that implement searches on individual fields in the
search forms. These statements are placed in the SystemSQL table.

When you create, edit, inspect, and so on an asset of this type, AssetMaker parses
the asset descriptor file located in the AssetType table, and passes its values to
WebCenter Sites so that the forms are specific to the asset type. Statements in
the asset descriptor file determine the input types of the fields, specify field length
restrictions, and determine whether the field is displayed on search and search results
forms.

Note that after you create an asset type, you must enable the asset type on the sites
that will use it, create start menu shortcuts, and so on.

The following figure shows a flow chart that summarizes how AssetMaker works, and
which database tables are involved when a basic asset type is created.

Chapter 5
About the AssetMaker Utility

5-2

Figure 5-1 How AssetMaker Works

Chapter 5
About the AssetMaker Utility

5-3

Asset Descriptor Files
Using the AssetMaker XML tags, you code asset descriptor files that define the asset
types you design for your systems.

This section includes the following topics:

• About the Asset Descriptor File

• About Format and Syntax

• About the AssetMaker Tags

About the Asset Descriptor File
An asset descriptor file is a valid XML document in which developers define a basic
asset type using AssetMaker tags. An asset descriptor file does the following:

• Describes the asset type in terms of data structure. It specifies the name of the
database table, the names of the columns, the columns data types, and the sizes
of the fields on the WebCenter Sites forms.

• Formats the HTML forms that are displayed by WebCenter Sites when users work
with assets of the given type. Formatting an HTML form means naming the fields
on the form, displaying the fields in required format (for example, check box, radio
button, or drop-down list), accounting for field specifications (such as the number
of characters that can be entered in to a text field), and so on.

AssetMaker uses the asset descriptor file to create a database table for the new asset
type. When content providers work with assets of the given type (create, edit, and so
on), AssetMaker parses the asset descriptor file, using the data in the file to customize
the forms that WebCenter Sites displays.

Note:

For reference, sample AssetMaker descriptor code is provided on the
WebCenter Sites installation medium, in the Samples folder. The same
folder contains the readme.txt file that describes the sample descriptor files.

About Format and Syntax
The basic format for every asset descriptor file is shown below. To the right of each
AssetMaker tag is a brief description of the tag.

<?xml version="1.0" ?>
<ASSET ...> Names the asset type (storage table)
<PROPERTIES> Starts the properties specification section
 <PROPERTY ...> Specifies column and field name for the property
 <STORAGE .../> Specifies data type for the column
 <INPUTFORM .../> Specifies field format on New, Edit, Inspect forms
 <SEARCHFORM .../> Specifies field format on Advanced Search form
 <SEARCHRESULTS .../> Specifies which fields are shown in search results
 </PROPERTY>
 <PROPERTY ...>
 <STORAGE .../>

Chapter 5
About the AssetMaker Utility

5-4

 <INPUTFORM .../>
 <SEARCHFORM .../>
 <SEARCHRESULTS .../>
 </PROPERTY>
 <PROPERTY ...>
...
</PROPERTIES> Ends the properties specification section
</ASSET> Ends the asset descriptor file

Shown next is the syntax of an asset descriptor file, indicating some parameters that
an AssetMaker tag can take:

<?xml version="1.0" ?>
<ASSET NAME="assetTypeName" DESCRIPTION=""assetTypeName" ...>
<PROPERTIES>
 <PROPERTY NAME="fieldName1" DESCRIPTION="fieldName1"/>
 <STORAGE TYPE="VARCHAR" LENGTH="36"/>
 <INPUTFORM TYPE="TEXT" DESCRIPTION="fieldName1".../>
 <SEARCHFORM TYPE="TEXT" DESCRIPTION="fieldName1".../>
 <SEARCHRESULTS INCLUDE="TRUE"/>
 </PROPERTY>
 <PROPERTY NAME="fieldName2" DESCRIPTION="fieldName2"/>
 <STORAGE TYPE="INTEGER" LENGTH="4"/>
 <INPUTFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
 <SEARCHFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
 <SEARCHRESULTS INCLUDE="TRUE"/>
 </PROPERTY>
...
</PROPERTIES>
</ASSET>

For information about WebCenter Sites tags and their parameters, along with sample
code, see the Tag Reference for Oracle WebCenter Sites Reference.

About the AssetMaker Tags
• An asset descriptor file begins with the standard XML version tag:

<?xml version="1.0"?>

• The ASSET tag, which follows the XML version tag, names the asset type and
therefore its storage table in the WebCenter Sites database. The ASSET tag also
sets some behavior and display attributes of assets of that type; for example, the
ASSET tag determines what graphical notation designates that a field is required,
and whether an asset can be previewed.

The opening tag <ASSET> is always the first line of code and the closing tag
<\ASSET> is always the last line of code in the asset descriptor file. Note that there
is only one ASSET tag pair in each asset descriptor file because only one asset type
per asset descriptor file can be created.

• The PROPERTIES tag marks the section of the file that holds the property
descriptions. The opening tag <PROPERTIES> is always the second statement in
the asset descriptor file. There is only one PROPERTIES tag pair in each asset
descriptor file.

Chapter 5
About the AssetMaker Utility

5-5

Note:

The PROPERTIES tag is required in every asset descriptor file, even if no
PROPERTY tags are needed.

• The PROPERTY tags, nested within the PROPERTIES tag pair, specify the columns
and fields for assets of this type. Each PROPERTY tag specifies the database name
of the column that will hold the value(s) users will enter for this property, and the
column's display name (that is, its field name) as it will appear on the form that will
be rendered for users who are to work with assets of this type.

• Nested inside each pair of PROPERTY tags are the following tags:

– STORAGE: Specifies the data type of the column that is being established by
this property. Note that the data type in the STORAGE tag must map to one of
the data types that is defined by the properties on the database entry of the
futuretense.ini file.

– INPUTFORM: Specifies the name and format of the field on the New, Edit, and
Inspect forms. For example, whether the field is a drop-down list or a check
box or a text field. The field's input type must be compatible with the data type
of the database column, as specified by the STORAGE statement.

– SEARCHFORM: Specifies the format of the field (property) when it displays on the
Advanced Search form. Omitting the SEARCHFORM statement from the PROPERTY
section prevents the field being defined from appearing on the Advanced
Search form.

Setting the TYPE parameter values to Table or Date displays a drop-down list
on the Advanced Search form for the asset type, but not on the SimpleSearch
form.

– SEARCHRESULTS: Specifies which fields are displayed in the search results form
after a search is run. The field value is also displayed if the INCLUDE parameter
is set to true. This tag is optional.

When modifying a standard field, do not set SEARCHRESULTS to true for name
or description.

For information about AssetMaker tags and their parameters, see the Tag Reference
for Oracle WebCenter Sites Reference. That section also provides information about
dependencies and restrictions among the parameters STORAGE TYPE, INPUTFORM TYPE,
and SEARCHFORM TYPE.

Columns in the Asset Type's Database Table
When AssetMaker creates the database table for a new asset type, it creates columns
for all the properties defined by the PROPERTY tags in the asset descriptor file,
and it creates default columns that are required by WebCenter Sites for its basic
functionality. For a list of the default columns in each asset type's table, see Default
Columns in the Basic Asset Type Database Table.

This section includes the following topics:

• The Source Column: A Special Case

• Storage Types for the Columns

Chapter 5
About the AssetMaker Utility

5-6

• Input Types for the Fields

• Data Types for Standard Asset Fields

The Source Column: A Special Case
All of the asset type tables can also have a source column. WebCenter Sites provides
a Source table and a Source form in the Admin node on the General Admin tree.
that you use to add the rows to the Source table. You can use this feature to identify
where an asset originated. However, unlike the columns listed in the preceding table,
the source column is not automatically created when AssetMaker creates the asset
type table. To add the source column to your table and have it displayed on your asset
forms, you must include a PROPERTY description for it in the asset descriptor file. See
Example 5-2.

Storage Types for the Columns
The STORAGE TYPE parameter specifies the data type of a column. The data
types are defined by the WebCenter Sites database properties located in the
wcs_properties.json file.

The following table presents the possible data types for your asset type's table
columns.

Table 5-1 STORAGE TYPE Parameter

Type (generic ODBC/JDBC data type) Property

CHAR cc.char

VARCHAR cc.varchar

SMALLINT cc.smallint

INTEGER cc.integer

BIGINT cc.bigint

DOUBLE cc.double

TIMESTAMP cc.datetime

BINARY cc.blob

LONGVARCHAR cc.bigtext

Input Types for the Fields
The INPUT TYPE parameter specifies how data can be entered in a field when it is
displayed in the WebCenter Sites forms. The following table lists all the input types.
Note that the input type for a field must be compatible with the data type of its column.

Chapter 5
About the AssetMaker Utility

5-7

Table 5-2 INPUT TYPE Parameter

Input TYPE Description

TEXT A single line of text.

Corresponds to the HTML input type named TEXT.

For the TEXT input type, you are advised to have the same value
for the LENGTH attribute of STORAGE and the MAXLENGTH attribute
of INPUTFORM. Both LENGTH and MAXLENGTH attribute values
represent number of bytes rather than number of characters.

TEXTAREA A text box, with scroll bars, that accepts multiple lines of text.

Corresponds to the HTML input type named TEXTAREA.

To accommodate large amounts of text in the field, create a text
box that displays the contents of a URL column. To do so, you
must specify a string for PROPERTY NAME that begins with url
and set the STORAGE TYPE to VARCHAR.

When a user clicks Save, the text entered into this kind of field
is stored in the file directory specified as the default storage
directory for this asset type. You can specify the default storage
directory (defdir) in either the asset descriptor file, or in the
AssetMaker form when you create the asset type.

Note:
• You can specify an unlimited size for a url field that is edited

using a TEXTAREA field by not specifying a value for the
MAXLENGTH parameter.

• Do not use the following suffixes with a string for PROPERTY
NAME that begins with the letters url: _type, _size,
_folder, and _file.

UPLOAD A field that takes a file name (a URL) and presents a Browse
button so that you can either enter the path to and name of a file
or browse to it and select it.

When you specify that a field is an upload field, set a string for
PROPERTY NAME that begins with url and set STORAGE TYPE (the
property's data type) to VARCHAR.

You can also use the BLOB storage type for an upload field. In this
case, the PROPERTY NAME string does not have to begin with url.

When the user clicks Save, WebCenter Sites uploads the
selected file and stores it in the file directory specified as the
default storage directory for this asset type. You can specify the
default storage directory (defdir) in either the asset descriptor file,
or in the AssetMaker form when you upload the file.

Note:
• The size of a file that is selected in an upload field cannot

exceed 30 megabytes.
• If you specify a string for PROPERTY NAME that begins with

the letters url, do not use the following suffixes: _type,
_size, _folder, and _file.

SELECT A field that presents a drop-down list of options that can be
selected.

You can either specify the options that are presented in the list or
you can specify a query so that the options are selected from the
database (or an external table) and presented dynamically.

Corresponds to the HTML input type SELECT.

Chapter 5
About the AssetMaker Utility

5-8

Table 5-2 (Cont.) INPUT TYPE Parameter

Input TYPE Description

CHECKBOX A check box field.

You can specify the names of the check box options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select multiple options.

Corresponds to the HTML input type CHECKBOX.

RADIO A radio button control.

You can either specify the names of the radio options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select only one option.

Corresponds to the HTML input type RADIO.

CKEDITOR A field whose contents you edit by using the CKEditor text editor.

When you specify that a field is a CKEditor field, it is
recommended that you make it a URL field. That is, set a string
for PROPERTY NAME with the url prefix and set STORAGE TYPE
(the property's data type) to VARCHAR.

If you specify a string form PROPERTY NAME that begins with
the url prefix, do not use the following suffixes: _type, _size,
_folder, and _file.

ELEMENT Calls an element that you create to display a field on the
ContentForm, ContentDetails, or SearchForm forms. The custom
element must be found at one of the following locations:

• For a field on the ContentForm form:
OpenMarket/Xcelerate/AssetType/myAssetType/
ContentForm/fieldname

• For a field on the ContentDetails form:
OpenMarket/Xcelerate/AssetType/myAssetType/
ContentDetails/fieldname

• For a field on the SearchForm form:
OpenMarket/Xcelerate/AssetType/myAssetType/
SearchForm/fieldname

Where myAssetType is the asset type that you are creating the
custom field for, and fieldname is the name of the custom field.

An ELEMENT field can have any storage type, including BLOB.

Data Types for Standard Asset Fields
You can customize the appearance of the WebCenter Sites standard asset fields. All
other changes are conditional on the type of field, as described below:

• All standard fields. You can change their display names.

• A standard field that is not a system field. You must not change its data type, with
one exception: You can change only the length of the VARCHAR data type.

• System fields. You must not change the data type (including the length of a
VARCHAR type of field).

Chapter 5
About the AssetMaker Utility

5-9

The following table lists the data types of standard fields (and indicates whether
they are also system fields).

Table 5-3 Data Types for Standard Asset Fields

Standard Field System Field Data Type

ID Yes NOT NULL NUMBER(38)

NAME N/A NOT NULL VARCHAR(64)

DESCRIPTION N/A VARCHAR(128)

TEMPLATE Yes VARCHAR(64)

SUBTYPE N/A VARCHAR(24)

FILENAME N/A VARCHAR(64)

PATH N/A VARCHAR(255)

STATUS Yes NOT NULL VARCHAR(2)

EXTERNALDOCTYPE Yes VARCHAR(64)

URLEXTERNALDOCXML Yes VARCHAR(255)

URLEXTERNALDOC Yes VARCHAR2(255)

CREATEDBY Yes NOT NULL VARCHAR(64)

UPDATEDBY Yes NOT NULL VARCHAR(64)

CREATEDDATE Yes NOT NULL DATE

UPDATEDDATE Yes NOT NULL DATE

STARTDATE N/A DATE

ENDDATE N/A DATE

Elements and SQL Statements for the Asset Type
After you upload an asset descriptor file, you register the elements. When you register
elements, AssetMaker copies elements in the AssetStubElementCatalog table to a
directory in the ElementCatalog table for this asset type. Additionally, AssetMaker
copies several SQL statements that implement the WebCenter Sites searches on the
Simple Search and the Advanced Search forms for assets of this type.

If necessary, you can customize the SQL statements, the asset type-specific
elements, or, in some cases, the elements in the AssetStubElementCatalog table.
See Customizing the Asset Type Elements (Optional) .

Note:

Under no circumstances should you modify any of the other WebCenter
Sites elements.

Topics:

• The Elements

Chapter 5
About the AssetMaker Utility

5-10

• The SQL Statements

The Elements
AssetMaker places the elements for your new asset type to the ElementCatalog table
according to the following naming convention:

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type ImageFile are located here:

OpenMarket/Xcelerate/AssetType/ImageFile

The following table lists the elements that AssetMaker copies for each asset type.

Table 5-4 AssetMaker Elements

Element Description

ContentForm Renders the New and Edit forms for assets of this type.

When the function is invoked, AssetMaker uses the INPUTFORM
statements in the asset descriptor file to format these forms.

ContentDetails Formats the Inspect form for assets of this type.

When the function is invoked, AssetMaker uses the INPUTFORM
statements in the asset descriptor file to customize these forms.

SimpleSearch Renders the Simple Search form for assets of this type.

When the function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to format these forms.

SearchForm Formats the Advanced Search form for assets of this type.

When the function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to format these forms.

AppendSelectDetai
ls

Builds the SQL queries on the individual fields in the Advanced Search
form.

When the Advanced Search form is rendered, AssetMaker uses the
SEARCHFORM statements in the asset descriptor file to customize the
form.

AppendSelectDetai
lsSE

Builds the SQL queries on the individual fields in the Advanced Search
form when your system is using an external search engine.

When this function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to create the SQL queries.

IndexAdd The IndexAdd and IndexReplace elements establish which fields
(columns) are indexed by the search engine when you are using a
search engine. By default, only the standard fields are indexed. To
index other fields, you must customize these forms. See Customizing
the Asset Type Elements (Optional).

IndexReplace See the description of IndexAdd.

Tile Formats the Search Results page, a page that lists the assets that
meet the search criteria, for assets of this type.

When the page is rendered, AssetMaker uses the SEARCHRESULTS
statements in the asset descriptor file to display the results.

LoadTree Determines how assets of this type appear when they are displayed on
any tab in the tree other than the Site Navigation tab.

Chapter 5
About the AssetMaker Utility

5-11

Table 5-4 (Cont.) AssetMaker Elements

Element Description

LoadSiteTree Determines how assets of this type appear when they are displayed on
the Site Navigation node in the Site tree.

PreUpdate Is called before a function that writes to the database is completed.
In other words, before an asset is saved and during the create, edit,
delete, or XMLPost functions, this element is called.

This element takes no input from the asset descriptor file. However,
you can customize it directly.

PostUpdate Is called after a function that writes to the database is completed. In
other words, after an asset is created, edited, deleted, or imported with
XMLPost, this element is called.

You can customize this element.

About PreUpdate and PostUpdate Elements
Actions or procedures that can be performed on assets are called functions. For
example, New, Edit, and Delete are all functions that can be invoked by users of the
Admin and Oracle WebCenter Sites: Contributor interfaces to create, edit, and delete
assets. Such functions also call the PreUpdate and PostUpdate elements.

PreUpdate and PostUpdate elements are used to contain logic that initiates various
operations when the elements are called. The PreUpdate element is called when a
function is invoked; the PostUpdate element is called after WebCenter Sites writes
asset information to the database. Each element contains a variable whose name
and value specify conditions that call the element. To call the element from the
Admin interface or from Form Mode of the Contributor interface or the XMLPost
utility, name the variable as updatetype. To call the element from Web Mode of the
Contributor interface, name the variable as servicesUpdateType. For example, your
content managers are working with the Admin interface and their system is configured
to import batches of articles from a wire service. You can have the PreUpdate element
set the value for the Source field to wirefeed and the value for the Byline field to
API just before import occurs if you code these operations in the element and set
updatetype=remotepost as the condition under which the element will be called.

Note:

PreUpdate and PostUpdate elements are always called when a WebCenter
Sites user invokes the New, Edit, or Delete function in the Admin or
Contributor interface, or when assets are imported through XMLPost.
Whether operations are performed using the PreUpdate and PostUpdate
elements depends on how the elements are coded. By default, they are
designed for no action.

PreUpdate and PostUpdate elements are accessible from Explorer, in the following
path:

ElementCatalog\OpenMarket\Xcelerate\AssetType

Chapter 5
About the AssetMaker Utility

5-12

Note:

The PreUpdate element is called twice if a user saves a new or edited asset
in the Admin interface:

The first call occurs before the New or Edit form is rendered.The second call
occurs after the user clicks Save in the New or Edit form, but WebCenter
Sites has not yet written asset information to the database.

The condition above provides the opportunity to perform operations using
PreUpdate at one or more points once the New or Edit function is invoked:
before the New or Edit form is rendered, before asset information is written to
the database, or both, depending on the value of the element's updatetype
variable.

The following table defines the values of the updatetype variable:

Table 5-5 Values of the UpdateType Variable

updatetype = Description

setformdefaults When a user invokes the New function in the Admin interface or in the
Form Mode of the Contributor interface.

• The PreUpdate element is called before the New form is
rendered.

• For PostUpdate, setformdefaults is not a legal value for the
updatetype variable.

create When a user saves a new asset in the Admin interface or in the Form
Mode of the Contributor interface:

• The PreUpdate element is called before the new asset is written
to the database.

• The PostUpdate element is called after the new asset is written
to the database.

editfront When a user invokes the Edit function in the Admin interface or in the
Form Mode of the Contributor interface:

• The PreUpdate element is called before the Edit form is
rendered.

• For PostUpdate, editfront is not a legal value for the
UpdateType variable.

edit When a user saves an edited asset in the Admin interface or in the
Form Mode of the Contributor interface:

• The PreUpdate element is called before the edits are written to
the database.

• The PostUpdate element is called after the edits are written to
the database.

delete When a user deletes an asset from the Admin interface:

• The PreUpdate element is called before WebCenter Sites deletes
the asset.

• The PostUpdate is performed after WebCenter Sites deletes the
asset.

Chapter 5
About the AssetMaker Utility

5-13

Table 5-5 (Cont.) Values of the UpdateType Variable

updatetype = Description

remotepost When a user invokes the XMLPost function to import an asset:

• The PreUpdate element is called before the asset is imported.
• The PostUpdate element is called after the asset is imported.

InSite When saved from Web Mode, a variable called servicesUpdateType
will have create, edit, or delete depending on the user operation.

Table 5-6 defines the values of the servicesUpdateType variable.

The following table defines the values of the servicesUpdateType variable.

Table 5-6 Values of the servicesUpdateType Variable (Contributor interface)

servicesUpdateType
=

Description

create When a user saves a new asset in the Contributor interface:

• The PreUpdate element is called before the new asset is written
to the database.

• The PostUpdate element is called after the new asset is written
to the database.

edit When a user saves an edited asset in the Contributor interface:

• The PreUpdate element is called before the edits are written to
the database.

• The PostUpdate element is called after the edits are written to
the database.

delete When a user deletes an asset in the Contributor interface:

• The PreUpdate element is called before WebCenter Sites deletes
the asset.

• The PostUpdate element is called after WebCenter Sites deletes
the asset.

The SQL Statements
AssetMaker places the SQL statements in the SystemSQL table according to the
following naming convention:

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type ImageFile are located here:

OpenMarket/Xcelerate/ImageFile

The following table lists the SQL elements that AssetMaker creates:

Table 5-7 SQL Elements

Statement Description

SelectSummary A SQL statement that defines the query used in the Simple
Search and Advanced Search form for assets of this type.

Chapter 5
About the AssetMaker Utility

5-14

Table 5-7 (Cont.) SQL Elements

Statement Description

SelectSummarySE Not used.

Before You Begin Creating Basic Asset Types
To be able to create an efficient asset type design, you need to consider many
points such as the number of fields, data types, asset associations. Also set up your
development system with a CM site and a user Id with appropriate rights.

• Planning the Asset Type Design

• Setting Up Your Development System

Planning the Asset Type Design
Be sure to design your asset types on paper before you start coding an asset
descriptor file. Consider the following kinds of details:

• What fields do you need?

In general, try to minimize the number of fields that you use by organizing the
information into useful units. When determining those units, consider both the
information you plan to display on your online site and the data-entry needs of the
content providers who will enter that data.

• What is the appropriate data type for each field?

• For fields with options, how will you supply the options?

With a static list coded in the asset descriptor file or with a lookup table that holds
the valid options?

• Which WebCenter Sites features will you use to organize or categorize assets of
this type?

For example, source, category, and asset associations. For each one, determine
its name and plan how it will be used both on the management system and in the
design of your online site.

• Does the implementation of your site design require assets of this type to use a
different default template based on the publishing target that they are published
to?

If so, you will have to use the Subtype feature. Determine the names of the
subtypes that you will need for assets of this type.

Setting Up Your Development System
Also before you begin, be sure to set up your development system. For information
about any of these preliminary steps, see Administering Oracle WebCenter Sites.

• Create the appropriate sites.

• Create a user name for yourself that has administrator rights and enable that
user name on all of the sites on your development system. Be sure that the

Chapter 5
Before You Begin Creating Basic Asset Types

5-15

TableEditor ACL is assigned to your user name or you will be unable to create
asset types.

Note:

Without administrator rights, you do not have access to the Admin node
in the General Admin tree, which means that you cannot perform any of
the procedures in this chapter. For the sake of convenience, assign the
Designer and GeneralAdmin roles to your user name. That way you will
have access to all the tabs and all of the existing Start Menu shortcuts
for the assets in the sample site.

Creating Basic Asset Types
You spend less time creating a simple asset type that needs just one descriptor file.
For some asset types you can modify the code in the elements that AssetMaker
creates, or add a database table to hold information for the dropdown lists.

Creating basic asset types includes these tasks:

• Coding the Asset Descriptor File.

• Uploading the Asset Descriptor File to WebCenter Sites using AssetMaker in the
Admin tab.

• Creating the Asset Table and register the asset type elements by copying the
asset type elements from the AssetStubElementCatalog table to the appropriate
directory in the ElementCatalog table.

• Configuring the Asset Type.

• Enabling the Asset Type on Your Site and create a start menu shortcut so that you
can work with the asset type.

• Fine-Tuning the Asset Descriptor File (if necessary) and re-register the asset type
elements.

• Customizing the Asset Type Elements (Optional) .

• Adding Subtypes (Optional) for the new asset type.

• Configuring Association Fields (Optional) for the new asset type.

• Configuring Categories (Optional) for the new asset type.

• Adding Mimetypes (Conditional) for the new asset type.

• Editing Search Elements to Enable Indexed Search (Optional) if you are using a
search engine rather than the WebCenter Sites database search utility to perform
the logic behind the search forms and you want to use it on your new asset type.

• Creating and Assigning Asset Type Icons (Contributor Interface Only) that will
represent the asset type in the Contributor interface's navigation trees (Site Tree,
Content Tree, and My Work tree).

• Coding Templates for the Asset Type, Coding Templates for the Asset Type. See
also Coding Elements for Templates and CSElements.

Chapter 5
Creating Basic Asset Types

5-16

• Moving the Asset Types to Other Systems (management and delivery) This allows
your administrator to complete the final steps in creating the asset type, including
setting up workflow and creating start menu items.

Coding the Asset Descriptor File
As described in Asset Descriptor Files, this is the basic format of an asset descriptor
file:

<?xml version="1.0" ?>
<ASSET NAME="assetName"...>
<PROPERTIES>
 <PROPERTY.../>
 <STORAGE.../>
 <INPUTFORM.../>
 <SEARCHFORM.../>
 <SEARCHRESULTS.../>
 </PROPERTY>
 <PROPERTY... />
 <STORAGE.../>
 <INPUTFORM.../>
 <SEARCHFORM.../>
 <SEARCHRESULTS.../>
 </PROPERTY>
</PROPERTIES>
</ASSET>

To code your asset descriptor files, see the Tag Reference for Oracle WebCenter Sites
Reference and use the tags described in this guide to code the file. Use the native
XML editor in Explorer or any other XML editor to code the file.

Note that you can customize the appearance of standard asset fields by including
them in your asset descriptor file. Changing a field's storage type is conditional. For
example, a system field's storage type must not be changed. For the list of standard
fields, their storage types, and allowed changes to storage type, see Data Types for
Standard Asset Fields.

This section offers a sample asset descriptor file and several examples about coding
specific kinds of properties.

This section includes the following examples:

• Example 5-1

• Example 5-2

• Example 5-3

• Example 5-4

• Example 5-5

• Example 5-6

• Example 5-7

• Example 5-8

• Example 5-9

• Example 5-10

Chapter 5
Creating Basic Asset Types

5-17

Example 5-1 Sample Asset Descriptor File: ImageFile.xml

An example of an Asset Descriptor File, ImageFile.xml, follows:

<!-- this is the description of an asset -->
<ASSET NAME="ImageFile" DESCRIPTION="ImageFile"
 MARKERIMAGE="/Xcelerate/data/help16.gif" PROCESSOR="4.0"
 DEFDIR="c:\FutureTense\Storage\ImageFile">

<PROPERTIES>

 <PROPERTY NAME="source" DESCRIPTION="Source">
 <STORAGE TYPE="VARCHAR" LENGTH="24"/>
 <INPUTFORM DESCRIPTION="Source" TYPE="SELECT" TABLENAME="Source"
 OPTIONDESCKEY="description" OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
 <SEARCHFORM DESCRIPTION="Source" TYPE="SELECT" TABLENAME="Source"
 OPTIONDESCKEY="description" OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
 </PROPERTY>

 <PROPERTY NAME="urlpicture" DESCRIPTION="Image File">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO" LINKTEXT="Image"/>
 </PROPERTY>

 <PROPERTY NAME="urlthumbnail" DESCRIPTION="Thumbnail File">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO" LINKTEXT="Image"/>
 </PROPERTY>

 <PROPERTY NAME="mimetype" DESCRIPTION="Mimetype">
 <STORAGE TYPE="VARCHAR" LENGTH="36"/>
 <INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE" TABLENAME="MimeType"
 OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"
 SQL="SELECT mimetype, description
 FROM MimeType
 WHERE keyword = 'image'
 AND isdefault = 'y'"
 INSTRUCTION="Add more options to mimetype table with isdefault=y
 and keyword=image"/>
 <SEARCHFORM DESCRIPTION="MimeType" TYPE="SELECT" SOURCETYPE="TABLE"
 TABLENAME="MimeType" OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"
 SQL="SELECT mimetype, description
 FROM MimeType
 WHERE keyword = 'image'
 AND isdefault = 'y'"/>
 </PROPERTY>

 <PROPERTY NAME="width" DESCRIPTION="Width">
 <STORAGE TYPE="INTEGER" LENGTH="4"/>
 <INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4" REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Width is" TYPE="TEXT" WIDTH="4"
 MAXLENGTH="4" VERB="="/>
 </PROPERTY>

 <PROPERTY NAME="height" DESCRIPTION="Height">
 <STORAGE TYPE="INTEGER" LENGTH="4"/>
 <INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4" REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Height is" TYPE="TEXT" WIDTH="4"
 MAXLENGTH="4" VERB="="/>
 </PROPERTY>

Chapter 5
Creating Basic Asset Types

5-18

 <PROPERTY NAME="align" DESCRIPTION="Alignment">
 <STORAGE TYPE="VARCHAR" LENGTH="8"/>
 <INPUTFORM TYPE="SELECT" SOURCETYPE="STRING"
 OPTIONVALUES="Left,Center,Right" OPTIONDESCRIPTIONS="Left,Center,Right"/>
 <SEARCHFORM DESCRIPTION="Alignment" TYPE="SELECT" SOURCETYPE="STRING"
 OPTIONVALUES="Left,Center,Right" OPTIONDESCRIPTIONS="Left,Center,Right"/>
 </PROPERTY>

 <PROPERTY NAME="artist" DESCRIPTION="Artist">
 <STORAGE TYPE="VARCHAR" LENGTH="64"/>
 <INPUTFORM TYPE="TEXT" WIDTH="36" MAXLENGTH="64" REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Artist contains" TYPE="TEXT"
 WIDTH="36" MAXLENGTH="64"/>
 </PROPERTY>

 <PROPERTY NAME="alttext" DESCRIPTION="Alt Text">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="255" REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Alt Text contains" TYPE="TEXT"
 WIDTH="48" MAXLENGTH="255"/>
 </PROPERTY>

 <PROPERTY NAME="keywords" DESCRIPTION="Keywords">
 <STORAGE TYPE="VARCHAR" LENGTH="128"/>
 <INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="128" REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Keywords contain" TYPE="TEXT"
 WIDTH="48" MAXLENGTH="128"/>
 </PROPERTY>

 <PROPERTY NAME="imagedate" DESCRIPTION="Image date">
 <STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
 <INPUTFORM TYPE="ELEMENT" WIDTH="24" MAXLENGTH="48" REQUIRED="NO"
 DEFAULT="" INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
 <SEARCHFORM DESCRIPTION="Image date" TYPE="ELEMENT"
 WIDTH="48" MAXLENGTH="128"/>
 </PROPERTY>

</PROPERTIES>
</ASSET>

Example 5-2 Adding the Source Column and Field

The source column is not created by default even though WebCenter Sites has a
Source feature on the Admin node in the General Admin tree. To use the Source
feature on your new asset types, you must include a property statement for the source
column and field.

Note the following:

• STORAGE TYPE must be set to VARCHAR, and LENGTH must be set to 24.

• INPUTFORM SOURCETYPE must be set to TABLE, and TABLENAME must be set to
Source.

For example:

<PROPERTY NAME="source" DESCRIPTION="Source">
 <STORAGE TYPE="VARCHAR" LENGTH="24"/>
 <INPUTFORM TYPE="SELECT" TABLENAME="Source"
 OPTIONDESCKEY="description"
 OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
 <SEARCHFORM DESCRIPTION="Source" TYPE="SELECT"

Chapter 5
Creating Basic Asset Types

5-19

 TABLENAME="Source" OPTIONDESCKEY="description"
 OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
</PROPERTY>

Example 5-3 Creating a Standard Upload Field

To create an upload field with a Browse button, code the PROPERTY statement as
follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to UPLOAD.

Here is a code snippet of an upload field from the ImageFile asset descriptor file:

<PROPERTY NAME="urlpicture" DESCRIPTION="Image File">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO" LINKTEXT="Image"/>
</PROPERTY>

Note:

The size of a file that you can select in an upload field is limited to 30
megabytes.

Example 5-4 Creating an Upload Field with a Text Box

To create an upload field with a text box that you can enter the text in (rather than with
a Browse button that you use to select a file), code the PROPERTY statement as follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to TEXTAREA.

The following code snippet creates a text area field for a url column:

<PROPERTY NAME="urlbody" DESCRIPTION="Article Body">
 <STORAGE TYPE="VARCHAR" LENGTH="256"/>
 <INPUTFORM TYPE="TEXTAREA" WIDTH="400" HEIGHT="100" REQUIRED="YES"/>
</PROPERTY>

Example 5-5 Creating an Upload Field with a CKEditor

To create a CKEditor field, code the property statement as follows:

1. The PROPERTY NAME must begin with the letters url. Therefore, use a URL column
for the field, otherwise the field will be too small.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to CKEDITOR.

<PROPERTY NAME="urlbody" DESCRIPTION="Body">
 <STORAGE TYPE="VARCHAR" LENGTH="50"/>
 <INPUTFORM TYPE="CKEDITOR" WIDTH="300" HEIGHT="300" REQUIRED="YES"
 INSTRUCTION="Be concise! No more than 3 paragraphs."/>
</PROPERTY>

Chapter 5
Creating Basic Asset Types

5-20

The length of the type VARCHAR is the length of the path to the file where the data is
stored. This is typically less than 100. An excessively large length (for example, 5000)
causes issues with data storage as the database will store the data as a CLOB. And
the URL field will be corrupted because the data would be stored in the database
rather than the file.

Example 5-6 Creating an Upload Field That Uploads a Binary File

The following code creates a field where you can upload a blob. Not specifying
MIMETYPE will prevent you from viewing the blob from the Edit and Inspect forms.

Code the property statements as follows:

• The string set for PROPERTY NAME must not begin with the letters url.

• The value for STORAGE TYPE must be set to BINARY.

<PROPERTY NAME="type_binary" DESCRIPTION="Binary">
 <STORAGE TYPE="BINARY"/>
 <INPUTFORM TYPE="UPLOAD"
 WIDTH="24" MAXLENGTH="64"
 MIMETYPE="application/msword"
 LINKTEXT="Edit with Microsoft Word"
 INSTRUCTION="maps to cc.blob"/>
</PROPERTY>

Consider the following about Upload fields:

• For an Upload field whose PROPERTY NAME starts with the letters url, only the
file system path of the uploaded file is stored in the database. So, in this case,
STORAGE TYPE must be set to VARCHAR.

• For an Upload field whose PROPERTY NAME doesn’t start with the letters url,
the uploaded file’s data resides in the database in BINARY format. So, in this case
STORAGE TYPE must be set to BINARY.

Example 5-7 Enabling path, filename, startdate, and enddate

The path, filename, startdate, and enddate columns are special cases.

AssetMaker creates columns for path, filename, startdate, and enddate without
requiring a PROPERTY statement for them. However, while these columns exist, their
fields do not appear on your asset forms unless you include a PROPERTY statement for
them in the asset descriptor file.

Note the following about these columns:

• path: The STORAGE TYPE must be set to VARCHAR and LENGTH must be set to 255.

• filename: The STORAGE TYPE must be set to VARCHAR and LENGTH must be set to
128.

• startdate: The STORAGE TYPE must be set to TIMESTAMP.

• enddate: The STORAGE TYPE must be set to TIMESTAMP.

Chapter 5
Creating Basic Asset Types

5-21

Note:

If you include one of these standard columns in your asset descriptor
file but your storage type does not match the one specified in this list,
AssetMaker cannot create the asset type.

For example:

<PROPERTY NAME="path" DESCRIPTION="Path">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM DESCRIPTION="Path" TYPE="TEXT" LENGTH="255"/>
</PROPERTY>

Example 5-8 Using a Query to Obtain Options for a Drop-Down List

When the INPUTFORM TYPE of your property is SELECT, you can have WebCenter Sites
populate the drop-down list for the select field with a static list of items that you provide
with the OPTIONDESCRIPTIONS parameter, or with a list of items that WebCenter Sites
obtains, dynamically, from a database table.

Another example of a select field that populates its drop-down list dynamically from a
table is the Mimetype field on the imagefile forms, which queries the MimeType table
for its options. Here's the code:

<PROPERTY NAME="mimetype" DESCRIPTION="Mimetype">

 <STORAGE TYPE="VARCHAR" LENGTH="36"/>
 <INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE"
 TABLENAME="mimetype" OPTIONDESCKEY="description"
 OPTIONVALUEKEY="mimetype" SQL="SELECT mimetype, description
 FROM mimetype
 WHERE keyword = 'image'
 AND isdefault = 'y'"
 INSTRUCTION="Add more options to mimetype table
 with isdefault=y and keyword=image"/>

 <SEARCHFORM DESCRIPTION="Mimetype" TYPE="SELECT"
 SOURCETYPE="TABLE" TABLENAME="mimetype"
 OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"
 SQL="SELECT mimetype, description
 FROM mimetype
 WHERE keyword ='image'
 AND isdefault = 'y'"/>

</PROPERTY>

This example shows a field that not only selects items from a database table, but,
through an additional SQL query, further restricts which items are returned from that
table, as well.

Example 5-9 Using a Query to Obtain Labels for Radio Buttons

Use RADIO as the INPUTFORM TYPE of your property to input the label for each radio
button using a static list of items that you provide with the OPTIONDESCRIPTIONS
parameter, or with a list of items that WebCenter Sites obtains, dynamically, from a
database table.

Chapter 5
Creating Basic Asset Types

5-22

The following sample code creates radio buttons with labels drawn from the
CreditCard table:

<PROPERTY NAME="sqlrbcc" DESCRIPTION="SQL RB Credit Card">
 <STORAGE TYPE="VARCHAR" LENGTH="4"/>
 <INPUTFORM TYPE="RADIO" SOURCETYPE="TABLE" TABLENAME="CreditCard"
 RBVALUEKEY="ccvalue" RBDESCKEY="ccdescription" />
 <SEARCHFORM TYPE="SELECT" DESCRIPTION="Credit Card:" SOURCETYPE="TABLE"
 TABLENAME="CreditCard" OPTIONVALUEKEY="ccvalue" OPTIONDESCKEY="ccdescription"
 SQL="SELECT ccvalue,ccdescription
 FROM CreditCard ORDER BY ccdescription"/>
</PROPERTY>

Example 5-10 Creating a Field with the ELEMENT Input Type

To display the fields as you want them on your asset forms, you can call custom code
using the ELEMENT input type. Use this method to create asset fields, or to change the
appearance of standard asset fields, though you cannot modify the storage type of a
standard asset field.

An ELEMENT field can have any storage type, including BLOB. When you set a field's
input type to ELEMENT, WebCenter Sites calls a custom element to display the field.
The custom element must be found at one of the following locations:

For a field on the ContentForm form:

OpenMarket/Xcelerate/AssetType/myAssetType/ContentForm/fieldname

For a field on the ContentDetails form:

OpenMarket/Xcelerate/AssetType/myAssetType/ContentDetails/fieldname

For a field on the SearchForm form:

OpenMarket/Xcelerate/AssetType/myAssetType/SearchForm/fieldname

Note that myAssetType is the asset type that you are creating the custom field for, and
fieldname is the name of the custom field.

The following excerpt from an asset descriptor file uses the ELEMENT input type:

<PROPERTY NAME="imagedate" DESCRIPTION="Image date">
 <STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
 <INPUTFORM TYPE="ELEMENT" WIDTH="24" MAXLENGTH="48" REQUIRED="NO" DEFAULT=""
 INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
 <SEARCHFORM DESCRIPTION="Image date" TYPE="ELEMENT"
 WIDTH="48" MAXLENGTH="128"/>
</PROPERTY>

Note that the input form uses a customized field, but the search form and content
details forms display default fields.

The following code excerpt is the element that the descriptor file calls:

<!-- OpenMarket/Xcelerate/AssetType/ImageFile/ContentForm/imagedate
-
- INPUT
- Variables.AssetType
Variables.fieldname
Variables.fieldvalue- default or value for this field
Variables.datatype - from STORAGE tag in ADF for this field
Variables.helpimage - help icon

Chapter 5
Creating Basic Asset Types

5-23

Variables.alttext - help text from INPUT tag in ADF
Other fields from input tag are in:
Variables.assetmaker/property/Variables.fieldname/inputform/[tag attribute]
- field name used in form should be Variables.AssetType:Variables.fieldname

- OUTPUT
-
-->
Enter date in the format yyyy-mm-dd hh:mm:ss

<setvar
 NAME="inputfieldsize"
 VALUE="Variables.assetmaker/property/Variables.fieldname/inputform/width"/>

<callelement NAME="OpenMarket/Xcelerate/Scripts/FormatDate"/>

<INPUT TYPE="text" SIZE="Variables.inputfieldsize"
 NAME="Variables.AssetType:Variables.fieldname"
 VALUE="Variables.fieldvalue"
 REPLACEALL="Variables.inputfieldsize,Variables.fieldvalue,Variables.fieldname,
 Variables.AssetType"onChange="padDate(this.form.elements['Variables.AssetType:
 Variables.fieldname'].value,this,'Variables.AssetType:Variables.fieldname'
);"/>

</FTCS>

Note that you can customize as many fields as you want using the ELEMENT input type,
but you must write a separate element for each field.

Uploading the Asset Descriptor File to WebCenter Sites
After you have coded the asset descriptor file for your asset type, use AssetMaker to
upload it and register the new elements:

1. Open the Admin interface.

2. Select the General Admin tree and then expand the Admin node.

3. Expand AssetMaker and click Add New.

The Add New AssetMaker Asset Type form opens.

4. In the Name field, enter the name of the new asset type. The string that you enter
into this field must exactly match the string specified by the ASSET NAME parameter
in the asset descriptor file that you are going to upload.

5. In the Descriptor File field, click Browse and select the asset descriptor file.

6. Click Save.

AssetMaker enters the file into the AssetType table (that is, it uploads the asset
descriptor file to the default storage directory for the AssetType table), and then
opens the Asset Type form.

The Asset Type form opens.

Chapter 5
Creating Basic Asset Types

5-24

Figure 5-2 Asset Type Form

Creating the Asset Table
This step continues from step 6 of Uploading the Asset Descriptor File to WebCenter
Sites.

1. Select Create Asset Table.

2. In the DefDir field, examine the value and change it if necessary. AssetMaker
reads this value from the asset descriptor file. You must enter a value in this field if
either of the following conditions exist:

• If you did not provide a value with the DEFDIR parameter for the ASSET tag in
the asset descriptor.

• To change the default storage directory, which is typical when you are
migrating the asset type to another system.

Enable the Add General Category option. AssetMaker adds one row to the
Category table for the new asset type and names that category General.

3. Click Create Asset Table.

AssetMaker creates the table, and it displays a confirmation.

Chapter 5
Creating Basic Asset Types

5-25

4. Select Register Asset Elements, and then click Register Asset Elements.

AssetMaker copies the elements from the AssetStubElementCatalog table to the
asset type's directory in the ElementCatalog table and copies the SQL statements
in the SystemSQL table.

When it is finished, it displays a confirmation.

Configuring the Asset Type
When AssetMaker created the new asset type (in Uploading the Asset Descriptor File
to WebCenter Sites), it also created an icon and administrative forms for configuring
the new asset type, located in the Admin node on the General Admin tree.

To configure the asset type:

1. In the General Admin tree, expand the Admin node and then expand the Asset
Types icon.

2. Under Asset Types, select your new asset type. If you do not see it in the list,
right-click and choose Refresh from the context menu, and then choose your new
asset type.

3. Click Edit.

The Edit Asset Type form opens.

Chapter 5
Creating Basic Asset Types

5-26

Figure 5-3 Edit Asset Type Form

4. (Optional) In the Description field, change the value, if necessary. The text in this
field is the name that WebCenter Sites uses for this asset type on the forms and
lists in the WebCenter Sites interface. By default, description is set to the value of
the ASSET DESCRIPTION statement in the asset descriptor file.

5. (Optional) In the Plural Form field, change the value, if necessary. The text in
this field is the text that WebCenter Sites uses in the Admin interface when it is
appropriate to refer to the asset type in the plural. By default, Plural Form is set to
the value of the ASSET DESCRIPTION statement in the asset descriptor file plus the
letter "s." You can also specify your own plural form in the asset descriptor file by
setting the value of the ASSET tag's PLURAL parameter.

6. (Optional) In the Can Be a Child Asset field, change the value, if necessary. By
default, this field is set to True, which means that this asset type can be the child
asset type in an association field for another asset type. Its name displays in the
list of asset types in the Child Asset Field on the Add New Association forms.

7. (Optional) In the Use Dimensions field, change the value, if necessary. By
default, this field is set to True, which means that this asset type supports the
creation of multi-lingual content.

8. Click Save.

Chapter 5
Creating Basic Asset Types

5-27

Enabling the Asset Type on Your Site
Before you can examine the forms that the new elements render for the asset type,
you must enable the asset on the site (or sites) that you are working with and create a
simple start menu item for it.

For instructions on how to enable your asset types and create start menu items for
them, see Administering Oracle WebCenter Sites.

Fine-Tuning the Asset Descriptor File
Create a new asset of your new type and examine the New, Edit, Inspect, and Search
forms. (To create a new asset of this type, click New on the toolbar and select the start
menu shortcut that you created in the preceding procedure.)

After you examine the forms, you might have to modify the asset descriptor file.

You can make any of the following changes with relatively few steps:

• Re-ordering the fields that appear on the WebCenter Sites forms for the asset
type.

• Changing the name of a field (that is, the value of PROPERTY DESCRIPTION).

• Changing anything in an INPUTFORM, SEARCHFORM, or SEARCHRESULTS statement.

To make any of the changes in the preceding list, complete the following steps:

1. Use Explorer to open and modify the asset descriptor file that you uploaded in
Uploading the Asset Descriptor File to WebCenter Sites.

2. Save your changes.

3. Re-register the elements for the asset type.

You cannot change the schema of the asset type's database table after it is created.
The following are the schema changes:

• Changing the name of a column (the NAME parameter in an existing PROPERTY
statement).

• Changing the data type of the column (the STORAGE TYPE or LENGTH in an existing
PROPERTY statement).

• Adding a new property (new PROPERTY statement), which adds a new column to
the table.

• Deleting a property (an existing PROPERTY statement), which deletes a column from
the table.

Therefore, to make any of the changes in the preceding list, you must first delete the
asset type, modify the asset descriptor file, and then create the asset type again.

Note that customizing the elements that AssetMaker copied from the
AssetStubElementCatalog table to the asset type's directory in the ElementCatalog
table allows for changes to be overwritten at re-registration of elements.

Chapter 5
Creating Basic Asset Types

5-28

Customizing the Asset Type Elements (Optional)
The following are the ways to customize asset type elements on your content
management system:

• For changes specific to a certain asset type, modify the elements for that asset
type in the ElementCatalog table, using Explorer. See About PreUpdate and
PostUpdate Elements.

• To make the same modifications for assets of all types, modify the source
elements in the AssetStubElementCatalog table, using Explorer, before you
create your asset types. That way you will have to customize only once.

Note:

Although customizing source elements in the AssetStubElementCatalog
table might be necessary, it is not supported. If you plan to customize a stub
element, consider that it will be overwritten under the following conditions:

• Changing the stub elements requires you to re-register all of
the asset elements that must take the new changes. When
you re-register asset elements, AssetMaker moves new copies
of the elements from the AssetStubElementCatalog table to the
asset type's directory in the ElementCatalog table (the path is
ElementCatalog\OpenMarket\Xcelerate\AssetType) and in the process
overwrites the existing elements. Elements that you customized in the
AssetType directory will be overwritten.

• The WebCenter Sites upgrade process typically installs new source
elements in the AssetStubElementCatalog table. Code changes in the
stub elements are overwritten when you re-register your asset types
after upgrade.

Be meticulous about tracking all of your customizations at all times. That way you can
re-create your work if necessary.

For more information about the asset type elements you can modify, see The
Elements.

Adding Subtypes (Optional)
A subtype is a subclass of the basic asset type based on how that asset is rendered.
Use subtypes to define a separate default approval template for an asset of that type
and subtype on each publishing target.

Follow these steps to create a subtype:

1. In the General Admin tree, expand the Admin node, and then expand the Asset
Types option.

2. Under the Asset Types option, select the asset type that you want to create
subtypes for.

3. Select the Subtypes option.

Chapter 5
Creating Basic Asset Types

5-29

The Subtypes form opens.

Figure 5-4 Subtypes for Asset Type Dialog

4. Click Add New Subtype.

5. In the Name column of the next form, enter the name of the subtype.

6. In the corresponding field of the Sites column, select the names of the sites that
need this subtype.

7. Repeat these steps for up to five subtypes.

8. Click Save.

Configuring Association Fields (Optional)
Associations are assettype-specific relationships that describe parent-child
relationships or links between individual assets or asset sub-types. Associations are
described in The Basic Asset Model.

When you code your template elements, you use the names of these relationships to
identify individual assets or sub-types, without having to refer to the object by its name.
For example, in a site that associates imagefile assets with article assets, the template
elements should be coded to extract an associated imagefile asset by the name of the
association rather than the name of the asset. This enables the template to display
another imagefile for an article without you having to re-code the template.

Associations are represented as fields in the asset forms. These fields are not created
from an asset descriptor file. Instead, you use the Asset Associations forms under the
Admin node in the General Admin tree.

To add an association field:

1. In the General Admin tree, expand the Admin node, and then expand Asset
Types.

2. Under the Asset Types option, select the asset type that you want to create
associations for.

3. Under the asset type you selected, select Asset Associations and then Add
New.

The Add New Association form opens.

Chapter 5
Creating Basic Asset Types

5-30

Figure 5-5 Add New Association Dialog

4. In the Name field, enter the name of the association field, without using spaces,
decimal points, or punctuation marks.

5. In the Description field, enter a short description of the field. WebCenter Sites
uses the text entered into this field as the name of the field when it is displayed on
the new asset form.

6. In the Child Asset field, select the kind of asset type that will appear in this
field. (It is called the Child Asset field because associations create parent-child
relationships between assets.) You cannot specify the template or the page asset
type in this field.

7. In the Subtypes field, select the subtype or subtypes for this association by
highlighting them. To select multiple subtypes, press the Control key while you
click your selection with your mouse.

8. In the Mirror Dependency Type section, select a suitable option for this asset
association. By default, it is set to Exists. The dependency type specified here is
used by the approval system when your publishing method is Mirror to Server.

9. Click Add New Association.

WebCenter Sites creates a row in the Association table for this association. The
name used in the row is the text you entered in the Name field in step 4.

Chapter 5
Creating Basic Asset Types

5-31

Configuring Categories (Optional)
Use categories to organize your asset types according to some convention that works
for your site design. Although all basic asset types have a Category field (column) by
default, it is not a required field and you do not have to use it.

To add a category:

1. Under the Admin node, select Asset Types.

2. For the Asset Type option, select the asset type for which you want to create
categories. For example, select Article.

3. Under that asset type, select Categories and then Add New.

The Add New Category form opens.

Figure 5-6 Add New Category Dialog

4. In the Description field, enter a short description of the category. WebCenter Sites
uses the text that you enter in this field in the site tree and in the drop-down list for
the Category field on the forms for assets of this type.

5. In the Category Code field, enter a two-character code for your new category.

6. Click Add.

7. Repeat steps 2 through 6, as needed, to finish creating the categories for this
asset type.

The categories you created now appear in the drop-down lists in the Category fields
when creating new assets or editing assets.

Adding Mimetypes (Conditional)
The MimeType table holds mimetype codes that can be displayed in MimeType fields.
You must add mimetypes for your asset if you reference the MimeType table in your
asset descriptor file. For example, both the imagefile and stylesheet asset types have
upload fields with Browse buttons next to them. After you select a file in the upload
field, you specify the mimetype of the file you selected from the Mimetype drop-down
list.

The Mimetype fields for the imagefile and stylesheet asset types query the MimeType
table for mimetype codes based on the keyword column:

Chapter 5
Creating Basic Asset Types

5-32

• Mimetype codes with their keyword set to stylesheet appear in the drop-down list
of the Mimetype field in the Stylesheet form.

• Mimetype codes with their keyword set to image appear in the drop-down list of the
Mimetype field in the ImageFile form.

By default, stylesheet files can be CSS files and imagefile files can be GIF or JPEG files.
You can add mimetype codes for these asset types, for your own custom asset types,
or for any other reason.

To add mime types to a Mimetype drop-down list:

1. Open Explorer.

2. Expand the MimeType table.

3. Do one of the following:

• To add a mimetype for the imagefile asset type, select image in the MimeType
table.

• To add a mimetype for the stylesheet asset type, select text in the MimeType
table.

• To add a mimetype for a custom asset type with an upload field or for any
other reason, select the appropriate location in the MimeType table.

4. Right-click in the frame on the right and then choose New from the drop-down list.

Explorer creates a new row in the table.

5. In the mimetype field, enter the name of the mimetype. For example: XSL.

6. In the extension field, enter the extension for mime types of this type. For
example: .xml.

7. In the Description field, enter a short description of this mimetype.

8. In the isdefault field, do one of the following:

• To specify multiple extensions for the same mimetype, enter n. For example, if
a mimetype named JPG has .jpg and .jpeg extensions, set isdefault to n.

• If this is the only extension for the mimetype, enter y.

9. In the Keyword field, do one of the following:

• To add a mimetype for the imagefile asset type, enter image.

• To add a mimetype for the stylesheet asset type, enter stylesheet.

• To add a mimetype for a custom asset type with an upload field or for any
other reason, enter the appropriate keyword.

10. Select File and then Save all.

Explorer saves the row.

A mimetype code, if added with the keyword of image, is now displayed in the
Mimetype field of the ImageFile form. A mimetype code that was added with the
keyword of stylesheet is now displayed in the Mimetype field of the Stylesheet
form.

Chapter 5
Creating Basic Asset Types

5-33

Editing Search Elements to Enable Indexed Search (Optional)
WebCenter Sites and Oracle WebCenter Sites: Engage have its own database SQL
search mechanism that runs the Simple and Advanced searches. However, you can
set up your management system to one of the supported third-party search engines
instead. For configuration information, see Administering Oracle WebCenter Sites.

When you are using a search engine on your management system, each asset is
indexed when it is saved after being created or edited. By default, only the default
fields are indexed (for a list, see Default Columns in the Basic Asset Type Database
Table). To index the fields that you created with PROPERTY statements in your asset
descriptor file, add statements for them in the following elements:

• OpenMarketXcelerate/AssetType/YourAssetType/IndexAdd.xml

• OpenMarketXcelerate/AssetType/YourAssetType/IndexReplace.xml

To add the asset type's custom fields to these elements, use the WebCenter Sites
INDEX tags and follow the convention illustrated in these elements.

Creating and Assigning Asset Type Icons (Contributor Interface Only)
Create and assign the icon that will represent the asset type in the Contributor
interface's navigation trees (Site Tree, Content Tree and My Work tree). Icons can
be of any type of image file (for example, PNG, GIF, and so on). In this example, an
image file of type PNG is created.

1. Create an image no larger than 20x20 pixels representing the asset type.

2. Name the file using the syntax assetType.png. The file name determines the asset
type for which the icon will be displayed. The name is case-sensitive.

3. Place the file in the following directory:

<cs_app_dir>/Xcelerate/OMTree/TreeImages/AssetTypes/

where <cs_app_dir> is the directory of the deployed WebCenter Sites application
on your application server.

4. Restart your application server for the icons to appear in the Contributor interface
(Site tree, Content tree, and My Work tree).

Coding Templates for the Asset Type
Creating your asset types and coding the templates for assets of that types is an
iterative process.

• Although you have to create asset types before you can create templates for
assets of that type, it is likely that you will discover areas that need refinement in
your data design only after you have coded a template and tested the code.

See Coding Elements for Templates and CSElements.

Moving the Asset Types to Other Systems
When you have finished creating all of your new asset types (including creating
templates for them), you need to move them to other systems.

Chapter 5
Creating Basic Asset Types

5-34

• Migrate the asset types to the management and delivery systems.

System administrators will then configure the asset types for the management
system. They will enable revision tracking where appropriate, create workflow
processes, create start menu shortcuts, and so on.

See Administering Oracle WebCenter Sites.

Deleting Basic Asset Types
You can either delete components of the asset type that you select or all traces of the
asset type from the database.

The asset type components are:

• The database table and all the data in it.

• The elements in the ElementCatalog table.

• The SQL statements in the SystemSQL table.

• The row in the AssetType table.

• Any rows in the Association table (optional).

• Any rows in the Category table (optional).

• Any rows in the AssetPublication table.

• Any rows in the AssetRelationTree table.

To delete an asset type that you created with AssetMaker:

1. Open the Admin interface.

2. Select the General Admin tree and then expand the Admin node.

3. Expand AssetMaker and then select the asset type that you want to delete.

The Asset Type form opens.

4. Select the Delete Asset option and click Submit.

WebCenter Sites displays a confirmation message.

5. Click OK.

Chapter 5
Deleting Basic Asset Types

5-35

6
Designing Flex Asset Types

Flex asset types are part of a flex asset family, and they inherit attributes from parents,
grandparents, and so on. Each asset type is stored across several database tables.

For an overview of the data model, see Understanding the Asset Types and Asset
Models. For information about flex asset types, see these topics:

• About Designing Flex Asset Types

• Design Tips for Flex Families

• The Flex Family Maker Utility

• Flex Asset Elements

• Setting Up Your Development System

• Creating a Flex Asset Family

• What You May Need to Know About Editing Flex Attributes, Parents, and
Definitions

• Using Product Sets

About Designing Flex Asset Types
When creating flex asset types, you also create the individual data structure assets
of those types. These assets are flex attributes, flex parent definitions, flex definitions,
and flex parent assets. For creating flex asset types, the Flex Family Maker utility is
available in the Admin interface.

Typically, you design the flex asset types and create the data structure assets on a
development system. When your data model is ready, you migrate your work from the
development system to the management and delivery systems.

Design Tips for Flex Families
The data structure that you create for your flex family should offer flexibility and
convenience to the site visitors and content contributors who enter data into the
WebCenter Sites database. Here are some tips that can help you meet the site
visitors’ and content teams’ needs.

See these topics:

• Visitors on the Delivery System

• Users on the Management System

• How Many Attribute Types Should You Create?

• Designing Flex Attributes

• How Many Definition Types Should You Create?

• Designing Parent Definition and Flex Definition Assets

6-1

Visitors on the Delivery System
The experience of the visitors to your online site is based on the following asset types:

• Flex asset

• Flex attribute

Your online site pages display flex assets (assetsets) for the visitors through queries
that are based on attribute values (searchstates). To give the appearance of hierarchy
on your online site, use attribute values as the basis for drill-down searches.

Users on the Management System
The users of your management system navigate through a visual hierarchical structure
that you create for them with the following flex asset types:

• Flex parent definition

• Flex definition

• Flex parent

Although the organizational structure that you create with these asset types does
affect the data, it determines which attribute values are inherited by which flex assets.
Its biggest impact is on the users of the management system.

You are not required to use flex parents and flex parent definitions, but their
inheritance properties make them a valuable tool for users who are maintaining a
large amount of data such as an online catalog:

• Changing an attribute value at the parent level changes that value for all the flex
assets who are children of that parent, which means you only have to change the
value once.

• Inherited attribute values aren't subject to user error, which means less data
cleanup is required.

The inheritance tree that you create for your content providers has no bearing on how
your site visitors navigate the online site you are designing. For example, if content is
entered into your management system through some completely automated process
(perhaps it is bulk loaded from an ERP system) you would have no need for parent
asset types at all, yet you can still create drill-down searches on your online site.

How Many Attribute Types Should You Create?
As described in Assetsets and Searchstates, only the flex assets that share a common
attribute type can belong to the same assetset because queries (searchstates) are
based on attributes and not on the organizational constructs of parent definitions and
flex definitions.

You might create a nicely delineated interface on the management system by
organizing you data to use separate types of attributes, but this data cannot be
synthesized well on the delivery system. As a general rule, you should create one
type of attribute for your system. Multiple versions of the rest of the family members
(the flex asset type, flex definition type, flex parent type, and flex parent definition
type) must still share the same pool of attributes. For example, in the avisports sample
site, the article asset type and the image asset type share the same attribute type.

Chapter 6
Design Tips for Flex Families

6-2

Therefore, you are able to create assetsets that contain an article and a corresponding
image for that article.

Designing Flex Attributes
Before you begin creating attributes, design them on paper. Determine all the
attributes you need and decide where they will appear, with flex assets or the flex
parents. Start by planning out the bottom level of your hierarchy (that is, the individual
instances of flex asset types like products) and determine the attributes you need for
each item at that level. For example, before creating flex filter assets, determine which
attributes must be created and assigned to the definitions as the input and output
attributes for your filters.

You must determine all of the flex attributes that you need beforehand because the
way you plan to use these attributes creates dependencies that you must account for
when you create them.

Which Data Types Are Available for Attributes
Assess the data types that are available for attributes and the default input types for
those data types. Determine which data types will work best for which attributes. To
change the default input style for an attribute, you create an attribute editor for it before
you create the attribute. See Designing Attribute Editors.

When you create a flex asset that uses an attribute of type blob, the format of
the value entered for the attribute on an Inspect form depends on its type. For
example, a text file shows the first 200 bytes in the file. An image file displays as
a thumbnail image. And some files cannot be displayed at all. In this case, WebCenter
Sites displays the message filename not displayable but the file location is still
successfully recorded.

About Using Attribute Editors
The default input type for an attribute depends on the data type that you select for it.
You can create an attribute editor instead of using the default input type.

Creating flex assets and their attribute editors is an iterative process. You can create
the attribute editors first or the attributes first and then go back and assign the attribute
editors. For information about process of creating attribute editors, see Designing
Attribute Editors.

About Attributes of Type Blob

The default input style of an attribute of type blob is a text field with a Browse button.
Click Browse to locate and select a file and WebCenter Sites uploads it to the default
storage directory. You cannot use the WebCenter Sites forms to edit the contents of
the file.

To be able to enter content directly into the external file through the WebCenter Sites
forms, you must assign an attribute editor to the attribute:

• For an attribute editor that uses the TEXTAREA input style, create a field that can
hold up to 2,000 characters (entered through the forms). When saved, that content
is written to the default storage directory.

• In your CKEditor, you can use a CKEDITOR field to edit the contents of the
external file that the attribute represents.

Chapter 6
Design Tips for Flex Families

6-3

About Attributes of Type Asset

The default input style for an attribute of type asset is a drop-down list of all the assets
of the type specified. An unfiltered drop-down list is not recommended for more than
20 assets of that type.

In general, whenever you create an attribute of type asset, you should assign it an
attribute editor.

• An attribute editor that uses the PICKASSET style checks to find out whether the
tree is toggled on or off in the WebCenter Sites interface. If the tree is on, the user
can select an asset from a tab in the tree. If the tree is toggled off, the attribute
editor displays a dialog that lists the assets from the Bookmarks and History
tabs.

• Another option is to use the PULLDOWN style but to supply a query asset that limits
the options that appear in the list.

• For valid choices of assets that are small in number, use the CHECKBOXES or
the RADIOBUTTONS input style, both of which require a query asset to identify the
assets.

Where Will Each Attribute Be Used?
After you have determined the list of attributes, determine whether you plan to use
them in a flex definition or a flex parent definition. Sort them logically by using the
following guidelines:

• An attribute whose value is unique to an individual flex asset (product, article,
image, for example) belongs at the bottom of the tree, with the flex asset.

• An attribute whose value is the same for multiple flex assets belongs in a parent.
Of course there are always exceptions. For example, a toaster that costs the same
amount as a bowling ball is unlikely to inherit its prices from a common parent.

• Based on that attribute distribution, you can determine how many flex definitions
you need and how many parent definitions you need.

Remember that there is both a physical limit (based on your DBMS) and a
psychological limit (user satisfaction) as to how many attributes you can or should
use in an individual flex asset or flex parent. Someone has to enter all those values.
Be sure to create and then assign to the definitions only those attributes that you really
plan to use. You can add more attributes when you need additional ones.

Attribute Dependencies Imposed by Hierarchy
After you know where an attribute will be used, you can determine whether
hierarchical concerns add requirements to the attribute. For example, an attribute used
by a flex parent must be configured to hold multiple values for data structure that
allows flex assets to have multiple parents, because a flex asset might inherit multiple
values for it. In general, try not to make the inheritance structure too complex.

How Many Definition Types Should You Create?
The appearance and input of data on the management system is based on the flex
asset definitions and the flex parent definitions. Parents and flex assets appear on
tabs in the tree based on the hierarchy that you create through the definitions.

Chapter 6
Design Tips for Flex Families

6-4

In general, it is best to create a separate set of definition types for each flex asset
member in a family. For example, in the avisports sample site, the article and image
flex assets share the same attribute asset type, but they have different parents,
and flex definitions. The definition for article assets contains only attributes that are
relevant to articles, whereas, the definition for image assets contains only attributes
that are relevant to image assets. Article and image assets that share the same
parents and definitions will have some attributes left blank in both types of assets
because some attributes won't apply to article assets and some to image assets.

Designing Parent Definition and Flex Definition Assets
The hierarchy on the tabs in the tree in the WebCenter Sites interfaces is created
through the flex parent definitions and flex definitions:

• To set a hierarchy three levels deep, you need at least two parent definitions and
at least one flex definition.

• To specify a hierarchy two levels deep, you need at least one parent definition and
at least one flex definition.

Be sure to consider the basic tenets of usability when you set up a structural hierarchy
with the flex definitions and flex parent definitions. For example:

• How deep can the hierarchy go before the content providers feel lost in the tree?

• How many attribute values can be inherited to alleviate the possibility of user error
during input?

• How many options can be comfortably displayed in a drop-down list?

The content providers won't like to use a complex system. Keep the following rules in
mind as you design the data structure with a flex family for your online site:

• Carefully planned, easy-to-use asset design (data design) makes content
providers happy.

• Usable layout and efficient code makes site visitors happy.

And both user groups need efficient systems that perform well.

Determining Hierarchical Place
You can log in to WebCenter Sites, access the avisports sample site, and examine the
form for a new content parent definition or for a new content definition.

In the Parent Definition section of these forms, you determine two things:

• The hierarchical position of the assets that use this definition.

• The parents that they can inherit attributes from.

Remember that although the hierarchical position has meaning only in the Oracle
WebCenter Sites: Contributor interface on the management system, the attributes that
they inherit have meaning both on the management system and on your online site.

The text box named Available lists all the existing parent definitions. You use this
section of the form to specify how many parents are possible, by selecting parent
definitions from the Available list and moving them to the Selected list.

When you create a parent asset or a flex asset, the New form displays a definition field
in which you specify a definition for the parent or flex asset. The definitions available

Chapter 6
Design Tips for Flex Families

6-5

for you to select are determined by the definitions you selected from the Available list
when you created the definition you are using to create the parent or flex asset.

Note:

By default, the available definitions for the parent or flex asset you are
creating are displayed in a drop-down list. However, when you create the
parent definition, you can specify whether this will be displayed as a drop-
down list, type ahead field, or drop zone (pick from tree) field.

The asset inherits the attribute values (if any) of the parent selected in the New form.
The more parent definitions you select from the Available list, the more fields the
content providers have to fill out when they create a new flex asset. Not selecting a
parent definition in the Available list positions the assets created with this definition
at the top level of the tree on the tab that displays your flex assets. The best way
to understand how parent definitions, flex definitions, parent assets, and flex assets
interact is to examine the assets delivered with the avisports sample site.

Determining Attribute Inheritance
You can configure attribute inheritance in the Attributes section of the parent definition
form. You use that section to specify the attributes that define the parents that are
created with this definition. When you create a parent with this definition, the values
entered for these attributes are passed down to the flex assets that are children of the
parent asset.

How Many Flex Parent Definition Assets?
Consider usability when you decide how many flex parent definition assets and how
many parent assets of those definitions that you need. For short drop-down lists in
the new parent and new flex asset form, create many parent definitions so that there
are fewer parents with each definition. However, to have a small number of parent
definitions and a large number of parents, create a tab that lists all the parents so the
content providers can select the correct parent asset from the tab.

How Many Flex Definition Assets?
Create enough flex definitions so that fields (attributes) are not left blank on the New
and Edit flex asset forms. Creating few definitions increases the form size with lots
of attribute fields, not all of which apply for each asset. When you have long forms
with lots of attribute fields, not only do content providers have to sort through the form
to determine which attributes apply to the asset they are currently creating, the form
takes a long time to be rendered in the user's browser.

Chapter 6
Design Tips for Flex Families

6-6

The Flex Family Maker Utility
The Flex Family Maker utility creates flex families and their database tables. It writes
information to the database tables and creates directories in the ElementCatalog table
to which the utility copies elements.

• Creates several database tables (the number depends on which flex asset types
you create).

• Writes information about the new flex family to these tables:

– FlexAssetTypes: Holds a row for each flex asset member type.

– FlexGrpTmplTypes: Holds a row for each flex parent definition type.

– FlexGrpTypes: Holds a row for each flex parent type.

– FlexTmplTypes: Holds a row for each flex definition type.

• Creates new directories in the ElementCatalog table using the following naming
convention:

OpenMarket/Xcelerate/AssetType/NameOfYourAssetType

• Copies elements from the ElementCatalog table to the directories created for your
asset types. WebCenter Sites use these elements to format the New, Edit, Inspect,
Search, and Search Results forms for assets of that type.

For information about the main database tables for flex assets and flex parent assets,
see Flex Families and the Database.

Flex Asset Elements
The Flex Family Maker creates elements and SQL statements and stores them in
appropriate database tables.

The Flex Family Maker copies elements for the new flex asset type to OpenMarket/
Xcelerate/AssetType/NameOfAssetType in the ElementCatalog table. For example,
the avisports sample site article asset elements are in:

OpenMarket/Xcelerate/AssetType/AVIArticle

It also creates a SQL statement that the search elements use and places it in the
SystemSQL table under OpenMarket/Xcelerate/AssetType/NameOfAssetType.

For information on the elements and SQL statement that Flex Family Maker copies
for you, see Elements and SQL Statements for the Asset Type. The elements for flex
assets are the same as the elements for the basic assets with the exception of the
AppendSelectDetailsSE element.

Setting Up Your Development System
Before you create a flex asset family, you need to set up your development system
and get access to it.

1. Create the appropriate WebCenter Sites sites.

Chapter 6
The Flex Family Maker Utility

6-7

2. Create a user name for yourself that has administrator rights, and enable that user
name on all of the sites on your development system.

Without administrator rights, you do not have access to the Admin node in the
General Admin tree, which means that you cannot perform some procedures in
this chapter.

3. Assign the Designer and GeneralAdmin roles to your user name so you will have
access to all the trees in the WebCenter Sites Admin interface and all of the
existing Start menu shortcuts for the assets in the sample site.

Be sure that the TableEditor ACL is assigned to your user name.

See Administering Oracle WebCenter Sites.

Creating a Flex Asset Family
For your flex asset data model you need to create flex asset types and individual data
structure assets of those types: flex attributes, flex parent definitions, flex definitions,
and flex parent assets.

These topics are presented in the order in which a new flex asset family should
be created. So, to create a flex family for the first time, follow the procedure in the
sequence given here:

• Creating a Flex Family.

• (Conditional) Creating Additional Flex Family Members.

• (Conditional) Configuring the Flex Family Members.

• Enabling the New Flex Asset Types on all the WebCenter Sites sites on the
development system and create start menu shortcuts for all the new asset types.

• Create Flex Attributes and design your attribute editors. See Designing Attribute
Editors.

• (Conditional) Creating Flex Filter Assets . See Creating Flex Filters.

• Creating Parent Definition Assets.

• Creating Flex Definition Assets.

• Creating Flex Parent Assets.

• Creating and Assigning Asset Type Icons (Contributor Interface Only) that will
represent the members of your flex family in search results lists that are displayed
in the Thumbnail view.

• Coding Templates for the Flex Assets.

• Testing Your Design (Creating Test Flex Assets) by creating enough flex assets to
examine the data structure that you have designed.

• (Conditional) Creating Flex Asset Associations.

• Moving Asset Types to Other Systems. See Administering Oracle WebCenter
Sites.

Creating a Flex Family
To create a new flex family:

Chapter 6
Creating a Flex Asset Family

6-8

Note:

WebCenter Sites is case-insensitive to the names of the flex assets
regardless of the underlying case-sensitivity of the database. If you create a
flex family with the name of an existing asset but different case, WebCenter
Sites adds the rest of the flex family under the existing asset type(s). For
example, if the following flex family already exists {Product_A, Product_PD,
Product_CD, Product_P, Product_C}, and you try to create this flex
family: {PRODUCT_A, PRODUCT_PD, PRODUCT_CD, PRODUCT_P, myProduct_C},
then WebCenter Sites will use the existing asset types and create the
following flex family: {Product_A, Product_PD, Product_CD, Product_P,
myProduct_C}.

1. In the General Admin tree, select the Admin node.

2. Expand Flex Family Maker and click Add New Family.

The Add New Flex Family form opens.

3. In the Add New Flex Family form, fill in the following fields to name the members
of the flex family:

a. In the Flex Attribute field, enter the name of the new flex attribute asset type.

The name you enter in this field is the internal name of the new attribute asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

Note:

There are three suffixes reserved for use. Flex attributes cannot
have a name end with _size, _type, or _file. For example,
broadformsize is an acceptable flex attribute name; broadform_size
is not.

b. In the Flex Parent Definition field, enter the name of the new flex parent
definition asset type.

The name you enter in this field is the internal name of the new parent
definition asset type. It becomes the name of the core table for this asset
type and the prefix for all its auxiliary tables.

c. In the Flex Definition field, enter the name of the new flex definition asset
type.

The name you enter in this field is the internal name of the new flex definition
asset type. It becomes the name of the core table for this asset type and the
prefix for all its auxiliary tables.

d. In the Flex Parent field, enter the name of the new flex parent asset type.

The name you enter in this field is the internal name of the new parent asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

e. In the Flex Asset field, enter the name of the new flex asset type.

Chapter 6
Creating a Flex Asset Family

6-9

The name you enter in this field is the internal name of the new flex asset type.
It becomes the name of the core table for this asset type and the prefix for all
its auxiliary tables.

f. In the Flex Filter field, enter the name of the new flex filter asset type.

The name you enter in this field is the internal name of the new flex filter asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

4. Click Continue.

The Add New Flex Family form opens. WebCenter Sites automatically populates
the Description and Plural Form fields.

Figure 6-1 Add New Flex Family Dialog

5. In the Add New Flex Family form, do the following:

a. To enter your own values into the Description field for each member of the
family, enter the external name of the asset type, that is, the name of the asset

Chapter 6
Creating a Flex Asset Family

6-10

type when it is displayed in WebCenter Sites. This is the name that displays
on the forms (New, Edit, Inspect, and so on).

b. To enter your own values into the Plural Form field for each member of the
family, enter the plural version of its name. This version is used in status
messages and so on when appropriate.

6. Click Add New Flex Family.

Flex Family Maker creates the database tables that will store assets of these
types.

It also copies elements that format the forms for assets of these types to a
directory with the name of the asset type in the ElementCatalog and SystemSQL
tables.

(Conditional) Creating Additional Flex Family Members
To create additional flex family members (for example, if you need multiple flex parent
asset types):

1. In the General Admin tree, expand the Admin node, and then expand the flex
family you just created.

2. Drill down the flex family tree until you reach the type of flex family member you
want to create (flex parent for example).

3. Under the type of flex family member you want to create, double-click Add New
Member Asset Type.

The New Member Asset Type form opens.

Figure 6-2 Flex Family Maker: New Parent Definition Asset Type Form

4. In the form, fill out the required fields and click Save.

WebCenter Sites displays a message confirming that the asset type was created.

5. Repeat this procedure for each additional flex family member you want to create.

(Conditional) Configuring the Flex Family Members
When the Flex Family Maker creates the new flex family, it also creates an icon and
administrative forms for configuring the new flex family, located on the Admin tab.

Chapter 6
Creating a Flex Asset Family

6-11

1. In the General Admin tree, expand the Admin node, and then expand the Asset
Types icon.

2. Under Asset Types, select one of the asset types in your new flex family. To see
the asset types for your flex family in the list, right-click the navigation pane and
choose Refresh All from the context menu, and then select an asset type in your
new flex family.

3. Click Edit.

The Edit Asset Type form opens.

4. In the Edit Asset Type form, do the following:

a. In the Description field, change the value, if necessary. The text in this field is
the name that WebCenter Sites uses for this asset type on the forms and lists
in the WebCenter Sites interfaces. By default, Description is set to the value
you specified in the Add New Flex Family form for that asset type.

b. In the Plural Form field, change the value, if necessary. The text in this field is
the text that WebCenter Sites uses in the WebCenter Sites interfaces when it
is appropriate to refer to the asset type in the plural.

c. In the Can Be a Child Asset field, change the value, if necessary. To allow the
asset type to be the child asset type in an association field for another asset,
set the value to True.

d. In the Use Dimensions field, change the value if necessary. To enable this
asset type to support the creation of multilingual content, set the value to True.

5. Click Save.

6. Repeat steps 1 to 5 for each flex family member you want to configure.

Enabling the New Flex Asset Types
Before you start creating assets (attributes, flex parent definitions, and so on), you
must complete some steps on the Admin tab. Your login must grant you administrator
rights to access to the Admin tab.

To enable the new flex asset types:

1. In the General Admin tree, expand the Admin node, and then click the Sites icon
and complete the following steps:

a. Expand the site that you are going to use to work with these asset type.

b. Under that site, select Asset Types and then Enable.

c. Select your new asset types from the list and click Enable Asset Types.

WebCenter Sites can automatically create a new start menu item or a search
start menu item (or both) for the asset types you are enabling.

d. Enable the option next to any available start menu item that you would like
WebCenter Sites to create, as shown in the following figure:

Chapter 6
Creating a Flex Asset Family

6-12

Figure 6-3 Start Menu Selection Dialog

Generate these menu items now, or you or your site administrator must
manually create them later (no one can create assets of the enabled asset
types until start menu items are created for them).

2. Click Enable Asset Types.

3. The asset types are now enabled for the site(s). If you did not use WebCenter
Sites to generate start menu items, you or your site administrator must now
manually create them. As the developer of the asset types and the designer of
the online site, your responsibility is to let the administrator know enough about
your assets and site design that the site administrator can configure meaningful
start menu items.

You (the developers) must let the site and system administrators know which fields
are used by the queries, collections, or other design elements for your online site
so that they can create meaningful start menu items for the content providers.

4. Repeat steps 1 through 3 for each site on which you want to enable these asset
types.

After you or your administrator has created start menu items for your new asset types,
you can create assets of these types.

Note:

You may have added your asset types to a tab in the tree. However, to
create assets of these types you must create start menu shortcuts for them.

Create Flex Attributes
The steps can differ significantly based on the data type that you select for your
attribute. Therefore, this section presents several procedures:

• Creating Flex Attributes: Basic Procedure

• Creating Flex Attributes of Type Blob (Upload Field)

• Creating Flex Attributes of Type Asset

• Creating Foreign Flex Attributes

Chapter 6
Creating a Flex Asset Family

6-13

Creating Flex Attributes: Basic Procedure
This example shows you the basic procedure for creating flex attributes.

1. In the menu bar, click New, and then select the name of your attribute type from
the list of shortcuts. For example, New Product Attribute. To be able to select
assignees for the workflow associated with this asset, choose at least one user
from each role and click Set Assignees.

The Product Attribute form opens.

Figure 6-4 Product Attribute Form

2. In the form, fill in the following fields:

a. In the Name field, enter a name of up to 64 characters, excluding spaces.

b. In the Description field, enter a short, descriptive phrase that describes the
use or function of the attribute.

c. In the Value Type field, select a data type for this attribute:

• If you select blob, see Creating Flex Attributes of Type Blob (Upload
Field) and start with step 3.

• If you select asset, see Creating Flex Attributes of Type Asset.

• To create a foreign attribute, select a value other than asset or blob,
complete step d, and continue with step 3 in the Creating Foreign Flex
Attributes.

• If you select text: The Admin interface supports searches on attribute
values of all types except text.

For information about deciding which data type is appropriate for your
attribute, see Data Types for Attributes.

d. In the Number of Values field, select either single or multiple from the
drop-down list, as appropriate for the data type that you selected in the Value
Type field.

Chapter 6
Creating a Flex Asset Family

6-14

To make this attribute available to a flex parent (if your data structure allows
multiple flex parents for a flex asset), select multiple because the flex assets
that inherit values for this attribute might inherit a value from multiple parents.

Note:

When an attribute is configured to accept multiple values, it displays
on the flex parent and flex asset forms as a field with an Add
Another Attribute Name button. To enable the attribute to accept
multiple values for inheritance reasons without allowing content
providers to select multiple values for the attribute for individual
parents or flex assets, assign the attribute an attribute editor that
presents it as a single-value field (but select multiple in the Value
Type field).

WebCenter Sites does not allow attributes of type text to have
multiple values, due to the way these attributes are stored in the
database. A message denoting this restriction displays if you attempt
to save an attribute configured in such a way.

e. To use any other input type than the default type for this attribute (which is
based on the data type that you selected in the Value Type field), in the
Attribute Editor field, select an attribute editor from the drop-down list.

Note:

If you select the CHECKBOXES attribute editor, ensure the Number of
Values field is set to multiple.

If you need more information about:

• default input types (so you can determine whether you want to use an
attribute editor instead), see Default Input Styles for Attributes.

• creating attribute editors, see Designing Attribute Editors.

• which attribute editors are appropriate for the data type of this attribute,
see The Attribute Editor Asset.

f. To override the default ISO character set (ISO 8859-1), in the ISO Character
Set field, enter the one you want to use for this attribute.

3. Click Save.

Creating Flex Attributes of Type Blob (Upload Field)
This example shows you how to create a flex attribute of type Blob.

1. Complete steps 1 through 2c in Creating Flex Attributes: Basic Procedure.

2. In the Value Type field, select blob.

3. (Optional) In the Folder field, enter a path to the directory that you want to store
the attribute values in. The value you enter in this field is appended to the value
set as the default storage directory (defdir) for the MungoBlobs table.

Chapter 6
Creating a Flex Asset Family

6-15

4. In the Number of Values field, select single or multiple, as appropriate.

5. If you do not want to use the default input type (a Browse button), in the Attribute
Editor field and select one of the following:

• An attribute editor that specifies the TEXTAREA input style.

• If your system is configured to use CKEditor, an attribute editor that specifies
the CKEDITOR input style.

6. Click Save.

Creating Flex Attributes of Type Asset
To create an attribute of type asset:

1. Complete steps 1 through 22.b in Creating Flex Attributes: Basic Procedure.

2. In the Value Type field, select asset.

3. In the Asset Type field, select an option from the drop-down list.

4. In the Mirror Dependency Type field, select a dependency type.

5. In the Number of Values field, select either single or multiple from the drop-
down list, as appropriate for the data type that you selected in the Value Type
field.

If this attribute is to be used by a flex parent and your data structure allows
flex assets to have multiple flex parents, you must select multiple because the
flex assets who inherit values for this attribute might inherit a value from multiple
parents.

6. If the number of assets of the type you selected in the Number of Values field
is more than 20, select one in the Attribute Editor field. For information about
appropriate attribute editors, see About Using Attribute Editors.

7. Click Save.

Creating Foreign Flex Attributes
To keep data in another system (a price list, for example) that you also want to use for
your flex assets, create a foreign attribute that points to the column in the foreign table
whose data you want to use as a flex attribute.

To create a foreign attribute:

1. Register the foreign table that contains the data you want to use as a flex attribute.

2. Complete steps 1 to 2d in Creating Flex Attributes: Basic Procedure.

Note:

In the Value Type field, you cannot select either asset or blob.

3. If you plan to use WebCenter Sites flex asset forms to enter values for the attribute
into the foreign table and you do not want to use the default input type for the data
type that you selected in the Value Type field, in the Attribute Editor field, select
an appropriate attribute editor.

Chapter 6
Creating a Flex Asset Family

6-16

4. In the Editing Style field, do one of the following:

• To use WebCenter Sites forms to enter values into this attribute's fields for the
flex assets that use it, select local.

• If you do not want users to be able to write values to this table through
WebCenter Sites forms, select external.

5. In the Storage Style field, select external from the drop-down list.

6. In the External ID field, specify the name of the column that serves as the primary
key for the table that holds this foreign attribute, that is, the column that uniquely
identifies the attribute.

7. In the External Table field, enter the name of the table that stores this attribute.

8. In the External Column field, enter the name of the column in the table specified
in the External Table that holds the values for this attribute.

9. Click Save.

(Conditional) Creating Flex Filter Assets
Create a flex filter asset whose functionality is defined by one of the default
WebCenter Sites filter classes.

Before you can create flex filter assets, the flex attributes that you plan to use as the
input and output attributes must be created. Create the appropriate flex attributes if
they don't exist yet. Note the following requirements:

• For flex filters that use the Document Transformation filter type, the input and
output attributes must be of type blob.

• For any flex filter, the input attribute, output attribute, and flex filter asset must all
belong to the same flex family.

For more information about flex filter classes, and detailed instructions on creating flex
filter assets, see Creating Flex Filters.

To create a flex filter asset:

1. In the menu bar, click New.

2. In the list of asset types, select the type of filter you want to create. For example,
New Media Filter. To be able to select assignees for the workflow associated with
this asset, choose at least one user from each role and click Set Assignees.

The Media Filter form opens.

Chapter 6
Creating a Flex Asset Family

6-17

Figure 6-5 Media Filter Dialog

3. In the New form, do the following:

• In the Name field, enter a unique name for this filter asset.

• In the Description field, enter a brief description summarizing the filter's
function.

• In the Filters field, select the filter class that will define the functionality of the
flex filter asset you are creating. By default, the filter options are Doc-Type,
Document Transformation, FieldCopier, and ThumbnailCreator.

Note:

Custom filter classes that may have been created for your system
appear in this list. For information on creating a custom flex filter
class, see Defining a Flex Filter Class and Creating a Flex Filter
Asset.

• Click Get Arguments. In the Arguments field, specify the input and output
arguments for the flex filter asset. Click Add to add the arguments to the filter.

4. Click Save.

Creating Parent Definition Assets
To create a parent definition asset:

1. In the menu bar, click New.

2. Select the name of your product definition asset from the list of shortcuts. For
example, New Product Parent Definition. To be able to select assignees for the
workflow associated with this asset, choose at least one user from each role and
click Set Assignees.

The Product Parent Definition form opens.

Chapter 6
Creating a Flex Asset Family

6-18

Figure 6-6 Product Parent Definition Dialog

3. In the Product Parent Definition form, fill in the fields as follows:

a. For Name, enter a name of up to 64 characters.

b. For Description, enter a short descriptive phrase that describes the parent
definition.

c. For Parent Select Style, determine how flex parents that use this definition
will be selected on the parent asset forms. Do one of the following:

• If the number of parents of this type will be small, choose Select Boxes.
Then, all the parents of this type will be displayed as options in a drop-
down list on the flex asset forms.

Chapter 6
Creating a Flex Asset Family

6-19

• If the number of parents of this type will be large, choose Pick From Tree.
Then, when you select a parent of this type on the flex asset form, you
select it from the tree on the tab that displays your catalog data.

d. In the Product Parent Definitions section, select a parent definition from the
Available list and then click one of the buttons described in the following table:

Table 6-1 Buttons in Parent Definition Form

Button in parent definition
form

Creates a field in the New parent form that does the
following:

Single Value: Required Forces you to select one parent for the field.

Single Value: Optional Lets you select only one parent for the field.

Multiple Value: Required Forces you to select at least one parent asset for the
field.

Multiple Value: Optional Lets you select multiple parent assets for the field.

WebCenter Sites moves the parent definition from the Available list to the
Selected list.

e. Repeat step 3.d as many times as necessary. Remember that the
corresponding New parent form will include a field for each item that you
select in the Available list on this parent definition form.

f. In the Attributes section, select the appropriate attributes from the Available
list, and then do one of the following:

• Click Required to specify that the attribute is required, that is, all flex
parents created with this definition must have a value for this attribute.

• Click Optional to specify that the attribute is optional.

Note:

To assign a flex filter asset to this parent definition in the future, you
must include the input and output attributes that the flex filter uses.

To order the attributes as you want them to appear on the parent form for
parents of this type, use the Display Order arrows to the right of the Selected
box.

g. In the Filters section, select any flex filter assets that are appropriate for this
parent definition.

4. Click Save.

5. Repeat this procedure for each parent definition asset that you have to create.

Creating Flex Definition Assets
To create a flex definition asset:

1. In the menu bar, click New.

Chapter 6
Creating a Flex Asset Family

6-20

2. Select the name of your flex definition asset type from the list of shortcuts. For
example, New Product Definition. To be able to select assignees for the workflow
associated with this asset, choose at least one user from each role and click Set
Assignees.

The Product Definition form opens.

3. In the Product Definition form, fill in the fields as follows:

a. In the Name field, enter a name of up to 64 characters.

b. In the Description field, enter a short, descriptive phrase that describes the
parent definition.

c. In the Product Parent Definitions section, select a parent definition from the
Available list and then click one of the buttons described in the following table:

Table 6-2 Buttons in Flex Definition Form

Button in flex
definition form

Creates a field in the New flex asset form that does the
following:

Single Value: Required Forces you to select only one parent in the field.

Single Value: Optional Lets you select only one parent in the field.

Multiple Value:
Required

Forces you to select at least one parent asset in the field.

Multiple Value: Optional Lets you select multiple parent assets in the field.

WebCenter Sites moves the parent definition from the Available list to
the Selected list. For information about selecting parent definitions, see
Determining Hierarchical Place.

d. Repeat the previous step as many times as is necessary. Remember that the
corresponding New Flex Asset form will include a field for each item that you
select in the Available list on this flex definition form.

e. In the Attributes section, select attributes from the Available list, and then do
one of the following:

• Click Required to specify that the attribute is required; that is, that all flex
assets created with this definition must have a value for this attribute.

• Click Optional to specify that the attribute is optional.

Note:

To assign a flex filter asset to this flex definition in the future, you
must include the input and output attributes that the flex filter uses.

To order the attributes as you want them to appear on the New and Edit forms
for flex assets created with this definition, use the Display Order arrows to the
right of the Selected box.

f. In the Filters section, select any flex filter assets that are appropriate for this
flex definition.

4. Click Save.

Chapter 6
Creating a Flex Asset Family

6-21

5. Repeat this procedure for each flex definition that you have to create.

Creating Flex Parent Assets
To create flex parent assets:

1. Log in to WebCenter Sites as an administrator and select the Contributor
interface.

2. In the menu bar, select Content, then New, and then the type of flex parent asset
you want to create.

A tab opens displaying the Create view of the flex parent asset you want to create.

Figure 6-7 Product Parent Dialog

3. In the Product Parent form, fill in the fields as follows:

a. In the Name field, enter a name of up to 64 characters.

b. In the Product Parent Definition field, select a parent definition from the
drop-down list. The definition you select formats the next sections of the form
(the sections you fill out to define this parent asset).

c. Click Continue.

The Content section of the form opens.

Figure 6-8 Content Section

Chapter 6
Creating a Flex Asset Family

6-22

4. In the Content section of the form, fill in the fields keeping in mind the following:

• An asterisk (*) next to the field indicates that the field is required.

• In this example, the field in which you designate a parent asset is called
FSIIProductTopLevel. The parent that you drag and drop into this field
becomes the grandparent of any flex assets you designate as children of the
parent you are creating in this procedure. If this field is not required, and you
do not select any parents (grandparents), the parent you are creating will be a
top-level parent in the Content tree.

• To determine whether the field is single or multi-valued, point to the drop zone
associated with the field. A tooltip is displayed showing the type of assets
this field accepts along with information about whether the field is single or
multi-valued.

5. Use the form section selector to switch to the next sections of the form (Marketing
and Metadata sections). An asterisk (*) next to the field indicates that it is a
required field.

The fields displayed in these sections are based on the parent definition you chose
for this parent. The values that you enter into these fields are inherited by any flex
assets that have this parent asset as their parents.

6. In the asset's toolbar, click the Save icon.

WebCenter Sites writes the new parent to the database. All the information other
than the attribute values are written to the FlexParent, FlexParent _AMap, and
FlexParent_Extension tables, where FlexParent represents the internal name of
your flex parents. The attribute values are written to the FlexParent _Mungo table.

Creating and Assigning Asset Type Icons (Contributor Interface Only)
When a user performs a search in the Contributor interface and displays the results of
the search in the Thumbnail view, each asset in the search results list is represented
by a thumbnail image. By default, the name, asset type, modification date, and locale
of the assets in the search results list are displayed below the thumbnail image
representing the asset or the asset's type. Images can either be assigned per asset or
per asset type. The focus of this section is to assign a thumbnail image for each asset
type.

You must create and assign images that uniquely identify the members of your new
flex family.

1. For each flex family member, do the following:

a. Create two image files of type JPG, one to be displayed in the docked search
results list, and the other to be displayed in the undocked search results
list. The standard size of the image that will be displayed in the docked
search results list is 96x96 pixels. The standard size of the image that will
be displayed in the undocked search results list is 170x170 pixels.

b. Name the image files as follows:

• To name the image that will be displayed for the asset type in the docked
search results list, use the syntax assetType.jpg.

• To name the image that will be displayed for the asset type in the
undocked search results list, use the syntax assetType_large.jpg.

Chapter 6
Creating a Flex Asset Family

6-23

Note:

You must save the images as JPGs. The file name determines the
asset type for which the icon will be displayed. The name is case-
sensitive.

c. Place the image files in the appropriate directory:

<cs_app_dir>/images/search

where <cs_app_dir> is the directory of the deployed WebCenter Sites
application on your application server.

2. Restart your application server for the icons to appear in the Thumbnail view of the
search results list in the Contributor interface.

Coding Templates for the Flex Assets
Creating your flex asset definitions and coding the templates for the flex assets that
use those definitions is an iterative process. Although you have to create definitions
and flex assets before you can create templates for your flex assets, it is likely that you
will discover areas that need refinement in your data design only after you have coded
a template and tested the code.

For information about coding elements for your templates, see Creating Template,
CSElement, and SiteEntry Assets and Coding Elements for Templates and
CSElements.

Testing Your Design (Creating Test Flex Assets)
To thoroughly test your design, you must examine where flex assets appear on the
tree, what their forms look like, how long it takes to load their forms, and so on. Create
some flex assets and examine them.

For information about creating assets, see Using Oracle WebCenter Sites.

(Conditional) Creating Flex Asset Associations
In most cases, you should use a flex asset's attributes to form associations. In the
rare case that your associations must work across flex definitions, create associations
between flex assets.

To create associations:

1. In the General Admin tree, expand the Admin node, and then expand the Asset
Types node.

2. Expand the node for the asset type you want to create an association for.

3. Expand the node for Asset Associations.

4. Click Add New.

The Add New Association form opens.

Chapter 6
Creating a Flex Asset Family

6-24

Figure 6-9 Add New Association Dialog

5. In the Add New Association form, fill in the fields as follows:

• In the Name field, enter a name for the association.

• In the Description field, enter a description of the association.

• In the Child Asset field, select a child asset to associate with this asset.

• In the Subtypes field, select one or more subtypes for this association.

• In the Mirror Dependency Type field, select a dependency type for the
associated flex asset.

• In the Type of Association field, select one of the following:

– Single valued - only one value allowed per asset.

– Multivalued - multiple values allowed per asset.

6. Click Add New Association to associate the flex asset types.

Moving Asset Types to Other Systems
After you finish creating your flex family, creating the data structure assets (including
attribute editors), and coding templates for the flex asset type, system administrators
can configure the asset types for the management system. They enable revision
tracking where appropriate, create workflow processes, create start menu shortcuts,
and so on.

Chapter 6
Creating a Flex Asset Family

6-25

Move your flex family, data structure assets, and coding templates to the management
and delivery systems so system administrators can configure them. For information
about moving your asset types to the management and delivery systems, see
Administering Oracle WebCenter Sites.

What You May Need to Know About Editing Flex Attributes,
Parents, and Definitions

Some editing tips that you can use when editing flex asset types to prevent schema
changes that lead to data loss.

See these topics:

• What You May Need to Know About Editing Attributes

• What You May Need to Know About Editing Parent Definitions and Flex Definitions

• What You May Need to Know About Editing Parents and Flex Assets

What You May Need to Know About Editing Attributes
Note the following when editing a flex attribute:

• You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of an attribute.

• You can change the Description without causing data loss.

• If you change the data type in the Value Type field, you lose all data associated
with the attribute in the _Mungo table(s) that use this attribute type.

• If the attribute's data type is asset and you change the asset type, all existing data
for the attribute is invalid.

• If you change the Folder field for a blob attribute, WebCenter Sites will no longer
be able to find any existing data for that attribute. If you must change this value,
move the file system to match the new value that you set.

• You can change the Number of Values from single to multiple without causing
data loss or complications.

• If you change the Number of Values from multiple to single, WebCenter Sites
cannot determine which of the values in any existing rows are the values to keep.

• You can change the Search Engine and ISO Character Set without causing data
loss.

What You May Need to Know About Editing Parent Definitions and
Flex Definitions

Note the following when editing a parent definition or a flex definition:

• You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of a parent definition.

Chapter 6
What You May Need to Know About Editing Flex Attributes, Parents, and Definitions

6-26

• You can change the Description and the Parent Select Style fields without
causing data loss.

• If you change the parent selections:

– Adding parents is allowed.

– Removing parents can cause assets to no longer have valid data.

– Changing parents from optional to required can cause problems because
parents or flex assets who do not have one of the newly required parents
are no longer valid.

– Changing parents from required to optional is allowed.

– Changing parents from single value to multiple value is allowed.

– Changing parents from multiple value to single value causes unpredictable
results because WebCenter Sites cannot determine which of the previously
acceptable multiple values is the one to keep and which ones to remove.

• If you change the attribute selections:

– Adding optional attributes is allowed.

– Adding required attributes causes existing parents or flex assets without them
to be invalid.

– Removing attributes causes existing parents or flex assets with such an
attribute value to be invalid.

What You May Need to Know About Editing Parents and Flex Assets
Note the following when editing a flex or parent asset:

• You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of a parent definition.

• You can change the Description without causing data loss.

• If you change parents, WebCenter Sites corrects all the inherited attribute values.

• You cannot change the definition that you used to create the parent or flex asset.

• Changing the value of an attribute is allowed. If you change the value of an
attribute for a parent, WebCenter Sites corrects that attribute for all the assets
that inherited it from this parent. Changing the attribute value for a flex asset is
allowed.

Using Product Sets
When you’re managing an online catalog with WebCenter Sites, using the product
set feature with product assets can help you group products that are identical but are
packaged and sold differently.

See these topics:

• About Using Product Sets

• Creating a Product Set

Chapter 6
Using Product Sets

6-27

About Using Product Sets
A book is the same book whether it is the paperback version or the hard-cover version.
And a soft drink is the same soft drink whether it is sold in individual cans, as a
six-pack, in a 2-liter bottle, or a case. Product sets allow you to group products like
these together so that they can be displayed together (in the same form) on the
management system, yet remain individual saleable units, identified as such by their
SKUs.

The model for the product set feature is as follows:

• The product set is a product parent that takes on the characteristics of a product
asset. The product set (parent) has all of the attributes that define the core
product.

• The product assets are SKUs. That is, they have only those attributes that
describe the packaging or are the unique identifiers for members of the set: the
SKU, the bottle size, and so on.

• The product set (parent) has an attribute that marks it as a product set and the
value of this attribute is unique among all the product sets. This attribute is called
GAProductSet and is a reserved name. The products in the set inherit this attribute
and, by this inheritance, are marked as members of that product set (that is,
children of that product parent).

Creating a Product Set
To create a product set:

1. Create a product attribute named GAProductSet. This is a reserved name and your
attribute name must match it exactly.

2. Create a new product parent definition and select the GAProductSet attribute.

3. Create a new product definition and designate that the parents created with the
definition that you created in step 2 can be parents of products created with this
product definition.

4. Create a new product parent from the definition you created in step 2.

5. Using the product definition that you created in step 3, create the products in the
set and designate that the parent that you created in step 4 is their product parent.

Now, when you inspect or edit the product set (product parent), each product (SKU) in
the set is listed on the Product Parent form, presenting a representation of the product
set relationship.

There can be only one GAProductSet attribute in the WebCenter Sites database.
To create product sets in multiple WebCenter Sites sites, you must share the
GAProductSet attribute to the sites that you want to use it in.

Chapter 6
Using Product Sets

6-28

7
Creating a Hierarchical Flex Family

Creating a flex family with a multi-level hierarchy and single-valued definitions will give
you a basic understanding of the flex asset model in WebCenter Sites. On completing
these steps, you’ll also have a model that you might want to use to create similar
hierarchies.

Topics:

• Hierarchical Organization

• Flex Family Specifications

• Creating a Sample Flex Family Using a Real-World Example

Hierarchical Organization and Flex Family Specifications describe the flex family
that you will create. Creating a Sample Flex Family Using a Real-World Example
is a tutorial, where you create a small flex family with generic names for its family
members.

Hierarchical Organization
You’re going to create a flex family with three levels: a top-level parent, a second level
parent, and assets.

• A top-level parent (named Parent 1 [Level 1] in our example).

• A second-level parent (named Parent 2 [Level 2] in our example).

• Assets, at the third level. One asset is placed directly under its level 1 parent;
another asset is placed directly under its level 2 parent; the third asset is placed
under both the level 1 parent and the level 2 parent.

In the WebCenter Sites interface, the hierarchy looks exactly as shown in the left side
of the following figure. The representation is formulaic. The right side of this graphic
shows how it translates to a real-world model, represented by the avisports sample
site.

Figure 7-1 Formulaic Data Model vs. Real World Data Model

On the sample site (Right side of the above figure):

7-1

• Parent 1 [Level 1] is named Outdoor Sports Equipment.

• Parent 2 [Level 2] is named Mountain Climbing, a subtype of Outdoor Sports
Equipment.

• Asset 1 is named Our Awesome Catalog, an asset of the type Outdoor Sports
Equipment.

• Asset_12 is named Special Offers. It displays under both Outdoor Sports
Equipment and Mountain Climbing.

Flex Family Specifications
Flex family members that you’ll create in your flex family.

The following table lists the flex family members that you will create:

Table 7-1 Flex Family Members

Flex Family
Member

Name Instances Based on
Parent
Definition

Based on Flex
Definition

Flex Attribute
Type

My Attribute Attribute_11

Attribute_2

n/a n/a

Flex Parent
Definition Type

My Parent
Definition

Level 1 Def

Level 2 Def

n/a

Level 1 Def

n/a

Flex Definition
Type

My Flex Definition Flex Def 1

Flex Def 2

Flex Def_12

Level 1 Def

Level 2 Def

Level 1 Def and
Level 2 Def

n/a

Flex Parent Type My Parent Parent 1 [Level 1]

Parent 2 [Level 2]

Level 1 Def

Level 2 Def

n/a

Flex Asset Type My Asset Asset 1

Asset 2

Asset_12

n/a Flex Def 1

Flex Def 1

Flex Def_12

Flex Filter Type n/a n/a n/a n/a

1 Suffixes 1, 2 and _12 refer to levels of the hierarchy (_12 denotes both levels 1 and 2). For example,
Asset 1 denotes an asset that is placed under level 1. Asset_12 denotes an asset that is placed under
both levels 1 and 2.

Creating a Sample Flex Family Using a Real-World Example
You’ll create a small flex family whose family members you’ll give generic names. This
approach will help you visualize the formula for building hierarchies.

At the end of this tutorial, you will change the names of selected family members to
real-world names to understand how a formulaic data model translates to a business-
related data model. You will also add more parents and assets to the hierarchy, giving
them real-world names as you create them.

This section includes the following topics:

Chapter 7
Flex Family Specifications

7-2

• Creating a Flex Family

• Enabling the New Flex Asset Types

• Adding a Flex Family Tab to the WebCenter Sites Tree

• Creating Parent Definition Assets

• Creating Flex Parent Assets

• Creating Flex Definition Assets

• Creating Flex Assets

• Translating the Formulaic Data Model into a Real-World Data Model

• Developing Your Real-World Model

Creating a Flex Family
In this step, you create a flex family by naming its required members.

To create the flex family:

1. Launch the Admin interface.

2. In the General Admin tree, expand the Admin node, then expand Flex Family
Maker, and then double-click Add New Family.

3. In the Flex Family Maker form, fill in the fields exactly as shown in the following
table:

Table 7-2 Flex Family Maker Form

Field Name Enter Comments

Flex Attribute MyAttribute In this step, name the database
tables that WebCenter Sites
creates for the flex family. The
names must not contain spaces.

Flex Parent Definition MyParentDefinition n/a

Flex Definition MyFlexDefinition n/a

Flex Parent MyParent n/a

Flex Asset MyAsset n/a

Flex Filter n/a n/a

4. Click Continue.

5. In the next form, fill in the fields for each new member of the family as follows:

a. In the Description field, enter the same name as in step 3, but separate the
words in the name with spaces.

The name that you enter is used throughout the WebCenter Sites interface to
identify the asset type.

b. In the Plural field, enter the plural form of the name used in the preceding
step.

c. Click Add New Flex Family.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-3

6. Wait for WebCenter Sites to create the flex family and return the message
indicating that the flex family members (asset types) were successfully installed.

Enabling the New Flex Asset Types
In this step, you enable the flex family members for the avisports sample site. You also
create start menu items for the members, so that you can create and search for their
instances in subsequent steps.

To enable the new flex asset types:

1. In the General Admin tree, expand the Admin node, and then expand the Sites
node and complete the following steps:

a. Expand avisports (the sample site where the flex family is enabled), or a site
of your choice.

b. Under that site, expand Asset Types and double-click Enable.

i. From the list, select the asset types that you just created (MyAsset,
MyAttribute, MyFlexDefinition, MyParent, MyParentDefinition).

ii. Click Enable Asset Types.

c. In the Enable Asset Types form:

i. Ensure all Start Menu options are selected (so that, later, you can create
and search for instances of the family members.)

ii. Click Enable Asset Types.

2. Wait for WebCenter Sites to display the message indicating that the asset types
have been enabled for the site.

Adding a Flex Family Tab to the WebCenter Sites Tree
In this step, you add a tab that tracks the creation of your flex family. You set up this
tab to display selected members of the flex family as you finish creating them.

To add the tree tab:

1. In the General Admin tree, expand the Admin node, and then double-click the
Tree node.

2. In the Tree Tabs form, scroll to the bottom and click Add New Tree Tab.

3. In the Add New Tree Tab form, fill in the fields as in the following table:

Table 7-3 Add New Tree Tab Form

Field Name Enter or Select Comments

Title Sample Flex Family Name of the tab.

Tooltip Sample Flex Family Description of the tab.

Sites avisports (or the site you chose
in Enabling the New Flex Asset
Types)

Site on which to enable the flex
family.

Required Roles Any n/a

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-4

Table 7-3 (Cont.) Add New Tree Tab Form

Field Name Enter or Select Comments

Tab Contents My Parent Definition

My Parent

My Flex Definition

My Asset

Note: Click Add Selected Items
and use the Display Order
arrow to arrange the members in
this order.

n/a

4. Click Save.

5. Refresh the page.

6. Click the Sample Flex Family tab and make sure its contents are identical to the
following figure:

Figure 7-2 Sample Flex Family Tab

Creating Parent Definition Assets
In this step, you create two parent definitions. The first parent definition establishes
the top level of the hierarchy, and the second parent definition establishes the second
level.

To create the first parent definition asset:

1. In the menu bar, click New.

2. From the list of options that display, select New My Parent Definition.

3. In the next form:

a. Fill in the fields as in the table.

Table 7-4 New My Parent Definition Form

Field Name Enter or Select Comments

Name Level 1 Def This is our name for the definition of
the first level of the hierarchy.

Description Level 1 Def N/A

Parent Select Style Select Box N/A

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-5

Table 7-4 (Cont.) New My Parent Definition Form

Field Name Enter or Select Comments

My Parent Definitions n/a No parent definitions are selected (or
available) in this field. Therefore, this
parent definition establishes the first
level of the hierarchy.

b. Click the Save icon.

To create the second parent definition asset:

1. In the menu bar, click New.

2. From the list of options that display, select New My Parent Definition.

3. In the next form:

a. Fill in the fields as in the table.

Table 7-5 New My Parent Definition Form

Field Name Enter or Select Comments

Name Level 2 Def This is our name for the definition
of the second level of the
hierarchy.

Description Level 2 Def N/A

Parent Select
Style

Select Box N/A

My Parent
Definitions

Level 1 Def

Note: Under Single Value, click
the Required arrow to move your
selection to the Selected list.

Choosing Level 1 Def
subordinates the current parent
definition to Level 1 Def.
Chaining definitions in this
manner establishes Level 2 Def
as the second level.

When parents are created and
based on the current parent
definition (Level 2 Def), they are
subordinated to parents that are
based on Level 1 Def.

b. Click the Save icon.

4. Refresh the page.

5. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to this figure:

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-6

Figure 7-3 Sample Flex Family Tab with Parent Definition

Creating Flex Parent Assets
In this step, you create two flex parent assets, and base them on the flex parent
definitions that you created in the previous step. The first parent asset occupies the
top level of the hierarchy. The second parent asset occupies the second level of the
hierarchy.

To create the top-level parent of the hierarchy:

1. Switch to the Oracle WebCenter Sites: Contributor interface by clicking the
Contributor icon on the top.

2. From the Content menu, choose New, then New My Parent.

3. In the form that opens, fill in the fields as in the table.

Table 7-6 New My Parent Form

Field Name Enter or Select Comments

Name Parent 1 [Level
1]

This is our name for a level 1 parent in the hierarchy
(a generic name simply to help you identify the level).

Note: At the end of this tutorial, you will change the
name to a business-specific name (Outdoor Sports
Equipment, in our example, which describes the
inventory of a company dealing with sports gear.)

My Parent
Definition

Level 1 Def Choosing Level 1 Def places the parent you are
creating at the top level of the hierarchy.

4. On top of the form, click the Save icon.

To create the second-level parent of the hierarchy:

1. From the Content menu, choose New, then New My Parent.

2. In the form that opens, fill in the fields as in the table.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-7

Table 7-7 New My Parent Form

Field Name Enter or Select Comments

Name Parent 2 [Level 2] This is our name for a level 2 parent in
the hierarchy (a generic name to help you
identify the level).

Note: At the end of this tutorial, you
will change the name to a business-
specific name, Mountain Climbing in our
example (an appropriate name given that
Parent 1 [Level 1] is Sports Equipment).

My Parent
Definition

Level 2 Def Selecting Level 2 Def places the parent
you are creating at the second level of the
hierarchy.

Level 1 Def Parent 1 [Level 1] is
selected by default.

N/A

3. Click the Save icon.

4. On the Content Tree, expand Sample Flex Family to make sure its contents are
identical to the figure.

Figure 7-4 Sample Flex Family Tab Expanded on the Content Tree

Note:

Before going to the next step, review the following figure that
summarizes how the objects that you created, parent definitions and
parents based on the definitions, relate to each other.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-8

Figure 7-5 Parents and Parent Definitions

Creating Flex Definition Assets
In this step, you create three flex definition assets:

• The first flex definition asset is used to place assets under Parent 1 [Level 1].

• The second flex definition asset is used to place assets under Parent 2 [Level 2].

• The third flex definition asset is used to place the asset under both levels of the
hierarchy.

To create the first flex definition asset:

1. Switch to the Admin interface by clicking the Admin icon, located in the
applications bar.

2. In the menu bar, click New.

3. From the list of options that display, select New My Flex Definition.

4. In the form that opens, fill in the fields as in the table.

Table 7-8 New My Flex Definition Form

Field Name Enter or Select Comments

Name Flex Def 1 N/A

My Parent
Definitions

Level 1 Def

Note: Under Single Value,
click the Required arrow.

Choosing Level 1 Def and Single Value
means that when you use the current flex
definition to create flex assets, the assets
can be placed under only one parent that
use Level 1 Def as its parent definition.
In our example, the asset is placed under
Parent 1 [Level 1].

Note: Selecting a Multiple Values option
allows you to place the asset under any
and all parents that use Level 1 Def as their
parent definition.

5. Click the Save icon.

To create the second flex definition asset:

1. From the button bar, click New.

2. From the list of options that display, select New My Flex Definition.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-9

3. In the form that opens, fill in the fields as in the table.

Table 7-9 New My Flex Definition Form

Field Name Enter or Select Comments

Name Flex Def 2 N/A

My Parent
Definitions

Level 2 Def

Note: Under Single Value,
click the Required arrow.

Choosing Level 2 Def and Single Value
means that when you use the current flex
definition to create flex assets, the assets
can be placed under only one parent that
uses Level 2 Def as its parent definition.
In our example, the asset is placed under
Parent 2 [Level 2].

Note: Selecting a Multiple Values option
allows you to place the asset under any
and all parents that use Level 2 Def as their
parent definition.

4. Click the Save icon.

To create the third flex definition asset:

1. From the button bar, click New.

2. From the list of options that display, select New My Flex Definition.

3. In the form that opens, fill in the fields as in the table.

Table 7-10 New My Flex Definition Form

Field Name Enter or Select Comments

Name Flex Def_12 N/A

Parent
Definitions

Level 1 Def

Level 2 Def

Note: Under Single Value,
click the Required arrow.

Choosing Level 1 Def and Level 2 Def and
Single Value means that when you use the
current flex definition to create flex assets,
the assets are placed under only one parent
that uses Level 1 Def and under only one
parent that uses Level 2 Def as parent
definitions.

In our example, the assets are placed under
Parent 1 [Level 1] and Parent 2 [Level 2]).

Parent
Definitions
(continued)

N/A Note: Selecting a Multiple Values option
allows you to place the asset under any
and all parents that use Level 1 Def and
Level 2 Def as their parent definitions.

4. Click the Save icon.

5. Refresh the page.

6. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to the following figure.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-10

Figure 7-6 Sample Flex Family Tab

Note:

Before going to the next step, review the next figure, which depicts the
Sample Flex Family structure as it displays in the Contributor application.
This figure shows how the objects that you created, flex definitions,
relate to the parent definitions they are based upon. Flex Definition 1 is
based on Level 1 Parent Definition. When used to create assets, this flex
definition places the assets under Parent 1 [Level 1]. Flex Definition 2 is
based on Level 2 Parent Definition. When used to create assets, this flex
definition places the assets under Parent 2 [Level 2]. Flex Definition 12
is based on Level 1 and Level 2 Parent Definitions. When used to create
assets, this flex definition places the assets under both Parent 1 [Level 1]
and Parent 2 [Level 2].

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-11

Figure 7-7 Flex Definitions and Assets

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-12

Creating Flex Assets
In this step, you complete the flex family by adding the third level of the hierarchy; the
flex assets. You create three assets:

• The first asset you place under Parent 1 [Level 1].

• The second asset you place under Parent 2 [Level 2].

• The third asset you place under both Parent 1 [Level 1] and Parent 2 [Level 2].

To create the first flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.

2. From the Content menu, choose New, then New My Asset.

3. In the form that opens, fill in the fields as in the table.

Table 7-11 New My Asset Form

Field Name Enter or Select Comments

Name Asset 1 N/A

My Flex
Definition

Flex Def 1 Choosing Flex Def 1 places the asset you are
creating under Parent 1 (Level 1].

4. Click the Save icon.

To create the second flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.

2. From the Content menu, choose New, then New My Asset.

3. In the form that opens, fill in the fields as in the table.

Table 7-12 New My Asset Form

Field Name Enter or Select Comments

Name Asset 2 N/A

My Flex
Definition

Flex Def 2 Choosing Flex Def 2 places the asset you are
creating under Parent [Level 2].

4. In the next form, click Save.

To create the third flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.

2. From the Content menu, choose New, then New My Asset.

3. In the form that opens, fill in the fields as in the table.

Table 7-13 New My Asset Form

Field Name Enter or Select Comments

Name Asset_12 N/A

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-13

Table 7-13 (Cont.) New My Asset Form

Field Name Enter or Select Comments

Flex Definition Flex Def_12 Choosing Flex Def_12 places the asset you
are creating under both Parent [Level 1] and
Parent [Level 2].

4. In the next form, click the Save icon.

5. Refresh the page.

6. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to the following figure.

Figure 7-8 Sample Flex Family Structure

The following figure shows how the objects that you created, assets, relate to the
flex definitions they are based upon. Based on the definition, each asset is placed
under a relevant parent. For instance, the Flex Def 1 definition places the Asset
1 asset under Parent 1 [Level 1]. However, in case of Flex_Def_12 Definition, the
Asset_12 asset is placed under both Parent 1 [Level 1] and Parent 2 [Level 2].

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-14

Figure 7-9 Flex Definitions and Assets

Translating the Formulaic Data Model into a Real-World Data Model
In this step, you rename the parent definitions, parents, and assets to translate the
formulaic data model you just created into a real-world model. (In practice, instead
of renaming flex family members, you would name them directly in their business
context, as you create them.)

In our example, the real-world model describes a business that deals with sports gear.
The flex parents and assets, after you finish renaming them, are listed in your Content
Tree tab as shown in the following figure.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-15

Figure 7-10 Content Tree Tab

To create the real-world model:

1. Rename the parent definitions as follows:

a. Open the Admin interface.

b. In the Sample Flex Family Tree, right-click Level 1 Def and choose Edit from
the context menu.

c. Replace the parent's name with Level 1 Def (Type of Sports Equipment),
and click the Save icon.

d. In the same manner, replace the name of Level 2 Def with Level 2 Def
(Sport).

2. Rename the parents as follows:

a. Switch to the Contributor interface.

b. Click Content Tree to display its contents.

c. In the Sample Flex Family Tree, right-click Parent 1 [Level 1], and choose
Edit from the context menu.

d. Replace the parent's name with Outdoor Sports Equipment, and click the
Save icon.

e. In the same manner, replace the name of Parent 2 [Level 2] with Mountain
Climbing. The Sample Flex Family Tree should look like the following figure.

Figure 7-11 Sample Flex Family Tree Node Expanded

3. Rename the assets as follows:

a. In the Sample Flex Family Tree, expand Outdoor Sports Equipment.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-16

b. Right-click Asset 1 and choose Edit.

c. Replace the asset's name with Our Awesome Catalog, and then click the
Save icon.

d. In the same manner, expand Mountain Climbing and replace the name of
Asset 2 with High Altitude Gear.

e. Replace the name of Asset_12 with Special Orders.

The assets you renamed should look like the following figure.

Figure 7-12 Sample Flex Family Tree Node Expanded

Developing Your Real-World Model
In this step, you develop your data model by creating a new parent and its asset,
giving each a real-world name. You do the following:

• Create a second level-2 parent and name it White Watering.

• Create the parent's asset (a catalog) and name it Rafts, Canoes, and Kayaks.
Expand White Watering to display its assets, as shown in this figure:

Figure 7-13 Sample Flex Family Tree Node Expanded

To create the level-2 parent:

1. Switch to the Contributor interface by clicking the Contributor icon on the
application bar.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-17

2. From the Content menu, choose New, then New My Parent.

3. In the form that opens, fill in the fields as in the table:

Table 7-14 New My Parent Form

Field Name Value

Name White Watering

My Parent Definition Level 2 Def (Sports)

4. Click the Save icon.

To create the parent's asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the
application bar.

2. From the Content menu, choose New, and then New My Asset.

3. In the form that opens, fill in the fields as in the table:

Table 7-15 New My Asset Form

Field Name Value

Name Rafts, Canoes, and Kayaks

My Flex Definition Flex Def 2

4. From the Level 2 Def drop-down, choose White Watering.

5. Click the Save icon.

6. Refresh the page and display the Sample Flex Family tree tab.

Its content should be identical to this figure:

Figure 7-14 Sample Flex Family Tree Node Expanded

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7-18

8
Creating Flex Filters

The flex assets you create can work appropriately when you associate flex filters with
them. The flex filters carry out the assigned tasks, while flex classes implement the
flex filters’ functionality. You can associate multiple flex filters with a flex asset and
define the order of processing, too.

Topics:

• About Flex Filter Classes and Assets

• Defining a Flex Filter Class and Creating a Flex Filter Asset

• Document Transformation Flex Filter

• SampleFlexFilter.java

About Flex Filter Classes and Assets
Flex classes implement the functionality of flex filter assets so that the filters can
process the tasks you’ve designed them for.

See these topics:

• Flex Filter Classes

• Flex Filter Assets

Flex Filter Classes
Flex filter classes implement the functionality of flex filter assets. These classes are
listed in the Filters table in the WebCenter Sites database. When you create a flex
filter asset, you select a flex filter class for it.

WebCenter Sites delivers the following flex filter classes:

• Doc-Type: Extracts components from an asset containing one or more MIME file
types and maps each file type to an individually named attribute.

• Thumbnail Creator: Converts an image into a thumbnail.

• Field Copier: Copies the contents of a system-defined attribute into a user-
defined attribute.

• Document Transformation: Converts a document from one file type into another
by invoking a registered transformation engine (an engine that is specified in
the SystemTransforms table). The transformation engine functions as a wrapper
that forwards calls to a document transformer, which then performs document
conversion.

You can create a custom flex filter class by defining it in the WebCenter Sites Filters
database table. For instructions on creating a custom flex filter class, see Defining a
Custom Flex Filter Class.

8-1

Doc-Type Filter Class

A Doc-Type filter takes a document and extracts the MIME-type data associated with
the file into its individual components. For example, an uploaded file containing text
and a GIF photo would be filtered into two generated attributes, one containing TXT
formatted data and one containing GIF formatted data.

The Doc-Type class is defined by the following arguments:

• Attribute to Hold Derived File Name: (Optional) Enter the flex attribute that
stores the output file name.

• Attribute to Hold Derived File Type: The file extension is stored in this attribute.

• Attribute to Hold Derived MIME Type: (Optional) MIME files can have several
types such as plain text, attachment, media file, and so on.

• Input Attribute Name: The attribute name stored by WebCenter Sites
corresponds to the uploaded file name.

Thumbnail Creator Filter Class

With the thumbnail creator filter, a content provider can upload an original graphic and
WebCenter Sites can create a new thumbnail sized GIF graphic file.

The Thumbnail Creator class is defined by the following arguments:

• Input Attribute Name: The name of the uploaded file.

• Display values for the large version of the thumbnail graphic: Output Attribute for
Main Height, Output Attribute for Main Width, and Enter Maximum Pixel Size.

• Attributes that define the thumbnail to be created: Output Attribute Name,
Output Attribute for Thumb Height, Output Attribute for Image Aspect, and
Output Attribute for Thumb Width.

Field Copier Filter Class

The field copier filter copies the contents of a system-defined attribute into a user
defined flex attribute.

The Field Copier class is defined by the following arguments:

• Name: The name of the system-defined attribute you want to copy.

• Value: The name of the flex attribute into which you are copying the system-
defined attribute's value.

Figure 10-3 illustrates an advanced example of how to implement a field copier filter,
using the Media flex family of the FirstSiteII sample site. The purpose of the field
copier filter in this example is to categorize image assets by the names of their parent
assets.

Document Transformation Filter Class

The Document Transformation filter class is defined by the following arguments:

• Document Transformer Name: The name of a registered transformation engine
exactly as it is listed in the SystemTransforms table. By default, CS: Convert to
Raw Text is listed in the SystemTransforms table. This engine is used to initiate the
conversion of a binary file to a TXT format.

Chapter 8
About Flex Filter Classes and Assets

8-2

Note:

The following document transformer is available with WebCenter Sites:

com.fatwire.transformer.tika.DocumentTransformerImpl

The document transformer is coded to convert documents to raw text
files when it is invoked by the CS: Convert to Raw Text engine.
Converting to any other file type requires writing a document transformer
for that file type, registering the corresponding transformation engine
(unless it is registered), and registering the document transformer with
WebCenter Sites. For information on implementing default and document
transformation solutions, see Document Transformation Flex Filter.

• Input Attribute Name: The name of the flex attribute whose contents are to
be converted by the flex filter. For the Document Transformation filter, the input
attribute must be of type blob because it expects to find a file in that attribute.

• Fail on Transform Error: Choose whether the system will display an error
message if the transformation does not complete properly.

• Output Attribute Name: The name of the flex attribute that stores the results of
the document transformation. For the Document Transformation filter, the output
attribute must be of type blob because it stores the results of the transformation as
a file.

The data stored in the output attribute (field) is read-only because it is derived from
the data in the input attribute. This data is regenerated from the source data in the
input attribute each time the asset is saved.

• Output Document Extension: The file extension to be assigned to the
resulting file. Enter a document extension appropriate to the selected Document
Transformer Name. For example, when you specify that the document
transformation engine is CS: Convert to HTML, the document extension must
be either htm or html.

Flex Filter Assets
Flex filter assets are defined by all of the following criteria:

• A flex filter class registered in the Filters table.

• The information that is passed to that filter class (through arguments). These
arguments specify which data to use, any constraints on the filter's action, and
where to store the results of the filtering process when the asset is saved.

When you create a flex filter asset, you select the flex filter class to be used, then enter
values for the arguments that the filter class needs to perform its action.

After you create a flex filter asset, you assign it to the appropriate flex definition
assets. Then, whenever content providers save a flex asset of that definition, the filter
automatically performs its assigned action. See Creating a Flex Filter Asset.

Chapter 8
About Flex Filter Classes and Assets

8-3

Defining a Flex Filter Class and Creating a Flex Filter Asset
Your flex asset needs a flex filter to process the flex asset’s task. And, your flex
filter works when you define a custom flex filter class that implements the flex filter’s
functionality.

These are your basic steps:

1. Create the Java class that provides the implementation code for the custom flex
filter class. See Implementation of a Flex Filter Class.

2. Define the new flex filter class in the Filters table in the WebCenter Sites
database. See Defining a Custom Flex Filter Class.

3. Create a flex filter asset that is defined by the custom flex filter class:

a. Create the attributes that will be referenced in the filter's arguments.

b. Create the flex filter asset and assign it to a flex filter class.

c. Add the new filter asset to a child definition.

d. Re-save all related assets associated with the definition to which you added
the filter asset. See Creating a Flex Filter Asset.

See these topics:

• Implementation of a Flex Filter Class

• Defining a Custom Flex Filter Class

• Creating a Flex Filter Asset

Implementation of a Flex Filter Class
To implement a custom flex filter, create a new Java class for it by extending the
AbstractFlexFilter class. This filter class contains all default functionality required to
handle filter requests. A working example of a custom flex filter class that extends the
AbstractFlexFilter class, and whose purpose is to access a flex attribute and set a
derived attribute value, is provided by the source file SampleFlexFilter.java.

A flex filter's functionality is implemented by parameters called abstraction interfaces.
Since flex filters only have to know about certain aspects of the assets they are
filtering, abstraction interfaces provide filters with access to only the asset information
necessary for them to perform their function on a given flex asset.

The following table lists the abstraction interfaces required to implement a flex
filter, and the asset information each abstraction interface passes to the filter. For
information about abstraction interfaces used to implement a custom flex filter class,
see the Java API Reference for Oracle WebCenter Sites.

Table 8-1 Abstraction Interfaces (com.openmarket.gator.interfaces Package)

Abstraction Interface Description

IFilterEnvironment Provides methods to obtain information about the
environment that is supporting the filter.

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-4

Table 8-1 (Cont.) Abstraction Interfaces (com.openmarket.gator.interfaces
Package)

Abstraction Interface Description

IFilterableAssetInstance Provides methods to manipulate the asset that is being
filtered.

IFilterDescription Provides methods to describe all the potential derived
attributes that will be modified by the filter during its
execution.

IFilterDependencies Provides methods to log the dependencies against
the asset instance to be filtered. A dependency refers
to another asset by type and identifier that shares
a relationship with the asset to be filtered. When a
dependency is declared, it is either exact or exists.

Note:

Standard asset attributes can be obtained by the
IFilterableAssetInstance.get method. For example, to get the standard
asset description, you would add the line:

String description = instance.get(description);

When building the Java code for the new flex filter class, define a constructor with a
single FTValList parameter (located in the COM.FutureTense.Interfaces package).
This parameter provides a list of arguments obtained from the filter's definition in the
Filters database table. These arguments are passed to the filter in the form of key/
value pairs. If there are no predefined arguments for the filter class in the Filters
database table, the FTValList is null.

AbstractFlexFilter Class Extension
The AbstractFlexFilter class can be extended to build your implementation of a flex
filter class. This class is located in the com.openmarket.gator.flexfilters package.
When you create the new flex filter's Java class, you can call the required methods
necessary for your filter's functionality from theAbstractFlexFilter class Java code.
This simplifies the amount of code necessary to create a custom implementation.

When a method is called, it is provided with the argument String filterIdentifier,
which is the asset identifier for the filter. When you associate the same filter with
different flex asset families, the filter identifier reflects the filter definition for the
associated family. This argument is useful when you are implementing a filter that
will be used by different asset families in order for the filter to know which flex family
association is being used at the moment the filter is invoked.

For information about abstract methods used to implement a flex filter class, see the
Java API Reference for Oracle WebCenter Sites.

Required Abstract Methods

The following abstract methods are required by all flex filter implementations:

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-5

public void filterAsset(IFilterEnvironment env,
 String filterIdentifier,
 FTValList filterArguments,
 IFilterableAssetInstance instance)
 throws AssetException;

These lines are the main method to process asset post processing when a new or
pre-existing asset is saved. This method is not called if the edit is canceled. It does the
work that represents the filter's purpose. A list of arguments (FTValList) is provided
so the filter can obtain input or output (or both) attribute definitions, and any other
information valid to the filter. The filterArguments list is defined when the filter is
created in the WebCenter Sites interface.

public FTValList getLegalArguments(IFilterEnvironment env,
 String filterIdentifier)
 throws AssetException;

These lines are the method that is called to return a list of legal filter arguments. The
WebCenter Sites interface will call this during filter creation or editing to populate the
drop-down list after selecting the filter and pressing the Get Arguments button.

Optional Abstract Methods

The following abstract methods can be used to override those within the
AbstractFlexFilter class. These methods are optional because the default
implementations provided by the AbstractFlexFilter class are usually sufficient for
most filters:

public void describeDerivedAttributes(IFilterEnvironment env,
 String filterIdentifier, FTValList filterArguments,
 String defTypeName, String parentDefTypeName,
 IFilterDescription descriptionObject) throws AssetException

This method describes all the potential derived attributes, group affinities, and
recommendations that the filter might set. When the filter plans to output to attributes,
this method must identify the attributes that will be modified. This is called whenever
the flex asset is viewed, to anticipate the editing of the asset.

public void getDependencies(IFilterEnvironment env,String filterIdentifier,
 FTValList filterArguments, String assetTypeName, String parentTypeName,
 IFilterDependencies filterdeps) throws AssetException

This method is called to describe the filter's asset dependencies. Filter dependencies
are set to either exists or exact.

public String[] getArgumentLegalValues(IFilterEnvironment env,
 String filterIdentifier, String argumentName) throws AssetException

This method is called to return a list of acceptable values for a specified argument.
Any value is accepted if the return list is null. This method is called by the Admin
interface when a filter asset is being created or edited to validate the argument values
that are specified for the filter asset.

Defining a Custom Flex Filter Class
Define a custom flex filter class in the Filters table in the WebCenter Sites database.
In the following procedure, the flex filter class is named CustomFilter.

To define a custom Flex Filter class:

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-6

1. Copy the .jar or class file containing the implementation code for the custom flex
filter class into the directory that holds the WebCenter Sites product jars:

Note:

For information about creating a Java class that provides the
implementation code for your custom flex filter class, see Implementation
of a Flex Filter Class.

• For WebLogic: app-server-install-dir/bea/path-to-domain/domain-name/
applications/WEB-INF/lib

• For WebSphere: WebSphere-Installation-Directory/InstalledApps/WEB-
INF/lib

2. Open Oracle WebCenter Sites Explorer and add a row to the Filters table for the
new filter class:

a. In the tree, expand the Tables node, and then select the Filters table.

b. Select File, then New, and then Record.

c. Define the filter in the database by filling in the following columns:

• name: Enter the name of the filter as it will be displayed in the WebCenter
Sites interfaces.

• description: (Optional) Enter a short summary about the purpose of the
filter class.

• classname: Enter the exact classname of the filter class' implementation
(for example, com.fatwire.firstsite.filter.SampleFlexFilter). This
name must be available for loading in the WebCenter Sites classpath.

• args: (Optional) Enter the input and output arguments for the filter.
Argument key/value pairs are delimited by an ampersand (&) character.
(for example, arg1=argument1&arg2=argument2). These arguments are
passed to the filter constructor and their use is left up to the filter's
developer.

Note:

If you do not define the flex filter class' input and output
arguments in the Filters table, you can define the arguments
in the flex filter class' code. See Implementation of a Flex Filter
Class.

d. Select File and then Save.

Your new filter entry looks similar to this figure:

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-7

Figure 8-1 Sample Filter Entry

The filter class is now displayed as an option in the Filter drop-down list in the
New and Edit forms of filter assets.

Creating a Flex Filter Asset
Before you can create a filter asset, the flex attributes that you want to use as
the input and output attributes must exist. To ensure that the values of preexisting
attributes are not overwritten, create attributes to be referenced by the arguments for
your custom flex filter. For this example, create two Media attributes of type string;
FSII_CustomInput to be used as the input attribute and FSII_CustomOutput to be
used as the output attribute.

Create a flex filter asset named FSII_CustomFlexFilter for the Media flex family of
the FirstSiteII sample site.

To Create a Flex Filter Asset:

1. Log in to the Admin interface as a general administrator, and select the site for
which you want to create a flex filter asset (FirstSiteII sample site in this example).

2. Create the attributes (if not defined) that will be referenced by the filter's input and
output arguments. Note the following requirements:

• For flex filters that use the Document Transformation filter class, the input and
output attributes must be of type blob.

• For any flex filter, the input attribute, output attribute, and flex filter must all
belong to the same flex family.

3. Create a flex filter asset for the associated flex family (Media flex family in this
example):

a. From the start menu items, click New.

b. In the list of asset types, select the type of filter you want to create. In this
example, New Media Filter.

The Media Filter form opens.

c. Fill in the following fields:

i. In the Name field, enter a unique name for this filter (in this example, use
FSII_CustomFlexFilter).

ii. In the Description field, enter a brief description summarizing the filter's
function.

iii. From the Filter drop-down list, select the filter definition that matches
the name you assigned to the custom filter (in this example, select
CustomFilter). Then click Get Arguments.

iv. In the Arguments field, specify the input and output arguments for the flex
filter asset. Click Add to add the argument(s) to the filter.

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-8

d. Click Save.

This figure shows the saved filter:

Figure 8-2 New Filter

4. Find a child definition to which you want to add the new filter asset (in this
example. For example, add the filter to the Media child definition FSII_Image).

a. From the start menu items, click Search.

b. In the list of asset types, select a type of asset definition to which you want to
add the filter (Find Media Definition in this example).

c. In the Search field, enter the name of the definition to which you want to add
the filter (FSII_Image in this example).

d. Click Search.

e. In the list of search results, navigate to a definition and click its Edit icon
(FSII_Image in this example).

The Edit form of the definition opens.

5. In the Edit form, add the filter and input argument to the definition:

a. For Attributes, highlight the input attribute in the Available list and move it to
the Selected list (FSII_CustomInput in this example).

b. For Filters, highlight a flex filter in the Available list and move it to the
Selected list (FSII_CustomFlexFilter in this example).

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-9

Note:

Add the new filter after any other filters that will create or modify
attributes which the filter you are adding depends on or shares in
common.

c. Click Save. This figure shows a saved filter.

Figure 8-3 New Filter

6. Find and re-save all preexisting assets associated with the definition to
which you added the filter. This enables the filter to populate the output
attribute (FSII_CustomOutput) with the derived value from the input attribute
(FSII_CustomInput). For example:

a. In the applications bar, click the Contributor icon to switch to the Oracle
WebCenter Sites: Contributor interface.

b. In the Search field, click the down-arrow. In the Search Type menu, choose
the type of asset associated with the definition you modified in step 5 (Find
Media in this example). Then click the magnifying glass icon.

A Search tab opens displaying the results of your search.

c. Re-save the asset. In the asset toolbar, click the Save icon.

d. Inspect the asset. In the asset toolbar, click the Inspect icon.

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-10

This image is the result of editing a flex asset that invokes several filters,
including the filter you created in this section. By default, Media assets call the
FSII_FieldCopier, FSII_ImageType, and FSII_ThumbnailExtractor filters. In
this example, the Media asset also calls the FSII_CustomFlexFilter filter,
which takes the value of the input attribute (MediaCustomInput) and inserts a
derived string value into the output attribute (MediaCustomOutput).

Figure 8-4 Inspect Dialog

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8-11

Document Transformation Flex Filter
For your document transformation flex filter, Oracle WebCenter Sites provides a
default solution that converts documents into raw text files. If you need a flex filter that
converts documents into different formats, you can create a custom solution, register
its components, and use them with your flex filter.

Implementing a Document Transformation flex filter requires the following components:

• A transformation engine that is registered in the SystemTransforms table and
named to indicate the target file type; for example, CS:Convert to Raw Text.

• A document transformer, which is a custom class that performs document
conversion (for example, converting binary files to raw text files). The document
transformer class implements the following interface:

com.fatwire.transformer.common.DocumentTransformer

• The transformer-formats.xml file, which is used to associate the transformation
engine with the document transformer. The file, located in the WebCenter
Sites WEB-INF/classes folder, specifies the target file type and the document
transformer.

When the Document Transformation flex filter is invoked, the transformation
engine functions as a wrapper. The engine forwards calls (using the transformer-
formats.xml file) to the document transformer, which then performs file conversion.

See these topics:

• Default Solution

• About Custom Solutions

• Using a Default Transformation Engine

• Customizing Document Transformation Flex Filter

Default Solution
WebCenter Sites provides a default solution that can be used to convert documents to
raw text files. The default components follow:

• The CS:Convert to Raw Text transformation engine, registered in the
SystemTransforms table.

• A document transformer named
com.fatwire.transformer.tika.DocumentTransformerImpl, which is coded to
output raw text files once it is invoked by the CS:Convert to Raw Text engine.

• The transformer-formats.xml file, which is configured to associate the
CS:Convert to Raw Text engine with the document transformer class named
above.

Using the default solution requires you to implement a corresponding Document
Transformation flex filter, which makes the transformation engine accessible from the
WebCenter Sites interface as a document transformation option.

Chapter 8
Document Transformation Flex Filter

8-12

About Custom Solutions
To design a document transformation solution other than the default solution described
above, create and customize the following components:

1. Write and deploy a document transformer for the target file type.

2. Register the transformation engine for the target file type.

3. Configure the transformer-formats.xml file to specify the document transformer
and the target file type. (The xml file supports multiple document transformers.)

4. Implement the Document Transformation flex filter as described in this chapter.

See Customizing Document Transformation Flex Filter.

Using a Default Transformation Engine
WebCenter Sites provides the CS:Convert to Raw Text transformation engine. All of
the engines are registered by default in the SystemTransforms table. If your document
transformer is written to output files of type HTML, or HTML fragment, or XML, use the
corresponding engine.

To use a default transformation engine:

1. Open Oracle WebCenter Sites Explorer.

2. Select the SystemTransforms table.

3. Locate the engine you have created. Note the value of the engine's target
field. You enter this value for <mime-type> in the transformer-formats.xml file,
discussed in Registering the Document Transformer.

4. In the args field, set the arguments that are appropriate for this transformation
engine. For example: exporttype=HTML.

5. Continue to Registering the Document Transformer.

Customizing Document Transformation Flex Filter
WebCenter Sites provides a default document transformer,
com.fatwire.transformer.tika.DocumentTransformerImpl, which is coded to output
raw text files once it is invoked by the CS:Convert to Raw Text engine. For the target
file other than raw text, create and register the flex filter's supporting components as
follows.

Before implementing a Document Transformer flex filter:

• Writing and Deploying a Document Transformer Flex Filter

• Registering the Transformation Engine

• Registering the Document Transformer

Writing and Deploying a Document Transformer Flex Filter
You can write a deploy a document transformer flex filter

Chapter 8
Document Transformation Flex Filter

8-13

1. Write an implementation of the
com.fatwire.transformer.common.DocumentTransformer interface. You will
implement the following methods:

public String getOutputDocument(String filename,
 TransformerFormat outputformat);

and

public String getOutputDocument(String filename,String inputFileExt,
 TransformerFormat outputformat);

You can return null in the following method, as this method has been deprecated:

public InputStream getBytesAsStream(String filename,
 TransformerFormat outputformat);

2. Copy the document transformer's jar or class file to the WebCenter Sites web
application lib folder or classes folder.

• For WebLogic Server:

app-server-install-dir/bea/path-to-domain/domain-name/applications/WEB-
INF/lib

• For WebSphere Application Server:

WebSphere-Installation-Directory/InstalledApps/WEB-INF/lib

Registering the Transformation Engine
If you have written a document transformer to output files other than raw text, do the
following procedure. Otherwise, see .

To register a transformation engine:

1. Open Oracle WebCenter Sites Explorer to add a row to the SystemTransforms
table for the new transformation engine.

2. Select the SystemTransforms table and click in the table's workspace.

3. Select File, then New, and then Record and fill in the new row as follows:

• In the name column, enter the name of the transformation engine.

• In the description column, enter a description of the engine.

• In the target column, enter text/<filetype>. You will use the target value for
the <mime-type> at the time of registering the document transformer.

• In the classname column, enter the engine's default class name:
com.fatwire.transformer.common.FWTransformer.

• In the args column, set any arguments that are appropriate for this
transformation engine.

4. Save your changes.

Chapter 8
Document Transformation Flex Filter

8-14

Registering the Document Transformer
You can register your document transformer in the transformer-formats.xml file,
located in the WebCenter Sites WEB-INF/classes folder. The default file looks like this:

<transformer-format>
<name>Text Format</name>
<!-- name of the output format supported by this repository -->
<mime-type>text/plain</mime-type>

<file-extension>txt</file-extension>
<transformer-options>
<!-- number of possible transformers available for this transformation
-->
 <transformer>
 <name>TIKA</name>
 <properties>
 <property>
 <name>ClassName</name>
<!-- name of the transformer class that gets loaded by transformer
factory -->
 <value>com.fatwire.transformer.tika.DocumentTransformerImpl</
value>
 </property>
 <property>
 <name>InputFile_Exts</name>
<!-- allowed input file extensions..* means all file types supported by
tika -->
 <value>*</value>
 </property>
 </properties>
 </transformer>
</transformer-options>
</transformer-format>

1. Set the <mime-type> to the value of the target field for the transformation engine.

The value for target is set when registering the transformation engine.

2. Specify the class name of your document transformer.

The class name is created when writing and deploying a document transformer
flex filter.

3. To specify multiple document transformers, repeat the entries for each transformer.

The value for <mime-type> determines which document transformer will be
invoked by the transformation engine.

Chapter 8
Document Transformation Flex Filter

8-15

SampleFlexFilter.java
A working example of a custom flex filter class that extends
the AbstractFlexFilter class, and whose purpose is to access a flex attribute and
set a derived attribute value.

/**
Copyright (c) 2010 Oracle Corporation. All Rights Reserved. Title,
ownership
rights, and intellectual property rights in and to this software remain
with
FatWire Corporation. This software is protected by international
copyright
laws and treaties, and may be protected by other law. Violation of
copyright
laws may result in civil liability and criminal penalties.
*/
package com.fatwire.firstsite.filter;
.
import java.util.Enumeration;
import java.util.Set;
.
.
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
.
import COM.FutureTense.Interfaces.FTValList;
.
import com.openmarket.basic.interfaces.AssetException;
import com.openmarket.basic.interfaces.IListBasic;
import com.openmarket.gator.flexfilters.AbstractFlexFilter;
import com.openmarket.gator.interfaces.IFilterDependencies;
import com.openmarket.gator.interfaces.IFilterDescription;
import com.openmarket.gator.interfaces.IFilterEnvironment;
import com.openmarket.gator.interfaces.IFilterableAssetInstance;
.
/**
Sample Flex Filter class.
This filter class demonstrates a very simple filter application. It
takes
an incoming
Flex asset attribute and creates a derived attribute from it.
The derived attribute that is generated by this filter contains the
filter
identifier,
assetId/assetType of the asset being changed, and the value of the asset
itself.
It also writes an informational log entry with various characteristics
of
the asset
being saved.
The intent is not to provide a useful filter but simply to demonstrate
the

Chapter 8
SampleFlexFilter.java

8-16

mechanics of building a custom filter.
*
*/
public class SampleFlexFilter extends AbstractFlexFilter {
// This defines the input and output attribute names. These values are
// overridden by the sample constructor when there is an initialization
string
// provided by the database entry for the filter. The database
initialization string
// is optional.
private static String ARG_CUSTOM[] =
{ "Input custom string" , "Output custom string" }
;
private static final Log log=
LogFactory.getLog(LoggerPropDesc.LOG_NAME);
.
/**
A filter implementation is required to have a single-argument public
constructor that expects a COM.FutureTense.Interfaces.FTValList
object.
The FTValList provided to the constructor is the set of configuration
arguments that were registered in the database entry for the filter.
*
@param configurationParameters
*
This constructor will override statically defined arguments within
this
filter with values taken from the database. If nothing is defined in
the
database filter definitions then the static values will prevail.
*
*/
@SuppressWarnings("unchecked")
public SampleFlexFilter(FTValList configurationParameters) {
super(configurationParameters);
if (configurationParameters == null || configurationParameters.size() <
1)
{ log.info("SampleFlexFilter constructor: there are no arguments in
Filters table entry"); }
else {
// Bingo! Something is coming from the database so break it down
// and replace the static variables.
Set<String> entries = configurationParameters.keySet();
ARG_CUSTOM = new String[entries.size()];
int i = 0;
for (String key : entries)
{ String value = configurationParameters.getValString(key);
log.info("SampleFlexFilter constructor : "+key+"="+value); ARG_CUSTOM[i+
+] = new String(key); }
}
}
.
/**
Perform the filter operation. This method is entered after an asset is
created or

Chapter 8
SampleFlexFilter.java

8-17

modified. There is no way to reject the operation. All changes occur to
the
IFilterableAssetInstance.
*/
@Override
public void filterAsset(IFilterEnvironment env, String filterIdentifier,
FTValListfilterArguments, IFilterableAssetInstance instance)
throws AssetException {
// Get the identifier and name of the asset being saved.
String assetid = instance.getAssetID();
String assetname = instance.getName();
// Put some interesting information in the log.
log.info(filterIdentifier+" SampleFlexFilter filterAsset :"
+" FilterType="+env.getFilterType()
+", AttributeType="+env.getAttributeType()
+", AssetTypeName="+instance.getAssetTypeName()
+", GroupTypeName="+instance.getGroupTypeName()
);
// Setup the variables to generate the derived attribute.
String assetValue = "FilterId="filterIdentifier",
assetId="assetid"("assetname")";
String value = " <noInput>";
.
String inputattr = getAttrID(env, filterArguments, ARG_CUSTOM[0]);
IListBasic ilistbasic = instance.getAttribute(inputattr);
if (inputattr != null && ilistbasic != null && ilistbasic.hasData()) {
try {
value = " ["+ilistbasic.getValue("value")+"]";
}
catch (NoSuchFieldException e) {
log.info("SampleFlexFilter : NoSuchFieldException");
}
}
.
// Create the derived attribute using the attribute name and the string
values
// that were initialized above.
instance.addDerivedDataValue(filterIdentifier
,
env.getAttributeIdentifier(filterArguments.getValString(ARG_CUSTOM[1]))
, assetValue+value);
}
.
/**
Describe all the potential derived attributes, parent affinities, and
recommendations the filter might set.
*
This method exists as part of the AbstractFlexFilter class and
does not need to be implemented in a custom filter unless the default
behavior
needs to be changed. The default is to describe all attributes arguments
as
eligible for being set by this filter.
*/
@Override

Chapter 8
SampleFlexFilter.java

8-18

public void describeDerivedAttributes(IFilterEnvironment env,
String filterIdentifier, FTValList filterArguments,
String defTypeName, String parentDefTypeName,
IFilterDescription descriptionObject) throws AssetException {
String attrname =
env.getAttributeIdentifier(filterArguments.getValString(ARG_CUSTOM[1]));
if (attrname != null)
descriptionObject.addAttribute(filterIdentifier, attrname, false,
true);
}
.
/**
Describes the filter's asset dependencies. This sample implementation
uses 'exist' dependency.
*
This method exists as part of the AbstractFlexFilter class and
does not need to be implemented in a custom filter unless the default
behavior
needs to be changed.
*/
@Override
public void getDependencies(IFilterEnvironment env,
String filterIdentifier, FTValList filterArguments,
String assetTypeName, String parentTypeName,
IFilterDependencies filterdeps) throws AssetException {
.
Enumeration<?> args = getLegalArguments(env, filterIdentifier).keys();
while(args.hasMoreElements())
Unknown macro: {String currentAttrId = getAttrID(env,
filterArguments, (String)args.nextElement()); if (currentAttrId !=
null && currentAttrId.length() > 0) { // Exists or exact
filterdeps.addExistsToDeps(env.getAttributeType(), currentAttrId); } }
}
.
/**
Return a list of legal filter arguments. This method is called by the CS
Advanced UI
to display the list of valid arguments accepted by the filter.
*/
@Override
public FTValList getLegalArguments(IFilterEnvironment env,
String filterIdentifier) throws AssetException {
.
FTValList ftvallist = new FTValList();
ftvallist.setValString(ARG_CUSTOM[0], ARG_CUSTOM[0]);
ftvallist.setValString(ARG_CUSTOM[1], ARG_CUSTOM[1]);
return ftvallist;
}
.
/**
Obtain the legal values for a single filter argument. By
returning null indicates that any value is legal. Implementing this
method is optional. The default is to allow any value.
*/
@Override

Chapter 8
SampleFlexFilter.java

8-19

public String[] getArgumentLegalValues(IFilterEnvironment env,
String filterIdentifier, String argumentName) throws AssetException {
.
String[] legalValues = null;
if (argumentName.equalsIgnoreCase(ARG_CUSTOM[0])) {
legalValues = new String[3];
legalValues[0]= "FSII_CustomInput";
legalValues[1] = "CustomInput";
legalValues[2] = "InputAttribute";
}
else if (argumentName.equalsIgnoreCase(ARG_CUSTOM[1])) {
legalValues = new String[1];
legalValues[0] = "FSII_CustomOutput";
}
return legalValues;
}
}

Chapter 8
SampleFlexFilter.java

8-20

9
Designing Attribute Editors

Attribute editors are displayed in flex and flex parent assets’ New and Edit forms.
Through attribute editor you define how users will enter attribute data. To help you
create attribute editors, WebCenter Sites provides the presentationobject.dtd file that
defines the input types, the attribute editor asset whose XML code provides the values
of the input type's options such as check boxes, radio button, and attribute editor
elements that receive input values and supply the logic behind the format and behavior
of the attribute.

Topics:

• About Attribute Editors

• Creating Attribute Editors

• Customizing Attribute Editors

• Considerations About Editing Attribute Editors

About Attribute Editors
Attribute editors are like any other assets, so you edit, approve, and manage them the
way you would any other asset. Through attribute editors you can define how users
enter data for attributes on New or Edit forms for flex or flex parent assets.

When you assign an attribute editor to an attribute, it replaces the default input
mechanism (style) for that attribute. The default input style is based on the data type of
the attribute. Attribute editors format the input mechanism for attributes, so you design
your attribute editors as you design your flex attributes. You can use the workflow and
revision tracking features to manage attribute editors.

There are three parts to an attribute editor, with an optional fourth and fifth:

• The presentationobject.dtd file, located in the WebCenter Sites installation
directory (Required). This is the DTD file that defines all the possible input styles
(presentation objects) for flex attributes and their style tags.

• The attribute editor asset (Required). It holds or points to XML code that provides
input options for the attribute it is associated with. You use the style tags defined in
the DTD to create this XML code.

• An element that formats the attribute, or, displays an edit mechanism, when that
attribute displays in a New or Edit form (Required). This element must be located
in the OpenMarket/Gator/AttributeTypes directory in the ElementCatalog table
to be able to find it. Its name must exactly match the name of the style tag that
invokes it from the attribute editor.

• An element that formats the attribute value when it displays in an Inspect
form (Optional). This element must also be located in the OpenMarket/Gator/
AttributeTypes directory in the ElementCatalog table.

9-1

The name of the element must use the convention DisplayStyleTag, where
StyleTag represents and must exactly match the name of the style tag that
invokes it from the attribute editor.

• An element that formats the attribute data before it is saved in the database
(Optional). This element must also be located in the OpenMarket/Gator/
AttributeTypes directory in the ElementCatalog table.

The name of the element must use the convention StyleTagFlexAssetGather,
where StyleTag represents and must exactly match the name of the style tag that
invokes it from the attribute editor.

WebCenter Sites provides the following items, by default, to support the development
of your attribute editors:

• The presentationobject.dtd file. It defines several input styles (presentation
objects) that you can use in your attribute editors. This means you do not have to
define your own unless the nine that are included do not cover your needs.

• Nine text files with sample XML that you can use to create attribute editor assets.
You can cut and paste the sample XML into your attribute editor assets. These
files are located in the installation directory under Samples/Attribute_Editors.

• Ten display elements that work with the sample XML code for attribute editor
assets. They are located in the OpenMarket/Gator/AttributeTypes directory in
the ElementCatalog table.

When you do not use attribute editors, WebCenter Sites uses default input styles for
the attributes, based on their data types. See Default Input Styles for Attributes. Create
attribute editors only when the default input styles are not sufficient for your attributes.

Topics:

• The presentationobject.dtd File

• The Attribute Editor Asset

• The Attribute Editor Elements

• Conventions for the Attribute Editor Elements

The presentationobject.dtd File
The presentationobject.dtd file defines all of the input types (presentation objects)
that you can implement through attribute editors. The default presentationobject.dtd
file defines nine input style tags and the arguments that they can pass from the
attribute editor to the display elements (described in The Attribute Editor Elements).

Following is the entire presentationobject.dtd file. It is located in the WebCenter
Sites installation directory:

<!-- PRESENTATIONOBJECT: An editor
-- PRESENTATIONOBJECT defines the presentation object for
-- instances of Gator attribute types. A presentation object
-- defines the properties of an editor for one of the following
-- controls: Text field, Text area, Pulldown menu
-- For additional information, refer to
-- com.openmarket.gator.interfaces.IPresentationObject.
-- You must specify one of TEXTFIELD, TEXTAREA, or PULLDOWN
-- elements.
-->

Chapter 9
About Attribute Editors

9-2

<!ELEMENT PRESENTATIONOBJECT (TEXTFIELD | TEXTAREA | PULLDOWN |
RADIOBUTTONS | CHECKBOXES | PICKASSET | FIELDCOPIER | DATEPICKER |
IMAGEPICKER | CKEDITOR | FCKEDITOR | IMAGEEDITOR | TYPEAHEAD |
UPLOADER)>
<!ATTLIST PRESENTATIONOBJECT NAME CDATA #REQUIRED>
<!-- TEXTFIELD: A text field of a specific width
-- You must specify the x dimension; the maximum number of
-- allowable characters defaults to 255.
-->
<!ELEMENT TEXTFIELD ANY>
<!ATTLIST TEXTFIELD XSIZE CDATA #IMPLIED>
<!ATTLIST TEXTFIELD WIDTH CDATA #IMPLIED>
<!ATTLIST TEXTFIELD MAXCHARS CDATA "255">
<!ATTLIST TEXTFIELD BLANKED (YES | NO) "NO">
<!ATTLIST TEXTFIELD MAXVALUES CDATA #IMPLIED>
<!-- TEXTAREA: A text area of a specific size
-- The wrap style defaults to soft.
-->
<!ELEMENT TEXTAREA ANY>
<!ATTLIST TEXTAREA XSIZE CDATA #IMPLIED>
<!ATTLIST TEXTAREA YSIZE CDATA #IMPLIED>
<!ATTLIST TEXTAREA WIDTH CDATA #IMPLIED>
<!ATTLIST TEXTAREA HEIGHT CDATA #IMPLIED><!ATTLIST TEXTAREA WRAPSTYLE (OFF |
SOFT | HARD) "SOFT">
<!ATTLIST TEXTAREA DEPTYPE CDATA #IMPLIED>
<!ATTLIST TEXTAREA MAXVALUES CDATA #IMPLIED>
<!ATTLIST TEXTAREA RESIZE CDATA #IMPLIED>
<!-- PULLDOWN: A pulldown menu with an enumeration of items
-- You can specify zero or more list items; the fontsize defaults
-- to relative fontsize 3.
-->
<!ELEMENT PULLDOWN ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST PULLDOWN FONTSIZE CDATA #IMPLIED>
<!-- RADIOBUTTONS: Radio buttons with an enumeration of items
-- You can specify zero or more list items; the fontsize defaults
to relative fontsize 3.
-->
<!ELEMENT RADIOBUTTONS ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST RADIOBUTTONS FONTSIZE CDATA #IMPLIED>
<!ATTLIST RADIOBUTTONS LAYOUT (HORIZONTAL | VERTICAL) "VERTICAL">
<!-- CHECKBOXES: Check boxes with an enumeration of items
-- You can specify zero or more list items; the fontsize defaults
-- to relative fontsize 3.
-->
<!ELEMENT CHECKBOXES ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST CHECKBOXES FONTSIZE CDATA #IMPLIED>
<!ATTLIST CHECKBOXES LAYOUT (HORIZONTAL | VERTICAL) "HORIZONTAL">
<!-- ITEM: A list item
-- You can specify zero or more characters of text.
-->
<!ELEMENT ITEM (#PCDATA)*>
<!-- SQL: Query to populate list of items
-- You can specify zero or more characters of text. Query must
-- return a 'value' column.
-->
<!ELEMENT QUERYASSETNAME (#PCDATA)*>
<!ELEMENT CKEDITOR ANY>
<!ATTLIST CKEDITOR ALLOWEDASSETTYPES CDATA #IMPLIED>
<!ATTLIST CKEDITOR SCRIPT CDATA #IMPLIED>
<!ATTLIST CKEDITOR IMAGEPICKERID CDATA #IMPLIED>
<!ATTLIST CKEDITOR IMAGEASSETTYPE CDATA #IMPLIED>

Chapter 9
About Attribute Editors

9-3

<!ATTLIST CKEDITOR TOOLBAR CDATA #IMPLIED>
<!ATTLIST CKEDITOR DEPTYPE CDATA #IMPLIED>
<!ATTLIST CKEDITOR WIDTH CDATA #IMPLIED>
<!ATTLIST CKEDITOR HEIGHT CDATA #IMPLIED>
<!ATTLIST CKEDITOR MAXVALUES CDATA #IMPLIED>
<!ATTLIST CKEDITOR RESIZE CDATA #IMPLIED>
<!ATTLIST CKEDITOR CONFIG CDATA #IMPLIED>
<!ATTLIST CKEDITOR CONFIGOBJ CDATA #IMPLIED>
<!-- Deprecated in Oracle WebCenter Sites 11gR1 release. -->
<!ELEMENT FCKEDITOR ANY>
<!ATTLIST FCKEDITOR XSIZE CDATA #IMPLIED>
<!ATTLIST FCKEDITOR YSIZE CDATA #IMPLIED>
<!ATTLIST FCKEDITOR LAZYLOAD CDATA #IMPLIED>
<!ATTLIST FCKEDITOR ALLOWEDASSETTYPES CDATA #IMPLIED>
<!ATTLIST FCKEDITOR SCRIPT CDATA #IMPLIED>
<!ATTLIST FCKEDITOR IMAGEPICKERID CDATA #IMPLIED>
<!ATTLIST FCKEDITOR TOOLBAR CDATA #IMPLIED>
<!ATTLIST FCKEDITOR DEPTYPE CDATA #IMPLIED>
<!ATTLIST FCKEDITOR WIDTH CDATA #IMPLIED>
<!ATTLIST FCKEDITOR HEIGHT CDATA #IMPLIED>
<!ATTLIST FCKEDITOR MAXVALUES CDATA #IMPLIED>
<!-- PICKASSET: When the tree is active, it's the "add from tree"
-- button.
-- When the tree is disabled, it's The Content Centre remember
-- widget. -->
<!ELEMENT PICKASSET ANY>
<!ATTLIST PICKASSET MAXVALUES CDATA #IMPLIED>
<!ATTLIST PICKASSET DISPLAYELEMENT CDATA #IMPLIED>
<!-- TYPEAHEAD: Type And Select the asset. -->
<!ELEMENT TYPEAHEAD ANY>
<!ATTLIST TYPEAHEAD MAXVALUES CDATA #IMPLIED>
<!ATTLIST TYPEAHEAD DISPLAYELEMENT CDATA #IMPLIED>
<!ATTLIST TYPEAHEAD PAGESIZE CDATA #IMPLIED>
<!-- UPLOADER: Upload a file from local disc. -->
<!ELEMENT UPLOADER ANY>
<!ATTLIST UPLOADER MAXVALUES CDATA #IMPLIED>
<!ATTLIST UPLOADER MAXFILESIZE CDATA #IMPLIED>
<!ATTLIST UPLOADER FILETYPES CDATA #IMPLIED>
<!ATTLIST UPLOADER MINWIDTH CDATA #IMPLIED>
<!ATTLIST UPLOADER MAXWIDTH CDATA #IMPLIED>
<!ATTLIST UPLOADER MINHEIGHT CDATA #IMPLIED>
<!ATTLIST UPLOADER MAXHEIGHT CDATA #IMPLIED>
<!-- FIELDCOPIER: A hidden field whose value is set from another
-- field.
-- ex. If you want an attribute whose value is always the name of
-- the asset:
-- <FIELDCOPIER SOURCEFIELD="name"/>
-->
<!ELEMENT FIELDCOPIER ANY>
<!ATTLIST FIELDCOPIER SOURCEFIELD CDATA #REQUIRED>
<!-- This describe the Date Picker -->
<!ELEMENT DATEPICKER ANY>
<!ATTLIST DATEPICKER COMPARETOFIELD CDATA #REQUIRED>
<!ATTLIST DATEPICKER MAXVALUES CDATA #IMPLIED>
<!-- This describe the ImagePicker -->
<!ELEMENT IMAGEPICKER ANY>
<!ATTLIST IMAGEPICKER ASSETTYPENAME CDATA #REQUIRED>
<!ATTLIST IMAGEPICKER ATTRIBUTETYPENAME CDATA #REQUIRED>
<!ATTLIST IMAGEPICKER ATTRIBUTENAME CDATA #REQUIRED>
<!ATTLIST IMAGEPICKER CATEGORYATTRIBUTENAME CDATA #IMPLIED>
<!ATTLIST IMAGEPICKER RESTRICTEDCATEGORYLIST CDATA #IMPLIED>

Chapter 9
About Attribute Editors

9-4

<!ATTLIST IMAGEPICKER MAXVALUES CDATA #IMPLIED>
<!-- Image Editor -->
<!ELEMENT IMAGEEDITOR ANY>
<!ATTLIST IMAGEEDITOR EDITORTYPE (oie | clarkii) "oie">
<!ATTLIST IMAGEEDITOR HEIGHT CDATA #REQUIRED>
<!ATTLIST IMAGEEDITOR WIDTH CDATA #REQUIRED>
<!ATTLIST IMAGEEDITOR FITIMAGE (true | false) "true">
<!ATTLIST IMAGEEDITOR SNAPSHOTPANEL (true | false) "false">
<!ATTLIST IMAGEEDITOR LIMITCROPPING (true | false) "false">
<!ATTLIST IMAGEEDITOR CROPHEIGHT CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR CROPWIDTH CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR ENABLEOIEFORMAT (true | false) "false">
<!ATTLIST IMAGEEDITOR LIMITSIZE (true | false) "false">
<!ATTLIST IMAGEEDITOR MAXHEIGHT CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR MAXWIDTH CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR MINHEIGHT CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR MINWIDTH CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR AUTORESAMPLE (true | false) "false">
<!ATTLIST IMAGEEDITOR AUTORESAMPLEPROPORTIONAL (true | false)
"false">
<!ATTLIST IMAGEEDITOR DEFAULTTEXTFONT CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR DEFAULTTEXTSIZE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR DEFAULTTEXTCOLOR CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR ASSETTYPE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR ATTRIBUTE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR ATTRIBUTETYPE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR CATEGORYATTRIBUTE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR RESTRICTEDCATEGORYLIST CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR ENABLEIMAGEPICKER (true | false) "false">
<!ATTLIST IMAGEEDITOR OIEASSETTYPE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR OIEATTRIBUTE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR OIEATTRIBUTETYPE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR OIECATEGORYATTRIBUTE CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR OIERESTRICTEDCATEGORYLIST CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR OIEENABLEIMAGEPICKER (true | false) "false">
<!ATTLIST IMAGEEDITOR TAGEDIT (true | false) "false">
<!ATTLIST IMAGEEDITOR BASE64JPEGQUALITY CDATA "95">
<!ATTLIST IMAGEEDITOR ASKTOSAVELOCALLY (true | false) "false">
<!ATTLIST IMAGEEDITOR DEFAULTSAVINGTYPE (gif | jpg | jpe | png |
tif | bmp | oie) "gif">
<!ATTLIST IMAGEEDITOR ENABLEGIFSAVING (true | false) "true">
<!ATTLIST IMAGEEDITOR ENABLEJPEGSAVING (true | false) "true">
<!ATTLIST IMAGEEDITOR ENABLEPNGSAVING (true | false) "true">
<!ATTLIST IMAGEEDITOR ENABLETIFFSAVING (true | false) "true">
<!ATTLIST IMAGEEDITOR ENABLEBMPSAVING (true | false) "true">
<!ATTLIST IMAGEEDITOR GRIDVISIBLE (true | false) "false">
<!ATTLIST IMAGEEDITOR GRIDSNAP (true | false) "true">
<!ATTLIST IMAGEEDITOR GRIDSPACINGX CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR GRIDSPACINGY CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR MAXTHUMBNAILHEIGHT CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR MAXTHUMBNAILWIDTH CDATA #IMPLIED>
<!ATTLIST IMAGEEDITOR THUMBNAILFORMAT (gif | jpg | jpe | png | tif
| bmp | oie) "gif">
<!ATTLIST IMAGEEDITOR MAXVALUES CDATA #IMPLIED>

To create custom attribute editors other than the ones made possible by default,
you must first define an XML input style tag, a PRESENTATIONOBJECT tag, in the
presentationobject.dtd file. To define a new PRESENTATIONOBJECT tag, you must do
the following:

Chapter 9
About Attribute Editors

9-5

• Add the new tag (presentation object) to the list in the <!ELEMENT
PRESENTATIONOBJECT...> statement.

• Add a <!ELEMENT...> section that defines the new tag (presentation object) and
the arguments that it takes. Follow the normal syntax rules for a .dtd file and follow
the conventions used in the presentationobject.dtd file.

The Attribute Editor Asset
The attribute editor asset either holds XML code or points to an .xml file. That XML
code provides the values of the input type's options such as check boxes, radio
options, drop-down lists, and so on. Although WebCenter Sites provides nine text files
with sample code that you can use to create attribute editor assets, it does not provide
any attribute editor assets because you have to customize the sample code so that
any options are appropriate for your data.

When you create your attribute editors, either cut and paste the code from HTML
version of this book (samples follow this section) or use the text files located in the
Samples subdirectory of the installation directory on your system.

This section includes the following topics:

• The Syntax and the Default Tags

• CHECKBOXES

• CKEditor

• PICKASSET

• PULLDOWN Example

• RADIOBUTTONS

• TEXTAREA

• TEXTFIELD

• TYPEAHEAD

• UPLOADER

The Syntax and the Default Tags
The code in an attribute editor asset has the following basic format:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="SomeName">
...
...
...

</PRESENTATIONOBJECT>

The tag that describes the format of the input style (presentation object) is embedded
between the pair of PRESENTATIONOBJECT tags. This tag can have additional nested
tags in it. Although the NAME attribute is required for the PRESENTATIONOBJECT tag, it is
reserved for future use.

Chapter 9
About Attribute Editors

9-6

The name of any PRESENTATIONOBJECT tag that you include in the code for an attribute
editor asset must be defined in the presentationobject.dtd file. This .dtd file has the
following PRESENTATIONOBJECT tags defined by default (listed in alphabetic order):

• CHECKBOXES

• CKEDITOR

• DATEPICKER

• FIELDCOPIER

• IMAGEEDITOR

• IMAGEPICKER

• PICKASSET

• PICKFROMTREE (Deprecated; use PICKASSET instead.)

• PULLDOWN

• RADIOBUTTONS

• TEXTAREA

• TEXTFIELD

• TYPEAHEAD

• UPLOADER

Note that the PRESENTATIONOBJECT tag that you use in the attribute editor code must
exactly match the name of the display element that you want to use for the attribute
editor. Therefore, to define a new tag for a custom attribute editor, the element that you
create must use the same name as the tag.

For a description of the elements, see The Attribute Editor Elements. For code
samples for attribute editors, see the following sections:

• CHECKBOXES

• CKEditor

• PICKASSET

• PULLDOWN Example

• RADIOBUTTONS

• TEXTAREA

• TEXTFIELD

• TYPEAHEAD

• UPLOADER

CHECKBOXES
The presentationobject.dtd defines a CHECKBOXES tag, an attribute editor that uses
the tag to invoke the CHECKBOXES element, which creates a set of check boxes for the
attribute.

The CHECKBOXES tag takes the following parameters:

Chapter 9
About Attribute Editors

9-7

• ITEM or QUERYASSETNAME: The source of the names listed next to the check boxes.
To specify the names, use the ITEM parameter. To specify a query asset that
obtains the names dynamically from a database table, use the QUERYASSETNAME
parameter.

Note the following:

– Whether you use the ITEM parameter or the QUERYASSETNAME parameter as the
source of the names listed next to the check boxes, ensure the parameter
specifies multiple values. A single value creates radio buttons instead of check
boxes.

– You must use a query asset to use a query. You cannot use a SQL statement.

– The SQL in the query asset must return a value column. For example: select
name as value from shippingtype.

– If the data type of the attribute using the attribute editor is asset, the query
must also return the assets IDs. For example: select name as value, id as
assetid from Product where...

• LAYOUT: Whether the check boxes should be positioned in a vertical list or spread
out in a horizontal row. Valid options are HORIZONTAL or VERTICAL. The default is
HORIZONTAL.

• MAXVALUES: Limits the number of values that can be added to a multi-valued
attribute. For example, if MAXVALUES is set to 10, then only ten values can be
added. No default value.

The following attribute editor code specifies that the CHECKBOXES element should use
the results of a query asset named A Prods for the names of a vertical list of check
boxes:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="CheckBox">
 <CHECKBOXES LAYOUT="VERTICAL">
 <QUERYASSETNAME>A Prods</QUERYASSETNAME>
 </CHECKBOXES>
</PRESENTATIONOBJECT>

For example code that shows the use of the ITEM parameter, see PULLDOWN
Example.

Notes about data types:

A CHECKBOXES attribute editor is appropriate for attributes with the following data types:

• date

• float

• integer

• money

• string

• asset (If asset, you must supply the name of the query asset that returns the
names of the assets.)

Chapter 9
About Attribute Editors

9-8

CKEditor
The presentationobject.dtd defines a CKEDITOR tag. An attribute editor that uses the
tag invokes the CKEDITOR element, which launches the CKEditor. The person creating
the flex asset enters the value for the attribute in that window.

• You must have the CKEditor application installed and configured correctly.

• It is highly recommended that you use CKEditor only when the data type of the
attribute is set to blob. You don't have to worry about sizing the field for the blob
data type.

The CKEDITOR tag takes the following parameters:

The following code includes a CKEDITOR tag that creates a text box that is 400 pixels
wide by 200 pixels high:

• EMBEDDEDLINKS: The YES value lets users create links to other assets. Default
value: NO.

• ALLOWEDASSETTYPES: Lets you define which asset types can be included or linked
to by means of CKEditor. Default value: ALL.

• DEPTYPE: The approval dependency between the main asset and an embedded
asset. Valid options are EXISTS and EXACT. Default value: EXACT.

• MAXVALUES: This parameter limits the number of values that can be added to a
multi-valued attribute. For example, if MAXVALUES is set to 10, then only ten values
can be added. No default value.

• MAXLENGTH: The number of characters in the CKEditor's source view (displayed
when you click the CKEditor Source button). Default value: -1 (unlimited).

• INSTRUCTION: Used to provide help for the field.

The CKEDITOR tag also takes parameters for customizing the appearance of CKEditor
instances. One set of parameters is defined in WebCenter Sites. The other set is
available on the CKEditor website.

Parameters defined in WebCenter Sites must be added directly to the XML field of a
CKEditor instance:

• TOOLBAR: The name of the toolbar, which is read from the configuration file
specified in the CONFIG parameter. For example, CONFIG="myconfig.js".

• WIDTH: The text box width in pixels. If you do not specify a value for WIDTH,
WebCenter Sites sets a default width. Sample value: 700px.

• HEIGHT: The text box height in pixels. If you do not specify a value for HEIGHT,
WebCenter Sites sets a default height. Sample value: 300px.

Note:

The WIDTH and HEIGHT parameters replace the deprecated XSIZE and
YSIZE parameters. Setting XSIZE and YSIZE has no effect.

• RESIZE: The true value allows users to resize the text area. Default value: false.

Chapter 9
About Attribute Editors

9-9

Parameters listed on the CKEditor website must be specified either in a configuration
file, named in the CONFIG parameter, or in the CONFIGOBJ parameter. Except for the
TOOLBAR parameter, they are not recognized when they are added to the CKEditor's
XML field. The following is a description of the CONFIG and CONFIGOBJ parameters:

• CONFIG: Specifies the relative path to the default or custom CKEditor configuration
file. For example, setting CONFIG="myconfig.js" will load the custom myconfig.js
file from the CKEditor base path (CKEditor source folder). For a custom
configuration file, users can also specify a URL to the config.js file in the CONFIG
attribute. The base path is defined in the xcelerate.ckeditor.basepath property,
in the wcs_properties.json file.

Within the configuration file is a CKEDITOR.editorConfig function, where
you specify the CKEditor parameters listed at http://docs.cksource.com/
ckeditor_api/symbols/CKEDITOR.html#.editorConfig. The list includes the
TOOLBAR parameter.

• CONFIGOBJ: Takes a JSON string, which can contain any of the parameters listed
at http://docs.cksource.com/ckeditor_api/symbols/CKEDITOR.config.html.
(The list includes the TOOLBAR parameter.)

The JSON string format uses double quotes:

'{foo1:"value1",foo2:"value2"}' ...

For example:

CONFIGOBJ='{width:"300px",height:"300px",toolbar:"SITES",fullPage:true}'

Note:

CKEditor parameters are recognized and used in the following hierarchical
order:

Parameters in the CKEditor's XML field override parameters in CONFIGOBJ,
which override parameters in the configuration file named in the
CONFIG parameter. For example, the TOOLBAR parameter in a CKEditor's
XML field overrides the toolbar parameter in CONFIGOBJ='{toolbar:
"SITES",fullPage:true}', which overrides the toolbar parameter in the
configuration file myconfig.js (specified as CONFIG='myconfig.js'). The
fullPage parameter in CONFIGOBJ overrides the same parameter in
myconfig.js.

To avoid potential conflicts, specify each parameter only once in the place
where it is recognized: either in the editor's XML field, in the CONFIGOBJ
parameter, or in the configuration file that is specified in the CONFIG
parameter.

The following code includes a CKEDITOR tag that creates a CKEditor box 400 pixels
wide by 200 pixels high:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="CKEditorTest">
 <CKEDITOR WIDTH="400px" HEIGHT="200px">

Chapter 9
About Attribute Editors

9-10

 </CKEDITOR>
</PRESENTATIONOBJECT>

Notes about data types:

The best choice for the data type of an attribute that uses a CKEDITOR attribute editor
is blob. You can use string or text but it is problematic because it is hard to predict
how large the data entered into the attribute's field will be because each HTML marker
counts toward the limit. The string data type is limited to 256 characters and text is
limited to 2000. It is recommended that you use blob as the data type for attributes
that use CKEDITOR as their input mechanism.

PICKASSET
The presentationobject.dtd defines a PICKASSET tag. An attribute editor that uses
the tag invokes the PICKASSET element, which creates a Drop Zone field into which a
user can drag and drop an asset from a tree or search results list. When an asset is
dropped into the Drop Zone field, the name of the asset is displayed in a box outlined
with a dashed border. When you point to the name of the asset, a tooltip opens
displaying information about the asset. To change the behavior of the PICKASSET
attribute editor, for example, to customize the look and feel of the tooltip, see Building
an Attribute Editor.

This tag can take the MAXVALUES parameter. The MAXVALUES parameter limits the
number of values that can be added to a multi-valued attribute. For example, if
MAXVALUES is set to 10, then only ten values can be added. No default value.

For information about customizing the PICKASSET attribute editor, see Building an
Attribute Editor.

Below is the code to create a PICKASSET attribute editor:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="PickAsset">

 <PICKASSET>
 </PICKASSET>
</PRESENTATIONOBJECT>

Notes about data types:

A PICKASSET attribute editor is only appropriate for attributes with a data type of asset.

PULLDOWN Example
The presentationobject.dtd defines a PULLDOWN tag. An attribute editor that uses
the tag invokes the PULLDOWN element, which formats a field with a drop-down list of
values.

This tag takes the ITEM and QUERYASSETNAME: parameters which are the source of the
names in the drop-down list. To specify the names, use the ITEM parameter. To specify
a query asset that obtains the names dynamically from a database table, use the
QUERYASSET parameter.

Note the following:

• You must use a query asset to use a query. You cannot use a SQL statement.

Chapter 9
About Attribute Editors

9-11

• The SQL in the query asset must return a value column. For example: select
name as value from shippingtype.

• If the data type of the attribute using the attribute editor is asset, the query must
also return the assets' IDs. For example: select name as value, id as assetid
from Product where...

• If you want to include date options, they must be in the format: YYY-MM-DD
HH:MM:SS.

The following attribute editor code specifies that the list holds the items red, green, and
blue:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="PulldownTest">
<PULLDOWN>
 <ITEM>Red</ITEM>
 <ITEM>Green</ITEM>
 <ITEM>Blue</ITEM>
</PULLDOWN>

For sample code that shows how to use the QUERYASSETNAME parameter rather than
ITEM, see CHECKBOXES.

Notes about data types:

A PULLDOWN attribute editor is appropriate for attributes with the following data types:

• date

• float

• integer

• money

• string

• asset

A drop-down list is the default input style for attributes of type asset. The list displays
all the assets of that type. Use a PULLDOWN attribute editor when you want to further
restrict the items in the drop-down list with a query asset so that the list doesn't display
every asset of that type.

RADIOBUTTONS
The presentationobject.dtd defines a RADIOBUTTONS tag. An attribute editor that
uses the tag invokes the RADIOBUTTONS element, which creates a set of radio options
for the attribute.

The RADIOBUTTONS tag takes the following parameters:

• ITEM or QUERYASSETNAME: The source of the names listed next to the radio
options. To specify the names, use the ITEM parameter. To specify a query asset
that obtains the names dynamically from a database table, use the QUERYASSET
parameter.

Note the following:

– You must use a query asset to use a query. You cannot use a SQL statement.

Chapter 9
About Attribute Editors

9-12

– The SQL in the query asset must return a value column. For example: select
name as value from shippingtype.

– If the data type of the attribute using the attribute editor is asset, the query
must also return the assets' IDs. For example: select name as value, id as
assetid from Product where...

• LAYOUT: Whether the buttons should be positioned in a vertical list or spread out
in a horizontal row. Valid options are HORIZONTAL or VERTICAL. The default is
HORIZONTAL.

The following attribute editor code specifies that the RADIOBUTTONS element should use
the results of a query asset named A Prods for the names of a vertical list of buttons:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="RadioButtonTest">
 <RADIOBUTTONS LAYOUT="VERTICAL">
 <QUERYASSETNAME>A Prods</QUERYASSETNAME>
 </RADIOBUTTONS>
</PRESENTATIONOBJECT>

For example code that shows the use of the ITEM parameter, see PULLDOWN
Example.

Notes about data types:

A RADIONBUTTON attribute editor is appropriate for attributes with the following data
types:

• date

• float

• integer

• money

• string

• asset (If asset, you must supply the name of the query asset that returns the
names of the assets.)

Note:

The RadioButton attribute editor of type date would interpret the date values
entered in the presentation.dtd in server's timezone (or the timezone set
in the JVM). This value will be converted to user's timezone when the asset
form is rendered.

To see the same date value irrespective of the timezone, consider using an
attribute editor of type string.

TEXTAREA
The presentationobject.dtd defines a TEXTAREA tag. An attribute editor that uses the
tag invokes the TEXTAREA element, which creates a text box field for the attribute, and

Chapter 9
About Attribute Editors

9-13

a pair of radio buttons that allows users to specify whether that attribute should display
embedded link buttons.

The TEXTAREA tag takes the following parameters:

• WIDTH: The text box width, in pixels. If you do not specify a value for WIDTH,
WebCenter Sites sets a default width. Sample value: 700px.

• HEIGHT: The text box height, in pixels. If you do not specify a value for HEIGHT,
WebCenter Sites sets a default height. Sample value: 300px.

Note:

The WIDTH and HEIGHT parameters replace the deprecated XSIZE and
YSIZE parameters. Setting XSIZE and YSIZE has no effect.

• RESIZE: The true value allows users to resize the text area. The default value is
false.

• WRAPSTYLE: Whether the text in the box wraps at all, and, if it does, whether it
wraps automatically (soft) or only when the user presses the Enter key (a hard
return). Valid options are SOFT, HARD, and OFF. The default is OFF.

• DEPTYPE: The approval dependency between the main asset and an embedded
asset. Valid options are EXISTS and EXACT. The default is EXACT.

– EXISTS: When the main asset is edited, approved, and re-published, the
embedded asset does not have to be approved and re-published while a
version of the asset exists at the destination.

– EXACT: When the main asset is edited, approved, and re-published, the
embedded asset, if it was edited, must be approved and re-published as well.

• MAXVALUES: Limits the number of values that can be added to a multi-valued
attribute. For example, if MAXVALUES is set to 10, then only ten values can be
added. No default value.

The following attribute editor code defines the XSIZE as 40 pixels, the YSIZE as 5
pixels, disables text wrapping by setting WRAPSTYLE to OFF, and sets the approval
dependency for embedded assets to EXISTS:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextAreaTest">
 <TEXTAREA XSIZE="40" YSIZE="5" WRAPSTYLE="OFF" DEPTYPE="EXISTS">
 </TEXTAREA>
</PRESENTATIONOBJECT>

Notes about data types:

A TEXTAREA attribute editor is appropriate for attributes with the data type of text and
blob. Use the text data type when you have to store up to 2000 characters. To store
more than 2000 characters, use the blob data type.

Chapter 9
About Attribute Editors

9-14

TEXTFIELD
The presentationobject.dtd defines a TEXTFIELD tag. An attribute editor that uses
the tag invokes the TEXTFIELD element from the New and Edit forms to create a text
field for the attribute. When the attribute is displayed on the Inspect form, however, it
uses the DisplayTEXTFIELD element.

The TEXTFIELD tag takes the following parameters:

• XSIZE: The length of the field, in characters.

• MAXCHARS: The number of characters, up to 256, allowed in the field.

• BLANKED: Whether the attribute's value is replaced with a string of asterisks when
it is displayed in the Inspect form. For example, for a password attribute, the value
of the password should not be displayed in an Inspect form. Valid options are YES
and NO. The default is NO.

Because using the BLANKED parameter automatically means that you need the field
to behave differently on the New and Edit forms than it does on the Inspect form,
the TEXTFIELD tag is delivered with both of the two possible elements by default.

• MAXVALUES: Limits the number of values that can be added to a multi-valued
attribute. For example, if MAXVALUES is set to 10, then only ten values can be
added. No default value.

The following attribute editor code defines the XSIZE as 60 and the maximum number
of characters as 80:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextFieldTest">
 <TEXTFIELD XSIZE="60" MAXCHARS="80">
 </TEXTFIELD>
</PRESENTATIONOBJECT>

Notes about data types:

A TEXTFIELD attribute editor is appropriate for attributes with the following data types:

• float

• integer

• money

• string

• url

TYPEAHEAD
The presentationobject.dtd defines a TYPEAHEAD tag. An attribute editor that uses
the tag invokes the TYPEAHEAD element, which creates a type ahead input box with a
drop-down menu attribute. When the attribute is displayed in the New and Edit views
of an asset, and the down-arrow in the drop-down field is clicked, the drop-down menu
lists the names of the assets from which the user can choose.

The TYPEAHEAD tag takes the following parameters:

Chapter 9
About Attribute Editors

9-15

• PAGESIZE: Limits the number of results that are shown in the drop-down menu at
one time for each type ahead search. For example, if PAGESIZE is set to 5, then
only five assets are displayed in the drop-down menu at one time. The default
value is 10.

• MAXVALUES: Limits the number of values that can be added to a multi-valued
attribute. For example, if MAXVALUES is set to 10, then only ten values can be
added. No default value.

The PAGESIZE parameter can be used to limit the number of results shown in the
drop-down at one time. This paginates the results listed in the drop-down menu.
For example, if the PAGESIZE parameter is set to show 10 assets at a time in the
drop-down menu, a user can see the next 10 assets in the list by clicking More
choices. Similarly, to go back to the last 10 assets that were listed, the user can click
the Previous choices link.

The list of results can also be filtered by typing the first couple of letters that an asset
starts with into the input box. For example, if Ski is typed into the input box, the results
that are displayed in the drop-down menu (in alphabetic order) will all start with Ski.
This is similar to running the query Ski*, which finds all assets that begin with the
letters or word Ski. As you type into the type ahead input box, it auto-fills with the first
result in the drop-down menu, as shown in this figure:

Figure 9-1 Related Content Dialog

To select the auto-filled asset, users can press Enter on their keyboards. Users can
also select any result, one at a time, from the drop-down menu, either by selecting
an asset (navigating the drop-down menu with the up and down arrow keys on the
keyboard) and then pressing the Enter key or by using your mouse to click an asset.
After you select an asset, it is displayed below the drop-down menu. When a user
points to a selected asset, a tooltip is shown, as in this figure:

Figure 9-2 Tooltip Message

Chapter 9
About Attribute Editors

9-16

To change the behavior of the TYPEAHEAD attribute editor, for example, to customize the
look and feel of the tooltip, see Building an Attribute Editor.

Notes about data types:

A TYPEAHEAD attribute editor is appropriate only for attributes of data type asset.

UPLOADER
The presentationobject.dtd defines an UPLOADER tag. An attribute editor that uses
the tag invokes the UPLOADER element, which creates an upload attribute. The Upload
field can upload files of any type. However, to restrict the types of files that can be
uploaded, use the FILETYPES parameter.

When a user clicks to upload a file, the progress of the upload is shown in the asset's
toolbar, as shown in this figure:

Figure 9-3 Upload Progress

Chapter 9
About Attribute Editors

9-17

A thumbnail image for each uploaded file is displayed in the Uploader field. When
a user clicks the thumbnail of an uploaded image file, the image is displayed in an
overlay at its actual size. For file types other than images, WebCenter Sites displays a
thumbnail image specific to file type in the Uploader field. When a thumbnail image for
a particular file type is not available, an arbitrary image is shown, instead.

When a user points to the thumbnail image of an image file, the file's name, type, and
dimensions are displayed in a tooltip. The file's name and type is displayed in a tooltip
of a file that is not an image, as shown in this figure:

Figure 9-4 Image Tooltip

The UPLOADER tag takes the following parameters:

• MAXFILESIZE: Lets you specify the maximum size of the files that can be uploaded.
Valid units for this parameter are B, KB, MB, and GB. Default value: 1024KB. Default
unit: KB.

• FILETYPES: Lets you specify the types of files that can be uploaded. For example,
.jpg. If you do not specify a value for this parameter, the default value is any
(*.*).

• MINWIDTH: Lets you specify the minimum width (in pixels) of the files that can be
uploaded. For example, if MINWIDTH is set to 700px, then users can only upload
files with a width that is no less than 700px. If you do not specify a value for this
parameter, the default value is any width. Valid unit: px.

• MAXWIDTH: Lets you specify the maximum width (in pixels) of the files that can be
uploaded. For example, if MAXWIDTH is set to 700px, then users can only upload
files with a width that is no more than 700px. If you do not specify a value for this
parameter, the default value is any width. Valid unit: px.

• MINHEIGHT: Lets you specify the minimum height (in pixels) of the files that can be
uploaded. For example, if MINHEIGHT is set to 700px, then users can only upload
files with a height that is no less than 700px. If you do not specify a value for this
parameter, the default value is any height. Valid unit: px.

• MAXHEIGHT: Lets you specify the maximum height (in pixels) of the files that can be
uploaded. For example, if MAXHEIGHT is set to 700px, then users can only upload
files with a height that is no more than 700px. If you do not specify a value for this
parameter, the default value is any height. Valid unit: px.

• MAXVALUES: Limits the number of values that can be added to a multi-valued
attribute. For example, if MAXVALUES is set to 10, then only ten values can be
added. No default value.

Chapter 9
About Attribute Editors

9-18

Notes about data types:

A UPLAODER attribute editor is appropriate only for attributes of data type blob.

The Attribute Editor Elements
The elements that take the input values passed to them from their attribute editor
counterparts, supply the logic behind the format and behavior of the attribute when it
is displayed on a form. For example, it might perform a loop sequence for multivalue
attributes so that additional values can be entered in the field.

Table 9-1 lists the default flex attribute display elements located in the ElementCatalog
table under OpenMarket/Gator/AttributeTypes. The names of these elements match
exactly the names of the custom XML tags defined in the presentationobject.dtd
file.

Table 9-1 Attribute Editor Elements

Element Description

CHECKBOXES Formats the input style of the attribute as a set of check box options.
The attribute editor must either define the names of the options or
provide the name of a query asset to use to obtain the names.

CKEDITOR Invokes the CKEditor text editor. The attribute editor must specify
the height and width pixel dimensions for the text box.

PULLDOWN Formats the input style of the attribute as a select field with a drop-
down list. The attribute editor must either specify the items that are
displayed in the list or provide the name of a query asset to use to
obtain the values.

RADIOBUTTONS Formats the input style of the attribute as a set of radio options. The
attribute editor must define the names of the options or provide the
name of a query asset to use to obtain the names.

TEXTAREA Formats the input style of the attribute as a text box and displays
radio buttons that allow the user to specify whether the text box will
allow embedded links. The attribute editor must define the x and y
dimensions of the box.

TEXTFIELD Formats the input style of the attribute as a text field. The attribute
editor must define the length of the field and the number of
characters that are allowed in the field.

DisplayTEXTFIELD Formats the appearance of the text field attribute's value when it
is displayed on the Inspect form. If the attribute editor sets the
BLANKED parameter to YES, this element displays the value from
the field as a string of asterisks. Typically used for password fields.

PICKASSET Formats the input style of the attribute as a Drop Zone field into
which a user can drag and drop an asset from a tree or search
results list.

PICKFROMTREE Deprecated. Use PICKASSET.

TYPEAHEAD Formats the input style of the attribute as a type ahead input box
with a drop-down menu. When the asset is displayed in the New or
Edit view of an asset, and the down-arrow in the drop-down field
is clicked, the drop-down menu lists the names of the assets from
which the user can choose. Use the PAGESIZE parameter to limit
the number of results shown in the drop-down menu at one time.

Chapter 9
About Attribute Editors

9-19

Table 9-1 (Cont.) Attribute Editor Elements

Element Description

UPLOADER Creates an upload attribute. The upload field can upload files of
any type. Use the FILETYPES parameter to restrict the types of files
that can be uploaded.

Conventions for the Attribute Editor Elements
WebCenter Sites can use an element for an attribute editor when that element
conforms to the following rules:

• It must have the same name as the input style tag that calls it from the
attribute editor code. For example, the default CHECKBOXES tag has a default
CHECKBOXES.xml element.

• The element must be placed in the ElementCatalog using the following naming
conventions: OpenMarket/Gator/AttributeTypes/name.

To create your own display elements for custom attribute editors, find one that is the
closest to the attribute editor element that you want to create and then copy as much
of it as possible. For help, examine the code in the default attribute editor elements
and read the following descriptions of the variables and syntax in them:

Variables:

When WebCenter Sites loads a form that uses the attribute editor, it calls the element
with the computer name. It passes the information in the following variables to the
display element:

• PresInst: The instance of the current presentation object.

• AttrName: The name of the current attribute.

• AttrType: The data type of the current attribute.

• EditingStyle: Whether the attribute can take multiple values (based on the value
in the Number of Values field for the attribute). This variable is set to either
single or multiple.

• RequiredAttr: Whether the attribute is required for the current asset. The variable
is set to either true or false.

• MultiValueEntry: Instructs WebCenter Sites how to handle the values for an
attribute that can take multiple values.

When this value is set to yes, the display element is called once, under the
assumption that the widget created by the element enables the user to select
multiple values in it (a multi-select drop-down list, for example).

When this value is set to no, WebCenter Sites calls the display element once for
each possible value for the attribute and displays one widget for each value that
can be stored.

Note that this value is always set to yes initially.

• doDefaultDisplay: Whether to use the default input style for an attribute of this
type. For a list, see Default Input Styles for Attributes. When WebCenter Sites

Chapter 9
About Attribute Editors

9-20

calls the display element, this variable is initially set to yes. To use the input widget
created by the element, the element must reset this variable to no.

• AttrValueList: The list of all the values for this attribute.

• TempVal: The value of a single attribute value.

Other required syntax:

The code in the display element must also use the following conventions:

• It must store information about how to validate the attribute values in a variable
named RequireInfo. WebCenter Sites passes this variable to elements that use
JavaScript to validate the attribute values. Those elements are:

OpenMarket/Gator/FlexibleAssets/FlexAssets/ContentForm1
OpenMarket/Gator/FlexibleAssets/FlexGroups/ContentForm1

This JavaScript performs prescribed error checking and validation based on
the type of control, the data type, and other predictable characteristics. The
information passed in the RequireInfo variable informs the JavaScript about the
custom requirements for the attribute editor.

• The name of the widget in the display element (the INPUT NAME) must use the
following convention:

– For a single-value attribute, the name of the attribute.

– For a multi-value attribute, it must use a 1-based counter prepend the attribute
name for each attribute value (for example, 1color, 2color, 3color).

For an example, see Customizing Attribute Editors.

Creating Attribute Editors
To give you a hands-on experience of creating an attribute editor, the sample XML is
provided in the Samples subdirectory. If you’re creating an attribute editor that you’ll
add to a flex or flex parent asset’s form of your online site, write your own XML code or
edit the sample code suitably.

1. Open the Admin interface.

2. Click New and then select New Attribute Editor from the shortcut list.

The Attribute Editor form opens.

Chapter 9
Creating Attribute Editors

9-21

Figure 9-5 Attribute Editor Dialog

3. In the Name field, enter a unique name of up to 64 characters, excluding spaces.

4. In the Description field, enter a short phrase that describes the purpose of the
attribute editor.

5. In the XML field, either paste the appropriate sample XML attribute editor code
from the HTML version of this guide or from the sample text files provided in the
Samples subdirectory of the installation directory.

6. Edit the code as needed. For example, for a CHECKBOXES or a RADIOBUTTONS
attribute editor, you must provide names for the check boxes or radio buttons. If
you are creating a PULLDOWN attribute editor, you must provide the values for the
drop-down list.

7. Click Save.

Note:

Another option is to code the XML for the attribute editor in a
separate .xml file. In this case, rather than entering the code directly into
the XML field, click Browse next to the XML in file field and select the
file.

8. Approve this attribute editor so that it can be published to the management
system.

Chapter 9
Creating Attribute Editors

9-22

Note:

If you are using a query asset with this attribute editor, be sure to
approve both the attribute editor and the query asset.

Because the dependency between an attribute editor and its query asset
is specified in the XML code in the attribute editor, the approval system
cannot detect the dependency and verify that the query asset exists on
the management system.

Customizing Attribute Editors
Your custom attribute editor may be similar to the sample editor in many ways. So, you
can modify the sample code and display elements to use them for your custom editor.
The presentationobject.dtd file needs a new PRESENTATIONOBJECT tag for a new
input style. You can’t use any of the default tags.

When you create a custom PRESENTATIONOBJECT tag, you must also supply the
appropriate display elements for it:

• Required: An element that formats the attribute (displays an edit mechanism)
when that attribute displays in a New or Edit form.

• Optional: An element that formats the attribute when it displays in the Inspect form.

• Optional: An element that formats the attribute data before it is saved in the
database.

For information about the variables and conventions used in the display elements for
an attribute editor, see The Attribute Editor Elements.

To create or customize an attribute editor into which a file can be uploaded (for
example, if you are customizing the UPLOADER attribute editor), add custom logic to the
attribute editor code which will ensure that the file being uploaded is valid. See Adding
Custom Logic to Validate an Uploaded File.

Example: Customized Attribute Editor
This example demonstrates how to customize the description of the TEXTAREA tag
in the presentationobject.dtd file and the TEXTAREA element to create an attribute
editor that disables a text box for the user who does not have the proper permissions.

There are three steps:

• Step 1: Editing the description of the TEXTAREA tag in the presentationobject.dtd
to support a new parameter named PERMISSIONS.

• Step 2: Writing the code for the attribute editor and creating the attribute editor.

• Step 3: Editing the TEXTAREA element to check the value of PERMISSIONS.

Step 1: Editing the presentationobject.dtd File
To support the new parameter, you add a single line of code to the TEXTAREA
description in the presentationobject.dtd.

Chapter 9
Customizing Attribute Editors

9-23

• Add the new line added to the end of the default description of the TEXTAREA tag,
as the following code shows:

<!-- TEXTAREA: A text area of a specific size. You must specify
-- the x and y dimensions; the wrap style defaults to soft.
-->
<!ELEMENT TEXTAREA ANY>
<!ATTLIST TEXTAREA XSIZE CDATA #REQUIRED>
<!ATTLIST TEXTAREA YSIZE CDATA #REQUIRED>
<!ATTLIST TEXTAREA WRAPSTYLE (OFF | SOFT | HARD) "SOFT">
<!ATTLIST TEXTAREA PERMISSION CDATA>

Step 2: Specifying Permission for the Example Attribute Editor
Here is the example code with the new parameter.

• Specify that a user must have Administrators as the value for PERMISSION to see
the field, as the following code shows:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextAreaTest">
 <TEXTAREA XSIZE="40" YSIZE="10" WRAPSTYLE="SOFT"
PERMISSION="Administrators">
 </TEXTAREA>
</PRESENTATIONOBJECT>

Step 3: Editing the TEXTAREA Element
The third step is editing the TEXTAREA element.

• Add the lines shown in bold in the following code to enable or disable the field,
based on the value of the PERMISSION parameter:

<?XML VERSION="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- OpenMarket/Gator/AttributeTypes/TEXTAREA
--
-- INPUT
--
-- OUTPUT
--
-->

<!-- Display one TEXTAREA per attribute value -->
<IF COND="Variables.MultiValueEntry=no">
<THEN>

<!-- Don't want default display field -->
<setvar NAME="doDefaultDisplay" VALUE="no"/>

<!-- Get all parameters from Attribute Editor xml -->
<presentation.getprimaryattributevalue
NAME="Variables.PresInst"
ATTRIBUTE="FONTSIZE" VARNAME="FONTSIZE"/>
 <if COND="Variables.errno!=0">
<then>
<setvar NAME="FONTSIZE" VALUE="2"/>

Chapter 9
Customizing Attribute Editors

9-24

</then>
</if>

<presentation.getprimaryattributevalue
NAME="Variables.PresInst"
ATTRIBUTE="WRAPSTYLE" VARNAME="WRAPSTYLE"/>
<if COND="IsVariable.WRAPSTYLE!=true">
<then>
<setvar NAME="WRAPSTYLE" VALUE="OFF"/>
</then>
</if>

<presentation.getprimaryattributevalue
NAME="Variables.PresInst"
ATTRIBUTE="XSIZE" VARNAME="XSIZE"/>
<if COND="IsVariable.XSIZE!=true">
<then>
<setvar NAME="XSIZE" VALUE="24"/>
</then>
</if>

<presentation.getprimaryattributevalue
NAME="Variables.PresInst"
ATTRIBUTE="YSIZE" VARNAME="YSIZE"/>
<if COND="IsVariable.YSIZE!=true">
<then>
<setvar NAME="YSIZE" VALUE="20"/>
</then>
</if>

<setvar NAME="disableTextArea" VALUE="no"/>
<presentation.getprimaryattributevalue
NAME="Variables.PresInst"
ATTRIBUTE="PERMISSION" VARNAME="PERMISSION"/>
<if COND="IsVariable.PERMISSION=true">
<then>
<setvar NAME="errno" VALUE="0"/>
<USERISMEMBER GROUP="Variables.PERMISSION"/>
<IF COND="Variables.errno=0">
<THEN>
<setvar NAME="disableTextArea" VALUE="yes"/>
</THEN>
</IF>
</then>
</if>

<tr>

<!-- Standard element to display attribute name or description
-->
<callelement NAME="OpenMarket/Gator/FlexibleAssets/Common
/DisplayAttributeName"/>
<td></td>
<td>

<!-- Single valued attributes -->
<if COND="Variables.EditingStyle=single">
<then>

<!-- Special case: TEXTAREA for URL attributes -->
<IF COND="Variables.AttrType=url">

Chapter 9
Customizing Attribute Editors

9-25

<THEN>
<setvar NAME="errno" VALUE="0"/>
<BEGINS STR="AttrValueList.urlvalue"
WHAT="AttrValueList."/>
<IF COND="Variables.errno=1">
<THEN>
<setvar NAME="filename" VALUE="CS.UniqueID.txt"/>
</THEN>
<ELSE>
<setvar NAME="filename"
VALUE="AttrValueList.urlvalue"/>
</ELSE>
</IF>

<INPUT TYPE="hidden" NAME="Variables.AttrName_file"
VALUE="Variables.filename"
REPLACEALL="Variables.AttrName,Variables.filename"/>

<setvar NAME="errno" VALUE="0"/>
<BEGINS STR="AttrValueList.@urlvalue"
WHAT="AttrValueList."/>
<IF COND="Variables.errno=1">
<THEN>
<setvar NAME="MyAttrVal" VALUE="Variables.empty"/>
</THEN>
<ELSE>
<setvar NAME="MyAttrVal"
VALUE="AttrValueList.@urlvalue"/>
</ELSE>
</IF>
</THEN>
</IF>

<!-- Display a TEXTAREA with all parameters from Attribute
--Editor xml -->
<!-- The NAME of the input must be the attribute name -->
<IF COND="Variables.disableTextArea=yes">
<THEN>
<TEXTAREA DISABLED="yes" NAME="Variables.AttrName"
ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
WRAP="Variables.WRAPSTYLE"
REPLACEALL="Variables.AttrName,Variables.XSIZE,
Variables.YSIZE,Variables.WRAPSTYLE,Variables.empty">

<!-- For most single valued attrs, the value is contained in
MyAttrVal -->
<csvar NAME="Variables.MyAttrVal"/>
</TEXTAREA>
</THEN>
<ELSE>
<TEXTAREA NAME="Variables.AttrName"
ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
WRAP="Variables.WRAPSTYLE"
REPLACEALL="Variables.AttrName,Variables.XSIZE,
Variables.YSIZE,Variables.WRAPSTYLE,Variables.empty">
<!-- For most single valued attrs, the value is
contained in MyAttrVal -->
<csvar NAME="Variables.MyAttrVal"/>
</TEXTAREA>
</ELSE>
</IF>

Chapter 9
Customizing Attribute Editors

9-26

</then>
<else>
<!-- Multiple valued attributes -->
<!-- For single value attributes we can usually use the
default RequireInfo -->
<!-- For multiple value attributes we need to append to
RequireInfo for each value -->
<if COND="Variables.RequiredAttr=true">
<then>
<setvar NAME="RequireInfo"
VALUE="Variables.RequireInfo*Counters.TCounterVariables.
AttrName*ReqTrue*Variables.AttrType!"/>
</then>
<else>
<setvar NAME="RequireInfo"
VALUE="Variables.RequireInfo*Counters.TCounterVariables
.AttrName*ReqFalse*Variables.AttrType!"/>
</else>
</if>

<!-- Display a TEXTAREA with all parameters from Attribute
Editor xml -->
<!-- The NAME of the input must be the attribute name
prepended by the TCounter counter -->
<IF COND="Variables.disableTextArea=yes">
<THEN>
<TEXTAREA DISABLED ="yes" NAME="Counters.TCounterVariables.AttrName"
ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
WRAP="Variables.WRAPSTYLE"
REPLACEALL="Counters.TCounter,
Variables.AttrName,Variables.XSIZE,
Variables.YSIZE,Variables.WRAPSTYLE">
<csvar NAME="Variables.tempval"/> </TEXTAREA>
</THEN>
<ELSE>
<TEXTAREA NAME="Counters.TCounterVariables.AttrName"
ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
WRAP="Variables.WRAPSTYLE"
REPLACEALL="Counters.TCounter,
Variables.AttrName,Variables.XSIZE,
Variables.YSIZE,Variables.WRAPSTYLE">
<csvar NAME="Variables.tempval"/> </TEXTAREA>
</ELSE>
</IF>
</else>
</if>
</td>
</tr>
</THEN>
</IF> <!-- MultiValueEntry -->
</FTCS>

Adding Custom Logic to Validate an Uploaded File
To validate an uploaded file, you add custom logic to an attribute editor's code.

1. Create a JSP element with the name ValidateFileUpload in the path
CustomElements/fatwire/ui/util.

Chapter 9
Customizing Attribute Editors

9-27

2. In the JSP element, retrieve the file name and the byte array containing the
uploaded file data in the request scope by calling ics.GetCgi("fileBytes") which
returns an FTVAL, from which you can call the getBlob() method to get the byte[]
for the uploaded blob.

byte[] fileBytes = null;
if(ics.GetCgi("fileBytes") != null){
fileBytes = ics.GetCgi("fileBytes").getBlob();
}

3. (Optional) Write your custom logic to ensure that the uploaded file data is valid:

• If the file data is valid, set the variable fileValidated to true by calling
ics.SetVar("fileValidated","true"). This ensures that the file will be
uploaded to the WebCenter Sites server.

• If the file data is invalid, set the fileValidated variable to false by
calling ics.SetVar("fileValidated","false"). Additionally, set the custom
validation failure message in the fileUploadFailureMessage variable by
calling ics.SetVar("fileUploadFailureMessage",<CustomErrorMessage>) in
custom element. This rejects the data uploaded by the user and displays the
custom error message adjacent to progress bar for the file being uploaded.
If the fileUploadFailureMessage variable is not set but fileValidated is
set to false, WebCenter Sites shows a generic message Upload Failed:
<fileName>.

Note:

Sample code (except validation logic) is available in the base element
fatwire/ui/util/ValidateFileUpload. This element should not be
modified and the custom code must be written in the CustomElements path
as specified in step 1.

Considerations About Editing Attribute Editors
Some changes to the attribute editors don’t cause data loss, while others may affect
the data.

• You can change the Name without causing a schema change.

• You can change the Description without causing data loss.

• If you change code in the attribute editor:

– You can add input options.

– If you have existing data, you should not remove input options. If you do, some
of your existing data will no longer be valid and you will have to search through
the database and fix it.

– If you change the input style, you risk a data mismatch.

Chapter 9
Considerations About Editing Attribute Editors

9-28

10
Configuring Bundled Attribute Editors

Image Picker, CKEditor, and Clarkii Online Image Editor come packaged with
WebCenter Sites. Content contributors use Image Picker to visually choose an image
asset to associate with the asset they are creating or editing. With CKEditor, they
apply a wide range of MS Word-style formatting to their content. And, they use the
Clarkii Online Image Editor (Clarkii OIE) to edit an image directly in an asset's New or
Edit view in Form Mode.

See these topics on configuring instances of attribute editors that ship with WebCenter
Sites:

• Configuring CKEditor

• Configuring the Clarkii Online Image Editor

• Configuring the Image Picker

Configuring CKEditor
CKEditor is an open source WYSIWYG text editor from CKSource which requires no
client-side installation. CKEditor is bundled with WebCenter Sites. You can configure
asset types containing WYSIWYG-enabled text fields to use CKEditor by default.

See these topics:

• Before You Begin

• How to Create a CKEditor Instance and Enable It for a Field

• How to Enable CKEditor for Use in Web Mode

• How to Enable Selected Asset Types for the CKEditor

• How to Set the Approval Dependency for Included Assets

• How to Customize the CKEditor Toolbar

• How to Configure Spell Check Support in CKEditor

Before You Begin
If you are using CKEditor with Internet Explorer, and WebCenter Sites is configured to
use the cp1252 character set, follow these steps to have CKEditor work correctly in
Internet Explorer:

1. In the Admin interface, open the Property Management Tool and note the value of
the cs.contenttype property.

2. Log in to Explorer.

3. Go to the element
SiteCatalog\OpenMarket\xcelerate\Actions\FCKEditorRenderer and set its
resargs1 field to:

10-1

cs.contenttype=[your content type]; charset=windows-1252

where [your content type] takes the value that you noted from the Property
Management Tool.

How to Create a CKEditor Instance and Enable It for a Field
This procedure shows you how to create an instance of CKEditor and enable it for a
flex asset attribute based on a FirstSiteII example.

In our example, you will enable a new CKEditor instance as the input method (attribute
editor) for the FSIIAbstract field. (FSIIAbstract is a flex attribute of the Content sample
asset type.)

To Create and Enable a CKEditor Instance:

1. Open the Admin interface.

2. Create the CKEditor instance:

a. In the button bar, click New.

b. In the list of asset types, click New Attribute Editor.

WebCenter Sites displays the New Attribute Editor form.

c. In the Name field, enter a name that uniquely identifies this instance of
CKEditor. For the purpose of our example, enter CK_FSIIAbstract.

Clients can use generic names to create the CKEditor and use it for multiple
attributes. It is not required to uniquely identify the CKEditor instance for the
attribute unless there is a specific requirement for that field. For example,
the width and height of the CKEditor in that field if it is different than other
CKEditor fields.

d. Paste the following code into the XML field:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="CKEDITOR">
<CKEDITOR WIDTH="400" HEIGHT="200"></CKEDITOR>
</PRESENTATIONOBJECT>

e. Click Save.

3. Enable the CKEditor instance as the input method for the FSIIAbstract field. Find
and open the FSIIAbstract attribute asset in the Edit form:

a. In the button bar, click Search.

b. In the list of asset types, click Find Content Attribute.

c. In the Search field, enter FSIIAbstract and click Search.

d. In the list of search results, navigate to the FSIIAbstract asset and click its
Edit (pencil) icon.

WebCenter Sites opens the asset in the Edit form.

e. Set CKEditor as the attribute editor (input method) for this attribute. In the
Attribute Editor drop-down list, choose CK_FSIIAbstract.

f. Click Save.

Chapter 10
Configuring CKEditor

10-2

4. To test your new CKEditor instance, switch to the Oracle WebCenter Sites:
Contributor interface, and find and open any Content asset in its Edit view:

a. In the Search field, click the down-arrow icon to open the Search Type menu.
In the Search Type menu, choose Find Content. Then click the magnifying
glass icon.

A Search tab opens displaying the results of your search.

b. In the list of asset types, navigate to a Content asset of your choice
(FSIIAbout in our example), right-click the asset and choose Edit from the
context menu.

A tab opens displaying the asset in its Edit view.

c. Navigate to the Abstract field and click in the field.

If CKEditor does not appear, check the attribute editor XML code and the
selection you made in the Attribute Editor drop-down list.

d. In the asset's toolbar, click the Inspect icon to display the asset's Inspect view.

How to Enable CKEditor for Use in Web Mode
To enable users to edit assets using CKEditor in Web Mode, set the editor and
params parameters in the insite:edit tag within the appropriate template, as shown
in the table below. The template whose code you edit must be either for the asset
whose CKEditor you want to work with in Web Mode, or for the asset type associated
with that asset.

Table 10-1 Parameters that Enable CKEditor in Web Mode

Tag Parameter Value Description

insite:edit editor ckeditor Specifies the name of the editor to
use.

N/A params editorId Specifies the ID of the CKEditor you
want to use in Web Mode.

N/A N/A enableEmbedde
dLinks

Enables the link icons on the
CKEditor toolbar.

This example shows the required parameters for enabling CKEditor in Web Mode:

Example 10-1 Code to Enable CKEditor in Web Mode

<ics:listget listname='BodyList' fieldname="value" output="Body" />
<div id="body">
<insite:edit
 assetid='<%=ics.GetVar("cid")%>'
 assetfield='<%='Attribute_"+ics.GetVar("BodyAttrName")%>'
 assetfieldvalue='<%=ics.GetVar("Body")%>'
 assettype='<%=ics.GetVar("c")%>'
 editor='ckeditor'
 params="{enableEmbeddedLinks:'1'}"/>
</div>

Chapter 10
Configuring CKEditor

10-3

Note:

If the insite:edit tag does not define a height and width for CKEditor, then
CKEditor will use the XSIZE and YSIZE defined in its XML code. See the Tag
Reference for Oracle WebCenter Sites Reference.

You can edit the insite:edit tag in one of the following ways:

• In the Element Logic field of the appropriate template. To work in a template's
Element Logic field:

– Open the Admin interface.

– Click Search (in the button bar), then select Find Template, then Search, and
then Select template name.

– From the template's Edit form, select the Element tab and navigate to the
Element Logic field.

• In Oracle WebCenter Sites Explorer.

• In a text editor of your choice.

How to Enable Selected Asset Types for the CKEditor
To narrow down the user's choice of available asset types, add the
ALLOWEDASSETTYPES parameter to the CKEditor XML code. As values, specify the
names of the allowed asset types in a comma-separated list.

To enable asset types for the CKEditor:

1. Open the Admin interface.

2. Find and open the attribute editor named CKEditor in its Edit form:

a. In the button bar, click Search.

b. In the Search form, select Find Attribute Editor.

c. In the Search for Attribute Editors form, fill in a search criteria (if any) and click
Search.

d. In the search results list, navigate to the CKEditor asset and click its Edit
(pencil) icon.

3. Navigate to the XML field, add the ALLOWEDASSETTYPES parameter to the
<CKEDITOR> tag. Then, specify the names of the asset types you want to enable in
the value of the ALLOWEDASSETTYPES parameter, as shown in this example:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT
SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT
NAME="CKEDITORTEST"><CKEDITOR WIDGET="580"
HEIGHT="200" IMAGEPICKERID="1112668339899"
ALLOWEDASSETTYPES="MEDIA_C,CONTENT_C,PRODUCT_C,DOCUMENT_C">
</CKEDITOR></PRESENTATIONOBJECT>

Chapter 10
Configuring CKEditor

10-4

The ALLOWEDASSETTYPES parameter is added as an additional parameter to the
<CKEDITOR> tag. The value of this parameter specifies the asset types with which
the user can create a new asset.

4. Click Save Changes to save the asset.

5. Test the ALLOWEDASSETTYPES parameter:

a. Switch to the Contributor interface.

b. Find and open an asset with a CKEditor enabled field in Web Mode:

• In the Search field, specify a search criteria and then click the magnifying
glass icon.

A Search tab opens displaying the results of your search.

• Click the name of an asset to open its Inspect view.

• If the asset opens in Form Mode, click the Mode switch in the asset's
toolbar to switch to Web Mode.

• In the asset's toolbar, click the Edit icon.

c. Search on one of the allowed asset types. After the allowed asset displays in
the docked search results list, drag the allowed asset to CKEditor.

If you do not have any allowed assets of the type you specified with the
ALLOWEDASSETTYPES parameter, select Content and then New to create a new
asset. Then search on the asset and drag it from the dock to the CKEditor.

How to Set the Approval Dependency for Included Assets
The Include asset and Create and include a new asset icons allow users to
include one asset in another asset's CKEditor-enabled field. The included asset is
then previewable in the field and, ultimately, embedded in the display of the main asset
online.

After the main and included assets have been published for the first time, the
dependency between them determines how subsequent approvals and publications
will work. This dependency is defined by the DEPTYPE parameter in the XML code of
the CKEditor.

The DEPTYPE parameter can be set to either EXISTS or EXACT. If the DEPTYPE parameter
is not set explicitly, EXACT is used by default.

• EXISTS: When the main asset is edited, approved, and re-published, the included
asset does not have to be approved and re-published while a version of the asset
exists at the destination.

• EXACT: When the main asset is edited, approved, and re-published, the included
asset, if it was edited, must be approved and re-published as well.

To Define the Approval Dependency for Included Assets:

1. Open the Admin interface.

2. Find and open the attribute editor named CKEditor in its Edit form:

a. In the button bar, click Search.

b. In the Search form, select Find Attribute Editor.

Chapter 10
Configuring CKEditor

10-5

c. In the Search for Attribute Editors form, fill in a search criteria (if any) and click
Search.

d. In the search results list, navigate to the CKEditor asset and click its Edit
(pencil) icon.

3. Navigate to the XML field, add the DEPTYPE parameter to the <CKEDITOR> tag, and
set the value of the DEPTYPE parameter to either EXISTS or EXACT, as shown in this
example:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT
SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT
NAME="CKEditorTest"><CKEDITOR
WIDTH="580" HEIGHT="200"
DEPTYPE="EXISTS"></CKEDITOR>
</PRESENTATIONOBJECT>

The DEPTYPE parameter is added as an additional attribute to the <CKEDITOR> tag.

4. Click Save Changes to save the asset.

How to Customize the CKEditor Toolbar
You can customize the functions available in the CKEditor toolbar and their
arrangements in the custom configuration file.

To customize the CKEditor toolbar in the custom config.js file:

1. You can customize CKEditor in two ways:

• Option 1: If you upgraded to WebCenter Sites 12.2.1 Patch 2 or greater
according to the instructions given in Document 2168947.1, follow these steps:

a. In the WebLogic managed server, on the Server Start tab, make sure the
-Dsites.config JVM parameter is set to point to the WebCenter Sites
config folder.

b. In the <sites.config> folder, create a ckeditor folder .

c. Copy the sites.war/ckeditor/config.js into the<sites.config>/
ckeditor folder.

d. Add customizations to the <sites.config>/ckeditor/config.js file. For
example, you can add the following customization to load an external
plugin:

//load external plugin
(function()
{CKEDITOR.plugins.addExternal('','<plugin is accessible>',
'plugin.js');
})();

Chapter 10
Configuring CKEditor

10-6

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=2179174.1&id=2168947.1

An example of the external plugin:

(function()
{CKEDITOR.plugins.addExternal('myExternalPlugin','http://
hostname:port/staticResources/ckeditor/myExternalPlugin',
'plugin.js');
})();

e. Flush the ckeditor/getConfig page.

f. Clear the browser cache to remove cache of the old config.js file.

• Option 2: In WebCenter Sites 12.2.1.1 or greater, you can place multiple
custom CKEditor config files with different names in the ckeditor folder in
the extend.sites.webapp-lib.war. You can create multiple CKEditor XML
definitions, where each definition's CONFIG parameter references a different
CKEditor config file.

a. Shutdown the WebLogic managed server.

b. Back up the sites-home/extend.sites.webapp-lib.war library file.

c. Extract the sites-home/extend.sites.webapp-lib.war file JAR to a temp
folder.

d. In the ckeditor folder, add custom CKEditor config file with different
name, such as config1.js, which contains custom configurations.

e. Recreate the temp folder JAR as sites-home/extend.sites.webapp-
lib.war.

f. In the WebLogic console, in the Deployments section, update
the extend.sites.webapp-lib library with the updated sites-home/
extend.sites.webapp-lib.war file.

g. Start the WebLogic managed server.

h. In the WebCenter Sites Admin interface, for your CKEditor xml definition,
you can use the CONFIG parameter to reference the custom config1.js
file. For example:

<?XML VERSION="1.0"?><!DOCTYPE PRESENTATIONOBJECT SYSTEM
"presentationobject.dtd">
<PRESENTATIONOBJECT NAME="FCKEditorTest"><CKEDITOR
WIDTH="580px" HEIGHT="200px" CONFIG="config1.js"></CKEDITOR>
</PRESENTATIONOBJECT>

2. To customize the toolbar for the Contributor interface (for Form Mode and Web
Mode):

• locate config.toolbar_SITES in <sites.config>/ckeditor/config.js for
customizing the toolbar for the Contributor interface.

• locate config.toolbar_SITES_WEB in <sites.config>/ckeditor/config.js
for customizing the toolbar for Web Mode.

3. Make your changes. For information about the toolbar definition syntax, consult
the CKEditor documentation.

4. Save and close the file.

Chapter 10
Configuring CKEditor

10-7

5. Redeploy the WebCenter Sites application and restart the application server for
your changes to take effect.

To customize the CKEditor toolbar on a per-instance basis:

1. Create the custom toolbar definition:

a. Open the custom configuration file in a text editor:

<sites.config>/ckeditor/config.js

b. Add a new toolbar definition to the file. For information about how to build a
custom toolbar definition, consult the CKEditor documentation.

config.toolbar_<toolbardef> = [
 ['Cut', 'Copy', 'Paste', 'PasteText',
'PasteFromWord', '-', 'Undo', 'Redo'],
 { name: 'links', items: ['Link', 'Unlink',
'Anchor'] },
 { name: 'basicstyles', items: ['Bold', 'Italic',
'Underline','Strike','-','Subscript','Superscript'] },
 { name: 'colors', items: ['TextColor',
'BGColor'] },
 { name: 'tools', items: ['Maximize',
'ShowBlocks'] }
];

The <toolbarDef> value is the name of your custom toolbar definition. You
will use this name when modifying a CKEditor instance to use this custom
definition.

2. Modify a CKEditor instance to use your custom toolbar definition.

a. Open the Admin interface.

b. Find the CKEditor instance:

• In the button bar, click Search.

• In the list of asset types, click Find Attribute Editor.

• In the Search field, enter the name of the asset holding the CKEditor
instance and click Search.

• In the list of search results, navigate to the asset and click its Edit (pencil)
icon.

c. In the XML field, modify the attribute editor code as follows:

• Find the line highlighted in bold below:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM
 "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="CKEditorCustomized">
<CKEDITOR WIDTH="400" HEIGHT="200">
</CKEDITOR></PRESENTATIONOBJECT>

• Add the TOOLBAR parameter to the <CKEDITOR> tag:

TOOLBAR="<toolbarDef>"

• The value of the TOOLBAR parameter specifies the name of the custom
toolbar definition you created in step 1.

• The modified line should look as follows:

Chapter 10
Configuring CKEditor

10-8

<CKEDITOR WIDTH="400" HEIGHT="200" TOOLBAR="<toolbarDef>">

d. Click Save Changes to save the asset.

3. Redeploy the WebCenter Sites application and restart the application server for
your changes to take effect.

For information about configuring CKEditor, consult its documentation.

How to Configure Spell Check Support in CKEditor
For instructions about using and configuring the CKEditor spell checker, visit the
following URL: http://docs.cksource.com/CKEditor_3.x/Users_Guide/Spell_Checking

Configuring the Clarkii Online Image Editor
The Clarkii Online Image Editor (Clarkii OIE) is a third-party image editor from InDis
Baltic that is supported on all browsers on which WebCenter Sites is supported,
including Safari. You can configure separate instances of Clarkii OIE on a per-field
basis for each asset type, or a single instance to be associated with the fields of
multiple asset types.

The following figure summarizes the native controls of Clarkii OIE and functions
provided by WebCenter Sites for operating on images in an attribute for which Clarkii
OIE is enabled.

Chapter 10
Configuring the Clarkii Online Image Editor

10-9

http://docs.cksource.com/CKEditor_3.x/Users_Guide/Spell_Checking

Figure 10-1 Clarkii Online Image Editor Rendered in a Field of an Asset's Form

Before configuring and enabling this feature, take note of the following:

• Clarkii OIE can be enabled only for flex attributes. The instructions in this section
use the Media flex family of the FirstSiteII sample site as an example.

• Clarkii OIE can be enabled only for attributes of type blob.

• Flash must be installed on the client browser in order for Clarkii OIE to be
rendered in the field for which you enabled it.

Note:

You can customize the functions in the Clarkii OIE toolbar and menu.
Since these functions are strictly Clarkii OIE related they are not
documented. For instructions about configuring Clarkii OIE specific
functions, visit the following URL:

http://www.online-image-editor-clarkii.com/

Topics:

• How to Create a Clarkii OIE Instance and Enable it for a Field

Chapter 10
Configuring the Clarkii Online Image Editor

10-10

http://www.online-image-editor-clarkii.com/

• How to Configure Clarkii OIE Properties

• How to Implement a Field Copier Filter to Classify Assets

How to Create a Clarkii OIE Instance and Enable it for a Field
Create a Clarkii OIE instance and enable it for a flex attribute asset. This procedure is
based on the FirstSiteII sample site.

In this example, you will enable a new Clarkii OIE instance as the attribute editor for
the FSII_ImageFile field. FSII_ImageFile is an attribute of the sample Media asset
type.

1. Open the Admin interface.

2. Create a Clarkii OIE instance:

a. In the button bar, click New.

b. In the list of asset types, click New Attribute Editor.

WebCenter Sites displays the New Attribute Editor form.

c. In the Name field, enter a name that uniquely identifies this Clarkii OIE
instance (for this example, enter ClarkiiOIE).

d. In the XML field, paste the following code.

Note:

• For detailed information about each parameter, see the table in
How to Configure Clarkii OIE Properties.

• The attribute editor must include Buttons such as those included
in the XML code below. Otherwise a blank page is displayed in
the Edit form.

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="editor">
<IMAGEEDITOR
 EDITORTYPE="clarkii"
 HEIGHT="500"
 WIDTH="600"
 MAXHEIGHT="650"
 MAXWIDTH="900"
 FITIMAGE="true"
 ENABLEOIEFORMAT="true"
 DEFAULTTEXTFONT="Arial"
 DEFAULTTEXTSIZE="18"
 DEFAULTTEXTCOLOR="#000000"
 ENABLEIMAGEPICKER="true"
 ASSETTYPE="Media_C"
 ATTRIBUTE="FSII_ImageFile"
 ATTRIBUTETYPE="Media_A"
 CATEGORYATTRIBUTE=""
 RESTRICTEDCATEGORYLIST=""
 OIEASSETTYPE="Media_C"

Chapter 10
Configuring the Clarkii Online Image Editor

10-11

 OIEATTRIBUTE="FSII_ImageFile"
 OIEATTRIBUTETYPE="Media_A"
 OIECATEGORYATTRIBUTE=""
 OIERESTRICTEDCATEGORYLIST=""
 OIEENABLEIMAGEPICKER="true"
 TAGEDIT="true">
 <BUTTONS>
 <BUTTON NAME="New" VISIBLE="true"/>
 <BUTTON NAME="Open" VISIBLE="true"/>
 <BUTTON NAME="Scan" VISIBLE="false"/>
 <BUTTON NAME="Save" VISIBLE="true"/>
 <BUTTON NAME="Copy" VISIBLE="true"/>
 <BUTTON NAME="Paste" VISIBLE="true"/>
 <BUTTON NAME="Undo" VISIBLE="true"/>
 <BUTTON NAME="Redo" VISIBLE="true"/>
 <BUTTON NAME="Brush" VISIBLE="true"/>
 <BUTTON NAME="Eraser" VISIBLE="true"/>
 <BUTTON NAME="FixRedEye" VISIBLE="true"/>
 <BUTTON NAME="Open" VISIBLE="true"/>
 <BUTTON NAME="Grid" VISIBLE="true"/>
 <BUTTON NAME="FlattenLayers" VISIBLE="true"/>
 <BUTTON NAME="Help" VISIBLE="true"/>
 <BUTTON NAME="ImageMenu" VISIBLE="true"/>
 <BUTTON NAME="ImageRotateLeft" VISIBLE="true"/>
 <BUTTON NAME="ImageRotateRight" VISIBLE="true"/>
 <BUTTON NAME="ImageMirror" VISIBLE="true"/>
 <BUTTON NAME="ImageCrop" VISIBLE="true"/>
 <BUTTON NAME="ImageResample" VISIBLE="true"/>
 <BUTTON NAME="ImageResizeCanvas" VISIBLE="true"/>
 <BUTTON NAME="ColorMenu" VISIBLE="true"/>
 <BUTTON NAME="ColorGrayScale" VISIBLE="true"/>
 <BUTTON NAME="ColorBrightnessContrast" VISIBLE="true"/>
 <BUTTON NAME="SharpenBlurMenu" VISIBLE="true"/>
 <BUTTON NAME="InsertMenu" VISIBLE="true"/>
 <BUTTON NAME="InsertImage" VISIBLE="true"/>
 <BUTTON NAME="InsertRectangle" VISIBLE="true"/>
 <BUTTON NAME="InsertEllipse" VISIBLE="true"/>
 <BUTTON NAME="InsertLineArrow" VISIBLE="true"/>
 <BUTTON NAME="InsertRichText" VISIBLE="true"/>
 <BUTTON NAME="InsertTextAlongPath" VISIBLE="true"/>
 <BUTTON NAME="HSL" VISIBLE="true"/>
 <BUTTON NAME="EmbossLight" VISIBLE="true"/>
 <BUTTON NAME="EmbossMedium" VISIBLE="true"/>
 <BUTTON NAME="EmbossDark" VISIBLE="true"/>
 <BUTTON NAME="OilPaint" VISIBLE="true"/>
 <BUTTON NAME="WaterColor" VISIBLE="true"/>
 <BUTTON NAME="Mosaic" VISIBLE="true"/>
 <BUTTON NAME="Patchwork" VISIBLE="true"/>
 <BUTTON NAME="BrickTexture" VISIBLE="true"/>
 </BUTTONS>
</IMAGEEDITOR>
</PRESENTATIONOBJECT>

e. Click Save.

3. Enable the Clarkii OIE instance as the attribute editor for an attribute of a given
asset type. For this example, use the Media asset type's FSII_ImageFile attribute.

a. Find and open the attribute asset in its Edit form. For this example, find and
open the FSII_ImageFile attribute.

• In the button bar, click Search.

Chapter 10
Configuring the Clarkii Online Image Editor

10-12

• In the list of asset types, click the asset type of a attribute asset. For this
example, click Find Media Attribute.

• In the Search field, enter the name of the attribute asset you want to
modify. For this example, enter FSII_ImageFile.

• Click Search.

• In the list of search results, navigate to the attribute asset
(FSII_ImageFile) and click its Edit (pencil) icon.

WebCenter Sites opens the asset in its Edit form.

b. Set Clarkii OIE as the attribute editor for this attribute asset:

• In the Value Type field, make sure blob is selected.

Note:

Clarkii OIE requires an attribute value of type blob. Once an
attribute asset is saved, the value selected for the Value Type
field cannot be modified.

• In the Attribute Editor drop-down list, choose the Clarkii OIE instance you
created in step 2.

c. Click Save Changes.

4. To test your new Clarkii OIE instance:

a. Open the Contributor interface.

b. Find any asset whose definition specifies the attribute you modified in step 3
as a field, and open that asset in its Edit form. For this example, select a Media
asset:

• In the Search field, enter the search criteria.

• To narrow down your search to a specific asset type, click the down-arrow
in the Search field to open the Search Type drop-down list. Click the
asset type that is using the field enabled with the Clarkii OIE instance. For
this example, select Find Media.

• Click the magnifying glass icon.

A Search tab opens listing the results of your search.

• In the list of search results, right-click an asset of your choice. For this
example, select the FSII AudioCo_iAC-008.jpg Media asset and then
select Edit.

WebCenter Sites displays the asset in its Edit form.

c. Navigate to the field enabled with Clarkii OIE. For this example,
FSII_ImageFile field. It should look similar to the following figure.

Chapter 10
Configuring the Clarkii Online Image Editor

10-13

Figure 10-2 The Clarkii Online Image Editor

To render Clarkii OIE in the field, do one of the following:

• Make sure Flash is installed.

• Check the XML code of the Clarkii OIE instance you created (see, substep
d of step 2).

• Check the selections you made in the attribute asset for which you
enabled Clarkii OIE as the attribute editor (see substep b of step 3 of
this procedure).

d. Click Cancel to return to the asset's Inspect form.

How to Configure Clarkii OIE Properties
The tables below list and define all of the properties that can be specified in the
creation of a Clarkii OIE attribute editor asset. Use these tables as a reference to
configure the properties for your own Clarkii OIE instance so it fits your site design.

Table 10-2 Clarkii OIE Specifications

Property Definition

HEIGHT Specify the height of the Clarkii OIE area as it will be displayed within the
attribute field of a given asset's form.

Suggested value: 600

Chapter 10
Configuring the Clarkii Online Image Editor

10-14

Table 10-2 (Cont.) Clarkii OIE Specifications

Property Definition

WIDTH Specify the width of the Clarkii OIE area as it will be displayed within the
attribute field of a given asset's form.

Suggested value: 800

EDITORTYPE Specify the type of image editor you want to use. To enable Clarkii OIE, the
property must read:

EDITORTYPE="clarkii"

FITIMAGE If this property is set to true, images edited with Clarkii OIE will be resized
to fit within the Clarkii OIE canvas. If this property is set to false, then
when you edit an image with Clarkii OIE, that image is displayed on the
canvas in its actual size.

Possible values: true|false

Table 10-3 Browse Images Button Specifications

Property Definition

ENABLEIMAGEPI
CKER

Enables the Browse Images button which allows users to place an image
on the Clarkii OIE canvas, replacing any images that currently exist on the
canvas. This button invokes the Image Picker window.

Possible values: true|false

Note: If this property is set to false, do not set values for the other
properties related to the Browse Images button.

ASSETTYPE Specify the asset type of the image assets that will be displayed in the
Image Picker window when the Browse Images button is clicked.

Possible values: Any asset type that has a definition containing an
attribute of type blob which is intended to store images.

Example: "Media_C"

ATTRIBUTE Specify the image file attribute of the image assets that will be displayed in
the Image Picker window when the Browse Images button is clicked.

Possible values: Any attribute of type blob intended to store images.

Example: "FSII_ImageFile"

ATTRIBUTETYPE Specify the asset type of the image file attribute specified in the ATTRIBUTE
property. Image Picker will look for attributes of only this asset type, and
displays only the images with attributes of this asset type.

Possible values: The asset type of the image file attribute specified in the
ATTRIBUTE property.

Example: "Media_A"

Chapter 10
Configuring the Clarkii Online Image Editor

10-15

Table 10-3 (Cont.) Browse Images Button Specifications

Property Definition

CATEGORYATTRI
BUTE

Specify a string attribute holding a value that classifies the image assets
(preferably by the names of their parent assets) to be displayed in the
Image Picker window. The value of this property populates the Category
drop-down list in the Image Picker with all values found for the specified
attribute.

When the Browse Images button is clicked, users can use the Category
drop-down list to filter the images that are displayed in the Image Picker
window by selecting one of these attribute values. Only the images
matching the selected attribute value are rendered in the Image Picker
window.

Note: If no value is specified for this property, all image assets of the asset
type specified in the ASSETTYPE property are displayed in the Image Picker
window, and the Category drop-down list is not displayed.

RESTRICTEDCAT
EGORYLIST

In a comma-delimited list, enter specific values of the attribute specified in
the CATEGORYATTRIBUTE property. The values you specify will be the only
values available in the Category drop-down list of the Image Picker window
when the Browse Images button is clicked.

Possible values: Refer to the definition for the CATEGORYATTRIBUTE
property.

Note: If no value is specified for the CATEGORYATTRIBUTE property, then
this property is ignored.

Table 10-4 Insert Image Button Specifications

Property Definition

OIEATTRIBUTE Specify the image file attribute of the image assets that will be displayed in
the Image Picker window when the Insert Image button is clicked.

Possible values: Any attribute of type blob intended to store images.

Example: "FSII_ImageFile"

OIEATTRIBUTET
YPE

Specify the asset type of the image file attribute you specified in the
OIEATTRIBUTE property. Image Picker will look for attributes of only this
asset type, and displays only the images with attributes of this asset type.

Possible values: The asset type of the image file attribute specified in the
OIEATTRIBUTE property.

Example: "Media_A"

OIECATEGORYAT
TRIBUTE

Specify a string attribute holding a value that classifies the image assets
(preferably by the names of their parent assets) that will be displayed in the
Image Picker window. The value of this property populates the Category
drop-down list in the Image Picker with all values found for the specified
attribute.

When the Insert Image button is clicked, users can use the Category drop-
down list to filter the images that are displayed in the Image Picker window
by selecting one of these attribute values. Only the images matching the
selected attribute value are rendered in the Image Picker window.

Note: If no value is specified for this property, all image assets of the asset
type specified in the OIEASSETTYPE property are displayed in the Image
Picker window, and the Category drop-down list is not displayed.

Chapter 10
Configuring the Clarkii Online Image Editor

10-16

Table 10-4 (Cont.) Insert Image Button Specifications

Property Definition

OIERESTRICTED
CATEGORYLIST

In a comma-delimited list, enter specific values of the attribute specified in
the OIECATEGORYATTRIBUTE property. The values you specify will be the
only values available in the Category drop-down list of the Image Picker
window when the Insert Image button is clicked.

Possible values: Refer to the definition for the OIECATEGORYATTRIBUTE
property.

Note: If no value is specified for the OIECATEGORYATTRIBUTE property,
then this property is ignored.

OIEENABLEIMAG
EPICKER

Enables the Insert Image button, which enables users to insert an image
as a layer on top of existing images on the Clarkii OIE canvas. This button
invokes the Image Picker window.

Possible values: true|false

Note: If this property is set to false, do not set values for the other
properties related to the Insert Image button.

OIEASSETTYPE Specify the asset type of the image assets that will be displayed in the
Image Picker window when the Insert Image button is clicked.

Possible values: Any asset type that has a definition containing an
attribute of type blob intended to store images.

Example: "Media_C"

How to Implement a Field Copier Filter to Classify Assets
You use a field copier filter to classify image assets by the names of their parent
assets. The following figure illustrates an example of how to implement a field copier
filter, using the Media flex family of the FirstSiteII sample site. The field copier filter in
this example copies the value of the system-defined Name attribute of the parent assets
into a user defined string attribute.

To ensure that the values of preexisting attributes are not overwritten, create a new
string attribute (FSII_ImageParentName) to hold the value of the system-defined
attribute to be copied by the field copier. See Flex Filter Classes.

Chapter 10
Configuring the Clarkii Online Image Editor

10-17

Figure 10-3 Sample Overview of a Field Copier Filter

To Use a Field Copier Filter:

1. Open the Admin interface.

2. Determine the system-defined attribute whose value you want to use as the
input for the field copier filter, and the user defined string attribute to which
the field copier will be copying the system-defined attribute's value. To avoid
overwriting the values of preexisting attributes, create a flex attribute of type
string (FSII_ImageParentName in this example).

3. Create a filter of type FieldCopier (FSII_ImageParentNameCopier in this
example):

a. In the button bar, click New.

b. In the list of asset types, click New Media Filter.

The New Media Filter form is displayed.

Chapter 10
Configuring the Clarkii Online Image Editor

10-18

c. In the Name field, enter a unique name for this filter (For example,
FSII_ImageParentNameCopier).

d. In the Filter field, choose FieldCopier from the drop-down list. Then click Get
Arguments:

• In the Name drop-down list, select the system-defined attribute whose
value you want to use as the input value for the field copier filter (name in
this example).

• In the Value field, type the name of the user defined attribute
(FSII_ImageParentName in this example) into which the field copier filter
will copy the value of the system-defined attribute you specified.

e. Click Add to add the argument to the filter.

f. Click Save to save the filter.

4. Find a parent (or child) definition and add the new field copier filter to it (in
this example we are adding the field copier filter to the Media parent definition
FSII_ImageCategory):

a. In the button bar, click Search.

b. In the list of asset types, select Find Media Parent Definition.

c. In the Search field, enter the name of the parent definition to which you want
to add the field copier filter (FSII_ImageCategory).

d. Click Search.

e. In the list of search results, navigate to a parent (or child) definition and click
its Edit (pencil) icon.

f. In the Edit form of the parent (or child) definition, navigate to the Filters
section and select the field copier filter you created in step 3.

g. Click Save Changes.

5. Find and re-save all preexisting parent (or child) assets associated
with the definition to which you added the field copier filter
(FSII_ImageParentNameCopier). This enables the filter to populate the user
defined attribute (FSII_ImageParentName) with the value of the system-defined
attribute (Name).

If you added the filter to a parent definition, all children of the associated parent
assets internally inherit the value that the field copier filter copied into the user
defined attribute (FSII_ImageParentName in this example).

Configuring the Image Picker
When configuring an instance of the Image Picker attribute editor, you must specify the
values of some parameters in the XML definition.

This table describes those parameters:

Chapter 10
Configuring the Image Picker

10-19

Table 10-5 Image Picker Parameters

Parameter Explanation

ASSETTYPENAME Asset type of the image assets that this instance of Image Picker
will display.

Example: Media_C

ATTRIBUTETYPENAME Asset type of the image file attribute within the selected image
asset type.

Example: Media_A

ATTRIBUTENAME Name of the image file attribute within the selected image asset
type.

Example: FSII_ImageFile

CATEGORYATTRIBUTENAME (Optional) Name of the category attribute within the selected
image asset type.

Example: FSII_ImageCategory

RESTRICTEDCATEGORYLIS
T

Accepts a comma-delimited list of values of the category attribute
within the selected image asset type. The values in this list
will appear in the Category drop-down list in the Image Picker
window. If this parameter is omitted, Image Picker will display all
assets belonging to the selected image asset type.

Example: Audio,Video,Photo

Sample XML code for an Image Picker definition is included in How to Create Image
Picker Attribute Editor Definition Code. For instructions about creating new attribute
editors (such as new instances of Image Picker) see Creating Attribute Editors. For
instructions about selecting an input method (such as Image Picker) for a field in an
asset form, see Create Flex Attributes in Creating a Flex Asset Family.

Topics:

• How to Categorize Image Assets for Display in Image Picker

• How to Create Image Picker Attribute Editor Definition Code

How to Categorize Image Assets for Display in Image Picker
Using the CATEGORYATTRIBUTENAME and RESTRICTEDCATEGORYLIST parameters
described in the previous section, you can restrict an instance of Image Picker to
display only selected categories of assets belonging to the selected image asset type.
Before you do so, the following conditions must be satisfied:

• You must add a category attribute of type string to the selected image asset type
or flex definition that will store the category descriptor for each asset within the
selected asset type. Image Picker will use the value of this attribute to generate a
list of asset categories which it is allowed display. For instructions about creating
attributes, see Create Flex Attributes in Creating a Flex Asset Family.

• You or your content providers must fill in the category field for each asset of
the selected image asset type, as appropriate. An asset which is not assigned a
category is not displayed by a category-restricted instance of Image Picker.

Chapter 10
Configuring the Image Picker

10-20

How to Create Image Picker Attribute Editor Definition Code
A sample XML definition for the Image Picker attribute editor is included below for your
reference. Use it to get an idea of how to configure Image Picker on your system.

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT>
<PRESENTATIONOBJECT NAME="ImagePicker">
<IMAGEPICKER>
 ASSETTYPENAME="Media_C"
 ATTRIBUTETYPENAME="Media_A"
 ATTRIBUTENAME="FSII_ImageFile"
 CATEGORYATTRIBUTENAME="FSII_ImageCategory"
 RESTRICTEDCATEGORYLIST="Audio,Video">
</IMAGEPICKER>
</PRESENTATIONOBJECT>

See Creating Attribute Editors.

Chapter 10
Configuring the Image Picker

10-21

11
Working with the WebCenter Sites
Database

Just about everything in WebCenter Sites is represented as a row in a database table.
The WebCenter Sites modules and products (Oracle WebCenter Sites: Engage, for
example) deliver most of the tables you need. You work with the various kinds of
tables and columns in the WebCenter Sites database.

For information about managing the data in non-asset tables, see Managing Data in
Non-Asset Tables.

Note:

WebCenter Sites database tables used to be called catalogs and there are
still remnants of that terminology throughout the application in table names,
servlet names (CatalogManager), and the Java interfaces that you use to
work with data in the database.

These topics can help you develop your own application or a table that does not hold
assets (a lookup table, for example):

• Types of Database Tables

• Types of Columns (Fields)

• About Adding to the System Tables

• About Property Files and Databases

Types of Database Tables
In the WebCenter Sites database you use these tables: Object, Tree, Content,
Foreign, and System.

• Object tables, which hold data as objects and provide a unique identifier,
automatically, for each row in the table.

• Tree tables, which hold the hierarchical information about relationships between
objects in object tables.

• Content tables, which hold flat data and do not provide a unique identifier for each
row.

• Foreign tables, which can be either of the following:

– Tables that are outside of the WebCenter Sites database but that WebCenter
Sites has access to.

– Tables that are in the WebCenter Sites database but that WebCenter Sites did
not create.

11-1

• System tables, which are core WebCenter Sites application tables whose schema
cannot be modified.

WebCenter Sites can cache the resultsets from queries against any table in the
WebCenter Sites database, including foreign tables.

This section includes the following topics:

• Object Tables

• Tree Tables

• Content Tables

• Foreign Tables

• System Tables

• Identifying a Table's Type

Object Tables
Object tables store data as an object and can be represented in hierarchies. Those
objects can be loaded, saved, and managed with the CatalogManager API. The asset
type tables are object tables.

The primary key for object tables is always the ID (id) column and that cannot be
changed. When you instruct WebCenter Sites to add an object table, it creates an ID
column in that table. ID is a unique identifier assigned by default to each row as it
is added to the table. For example, when someone creates a new asset, WebCenter
Sites determines the ID and assigns that value as the ID for that asset.

You cannot change the ID assigned to objects (such as assets).

Note:

When AssetMaker or Flex Family maker creates an object table for a new
asset type, it creates several additional columns by default. For information
about the default columns in basic asset tables, see Default Columns in the
Basic Asset Type Database Table.

WebCenter Sites handles ID generation for you, so use an object table to ensure that
each row of the data you store is uniquely identified.

Examples of object tables (catalogs):

• All tables that hold assets

• Many of the publishing tables

• The Engage tables that hold visitor data

Tree Tables
Tree tables store information about the hierarchical relationships between object
tables. In other words, object tables can be represented in hierarchies, but the
hierarchy itself is stored in a tree table (the hierarchy is the tree).

Chapter 11
Types of Database Tables

11-2

For example, WebCenter Sites adds these tables to the WebCenter Sites database:

• AssetRelationTree: Stores information about associations between assets.
These associations create parent-child relationships. For information about asset
associations, see The Flex Asset Model.

• SitePlanTree: Stores information about parent-child relationships between page
assets and the assets that are referred to from those assets. This information is
presented graphically on the Site Navigation tab that is present in the WebCenter
Sites interface.

Each row in a tree table is a node in that tree. Each node in a tree table points to two
places:

• To an object in an object table, that is, to the object that it represents.

• To its parent node in that tree table, unless it is a top-level node and has no
parent.

In other words, the object itself is stored in an object table. Its relationships to other
objects in the database (as described by the tree) are stored in the tree table as a
node on a tree. Children nodes point to parent nodes but parents do not point to
children.

When you create a tree table, it has columns described in Table 11-1 by default. You
cannot modify these columns or add new ones.

Table 11-1 Default Columns

Column Description

nid The ID of the node. This is the primary key.

nparentid The ID of the node's parent node.

nrank A number that ranks peer or sibling nodes. For example, the
AssetRelationTree table uses this column to determine the order of the
assets that are in collections.

otype The object type of the node. For example, in the SitePlanTree table,
otype is either the asset type page or the name of a site (publication).
In the AssetRelationTree table, otype is an asset type and is the name
of the object table for assets of that type.

oid The ID of the object that the node refers to.

oversion Reserved for future use.

ncode Holds a string that has meaning in the context of what the table is being
used for. For example, in the SitePlanTree, ncode is set to placed or
unplaced based on whether the page asset that the node refers to has
been placed or not. In the AssetRelationTree, ncode holds the name of
an association.

Content Tables
Content tables store data as flat data (rather than as objects) and that information
cannot be organized in a hierarchy. You use content tables for simple lookup tables.
For example, these are only a few of the content tables that add to the WebCenter
Sites database:

Chapter 11
Types of Database Tables

11-3

• Source: Holds strings that are used to identify the source of an article or image
asset.

• Category: Holds codes that are used to organize assets in several ways.

• StatusCode: Holds the codes that represent the status of an asset.

All three of these tables are lookup tables that the product uses to look up values for
various columns in the asset type tables (object tables).

In another example, WebCenter Sites also adds a content table called MimeType.
This table holds mimetype codes that are displayed in the Mimetype fields of the
stylesheet and imagefile asset types. The Mimetype fields for these asset types query
the MimeType table for mimetype codes based on the keyword column in that table.

Setting the Primary Key for a Content Table

When you create a content table, an ID column is not created for you and the primary
key is not required to be ID. This is another major difference between content tables
and object tables.

The cc.contentkey property in the wcs_properties.json file specifies the name
of the default primary key for all content tables. When you create a new content
table, you are responsible for defining a column with the name specified by the
cc.contentkey property. However, you can override the identity of the primary
key for a specific content table by adding and setting a custom property in the
wcs_properties.json file. This property must use the following format:

cc.tablenameKey

For example, to create a content table named Books and to override the default
primary key so that it uses the ISBN column instead, add a property named
cc.BooksKey and set it to ISBN.

Foreign Tables
A foreign table is one that WebCenter Sites does not completely manage. For
example, a site's pages perform queries against a table that is populated by an ERP
system and WebCenter Sites displays that information to the site visitors.

WebCenter Sites can query foreign tables and cache the resultsets just as it does for
its own object and content tables. However, you must first identify that foreign table
to WebCenter Sites by adding a row for it in the SystemInfo table. This is the only
time you should ever modify information in the SystemInfo table. Additionally, you
must be sure to flush the WebCenter Sites resultset cache with a CatalogManager
flushcatalog tag whenever the external system updates the tables that you query.
Otherwise, the resultsets cached against those tables might not be up-to-date.

For information about resultset caching, see Working with Resultset Caching and
Queries.

System Tables
System tables are core, WebCenter Sites tables whose schema is fixed. They are
implemented in WebCenter Sites by their own classes and they do not follow the rules
(for caching and so on) that the other tables follow.

Chapter 11
Types of Database Tables

11-4

You can add rows to some system tables using the Explorer tool, but you cannot add
or modify the columns in these tables in any way. You also cannot add system tables
to the database.

This table lists and defines the WebCenter Sites system tables:

Table 11-2 System Tables

Table Description

ElementCatalog Lists all the XML or JSP elements used in your system. An element is
a named piece of code.

SiteCatalog Lists a page reference for each page or pagelet served by WebCenter
Sites.

SystemACL Has a row for each of the access control lists (ACLs) that were created
for your WebCenter Sites system. ACLs are sets of permissions to
database tables.

SystemEvents Has a row for each event being managed by WebCenter Sites. An
event represents an action that takes place on a certain schedule.

WebCenter Sites inserts a row in this table when you set an event by
using either the APPEVENT or EMAILEVENT tags.

SystemInfo Lists all the tables that are in the WebCenter Sites database and any
foreign tables that WebCenter Sites needs to reference.

SystemSeedAccess Registers Java classes that are external to WebCenter Sites but that
WebCenter Sites has access to (includes access control).

SystemSQL Holds SQL queries that you can reuse in as many pages or pagelets
as necessary. You can store SQL queries in this table and then use
the ics.CallSQL method, CALLSQL XML tag, the ics:callsql JSP
tag to invoke them. Then, you have to modify the SQL statement only
once, if required.

SystemUserAttr Stores attribute information about the users such as their email
addresses. Note that this table is not used for LDAP.

SystemUsers Lists all the users who are allowed access to pages, functions, and
tables. Note that this table is not used for LDAP.

Identifying a Table's Type
To determine the table type of any table in the WebCenter Sites database, examine
the SystemInfo table, the system table that lists all the tables in the database.

To Determine a Table Type:

1. Open Explorer and log in to the WebCenter Sites database.

2. Double-click the SystemInfo table.

3. In the list of tables, examine the systable column. The value in this column
identifies the type of table represented in Table 11-3.

Table 11-3 Determining Table Types

Value in systable column Definition

yes system table

Chapter 11
Types of Database Tables

11-5

Table 11-3 (Cont.) Determining Table Types

Value in systable column Definition

no content table

obj object table

tree tree table

fgn foreign table

Note:

You cannot open and examine the SystemInfo table without the appropriate
ACLs assigned to your user name.

Types of Columns (Fields)
In the tables you create for the WebCenter Sites database, you can specify these
field (column) types for the columns: Generic, Database-specific, and WebCenter Sites
URL.

See these topics:

• Generic Field Types

• Database-Specific Field Types

• Indirect Data Storage with the WebCenter Sites URL Field

Generic Field Types
Generic field types refer to field types that work in any DBMS that WebCenter Sites
supports. They are mapped to be compliant with JDBC standards. Therefore, if your
WebCenter Sites system changes to a different DBMS, your database is still valid.

With generic, JDBC-compliant field types, use the CatalogManager API
(CATALOGMANAGER XML or JSP tags, or the ics.CatalogManager Java method) to
modify and maintain the data in your tables.

The following table contains a complete list of the WebCenter Sites generic field types
and the database properties (from the wcs_properties.json file) that define their data
types. Refer to this list whenever you create a new table with the Explorer tool or the
CatalogManager API.

Table 11-4 Field Types

Field Type Description Property

CHAR(n) A short string of exactly n characters. cc.char

Chapter 11
Types of Columns (Fields)

11-6

Table 11-4 (Cont.) Field Types

Field Type Description Property

VARCHAR(n) A short string of up to n characters. For
example, VARCHAR(32) means that this
column can hold a string of up to 32
characters.

cc.varchar

and

cc.maxvarcharsize

(The maximum value that
you can set for cc.varchar
depends on the value
of the cc.maxvarcharsize
property.)

DATETIME A date/time combination. cc.datetime

TEXT A LONGVARCHAR, a variable-length string
of up to 2,147,483,647.

cc.bigtext

IMAGE One binary large object (blob). cc.blob

SMALLINT A 16-bit integer, that is, an integer from
-32,768 to +32,767.

cc.smallint

INTEGER A 32-bit integer, that is, an integer from
-2,147,483,648 to +2,147,483,647.

cc.integer

BIGINT A 64-bit integer, that is, integers having
up to 19 digits.

cc.bigint

NUMERIC(L,P) A floating-point (real) number, having
a total number of L significant digits
of which up to P significant digits are
fractional. For example, NUMERIC(5,2)
could represent a number such as 806.35
but could not accurately represent a
number such as 25693.2283.

cc.numeric

DOUBLE A double precision type. cc.double

In addition to defining the column type, you must specify which of the column
constraints, as described in Table 11-5, applies to the column.

Table 11-5 Column Constraints

Constraint Description

NULL It can hold a null value, that is, it can be left empty.

NOT NULL It cannot hold a null value, that is, it cannot be left empty.

UNIQUE NOT NULL It must hold a value that is guaranteed to be unique in this
table.

PRIMARY KEY NOT NULL Marks the primary key column in a content table. You cannot
set this column constraint for an object table.

When you use AssetMaker to create an object table for a new asset type or when you
create flex attributes, the data types for those items are different than the ones listed
here.

See Storage Types for the Columns and Data Types for Attributes.

Chapter 11
Types of Columns (Fields)

11-7

Database-Specific Field Types
You can use database-specific field (column) types in your tables. However, if you use
field types that are specific to one kind of DBMS (that is, types that have not been
mapped to a JDBC standard), note the following:

• You may not be able to use the CatalogManager API on those tables.

• If you ever change your DBMS you must also modify your tables.

For a complete list of field types specific to the DBMS that you are using, consult your
DBMS documentation.

Indirect Data Storage with the WebCenter Sites URL Field
Object and content tables in the WebCenter Sites database have a unique
characteristic that columns can store their data indirectly. You can store large bits
of data externally to the DBMS but within the data repository.

To create such a column, you must use a column name that begins with the letters
url. When you use the letters url as the first three letters of a column name,
WebCenter Sites treats that column as an indirect data column.

Use a URL field for the following reasons:

• When the DBMS you are using does not support fields that are large enough to
accommodate the size of the data that you want to store there.

• If the DBMS you are using does not support enough fields in an individual table to
contain the data that you want to store.

• Because the performance of selecting data degrades with large field sizes.

Note:

If the size of the data you want to store in a URL column
exceeds the value set for the cc.maxvarcharsize property in the
wcs_properties.json file, then that data is stored in the database,
instead of being stored indirectly as a file that is referenced by a pointer
in the database.

The Default Storage Directory (defdir)

Any table with a URL column must have a default storage directory specified for it.
This directory is where the values entered into the column are actually stored.

The phrase default storage directory is shortened to the word defdir in several places
in the product. For example, the defdir column in the SystemInfo table holds the
name of the default storage directory for tables with URL columns; one of the forms for
the AssetMaker utility presents a defdir field, and so on.

The value entered into a URL field is actually a relative path to a file because this
value is appended to the value of the table's defdir setting. The way that you set the
defdir value for the tables that you create depends on the applications you have and
what you are doing:

Chapter 11
Types of Columns (Fields)

11-8

• To create a new WebCenter Sites table with the CatalogManager API, use the
uploadDir argument to set the value of defdir.

• To create a new basic asset type, specify the value of the defdir in the defdir field
on the AssetMaker form. Note that all tables that hold basic assets have a URL
column and must have a defdir value set.

• To create a new flex asset type, do not specify the value of the defdir for the URL
column in the flex asset's _Mungo table. This value is obtained from a property that
was set when your WebCenter Sites application was installed. Never change the
value of that property.

Note:

After a table with a URL column is created, do not attempt to change
or modify the defdir setting for the table in any way. If you do, the link
between the storage directory and the URL column is broken, and your
data can no longer be retrieved.

For information about creating URL fields, see the following procedures and examples:

• The upload field examples for basic asset types, starting with Example 5-3 in
Creating a Flex Asset Family.

• The upload field example for creating flex attributes of type blob (Creating Flex
Attributes of Type Blob (Upload Field)) in Creating a Flex Asset Family.

About Adding to the System Tables
You cannot create system tables, but you can add rows to some of them with the
Explorer tool. How you add information to each of these tables is different.

Table 11-6 Methods of Adding Information to System Tables

Table Method of Adding Information

SiteCatalog There are several ways that page entries are added to this table:

• When you create a Template asset, WebCenter Sites automatically
creates a page entry for it in the SiteCatalog table.

• When you create a SiteEntry asset, WebCenter Sites automatically
creates a page entry for it in the SiteCatalog table.

To set or modify page cache settings for page entries, it is easier to use
forms in the WebCenter Sites interface than it is to use Explorer.

ElementCatalo
g

There are several ways that elements are added to this table:

• When you create a Template asset, WebCenter Sites automatically
creates an entry for it in the ElementCatalog table.

• When you create a CSElement asset, WebCenter Sites automatically
creates an entry for it in the ElementCatalog table.

• You can use the Explorer tool to add non-asset elements.
For information about coding elements and pages, see Coding Elements for
Templates and CSElements.

SystemACL The ACL form in the User Access Management node.

Chapter 11
About Adding to the System Tables

11-9

Table 11-6 (Cont.) Methods of Adding Information to System Tables

Table Method of Adding Information

SystemEvents WebCenter Sites adds a row to this table for each event that is designated
when an APPEVENT tag, EMAILEVENT tag, or Java API equivalent is invoked
from an element.

SystemInfo Do not add or modify information to this table.

The only exception to this rule is if you have to identify a foreign table to
WebCenter Sites.

SystemSQL The Explorer tool.

For information about the various kinds of queries that are available, see
Working with Resultset Caching and Queries.

SystemUsers The User form in the User Access Management node.

SystemUserAtt
r

The User form in the User Access Management node.

About Property Files and Databases
Database properties in the wcs_properties.json file help you configure the
WebCenter Sites database connection. You use these properties to establish
a privileged and non-privileged user connection between the database and the
application server.

The database properties were configured for your system when you installed
WebCenter Sites. By default, all commands identified in the wcs_properties.json
file operate on the WebCenter Sites database. To access the properties in the
wcs_properties.json file, use the Property Management Tool in the WebCenter Sites
Admin interface.

Chapter 11
About Property Files and Databases

11-10

12
Managing Data in Non-Asset Tables

How do you interact with WebCenter Sites database tables that do not hold assets?
You can work with the data in your custom, non-asset tables programmatically and
manually. You use tags and methods for the CatalogManager API to code forms for
data entry and management. And, through the Explorer tool you manually add rows
and data to those rows.

To work with assets, you must log in to the WebCenter Sites interface and use the
asset forms provided by the WebCenter Sites and Oracle WebCenter Sites: Engage
applications. To add large numbers of assets programmatically, use the XMLPost
utility, as described in Importing Assets of Any Type and Importing Flex Assets.

Topics:

• Using Methods and Tags to Program Data Management in Non-Asset Tables

• Coding Data Entry Forms

• Consideration About Deleting Non-Asset Tables

Using Methods and Tags to Program Data Management in
Non-Asset Tables

Would you like to program how you manage and interact with non-asset tables?
Java methods such as CatalogManager and TreeManager, and XML tags such as
CATALOGMANAGER and TREEMANAGER are available to help you do just that.

See these topics:

• About Writing and Retrieving Data

• Methods for Querying for Data

• Lists and Listing Data

About Writing and Retrieving Data
CatalogManager is the WebCenter Sites servlet that manages content and object
tables in the database. The TreeManager servlet manages tree tables in the database.

• To access the CatalogManager servlet, use the ics.CatalogManager Java
method, the CATALOGMANAGER XML tag, or the ics:catalogmanager JSP tag.

• To access the TreeManager servlet, use the ics.TreeManager Java method, the
TREEMANAGER XML tag, or the ics:treemanager JSP tag.

These methods and tags take name/value pairs from arguments that specify the
operation to perform and the table on which to perform that operation.

12-1

Security Through CatalogManager
The ics.CatalogManager Java method, the CATALOGMANAGER XML tag, and the
ics:catalogmanager JSP tag support several attributes that operate on object and
content tables. The key attribute is ftcmd. By setting ftcmd to addrow, for example, you
tell CatalogManager to add one row to the catalog.

CatalogManager security, when enabled, prevents users with the DefaultReader ACL
from accessing CatalogManager. You enable CatalogManager security by setting the
secure.CatalogManager property, found in the wcs_properties.json file, to true.
Note that your session will be dropped if you attempt to log out of CatalogManager
when CatalogManager security is enabled.

The table below shows the main CATALOGMANAGER XML tag attributes. They are passed
as argument name/value pairs that modify the contents of a row or a particular field in
a row.

Table 12-1 CATALOGMANAGER XML Tag

argument name="ftcmd"
value=

Description

addrow Adds a single row to a table.

addrows Adds multiple rows to a table.

deleterow Deletes a row from a table. You must specify the primary key
column for the row.

deleterows Deletes multiple rows from a table. You must specify the primary
key for the rows.

replacerow Deletes the existing row in a table and replaces the row with the
specified information.

replacerows Replaces multiple rows in a table. If a value is not specified for a
column, the column value is cleared.

updaterow Performs a query against a given table and displays records from
a table. The rows displayed match the criteria specified by the
value of the parameters.

updaterow2 Like updaterow, updates values in columns for a row in a
table. However, where you cannot clear columns with updaterow,
updaterow2 lets you clear columns if there is no value for the
specified column (for example, if there is no related field in the
form).

updaterows Modifies field values for multiple rows in a table.

updaterows2 Like updaterows, modifies field values for multiple rows
in a table. However, where you cannot clear columns with
updaterows, updaterows2 lets you clear them if there is no
value for the specified column (for example, if there is no related
field in the form).

Any requests going to CatalogManager with the command parameter (ftcmd) must be
either a POST request or one of the following commands:

• exportlog

• exportForm

Chapter 12
Using Methods and Tags to Program Data Management in Non-Asset Tables

12-2

• logout

• selectFromTable

• selectCount

• mirrorgetconfig

• listtables

• retrieve

• retrievebinary

• pingdb

• interrogatetbl

• checksession

• history

• retrieverevision

For more information and a complete list of the CatalogManager commands, see
the Tag Reference for Oracle WebCenter Sites Reference. For information about the
ics.CatalogManager Java method, see the Java API Reference for Oracle WebCenter
Sites.

Tree Manager Commands for Managing the Tree Tables
The table below shows the main ics.TreeManager commands. Note that these
operations manipulate data in the tree table only, but do not affect the objects that
the tree table nodes refer to.

Table 12-2 TreeManager Commands

Name Description

addchild Given a parent node, adds a child node.

addchildren Adds multiple child nodes.

copychild Copies a node and its children to a different parent. All copied
nodes point to the same objects.

createtree Creates a tree table.

delchild Deletes a node and its child nodes.

delchildren Deletes multiple nodes.

deletetree Deletes a tree table.

findnode Finds a node in a tree.

getchildren Gets all child nodes.

getnode Gets node and optionally object attributes.

getparent Gets the nodes parent.

listtrees Gets the list of all tree tables.

movechild Moves node and its child nodes to a different parent.

nodepath Returns parent; child path to a node.

Chapter 12
Using Methods and Tags to Program Data Management in Non-Asset Tables

12-3

Table 12-2 (Cont.) TreeManager Commands

Name Description

setobject Associates a different object with the node.

validatenode Verifies that a node is in a tree.

verifypath Verifies that a given path exists in a tree.

For information about the ics.TreeManager method, see the Java API Reference for
Oracle WebCenter Sites.

For information about the XML and JSP TREEMANAGER tags, see the Tag Reference for
Oracle WebCenter Sites Reference.

Methods for Querying for Data
This table shows the three methods, with XML and JSP tag counterparts, to help your
code query for and select content:

Table 12-3 Querying for Data

Method XML tag JSP tag Description

ics.SelectTo SELECTTO ics:selectto Performs a simple select against a
single table.

ics.SQL EXECSQL ics:sql Executes an inline SQL statement
(embedded in the code).

ics.CallSQL CALLSQL ics:callsql Executes a SQL statement that is
stored as a row in the SystemSQL
table.

To use ics.CallSQL (or the tags), you code SQL statements and then paste them into
the SystemSQL table. By storing the actual queries in the SystemSQL table and calling
them from the individual pages (like you call a pagename or an element), you keep
them out of your code, which makes it easier to maintain the SQL used by your site. To
change the SQL, you do not have to fix it in every place that you use it, just edit it in
the SystemSQL table so every element calls the edited version.

The ics.CallSQL and ics.SQL methods can execute any legal SQL commands. If a
SQL statement does not return a usable list, WebCenter Sites will generate an error.
To update or insert data using SQL, you must include code that explicitly flushes the
resultsets cached against the appropriate tables using the ics.FlushCatalog method.

Lists and Listing Data
Several ICS methods create lists. The SelectTo method, for example, returns the
results of a simple SQL query in a list whose columns reflect the items in the WHAT
clause and whose rows reflect matches against the table.

The IList interface is used to access a list from Java. The lists are available by name
using XML or JSP, and values can be iterated using the LOOP tag. The lists created

Chapter 12
Using Methods and Tags to Program Data Management in Non-Asset Tables

12-4

by WebCenter Sites point to underlying resultsets created from querying the database.
Although the lists do not persist across requests, the resultsets do if they are cached.

Note:

Be sure to configure resultset caching appropriately. The list points to a
copy of the query's cached resultset. If the resultset is not cached, the
list points directly at the resultset which can cause database connection
resource difficulties.

You can create your own list for use in XML or JSP by implementing a class based
on the IList interface. Your application or page can transform data before returning an
item in a list or to create a single list from many lists. This table shows the methods
that manage lists:

Table 12-4 Methods that Manage Lists

Method Description

ics.GetList Returns an IList, given the name of the list.

ics.CopyList Copies a list.

ics.RenameList Renames an existing list.

ics.RegisterList Registers a list by name with WebCenter Sites so that you
can reference the list from an XML or JSP element or by
using the GetList method.

For an example implementation of an IList, see SampleIList.java in the Samples
folder on your WebCenter Sites system.

Coding Data Entry Forms
We have code samples to show you how you can code forms in which site visitors
enter information, and how that information should be stored in the database. Use
these code samples to learn how to add a new row, run a query for a row, and edit or
delete a row. Each sample shows a version for XML, JSP, and Java.

See these topics:

• How To Add a Row

• How To Delete a Row

• How To Query a Table

• How To Query a Table with an Embedded SQL Statement

How To Add a Row
A simple algorithm for adding a row is as follows:

1. Display a form requesting information for each of the fields in a row.

Chapter 12
Coding Data Entry Forms

12-5

2. Write that form data to the table.

This example adds a row to a fictitious table named EmployeeInfo with the columns
shown in the following table:

Table 12-5 Example Adds Row to Table

Field Data type

id VARCHAR(6)

phone VARCHAR(16)

name VARCHAR(32)

This example presents code from the following elements:

• addrowFORM, an XML element that displays a form that requests an employee ID
number, phone number, and name.

• addrowXML, addrowJSP, and addrowJAVA, three versions of an element that writes
the information entered by the employee to the EmployeeInfo table.

The addrowFORM Element
The addrowFORM element displays a form that asks the user to enter employee name,
ID, and phone.

This is the code that creates the form:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/addrowFORM
-->

<form ACTION="ContentServer" method="post"
REPLACEALL="CS.Property.ft.cgipath">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
addrow"/>

<table>
<tr>
<td>Employee name:</td>
<td><input type="text" value="" name="EmployeeName" size="22"
maxlength="32"/></td>
</tr>
<tr>
<td>Employee id number:</td>
<td><input type="text" value="" name="EmployeeID" size="6" maxlength="6"/></td>
</tr>
<tr>
<td>Phone number:</td>
<td><input type="text" value="" name="EmployeePhone" size="12"
maxlength="16"/></td>
</tr>
<tr>
<td colspan="2"><input type="submit" name="submit" value="Submit"/></td>
</tr>
</table>

Chapter 12
Coding Data Entry Forms

12-6

</form>
</FTCS>

Notice that the maxlength modifiers in <INPUT> limit the length of each input to the
maximum length that was defined in the schema.

The user fills in the form and clicks the Submit button. The information gathered in
the form and the pagename of the addrow page (see the first input type statement in
the preceding code sample) is sent to the browser. The browser sends the pagename
to WebCenter Sites. WebCenter Sites looks it up in the SiteCatalog table and then
invokes that page entry's root element.

Root Element for the addrow Page
The root element of the addrow page is responsible for adding the information passed
from the addrowFORM element to the database. That is, for adding a row to the
EmployeeInfo table and populating that row with the information passed from the
addrowFORM element.

There can only be one root element for a WebCenter Sites page (that is, an entry in
the SiteCatalog table). This section shows three versions of the root element for the
addrow page:

• addrowXML.xml

• addrowJSP.jsp

• addrowJAVA.jsp

addrowXML

This is the code in the XML version of the root element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/addrowXML
-->

<SETVAR NAME="errno" VALUE="0"/>
<CATALOGMANAGER>

<ARGUMENT NAME="ftcmd" VALUE="addrow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="id" VALUE="Variables.EmployeeID"/>
<ARGUMENT NAME="phone" VALUE="Variables.EmployeePhone"/>
<ARGUMENT NAME="name" VALUE="Variables.EmployeeName"/>

</CATALOGMANAGER>
errno=<CSVAR NAME="Variables.errno"/>

</FTCS>

Chapter 12
Coding Data Entry Forms

12-7

Note:

The example code can use the CATALOGMANAGER tag because the fictitious
table, EmployeeInfo, has WebCenter Sites generic field types. addrowXML
might not work if EmployeeInfo has database-specific field types. See
Generic Field Types.

addrowJSP

This is the code in the JSP version of the root element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/addrowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>
<ics:catalogmanager>

<ics:argument name="ftcmd" value="addrow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="id"
value='<%=ics.GetVar("EmployeeID")%>'/>
<ics:argument name="phone"
value='<%=ics.GetVar("EmployeePhone")%>'/>
<ics:argument name="name" value='<%=ics.GetVar("EmployeeName")%>'/>

</ics:catalogmanager>

errno=<ics:getvar name="errno"/>

</cs:ftcs>

addrowJAVA

This is the code in the Java version of the root element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/addrowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");
FTValList vl = new FTValList();
vl.put("ftcmd","addrow");
vl.put("tablename","EmployeeInfo");
vl.put("id",ics.GetVar("EmployeeID"));

Chapter 12
Coding Data Entry Forms

12-8

vl.put("phone",ics.GetVar("EmployeePhone"));
vl.put("name",ics.GetVar("EmployeeName"));
ics.CatalogManager(vl);
%>
errno=<%=ics.GetVar("errno")%>

</cs:ftcs>

How To Delete a Row
The following example deletes a row from the fictitious EmployeeInfo table.

This section presents code from the following elements:

• deleterowFORM: An XML element that displays a form that requests an employee
name to delete from the EmployeeInfo table.

• deleterowXML, deleterowJSP, deleterowJAVA: Elements that delete a row from the
EmployeeInfo table based on the information sent to it from the deleterowFORM
element.

The deleterowFORM Element
The deleterowFORM element displays a form that asks the user to enter an employee
name. This is the code that creates the form:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/deleterowFORM
-->

<form ACTION="ContentServer" method="post" REPLACEALL="CS.Property.ft.cgipath">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
deleterow"/>

<table>
<tr>

<td>Employee name:</td>
<td><input type="text" value="Barton Fooman" name="EmployeeName" size="22"
maxlength="32"/></td>

</tr>
<tr>

<td colspan="2"><input type="submit" name="submit" value="submit"/></td>

</tr>
</table>
</form>
</FTCS>

The user enters an employee name and clicks the Submit button. The employee
name and the pagename for the deleterow page (see the first input type statement
in the preceding code sample) are sent to the browser. The browser sends the
pagename to WebCenter Sites. WebCenter Sites looks it up in the SiteCatalog table
and then invokes that page entry's root element.

Chapter 12
Coding Data Entry Forms

12-9

Root Element for the deleterow Page
The root element of the deleterow page is responsible for deleting a row from
the EmployeeInfo table, based on the employee name that is sent to it from the
deleterowFORM element. There can only be one root element for a WebCenter Sites
page (that is, an entry in the SiteCatalog table). This section shows three versions of
the root element for the deleterow page:

• deleterowXML.xml

• deleterowJSP.jsp

• deleterowJAVA.jsp

deleterowXML

This is the code in the XML version of the element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/deleterowXML
-->
<SETVAR NAME="errno" VALUE="0"/>

<CATALOGMANAGER>

<ARGUMENT NAME="ftcmd" VALUE="deleterow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="tablekey" VALUE="name"/>
<ARGUMENT NAME="tablekeyvalue" VALUE="Variables.EmployeeName"/>

</CATALOGMANAGER>

errno=<CSVAR NAME="Variables.errno"/>

</FTCS>

deleterowJSP

This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/deleterowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<!-- user code here -->
<ics:setvar name="errno" value="0"/>
<ics:catalogmanager>

<ics:argument name="ftcmd" value="deleterow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="name" value='<%=ics.GetVar("EmployeeName")%>'/>

Chapter 12
Coding Data Entry Forms

12-10

</ics:catalogmanager>

errno=<ics:getvar name="errno"/>

</cs:ftcs>

deleterowJAVA

This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/deleterowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<%
ics.SetVar("errno","0");
FTValList vl = new FTValList();
vl.put("ftcmd","deleterow");
vl.put("tablename","EmployeeInfo");
vl.put("name",ics.GetVar("EmployeeName"));
ics.CatalogManager(vl);
%>
errno=<%=ics.GetVar("errno")%>

</cs:ftcs>

How To Query a Table
The following sample elements query the fictitious EmployeeInfo table for an
employee's name, extract the employee name and displays it in a browser, prompts
the user to edit the information, and then writes the edited information to the database.

This section presents code from the following elements:

• SelectNameForm, an XML element that displays a form that requests an
employee's name.

• Three versions of the QueryEditRowForm element (XML, JSP, and Java), an
element that locates the employee name and loads the information about that
employee into a form that the employee can use to edit his or her information.

• Three versions of the QueryEditRow element (XML, JSP, and Java), an element
that writes the newly edited information to the database.

The SelectNameForm Element
The SelectNameForm element displays a simple form that requests the name of the
employee who is altering employee information. This is the code:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/SelectNameForm
-->

Chapter 12
Coding Data Entry Forms

12-11

<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
QueryEditRowForm"/>
<TABLE>
<TR>
<TD>Employee name: </TD>
<TD><INPUT type="text" value="" name="EmployeeName" size="22"
maxlength="32"/></TD>
</TR>
<TR>
<TD COLSPAN="100%" ALIGN="CENTER">
<input type="submit" name="doit" value="Submit"/></TD>
</TR>
</TABLE>
</form>
</FTCS>

When the employee clicks the Submit button, the information gathered in the
Employee name field and the name of the QueryEditRowForm page (see the first
input type statement in the preceding code sample) is sent to the browser. The
browser sends the page name to WebCenter Sites. WebCenter Sites looks up the
page name in the SiteCatalog table, and then invokes that page entry's root element,
QueryEditRowForm.

The Root Element for the QueryEditRowForm Page
The root element for the QueryEditRowForm page locates the row in the EmployeeInfo
table that matches the string entered in the Employee name field and then loads
the data from that row into a new form. The employee can edit the name and phone
number but cannot edit the ID number.

The Change Employee Information form looks like this:

Figure 12-1 Change Employee Information Form

There can only be one root element for a WebCenter Sites page (that is, an entry in
the SiteCatalog table). This section shows three versions of the root element for the
QueryEditRowForm page:

• QueryEditRowFormXML.xml

• QueryEditRowFormJSP.jsp

• QueryEditRowFormJAVA.jsp

Chapter 12
Coding Data Entry Forms

12-12

QueryEditRowFormXML

This is the code in the XML version of the element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryEditRowFormXML
-->

<SETVAR NAME="errno" VALUE="0"/>
<SETVAR NAME="name" VALUE="Variables.EmployeeName"/>
<SELECTTO FROM="EmployeeInfo"
WHERE="name"
WHAT="*"
LIST="MatchingEmployees"/>

<IF COND="Variables.errno=0">
<THEN>
<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
QueryEditRow"/>
<input type="hidden" name="MatchingID" value="MatchingEmployees.id"
REPLACEALL="MatchingEmployees.id"/>
<TABLE>
<TR>
<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>
</TD>
</TR>
<TR>
<TD>Employee id number: </TD>
<TD><CSVAR NAME="MatchingEmployees.id"/></TD>
</TR>
<TR>
<TD>Employee name: </TD>
<TD><INPUT type="text" value="MatchingEmployees.name" name="NewEmployeeName"
size="22" maxlength="32" REPLACEALL="MatchingEmployees.name"/></TD>
</TR>
<TR>
<TD>Phone number: </TD>
<TD><INPUT type="text" value="MatchingEmployees.phone" name="NewEmployeePhone"
size="12" maxlength="16" REPLACEALL="MatchingEmployees.phone"/></TD>
</TR>
<TR>
<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>
</TR>
</TABLE>
</form>
</THEN>
<ELSE>
<P>Could not find this employee.</P>
<CALLELEMENT NAME="Documentation/CatalogManager/SelectNameFormXML"/>
</ELSE>
</IF>
</FTCS>

When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser. The browser

Chapter 12
Coding Data Entry Forms

12-13

sends the page name and the field information to WebCenter Sites. WebCenter Sites
looks up the page name in the SiteCatalog table and then invokes that page entry's
root element.

QueryEditRowFormJSP

This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowFormJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>
<ics:setvar name="name" value='<%=ics.GetVar("EmployeeName")%>'/>
<ics:selectto table="EmployeeInfo"
where="name"
what="*"
listname="MatchingEmployees"/>

<ics:if condition='<%=ics.GetVar("errno").equals("0")%>'>
<ics:then>
<form action="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
QueryEditRow"/>
<input type="hidden" name="MatchingID" value="<ics:listget
listname='MatchingEmployees' fieldname='id'/>"/>
<TABLE>
<TR>
<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>
</TD>
</TR>
<TR>
<TD>Employee id number: </TD>
<TD><ics:listget listname='MatchingEmployees
fieldname='id'/></TD>
</TR>
<TR>
<TD>Employee name: </TD>
<TD><INPUT type="text" value="<ics:listget
listname='MatchingEmployees' fieldname='name'/>"
name="NewEmployeeName" size="22" maxlength="32"/></TD>
</TR>
<TR>
<TD>Phone number: </TD>
<TD><INPUT type="text" value="<ics:listget
listname='MatchingEmployees' fieldname='phone'/>"
name="NewEmployeePhone" size="12" maxlength="16"/>
</TD>
</TR>
<TR>
<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>
</TR>
</TABLE>

Chapter 12
Coding Data Entry Forms

12-14

</form>
</ics:then>
<ics:else>
<P>Could not find this employee.</P>
<ics:callelement element="Documentation/CatalogManager/
SelectNameForm"/>
</ics:else>
</ics:if>

</cs:ftcs>

When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser. The browser
sends the page name and the field information to WebCenter Sites. WebCenter Sites
looks up the page name in the SiteCatalog table and then invokes that page entry's
root element.

QueryEditRowFormJAVA

This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowFormJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");
ics.SetVar("name",ics.GetVar("EmployeeName"));
StringBuffer errstr = new StringBuffer();
IList matchingEmployees = ics.SelectTo("EmployeeInfo",// tablename
*", // what
"name", // where
"name", // orderby
1, // limit
null, // ics list name
true, // cache?
errstr); // error StringBuffer

if ("0".equals(ics.GetVar("errno")) && matchingEmployees!=null &&
matchingEmployees.hasData())
{
%>
<form action="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
QueryEditRow"/>
<%
String id = matchingEmployees.getValue("id");
String name = matchingEmployees.getValue("name");
String phone = matchingEmployees.getValue("phone");
%>
<input type="hidden" name="MatchingID" value="<%=id%>"/>
<TABLE>
<TR>
<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>

Chapter 12
Coding Data Entry Forms

12-15

</TD>
</TR>
<TR>
<TD>Employee id number: </TD>
<TD><%=id%></TD>
</TR>
<TR>
<TD>Employee name: </TD>
<TD><INPUT type="text" value="<%=name%>" name="NewEmployeeName" size="22"
maxlength="32"/></TD>
</TR>
<TR>
<TD>Phone number: </TD>
<TD><INPUT type="text" value="<%=phone%>" name="NewEmployeePhone" size="12"
maxlength="16"/></TD>
</TR>
<TR>
<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>
</TR>
</TABLE>
</form>
<%
}
else
{
%><P>Could not find this employee.</P>
<%
ics.CallElement("Documentation/CatalogManager/SelectNameForm",null);
}
%>
</cs:ftcs>

When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser. The browser
sends the page name and the field information to WebCenter Sites. WebCenter Sites
looks up the page name in the SiteCatalog table and then invokes that page entry's
root element.

The Root Element for the QueryEditRow Page
The root element for the QueryEditRow page writes the information that the employee
entered into the Employee Name and Phone number fields and updates the row in
the database.

There can only be one root element for a WebCenter Sites page (that is, an entry in
the SiteCatalog table). This section shows three versions of the root element for the
QueryEditRow page:

• QueryEditRowXML.xml

• QueryEditRowJSP.jsp

• QueryEditRowJAVA.jsp

QueryEditRowXML

This is the code in the XML version of the element:

Chapter 12
Coding Data Entry Forms

12-16

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryEditRowXML
-->

<SETVAR NAME="errno" VALUE="0"/>

<CATALOGMANAGER>
<ARGUMENT NAME="ftcmd" VALUE="updaterow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="id" VALUE="Variables.MatchingID"/>
<ARGUMENT NAME="name" VALUE="Variables.NewEmployeeName"/>
<ARGUMENT NAME="phone" VALUE="Variables.NewEmployeePhone"/>
</CATALOGMANAGER>

<IF COND="Variables.errno=0">
<THEN>
<P>Successfully updated the database.</P>
</THEN>
<ELSE>
<P>Failed to update the information in the database.</P>
</ELSE>
</IF>
</FTCS>

QueryEditRowJSP

This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>

<ics:catalogmanager>
<ics:argument name="ftcmd" value="updaterow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="id" value="<%=ics.GetVar("MatchingID")%>"/>
<ics:argument name="name"
value='<%=ics.GetVar("NewEmployeeName")%>'/>
<ics:argument name="phone"
value='<%=ics.GetVar("NewEmployeePhone")%>'/>
</ics:catalogmanager>

<ics:if condition='<%=ics.GetVar("errno").equals("0")%>'>
<ics:then>
<P>Successfully updated the database.</P>
</ics:then>
<ics:else>
<p>failed to update the information in the database. errno=<ics:getvar
name='errno'/></p>
</ics:else>
</ics:if>

Chapter 12
Coding Data Entry Forms

12-17

</cs:ftcs>

QueryEditRowJAVA

This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");

FTValList args = new FTValList();
args.put("ftcmd","updaterow");
args.put("tablename","EmployeeInfo");
args.put("id",ics.GetVar("MatchingID"));
args.put("name",ics.GetVar("NewEmployeeName"));
args.put("phone",ics.GetVar("NewEmployeePhone"));

ics.CatalogManager(args);

if("0".equals(ics.GetVar("errno")))
{
%><P>Successfully updated the database.</P><%
}
else
{
%><p>failed to update the information in the database. errno=<ics:getvar
name='errno'/></p><%
}
%>
</cs:ftcs>

How To Query a Table with an Embedded SQL Statement
The following example shows another method of searching for a name in a table. This
example also searches the fictitious EmployeeInfo table, returning the rows that match
the string supplied by a user. But, this time the code uses a SQL query rather than a
SELECTTO statement.

This section presents code from the following elements:

• QueryInlineSQLForm, an XML element that displays a form that requests a movie
title.

• Three versions of the QueryInlineSQL element (XML, JSP, and Java), an element
that searches the EmployeeInfo table for names that contain the string entered by
the user in the preceding form.

Chapter 12
Coding Data Entry Forms

12-18

QueryInlineSQLForm
The QueryInlineSQL element displays a simple form that requests the name for which
to search the EmployeeInfo table. This is the code:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryInlineSQLForm
-->
<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/CatalogManager/
QueryInlineSQL"/>

<table>
<tr>
<td>Employee Name:</td>
<td><input type="text" value="Foo,Bar" name="EmployeeName" size="22"
maxlength="32"/></td>
</tr>
<tr>
<td colspan="2"><input type="submit" name="submit" value="submit"/></td>
</tr>
</table>

</form>
</FTCS>

When the user clicks the Submit button, the information gathered in the Employee
name field and the name of the QueryInlineSQL page is sent to the browser. The
browser sends the page name of the QueryInlineSQL page to WebCenter Sites.
WebCenter Sites looks up the page name in the SiteCatalog table and then invokes
that page entry's root element.

The Root Element for the QueryInlineSQL Page
The root element for the QueryInlineSQL page executes an inline SQL statement that
searches the EmployeeInfo table for entries that match the string sent to it from the
QueryInlineSQLForm element. There can only be one root element for a WebCenter
Sites page (that is, an entry in the SiteCatalog table). This section shows three
versions of the root element for the QueryInlineSQL page:

• QueryInlineSQLXML.xml: Uses the EXECSQL XML tag to create the SQL query.

• QueryInlineSQLJSP.jsp: Uses the ics:sql JSP tag to create the SQL query.

• QueryInlineSQLJAVA.jsp: Uses the ics.CallSQL Java method to create the SQL
query.

QueryInlineSQLXML

This is the code in the XML version of the element:

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryInlineSQLXML
-->

Chapter 12
Coding Data Entry Forms

12-19

<SETVAR NAME="tablename" VALUE="EmployeeInfo"/>

<SQLEXP OUTSTR="MySQLExpression"
TYPE="OR"
VERB="LIKE"
STR="Variables.EmployeeName"
COLNAME="name"/>

<EXECSQL
SQL="SELECT id,name,phone FROM Variables.tablename WHERE
Variables.MySQLExpression"
LIST="ReturnedList"
LIMIT="5"/>

<table border="1" bgcolor="99ccff">
<tr>
<th>id</th>
<th>name</th>
<th>phone</th>
</tr>

<LOOP LIST="ReturnedList">
<tr>
<td><CSVAR NAME="ReturnedList.id"/></td>
<td><CSVAR NAME="ReturnedList.name"/></td>
<td><CSVAR NAME="ReturnedList.phone"/></td>
</tr>
</LOOP>
</table>

</FTCS>

Notice that the SQL statement is not actually embedded in the EXECSQL tag. Instead,
a preceding SQLEXP tag creates a SQL expression which is passed as an argument to
the EXECSQL call. The EXECSQL tag performs the search and returns the results to the
list variable named ReturnedList. Also notice that the first line of code in the body of
the element creates a variable named tablename and sets the value to EmployeeInfo,
the name of the table that is being queried. This enables CatalogManager to cache the
resultset against the correct table.

QueryInlineSQLJSP

This is the code in the JSP version of the element:

<?xml version="1.0" ?>
<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryInlineSQLJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<ics:setvar name="tablename" value="EmployeeInfo"/>

<%
// no ics:sqlexp tag, must do in Java

Chapter 12
Coding Data Entry Forms

12-20

String sqlexp =
ics.SQLExp("EmployeeInfo","OR","LIKE",ics.GetVar("EmployeeName"),"name");
String sql = "SELECT id,name,phone FROM "+ics.GetVar("tablename")+" WHERE
"+sqlexp;
%>
<ics:sqltable='<%=ics.GetVar("tablename")%>'
sql='<%=sql%>'
listname="ReturnedList"
limit="5"/>

<table border="1" bgcolor="99ccff">
<tr>
<th>id</th>
<th>name</th>
<th>phone</th>
</tr>

<ics:listloop listname="ReturnedList">
<tr>
<td><ics:listget listname="ReturnedList" fieldname="id"/></td>
<td><ics:listget listname="ReturnedList" fieldname="name"/></td>
<td><ics:listget listname="ReturnedList" fieldname="phone"/></td>
</tr>
</ics:listloop>

</table>

</cs:ftcs>

Notice that the SQL statement is not actually embedded in the ics:sql tag. Instead, a
preceding Java expression creates a SQL expression that is passed as an argument
to the ics:sql call. (The code example uses Java because there is no JSP equivalent
of the SQLEXP tag.) The ics:sql tag performs the search and returns the results to the
list variable named ReturnedList. Also notice that the first line of code in the body of
the element creates a variable named tablename and sets the value to EmployeeInfo,
the name of the table that is being queried. This enables CatalogManager to cache the
resultset against the correct table.

QueryInlineSQLJava

This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryInlineSQLJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<%

ics.SetVar("tablename","EmployeeInfo");

String sqlexp =
ics.SQLExp(ics.GetVar("tablename"),"OR","LIKE",ics.GetVar("EmployeeName"),"name")
;
String sql = "SELECT id,name,phone FROM "+ics.GetVar("tablename")+" WHERE
"+sqlexp;

Chapter 12
Coding Data Entry Forms

12-21

StringBuffer errstr = new StringBuffer();

IList list = ics.SQL(ics.GetVar("tablename"),sql,null,5,true,errstr);

%>

<table border="1" bgcolor="99ccff">
<tr>
<th>id</th>
<th>name</th>
<th>phone</th>
</tr>

<%

while (true)
{
%>
<tr>
<td><%=list.getValue("id")%></td>
<td><%=list.getValue("name")%></td>
<td><%=list.getValue("phone")%></td>
</tr>
<%
if (list.currentRow() == list.numRows())
break;
list.moveTo(list.currentRow()+1);
}
%>

</table>
</cs:ftcs>

Notice that the SQL statement is not actually embedded in the ics.SQL statement.
Instead, a preceding ics.SQLExp statement creates a SQL expression which is passed
as an argument to the EXECSQL call. The ics.SQL statement performs the search and
returns the results to the list variable named ReturnedList. Also notice that this code
also creates a variable named tablename and sets the value to EmployeeInfo (the
name of the table that is being queried), before the code for the query. This enables
CatalogManager to cache the resultset against the correct table.

Consideration About Deleting Non-Asset Tables
All you need to do before deleting a non-asset table is disable revision-tracking.

To delete a non-asset table which is being revision tracked, first disable revision
tracking for the table. Otherwise, the table can't be removed.

Chapter 12
Consideration About Deleting Non-Asset Tables

12-22

Part III
Developing a Website

Get introduced to WebCenter Sites tags and Java methods. These tags and methods
let you store pagelets in WebCenter Sites caches, maintain those caches for your
visitors to always see updated information, and these tags and methods let you do
much more. Know how you can create CSElement, Template, and SiteEntry asset
types. Familiarize yourself with templates and wrappers, too.

Learn about coding templates for in-context editing and presentation editing.
Procedures are available to help you create a page, query, and collection assets
that implement the functionality of your online site, to help you implement Future
Site Preview functionality, and to help you code the elements that you make for
your template and CSElement assets. Take a look at the examples for using basic
assets. And, if you’re planning to configure multilingual support for your site, detailed
information is available to help you do that.

• Website Development with the MVC Framework and APIs

• Developing a Server-Side Website

• Developing a Client-Side Website

• Website Development with Tag Technologies

• About Sessions and Cookies

• Creating Template, CSElement, and SiteEntry Assets

• Creating Templates and Wrappers

• Coding Templates for In-Context and Presentation Editing

• Creating Collection Assets, Query Assets, and Page Assets

• Best Practices for Creating Future Site Preview Assets and Templates

• Coding Elements for Templates and CSElements

• Template Element Examples for Basic Assets

• Configuring Sites for Multilingual Support

13
Website Development with the MVC
Framework and APIs

Oracle WebCenter Sites provides a Model-View-Controller (MVC) framework and Java
APIs for developing server-side websites, as well as REST APIs for building websites
rendered on the client side. With these technologies you can develop flexible and
scalable websites.

Topics:

• Server-Side and Client-Side Development Methodologies

• Server-Side MVC Framework

• Pages, Pagelets, and Elements

• Template and CSElement Assets

• Page Assets and Site Navigation

• Date-Based Preview

• Multilingual Support

• Caching in the MVC Framework

• Server-Side Java APIs

• REST APIs

• Sample Websites

Server-Side and Client-Side Development Methodologies
Oracle WebCenter Sites provides tools for building server-side rendering of content
on web pages, client-side rendering, or a combination of both. Each methodology
offers unique advantages, depending on your website design and the content you want
to render. Both methodologies enable you to prototype and develop websites in an
easy-to-use, standardized, and compliant way, for rapid and productive development.

• The server-side Model-View-Controller (MVC) framework cleanly separates
presentation from business logic, to support robust server-side scripting.

Java developers can write business-logic code in the Controller using Groovy
and write Templates in JSP, while web developers can create presentation
elements in views using HTML and JavaScript, without interfering with each
other's work. This MVC framework is fully integrated with WebCenter Sites
caching, asset dependency, and lifecycle management features.

To streamline coding, the framework includes simplified server-side Java APIs.
The out-of-the-box Java APIs provide convenient interfaces for common activities
in building a website, such as these tasks:

– Reading asset data

– Painting breadcrumbs for pages

13-1

– Accessing form values

– Performing validation

– Using a Controller as a REST endpoint

See Server-Side Java APIs.

Note:

The Java APIs in conjunction with the MVC framework replace the
WebCenter Sites JSP tag technology for elements and templates,
described in Website Development with Tag Technologies However,
WebCenter Sites tags remain supported.

• REST APIs enable you to build a website rendered on the client side, using
technologies that execute entirely in the browser client. Such websites include, but
are not limited to, single-page applications.

A standalone sample website demonstrating the WebCenter Sites REST API
capabilities is shipped as part of the WebCenter Sites installation download. See
the instructions in the wcsites directory on how to configure this sample reference
implementation.

Rendering on client-side websites is particularly useful for highly interactive
applications (or portions of websites) and mobile sites. Client-side rendering, in
general, delegates the markup generation to client-side libraries while limiting the
interactions between the client and server to just data elements, usually in the
form of JSON (JavaScript Object Notation). As users navigate from page to page
in such a website, requests are made to the server for specific data components
while the JavaScript to generate the markup stays loaded in the browser.

REST APIs get data components to the client efficiently, in JSON format. These
APIs mirror features of server-side Java APIs in general. More important, these
services have additional features, such as aggregation, for the special needs of
client-side rendering.

The REST APIs address common usage patterns such as these:

– Accessing navigation data

– Accessing aggregated asset data

For example, the APIs can exclude certain fields, use wildcards, or build lists.

Depending on the needs of visitors to your website, you might decide on an
entirely server-side or client-side methodology to build it. Or you might opt for
a mix of both techniques. Contributors to pages rendered on the server side
can compose them in web mode, using the Oracle WebCenter Sites: Contributor
interface, but web-mode editing is not available for elements of a page that are
rendered on the client side.

See REST APIs.

Server-Side MVC Framework
The MVC design pattern involves the separation of model, view, and Controller.
Model represents the data, view represents the presentation, and Controller links the

Chapter 13
Server-Side MVC Framework

13-2

model and the view. Clear separation makes the code readable and easily modifiable,
and it’s easy to accommodate technological changes.

• The model represents the data.

In WebCenter Sites, a model is a map of key-value pairs. Asset data as well as
any data determined in business logic would be part of the model.

• The view represents the presentation.

In WebCenter Sites, a view is a Template or SiteEntry object that renders to a
browser. The view contains no business logic, and it renders the model data in an
interface for users to view and modify the data. It also sends user actions (such as
visitor clicks) to the Controller.

• The Controller links the model and the view. Performing business logic on
underlying data, the Controller puts together a model in a way that can be used
in a view.

In WebCenter Sites, a Controller is a standard asset instance. A presentation
asset (Template or SiteEntry asset type) can link to a Controller. This link
is optional. When it is present, WebCenter Sites invokes the linked Controller
before invoking the view. As with any asset type, assets of type Controller can
be approved and published.

Controllers can extend and import other Controllers. A BaseController
provides convenient accessors, debugging, and much more. In addition, you can
use Java APIs in a Controller, as described in Server-Side Java APIs.

For information about using a Controller as a REST endpoint, go to the
Developer’s Samples Website and choose REST Endpoint from the Advanced
Topics menu.

Note:

If a view (Template or SiteEntry asset) is not associated with a Controller,
WebCenter Sites treats it as a standalone view. Such a view falls back to the
legacy view-based rendering of WebCenter Sites, described in Using Asset
API: Tutorial. WebCenter Sites remains fully backwards compatible, allowing
you the option of transitioning incrementally to the MVC framework.

Note:

If a Controller extends and imports another Controller, editing of the
extended Controller does not invalidate the cache for the extending
Controller by default. To invalidate the cache for the extending Controller,
or Controllers, either edit and save each extending Controller from the
Admin interface, or use the Controller Asset Utility in System Tools to force-
compile all dependent Controllers.

The following topics describe parts of the server-side MVC framework:

• Developer’s Samples Website

Chapter 13
Server-Side MVC Framework

13-3

• WebCenter Sites MVC Framework Overview

• Controllers

• Views

Developer’s Samples Website
The Developer’s Samples website provides an overview of the new MVC framework,
examples for getting started, server-side Java API examples, and advanced topics
such as Annotations, Select Grammar, Custom Beans, Form Validation, REST
endpoints, Fragments, and Watchers.

This reference website is based on the Samples Site in the Contributor interface.

To access the Developer’s Samples website, enter the following URL, with the host
name and port number for your installation:

http://hostname:port/sites/samples/overview

WebCenter Sites MVC Framework Overview
This figure shows the anatomy of a request as it passes through the MVC framework
to produce a response.

Figure 13-1 MVC Framework Process for Server-Side Rendering

Front

Controller

View Model

3

Request

from browser

Front Controller

resolves the actual

controller with

business logic

and executes it

Controller executes

business logic, while

interacting with the

repository for

building Model

Invokes the View

with Model instance

that Controller’s

execution built

Accesses model

object using

JSTL tags

1 2 Controller

5

4

In WebCenter Sites, the MVC framework includes a front Controller. Oracle
WebCenter Content Server or Satellite Server servlets act as the front Controller
and handle various dispatching and caching services.

When a request from a client reaches the front Controller, it resolves the actual
Controller instance associated with the Template that contains business logic for
the request, depending on the request URL. The front Controller does this by
first locating the view element (a Template asset, for instance) and then looking up
a Controller instance associated with the view (if the Template is linked with a
Controller).

After discovering the Controller instance that contains business logic for the page,
the front Controller executes it. The result of executing a Controller is the creation
of a model instance.

Chapter 13
Server-Side MVC Framework

13-4

The front Controller then dispatches the request to the view with the model instance
placed in the request scope. The view (a JSP) can now access the model instance
using JSTL tags and present it in response back to the browser.

The same process repeats for pagelets (parts of a web page). Pagelets with their
Controller objects become reusable components that can be reused across many
pages.

In addition to managing your content, WebCenter Sites handles many useful tasks
for you, such as storing web pages and pagelets in WebCenter Sites caches and
maintaining those caches so that visitors to your website never see an outdated page.
You can use WebCenter Sites Java methods to do this.

Various element assets and Template assets compose a WebCenter Sites page.
Element assets include blocks of code that can retrieve the content of your pages
from the WebCenter Sites database or perform other tasks, such as deleting outdated
items from the database. Template assets are generally used to format the content of
your web pages. Elements and Templates can be written in JSP.

Controllers
Controllers contain business logic in code authored by developers. The
programming language for writing such code in WebCenter Sites 12c is Groovy, a
language similar to Java. Groovy is built on Java and interoperates easily with Java
libraries.

Business logic in Controllers is usually specific to a website implementation.
However, a large number of pages or pagelets typically need to perform some very
common operations. For example, a Controller for a page might determine a list of
assets to show for the view and show each asset in a pagelet. Conceivably, custom
business logic might be needed to come up with a list of assets (such as a query
of certain articles). In this case, the only Controller logic necessary is searching for
assets. This logic can be the same for the entire website.

WebCenter Sites ships with a set of Controllers already built with common patterns
of use, like navigation for reading assets. Oracle encourages developers to use the
following out-of-the-box Controllers where applicable:

• AssetController

• NavigationController

• TableController

• SegmentsController

• ProfileBasedRecommendationController

• SegmentBasedRecommendationController

Parts of a page might have custom Controllers as well as views with additional
Controllers. You can extend Controllers.

Views
In WebCenter Sites, Template and SiteEntry assets represent views. Each Template
and SiteEntry asset can be linked to a Controller instance.

Chapter 13
Server-Side MVC Framework

13-5

When you build views using the MVC framework, Oracle recommends that you use
JSP as the scripting language for building the views and JSTL to access data in
the model. While WebCenter Sites tags for accessing asset data continue to work
when used in Template assets, Oracle recommends that developers use Java APIs
in the Controllers instead, and use view code only for managing presentation. This
separates logic from presentation. See Server-Side Java APIs.

Pages, Pagelets, and Elements
Template and SiteEntry assets can be both pages and pagelets, but CSElement is
always an element. Assets are displayed in pages or pagelets using templates and
elements.

In the WebCenter Sites context, an online page is the composition of several
components into a viewable, final output. Creating that output is called rendering.
Making either that output or the content that is to be rendered available to the visitors
on your public site is called publishing.

WebCenter Sites renders pages by executing the code associated with page names.
The name of a page is passed to WebCenter Sites from a browser, and WebCenter
Sites invokes the code associated with that page name. The code is actually in a
named file, a separate chunk of code called an element.

The code in your elements identifies assets to display in pages or pagelets, loads
the assets, and then passes other page names and element names to WebCenter
Sites. When WebCenter Sites invokes an element, all of the code in the element
is executed. If there are calls to other elements, those elements are invoked in
turn. Then the results, the images, articles, linksets, and so on, including any HTML
tags, are rendered into HTML code (or some other output format if your system is
configured to do so).

Template, CSElement, and SiteEntry assets represent elements and pagelets as
follows:

• A Template asset is both an element and a page or pagelet that renders an asset.

• A CSElement asset is an element.

• A SiteEntry asset is the name of a page or a pagelet.

Template and CSElement Assets
Here are some points that you need to know about Template and CSElement assets.

• Template assets are classified as typed or typeless depending on whether they
apply to a single asset type or no asset type.

• If you are using SiteLauncher (to replicate sites or to share Template and
CSElement assets), WebCenter Sites requires element logic to indirectly refer
to assets, asset types, attribute names, and Template names. To this end, the
WebCenter Sites interface introduces the Map screen, and the API introduces the
render:lookup tag.

Using the Map screen, you assign an alias to each value. You can then hard-code
the aliases in the element logic and use the render:lookup tag to retrieve the
actual values from the aliases at runtime.

Chapter 13
Pages, Pagelets, and Elements

13-6

• The Cache Rules field has been simplified to reduce errors. Template developers
can choose Cached, Uncached, or Advanced. Choosing Advanced allows
developers to set caching rules individually for WebCenter Sites and Oracle
WebCenter Sites: Satellite Server.

• A new tag, calltemplate, was introduced to invoke Templates in a way that
simplifies the Template writing process.

• The PageCriteria field has been renamed to Cache Criteria. It accepts the
following reserved parameters: c, cid, context, p, rendermode, site, sitepfx,
ft_ss, and custom-defined parameters.

Cache criteria values are stored in the pagecriteria column of the SiteCatalog
table (in previous versions they were stored in the resargs columns of the
SiteCatalog table).

The Cache Criteria field is also used to hold variables that enable the Extra
Parameters section in the CKEditor and make them available to users, in the
Include asset link and Add asset link dialog boxes. The Extra Parameters
section provides a way of passing custom parameters (such as image dimensions)
to the Template. See Working with the CKEditor in Using Oracle WebCenter Sites.

• Forms for creating Template and CSElement assets have been subdivided by tabs,
and fields are organized by function on the tabs.

See Creating Template, CSElement, and SiteEntry Assets

Page Assets and Site Navigation
Page assets store references to other assets and organize them according to a site
design. Representing sections of a site, page assets provide a convenient structural
organization that resembles a finished website.

Site developers typically create page assets during site design. See Creating Page
Assets.

You can associate pages, articles, and other type of assets with page assets and code
template elements that format the associated assets.

A Template associated with a page asset contains the layout for the rendered page
and navigation to other rendered pages.

To put together site navigation for page assets, you can use the WebCenter
SitesWebCenter Sites Java APIs or REST APIs. See Server-Side Java APIs and
REST APIs.

Date-Based Preview
Using date-based rendering, content contributors can preview assets in the
Contributor interface. If you are interested in building a website that changes based
on the date of viewing, then you can use start dates and end dates available in an
asset. Such websites can also be previewed for how they would look on a future date
by using WebCenter Sites preview tools.

Content creators can specify start dates and end dates on Edit screens in the
Contributor interface. They can preview content through the site's user interface and
then go to a date in the future and look at how the site would look on that date.

Chapter 13
Page Assets and Site Navigation

13-7

For example, you might want to build a site for a holiday and preview how it will look
then.

See Asset Reader, a Java API that provides a convenience method to filter by date.

Multilingual Support
Users of a multilingual site developed with WebCenter Sites can assign locale
(language version) designations to assets and create translations of assets. You can
create site-specific delivery rules that determine the assets’ language versions to be
shown on the online site, and what should happen if the requested language version
doesn’t exist.

Locale designations in WebCenter Sites are implemented through the concept of
dimensions. A dimension is an identifier that differentiates assets that are otherwise
semantically identical. A locale (such as en_US for US English) is a type of dimension
that differentiates two translations of the same content.

Dimensions are represented by assets of the type Dimension. This asset type must be
enabled by developers on a per-site basis so that users can create Dimension assets
(of subtype Locale) and so that content providers can assign locale designations to
assets they want to translate.

Note:

Users cannot create translations of assets that have no locale designation
assigned.

Each Dimension asset represents a locale on the site. For example, an en_US
Dimension asset represents US English, and a fr_CA Dimension asset represents
Canadian French. See Asset Reader, a Java API that gives you the ability to access
translated assets.

Publishing content in a given locale requires enabling the locale on the online site.
This publishes the Dimension asset representing the locale to the delivery system and
includes the locale in the site's Dimension set.

Caching in the MVC Framework
Page caching in the MVC Framework functions similar to the Template assets coded
using JSP tags. In the new framework, business logic code moves to the Controller
asset, leaving the Template asset responsible for presentation aspects only. What gets
cached in page caching is still the page or pagelet markup. Business logic associated
with a pagelet runs only when the pagelet is uncached.

A Controller asset associated with a Template is added as a cache dependency,
along with all the assets read in the Controller’s business logic. Any updates to the
Controller asset or the assets read as part of the Controller’s business logic would
invalidate the cache.

The cache criteria arguments in the Template asset continue to determine the caching
behavior at the pagelet level. For a description of how caching works in WebCenter
Sites, see Understanding Page Design and Caching.

Chapter 13
Multilingual Support

13-8

Server-Side Java APIs
To put together a web page, you typically would use various kinds of server-side Java
APIs.

WebCenter Sites provides:

• Asset Reader

• Navigation Reader

• Link Builder

• Blob Link Builder

• Searcher

• Recommendation Reader

• Table Reader

Brief descriptions and samples of these APIs follow. The Developer’s Samples
Website provides additional descriptions and examples.

Asset Reader
The Asset Reader API reads an asset and returns all data or the data you specify. You
can use the methods in AssetReader to read the asset in a simplified way and return
only required and relevant information.

A Controller uses these methods in conjunction with each other to build assets
that a Template can readily use. This example shows a simple Controller that can
useAssetReader to read an asset.

Example 13-1 Asset Reader Controller

package oracle.webcenter.sites.controller

import com.fatwire.assetapi.data.*
public class AssetController extends BaseController
{
 @RequiredParams(query="c,cid")
 public void doWork(Map models)
 {
 Map assetMap = newAssetReader()
 .forAsset(getAssetId())
 .selectAll(true)
 .read();
 models.put("asset", assetMap);
 }

This assetData map is available to a Template that chooses AssetController as its
Controller. This example shows what a Template that renders the asset would look
like:

Chapter 13
Server-Side Java APIs

13-9

Example 13-2 Template for Asset Reader

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%><cs:ftcs><%-- AVIArticle/myarticle --%>
<table border="1">
 <c:forEach var="a" items="${asset}">
 <tbody>
 <tr>
 <td><h4>${a.key} : </h4></td>
 <td>${a.value}</td>
 </tr>
 </tbody>
 </c:forEach>
</table>
</cs:ftcs>

The Controller reads the asset with asset ID '1328196047443' and asset type
'AVIArticle' and puts it in the map 'assetData'. The selectAll(true) method
builds the asset with all of its attributes.

You can go to the Developer’s Samples Website and choose Asset Reader from the
Rendering API menu for more information.

Navigation Reader
The Navigation Reader API paints breadcrumbs for navigation.

This example shows a sample Navigation Controller for an asset.

Example 13-3 Navigation Controller

package oracle.webcenter.sites.controller
import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*

public class NavigationController extends BaseController
{
 @RequiredParams(query="c,cid")
 public void doWork(Map models)
 {
 Map assetMap = newNavigationReader()
 .forAsset(getAssetId())
 .read();
 models.put("asset", assetMap);
 }
}

This example shows a sample view (Template) for the Navigation Controller.

Example 13-4 View for Navigation Controller

<%@ taglib prefix="render" uri="futuretense_cs/ftcs1_0.tld"

Chapter 13
Server-Side Java APIs

13-10

%><%-- Page/avipage --%>

 Asset Name : ${asset.name}

 Asset Id : ${asset.name}

 Asset Parent : ${asset.parents[0].name}

The newNavigationReader() method in BaseController returns a Navigation Reader.
The preceding sample Controller fetches the immediate parent of the asset in the
site plan. For example, the hierarchy of the nontouch Surfing page in avisports is
NonTouch/Home/Surfing, and the preceding Template prints the following text:

Asset Name : Surfing
Asset Id : Surfing
Asset Parent : Home

You can go to the Developer’s Samples Website and choose Navigation Reader from
the Rendering API menu for more information.

Link Builder
The Link Builder API generates a link to an asset.

This example shows a sample Controller.

Example 13-5 Link Builder Controller

package oracle.webcenter.sites.controller

import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*

public class linfo extends BaseController {

 @Override
 public void doWork(Map models) {
 LinkInfo linkInfo = newAssetLinkInfo();
 linkInfo.forAsset(getAssetId());

 Map assetMap = newAssetReader()
 .forAsset(assetID)
 .selectAll(true)
 .addAssetLinkInfo(linkInfo)
 .read();
 models.put("asset", assetMap);
 }
}

This example shows a sample Template for Link Builder.

Chapter 13
Server-Side Java APIs

13-11

Example 13-6 Link Builder Template

<%@ taglib prefix="render" uri="futuretense_cs/ftcs1_0.tld"%>

 <cs:ftcs><%-- AVIArticle/myarticle --%>
 <table border=1>
 <tr>
 <td><h4> Asset Name : </td>
 <td></h4> ${asset.name} </td>
 </tr>
 <tr>
 <td><h4>Link: </td>
 <td?</h4> $
{asset._link_}</td>
 </tr>
 </table>
 </cd:ftcs>

The preceding code samples show a simple Controller and Template for LinkInfo.
This code generates a link for an Article with the asset ID ‘1328196047443’. The
asset map contains a key, _link_. whose value is the default URL for the asset.

In the Template, ${asset._link_} should fetch the default URL of the asset. The link
would look like this:

http://localhost:8080/cs/avi/avisection/baseball.html

For more information, go to the Developer’s Samples Website and choose Link
Builder from the Rendering API menu.

Blob Link Builder
The Blob Link Builder API generates a link to a blob. If you want the blob links to be
displayed when you read an asset, you can use the addBlobLinkInfo(BlobLinkInfo
blobLinkMaker) method.

This example shows a sample Controller.

Example 13-7 Blob Link Builder Controller

package oracle.webcenter.sites.controller

import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*

public class bloblink extends BaseController
{
 public void doWork(Map models)
 {

 def mapParams = [:]
 mapParams.put("blobheadername1","Content-Type")
 mapParams.put("blobheadervalue1","image/gif")
 mapParams.put("blobheadername2","Cache-Control")

Chapter 13
Server-Side Java APIs

13-12

 mapParams.put("blobheadervalue2","no-cache")

 BlobLinkInfo blobLink = newBlobLinkInfo();
 blobLink.parameters(mapParams)

 Map assetMap = newAssetReader().forAsset(getAssetId())
 .select("Assoc_Named_Manual.*")
 .addBlobLinkInfo(blobLink)
 .read();
 models.put("asset", assetMap);
 }
}

This example shows a sample Template for Blob Link Builder.

Example 13-8 Blob Link Builder Template

<cs:ftcs><%-- Product_C/ptemplate --%>
 <table border=1>
 <tr>
 <td><h4>Link1: </td>
 <td></h4><a href='$
{asset["Assoc_Named_Manual.FSIIDocumentFile_bloblink_"]}'>
 ${asset["Assoc_Named_Manual.FSIIDocumentFile_bloblink_"]}</td>
 </tr>
 <tr>
 <td><h4>Link2: </td>
 <td></h4><a href='$
{asset["Assoc_Named_Manual.FSIIHtmlFile_bloblink_"]}'>
 ${asset["Assoc_Named_Manual.FSIIHtmlFile_bloblink_"]}</td>
 </tr>
 </table>
 </cs:ftcs>

The preceding code prints the link to any blob assets that are associated with
Product_ C with the asset ID 1114083739596. This asset has a Document_C
association, which contains two blobs, FSIIDocumentFile and FSIIHtmlFile. The
code displays links to those blobs:

/sites/BlobServer?
blobkey=id&blobnocache=true&blobwhere=1114725604909&blobcol=urldata
&blobtable=MungoBlobs&Content-Type=image/gif&Cache-Control&no-cache

/sites/BlobServer?
blobkey=id&blobnocache=true&blobwhere=1114725604910&blobcol=urldata
&blobtable=MungoBlobs&Content-Type=image/gif&Cache-Control&no-cache

If there is a vanity URL, the code displays it.

You can go to the Developer’s Samples Website and choose Blob Link Builder from
the Rendering API menu for more information.

Chapter 13
Server-Side Java APIs

13-13

Searcher
The Searcher API builds search queries over assets

Example 13-9 Searcher Controller

This example shows a sample Template for Searcher.

package oracle.webcenter.sites.controller

import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*

public class SearchController extends BaseController
{
 @RequiredParams(query="c,cid")
 public void doWork(Map models)
 {
 def results = newSearcher().searchFor("audio")
 models.put("results",results)
 }
}

This example shows a sample Template for Searcher.

Example 13-10 Searcher Template

<%@ taglib prefix="render" uri="futuretense_cs/ftcs1_0.tld"%>

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%><cs:ftcs><%-- Product_C/ptemplate --%>
 <table>
 <c:forEach var="result" items="${results}" >
 <tr>
 <td>
 ${result.id}
 </td>
 <td>
 ${result.name}
 </td>
 </tr>
 </c:forEach>
 </table>
</cs:ftcs>

The newSearcher() method in BaseController returns a Searcher. You can apply one
or more methods in the Searcher class to this Searcher. The preceding Controller
gathers all the assets that contain the word “audio”. To find all the assets that contain
the word and that belong to a particular site, you could use the inSite(String site)
method:

def results = newSearcher().inSite("FirstSiteII").searchFor("audio")

Chapter 13
Server-Side Java APIs

13-14

You can go to the Developer’s Samples Website and choose Searcher from the
Rendering API menu for more information.

Recommendation Reader
The Recommendation Reader API reads recommendations for a visitor based on
segmentation of visitors by attributes, such as gender or hobbies. One or more assets
are recommended to visitors in a Segment.

To read all the Segments a particular visitor might fall under, you can use the
readSegments() method and a Template for Recommendation Reader, as the
example shows.

Example 13-11 Method to Read Segments

 Controller Logic:
.
package oracle.webcenter.sites.controller
.
import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*
import com.fatwire.assetapi.common.AssetAccessException;
.
public class RecommendationController extends BaseController
{
 @Override
@RequiredParams(query = "segments,recommendation,sitename")
protected void doWork(Map models) {
String segments = variables.segments;
String recommendation = variables.recommendation;
String sitename = variables.sitename;
try {
List<Map> recommendations = newRecommendationReader()
.forSite(sitename)
.forSegments(segments)
.readRecommendations(recommendation);
models.put("segments", segments);
models.put("recommendation", recommendation);
models.put("sitename", sitename);
models.put("recommendations", recommendations);
} catch (AssetAccessException e) {
e.printStackTrace();
}
}
}
.
Template Logic:
.
<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><%@ taglib prefix="render" uri="futuretense_cs/render.tld"
%><%@ taglib prefix="fragment" uri="futuretense_cs/fragment.tld"
%><%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%>

Chapter 13
Server-Side Java APIs

13-15

<cs:ftcs><%-- /RecommendationTemplate --%>
<%-- Record dependencies for the Template --%>
<ics:if condition='<%=ics.GetVar("tid")!
=null%>'><ics:then><render:logdep
cid='<%=ics.GetVar("tid")%>' c="Template"/></ics:then></ics:if>
.
Segments : ${segments}
Recommendation : ${recommendation}
Site Name : ${sitename}
Recommendations :
.
 <table>
 <c:forEach var="singleRecommendation" items="${recommendations}" >
 <tr>
 <td>
 ${singleRecommendation}
 </td>
 </tr>
 </c:forEach>
 </table>
.
</cs:ftcs>

The preceding code sample displays all the recommended assets for the given
recommendation, in the given site, for the current segments.

You can go to the Developer’s Samples Website and choose Recommendation
Reader from the Rendering API menu for more information.

Table Reader
The Table Reader API queries tables managed by WebCenter Sites.

This example shows a sample Controller for Table Reader.

Example 13-12 Table Reader Controller

package oracle.webcenter.sites.controller

import com.fatwire.assetapi.data.*
import com.openmarket.xcelerate.asset.*
import oracle.fatwire.api.TableReader;

public class TableReader extends BaseController
{
 public void doWork(Map models)
 {
 TableReader tr = newTableReader()
 def myResult = tr.from("AVIArticle").execute()
 models.put("asset", myResult)
 }
}

Chapter 13
Server-Side Java APIs

13-16

The new TableReader() method is a factory method in BaseController. The
preceding code sample fetches all the data from the AVIArticle table and puts it
in a map named asset.

You can specify a SELECT parameter with the select(String select) method:

def myResult = tr.select("name").from("AVIArticle").execute()

This code returns all the values in the name column of the AVIArticle table.

You can go to the Developer’s Samples Website and choose Table Reader from the
Rendering API menu for more information.

REST APIs
WebCenter Sites provides REST APIs for accessing content in an aggregate fashion.
The APIs have self-explanatory URLs. The search APIs support large metadata to
provide a variety of features. For instance, you can get a customized list of assets of a
particular type with specific values in the chosen fields.

See the Aggregate REST API Reference for Oracle WebCenter Sites.

Sample Websites
You can use the WebCenter Sites sample websites to familiarize yourself with the
WebCenter Sites framework.

• Samples Site

See Developer’s Samples Website.

• avisports sample site

This site illustrates features in the WebCenter Sites Contributor interface such as
creating and editing assets in Form Mode and Web Mode. In addition, avisports
provides developers with sample Templates that are coded to render an asset's
Create or Edit view, or both, in Web Mode.

• REST-avisports sample website

This site has a sample reference implementation of avisports built completely with
REST APIs. The functionality aspect of the website is identical to avisports and
uses the same asset model and content. This sample site is a good reference
point for getting started with website development based on REST APIs.

Chapter 13
REST APIs

13-17

14
Developing a Server-Side Website

In the Oracle WebCenter Sites Model-View-Controller Framework, to code your
organization’s data model, you, the Java developer, can write Templates for views
in JSP and use Groovy to code business logic in Controllers, streamlined with
WebCenter Sites Java APIs. Web developers can add presentation elements to views.

Topics:

• About Developing a Server-Side Website

• Working with the Controller Interface

• Creating a Controller

• Creating a Template

• Setting Up the Home Page

• Adding Site Navigation

About Developing a Server-Side Website
In the Oracle WebCenter Sites Model-View-Controller (MVC) Framework, the model is
your data model. For the view, you create a Template or SiteEntry object. You can
use an out-of-the-box Controller or create one to tie the model and view together.

The Oracle WebCenter Sites Model-View-Controller (MVC) Framework is described in
Server-Side MVC Framework.

WebCenter Sites provides several Controllers already built with common patterns
of use, like navigation for reading assets. For information about these out-of-the-box
Controllers, see Controllers, or go to the Developer’s Samples Website and choose
Out of the Box Controllers from the Getting Started menu.

Working with the Controller Interface
The Controller interface includes the handleRequest() method that lets you write an
independent WebCenter Sites controller with independent tests.

The interface is as follows:

public interface Controller
{

 /**
 * Run the controller with all the information passed in from
setters
 * @return a ModelAndView object
 * @throws ControllerException throws this Exception if errors
occurred in processing
 */

14-1

 DependenciesAwareModelAndView handleRequest() throws
ControllerException;
}

A new WCSController is created to provide a set of default WebCenter Sites-specific
functions.

public interface WCSController extends Controller
{
 /**
 * setting an ics into the Controller, ICS is needed for retrieving
information related to Controller
 * @param ics the ICS object
 */
 public void setICS(ICS ics);

 /**
 * Get the current device
 * @return the device object
 */
 public Device getDevice();

 /**
 * set the current device
 * @param device the device
 */
 public void setDevice(Device device);

 /**
 * get the query parameters specified for this request. For multi-
valued query parameter, provide the
 * name=value for each parameter value. For eg.
attributes=name&attributes=description&attributes=tag.
 * @return the query parameters map
 */
 public Map<String, List<String>> getQueryParams();

 /**
 * get the headers for this request
 * @return the headers map
 */
 public Map<String, List<String>> getHeaders();

 /**
 * get the template parameters specified in Site for this requested
page
 * @return the template parameters map
 */
 public Map<String, String> getTemplateParams();

 /**
 * get the current view
 * @return the view information
 */

Chapter 14
Working with the Controller Interface

14-2

 public String getViewMarkup();

 /**
 * get the template map information
 * @return the template map
 */
 public List<Map<String, String>> getTemplateMap();

 /**
 * get the current session variables for the request
 * @return the session variables
 */
 public Map<String, String> getSessionVariables();

 /**
 * get the variables that were available in current ICS
 * @return the variables
 */
 public Map<String, String> getVariables();

 /**
 * get the element catalog parameters specified in Site for this
requested page
 * @return the element catalog parameters map
 */
 public Map<String, String> getElementCatalogParameters();

 /**
 * setting the current view into the Controller
 * @param view the current view markup
 */
 void setViewMarkup(String view);

 /**
 * setting the the redirect view pagename into the Controller
 * @param redirectViewPagename the redirect view pagename
 */
 void setRedirectViewPagename(String redirectViewPagename);

 /**
 * Getting the redirect view pagename
 * @return the redreict view pagename
 */
 String getRedirectViewPagename();

 /**
 * Set all request parameters into Controller
 * @param queryParams the request parameters
 */
 void setQueryParams(Map<String, List<String>> queryParams);

 /**
 * Set all request headers into the view
 * @param headers the request headers

Chapter 14
Working with the Controller Interface

14-3

 */
 void setHeaders(Map<String, List<String>> headers);

 /**
 * Set all template parameters related to current view into
Controller
 * @param templateParams the template parameters (SiteCatalog
parameters)
 */
 void setTemplateParams(Map<String, String> templateParams);

 /**
 * Set all template map information into the Controller
 * @param templateMap the list of template map information for
current page
 */
 void setTemplateMap(List<Map<String, String>> templateMap);

 /**
 * Set all ics session variables into the view
 * @param sessionVariables the current ics session variables
 */
 void setSessionVariables(Map<String, String> sessionVariables);

 /**
 * Set all ics variables into the view
 * @param variables the current ics variables
 */
 void setVariables(Map<String, String> variables);

 /**
 * Set all ElementCatalog parameters into the view
 * @param elementCatalogParameters the ElementCatalog parameters
 */
 void setElementCatalogParameters(Map<String, String>
elementCatalogParameters);
}

The default BaseController implements WCSController to provide default WebCenter
Sites functionalities to customers who have implemented Controllers that do not
provide. WCSController makes the access to assets and other WebCenter Sites
data easy. A new set of annotations allows customers to inject certain WebCenter
Sites-specific properties into the Controller. Specifically, Oracle has added annotations
to inject these properties: AssetReader, NavigationReader, ics variables, ics session
variables, headers, query parameters, and ControllerInvoker (allows customers to
pass a Controller name. It invokes the passed-in Controller in the current Controller).
Sample Controllers that use annotations to provide basic common functionalites are as
follows:

Hello World Controller

package oracle.webcenter.sites.controller

Chapter 14
Working with the Controller Interface

14-4

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.IItem
import COM.FutureTense.Cache.AccessedItem
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIIHelloWorld implements Controller
{
 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 models.put("text", "Hello World");

 return new ModelAndViewInstance(models);
 }
}

This Controller implements the Controller interface and only sets a “Hello World”
message into the Model as a simple demonstration.

AssetReader Controller

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIIAssetReader implements Controller
{
 @InitAssetReader (assetType="AVIArticle", assetId=1328196047241)
 private AssetReader assetReader;

 @InitAssetReader (select="name,description")
 private AssetReader assetReaderWithoutId;

 @InitRequestValuesMap (type=RequestValuesType.VARIABLES)
 private Map<String, Object> icsVariables;

Chapter 14
Working with the Controller Interface

14-5

 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 models.put("assetReader", assetReader.read());

models.put("assetReaderWithoutId",assetReaderWithoutId.forAsset((String
)icsVariables.get("c"),
Long.parseLong((String)icsVariables.get("cid"))).read());
 return new ModelAndViewInstance(models);

 }
}

AssetReader Controller uses three annotations to initialize two AssetReaders to
enable them for use in the Controller. The first AssetReader is initialized with
assetType and assetId passed in through annotation parameters. The second one
initializes the AssetReader assetType/assetId inside the handleRequest method using
the values from icsVariables. Each AssetReader reads the specified asset and puts
the results into the Model for display.

NavigationReader Controller

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIINavigationReader implements Controller
{
 @InitNavigationReader (assetType = "Page", assetId = 1346043544347)
 private NavigationReader navigationReader;

 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {

Chapter 14
Working with the Controller Interface

14-6

 models.put("navigationReader", navigationReader.read());
 return new ModelAndViewInstance(models);
 }
}

Like the AssetReader Controller, the NavigationReader Controller uses annotations to
initialize a NavigationReader in the Controller so it can be used by users to access the
Navigation information from WebCenter Sites.

Variables, Headers, Session Variables and Request Parameters

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIIVariablesAnnotations implements Controller
{
 @InitRequestValuesMap (type=RequestValuesType.HEADERS)
 private Map<String, Object> headers;

 @InitRequestValuesMap (type=RequestValuesType.VARIABLES)
 private Map<String, Object> icsVariables;

 @InitRequestValuesMap (type=RequestValuesType.QUERY_PARAMS)
 private Map<String, Object> params;

 @InitRequestValuesMap (type=RequestValuesType.SESSION_VARIABLES)
 private Map<String, Object> icsSessionVariables;

 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 models.put("headers", headers);
 models.put("variables", icsVariables);
 models.put("sessionVariables", icsSessionVariables);
 models.put("queryParams", params);
 return new ModelAndViewInstance(models);
 }
}

Chapter 14
Working with the Controller Interface

14-7

These annotations populate a set of variables in the Controller from headers, ics
variables, ics session variables and request parameters to be used in the Controller.

Logging a Dependency from Controller

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.IItem
import COM.FutureTense.Cache.AccessedItem
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIILogDeps implements Controller
{
 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 models.put("text", "Log Controller Deps");

 List<IItem> items = new ArrayList<IItem>();
 items.add(new AccessedItem("Deps logged from Controller"));
 return new ModelAndViewInstance(models, items);
 }
}

This Controller demonstrates how a user-defined dependency could be logged from
Controller.

Displaying a View Markup from Controller

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIIViewMarkup implements Controller

Chapter 14
Working with the Controller Interface

14-8

{
 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 models.put("text", "Some Text");
 return new ModelAndViewInstance(models, null, "Display this view
markup text from Controller", null);
 }
}

This Controller informs Webcenter Sites that original page is not displayed, instead,
the text in the viewMarkupText returned from Controller is returned.

Redirecting the View to Another WebCenter Sites Page

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIIRedirectView implements Controller
{
 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 return new ModelAndViewInstance(models, null, null, "FirstSiteII/
FSIIRedirectedView");
 }
}

This Controller instructs WebCenter Sites to redirect a page to another WebCenter
Sites page content.

Chapter 14
Working with the Controller Interface

14-9

Calling Another Controller

package oracle.webcenter.sites.controller

import COM.FutureTense.Common.ControllerException
import COM.FutureTense.Interfaces.Controller
import COM.FutureTense.Interfaces.DependenciesAwareModelAndView
import COM.FutureTense.Interfaces.IItem
import COM.FutureTense.Cache.AccessedItem
import COM.FutureTense.Interfaces.ModelAndView
import COM.FutureTense.Interfaces.ModelAndViewInstance
import com.fatwire.assetapi.data.*
import com.fatwire.assetapi.site.NavigationReader
import com.openmarket.xcelerate.asset.*
import com.fatwire.assetapi.fragment.*

public class FSIICallAnotherController implements Controller
{
 @InjectControllerInvoker (controllerName = "FSIIHelloWorld", pagename
= "FirstSiteII/FSIIHelloWorld")
 private ControllerInvoker controllerInvoker;

 private Map models = new HashMap();
 public Map getModels()
 {
 return models;
 }

 public DependenciesAwareModelAndView handleRequest() throws
ControllerException
 {
 ModelAndView modelAndView = controllerInvoker.invoke(new HashMap());

 models.putAll(modelAndView.getModel());

 return new ModelAndViewInstance(models);
 }
}

This Controller uses annotations to initialize a ControllerInvoker with the Controller
name so that the passed-in Controller could be invoked inside this Controller.

Creating a Controller
Creating a Controllerwith the Create New Controller wizard in the Admin interface of
Oracle WebCenter Sites is quick and easy. All you need to do is give your Controller
a name and add its business logic to the wizard.

In a similar way, you can create Controllers with Oracle Developer Tools in an
Eclipse IDE. See Managing WebCenter Sites Resources in Eclipse.

Chapter 14
Creating a Controller

14-10

To create a Controller through the Admin interface:

1. On the New page of the WebCenter Sites Admin interface, click New Controller in
the asset type table.

The Create New Controller wizard opens.

2. In the Name field, enter a name for the new Controller.

3. (Optional) In the Description field, enter a description of the new Controller.

4. In the Controller Logic field, add your business logic code.

5. Click the Save icon.

For more information about developing Controllers, go to the Developer’s Samples
Website and choose Controller from the Site Rendering menu.

Creating a Template
The WebCenter Sites Admin interface’s easy-to-use template form lets you can create
a Template asset quickly.

To create a Template using the Admin interface:

1. Click New.

2. In the table on the right, click the New Template link next to Template.

3. Fill in the Template form.

4. Save the Template.

Chapter 14
Creating a Template

14-11

See Creating Template Assets.

Setting Up the Home Page
Design a modular home page for your website that uses common elements. You can
use the common code of those elements in several locations or contexts.

For information about setting up a home page for your website, see these topics:

• Creating Basic Modular Design

• Home Element

Adding Site Navigation
Oracle WebCenter Sites provides Navigation Reader, Link Builder, and Bob Link
Builder Java APIs that you can use to create a site navigation for your website.

You can add site navigation for your website with the following Java APIs:

• Navigation Reader

• Link Builder

• Blob Link Builder

For more information about these Java APIs, go to the Rendering API menu on the
Developer’s Samples Website.

Chapter 14
Setting Up the Home Page

14-12

15
Developing a Client-Side Website

Would you like to develop a website for highly interactive applications and mobile
sites? Your site can be a responsive application, a single-page application, and much
more. Oracle WebCenter Sites APIs let you create such websites to render on client
side and run in the browser client.

Before proceeding further, it is recommended that you familiarize yourself with the
WebCenter Sites Aggregate REST services. See the Aggregate REST API Reference
for Oracle WebCenter Sites.

Topics:

• About Client-Side Websites

• REST Calls for Developing REST-Avisports: Examples

About Client-Side Websites
REST APIs enable you to build websites that render on the client side and execute
entirely in the browser client. Such websites include, but are not limited to, single-page
applications. These websites are particularly useful for highly interactive applications
(or portions of websites) and mobile sites.

In client-side rendering, usually client-side libraries generate the mark up, which helps
in limiting the interactions between the client and server to just data elements. This
interaction takes place usually in the form of JSON. As users navigate from page
to page, requests are made to the server for specific data components while the
JavaScript to generate the markup stays loaded in the browser. REST APIs mirror
features of server-side Java APIs in general.

REST services in WebCenter Sites are exposed to clients so that they can get data
and build their custom sites using their Client side frameworks. Client-Side APIs
enable you to build JavaScript-based web applications that have no server-side logic
or JSPs. These APIs can aggregate asset data for an entire page in a single REST
call. A single call is sufficient to retrieve content up to any level of depth, its related
information, and even an entire website.

Responses to REST services can potentially be cached in the browser cache, which
can lead to a better performing experience. These APIs let consumers retrieve data
from sites and present it in their own templates, without having to use WebCenter
Sites templates. This feature allows customers to use WebCenter Sites as a data
storage.

REST Calls for Developing REST-Avisports: Examples
REST-avisports is a sample website that demonstrates client-side website
development using the WebCenter Sites REST API. This sample website is included in
the WebCenter Sites installation download.

15-1

To configure this website, see Configuring and Deploying the REST-avisports Sample
Site in Installing and Configuring Oracle WebCenter Sites.

This section provides some examples of REST calls used in developing the REST-
avisports client-side website, which is similar to the avisports sample site. These
examples give site developers some ideas about efficiently developing a full-fledged
client-side website using REST calls. Developing the REST-avisports website involves
the following:

• Getting Navigation Menus

• Getting the Home Page

• Getting an Additional Website Page

• Calling an Article from a Page

• Calling a Collection Resource with Pagination

• Calling a Search Resource

• Calling Page Segments

Getting Navigation Menus
The following call renders Home and Skiing navigation menus on the avisports sample
website:

http://<host>:<port>/<context>/REST/resources/v1/
aggregates/avisports/navigation/Default?
assetDepth=0&fields=Page(children,name,id);SiteNavigation(children)&expand=Page

This call uses the following query parameters: assetDepth, fields, and expand.

The response looks something like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-2

Figure 15-1 Navigation Response

The navigation shown in this figure is rendered:

Figure 15-2 Navigation Rendered from the JSON Response

Getting the Home Page
The following call renders the Home page asset on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1327351719456?
assetDepth=1&fields=Page(banner,teaserImages,teaserText,bannerText);AVIImage(imag
eFile,width,height)&expand=Page,AVIImage

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-3

This call uses the following query parameters: assetDepth, fields, and expand.

The response looks something like this:

Figure 15-3 JSON Response to Render the Home Page

The page shown in this image is rendered:

Figure 15-4 Avisports Home Page Rendered from the JSON Response

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-4

Getting an Additional Website Page
The following call renders the Skiing page on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1329326970440?
assetDepth=2&fields=AVIArticle(id,relatedImage,abstract,headline);Page(banner,tit
leContent1,titleContent2,Assoc_Named_contentList1,Assoc_Named_contentList2);AVIIm
age(imageFile,smallThumbnail,ClargeThumbnail);YouTube(externalid)&expand=Page,AVI
Image,AVIArticle,YouTube

This call uses the following query parameters: assetDepth, fields, and expand.

The response looks something like this:

Figure 15-5 JSON Response to Render the Skiing Page

The Skiing page shown in this image is rendered on the avisports sample website.

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-5

Figure 15-6 Skiing Page Rendered from the JSON Response

Calling an Article from a Page
The following call renders an article that is displayed in the Also In the News section
on the Skiing page on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/AVIArticle/
1328196047241?
assetDepth=2&fields=category,author,postDate,subheadline,relatedLinks,relatedStor
ies,relatedImage,body;AVIArticle(id,headline,abstract,relatedImage);AVIImage(imag
eFile,caption,width,height,sidebarThumbnail)&expand=AVIArticle,AVIImage

This call uses the following query parameters: assetDepth, fields, and expand.

The response looks something like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-6

Figure 15-7 JSON Response to Render an Article Displayed on the Skiing Page

The article shown in this figure is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-7

Figure 15-8 Article Rendered from the JSON Response

Calling a Collection Resource with Pagination
The following call renders a collection resource with pagination (with navigation
buttons on the bottom of the page) on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/
ContentQuery/1395380847207/items?
assetDepth=1&fields=AVIArticle(id,headline,abstract,relatedImage);AVIImage(imageF
ile,smallThumbnail)&expand=AVIArticle,AVIImage&offset=0&limit=8

This call uses the following query parameters: assetDepth, fields, and expand.

The response looks something like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-8

Figure 15-9 JSON Response to Render a Collection Resource with Pagination

The page shown in this figure is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-9

Figure 15-10 Collection Resource Rendered from the JSON Response

Calling a Search Resource
The following call renders the search results (which is a collection resource) for the
criterion "How To" on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/search/sites/avisports/types/
AVIArticle/assets?field:name:startswith=How+to

This call uses the following query parameters: field name starts with.

The JSON response looks something like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-10

Figure 15-11 JSON Response to Render Search Results

The page shown in this figure is rendered:

Figure 15-12 Search Results from the JSON Response

Calling Page Segments
Topics:

• Calling a Page Without Segments

• Calling a Page with Segments That Target Specific Visitors

• Calling a Page with Segments That Target Different Visitors

• Calling a Page with Segments That Target More Visitors

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-11

Calling a Page Without Segments
The following call renders the Running page without segments on the avisports
sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1361217259137?
assetDepth=1&fields=AVIArticle(id,relatedImage,abstract,headline);Page(banner,rec
ommendation);AVIImage(imageFile,smallThumbnail,largeThumbnail);AdvCols(items)&exp
and=Page,AVIImage,AdvCols,AVIArticle

This call uses the following query parameters: assetDepth, fields, and expand.

The JSON response looks like this:

Figure 15-13 JSON Response to Render a Page Without Segments

The page shown in this image is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-12

Figure 15-14 Page with No Segments Rendered

Calling a Page with Segments That Target Specific Visitors
The following call renders the Running page with segments that target men on the
avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1361217259137?
assetDepth=1&fields=AVIArticle(id,relatedImage,abstract,headline);Page(banner,rec
ommendation);AVIImage(imageFile,smallThumbnail,largeThumbnail);AdvCols(items)&exp
and=Page,AVIImage,AdvCols,AVIArticle&segments=Male

This call uses the following query parameters: assetDepth, fields, expand, and
segments.

The JSON response looks like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-13

Figure 15-15 JSON Response to Render a Page with Segments That Target
Men

The page shown in this figure is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-14

Figure 15-16 Rendered Page with Segments That Target Men

Calling a Page with Segments That Target Different Visitors
The following call renders the Running page with segments that target women on the
avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1361217259137?
assetDepth=1&fields=AVIArticle(id,relatedImage,abstract,headline);Page(banner,rec
ommendation);AVIImage(imageFile,smallThumbnail,largeThumbnail);AdvCols(items)&exp
and=Pag,AVIImage,AdvCols,AVIArticle&segments=Female

This call uses the following query parameters: assetDepth, fields, expand, and
segments.

The JSON response looks like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-15

Figure 15-17 JSON Response to Render a Page with Segments That Target
Women

The page shown in this image is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-16

Figure 15-18 Rendered Page with Segments That Target Women

Calling a Page with Segments That Target More Visitors
The following call renders the Running page with segments that target both women
and men on the avisports sample website:

http://<host>:<port>/<context>/REST/resources/v1/aggregates/avisports/Page/
1361217259137?
assetDepth=1&fields=AVIArticle(id,relatedImage,abstract,headline);Page(banner,rec
ommendation);AVIImage(imageFile,smallThumbnail,largeThumbnail);AdvCols(items)&exp
and=Page,AVIImage,AdvCols,AVIArticle&segments=Male,Female

This call uses the following query parameters: assetDepth, fields, expand, and
segments.

The JSON response looks like this:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-17

Figure 15-19 JSON Response to Render a Page with Segments That Target
Women and Men

The page shown in this image is rendered:

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-18

Figure 15-20 Rendered Page with Segments That Target Women and Men

Chapter 15
REST Calls for Developing REST-Avisports: Examples

15-19

16
Website Development with Tag
Technologies

For backwards compatibility, Oracle WebCenter Sites continues to provide legacy tag
technologies for developing websites. You can code with WebCenter Sites tags and
Java methods, and for templates you can use XML and JSP.

For information about the legacy WebCenter Sites tag technologies, see these topics:

• About Choosing a Coding Language

• About the Oracle WebCenter Sites Context

• Understanding WebCenter Sites JSP

• Understanding WebCenter Sites XML

• Understanding WebCenter Sites Tags

• About Variables Supported in WebCenter Sites

• Other WebCenter Sites Storage Constructs

• About Values for Special Characters

Note:

For information about the newer technologies, see Website Development
with the MVC Framework and APIs.

About Choosing a Coding Language
Several scripting and markup languages, including HTML, XML, JSP, CSS, and
JavaScript let you write elements and templates. But, WebCenter Sites only evaluates
XML and JSP. Choose your coding or markup language based on what the element or
template that you are creating does.

XML or JSP are suitable for elements that display content that may change, such
as a newspaper article. This is because such elements use logic to retrieve their
content from the WebCenter Sites database, and thus are managed using WebCenter
Sites XML or JSP tags.

You typically use HTML and XML for page layout and JSP and Java for logic.
WebCenter Sites also has a Java API, which you will use in conjunction with
WebCenter Sites JSP tags if you choose JSP as your coding language.

This table lists the situations to which each language is best suited:

16-1

Table 16-1 Coding Language Usage

Code When to Use

XML The element contains mostly text, with few loops and conditionals.

JSP • The element requires conditional operators, or relational
operators other than = or !=.

• The element uses many loops. Loops perform better in JSP
than in XML.

• The element contains calls to Java code.

Note that elements written in XML or JSP can call any type of element, but you cannot
mix XML and JSP in the same element. For example, an element written in either XML
or JSP can call another element written in HTML, XML, or JSP. However, an element
written in HTML cannot call an element written in XML or JSP.

About the Oracle WebCenter Sites Context
You code an Oracle WebCenter Sites project within the Oracle WebCenter Sites
context. The WebCenter Sites context provides access to the Java servlets that
compose WebCenter Sites, and to the WebCenter Sites Java objects whose methods
and tags allow you access to WebCenter Sites functionality.

You code in the WebCenter Sites context no matter what language you code your
project in; WebCenter Sites XML and JSP tags provide an easy-to use interface to
the WebCenter Sites Java objects, so that even web designers with little or no Java
experience can create WebCenter Sites web pages.

The ICS Object
When you are coding for Oracle WebCenter Sites, you often access the methods and
tags of the Interface to WebCenter Sites (ICS) object. The ICS object encapsulates
some WebCenter Sites core functionality, allowing you to access servlets that control
the WebCenter Sites tree (the TreeManager servlet) and the input of data into the
database (the CatalogManager servlet).

You also use ICS methods and tags to perform tasks such as creating and
displaying variables and using if/then statements to perform tasks based on
specified conditions. For information about ICS object's methods and tags, see the
Tag Reference for Oracle WebCenter Sites Reference.

Note:

The objects stored in the ICS object are vulnerable to the modifications made
by different threads. Therefore, you must ensure that the ICS object is used
in a thread safe manner.

The FTCS tag
Each WebCenter Sites element or template begins and ends with the ftcs tag.
This tag creates the WebCenter Sites context, alerting WebCenter Sites that code

Chapter 16
About the Oracle WebCenter Sites Context

16-2

contained within the opening and closing ftcs tags will contain WebCenter Sites tags
and access ICS methods.

Elements and templates that you create using the WebCenter Sites user interface or
the Oracle WebCenter Sites Explorer tool include the opening and closing ftcs tags
after the standard directives. You must code within the opening and closing ftcs tags;
WebCenter Sites is unaware of any code which falls outside of these tags.

If you create element and template code using some other method, you must add the
opening ftcs tag after your directives, and use the closing ftcs tag as the last line of
your code.

Understanding WebCenter Sites JSP
JSP programmers use a set of standard tools, including directives, actions, and
JSP objects that you too have access to. Sometimes, however, you must substitute
a WebCenter Sites tag for a JSP directive or action, or access a WebCenter
Sites object rather than one of JSP's implicit objects.

These topics detail the differences between standard JSP and WebCenter Sites JSP,
and how standard JSP functionality maps to WebCenter Sites tags and methods:

• About the WebCenter Sites Standard Beginning

• About JSP Implicit Objects

• About JSP Syntax

• About JSP Actions

• About JSP Declarations

• About Scriptlets and Expressions

• About JSP Directives

• About Oracle WebCenter Sites Tag Libraries

About the WebCenter Sites Standard Beginning
Template assets, CSElement assets, and non-asset elements that you create using
the WebCenter Sites user interface or Explorer are automatically seeded with a
standard beginning.

The standard beginning for a JSP element in Explorer follows:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%//
// elementName
//
// INPUT
//
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>

Chapter 16
Understanding WebCenter Sites JSP

16-3

<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>

<!-- user code here -->

</cs:ftcs>

Template and CSElement assets that you create using the WebCenter Sites user
interface include a standard beginning similar to the preceding code sample. The
standard beginning for these assets imports additional tag libraries for use with basic
assets and includes tags that log dependencies between the Template and CSElement
assets and the content that they render.

If you use a tool other than Explorer or the WebCenter Sites user interface to create
your elements and templates, you must copy the standard beginning into your code
verbatim.

The following sections explain the standard beginning for Explorer.

Taglib Directives
The following taglib directives import the base tag libraries that you will use
with WebCenter Sites. Template and CSElement assets that you create using the
WebCenter Sites user interface include additional taglib directives in seed code:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>

The first directive imports the ftcs1_0 tags, which create the FTCS context. These
tags are used in each template or element that you create, and indicate that the code
enclosed by them will be controlled by WebCenter Sites.

The second directive imports the ics tags, which provide access to the WebCenter
Sites core functionality.

The third directive imports the satellite tags, which are for use with Satellite Server.

For more information about these tag libraries, see About Oracle WebCenter Sites Tag
Libraries.

For information about commonly used tags that are found in these tag libraries, see
Understanding WebCenter Sites Tags.

To add taglib directives to these defaults, modify and save the OpenMarket/
Xcelerate/AssetType/Template/ModelJsp.xml file.

Page Directives
The following page directives import the base Java interfaces that you will use with
WebCenter Sites:

<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>

Chapter 16
Understanding WebCenter Sites JSP

16-4

The first page directive imports the FTValList interface, which creates a list of name/
value pairs that you use to pass arguments to WebCenter Sites subsystems like the
CatalogManager and TreeManager.

The second page directive imports the ICS interface, which provides access to the
core WebCenter Sites functionality.

The third page directive imports the IList interface, which contains the methods to
access the rows in a WebCenter Sites query or list object. It also contains the methods
that a third party must implement when attempting to construct and register a list
object for use within an WebCenter Sites XML page.

The fourth page directive imports the Utilities interface, which provides a simple
interface for some common tasks such as formatting dates, reading and writing files,
and sending email.

The fifth page directive imports the ftErrors class, which contains error codes.

The sixth page directive imports the ftMessage class, which contains error messages
used by WebCenter Sites.

To add page directives to the standard directives for JSP elements, modify and save
the OpenMarket/Xcelerate/AssetType/Template/ModelJsp.xml file.

The cs:ftcs Tag
Each WebCenter Sites JSP template or element must have the cs:ftcs tag as its
first and last tags. This tag creates the WebCenter Sites context, alerting WebCenter
Sites that code contained within the opening and closing cs:ftcs tags will contain
WebCenter Sites tags.

You must code within the opening and closing cs:ftcs tags; WebCenter Sites is
unaware of any code which falls outside of these tags.

About JSP Implicit Objects
JSP provides several implicit objects that are available for developers to use. In the
WebCenter Sites context, however, you are often dealing with the WebCenter Sites
objects, and should use WebCenter Sites JSP tags and Java methods to access these
objects, instead of using JSP's implicit objects.

This table maps JSP's implicit objects and some commonly used methods to the
WebCenter Sites tag or method that you should use to replace them.

Table 16-2 JSP Implicit Object Mapping

Object Method WebCenter Sites Tag or Method

request getParameter ics:getvar tag

request getParameterNames ICS.GetVars() method

request getCookie ics:getCookie tag

response addCookie satellite:cookie tag

session getAttribute ics:getssvar tag

session setAttribute ics:setssvar tag

Chapter 16
Understanding WebCenter Sites JSP

16-5

Table 16-2 (Cont.) JSP Implicit Object Mapping

Object Method WebCenter Sites Tag or Method

out println ics:getvar tag or render:stream
tag

About JSP Syntax
Oracle WebCenter Sites uses standard JSP syntax. When you are nesting tags, for
example, using a JSP expression as the value of a JSP tag's parameter, remember to
use single quotes to contain the expression, as in the following example:

name='<%=ics.GetVar("myVariable")%>'

About JSP Actions
Standard JSP allows developers to use several different actions. This table describes
what actions should be replaced with WebCenter Sites tags and which can be used as
usual.

Table 16-3 JSP Actions vs. WebCenter Sites Tags

Action WebCenter Sites

<jsp:forward> Use the render:satellitepage or render:callelement tags
instead.

<jsp:getproperty> Use this for custom Java Beans. to find the value of one of the
WebCenter Sites properties, use the <ics:getproperty> tag.

<jsp:include> Use the render:satellitepage or render:callelement tags
instead.

<jsp:setProperty> Use this to set properties in custom Java Beans. Use the
WebCenter Sites Property Management Tool to set WebCenter
Sites properties.

<jsp:useBean> Use this for custom Java Beans.

About JSP Declarations
In standard JSP, you usually declare variables within a JSP declaration. In WebCenter
Sites, you use the ics:setvar tag to declare variables that are available in the
WebCenter Sites context.

For more information about WebCenter Sites variables, see About Variables
Supported in WebCenter Sites.

About Scriptlets and Expressions
You can use scriptlets and expressions without any variation from normal JSP usage.

Chapter 16
Understanding WebCenter Sites JSP

16-6

When you use an expression as the value of the parameter for a WebCenter Sites JSP
tag, however, be sure that you nest quotation marks correctly, as described in About
JSP Syntax.

About JSP Directives
When you are coding JSP in a WebCenter Sites context, there are some caveats for
using directives, which are outlined in this table:

Table 16-4 JSP Directives vs. WebCenter Sites Tags

Directive WebCenter Sites

IncludeDirective Use the render:satellitepage or render:callelement tags
to include other files in your JSP pages.

Page Directive Elements or templates that you create using the WebCenter Sites
user interface or the Oracle WebCenter Sites Explorer tool are
automatically seeded with standard page directives.

In addition to the standard directives, you must add one other
page directive to set the contentType for each WebCenter Sites
element or template that you create.

Set your page's content type to text/html and the character set to
UTF-8 by providing the following page directive as the first line of
every WebCenter Sites JSP file:

<%@ page contentType="text/html; charset=UTF-8" %>

Taglib Directive WebCenter Sites automatically seeds your templates and
elements with commonly used taglib directives.

You can add additional WebCenter Sites taglib directives to an
element or Template asset as needed.

About Oracle WebCenter Sites Tag Libraries
WebCenter Sites has a series of JSP tag libraries that correspond to functions in the
WebCenter Sites APIs.

The table below lists the WebCenter Sites tag libraries and describes their functions.
Use this table as a reference when deciding which tag libraries to import into your
JSPs.

Table 16-5 Tag Libraries for Both Basic and Flex Assets

Tag Library Description

acl.tld Tags for creating and manipulating Access Control Lists.

date.tld Tags that convert dates with year, month, day, and optional
hour, minute, and am/pm fields into epoch format long integers
representing milliseconds since Jan 1, 1970, 0:00 GMT. Date tags
also convert long integers into dates.

dir.tld Directory Services tags.

ftcs1_0.tld Tags that create the FTCS context. These tags are used in each
template or element that you create, and indicate that the code
enclosed by them will be controlled by WebCenter Sites.

Chapter 16
Understanding WebCenter Sites JSP

16-7

Table 16-5 (Cont.) Tag Libraries for Both Basic and Flex Assets

Tag Library Description

ics.tld Tags which provide access to core WebCenter Sites functionality,
including access to the CatalogManager and TreeManager
commands, and basic coding constructs like if/then statements.

insite.tld Tags for Web Mode.

localestring.tld Tags for localizing text strings.

name.tld Tags that access the name of the user who is currently logged
in to WebCenter Sites and manipulate user names in directory
services.

object.tld Tags for manipulating WebCenter Sites objects.

property.tld Tags for retrieving values from WebCenter Sites property files.

render.tld Tags that render basic assets.

tags for working with
satellite server

Many of these tags have RENDER equivalents (as defined in
render.tld) that are preferred for building sites with WebCenter
Sites.

soap.tld WebCenter Sites SOAP tags.

time.tld Tags that get and set the timing for determining the performance
of elements.

user.tld Tags to log users in and out of WebCenter Sites.

webservices.tld Web services tags that allow you to consume certain types of
public websites as part of a WebCenter Sites page.

This table shows data on tag libraries for basic assets.

Table 16-6 Tag Libraries for Basic Assets

Tag Library Description

asset.tld Tags that retrieve and manipulate basic assets.

siteplan.tld Tags that allow access to the site navigation tree. You use these
tags to create navigation for a site that uses basic assets.

This table shows data on tag libraries for flex assets.

Table 16-7 Tag Libraries for Flex Assets

Tag Library Description

assetset.tld Tags for creating assetsets with flex assets.

blobservice.tld Tags for retrieving and manipulating blobs that are attributes of
flex assets.

calculator.tld Tags that provide basic calculator and Boolean functions.

cart.tld Tags that allow you to add, delete, and otherwise manipulate
items in a shopping cart object.

Chapter 16
Understanding WebCenter Sites JSP

16-8

Table 16-7 (Cont.) Tag Libraries for Flex Assets

Tag Library Description

cartset.tld Tags that allow you store, retrieve, delete, and list shopping cart
objects for a registered buyer.

commercecontext.tld Tags that access the objects in the visitor context.

currency.tld Tags that convert floating point values and currency strings, and
perform formatting and rounding operations on currency strings.

decimal.tld Tags that format floating point values as decimal objects in
different locales.

hash.tld Tags that allow you to cast an IList as a hash table and search it
by key.

listobject.tld Tags that construct WebCenter Sites resultset lists, which are
used throughout your elements as arguments for other tags.

locale1.tld Tags that generate a locale object, which is used to describe the
locale for various other tags in the system.

misc.tld Miscellaneous tags, including a tag that returns the names of all
the columns in an input list

searchstate.tld Tags for creating searchstates to constrain groups of flex assets
(assetsets).

session.tld A tag that flushes all stored objects for a given session.

string.tld Tags that perform string manipulations.

textformat.tld Tags that format text.

vdm.tld Visitor Data Management tags, which enable you to record and
retrieve information about website visitors from WebCenter Sites,
or from other databases.

Understanding WebCenter Sites XML
WebCenter Sites XML uses the standard XML syntax and is defined by the
futuretense_cs.dtd. As with WebCenter Sites JSP tags, WebCenter Sites XML tags
provide access to WebCenter Sites servlets and objects.

See these topics for what you need to be aware of when coding with WebCenter Sites
XML:

WebCenter Sites Standard Beginning
Templates and elements that you create using the Admin interface or the Oracle
WebCenter Sites Explorer tool are seeded with a standard beginning.

<?xml version="1.0" ?>
<!DOCTYPE ftcs SYSTEM "futuretense_cs.dtd">
<ftcs version="1.2">
</ftcs>

If you use a tool other than the WebCenter Sites user interface or the Explorer tool to
create your elements and templates, you must copy this code into them verbatim.

Chapter 16
Understanding WebCenter Sites XML

16-9

The following sections explain this standard beginning.

XML Version and Encoding
The first line in any WebCenter Sites XML template or element must set the XML
version, as follows:

<?xml version="1.0"?>

Note that in order for your element to run, <?xml version="1.0"?> must be the first
line in the element, with no spaces before the text. The line must also have a hard
return at the end, placing it on its own line.

Set the encoding for this template or element as follows:

<?xml version="1.0" encoding="utf-8"?>

The DTD File
WebCenter Sites XML is defined by the futuretense_cs.dtd file. You must import
this file into each WebCenter Sites element or template that you code by entering the
following line immediately after the XML version statement:

<!DOCTYPE ftcs SYSTEM "futuretense_cs.dtd">

The FTCS Tag
Each WebCenter Sites XML template or element must have the ftcs tag as its first
and last tags. This tag creates the WebCenter Sites context, alerting WebCenter Sites
that code contained within the opening and closing ftcs tags will contain WebCenter
Sites tags.

You must code within the opening and closing ftcs tags; WebCenter Sites is unaware
of any code which falls outside of these tags.

XML Entities and Reserved Characters
Because symbols such as < and > are reserved characters in XML, you must not
place them in your content. For example, the following code confuses the XML parser
because the less-than operator (<) is used inside text:

<P>4 < 7</P>

You must use character entities in place of reserved characters. Character entities
begin with &# and end with a semicolon. Between the &# and the semicolon, you
specify the decimal Latin-1 (a superset of ASCII) value of the character. For example,
the decimal Latin-1 value of the < character is 60, so the correct way to code the
preceding line in XML is:

<P>4 < 7</P>

See About Values for Special Characters for a list of these character entities.

Chapter 16
Understanding WebCenter Sites XML

16-10

Note:

White spaces can cause issues when using JSP to generate an XML
response. It is not as simple as adding the XML as a content-type to the
server to allow the response to work. The JSP must be configured in a way
that white space will not be inserted into the beginning of the XML file.

XML Parsing Errors
The XML parser that processes WebCenter Sites tags ensures that the tags are
syntactically correct. This simplifies tracking down hard-to-find problems related to
tagging syntax errors. A misspelled tag name is not reported as an error. This is
because the XML parser doesn't require all tag names to exist in the DTD.

When a page request is made to a WebCenter Sites system and an XML syntax
error is detected, the results streamed back will contain useful information to help
you locate the problem. The results include a general error description, followed by
the line/column location of the error. For example, the following error reports a bad
parameter name:

Illegal attribute name NAM Illegal attribute name NAM
Location: null(6,11)
Context:

And the next error reports an incorrect tag nesting:

Close tag IF does not match start tag THEN Close tag IF does not match start tag
THEN
Location: null(13,3)
Context:

The XML parser also detects run-time errors. These are errors where the XML tags
are syntactically correct, however, some error in the structure is detected during
processing. For example, the following error reports an invalid use of ARGUMENT:

Failed to run template:c:\FutureTense\elements\dan.xml Runtime error Argument
invalid [Argument 5]
Containing tag: FTCS

Understanding WebCenter Sites Tags
WebCenter Sites has an extensive set of tags in both JSP and XML that allow you
to access the various functions of WebCenter Sites and its product family. You use
these tags in conjunction with HTML, Java, JavaScript, and custom tags, to code your
website.

This section provides an overview of the tags that you are most likely to use in your
Template assets and elements. For information about WebCenter Sites tags, see the
Tag Reference for Oracle WebCenter Sites Reference.

The tags discussed here are arranged by usage, as follows:

• Tags That Create the WebCenter Sites Context

• Tags That Handle Variables

Chapter 16
Understanding WebCenter Sites Tags

16-11

• Tags That Call Pages and Elements

• Tags That Create URLs

• Tags That Control Caching

• Tags That Set Cookies

• Programming Construct Tags

• Tags That Manage Compositional and Approval Dependencies

• Tags That Retrieve Information About Basic Assets

• Tags That Create Assetsets (Flex Assets)

• Tags That Create Searchstates (Flex Assets)

Tags That Create the WebCenter Sites Context
The following tags create the WebCenter Sites context in which you code. You use
these tags in every template or element that you write.

FTCS (XML) ftcs1_0:ftcs (JSP)

<FTCS>

</FTCS>

<ftcs1_0:ftcs>

</ftcs1_0:ftcs>

The ftcs tag creates the WebCenter Sites context. The opening ftcs tag should be
the first tag in your code, and the closing ftcs tag should be the last tag in your code.
WebCenter Sites is unaware of anything that falls outside of the opening and closing
ftcs tags. Consequently, content outside the tags is not cached, and the tags will not
operate correctly.

Tags That Handle Variables
The following tags handle variables in WebCenter Sites.

CSVAR (XML) ics:getvar (JSP)

<CSVAR NAME="variableName"/> <ics:getvar

name="variableName"/>

CSVAR displays the value of a variable, session variable, built-in, or counter.

SETVAR (XML) ics:setvar (JSP)

<SETVAR

NAME="variableName"

VALUE="variableValue"/>

<ics:setvar

name="variableName"

value="variableValue"/>

SETVAR sets the value of a regular, WebCenter Sites variable.The value of the variable
exists for the duration of the page evaluation unless it is explicitly deleted using
REMOVEVAR.

Chapter 16
Understanding WebCenter Sites Tags

16-12

SETSSVAR (XML) ics:setvar (JSP)

<SETSSVAR

NAME="variableName"

VALUE="variableValue"/>

<ics:setssvar

name="variableName"

value="variableValue"/>

SETSSVAR sets a session variable.

REPLACEALL (XML) ics:resolvevariables (JSP)

<REPLACEALL

NAME="variableName"

VALUE="variableValue"/>

<ics:resolvevariables

name="variableName"

[output="variable name"]

[delimited="true|false"]/>

REPLACEALL and ics:resolvevariables resolve multiple WebCenter Sites variables.
In other words, when you want to use WebCenter Sites variables in HTML tags, you
use these tags to resolve the variables.

See WebCenter Sites, see About Variables Supported in WebCenter Sites.

Tags That Call Pages and Elements
Use the following tags to call elements or templates.

Note:

CACHECONTROL, used below, has been deprecated.

RENDER.SATELLITEPAGE (XML) render:satellitepage (JSP)

<RENDER.SATELLITEPAGE

PAGENAME="nameOfPageEntry"

[CACHECONTROL="expiration_date_and_t
ime"]

[ARGS_var1="value1"]/>

<render:satellitepage

pagename="nameOfPageEntry"

[cachecontrol="expiration_date_and_t
ime"]>

<[render:argument name="variable1"
value="value1"]/>

</render:satellitepage>

RENDER.SATELLITEPAGE requests a WebCenter Sites pagelet and caches that pagelet
in both WebCenter Sites and Satellite Server, if the pagelet is not in cache. To call a
page or pagelet without caching it individually, use the RENDER.CALLELEMENT tag. The
RENDER.SATELLITEPAGE tag has a stacked scope, so the only variables available to the
page are ones that you explicitly pass in.

Chapter 16
Understanding WebCenter Sites Tags

16-13

RENDER.CALLELEMENT (XML) render:callelement (JSP)

<RENDER.CALLELEMENT

ELEMENTNAME="nameOfElement"

[ARGS_var1="value"]/>

<ics:callelement element="element
name">

<ics:argument name="argument name"
value="arg value"/>

</ics:callelement>

RENDER.CALLELEMENT is similar to the RENDER.SATELLITEPAGE tag in that both tags call
other WebCenter Sites code, either in an element or in a page. However, code called
by RENDER.CALLELEMENT does not get cached as an individual page or pagelet on
Satellite Server.

Use RENDER.CALLELEMENT to process the content of an element that you wrote for the
WebCenter Sites Content Applications and you want the scope of that element to be
stacked. The element must exist in the ElementCatalog.

Tags That Create URLs

RENDER.GETPAGEURL (XML) render:getpageurl (JSP)

<RENDER.GETPAGEURL

OUTSTR="myURL"

PAGENAME="SiteCatalogPageEntry"

cid="IDofAsset"

[p="IDofParentPage"]

[c="AssetType"]

[ADDSESSION="true"]

[DYNAMIC="true"]

[PACKEDARGS="stringFromPACKARGStag"]

[ARGS_xxx="y"]/>

<render:getpageurl

outstr="myURL"

pagename="SiteCatalogPageEntry"

cid="IDofAsset"

[p="IDofParentPage"]

[c="AssetType"]

[addsession="true"]

[dynamic="true"]

[packedargs="stringFromPACKARGStag"
]>

<[render:argument name="xxx"
value="yyy"]/>

</render:getpageurl>

This tag creates a URL for an asset, processing the arguments passed to it into a
URL-encoded string and returning it as the variable specified by the OUTSTR parameter.
If rendermode is set to export, the tag creates a file name for a static HTML file
(unless you specify that you want a dynamic URL). If rendermode is set to live, the
tag creates a dynamic URL.

Chapter 16
Understanding WebCenter Sites Tags

16-14

RENDER.SATELLITEBLOB (XML) render:satelliteblob (JSP)

<RENDER.SATELLITEBLOB

SERVICE="HTMLtagName"

BLOBTABLE="blobTable"

BLOBKEY="primaryKeyName"

BLOBWHERE="primaryKeyValue"

BLOBCOL="columnName"

BLOBHEADERNAMEN="headername"

BLOBHEADERVALUEN="mimetype"

[ARGS_format1="5"]

[CACHECONTROL="expirationDateAndTime
"]/>

<render:satelliteblob

service="HTMLtagName"

blobtable="blobTable"

blobkey="primaryKeyName"

blobwhere="primaryKeyValue"

blobcol="columnName"

blobheadernameN="headername"

blobheadervalueN="mimetype"

[cachecontrol="expirationDateAndTime
"]>

<[render:argument name="format1"
value="5"]/>

</render:satelliteblob>

This tag creates an HTML tag with a BlobServer URL for assets that are blobs. For
example, imagefile assets are blobs stored in the WebCenter Sites database which
means they must be served by the BlobServer servlet. This tag creates an HTML tag
that instructs a browser how to find and format the specified blob.

Tags That Control Caching
The following tag lets you control whether the output of the current template or
element gets cached.

ics.disablecache (XML) ics:disablecache (JSP)

<ics.disablecache/> <ics:disablecache/>

Use ics.disable cache in conjunction with if/then statements that check for error
conditions; if an error is present, the resulting rendered page is not cached. For
more information and code samples for the ics.disablecache tag, see Ensuring that
Incorrect Pages Are Not Cached.

Tags That Set Cookies
The following tag sets cookies in WebCenter Sites.

Chapter 16
Understanding WebCenter Sites Tags

16-15

satellite.cookie (XML) satellite:cookie (JSP)

<satellite.cookie

name="cookie_name"

value="cookie_value"

timeout="timeout"

secure="true|false"

url="URL"

[domain="domain"]/>

<satellite:cookie>

<satellite:parameter name='name'
value='cookie_name'/>

<satellite:parameter name='value'
value='cookie_value'/>

<satellite:parameter name='timeout'
value='cookie_timeout'/>

<satellite:parameter name='secure'
value='true|false'/>

<satellite:parameter name='url'
value='url'>

</satellite:cookie>

satellite.cookie sets a cookie on the user's browser. This tag is the only way to set
cookies in either XML or JSP.

Programming Construct Tags
The following tags allow you to use basic programming constructs.

IF/THEN/ELSE (XML) ics:if/ics:then/ics:else (JSP)

<IF COND="LOGICAL_EXPRESSION">

<THEN>

tags and/or text

</THEN>

<ELSE>

tags and/or text

</ELSE>

</IF>

<ics:if condition="logical
expression">

<ics:then>

tags and/or text

</ics:then>

<ics:else>

tags and/or text

</ics:else>

</ics:if>

IF, THEN, ELSE determine conditions. You typically use these tags to determine the
value of a variable.

LOOP (XML) ics:listloop (JSP)

<LOOP [FROM="START"]

[COUNT="LOOP_TIMES"]

[LIST="LIST_NAME"]

[UNTIL="END"]>

...

</LOOP>

<ics:listloop

listname="some list"

[maxrows="number of loops"]

[startrow="start row"]

[endrow="end row"]/>

LOOP and ics:listloop iterate through items in a list. Remember that excess code
within these tags affects the performance of the template. Whenever possible, keep
statements that do not have to be repeated outside the LOOP tags.

Chapter 16
Understanding WebCenter Sites Tags

16-16

Tags That Manage Compositional and Approval Dependencies
For more information about compositional and approval dependencies, see About
Dependencies.

RENDER.LOGDEP (XML) render:logdep (JSP)

<RENDER.LOGDEP ASSET="asset name"

CID="asset id"

C="asset type"/>

<render:logdep asset="asset name"

cid="asset id"

c="asset type"/>

Use the RENDER.LOGDEP tag if your template uses tags that obtain an asset's data
without loading the asset, such as ASSET.CHILDREN.

RENDER.UNKNOWNDEPS (XML) render.unknowndeps (JSP)

<RENDER.UNKNOWNDEPS/> <render:unknowndeps/>

Use the RENDER.UNKNOWNDEPS tag if a page has a query or some other indeterminate
connection to its dependent assets. This tag causes the page or pagelet to be
regenerated at every publish because the dependencies cannot be determined. This
means that you should use this tag sparingly.

RENDER.FILTER (XML) render:filter (JSP)

<RENDER.FILTER LIST="list name"

LISTVARNAME="output list name"

LISTDICOL="assetID column"

[LISTTYPECOL="assettype column"]

[TYPE="asset type"]

[ID="asset id"]

[VARNAME="output variable"/>

<render:filter list="list name"

listvarname="output list name"

listidcol="assetID column"

[listtypecol="assettype column"]

[type="asset type"]

[id="asset id"]

[varname="output variable"/>

Use the RENDER.FILTER tag to check for unapproved assets and prevent them from
being included in the exported page. This tag filters either a single asset or list of
assets by comparing each asset ID against the assetid column in the ApprovedAssets
database table. During export rendering, it filters what can be published based on
approval status. During live rendering, RENDER.FILTER does nothing. Use this tag
whenever you have a database query for a list of assets in your template.

Chapter 16
Understanding WebCenter Sites Tags

16-17

Tags That Retrieve Information About Basic Assets

ASSET.LOAD (XML) asset:load (JSP)

<ASSET.LOAD

NAME="assetName"

TYPE="assetType"

OBJECTID="object.id"

[FIELD="fieldName"]

[VALUE="fieldValue"]

[DEPTYPE="EXACT, EXISTS,

or GREATER"]/>

<asset:load

name="assetName"

type="assetType"

objectid="object.id"

[field="fieldName"]

[value="fieldValue"]

[deptype="exact,exists,or
greater"]/>

This tag queries the database for a specific asset and then loads the asset's data into
memory as an object. The object is then available to your elements until either the
session is flushed or the name that is assigned to the object is overwritten.

The scope of the object names that you assign to loaded assets is global. Be sure to
use unique object names so that your elements do not overwrite objects by mistake.
A convenient naming convention is to include the element name in the asset name.
For an example of creating unique asset object names by using this convention, see
Creating Basic Modular Design.

ASSET.LOAD automatically logs a dependency between the template or element that
uses the tag and the asset data that the tag retrieves.

ASSET.SCATTER (XML) asset:scatter (JSP)

<ASSET.SCATTER

NAME="assetName"

PREFIX="variablePrefix"/>

<asset:scatter

name="assetName"

prefix="variablePrefix"/>

This tag retrieves values from all of the fields of an asset object that has been
retrieved (loaded) with the ASSET.LOAD tag and turns those values into WebCenter
Sites variables. For example, to display the headline, byline, description, and so on of
an article online, you can use this tag to retrieve all of those values with one call.

ASSET.GET (XML) asset:get (JSP)

<ASSET.GET

NAME="assetName"

FIELD="fieldName"

[OUTPUT="outputVariable"]/>

<asset:get

name="assetName"

field="fieldName"

[output="outputVariable"]/>

This tag retrieves the value from one specified field of an asset object that has been
retrieved (loaded) with the ASSET.LOAD tag and turns that value into a WebCenter Sites
variable. For example, to use the headline of an article in a link to that article, use this
tag to retrieve that one value.

Chapter 16
Understanding WebCenter Sites Tags

16-18

ASSET.CHILDREN (XML) asset:children (JSP)

<ASSET.CHILDREN

NAME="assetName"

LIST= "listName"

[CODE= "NameOfAssociation"]

[OBJECTTYPE= "typeOfObject"]

[OBJECTID="objectID"]

[ORDER="nrank"]/>

<asset:children

name="assetName"

list="listName"

[code="NameOfAssociation"]

[objectype="typeOfObject"]

[objectid="objectID"]

[order="nrank"]/>

This tag queries the AssetRelationTree table and then builds a list of assets that
are children of the asset that you specified. You use this tag to retrieve assets in a
collection, to retrieve the image assets associated with article assets, and so on.

Use the RENDER.LOGDEP tag in conjunction with ASSET.CHILDREN to log a dependency
between the element or template in which it displays and the content that
ASSET.CHILDREN retrieves.

Performance Notes About the Asset Tags
• ASSET.LOAD and ASSET.CHILDREN are database queries, so you should use them

only when necessary, because queries to the database take time. For example,
you want to include error checking code after an ASSET.LOAD tag and before its
subsequent ASSET.CHILDREN tag that determines whether an asset was returned
by the ASSET.LOAD. Don't invoke the ASSET.CHILDREN tag when there is no asset.

• An ASSET.SCATTER call takes much longer than a single ASSET.GET call.

Tags That Create Assetsets (Flex Assets)
Assetset tags specify a set of one or more flex assets that you want to retrieve from
the database.

You can retrieve the following information from an assetset:

• The values for one attribute for each of the flex assets in the assetset.

• The values for multiple attributes for each of the flex assets in the assetset.

• A list of the flex assets in the assetset.

• A count of the flex assets in the assetset.

• A list of unique attribute values for an attribute for all flex assets in the assetset.

• A count of unique attribute values for an attribute for all flex assets in the assetset.

These are the assetset tags that you will use most frequently.

Chapter 16
Understanding WebCenter Sites Tags

16-19

ASSETSET.SETASSET (XML) assetset:setasset (JSP)

<ASSETSET.SETASSET

NAME="assetsetname"

TYPE="assettype"

ID="assetid"

[LOCALE="localeobject"]

[DEPTYPE="exact|exists|none"]

/>

<assetset:setasset
name="assetsetname" type="assettype"
id="assetid" [locale="localeobject"]
[deptype="exact|exists|none"]/>

ASSETSET.SETASSET builds an asset set from a single asset that you specify and
defines a compositional dependency between the template or element that it displays
in and the content that it retrieves.

ASSETSET.SETSEARCHEDASSETS (XML) assetset:setsearchedassets (JSP)

<ASSETSET.SETSEARCHEDASSETS

NAME="assetsetname"

[ASSETTYPES="assettype"]
[CONSTRAINT="searchstateobject"]
[LOCALE="localeobject"]
[SITE="siteidentifier"]
[DEPTYPE="exact|exists|none"]/>

<assetset:setsearchedassets

name="assetsetname"

[assettypes="assettype"]

[constraint="searchstateobject"]

[locale="localeobject"]

[site="siteidentifier"]

[deptype="exact|exists|none"]/>

ASSETSET.SETSEARCHEDASSETS creates an assetset object which represents all assets
of specific types narrowed by specified search criteria (represented by the searchstate
object that you name in the constraint parameter).

This tag also defines a compositional dependency between the template or element in
which it displays and the each asset in the set.

ASSETSET.GETMULTIPLEVALUES (XML) assetset:getmultiplevalues (JSP)

<ASSETSET.GETMULTIPLEVALUES

NAME="assetsetname"

LIST="listname"

[BYASSET="true|false"]

PREFIX="prefix"/>

<assetset:getmultiplevalues

name="assetsetname"

list="listname"

[byasset="true|false"]

prefix="prefix"/>

ASSETSET.GETMULTIPLEVALUES scatters attribute values from several attributes (and
potentially multiple assets) into several specified lists.

It is recommended that you use ASSETSET.GETMULTIPLEVALUES when the goal is to
display a fixed-format table of assets, or to obtain many attributes of a single asset
(such as for a product detail page).

ASSETSET.GETMULTIPLEVALUES has the following limitations:

• Only non-foreign attributes can be scattered.

• Text-type attributes cannot be scattered.

Chapter 16
Understanding WebCenter Sites Tags

16-20

ASSETSET.GETATTRIBUTEVALUES (XML) assetset:getattributevalues (JSP)

<ASSETSET.GETATTRIBUTEVALUES

NAME="assetsetname"

ATTRIBUTE="attribname"

[TYPENAME="assettypename"]

LISTVARNAME="varname"

[ORDERING="ascending|descending"]/>

<assetset:getattributevalues

name="assetsetname"

attribute="attribname"

[typename="assettypename"]

listvarname="varname"

[ordering="ascending|descending"]/>

ASSETSET.GETATTRIBUTEVALUES gets the list of values for a specified attribute of the
assets represented by an assetset.

ASSETSET.GETASSETLIST (XML) assetset:getassetlist (JSP)

<ASSETSET.GETASSETLIST

NAME="assetsetname"

[LIST="attriblist"]

[MAXCOUNT="rowcount"]

[METHOD="random|highest"]

LISTVARNAME="varname/>

<assetset:getassetlist

name="assetsetname"

[list="attriblist"]

[maxcount="rowcount"]

[method="random|highest"]

listvarname="varname"/>

ASSETSET.GETASSETLIST retrieves an ordered list of assets, given optional sort criteria.
The resulting list has two columns, assetid and assettype, that are sorted by the
criteria that you specify.

Tags That Create Searchstates (Flex Assets)
Searchstate tags assemble criteria that filter the assets that you retrieve using the
assetset tags.

You build a searchstate by adding or removing constraints to narrow or broaden the list
of flex assets that are described by the searchstate.

These are the searchstate tags that you will use most frequently.

SEARCHSTATE.CREATE (XML) searchstate:create (JSP)

<SEARCHSTATE.CREATE

NAME="ssname"

[OP="and|or"]/>

<searchstate:create

name="ssname"

[op="and|or"]/>

SEARCHSTATE.CREATE builds an empty searchstate object. You must begin constructing
a searchstate with this tag.

Chapter 16
Understanding WebCenter Sites Tags

16-21

SEARCHSTATE.ADDSTANDARDCONSTRAI
NT (XML)

searchstate:addstandardconstraint (JSP)

<SEARCHSTATE.ADDSTANDARDCONSTRAINT

NAME="ssname"

[BUCKET="bucketname"]

[TYPENAME="assettype"]

ATTRIBUTE="attribname"

[LIST="listname"]

[IMMEDIATEONLY="true|false"]

[CASEINSENSITIVE="true|false"]/>

<searchstate:addstandardconstraint

name="ssname"

[bucket="bucketname"]

[typename="assettype"]

attribute="attribname"

[list="listname"]

[immediateonly="true|false"]

[caseinsensitive="true|false"]/>

SEARCHSTATE.ADDSTANDARDCONSTRAINT adds an attribute name/value constraint into a
new or existing searchstate object.

You can constrain the attribute by a list of values that you specify in the list
parameter.

SEARCHSTATE.ADDSIMPLESTANDARDCO
NSTRAINT (XML)

searchstate:addsimplestandardconstraint
(JSP)

<SEARCHSTATE.ADDSIMPLESTANDARDCONSTR
AINT

NAME="ssname"

[BUCKET="bucketname"]

[TYPENAME="assettype"]

ATTRIBUTE="attribname"

VALUE="value"

[IMMEDIATEONLY="true|false"]/>

<searchstate:addsimplestandardconstr
aint

name="ssname"

[bucket="bucketname"]

[typename="assettype"]

attribute="attribname"

value="value"

[immediateonly="value"]/>

SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT adds an attribute name/single value
constraint to an existing searchstate.

This tag is the simple version of SEARCHSTATE.ADDSTANDARDCONSTRAINT. The object
referred to by NAME is updated to reflect the new constraint. The new constraint
replaces the old constraint if the attribute name is in the searchstate.

SEARCHSTATE.ADDRANGECONSTRAINT
(XML)

searchstate:addrangeconstraint (JSP)

<SEARCHSTATE.ADDRANGECONSTRAINT

NAME="ssname"

[BUCKET="bucketname"]

[TYPENAME="assettype"]

ATTRIBUTE="attribname"

LOWER="lowrange"

UPPER="uprange"

[CASEINSENSITIVE="true|false"]/>

<searchstate:addrangeconstraint

name="ssname"

[bucket="bucketname"]

[typename="assettype"]

attribute="attribname"

lower="lowrange"

upper="uprange"

[caseinsensitive="true|false"]

/>

Chapter 16
Understanding WebCenter Sites Tags

16-22

SEARCHSTATE.ADDRANGECONSTRAINT adds a range constraint for a specific attribute
name.

SEARCHSTATE.ADDRICHTEXTCONSTRAI
NT (XML)

searchstate:addrichtextconstraint (JSP)

<SEARCHSTATE.ADDRICHTEXTCONSTRAINT

NAME="ssname"

[BUCKET="bucketname"]

[TYPENAME="assettype"]

ATTRIBUTE="attribname"

VALUE="criteria"

[PARSER="parsername"]

CONFIDENCE="minlevel"

[MAXCOUNT="number"] />

<searchstate:addrangeconstraint

name="ssname"

[bucket="bucketname"]

[typename="assettype"]

attribute="attribname"

lower="lowrange"

upper="uprange"

[caseinsensitive="true|false"]

/>

SEARCHSTATE.ADDRICHTEXTCONSTRAINT adds an attribute name and rich-text
expression to the list of rich-text constraints in the searchstate.

SEARCHSTATE.TOSTRING (XML) searchstate:tostring (JSP)

<SEARCHSTATE.TOSTRING

NAME="objname"

VARNAME="varname"/>

<searchstate:tostring

name="objname"

varname="varname"/>

SEARCHSTATE.TOSTRING converts a searchstate object into its string representation that
is suitable for various uses, such as saving in a session variable or packing into a
URL.

SEARCHSTATE.FROMSTRING (XML) searchstate:fromstring (JSP)

<SEARCHSTATE.FROMSTRING

NAME="objname"

VALUE="stringval"/>

<searchstate:fromstring

name="objname"

value="stringval"/>

SEARCHSTATE.FROMSTRING provides the ability for a searchstate object to be initialized
from its string representation. You must create an empty searchstate using the
SEARCHSTATE.CREATE tag before you can use this tag.

About Variables Supported in WebCenter Sites
WebCenter Sites supports regular and session variables.

• Regular variables, which last for the duration of the current template or element,
unless you explicitly remove them. Regular variables have a global scope.

• Session variables, which last for the duration of the current session.

WebCenter Sites provides several standard variables whose names are reserved. You
can retrieve the values of these variables, but you cannot use their names for other
variables that you create.

See these topics:

Chapter 16
About Variables Supported in WebCenter Sites

16-23

• Reserved Variables

• Regular Variables

• Session Variables

• Working With Variables

• Variables and Precedence

• Best Practices with Variables

Reserved Variables
This table defines the standard WebCenter Sites variables.

Note:

Modification of reserved variables is not permitted.

Table 16-8 Reserved Variables

Variable Definition

tablename A variable that is set to a tablename before the execsql tags can be
run.

pagename The name of the WebCenter Sites page being invoked.

ftcmd A variable used in calls to CatalogManager.

username A session variable that contains the name of the user who is currently
logged in to the current session.

password A session variable that contains the password of the user who is
currently logged in to the current session.

authusername A variable that you can set to the user name of a user who you want to
log in to WebCenter Sites. This can be sent to WebCenter Sites using
a URL.

authpassword A variable that you can set to the password of a user who you want to
log in to WebCenter Sites. This can be sent to WebCenter Sites using
a URL.

currentACL A session variable that contains the ACLs that the current user belongs
to.

errno Error numbers reported by WebCenter Sites tags.

context Reserved for future use in the render:calltemplate tag.

site The full name of the site, as stored in the name column of the
Publication table.

The site variable is set as a resarg in all of the Template and Site
Entry assets. The site owns the Template and SiteEntry assets that
you create within the site.

sitepfx The site prefix (and short name of the site), as stored in the
cs_prefix column of the Publication table.

Chapter 16
About Variables Supported in WebCenter Sites

16-24

Table 16-8 (Cont.) Reserved Variables

Variable Definition

ft_ss An internal variable that is automatically set by WebCenter Sites to
support communication with Satellite Server. When ft_ss is set to
true, WebCenter Sites infers that a request is from Satellite Server.

c The asset type that a template formats. WebCenter Sites sets this
variable by default when you save the Template asset.

cid The ID of the asset being rendered or formatted by a template.

ct The value of a child template, if there is one.

p The ID of an asset's parent page, if there is one.

rendermode Specifies whether a page entry is to be delivered live, exported, or
previewed. By default, rendermode is live. When you use Export to
Disk, or the Preview function, WebCenter Sites automatically overrides
the value of this variable with export or preview. This value is used
internally and must not be modified.

seid The ID of a SiteEntry asset.

tid The ID of a Template asset.

eid The ID of a CSElement asset, eid is available to the CSElement's root
element.

Regular Variables
Most of the variables that you will use while coding WebCenter Sites templates and
elements are regular variables. Regular variables last for the duration of the current
template or element, unless they are explicitly deleted using WebCenter Sites tags.

Variables with SETVAR
Inside a WebCenter Sites element, you can call the SETVAR XML or JSP tags to create
a variable and establish its initial value. For example, the following SETVAR XML tag
creates a variable named dog and sets its value to fido:

<SETVAR NAME="dog" VALUE="fido"/>

If the variable exists, SETVAR resets its value to the new value. For example, the
following command resets the value of dog to mocha:

<SETVAR NAME="dog" VALUE="mocha"/>

Variables Using a URL
WebCenter Sites creates a page when a browser goes to a URL managed by a
WebCenter Sites application. Each page is associated with a particular URL. Imagine,
for example, a page associated with a URL having the following format:

http://host:port/servlet/ContentServer?pagename=Experiment/Hello

At the end of every URL, you can set one or more variables. For example, the
following URL creates three variables in the Hello page:

Chapter 16
About Variables Supported in WebCenter Sites

16-25

http://host:port/servlet/ContentServer?pagename=Experiment/
Hello&dog=fido&cat=fifi

The preceding URL creates the following variables available to Hello:

• A variable named pagename whose value is Experiment/Hello.

• A variable named dog whose initial value is fido.

• A variable named cat whose initial value is fifi.

Default Variables for Elements and Templates with Explorer
You can use Explorer to create default variables in a page by placing the variables in
either of the following fields:

• The resargs1 or resargs2 fields of the SiteCatalog database table.

• The resdetails1 or resdetails2 fields of the ElementCatalog database table.

For example, you can use Explorer to access the SiteCatalog table, and then create
variables dog and cat by placing name/value pairs in the resargs1 and resargs2
fields, as shown in this figure:

Figure 16-1 SiteCatalog Fields

Note that we placed one name/value pair in resargs1 and another in resargs2.
Alternatively, we could have put both name/value pairs in resargs1, as shown in this
figure:

Figure 16-2 Values in SiteCatalog

You also can set the values of dog and cat in the ElementCatalog table by putting
name/value pairs in the resdetails1 and resdetails2 fields, as shown in this figure:

Figure 16-3 ElementCatalog Fields

Variables set through the URL or through POST and GET operations take precedence
over variables set using the SiteCatalog or ElementCatalog tables. For example, if a

Chapter 16
About Variables Supported in WebCenter Sites

16-26

URL sets variable dog to rex and the SiteCatalog sets dog to fido, then the resulting
value of dog will be rex.

Variables Using HTML Forms
In CGI programming, a buyer fills out a form. Then, the browser encodes the buyer's
responses as name/value pairs, which get passed to the CGI script.

Although WebCenter Sites does not use traditional CGI programming, a WebCenter
Sites element can still display a form. As in traditional programming, the browser
encodes the buyer's responses as name/value pairs. However, instead of passing
these name/value pairs to a CGI program, the pairs get passed to a different
WebCenter Sites page. The receiving WebCenter Sites page can access the name/
value pairs as it would access any WebCenter Sites variable.

Cookie names and values are also instantiated as variables. For more information
about cookies, see About Sessions and Cookies.

Session Variables
HTTP is a stateless protocol. To overcome this limitation, WebCenter Sites can
maintain state between requests and, thus, keep track of sessions.

A browser connection to the WebCenter Sites system establishes a session.
Thereafter, the session is uniquely identified to the system. WebCenter Sites can
deliver pages whose content and behavior are based on this unique identity.

When a client first enters your site, a unique session is established. WebCenter Sites
associates a default user identity with a new session and maintains that information in
session variables. Session variables contain values that are available for the duration
of the session. They are saved as part of the user's session and are used to retain the
value of a variable across page requests.

In a clustered configuration, the session state is maintained across all cluster
members. Session variables should be used carefully, since there is a resource cost
that is proportionate to the number and size of session variables used.

Session state is lost under these conditions:

• The client exits.

• The session has timed out. WebCenter Sites can optionally terminate a session if
no requests have been made for some period of time.

• The application server has been restarted.

Server resources associated with the session are de-allocated when the following
occurs:

• The session has been explicitly terminated by the client using a WebCenter Sites
tag.

• The session has timed out.

• The application server has been restarted.

Use the SETSSVAR XML and JSP tags to create a session variable. If the session
variable exists, SETSSVAR resets the variable's value. For example, the following
SETSSVAR XML tag sets the session variable profile to the value 10154:

Chapter 16
About Variables Supported in WebCenter Sites

16-27

<SETSSVAR NAME="profile" VALUE="10154"/>

Working With Variables
The following sections describe how to work with WebCenter Sites variables.

Syntax to Read Variables' Values
The syntax you use to read the value of a variable depends on the kind of variable:

Table 16-9 Variables and Syntax

Type of Variable Syntax Example

String Variable Variables.variable_name Variables.dog

Counter Variable Counters.variable_name Counters.position

Session Variables SessionVariables.variable
_name

SessionVariables.username

Property CS.Property.property_name cs.use.short.jsp.names

WebCenter Sites XML provides quite a few methods for accessing list variables.

Tags to Display Variables' Values
Use the CSVAR XML tag to display the value of any kind of variable, including properties
and session variables. Use the ics:getvar JSP tag to view the value of a regular
WebCenter Sites variable; or the ics:getssvar JSP tag to display the value of a
session variable. For example, if the following code displays in an XML element:

<SETVAR NAME="mood" VALUE="happy"/>
<p>My dog is <CSVAR NAME="Variables.mood"/>.</p>

then the resulting page displays the following text:

My dog is happy.

You can also include literal values as part of the NAME argument to the CSVAR XML tag;
for example, the following code will also generate "My dog is happy.", but evaluates
more slowly:

<SETVAR NAME="mood" VALUE="happy"/>
<p><CSVAR NAME="My dog is Variables.mood"/>.</p>

Assigning of One Variable Value to Another Variable
You can assign the value of one variable to another variable. You accomplish this task
differently if you are coding with XML than if you are coding with JSP.

JSP

If you are coding with JSP, you cannot use the ics:getvar tag to evaluate the variable
value because you cannot nest one JSP tag within another JSP tag. To circumvent this
limitation, use the ics.GetVar Java method to substitute variable values, as shown in
the following sample code:

Chapter 16
About Variables Supported in WebCenter Sites

16-28

<ics:setvar name="myVar" value="Fred"/>
<ics:setvar name="yourVar" value='<%=ics.GetVar("myVar")%>'/>
<ics:getvar name="yourVar"/>

Note:

You must enclose the expression that evaluates the variable value
('<%=icsGetVar("myVar")%>' in the example) in single quotes. Otherwise
your JSP element will throw an exception.

XML

The following lines of XML assign the value carambola to a variable named
your_favorite:

<SETVAR NAME="my_favorite" VALUE="carambola"/>
<SETVAR NAME="your_favorite" VALUE="Variables.my_favorite"/>

Taking this one step further, you can concatenate two variable values and assign the
result to a third variable. For example, the following sets the variable car to the value
red rabbit.

<SETVAR NAME="color" VALUE="red"/>
<SETVAR NAME="model" VALUE="rabbit"/>
<SETVAR NAME="car" VALUE="Variables.color Variables.model"/>

Variables in HTML Tags
You can use XML and JSP variables within traditional HTML tags, although you code
differently to accomplish this in XML and JSP.

JSP

If you are coding with JSP, you use the ics:getvar tag or the ics.GetVar Java
method to evaluate the variable value.

You can also use the ics.resolvevariables tag to resolve variables that are
contained within a string. For example, the following code displays the phrase, "The
date is," along with the value of the CS.Date variable:

<ics.resolvevariables name="The date is $(CS.Date)." delimited="true"/>

The delimited parameter indicates that you have used the delimiters $(and) to
explicitly mark the variable or variables that you want to resolve. To use variables to
specify a list name and a column in that list, for example, you use the following syntax:

<ics.resolvevariables name="$(Variables.listname).$(Variables.columnname)"
delimited="true"/>

If the delimited parameter is set to false, no delimiters are used to set off variables.

XML

You can use XML variables inside HTML tags if you use the appropriate attributes. For
example, the following code does not contain the appropriate attributes and, therefore,
does not set the background color to red:

Chapter 16
About Variables Supported in WebCenter Sites

16-29

<SETVAR NAME="color" VALUE="red"/>
<TABLE bgcolor="Variables.color">
...

To use XML variable values within an HTML tag, you must use the REPLACEALL
attribute within that HTML tag. The REPLACEALL attribute tells the system to substitute
the current value of this XML variable within this HTML tag. Therefore, the correct way
to code the preceding lines is as follows:

<SETVAR NAME="color" VALUE="red"/>
<TABLE bgcolor="Variables.color" REPLACEALL="Variables.color">
...

You can combine multiple variable values within one REPLACEALL attribute. For
example, the following HTML TABLE tag uses two XML variables:

<SETVAR NAME="color" VALUE="red"/>
<SETVAR NAME="myborder" VALUE="3"/>
<TABLE bgcolor="Variables.color" border="Variables.myborder"
 REPLACEALL="Variables.color,Variables.myborder">
...

The <REPLACEALL> tag is an alternative to the REPLACEALL attribute. The <REPLACEALL>
tag performs substitutions within its domain; for example:

<SETVAR NAME="highlight" VALUE="red"/>
<SETVAR NAME="diminish" VALUE="gray"/>
<REPLACEALL LIST="Variables.highlight,Variables.diminish">
<TABLE>
 <TR BGCOLOR="Variables.highlight"><TD>Diamonds</TD></TR>
 <TR BGCOLOR="Variables.highlight"><TD>Pearls</TD></TR>
 <TR><TD>Malachite</TD></TR>
 <TR BGCOLOR="Variables.diminish"><TD>Coal</TD></TR>
</TABLE>
</REPLACEALL>

This figure shows the output of this section:

Figure 16-4 Sample Output

The REPLACEALL tag performs a string search and replace, and is, therefore, potentially
very slow. Use the REPLACEALL attribute where possible. If you must use the
REPLACEALL tag, keep the amount of code you enclose with it as small as possible.

Evaluation of Variables with IF/THEN/ELSE
WebCenter Sites XML and JSP provides the IF/THEN/ELSE construct available in
most computer languages. However, the only conditional operation for variables is

Chapter 16
About Variables Supported in WebCenter Sites

16-30

to compare two values for equality or inequality. You can't, for example, compare two
values to see if one is greater than another. (You can write Java code to do that,
however.)

For example, the following code branches depending on the value of a variable named
greeting.

<IF COND="Variables.greeting=Hello">
<THEN>
 <p>Welcome.</p>
</THEN>
<ELSE>
 <p>So long.</p>
</ELSE>
</IF>

If greeting is set to Hello, then WebCenter Sites generates the HTML:

<p>Welcome.</p>

If greeting is set to anything other than Hello, WebCenter Sites generates:

<p>So long.</p>

Variables and Precedence
Variables set through a URL or through HTTP GET and POST operations take
precedence over variables set with the resargs and resdetails columns in the
SiteCatalog and ElementCatalog tables.

Best Practices with Variables
Because all variables are global and the syntax for accessing variables from items
in lists and from other sources is the same, good coding practices help you to avoid
errors. For example:

• Because it is easy to reuse base names in your elements, use prefixes in
front of variables to define them uniquely. The recommended syntax to use is:
Variables.assettype:fieldname.

For example, Variables.Article:description.

The ASSET.SCATTER tag makes it easy for you to use this syntax through its PREFIX
attribute. For more information about this tag, see Coding Elements for Templates
and CSElements.

• If you are going to use the RESOLVEVARIABLES tags to resolve your variables, set
the DELIMITED parameter to true and use the delimiters $(and) to explicitly
indicate the variables you want to resolve.

• Use debugging to catch naming conflicts. Set the com.fatwire.logging.cs
property in the loggingconfig.xml. When this property is enabled, WebCenter
Sites writes a record of all the variables that are created to the WebCenter Sites
log file.

For a list of the error values that WebCenter Sites tags can write to the errno variable,
see the Tag Reference for Oracle WebCenter Sites Reference.

Chapter 16
About Variables Supported in WebCenter Sites

16-31

Other WebCenter Sites Storage Constructs
WebCenter Sites supports several storage constructs such as built-in, lists, and
counters.

See these topics for what these constructs are and how you can define them:

• Built-ins

• Lists

• Counters

Built-ins
WebCenter Sites provides several built-ins, which return values such as the current
date.

The general syntax of a built-in is:

CS.builtin

For example, UniqueID is a built-in that generates a unique ID. The following syntax
generates or references this built-in variable:

CS.UniqueID

For a list of built-ins in WebCenter Sites, see Tag Reference for Oracle WebCenter
Sites Reference.

Lists
A list consists of a table of values organized in rows and columns. Use the SETROW or
GOTOROW tags to identity the proper row.

The following entities create lists:

• The SELECTTO, EXECSQL, CATALOGDEF, STRINGLIST and CALLSQL tags.

• The CatalogManager commands.

• The TreeManager commands.

• The Custom tags.

Use the following syntax to refer to a current row's column value:

listname.colname

For example, if a list named cars had a column named color, the value of the current
row would be referenced as:

cars.color

Looping Through Lists
Use the LOOP XML tag or the ics:listloop JSP tag to iterate through a list. For each
row in the list, WebCenter Sites executes the instructions between the loop tags.

Chapter 16
Other WebCenter Sites Storage Constructs

16-32

For example, consider a table named MyCars containing the following rows:

Table 16-10 Example Table with Rows

id Model Color Year

224 Ford Focus blue 2001

358 VW Rabbit red 1998

359 Toyota Corolla yellow 2000

372 Alpha Romeo Spider red 1982

401 Porsche 911 red 1984

423 Dodge Voyager tan 1991

The following XML searches MyCars for red cars. The SELECTTO XML and JSP tags
write this information into a list variable named carlist.

<SETVAR NAME="color" VALUE="red"/>
<SELECTTO FROM="MyCars" WHERE="color" WHAT="*" LIST="carlist"/>
Red cars:

<LOOP LIST="carlist">
 <CSVAR NAME="carlist.model"/>
</LOOP>

The preceding XML generates the following HTML:

Red cars:

 VW Rabbit
 Alpha Romeo Spider
 Porsche 911

Counters
A counter is an XML variable whose value is an integer. Three tags control counters:

Table 16-11 Counters

Tag What It Does

SETCOUNTER Initializes a counter variable

INCCOUNTER Changes the counter's value by a specified amount

REMOVECOUNTER Destroys the counter variable

To create a counter, you call SETCOUNTER. To change its value, call INCCOUNTER. For
example, consider the following code:

<SETCOUNTER NAME="c" VALUE="10"/>
<INCCOUNTER NAME="c" VALUE="3"/>
<p>Current value is <CSVAR NAME="Counters.c"/></p>

The output of this code is:

Chapter 16
Other WebCenter Sites Storage Constructs

16-33

Current value is 13

Notice that you reference counter variables using the syntax:

Counters.name

About Values for Special Characters
Use the hexadecimal character representation of special (non-alphanumeric)
characters in your XML or JSP instead of the special characters themselves. For
example, to specify a space as part of a variable value, you can use this line: <SETVAR
NAME="foo" VALUE="foo%20bar"/>

Here are hexadecimal values for special characters that are commonly used in
WebCenter Sites:

Table 16-12 Values for Special Characters

Hexadecimal Value Character

%22 doublequote (")

%20 one space

%3c less than sign (<)

%3e greater than sign (>)

%26 ampersand (&)

%09 tab (\t)

%0a newline (\n)

%0d carriage return (\r)

%25 percent (%)

Chapter 16
About Values for Special Characters

16-34

17
About Sessions and Cookies

Sessions store information about visitors, and cookies store information about visitors
that lasts between sessions. See examples and tips that can help you manage
sessions and cookies efficiently.

Topics:

• About Sessions

• Session Lifetime

• Sessions Example

• About Cookies

• Cookie Example

• Tips and Tricks

• Satellite Server Session Tracking

About Sessions
Sessions are necessary when a web server managing a website uses HTTP stateless
protocol that doesn’t require the server to retain the session information. The
application server starts a session as soon as a visitor begins browsing through pages.
The browsing information gets stored in session variables.

Imagine a website containing two pages: main and water. Suppose a visitor sees main
first and then moves on to water. So, if a typical web server is managing this site, any
knowledge gathered at main is lost when the visitor browses over to water. In other
words, water cannot take advantage of any information that the visitor might have
provided at main.

To get around this limitation, application servers detect when a visitor first enters a
website. At that point, the application server starts a session for this visitor. In the
preceding example, when the visitor requests the main page, the application server
starts a session. The website designer can use main to gather information about
the visitor and store that information in session variables. The information in session
variables is available to all subsequent pages. So, for example, if Bob provides his age
to main, and main's designer wrote the age to a session variable, then water could
easily access Bob's age.

Session variables contain values available for the duration of the session. When the
session ends, the application server destroys the session variables associated with
that session. Each session variable consumes memory on the application server, so
creating unnecessary session variables can hurt performance.

WebCenter Sites automatically creates some session variables; the website developer
can optionally create others. The application server can maintain sessions on a
cluster.

17-1

Session Lifetime
A session begins when a visitor first visits your website. It ends when the visitor
terminates his browser, the system administrator stops the application server, or the
session has timed out.

The cs.timeout property is used by WebCenter Sites to set the session timeout value
in the application server. If this property is set to 300, then a user session becomes
invalid in 300 seconds, or 5 minutes.

See these topics:

• Session Variables Maintained by WebCenter Sites

• Logging In and Logging Out

Session Variables Maintained by WebCenter Sites
Upon creating a session, WebCenter Sites automatically creates the session variables
described in this table:

Table 17-1 Session Variables

Session Variable What it Holds

SessionVariables.currentUser The id of the visitor logged in.

SessionVariables.currentAcl The comma-separated list of all ACLs to which this
visitor belongs. If the visitor has not explicitly logged in,
the default ACL is Browser.

SessionVariables.username The user name under which this visitor is logged in. If
the visitor has not explicitly logged in, the default user
name is DefaultReader.

SessionVariables.iniFile The name of the file containing WebCenter Sites
properties.

Logging In and Logging Out
When a visitor first visits the site, WebCenter Sites creates a session
and implicitly logs in the visitor as DefaultReader. During the session,
if the visitor explicitly logs in, WebCenter Sites automatically updates the
values of SessionVariables.currentUser, SessionVariables.currentAcl, and
SessionVariables.username. Logging in does not affect the values of any other
session variables. In other words, if your pages create session variables before a
login, then those values are still valid after the login. When a visitor explicitly logs out,
the WebCenter Sites-generated session variables automatically revert to the values
they held before login. For example, consider the following sequence:

1. A visitor first visits a page, so the value of SessionVariables.username is
DefaultReader.

2. The visitor logs in as marilyn, so the value of SessionVariables.username is
marilyn.

Chapter 17
Session Lifetime

17-2

3. If marilyn logs out, the value of SessionVariables.username reverts to
DefaultReader.

To trigger a logout, you call the <CATALOGMANAGER> tag with the ftcmd=logout modifier.
When issuing this tag, you can optionally supply the killsession modifier, which
destroys the current session. You can then create a new session by invoking the
<CATALOGMANAGER> tag with the ftcmd=login modifier.

Sessions Example
A simple session example with a few elements can help you understand how sessions
work.

Here's an example, consisting of three very short elements:

Table 17-2 Sessions Example

Element What it Does

FeelingsForm Asks visitors to pick their current mood.

SetFeelings Assigns the current mood to a session variable.

Meat Evaluates the session variable.

See these topics:

• FeelingsForm Element

• SetFeeling Element

• Meat Element

FeelingsForm Element
The feelings form does not really involve sessions or variables. This element merely
generates a form. The visitor's chosen mood is passed to the SetFeeling element:

<form action="ContentServer" method="post">
 <input type="hidden" name="pagename"
 value="CSGuide/Sessions/SetFeelings"/>

 <P>How are you feeling right now?</P>
 <P>
 <select name="Feeling" size="1">
 <option>Good</option>
 <option>Not so Good</option>
 </select>
 </P>

 <P><input type="submit" name="doit" value="Submit"/></P>
</form>

The resulting page looks like this:

Chapter 17
Sessions Example

17-3

Figure 17-1 Sample Page

SetFeeling Element
Upon clicking the Submit button, the visitor is transported to SetFeeling. This element
assigns the visitor's mood to a new session variable named CurrentFeeling.

<SETSSVAR NAME="CurrentFeeling" VALUE="Variables.Feeling"/>

<P>Welcome to our site.</P>

<P>Now proceed to

some meaty content.
</P>

The resulting page looks as follows:

Welcome to our site.
Now proceed to some meaty content.

If an element in this application asked the visitor to login, WebCenter Sites would
have automatically set the username session variable to the visitor's login name. In that
case, you could have personalized the welcome message in SetFeeling as follows:

<P>Welcome to our site, <CSVAR NAME="SessionVariables.username"/>
</P>

Meat Element
Upon clicking some meaty content, the visitor is transported to the Meat page. This
page evaluates the session variable:

<IF COND="SessionVariables.CurrentFeeling=Good">
 <THEN>
 <P>Sessions are happiness.</P>
 </THEN>
 <ELSE>
 <P>Don't let sessions get you down.</P>
 </ELSE>
</IF>

A visitor in a not so good mood sees:

Don't let sessions get you down.

Notice how CurrentFeeling was available to Meat. In fact, CurrentFeeling is
available to any other elements in the session.

Chapter 17
Sessions Example

17-4

About Cookies
A cookie is a string that your application writes to the visitor's browser. A cookie stores
information about visitors that lasts between sessions. The visitor's browser writes this
string to a special cookie file on the visitor's disk. When that visitor returns to your
website, the visitor's browser sends a copy of the cookie back to the web server that
set it. Once a cookie has been created, it is available as a variable to elements on a
page.

For example, your application might store the visitor's favorite sports team in a cookie.
Then, when the visitor returns, your application could retrieve the cookie and use its
information to display the team logo in a banner. When cookies are no longer needed,
you can delete them.

This section includes the following topics:

• CookieServer

• Cookie Tags

CookieServer
CookieServer is a servlet that sets cookies for you. You access CookieServer by
creating cookies with the satellite.cookie tag.

Cookie Tags
WebCenter Sites offers two tags for managing cookies:

Table 17-3 Cookie Tags

Tag Use

satellite.cookie Sets a cookie on the client's browser.

REMOVECOOKIE Deletes a cookie from the client's browser.

There is no special tag to obtain the value of a cookie. Instead, when a visitor returns
to the website, WebCenter Sites loads the value of the cookie as a regular variable.

When creating a cookie (by calling satellite.cookie), you can specify the following
attributes:

Table 17-4 Cookie Attributes

Attribute Value

name Name of the cookie. This also serves as the name of the incoming
variable containing the value of the cookie.

Note: Cookies in the WebCenter Sites page context are treated
as variables. Therefore, when a cookie and an asset attribute
share the same name, they are treated as the same variable.

expiration Time in seconds after which the cookie no longer is sent to the
web server.

Chapter 17
About Cookies

17-5

Table 17-4 (Cont.) Cookie Attributes

Attribute Value

security Optionally set security on the cookie.

URL Restrict that the cookie only be sent on this URL.

Domain Restrict that the cookie only be sent to URLs in the specified
domain.

Because they feel that cookies are a security threat, some visitors configure their
browsers to reject cookies. If the information in the cookie is critical, your application
must be prepared for this.

You must set or remove cookies before using any tags that stream content back to the
visitor's browser. You must set or remove cookies even before the <HTML> tag.

Cookie Example
A cookie example with several short elements can help you understand how cookies
work.

Here is an example:

Table 17-5 Cookie Elements

Element What it Does

Start Determines whether a cookie is set. If cookie is
set, call DisplayWelcome. If cookie is not set, call
GetColorPreference.

ColorForm Displays a form that asks visitor to pick her favorite color.

CreateCookie Creates a cookie on this visitor's browser. Then, redirects visitor to
DisplayWelcome.

DisplayWelcome Displays a simple welcome message in the visitor's favorite color.

See these topics:

• Start.xml

• ColorForm

• CreateCookie

• DisplayWelcome

• Running the Cookie Example

Start.xml
The Start.xml element determines whether the cookie has been set. If the cookie
has been set, WebCenter Sites stores its value inside a regular variable named
Variables.ColorCookie. The code for Start.xml is as follows:

Chapter 17
Cookie Example

17-6

<IF COND="IsVariable.ColorCookie=true">
 <THEN>
 <CALLELEMENT NAME="CSGuide/Sessions/DisplayWelcome"/>
 </THEN>
 <ELSE>
 <CALLELEMENT NAME="CSGuide/Sessions/ColorForm"/>
 </ELSE>
</IF>

ColorForm
The ColorForm.xml element displays an HTML form to gather the visitor's favorite
color. The code for ColorForm.xml is as follows:

<form action="ContentServer" method="post">
 <input type="hidden" name="pagename" value="CSGuide/Sessions/CreateCookie"/>

 <P>What is your favorite color?</P>
 <P>
 <select name="FavoriteColor" size="1">
 <option>Red</option>
 <option>Green</option>
 <option>Blue</option>
 </select>
 </P>

<P><input type="submit" name="doit" value="Submit"/></P>
</form>

CreateCookie
The CreateCookie.xml element sends a cookie named ColorCookie to the visitor's
browser. If the visitor has disabled cookies, the browser ignores the request to set a
cookie. If the visitor has enabled cookies (the default), the browser writes the cookie to
this system's cookie file.

The following is the code for CreateCookie.xml:

<satellite.cookie NAME="ColorCookie" VALUE="Variables.FavoriteColor"
TIMEOUT="31536000" SECURE="false"/>

<CALLELEMENT NAME="CSGuide/Sessions/DisplayWelcome"/>

The preceding code sets the value of the cookie to the visitor's favorite color. This
cookie lasts for one year (31,536,000 seconds).

DisplayWelcome
By the time DisplayWelcome is called, the cookie has been set. The following code
uses the value of the cookie to display a welcome message in the visitor's favorite
color:

<H1><font color="Variables.ColorCookie"
 REPLACEALL="Variables.ColorCookie">
Displaying a Friendly Welcome.
</H1>

Chapter 17
Cookie Example

17-7

Running the Cookie Example
To run the cookie example, use your browser to go to the following pagename:
CSGuide/Sessions/Start.

The first time you run this example, all four elements execute. After the first time, only
Start and DisplayWelcome execute.

Tips and Tricks
Some tips and tricks about using sessions can help you improve visitors’ browsing
experience while efficiently using the system resources.

The following suggestions might be useful:

• In a cluster, session state must be replicated across cluster members. In a cluster,
try to keep session size to a minimum; don't store more than 2 Kilobytes of session
data per client.

• Determine reasonable session timeout values. Setting timeouts that are too large
tie up system resources. Setting them too small forces visitors to log in with
annoying frequency.

Satellite Server Session Tracking
Websites that present personalized content to visitors must track sessions. WebCenter
Sites and Satellite Server both track sessions and set two cookies in the visitor's
browser. Each cookie independently tracks a session. This redundancy is useful to
maintain aWebCenter Sites session when a Satellite Server goes down.

Though Satellite Server will only serve session-specific pagelets back to the person
who originally requested them, explicitly flushing session-specific information about
user logout is a wise way to conserve space in the Satellite Server cache.

The following sections describe how to flush session information from Satellite Server:

• Flushing a Session Using a URL

• Flushing Current Session Information

• Flushing Other Session Information

Flushing a Session Using a URL
You can flush all data pertaining to a particular session. To do this, from WebCenter
Sites post a form to a URL in the following format:

https://host:port/servlet/FlushServer?
reset=true&username=username&password=password&ssid=sessionID

where:

Chapter 17
Tips and Tricks

17-8

Table 17-6 Session Parameters

Parameter Value

host Specify the name of the Satellite Server host whose cache is to be
flushed.

port Specify 80 (the default) unless you re-configured Resin to run on a
different port.

username Specify the value assigned to the user name property.

password Use the value assigned to the password property.

sessionID Specify the session ID (the one maintained by WebCenter Sites, and
not by Satellite Server) representing the session to be removed.

Flushing Current Session Information
To flush the information for the Satellite Server session that you are currently in, use
the FlushServer URL with the current session's ID. The current session ID (ssid)
is stored in a session variable with a name that is dependent upon your application
server. You can see this name by looking at the session variable HTTP_COOKIE.

• Use the following Java code to flush the information for the current session:

String value;
String name = "WebLogicSession";
value = ics.GetVar(name);

String sFlushSessionUrl ="http://mysatellite:80/servlet/
FlushServer?username=ftuser&password=ftuser&
reset=true&ssid=" + value;"

String sSatTest1Results = Utilities.readURL(sFlushSessionUrl);

Flushing Other Session Information
To flush information from a session other than the one you are in follow these steps:

1. Add the following tag to the container page that contains the pagelets that you
want to flush:

<satellite.page
pagename="QA/Satellite/Functional/xml/pagelet4"
cachecontrol="session:0:00:00 */*/*"/>

The cachecontrol value of "session:0:00:00 */*/*" means that every session
that requests this page creates a pagelet that can only be viewed by subsequent
requests by that session. Once the session for a given page expires, that page
cannot be viewed again. The container page will expire from the cache at midnight
each day.

2. After setting the cachecontrol parameter for the container page, use the Inventory
servlet with the keys parameter to get its session ID (ssid). The ssid is the string
that precedes the protocol and server name. For example, if the Inventory servlet
displays:

Chapter 17
Satellite Server Session Tracking

17-9

OuCOTrh9yporWfgu8Uthttp://myserver:80/servlet/
ContentServer?pagename=QA/Satellite/Functional/xml/pagelet4

then the ssid is OuCOTrh9yporWfgu8U.

3. Flush information from the session by using the ssid you found with the
FlushServer URL. For example:

http://myserver:80/servlet/
FlushServer?username=ftuser&password=ftuser&reset=true&
ssid=OuCOTrh9yporWfgu8U

Note:

To flush information from a session other than the one you are in, you
should have session affinity enabled.

Chapter 17
Satellite Server Session Tracking

17-10

18
Creating Template, CSElement, and
SiteEntry Assets

Template, CSElements, and SiteEntry are rendering assets. These assets wrap
content assets in HTML, CSS, JSS and render them in the browser. CSElement
asset represents an element, SiteEntry represents the name of a page, and Template
represents both, the element and the page name. WebCenter Sites uses these assets
to generate website pages.

Topics:

• About Template, CSElement, and SiteEntry Assets

• About Pages

• Using CSElement, Template, and SiteEntry Assets

• Creating Template Assets

• Creating CSElement Assets

• Creating SiteEntry Assets

• Managing Template, CSElement, and SiteEntry Assets

• Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic

See Coding Elements for Templates and CSElements.

Note:

When creating templates for use with Visitor Services, you can use the
Visitor Service Helper class to get the current visitor's profile information
and to manage visitor cookie lifecycles. See Linking Visitor Profiles and
Managing Cookies.
In WebCenter Sites, template developers must ensure that the template
code hits Visitor Services (using the Visitors Client API or WebCenter Sites
Wrapper API, that is, class VisitorServiceHelper.java) only when the
Visitor Services application is correctly configured and running, or Content
Server errors can occur.

About Template, CSElement, and SiteEntry Assets
With Template, CSElements, and SiteEntry assets you build pagelets and elements
to develop your online sites. These assets represent page names and elements that
WebCenter Sites uses to generate pages. When you create a CSElement asset, you
code an element. When you create a SiteEntry asset, you name a page. When you
create a template, you do both: you code an element and you name a page.

Here are some important points that can help you use these asset types effectively:

18-1

• Template assets are classified as typed or typeless depending on whether they
apply to a single asset type or no asset type.

• If you are using SiteLauncher (to replicate sites or share Template and CSElement
assets), WebCenter Sites requires element logic to indirectly refer to assets, asset
types, attribute names, and template names. To this end, the WebCenter Sites
interface introduces the Map screen (for example, Configure the Map); the API
introduces the render:lookup tag.

Using the Map screen, you assign an alias to each value. You can then hardcode
the aliases in the element logic and use the render:lookup tag to retrieve the
actual values from the aliases at runtime.

• The Cache Rules field has been simplified to reduce errors. Template developers
can choose cached, uncached, or advanced. Selecting Advanced allows
developers to set caching rules individually for WebCenter Sites and Satellite
Server.

• A new tag, calltemplate, was introduced to invoke templates in a way that
simplifies the template writing process.

• The PageCriteria field has been renamed to Cache Criteria. It accepts the
following reserved parameters: c, cid, context, p, rendermode, site, sitepfx, ft_ss,
and custom-defined parameters.

Cache criteria values are stored in the pagecriteria column of the SiteCatalog
table (in previous versions they were stored in the resargs columns of the
SiteCatalog table).

The Cache Criteria field is also used to hold variables that enable the Extra
Parameters section in the CKEditor and make them available to users, in the
Include asset link and Add asset link dialog boxes. The Extra Parameters
section provides a way of passing custom parameters (such as image dimensions)
to the template. See step 2 in Configure SiteEntry about extra parameters. See
Using Oracle WebCenter Sites.

• Forms for creating Template and CSElement assets have been subdivided by
tabs; fields are organized by function on the tabs.

About Pages
In the WebCenter Sites context, an online page is the composition of several
components into a viewable, final output. Creating that output is called rendering.
(Making either that output or the content that is to be rendered available to the visitors
on your public site is called publishing.)

WebCenter Sites renders pages by executing the code associated with page names.
The name of a page is passed to WebCenter Sites from a browser and WebCenter
Sites invokes the code associated with that page name. The code is actually a named
file, a separate chunk of code called an element.

The code in your elements identifies and then loads assets to display in those pages
or pagelets, and passes other page names and element names to WebCenter Sites.
When WebCenter Sites invokes an element, all of the code in the element is executed.
If there are calls to other elements, those elements are invoked in turn. Then the
results, the images, articles, linksets, and so on, including any HTML tags, are
rendered into HTML code (or some other output format if your system is configured to
do so).

Chapter 18
About Pages

18-2

Template, CSElement, and SiteEntry assets represent elements and pagelets as
follows:

• A CSElement asset is an element.

• A SiteEntry asset is the name of a page or a pagelet.

• A Template asset is both an element and a page or pagelet that renders an asset.

See these topics:

• Elements, Pagelets, and Caching

• Calling Pages and Elements

• Page vs. Pagelet

Elements, Pagelets, and Caching
Pages and pagelets are cacheable. They have cache criteria set for them that
determines whether they are cached and, if so, for how long.

Elements do not have cache criteria. When your code calls an element directly by
name, without going through a page name, the output is displayed in the page that
called the element's name and that output is cached as a part of that page.

To cache the output from an element separately from the output of the page that called
it, you must provide a page name for it and call it by its page name. The code in a
Template asset has a page name by default. To provide a page name for a CSElement
asset, you create a SiteEntry asset and select the CSElement asset for it.

Calling Pages and Elements
To see a WebCenter Sites page, you provide a URL that includes the name of the
page. A WebCenter Sites URL looks like this:

For WebLogic and WebSphere:

http://host:port/servlet_context_path/ContentServer?pagename=name_of_page

where:

• host is the name of the server that is hosting the WebCenter Sites system,

• port is the port number of the web server,

• servlet_context_path is the path that the application server gives to the
WebCenter Sites web application, and

• name_of_page is the page name.

This syntax passes the name of a page to the ContentServer servlet, which then
renders the page.

For example, to see the home page of a site, you would enter a URL like this:

http://site-address/servlet/ContentServer?pagename=
site-name/Page/Home

When you code your elements, you use tags that programmatically call the pagelets
and elements that you want to display in your site. These tags pass the names of

Chapter 18
About Pages

18-3

pages and elements to the ContentServer servlet just as a URL entered in a browser
passes a page name to the ContentServer servlet.

To call a page name, use the render:satellitepage (RENDER.SATELLITEPAGE) tag.
For example:

<render:satellitepage pagename="site-name/Page/Home" />

To call an element directly by name, use the render:callelement
(RENDER.CALLELEMENT) tag. For example:

<render:callelement elementname="site-name/Common/TextOnlyLink" />

To call a template by name, use the render:calltemplate tag. For example:

<render:calltemplate
 site='<%=ics.GetVar("site")%>'
 slotname="Head"
 tid='<%=ics.GetVar("tid")%>'
 c='<%=ics.GetVar("c")%>'
 cid='<%=ics.GetVar("cid")%>'
 tname='<%=ics.GetVar("HeadVar")%>'>
 <render:argument name="p" value='<%=ics.GetVar("p")%>' />
</render:calltemplate>

Note:

When you use Oracle WebCenter Sites Explorer to examine SiteCatalog
and ElementCatalog entries, they are presented as folders and subfolders
that visually organize the pages and pagelets.

However, these entries are simply rows in a database table (there is no
actual hierarchy). Therefore your code must always call a page entry or an
element entry by its entire name. You cannot use a relative path.

Your code calls template, CSElement, and SiteEntry assets as follows:

• Because a SiteEntry is a pagelet, you use the render:satellitepage tag to call
SiteEntry assets from within your element code.

• Because a CSElement is an element, you use the render:callelement tag to call
CSElement assets from within your element code.

• Because a template is both an element and a page name, you can use either
of the above, although typically the render:calltemplate tag is designed to be
used for templates. It encapsulates the functionality of render:satellitepage and
render:callelement and other features, such as parameter validation.

Page vs. Pagelet
The table below lists the various terms that include the word page and defines them in
the context of their usage in the documentation for WebCenter Sites, the WebCenter
Sites modules, and the products.

Chapter 18
About Pages

18-4

Table 18-1 Page Vs. Pagelet

Term Definition

pagelet The results of an HTTP request displayed in a browser as one piece of
a rendered page. It has an associated element file.

A pagelet can be cached in the WebCenter Sites and Satellite Server
page caches.

page The results of an HTTP request displayed in a browser window. A page
is created by compiling several parts of pages (pagelets) into one final,
displayed or rendered page. It has an associated element file.

A page can be cached in the WebCenter Sites and Satellite Server
page caches.

page name The complete name of a page or pagelet. For example: Developer’s
Samples/Home/Rendering API/Asset Reader.

page asset Page assets do not represent page names. They represent logical
containers for content. These containers can be arranged into a tree
structure for navigation of site content.

You create page assets and then place them in position in the Site
Navigation tree which is visible on the Site tab in the tree in the left
pane of the WebCenter Sites interface. You associate other content
and site design assets with them and then you publish them.

Using CSElement, Template, and SiteEntry Assets
Template assets render content assets into pages and pagelets, CSElement assets
reuse content assets in multiple places, or call them from multiple types of templates,
or both. SiteEntry assets accompany CSElement assets when the output from
CSElements should be cached as separate pagelets.

You can use theCSElement or Template asset forms available in the Admin interface
to create CSElement and Template assets.

Note:

Elements for Template assets and CSElements can be coded in Oracle
WebCenter Sites Explorer. However, the procedure is not recommended for
reasons dealing mostly with compositional dependencies and updates to
the cache. Developers who prefer to use Oracle WebCenter Sites Explorer
must follow the steps in Using Oracle WebCenter Sites Explorer to Create
and Edit Element Logic to ensure the validity of the Template or CSElement
assets.

Because page names and elements are assets, you can manage your code and page
names in the same way you manage your content: you can use workflow, revision
tracking, approval, and preview, and the Mirror to Server publishing method to move
your code and page names to the management and delivery systems.

Chapter 18
Using CSElement, Template, and SiteEntry Assets

18-5

Note:

Revision tracking Never use the revision tracking feature in the Oracle
WebCenter Sites Explorer tool to enable revision tracking directly on the
SiteCatalog or ElementCatalog tables.

Mirror to Server If templates or CSElements refer to elements that are
not associated with a template or CSElement asset, these elements are
not automatically mirrored to the publishing destination. You must move
them manually with the CatalogMover utility. For this reason, we do not
recommend using elements that are not wrapped by CSElements.

See these topics:

• Template Assets

• CSElement Assets

• SiteEntry Assets

• Non-Asset Elements

Template Assets
Templates render other assets into pages and pagelets. This in turn creates the look
and feel of your online site. You create a standard set of templates for each asset
type, except CSElement and SiteEntry assets, so that all assets of the same type are
formatted in the same way.

This process allows content providers to preview their content by selecting formatting
code for the content, but not requiring them to code themselves or allowing them to
change your standard, approved code.

When you save a Template asset, WebCenter Sites does the following:

• Creates a row in the Template table for the asset.

• Creates an element entry in the ElementCatalog table. The name of the entry
uses the following convention:

AssetTypeName/TemplateName

where:

– AssetTypeName is the asset type formatted by the Template asset and element.

– TemplateName is the name of the template.

• Creates a page entry in the SiteCatalog table. The name of the page entry uses
the following convention:

SiteName/AssetTypeName/TemplateName

where:

– SiteName is the name of the site that the template belongs to, which is the
site that you were working in when you created the template. WebCenter
Sites obtains this name from the Publication table. (In previous versions of the
product, sites were called publications.)

Chapter 18
Using CSElement, Template, and SiteEntry Assets

18-6

– AssetTypeName is the asset type formatted by the Template asset and element

– TemplateName is the name of the template.

Note:

Do not change the name of the page entry that WebCenter Sites creates.

• Creates new rows in other tables that support the operation of the Template asset.
The tables start with the name: Template_

• Creates a new row in the AssetPublication table to associate your template with
your site.

CSElement Assets
You use CSElement assets for the following kinds of things:

• Code that is not for rendering an asset and that you want to reuse in multiple
places or call from multiple types of template or both. For example, you have six
templates that use the same top banner so you create a CSElement asset for
the code in the banner and call that element from each template. This way, if you
decide to change the way the banner works, you only have to change it in one
place.

• Recommendations for Oracle WebCenter Sites: Engage. If you create a dynamic
list recommendation, you must create a CSElement asset to build the dynamic list.
See Understanding Recommendation Assets. These assets do not render content,
but exist for logic processing.

When you save a CSElement, WebCenter Sites does the following:

• Creates a row in the CSElement table for the asset.

• If you have coded the element in the CSElement form, creates an element entry in
the ElementCatalog table. The name of the entry is the name that you entered into
the ElementCatalog Entry Name field in the form.

• Creates a new row in the AssetPublication table to associate your template with
your site.

SiteEntry Assets
You use SiteEntry assets for the following kinds of things:

• If you are using the CS-Designer tool, you use SiteEntry assets to represent
code snippets. In that interface, when you drag and drop a code snippet into
a page, you are dropping in a WebCenter Sites call to a page entry through a
render:satellitepage tag.

• When the code in a CSElement asset is rendered, the code is displayed in the
page that called it, and is cached as part of that page (if that page is cached, that
is). If you want the output from a CSElement to be cached as a separate pagelet
and have its own cache criteria set for it (timeout value, page criteria values, and
so on), your code must invoke that element through a page name. In such a case,
you create a SiteEntry asset to accompany your CSElement asset.

Chapter 18
Using CSElement, Template, and SiteEntry Assets

18-7

When you create and save a SiteEntry asset, you associate a CSElement asset with
it. The element in that CSElement asset becomes the root element for the SiteEntry's
page entry.

When you save a SiteEntry asset, WebCenter Sites does the following:

• Creates a row in the SiteEntry table for the asset.

• Creates a page entry in the SiteCatalog table. The root element of the page entry
is the element from the CSElement asset that you specified.

• Tracks an approval dependency between the SiteEntry asset and the CSElement
asset. Both the SiteEntry asset and its CSElement asset must be approved before
the SiteEntry asset can be published.

Note:

Compositional dependencies are also tracked. The SiteEntry defines the
page criteria and the default arguments that contain the dependency
information. The CSElement records the id of the SiteEntry and
CSElement assets into the rendering engine using render:logdep tags
that are added to the CSElement code stub.

Non-Asset Elements
If you code customizations for the WebCenter Sites interface on the management
system, you create elements that are not assets because you do not want them to be
published to your delivery system.

For example, when you create workflow elements that implement actions or
conditions, you do not create them as CSElement assets. Rather, you use the Oracle
WebCenter Sites Explorer tool to manually create an entry in the ElementCatalog
table.

Remember that if you create workflow or other custom elements on your delivery
system, you must use the CatalogMover utility to copy those elements to the
ElementCatalog on your management system.

Note:

You can write code to invoke the mirror engine to mirror your elements.
The topic is advanced and beyond the scope of this guide. For
assistance, contact Oracle Support at www.oracle.com/support or visit
www.oracle.com/accessibility.

Creating Template Assets
Template assets render other assets. You can design a template to apply to a specific
type of assets or to any assets, irrespective of their types.

• A typed template renders assets of a specific type.

Chapter 18
Creating Template Assets

18-8

• A typeless template applies to assets of any type. A typeless template is generally
used to specify the layout of a page in which assets can then be rendered by the
typed templates.

Note:

The only field that makes a template typed or typeless is the For Asset
Type field. The purpose of distinguishing templates as typed or typeless
is to help developers manage the construction of pages and easily keep
track of which templates are responsible for page layout and which for
asset rendering.

Before creating a Template asset, complete Before You Begin Creating a Template
Asset to determine how you will set template properties (such as the template name)
and how you will code the template's element logic. You will then continue to Creating
a Template Asset to complete the following steps, using the Admin interface:

• Open the Template Form

• Name and Describe the Template Asset

• Configure the Template's Element

(To specify its usage, file type, and logic.)

• Configure SiteEntry

(To specify page and pagelet caching parameters.)

• Configure the Map

(To support template sharing and site replication.)

• Create a Thumbnail (Optional)

(To graphically represent the template in its Inspect form.)

• Inspect the Template

Information that you enter into the Template form will be written to database tables
when the template is saved.

Note:

Do not create Template assets directly in the database tables. Doing so will
require you to write to several tables and can result in incorrect tracking
of dependencies. Instead, use the Template form and the procedures in
this section to create Template assets. For help with coding the template's
element logic (in typed templates), see Coding Elements for Templates and
CSElements.

This section includes the following topics:

• Before You Begin Creating a Template Asset

• Creating a Template Asset

Chapter 18
Creating Template Assets

18-9

Before You Begin Creating a Template Asset
Before you begin creating a Template asset, determine the following:

• TemplateName (a name for your Template asset; the value of the Name field in the
Name screen, Name and Describe the Template Asset).

• Whether the Template asset is to be typed or typeless.

• Whether the Template asset will be shared and whether the site you are working
in will be replicated. These considerations determine how you will code the
template's element logic.

• Whether to code the Template's element logic in Oracle WebCenter Sites Explorer
instead of the Template form. Coding in Oracle WebCenter Sites Explorer,
although practiced, is not recommended for the reasons outlined in Using Oracle
WebCenter Sites Explorer to Create and Edit Element Logic.

Naming a Template Asset
• Once a Template asset is saved, its name cannot be changed.

• WebCenter Sites appends the template name to SiteName (also to
AssetTypeName for typed templates). The template name should make sense in
relation to SiteName and AssetTypeName. WebCenter Sites's naming conventions
must not be overridden; names created by WebCenter Sites must not be changed.
The table below lists the conventions that use TemplateName.

AssetTypeName is used only for typed templates and represents the value of the
template's For Asset Type field in the Name screen (see Name and Describe the
Template Asset). SiteName is the name of the site to which the template belongs
(the site that you are working in as you are creating the template). WebCenter
Sites obtains the SiteName from the Publication table. (In previous versions of the
product, sites were called publications.)

Table 18-2 Naming Conventions Using TemplateName

Template Naming Conventions Description

Typed AssetTypeName/
TemplateName

Name of the root element for a typed template.

This value is written to the Rootelement field. This value
must not be changed. If the default value is changed,
some tags that expect the default value, such as the
render:calltemplate tag with the style attribute set
to element, will fail.

Note: The naming convention requires root element
names to be unique. You must not have multiple
Template assets pointing to the same root element. You
can, however, have two SiteEntry assets point to the
same element (for example, to specify different default
arguments, or different cache criteria depending on the
calling scenario).

Typed AssetTypeName/
TemplateName.xml_or_jsp_o
r_html

Path to the element file of a typed template.

This value is written to the ElementStorage Path/
Filename when the file type is selected.

Chapter 18
Creating Template Assets

18-10

Table 18-2 (Cont.) Naming Conventions Using TemplateName

Template Naming Conventions Description

Typed SiteName/AssetTypeName/
TemplateName

Name of the page that will be rendered if the template is
typed.

This value is written to the SiteCatalog Pagename field.

Typeless /TemplateName Name of the root element for a typeless template.

This value is written to the Rootelement field. This value
must not be changed. If the default value is changed,
some tags that expect the default value, such as the
render:calltemplate tag with the style attribute set
to element, will fail.

Note: The AssetTypeName is omitted, as the template
applies to any asset type. The slash is kept to identify
the template as typeless. See also the note in the first
row of this table.

Typeless Typeless/
TemplateName.xml_
or_jsp_or_html

Path to the element file of a typeless template.

This value is written to the ElementStorage Path/
Filename when the file type is selected.

Typeless SiteName/TemplateName Name of the page that will be rendered if the template is
typeless.

This value is written to the SiteCatalog Pagename field.

Note: The AssetTypeName/ is omitted, as the template
applies to any asset type.

Designating a Template as Typed or Typeless
Before creating a Template asset, determine whether it is to be typed or typeless.
Once the template is saved, its status as typed or typeless cannot be changed.

Template Sharing and Site Replication
Before creating a template, decide how the template and the site you are working in
will be used. Your decision determines how you will code the template's element logic
(in Configure the Template's Element).

To share your Template asset or make the current site replicable, ensure that the
template's element logic does not directly refer to assets, asset types, attribute names,
or template names. Instead, you must refer to them indirectly. Use the Map screen
(Configure the Map) to assign an alias (key) to each value, then hard code the aliases
in your template. Use the render:lookup tag to retrieve the actual values from the
aliases at runtime.

During its execution, the render:lookup tag refers to the map to look up the keys and
returns the asset-specific information for use in the element logic. This dynamic lookup
allows the Template asset (but not the element logic alone) to refer directly to asset
data while enabling safe replication and template sharing.

For example, assume a template is named FSIILayout, and the site containing this
template has a site prefix of FSII. If the site is replicated such that the new site's prefix
is New, and the FSIILayout template is copied, then the copy of the template is named
NewLayout. Referring to the NewLayout template by its hard-coded name (FSIILayout)

Chapter 18
Creating Template Assets

18-11

would result in a failure when the template is executed. Instead, the template name is
looked up:

<%-- Look up the name of the layout template --%>
<render:lookup
 site='<%=ics.GetVar("site")%>'
 varname="LayoutVar"
 key="Layout"
 tid='<%=ics.GetVar("tid")%>'/>

<%-- Look up the name of the wrapper page's site entry.
 Note we want the asset name only, so we must specify
 the match filter. --%>
<render:lookup
 site='<%=ics.GetVar("site")%>'
 varname="WrapperVar"
 key="Wrapper"
 tid='<%=ics.GetVar("tid")%>'
 match=":x"/>

To code the element logic, you must have a clear understanding of its design and the
map it will refer to. You will have to determine:

• Which keys to create and which name to assign to each key.

• The type of asset information to be looked up:

– Template Name

– Asset Type

– Asset (Type:Name)

– Asset (Type:ID)

• A value for each key.

• The site to which the map applies.

Additional information about usage of the render:lookup tag is given in the Tag
Reference for Oracle WebCenter Sites Reference.

Creating a Template Asset
You can create a Template asset for a specific asset type or for any asset type.

Note:

Before starting the procedures to create a template asset, read Before You
Begin Creating a Template Asset.

To create a template asset, you need to do these tasks:

• Open the Template Form

• Name and Describe the Template Asset

• Configure the Template's Element

• Configure SiteEntry

Chapter 18
Creating Template Assets

18-12

• Configure the Map

• Create a Thumbnail (Optional)

• Inspect the Template

Open the Template Form
1. Open the Admin interface.

2. In the button bar, click New.

3. In the list of asset types, select New Template.

Note:

For the New Template option to be displayed, the Template asset type
must be enabled for your site and a Start Menu item must be created for
it.

4. The Template form opens.

Note:

If you see a Choose Assignees screen instead of the Template form, it
means that the Template asset you will be creating is associated with a
workflow. Select a name (or names) from the Users column and click Set
Assignees.

Chapter 18
Creating Template Assets

18-13

Figure 18-1 New Template Name Form

Name and Describe the Template Asset
The Name screen is used to identify the template as typed or typeless, assign the
template to a category, specify arguments that may be passed to the template, and
name keywords by which the template can be located in search routines.

When the Template asset is saved, field values that you specify in the Name screen
(with the exception of legal arguments), are written to the Template table, as indicated
in the procedures below.

Note:

At any time in the process of creating a template, you can save the template.
WebCenter Sites will display the template's Inspect form. To return to the
Template form, click the Edit link.

In the Name screen, fill in the fields as explained in the following steps:

1. (Required). In the Name field, type a descriptive template name that is unique
for the template and for the type of asset(s) that the template renders. It is best
to choose a name that reflects the function or purpose of the template. See the
guidelines in Before You Begin Creating a Template Asset

Valid Entries

• Up to 64 alphanumeric characters (the first character must be a letter)

Chapter 18
Creating Template Assets

18-14

• Underscores (_)

• Hyphens (-)

• Spaces (these will be converted to underscores when used in the SiteCatalog
pagename for the template)

2. In the Description field, type a brief description of the template. You can use up to
128 characters.

3. In the Source field, select an option from the drop-down list if your template is
derived from a source that you want to note.

4. In the Category field, select an option from the drop-down list to place the
Template asset into a category.

5. (Required). In the For Asset Type field, identify your template as typed or
typeless:

• If you are creating a typeless template (for example to dispatch to typed
templates), select Can apply to various asset types and skip to step 7.

• If you are creating a typed template (which renders assets of a certain type),
select an asset type. For example, if you are creating a template to render
article assets, select Article from the drop-down list.

6. (Required for typed templates). In the Applies to Subtypes field, select the
appropriate subtypes from the menu.

Note:

A typed template should be used only for specific subtypes of the asset
type that you selected in the preceding field (For Asset Type).

7. In the Legal Arguments field:

a. Enter an argument that may be passed to the template and click Add
Argument.

b. In the fields that are displayed:

• Specify whether the argument is optional or required.

• Provide a description of the argument (to help you know the purpose of
the argument you are creating).

• Specify legal values (including descriptions) for the argument.

(You can specify as many arguments and legal values as you require by clicking
the Add Arguments and Add Legal Value buttons.)

8. In the Keywords field, enter keywords that you and others can use as search
criteria in the Advanced Search form when you search for this template in the
future.

9. Click Continue to open the Element screen.

Chapter 18
Creating Template Assets

18-15

Note:

If you chose to save the Template asset, you will notice that WebCenter
Sites adds two fields:

• The Status field, which is pre-populated with the editorial status of
the Template asset (created, edited, and so on). This field identifies
the latest operation that was performed on the Template asset,
regardless of whether the Template asset is associated with a
workflow.

• The ID field, which is pre-populated with a unique number that
WebCenter Sites generates and assigns to the Template asset as
its ID. (The ID field corresponds to the tid variable.)

Configure the Template's Element
The Element screen is used to create the template's element, define the element file
type (XML, JSP, or HTML), provide the element logic, and name the element. For
example:

• The Create Template Element field offers a choice of XML, JSP, or HTML file
types for the element logic, and is used to seed the Element Logic field with
standard stub code (which you have to include in any element that you create).

When you use the Create Template Element field to create, for example, a .jsp
file, WebCenter Sites adds JSP taglib statements and the RENDER.LOGDEP tag
to the Element Logic field by default so that WebCenter Sites can log the
compositional dependency between this Template asset and pages that are
rendered from this element. For other file types, WebCenter Sites adds code
specific to the file type. You will add your own code to the Element Logic field.

See About Dependencies. For help with coding the element logic, see Coding
Elements for Templates and CSElements.

• The Element Storage Path/Filename field names the file that holds the element
logic and specifies the path to the file.

When the Template asset is saved, field values in the Element screen are written to a
row (representing the element) in the ElementCatalog table.

Chapter 18
Creating Template Assets

18-16

Note:

About Selecting an Existing Element

In the steps that follow, we assume you are creating a new element for
the Template asset. If, however, you are migrating assets from an earlier
WebCenter Sites release and want to reuse an existing element, you have
to identify the element correctly so that WebCenter Sites can find it and
associate it with this Template asset.

To select an existing element, do the following:

1. In the ElementCatalog Description field, type a description of the
element.

2. In the Element Storage Path/Filename field, enter a value according to
the naming convention in Table 18-2.

3. In the Element Parameters field, specify the variables or arguments that
can be passed to the element. See step 7 in Configure the Template's
Element.

4. Save and re-open the Template asset.

WebCenter Sites checks for the existence of the named element:

If the element has been correctly named, WebCenter Sites recognizes
the element and displays its code in the Element Logic field.

If the named element does not exist (or is incorrectly named),
WebCenter Sites does nothing. When you inspect or edit the Template
asset, WebCenter Sites displays a message stating that there is no
root element in the form. As soon as you code the element and give it
the correct name, WebCenter Sites detects it and associates it with the
template.

In the Element screen, fill in the fields as explained in this step:

Chapter 18
Creating Template Assets

18-17

Figure 18-2 Template Element Form

1. In the Usage field, specify the intended usage of this template, using this table as
a guideline:

Table 18-3 Usage Options

Usage Option Description

Usage unspecified Specifies a template that generates HTML. It is unknown
whether the template is a Body template (see row 2 of this
table) or a url template (see row 3 of this table).

Element is used within an
HTML page

Specifies a template that is used inside the <BODY>...</
BODY> tag of an HTML page. This option characterizes the
template as a Body template.

Element is used as a layout Specifies a layout template that generates a complete
HTML page, and is used to render assets in Web Mode.

Element defines a whole
HTML page and can be called
externally

Specifies a template that generates a complete HTML
page and can be used in a url. This option characterizes
the template as a url template.

Element is streamed as raw
data

Specifies a template that generates raw binary data of an
unknown type that is not HTML.

2. In the Called Templates field, select the template(s) that this template will call (if
they exist).

3. In the Create Template Element field, do one of the following:

Chapter 18
Creating Template Assets

18-18

• To create an .xml file, click XML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\Template\modelXML.xml element and can
be modified to use custom default logic.

• To create a .jsp file, click JSP. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\Template\modelJSP.xml element and can
be modified to use custom default logic.

• To create an .html file, click HTML. The code that is pasted in comes from
the OpenMarket\Xcelerate\AssetType\Template\modelHTML.xml element and
can be modified to use custom default logic.

WebCenter Sites populates the following fields:

• Element Logic field with a header and other auto-generated code.

For example, if you clicked the JSP button, WebCenter Sites enters a tag
library directive for each of the WebCenter Sites JSP tag libraries. WebCenter
Sites also sets a RENDER.LOGDEP (render:logdep) tag to mark a compositional
dependency between the Template asset and any page or pagelet rendered
with the template.

• Element Storage Path/Filename field. Do not change the value of this field.

This field displays the element file name, preceded by the path to the element
file. The naming convention is given in Table 18-2.

When you save the Template asset, the value in the Element Storage Path/
Filename field is written to the url column of the ElementCatalog table, for the
row that represents the element.

4. The Rootelement field is pre-populated with the value given in Table 18-2. Do
not change the value of this field. If the default value is changed, some tags that
expect the default value, such as the render:calltemplate tag with the style
attribute set to element, will fail.

5. (Optional). In the ElementCatalog Description field, type a description of the
element. When you save the Template asset, information in this field is written to
the description column for the element entry in the ElementCatalog table.

6. (Required). In the Element Logic field, code your element. Be sure to enter all of
your code between the two cs:ftcs tags.

If you are using JSP, remove the comments from the taglib directives that
describe the tag libraries you are using. See Coding Elements for Templates and
CSElements.

Chapter 18
Creating Template Assets

18-19

Note:

Ensuring Template Sharing or a Replicable Site

To share your Template asset or make the current site replicable,
ensure the template's element logic does not directly refer to assets,
asset types, attribute names, or template names. Instead, use the
render:lookup tag and prescribed keys as explained in Template Sharing
and Site Replication. In Configure the Map you will map the same keys
to the asset information that must be accessed for use in the element
logic.

Calling a Template

Templates should always be called by the render:calltemplate tag,
and never the render:callelement tag or render:satellitepage tag.

7. The Element Parameters field and Additional Element Parameters field are
used to enter variables or arguments that can be passed to the element, if the site
design requires them.

• The Element Parameters field corresponds to the resdetails1 column in the
ElementCatalog. When you save the template, WebCenter Sites writes the
template ID (tid) to this field (i.e., to the resdetails1 column).

• The Additional Element Parameters field corresponds to the resdetails2
column in the ElementCatalog. WebCenter Sites leaves this field blank.

If your site design requires you to use variables in addition to tid in your
template element, enter the variables into one of the fields above. Enter them
as name=value pairs with multiple arguments separated by the ampersand (&)
character. For example:

MyArgument=value1&YourArgument=value2

Each field supports up to 255 characters.

For more information about using variables, see Website Development with Tag
Technologies.

8. Click Continue to open the SiteEntry screen.

Configure SiteEntry
The SiteEntry screen is used to specify caching and pagelet parameters for the page
to be rendered by this Template asset.

When the Template asset is saved, field values that you specify in the SiteEntry
screen are written to the SiteCatalog table, as indicated in the procedures below.

In the SiteEntry screen, shown in the following figure, fill in the fields as explained in
the steps below:

Chapter 18
Creating Template Assets

18-20

Figure 18-3 Template Site Entry Form

1. In the Cache Criteria field:

a. WebCenter Sites names the following reserved variables as Cache Criteria:

c,cid,context,p,rendermode,site,sitepfx,ft_ss

Note:

The reserved Cache Criteria variables should not be removed. For
information about the reserved variables, see Website Development
with Tag Technologies.

b. If you have to include your own variables as Cache Criteria (for example, foo),
add them to the existing list. For example:

c,cid,context,foo,p,rendermode,site,sitepfx,ft_ss

Chapter 18
Creating Template Assets

18-21

Note:

The Cache Criteria field names the variables which, in conjunction
with SiteCatalog Pagename, define a pagelet as being unique. The
variables are used to identify cached pages, which means that the
variables are used in the page's cache key.

Only those variables that are specified as Cache Criteria are
used by the caching system to create the cache key for cached
pages. Therefore, if your site design requires you to use page-level
variables in addition to the reserved variables, be sure to designate
them as Cache Criteria variables, as shown in this step.

2. If you have to enable the Extra Parameters section in CKEditor, complete these
steps:

a. Move the "Extra Parameters" that were added to the Cache Criteria of the
Template to the "Legal Arguments" section of the Template.

b. When moving the parameters to the Legal Arguments section, it is no longer
necessary to prefix the parameters with fp:, just use the parameter name.

For example, instead of using fp:imageHeight, just use imageHeight.

c. These parameters are then available in the included template, and
can be retrieved in standard ways, such as using <ics:getvar
name="imageHeight"/>.

The Extra Parameters section provides a way of passing custom parameters, such
as image dimensions, to the template. These extra parameters will be available in
the Include asset link and Add asset link dialog boxes. The parameter names
(imageHeight and imageWidth in our example) will be displayed in CKEditor's
Extra Parameters section, as options in the Name menu. The Value field enables
the user to specify a value for the chosen parameter.

When the Template asset is saved, the Cache Criteria variables are written to the
pagecriteria column in the SiteCatalog table.

3. (Optional). The Access Control Lists field corresponds to the acl column in the
SiteCatalog table. To allow only certain visitors to request this page, select the
ACLs that the visitors must have to see the page.

4. The Rootelement field is pre-populated with a value that is shown in Table 18-2.

5. The Cache Rules field corresponds to the cscacheinfo and sscacheinfo columns
in the SiteCatalog table. Do one of the following:

• Select Cached if the pagelet to be rendered by this template's element must
be cached. The pagelet is set to be cached forever. The cache will be flushed
by CacheManager's active cache management logic. This option sets both
WebCenter Sites and Satellite Server caching conditions.

• Select Uncached to turn off caching for the pagelet to be rendered by this
template's element. This option sets both WebCenter Sites and Satellite
Server caching conditions.

• Select Advanced to set caching rules individually for WebCenter Sites and
Satellite Server. Selecting Advanced displays two additional fields: one for
WebCenter Sites caching and one for Satellite Server caching.

Chapter 18
Creating Template Assets

18-22

Note:

CacheManager is designed to manage the lifecycle for cached pages
on both WebCenter Sites and Satellite Server. It is designed to operate
with pages that are set to be cached forever. If the cache expires on
WebCenter Sites before it expires on Satellite Server, CacheManager
will fail to flush the cache properly and invalid pages may be served from
cache. Only advanced users should configure these settings manually.

For more information about page caching settings, see Understanding
Page Design and Caching.

1. SiteCatalog Pagename field. Do not change the value of this field. This field is
pre-populated with the name of the page entry. The page naming convention is
given in Table 18-2.

2. In the Pagelet parameters section, you can enter pagelet parameters (name-
value pairs), which will be passed into the template each time it is executed. The
Pagelet parameters section supports a total of 510 characters.

Note:

The Pagelet parameters section is pre-populated with the following
default pagelet parameters (reserved variables that were named in step
1, including their values:

site, sitepfx, rendermode

The default parameter values will be overwritten if they are explicitly
specified when the template is called.

• If you are specifying a pagelet parameter in this step, make sure to
list its name as a Cache Criteria variable (see step 1).

• If you named your own Cache Criteria variables (in step 1), the
variables are listed in the Page parameters section. If you do not
specify values for these parameters, WebCenter Sites ignores the
parameters.

• If you want to control the allowed HTTP methods for this page
entry, add a pagelet parameter with the name methods and
a value with comma-separated HTTP methods. For example,
methods=GET,OPTIONS.

When the Template asset is saved, the name-value pairs that are specified as
Pagelet parameters are written to either the resargs1 or resargs2 column of the
SiteCatalog table. The column to which they are written is not important and is
managed automatically. (Each column supports up to 255 characters.)

3. Click Continue to open the Thumbnails screen.

4. Click Continue to open the Map screen.

Chapter 18
Creating Template Assets

18-23

Note:

You will return to the Thumbnail screen after you have completed
creating the Template asset and saved the Template asset.

Configure the Map
The purpose of mapping is to enable site replication and the sharing of Template
assets.

Note:

Skip this step if you are designing a non-replicable site.

Using the Map form, you will:

• Map each key in the render:lookup tags of the template's element logic to a value
that will be used by the element logic.

• Map each key's value to the asset information that must be used in the element
logic: asset, asset type, attribute name, or template name.

When the Template asset is saved, the map is written to the Template_Map table.

In the Map form, fill in the fields as explained in this step:

1. The Key field represents a value that the element logic will look up. Enter the key
that is named in a render:lookup tag of the element logic.

2. The Type field identifies the type of asset information to be accessed. Select one
of the following options:

• Template Name: Maps a template name to the key value (which you will
specify in the Value field, in the next step). The information that will be
accessed is a template name that matches the value that you will specify
in the next step. For an example, see the next figure.

• Asset Type: Maps an asset type to the key value. The information that will be
accessed is an asset type, equal to the value that you will specify in the next
step.

• Asset (Type:Name): Maps an attribute type:name to the key value. The
information that will be accessed is an asset whose type and name match
the value that you will specify in the next step.

• Asset (Type:ID): Maps an attribute type:ID to the key value. The information
that will be accessed is an asset whose type and name match the value that
you will specify in the next step.

Chapter 18
Creating Template Assets

18-24

Figure 18-4 Template Asset: Sample Map

3. In the Value field, enter a value for the key. This value will be looked up by the
element logic when the Template is executed.

4. In the siteid field, select the name of the site to which the mapping applies.

5. To add a key, click Add Another and repeat the steps in this section.

6. When you have completed creating your template, save the template (click Save
Changes).

WebCenter Sites displays the template's Inspect form.

Create a Thumbnail (Optional)
A thumbnail graphically assists template users in determining how your Template
asset lays out pages or renders content. The thumbnail that you create will be
displayed in the Template's Inspect form.

When the Template asset is saved, the name of the thumbnail file is written to the
urlthumbnail column of the Template_Thumb table.

To create a thumbnail, complete the following steps:

1. Preview your Template asset.

2. Capture the preview as an image file and save it to a file system.

3. Open the Template form and click Thumbnail at the top of the screen.

The Template Thumbnail form opens (see the next figure).

4. In the Thumbnail Image field, enter (or browse for) the path to the image file that
you created in step 2.

Chapter 18
Creating Template Assets

18-25

Figure 18-5 Template Thumbnail Form

5. To display the thumbnail in the Inspect form:

a. Save the template (click the Save icon).

WebCenter Sites uploads the image file to the WebCenter Sites database and
displays template's Inspect form.

b. In the Inspect form, scroll down to the Thumbnail Image section. If the
displayed image is too large or too small, resize the image in its source file
and repeat steps 4 and 5.

6. To operate in the image in the Thumbnail screen:

a. Scroll to the top of the Inspect form, and click the Edit link.

b. At the top of the Template form, click Thumbnail.

7. To copy, send, and perform other operations on the thumbnail, right-click the
thumbnail and select an option.

8. To delete the thumbnail, select Delete thumbnail image? and click Save
Changes.

WebCenter Sites displays the template Inspect form.

Inspect the Template
When you have finished creating the Template asset and clicked Save, WebCenter
Sites does the following:

• Writes to the database tables:

– Creates a template entry in the Template table.

– Creates an element entry in the ElementCatalog table, using the
AssetTypeName/TemplateName naming convention. If the element was coded
in the template form (rather than Oracle WebCenter Sites Explorer),
WebCenter Sites also creates the element file.

– Determines the name of the site that the template belongs to and creates
a page entry in the SiteCatalog table using the SiteName/AssetTypeName/
TemplateName naming convention.

– Sets the name of the root element of the new SiteCatalog page entry to the
name of the ElementCatalog entry.

– Creates a thumbnail entry in the Template_Thumb table.

– Creates a map entry in the Template_Map table.

Chapter 18
Creating Template Assets

18-26

• Displays the Inspect form, which provides the following kinds of information:

– Information in the Name screen (standard summary information, such as asset
name, description, status, source, and ID, for assets of all types).

– Information in the Element screen (root element, element logic, path to the
element file, and tid).

– Information in the SiteEntry screen (SiteCatalog pagename, pagelet
parameters, cache criteria, and the ACLs of users who are authorized to view
the page).

– Information in the Thumbnail screen (a thumbnail image, if one was chosen).

– Information in the Map screen (a map of key-value-asset information, if the site
was designed to be replicable, or the template is sharable).

– If you have shared the Template asset, the Inspect form also lists all of the
additional page entries in the SiteCatalog for this Template asset (there is a
page entry for each site that the template is shared with).

Figure 18-6 Inspect Form Showing Element Parameters

Chapter 18
Creating Template Assets

18-27

Figure 18-7 Inspect Form Showing Site Entries and Maps

Creating CSElement Assets
When you create a CSElement asset, you do three things: you create an asset, you
code an element for the asset, and you configure a key-value-asset information map
(similar to the map for a Template asset).

To create a CSElement asset, you must first complete Before You Begin Creating
a CSElement to determine how you will set CSElement properties that cannot (or
must not) be changed once the CSElement is saved, and how you will code the
CSElement's element logic. You will then continue to Creating a Template Asset to
complete the following steps, using the Admin interface:

• Open the CSElement Form

• Name and Describe the CSElement Asset

• Configure the Element

(To specify its file type and logic.)

• Configure the Map

(To support CSElement sharing and site replication.)

• Save and Inspect the CSElement

• Add the CSElement to Bookmarks

(If you plan to use the CSElement as a root element for a Site Entry asset. See
Creating SiteEntry Assets.)

Chapter 18
Creating CSElement Assets

18-28

Information that you enter into the CSElement form will be written to database tables
when the CSElement asset is saved, as indicated in the procedures below.

Note:

Do not create CSElement assets directly in the database tables. Doing so
will require you to write to several tables and can result in incorrect tracking
of dependencies. Instead, use the CSElement form and the procedures
in this section to create CSElement assets. For help with coding the
CSElement logic, see Coding Elements for Templates and CSElements.

Topics:

• Before You Begin Creating a CSElement

• Creating a SiteEntry Asset

Before You Begin Creating a CSElement
Before you begin creating a CSElement asset, you must determine several things:

• A name for your CSElement asset.

• Whether your CSElement will be sharable and the site replicable. These
considerations determine how you will code the CSElement's element logic.

• Whether you plan to code the CSElement's element logic in Oracle WebCenter
Sites Explorer instead of the CSElement form. This approach is not recommended
for the reasons outlined in Using Oracle WebCenter Sites Explorer to Create and
Edit Element Logic.

Naming the CSElement
• Once the CSElement asset is saved, its name cannot be changed.

• The CSElement logic file takes the name of the CSElement (followed by the file
extension:

CSElementName.xml_or_jsp_or_html

The name of the CSElement logic file must not be changed.

CSElement Sharing and Site Replication
Before creating a CSElement, decide whether the CSElement must be shared or the
site you are working in must be replicable. If so, the CSElement logic will be coded
in the same way. If sharing and replication are not required, you will skip key-value
mapping (see Configure the Map).

For information about coding element logic to support CSElement sharing and site
replication, see Template Sharing and Site Replication. The information applies without
exception to CSElement assets.

Chapter 18
Creating CSElement Assets

18-29

Creating a CSElement Asset
You can create a CSElement asset through the WebCenter Sites interface.

Note:

Before starting the procedures in this section, read Before You Begin
Creating a CSElement for information about creating CSElement assets.

• Open the CSElement Form

• Name and Describe the CSElement Asset

• Configure the Element

• Configure the Map

• Save and Inspect the CSElement

• Add the CSElement to Bookmarks

Open the CSElement Form
1. Open the Admin interface.

2. In the button bar, click New.

3. In the list of asset types, select New CSElement.

The CSElement form opens.

Note:

For the New CSElement option to be displayed, the CSElement asset
type must be enabled for your site and a Start Menu item must be
created for it.

4. Continue with Name and Describe the Template Asset.

Note:

If you see a Choose Assignees screen instead of the CSElement form,
it means that the CSElement you will be creating is associated with a
workflow. Select a name (or names) from the Users column and click Set
Assignees. Continue with Name and Describe the Template Asset.

Chapter 18
Creating CSElement Assets

18-30

Name and Describe the CSElement Asset
The Name screen is used to define metadata about the CSElement. From this
metadata, a developer can identify what the CSElement does and the arguments it
uses to perform its function.

Note:

At any time in the process of creating a CSElement, you can save the
CSElement. WebCenter Sites will display the CSElement's Inspect form. To
return to the CSElement form, click the Edit link.

To name and describe the CSElement, in the Name screen, fill in the fields as
explained in the following steps:

Figure 18-8 CSElement Name Form

1. (Required). In the Name field, type a unique, descriptive name for the CSElement
asset. It's best to use a name that describes what the CSElement does.

Valid Entries

• Up to 64 alphanumeric characters (the first character must be a letter)

• Underscores (_)

• Hyphens (-)

• Spaces (these will be converted to underscores when used in the SiteCatalog
pagename for the template)

Note:

Make sure you have chosen a name for your CSElement asset using the
guidelines inBefore You Begin Creating SiteEntry Assets.

2. In the Description field, type a brief description of the CSElement asset. You can
enter up to 128 characters.

Chapter 18
Creating CSElement Assets

18-31

3. In the Legal Arguments field:

a. Enter an argument that may be passed to the CSElement and click Add
Argument.

b. In the fields that are displayed:

• Specify whether the argument is optional or required.

• Provide a description of the argument (to help you know the purpose of
the argument you are creating).

• Specify legal values (including descriptions) for the argument.

(You can specify as many arguments and legal values as you require by clicking
the Add Arguments and Add Legal Value buttons.)

4. Click Continue to open the Element screen.

Configure the Element
The Element form (Figure 18-9) is used to create the CSElement's element, define
the element file type (XML, JSP, or HTML), provide the element logic, and name the
element. For example:

• The Create Element field offers a choice of XML, JSP, or HTML file types for the
element logic, and is used to seed the Element Logic field with standard stub code
(which you have to include in any element that you create).

• When you use the Create Element field to create, for example, a .jsp file,
WebCenter Sites adds JSP taglib statements and the render.logdep tag to the
Element Logic field by default so that the compositional dependency between this
CSElement asset and pages that are rendered from this element is logged. For
other file types, WebCenter Sites adds code specific to the file type. You will add
your own code to the Element Logic field.

For information about dependencies, see About Dependencies. For help with
coding the element logic, see Coding Elements for Templates and CSElements.

• The Element Storage Path/Filename field names the file that holds the element
logic and specifies the path to the file.

When the CSElement is saved, field values in the Element screen are written to a row
(representing the element) in the ElementCatalog table.

Chapter 18
Creating CSElement Assets

18-32

Note:

About Selecting an Existing Element

In the steps that follow, we assume you are creating a new element for
the CSElement asset. If, however, you are migrating assets from an earlier
WebCenter Sites release and want to reuse an existing element, you have
to identify the element correctly so that WebCenter Sites can find it and
associate it with the CSElement asset.

To select an existing element

• (Optional). In the ElementCatalog Description field, type a description
of the element.

• In the Element Storage Path/Filename field, enter a value according to
the convention in Naming the CSElement.

• If your site design requires it, enter the appropriate arguments in the
element parameter fields. For instructions, see step 5.

• Save and re-open the CSElement asset.

WebCenter Sites checks for the presence of an element with the correct
name:

If the element has been correctly named, WebCenter Sites recognizes the
element and displays its code in the Element Logic field.

If the named element does not exist (or is incorrectly named), WebCenter
Sites does nothing. When you inspect or edit the CSElement asset,
WebCenter Sites displays a message stating that there is no root element
in the form. As soon as you code the element and give it the correct name,
WebCenter Sites detects it and associates it with the CSElement asset.

To configure a new element, in the Element form, fill in the fields as explained in the
steps below:

Chapter 18
Creating CSElement Assets

18-33

Figure 18-9 CSElement Element Form

1. In the Create Element field, do one of the following:

• To create an .xml file, click XML. The code that is pasted in comes from
the OpenMarket\Xcelerate\AssetType\CSElement\modelXML.xml element and
can be modified to use custom default logic.

• To create a .jsp file, click JSP. The code that is pasted in comes from
the OpenMarket\Xcelerate\AssetType\CSElement\modelJSP.xml element and
can be modified to use custom default logic.

• To create an .html file, click HTML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\CSElement\modelHTML.xml element and
can be modified to use custom default logic.

WebCenter Sites populates the following fields:

• Element Storage Path/Filename field. Do not change the value of this field.

This field displays the element file name preceded by the path to the element
file. By default, the file takes the name of the CSElement asset (entered in
step 1) followed by the file extension:

CSElementName.xml_or_jsp_or_html

When you save the CSElement asset, the value in this field is written to the url
column of the ElementCatalog table, for the row that represents the element.

• Element Logic field with a header and other information.

For example, if you clicked the JSP button, WebCenter Sites sets a
tag library directive for some common WebCenter Sites JSP tag libraries
(asset, siteplan, render). WebCenter Sites also sets the beginning and
ending cs:ftcs tags, and a RENDER.LOGDEP (render:logdep) tag to mark a
compositional dependency between the CSElement asset and any page or
pagelet rendered by the element.

2. The Rootelement field is pre-populated with the name of the element file
(CSElementName.xml_or_jsp_or_html). Do not change the value of this field.

Chapter 18
Creating CSElement Assets

18-34

The root element is listed by this name in the ElementCatalog table. When you
create code that calls this element (RENDER.CALLELEMENT), this is the name you
should use. It uses the name of the CSElement asset by default.

3. (Optional). In the ElementCatalogDescription field, type a description of the
element.

When you save the CSElement asset, information in this field is written to the
description column for the element entry in the ElementCatalog table.

4. (Required). In the Element Logic field, code your element. Be sure to enter all of
your code before the ending cs:ftcs tag.

If you are using JSP, remove the comments from the taglib directives that
describe the tag families you are using.

For help with this step, see Coding Elements for Templates and CSElements.

Note:

Ensuring Template Sharing or a Replicable Site: To share your
CSElement or make the current site replicable, ensure the CSElement's
element logic does not directly refer to assets, asset types, attribute
names, or template names. Instead, use the render:lookup tag and
prescribed keys as explained in Template Sharing and Site Replication.
In Configure the Map you will map the keys to the asset information that
must be accessed for use in the element logic.

Calling a Template: Templates should always be called by the
render:calltemplate tag, and never the render:callelement tag or
render:satellitepage tag.

5. (Optional). The Element Parameters field and Additional Element Parameters
fields are used to enter variables or arguments that can be passed to the element,
if the site design requires them.

• Element parameters field. WebCenter Sites populates this field with the
CSElement ID (eid), generated by WebCenter Sites as a unique identifier of
the CSElement asset. Do not change or delete this value.

This field corresponds to the resdetails1 column of the ElementCatalog table.
When you save the CSElement, WebCenter Sites writes the CSElement ID to
the resdetails1 column, in the row that represents the CSElement.

• Additional Element Parameters field. WebCenter Sites leaves this field
blank.

This field corresponds to the resdetails2 column of the ElementCatalog.

If your site design requires you to use variables in addition to eid, enter the
variables into one of the fields above. Enter them as name=value pairs with
multiple arguments separated by the ampersand (&) character. For example:

MyArgument=value1&YourArgument=value2

Each field supports up to 255 characters.

For more information about WebCenter Sites variables, including scope and
precedence, see Website Development with Tag Technologies.

Chapter 18
Creating CSElement Assets

18-35

6. Click Continue to open the Map screen.

Configure the Map
The purpose of mapping is to enable site replication and sharing of CSElement assets.
The concepts behind mapping are identical to those for Template assets. They are
explained in Template Sharing and Site Replication.

Note:

Skip this section if you are designing a non-replicable site or a CSElement
asset that is not shared.

Using the Map form, you will:

• Map each key in the render:lookup tag of the element logic to the value that must
be used in the element logic.

• Map each key's value to the asset information that must be used in the element
logic: asset, asset type, attribute name, or template name.

When the CSElement asset is saved, the map is written to the CSElement_Map table.

In the Map form, fill in the fields as explained in this step:

Figure 18-10 CSElement Map Form

1. The Key field represents the value that the element logic will look up. In this field,
enter the key that is named in a render:lookup tag of the element logic.

2. The Type field identifies the type of asset information to be accessed. Select one
of the following options:

• Template Name: Maps a template name to the key value (which you will
specify in the Value field, in the next step). The information that will be

Chapter 18
Creating CSElement Assets

18-36

accessed is a template name that matches the value you will specify in the
next step. (For an example, see the next figure.)

• Asset Type: Maps an asset type to the key value. The information that will be
accessed is an asset type, equal to the value that you will specify in the next
step.

• Asset (Type:Name): Maps an attribute type:name to the key value. The
information that will be accessed is an asset whose type and name match
the value that you will specify in the next step.

• Asset (Type:ID): Maps an attribute type:ID to the key value. The information
that will be accessed is an asset whose type and name match the value that
you will specify in the next step.

Figure 18-11 CSElement Asset: Sample Map

3. In the Value field, enter a value for the key. This value will be looked up by the
element logic when the CSElement asset is invoked.

4. In the siteid field, select the name of the site to which the mapping applies.

5. To add a key, click Add Another and repeat the steps in this section.

Save and Inspect the CSElement
When you have finished creating the CSElement asset, click Save.

• WebCenter Sites writes to the database tables.

– Creates a row in the CSElement table for the CSElement asset, where it enters
the CSElement name and description that you specified in the previous steps.

– Creates an element entry in the ElementCatalog table using values specified
in the Element screen:

Chapter 18
Creating CSElement Assets

18-37

* The value of the Rootelement field is used to position the element file in
the appropriate folder.

* The value of the Element Storage Path/Filename field is written to the url
column.

* The value of the eid variable is set to the ID of the CSElement asset in the
resdetails1 column.

• Flushes the pagecache of any pagelets that call this element.

• Displays the Inspect form (Figure 18-12), which provides the following kinds of
information:

– Information in the Name screen (standard summary information, such as asset
name, description, status, and ID, for assets of all types).

– Information in the Element screen (root element, element logic, path to the
element file, and the element's eid).

– Information in the Map screen (a map of key-value-asset information, if the site
was designed to be replicable, or the template is sharable).

– Preview with Arguments button, enabling you to preview the page(s)
rendered by the SiteEntry asset.

Add the CSElement to Bookmarks

Note:

Complete the steps in this section if you are planning to use your CSElement
to create a SiteEntry asset. This step makes the CSElement available for
selection in WebCenter Sites's tree by adding it to your Bookmarks.

If you are not planning to create the SiteEntry asset in this session, you want
to add the CSElement to your Bookmarks so that you can easily find it later.

To add the CSElement to Bookmarks, do the following:

1. Run a search on the CSElement asset you created.

2. In the results list, select the check box in the right-hand column to add the
CSElement to Bookmarks.

This CSElement is listed in WebCenter Sites's tree, in the Bookmarks tab, where
it is a selectable option for SiteEntry assets.

3. Create the SiteEntry asset. See Creating SiteEntry Assets.

Chapter 18
Creating CSElement Assets

18-38

Figure 18-12 CSElement Asset: Sample Inspect Form

Creating SiteEntry Assets
When you create a SiteEntry asset, you are creating both an asset and a page entry in
the SiteCatalog table. The fields in the first part of the SiteEntry form define the page
entry as an asset. The rest of the fields provide information about the page entry as a
WebCenter Sites page, information that is written to the SiteCatalog table.

To create a SiteEntry asset, you must first complete Before You Begin Creating
a CSElement to create its root element and determine how you will set SiteEntry
properties (such as SiteEntry name). You will then continue to Creating a SiteEntry
Asset to complete the following steps, using the Admin interface:

• Open the SiteEntry Form

• Create the SiteEntry Asset

• Save and Inspect the SiteEntry Asset

Information that you enter into the SiteEntry form will be written to database tables
when the CSElement asset is saved, as indicated in the procedures below.

Note:

Do not create SiteEntry assets directly in the database tables. Doing so will
require you to write to several tables and can result in incorrect tracking of
dependencies. Instead, use the SiteEntry form and the procedures in this
section to create SiteEntry assets.

Chapter 18
Creating SiteEntry Assets

18-39

This section includes the following topics:

• Before You Begin Creating SiteEntry Assets

• Creating a SiteEntry Asset

Before You Begin Creating SiteEntry Assets
Before you begin creating a SiteEntry asset, complete the following steps:

1. Create a root element for the page entry:

a. Create a CSElement asset. For instructions, see Creating CSElement Assets.

(A root element is required for any page entry. The root element is the element
of the CSElement, which you will select for the SiteEntry asset.)

b. Make the CSElement available. For instructions, see Add the CSElement to
Bookmarks.

(To specify a CSElement for your SiteEntry asset, you will select the
CSElement from the Bookmarks tab in WebCenter Sites's tree, or the History
tab if you created the CSElement in the current session).

2. Determine a name for your SiteEntry asset. The same name will be assigned to
the page. Neither the SiteEntry name nor the page name can be changed once
the SiteEntry asset is saved.

Creating a SiteEntry Asset
You can create a SiteEntry asset through the WebCenter Sites interface.

To create a SiteEntry asset, do these tasks:

• Open the SiteEntry Form

• Create the SiteEntry Asset

• Save and Inspect the SiteEntry Asset

Note:

Before starting the procedures in this section, read Before You Begin
Creating SiteEntry Assets for information about creating SiteEntry assets.

Open the SiteEntry Form
1. Open the Admin interface.

2. In the button bar, click New.

3. In the list of asset types, select New SiteEntry.

The SiteEntry form opens.

Chapter 18
Creating SiteEntry Assets

18-40

Note:

For the New SiteEntry option to be displayed, the SiteEntry asset type
must be enabled for your site and there must be a Start Menu item
created for it.

4. If you see a Choose Assignees screen instead of the SiteEntry form, it means
that the SiteEntry you will be creating is associated with a workflow. Select a name
(or names) from the Users column and click Set Assignees.

Create the SiteEntry Asset
In the SiteEntry form, fill in the fields as explained in this step:

1. (Required). In the Name field, type a descriptive name for the SiteEntry asset. It's
best to use a name that describes the purpose of the page.

Valid Entries

• Up to 64 alphanumeric characters (the first character must be a letter)

• Underscores (_)

• Hyphens (-)

• Spaces (these will be converted to underscores when used in the
SiteCatalog pagename for the template).

2. In the Description field, type a brief description of the SiteEntry asset. You can
enter up to 128 characters.

3. (Required). Click in the Pagename field to automatically populate it with the
name of the page entry and the path to the page entry (for example: FSIICommon/
SideNav/ProductView). Do not change the value of this field.

Note:

The value in this field is the name of the page entry (which will be stored
in the SiteCatalog table when the SiteEntry is saved). When you create
code that calls this SiteEntry asset (RENDER.SATELLITEPAGE), this is the
name you should use.

4. To use the row of a pre-existing page entry in the SiteCatalog table, select the
Map to existing SiteCatalog entry option.

5. (Required). In the Rootelement field, select the appropriate CSElement asset
from the tree and click Add Selected Items.

Note:

Only one CSElement can be added.

Chapter 18
Creating SiteEntry Assets

18-41

6. In the Wrapper page field, select one of the options to specify whether the asset
you are creating is a wrapper page. Selecting the NO option displays the Pagelet
only field.

7. If the Pagelet only field is displayed, select one of the options to specify whether
the asset you are creating is a pagelet.

8. In the Pagelet parameters section, you can enter pagelet parameters (name-
value pairs), which will be passed into the page or pagelet each time it is
executed. The Pagelet parameters section supports a total of 510 characters.

Note:

Keep in mind the following:

• The Pagelet parameters section is pre-populated with the following
default parameters (reserved variables that are named by default
in the Cache Criteria field (next step), including their values: site,
seid, sitepfx, rendermode

The default values will be overwritten if they are explicitly specified
when the page or pagelet is called.

• If you are specifying a pagelet parameter in this step, make sure to
list its name as a Cache Criteria variable in the next step.

• If you want to control the allowed HTTP methods for this page
entry, add a pagelet parameter with the name methods and
a value with comma-separated HTTP methods. For example,
methods=GET,OPTIONS.

When the SiteEntry asset is saved, the name-value pairs that are specified as
Pagelet parameters are written to either the resargs1 or resargs2 column of the
SiteCatalog table. The column to which they are written is not important and is
managed automatically. (Each column supports up to 255 characters.)

9. In the Cache Criteria field:

a. WebCenter Sites names the following reserved variables as Cache Criteria:

rendermode,seid,site,sitepfx,ft_ss

Note:

The reserved Cache Criteria variables should not be removed.

10. If you have to include your own variables as Cache Criteria (for example, foo), add
them to the existing list. For example

foo,rendermode,seid,site,sitepfx,ft_ss

Chapter 18
Creating SiteEntry Assets

18-42

Note:

The Cache Criteria field names the variables which, in conjunction with
Pagename, define a pagelet as being unique. The variables are used to
identify cached pages, which means that the variables are used in the
page's cache key.

Only those variables that are specified as Cache Criteria are used by the
caching system to create the cache key for cached pages. Therefore,
if your site design requires you to use page-level variables in addition
to the reserved variables, be sure to designate them as Cache Criteria
variables, as shown in this step.

When the SiteEntry asset is saved, Cache Criteria variables and their values are
written to the pagecriteria column in the SiteCatalog table.

11. The Cache Rules field corresponds to the cscacheinfo and sscacheinfo columns
in the SiteCatalog table. Do one of the following:

• Select Cached if the pagelet to be rendered by this SiteEntry's CSElement
must be cached. The pagelet is set to be cached forever. The cache will be
flushed by CacheManager's active cache management logic. This option sets
both WebCenter Sites and Satellite Server caching conditions.

• Select Uncached to turn off caching for the pagelet to be rendered by this
SiteEntry's CSElement. This option sets both WebCenter Sites and Satellite
Server caching conditions.

• Select Advanced to set caching rules individually for WebCenter Sites and
Satellite Server. Selecting Advanced displays two additional fields: one for
WebCenter Sites caching and one for Satellite Server caching.

Note:

CacheManager is designed to manage the lifecycle for cached pages
on both WebCenter Sites and Satellite Server. It is designed to operate
with pages that are set to be cached forever. If the cache expires on
WebCenter Sites before it expires on Satellite Server, CacheManager
will fail to flush the cache properly and invalid pages may be served from
cache. Only advanced users should configure these settings manually.

12. The Access Control Lists field corresponds to the acl column in the
SiteCatalog table. to allow only certain visitors to request this page, enter the
ACLs that visitors must have to see the page.

Save and Inspect the SiteEntry Asset
When you have finished creating the SiteEntry asset, click Save. WebCenter Sites
does the following:

• Writes to the database tables:

– Creates a row in the SiteCatalog table for the SiteEntry asset, where it enters
the values that you specified in the previous steps.

Chapter 18
Creating SiteEntry Assets

18-43

• Displays the Inspect form, which provides the following information:

– Standard summary information (asset name, description, status, ID) and the
page entry criteria you specified in the previous steps.

– Preview with Arguments button, enabling you to preview the page(s)
rendered by the SiteEntry asset.

Managing Template, CSElement, and SiteEntry Assets
You can preview, edit, and delete Template, CSElement, and SiteEntry assets. If
you’re developing multiple sites, sharing these assets with other sites can save
development time.

See these topics:

• Designating Default Approval Templates (Static Publishing Only)

• Editing Template, CSElement, and SiteEntry Assets

• Sharing Template, CSElement, and SiteEntry Assets

• Deleting Template, CSElement, and SiteEntry Assets

• Previewing Template, CSElement, and SiteEntry Assets

Designating Default Approval Templates (Static Publishing Only)
When assets are approved for a publishing destination that uses the Export to Disk
publishing method, the approval system examines the template assigned to the asset
to determine its dependencies.

If you design your online site to render assets with multiple templates (a text-only
version and a summary version and a full version for the same type of asset, for
example), you should create a template that contains a representative set of approval
dependencies for all of the templates, and then specify that template as the Default
Approval Template for the asset type.

See Approval Templates for Export to Disk.

To designate that a template is the default approval template:

1. In the General Admin tree, expand the Admin node, then select Publishing, then
Destinations, and then Static.

2. Under the name of a static destination, select Set Default Templates.

3. In the Default Templates form, click Edit.

4. In the edit form, select a default template for each asset type. If you are using the
Subtype feature for any of your asset types, you can designate a default approval
template for each subtype of that asset type.

5. When you have finished, click Save.

Editing Template, CSElement, and SiteEntry Assets
Creating a Template, CSElement, or SiteEntry asset also creates an entry in the
SiteCatalog table or ElementCatalog table or both. The names of those entries are
based on the asset's name, and for Template assets, the asset type and the site

Chapter 18
Managing Template, CSElement, and SiteEntry Assets

18-44

the template belongs to. Because these naming dependencies exist, the following
restrictions apply when you edit a Template, CSElement, or SiteEntry asset:

• You cannot rename a Template, CSElement, or SiteEntry asset after it has been
saved.

• For Template assets, you cannot change the asset type selected in the Asset
Type field after the Template asset has been saved.

• For a Template or CSElement asset, you cannot change the name of the root
element.

• For a SiteEntry asset, you cannot change the name of the page entry.

Caution:

If you have manually created one or more site entries that point to a
Template (using Oracle WebCenter Sites Explorer) and then edit the
Template through the Admin interface, the manually created site entries
are automatically deleted.

For the basic procedure on editing assets, see Managing Access to Asset Types Using
Start Menus in Administering Oracle WebCenter Sites.

Sharing Template, CSElement, and SiteEntry Assets
When you share a CSElement, template, or SiteEntry asset, WebCenter Sites creates
a row in the AssetPublication table for each site that you share the asset with.

Additionally, for Template assets only, WebCenter Sites does the following:

• Creates a new SiteCatalog page entry for each site that you share the asset with.
It uses the name of the site in the name of the page entry. All of the new page
entries point to the same root element, the template element.

Note:

Do not change the root elements of these page entries. All page entries
for a shared template must point to the same root element.

• Lists all the other page entries for the shared template that share this root element
in the Inspect form.

For the basic procedure on sharing assets, see Sharing Blog Assets in Administering
Oracle WebCenter Sites.

Chapter 18
Managing Template, CSElement, and SiteEntry Assets

18-45

Note:

For templates and CSElements to be sharable, their element logic must not
be hard-coded with asset type names, attribute names, template names, or
IDs. Instead, use the render:lookup tag and hard-code the keys for which
you have created a map that the render:lookup tag can refer to look up
asset information for use in the element logic.

Deleting Template, CSElement, and SiteEntry Assets
WebCenter Sites does not allow you to delete an asset if there is another asset using
it. However, it does not check to see whether a template or CSElement is referenced
by the code in other template or CSElement elements.

Before you delete a template or SiteEntry asset, be sure to remove any page calls
to that asset's page entry from your elements. Before you delete a CSElement asset,
be sure to remove any element calls to that asset's root element from your other
elements.

When you delete an asset, WebCenter Sites does the following:

• Changes the value of the asset's name column in the Template, CSElement, or
SiteEntry table (depending on the asset type) to its object ID.

• Changes the value of the asset's status column in the Template table to VO, for
void.

• For templates, deletes all the SiteCatalog table entries (if the template is shared,
there are as many page entries as there are sites that the template is shared with)
and the ElementCatalog table entry for the template.

• For CSElements, deletes the ElementCatalog table entry for the asset.

See Deleting Index Data in Administering Oracle WebCenter Sites.

Previewing Template, CSElement, and SiteEntry Assets
Because template, CSElement, and SiteEntry assets provide logic and code for
formatting other assets, you preview assets of these types differently from the way
you preview your content assets.

Templates and Preview
You preview a template by previewing an asset and selecting the template that you
want to use to render the asset. WebCenter Sites invokes the code in the template and
renders a page with the asset as the content.

CSElement and SiteEntry Assets and Preview
You preview CSElement and SiteEntry assets directly. If the element that will be called
has self-contained context, a banner that does not expect variables or arguments. For
example, you can simply click the Preview icon. But when the results of the rendered
element depend on values that are passed to it, you must manually set those values in
the CSElement or SiteEntry form to preview that asset.

Chapter 18
Managing Template, CSElement, and SiteEntry Assets

18-46

For example, a CSElement asset named FiscalNews/Query/ShowHotTopics expects a
value for the p variable. If it doesn't receive one, the value of p defaults to the object ID
of the Home page asset. To preview this CSElement for a page asset other than the Home
page, you must pass in the ID of that page asset as the value of the p variable with the
argument fields in the New or Edit form for that CSElement asset.

To specify argument values for previewing a CSElement or SiteEntry asset:

1. Find the asset and inspect it by clicking the Inspect icon (has the letter "i").

2. Scroll to the bottom of the Inspect form. Next to Preview with Arguments, click
Preview.

3. Enter values for the arguments. You can also select values by double-clicking in
the fields and selecting from the drop-down list.

4. Click Preview.

5. Click the links that are displayed to preview the pages that are rendered by this
SiteEntry asset.

Using Oracle WebCenter Sites Explorer to Create and Edit
Element Logic

We don’t recommend creating and editing element logic directly from Oracle
WebCenter Sites Explorer. However, should you prefer to do so, ensure the validity
of your Template and CSElement assets.

Take note of the information in this topic and follow the instructions.

Note:

When a Template (CSElement) asset is created and saved in the WebCenter Sites
interface (Template or CSElement form), several important steps are taken that are not
taken when you use Oracle WebCenter Sites Explorer:

• The interface seeds your element with stub code that sets compositional
dependencies and, if you are using JSP, drops in the appropriate tag
library directives for you. Compositional dependencies are described in About
Dependencies.

• When you save the Template (CSElement) in the WebCenter Sites interface:

– The approval system receives information that the asset was changed and can
therefore change its approval status.

– Most importantly, the CacheManager servlet can update the cache (that is,
flush pages and pagelets from the WebCenter Sites and Satellite Server
caches).

If you choose to work with the CSElement asset in Oracle WebCenter Sites Explorer,
be sure that you do not alter the value of the eid variable or accidentally delete it.

A practical reason for using the WebCenter Sites interface is to avoid switching
between WebCenter Sites and Oracle WebCenter Sites Explorer, especially if you are

Chapter 18
Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic

18-47

mapping asset information (to support template sharing and site replication). Mapping
is supported only in the WebCenter Sites interface (in the Map screen of the Template
form and in the Map screen of the CSElement form).

This section includes the following topics:

• Creating Templates and CSElements

• Editing Templates and CSElements

Creating Templates and CSElements
If you prefer to use Oracle WebCenter Sites Explorer to code your element logic,
follow these steps:

1. Start creating your Template (or CSElement) asset using the Template form (or
CSElement form). Start with Open the Template Form (or Open the CSElement
Form) and continue sequentially.

2. In Configure the Template's Element (or Configure the Element), select your
element type (JSP, XML, or HTML). Do not change the element logic that is
auto-generated for you. Also, be sure that you do not alter the value of the tid
variable or accidentally delete it.

3. Continue through the form you have chosen until you finish. If you know which
keys and asset values you must map, add them to the Map form (in Configure the
Map). The same step applies to the CSElement asset).

4. Save the asset.

5. Open Oracle WebCenter Sites Explorer and edit your element. Save your
changes.

6. The final step is to re-save your asset in the Template form (or CSElement form).
You do not have to change any data in the form, but you must re-save it. This will
ensure that no functionality is bypassed.

Editing Templates and CSElements
Any time that you edit an element's logic in the Oracle WebCenter Sites Explorer
tool, you need to open and save the template (or CSElement) in the WebCenter Sites
interface so that (1) the approval system knows the asset was changed and can
change its approval status, and (2) the CacheManager servlet can update the cache.

Chapter 18
Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic

18-48

19
Creating Templates and Wrappers

You need templates to address several different scenarios: to apply to content assets,
to render an entire website or a page fragment, to preview content, and so on.
WebCenter Sites provides three types of templates: Layout, Pagelet, and Page.
Wrappers are SiteEntry assets that contain business logic to be processed before
rendering the actual layout template. You use wrappers to access session data for
implementing security checks, to determine which locale should be set, to disassemble
a friendly URL, and so on.

Topics:

• Working with Templates

• Working with Wrappers

Working with Templates
You have three types of templates in WebCenter Sites: Layout, Page, and Pagelet.
Layout and Page templates can be invoked directly from a browser, but not Pagelet
template. Only Layout template can be assigned to an asset. You use Layout template
to render an entire website, Page template to preview content, and Pagelet template to
render page fragments.

See these topics:

• Layout Templates

• Pagelet Templates

• Page Templates

Layout Templates
A layout template is a template asset where the Usage field is set to Element is used
as a layout. A layout template can be typed or typeless.

A layout template has three main characteristics:

• A layout template can be invoked from a browser

• A layout template can be assigned to an asset

• A layout template typically renders an entire web page

This topic provides details for each of these characteristics and presents use-case
scenarios that we will use across multiple sections to demonstrate various concepts. It
also explains how you can build a layout template for article assets.

19-1

A layout template can be invoked from a browser
Given a layout template's pagename, a web page is obtained by calling the Satellite
servlet and passing the pagename along with the asset type (c) and asset id (cid) of
the content to render:

http://localhost:8080/cs/Satellite?pagename=
 <template_pagename>&c=Article&cid=1234567

The pagename corresponding to any given template can be found by inspecting a
template asset and looking at the SiteCatalog Pagename column in the Site Entries
field.

A layout template can be assigned to an asset
Every content asset has template metadata which is viewable by selecting the
Content tab. This field stores a template name, the possible values include all layout
templates applicable to the asset type and subtype.

Figure 19-1 Content Asset with Template Metadata

WebCenter Sites uses the Template field when inspecting or editing an asset in Web
Mode of the Oracle WebCenter Sites: Contributor interface. WebCenter Sites uses
the assigned layout template as the default template to render the asset (this is also
the case when simply previewing an asset). In practice, this means that only layout
templates can be used to work with assets in Web Mode. Note that previewing does
not require a layout template. See Previewing Template, CSElement, and SiteEntry
Assets.

In Web Mode, the default layout template can also be assigned by using the Change
Layout functionality (either from the toolbar or menu bar), and selecting a layout
template visually, using the template picker. In either case, the value of the asset's
Template field is modified.

Chapter 19
Working with Templates

19-2

Figure 19-2 Change Page Layout Dialog

A layout template typically renders an entire web page
A standard web page is built with HTML code using <DIV> elements to define
divisions within the document, typically a header, footer, side bar, and main area as
shown in the diagram below.

Figure 19-3 Sample Layout Template

The HTML structure used by the avisports sample site is used in the example below of
a standard web page with a header, footer, side bar, and main area.

<!DOCTYPE html>
<html>
<head>
</head>
<body class="inner">
 <div id="main">
 <div id="header">
 <!--contains the top menu bar -->
 </div>
 <div id="container">
 <div class="content">
 <!--contains the main area -->
 </div>
 <div class="side-bar">
 <!--contains the side nav bar -->
 </div>

Chapter 19
Working with Templates

19-3

 </div>
 <div id="footer">
 <!--contains the footer -->
 </div>
 </div>
</body>
</html>

An actual JSP page would include tag library directives, an opening and closing
<cs:ftcs> tag, and the <render:logdep> tag, used by the cache manager. See
Website Development with Tag Technologies.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld" %>

<cs:ftcs>
<!DOCTYPE html>

<%
// The render:logdep tag is mandatory. It allows the cache manager
// to automatically flush any page/pagelet generated using this
// template ("tid" is automatically populated with the Template
// asset id)
%>

<render:logdep cid='<%=ics.GetVar("tid")%>' c="Template" />

<html>
<head>
</head>
<body class="inner">
 <div id="main">
 <div id="header">
 <!--contains the top menu bar -->
 </div>
 <div id="container">
 <div class="content">
 <!--contains the main area -->
 </div>
 <div class="side-bar">
 <!--contains the side nav bar -->
 </div>
 </div>
 <div id="footer">
 <!--contains the footer -->
 </div>
 </div>
</body>
</html>
</cs:ftcs>

The document must be enclosed within <cs:ftcs> tags. This tag creates the
WebCenter Sites context, alerting WebCenter Sites that code contained within the
opening and closing <cs:ftcs> tags will contain WebCenter Sites tags. WebCenter
Sites is unaware of any code which falls outside of these tags. For information about
<cs:ftcs> and <render:logdep> tags, see Understanding WebCenter Sites Tags.

Use Case 1: Building a Layout Template for Article Assets
Let’s define a layout template for article assets.

Chapter 19
Working with Templates

19-4

1. Using Eclipse with the WebCenter Sites Developer Tools plug-in, create a new
template in the avisports sample site with these characteristics:

• Site: avisports

• Name: HelloArticleLayout

• Asset Type: AVIArticle

• Subtype: Article

• Element Usage: Element is used as a Layout.

• Element Type: JSP

• Root Element: AVIArticle/HelloArticleLayout

• Storage Path: AVIArticle/HelloArticleLayout.jsp

2. Use the following JSP code.

Note that we are reusing some components written for avisports to render the
standard avisports header and footer, and head section, which allows us to import
the avisports stylesheets:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld" %>

<cs:ftcs>
<!DOCTYPE html>

<render:logdep cid='<%=ics.GetVar("tid")%>' c="Template" />

<html>
<head>
<!--inserts the standard avisports head -->
<render:calltemplate

 tname="/Head"
 args="c,cid"
 style="element" />
</head>
<body class="inner">
 <div id="main">
 <div id="header">
 <!--inserts the avisports navbar -->
 <render:satellitepage
 pagename="avisports/navbar" />
 </div>
 <div id="container" style="height: 350px">
 <div class="content">
 <!--contains the main area -->
 </div>
 <div class="side-bar" style="height: 300px">
 <!--contains the side nav bar -->
 </div>
 </div>
 <div id="footer">
 <!--inserts the avisports footer -->
 <render:callelement

 elementname="avisports/footer" />
 </div>
 </div>

Chapter 19
Working with Templates

19-5

</body>
</html>
</cs:ftcs>

3. Open any article asset in a new tab.

4. Assign the HelloArticleLayout template to the asset. You should get a web page
like this:

Figure 19-4 Sample Web Page

Note that we added some temporary style to the container and side-bar <DIV>
elements so they are visible. We will remove them when those contain actual
content.

5. Add code to the layout template so it renders actual content. This code renders the
headline, post date, related image and body fields.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>

<%@ taglib prefix="dateformat" uri="futuretense_cs/dateformat.tld"%>

<cs:ftcs>
<!DOCTYPE html>

<render:logdep
 cid='<%=ics.GetVar("tid")%>'
 c="Template"/>

<%
// load article content
%>
<assetset:setasset

 name="article"
 type='<%=ics.GetVar("c") %>'
 id='<%=ics.GetVar("cid") %>' />

<%

Chapter 19
Working with Templates

19-6

// fetch the headline, relatedImage, and postDate attributes
// from the database
%>
<assetset:getmultiplevalues

 name="article"
 prefix="article">
 <assetset:sortlistentry

 attributename="headline"
 attributetypename="ContentAttribute" />
 <assetset:sortlistentry

 attributename="relatedImage"
 attributetypename="ContentAttribute" />
 <assetset:sortlistentry

 attributename="postDate"
 attributetypename="ContentAttribute" />
</assetset:getmultiplevalues>

<%
// fetch the body attribute
// body has to be fetched separately, since it is a 'text'
// attribute, and the getmultiplevalues tag does not support
// 'text' attributes
%>
<assetset:getattributevalues

 name="article"
 listvarname="bodyList"
 attribute="body"
 typename="ContentAttribute" />

<%
// read the related AVIImage asset id
%>
<ics:listget
 listname="article:relatedImage"
 fieldname="value"
 output="imageId" />

<%
// read the date value and format it
%>
<ics:listget
 listname="article:postDate"
 fieldname="value"
 output="postDate" />

<dateformat:create
 name="df"
 datestyle="long" />

<dateformat:getdate
 name="df"
 varname="formattedDate"
 valuetype="jdbcdate"
 value='<%=ics.GetVar("postDate") %>' />

Chapter 19
Working with Templates

19-7

<html>
<head>
<!--inserts the standard avisports head -->

<render:calltemplate

 tname="/Head"
 args="c,cid"
 style="element" />
</head>

<body class="inner">
 <div id="main">
 <div id="header">
 <render:satellitepage
 pagename="avisports/navbar" />
 </div>
 <div id="container">
 <div class="content">
 <div class="top-section section-title">
 <h1>
 <ics:listget
 listname="article:headline"
 fieldname="value" />
 </h1>

 <ics:getvar name="formattedDate" />

 </div>
 <div class="article post">
 <render:getbloburl
 outstr="imageURL"
 c="AVIImage"
 cid='<%=ics.GetVar("imageId")%>'
 field="largeThumbnail" />
 <img class="photo left"
 src='<%=ics.GetVar("imageURL")%>' />
 <render:stream list="bodyList" column="value" />
 </div>
 </div>
 <div class="side-bar" style="height: 300px">
 <!--contains the side nav bar -->
 </div>
 </div>
 <div id="footer">
 <render:callelement elementname="avisports/footer" />

 </div>
 </div>
</body>
</html>
</cs:ftcs>

6. Viewing our asset in Web Mode of the Contributor interface, using
HelloArticleLayout, should render a web page with the article detail as shown in
the following figure. Note that the side bar is intentionally empty.

Chapter 19
Working with Templates

19-8

Figure 19-5 Sample Web Page Showing Article Detail

Pagelet Templates
A pagelet template is a template asset for which the Usage field is set to Element is
used within an HTML page.

A pagelet template has the following characteristics:

• A pagelet template cannot be invoked directly from a browser

• A pagelet template cannot be assigned to an asset

• A pagelet template renders a page fragment

A pagelet template cannot be invoked directly from a browser
Although a pagelet template has a pagename, attempting to access a pagelet
template directly from a browser using a WCS URL will return a 403 HTTP error code
(forbidden).

A pagelet template cannot be assigned to an asset
Only layout templates are available in the asset's Template field. This means that,
these assets cannot be directly previewed using a pagelet template. However, it is
possible to set up preview templates, that would give editorial users a simple way to
preview pagelet templates.

A pagelet template renders a page fragment
A page template renders a web page fragment, not an entire web page. Ideally,
a pagelet template represents a reusable page fragment. For instance, a pagelet
template could render an article summary block such as shown in this figure:

Chapter 19
Working with Templates

19-9

Figure 19-6 Sample Article Summary Block

Layout templates can then be used to assemble multiple page fragments to produce a
complete web page. To maximize reusability, pagelet templates should provide neutral
fragments from a look and feel point of view, with CSS stylesheet rules effectively
controlling the visual result (based on where a given fragment is used, it would render
differently, only by applying a distinct set of stylesheet rules).

Use Case 2: Using Pagelet Templates
See Use Case 1: Building a Layout Template for Article Assets for previous steps.

If the code rendering the article detail is meant to be reused in multiple context, it
makes sense to extract the code from the layout template, and turn it into a pagelet
template.

Let's create the corresponding template asset with the following characteristics:

1. Using Eclipse with the WebCenter Sites Developer Tools plug-in, create the
corresponding template in the avisports sample site with these characteristics:

• Site: avisports

• Name: HelloDetail

• Asset Type: AVIArticle

• Subtype: Article

• Element Usage: Element is used within an HTML page.

• Element Type: JSP

• Root Element: AVIArticle/HelloDetail

• Storage Path: AVIArticle/HelloDetail.jsp

2. Let's extract the code responsible for looking up and rendering the article field
values inside the <div class="content"> element and turn it into a separate JSP:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>

<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="dateformat" uri="futuretense_cs/dateformat.tld"%>

Chapter 19
Working with Templates

19-10

<cs:ftcs>

<render:logdep
 cid='<%=ics.GetVar("tid")%>'
 c="Template" />

<assetset:setasset

 name="article"
 type='<%=ics.GetVar("c") %>'
 id='<%=ics.GetVar("cid") %>' />

<assetset:getmultiplevalues

 name="article" prefix="article">
 <assetset:sortlistentry

 attributename="headline"
 attributetypename="ContentAttribute" />
 <assetset:sortlistentry

 attributename="relatedImage"
 attributetypename="ContentAttribute" />
 <assetset:sortlistentry

 attributename="postDate"
 attributetypename="ContentAttribute" />
</assetset:getmultiplevalues>

<assetset:getattributevalues

 name="article"
 listvarname="bodyList"
 attribute="body"
 typename="ContentAttribute" />
<ics:listget
 listname="article:relatedImage"
 fieldname="value"
 output="imageId" />
<ics:listget
 listname="article:postDate"
 fieldname="value"
 output="postDate" />
<dateformat:create
 name="df"
 datestyle="long" />
<dateformat:getdate
 name="df"
 varname="formattedDate"
 valuetype="jdbcdate"
 value='<%=ics.GetVar("postDate") %>' />

 <div class="top-section section-title">
 <h1>
 <ics:listget
 listname="article:headline"
 fieldname="value" />
 </h1>

Chapter 19
Working with Templates

19-11

 <ics:getvar name="formattedDate" />

 </div>

 <div class="article post">
 <render:getbloburl
 outstr="imageURL"
 c="AVIImage"
 cid='<%=ics.GetVar("imageId") %>'
 field="largeThumbnail" />
 <img class="photo left"
 src='<ics:getvar name="imageURL" />' />
 <render:stream list="bodyList" column="value" />
 </div>
</cs:ftcs>

3. Our layout template can then be modified by simply relying on HelloDetail, invoked
using the <render:calltemplate> tag:

<html>
<head>
 <render:calltemplate

 tname="/Head"
 args="c,cid"
 style="element" />
 </head>
<body class="inner">
 <div id="main">
 <div id="header">
 <render:satellitepage
 pagename="avisports/navbar" />
 </div>
 <div id="container">
 <div class="content">
 <render:calltemplate

 tname="HelloDetail"
 args="c,cid" />
 </div>
 <div class="side-bar" style="height: 300px">
 <!-contains the side nav bar -->
 </div>
 </div>
 <div id="footer">
 <render:callelement

 elementname="avisports/footer" />
 </div>
 </div>
</body>
</html>

Page Templates
Page templates are Template assets for which the Usage field is set to Element
defines a whole HTML page and can be called externally.

A page template has the following characteristics:

• A Page Template Can be Invoked from a Browser

Chapter 19
Working with Templates

19-12

• A Page Template Cannot be Assigned to an Asset

• A Page Template Can be Used for Previewing

In this section we discuss each of these characteristics and then demonstrate a
practical application of page templates.

A Page Template Can be Invoked from a Browser
Like layout templates, a page template can be used to render a web page in a browser
by invoking its pagename through the Satellite servlet.

A Page Template Cannot be Assigned to an Asset
Only layout templates are assignable. Practically speaking, this means that editorial
users cannot work in Web Mode of the Contributor interface with a page template, they
have to use a layout template.

A Page Template Can be Used for Previewing
Previewing an asset is different from using Web Mode in the Contributor interface,
in the sense that it only allows editorial users to view an asset, there are no editing
capabilities involved. When previewing an asset, WebCenter Sites will use, by default,
the layout template set in the asset's Template field.

When bringing up the Change Preview Template dialog, the template picker shows the
following as valid options:

• All layout templates applicable to the current asset

• All page templates applicable to the current asset

Unlike the Change Layout template picker, selecting a different preview template does
not assign this template to the asset's Template field. It simply renders the current
asset with the selected preview template.

Working with Wrappers
A wrapper contains business logic to be executed before rendering the actual layout
template. It’s used when performing actions such as accessing some session data
to implement security checks, determining which locale should be set, disassembling
a friendly URL, and so on. A wrapper usually does not render any markup, and it’s
usually uncached.

See these topics on wrappers:

• Creating a Wrapper Page

• Previewing Wrappers

Creating a Wrapper Page
A wrapper is a normal SiteEntry asset, for which the Wrapper page flag is set to Yes.
This specifies that the asset you are creating is a wrapper page. Selecting the No flag
displays the Pagelet only field. See Creating SiteEntry Assets.

Chapter 19
Working with Wrappers

19-13

Previewing Wrappers
Depending on the implementation, it might be necessary to execute a wrapper before
rendering an asset with a layout template. When you preview an asset, or when
you are working in Web Mode of the Contributor interface, WebCenter Sites will
systematically run a wrapper if there is at least one wrapper enabled on the current
site.

If a default preview wrapper has been configured for the current editorial site,
WebCenter Sites will use this wrapper. Otherwise, it will use the first wrapper available
in the list. If several wrappers are available, a different wrapper can be modified by
selecting View and then Preview with Wrapper.

In preview mode, wrappers are especially useful in situations where a layout template
requires extra arguments to properly render a web page (for example, a locale
argument might be expected) since by default, WebCenter Sites generate a minimal
preview URL mainly setting the pagename, with the asset type (c) and asset id (cid)
parameters with, respectively, the template pagename, and the type and identifier of
the asset to render.

In this case, you can define a preview wrapper, setting extra arguments as required,
and then proceed by rendering the layout template. The page name to call is made
available in the childpagename variable.

<cs:ftcs>

<%
// establish appropriate values for required template arguments
%>
<ics:setvar name="foo" value="bar" />

<render:satellitepage
 pagename='<%=ics.GetVar("childpagename")%>'
 args="c,cid,foo" />

</cs:ftcs>
...

Chapter 19
Working with Wrappers

19-14

20
Coding Elements for Templates and
CSElements

Elements provide the code that identifies, extracts, and displays your content. Since
in a WebCenter Sites system, your content is stored as assets, much of the XML or
JSP code in your elements is dedicated to identifying the appropriate asset for the
appropriate context, then extracting and displaying that asset's data.

Topics:

• About Dependencies

• About Coding to Log Dependencies

• About Invoking CSElement and SiteEntry Assets

• Coding Elements to Display Basic Assets

• About Coding Elements that Display Flex Assets

• Coding Templates That Display Flex Assets

• Creating URLs for Hyperlinks

• Handling Error Conditions

• Encoding Page Arguments

• What You May Need to Know About Securing Your Site Against XSS Attacks

For information about creating the assets themselves, see Creating Template,
CSElement, and SiteEntry Assets.

About Dependencies
To function properly, your WebCenter Sites system tracks and relies on approval
and compositional dependencies. Code your element in a way that the code logs
compositional dependencies accurately, and, if you are designing a static site, it sets
approval dependencies appropriately, as well.

• Approval dependenciesare conditions that determine whether an approved asset
can be published.

The approval system calculates the approval dependencies for an asset when it is
approved. If there are dependent assets that also have to be approved, the parent
asset is not published.

• Compositional dependencies, that is, page composition dependencies are
dependencies between assets and the pages and pagelets that they are rendered
on that determine whether a page needs to be regenerated.

The WebCenter Sites servlet logs compositional dependencies when it renders
pages. CacheManager consults the dependency log to determine when to
regenerate the cached pages. The Export to Disk publishing method consults the
dependency logs to determine when an exported page file must be regenerated.

20-1

See these topics:

• The Publishing System and Approval Dependencies

• Page Generation and Compositional Dependencies

The Publishing System and Approval Dependencies
The publishers, editors, and content providers who work on your management system
approve assets to be published to a target destination. The publishing system then
publishes the approved assets automatically, as a background process, according to
the schedule that your administration team set up for your WebCenter Sites system.

An asset can be published only if it meets all specified approval dependencies, that is,
all associated assets must have been either approved or previously published. If not,
the asset is held from being published until the dependencies are met: the dependent
(related) assets must themselves be approved for publishing to the same destination.

This approval process frees your content and editorial team from the responsibility of
manually checking asset dependencies and then publishing a large number of related
assets. It also ensures that there can be no broken links on your online site after
assets are published.

If an asset is subsequently changed, the asset is no longer considered to be approved,
and it must be approved again before it can be re-published.

This section includes the following topics:

• Calculating Approval Dependencies

• Exists vs. Exact vs. None

• Approval Templates for Export to Disk

• Subtypes, Flex Definitions, and Approval Templates

Calculating Approval Dependencies
Approval dependencies are recorded at the time the asset is approved. They are
written to the ApprovedAssetDeps table in the WebCenter Sites database.

The approval status of an asset is determined by its dependency relationships, which
include the approval status of all asset items associated with a particular asset item,
and the dependency relationships of those associated items.

The dependency calculation is based on the publishing method:

• For Export to Disk, the approval system renders the asset using either the
template that is assigned to it or, if there is one specified, the default approval
templates for assets of this type. The tags in the template code set approval
dependencies that determine the appropriate dependents for the approved asset.
The dependent assets must be in an appropriate approval state before the current
asset can be published.

• For Mirror to Server or Export Assets to XML, the approval process examines
the data relationships between asset types. Basic assets have associations. Flex
assets have family relationships. Both of these relationships create approval
dependencies for these publishing methods. For example, if you approve a flex
asset, it will be held from a publishing session unless its parent assets are in an
appropriate approval state.

Chapter 20
About Dependencies

20-2

Exists vs. Exact vs. None
Approval dependencies can be exists, exact, and none. This section defines each
kind of approval type.

You cannot change the approval dependency type for CSElements and SiteEntry
assets, embedded links and pagelets, or the Oracle WebCenter Sites: Engage visitor
data assets. With the exception of flex attributes, whose dependency type you set
when you create the attribute, you also cannot change the approval dependency type
for the flex family asset types. For basic asset types, you set the type of approval
dependency for their associated assets when you configure the association fields.

When your publishing method is Export to Disk, the tags that set compositional
dependencies when pages are rendered also create approval dependencies when
the approval system calculates whether an asset can be published. When your code
sets approval dependencies on pagelets generated for other assets, you can set the
approval type to exists, exact, or none.

Note:

For information about the types of approval dependencies created by the
relationships between assets of the various types, see Managing Publishing
in Administering Oracle WebCenter Sites.

Exists

With an exists dependency, the dependent asset must merely exist on the target, the
version of the asset does not matter. An exists dependency means that an approved
parent asset can be published even if a child asset changes (which means that the
child asset is no longer approved), if the child asset was previously approved and
published to that same destination.

For example, in the following sequence, a collection asset has an exists relationship
with its ranked children:

• A collection and all of its ranked articles are approved and published to a target.

• One of the ranked articles is edited again, but not approved.

• The collection itself is edited again, approved, and published to the destination.

The collection is not held back from publishing by the changed but unapproved
article, because a prior version of the article exists.

However, in the following example, a collection with an exists dependency relationship
to its articles cannot be published:

• A collection and all of its ranked articles are approved but not published.

• One of the ranked articles is edited again.

Because the edited article was never published to the destination, it does not yet
exist for that destination, which means that the collection cannot be published. The
collection asset is held and both the collection and the edited article must be approved
before the collection can be published.

Chapter 20
About Dependencies

20-3

The exists approval type is generally useful for links.

Exact

With an exact dependency, the dependent asset must be the exact version on the
target. No other previously approved version will do. An exact dependency means that
the parent asset cannot be published if the version of the parent and child assets on
the destination do not match.

In the following example, a page asset has an exact dependency with its article
assets:

1. A page asset and all of its article assets are approved and published to a
destination.

2. One of the articles is edited again, but is not re-approved.

3. The page asset is edited and is re-approved.

The page asset is held, and the resulting form in the WebCenter Sites interface
displays a link that points to a list of the assets that must be approved before the
page asset can be published. This list shows the article that was edited but not
re-approved.

4. The edited article is approved.

The page asset has been approved and can now be published because the
version stamps of the article and the page asset match.

5. Another article asset associated with the page asset is edited.

6. Both the page asset and the edited article asset must be re-approved because the
version stamps of the two do not match:

• The article must be re-approved because it was edited but not yet re-
approved.

• The page asset must be re-approved because it was previously approved with
a dependency on a different version of the article.

The exact approval type is generally useful for embedded content.

None

A none dependency means that the approved asset can be published no matter what
approval state the dependent asset is in. You can set the approval dependency type to
none by adding the DEPTYPE parameter to a tag that sets an approval dependency and
setting that parameter to none.

Note that setting DEPTYPE to none affects the approval dependency only. When the
Export to Disk process generates the page and invokes the tag, a compositional
dependency is logged. But when the approval system invokes the tag during its
calculation, no approval dependency is logged.

Approval Templates for Export to Disk
When assets are approved for a publishing destination that uses the Export to Disk
publishing method, the approval system examines the template assigned to the asset
to determine its dependencies.

Chapter 20
About Dependencies

20-4

However, when Export to Disk actually publishes the asset, it does not necessarily use
the template that is assigned to the asset. Why? Because the code in another element
could determine that a different template is used for that asset in certain cases.

Consider a site that has an asset which can be rendered by several different
templates, depending on the context. So when you approve this asset for publishing,
which template should the approval process use to determine the dependencies for
it? The one that contains the most representative set of dependencies for all of the
templates. You may decide to create a special template that contains all the possible
dependencies for assets of each type.

What if the template that contains the most representative set of dependencies is not
the template that you want to assign to the asset? Set it as the Default Approval
Template for assets of that type.

You can set Default Approval Templates for each asset type and for each publishing
destination. This feature is located in the tree by selecting the Admin tab, then
selecting Publishing, then Destinations, then MyStaticDestinationName, and then
Set Default Templates.

Note:

If you specify a default approval template for an asset type on a destination
that uses the Mirror to Server publishing method, that template is used when
you preview the asset on the Asset Status screen, but not when the asset is
approved or published.

Subtypes, Flex Definitions, and Approval Templates
If you are using flex assets for a static site, you can assign multiple default approval
templates to the flex asset type in the family. You can designate a different default
approval template for each flex definition.

For basic assets, the Subtype feature provides a way to further categorize assets
of a single asset type. You can use this feature to assign multiple default approval
templates for assets of a specific type, based on some other organizing construct.

For example, perhaps the approval template for sports articles should be different than
the approval template for world news articles. You can create a sports subtype and
a world news subtype for the article asset type and then assign different approval
templates for each subtype of the asset type.

You create subtypes for basic assets either in the asset descriptor file when you
create the asset type or by using the Asset Types option under the Admin node in
the General Admin tree if you decide you need subtypes after the asset types were
created. You assign a subtype to an asset by using the New and Edit asset forms. As
mentioned, flex assets have subtypes: their flex definitions.

For more information about configuring subtypes for basic assets, and about subtypes
in general, see Designing Basic Asset Types.

Page Generation and Compositional Dependencies
Compositional dependencies are recorded in different ways:

Chapter 20
About Dependencies

20-5

• When the Export to Disk publishing method renders a page, it logs compositional
dependencies to the appropriate publishing tables. Then, when it's time to publish
again, Export to Disk can determine which pages need to be regenerated based
on which assets are being published, it generates all the pages that have logged
the assets as compositional dependents.

• When WebCenter Sites renders and caches a page, it logs the dependencies in
EhCache at the time a page is rendered and cached. Each row in this table holds
the ID of an asset and the cache key or ID of the generated page that the asset
was rendered on.

CacheManager and the Page Caches

The CacheManager maintains the WebCenter Sites page caches in EhCache.
As assets are changed, it informs EhCache to do flushing and regenerating the
appropriate pages basing on the asset dependency. After it makes changes to the
WebCenter Sites page cache, the CacheManager communicates that information to
all the Satellite Servers participating in your WebCenter Sites system, the co-resident
Satellite Server and any remote Satellite Servers that are installed in your system. The
Satellite Server applications then update the Satellite page caches.

Note:

If you have the appropriate permissions, you can examine the data using the
System Tools for Cache in the Admin tree.

CacheManager and Dynamic Publish Sessions
The CacheManager interacts with the publishing system during Mirror to Server
publishing session. When a Mirror to Server publishing session ends, the publishing
system provides a list of all the IDs of all the assets that were included in the publish
operation to the CacheManager servlet on the destination system.

The CacheManager compares that list to the compositional dependencies logged
for the pages in the cache to determine which pages and pagelets need to be
flushed from the page cache and regenerated. It updates the WebCenter Sites page
cache accordingly, and then sends the list of pages to the co-resident and remote
Satellite servlets so they can flush those same pages and get new versions from the
WebCenter Sites page cache.

CacheManager and the Preview Function
When you preview an asset (on the development or management system), the
WebCenter Sites interface executes the page name of the template for the asset.
ContentServer renders the page, caches the page, and logs the compositional
dependencies between the rendered page and the asset.

The CacheManager updates the cached versions of previewed pages when assets are
saved. That is, when someone clicks Save, CacheManager compares the object ID
of that asset to the compositional dependencies logged for the pages in the cache. It
then clears and refreshes the appropriate pages in the page cache and communicates
the information about the changed pages to the Satellite servlets.

Chapter 20
About Dependencies

20-6

About Coding to Log Dependencies
In your element, remember to include code that logs dependencies accurately. Several
tags can log compositional dependencies. On processing a tag, WebCenter Sites logs
a dependency between the rendered page and the asset.

For a static site using the Export to Disk publishing method, the tags that log
compositional dependencies can also log approval dependencies. When an asset is
approved, the approval system renders that asset to determine whether it can be
published. It logs the results of these tags to the ApprovedAssetDep table unless the
tag sets the approval dependency type to none. See Exists vs. Exact vs. None.

The topics that follow present the tags that log dependencies in alphabetic order. For
more information about these and any other tag, see the Tag Reference for Oracle
WebCenter Sites Reference.

Topics:

• ASSET.LOAD and asset:load

• The ASSETSET (assetset) Tag Family

• RENDER.GETPAGEURL and render:getpageurl

• RENDER.LOGDEP (render:logdep)

• RENDER.FILTER and render:filter

• RENDER.UNKNOWNDEPS and render:unknowndeps

ASSET.LOAD and asset:load
When WebCenter Sites executes an ASSET.LOAD tag (or asset:load), it automatically
logs a compositional dependency for the asset that is loaded. For example:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"/>

This line of code marks a compositional dependency between the page asset named
Home and the rendered page that is displaying this asset.

Setting the Approval Dependency Type

When an asset is approved for an Export to Disk destination and the approval system
renders this tag, the tag also logs an approval dependency between the assets that
are in play.

By default, the approval dependency for ASSET.LOAD is set to exact. You can set the
dependency to exists or to none by using the DEPTYPE parameter. For example:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"
DEPTYPE="exists"/>

The ASSETSET (assetset) Tag Family
You use the ASSETSET tag family to create a set of one or more flex assets. The
following tags create assetsets and define compositional dependencies for the assets
in the set:

Chapter 20
About Coding to Log Dependencies

20-7

ASSETSET.SETASSET and assetset:setasset
ASSETSET.SETEMPTY and assetset:setempty
ASSETSET.SETLISTEDASSETS and assetset:setlistedassets
ASSETSET.SETSEARCHEDASSETS and assetset:setsearchedassets

When an asset from the assetset is rendered, the compositional dependency is
logged.

The first three tags define the following compositional dependencies:

• A dependency between each flex asset in the assetset and the rendered page.

• A dependency between the flex asset's parents and the rendered page. Because
flex assets inherit values from their flex parent assets, a change to a parent can
mean a change to the flex asset and that means the pages that hold the asset
may no longer be accurate.

The fourth tag, assetset:setsearchedassets, creates an assetset from the results of
a search state. Search states are queries, which means there is no way to predict
the identities of the assets in the set. Therefore, the ASSETSET.SETSEARCHEDASSETS
tag defines the compositional dependency as unknown. When a compositional
dependency is unknown, it means the page must be regenerated during each Export
to Disk publishing session and updated in the page caches after each Mirror to Server
publishing session, whether it needs it or not.

If you have a search state that describes a fixed set of assets whose identities will
not change, you instruct WebCenter Sites to set compositional dependencies for the
assets in the assetset by setting the optional fixedlist property to true.

For example:

<assetset:setsearchedassets name=as assettypes=Products constrain=ss
fixedlist=true />

This example defines that there is a compositional dependency between each product
asset in the assetset named as and the rendered page.

See Assetsets and Searchstate Objects.

Setting the Approval Dependency Type
If you are using flex assets for a static site, be aware that when the approval system
invokes an assetset tag, the approval dependency type is set to none by default.

To change this value to exists or exact:

• Use the deptype parameter. For example:

<assetset:setsearchedassets name=as assettypes=Products constrain=ss
fixedlist=true deptype=exists />

Setting an approval type for the assetset:setsearchedassets tag is meaningful
only if the fixedlist parameter is set to true.

RENDER.GETPAGEURL and render:getpageurl
The RENDER.GETPAGEURL tag creates a URL for assets that are not blobs. This tag
logs an exists approval dependency, but not a compositional dependency, between the

Chapter 20
About Coding to Log Dependencies

20-8

asset being approved (rendered) and the asset referred to by the tag. This means that
it creates a dependency only when your publishing method is Export to Disk.

In this example, the template assigned to article ABC has the following code in it:

<RENDER.GETPAGEURL PAGENAME="<site_name>/Page/Home"
cid="Variables.pageid"
c="Page"
OUTSTR="referURL"/>

That code fragment both creates a URL (that is returned in the variable created by
the OUTSTR parameter) and logs an exists approval dependency between the asset
identified in the cid variable and article ABC.

Then, when article ABC is approved, the page identified by the cid variable must
either be approved or must have been published or article ABC is held from being
published.

RENDER.LOGDEP (render:logdep)
There are several situations in which your code can obtain an asset's data without
actually loading the asset. When this is the case, be sure to log the compositional
dependency yourself with the render:logdep tag.

Example 1

When you call a CSElement from a Template asset or other CSElement asset, you
do not load the asset to determine the identity of the element file to execute. Instead,
you use the RENDER.CALLELEMENT or render:callelement tag and invoke the element
directly by name. For example:

<render:callelement name=<site_name>/Common/HeaderText/>

Because you didn't use the asset:load tag to access the CSElement, the
compositional dependency between the CSElement asset and the page it is being
rendered on is not automatically logged for you. Instead, you must set it yourself.

At the beginning of the element for each CSElement asset, you include the following
line of code:

<render:logdep cid="Variables.eid" c="CSElement"/>

At the beginning of the element for a Template asset, the render.logdep statement
would be as follows:

<render:logdep cid="Variables.tid" c="template"/>

Note that if you use the CSElement form or the template form in the WebCenter
Sites interface to start coding the element, WebCenter Sites automatically includes an
appropriate render:logdep statement in the stub code that it seeds into the element
for you.

Example 2

For basic assets, when you use an ASSET.LOAD tag on a parent asset (basic asset) and
then use an ASSET.CHILDREN tag, you have access to the children assets' data without
having to load it. In this case, you should include a RENDER.LOGDEP statement to log the
compositional dependency.

Chapter 20
About Coding to Log Dependencies

20-9

For example:

<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank" CODE=-/>
<LOOP LIST="theArticles">
<RENDER.LOGDEP cid="theArticles.id" c="Article"/>
...

Setting the Approval Dependency Type
When an asset is approved for an Export to Disk destination and the approval system
invokes this tag, the tag also creates an exact approval dependency between the
asset and the rendered page.

• You can change the approval dependency type to exists or none by setting the
DEPTYPE argument, as in the following example:

<RENDER.LOGDEP cid="theArticles.id" c="Article" DEPTYPE="exists"/>

RENDER.FILTER and render:filter
You use the RENDER.FILTER tag for lists of assets created by queries. This tag
filters out any unapproved assets from a list or a query. It also sets a compositional
dependency of unknown.

You use this tag when you do not want an approved asset that has an approval
dependency on the results of a query (a collection or query asset, for example) to be
held from being published when there are unapproved assets in the list that is returned
by the query. For example, say that the element is coded to provide appropriate
formatting for any number of article assets that are passed to it so it doesn't matter if
only two of the five articles included in a collection cannot be published. Because this
tag tells Export to Disk to filter out the unapproved assets, a page using the query can
be published while the unapproved assets remain unpublished.

You might use this tag in the following places:

• Templates for query assets

• Templates for collection assets

• SELECTTO statements and EXECSQL queries

For example:

<RENDER.FILTER LIST="ArticlesFromWireQuery" LISTVARNAME="ArticlesFromWireQuery"
LISTIDCOL="id"/>

RENDER.UNKNOWNDEPS and render:unknowndeps
The RENDER.UNKNOWNDEPS tag signals that there are dependent assets but that there
is no way to predict the identities of those assets because they came from a query
or change frequently. This tag logs a compositional dependency of unknown for the
rendered page. This tag does not set an approval dependency for the Export to Disk
publishing method.

When a compositional dependency is set to unknown, it means the page must be
regenerated during each Export to Disk publishing session and updated in the page
caches after each Mirror to Server publishing session, whether it needs it or not.

Chapter 20
About Coding to Log Dependencies

20-10

Note:

You must use this tag carefully because the more pages that must be
regenerated, the longer it takes to publish your site.

You use this tag to cover those coding situations in which you truly cannot determine
what the dependent assets might be. For example, queries are dynamic and can
retrieve a different resultset every time they are run. When you use queries of any
kind, query assets, SELECTTO statements, EXECSQL, and so on, you should use the
RENDER.UNKNOWNDEPS tag.

About Invoking CSElement and SiteEntry Assets
From a coding point of view, you are not interested in the CSElement or SiteEntry as
an asset, but in the element or page entry that the asset represents. So, write a code
that directly invokes the element or page entry with the appropriate tag.

If a CSElement does not have a corresponding SiteEntry asset (which means its
output is cached according to the cache criteria set for the calling page), or, if you
don't need a separate pagelet at this invocation, you invoke it by name with the
RENDER.CALLELEMENT (render:callelement) tag. For example:

<render:callelement name="FiscalNews/Common/SetHTMLHeader"/>

When CSElement does have a corresponding SiteEntry asset, you invoke the element
by calling the page name of its SiteEntry asset with the RENDER.SATELLITEPAGE
(render:satellitepage) tag. For example:

<render:satellitepage pagename="FiscalNews/Pagelet/Common/SiteBanner"/>

Note:

When you use Oracle WebCenter Sites Explorer to examine SiteCatalog
and ElementCatalog entries, they are presented as folders and subfolders
that visually organize the pages and pagelets. However, these entries are
simply rows in a database table, there is no actual hierarchy. Therefore your
code must always call a page entry or an element entry by its entire name.
You cannot use a relative path.

Additionally, the chain of called elements should not be more than 20 levels
deep. Otherwise, the system will perform poorly when displaying the assets.

Also, if you edit using Oracle WebCenter Sites Explorer, save the asset in
the asset's editorial form (in the WebCenter Sites interface) to ensure that
the cache is updated to reflect your edits. (Oracle WebCenter Sites Explorer
does not automatically update the cache.)

Chapter 20
About Invoking CSElement and SiteEntry Assets

20-11

Coding Elements to Display Basic Assets
Get a deeper understanding of how the asset type—for whose template you’re writing
an element code—is designed. With just a preliminary understanding of data and site
design, you may find it hard to re-code templates that display updated assets.

To help you develop a thorough understanding, this topic discusses:

• What you should keep in mind when you code templates for basic asset types.

• Code fragments and examples for various situations. One situation is managing
dependencies between assets for correctly calculating approval for static sites,
and clearing the page cache for dynamic sites, when it’s appropriate.

Before you begin, be sure to read the chapters in the Programming Basics section of
this book, especially Website Development with Tag Technologies.

For information about the tags used in the code examples, see the Tag Reference for
Oracle WebCenter Sites Reference.

See Template Element Examples for Basic Assets.

Topics:

• Assets That Represent Simple Content

• Associations

• ImageFile Assets or Other Blob Assets

• Basic Assets That Can Have Embedded Links

• Collections

• Query Assets

• Page Assets

Assets That Represent Simple Content
Template elements for content assets generally extract one specific article, advertising
copy, special offer, image, and so on from the database, then obtain information from
the relevant fields such as headline, body, and byline (for example), and then display
that information online.

Consider the following simple template element designed for an article asset:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Article/VeryBasic
-
- INPUT
- Variables.c - asset type (Article)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->
<!-- log the template as a dependent of the pagelet being rendered, so changes
to the template will force regeneration of the page(let) -->

Chapter 20
Coding Elements to Display Basic Assets

20-12

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>
</IF>
<!-- asset load will mark the asset as an 'exact' dependent of the pagelet being
rendered -->

<ASSET.LOAD NAME="anAsset" TYPE="Variables.c" OBJECTID="Variables.cid"/>

<!-- get all the primary table fields of the asset -->

<ASSET.SCATTER NAME="anAsset" PREFIX="asset"/>

<!-- display the description -->
<ics.getvar name=asset:description/>

<!-- display the contents of the urlbody file -->

<ics.getvar name="asset:urlbody" encoding="default"
output="bodyvar"/>
<RENDER.STREAM VARIABLE="bodyvar" />

</FTCS>

The code in this template does the following things:

• Logs a compositional dependency between the Template asset and the page
being rendered with the element with the RENDER.LOGDEP tag.

• If the approval system is evaluating this code for an Export to Disk target, logs an
approval dependency.

• Loads the article asset with an ASSET.LOAD tag, which logs a compositional
dependency between the article asset and the page being rendered.

• Extracts all the values from all the fields of the article with an ASSET.SCATTER tag.

• Displays the contents of the description column with a CSVAR tag. The description
column corresponds to the Headline field in the New or Edit article forms in the
WebCenter Sites interface.

• Displays the contents of the urlbody column with the ics.getvar and
RENDER.STREAM tags. The urlbody column corresponds to the Headline field in
the New or Edit article forms in the WebCenter Sites interface.

Notice the difference in the code that displays the value from the description column
and the code that displays the value from the urlbody column. The urlbody column
can contain embedded links and whenever a field can contain embedded links, you
ensure that the links are rendered correctly by using the RENDER.STREAM tag rather
than the CSVAR tag.

Associations
You identify the assets that are associated with other assets through association fields
with the ASSET.CHILDREN tag. To specify which associated asset, you use the CODE
parameter to specify the association field.

Chapter 20
Coding Elements to Display Basic Assets

20-13

For example, say that the following code fragment is inserted right before the </FTCS>
tag in the preceding example:

<!-- display the Main Image -->
<ASSET.CHILDREN NAME="anAsset" LIST="associatedImage"
CODE="MainImage"/>
<IF COND="IsList.associatedImage=true">
<THEN>
<RENDER.SATELLITEPAGE PAGENAME="FiscalNews/ImageFile/TeaserSummary"
ARGS_cid="associatedImage.oid"/>
</THEN>
</IF>

The code in this fragment does the following things:

• Extracts the imagefile asset that is specified in the Main Image field for
this article asset (named anAsset) with the ASSET.CHILDREN tag and the CODE
parameter set to MainImage.

• Passes the identity of that imagefile to the page entry for the TeaserSummary
template with the RENDER.SATELLITEPAGE tag. The page entry is identified with the
PAGENAME parameter and the imagefile is identified with the ARGS_cid parameter.
The TeaserSummary template than renders the imagefile into a pagelet and
passes the pagelet back to this page, where it is displayed with the article.

ImageFile Assets or Other Blob Assets
The imagefile asset type stores uploaded image files. In other words, the imagefile
asset type is a binary large object (blob), served from the WebCenter Sites database.
You use the BlobServer servlet to serve and display imagefiles and other blobs.

A template element for an imagefile or other blob can use the RENDER.SATELLITEBLOB
tag to create and return an HTML tag that tells the browser how to access the blob
and how to format and display it. If you need a BlobServer URL only, without it being
embedded in an HTML tag, you can use the RENDER.GETBLOBURL tag.

For more information about coding links to blobs, see Creating URLs for Hyperlinks.

Basic Assets That Can Have Embedded Links
The Body field of the Article asset and other assets that have fields with a data type of
TEXTAREA allow editors to create embedded hyperlinks within the text field. To ensure
that these links are rendered properly, you can use the RENDER.STREAM tag to retrieve
the contents of the field, as shown in the following example:

<asset:load name="TestArticle" type="<%=ics.GetVar("c")%>"
 objectid='<%=ics.GetVar("cid")%>' />
<asset:scatter name="MainArticle" prefix="articleAsset" />
<!-- display the contents of the urlbody file -->

<ics:getvar name="articleAsset:urlbody" encoding="default"
 output="bodyvar"/>
<render:stream variable="bodyvar"/>

If Web Mode is enabled on your management system, note that the insite:edit tag
also manages embedded links appropriately when it retrieves the contents of a field
that has embedded links in it.

Chapter 20
Coding Elements to Display Basic Assets

20-14

Collections
Templates for collection assets typically extract the assets in the collection from the
database with an ASSET.CHILDREN tag. For example:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="PlainListCollection"/>
<ASSET.SCATTER NAME="PlainListCollection" PREFIX="asset"/>
<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"
OBJECTTYPE="Article"/>

After the children are identified, the template code can then display parts of these
assets in a list on a rendered page.

Sometimes the template for a collection is coded to handle the first item in the
collection differently than the rest. You can single out the highest ranking asset in
a collection by coding the element to order the items in the list according to their rank,
as shown here:

<ASSET.CHILDREN NAME="HomePageStories" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank"/>

This section includes the following topics:

• Collection Templates and Approval Dependencies

• Collection Templates and Compositional Dependencies

Collection Templates and Approval Dependencies
When your publishing method is Export to Disk, you can use the RENDER.FILTER
tag in your collection templates. This tag filters out any unapproved assets from the
collection both when the approval dependencies are calculated and when the publish
process renders the site.

The following code fragment illustrates this tag:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="StoryListCollection"/>
<ASSET.SCATTER NAME="StoryListCollection" PREFIX="asset"/>
<ASSET.CHILDREN NAME="StoryListCollection" LIST="theArticles"
ORDER="nrank" CODE="-"/>

<!-- Get only the articles that are approved for export -->

<RENDER.FILTER LIST="theArticles"
LISTVARNAME="ApprovedArticles"
LISTIDCOL="oid"/>

<!-- Display only the articles that are approved-->

<IF COND="IsList.ApprovedArticles=true">
<THEN>
<LOOP LIST="ApprovedArticles">
<RENDER.SATELLITEPAGE
PAGENAME="<site_name>/Article/Summary"
ARGS_cid="ApprovedArticles.oid"
ARGS_p="Variables.p"/>
</LOOP>

Chapter 20
Coding Elements to Display Basic Assets

20-15

</THEN>
</IF>

Collection Templates and Compositional Dependencies
In the preceding code example that illustrates the RENDER.FILTER tag, the ID of each
of the child assets in the collection is passed to the Summary template.

The first line of code in the Summary template is an ASSET.LOAD statement, which
means that the dependency between article asset that it loads and the page that is
rendered with the Summary template is logged.

If the code in the template for the collection also formats the child articles, you must
carefully consider the code and determine whether you have to log the dependency
with the RENDER.LOGDEP tag.

For example, when you use the OBJECTYPE parameter in an ASSET.CHILDREN tag, the
resulting list is a join of the AssetRelationTree table and the asset table for the type
specified and includes information from both tables, as in the following example:

<ASSET.CHILDREN NAME="StoryListCollection" LIST="theArticles"
OBJECTTYPE=Article ORDER="nrank" CODE="-"/>

You can then access the children asset's information without using subsequent
ASSET.LOAD tags. If you do, be sure to include the RENDER.LOGDEP tag for each child
so that the compositional dependencies between those assets and the rendered page
can be tracked correctly.

For another example, see Coding Links to the Article Assets in a Collection Asset.

Query Assets
Query assets can execute SQL code or they can run an element that contains query
code. You use them in such applications as collections and page assets.

• You build a collection by running a query in the Build Collection form and then
selecting and ordering the assets you want from the resulting list. The collection is
a static list of assets selected from the query's resultset.

• You select queries for a page asset either through unnamed relationships
or through associations. You select queries for assets like articles through
associations.

In these cases, the page or article assets do not themselves invoke the
query; you code the query template element to invoke a standard WebCenter
Sites element called OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery.
This element runs the query asset when the page asset or article asset is
rendered.

Elements for query templates invoke the ExecuteQuery element and typically include
code that loops through the items returned in the list object that the query created,
extracts bits of information from those items, and then displays it.

The following example loads a query asset and passes it to the ExecuteQuery
element:

<ASSET.LOAD TYPE="Query" NAME="Wirefeed" OBJECTID="Variables.id"/>
<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/
ExecuteQuery">

Chapter 20
Coding Elements to Display Basic Assets

20-16

<ARGUMENT NAME="list" VALUE="ArticlesFromWireFeed"/>
<ARGUMENT NAME="assetname" VALUE="WireFeed"/>
<ARGUMENT NAME="ResultLimit" VALUE="-1"/>
</CALLELEMENT>

Queries and Compositional Dependencies

The first line of code in the ExecuteQuery element is a RENDER.UNKNOWNDEPS tag, which
alerts the Export to Disk publishing method and the CacheManager on a dynamic
delivery system that the assets that will be retrieved by the query cannot be predicted
and, therefore, no dependencies can be calculated and logged.

If you are using any other kind of query, for example, a SELECTTO statement, CALLSQL,
or EXECSQL, you should include the RENDER.UNKNOWNDEPS tag.

Additionally, in the element that a query-generated list of assets is returned to, you
must use the RENDER.FILTER tag if you are using the Export to Disk publishing method,
as in the following example:

<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery">
<ARGUMENT NAME="list" VALUE="ArticlesFromTheQuery"/>
<ARGUMENT NAME="assetname" VALUE="PlainListQuery"/>
<ARGUMENT NAME="ResultLimit" VALUE="5"/>
</CALLELEMENT>

<!-- On export - filter out un-approved assets -->
<RENDER.FILTER LIST="ArticlesFromTheQuery" LISTVARNAME="ArticlesFromTheQuery"
LISTIDCOL="id"/>

<if COND="ArticlesFromTheQuery.#numRows!=0">
<then>
<LOOP LIST="ArticlesFromTheQuery">
<RENDER.GETPAGEURL PAGENAME="FiscalNews/Article/
Variables.ct"
cid="ArticlesFromTheQuery.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>
<A class="wirelink" HREF="Variables.referURL"
REPLACEALL="Variables.referURL"><ics.listget listname=ArticlesFromTheQuery
fieldname=subheadline/>
<P/>

For another example, see Coding Templates for Query Assets.

Page Assets
Templates for page assets generally contain the following kinds of code:

• The framework for the page asset when it is a rendered page

• The logic for obtaining the content for the rendered page

• The logic for links to other rendered pages

The templates for content assets contain the formatting code for individual pieces
of content. The page templates invoke the templates for the other assets, receive
formatted assets from those template elements, and then place the formatted assets
into the context of the page framework.

The following is the code for a simple template that formats a page asset:

Chapter 20
Coding Elements to Display Basic Assets

20-17

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Page/CollectionsAndQuery
-
- INPUT
- Variables.c - asset type (Page)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->

<!-- log the template as a dependent of the pagelet being rendered, so changes
to the template will force regeneration of the page(let) -->

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>
</IF>

<!-- asset load will mark the asset as an 'exact' dependent of the pagelet being
rendered -->

<ASSET.LOAD NAME="anAsset" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

<!-- get all the primary table fields of the asset -->

<ASSET.SCATTER NAME="anAsset" PREFIX="asset"/>

<!-- get a list of id's of the child assets in the collection in order of their
rank -->

<!-- get the WireFeed query -->

<ASSET.CHILDREN NAME="HomeTextPage" LIST="WireFeedStories"
CODE="WireFeed"/>
<IF COND="IsList.WireFeedStories=true">
<THEN>
<RENDER.GETPAGEURL PAGENAME="<site_name>/Query/WireFeedFrontText"
cid="WireFeedStories.oid"
c="Query"
p="Variables.asset:id"
OUTSTR="referURL"/>
<P>
<A HREF="Variables.referURL"
REPLACEALL="Variables.referURL">From the Wires...

</P>
<RENDER.SATELLITEPAGE PAGENAME="<site_name>/Query/WireSummaryText"
ARGS_cid="WireFeedStories.oid"
ARGS_ct="WireStoryText"
ARGS_p="Variables.asset:id"/>
</THEN>
</IF>
</FTCS>

The code in this example does the following:

Chapter 20
Coding Elements to Display Basic Assets

20-18

• Logs a compositional dependency between the Template asset and the page
being rendered with a RENDER.LOGDEP tag.

• Loads the page asset with an ASSET.LOAD tag, which logs a compositional
dependency between the article asset and the page being rendered.

• Extracts the WireFeed query with an ASSET.CHILDREN tag and the CODE parameter
set to WireFeed.

• Obtains a URL for a page that will display the stories from the WireFeed query
with the RENDER.GETPAGEURL tag. The PAGENAME parameter specifies the page entry
of the template to use to create that page and also determines part of the URL.
The OUTSTR parameter creates a variable named referURL to hold the URL that
RENDER.GETPAGEURL creates.

• Uses the URL from the referURL variable to build an <A HREF> link to the page.

• Passes the identity of the query asset to the page entry for the WireSummaryText
template. The WireSummaryText template then creates a pagelet that displays the
summary text from each article returned by the Wire Feed query and passes the
pagelet back to this page, where it is displayed.

About Coding Elements that Display Flex Assets
WebCenter Sites provides ASSETSET and SEARCHSTATE tag families for coding
elements that display flex assets.

When you code templates for basic assets, you use the WebCenter Sites ASSET tag
family. For example, when you want to extract and display a basic asset, you use the
ASSET.LOAD tag, a tag that extracts data from the primary storage table for that asset
type. But, the database schema for flex assets is different than that for basic assets, so
WebCenter Sites provides these tag families for flex assets that you use in place of the
ASSET tags:

• ASSETSET. You use this tag family to specify a set of one or more flex assets.

• SEARCHSTATE. You use this tag family to create search constraints that filter the
assets in an assetset.

Note:

The ASSET.LOAD tag will load a flex asset for you. However, using the
ASSET.LOAD tag with flex assets is not supported: the code cannot be
upgraded, and extracting the asset in this way is slower by orders of
magnitude than using the ASSETSET tag family.

When you use the flex asset model to represent your content, your online site will use
a mixture of flex and basic assets because the page asset type (which you are likely to
use) is a basic asset type.

Topics:

• Assetsets

• Searchstate Objects

• Assetsets, Searchstates, and Flex Attribute Asset Types

Chapter 20
About Coding Elements that Display Flex Assets

20-19

• Scope

Assetsets
An assetset is a group of one or more flex assets or flex parent assets. You use the
ASSETSET tags to create the set of assets and to extract the attribute values that you
want to display.

You can retrieve the following information from an assetset:

• The values for one attribute for each of the flex assets in the assetset.

• The values for multiple attributes for each of the flex assets in the assetset.

• A list of the flex assets in the assetset.

• A count of the flex assets in the assetset.

• A list of unique attribute values for an attribute for all flex assets in the assetset.

• A count of unique attribute values for an attribute for all flex assets in the assetset.

You can create assetsets that include flex assets of multiple types, but only if those
flex assets use the same flex attribute asset type.

The most commonly used ASSETSET tags are:

ASSETSET.SETASSET
ASSETSET.SETSEARCHEDASSETS
ASSETSET.GETMULTIPLEVALUES
ASSETSET.GETATTRIBUTEVALUES
ASSETSET.GETASSETLIST
ASSETSET.SORTLISTENTRY ...

All of the ASSETSET tags are described in the Tag Reference for Oracle WebCenter
Sites Reference and several of them are used in the code samples in this chapter.
For information about compositional dependencies and the assetset tags, see The
ASSETSET (assetset) Tag Family.

Searchstate Objects
With searchstate objects, you can obtain the IDs of the flex assets that you want to
display.

A searchstate is a set of search constraints based on the attribute values held in the
_Mungo table for the flex asset type. You apply searchstates to assetsets.

You build a searchstate by adding or removing constraints to narrow or broaden the
list of flex assets that are described by the searchstate. For example, if you have
a Lighting site whose purpose is to sell lighting supplies, you can use searchstates
to create drill-down searching features that visitors use to browse through the site's
product catalog.

An unconstrained searchstate applied to an assetset creates an unfiltered list of all the
assets of that type. For example, the following code sample would create an assetset
that contains all the products in the Lighting site's product catalog:

<SEARCHSTATE.CREATE NAME=nolimits/>
<ASSETSET.SETSEARCHEDASSETS NAME=unconstrainedAssetSet
CONSTRAINT=nolimits ASSETTYPES=Products/>

Chapter 20
About Coding Elements that Display Flex Assets

20-20

To narrow the number of products in the assetset, you add constraints. For example,
the following code sample would create an assetset that contains only the 40-watt light
bulbs from the catalog:

<SEARCHSTATE.CREATE NAME=lightbulbs/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME=lightbulbs
 ATTRIBUTE=wattage VALUE=40/>
<ASSETSET.SETSEARCHEDASSETS NAME=40WattLightbulbs
CONSTRAINT=lightbulbs ASSETTYPES=Products/>

A constraint is a filter (restriction) that can be based on the value of an attribute or it
can be based on another searchstate, which is called a nested searchstate.

A searchstate can search either the _Mungo table for the asset type database or
the attribute indexes created by a search engine for that asset type. This means
that you can mix database and rich-text (full-text through an index) searches in
the same query. To apply a constraint against a search engine index, use the
SEARCHSTATE.ADDRICHTEXTCONSTRAINT tag.

Note:

Using SQL to query the flex asset database tables instead of using the
SEARCHSTATE tag family is not supported.

The most commonly used SEARCHSTATE tags are as follows:

SEARCHSTATE.CREATE
SEARCHSTATE.ADDSTANDARDCONSTRAINT
SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT
SEARCHSTATE.ADDRANGECONSTRAINT
SEARCHSTATE.ADDRICHTEXTCONSTRAINT
SEARCHSTATE.TOSTRING
SEARCHSTATE.FROMSTRING

All of the SEARCHSTATE tags are described in the Tag Reference for Oracle WebCenter
Sites Reference and several of them are used in the code samples in this chapter.

Assetsets, Searchstates, and Flex Attribute Asset Types
Because searchstates filter select assets based on attribute values, and assetsets are
created by applying searchstates to the assets in the database, only those flex asset
types that share the same attribute asset type can be included in the same assetset.

For example, if a site has a content attribute that is shared by two flex asset types
such as a flex article asset type and a flex image asset type, then you can create an
assetset with both flex articles and flex images in it. However, if the site also has a
product asset type that uses a product attribute instead of the content attribute, you
could not create an assetset that contains both flex articles and product assets or both
flex images and product assets.

Scope
The scope of assetsets and searchstates is local; that is, they exist only for the current
element (rendered page).

Chapter 20
About Coding Elements that Display Flex Assets

20-21

When you want to maintain the existing searchstate, you can use the
SEARCHSTATE.TOSTRING tag to convert it to a string and then include that string as
an argument in the URL for the next page.

For example:

<SEARCHSTATE.TOSTRING NAME=ss VARNAME=stringss/>
<RENDER.SATELLITEPAGE
pagename= SiteName/Products/Example
ARGS_search=Variables.stringss/>

And then, in the root element of this example page that receives the string, you code
another searchstate:

<SEARCHSTATE CREATE NAME=ss/>

And unpack the string that was passed to the example element with a
SEARCHSTATE.FROMSTRING tag:

<SEARCHSTATE.FROMSTRING NAME=ss VALUE= Variables.search/>

Coding Templates That Display Flex Assets
Are you coding templates for an online site’s flex asset model? Your primary concern
should be flex attributes’ values. And these values are assets themselves. A flex asset
(a product, for example) or flex parent asset is really an abstraction of attribute values
in this context.

You use searchstates to obtain the identity of the flex assets that you want to display,
filtering the assets under consideration by their attribute values. The result is an
assetset of flex or flex parent assets, and it’s based on attribute values. You can
display the attribute values for the assets in the assetset.

Be sure that you understand the data model of the flex family (or families) that
you are using before you begin coding template elements for your flex assets. See
Understanding the Asset Types and Asset Models and Designing Flex Asset Types.

Topics:

• Example Data Set for the Examples in This Section

• Examples of Assetsets with One Product (Flex Asset)

• Special Cases: Flex Attributes of Type Text, Blob, and URL

• Examples of Assetsets with Multiple Products (Flex Assets)

Example Data Set for the Examples in This Section
The code examples in this section start with simple assetsets and searchstates that
interact with a small, example data set (product flex family in these examples). The
product family data set used in these examples is as follows:

Flex Asset Type External Name (as
displayed in the
WebCenter Sites
interfaces)

Internal Name (as used
in the WebCenter Sites
database)*

flex attribute product attribute PAttributes

Chapter 20
Coding Templates That Display Flex Assets

20-22

Flex Asset Type External Name (as
displayed in the
WebCenter Sites
interfaces)

Internal Name (as used
in the WebCenter Sites
database)*

flex asset product Products

flex parent product parent ProductGroups

Always use the internal name of
the asset type when you use
the ASSETTYPES parameter for an
ASSETSET tag.

n/a n/a

The example products in this data set are pairs of blue jeans that have the following
attributes:

Attribute Data Type Number of Values

sku string single

color string multiple

price integer single

style text single

There are four pairs of blue jeans, defined as follows:

sku color price style

jeans-1 blue 35 wide

jeans-2 blue,black 30 straight

jeans-3 black,green 25 straight

jeans-4 green 20 wide

Examples of Assetsets with One Product (Flex Asset)
The code samples in this section do the following:

• Create an assetset that contains one pair of jeans, identified by its sku number

• Log a dependency between the product asset and the rendered page(let)

• Get and display the value for the price attribute and display it

• Get and display the values for the color attribute and display them

• Get and display the values for both the price and color attribute with the same
tag (ASSETSET.GETMULTIPLEVALUES)

This section includes the following topics:

• Create a Searchstate and Apply It to an Assetset

• Get the Price of the Product

• Display the Price of the Product

• Get the Colors for the Product

Chapter 20
Coding Templates That Display Flex Assets

20-23

• Display the Colors of the Product

• Create a List Object for the ASSETSET.GETMULTIPLEVALUES tag

• Get the Value for Both Price and Color with ASSETSET.GETMULTIPLEVALUES

• Display the Value of Price and Color for the jeans-2 Product

Create a Searchstate and Apply It to an Assetset
This line of code creates an unfiltered searchstate named ss:

<SEARCHSTATE.CREATE NAME="ss"/>

Next, we can narrow the unfiltered searchstate named ss so that it finds a specific
product in the sample data set, by providing the sku of the product:

<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss" TYPENAME="PAttributes"
ATTRIBUTE="sku" VALUE="jeans-2"/>

Now we can create an assetset named as, applying the searchstate named ss to it:

<ASSETSET.SETSEARCHEDASSETS NAME="as" ASSETTYPES="Products"CONSTRAINT="ss"
FIXEDLIST="true"/>

Since the value of the sku attribute is unique for each product asset, there is only one
product in the assetset: the one whose sku value is jeans-2.

Because this searchstate was created by querying for a hard-coded attribute value (a
sku value of jeans-2) we know the exact contents of the assetset. That is why we
set the FIXEDLIST parameter to true. Now the ASSETSET.SETSEARCHEDASSET tag logs a
compositional dependency for the product asset.

Get the Price of the Product
Next, let's extract the price of this pair of jeans:

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="price" TYPENAME="PAttributes"
LISTVARNAME="pricelist"/>

Notice that even though price is a single-value attribute (which means the product
only has one price), the ASSETSET.GETATTRIBUTEVALUES tag returns the value of the
price attribute as a list variable (LISTVARNAME=pricelist).

Display the Price of the Product
Now the following line of code can display the price of the jeans-2 product:

Price: <ics.listget listname=pricelist fieldname=value/>
And this is the result:
Price: 30

Get the Colors for the Product
Next, let's determine which colors this pair of jeans is available in.

As specified above, the color attribute is a multiple-value attribute. Because the
ASSETSET.GETATTRIBUTEVALUES tag works the same whether an attribute is a single-

Chapter 20
Coding Templates That Display Flex Assets

20-24

value or a multiple-value attribute, we use the tag exactly as we did for single-value
price attribute:

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="color" TYPENAME="PAttributes"
LISTVARNAME="colorlist"/>

Display the Colors of the Product
Now the following code can display the colors for the jeans-2 product, and, because
this product can have multiple colors, the code loops through the list:

Colors: <LOOP LIST="colorlist">
<ics.listget listname=colorlist fieldname=value/>

</LOOP>

And this is the result:

Colors: black blue

Create a List Object for the ASSETSET.GETMULTIPLEVALUES tag
In general, you should not use the ASSETSET.GETATTRIBUTEVALUES tag when you want
to get the value for multiple attributes.

The ASSETSET.GETMULTIPLEVALUES tag gets and scatters the values from multiple
attributes, for all the assets in an assetset. Because the tag makes only one call to
the database for all the attribute values, it performs the query more efficiently than
using multiple ASSETSET.GETATTRIBUTEVALUES tags.

Before you can use this tag, however, you must use the LISTOBJECT tags to create a
list object that describes the attributes that the ASSETSET.GETMULTIPLEVALUES tag will
return. The list object needs one row for each attribute that you want to get.

This next line of code creates a list object named lo that has columns named
attributetypename, attributename, and direction.

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributetypename,attributename,direction"/>

Then, this line adds a row to the list object for each attribute, color and price:

<LISTOBJECT.ADDROW NAME="lo" attributetypename="PAttributes"
attributename="color" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributetypename="PAttributes"
attributename="price" direction="none"/>

The next line of code converts the list object to a list variable name lolist:

<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>

Get the Value for Both Price and Color with
ASSETSET.GETMULTIPLEVALUES

And now we can get the values for both the price and the color attribute from our
original assetset, named as:

Chapter 20
Coding Templates That Display Flex Assets

20-25

<ASSETSET.GETMULTIPLEVALUES NAME="as" PREFIX="multi" LIST="lolist"
BYASSET="false"/>

Display the Value of Price and Color for the jeans-2 Product
Now that the values are stored in the list variable (lolist), the following code can
display all the values for all the attributes:

<LOOP LIST="lolist">
<ics.listget listname=lolist fieldname=attributename output=attrName/>
<ics.getvar name=attrName/> is
<LOOP LIST="multi:Variables.attrName">
<ics.listget listname=multi:Variables.attrNamefieldname=value/>
</LOOP><P/>
</LOOP>

This code sets up a nested loop that loops through all the attributes in the lolist
variable, and then loops through all the distinct attribute values for each of the
attributes in the lolist list variable.

And this is the result:

color is blue black
price is 30

Special Cases: Flex Attributes of Type Text, Blob, and URL
To display the values held in flex attributes of type text or blob, use the
methodologies described in this section.

This section includes the following topics:

• About Flex Attributes of Type Text

• About Flex Attributes of Type Blob

• Creating a BlobServer URL

• Getting and Displaying the Value of a Blob Flex Attribute

About Flex Attributes of Type Text
The ASSETSET.GETMULTIPLEVALUES tag does not retrieve the values for
attributes of type text. This means that you must include a separate
ASSETSET.GETATTRIBUTEVALUES tag for attributes of this type.

For example, if the color attribute in the sample data set used in these examples
were an attribute of type text rather than type string, we could not have retrieved its
values with the ASSETSET.GETMULTIPLEVALUES tag in the preceding examples.

About Flex Attributes of Type Blob
The _Mungo table for a flex asset type stores the attribute values for the flex assets
of that type and the ASSETSET tags query the asset type's _Mungo table for attribute
values.

Attributes of type blob are an exception:

Chapter 20
Coding Templates That Display Flex Assets

20-26

• WebCenter Sites stores all the values of all the attributes of type blob in the
MungoBlobs table.

• A row in the _Mungo table (Products_Mungo, for example) for an attribute of type
blob stores only the ID of the row in the MungoBlobs table that holds its value. That
is, the blob column in a _Mungo table is a foreign key to the MungoBlobs table.

This means that for an attribute of type blob, the ASSETSET.GETATTRIBUTEVALUES and
ASSETSET.GETMULTIPLEVALUES tags return the ID of the blob attribute's value, but not
the actual value.

Once the ID of the attribute's value has been identified, you can do one of two things
with it:

• Use the ID to obtain a BlobServer URL.

• Use the ID to extract the actual value of the blob.

Creating a BlobServer URL
To obtain a BlobServer URL for the value of the flex attribute blob, you do the
following:

• Use the BLOBSERVICE tags to programmatically identify the MungoBlobs table and
the appropriate columns in it.

• Pass that information to a RENDER.SATELLITEBLOB tag, if you want the URL in an
HTML tag, or to a RENDER.GETBLOBURL tag if you need only the URL without the
HTML tag.

• Use the BLOBSERVICE tags to programmatically identify the MungoBlobs table, as
shown in the following example. By obtaining the value with the BLOBSERVICE
tags rather than hard coding the name of the table into your code, your code
will function properly even if the table name is changed in a future version of the
product.

To illustrate the following blob examples, let's add the following attribute to the
jeans products in our sample data set:

Attribute Data Type Number of Values

description blob single

– First, let's create the assetset and log the dependency between the jeans-2
product and the rendered page:

<SEARCHSTATE.CREATE NAME="ss"/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss"
TYPENAME="PAttributes" ATTRIBUTE="sku" VALUE="jeans-2"/>
<ASSETSET.SETSEARCHEDASSETS NAME="as" ASSETTYPES="Products"
CONSTRAINT="ss"/>
<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>
<RENDER.LOGDEP cid="aslist.assetid" c="aslist.assettype"/>
The next line of code gets the ID of the jeans-2 asset's description
attribute (that attribute of type blob) and stores it in a list variable
called descFile
<ASSETSET.GETATTRIBUTEVALUES NAME="as" TYPENAME="PAttributes"
ATTRIBUTE="description" LISTVARNAME="descFile"/>

Chapter 20
Coding Templates That Display Flex Assets

20-27

– The next lines of code use the BLOBSERVICE tags to obtain the table name and
column names from the WebCenter Sites table that stores the attribute values
for blob attributes and store them in variables named "uTabname", "idColumn",
and "uColumn":

<BLOBSERVICE.GETTABLENAME VARNAME="uTabname"/>
<BLOBSERVICE.GETIDCOLUMN VARNAME="idColumn"/>
<BLOBSERVICE.GETURLCOLUMN VARNAME="uColumn"/>

– Now we can pass the list variable named descFile and the uTabname,
idColumn, and uColumn variables to a RENDER.SATELLITEBLOB tag, which
returns a BlobServer URL in an HTML tag:

<RENDER.SATELLITEBLOB
BLOBTABLE="Variables.uTabname"
BLOBWHERE="descFile.value"
BLOBKEY="Variables.idColumn"
BLOBCOL="Variables.uColumn"
BLOBHEADER="application/pdf"
/> add service=a href ... download link...

The RENDER.SATELLITEBLOB tag returns a BlobServer URL in an HREF tag.

Getting and Displaying the Value of a Blob Flex Attribute
To obtain and display the contents or data in the blob flex attribute after its ID has been
returned, you use a BLOBSERVICE.READDATA tag, which loads the file name and URL
data of the blob.

• Under the same assumptions about the data set used for the preceding blob
example, create the assetset, log the dependency between the jeans-2 asset and
the rendered page, and get the ID of the description attribute's value:

<SEARCHSTATE.CREATE NAME="ss"/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss" TYPENAME="PAttributes"
ATTRIBUTE="sku" VALUE="jeans-2"/>
<ASSETSET.SETSEARCHEDASSETS NAME="as" ASSETTYPES="Products" CONSTRAINT="ss"/>
<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>
<RENDER.LOGDEP cid="aslist.assetid" c="aslist.assettype"/>
<ASSETSET.GETATTRIBUTEVALUES NAME="as" TYPENAME="PAttributes"
ATTRIBUTE="description" LISTVARNAME="descFile"/>

This time, get and then display the value (data) of the description attribute, using
the BLOBSERVICE.READDATA tag:

<BLOBSERVICE.READDATA ID="descFile.value" LISTVARNAME="descData"/>
<ics.listget listname=descData fieldname=@urldata/>

Examples of Assetsets with Multiple Products (Flex Assets)
The code samples in this section do the following:

• Create an assetset that holds all the products (pairs of jeans) in the sample data
set being used in this chapter.

• Get and display a count of the number of jeans in the assetset.

• Get and display all the values for the color attribute for all the pairs of jeans in the
assetset.

Chapter 20
Coding Templates That Display Flex Assets

20-28

• Get and display all the values for both the color and the style attributes for the
jeans in the assetset.

• Get and display, in a table, all the attribute values for the jeans in the assetset.

• Add a search constraint that filters the assetset for the jeans whose price falls into
a specific range.

• Replace the range constraint on the price attribute with a search constraint that
filters the assetset for the jeans that are available in any color that begins with the
letter b.

• Replace that color constraint with one that filters the assetset for the jeans that are
available in either of two specific colors: blue or black.

This section includes the following topics:

• Creating a Searchstate and Apply it to an Assetset

• Displaying the Number of Assets in the Assetset

• Displaying the Colors That the Jeans Are Available In

• Displaying Both the Colors and the Styles for the Jeans in the Assetset

• Creating a Table That Displays All the Jeans and Their Attribute Values

• Searching for Jeans Based on a Range of Prices

• Searching for Jeans with a Wildcard for Color

• Searching for Jeans with Specific Colors

Creating a Searchstate and Apply it to an Assetset
This line of code creates an unfiltered searchstate named ss:

<SEARCHSTATE.CREATE NAME="ss"/>

When you apply the unfiltered searchstate to an assetset, you get all the flex assets of
the type specified (in this case, product assets):

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss" ASSETTYPES="Products"/>

Displaying the Number of Assets in the Assetset
These lines of code return and display a count of the number of assets in the assetset,
which at this point represents the entire sample catalog:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many products are in the catalog?
<ics.getvar name=count/>

And this is the result:

How many products are in the catalog? 4

Displaying the Colors That the Jeans Are Available In
The next lines of code get and display the different colors for the jeans. In other words,
the distinct values of the color attribute:

Chapter 20
Coding Templates That Display Flex Assets

20-29

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="color" TYPENAME="PAttributes"
LISTVARNAME="colors"/>
What are the possible colors for any pair of jeans?

<LOOP LIST="colors">
<ics.listget listname=colors fieldname=value/>
</LOOP><p/>

And this is the result:

What are the possible colors for any pair of jeans?
black blue green

Displaying Both the Colors and the Styles for the Jeans in the Assetset
Next, let's extract and display the values for both the color and the style attribute for
the jeans in the assetset. This time we use the ASSETSET.GETMULTIPLEVALUES tag.

First, however, we have to create a list object for the resultset that the
ASSETSET.GETMULTIPLEVALUES tag returns. The list object needs one row for each of
the attributes, as follows:

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributename,attributetypename,direction"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="color"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="style"
attributetypename="PAttributes" direction="none"/>

The next line of code converts the list object to a list variable named lolist:

<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>

Now we can extract the attributes and store them in the list variable named lolist:

<ASSETSET.GETMULTIPLEVALUES NAME="as" LIST="lolist" PREFIX="distinct"
BYASSET="false"/>

Notice the BYASSET parameter in the preceding line of code. Because there are
multiple assets in the assetset and we want to know the distinct values for the attribute
rather than all the attribute values for each asset in the assetset, BYASSET=false. This
way, we get only the unique attribute values and not every single attribute value.

The next lines of code loop through the list and display the unique values for each
attribute:

Here are all the possible colors:
<LOOP LIST="distinct:color">
<ics.listget listname=distinct:color fieldname=value/>
</LOOP><P/>

Here are all the possible styles:
<LOOP LIST="distinct:style">
<ics.listget listname=distinct:style fieldname=value/>
</LOOP><P/>

And this is the result:

Here are all the possible colors: green blue black
Here are all the possible styles: wide straight

Chapter 20
Coding Templates That Display Flex Assets

20-30

Creating a Table That Displays All the Jeans and Their Attribute Values
You can also use the ASSETSET.GETMULTIPLEVALUES tag to obtain the attribute values
that are distinct for each asset in the assetset. It creates a list of all the products and
the values for their attributes that we can use to create a grid or table that displays all
the products in the example catalog.

In this case, we have to do two additional things:

• Because we want the attribute values grouped by the asset that they belong to,
the BYASSET parameter must be set to true.

• Because we need the IDs of the assets in this case, we have to use the
ASSETSET.GETASSETLIST tag to obtain them.

First, this code creates a list object:

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributename,attributetypename,direction"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="color"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="style"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="price"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="sku" attributetypename="PAttributes"
direction="none"/>
<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>

Next, we can get the attribute values:

<ASSETSET.GETMULTIPLEVALUES NAME="as" LIST="lolist" PREFIX="grid"
BYASSET="true"/>

And then we use the ASSETSET.GETASSETLIST tag.

<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>

It returns a list with these columns:

• assettype

• assetid

By using both lists, we can create a grid that shows all of the products and all of their
attribute values:

<TABLE>
<LOOP LIST="aslist">
<TR>
<TD><CSVAR NAME="grid:aslist.assetid:sku.value"/></TD>
<TD><CSVAR NAME="grid:aslist.assetid:price.value"/>
 </TD>
<TD><CSVAR NAME="grid:aslist.assetid:style.value"/>
</TD>
<TD>
<IF COND="IsList.grid:aslist.assetid:color=true"><THEN>
<LOOP LIST="grid:aslist.assetid:color">
<CSVAR NAME="grid:aslist.assetid:color.value"/>
</LOOP>
</THEN></IF>

Chapter 20
Coding Templates That Display Flex Assets

20-31

</TD>
</TR>
</LOOP>
</TABLE>

And this is the result:

Table 20-1 Table That Displays All Jeans and Their Attribute Values

SKU Price Style Color

jeans-1 35 wide blue

jeans-2 30 straight black blue

jeans-3 25 straight black green

jeans-4 20 wide green

Searching for Jeans Based on a Range of Prices
Up until now, we have been using the same assetset (NAME=as) that was created in the
second line of code in this section. Next, let's filter the assetset by the price attribute,
using a range constraint.

This line of code adds a range constraint to our original searchstate (NAME=ss) that was
created in the first line of code in this section:

<SEARCHSTATE.ADDRANGECONSTRAINT NAME="ss" ATTRIBUTE="price"
TYPENAME="PAttributes" LOWER="0" UPPEREQUAL="30"/>

The range is from 0 to 30. Let's apply the modified searchstate against our assetset:

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss" ASSETTYPES="Products"/>

And check whether it worked, by obtaining and displaying a count of the jeans that are
now in the assetset:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many jeans products are less than or equal to $30?
<ics.getvar name=count/>

Here's the result:

How many jeans products are less than or equal to $30? 3

Searching for Jeans with a Wildcard for Color
Now let's replace the range constraint on the price attribute with a search constraint
that filters the assetset for the jeans that are available in any color that begins with the
letter b.

First this line of code deletes the range constraint for price:

<SEARCHSTATE.DELETECONSTRAINT NAME="ss" ATTRIBUTE="price"/>

And this line of code adds a new constraint for color, using the percentage (%)
character as a wildcard with the VALUE parameter:

Chapter 20
Coding Templates That Display Flex Assets

20-32

<SEARCHSTATE.ADDSIMPLELIKECONSTRAINT NAME="ss" ATTRIBUTE="color"
TYPENAME="PAttributes" VALUE="b%"/>

The VALUE="b%" statement means any color that begins with the letter b. Lets apply
the modified searchstate against our same assetset (as):

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss" ASSETTYPES="Products"/>

And check whether it worked by obtaining and displaying a count of the number of
jeans that are in the assetset now:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many jeans have a color that begins with the letter b?
<ics.getvar name=count/>

Here's the result:

How many jeans have a color that begins with the letter b? 3

Searching for Jeans with Specific Colors
Finally, let's change the color constraint that filters the assetset for the jeans that are
available in either of two specific colors: blue or black.

This line of code deletes the color constraint from the searchstate:

<SEARCHSTATE.DELETECONSTRAINT NAME="ss" ATTRIBUTE="color"/>

Next, because we want to filter based on two values for the color attribute, we have to
create a list object with those values:

<LISTOBJECT.CREATE NAME="lo" COLUMNS="value"/>
<LISTOBJECT.ADDROW NAME="lo" value="blue"/>
<LISTOBJECT.ADDROW NAME="lo" value="black"/>
<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="colorlist"/>

Now we can use the list variable named colorlist to create the searchstate:

<SEARCHSTATE.ADDSTANDARDCONSTRAINT NAME="ss" ATTRIBUTE="color"
TYPENAME="PAttributes" LIST="colorlist"/>

The LIST=colorlist statement is the equivalent of the VALUE statement in the
preceding example. It means attribute values that match any of the colors in the list
named colorlist. Let's apply the modified searchstate to our same assetset:

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss" ASSETTYPES="Products"/>

And check whether it worked by obtaining and displaying a count of the number of
jeans that are in the assetset now:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many products have a color that is black or blue?
<ics.getvar name=count/>

Here's the result:

How many products have a color that is black or blue? 3

Chapter 20
Coding Templates That Display Flex Assets

20-33

Creating URLs for Hyperlinks
Your site may be dynamic or static, but its content changes regularly. So, you can’t
hard code URLs into hyperlinks. At the time of rendering, your pages must be able to
determine the identity of the assets they are providing links to.

WebCenter Sites provides three tags (each with an XML and a JSP version) that you
can use to create your URLs:

• For URLs for assets that are not blobs, use RENDER.GETPAGEURL tag.

• For URLs for assets that are blobs, use either the RENDER.SATELLITEBLOB tag or
the RENDER.GETBLOBURL tag.

See these topics:

• RENDER.GETPAGEURL (render:getpageurl)

• RENDER.SATELLITEBLOB (render:satelliteblob)

• RENDER.GETBLOBURL (render:getbloburl)

• Using the referURL Variable

RENDER.GETPAGEURL (render:getpageurl)
To obtain URLs for regular assets (that is, assets that are not blobs), use the
RENDER.GETPAGEURL tag.

The RENDER.GETPAGEURL tag processes arguments passed in from the element that
invokes it into a URL-encoded string that it returns as a variable that you name with
the OUTSTR parameter. By convention, the name of that variable is referURL.

If rendermode is set to export, it creates a static URL (unless you specify that it should
be dynamic). If rendermode is set to live, it creates a dynamic URL.

For example:

<RENDER.GETPAGEURL PAGENAME="FiscalNews/Article/Full
cid="Variables.cid"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

You can now use the value in the referURL variable to create a hyperlink with an <A
HREF> tag.

See the Tag Reference for Oracle WebCenter Sites Reference.

RENDER.SATELLITEBLOB (render:satelliteblob)
Binary large objects (blobs) that are stored in the WebCenter Sites database are
served by the BlobServer servlet rather than the WebCenter Sites servlet. The
RENDER.SATELLITEBLOB tag returns an HTML tag with a BlobServer URL in it.

This tag takes a set of arguments that define the blob and an additional set of
arguments that determine how to format the blob. For example, you can use it to
create an tag or an <A HREF> tag, as follows:

Chapter 20
Creating URLs for Hyperlinks

20-34

<RENDER.SATELLITEBLOB
BLOBTABLE=ImageFile
BLOBKEY=id
BLOBCOL=urlpicture
BLOBWHERE=Variables.asset:id
BLOBHEADER=Variables.asset:mimetype
SERVICE=IMG SRC
ARGS_alt=Variables.asset:alttext
ARGS_hspace=5 ARGS_vspace=5/>

Note that there are additional coding steps if you are creating a URL for a flex attribute
of type blob. See About Flex Attributes of Type Blob.

Even if you are not using Satellite Server, you should still use the
RENDER.SATELLITEBLOB tag because the tag can create a BlobServer URL in an HTML
tag even when Satellite Server is not present.

See the Tag Reference for Oracle WebCenter Sites Reference.

RENDER.GETBLOBURL (render:getbloburl)
If you need a BlobServer URL only, without it being embedded in an HTML tag, use
the RENDER.GETBLOBURL tag.

For example, the following element named SetHTMLHeader uses the
RENDER.GETBLOBURL element to obtain a BlobServer URL (stored as a variable named
referURL) that it then passes on to JavaScript code that runs on the client side to
determine which browser the visitor is using. In this case, the client-side JavaScript
creates the HTML tag based on the browser it discovers, so it needs the BlobServer
URL without an HTML tag.

SetHTMLHeader is the element for a CSElement. You could examine it in two ways:

• Use the WebCenter Sites interface to search for the path-name/SetHTMLHeader
CSElement and then inspect it.

• Use Explorer to open the path-name/SetHTMLHeader element.

If you are creating a URL for a flex attribute of type blob, there are additional coding
steps. See About Flex Attributes of Type Blob.

See the Tag Reference for Oracle WebCenter Sites Reference.

Using the referURL Variable
The RENDER.GETPAGEURL, RENDER.GETBLOBURL, and RENDER.SATELLITEBLOB tags were
introduced in the 3.6.x version of this product. Older versions of the product used
elements named GetPageURL and GetBlobURL to obtain URLs; they are coded to return
URLs in a variable named referURL.

By convention, all of the sample code in the sample sites that use the tags that
replaced the GetPageURL and GetBlobURL elements use a referURL variable for the
value of the URL.

Do not append or add any text to the value held in the referURL variable or any other
variable returned by a RENDER.GETPAGEURL or RENDER.GETBLOBURL tag. URLs in this
kind of variable are complete (whole). If you change the URL returned by the tag, you
are likely to break it.

Chapter 20
Creating URLs for Hyperlinks

20-35

If you have to include additional arguments in a URL, use the RENDER.PACKARGS tag
to URL-encode them (pack them) and then pass those encoded arguments to the
RENDER.GETPAGEURL or RENDER.GETBLOBURL tag with the PACKEDARGS parameter.

See the Tag Reference for Oracle WebCenter Sites Reference.

Handling Error Conditions
Can your element code check for error conditions? Decide which conditions are
serious and, when necessary, code a solution or alternate action. Sometimes the
solution is to write a meaningful error message. Additionally, you can also include a
code that stops a broken page from being cached.

Note:

While debugging your code, you can use the commons-logging.properties
and loggingconfig.xml files to enable loggers. Error and debugging
messages are then written to the WebCenter Sites log file. For information
about the debugging properties, see the Property Files Reference for Oracle
WebCenter Sites.

Topics:

• Using the Errno Variable

• Ensuring that Incorrect Pages Are Not Cached

Using the Errno Variable
The errno variable, a standard WebCenter Sites variable, holds error numbers that
the WebCenter Sites XML and JSP tags report. When a WebCenter Sites tag cannot
successfully execute, it sets errno to the value that best describes the reason why
it did not succeed. For example, an errno value of -13004 means a CURRENCY tag
couldn't read a number because it was not in the correct currency format. For a
complete list of all the errno values and their descriptions, see the error conditions
section in the Tag Reference for Oracle WebCenter Sites Reference.

The tags that are delivered with the WebCenter Sites modules and products clear
errno before they execute so you do not have to set errno to 0 when you want to
check for errors from these tags. However, it is recommended that you clear error
numbers before executing a tag. Here's a code example that determines whether an
ASSET.LOAD was successful before attempting to load the child assets:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>
<IF COND="IsError.Variables.errno=false">
<THEN>
<ASSET.CHILDREN NAME="topArticle"
LIST="listOfChildren/>
</THEN>
</IF>

Chapter 20
Handling Error Conditions

20-36

To check the results of the tags that are delivered by WebCenter Sites, you should
include code that clears the value errno before the tag whose results you want to
check. For example:

<SETVAR NAME=errno VALUE=0/>

The following code sample shows an error message that you could use while you are
in the process of developing your templates:

<IF rendermode=preview>
<THEN>
<IF COND=IsError.Variables.errno=true>
<THEN>

Error <ics.geterrno/>
while rendering <ics.getvar name=pagename/>
with asset ID <ics.getvar name=cid/>.

</THEN>
</IF>
</THEN>
</IF>

Ensuring that Incorrect Pages Are Not Cached
If you can determine that the output from an element is incorrect, there is probably
no need for WebCenter Sites or Satellite Server to cache the page. You can stop the
page that is being generated from being cached with the ics.disablecache tag.

Example 1: Error Condition

To continue with the first example in Using the Errno Variable, if the article asset could
not be loaded, there would also be no reason to cache the page. You could add the
following ELSE statement to the IF condition in that code sample:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>
<IF COND="IsError.Variables.errno=false">
<THEN>
<ASSET.CHILDREN NAME="topArticle"
LIST="listOfChildren/>
</THEN>
<ELSE>
<ics.disablecache/>
</ELSE>
</IF>

Example 2: Clear the Page From Cache if the Asset's Status is VO (Basic Assets
Only)

The CacheManager on the destination system regenerates all the pages and pagelets
that were affected by a publishing session. Affected pages includes those whose
dependent assets were deleted.

Deleted assets have their status set to VO. The ASSET.LOAD and asset:load tags do
not check the status of an asset before they execute which means they can and will
load a deleted asset. Typically this isn't a problem. Why? Because an asset cannot be
deleted until all links to it from other assets are removed. Therefore, when the site is
regenerated there are no longer any links to a page or pagelet that would display the

Chapter 20
Handling Error Conditions

20-37

deleted asset. But there is no need to leave a page or pagelet that displays a deleted
asset in the cache.

The following code sample stops the page from being cached if the asset cannot be
loaded or if the asset's status is deleted:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="WireStoryTextArticle"/>
<!-- if the asset cannot be loaded, then flush the pagelet from cache -->
<if COND="IsError.Variables.errno=true">
<then>
<ics.disablecache/>
</then>
</if>
<ASSET.SCATTER NAME="WireStoryTextArticle" PREFIX="asset"/>
<!-- if the asset is marked as void, then flush the pagelet from cache -->
<if COND="Variables.asset:status=VO">
<then>
<ics.disablecache/>
</then>
</if>

Note that you do not have to include code that checks the status of flex assets. The
SEARCHSTATE and searchstate tags do not return assets that have a status of VO and
the ASSETSET and assetset tags do not include assets that have a status of VO in the
assetsets that they create.

Encoding Page Arguments
The encodeParameter element is called to encode arguments. In
the excludeParametersLst argument value field you can include the arguments you
don’t want to encode. Use this method as a best practice for secure coding, for any
arguments passed into a template via URL or any other way.

 <ics:callelement element="UI/Utils/encodeParameters">
 <ics:argument name="excludeParametersLst"
 value="<list_of_comma_seperated_args>"/>
 </ics:callelement>

For example:

 <ics:callelement element="UI/Utils/encodeParameters">
 <ics:argument name="excludeParametersLst" value="attributes,
 displayData,browseUrl,chartParams"/>
 </ics:callelement>

What You May Need to Know About Securing Your Site
Against XSS Attacks

Have you sanitized custom and system parameters in the custom element you’ve
written for your site?

To avoid cross site scripting (XSS) attacks, first you should identify the vulnerable
parameters, and then encode or sanitize them according to their business logic.

Chapter 20
Encoding Page Arguments

20-38

21
Coding Templates for In-Context and
Presentation Editing

Content contributors and editors look for flexibility in the way they can create and
manage content. For example, adding content in Web mode instead of using forms,
controlling the presentation through page and content layouts, and so on. You give
them this flexibility by making attribute data type fields editable and writing appropriate
code.

• Coding Templates for In-Context Content Editing

• Coding Templates for Presentation Editing

• Enabling Content Creation for Web Mode

For information on new tags used in this chapter, see the Tag Reference for Oracle
WebCenter Sites Reference.

Coding Templates for In-Context Content Editing
You can instrument templates in such a way that content people can create and edit
content in the context of their website, instead of using the standard content forms. In-
context refers to the Web Mode of the Oracle WebCenter Sites: Contributor interface.

This topic modifies the HelloDetail template introduced in Creating Templates and
Wrappers. See these previous topics that build on the HelloDetail template:

• Use Case 1: Building a Layout Template for Article Assets

• Use Case 2: Using Pagelet Templates

Note:

Doctype and Internet Explorer: The in-context editorial UI might not
be fully functional if Internet Explorer renders a page in quirks mode. To
ensure that local settings cannot affect the user interface, it is best to
ensure that pages get rendered with an appropriate doctype value.

See the DOCTYPE element description in the HTML/XHTML Reference of
the Microsoft Library for details: http://msdn.microsoft.com/

See these topics:

• Attribute Data Types

• Making String Fields Editable

• Making Text Fields Editable

• Making Date Fields Editable

• Making Binary Fields Editable

21-1

http://msdn.microsoft.com

• Making Asset Fields Editable

• Number Fields

Attribute Data Types
Asset types are defined by one or more attributes, which can be of the following types:

• string: A short string (normally 255 characters max)

• text: A long string. Typically mapped to a CLOB database type (maximum size
depends on the underlying database).

• date: A date field

• binary: A BLOB attribute. Typically meant to store binary files such as image files,
PDFs, etc.

• asset: A reference to another asset

• number: An integer, float, or money data type

Making String Fields Editable
You can make string fields editable. These fields are restricted in length (usually 255
characters) and are best suited to hold content metadata such as article headlines,
author, and so on.

The following steps modify the HelloDetail template introduced in Creating Templates
and Wrappers to make the article headline field editable.

You can use the ics:listget tag to print the value of the headline field (which is
stored in the value column of the article:headline list).

<h1>
<ics:listget
 listname="article:headline"
 fieldname="value" />
</h1>

1. To make this field editable in-context, add the following taglib directive:

<@ taglib prefix="insite" uri="futuretense_cs/insite.tld" %>

and replace the previous code with the code snippet below:

<h1>
<insite:edit
 field="headline"
 list="article:headline" column="value"
 assetid='<%=ics.GetVar("cid")%>'
 assettype='<%=ics.GetVar("c")%>' />
</h1>

where:

• The field parameter designates which field of the asset is edited.

• The list and column parameters designate where the current field value is
stored.

• The assetid and assettype parameters designate the edited asset.

Chapter 21
Coding Templates for In-Context Content Editing

21-2

The syntax can be simplified as follows:

<h1>
<insite:edit
 field="headline"
 list="article:headline"
 column="value" />
</h1>

Because the edited asset is designated by the asset type (c) and asset id (cid)
variables, WebCenter Sites performs the retrieval of these values directly from the
ICS scope.

Examining any asset in Web Mode of the Contributor interface, using
HelloArticleLayout will not show any noticeable differences from the previous
display. In fact, when in preview or inspect view, the insite:edit tag behaves
exactly like the ics:listget tag we just replaced.

2. Selecting Edit View makes all editable areas active; in this case, the headline field
as shown in the figure below.

Figure 21-1 Sample Web Mode Page with Editable Area Active

3. Editorial users are now able to edit the headline field in the context of the article
detail web page and click Save to make this change permanent. This action is
equivalent to going to the article asset form, editing the Headline field of the
article, as shown in the figure below, and then clicking Save.

Chapter 21
Coding Templates for In-Context Content Editing

21-3

Figure 21-2 Sample Article Asset Form (Content Tab)

Variants of the <insite:edit/> Tag
The value of an edited field is stored in a list. This is how the assetset tags work; they
query the database and return attribute values in a list object whether attributes are
single-valued or multivalued.

In some cases, the value might be made available in a variable. The following variant
of insite:edit can then be used:

<h1>
<insite:edit
 variable="headlineVar"
 field="headline" />
</h1>

In a case where the field value is not available in a variable or a list, it is possible to
specify the value directly using the value attribute in the insite:edit tag.

<%String headline = getHeadlineValueFromSomewhere(); %>
<insite:edit
 value="<%=headline%>"
 field="headline" />

The insite:edit tag also supports the property and ssvariable attributes, in case
the field value is available in, respectively, a WebCenter Sites property file or a session
variable. These variants are rarely used.

Making Text Fields Editable
You can make text fields editable. This topic builds on the HelloDetail template
introduced in Creating Templates and Wrappers.

In a similar way as for string fields, you can replace the render:stream tag in the
HelloDetail template with the insite:edit tag. See Making String Fields Editable for
an example of working with string fields in the HelloDetail template:

Previously, this was the render:stream tag:

Chapter 21
Coding Templates for In-Context Content Editing

21-4

<render:stream
 list="bodyList"
 column="value" />

To make this field editable:

1. Change the render:stream tag: to an insite:edit tag.

In this example, the body is defined as the field and ckeditor as the editor type.

<insite:edit
 list="bodyList"
 column="value"
 field="body"
 editor="ckeditor" />

2. Clicking on the body text displays the CKEditor widget as shown in the figure
below.

Figure 21-3 Sample CKEditor Widget

3. You can pass additional arguments to CKEditor, as follows:

<insite:edit
 list="bodyList"
 column="value"
 field="body"
 editor="ckeditor"
 params="{width: '500px', height: '350px',
 toolbar: 'MyToolbar'}" />

See Configuring CKEditor.

Making Date Fields Editable
You can make date fields editable. This information builds on the HelloDetail template
introduced in Creating Templates and Wrappers.

Date fields are made editable in-context using the same insite:edit tag used for
string or text fields. However, when dates have to be formatted, a few extra steps are
required. The value of date fields when initially retrieved from the database is in JDBC
format, which is, 2012-01-01 00:00:00.0. This format is unsuitable for rendering on a

Chapter 21
Coding Templates for In-Context Content Editing

21-5

website where dates are generally rendered as a readable string, such as January 1,
2012.

In addition, the date is interpreted in the server's time zone, which we can display in
a different time zone. We first get the time zone ID by using the java.util TimeZone
API. We then format the date by using the long date format (which is a predefined
format).

Note:

For more about predefined date formats, see:

http://docs.oracle.com/javase/tutorial/i18n/format/dateFormat.html

If you choose to format the date, you can use one of the date formatting APIs,
described in the next section. Depending on your decision, the resulting date and
calendar widget will look like one of the samples in the figure below.

Figure 21-4 Date and Calendar Widget

Date Formatting APIs
The HelloDetail template uses the formattedDate variable to display the date. See
Use Case 1: Building a Layout Template for Article Assets.

 <ics:getvar name="formattedDate" />

The formattedDate variable must be set by using one of the date formatting APIs:
fmt:formatDate or the WebCenter Sites dateformat API.

The formattedDate can be rendered with a timestamp if you add the time style
parameter. It can also be rendered with a specific time zone if we add a parameter for
time zone. If the time zone parameter is omitted, the date is interpreted and rendered
in the server's time zone. Following is a description of the APIs:

Chapter 21
Coding Templates for In-Context Content Editing

21-6

http://docs.oracle.com/javase/tutorial/i18n/format/dateFormat.html

• The fmt:formatDate (which supports EL expression) is one such API, which takes
the date in java.util.Date() in String format and takes the timeZone parameter
as shown below:

<fmt:formatDate value="${asset.postDate}" dateStyle="long"
 type="both" timeStyle="long" var="formattedDate"
 timeZone="US/Eastern" />

• The WebCenter Sites dateformat API has an additional parameter named
timezoneid and may be used in place of fmt:formatDate:

<dateformat:create name="dateFormat" datestyle="long"
 timestyle="long" timezoneid="US/Eastern" />

If timestamp is needed, we use dateformat:getdatetime:

<dateformat:getdatetime name="dateFormat" value='<%=postDate%>'
 valuetype="jdbc" varname="formattedDate"/>

If timestamp is not needed, we use dateformat:getdate:

<dateformat:getdate name="dateFormat" value='<%=postDate%>'
 valuetype="jdbc" varname="formattedDate"/>

The WebCenter Sites dateformat API takes millis or jdbc in the valuetype
argument.

Enabling Date Fields for Editing in Web Mode
A formatted date can be used in the insite:edit tag. Do the following steps to enable
date fields for editing in Web Mode:

1. Because the insite:edit tag passes the formatted value, an appropriate
formatLength parameter is required in the params argument. In our example,
formatLength is set to set to long, as shown below. In addition, if we choose to
display the timestamps and time zone in date fields, we would set two additional
parameters; timePicker:true and timeZoneID:'US/Eastern', also shown below:

 <insite:edit
 field="postDate"
 value="formattedDate"
 params="{constraints:{formatLength: 'long'},
 timePicker:true, timeZoneID:'US/Eastern'}" />

Chapter 21
Coding Templates for In-Context Content Editing

21-7

Note:

The date widget in edit mode will function correctly only if we pass a
properly formatted date. The datestyle and timestyle arguments in
dateformat:create or fmt:formatdate APIs must be consistent with
the formatLength params argument in the insite:edit tag. In our
example, the datestyle and timestyle arguments in the date formatting
API must all be long. If the formattedDate is constructed using the
time zone parameter, then the same time zone ID must be used in the
insite:edit tag. If the formattedDate is constructed with timestamp
using dateformat:getdatetime, then the timePicker:true parameter
must be set in the insite:edit tag. And if it is constructed without
timestamp using dateformat:getdate, then there is no need to set the
timePicker:true parameter.

2. The date will now be rendered according to how we specified its format:

• With timestamp and timeZoneID:'US/Eastern':

SEPTEMBER 7, 2011 10:41:14 AM EDT

• Without timestamp and timeZoneID::

SEPTEMBER 7, 2011

3. The date field is now editable. Click the date field while viewing an article in the
Contributor interface in the Web Mode / Edit View. One of the calendar popup
widgets opens.

The date format is passed to the insite:edit tag using the params attribute. The
params attribute is used to pass extra configuration settings to the Dojo widgets,
formatted as a JSON string. In this case:

{constraints: {formatLength: 'long'}, timePicker : true,
 timeZoneID:'US/Eastern' }

For details on available widget settings, refer to the Dojo documentation at http://
dojotoolkit.org/.

Making Binary Fields Editable
Binary fields are typically database BLOB or CLOB fields. Binary fields typically store
images, or downloadable documents. By default, the insite:edit tag will make binary
fields editable through a file upload component.

Note:

This section also applies to WebCenter Sites URL columns. That is, URL
columns storing a reference to a file which is stored on the file system.

The HelloDetail template renders the largeThumbnail field of the related AVIImage
asset.

To make this field editable in-context:

Chapter 21
Coding Templates for In-Context Content Editing

21-8

http://dojotoolkit.org/
http://dojotoolkit.org/

1. Retrieve the value of this field, which contains a BLOB ID (not the actual BLOB
value):

<assetset:setasset
 name="image"
 type="AVIImage"
 id='<%=ics.GetVar("imageId")%>' />
<assetset:getattributevalues
 name="image"
 attribute="largeThumbnail"
 typename="ContentAttribute"
 listvarname="largeThumbnail" />

2. Generate a URL to the largeThumbnail field image:

 <render:getbloburl
 outstr="imageURL"
 c="AVIImage"
 cid='<%=ics.GetVar("imageId")%>'
 field="largeThumbnail" />

3. Insert the tag between the opening and closing insite:edit tag:

 <insite:edit
 field="largeThumbnail"
 assetid='<%=ics.GetVar("imageId")%>'
 assettype="AVIImage"
 list="largeThumbnail"
 column="value" >

 <img class="photo left" src='<%=ics.GetVar("imageURL")%>' />
</insite:edit>

When hovering over the image, content contributors are now shown a tooltip, giving
access to the upload component, and allowed to clear the largeThumbnail field.

Note:

The HelloDetail template allows contributors to edit two distinct assets
on the same page (the headline, date, body, relatedImage fields of the
AVIArticle asset, and the largeThumbnail field of the related AVIImage
asset). Generally, it is possible to render multiple assets on the same page,
and make them editable simultaneously.

Making Asset Fields Editable
Asset fields store references to other assets. You can make asset fields editable.

This procedure builds on the HelloArticleLayout template created in Use Case 1:
Building a Layout Template for Article Assets of Creating Templates and Wrappers.

You can enhance the HelloArticleLayout template and populate the side bar by
rendering the article assets related to our article through the relatedStories field.

Chapter 21
Coding Templates for In-Context Content Editing

21-9

Note:

Although relatedStories is a multivalued field, it is treated in this section as
a single-valued field. That is, the field holds only one related article content
asset. Code samples shown in this section are therefore applicable to any
single-valued field. For information about handling multivalued fields, see
Multivalued Fields.

1. Create a pagelet template called HelloSideBar, applicable to the AVIArticle asset
type and Article subtype, which renders the associated article asset using the
avisports Summary/SideBar article template using the following code:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>

<cs:ftcs>

<render:logdep
 c="Template"
 cid='<%=ics.GetVar("tid")%>' />

<assetset:setasset
 name="article"
 type="AVIArticle"
 id='<%=ics.GetVar("cid")%>' />

<assetset:getattributevalues
 name="article"
 attribute="relatedStories"
 listvarname="relatedStories"
 typename="ContentAttribute" />

<%-- we are getting the first item in the list --%>
<ics:listget
 listname="relatedStories"
 fieldname="value"
 output="articleId" />

<render:calltemplate
 tname="Summary/SideBar"
 c="AVIArticle"
 cid='<%=ics.GetVar("articleId")%>' />

</cs:ftcs>

2. Modify the HelloArticleLayout template to invoke the HelloSideBar pagelet
template inside the side-bar div element:

<div class="side-bar">
 <render:calltemplate tname="HelloSideBar" args="c,cid" />
</div>

Assuming that relatedStories contain one asset reference (Cold Snap Back on
the Scene in the next figure), the related article is now rendered in the side bar
using the Summary/SideBar template, as dictated by the template code.

Chapter 21
Coding Templates for In-Context Content Editing

21-10

Figure 21-5 Sample Related Stories Reference

The next figure shows how the related story is rendered.

Figure 21-6 Related Story Rendered in Sidebar

Previously, the render:calltemplate tag was used in the HelloSideBar pagelet:

<render:calltemplate
 tname="Summary/SideBar"
 c="Article"
 cid='<%=ics.GetVar("articleId")>' />

3. The relatedStories asset field can be made editable in-context, by turning the
area occupied by the asset into a drop target. That is, an area which will accept
assets dragged from other parts of the UI (such as the search result pane or the
content tree). To do this, add the following taglib directive:

<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld" %>

and replace the render:calltemplate tag in the HelloSideBar pagelet with the
insite:calltemplate tag:

<insite:calltemplate
 tname="Summary/SideBar"
 c='AVIArticle'
 cid='<%=ics.GetVar("articleId")%>'
 field="relatedStories"
 assetid='<%=ics.GetVar("cid")%>'
 assettype='<%=ics.GetVar("c")%>' />
...

where:

• The tname (template), c (asset type) and cid (asset id) variables behave
exactly as in the render:calltemplate tag and have the same meaning.

• The assetid and assetype variables designate the asset being edited (in our
example, an article asset).

Chapter 21
Coding Templates for In-Context Content Editing

21-11

• The field variable designates which field of the asset is being edited (in our
example, relatedStories).

The syntax can be simplified as follows:

<insite:calltemplate
 tname="Summary/SideBar"
 c='AVIArticle'
 cid='<%=ics.GetVar("articleId")%>'
 field="relatedStories" />

This simplified structure can be used because the edited asset is the asset
designated by the c and cid variables. Thus, WebCenter Sites retrieves the
variable values by looking them up directly in the ICS context.

4. If the field is initially empty (in which case the articleId variable is null), viewing
the asset in Web Mode of the Contributor interface shows an empty content-
editable slot (provides a droppable zone for the user).

5. It is now possible to drag and drop an article asset to the content-editable slot, by
selecting an asset in the content tree, or from the docked search panel.

Editing an Association
When an asset association is used instead of a flex attribute of data type asset, the
field attribute needs to be specified, as follows:

Association-named:<associationName>

For example, for an association called topStory the code would be:

<insite:calltemplate
 field="Association-named:topStory"
 ...
/>

Editing a Parent Asset
It is also possible to edit a flex asset's parent asset. The syntax for the field attribute
is as follows:

Group_<parentDefinitionName>

For example, in the case of avisports, article assets have a Category parent definition:

<insite:calltemplate
 field="Group_Category"
 ...
/>

Number Fields
When dealing with number attributes (such as, integer, double, and money), raw
values are retrieved from the database, and are typically formatted according to the
current locale.

For example, assuming that price is a money attribute, a JSP reading the attribute
value and rendering it as a formatted string could be written as follows:

Chapter 21
Coding Templates for In-Context Content Editing

21-12

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<cs:ftcs>

<assetset:setasset
 name="theAsset"
 type='<%=ics.GetVar("c")%>'
 id='<%=ics.GetVar("cid")%>' />

<assetset:getattributevalues
 name="theAsset"
 attribute="price"
 listvarname="pricelist"
 typename="ContentAttribute" />

<ics:listget
 listname="pricelist"
 fieldname="value"
 output="price" />

<fmt:formatNumber
 type="currency"
 value='<%=ics.GetVar("price")%>'
 var="formattedValue"
 currencySymbol="&eur;" />

The price is: ${formattedValue}
</cs:ftcs>

Assuming that the raw value is 123456, it would be rendered as €123,456 (en_US
locale). The value is made editable using the insite:edit tag as follows:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<cs:ftcs>

<assetset:setasset
 name="theAsset"
 type='<%=ics.GetVar("c")%>'
 id=''<%=ics.GetVar("cid")%> />

<assetset:getattributevalues
 name="theAsset"
 attribute="price"
 listvarname="pricelist"
 typename="ContentAttribute" />

<ics:listget
 listname="pricelist"
 fieldname="value"
 output="price" />

<fmt:formatNumber
 type="currency"
 value='<%=ics.GetVar("price")%>'
 var="formattedValue"
 currencySymbol="&eur;" />

Chapter 21
Coding Templates for In-Context Content Editing

21-13

The price is: <insite:edit field="price"
 value="${formattedValue}"
 params="{currency: 'EUR'}" />
</cs:ftcs>

Note that the editing widget is passed the formatted value (containing the currency
symbol). For this reason, the currency ISO code is specified using the params field.

For more configuration options, refer to the Dojo documentation at http://
dojotoolkit.org/.

Multivalued Fields
For multivalued fields, beyond editing the existing values, you need to use editors for
tasks such as these:

• Adding a new value

• Removing an existing value

• Reordering existing values

For this reason, multivalued text fields and multivalued asset fields have to be treated
specifically.

Example 1: Editing Multivalued Text Fields
1. Page assets of the AVIHome subtype have a multivalued text field (see attribute

value teaserText in the assetset:getattributevalues tag below). Create a test
layout template, rendering only the value of this field.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>

<cs:ftcs>

<render:logdep
 cid='<%=ics.GetVar("tid")%>'
 c="Template" />

<assetset:setasset
 name="page"
 type="Page"
 id='<%=ics.GetVar("cid")%>' />

<assetset:getattributevalues
 name="page"
 attribute="teaserText"
 listvarname="teaserList"
 typename="PageAttribute" />

<div style="width: 500px; font-size: small">
 <ics:listloop listname="teaserList">
 <render:stream list="teaserList" column="value" />
 </ics:listloop>

Chapter 21
Coding Templates for In-Context Content Editing

21-14

http://dojotoolkit.org/
http://dojotoolkit.org/

</div>
</cs:ftcs>

This figure shows a sample text layout template:

Figure 21-7 Sample Text Layout Template

2. Modify this template to make the multivalued teaserText field editable.

Add the insite taglib directive:

<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld" %>

and replace the original code:

<ics:listloop listname="teaserList">
 <render:stream list="teaserList" column="value" />
</ics:listloop>

with the following code:

<ics:listloop listname="teaserList">
 <ics:listget
 listname="teaserList"
 fieldname="#curRow"
 output="currentRowNb" />
 <insite:edit
 assetid='<%=ics.GetVar("cid")%>'
 assettype='<%=ics.GetVar("c")%>'
 field="teaserText"
 list="teaserList"
 column="value"
 index='<%=ics.GetVar("currentRowNb")%>'
 editor="ckeditor" />
</ics:listloop>

The syntax for the insite:edit tag can be simplified as follows:

<ics:listloop listname="teaserList">
 <ics:listget
 listname="teaserList"
 fieldname="#curRow"
 output="currentRowNb" />
 <insite:edit

Chapter 21
Coding Templates for In-Context Content Editing

21-15

 field="teaserText"
 list="teaserList"
 column="value"
 index='<%=ics.GetVar("currentRowNb")%>'
 editor="ckeditor" />
</ics:listloop>

3. In the Contributor interface, change to Web Mode / Edit View. You are now able
to edit each of the existing values using CKEditor.

The only noticeable difference with a single-valued field, is that we only added an
index attribute which notifies WebCenter Sites the index of the value being edited.

At this point we are only able to edit existing values. See the next section on how to
add, remove, or reorder existing values.

Example 2: Modifying Multivalued Text Fields
This example builds on Example 1: Editing Multivalued Text Fields and includes
adding, removing, and reordering values.

1. Modify the previous code sample as follows:

<insite:list
 field="teaserText"
 editor="ckeditor"
 assetid='<%=ics.GetVar("cid")%>'
 assettype='<%=ics.GetVar("c")%>'>

 <ics:listloop listname="teaserList">
 <insite:edit list="teaserList" column="value" />
 </ics:listloop>
</insite:list>

The insite:edit tag is now nested inside an insite:list tag. The nested
insite:edit tags do not specify the field, assetid, assettype or editor
attributes since they are specified at the parent tag level, and each nested
insite:edit tag is, by default, inheriting those values when not locally specified.
This is also applicable to the params attribute of the insite:edit tag.

The index attribute is no longer required. In this case, the insite:list tag is
keeping track of the current index. The tag assumes that the order in which the
insite:edit tag appear matches the order of the multivalued field, that is, the first
insite:edit tag edits value #1, and so on. If that is not the case, the index has to
be specified. See Specifying a Different Ordering.

Like the insite:edit tag, the syntax for the insite:list tag can be simplified if
the asset being edited is the asset designated by the c (asset type) and cid (asset
id) variables; in which case the assetid and assettype attributes can be omitted.

<insite:list field="teaserText" editor="ckeditor" >
 <ics:listloop listname="teaserList">
 <insite:edit list="teaserList" column="value" />
 </ics:listloop>
</insite:list>

2. Now that the insite:list tag was added, a toolbar is displayed whenever the
mouse pointer hovers over the area showing the field values.

When you click that area, a popup gets rendered, allowing you to add, edit,
remove, or reorder field values.

Chapter 21
Coding Templates for In-Context Content Editing

21-16

This topic builds on Example 1: Editing Multivalued Text Fields and Example 2:
Modifying Multivalued Text Fields.

In the case of asset reference fields, we will use the insite:slotlist tag instead
of the insite:list tag. In this case, rather than nested insite:edit tags, we will
have nested insite:calltemplate tags.

Instead of rendering a single related article, this example goes through the whole
list and renders each of them.

3. Modify the previous code sample as follows (for the time being, this code omits
any in-context editing capabilities):

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>

<cs:ftcs>

<assetset:setasset
 name="article"
 type="AVIArticle"
 id='<%=ics.GetVar("cid")%>' />

<assetset:getattributevalues
 name="article"
 attribute="relatedStories"
 listvarname="relatedStories"
 typename="ContentAttribute" />

<ics:listloop listname="relatedStories">
 <ics:listget
 listname="relatedStories"
 fieldname="value"
 output="articleId" />
 <render:calltemplate
 tname="Summary/SideBar"
 c="AVIArticle"
 cid='<%=ics.GetVar("articleId")%>' />
</ics:listloop>
</cs:ftcs>

This figure shows the field with three values.

Figure 21-8 Related Stories with Three Examples

The SideBar will now show those three articles.

Chapter 21
Coding Templates for In-Context Content Editing

21-17

Figure 21-9 Related Stories Displayed in SideBar

4. To make the article list editable, make the following changes:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/ assetset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>

<cs:ftcs>
<render:logdep c="Template" cid='<%=ics.GetVar("tid")%>' />

<assetset:setasset
 name="article"
 type="AVIArticle"
 id='<%=ics.GetVar("cid")%>' />

<assetset:getattributevalues
 name="article"
 attribute="relatedStories"
 listvarname="relatedStories"
 typename="ContentAttribute" />

<insite:slotlist field="relatedStories">
 <ics:listloop listname="relatedStories">
 <ics:listget
 listname="relatedStories"
 fieldname="value"
 output="articleId" />
 <insite:calltemplate
 tname="Summary/SideBar"
 c="AVIArticle"
 cid='<%=ics.GetVar("articleId")%>' />
 </ics:listloop>
</insite:slotlist>
</cs:ftcs>

Every item of the list becomes a content-editable slot (droppable zone):

In addition, since the insite:slotlist tag was used in the example, when
hovering over the relatedStories area, you see a toolbar similar to the previous
example.

Chapter 21
Coding Templates for In-Context Content Editing

21-18

Specifying a Different Ordering
In the previous example, the articles are rendered in a sequence, the first nested
insite:calltemplate tag renders article #1, the second insite:calltemplate tag
renders article #2, and so on:

<div class="top-stories">
 <div>article #1</div>
 <div>article #2</div>
 <div>article #3</div>
 <div>...</div>

Your structure might be different depending on the structure of the HTML markup used
in your site. For example, you might want articles to be displayed in a column layout
such as this:

article #1 article #2
article #3 article #4
etc.

The underlying HTML markup might be similar to this:

<div class="left-column">
 <div>article #1</div>
 <div>article #3</div>
 ...
</div>
<div class="right-column">
 <div>article #2</div>
 <div>article #4</div>
 ...
</div>

In this example, articles are rendered in an order that doesn’t not match the ordering
of the field (#1, #3, #5, then #2, #4, #6, and so on.). If this is the case, WebCenter
Sites needs to be aware of the ordering. To do that, you have to explicitly indicate the
index of the list item being edited, by using the index attribute as shown in Multivalued
Fields.

Editing Mode and Caching
Caching is not disabled when you are working in Web Mode / Edit View. Therefore,
templates that are configured to be cached will still be cached when rendered in Edit
View.

When you are working with assets, WebCenter Sites automatically handles cache
flushing provided that the correct dependencies are logged. For example, modifying
the definition of a particular attribute (for example, changing the allowed types of an
asset reference field) automatically flushes all pagelets whose rendering depends on
this particular attribute.

However, the page cache has to be manually flushed in these cases:

• Modifying the definition of an association field

• Removing a role from WebCenter Sites, if this role is directly referenced from an
insite:calltemplate tag, through the roles attribute

Chapter 21
Coding Templates for In-Context Content Editing

21-19

• Removing asset types or subtypes from WebCenter Sites, if this asset type
or subtype is referenced from an insite:calltemplate tag through the clegal
attribute

Coding Templates for Presentation Editing
Content contributors like to present their content in different layouts to appeal the site
visitors. So, you can let them control the page and content presentation. For example,
let them choose which page layout should render an entire web page, which content
layout should render an asset in a part of a page, and which arguments should be sent
to a pagelet template.

The following information covers context and how to make a presentation change local
(that is, visible only on a given web page), or global (that is, changing the presentation
on one page can propagate the same change to multiple pages on the site).

This section builds on the HelloDetail template introduced in Creating Templates and
Wrappers and the examples in Coding Templates for In-Context Content Editing.

See these topics:

• Selecting a Different Layout for the Entire Web Page

• Selecting a Different Layout for a Page Fragment

• Editing Presentation and Content Simultaneously

• Understanding the Context System Variable

• Using Slots with CSElement and SiteEntry Assets

• Constraining Asset Types

• Preventing CSS and JavaScript Conflicts

Selecting a Different Layout for the Entire Web Page
Editorial users can assign a layout template to assets in two ways:

• Directly modify the value of the template field in Form Mode of the Contributor
interface.

• Select the Change Layout functionality from either the toolbar or menu bar.

Figure 21-10 Change Page Layout Dialog

Chapter 21
Coding Templates for Presentation Editing

21-20

Selecting a layout template for an asset will make this template the default choice
when working with an asset in Web Mode of the Contributor interface, or when
previewing the asset.

To enable content contributors to control the page layout used to render a given asset
on a live site, the value of the template field should be looked up and used to calculate
asset hyperlinks, as in the following example.

<asset:list
 type='<%=ics.GetVar("c")%>'
 list="asset"
 field1="id"
 value1='<%=ics.GetVar("cid")%>' />

<ics:listget
 listname="asset"
 fieldname="template"
 output="template" />

<render:gettemplateurl
 outstr="pageURL"
 tname='<%=ics.GetVar("template")%>'
 args="c,cid" />

Selecting a Different Layout for a Page Fragment
This information builds on the HelloArticleLayout template used in Coding Templates
for In-Context Content Editing. For information about working with fragments, see
Developer's Samples Website in Website Development the MVC Framework and
APIs.

Previously, in the HelloArticleLayout layout template, the main area of the article page
was rendered using the HelloDetail template as shown in this code snippet:

<div id="container">
 <div class="content">
 <render:calltemplate tname="HelloDetail" args="c,cid" />
 </div>
 <div class="side-bar">
 ...
 </div>
</div>

This template renders output as shown in the figure.

Chapter 21
Coding Templates for Presentation Editing

21-21

Figure 21-11 Article Page Rendered Using Template

Note:

The syntax used in the code sample:

<render:calltemplate tname="HelloDetail" args="c,cid" />

is a shortcut for (and is strictly equivalent to):

<render:calltemplate tname="HelloDetail" c='<%=ics.GetVar("c")%>'
cid='<%=ics.GetVar("cid")%>' />

The avisports sample site also provides a Detail template for article assets. The
Detail pagelet template is functionally equivalent to the HelloDetail template, in that
it provides a detailed view of the article, and is meant to be rendered in the main area
of the page, as shown in the figure.

Chapter 21
Coding Templates for Presentation Editing

21-22

Figure 21-12 Rendering with Detail Pagelet Template

Defining a Slot for Presentation Editing
To allow non-technical users to choose which presentation (that is, which pagelet
template) to use to render a particular article page, you must define a slot.

The previous code in the HelloArticleLayout layout template rendered the main area of
the article page using the HelloDetail template:

<div id="container">
 <div class="content">
 <render:calltemplate
 tname="HelloDetail"
 args="c,cid" />
 </div>
 <div class=side-bar>
 ...
 </div>
</div>
...

To define a slot:

1. Add the insite taglib directory.

<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld" %>

2. Replace the previous render:calltemplate tag with an insite:calltemplate tag
and add the slotname and variant attributes:

<div id="container">
 <div class="content">
 <insite:calltemplate
 slotname="HelloSlot"

 tname="HelloDetail"

Chapter 21
Coding Templates for Presentation Editing

21-23

 variant="HelloDetail|Detail"
 args="c,cid" />
 </div>
 <div class=side-bar>
 ...
 </div>
</div>
...

By adding the slotname attribute, you are defining a slot, called in the example
HelloSlot. The slotname attribute value can be any string, but it must be unique
across all templates of a given site. See Understanding the Context System
Variable.

3. Run this template again.

Initially there are no noticeable changes. The article is still rendered using the
HelloDetail template, as directed by the tname attribute.

4. Switch to Edit View and hover over the main div section. The changes are as
follows:

• The page fragment inside the main div is now marked with a blue overlay.

• The slot name is indicated in the top right corner.

• Clicking the blue overlay also brings up a toolbar.

5. Click the Change Content Layout icon.

Figure 21-13 Change Content Layout Icon

The Change Content Layout Dialog opens.

Using the Change Content Layout option enables you to select a different
content layout to render the asset in the main area of the page.

6. The template picker shows the HelloDetail and Detail pagelet templates, specified
by the variant attribute. Select the Detail template and click Apply to render the
web page.

Chapter 21
Coding Templates for Presentation Editing

21-24

Figure 21-14 Output Page with Change Content Layout Dialog

The slot defined in Figure 21-14 is only meant for presentation editing and is not a
content-editable slot (not a droppable zone).

The reasons for this behavior follows:

• The insite:calltemplate tag does not define any field attribute. That is, the
content of the slot is not the value of an asset reference field.

The tag is explicitly providing values for c (asset type) and cid (asset id). In
this particular case, we want the article asset specified by the incoming c and
cid request parameters to be rendered in this location.

In addition, if the variant attribute had been omitted, the slot layout would not
have been editable, since the insite:calltemplate tag specifies an explicit
value for the tname attribute (which acts as a default template for all assets
dropped in this slot).

Note:

The variant attribute can contain any regular expression. For
example; variant="Detail.*" would restrict available templates to
any pagelet template whose name starts with Detail.

Adjusting the Slot Title
Rather than showing the value of slotname in the blue overlay, which is typically a
technical string meaningful only to developers, you can replace the value with any
string.

To do this:

• Add a title attribute to the insite:calltemplate tag as shown in this code:

<insite:calltemplate
 slotname="HelloSlot"
 tname="HelloDetail"
 args="c,cid"

Chapter 21
Coding Templates for Presentation Editing

21-25

 variant="HelloDetail|Detail"
 title="Article Detail Area" />

Defining the title attribute overrides the default slot title.

Controlling Template Arguments
This section provides an example of controlling template arguments. We modify the
HelloDetail template to accept an extra argument called image-align which will be
used to align the article image left or right.

The process is as follows:

• The image-align argument has to be registered as a legal argument for the
HelloDetail template. If this step is skipped, contributors are not able to set its
value from the editorial UI.

• To ensure caching works properly, the new argument has to be declared as a
cache criteria.

• Finally, the template code is modified to use the newly defined argument.

Note:

On Using Eclipse with the WebCenter Sites Developer Tools plug-
in: When editing a Template asset from the Admin interface, if this
Template is also opened in WSDT at the same time, you must remember
to synchronize your changes to the WSDT workspace. Template
metadata stored in the WSDT workspace will otherwise override the
values entered from the web interface.

1. Declare image-align as a legal argument of our HelloDetail template asset.

a. From the Admin interface, edit the HelloDetail template asset.

b. For Legal Arguments, enter image-align and click Add Argument.

c. Select Required.

d. For Argument Description enter: Image Alignment.

e. For LegalValues, add the following descriptions:

• For value left, enter Value Description: Aligned Left.

• For value right, enter Value Description: Aligned Right.

f. Click Save.

2. Remember to sync the change made in WebCenter Sites with the WSDT
workspace.

3. Use the WebCenter Sites Developer Tools plug-in to add image-align to the set of
cache criteria.

a. Right-click the HelloDetail Template in the WebCenter Sites workspace.

b. Select Properties.

c. In the Cache Criteria field, append image-align to the end of the list.

d. Click Submit.

Chapter 21
Coding Templates for Presentation Editing

21-26

4. Optionally, a default value could be defined by using the Additional element
parameters field and specifying the following value, for instance: image-
align=right.

5. Modify the HelloDetail pagelet template code:

<insite:edit
 field="largeThumbnail"
 assettype="AVIImage"
 assetid='<%=ics.GetVar("imageId")%>' >

 <img class='photo <ics:getvar name="image-align"/>'
 src='<ics:getvar name="imageURL" />' />
</insite:edit>
...

Note that, in this particular case, the value of the parameter is used to set a different
CSS class.

When you go to the slot properties panel, assuming HelloDetail is the currently
selected layout, the Advanced tab now shows the alignment options.

Editing Presentation and Content Simultaneously
The insite:calltemplate tag allows editorial users to edit associated content and
edit the layout. This section explains the difference between a content-editable slot
and a presentation-editable slot and how to combine the functionality of both to allow
editorial users to edit both the associated content and the template used to render the
content.

This section includes the following topics:

• Understanding Content-Editable Slots and Presentation-Editable Slots

• Combining Content-Editable Slots and Presentation-Editable Slots

Understanding Content-Editable Slots and Presentation-Editable Slots
Content-editable slots allow users to edit associated content by providing a droppable
zone for the user. Presentation-editable slots allow users to select a different template
to render the content.

To create a content-editable slot (creates a droppable zone for the user) the
insite:calltemplate tag is used with the following defined parameters:

• assetid: The edited asset ID.

• assettype: The edited asset type.

• field: The edited field.

• cid: The ID of the asset to be rendered by the called template.

• c: The asset type to be rendered by the called template.

• tname: The pagelet template used to render the associated asset.

This code defines a content-editable slot that creates a droppable zone for the user:

<insite:calltemplate
 assetid=" "
 assettype=" "

Chapter 21
Coding Templates for Presentation Editing

21-27

 field=" "
 cid=" "
 c=" "
 tname=" "
/>

To create a presentation-editable slot (allows users to select a different template
to render content) the insite:calltemplate tag is used with the following defined
parameters:

• slotname: This attribute defines an identifier for the slot that is being filled with the
called template. It should be reasonably easy to understand and should be unique
across all templates.

• cid: The id of the asset to be rendered by the called template.

• c: The asset type to be rendered by the called template.

• tname: The default pagelet template to be called.

This code defines a presentation-editable slot that allows users to select a different
template to render the content:

<insite:calltemplate
 slotname=" "
 cid=" "
 c=" "
 tname=" "
/>

Combining Content-Editable Slots and Presentation-Editable Slots
You can combine the functionality of a content-editable slot and a presentation-
editable slot to allow editorial users to edit both the associated content and the
template used to render the content.

To combine the functionality of both content-editable slots and presentation-editable
slots, the insite:calltemplate tag is used along with all the attributes required for
both a content-editable slot and a presentation-editable slot.

• These attributes are required for a content-editable slot (creates a droppable zone
for the user):

field, assetid, assettype

• This attribute is required to define a presentation-editable slot (allows users to
select a different template to render the content):

slotname

This code combines the attributes for a content-editable slot and a presentation-
editable slot:

<insite:calltemplate
 slotname=" "
 assetid=" "
 assettype=" "
 field=" "
 cid=" "
 c=" "
 tname=" "
/>

Chapter 21
Coding Templates for Presentation Editing

21-28

Combining a Content-Editable Slot and a Presentation-Editable Slot

This section builds on the HelloSideBar template created in Coding Templates for
In-Context Content Editing.

Previously, the HelloSideBar template was coded as shown:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>

<cs:ftcs>

<render:logdep cid='<%=ics.GetVar("tid")%>' c="Template"/>
<assetset:setasset name="article"
 type='<%=ics.GetVar("c") %>' id='<%=ics.GetVar("cid") %>' />
<assetset:getattributevalues name="article"
 listvarname="relatedStories" attribute="relatedStories"
 typename="ContentAttribute" />

<insite:slotlist field="relatedStories">
 <ics:listloop listname="relatedStories">
 <ics:listget listname="relatedStories" fieldname="value"
 output="articleId" />

 <insite:calltemplate
 tname="Summary/SideBar"
 c="Article"
 cid='<%=ics.GetVar("articleId") %>' />

 </ics:listloop>
</insite:slotlist>
</cs:ftcs>
...

In this template, the related articles are made editable with content-editable slots
(drop zones). That is, they are rendered using the Summary/SideBar template,
without any possibility for editorial users to select a different template. However, they
cannot change how the related article should be rendered. For this to happen, the
HelloSideBar template needs to be modified as follows:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>

<cs:ftcs>

<render:logdep cid='<%=ics.GetVar("tid")%>' c="Template"/>
<assetset:setasset name="article"
 type='<%=ics.GetVar("c") %>' id='<%=ics.GetVar("cid") %>' />
<assetset:getattributevalues name="article"
 listvarname="relatedStories" attribute="relatedStories"
 typename="ContentAttribute" />

 <insite:slotlist
 slotname="RelatedStoriesSlot"

Chapter 21
Coding Templates for Presentation Editing

21-29

 field="relatedStories">

 <ics:listloop listname="relatedStories">
 <ics:listget listname="relatedStories" fieldname="value"
 output="articleId" />

 <insite:calltemplate
 tname="Summary/SideBar"
 c="Article"
 cid='<%=ics.GetVar("articleId") %>'
 variant="Summary.*" />

 </ics:listloop>
 </insite:slotlist>
</cs:ftcs>

This is the same code used previously, except that we have specified a slotname
attribute, and a variant attribute (in this case, the list of available templates is
restricted to all pagelet templates starting with Summary).

Because slotname was included inside the insite:slotlist tag, it is not required to
add it for the inner insite:calltemplate tag. The value is automatically inherited, as
is the value of tname and field.

For example:

<insite:slotlist slotname=" " field=" ">
 <insite:calltemplate tname=" " c=" " cid=" " />
</insite:slotlist>

The Summary/SideBar now behaves as a default template for the related articles. By
right-clicking any related article and selecting the Change Content Layout feature, it
now becomes possible to select alternate templates.

Understanding the Context System Variable
In WebCenter Sites templates, context is a system variable maintained internally. Its
value is retrieved by using the ics:getvar JSP tag or the ics.GetVar() method.

For example:

<ics:getvar name=context/>
ics.GetVar(context)

The value of context is determined by default. It is initially set to an empty string. Then,
for every template called using render:calltemplate or insite:calltemplate, the
value of context changes in the called template following this logic:

if parent_context is empty
 context = <c>:<cid>:<tname>
otherwise
 context = <parent_context>;<c>:<cid>:<tname>

This section includes the following topics:

• About Defining the Scope of the Slot

• Using the Context Variable in Action

• Initializing the Context Value

Chapter 21
Coding Templates for Presentation Editing

21-30

• Overriding Context

• Caching Context

About Defining the Scope of the Slot
When defining a slot, it is possible for template developers to decide the scope of the
slot. Typically, whether any presentation change made in this slot should be local or
global.

• local: visible only on the currently edited web page

• global: spanning across multiple web pages in a site (possibly, ALL web pages in
a site)

This is done by manipulating the value of the context variable and will be explained in
the following sections.

Using the Context Variable in Action
WebCenter Sites stores presentation changes by recording the newly selected
template against these items:

• Slot name

• Current site name

• Context

To modify the slot content layout:

1. Assign the HelloArticleLayout template to two avisports articles (for example,

All 25 Nevada resorts serving great snow and Cold snap back on the scene).

2. Observe both of these articles in Web Mode of the Contributor interface.

The main slot is rendered with the default template HelloDetail as this is the
template specified as the default template in the JSP code.

3. Assign the Detail template to all 25 Nevada resorts serving great snow article
using the Change Content Layout option.

4. Refresh the web page with the Cold snap back on the scene article. The
presentation of the main slot has also been modified on this web page as it is
also using the Detail template.

Consequently, when we modified the slot content layout from HelloDetail to Detail,
the following presentation data was recorded:

• site: avisports

• slotname: ArticleDetail

• context: (empty)

• tname: Detail

Context is empty since, when the HelloArticleLayout template is executed, context
is initially empty, and is never modified when the slot gets rendered. Thus, any web
page of avisports rendered using the HelloArticleLayout template will match the
recorded presentation data above. Consequently, the Detail template is now used for
all article pages.

Chapter 21
Coding Templates for Presentation Editing

21-31

Initializing the Context Value
The behavior observed in the previous section may be the intended behavior, but in
some cases, editorial users will have to be able to make local presentation changes,
that is, changes visible only on the current web page being edited.

To do this, the context variable has to be set to a value which will uniquely identify
a given web page. In our case, it is enough to initialize context with, for example, the
template name, and the identifier and type of the rendered asset:

<ics:setvar
 name="context"
 value='<%=ics.GetVar("c")
 + ":" + ics.GetVar("cid")
 + ":HelloArticleLayout"%>' />

Other parameters can be added to initialize the context, depending on the intended
result. We can add the line above to the HelloArticleLayout template and verify that
presentation changes are local to each article page.

Overriding Context
Both the render:calltemplate tag and the insite:calltemplate tag have an
optional context attribute, which can be used to override the current context.

Caching Context
Context is useful only when presentation editing capabilities are enabled on your site.

If that is not the case, context can be removed from every template's cache criteria
(avoiding the creation of unnecessary duplicates in the page cache).

Using Slots with CSElement and SiteEntry Assets
In our previous examples, slots were used to hold content. In this section, we look
at using slots to hold functionalities such as a navigation bar, a login box, a code
snippet showing the last ten published articles in a site, and so on. These types of
functionalities can be made available as a CSElement or SiteEntry asset.

By allowing CSElement or SiteEntry assets to be dropped in slots, non-technical users
are given the ability to modify the behavior of a particular web page without having to
modify code.

This section includes the following topics:

• Defining a Slot Containing a CSElement Asset

• When to Use CSElement or SiteEntry Assets

• About Defining Legal Arguments

• Consideration About Using Nested Slots

Defining a Slot Containing a CSElement Asset
A slot meant to contain a CSElement asset is typically defined as:

Chapter 21
Coding Templates for Presentation Editing

21-32

<insite:calltemplate
 slotname="Navbar"
 clegal="CSElement"
/>

Or can be defined in this manner if the slot is meant to show the same content across
all pages of the site:

<insite:calltemplate
 slotname="Navbar"
 clegal="CSElement"
 context="Global"
/>

There is no need to specify a tname attribute in this case, since the CSElement and
SiteEntry assets are directly referring to the JSP element in charge of rendering them.

To see SiteEntry or CSElement in the list of allowed asset types for the slot, you have
to ensure both asset types have their Can Be Child Asset flag set to True (which
means that this asset type can be the child asset type in an association field for
another asset type.). See Configuring the Asset Type in Creating Basic Asset Types.

Note:

To see SiteEntry or CSElement in the list of allowed asset types for the slot,
you have to ensure both asset types have their Can Be Child Asset flag set
to True (which means that this asset type can be the child asset type in an
association field for another asset type.). See Designing Basic Asset Types.

When to Use CSElement or SiteEntry Assets
A SiteEntry asset does not hold any code, but simply points at a CSElement asset.
The only difference between one case and the other is that, when using a SiteEntry,
the element is invoked through the cache engine. Consequently, the same result can
be achieved by dropping a SiteEntry asset or dropping its related CSElement asset.

The decision to use SiteEntry or CSElement is therefore implementation-dependent.
Exposing a functionality as a SiteEntry only will ensure that caching is used to render
this particular code snippet.

About Defining Legal Arguments
Like templates, it is possible to define legal arguments for CSElement assets. Once a
CSElement has been dropped in a slot, the legal arguments are accessible from the
slot properties panel.

The same applies to dropping a SiteEntry asset except that the legal arguments
shown in the slot properties panel are the legal arguments of the related CSElement
asset. (SiteEntry assets do not have their own legal arguments.)

Consideration About Using Nested Slots
When you drop an asset in a content-editable slot, the template rendering this asset
can potentially define other slots. To avoid too many controls and slots being rendered

Chapter 21
Coding Templates for Presentation Editing

21-33

in a given area, the behavior of nested slots is automatically degraded to a simple
droppable area (without a toolbar and overlay). It is generally recommended to avoid
nested slots, to keep the Contributor interface simple and usable for users.

Constraining Asset Types
By default, WebCenter Sites allows the following asset types to be dropped into a slot:

• if field is defined (content-editable slot): any legal asset types given by the field
definition.

• if field is not defined (presentation-editable slot): any asset type for which the
Can Be Child Asset flag is set to True.

It is also possible to further restrict allowable asset types, using the clegal attribute:

<insite:calltemplate
 slotname="Main"
 clegal="Article,Product"
 ...
/>

The following syntax allows to additionally restrict by asset subtypes:

<insite:calltemplate
 slotname="Main"
 clegal="type1:subtype1,type2:subtype2"
 ...
/>

Note:

Using "type:*" (with asterisk as wildcard) is also valid, and behaves as the
"type" value.

Preventing CSS and JavaScript Conflicts
The in-context UI is injecting styles and JavaScript into web pages, when rendered in
the Contributor interface in Web Mode / Edit View (and only in this case).

This may possibly result in:

• CSS conflicts: for instance, slots are improperly displayed due to a site CSS rule
applying to them)

• JavaScript conflicts: the web page has JavaScript which conflicts with the
JavaScript injected in the page in the editing view. As a result, either the editorial
UI or the page itself do not work properly.

CSS conflicts are typically solved by adding extra CSS rules, which are loaded only
when the template is rendered inside the editorial UI, in editing mode. This is done by
using the insite:ifedit tag, which allows to execute JSP code only when the JSP
template is ran in editing mode:

<insite:ifedit>
<%-- This stylesheet import will only occur in editing mode.
 -- It will not have any impact on the actual rendering of the

Chapter 21
Coding Templates for Presentation Editing

21-34

 -- live site.
 --%>
 <link rel="stylesheet"
 type="text/css"
 href="/css/editorial.css" />
</insite:ifedit>

Extra CSS classes can be added to slots by using the cssstyle attribute of the
insite:calltemplate tag, to specify specific CSS rules for slots.

CSS conflicts typically when rendering slots around elements which are floated: in this
case, the blue or green overlay which is marking the slot area is likely to not have the
proper dimension.

JavaScript conflicts are normally solved by degrading the behavior of the web page
in editing mode only, to let the scripts injected by the editorial UI function properly.
This may mean disabling some page functionality in Web Mode / Edit View of the
Contributor interface.

Enabling Content Creation for Web Mode
All you need to do is provide a Start Menu item of type insite, at least one
layout template applicable to the asset type the contributors are using, editing-specific
presentation logic. You can make more changes according to what the contributors
need.

See these topics:

• Defining a Start Menu for In-Context Creation

• Providing Layout Templates for In-Context Creation

• Providing Empty Value Indicators

• Providing Editing-Specific Presentation Logic

Defining a Start Menu for In-Context Creation
To enable a particular asset type for in-context creation, a start menu of type insite
has to be provided. That is, the New Insite option has to be selected in the Type
drop-down menu.

In addition, if the asset being created has one or more required fields, default values
have to be provided in the start menu, using the Default Values menu.

If required values are missing, the user will be directed to the asset form.

When a user selects a New Insite start menu, the editorial user is first prompted to
select a layout template and a name for the newly created asset.

Once you click Continue, if no workflow is configured, a new asset is created in the
background and then rendered using the selected layout template.

Providing Layout Templates for In-Context Creation
The same layout templates used for editing can be used for in-context creation.
However, extra care must be taken to make sure the template will render properly
with an empty asset.

Chapter 21
Enabling Content Creation for Web Mode

21-35

This typically requires the following:

• Style adjustments, so the various elements on the page are rendered in the
appropriate positions, although no values are rendered

• Meaningful help text (no value indicators), displayed to users when an editable
field is empty

• Additional presentation logic, only executed when the template is ran in editing
mode, on the editorial platform

This section includes the following topics:

• Adjusting Stylesheets

• Adjusting Stylesheets for Slots

Adjusting Stylesheets
When the stylesheets have to be specifically adjusted for creating or editing content,
the corresponding import statements can be enclosed in an insite:ifedit tag:

// import "delivery" stylesheets
<link type="text/css" rel="stylesheet" href="somecss.css" />
...

// then import "editing only" stylesheets. using the insite:ifedit
// tag ensures that only those stylesheets will be imported
// when rendering the template in create/edit mode.

<insite:ifedit>
 <link type="text/css" rel="stylesheet" href="edit.css" />
 ...
</insite:ifedit>

Adjusting Stylesheets for Slots
When you adjust styles for the rendering of slots, the cssstyle attribute of the
insite:calltemplate tag can be used to specify additional class names, which can
then be used in CSS rules.

<insite:calltemplate
 slotname="mySlot"
 ...
 cssstyle="myClassName"
 ...
/>

For example, if we wanted to force mySlot to have a 50px height when it is empty, we
could provide the following CSS rule:

.myClassName .emptyIndicator {height: 50px !important;}

CSS rules can be grouped inside a specific stylesheet, and then imported
conditionally, only when the template is executed in the context of Web Mode / Edit
View of the Contributor interface, using the insite:ifedit JSP tag.

Providing Empty Value Indicators
For slots, use the emptytext attribute of the insite:calltemplate tag:

Chapter 21
Enabling Content Creation for Web Mode

21-36

<insite:calltemplate
 slotname="mySlot"
 emptytext="Drag an Article here"
 ...
/>

For other editing fields, use the noValueIndicator parameter of the insite:edit tag:

<insite:edit
 field="headline
 params="{noValueIndicator: 'Enter Headline Here'}"
 ...
/>

Providing Editing-Specific Presentation Logic
In some cases, the presentation logic will be slightly different in delivery mode,
compared to create/edit mode.

For example, in create/edit mode, when rendering an in-context editable list of articles,
you would want to always display 5 extra empty slots. In that case, the logic has to
account for both delivery and edit mode. It could be written as follows:

<%
// assuming that "relatedArticles" contains a list of
// related articles
%>
<insite:slotlist field="someAssetField">
 <ics:listloop listname="relatedArticles">
 <ics:listget
 listname="relatedArticles"
 fieldname="value"
 output="articleid" />
 <div class="post">
 <insite:calltemplate
 tname="Summary"
 c="Article"
 cid='<%=ics.GetVar("articleid")%>' />
 </div>
 </ics:listloop>
</insite:slotlist>

<%
// in this example, we add five extra empty slots
%>
<insite:ifedit>
 <%
 // To not disrupt rendering in delivery, this code is
 // added inside the insite:ifedit tag
 %>
 <c:forEach begin="0" end="4">
 <div class="post">
 <%
 // no c, cid specified, this renders an empty slot
 %>
 <insite:calltemplate tname="Summary" />
 </div>
 </c:forEach>
</insite:ifedit>

Chapter 21
Enabling Content Creation for Web Mode

21-37

Obviously, the code could be adjusted to accommodate for any particular logic. For
instance, to display a maximum of 5 slots, empty or not. In that case, the last part of
the code snippet could be written as follows:

<%
// get how many articles are in the list
%>
<ics:listget
 listname="relatedArticles"
 fieldname="#numRows"
 output="nbArticles" />

<c:forEach
 begin='<%=Integer.valueOf(ics.GetVar("nbArticles"))%>'
 end='4'>
 <div class="post">
 <insite:calltemplate tname='Summary" />
 </div>
</c:forEach>

Chapter 21
Enabling Content Creation for Web Mode

21-38

22
Template Element Examples for Basic
Assets

You may use some examples to develop a deeper understanding of coding templates
for basic assets. These assets are collection, query, and article. With the help of these
examples, you can also create site navigations for basic assets.

Topics:

• Creating Basic Modular Design

• Coding Links to the Article Assets in a Collection Asset

• Using the ct Variable

• Coding Templates for Query Assets

• Displaying an Article Asset Without a Template

• Displaying Site Navigation Information

• Displaying Non-Asset Information

The examples in these topics illustrate the information presented in Coding Elements
for Templates and CSElements

Creating Basic Modular Design
How would you create an area of a Home page without writing a new code? A modular
site design takes advantage of common elements by reusing them in several locations
or contexts.

Create an area of a Home page from five separate elements. The following column
on a site’s home page displays the main stories of the day. There is a summary
paragraph and byline for each story in the list. The titles of the stories are hyperlinks
to the full story. Several of the stories, including the first story in the list, also present a
photo:

22-1

Figure 22-1 Main Stories of the Day

This example describes how the first story in the list is identified, selected, positioned
at the top of the list, and formatted.

These are the elements used to format the first story in the list:

• FiscalNews/Page/Home

• FiscalNews/Collection/MainStoryList

• FiscalNews/Article/LeadSummary

• FiscalNews/ImageFile/TeaserSummary

Topics:

• Home Element

• MainStoryList Element

• LeadSummary Element

• TeaserSummary Element

• Back to LeadSummary

• Back to MainStoryList

• Back to Home

Home Element
For the home page of a site, you can use a Template that is named Home. You can
examine your Template in two ways:

• Search for and then inspect it in the Admin interface.

Chapter 22
Creating Basic Modular Design

22-2

• Use Oracle WebCenter Sites Explorer to open the Template element.

For example, the Template for the home page of the Fiscal News site is here:

ElementCatalog/FiscalNews/Page/Home

When opened, the Home element first loads the Home page asset, names it HomePage,
and then scatters the asset information into its fields:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid" NAME="HomePage"/>
<ASSET.SCATTER NAME="HomePage" PREFIX="asset"/>

The value for cid is passed in from the Fiscal News URL, and the value for
c is available because it is set as a variable in the resarg1 column in the
SiteCatalog page entry for the Home Template . This Template includes the following
ASSET.CHILDREN tag:

<ASSET.CHILDREN NAME=HomePage LIST=MainStories CODE=TopStories/>

With this code, Home obtains a collection asset identified as the page asset's
TopStories collection (CODE=TopStories) and creates a list named MainStories to
hold it (LIST=MainStories).

Next, Home determines whether it successfully obtained the collection and then calls for
the page entry of the MainStoryList Template.

<IF COND = IsList.MainStories=true>
<THEN>
<RENDER.SATELLITEPAGE pagename=FiscalNews/Collection/MainStoryList
ARGS_cid=MainStories.oid
ARGS_p=Variables.asset:id/>
<THEN/>
<IF/>

Notice that Home passes the identity of the list that holds the collection to
MainStories with ARGS_cid and the identity of the Home page asset with
ARGS_p=Variables.asset:id.

MainStoryList Element
The MainStoryList page entry invokes its root element:

ElementCatalog/FiscalNews/Collection/MainStoryList.xml

The MainStoryList element is the Template (root) element for the MainStoryList
Template asset, which formats collection assets. This element creates the framework
for the home page column that holds the main list of stories and then fills that column
with the articles from the TopStories collection. MainStoryList uses two templates to
format those articles:

• LeadSummary for the first article in the collection (the top-ranked article)

• Summary for the rest of the articles

This example discusses the LeadSummary Template element to describe how the first
story in the list is displayed.

MainStoryList loads and scatters the collection that Home passed to it:

Chapter 22
Creating Basic Modular Design

22-3

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="MainStoryListCollection"/>
<ASSET.SCATTER NAME="MainStoryListCollection" PREFIX="asset"/>

Then it extracts the articles from the collection and creates a list to hold them, ordering
them by their rank:

<ASSET.CHILDREN NAME="MainStoryListCollection" LIST="theArticles"
ORDER="nrank" CODE=-/>

And then it calls for the page entry of the LeadSummary Template:

<RENDER.SATELLITEPAGE PAGENAME="FiscalNews/Article/LeadSummary"
ARGS_cid="theArticles.oid"
ARGS_ct="Full"
ARGS_p="Variables.p"/>

Once again, this element passes on several pieces of information:

• The identity of the list that holds the articles (ARGS_cid)

• The name of the template to use when creating the link to each of the articles
(ARGS_ct)

• The identity of the originating page asset (ARGS_p), which is Home.

Because the list was ordered by rank and this code does not loop through the list, the
value in ARGS_cid (theArticles.oid) is the object ID of the highest ranked article in
the collection because that article is the first article in the list.

LeadSummary Element
The LeadSummary page entry invokes its root element (which is the Template element
for the LeadSummary Template):

ElementCatalog/FiscalNews/Article/LeadSummary.xml

This element formats the first article in the TopStories collection, as follows:

• Retrieves the image file associated with the first article through the TeaserImage
association.

• Invokes the TeaserSummary element to obtain the formatting code for the image.

• Uses a RENDER.GETPAGEURL tag to obtain the URL for the first article in the
collection.

• Displays the imagefile asset, the title of the article as a hyperlink to the full article,
the summary paragraph, and the byline.

First LeadSummary loads the article and names it LeadSummaryArticle:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="LeadSummaryArticle"/>
<ASSET.SCATTER NAME="LeadSummaryArticle" PREFIX="asset"/>

It obtains the assets associated with the article as its teaserimagefile asset, creating
a list for that file named TeaserImage:

<ASSET.CHILDREN NAME="LeadSummaryArticle" LIST="TeaserImage"
CODE="TeaserImageFile"/>

Chapter 22
Creating Basic Modular Design

22-4

Finally, it calls the page entry for the TeaserSummary Template, passing it the ID of the
imagefile asset held in the list:

<THEN>
<RENDER.SATELLITEPAGE PAGENAME="FiscalNews/ImageFile/TeaserSummary"
ARGS_cid="TeaserImage.oid"/>
</THEN>
</IF>

TeaserSummary Element
The TeaserSummary page entry invokes its root element, the Template element for the
TeaserSummary Template:

ElementCatalog/FiscalNews/ImageFile/TeaserSummary

Because imagefile assets are blobs stored in the WebCenter Sites database, and
blobs stored in the database must be served by the BlobServer servlet rather than the
ContentServer servlet, this element obtains an HTML tag that uses a BlobServer URL.

For example, the TeaserSummary Template has the following RENDER.SATELLITEBLOB
tag:

<RENDER.SATELLITEBLOB BLOBTABLE=ImageFile BLOBKEY=id BLOBCOL=urlpicture
BLOBWHERE=Variables.asset:id BLOBHEADER= Variables.asset:mimetype SERVICE=IMG
SRC ARGS_alt= Variables.asset:alttext ARGS_hspace=5 ARGS_vspace=5 />

The tag creates an HTML tag. The SRC is the blob in the ImageFile table
identified through the ID passed in with BLOBWHERE=Variables.asset:id, and both its
horizontal and vertical spacing are at five pixels.

When TeaserSummary is finished, LeadSummary continues.

Back to LeadSummary
When LeadSummary resumes, having obtained the teaser image for the first article
in the TopStories collection, it uses RENDER.GETPAGEURL to obtain the URL for that
article:

<RENDER.GETPAGEURL PAGENAME="FiscalNews/Article/Variables.ct"
cid="Variables.cid"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

Remember that when the MainStoryList element called the page entry for
LeadSummary, it passed a ct variable set to Full. Therefore, the page name that
LeadSummary is passing to RENDER.GETPAGEURL is really FiscalNews/Article/Full.

RENDER.GETPAGEURL creates the URL for the article based on the information passed
in to it and then returns that URL to LeadSummary in a variable called referURL, as
specified by the OUTSTR parameter.

LeadSummary uses the referURL variable in an HTML <A HREF> tag and then displays
the link, the abstract of the article, and the byline:

<csvar NAME="Variables.asset:description"/>

Chapter 22
Creating Basic Modular Design

22-5

<csvar NAME="Variables.asset:abstract"/>

<csvar NAME="Variables.asset:byline"/>

Note the use of the REPLACEALL tag as an attribute in the HTML <A HREF> tag. You
must use this tag as an attribute when you want to use XML variables in HTML tags.

Now that LeadSummary is finished, MainStoryList continues.

Back to MainStoryList
Next MainStoryList loops through the rest of the articles in the TopStories collection
and uses the Summary Template to format them.

ElementCatalog/Article/Summary

When MainStoryList is finished, Home continues.

Back to Home
Home resumes, with a call to the WireFeedBox page entry.

Coding Links to the Article Assets in a Collection Asset
When an element needs URLs to create a list of hyperlinks to dynamically served
WebCenter Sites pages, you use the RENDER.GETPAGEURL tag to code links to the
article assets in a collection asset, as this example shows.

This example refers to these elements:

• ElementCatalog/FiscalNews/Page/SectionFront

• ElementCatalog/FiscalNews/Collection/PlainList

For the purposes of this example, the code displayed is stripped of any error checking
so that you can focus on how the links are created:

The following topics show how to code the links:

• SectionFront Element

• PlainList Element

SectionFront Element
SectionFront is the Template element, the root element, of the SectionFront
Template that is assigned to the main section pages, such as News, Markets, and
Stocks:

ElementCatalog/FiscalNews/Page/SectionFront.

One section of a page formatted with the SectionFront element displays a list of links
to articles from the SectionHighlights collection that is associated with that page
asset, as shown in the following figure:

Chapter 22
Coding Links to the Article Assets in a Collection Asset

22-6

Figure 22-2 List of Links to Articles

The SectionFront element is invoked when a visitor clicks a link to a section. First,
SectionFront uses the variables c and cid to load and scatter the page asset, and
names it SectionFrontPage:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="SectionFrontPage"/>
<ASSET.SCATTER NAME="SectionFrontPage" PREFIX="asset"/>

The values for c and cid are passed to the SectionFront element from the link that
invoked it. That link could be from the home page or any of several other locations.

After several ASSET.CHILDREN tags SectionFront has the following tag that retrieves
the SectionHighlights collection:

<ASSET.CHILDREN NAME="SectionFrontPage" LIST="SectionHighlights"
CODE="SectionHighlight"/>

This code retrieves the collection with the CODE=SectionHighlights statement and
stores it as a list, also named SectionHighlights.

Then SectionFront calls the page entry of the PlainList template (a collection
template):

<RENDER.SATELLITEPAGE
pagename="FiscalNews/Collection/PlainList"
ARGS_cid="SectionHighlights.oid" ARGS_p="Variables.asset:id"/>

Chapter 22
Coding Links to the Article Assets in a Collection Asset

22-7

This code passes in the ID of the SectionHighlights collection (cid) and the
ID of the current page asset (p), which is the page asset assigned the name of
SectionFrontPage.

PlainList Element
The PlainList page entry invokes its root element, the template element for the
PlainList template:

ElementCatalog/FiscalNews/Collection/PlainList.

PlainList extracts the articles from the collection and presents them in a list, by
their rank, with the subheadline of the article. This element assumes that the assets
in the collection are articles. To load and scatter the collection. PlainList uses the
values in c and cid (passed in from the SectionFront element) to load and scatter the
collection:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="PlainListCollection"/>
<ASSET.SCATTER NAME="PlainListCollection" PREFIX="asset"/>

PlainList then sets the variable ct to Full because a value for this variable was not
passed in (Full is the name of an article template):

<IF COND="IsVariable.ct!=true">
<THEN>
<SETVAR NAME="ct" VALUE="Full"/>
</THEN>
</IF>

Next PlainList creates a list of all the child articles in the collection asset, listing them
by their rank, and naming the list theArticles.

<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank" CODE=-/>

Note that this ASSET.CHILDREN tag used the OBJECTTYPE parameter. If you use the
OBJECTTYPE parameter with this tag, the resulting list of children is a join of the
AssetRelationTree and the asset table for the type you specified (in this case, the
Article table), and it contains data from both tables.

There is now no need for subsequent ASSET.LOAD tags because the data that the
PlainList element is going to use to create the links to these articles is stored in the
Article table.

PlainList loops through the list of articles, using the RENDER.GETPAGEURL tag
to create a URL for each one. In this case (because the code does not use
subsequent ASSET.LOAD tags for each of the children assets) the element includes
a RENDER.LOGDEP tag in the loop:

<LOOP LIST="theArticles">
<RENDER.LOGDEP cid="theArticles.id" c="Article"/>
<RENDER.GETPAGEURL PAGENAME="FiscalNews/Article/
Variables.ct"
cid="theArticles.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

Chapter 22
Coding Links to the Article Assets in a Collection Asset

22-8

PlainList passes a cid , pagename, and the asset type with ctype for each article in
the collection to the RENDER.GETPAGEURL tag. Because the variable ct was set to Full,
the page name being passed to the tag is actually FiscalNews/Article/Full.

The RENDER.GETPAGEURL tag returns a referURL variable for each article in the
collection, as specified by the OUTSTR parameter, and then PlainList uses the value in
the referURL variable to create an HTML <A HREF> link for each article.

Because the ASSET.CHILDREN tag that obtained this collection created a join
between AssetRelationTree and the Article table, PlainList can use the article's
subheadline field to create the link:

<A class="wirelink" HREF="Variables.referURL"
 REPLACEALL="Variables.referURL">
<csvar NAME="Variables.theArticles:subheadline"/>

</LOOP>

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use
this tag as an HTML attribute when you want to use XML variables in an HTML tag.
See the Tag Reference for Oracle WebCenter Sites Reference.

Using the ct Variable
Sometimes you want to use a template other than an asset's default template. In such
a case, you supply the name of an alternate template with the ct variable.

Assets are assigned a template when they are created, the identity of an asset's
template (which is not the same as a default approval template) is part of the
information you obtain with an ASSET.LOAD or ASSET.CHILDREN tag. The ct variable
is used in child templates or alternate templates. For example, when a visitor browses
the Fiscal News site, there are text-only versions of most of the site available to that
visitor. The text-only format is not the default format, and content providers do not
assign text-only formats to their assets. The Fiscal News page elements are coded to
provide the ID of the alternate, text-only template when it is appropriate to do so.

Every page on the site uses the same element, the TextOnlyLink element, to
determine the URL embedded in the Plain Text link for that page. The TextOnlyLink
element returns the correct URL for each page because the Plain Text link on each
page passes the TextOnly element the information that it needs:

• The ID of the page making the request.

• The alternate, text-only template (that is, the child template) to use for the Plain
Text link.

These elements are used in this example:

• ElementCatalog/FiscalNews/Page/SectionFront

• ElementCatalog/FiscalNews/Page/SectionFrontText

• ElementCatalog/FiscalNews/Common/TextOnlyLink

• ElementCatalog/FiscalNews/Page/ColumnistFront

See these topics that describe how to use the ct variable to specify alternate
templates for displaying pages as plain text:

• SectionFront Element

Chapter 22
Using the ct Variable

22-9

• TextOnlyLink Element

• ColumnistFront

SectionFront Element
The SectionFront element for the Fiscal News site is here:

ElementCatalog/FiscalNews/Page/SectionFront.

SectionFront is the Template element (root element) of the Template asset assigned
to the standard section pages on the site, pages such as News, Money, and Stocks.

This element includes a CALLELEMENT tag:

<CALLELEMENT NAME="FiscalNews/Common/TextOnlyLink">
<ARGUMENT NAME="ct" VALUE="SectionFrontText"/>
<ARGUMENT NAME="assettype" VALUE="Page"/>
</CALLELEMENT>

TextOnlyLink is the element that creates the Plain Text Link. SectionFront passes it
the name of the alternate template (ct=SectionFrontText) and the name of the asset
type (assettype=Page).

TextOnlyLink Element
The TextOnlyLink element is here:

ElementCatalog/FiscalNews/Common/TextOnlyLink

When TextOnlyLink executes, it checks to see whether there is a value for ct:

<IF COND="IsVariable.ct!=true">
<THEN>
<SETVAR NAME="ct" VALUE="Variables.asset:templateText"/>
</THEN>
</IF>

In this example, there is a value for ct because the SectionFront element passed in
ct=SectionFrontText.

Next, TextOnlyLink uses a RENDER.GETPAGEURL tag to obtain a URL for the Plain Text
link, passing in the page name by concatenating one based on the variables that were
passed to TextOnlyLink by SectionFront.

<RENDER.GETPAGEURL PAGENAME="FiscalNews/Variables.assettype/Variables.ct"
cid="Variables.asset:id"
c="Variables.assettype"
p="Variables.p"
OUTSTR="referURL"/>

TextOnlyLink knows that ct=SectionFrontText and that assettype=Page.
Therefore, FiscalNews/Variables.assettype/Variables.ct means FiscalNews/
Page/SectionFrontText.

Now that TextOnlyLink has a URL (in the referURL variable specified by the OUTSTR
parameter), it can create the Plain Text link with an HTML <A HREF> tag:

Chapter 22
Using the ct Variable

22-10

<A class="contentlink" HREF="Variables.referURL"
REPLACEALL="Variables.referURL">
<img src="/futuretense_cs/bf/images/TextOnly.gif" width="22"
height="14" border="0" HSPACE="3"/>Plain Text

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use
this tag as an HTML attribute when you want to use XML variables in an HTML tag.
See the Tag Reference for Oracle WebCenter Sites Reference.

And then TextOnlyLink clears the ct variable:

<REMOVEVAR NAME="ct"/>

When a visitor clicks the Plain Text link, the article is formatted with the
SectionFrontText element and then displayed in the browser.

ColumnistFront
The ColumnistFront element is here:

ElementCatalog/FiscalNews/Page/ColumnistFront

This element formats the web format page that displays the stories supplied from the
Fiscal News columnists.

To create the Plain Text link in the upper right corner of a section page,
ColumnistFront calls TextOnlyLink:

<CALLELEMENT NAME="FiscalNews/Common/TextOnlyLink">
<ARGUMENT NAME="ct" VALUE="ColumnistFrontText"/>
<ARGUMENT NAME="assettype" VALUE="Page"/>
</CALLELEMENT>

Based on the information passed in from ColumnistFront, this time
TextOnlyLink creates a Plain Text link that takes the visitor to FiscalNews/Page/
ColumnistFrontText.

Coding Templates for Query Assets
To display assets of your choice, you use the standard WebCenter Sites element
ExecuteQuery to run the Query asset.

Fiscal News uses several query assets. The following figure shows a query asset
named Home Wire Feed, which is used to list wire-feed stories on the home page:

Chapter 22
Coding Templates for Query Assets

22-11

Figure 22-3 Query Asset Listing Wire Feed Stories

These elements are used in this example:

• ElementCatalog/FiscalNews/Page/Home

• ElementCatalog/FiscalNews/Query/WireFeedBox

• ElementCatalog/OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery

See these topics on coding templates for Query assets:

• Home Element

• WireFeedBox Element

• ExecuteQuery Element

• Back to WireFeedBox

Home Element
The Template element for the Home page is here:

ElementCatalog/FiscalNews/Page/Home

When it runs, Home first loads the Home page asset, names it HomePage, and then
scatters the asset information in its fields:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid" NAME="HomePage"/>
<ASSET.SCATTER NAME="HomePage" PREFIX="asset"/>

The values for c and cid are passed in from the Fiscal News URL.

Chapter 22
Coding Templates for Query Assets

22-12

After several CALLELEMENT and RENDER.SATELLITEPAGE tags, Home includes the
following ASSET.CHILDREN tag:

<ASSET.CHILDREN NAME="HomePage" LIST="WireFeedStories"
CODE="WireFeed"/>

Notice that in this line of code, the OBJECTTYPE parameter is not used. CODE=WireFeed
is enough information for WebCenter Sites to locate and retrieve the query assigned to
the HomePage asset through the WireFeed association, and there is no need to create a
join between the AssetRelationTree and Query tables because all that Home needs is
the ID of the query. The WireFeed query is retrieved and stored as WireFeedStories.

Next, Home calls the page entry of the WireFeedBox Template, passing it the cid of the
query stored as WireFeedStories:

<RENDER.SATELLITEPAGE PAGENAME="FiscalNews/Query/WireFeedBox"
ARGS_cid="WireFeedStories.oid"
ARGS_p=Variables.asset:id/>

Home passes on several pieces of information: the identity of the query with the
cid=WireFeedStories.oid statement and the identity of the originating page asset,
Home, with the p=Variables.asset:id statement.

WireFeedBox Element
The WireFeedBox page entry invokes its root element, the template element for the
WireFeedBox template:

ElementCatalog/FiscalNews/Query/WireFeedBox

This element invokes the ExecuteQuery element to run the query and then displays a
list of links to the article assets returned by the query.

First, WireFeedBox loads the query asset passed in from Home, names it
WireFeedBoxQuery, and then retrieves the values from all of its fields with an
ASSET.SCATTER statement:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid" NAME="WireFeedBoxQuery"/>
<ASSET.SCATTER NAME="WireFeedBox" PREFIX="asset"/>

Variables.cid is the WireFeedStories.oid passed in from the Home element.

Then WireFeedBox calls the ExecuteQuery element:

<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery">
<ARGUMENT NAME="list" VALUE="ArticlesFromWireQuery"/>
<ARGUMENT NAME="assetname" VALUE="WireFeedBoxQuery"/>
<ARGUMENT NAME="ResultLimit" VALUE="8"/>
</CALLELEMENT>

WireFeedBox passed in the query asset, the name of the list to create to hold
the results of the query, and a limit of 8 so that no matter how many assets the
query returns to the ExecuteQuery element, ExecuteQuery returns only 8 of them to
WireFeedBox.

ExecuteQuery Element
The ExecuteQuery element runs the query asset:

Chapter 22
Coding Templates for Query Assets

22-13

ElementCatalog/OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery

The query assets that can be assigned to a page asset as that page's Wire Feed
query are coded to return field data rather than the IDs of assets only. Therefore,
ExecuteQuery returns up to 8 article assets and the data from several of their fields to
WireFeedBox.

The first line of code in the element is RENDER.UNKNOWNDEPS because there is no way
of knowing which assets will be returned, so there is no way to log dependencies for
them.

When ExecuteQuery is finished, WireFeedBox resumes.

Back to WireFeedBox
WireFeedBox resumes, looping through the list of articles returned by ExecuteQuery,
and obtaining a URL for each one by using a RENDER.GETPAGEURL tag.

Because there is no way of knowing which article assets will be returned by
ExecuteQuery, there is a RENDER.FILTER tag included in the loop to filter out
unapproved assets when the publishing method is Export to Disk:

<RENDER.FILTER LIST="ArticlesFromWireQuery" LISTVARNAME="ArticlesFromWireQuery"
LISTIDCOL="id"/>
<if COND="ArticlesFromWireQuery.#numRows!=0">
<then>
<LOOP LIST="ArticlesFromWireQuery">
<RENDER.GETPAGEURL PAGENAME="FiscalNews/Article/WireStory"
cid="ArticlesFromWireQuery.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>
<A class="wirelink"
HREF="Variables.referURL" REPLACEALL="Variables.referURL"><csvar
NAME="ArticlesFromWireQuery.subheadline"/><P/>
</LOOP>
</then>
</if>

The RENDER.GETPAGEURL tag returns a URL for each article in the list in a variable
named referURL. WireFeedBox uses the value from the referURL variable to create
links to the articles, using the content from their subheadline fields (which is one of the
fields that the Wire Feed query returned) as the hyperlinked text.

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use
this tag as an HTML attribute when you want to use XML variables in an HTML tag.
See the Tag Reference for Oracle WebCenter Sites Reference.

Displaying an Article Asset Without a Template
Full, AltVersionBlock, and EmailFront elements let you display an Article asset
without a template.

This figure shows an example of an email form for an article, provided by Fiscal News
with an Email this article to a friend function:

Chapter 22
Displaying an Article Asset Without a Template

22-14

Figure 22-4 Email Form

Obviously the Fiscal News developers do not want the Fiscal News content providers
to assign the email form to an article as the article's Display Style (Template).
Therefore, there is no Template asset that points to the email element that creates the
article email form.

These elements are used in this example:

• ElementCatalog/FiscalNews/Article/Full

• ElementCatalog/FiscalNews/Article/AltVersionBlock

• ElementCatalog/FiscalNews/Util/EmailFront

See these topics that describe how to display an article asset without a template:

• Full Element

• AltVersionBlock Element

• EmailFront Element

Full Element
The Full Template for articles is here:

ElementCatalog/FiscalNews/Article/Full

This element provides the formatting code for articles when they are displayed in full. It
displays the following items:

• A site banner

• The left navigation column

• A collection of related stories

Chapter 22
Displaying an Article Asset Without a Template

22-15

• The text of the article

• A photo for the article

• A link that prints the story

• A link that emails the story

After several RENDER.SATELLITEPAGE and CALLELEMENT tags, the FULL element includes
the following tag:

<CALLELEMENT NAME="FiscalNews/Article/AltVersionBlock"/>

AltVersionBlock Element
For this example, the AltVersionBlock element, which can get the URL for the print
version of an article or the email version, is here:

ElementCatalog/FiscalNews/Article/AltVersionBlock

AltVersionBlock is a short element with two RENDER.GETPAGEURL tags. The first
RENDER.GETPAGEURL tag obtains the URL for the print version of an article. The second
RENDER.GETPAGEURL tag obtains the URL for the email version of the story.

Because the Fiscal Newsl developers want a dynamic URL for the email version of
the story even if the site is a static site, the second RENDER.GETPAGEURL tag uses the
DYNAMIC parameter.

The second RENDER.GETPAGEURL tag has this code:

<RENDER.GETPAGEURL PAGENAME="FiscalNews/Util/EmailFront"
cid="Variables.asset:id"
c="Article"
DYNAMIC="true"
OUTSTR="referURL"/>

AltVersionBlock passes in the pagename for the EmailFront page entry, and a value
for c, and cid, and sets the DYNAMIC parameter to true. The tag creates a dynamic
URL for the article (even if the publishing method is Export to Disk) and returns it in a
variable named referURL, as specified by the OUTSTR parameter.

EmailFront Element
In this example, EmailFront is the page name that AltVersionBlock passes to
the RENDER.GETPAGEURL element. Because there is no corresponding template for
EmailFront, WebCenter Sites would not create a page entry in the SiteCatalog for
EmailFront by default. The Fiscal News developers created the SiteCatalog entry for
this element manually through Oracle WebCenter Sites Explorer:

ElementCatalog/FiscalNews/Util/EmailFront

This element creates a form that displays the first paragraph of the article that the
visitor has chosen to email.

First, EmailFront loads the article asset:

<ASSET.LOAD TYPE="Article" OBJECTID="Variables.cid" NAME="EmailFront"/>
<ASSET.SCATTER NAME="EmailFront" PREFIX="asset"/>

Chapter 22
Displaying an Article Asset Without a Template

22-16

Then it formats several parts of the page before creating the email form, using the
HTML FORM tag:

<FORM NAME="mailform" onSubmit="return checkEmail();" METHOD="POST" ACTION=...

EmailFront then calls the LeadSummary page entry to display a summary of the article
in the form:

<RENDER.SATELLITEPAGE
ARGS_pagename="FiscalNews/Article/LeadSummary"
ARGS_cid="Variables.cid"
ARGS_ct="Full"
ARGS_p="Variables.p"/>

For information about the LeadSummary element, see Creating Basic Modular Design.

Displaying Site Navigation Information
To extract information from the SitePlanTree table, you use the WebCenter Sites
SITEPLAN tag family. The navigation bar at the top of the Fiscal News home page is
created by extracting the structure information from the SitePlanTree table.

These elements are used in this example:

• ElementCatalog/FiscalNews/Article/Home

• ElementCatalog/Pagelet/Common/SiteBanner

• ElementCatalog/FiscalNews/Site/TopSiteBar

See these topics that describe how to display site navigation information:

• Home Element

• SiteBanner Element

• TopSiteBar Element

• Back to SiteBanner

Home Element
You can use Oracle WebCenter Sites Explorer to open and examine the template
element for the Home Template:

ElementCatalog/FiscalNews/Page/Home

The first RENDER.SATELLITEPAGE tag in this Template follows:

<RENDER.SATELLITEPAGE PAGENAME="FiscalNews/Pagelet/Common/SiteBanner"/>

SiteBanner Element
The SiteBanner pagelet, which invokes its root element for this example, is here:

ElementCatalog/FiscalNews/Common/SiteBanner

SiteBanner gathers the images for the banner (the Fiscal News logo and an
advertising image) and then calls an element that creates the navigational links to
the main sections of the site.

Chapter 22
Displaying Site Navigation Information

22-17

The SiteBanner element includes the CALLELEMENT tag:

<CALLELEMENT NAME="Fiscal News/Site/TopSiteBar"/>

TopSiteBar Element
The TopSiteBar element for this example is here:

ElementCatalog/FiscalNews/Site/TopSiteBar

TopSiteBar executes, creating the navigational links to the main sections in the Fiscal
News site.

The following topics describe how to create links for pages on the site:

• Creating the Link for the Home Page

• Creating the Links to the Home Page's Child Pages

Creating the Link for the Home Page
To create the link for the Home page, first, TopSiteBar loads the Home page, names
it target, gets the value from its ID field, and stores that value in the output variable
pageid:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"
DEPTYPE="exists"/>
<ASSET.GET NAME="target" FIELD="id" OUTPUT="pageid"/>

Note that the ASSET.LOAD tag changes the dependency type from its default of exact to
exists with the DEPTYPE parameter. For a link like this one, a link in a navigational bar,
it makes more sense for the dependency to be an exists dependency.

Then TopSiteBar uses the variable pageid to obtain a URL for the Home page from a
RENDER.GETPAGEURL tag:

<RENDER.GETPAGEURL PAGENAME="FiscalNews/Page/Home"
cid="Variables.pageid"
c="Page"
OUTSTR="referURL"/

Next TopSiteBar extracts the page asset's name from its Name field and uses it as the
text for the hyperlink:

<ASSET.GET NAME="target" FIELD="name" OUTPUT="thepagename"/>
<A class="sectionlinks" HREF="Variables.referURL"
REPLACEALL="Variables.referURL"><csvar NAME="Variables.thepagename"/>

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use
this tag as an HTML attribute when you want to use XML variables in an HTML tag.
See Variables in HTML Tags.

Creating the Links to the Home Page's Child Pages
In the next part of the code, TopSiteBar creates links for the child pages of the Home
page. To determine the child pages of the Home page, TopSiteBar must first determine
the node ID of the Home page.

The node ID of a page asset is different from its object ID:

Chapter 22
Displaying Site Navigation Information

22-18

• You use an object ID to extract information about an asset from asset tables.

• You use a node ID to extract information about a page asset from the
SitePlanTree table.

First, TopSiteBar determines the node ID of the Home page:

<ASSET.GETSITENODE NAME="target" OUTPUT="PageNodeId"/>

Then it uses that information to load the Home page as a siteplan node object:

<SITEPLAN.LOAD NAME="ParentNode" NODEID="Variables.PageNodeId"/>

With the Home page node identified and loaded, TopSiteBar can then obtain the Home
page's child nodes, storing them in a list that it names PeerPages, and ordering them
according to their rank:

<SITEPLAN.CHILDREN NAME="ParentNode" TYPE="PAGE" LIST="PeerPages" CODE="Placed"
ORDER="nrank"/>

And now TopSiteBar loops through all the child nodes at the first level, using the
RENDER.GETPAGEURL tag to create a URL for the link to each page:

<IF COND="IsList.PeerPages=true">
<THEN>
<LOOP LIST="PeerPages"> |
<ASSET.LOAD NAME="ThePage" TYPE="Page"
 OBJECTID="PeerPages.oid"/>
<ASSET.GET NAME="ThePage" FIELD="name"
OUTPUT="thepagename"/>
<ASSET.GET NAME="ThePage" FIELD="template"
OUTPUT="pagetemplate"/>
<RENDER.GETPAGEURL PAGENAME="FiscalNews/Page/
Variables.pagetemplate"
cid="PeerPages.oid"
c="Page"
OUTSTR="referURL"/>
<A class="sectionlinks" HREF="Variables.referURL"
REPLACEALL="Variables.referURL">
<csvar NAME="Variables.thepagename"/>

Notice how the page name is constructed in this example. The second ASSET.GET
statement gets the name of the page's Template from its template field:

<ASSET.GET NAME="ThePage" FIELD="template"
OUTPUT="pagetemplate"/>

Then, that information is used in the PAGENAME parameter passed to the
RENDER.GETPAGEURL tag:

PAGENAME="FiscalNews/Page/Variables.pagetemplate"/>

Therefore, if the template for the page asset is SectionFront, this argument
statement passes pagename=FiscalNews/Page/SectionFront. And if the template for
the page asset is AboutUs, this argument statement passes pagename=FiscalNews/
Page/AboutUs.

Chapter 22
Displaying Site Navigation Information

22-19

Back to SiteBanner
SiteBanner is finished after the call to TopSiteBar. The SiteBanner element is invoked
on each page in the site.

Because SiteBanner has a page entry in the SiteCatalog table, the results of the
navigational bar that TopSiteBar creates is cached the first time a visitor requests a
page on the Fiscal News site. This speeds up performance because the site does
not have to reinvoke the TopSiteBar element for each and every page that the visitor
subsequently visits.

Displaying Non-Asset Information
WebCenter Sites includes elements that you can use for rendering and displaying
information which is not stored as an asset in the WebCenter Sites database. For
example, the Fiscal News site displays today's date on each page. The date is not an
information that can be stored as an asset.

The elements are:

• ElementCatalog/FiscalNews/Article/Home

• ElementCatalog/Common/ShowMainDate

The following topics describe how to display non-asset information:

• Home Element

• ShowMainDate Element

Home Element
For this example, the Template element for the Home Template is here:

ElementCatalog/FiscalNews/Page/Home

The third CALLELEMENT tag in this element invokes the ShowMainDate element:

<CALLELEMENT NAME=FiscalNews/Common/ShowMainDate/>

ShowMainDate Element
The ShowMainDate element for this example is here:

ElementCatalog/FiscalNews/Common/ShowMainDate

ShowMainDate executes. The main line of code is this one:

 <csvar NAME="CS.Day CS.Mon CS.DDate, CS.Year"/>

It calculates the date and then returns that value to the Home element, which displays it
at the top of the page, under the navigation bar and over the main list of stories.

This element performs a simple calculation and then outputs the value into the HTML
code that is rendered in the browser window. There are no content assets that it
formats or Template assets that use it as a root element. It also has no SiteCatalog

Chapter 22
Displaying Non-Asset Information

22-20

entry because its result (the date) should be calculated each time the Home page is
rendered.

Chapter 22
Displaying Non-Asset Information

22-21

23
Creating Collection Assets, Query Assets,
and Page Assets

A collection asset stores an ordered list of assets of one type. A query asset stores
a database query for retrieving a list of other assets from the database. Page assets
are site design assets that store references to other assets in a designed fashion.
Easy-to-use forms are available in the Admin interface for you to create collection,
query, and page assets.

• About Creating Assets

• Creating Collection Assets

• Creating Query Assets

• Creating Page Assets

About Creating Assets
The core asset types delivered with WebCenter Sites provide the basic site design
logic. Because you assign Template assets to your other assets, it is typical to create
your templates before you create your site design asset types.

Coding Templates for In-Context and Presentation Editing describes how to create
Template assets.

The procedures for working with assets of any type are very similar and are described
thoroughly in Working with Assets in Using Oracle WebCenter Sites. This chapter
presents procedures that are unique for the collection, query, and page asset types.

Creating Collection Assets
Content contributors use collection assets to store ordered lists of assets. Each
collection asset can store a list of assets of one type only. You create (or design)
a collection asset by naming it and selecting query assets for it. By default, you can
select up to three query assets. You can create additional associations for additional
queries if the need arises.

For information about creating associations, see Configuring Association Fields
(Optional) in Creating Basic Asset Types.

A collection uses a query asset to obtain a list of possible assets for the collection.
You build (or populate) a collection by running its queries, selecting assets from the
results of the queries, and then ranking and ordering the assets that you selected. This
ranked, ordered list is the collection.

Using collections is one way to keep the content displayed on rendered pages current
and up-to-date. For example, you can have a site that uses several collections. If you
select a collection to be displayed on an asset, a publisher or content contributor can
then change the content identified by that association by doing one of the following:

23-1

• Selecting a different collection from the tree

• Building the assigned collection and selecting different assets in it

This section includes the following topics:

• Before You Begin

• Creating a Collection Asset

• Sharing a Collection Asset

Before You Begin
Before you create collection assets, note the following:

• A collection must have at least one query, so be sure that you create the queries
before you try to create your collections.

• Because you assign templates to collections, you should also create the Template
assets before you create your collection assets.

Before you build the collection, you should determine how the Template asset
assigned to it is coded. For example, if you select 100 assets for a collection but
the template is coded to display only five of them, the following occurs:

• The rendered page that displays those assets displays only the first five.

• The page takes longer to render than necessary because WebCenter Sites has to
sort through all 100 assets even though it displays only the first five.

For more information about building a collection, see Determining Function Privileges
in Administering Oracle WebCenter Sites.

Creating a Collection Asset
You can create a collection asset through the Admin interface.

Note:

To use this procedure, you must have Collection asset types enabled for the
site you are working in. Step 4 indicates whether they are enabled.

1. Open the Admin interface.

2. Ensure you have completed the steps in Before You Begin.

3. Click New on the button bar.

4. Select New Collection from the list of asset types. (If Collection asset types are
not enabled, the option is not displayed.)

The Collection form opens.

5. (Required) In the Name field, type a descriptive name for the page. You can
enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are
not.

Chapter 23
Creating Collection Assets

23-2

6. In the Description field, type a brief description of the collection. You can enter up
to 128 characters.

7. (Required) In the Subtype field, select the type of asset this collection will hold.

Note:

Collection subtypes are controlled by Query. When a query is set up for
a certain asset type, that asset type becomes a value of the Subtype
field. The SubType field thus lists every asset type for which a query was
created. See Creating a Query Asset.

8. In the Select a Template field, select a Template asset from the drop-down list.

9. In the Category field, select a category from the drop-down list. (If you do not
select a category, the first item on the list is selected by default.)

10. In the Keywords field, enter keywords that you and others can use as search
criteria in the Advanced Search form when you search for this collection in the
future.

11. In the Associated queries section, select up to three queries. All of the queries
that you select for this collection must return assets of the same type.

12. Click Save.

Sharing a Collection Asset
Before you share a collection asset, consider the following:

• Building a collection in one site builds it in all of the sites that it is shared with. You
cannot build a collection to include different assets for different sites.

• The query assets used in the shared collection must be coded to return only
assets that are shared to all the sites that the collection is shared with.

• As with any shared asset, be sure that the template assigned to the collection is
also shared to the other site.

For the basic procedure on sharing assets, see Sharing Blog Assets Sharing Blog
Assets in Administering Oracle WebCenter Sites.

Creating Query Assets
A query asset stores a database query that retrieves a list of other assets from the
database. If you plan to use a query for a collection, remember that it returns assets of
one type only.

See these topics about query assets:

• How to Use Query Assets and Other Assets

• How to Store the Query

• Commonly Used Fields for Queries

• Before You Begin Creating Query Assets

• Creating a Query Asset

Chapter 23
Creating Query Assets

23-3

• Sharing Query Assets

• Previewing and Approving Query Assets

How to Use Query Assets and Other Assets
WebCenter Sites uses queries differently in collection assets than it does for other
assets:

• When you build (or populate) a collection, you run one or more query assets
and then select and order the assets that you want from the resulting list. The
collection is a static list of assets selected from the query resultsets.

• You can select queries for a page asset either through informal relationships or
through named associations. You can select queries for other asset types (article,
for example) through named associations.

When the asset is rendered, it does not invoke the query directly. Either the
template element that formats the asset or a template element that formats the
query is coded to invoke a standard WebCenter Sites element called:

OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery

This element runs the query asset when the asset it is associated with is rendered,
which means the resultset is dynamic.

How to Store the Query
A query asset can store its database query in one of two ways:

• Directly. You can write the query directly into the SQL query field of the Query
form. You can either use standard SQL for the query, or, if your WebCenter Sites
systems use an external search engine, you can use an appropriate search engine
query.

• Indirectly. You can write the query in an element and then store the location of
that element in the query asset by identifying it in the Element name field in the
Query form. An element for a query is like any other element: you can use XML,
JSP, JavaScript, HTML, and so on.

The following code is an example of a query named News Wire Feed which is stored
directly; that is, the SQL query is written directly into the SQL query field in the Query
form:

SELECT DISTINCT Article.id, Article.name, Article.updateddate,
Article.subheadline, Article.abstract, Article.description,
Category.description AS category, StatusCode.description AS
statusdesc FROM Article, Category, AssetPublication, StatusCode
WHERE Article.status!='VO' AND Article.category=Category.category
AND Article.status=StatusCode.statuscode AND Category.assettype='Article'
AND Article.source='WireFeed' AND Article.category='n' AND Article.id =
AssetPublication.assetid AND AssetPublication.pubid = 968251170475
ORDER BY Article.updateddate DESC

Commonly Used Fields for Queries
There are several WebCenter Sites fields, four of which are used in the preceding
News Wire Feed query example, that you are likely to use in your queries:

Chapter 23
Creating Query Assets

23-4

• status

• updateddate

• category

• startdate and enddate

The rest of this section defines the fields in this list.

status

All assets have a status. When an asset is created, WebCenter Sites adds a row to
the table that holds assets of that type and sets its status to PL, which means created.

This table lists and defines the status codes that WebCenter Sites uses.

Table 23-1 Status Codes

Status Code Definition

PL created

ED edited

RF received (from XMLPost, for example)

UP upgraded from Xcelerate 2.2

VO deleted (void)

These codes are listed in the StatusCode table in the database.

When an asset is deleted, WebCenter Sites changes its status to VO and renames the
string in its Name field to its object ID.

Write your queries to exclude assets whose status is VO. For example: WHERE
Article.status!='VO'

updateddate

The information in the updateddate field represents the date on which the information
in the status field was changed to its current state. Depending on the design of your
site, you can use a query to return assets based on this date.

category

The category is a default WebCenter Sites field that can categorize assets according
to a convention that works for your sites. It is not required.

For example, if you had a banking site, you could have categories named Personal
Finance, Banking and Loans, Rates and Bonds, News, and so on. You add categories
for your sites on the Admin tab in the tree. See Configuring Categories (Optional) in
Creating Basic Asset Types.

If you use category with your assets, you can write your queries to use category
as a parameter. In the previously mentioned News Wire Feed query example, the
Article.category='n' statement includes article assets from the News category.

Chapter 23
Creating Query Assets

23-5

pubid

A pubid is a unique value that identifies a site (or, in old terminology, a publication).
When an asset is created, WebCenter Sites writes information about that asset to
several database tables, one of which is the AssetPublication table.

An asset's row in the AssetPublication table includes the pubid of the site the asset
was created for. If the asset is shared, the AssetPublication table has a row for each
site that the asset is shared with. For example, if an article asset is available in two
sites, there are two rows for that article in the AssetPublication table.

If you have only one WebCenter Sites site on your system or if your query results do
not have to be site-specific, you do not have to code your queries to consider pubid.
However, if you do not want your queries to return assets from another site, you can
code your queries to restrict assets based on the pubid of the site.

startdate and enddate

Neither of the sample sites use the startdate and enddate fields but the WebCenter
Sites database has columns to store this information. These fields exist so that you
can assign time limits to assets. If your asset types use the startdate and enddate
fields, you can create queries that select assets based on the dates stored in those
fields.

Before You Begin Creating Query Assets
Before you begin creating query assets, consider the following:

• Query assets that are used on assets other than collections are not required
to have templates. You can either create template elements specifically for your
query assets that identify, run, and display the results, or you can code the
template elements for your page assets to do that.

• When you write a query for a collection, be sure to code it to select the
fields that are required for that asset type. WebCenter Sites is programmed to
expect information from an asset type's required fields so that it can display that
information in the Build Collection form.

• Query assets that are used only for collections have no need for templates. The
template element assigned to the collection formats the assets in a collection's list
of assets.

• For performance reasons, be sure to create efficient queries. For example:

– Include as much logic as possible in the query rather than in the element that
runs and displays the results of the query. For example, to filter or constrain a
list of articles, be sure the query performs the filtering or constraining step so
that the list returned to the element is complete rather than coding the query to
return the entire list and using the element code to constrain the list.

– Be sure your queries return only the information that the element displays.

• Query assets that are for collections must return assets of one type only.

Creating a Query Asset
You can create a query asset through the Admin interface.

Chapter 23
Creating Query Assets

23-6

1. Open the Admin interface.

2. Click New on the button bar.

3. Select New Query from the list of asset types. (Query asset types must be
enabled for your site.)

The Query form opens.

4. (Required) In the Name field, type a descriptive name for the query asset. You can
enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are
not.

5. In the Description field, type a brief description of the query. You can enter up to
128 characters.

6. In the Template field, select a Template asset from the drop-down list.

7. In the Category field, select a category from the drop-down list. (If you do not
select a category, the first item on the list is selected by default.)

8. In the Result of query field, select the type of asset that this query returns. (The
query can return assets of one type only if this asset is to be used by a collection.)

9. Do one of the following:

• To store the query directly in this asset, select Database, and in the SQL
query field write your query.

• If you wrote the query in an element, select Element and then enter the entire
name of the element in the Element name field.

10. Click Save.

Sharing Query Assets
If you plan to share a query asset with another site, consider the following tips:

• If you want your query results to be site-specific, be sure to include a WHERE clause
for pubid so that the query does not return assets to a site where those assets
have not been shared.

– For example, in either a query for a collection or a query for a static site, you
can use the following statement:

WHERE AssetPublication.pubid = SessionVariables.pubid

because SessionVariables.pubid is always set when you are building a
collection or using the Export to Disk function.

– If the query is to be used on a dynamic site, you can use that same statement
if you code your elements to either pass in the identify of pubid to the
ExecuteQuery element or to set the SessionVariables.pubid variable.

• Because page assets cannot be shared, you should not share query assets if they
return page assets.

• As with any shared asset, if the query has a template, be sure that the template
assigned to the query is also shared with the other site.

Chapter 23
Creating Query Assets

23-7

Previewing and Approving Query Assets
First, remember that not all query assets have their own templates. If a query asset
was designed to be used on a page asset and it is the page asset's template that
actually formats the query, you must preview the page to preview the query.

If your online site is a dynamic site (that is, you use the Mirror to Server publishing
method) a query asset might return different assets on the management system than it
does on the delivery system, depending on which assets have been published.

Therefore, if you preview your query to determine whether you should approve it or
not, remember that the assets that it returns on the management system (where you
are previewing it) could be different than the assets that it will return on the delivery
system after it is published.

Creating Page Assets
Page assets are site design assets that you use to store references to other assets,
organizing them according to the design that you and the other designers are
implementing.

These page assets represent sections of the site, in essence the structure or
organization of the site. They do not represent each and every rendered page that
can possibly be served. This structural organization is primarily for the benefit of your
WebCenter Sites users. This is not the only way of organizing your site, but it is
convenient for your editors to see a structure that resembles your finished website.

Typically, you create page assets once: when you design the site. You associate
collections, queries, articles, and so on with page assets and you code template
elements that format the types of assets you want to associate with the page asset.

Before you can select the correct content for your page assets, you must be familiar
with how your site is structured and what your template elements for page assets are
designed to do. That is why you and other site developers (the people who are coding
elements and creating Template assets) typically create the page assets for a site.

This section includes the following topics:

• Understanding the Page Asset Model

• How To Design Page Attributes

• How to Create a Page Asset

• How To Place Page Assets

• How To Move Page Assets in the Site Tree

• Considerations About Placing Page Assets and Workflow

• Tips About Editing Page Assets

• Considerations About Deleting Page Assets

Chapter 23
Creating Page Assets

23-8

Understanding the Page Asset Model
The page asset model is similar to the flex asset model. This provides an option to
change the data structure of the Page asset. The page asset model is made up of the
following asset types:

• Page attribute

• Page definition

• Page

The following are some general characteristics of the page asset model:

• Page assets are described by the page attributes that you select for them.

• The page attributes that characterize page assets are themselves assets. This
means that attributes can be passed through workflow, edited, monitored by
revision tracking, and subjected to all other content management operations.

• If you ever have to add attributes to your asset types in the future (a common
occurrence with products), you just create the new attribute and assign it to the
appropriate definitions.

• This asset model supports assets that have many, many attributes, which means
that you can support large sets of data.

• The page asset model does not have parent definition asset type and parents
asset type like the typical flex family, and it does not support data inheritance.

How To Design Page Attributes
Topics:

• For designing attributes, see Designing Flex Attributes.

Note: Inheritance is not applicable for page assets.

• For designing page definition, see Designing Parent Definition and Flex Definition
Assets.

Note: The Flex Parent Definition is not supported for page assets and inheritance
is not applicable.

• For creating page attributes, see Create Flex Attributes in Creating a Flex Asset
Family.

• For creating page filter assets, see (Conditional) Creating Flex Filter Assets in
Creating a Flex Asset Family.

• For creating page definition assets, see Creating Flex Definition Assets in Creating
a Flex Asset Family.

• For creating page associations, see (Conditional) Creating Flex Asset
Associations in Creating a Flex Asset Family.

How to Create a Page Asset
To create a page asset:

Chapter 23
Creating Page Assets

23-9

1. Log in to WebCenter Sites, select the site you want to work with and the icon for
the Oracle WebCenter Sites: Contributor interface.

2. Find and bookmark the assets (articles, queries, images, collections, and so on)
you want to include on the page. Do the following:

a. In the Search field, enter criteria identifying the asset(s) and then click the
magnifying glass icon. A search tab opens displaying the results of your
search.

b. In the search results list, select (Ctrl+click) the assets you want to bookmark.

c. In the search tab's toolbar, click the Bookmark icon.

d. Repeat this step until you have bookmarked all of the assets and then
continue with the next step.

A tab opens displaying the results of your search:

WebCenter Sites displays a confirmation message and also lists the bookmarked
assets under the Bookmarks node in the My Work tree.

3. In the menu bar, select Content, then New, and then Page Asset. In this
example, we use the Page (Home) asset type in the avisports sample site.

Note:

If you are using the avisports sample site, assets of type Page are
configured to open in Web Mode. Therefore, when you select to create a
Page (Home) asset, the Create Page (Home) dialog box is displayed.

In the Create Page (Home) dialog box, do the following:

a. In the Select Layout field, select the layout you want to assign to the page.

b. In the Name field, enter a name for the page, and then click Continue.

c. In the avisports sample site the page definition is chosen when you select the
type of page asset you will be creating. However, if this is not the case in
the site you are working with, you will see a Page Definition field. Use this
field to specify the page definition for the page you are creating and then click
Continue.Switch to Form Mode. In the asset's toolbar, click the Mode switch.
Continue to step 4b.

d. The asset's Create view is displayed in Form Mode.

4. Create the Page asset.

a. In the Name field, enter a name for the page. type a descriptive name for the
page. You can enter up to 64 alphanumeric characters, but the first character
must be a letter. Underscores (_) and hyphens (-) are acceptable, but tab and
space characters are not.

b. Page Definition field (if applicable): In the avisports sample site the page
definition is chosen when you select the type of page asset you will be
creating. However, if this is not the case in the site you are working with, you
will see a Page Definition field. Use this field to specify the page definition for
the page you are creating and then click Continue.

c. In the Template field, select a template from the drop-down list.

Chapter 23
Creating Page Assets

23-10

d. To add items, select the assets from the Bookmarks node in the My Work
tree and then drag and drop the selected items into the field.

5. In the asset's toolbar, click Save.

The page is saved. It now displays in the Site Tree under the Unplaced Pages
pages node.

How To Place Page Assets
After you create a page asset, you position it in the appropriate location in the site tree
by using the Place function.

1. Open the Admin interface.

2. Click the Site Navigation tab, where you should see the site tree with the new
page asset in the Unplaced Pages list.

3. Expand the site navigation node under which you want to place the page asset.

4. Select a parent for the page you are placing by doing one of the following:

• To place a page at the top-most level in the tree, right-click the site navigation
node and select Place Page from the context menu.

• Otherwise, right-click the placed page under which you want to insert the new
unplaced page, and choose Place Page from the context menu.

The place page form opens in the work area on the right. It lists all child pages
that are placed under the parent page. It also lists all pages that have not yet been
placed in the site tree:

5. To place the page, type a number in the Rank field in the list of unplaced pages
to designate the new page's position in the list of child page assets. Position
numbering starts at 1, at the top of the list.

6. Click Save.

The unplaced page asset moves to the site tree, to its assigned rank. To view
the page asset in its new location, you may have to right-click in the site tree and
choose Refresh All from the context menu.

How To Move Page Assets in the Site Tree
In addition to placing unplaced pages, you can also use the place page form to:

• Change the order of child pages within the same parent page.

• Move a child page from one parent page to another.

Reordering Child Pages
To re-order children of the same parent page:

1. Open the Admin interface.

2. Click the Site Navigation tab and expand the site navigation node containing the
pages you want to re-order.

3. Right-click a placed page that has multiple child pages, and choose Place Page
from the context menu.

Chapter 23
Creating Page Assets

23-11

The place page form opens in the work area on the right.

4. In the list of placed child pages, type new values in the Rank column to re-order
the child pages.

5. Click Save.

The child pages move to their new positions in the site tree.

Changing Parent Pages
To move a child page from one parent page to another:

1. Open the Admin interface.

2. In the Site tree, expand the Site Navigation node, and then expand the site
navigation node containing the child page you want to move under a different
parent page.

3. Remove the page asset from its parent page:

a. Right-click the placed page whose child page you want to move, and choose
Place Page from the context menu.

The place page form opens in the work area on the right.

b. In the list of placed child pages, select the Remove check box next to the child
page that you want to move.

c. Click Save.

The child page moves to the list of Unplaced Pages in the site tree.

4. Place the page asset under its new parent page:

a. In the site tree, right-click the placed page where you want to insert the
unplaced child page, and choose Place Page from the context menu.

The place page form opens in the work area on the right.

b. In the list of unplaced pages, type a number in the Rank field to designate the
new page's position in the list of child page assets. Position numbering starts
at 1, the top of the list.

c. Click Save.

The previously unplaced page asset moves under the site navigation node
containing the parent asset, in its assigned rank.

Considerations About Placing Page Assets and Workflow
WebCenter Sites has a workflow feature that controls the flow of assets as they pass
from one team member to another; for example, from author to editor to approver to
publisher. The workflow administrator can create processes that control who can place
page assets in the site tree and during which workflow step they can do so. Note the
following:

• The Place Page workflow privilege controls all place page functions: Place
Pages, Remove, and Rank.

• You must have the proper privileges for both the parent page on which you invoke
Place Pages, and for any child page that you want to Rank or Remove.

Chapter 23
Creating Page Assets

23-12

For information about the workflow process, see Creating and Managing Workflow
Processes in Administering Oracle WebCenter Sites.

Tips About Editing Page Assets
In general, there are two ways to edit an existing page asset:

• Change the assets, but not the asset types, that are included on the page. For
example, move new assets to the Contains list from your Bookmarks; select a
different collection, query, or article from a named association field; or rebuild a
collection associated with the page asset to include different assets.

• Create a new association or change the actual structure of the page asset in some
way.

Although you may frequently change the content in the collections or queries on a
page at regular intervals, you are less likely to change the associations, asset types, or
structure of a page after the site goes live. This may also require you to edit the code
in the template element that formats the page.

Considerations About Deleting Page Assets
During your site design phase, it is likely that you will create and delete many page
assets. However, before deleting a page asset from a site that you have published, be
sure that you understand the consequences. For example:

• Have you removed references to the page from other page assets?

• Are any of your other page templates coded to extract and use information about
this page asset in any way?

Before you delete a page asset, be sure to remove any references to it from any other
elements or pages. It is a good idea to unplace a page asset before you delete it.

Chapter 23
Creating Page Assets

23-13

24
Best Practices for Creating Future Site
Preview Assets and Templates

You can run a special version of a page for an event for as long as the event lasts. In
your templates just use the tag that filters assets by date. On the content side, content
contributors need to create time-sensitive assets.

Topics:

• About Implementing Future Site Preview

• Creating Sets of Assets

• Writing Templates for Future Site Preview

• Caching Considerations

About Implementing Future Site Preview
Content contributors can preview in the Oracle WebCenter Sites: Contributor interface
how their assets will display on the online site at a future time. You’ll use asset start
date and end date attributes to enable the Future Site Preview functionality. These
two attributes determine the date range during which assets are available on the
website. Content creators can specify start dates and end dates in Edit screens in the
Contributor interface.

To properly implement the Future Site Preview feature:

• Content contributors must create an appropriate set of assets. See Creating Sets
of Assets for more information.

• The administrator must update the templates that render the assets to include the
tag asset:filterassetsbydate. See Writing Templates for Future Site Preview for
more information.

Creating Sets of Assets
Do you want to display on your site different versions of an item on different dates?
You need multiple assets to accomplish your goal. For example, to run a special
version of a page for a one-day New Year's Day sale event, you need three assets. A
regular page asset, a sales event asset, and a duplicate of the regular page asset.

For example:

• Create the regular page asset, setting its end date to the date before the sale day,
December 31st 23:59:59.

• Create the sales event asset, setting the start date to the beginning of the sale
day, January 1st 00:00:00, and the end date to the end of the sale day, January
1st 23:59:59.

24-1

• Duplicate the regular page asset, setting the start date to the day after the sale,
January 2nd 00:00:00.

After the three assets are created, they can be passed as input to the
asset:filterassetsbydate tag, which will return the asset to render based on the
given date.

For ease of use in searching for the related group of assets for editing, publishing,
and filtering in templates, we recommend that developers designate an attribute (such
as name) which content contributors fill in using a naming convention when creating
related sets of time-sensitive assets.

Writing Templates for Future Site Preview
The asset:filterassetsbydate tag filters assets according to a given date.
Appropriate usage of this tag is critical to Future Site Preview functionality.

To understand the proper use of this tag, see these topics:

• The asset:filterassetsbydate Tag

• The Input List

For more information about the asset:filterassetsbydate tag, see the Tag
Reference for Oracle WebCenter Sites Reference

The asset:filterassetsbydate Tag
The filter tag has the following format:

<asset:filterassetsbydate
inputList="inputListName"
outputList="outputListName"
[date="date value in either yyyy-MM-dd HH:mm:ss OR yyyy-MM-dd format"]>

Notice that the filter tag has two input attributes (inputList and date) and one output
attribute (outputList):

• The inputList attribute specifies the list of assets to be filtered based on the
given date.

• The date attribute is optional. The date attribute is expected to be in either yyyy-
MM-dd HH:mm:ss or yyyy-MM-dd format. The date attribute should be coded to
accept the date value passed from the date picker in the preview screen (use the
__insiteDate variable for this).

• The tag produces an output list (outputList) which contains assets whose
start/end dates enclose the given date.

The tag performs the following steps:

• Checks for the cs.sitepreview property to determine if the template is stored on a
content management system.

• If Future Site Preview is turned off, the system date passes into the date field.

• If Future Site Preview is turned on, the tag routine:

– Disables caching of the current page being rendered (see Caching
Considerations for more on caching).

Chapter 24
Writing Templates for Future Site Preview

24-2

– Accepts the date parameter (passed from the date picker).

– Checks for the appropriate format of the date passed into the tag.

– Filters the input list of assets based on the given date to produce the output
list.

The Input List
The asset:filterassetsbydate tag requires the input list to contain two columns
named assetid and assettype. This input list can be constructed in a variety of ways.

The simplest way to build the input list, and the way Oracle recommends, is for content
contributors to follow a naming convention when filling in the attribute of your choice
(usually the name attribute). The list-building code could then be written using the
asset:search tag or other similar tags to search that attribute for the agreed upon
string and construct the list from the search results.

Another method for locating assets to place into the input list is to use the
Recommendation asset type to hold a list of assets of interest.

Whichever method you use to determine the assets that have to be filtered, use the
listobject tag to construct the input list for the filter tag, as shown in the sample code
below.

This sample code creates a list object inputListName and adds a row containing two
columns: assetid and assettype. The listobject:tolist then creates the input list
called assetInputList. This list is now ready to be passed as input to the filter tag.

<listobject:create name="inputListName" columns="assetid,assettype" />
<listobject:addrow name="inputListName">
<listobject:argument name="assetid" value='<%=ics.GetVar("assetIdVar")%>' />
<listobject:argument name="assettype" value='<%=ics.GetVar("assetTypeVar")%>' />
</listobject:addrow>
<listobject:tolist name="inputListName" listvarname="assetInputList" />

Note that for the sake of simplicity, the code snippet explains the creation of an input
list containing only one row. In practice users typically have multiple rows (usually read
off from the results of asset:search tag or some other list) added to the list with each
row representing an asset that needs to be filtered by a given date.

After creating the input list of assets to be filtered, use the asset:filterassetsbydate
tag as follows:

<asset:filterassetsbydate inputList="assetInputList"
outputList="assetOutputList" date='<%=ics.GetVar("dateValueVariable")%>' />

To pass input from the Future Site Preview date picker to the date attribute, replace
the generic dateValueVariable with _insiteDate.

The tag produces an output list assetOutputList. Read through the list for assets that
clear the filter by date test as follows:

<ics:if condition='<%=ics.GetList("assetOutputList")!=null &&
ics.GetList("assetOutputList").hasData()'%>
<ics:then>
 <ics:listloop listname=assetOutputList>
 <ics:listget listname=assetOutputList fieldname=assetid output=id />
 <ics:listget listname=assetOutputList fieldname=assettype output=type/>

Chapter 24
Writing Templates for Future Site Preview

24-3

<!--
Perform your usual asset load, asset get and other rendering functions using
WebCenter Sites tags here
-->
</ics:listloop>
</ics:then>
</ics:if>

Caching Considerations
Web pages show expected content for the current date only when asset entries are
removed from the cache at the proper times. Therefore, WebCenter Sites includes
start and end dates in the factors it uses to calculate the expiry time for cached pages.

Note:

WebCenter Sites does not support the use of start and end dates with Export
to Disk publishing. When assets are exported to disk, start and end date
attributes are also exported to disk. However, the Export to Disk publishing
method has no mechanism similar to the cache cleaning process (which, in
other publishing methods, automatically removes expired assets from disk).

On a content management system, when a page is previewed, the
asset:filterassetsbydate tag disables page caching for that page. This ensures
that the page being served always displays assets filtered by the date being passed
from the future preview date picker, rather than serving pages from the page cache,
which may have been generated using different date input.

Chapter 24
Caching Considerations

24-4

25
Configuring Sites for Multilingual Support

How would you empower your site users to translate site pages? Configure
multilingual support. You can also create site-specific delivery rules, rules that
determine the language versions of assets to be shown on the online site, and also
handle visitors’ requests for unavailable language versions.

When you configure a site for multilingual support, users in that site gain the ability to
assign locale (language version) designations to assets, and to create translations of
assets.

Topics:

• About Configuring a Site for Multilingual Support

• Working with Locale Filtering

• Planning Multilingual Support for a Site

• Configuring Multilingual Support for a Site

• Tips for Using WebCenter Sites Translation Mechanism

About Configuring a Site for Multilingual Support
Are you looking for answers to questions such as these: what’s the best way to
differentiate semantically identical assets and group locales, how you should use
locales and dimension sets for cross-site multilingual support, what’s the best way to
handle asset relationships and approval dependencies during editing and translation?

See these topics:

• Dimensions

• Dimension Sets

• Cross-Site Multilingual Support

• Master Assets, Translations, and Multilingual Sets

• Translations and Asset Relationships

• Approval Dependencies

Dimensions
Locale designations in WebCenter Sites are implemented through the concept of
dimensions. A dimension is an identifier that differentiates assets that are otherwise
semantically identical. A locale (such as en_US for US English) is thus a type of
dimension that differentiates two translations of the same content.

Dimensions are represented by assets of type Dimension. This asset type must be
enabled by developers on a per-site basis so that users can create Dimension assets
(of subtype Locale), and so that content providers can assign locale designations to
assets they want to translate.

25-1

Note:

Users cannot create translations of assets that have no locale designation
assigned.

Each Dimension asset represents a locale in the site. For example, an en_US
Dimension asset represents US English, and an fr_CA Dimension asset represents
Canadian French. When a content asset is assigned a locale, the assignment is
recorded in the assetType_Dim table for the corresponding asset type.

Publishing content in a given locale requires enabling the locale on the online site, that
is, publishing the Dimension asset representing the locale to the delivery system, and
including the locale in the site's dimension set.

Dimension Sets
When you have created your locales, we recommend that you create at least one
dimension set. A dimension set is a grouping of dimension assets (locales), which
affects the delivery of content to the site visitor in the following ways:

• A dimension set defines which locales are designated as enabled for the online
site. In other words, a dimension set determines the languages in which content
will be shown to the visitors. For example, one dimension set would contain
European languages, another Asian languages, and so on.

• A dimension set defines how to filter content based on locale. For example, how
to handle content that does not exist in the visitor's preferred language at the time
the visitor requests it. If you do not publish a dimension set to the delivery system,
locale filtering will not function. For information on locale filtering, see Working with
Locale Filtering.

Note:

Dimension sets do not affect the operation of WebCenter Sites user
interfaces.

For locale filtering to function on the online site, you must approve and publish to the
delivery system both the DimensionSet assets and the Dimension assets referenced
by each dimension set. (Because referenced Dimension assets are dependents of the
DimensionSet assets referencing them, they must be approved with their respective
DimensionSet assets.)

Cross-Site Multilingual Support
If you are setting up multilingual support in multiple sites, you can choose to implement
one of the following scenarios:

• Create the locales, but no dimension sets

This option allows content providers to manage content in multiple languages, but
does not enable render-time locale filtering. Use this option only if translations in
all required languages will exist for each asset from the very beginning.

Chapter 25
About Configuring a Site for Multilingual Support

25-2

• Create the locales and a dimension set, and share them across your sites

This option provides the simplest way of enabling multilingual support on multiple
sites. Sites set up in this way share the properties stored in the dimension set
(locales enabled for display on the online site, the locale filtering method, and, if
applicable, the fallback hierarchy (the path the Hierarchical filter traverses when
looking up asset translations at render time). If you are creating a bare-bones site
that you will replicate into multiple target sites, it is best to share your locales to the
target sites.

• Create separate locales and dimension sets for each site

This option affords the most flexibility, at the cost of increased configuration
complexity. Sites set up this way benefit from the fact that properties such as
locale filter type or fallback hierarchy can be tailored to each site.

Note:

While creating duplicate Dimension assets to represent the same
language in multiple sites is possible, it is not recommended, as it
introduces unnecessary complexity.

• A mixture of the latter two options

This option provides the right balance between flexibility and configuration
complexity. As a possible best practice, you would create a pool of unique locales,
share the locales required by each site from that pool, and share or create
dimension sets for each site as needed.

Master Assets, Translations, and Multilingual Sets
When an asset is assigned a locale for the first time, it gains master, or dimension
parent, status. Master status allows the formation of a multilingual set (a group of
assets whose content is semantically identical, but exists in different languages. (Note
that this is not the same as a dimension set; a dimension set only affects the online
site and the way assets are rendered.)

Note:

The terms master asset and dimension parent are equivalent. Master asset
is displayed in WebCenter Sites's user interfaces; dimension parent is used
in the Tag Reference for Oracle WebCenter Sites Reference, database table
names (such as assetType_DimP), and element code.

For example, when you designate an Article asset as US English (en_US), and create
translations of it in whichever locales are enabled in the site (such as French (fr_CA)
and German (de_DE)), the translations point to their dimension parent (the US English
asset) to indicate they are semantically equivalent to the master and one another.

When you create a translation of an asset with master status, WebCenter Sites copies
the asset and assigns the locale of your choice to the copy. You then enter the
translated content and save the translation as a new asset.

Chapter 25
About Configuring a Site for Multilingual Support

25-3

At this point, the source asset and its translation are linked into a multilingual set,
and the translation adopts the source asset as its master, or dimension parent. Any
member of the set that is not the master can be given master status; however, only
one set member at a time can be the master.

The linking is accomplished through the assetType_DimP table for the asset type. The
table stores the following information:

• ID of the master (dimension parent) asset

• ID of the translation asset

• ID of the locale dimension asset assigned to that translation

Even though WebCenter Sites interfaces allow you to initiate the creation of a
translation from either the master asset or any of its existing translations, all
translations in the multilingual set always point to the dimension parent (master) asset.

Note:

If a locale-aware asset is being revision-tracked, changes to asset locale
data (such as locale designation or master status) do not generate a new
version of the asset.

Translations and Asset Relationships
The way asset relationships are handled when an asset is translated is summarized in
this table:

Table 25-1 Asset Relationships

Relationship Type Behavior

Associations When an asset containing associations is translated, all assets
associated with the source asset are automatically associated with
the translation. You then have the choice to translate the associated
assets and associate the translated versions with the translated
parent asset.

Collections When you create a translation of a Collection asset, the new
Collection asset retains the member assets of the source asset.
You then have the choice to translate the member assets and place
the translated versions in the new Collection asset, replacing the
member assets carried over from the old collection.

Static Lists
Recommendations

When you create a new language version of a Static Lists
recommendation, the new Recommendation asset retains the
member assets of the source asset. You then have the choice
to translate the member assets and place the translated versions
in the new Recommendation asset, replacing the member assets
carried over from the old collection.

Dynamic Lists
Recommendations

Since Dynamic Lists recommendations are populated by element
code, they are not affected.

Chapter 25
About Configuring a Site for Multilingual Support

25-4

Table 25-1 (Cont.) Asset Relationships

Relationship Type Behavior

Related Items
Recommendations

When an asset containing Related Items associations is translated,
all assets associated with the source asset are automatically
associated with the translation. You then have the choice to
translate the associated assets and associate the translated
versions with the translated parent asset.

Asset-Type Attributes When an asset containing associations through asset-type
attributes is translated, all assets associated with the source asset
are automatically associated with the translation. You then have
the choice to translate the associated assets and associate the
translated versions with the translated parent asset.

Embedded Links Embedded links are not affected. When an asset containing
embedded links is translated, you must manually update the links
to point to the corresponding translations of the linked content (if
such translations exist).

For information on handling asset relationships at render time, see Working with
Locale Filtering.

Approval Dependencies
An approval dependency exists between two assets when editing one of the assets
causes the other's approval status to change. This table summarizes the approval
dependencies affecting localized assets:

Table 25-2 Approval Dependencies

Dependency Effect on Asset Approval

An Exists dependency exists
between a localized asset and the
Dimension asset representing the
assigned locale.

To approve a localized asset for publishing, the
corresponding Dimension asset must also be approved.

In a multilingual set, an Exists
dependency exists between the
master asset and each translation
linked to it.

When you create the first translation of an asset, you
must approve both the asset and its translation.

To approve a translation, you must also approve the
corresponding master asset, unless the master asset
has been approved.

You must reapprove all members of the set if:

• You add a new translation to, or delete an existing
translation from the set.

• You edit the set's master asset.
• You designate another member of the set as the

master.

An Exists dependency exists
between a DimensionSet asset and
the Dimension assets representing
the locales enabled in that dimension
set.

To approve a dimension set, the corresponding
Dimension assets must also be approved.

Chapter 25
About Configuring a Site for Multilingual Support

25-5

Working with Locale Filtering
On the online site, visitors may choose a language in which the assets of their interest
have not yet been translated. You can use a locale filter that decides which translation
should show on the site in the absence of the visitor’s preferred language and in the
current circumstances.

For example, you could let the business logic decide what to do if a requested asset
does not exist in the requested language.

By using locale filtering, you can also spread editorial work over time by allowing
content providers to create the required translations after the original content is
published to the online site. Locale filtering allows the site to automatically pick up
the missing translations as soon as they are published to the delivery system.

Keep in mind that locale filtering introduces additional load on the delivery system. The
amount of additional load depends on the complexity of the filtering logic.

This section includes the following topics:

• Options for Implementing Asset Relationships Through Locale Filtering

• Understanding the Included Locale Filters

• About Using Custom Locale Filters

• Accounting for Compositional Dependencies

• About Adding Filtering Support to Your Site

Options for Implementing Asset Relationships Through Locale Filtering
The way you choose to implement locale filtering will have an influence on how asset
relationships on your site are structured, and vice versa, depending on the way you
want the online site to behave.

You can choose to implement one of the following options:

• Maintain different asset relationship trees for each locale

When rendering assets, this model renders whatever assets are associated with
the requested asset.

For example, if an asset exists in English and French, and each version has
a unique set of associated assets, each version is rendered with its respective
associated assets. Filtering is only used to look up and deliver a version of
the requested asset matching the language preference specified by the visitor;
the associated assets are expected to have been translated into all required
languages.

This model allows for completely independent content for each language. It is
used in the First Site II sample site.

• Use the same asset relationship tree for all locales

When rendering assets, this model substitutes the associated assets of the
requested asset with the assets associated with a specific language version of
the requested asset, regardless of the language preference specified by the visitor.

Chapter 25
Working with Locale Filtering

25-6

For example, if an asset exists in English and French, each version has a unique
set of associated assets, and the visitor specified French as their language
preference, filtering will look up and deliver the French version of the requested
asset, but it will substitute the associated assets of the English version in place of
those of the French version (assuming the language version from which filtering is
to derive associations is English).

This model ensures consistent content across all languages.

• A mixture of the two models

Allows for the greatest amount of flexibility and customization for your site. The
optimal proportion between the two models will depend on the intended behavior
of your site.

Understanding the Included Locale Filters
WebCenter Sites ships with the following locale filters:

• The Simple Filter

• The SimpleLookup Filter

• The Hierarchical Filter (also known as the Fallback filter)

You also have the option to implement custom locale filters, if desired. For information
about custom filters, see About Using Custom Locale Filters.

Note that depending on the type of filter you choose to implement, the assets being
filtered must satisfy one, or both of the following conditions:

• Assets must have locale designations assigned. Assets without locale
designations will be ignored by locale filters.

• Assets that are translations of one another must be linked into multilingual sets
(that is, designated as translations of one another through a master asset).
Otherwise, the filters are not able to perform the necessary translation lookups.

The Simple Filter
The Simple filter is a possible choice for a site that should only be rendered in
one language, but whose content exists in multiple languages. The filter checks the
following:

• Whether the requested asset is in the language specified by the visitor

• Whether the locale of the asset is listed in the site's dimension set

If both conditions are met, the filter passes the asset to the template for rendering;
otherwise, nothing is rendered.

The Simple filter has the least impact on delivery system performance, but increases
the amount of editorial work that needs to be done, as assets must exist in the
required language versions or they are not displayed on the online site.

The SimpleLookup Filter
The SimpleLookup filter is ideal for a site that should only be rendered in one
language, but whose content may exist in multiple languages, and for which there

Chapter 25
Working with Locale Filtering

25-7

is no guarantee that all of the necessary translations exist at render time. The filter
checks the following:

• Whether the requested asset is in the language specified by the visitor

• Whether the locale of the asset is listed in the site's dimension set

If the requested asset is not in the visitor's preferred language, the filter looks up a
suitable replacement by checking the asset's translations. If the filter finds a matching
translation, it passes it to the template; otherwise, nothing is rendered. (The filter will
also return nothing if the locale of the translation is not included in the site's dimension
set.)

This filter offers a reasonable balance between performance and functionality. While
the lookup queries slightly increase the load on the delivery system, the amount of
editorial work done to create assets can be reduced, as the required translations
can be created after the original content is published to the online site. The lookup
mechanism will pick up the missing translations as soon as they are published to the
delivery system.

The Hierarchical Filter
The Hierarchical filter checks whether the locale of the requested asset matches
the locale requested by the visitor. If the locales do not match, the filter checks the
asset's translations to see if a suitable replacement exists. If the filter finds a matching
translation, it passes it to the template; otherwise, it substitutes translations of the
requested asset according to the fallback hierarchy you set up when you configure the
site's dimension set. The fallback hierarchy determines which language versions the
filter should substitute for the requested asset, and in what order.

For example, consider the following hierarchy:

• en_US (US English)

• de_DE (German)

– de_CH (Swiss German)

– de_AT (Austrian German)

• fr_FR (French)

– fr_BE (Belgian French)

– fr_CA (Canadian French)

• en_UK (British English)

In our example, when the visitor requests an asset in Swiss German (de_CH), the filter
looks up the asset's translations and if it finds a Swiss German version of the asset, it
passes that version to the template. If the filter cannot find a Swiss German version,
it falls back to the next best locale in the hierarchy path, German (de_DE). If, in turn,
no German translation exists, the filter follows the path specified in the hierarchy until it
reaches the top of the tree. If no match is found in the process, nothing is rendered.

Note that the above example describes a situation in which the visitor specifies a
single preferred language. If the user specifies multiple preferred languages (in most
cases, in the form of an ordered list), the filter attempts to find a match in the fallback
hierarchy for the visitor's most preferred language. If no match is found, the filter
checks the next language on the visitor's list, until a match in the fallback hierarchy
is found. When that happens, the filter attempts to substitute translations of the

Chapter 25
Working with Locale Filtering

25-8

requested asset by tracing a path from the matching locale to the top of the fallback
tree, as described earlier.

For example, if the user's preferred languages are Japanese, French, and English
(in that order), the filter attempts to locate Japanese in its fallback hierarchy. Since
Japanese is not in the hierarchy, the filter then attempts to locate French. French is in
the hierarchy, so the filter traces a path from French to the root node of the tree, and
attempts substitution according to that path, as illustrated by the example earlier in this
section.

While powerful and convenient, the hierarchical filter has the following drawbacks:

• The additional database queries run by the filter tax the performance of the
delivery system. To minimize the performance hit, editorial work should be done to
ensure that content exist in as many of the required languages as possible, so that
the filter's activity is minimized. (You may also choose to use a different filter.)

• Control over which assets to display on the online site is put exclusively in the
hands of the site developer or administrator. This is because the filter follows the
fallback tree configured in the dimension set, rather than the preference order
specified by the site visitor (assuming the site is set up to accept multiple language
preferences from each visitor).

About Using Custom Locale Filters
Depending on the design of your site, you may decide to create custom filters. For
example, your site design might call for a hierarchical (fallback) filter that favors the
locale priority specified by the visitor, rather than the one defined in the dimension set.
In such cases, a field in the Edit form for the DimensionSet asset lets you specify a
custom filter class.

Accounting for Compositional Dependencies
If you decide to incorporate locale filtering on your site, you must account for the
additional compositional dependencies that are introduced as a result. Compositional
dependencies determine how pages are cached on your delivery system.

This section includes the following topics:

• Asset Lookup Chain

• Caching Rules

Asset Lookup Chain
When using locale filtering to look up a translation of an asset, the following factors
determine how pages are cached, based on which assets are loaded during the
lookup process:

• The filtering logic employed

• The page and asset from which the lookup request originates

• The language preference specified by the visitor

A cached page containing the requested asset is dependent on all assets loaded
during the lookup process. Thus, if an asset that is loaded during the lookup process is
modified, the affected page is flushed from the cache.

Chapter 25
Working with Locale Filtering

25-9

For example, consider the SimpleLookup filter and the following multilingual set:

• en_US (master)

• fr_FR (translation)

• de_DE (translation)

If a visitor requests a page containing the French version, but the visitor's language
preference is German, the lookup chain is as follows:

fr_FR > en_US > de_DE

In this example, all three assets are loaded, because the filter must first load the
master asset linked to the French version, and then use the master asset to look up
the German version. Thus, if any of these three assets is modified, the affected page is
flushed from the cache.

If, on the other hand, the user requested the US English version, which is the master
asset of the set, then the lookup chain would be shorter:

fr_FR > en_US

In such case, the French and US English versions are loaded, but the German version
is not. Thus, modifying the German version would not cause the corresponding page
to be flushed from the cache, but modifying the French or US English versions would.

For a detailed explanation of the lookup mechanisms employed by locale filters
included with WebCenter Sites, see Understanding the Included Locale Filters.

Caching Rules explains the caching rules applicable to multilingual assets.

Caching Rules
Once the translation lookup occurs and the affected page is cached, the page is
flushed from the cache whenever one of the following occurs:

• A new language is added to the multilingual set

• A translation that was part of the lookup chain when the page was rendered is
edited

• A translation that is a member of the multilingual set is deleted

• The set's master asset is edited

• Another member of the set is designated as the master

About Adding Filtering Support to Your Site
To add support for locale filtering to your site, you must modify the templates and
element code used on your site.

When the template code fetches an asset via the asset's c/cid values, the locale filter
executes its business logic on the incoming c/cid values and returns the resulting
c/cid values (or nothing) to the template for rendering.

The structure of your site will influence how you implement locale filtering in your
templates, and vice versa. It will also determine the behavior of your site in different
scenarios.

Chapter 25
Working with Locale Filtering

25-10

For example, imagine five articles, each existing in two languages, en (English), and
fr (French). The articles would be a1en, a1fr, a2en, a2fr, and so on. We can decide
to put these articles into a collection and implement locale filtering in one of the
following ways:

• Create an English collection, c1en, and assign all of the English articles to it. This
way, before we render the collection, we would simply filter the c/cid of the c1en
asset, then render its children without filtering their c/cid values, because we trust
the c1en collection to be in a single language.

• Create a multilingual collection (without assigning a locale to it) and add the
articles in whatever languages are desired. Then, when rendering each article,
filter the article c/cid values so that the article is rendered in the locale specified
by the visitor.

The rest of this section provides code examples based on the FirstSiteII sample
site. We recommend that you examine the FirstSiteII code to get an idea of how it
multilingual support.

This section includes the following topics:

• About Adding Filtering to Templates

• About Obtaining and Maintaining a Visitor's Locale Preference

• About Filtering Search Results

About Adding Filtering to Templates
Usually, you would place your filter code into a utility element and call the element at
the top of the template to process the c/cid values.

The following example shows how the FSIILayout template calls the filter code stored
in the FSIICommon/Multilingual/Filter element asset via the render:lookup tag:

<%-- Execute the Dimension filter to look up the translated asset that
corresponds to the locale that the visitor requested. --%>
<render:lookup site='<%=ics.GetVar("site")%>' varname="Filter" key="Filter"
match=":x" tid='<%=ics.GetVar("tid")%>' />
<render:callelement elementname='<%=ics.GetVar("Filter")%>' scoped="global"/>

About Obtaining and Maintaining a Visitor's Locale Preference
For filtering to work, you have to allow the visitor to specify a preferred language
(locale). This preference must then be propagated throughout the entire site (that is,
passed to all the templates).

The example below shows how this is accomplished in the FSIIWrapper element. The
last section of this example shows how the locale variable is set by taking the value
from the session variable (earlier in the example, we ensure that the session variable
exists).

<%-- The session variable locale refers to the id of the dimension with the
subtype of Locale that specifies which language the site is to be rendered in.
Users can select the locale of their choice from a menu on every page of the
site, and once selected, it is stored in session. A default locale is mapped to
this CSElement and is set if it has not already been set. --%>
<ics:if condition='<%=ics.GetSSVar("preferred_locale") == null%>'>
<ics:then>
<render:lookup site='<%=ics.GetVar("site")%>' varname="default:locale:name"

Chapter 25
Working with Locale Filtering

25-11

key='DefaultLocale' ttype="CSElement" tid='<%=ics.GetVar("eid")%>' match=":x"/>
<asset:load name="defaultLocale" type="Dimension" field="name"
value='<%=ics.GetVar("default:locale:name")%>'/>
<asset:get name="defaultLocale" field="id" output="default:locale:id"/>
<ics:setssvar name="preferred_locale" value='<%=ics.GetVar("default:locale:id")
%>'/>
</ics:then>
</ics:if>
<%-- Call the wrapped child page. There is no need to look up the template
or to enable any special PageBuilder functionality, so we can use the
render:satellitepage tag in this situation. --%>
<render:satellitepage pagename='<%=ics.GetVar("childpagename")%>'
packedargs='<%=ics.GetVar("packedargs")%>'>
<render:argument name='c' value='<%=ics.GetVar("c")%>'/>
<render:argument name='cid' value='<%=ics.GetVar("cid")%>'/>
<render:argument name='p' value='<%=ics.GetVar("p")%>' />
<render:argument name="locale" value='<%=ics.GetSSVar("preferred_locale")%>'/>
</render:satellitepage>

About Filtering Search Results
If your online site contains search functionality, you may choose to filter the search
results returned to the visitor, based on the visitor's language preference.

The following example shows how the Page/SearchDetailView template filters an
IList of search results so that the query can go against all languages but only return
defined results:

<%-- look up the dimension set and filter the ProductList results --%>
<asset:load name="GlobalDimSet" type="DimensionSet" field="name"
value='<%=ics.GetVar("GlobalDimSet")%>' />
<dimensionset:filter name="GlobalDimSet" tofilter="ProductList"
list="ProductList">
<dimensionset:asset assettype="Dimension" assetid='<%=ics.GetVar("locale")%>'/>
</dimensionset:filter>

See the Tag Reference for Oracle WebCenter Sites Reference. Additionally, examine
the code in the FirstSiteII sample site to see how it implements multilingual support.

Planning Multilingual Support for a Site
Before you start configuring multilingual support on your site, consider how many
languages you need to implement at present, whether you would like to share
locale and dimension sets between sites, consider how you should handle asset
relationships, and so on. Make these decisions in agreement with your site
administrators.

1. Determine how many languages to initially implement on your site (or sites), based
on your organization's content management needs. You can either:

• Build a site (or sites) to support a single language initially, and add support for
additional languages as the need arises.

• Plan ahead for all the languages you expect to incorporate across all of your
sites and create the appropriate locales in advance.

2. Determine whether you will share existing locales and dimension sets to the new
site (or sites), or create separate ones. See Cross-Site Multilingual Support.

Chapter 25
Planning Multilingual Support for a Site

25-12

3. Decide how asset relationships are going to be handled at render time with
respect to locales, and choose the locale filtering method(s) appropriate to your
decision. The choices you make will have to strike a balance between levels of
automation, delivery system performance, and editorial workload, and are thus
best made in agreement with your site administrators. See Working with Locale
Filtering. Note the following:

• Different filtering methods provide different levels of automation at the cost
of a performance hit on the delivery system. The more complex the filter,
the higher the performance hit. For example, the SimpleLookup filter provides
better performance than the Hierarchical filter.

• Depending on the filtering method you implement, editorial work on site
content can be spread over time, as translations can be created after the
original content is created and published to the live site. The filtering logic you
implement will decide what to do content that does not yet exist in the required
language versions.

4. If you are converting a monolingual site to a multilingual site, obtain the element
code you will use to assign the default locale to the assets in the site. Sample
code based on the FirstSiteII sample site is provided in Sample Element Code for
Bulk-Assigning a Default Locale.

Note:

When replicating a site containing multilingual sets, make sure the
master assets are available on the target site (by either sharing or
copying). Otherwise, the set members will no longer be linked as
translations of each other on the target site.

Configuring Multilingual Support for a Site
First thing you do is enable Dimension and DimensionSet asset types. And then
you begin creating dimension sets and locales which you may share with other sites
if you’ve planned to do so. When you’re configuring multilingual support, you also
configure a fallback hierarchy.

These topics describe the procedures necessary to configure a site for multilingual
support:

• Configuration Quick Reference

• Enabling the Dimension and DimensionSet Asset Types

• Enabling the Locale Subtype of the Dimension Asset Type

• How To Create a Locale

• How to Share a Locale to Another Site

• How To Create and Configure a Dimension Set

• How To Share a Dimension Set to Another Site

• How To Configure a Locale Filter

• How to Configure the Fallback Hierarchy of the Hierarchical Filter

• How to Bulk-Assign a Default Locale to Assets in a Site

Chapter 25
Configuring Multilingual Support for a Site

25-13

Configuration Quick Reference
This section provides an overview of the steps necessary to configure multilingual
support for a site. Use this list as a quick reference during the configuration process.

1. Make the necessary decisions and preparations as described in Planning
Multilingual Support for a Site.

2. Enable the Dimension and DimensionSet asset types on the site. For instructions,
see Enabling the Dimension and DimensionSet Asset Types.

3. Enable the Locale subtype of the Dimension asset type on the site. For
instructions, see Enabling the Locale Subtype of the Dimension Asset Type.

4. Create or share locales. For instructions, see the following sections:

• For creating new locales, see How To Create a Locale.

• For sharing existing locales, see How to Share a Locale to Another Site.

For help in determining whether to create locales or share existing ones, see
Cross-Site Multilingual Support.

5. Create or share a dimension set. For instructions, see the following sections:

• For creating a new dimension set, see How To Create and Configure a
Dimension Set.

• For sharing an existing dimension set, see How To Share a Dimension Set to
Another Site.

For help in determining whether to create a new dimension set or share an
existing one, see Cross-Site Multilingual Support.

6. (Optional) If you are converting an existing monolingual site to a multilingual site,
execute element code that assigns a default locale to each asset in the site. For
instructions, see How to Bulk-Assign a Default Locale to Assets in a Site. The
section includes sample code which you can customize for your site.

7. Modify the templates used in the site to include support for the locale filter you
selected when you configured the dimension set. For an overview of the process,
see About Adding Filtering Support to Your Site.

Note:

In addition to locale filtering, you will have to implement the following site
functionality:

• Allow the visitor to specify their language preference.

• Propagate the visitor's language preference throughout the site (by
passing it to all templates on the site).

• Maintain the visitor's language preference for the duration of the
session.

Chapter 25
Configuring Multilingual Support for a Site

25-14

Enabling the Dimension and DimensionSet Asset Types
Before you can create Dimension and DimensionSet assets in your site, you must
enable the corresponding asset types and subtypes. This procedure describes how
to enable the Dimension and DimensionSet asset types on your site. The following
procedure describes how to enable the Locale subtype of the Dimension asset type on
your site.

1. Open the Admin interface.

2. Under the General Admin tree, expand the Admin node.

3. Under the Admin node, drill down the following hierarchy:

a. Expand the Sites node.

b. Under the Sites node, expand the node corresponding to the site.

c. Under the site node, expand the Asset Types node.

d. Under the Asset Types node, double-click the Enable node.

WebCenter Sites displays the Enable Asset Types form.

4. In the Enable Asset Types form, select the check boxes next to the Dimension
and DimensionSet asset types.

5. Click Enable Asset Types.

WebCenter Sites displays the Start Menu Selection form.

6. In the Start Menu Selection form, select all of the check boxes, and click Enable
Asset Types.

WebCenter Sites displays a message confirming the asset types have been
enabled for the site.

Enabling the Locale Subtype of the Dimension Asset Type
Before you can assign locales to assets in your site, you must enable the Locale
subtype of the Dimension asset type on your site.

1. Open the Admin interface.

2. Under the General Admin tree, expand the Admin node.

3. Under the Admin node, drill down the following hierarchy:

a. Expand the Asset Types node.

b. Under the Asset Types node, expand the Dimension node.

c. Under the Dimension node, double-click the Subtypes node.

WebCenter Sites displays the Subtypes for Asset Type: Dimension form.

4. In the form, click the Edit (pencil) icon next to the Locale subtype.

WebCenter Sites displays the Edit Dimension Subtype: Locale form.

5. In the Sites field, select Ctrl+click for the site to enable the Locale subtype.

Chapter 25
Configuring Multilingual Support for a Site

25-15

Note:

You must select Ctrl+click the name of your site to keep the existing site
selections intact; if you simply click the site name, other selected sites (if
any) will be deselected.

6. Click Save.

How To Create a Locale

Note:

If the locale you want to create designates a language that is represented
by a Dimension asset in another site in your WebCenter Sites system, share
the existing Dimension asset representing that language to your current site
instead to avoid redundancy.

To add a new locale to your site, create a Dimension asset of subtype Locale
representing a locale, by performing the following steps:

1. In the button bar, click New.

2. In the list of asset types, click New Dimension.

3. WebCenter Sites displays the New Dimension form.

4. In the New Dimension form, do the following:

In the Name field, enter a descriptive name for the locale. It is recommended that
you use the following convention as a best practice:

xx_YY

where:

• xx is the two-letter ISO 639-1 language code (for example, fr for French)

• YY is the two-letter ISO country code (for example, CA for Canada)

To complete the above example, the name fr_CA would denote Canadian French.

5. In the Description field, enter a description of the language this locale represents.

6. In the Subtype drop-down list, select Locale.

7. Click Save.

How to Share a Locale to Another Site
To share a locale to another site, you must share the corresponding Dimension asset.

1. Open the Admin interface and select the site containing the Dimension assets for
the locales you want to share.

2. Find the Dimension asset and open its Inspect form:

a. In the button bar, click Search.

Chapter 25
Configuring Multilingual Support for a Site

25-16

b. In the list of asset types, click Find Dimension.

c. Enter search criteria (if any), and click Search.

d. In the list of search results, navigate to the asset and click its name.

WebCenter Sites opens the asset in the Inspect form.

3. In the action bar, select Share Dimension.

WebCenter Sites displays the Share Dimension form.

4. In the Share Dimension form, select the check boxes next to the sites to which
you want to share the Dimension asset. (To share the asset to all sites on your
WebCenter Sites system, select the All Sites check box.)

5. Click Save Changes.

WebCenter Sites displays a message confirming the asset is now available in the
sites you selected.

How To Create and Configure a Dimension Set
To create and configure a Dimension set:

1. Add the Dimension assets (locales) you want to include in the dimension set to
your Bookmarks by doing the following:

a. In the button bar, click Search.

b. In the Search form, click Find Dimension.

c. Enter search criteria (if any) and click Search.

d. In the list of search results, navigate to the Dimension assets and select their
check boxes.

e. Click Add to My Bookmarks.

2. Create and configure the dimension set by doing the following:

a. In the button bar, click New.

b. In the New asset list, click New DimensionSet.

WebCenter Sites displays the New DimensionSet form.

c. In the Name field, enter a descriptive name for the dimension set.

d. In the tree, select the Bookmarks tab.

e. In the Bookmarks tab, select a locale you want to add to the dimension set
and click Add Selected Items. Repeat this step for each additional locale you
want to add.

f. In the Dimension Filter Class field, select the locale filter type. The
Advanced option lets you specify a custom filter class.

g. (Optional) If you selected Advanced in step 2, enter the name of the custom
filter class into the text box that opens.

h. When you are finished, click Save Changes.

i. (Optional) If you selected the Hierarchical filter in step 2, complete the
steps in How to Configure the Fallback Hierarchy of the Hierarchical Filter
to configure the filter's fallback hierarchy.

Chapter 25
Configuring Multilingual Support for a Site

25-17

How To Share a Dimension Set to Another Site
To share a dimension set to another site, you must share the corresponding
DimensionSet asset.

1. Open the Admin interface and select the site containing the DimensionSet asset
you want to share.

2. Find the DimensionSet asset and open its Inspect form:

a. In the button bar, click Search.

b. In the list of asset types, click Find DimensionSet.

c. Enter search criteria (if any), and click Search.

d. In the list of search results, navigate to the asset and click its name.

WebCenter Sites opens the Inspect form for the asset.

3. In the action bar, select Share DimensionSet.

WebCenter Sites displays the Share DimensionSet form.

4. In the Share DimensionSet form, select the check boxes next to the sites to which
you want to share the DimensionSet asset. (To share the asset to all sites on your
WebCenter Sites system, select the All Sites check box.)

5. Click Save Changes.

6. WebCenter Sites displays a message confirming the asset is now available in the
sites you selected.

How To Configure a Locale Filter
Usually, you configure the locale filter when you create the dimension set for your site.
To make changes to the locale filter configuration in an existing dimension set, do the
following:

1. Find the dimension set whose locale filter you want to configure and open in the
Inspect form:

a. In the button bar, click Search.

b. In the Search form, click Find DimensionSet.

c. Enter search criteria (if any) and click Search.

d. In the list of search results, navigate to the asset and click its name.

WebCenter Sites opens the asset in the Inspect form.

2. In the Dimension Filter Class field, select the option next to the filter type. The
Advanced option lets you specify a custom filter class.

3. (Optional) If you selected Advanced in step 2, enter the name of the custom filter
class into the text field that displays.

4. Click Save Changes.

5. (Optional) If you selected the Hierarchical filter in step 2, complete the steps in
How to Configure the Fallback Hierarchy of the Hierarchical Filter to configure the
filter's fallback hierarchy.

Chapter 25
Configuring Multilingual Support for a Site

25-18

How to Configure the Fallback Hierarchy of the Hierarchical Filter
If you selected the Hierarchical (Fallback) locale filter when configuring your dimension
set, perform the following steps to configure the filter's fallback hierarchy:

1. If you plan to add new locales or rearrange existing locales in the fallback
hierarchy, add the Dimension assets representing the locales to be included in
the hierarchy to your Bookmarks by doing the following:

a. In the button bar, click Search.

b. In the Search form, click Find Dimension.

c. Enter search criteria (if any) and click Search.

d. In the list of search results, navigate to the Dimension assets and select their
check boxes.

e. Click Add to My Bookmarks.

2. Find and open in the Inspect form the dimension set that contains the Hierarchical
filter you want to configure:

a. In the button bar, click Search.

b. In the Search form, click Find DimensionSet.

c. Enter search criteria (if any) and click Search.

d. In the list of search results, navigate to the DimensionSet asset and click its
hyperlinked name.

WebCenter Sites displays the Inspect form for the DimensionSet asset.

3. When configuring the fallback hierarchy, note the following:

• A locale can appear in the fallback hierarchy only once.

• If you have to delete a locale from the hierarchy, click the Delete (trash can)
icon next to the locale node.

• If you have to change the position of a locale in the hierarchy, delete it, then
add it under the parent node.

To configure the locale hierarchy:

1. In the Dimension Filter Class field, click Configure Locale Hierarchy.

WebCenter Sites displays the Configure Locale Hierarchy form.

2. In the Configure Locale Hierarchy form, click Edit.

WebCenter Sites displays an editable version of the form.

3. In the tree, select the Bookmarks tab.

4. (Optional) If the hierarchy is empty, select in the Bookmarks tab the locale
you want to designate as the top node of the fallback hierarchy, then click Add
Selected Items.

5. Select a parent node for the locale you want to add to the hierarchy.

If you are building a hierarchy from scratch, your only choice will be the top-level
node you added in step 4.

Chapter 25
Configuring Multilingual Support for a Site

25-19

When building your hierarchy, keep in mind the direction in which the fallback
process occurs (from most-specific to least-specific; that is, towards the root node
of the tree).

6. In the Bookmarks tab, select the locale you want to appear under the parent node
you selected in step 5, then click Add Selected Items.

7. Repeat steps 5 and 6 for each additional locale you want to add to the hierarchy.

8. When your fallback hierarchy is complete, click Save Changes.

How to Bulk-Assign a Default Locale to Assets in a Site
If you are converting a monolingual site to a multilingual site, you must assign a default
locale to all assets in the site. The fastest way to accomplish this is to execute an
element that assigns the default locale to the assets.

For your convenience, sample element code for this procedure is provided Sample
Element Code for Bulk-Assigning a Default Locale. The sample code is intended as an
example, and will have to be customized for your site.

1. Create a CSElement asset to hold the element code that will assign a default
locale to your assets.

2. Create a SiteEntry asset that references the CSElement asset you created in step
1.

3. Call the SiteEntry asset you created in step 2 in a URL, as follows:

http://<host>:<port>/<context>/ContentServer?pagename=
<siteentry_name>

where:

• <host> is the host of your WebCenter Sites system

• <port> is the port number on which WebCenter Sites is listening for
connections

• <context> is the application context root assigned to the WebCenter Sites
application.

• <siteentry_name> is the name of the SiteEntry asset you created in step 2.

When the element code completes execution, check to ensure your assets have
the locale assigned. If not, check the element code for possible errors.

Sample Element Code for Bulk-Assigning a Default Locale
This section contains sample element code written for the FirstSiteII sample site. The
code does the following:

1. Creates a Dimension asset named en_US to represent your default locale
designation within the site (US English in this example).

2. Assigns this default locale to all Page assets within the site.

Chapter 25
Configuring Multilingual Support for a Site

25-20

Note:

The code in this section is provided as an example. If you decide to use
it, be sure to customize it for your site. Test the code before deploying it;
no error checking is included in this example.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="asset" uri="futuretense_cs/asset.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="user" uri="futuretense_cs/user.tld"%>

<cs:ftcs>

<%-- Record dependencies for the SiteEntry and the CSElement --%>
<ics:if condition='<%=ics.GetVar("seid")!=null%>'>
<ics:then>
<render:logdep cid='<%=ics.GetVar("seid")%>' c="SiteEntry"/>
</ics:then>
</ics:if>

<ics:if condition='<%=ics.GetVar("eid")!=null%>'>
<ics:then>
<render:logdep cid='<%=ics.GetVar("eid")%>' c="CSElement"/>
</ics:then>
</ics:if>

<%-- log in as firstsite--%>
<user:login username="firstsite" password="firstsite"/>
<%-- create the Dimension asset (this can be done manually) --%>
<asset:create name="en_US" type="Dimension"/>
<asset:setsubtype name="en_US" value="Locale"/>
<asset:set name="en_US" field="name" value='en_US'/>
<asset:set name="en_US" field="description" value='US English'/>
<%-- enter your site's pubid below --%>
<ics:setvar name="primarypubid" value="1112198287026"/>
<asset:save name="en_US"/>

<%-- look up the id of the Dimension asset you just created --%>
<asset:get name="en_US" field="id" output="en_US.id"/>

<%-- get a list of all Content_C assets in the site, and assign a dimension to
each of them --%>
<asset:list type="Content_C" list="allContentAssets" pubid="1112198287026"/>
<ics:listloop listname="allContentAssets">
<ics:listget listname="allContentAssets" fieldname="id" output="id"/>
<asset:load type="Content_C" objectid='<%=ics.GetVar("id")%>' name="tempName"
editable="true"/>
<asset:adddimension name="tempName" dimensionid='<%=ics.GetVar("en_US.id")%>'/>
<asset:save name="tempName"/>
</ics:listloop>
</cs:ftcs>

Chapter 25
Configuring Multilingual Support for a Site

25-21

Tips for Using WebCenter Sites Translation Mechanism
Here are some tips that you can use to address some common translation scenarios
on your site.

The common two basic scenarios are:

• Editorial teams create and publish content in a primary language first, and then
translate and publish translations/localizations as needed in an ad-hoc manner.

• Editorial teams create content and translate it together as a package. When
completed, they publish the package all at once.

What Do Customers Want?
• Ability to create content in a master language, wire it up to other related content

(which may or may not be in the master language), then either publish it and
translate it later, or

• Translate the content and other related bits and pieces, and then publish the whole
as a single package.

• Flexibility to apply country-specific rules to the rendered content.

Use of WebCenter Sites Translation Mechanism to Effectively Meet
Customers' Requirements

WebCenter Sites has a built-in translation mechanism which uses an assettype called
DimensionSets. As a practice, all translated versions of the same content belong
to the same DimensionSet instance. This feature also enables designing a fallback
tree of locales. When the current locale does not have translated content, another
translation which may be available is displayed as the fallback version. A single
DimensionSet can contain each locale only once. Using the same locales in a different
sequence for different countries is not allowed.

Creating Translations Using Multiple Dimensionsets

To remedy this situation, developers can create different DimensionSets for each
country so that they can define an independent fallback logic for each of them. For
example, customers would not want to show any English contents on a site like that
of France. Whereas a customer based out of The Netherlands would like to include
English contents on his site in addition to those in Dutch. In other words, different
countries require different fallback mechanisms.

Hence, if a site is targeted toward 20 countries, then there would be 20 DimensionSets
(with perhaps 30 or 40 or more locales in total). To support multiple DimensionSets,
the rendering template code should be able to determine which DimensionSet to use.
The translate tags require the DimensionSet name for the current translation. The
following two properties make it possible to use multiple DimensionSet:

• The name of the DimensionSet is the value of the country code. For example, uk
for the United Kingdom, de for Deutchland, and so on.

• All web-referenceable assets have a URL path that explicitly includes the country
code (for example, www.mysite.com/uk/helloworld, and www.mysite.com/de/

Chapter 25
Tips for Using WebCenter Sites Translation Mechanism

25-22

helloworld, or alternatively one can support different subdomains such as
uk.mysite.com/helloworld, and so on.

Note:

It is generally considered a bad practice to render different content for the
same URL for different users based on their accept-language value or IP
geo-location. The reason is that SEO rankings are likely to drop as search
engines such as Google may consider such a strategy as a form of bait-and-
switch.

With the above two features in place, developers just parse the URL request to extract
the country value then pass the country value as an additional argument which can
then be used by the Template to specify which DimensionSet to use for the current
asset. (It is common for some customers to choose a primary site that has no country
code which we can assume is the default.)

Another option is that our code honors the preferred locale cookie which the visitor
may have set on their browser.

When Customers Want the Same Content on Websites on Which Other
Languages are Used

Some customers want virtual URLs to be supported wherein an asset can be
published as …/us/helloworld. These customers also want that the same content is
rendered (without needing to translate it) on other English-speaking country sites, for
example, …/uk/helloworld, …/ca/helloworld, …/au/helloworld, and so on. The latter
requirement can be handled by creating a global (or master) version of an asset. So
instead of including only ISO locales in our DimensionSet hierarchy, developers can
include made up locales as required. The following CH (Switzerland) DimensionSet:
example explains the use of global DimensionSets:

global
en_GLOBAL
en_CH
de_GLOBAL
de_CH
fr_GLOBAL
fr_CH

The above hierarchical DimensionSet can work as follows:

• When editors require locale-specific differences they can make ad-hoc localized
translations as needed. For example, en_CH, de_CH, or fr_CH.

• When language-specific differences need to be available to other DimensionSets,
developers can make ad-hoc global translations instead. For example, en_GLOBAL,
global-de, fr_GLOBAL, and so on.

A fixed hierarchy like the above does not provide the ability to have exceptions to the
fallback logic.

The above example can be extended to also include a regional fallback, for instance,
Latin American Spanish es_LAD and South Asian English en_AS. This allows marketing
to create content that is localized for a Latin America audience and syndicate this

Chapter 25
Tips for Using WebCenter Sites Translation Mechanism

25-23

content to many country sites without displaying it on other international sites as it
would if en_GLOBAL were used.

Enabling Search for Locale-Specific Content

How do query-based searches compile and render lists of assets on a per-locale basis
while taking into account all the various fallback logics? For example, if a visitor is on
a French webpage, probably they only want to see contents that are either fr_FR or
fr_GLOBAL. Duplicate translations in the same DimensionSet should be avoided.

Solution

For queries to return dynamic lists of assets based on searchable attributes, the
assets must have attributes that can be used to constrain the search to a specific
locale. To enable this, we must convert each asset's selected locale (which is not
an attribute as such) into a multi-valued attribute named SearchableLocale via a
custom flex filter. For instance, an asset whose locale is fr_FR, store a single value
of SearchableLocale=fr_FR since for most clients fr_FR would be at the leaf node
of the fallback hierarchy for France. However, an asset whose locale is fr_GLOBAL
should store fr_FR as well as any other French-speaking locales across all French-
speaking countries. In this way, this global French asset can show up on multiple
French language sites via any constrained queries. As an example, for a European-
only website, a fr_GLOBAL asset would upon save create both fr_FR and fr_CH
SearchableLocale values via its flex filter and thus show up on the France (FR) and
Switzerland (CH) sites.

Note:

The above denormalization of fallback values into an asset attribute allows
you to perform fewer queries at runtime. When marketing requires changing
the fallback logic, all data values need to be recomputed. Proceed with
caution when designing your solution.

Hiding a Global Asset on Certain Countries Sites

Many customers desire the flexibility to hide a global asset from certain countries.
Thus a HideFromTheseCountries attribute should be added to the definition for each
translatable asset. A custom attribute editor should also be created to restrict the list
of countries shown in the editorial interface on which the current asset can be hidden
based on the locale selected. That is, if the current locale were fr_FR, then the list
of countries to hide would be null. Whereas if the locale chosen were fr_GLOBAL,
the list of countries might include FR, CH, and so on -- depending on the number of
DimensionSets created to support the all the country sites.

With the combination of the custom HideFromTheseCountries attribute/attribute editor
and a custom flex filter that denormalizes the optimized locales as multi-valued
SearchableLocale attribute, any queries in rendering Templates only need to add the
current locale as a constraint. For example, on a webpage whose locale is fr_FR, you
might want to show the Latest News in a right-rail pagelet. This pagelet will query the
News assets where locale=fr_FR and sort the list by date. There might be duplicates
since the fr_GLOBAL asset is also translated into fr_FR and thus both are returned
in the list. To remove duplicates, use the translate tag <dimensionset:filter> which
takes an iList from the constrained query that filters out duplicates.

Chapter 25
Tips for Using WebCenter Sites Translation Mechanism

25-24

Handling Caching Issues

If you publish all translations at once, any change to any existing translation will cause
those pagelets dependent on that asset to expire at publish time. If you publish a
global version of a language, and then later create localized versions of that asset, the
system will not know to update things since no dependencies were recorded at the last
rendering of the pagelet.

A simple example is, let us say a list of the latest press releases on a French page,
and let's also assume that all of the assets being rendered are fr_GLOBAL. We can
even further assume that the links are explicitly defined as named associations, thus
all the dependencies are known at the time of rendering/caching. When someone
translates one of those assets and publishes it, the desired behavior is that the link
would now be to the localized translation, not to the global version. But because there
is no way to log a dependency to an asset that did not exist when that pagelet was
last rendered, there is no way for the system to know to update that one link. And thus
nothing uncaches when you publish the new translation.

The simple solution is to update the master asset whenever a new child is added
to a DimensionSet. To do this, one must implement a custom publish listener that
performs these tasks in the background whenever a new asset is published that might
affect an existing DimensionSet. There is no need to update the master asset when a
new translation is created because it might take days or weeks before the asset gets
approved and published.

Also be aware that any automatic approval mechanism must also deal with the
situation where the master asset may be checked out or not yet approved.

Chapter 25
Tips for Using WebCenter Sites Translation Mechanism

25-25

Part IV
Developing Mobile Websites

Mobility enables content contributors to create, preview, and deliver websites to a
variety of mobile devices such as phones and tablets. You, as a developer, design the
infrastructure that content contributors will use for creating mobile websites.

Topic:

• Configuring WebCenter Sites to Support Mobile Websites

26
Configuring WebCenter Sites to Support
Mobile Websites

Mobility enables its users to create, preview, and deliver websites to a variety of
mobile devices such as phones and tablets. You need to configure the Mobility
framework to enable WebCenter Sites to support mobile-optimized websites.

Topics:

• Prerequisites for Mobility Developers

• Understanding Key Mobility Concepts

• Prerequisites for Configuring Mobility Features

• Configuring Mobility Features

• Mirror Publishing the Device Repository to Delivery System

• Creating Templates

• Optimizing Images for Mobile Websites

• How Device Detection Works

Prerequisites for Mobility Developers
You should have an experience with core WebCenter Sites features including site
navigations and templates to be able to configure the Mobility framework.

You should also have an understanding of mobile devices and their user agents.

Understanding Key Mobility Concepts
WebCenter Sites uses a built-in device detection mechanism to identify the device that
requests website content. Once the device is identified, WebCenter Sites finds the
appropriate site navigation (called site navigation in the previous release) and invokes
the correct template to render the website.

The mechanics of this device detection process involve new features, such as device
repository, device groups and suffixes, device assets, template variants, and site
navigations (which have been extended to support mobile websites). This section
describes the concepts behind the new features. Later sections provide procedures for
configuring the features to support mobile websites.

Once the features are configured, it is possible in the Oracle WebCenter Sites:
Contributor interface to create, preview, and deliver mobile sites, such as the site
shown in the figure below. In this figure, the Home page of the avisports sample site is
displayed in the context of three devices (multi-device preview).

26-1

Figure 26-1 Preview of avisports Site Home Page in the Context of Multiple
Devices in the Contributor Interface

Topics:

• About Device Repository

• About Device Groups and Suffixes

• About Device Assets

• About Site Navigations

• About Mobile Templates

About Device Repository
The device repository is a file that WebCenter Sites uses to detect mobile devices.
The device repository contains the properties of devices and uniquely identifies each
device based on its user agent. WebCenter Sites detects devices by matching the user
agent of the device to the user agent that is specified in the device repository.

Note:

A user agent is a software agent that acts on behalf of users. The format
of a user-agent string is a list of product tokens (keywords) with optional
comments. Most browsers specify the following format:

Mozilla[version] (system and browser information]) [platform]
([platform details]) [extensions]

For example:

Mozilla/so(iPad;u;CPUOS 3.2.1 like Mac OSx;en-us)ppleWebkit/
531.21.10(KHTML,like Gecko) Mobile/7B405

The two types of device repositories are:

Chapter 26
Understanding Key Mobility Concepts

26-2

• devices.xml: This is the default repository included with WebCenter Sites. This
repository is updated at the time of a product release and includes only popular
devices. You can add more data to this repository as and when required.

• WURFL: This is a third-party device information database from ScientiaMobile.
WURFL is much more comprehensive than devices.xml, and it is updated
regularly by ScientiaMobile. We recommend using WURFL to ensure you have
the latest devices. A licensed copy can be obtained from ScientiaMobile. It is not
included with WebCenter Sites.

For procedures about using the device repository, see How to Configure the Device
Repository.

About Device Groups and Suffixes
Device Groups enable features-based grouping of devices. A device group is an asset
that defines a collection of devices with common characteristics, for which a common
website can be delivered. For instance, all Touch phones could belong in one group,
whereas NonTouch (QWERTY) phones could be in a separate group, as illustrated in
the next figure. So, one website is delivered to all the Touch devices. Another website
is delivered to all the NonTouch (QWERTY) devices. Therefore, two sets of templates
must be coded: one set for the group of Touch devices, and another set for the group
of NonTouch devices.

Figure 26-2 Device Type-Based Grouping

To support template variants, the concept of suffixes has been introduced. Suffixes
are used to associate templates to the correct device groups. The association
is made when the template and device group have the same suffix, such as
_Touch (or _NonTouch). For example, if the base template HomeLayout is used to
render the desktop website, you would create template variants, that is, templates
named HomeLayout_suffix. In this example, you would create the HomeLayout_Touch
template to render content on devices in the Touch device group. You would
also create the HomeLayout_NonTouch template to render content on devices in the
NonTouch device group.

At runtime, WebCenter Sites will match the suffixes of the device groups to the
names of the template variants. When HomeLayout is requested from a Touch device,
WebCenter Sites will use the HomeLayout_Touch template to render the website. This
is part of device detection.

Chapter 26
Understanding Key Mobility Concepts

26-3

Note:

A template without a suffix is called the base template. Templates with
suffixes are called variants of the base template. The base template must
exist before its variants can be created.

Suffixes are also used to associate device groups to site navigations, which enables
you to implement different website navigation for devices in different device groups.
Templates are coded with the device:siteplan tag to specify website navigation on
the delivery system.

To create a device group, you will create an asset of type DeviceGroup. In the process,
you will specify:

• A suffix.

• Either the registered device name(s), or criteria that WebCenter Sites will use to
associate devices to the group you are creating.

Note:

Multiple device groups should be prioritized for proper matching of
devices to device groups during device detection.

See How to Configure Device GroupsandHow to Prioritize Device Groups

About Device Assets
Any mobile device can be represented by a device asset, which enables previewing of
mobile website content in the context of the mobile device, in the Contributor interface.
Device assets are used strictly to support preview. Even when devices are similar
enough to be gathered in the same device group, they display variations (for example,
screen size). Previewing in the context of a device asset enables content contributors
to ensure that content will be rendered properly on the corresponding real device.

A device asset consists of an image and a user agent. The user agent is used to
associate the device asset to (1) a real device in the device repository and (2) to a
device group with matching criteria. For an example of associations illustrating the
relationship between device groups and device assets, see this figure:

Chapter 26
Understanding Key Mobility Concepts

26-4

Figure 26-3 Devices Associated with Device Groups

Device assets are associated to device groups by device detection. A device asset
that matches the criteria specified in two or more device groups is automatically
associated to your preferred (highest-priority) device group. A device that fails to
match criteria in all device groups is automatically assigned to the Default device
group (used for serving websites to desktop browsers). Once a device is associated
to a device group, templates associated with that device group can render website
content in preview mode. The content is superimposed on the device image.

Note:

Ensure that content contributors are aware of the following preview behavior:

• While preview of web pages in mobile devices works in all browsers,
some features are not displayed correctly if there is a mismatch between
the browser and the user agent. For example, if the Contributor interface
is opened in Internet Explorer, whereas the user agent is for FireFox
on Android, the browser will use the Internet Explorer engine to render
HTML. Therefore, previews in the Contributor interface are likely to differ
from the look of the real pages on the real mobile device.

• Preview renders pages as they would be displayed in full-screen mode
on real devices.

See How to Create Device Assets.

Chapter 26
Understanding Key Mobility Concepts

26-5

About Site Navigations
A site navigation defines the navigational hierarchy of a website. For example, the next
figure shows Default, Touch, and NonTouch site navigations for the avisports sample
site in the Contributor interface.

Figure 26-4 Site Navigations in the Contributor Interface

When creating a site navigation, you associate device groups to that site navigation by
selecting a shared suffix. Site navigation can then be served to devices in those device
groups. (Once selected, the suffix is no longer available for other site navigations.)

You have two basic approaches to creating site navigations:

• Create a single site navigation for all devices across all device groups.

• Create different site navigations for different device groups. The content can be
reused across site navigations, or it can be different.

See How to Create Site Navigations.

About Mobile Templates
You have two basic approaches for creating templates that render mobile websites:

• Create a single set of templates that adapt to all mobile devices (and therefore all
device groups). Adaptive templates adapt to the screen resolution of a device and

Chapter 26
Understanding Key Mobility Concepts

26-6

render content suitably. In this scenario, there is no need for creating templates
with suffixes.

• Create different templates for different device groups. (An example was described
in About Device Groups and Suffixes.) This scenario requires you to create two
sets of templates: One set contains the base templates (without any suffixes).
The other set contains the template variants (templates with suffixes). To create a
template variant, you append _suffix to the name of the base template.

For example, the template name for a device group called iPhones, whose
suffix is Touch, will be BaseTemplateName_Touch. This naming convention and the
matching of suffixes for device groups and templates ensures that WebCenter
Sites routes requests from mobile devices to the correct template variants. The
base template is used whenever a mobile template variant does not exist for a
specific device group.

Note:

WebCenter Sites does not recognize templates with two suffixes (such
as _Touch_NonTouch). They are not considered variants of existing
templates. Such templates are not available through the Choose Page
Layout option on the asset toolbar in the Contributor interface, and
therefore, they are not used for rendering assets. The base template is
used in place of a template that has two suffixes.

You can create templates at any time once you have created the device groups and
you know the suffixes. See Creating Templates.

Prerequisites for Configuring Mobility Features
To be able to configure Mobility features, you should have the necessary credentials
and information. For example, the GeneralAdmin role, device repository, and so on.

• The only user who is automatically granted access to the Mobility tab in the
Admin interface is the user with the GeneralAdmin role.

Note:

The MobileSitesDeveloper role is no longer available. If you have
upgraded from 11.1.1.8.0 release, be aware that MobileSitesDeveloper
role acts as a user-defined role and has no particular significance.
Therefore, you must grant access to the Mobility tab to the
GeneralAdmin role.

• An understanding of which device repository you will be using. See How to
Configure the Device Repository.

• Information about the device groups you will be configuring.

– The names of device groups in which to organize different devices.

Chapter 26
Prerequisites for Configuring Mobility Features

26-7

– Which capabilities (such as user agent, touch, tablet, and screen resolution)
you will use to identify and group devices. For more information as to which
data you will provide, see How to Configure Device Groups.

– Which suffix you will use for each device group. A suffix is required for each
device group. (You will append the same suffix to the names of the template
variants for these device groups. You will also select the same suffix for the
site navigation.)

– Whether you will use custom filters to apply conditions on capabilities that
are not listed by default. See How to Create Custom Filters for Device Group
Criteria.

• The list of devices your contributors will be using to preview the mobile
website. WebCenter Sites comes with several device assets that represent many
commonly used devices.

To create your own device assets, first create your own images of the real devices,
and look up the user agents of the real devices. You will use these images and
user-agent information to create device assets. Also create their thumbnail images
for use in the device selector panel in the Contributor interface.

• Effective site navigations for the mobile versions of your website.

Configuring Mobility Features
Some of the tasks you perform to create the Mobility infrastructure are activating the
device repository, configuring device groups, creating custom filters for device groups.

See these topics:

• How to Configure the Device Repository

• How to Create Custom Filters for Device Group Criteria

• How to Activate Your Device Repository

• How to Configure Device Groups

• How to Prioritize Device Groups

• How to Create Device Assets

• How to Create Site Navigations

• How to Organize Site Navigations

How to Activate Your Device Repository
To activate your device repository:

1. In the Admin interface, open the General Admin tree, then expand the Mobility
node, and then double-click Device Repository.

2. In the Device Repository Uploader form, upload either the default repository
(devices.xml) or the WURFL repository (WURFL.zip, or wurfl.xml and its current
patch file).

Chapter 26
Configuring Mobility Features

26-8

Note:

When you switch the device repository, you are reminded to update
the device names that you changed in devices.xml, across all device
groups.

The WURFL.patch file is used with the WURFL.xml file, regardless of the
record for WURFL.patch in the device repository table which is still set to
Active=F (false).

Figure 26-5 Device Repository Uploader Form

3. Click the Save icon.

How to Configure the Device Repository
You have the option to use one of the following device repositories: devices.xml
(default repository) or WURFL.

• To use devices.xml, do the following:

1. Ensure the file contains the device names and user agents you require. Locate
the file in the DeviceRepository directory and make the necessary changes.

2. Activate devices.xml by uploading to WebCenter Sites.

a. Open the General Admin tree, expand the Mobility node, and then
double-click Device Repository.

Chapter 26
Configuring Mobility Features

26-9

b. In the Device Repository Uploader form, upload devices.xml, and then
save.

• To support more capabilities and devices than currently registered in the
devices.xml file, use WURFL as the device repository. Do the following:

1. Obtain the WURFL repository in one of the following formats:

– WURFL.zip

– WURFL.xml with a WURFL patch file. The patch file is used to override the
content of WURFL.xml. For more information about patch files, see http://
wurfl.sourceforge.net/.

Note:

WURFL is a third-party device repository. You must purchase
a license from ScientiaMobile to use this repository. It is not
included with WebCenter Sites.

2. To use the wurfl.xml file and patch, configure the patch file before you
continue to other steps.

3. Activate the WURFL repository by uploading to WebCenter Sites.

How to Create Custom Filters for Device Group Criteria
WebCenter Sites provides a default custom filter implementation
(DefaultCustomFilter.java), which takes an XML file as input. To create a custom
filter of your own, write an implementation of the CustomDeviceFilter.java interface.
The XML file for a custom filter is uploaded from the Device Group configuration page,
as described in How to Configure Device Groups.

This section includes the following:

• Using the Default DefaultCustomFIlter.java Custom Filter Provided with
WebCenter Sites

• Creating Your Own DeviceGroupFilter Implementation

Note:

For information about how to use custom filters, see How to Configure
Device Groups.

Using the Default DefaultCustomFIlter.java Custom Filter Provided with
WebCenter Sites

The default implementation class of a custom filter is called
COM.FutureTense.Mobility.Filter.DefaultCustomFilter. It takes input in XML
format. In the default custom filter implementation provided with WebCenter Sites,
a filter is passed only if all its arguments are passed. Similarly, an entire custom filter

Chapter 26
Configuring Mobility Features

26-10

http://wurfl.sourceforge.net/
http://wurfl.sourceforge.net/

is passed when all its filters are passed. So, in any scenario, all arguments must be
passed for the filter criteria to work.

The following example shows a sample filter XML in which device property names are
taken from the WURFL repository:

<?xml version="1.0" encoding="UTF-8"?>
<devicefilters>
 <filter name="tabletFilter"
classname="COM.FutureTense.Mobility.Filter.DefaultCustomFilter"> //Filter 1
 <argument name="is_tablet" value="true" datatype="boolean"/> //
argument 1 of filter 1
 <argument name="pointing_method" value="touchscreen"
datatype="string" operator="equals"/> //argument 2 of filter 1
 </filter>
 <filter name="flashFilter"
classname="COM.FutureTense.Mobility.Filter.DefaultCustomFilter"> //Filter 2
 <argument name=" full_flash_support" value="false"
datatype="boolean"/> //argument 1 of filter 1
 </filter>
</devicefilters>

In the above sample, tabletFilter has two arguments. argument 1 requires that the
value of the is_tablet property should be true. argument 2 requires that the value
of the pointing_method property should be touchscreen. flashFilter has only one
argument which is, the value of the full_flash_support property should be false.
Each argument is a rule and a complete filter. Only when every argument is met, a
device can match to the device group containing the above custom filter.

This sample XML uses device property names from the WURFL repository. The
default device repository (devices.xml) XML looks something like the following
example (notice that the property names have changed). In this filter XML, there are
two filters: tabletFilter and flashFilter.

<?xml version="1.0" encoding="UTF-8"?>
<devicefilters>
 <filter name="tabletFilter"
classname="COM.FutureTense.Mobility.Filter.DefaultCustomFilter"> //Filter 1
 <argument name="tablet" value="true" datatype="boolean"/> //argument
1 of filter 1
 <argument name="touch" value="true" datatype="string"
operator="equals"/> //argument 2 of filter 1
 </filter>
 <filter name="flashFilter"
classname="COM.FutureTense.Mobility.Filter.DefaultCustomFilter"> //Filter 2
 <argument name="flash" value="false" datatype="boolean" /> //argument
1 of filter 1
 </filter></devicefilters>

While creating a custom filter based on DefaultCustomFIlter.java, consider the
following:

• In a custom filter, possible values of the datatype argument attribute are string,
number, boolean. Default value is string.

– When datatype = number, the possible values of the operator attribute are:
<>, notequals, <, lt, >, gt, =, equals. Default value is equals.

Chapter 26
Configuring Mobility Features

26-11

– When datatype = boolean, the possible values of the operator attribute are:
=, equals. Any other value is treated as the reverse of equals. Default value is
equals.

– When datatype = string, the possible values of the operator attribute are
=, equals, %, like, !=, notequals, !%, notlike. Default value is equals. The
following snippet shows the use of the like or % value for the operator
attribute:

<argument name="pointing_method" value="touch" datatype="string"
operator="like"/>

Here, the value of the pointing_method property must contain the word touch
either as a substring or an entire word.

• The value of the property attributes must be as per the property names in the
current device repository (either devices.xml or WURFL.xml).

Creating Your Own DeviceGroupFilter Implementation
The following example shows a Java class that implements the DeviceGroupFilter
interface and uses the matches method. Your custom filter can consist of one or
more filters. Each filter can contain zero or more arguments. The custom filter
implementations can use the OR rule, or any custom logic.

public class UserDefinedCustomFilter implements DeviceGroupFilter
{
public boolean matches(DeviceContext context)
 {
 // Logic that returns true/false depending on whether criteria matched or
not.
 }
}

How to Configure Device Groups
To configure a device group:

1. Under the Mobility node, expand the Device Groups node.

2. Click Add Device Group, as shown in this figure:

Chapter 26
Configuring Mobility Features

26-12

Figure 26-6 Add Device Group

The Device Group form opens.

3. In the Device Group form, select the Content tab and do the following:

a. In the Name field, enter a meaningful name for the device group you are
creating.

b. In the Suffix section, enter the suffix you plan to use for the templates you will
create for this device group. Or, choose an existing suffix if there is any.

Note:

This suffix is not editable. To change it later, you will have to recreate
this device group and change this suffix.

c. In the Active field, enable this device group for device detection by selecting
Yes.

Chapter 26
Configuring Mobility Features

26-13

Note:

Device groups are global. Once enabled, they become available for
all sites. Similarly once disabled, they are disabled for all sites and
no longer used in device detection.

4. Select the Criteria tab (see the next figure) to create a set of rules for matching
real devices so they can be associated with their correct template variants.

Either provide one or more device names (the rest of the form will be disabled (see
the figure below), or omit the device name(s) and fill in the rest of the form.

Figure 26-7 Add Device Names

a. If you choose to enter device name(s), enter the same name(s) that are
registered in the device repository. If you uploaded devices.xml, enter the

Chapter 26
Configuring Mobility Features

26-14

device entry name. If you uploaded WURFL, enter the model_name of the
device.

The Device Names field provides Typeahead feature so you can choose a
registered device name from the list of available devices. As you start typing a
device model number, this features shows all the registered devices beginning
with the common letters. You can easily scroll and choose from the first 50
devices. To see more devices, please refine your search further.

A device can belong to only one device group at a given time.

b. If you choose to omit device names, fill in the rest of the form, as follows:

i. User-Agent Section: This section is disabled if you specify the device
names.

In this field, enter just a list of device names, or a combination of user
agent, screen dimensions, capabilities, and custom filters. A combination
of user-agent regex, capabilities, screen dimensions, and custom filter
requires a device to meet all the rules to match with the device group.

Enter the exact user agent of the browser from which the incoming
request will be sent. Or, enter a regular expression or a substring to
match the set of the user agents. For example, to match all iPhone user
agents, specify the user-agent reg exp as (m|M)ozilla/5.0(|)\(i(p|P)
(hone|od|rod).* This expression will match any user-agent string which
contains the iPhone Java regex. Or, use the substring iPhone, which
matches all iPhones.

Note:

To see how many devices for the user agent you entered are
available in your device repository, click the Refresh icon in the
Matching Devices section.

ii. Capabilities Section: This section is disabled if you specify the
device names. The capabilities are: Touch Screen, JavaScript, Dual
Orientation, and Is Tablet. Each capability gives you the following
options: Yes, No, Don't evaluate.

For example, to match this device group to only Tablet devices that do
not support JavaScript, select Yes for the IsTablet capability; for the
JavaScript capability, select No; and for the rest of the capabilities, select
Don't evaluate.

iii. Screen Resolution Section: This section is disabled if you specify the
device names. Enter the minimum and maximum width and height for the
display area (units are in pixels). For example, a maximum width of 640

Chapter 26
Configuring Mobility Features

26-15

will match this device group to all devices whose screen resolution width is
640 or less.

iv. In the Custom Device Filters section, click Browse to choose a custom
filter that you might have created to apply conditions on capabilities that
are not listed on the Device Group Criteria tab.

5. Click the Save icon to save your device group.

Your new device group is listed on the Mobility tab, at the bottom of the Device
Groups node (as shown in the next figure).

Figure 26-8 New Device Group

How to Prioritize Device Groups
You must prioritize multiple device groups to enable device detection which
automatically associates a real device to the highest-priority device group at runtime.

To prioritize device groups:

1. Under the Mobility node, expand the Device Groups node.

2. Double-click Reorder Device Groups .

Chapter 26
Configuring Mobility Features

26-16

Figure 26-9 Reorder Device Groups

3. On the Reorder Device Groups page, drag and drop the device groups in the order
of your preferred priority.

Chapter 26
Configuring Mobility Features

26-17

Figure 26-10 Drag and Drop Device Groups

When you have reordered the device groups, the Reorder Device Groups page
displays them in the new sequence (such as the one in the figure below).

Figure 26-11 Device Groups Reordered

4. Click Save Priority.

The Device Groups have been re-prioritized successfully message is
displayed.

Chapter 26
Configuring Mobility Features

26-18

Once you have prioritized your device groups and created the device assets, verify
that device groups and assets are correctly associated by device detection. Open
the device group and select the Devices tab to view the list of device assets
associated with the device group.

How to Create Device Assets
To create a device asset:

1. Under the Mobility node, expand the Devices node.

2. Click Add Device .

Figure 26-12 Add Device

The Device form opens.

Chapter 26
Configuring Mobility Features

26-19

Figure 26-13 Device Form - Content Tab

3. On the Content tab:

a. In the Name field, enter a name for this device asset.

This name will be displayed in the Contributor interface. It does not have to
match the name in the device repository.

b. (Optional). In the Manufacturer field, enter the name of the device maker
company.

c. In the User Agent field, specify the registered user agent for the device whose
image you are adding. You can copy the user agent from the device repository.

Note:

The User-Agent field identifies the real device that this device asset
represents. This field is used in device detection logic to associate a
device with the matching device group of highest priority.

d. Click Test User Agent to run device detection and confirm that this device
matches a particular device group.

e. Select the Enable option to make this device asset available to device
detection mechanism so this asset can be associated to device groups.

f. Next to the Device image field, click Browse to select the device image from
the directory in which the image is stored.

g. (Optional). Next to the Thumbnail image field, upload a thumbnail image to
be displayed in the device selector panel that is associated with the preview
feature in the Contributor interface. Selecting the thumbnail displays a page
preview in the device image.

Chapter 26
Configuring Mobility Features

26-20

4. On the Screen Dimensions tab, enter the required pixels in the Height, Width,
Top, and Left fields and pixel ratio in the Pixel Ratio field to determine an
appropriate dimension of the screen area.

• Height: Height of display area within the device image in which you’ll preview
your site content.

• Width: Width of display area within the device image in which you’ll preview
your site content.

• Top: Top margin for display area within the device image in which you’ll
preview your site content.

• Left: Left margin for display area within the device image in which you’ll
preview your site content.

• Pixel Ratio: Ratio between physical pixels and logical pixels. For instance,
iPhone 7 has a pixel ratio of 2 because the physical linear resolution is double
the logical linear resolution.

As you enter the pixels in each field, the screen area of the device image begins
to reset accordingly. This feature lets you determine the exact dimension of the
device display area on the spot.

Figure 26-14 Screen Dimensions Tab

5. Click the Save icon on the form to create the new device.

The success message is displayed.

How to Create Site Navigations
Whether you need multiple site navigations or a single site navigation depends on your
design approach. When creating a site navigation, you will associate device groups to
this navigation by selecting a common suffix. Once selected, that suffix is no longer
available for other site navigations.

To create a site navigation:

1. In the Admin interface, open the General Admin tree, expand the Admin node,
then the Sites node, and then the site for which you are creating the site
navigation.

2. Expand the Site Navigations node.

3. Double-click Add New .

Chapter 26
Configuring Mobility Features

26-21

Figure 26-15 Site Navigations Node in the Admin Tab

The Add Site Navigation form opens.

4. In the Name field, enter a meaningful name for your site navigation.

5. (Optional) In the Description field, enter a description for your site navigation.

6. To associate device groups with this site navigation, go to the Suffix section, and
select a suffix used by those device groups.

Note:

The Suffix section lists only suffixes that are not assigned to any site
navigations.

The Associated Device Groups panel lists the device groups that are associated
with your selected suffix.

Chapter 26
Configuring Mobility Features

26-22

Figure 26-16 Associated Device Group Panel

7. Add a meaningful icon to your site navigation to help content contributors identify
whether the pages opened in Web or Form mode belong to this particular site
navigation. This feature is quite useful when working with multiple site navigations.
To add an icon, next to the Icon field, click Browse, then navigate to the directory
in which the icon is located. The recommended icon image size is 16 pixels * 16
pixels.

In the Contributor interface, this icon will appear on left of the site navigation and
of its pages when they are opened in Web or Form modes. For example, see this
figure:

Figure 26-17 Site Navigation Icon

8. Click Add to complete the site navigation.

A page similar to this figure opens.

Chapter 26
Configuring Mobility Features

26-23

Figure 26-18 New Site Navigation Created

9. Click the Site Navigation tab to see the newly created site navigation.

To modify the site navigation, double-click it under your site's node on the Admin
tab. On the Modify Site Navigation page, make the changes and then click Modify.

How to Organize Site Navigations
Reorder site navigations to display them in a specific order in the Admin and
Contributor interfaces.

To organize site navigation:

1. In the Admin interface, under the General Admin tab, expand the Admin node,
and then expand the Sites node and the site for which you are prioritizing the site
navigations.

Note:

If you are assigned the SiteAdmin role, use the Site Admin tab instead.

2. Under Site Navigations, double-click Reorder Site Navigations.

Chapter 26
Configuring Mobility Features

26-24

Figure 26-19 Reorder Site Navigations

3. On the Reorder Site Navigations page, drag and drop site navigations to order
them in the preferred sequence.

Figure 26-20 Drag and Drag Site Navigations

When you have reordered the site navigations, the Reorder Site Navigations page
looks something like this figure.

Chapter 26
Configuring Mobility Features

26-25

Figure 26-21 Site Navigations Reordered

4. Click Save.

The Modification was successful message is displayed.

Mirror Publishing the Device Repository to Delivery System
After you’ve configured the infrastructure for your mobile site, remember to mirror
publish the device repository to the delivery system.

Note:

After modifying and mirroring a device repository, you can trigger the
reassociation of devices with device groups on the target system by opening
a device group for editing and saving it without necessarily changing any
values.

To mirror publish the WURFL device repository:

1. Under the Mobility node, double-click the Device Repository node.

2. In the Device Uploader screen, under WURFL, select the Single Zip upload
option and upload the wurfl.zip file.

3. Click the Mirror icon located next to the Save icon.

The available destination options are displayed.

The destinations that are up and running have the Green icon, and those that are
not running currently, show the Red icon. When a destination's icon is Red, the
check box is disabled.

Chapter 26
Mirror Publishing the Device Repository to Delivery System

26-26

4. Select the check box for the desired destination option.

Note:

Before performing the next step, ensure that WURFL.jar is already
available on the destination machine. Mirroring the WURFL device
repository without placing a copy of the WURFL.jar on the delivery
system prevents the device groups from functioning properly.

5. Click Mirror.

The chosen device repository is mirrored to the selected destination. A success
message is displayed.

The selected destination's indicator turns Grey after the repository is mirrored.

Creating Templates
You can create just one set of templates that works for all mobile device or different
sets using the suffix feature of WebCenter Sites.

So, you have two basic approaches for creating templates that render mobile
websites:

• Create a single set of templates that adapt to all mobile devices (and therefore all
device groups).

Chapter 26
Creating Templates

26-27

• Create different templates for different device groups. This scenario requires the
use of suffixes. This section discusses this second approach.

See these topics:

• Basic Guidelines for Creating Template Variants

• Understanding Mobility Tags

• Tags Modified to Support Device Detection and Page Rendering

• Creating Template Variants

Basic Guidelines for Creating Template Variants
When creating different templates for different device groups, note the following
requirements:

1. Create the base template (the template that renders the desktop website).

2. Create the template variant by using the name of the base template and
appending _suffix.

3. Use the suffix (the d parameter) as one of the cache criteria to cache pages based
on your templates.

Understanding Mobility Tags
The table below describes the Mobility tags you will use when creating templates. See
the Tag Reference for Oracle WebCenter Sites Reference.

Table 26-1 Tags for Mobility

Tag Description

<device:load name="<Name of
Current Device>" />

Detects the current device and loads the device
information. Similar to asset:load.

<device:get name="<Name
of Current Device>"
property="useragent|
devicegroup|suffix"
[output="propName"] />

For a loaded device, this tag returns the value of one
of the following properties: useragent, devicegroup,
or suffix. If the optional attribute output is provided,
this tag sets the value of the property in the output
variable. If the output attribute is absent, this tag sets
the value of the property to a variable with the name of
that property.

<device:if name="<Name
of Current
Device>" property="touch"
value="true"
[datatype="boolean"]
[operator="equals"] > ...
conditional code for
touch devices only ... </
device:if>

For the currently loaded device, this tag allows you to
specify a condition and code that will be executed when
the condition is met. The default value for the optional
attribute datatype is String, and the default value for
the optional attribute operator is "=".

Chapter 26
Creating Templates

26-28

Table 26-1 (Cont.) Tags for Mobility

Tag Description

<device:hascapability
name="<Name of the Device
Loaded Earlier>"
capability="<WURFL_CAPABILIT
Y_NAME>" > conditional code
</device:hascapabiilty>

For the currently loaded device, this tag checks if this
device supports the capability specified in this tag. The
code in the tag is executed if the device supports this
capability.

<device:capability
name="<Name of the Device
Loaded Earlier>"
capability="<WURFL_CAPABILIT
Y_NAME>"
output="capabilityValue" />

For the currently loaded device, this tag sets the value of
the specified capability in the ics scope.

<device:siteplan
output=<NAME_OF_VARIABLE_HOL
DING_RESULTING_SITEPLAN_ID>
[pubid =
<%=ics.GetVar("pubid")%>]
[site=<%=ics.GetVar("site")
%>] [d= <%=ics.GetVar("d")
%>] />

Use the device:siteplan tag to look up the site
navigation for any device. The tag takes the d
parameter, which is a device group suffix.

At runtime, WebCenter Sites computes the value of the
d parameter by using device detection. The tag then
uses the value of the d parameter (that is, the suffix) to
find the site navigation with the same suffix and to return
the ID of that site navigation. The site navigation ID is
used by other tags to construct website navigation.

Tags Modified to Support Device Detection and Page Rendering
The following tags include Mobility-specific attributes:

• render:getpageurl

• render:calltemplate

• render:gettemplateurl

• render:gettemplateurlparameters

• insite:calltemplate

• satellite:page

• satellite:link

The attributes are:

• d, the suffix of a device group.

• resolvetemplatefordevice, which appends the device group suffix to the
template name. The default value is true. If the value is set to false, the suffix is
not appended to the template name and the base template is loaded.

The d parameter is automatically passed down the chain in each of the tags above.
The tags call the correct template variant by basing their call on the passed d attribute.

In the following example for the avisports sample site, c=Page and TestSite is the
current site.

Chapter 26
Creating Templates

26-29

<render:calltemplate tname='Detail' args="c,cid,p,d,locale,form-to-render" />
(i) for d=Desktop (default) or blank, the following template is called:
 TestSite/Page/Detail
(ii) for d=Touch, the following template is called:
 TestSite/Page/Detail_Touch

For information about how the d attribute is used, see How Device Detection Works.

Creating Template Variants
You create the template variants by copying, modifying, and adding a suffix to base
templates. This suffix feature lets you create both, a single template variant and
template variants in bulk for suffixes for which no variants exist.

This section includes the following topics:

• How to Create a Variant of a Single Template

• How to Create Template Variants in Bulk

Note:

Suffix-based search lets you easily locate templates of a certain suffix. That
is, click Search on the menu bar and then choose Find Template from the
Search table. On the Search for: Templates screen, choose Suffix from the
Search drop-down list and the desired suffix from the for drop-down list. The
search results also include deactivated or deleted templates. (Remove these
templates from your site so they do not show up in search results again.)

How to Create a Variant of a Single Template
To create a template variant:

1. Determine if a variant of a template already exists. Navigate to the template's
Inspect mode's Template Variants section.

The View link is displayed under the Action column if a template variant exists for
a particular suffix, otherwise the Create link is displayed.

Chapter 26
Creating Templates

26-30

Figure 26-22 Template Variants

2. To create a variant of a template, click the Create link.

The Template form is displayed.

Chapter 26
Creating Templates

26-31

Figure 26-23 Template Form

3. Perform Name and Describe the Template Asset of Creating Template,
CSElement, and SiteEntry Assets.

How to Create Template Variants in Bulk
To create template variants of multiple templates:

1. On the Dev tab, expand Template, then double-click Bulk Copy Templates.

2. On the Bulk Copy Templates page, choose the required suffix from the Suffix
drop-down list.

3. In the Asset Types box, select an asset whose templates you wish to copy.

This displays the associated base templates in the Available Base Templates (n)
box.

4. Select the templates you wish to copy. Choose one, many, or all templates
displayed in the Available Base Templates box, as required.

Chapter 26
Creating Templates

26-32

The Selected Base Templates box is populated with the chosen templates.

Figure 26-24 Bulk Copy Templates

5. Click Generate.

The Successfully Generated templates: <name> message is displayed.

Optimizing Images for Mobile Websites
The image optimization filter lets you optimize images for your mobile websites.

You can also plug in your own image optimization implementation to optimize images
in a custom way. The following sections discuss both these approaches:

• How to Optimize Images Using the Image Optimization Filter

• How to Optimize Images Using a Pluggable Interface

How to Optimize Images Using the Image Optimization Filter
The image optimization feature of WebCenter Sites is available for flex asset families.
You can optimize full-size images to display them suitably on various types of mobile
devices. This feature enables you to optimize images for different suffixes to support
different screen dimensions. For instance, on some devices, the images displayed
should be 50% of the full-size images, whereas on other devices, images should be
displayed even smaller than 50% of the actual size.

To optimize images using the image optimization filter:

• Create a Flex Filter of the ImageOptimizationFilter Type

• Include the Filter in Your Site's Image Definition

• Create Instances of the blob Type Attribute Asset

• Set Image Properties for Optimization

• Apply the Image Optimization Filter on Existing Images

Chapter 26
Optimizing Images for Mobile Websites

26-33

• Verify If the Image Optimization Filter Has Been Applied

• Use the Optimized Images in Your Site

Create a Flex Filter of the ImageOptimizationFilter Type
1. On the menu bar, click New.

2. From the list of options, click New Filter.

The New Filter form is displayed.

3. In the Name field, enter a name for your new filter.

4. From the Filter dropdown list, choose ImageOptimizationFilter, then click Get
Arguments.

Figure 26-25 ImageOptimizationFilter

5. Under the Arguments section, in the Value field, enter the name of the existing
blob type attribute asset for your site. For example, for the avisports sample site,
this asset is imageFile and flex family is content. Click Add to apply this value.

6. Click the Save icon.

Include the Filter in Your Site's Image Definition
Include the filter you created in step 1 in the image definition for your site (For
example, in the avisports sample site, you can search for Image definition) by
performing the following steps:

1. Open the Image definition for editing.

2. In the Attributes section, under Available, select your flex family, and click
Required. In avisports, the flex family is already selected.

3. In the Filters section, under Available, select the image optimization filter created
in the previous step (myImageOptimizationFilter in our example), and click
Select.

Chapter 26
Optimizing Images for Mobile Websites

26-34

Figure 26-26 Image Definition

4. Click the Save icon.

Create Instances of the blob Type Attribute Asset
In WebCenter Sites, both single-valued and multi-valued blob type attributes are
supported. To apply the image optimization filter to all template variants, create as
many instances of the blob type attribute asset as there are suffixes for your site. For
example, in avisports sample site, the existing blob type attribute is imageFile. So, in
this case, create an instance of this attribute asset for the Touch suffix and another for
the NonTouch suffix:

1. On the menu bar, click New.

2. From the list of options, click New Attribute.

The New Attribute form is displayed.

3. In the Name field, enter a name in format <blob_attribute_name>_<Suffix>. So,
for avisports site, it would be imageFile_Touch and imageFile_NonTouch.

4. From the Attribute Type dropdown list, choose blob.

5. Click the Save icon.

Set Image Properties for Optimization
1. Under the Mobility tab, double-click Image Properties node.

2. For the required suffixes, set the following properties:

Chapter 26
Optimizing Images for Mobile Websites

26-35

• preferredFormats: Optional property. Different types of image formats. For
example, for avisports site, for both Touch and NonTouch suffixes, the formats
are: jpg,png,bmp,gif. The purpose of various formats is to get the smallest
image. The formats are provided in the order of priority. If the first format jpg
can give an optimized image, then this format is used. Otherwise, the format
with next priority is used. In some cases where none of the supported formats
may be helpful in achieving the required size, the full-size image is rendered
on devices.

When omitted, the format of the optimized image is the same as the original/
full size image.

• targetSize: The average size of images on devices. This must be in
percentage. For example, 40% of the full-size image.

• maxsize: The maximum size of images on devices. This must be in
percentage. For example, 50% of the full-size image. The optimized image
that exceeds the maxsize is not stored as a rendition. If the size (in bytes) of
the optimized image exceeds maxSize, the main image is used.

Apply the Image Optimization Filter on Existing Images
The image optimization filter comes into play when an image is created or edited. So,
to apply this filter on existing images, they must be edited and saved.

1. Open the images in Edit mode.

2. Click the Save icon to apply the filter.

Verify If the Image Optimization Filter Has Been Applied
1. Open the Contributor interface.

2. Search and open an image.

The Content tab of the image contains a thumbnail for each suffix. The figure
below shows the Content tab of a sample image with three thumbnails: one for
a full-size image (for the Default site), one for Touch suffix, and one for NonTouch
suffix.

Chapter 26
Optimizing Images for Mobile Websites

26-36

Figure 26-27 Sample Image Content

3. To view the optimized image for each suffix, click the respective URLs available on
the URL tab.

Figure 26-28 Sample Image's URLs

Chapter 26
Optimizing Images for Mobile Websites

26-37

Use the Optimized Images in Your Site

• Set the optimize attribute of the render:getbloburl tag to true
(<render:getbloburl c=... cid=.. optimize='true' />). See Property Files
Reference for Oracle WebCenter Sites.

How to Optimize Images Using a Pluggable Interface
To optimize images for your mobile websites, plug in a custom implementation of the
image optimization API, ImageOptimizer.java, as follows:

1. Create a class that extends abstract class ImageOptimizer.java. For example,
see the default implementation of the ImagePercentScaler.java class included in
WebCenter Sites: com.fatwire.mobility.image.impl.ImagePercentScaler.

2. Optionally, create a class that extends the abstract class
TargetImageProperties.java. For example, see the default implementation of
the DefaultTargetImageProperties.java class included in WebCenter Sites:
com.fatwire.mobility.image.impl.DefaultTargetImageProperties. Or, reuse
the existing default implementation class itself if properties other than those
allowed in default implementation are not used.

Note:

If you use the default target properties, do not change the first line in the
XML snippet shown in step 3.

3. In the MobilityService.xml configuration file located at <WebCenter
Sites_HOME>/config/, replace the value of the attribute class with the respective
implementation of the TargetImageProperties.java and ImageOptimizer.java
abstract classes (COM.FutureTense.Mobility.Image.ImageOptimizer and
COM.FutureTense.Mobility.Image.TargetImageProperties).

<bean id="TargetImageProperties"
class="com.fatwire.mobility.image.impl.DefaultTargetImageProperties"
singleton="false"/>
<bean id="ImageOptimizationService"
class="com.fatwire.mobility.image.impl.ImagePercentScaler" singleton="true" >
 <constructor-arg ref="TargetImageProperties"/>
</bean>

Now you are ready to use your implementation. For a similar implementation, see
the following code:

ImageOptimizer srv = ServiceLocator.getService("ImageOptimizationService",
ImageOptimizer.class);
TargetImageProperties targetImageProperties = srv.getTargetImageProperties();
 targetImageProperties.putAll(customPropertnValues);
 //'customPropertnValues' is a map that contains custom property names and
values as required by userimplementation ofimageoptimization API

Chapter 26
Optimizing Images for Mobile Websites

26-38

How Device Detection Works
WebCenter Sites uses a built-in device detection mechanism to identify the device that
requests website content. Once the device is identified, WebCenter Sites looks for the
matching device group and reads its suffix. Using the suffix, it finds the site navigation
and invokes the template variant to render the content.

The detailed steps are as follows:

1. Remote Satellite Server receives a page request from a real device. The header
for this request includes the user agent of the device.

2. Remote Satellite Server looks for the page in its own cache. If it fails to find the
page, Remote Satellite Server sends the page request to WebCenter Sites.

3. WebCenter Sites responds as follows:

a. Identifies the device by its user agent in the request header.

b. Looks for the user agent in the device repository.

c. If it finds a matching device in the device repository, WebCenter Sites also
looks for the capabilities of that device.

d. WebCenter Sites then uses the user agent and device capabilities to find
device groups with matching criteria.

e. Associates the device to the highest-priority device group.

f. Reads the suffix for this device group.

g. Assigns the suffix to the d parameter in the ics scope.

h. Appends _suffix to the requested template name in the URL.

i. Appends d=suffix to the URL of the requested page.

For example:

If the suffix is Touch, WebCenter
Sites converts the original URL pagename=avisports/
HomeLayout1&c=Page&cid=1482760932 to the following URL:
pagename=avisports/HomeLayout1_Touch&c=Page&cid=1482760932&d=Touch

j. If the template variant exists, WebCenter Sites executes the new URL, caches
the page, and sends it to Remote Satellite Server.

If the template variant does not exist, WebCenter Sites executes the original
URL, caches that page, and sends it to Remote Satellite Server.

4. Remote Satellite Server caches the page and sends the response back to the
device.

5. Remote Satellite Server also caches device detection information and uses it to
process subsequent requests from the same device. This prevents WebCenter
Sites from re-running device detection.

Chapter 26
How Device Detection Works

26-39

Part V
Managing Caching

To manage caching efficiently, you need to know what resultset caching is and how
you can accurately cache resultsets and flush them from the cache. Other topics that
will help you are rendering engine cache and its components, enabling CacheManager
to clear all caches, and understanding how rendered object caching works in the
WebCenter Sites platform.

Topics:

• Understanding Page Design and Caching

• Working with Resultset Caching and Queries

• Using Cache Management with WebCenter Sites

• Using Advanced Page Caching Techniques

27
Understanding Page Design and Caching

Caching your web pages can improve your site's performance. Whether your site is
static or dynamic, you should design your site so that part or all of a given page is
cached.

Topics:

• About Modular Page Design

• About Caching

• Double-Buffered Caching

About Modular Page Design
A modular page design is composed of multiple elements. It has several benefits such
as improved system performance and reusability of common design elements.

• Improved system performance, allowing you to develop an efficient caching
strategy.

• Common design elements, like navigation bars, may be coded once and used on
multiple web pages.

This figure shows a simple modular page:

Figure 27-1 Modular Page

Each rectangle represents the generated output of one or more elements, referred to
as a pagelet. These pagelets are called by a containing page, which allows you to do
the following:

27-1

• Lay out how the pagelets appear on the finished page.

• Define code that must be evaluated each time the page is viewed, such as custom
Access Control List (ACL) checking code.

This strategy lets you code an element once and use it in many places in your website.

About Caching
WebCenter Sites allows you to cache entire web pages and the components that
make up those web pages. An efficient page caching strategy helps you improve
system performance by reducing load.

Two members of the WebCenter Sites product family implement page caching:

• WebCenter Sites caches pages on the WebCenter Sites system.

• Satellite Server provides a second level of caching for your WebCenter Sites
system, and can also be used as a remote cache for your web pages.

WebCenter Sites uses both the WebCenter Sites and Satellite Server caches to create
an efficient caching strategy.

WebCenter Sites Caching
It speeds processing when pagelets generated by requests to the ContentServer
servlet can be cached on disk. If a page is accessed frequently and its content
depends on a small number of parameters, then it is a good candidate for disk
caching.

To disk-cache a pagelet, use one of the following tags:

Table 27-1 Caching Tags

JSP Tag XML Tag

satellite:page SATELLITE.PAGE

render:satellitepage RENDER.SATELLITEPAGE

If the pagelet that you want to cache is not in the disk cache already, ContentServer
adds it to the cache and then serves the pagelet.

BlobServer and Caching
The term blob is an acronym for Binary Large OBject. Although a blob is usually
an image file, a blob can be any binary object, including a Microsoft Word file or a
spreadsheet. Most websites serve several blobs.

WebCenter Sites offers a special servlet called BlobServer. The BlobServer gathers a
blob from a table and performs all relevant security checks.

You can access BlobServer with the BlobServer tags:

• satellite:blob

• render:satelliteblob

Chapter 27
About Caching

27-2

Both of these tags cache blobs in the WebCenter Sites and Satellite Server caches.
See Tag Reference for Oracle WebCenter Sites Reference.

Deleting Blobs from the WebCenter Sites Memory Cache

To delete a specific blob from the WebCenter Sites cache, you must edit the
BlobServer URL:

• Rename the blobtable parameter to flushblobtable.

• Authenticate as a user with SiteGod privileges by passing credentials through the
authusername and password parameters.

For example:

http://hostname:port/servlet/BlobServer?
blobcol=urlpicture&blobheader=image%2Fgif&blobkey=id&flushblobtable=NewPortalImag
e&blobwhere=22&authusername=username&authpassword=password

To delete all blobs, rename the blobtable parameter to flushblobtables (notice the
"s") and set it to true.

Satellite Server Caching
Satellite Server is automatically installed with WebCenter Sites, and provides an
additional layer of caching. To improve your WebCenter Sites system's performance,
you can add remote Satellite Server systems, placing your content closer to its
intended audience.

Satellite Server caches pages, pagelets, and blobs to disk or to memory. You can use
the Inventory servlet to view the contents of the memory and disk caches in varying
degrees of detail. Note that items cached on Satellite Server are not protected by
WebCenter Sites APIs. You can overcome this limitation by using the caching strategy
outlined in Pagelet Caching Strategies.

Satellite Server caches small items to memory and large items to disk. You control the
definitions of small and large through the file_size property. See Managing Satellite
Server JSON File Properties in Property Files Reference for Oracle WebCenter Sites.

On a busy site, each Satellite Server system's cache fills up quickly with the most
popular pages. When the cache is full, Satellite Server deletes old pages to make
room for new ones. Satellite Server uses a Least Recently Used algorithm (LRU) to
determine which items should be removed from the cache. In other words, when a
new page needs to be cached, Satellite Server removes the page that hasn't been
accessed for the longest time.

Cache Expiration
Page and pagelet expiration on Satellite Server is specified in the sscacheinfo column
of the SiteCatalog table. Each time a page or pagelet is invoked through Satellite
Server, Satellite Server processes the sscacheinfo field's value and determines when
the page or pagelet should expire. See CacheInfo String Syntax in Using Advanced
Page Caching Techniques.

Chapter 27
About Caching

27-3

Note:

It is possible to override the sscachinfo expiration information for pagelets
by specifying the cachecontrol attribute in the satellite.page and
render.satellitepage tags. However, this practice is discouraged because
it can lead to unpredictable behavior. Some pagelets may be accessed
through the default method (without the cachecontrol attribute), while others
may be accessed with an override. The first method invoked will set the
expiration for Satellite Server, and the second one will have no effect on the
expiration.

Blobs cached on Satellite Server expire according to the following algorithm:

• You can use Satellite Server tags to override the default expiration time on a
blob-by-blob basis.

• If there is no Satellite tag to override the default expiration, Satellite Server gets
the expiration time from the value of the satellite.blob.cachecontrol.default
property. This property is described in Page Caching Properties.

• If no value is set for the satellite.blob.cachecontrol.default property,
Satellite Server gets the expiration time from the value of the expiration property,
described in Satellite Server Properties.

Caching with the Satellite Servlet
This topic describes how the Satellite servlet caches web pages and how to implement
caching with the Satellite servlet in tandem with modular page design to create a fast,
efficient website.

How the Satellite Servlet Caches Pages

The Satellite servlet allows caching at the pagelet level. To implement caching with the
Satellite servlet, use Satellite Server XML or JSP tags in your WebCenter Sites pages,
and access pages using special Satellite URLs.

For example, suppose that you used the Satellite servlet to implement pagelet-level
caching on a web page named myPage. This figure shows that this page is composed
of a containing page and three pagelets; A, B, and C. The containing page and
pagelets A and B are cached on a Satellite Server system, but pagelet C is not
cached:

Chapter 27
About Caching

27-4

Figure 27-2 Web Page Named myPage

The following occurs when a user requests myPage:

1. Satellite Server examines the URL. If it is a Satellite URL, the Satellite servlet
gets the cached copy of the containing page. The servlet then looks for pointers
to pagelets that are not currently in its cache, and requests those pagelets from
WebCenter Sites. So, in our example, the Satellite servlet gets the containing
page, and gets Pagelets A and B from its cache.

2. The Satellite servlet requests Pagelet C from WebCenter Sites.

3. WebCenter Sites parses the appropriate XML to create Pagelet C and sends it to
the Satellite servlet.

4. The Satellite servlet assembles Pagelets A, B, and C into the page, and sends the
assembled page to the requester. The servlet also caches Pagelet C.

Implementing Caching with the Satellite Servlet

To implement pagelet-level caching with the Satellite servlet, add Satellite tags to your
WebCenter Sites templates. You do not develop any XML, JSP, or Java code on
Satellite Server systems. In fact, Satellite Server does not know how to parse XML.

The Satellite tags in your elements are interpreted by the Java code you installed as
part of Satellite Server. If this code is being called with a Satellite URL, it generates the
information that the Satellite servlet uses to cache and construct the pagelets. If you
do not call an element containing Satellite tags with a Satellite URL, the resulting page
functions as if the Satellite tags were WebCenter Sites tags.

Satellite URLs look like the following example:

http://host:port/servlet/Satellite?pagename=page

where host and port are the host name and port number of your Satellite Server
computer, and page is the name of the page you are requesting. A Satellite URL can
also include name/value pairs you want to pass to the called page.

Caching a Pagelet

Chapter 27
About Caching

27-5

The following sample code uses the render:satellitepage tag to call a pagelet. If
the pagelet is not in Satellite Server's cache, the Satellite servlet loads and caches
the page. If the pagelet encounters an error during the processing and cannot be
evaluated, it is not cached.

The render:satellitepage tag (and the satellite:page tag and their XML
equivalents) identifies a cached pagelet by the pagename and name/value pairs
passed to it. If the parameters or the name/value pairs differ from one invocation to
another, a different pagelet is cached, even if the content generated is the same. It is
important to use name/value pairs to pass arguments to a pagelet through these tags.

Values passed through the ICS object pool, ICS List pool, page attribute context,
and session (including session variables) may not be available to all called pagelets.
Nested pagelets are not always be called at the same time as the parent. Furthermore,
pagelets that rely on session or context data are rarely cacheable anyway, so
attempting to cache them can result in unexpected behavior.

All parameters passed to a nested pagelet through render:satellitepage (and the
satellite:page tag, and their XML equivalents) must be specified in the SiteCatalog
as page criteria. This determines which parameters are relevant when building a
pagelet for caching. Parameters other than those listed in the SiteCatalog are not
permitted (an error indicating this will be written to the log).

<cs:ftcs>
<html>
 <body>
 <render:satellitepage pagename="My/Sample/Page" />
 </body>
</html>
</cs:ftcs>

Caching a Blob

Using Satellite tags to load and cache a blob is similar to the way you use Satellite
tags to load and cache a pagelet. The following sample code adds to the previous
example by calling a blob and a pagelet.

<html>
<body>
<!-- NOTE: This will fail if list has no content (== null) -->

<ics:setvar name="category" value="logo"/>
<ics:setvar name="errno" VALUE="0"/>
<ics:selectto from="SmokeImage" list="imagelist" where="category" limit="1"/>

<ics:then>
<!-- Test a blob -->

<render:satelliteblob service="img src"blobtable="SmokeImage"
blobkey="id" blobwhere="imagelist.id" blobcol="urlpicture" blobheader="image/
gif"cachecontrol="*:30:0 */*/*"alt="imagelist.alttext" border="0" />
</ics:then>

<render:satellitepage pagename="QA/Satellite/
Functional/xml/"pagelet1"cachecontrol="never"/>
</body>
</html>

The following actions are defined in the above code:

Chapter 27
About Caching

27-6

• The ics:selectto tag performs a simple SQL query that retrieves a blob from the
database. Results are returned in the form of an IList named imagelist.

• The satellite:blob tag loads the blob that was retrieved from the database. As
with the satellite.page tag, if the blob is not in Satellite's cache, Satellite loads
and caches the blob. The cachecontrol parameter is set so that the blob expires
at a given time; in this case, every 30 minutes.

Never-Expiring Blobs

If there are binary files (or blobs) on your site that seldom change or never change,
such as company logos, and you are using the Satellite servlet to cache at the pagelet
level, you can improve performance by using an alternative method to serve these
blobs.

To serve never-expiring blobs:

1. Copy the never-expiring images to all your Satellite Server hosts. Place them
under the doc root for your web server.

2. Access the images through HTML tags rather than
through satellite:blob Satellite tags.

For example, consider a never-expiring corporate logo file named CorporateLogo.gif.
To use the alternative method of serving blobs, you would first copy the file to the web
server's doc root on all your Satellite Server hosts. Then, instead of serving this logo
through a satellite.blob tag, your element could simply use a tag like the following:

Note:

Be careful when using this mechanism for serving never-expiring images.
For example, Satellite Server cannot warn you that one of the Satellite
Server hosts does not contain the same image file as the other hosts.

http://myloadbalancer:1234/servlet/ContentServer?pagename=myPage

The expiration of the page is controlled by the expiration property. See Property Files
Reference for Oracle WebCenter Sites.

Viewing the Contents of the Satellite Server Cache
The Inventory servlet lets you view the various items stored in the cache. You invoke
the Inventory servlet by using the following URL:

http://host:port/servlet/Inventory?
username=username&password=passwordword&detail=value

where parameters are as defined in this table:

Chapter 27
About Caching

27-7

Table 27-2 Inventory Servlet Parameters

Parameter Description

host:port (required) The host name and port number of the Satellite Server
host whose cache you want to view.

username (required) The user name that you enter to log you in to the
Satellite Server host.

password (required) The password that you enter to log you in to the Satellite
Server host.

detail (optional) The type of information you want the Inventory servlet to
display. Valid values are:

• names: Displays the header information, plus the
page names of the pages in the cache.

• keys: Displays the header information, plus the
page names and keys of the items in the cache.

If you do not supply the detail parameter, or if you set
its value to be anything other than name or keys, the
header information displays.

The header contains the information types defined in this table:

Table 27-3 Information Types

Information type Description

Remote host The host that this Satellite Server system forwards requests to.

Maximum cache objects The maximum number of items allowed in the cache.

Current size The number of items currently in the cache.

Cache check interval How often the cache is checked for expired items, in minutes.

Default cache expiration The value of the expiration property.

Minimum file size (in bytes) Items larger than this value are stored in files. Items smaller than
this value are stored in RAM.

CacheManager
The CacheManager object maintains both the WebCenter Sites and Satellite Server
caches. CacheManager can perform the following functions:

• Log pagelets in the cache tracking tables.

• Keep a record of the content (assets) that pages and pagelets contain by
recording cache dependency items in cache-tracking tables. Cache dependency
items are items that, when changed, invalidate the cached pages and pagelets
that contain them. A cache dependency item is logged as a dependency for the
current page and all parent pages.

• Remove pages and pagelets containing invalid items from the WebCenter Sites
and Satellite Server caches.

• Rebuild the WebCenter Sites and Satellite Server caches with updated pages and
pagelets after the invalid pages have been removed.

Chapter 27
About Caching

27-8

See Using Cache Management with WebCenter Sites.

The SiteCatalog Table
The WebCenter Sites SiteCatalog table lists the pages and pagelets generated by
WebCenter Sites. An element must have an entry in the SiteCatalog table to be
cached on WebCenter Sites and Satellite Server.

The fields in the SiteCatalog table set the default behavior of a WebCenter Sites
page, including default caching behavior. See Creating Template Assets and Creating
SiteEntry Assets.

The Cache Key
Items stored in the WebCenter Sites and Satellite Server caches are assigned a
cache key. The cache key uniquely identifies each item in the cache. CacheManager
locates items in the cache using the cache key. WebCenter Sites and Satellite Server
generate cache keys automatically, based on the values in the pagename, resargs,
and pagecriteria fields of the SiteCatalog table, and other internal data.

pagecriteria and the Cache Key

You can include variables used by the page in the cache key by specifying them in a
comma-separated list in the pagecriteria field of the SiteCatalog table. For example,
suppose that you have a page called myPage that uses the values red and blue.

To include red and blue in the myPage cache key, enter the following:

• favoritecolor,second_favoritecolor in the pagecriteria column

• favoritecolor=red&second_favoritecolor=blue in the resargsl column

WebCenter Sites and Satellite Server use the pagecriteria and parameters that are
passed to cached pages to help generate the cache keys. If the parameters differ
from one invocation to another, a different page is cached even if the content being
generated is the same. For example:

http://mysatellite:1234/servlet/ContentServer?
pagename=myPage&favoritecolor=red

calls a different page than:

http://mysatellite:1234/servlet/ContentServer?
pagename=myPage&second_favoritecolor=blue

whether or not the content being generated is the same. Values passed by the URL
override values set in pagecriteria. For example, you have the myPage pagecriteria
set to red,blue:

• If the URL passes a value of green, then green,blue (not red,blue) will go into
myPage's cache key.

• If the URL passes values of green,violet, then green,violet (not red,blue) will
go into myPage's cache key.

• If the URL passes values of green,violet,yellow, an error results.

Chapter 27
About Caching

27-9

If a page does not have pagecriteria set, the values in the resargs fields go into the
cache key. As with pagecriteria, values passed by a URL override values specified
in the resargs fields.

Caching Properties
The default cache settings for WebCenter Sites and Satellite Server are contained in
the wcs_properties.json file. These properties can be modified using the Property
Management Tool. See the Property Files Reference for Oracle WebCenter Sites.

Additional Satellite Server properties are contained in the wcs_properties.json file
for remote Satellite Servers, located under the config directory, and must be modified
manually.

Page Caching Properties
The following properties in wcs_properties.json control disk caching:

• cs.freezeCache: Controls whether the cache pruning thread should run to remove
expired entries from the cache.

• cs.nocache: Disables the entire page cache.

Satellite Server Properties
Satellite Server has two sets of properties in the wcs_properties.json file (see the
Property Files Reference for Oracle WebCenter Sites).

• One property in the wcs_properties.json file is categorized under Cache:

satellite.blob.cachecontrol.default, which specifies a default value for the
cachecontrol parameter for the satellite.blob, and RENDER.SATELLITEBLOB
tags and their JSP equivalents.

• The other properties in the wcs_properties.json file are categorized under
Satellite:

– cache_folder: Specifies the directory into which Satellite Server caches
pagelets to disk.

– file_size: Separates disk-cached pagelets and blobs from memory-cached
pagelets and blobs, according to size.

– expiration: Sets the default value for the length of time blobs stay in Satellite
Server's cache.

– cache_check_interval: Controls the frequency of the cache cleaner thread,
and therefore defines when expired objects are pruned from cache.

– cache_max: Specifies the maximum number of objects (pagelets and blobs)
that can be cached in both memory cache and disk cache combined at a time.

Double-Buffered Caching
WebCenter Sites and Oracle WebCenter Sites: Engage implement a double-buffered
caching strategy. This caching uses the WebCenter Sites and Satellite Server caches
in tandem. The double-buffered caching strategy ensures that pages are always kept
in cache.

Chapter 27
Double-Buffered Caching

27-10

You can implement a similar caching strategy by using the CacheManager Java API.
This only applies if you are if you are running the WebCenter Sites core and Satellite
Server without any of the other CS modules or products. For more information about
the CacheManager Java API, see Java API Reference for Oracle WebCenter Sites.

Both the WebCenter Sites core and Satellite Server caches are maintained by the
WebCenter Sites CacheManager object. CacheManager tracks when content changes
by logging elements and the assets that those elements call in cache tracking tables.

When assets are updated and published, WebCenter Sites and Satellite Server
caches are automatically flushed and updated in the order shown in this figure:

Figure 27-3 Order of Cache Flushing 1

• In the following figure, content providers publish updated assets to the delivery
system. CacheManager checks the cache tracking tables to see which cached
items are affected by the updated assets.

Figure 27-4 Order of Cache Flushing 2

• In the following figure, CacheManager flushes the outdated Page1 from the
WebCenter Sites cache, then reloads the WebCenter Sites cache with the updated
Page1. Any requests for Page1 will be served the old version of Page1 from the
Satellite Server cache. This protects the WebCenter Sites computer from undue
load as it deletes and rebuilds its cache.

Figure 27-5 Order of Cache Flushing 3

Chapter 27
Double-Buffered Caching

27-11

• In the following figure, CacheManager flushes the outdated items from the Satellite
Server cache. As visitors come to the website and request Page1, the Satellite
Server searches to see if Page1 is in its cache. Because Page1 is not in the
Satellite Server cache, the request is passed on to WebCenter Sites.

Figure 27-6 Order of Cache Flushing 4

• The Satellite Server system's cache is filled with an updated version of Page1,
taken from the WebCenter Sites cache. The updated page is served to the
requestors. If Page1 is requested again, the page is served from the Satellite
Server cache.

About Implementing Double-Buffered Caching
The first step in implementing double-buffered caching on your website is to design
modular pages, as described in About Modular Page Design. Once you have
developed a modular page design, you implement a double-buffered caching strategy
in three steps:

• Develop a pagelet caching strategy.

• Set how individual pages and pagelets are cached by using the pagecriteria field
of the SiteCatalog table.

• Code your elements with Satellite tags.

Pagelet Caching Strategies
With a modular page design, caching occurs at the pagelet level. The containing page
is never cached, so that any cached pagelets are always protected by ACLs. You
choose which pagelets get cached based on how frequently they are updated.

This table summarizes the guidelines for caching pagelets:

Table 27-4 Guidelines for Caching Pagelets

Cache a Pagelet Don't Cache a Pagelet

• If the content seldom changes.
• If the pagelet does not contain logic that

requires evaluation to work.

• If the content changes frequently.
• If the content must be real time.
• If the pagelet contains code that checks

for ACLs, or other logic that requires
evaluation to work.

An example of a modular page is shown in this figure:

Chapter 27
Double-Buffered Caching

27-12

Figure 27-7 Modular Page

The containing page should never be cached. You can put logic that requires
evaluation by WebCenter Sites into your pages, while still gaining the performance
benefits of caching. Your page can also be protected by WebCenter Sites ACLs.

The header and footer pagelets in this example should be disk cached. They rarely
get updated, and should be designed accordingly. The header and footer may be static
HTML written into your template, or disk-cached content from WebCenter Sites.

The sidebar is also a good candidate for disk caching. It has a small number of
variations, and its content is determined by a small number of parameters.

Determining how to cache the body pagelet is more complex. The contents of the
body pagelet may depend on where the website visitor is in the site. There are three
possible types of content for the body pagelet:

• The results of a search that the website visitor runs

• The results of a frequently run query

• An article

Your caching strategy should be consider the following points:

• If the content of the body pagelet is the result of a search based on parameters
that the website visitor enters, you do not want to cache it. Such pages change for
each visitor, and there is little benefit to caching them.

• If the content is the product of a standard query that visitors often use, you
should use resultset caching. Caching frequently run queries in the memory cache
improves performance. See Working with Resultset Caching and Queries.

• If the content of the body pagelet is the text of an article, you should cache the
pagelet to disk.

Setting cscacheinfo
The values in the cscacheinfo field of the SiteCatalog table allow you to control how
pages are cached on WebCenter Sites.

Chapter 27
Double-Buffered Caching

27-13

• You can change these properties for each page and pagelet in your website. For
example, if you want a containing page element to be uncached on WebCenter
Sites, set the values in cscacheinfo to false.

For more information about the cscacheinfo field, see Creating Template Assets.

Coding for Caching

• To implement double-buffered caching, code your elements with Satellite Server
tags. If you are running WebCenter Sites and Satellite Server only, use the
Satellite tags documented in the Satellite Server sections of the Tag Reference
for Oracle WebCenter Sites Reference.

Automatic cache maintenance depends on you logging your assets in the cache
tracking tables. If you use the ASSET.LOAD tag to load an asset, that asset
is automatically logged in the cache tracking tables. For those sections where
ASSET.LOAD is not used, use the RENDER.LOGDEP tag to log content in the cache
tracking tables.

Note:

Cache dependencies are logged only if a page or pagelet is cached on
WebCenter Sites. If a page is uncached on WebCenter Sites but cached on
Satellite Server, that page is not automatically flushed from the cache when
its content is updated.

Caching and Security
Cached pagelets require special security considerations as you design your site and
develop your caching strategy. The following sections outline security considerations
for pages cached in the WebCenter Sites and Satellite Server caches:

• WebCenter Sites Security

• Satellite Server Security

WebCenter Sites Security
Pagelets that are disk cached on WebCenter Sites are bound by the WebCenter Sites
ACLs, allowing you to use those ACLs to prevent unauthorized access to a page.

Note, however, that although WebCenter Sites checks the ACL of a containing page, it
does not check the ACLs of the pagelets that the containing page calls. For example,
suppose that your site uses three ACLs: Open, Secret, and TopSecret. Your containing
page can be viewed by members of the Open ACL, but it calls pagelets that should
be viewed only by members of the Secret and TopSecret ACLs. Because WebCenter
Sites only checks a visitor's ACL of the containing page, visitors with the Open ACL can
view content meant for members of the Secret and TopSecret ACLs.

To ensure that all the relevant ACLs are checked:

1. Include the ACL for the page that you want to protect in that page's cache criteria,
as shown in the following sample code:

Chapter 27
Double-Buffered Caching

27-14

<render.satellitepage pagename="innerwrapper"
userAcl="SessionVariables.member" c="Article" cid="123">

2. In the pagelet, insert code to check the ACLs, as shown in the following sample:

<asset.load name="art" type="Variables.c" OBJECTID="Variables.cid"/>
<ASSET.GET NAME="art" FIELD="myACL"/> <!-- note you need a column in your db
to support this -->
<IF COND="Variables.userACL=Variables.myACL">
<THEN>
<render.satellitepage pagename="protected_art_tmpl1" c="Variables.c"
cid="Variables.cid"/>
</THEN>
<ELSE>
<render.satellitepage pagename="accessDenied"/>
</ELSE>
</IF>

Satellite Server Security
Pagelets to be cached on Satellite Server are only bound by WebCenter Sites ACLs
under the following circumstances:

• If they are retrieved from the WebCenter Sites cache.

• If they must be generated by WebCenter Sites to fulfill the page request.

If a pagelet is served from the Satellite Server cache, it is no longer protected by
WebCenter Sites ACLs.

To ensure that the content of your Satellite Server pages is secure, never cache
your containing page and be sure that you put an ACL checking mechanism in the
uncached container.

If your elements are coded with Satellite tags but you do not yet have Satellite Server
installed, the page design considerations outlined in WebCenter Sites Security apply
to you. Once Satellite Server is installed, however, WebCenter Sites checks the ACLs
of uncached pagelets called from a containing page. The ACLs of pagelets cached on
Satellite Server are not checked.

Chapter 27
Double-Buffered Caching

27-15

28
Working with Resultset Caching and
Queries

Resultset caching is another means of improving the performance of your system. You
can create queries that allow CatalogManager to cache resultsets accurately and flush
those resultsets from the cache.

Topics:

• About Resultset Caching and Queries

• Caching Frameworks

• Database Queries

• How Resultset Caching Works

• Reducing the Load on the Database

• Specifying the Table Name

• Flushing the Resultset Cache

• Switching Between Caching Frameworks

• About Resultset Caching Strategy and Properties

About Resultset Caching and Queries
The resultset cache is maintained by the CatalogManager servlet. You or your
system administrators set up resultset caching on all three systems (development,
management, and delivery). Whenever the database is queried, WebCenter Sites
serves a resultset, either cached or uncached. Resultset caching reduces the load on
your database and improves the response time for queries.

The wcs_properties.json file provides global properties that set the size and
timeout periods for all resultsets. You can add table-specific properties to the
wcs_properties.json file that override the default settings on a table-by-table basis.
These custom properties enable you to fine-tune your systems for peak performance.

Resultset caching reduces the load on your database and improves the response time
for queries. Be sure to take the following steps:

• Set the default resultset caching properties in the wcs_properties.json file to
values that make sense on each of your systems (development, management,
testing, and delivery).

• Add table-specific resultset caching properties to the wcs_properties.json file
to fine-tune the performance of all of your systems (development, management,
testing, and delivery).

• Provide the correct table name for all of your queries so the resultsets are cached
correctly and can be flushed correctly.

28-1

Caching Frameworks
By default, WebCenter Sites stores resultsets in the inCache framework. You have the
option to switch to caching in hash table.

See Switching Between Caching Frameworks.

When resultset caching over inCache is enabled, the System Tools node (on the
Admin tab of the Admin interface) displays the resultset over inCache tool, which
provides statistical information about resultset caches and their contents. Note that
resultset caching over inCache functions independently of page and asset caching
over inCache. For more information about the inCache framework, its caching models,
and system tools, see Working with Cache Management - Resultset Cache in
Administering Oracle WebCenter Sites.

Database Queries
There are several ways you can query the WebCenter Sites database for information.
See some examples here.

• Use the ics.SelectTo Java method, SELECTTO XML tag, or ics:selectto JSP tag.

• Use the selectrow command of the ics.CatalogManager Java method, the
CATALOGMANAGER XML tag, and the ics:catalogmanager JSP tag.

• Use the ics.SQL Java method, EXECSQL XML tag, or ics:sql JSP tag.

• Use the ics.CallSQL Java method, CALLSQL XML tag, or ics:callsql JSP tag.

• Use the Search forms in the WebCenter Sites interface.

• Use a query asset.

• Use a SEARCHSTATE XML or JSP tag (flex assets only).

How Resultset Caching Works
When you query the database, the resultset from the query is cached—if resultset
caching is enabled. The resultset cache is either a hash table or the inCache
framework, based on how you configured the rsCacheOverInCache property in the
wcs_properties.json file.

Table-specific properties override the default properties and enable you to fine-tune
your systems for peak performance.

Default properties are resultset caching properties in the wcs_properties.json file
that are assigned to all tables.

These properties are used for querying the database. If someone runs the same query
and the data in the table remains unchanged since the last time the query was run,
WebCenter Sites serves the information from the resultset cache rather than querying
the database again. Serving a resultset from cache is always faster than performing
another database lookup.

The resultsets are organized by the name of the table that was associated with the
query that generated the resultset. In other words, resultsets are cached against a
table name.

Chapter 28
Caching Frameworks

28-2

Each time a table is updated (from either the WebCenter Sites interface or through a
CatalogManager command in your custom elements), all the resultsets in the cache
for that table are flushed. Resultsets are cached in the context of a single Java VM.
Although Java VMs do not share resultsets, WebCenter Sites sends a signal to all
the Java VMs in a cluster to flush the resultsets when they become invalid, while the
synchronization feature has been enabled on all servers in the cluster.

Reducing the Load on the Database
Resultset caching reduces the load on your database in many ways. For example, at
the time of serving it doesn’t need a database connection, it’s enabled only when there
are uncached resultsets, etc.

• Serving a cached resultset does not open a database connection. WebCenter
Sites attempts to obtain a resultset from the cache before it contacts the database.
If the correct resultset exists, no contact is made with the database.

• When resultset caching is enabled but the appropriate resultset is not cached,
WebCenter Sites obtains the resultset, stores it in the cache as an object, and
then releases the database connection.

• When resultset caching is not enabled, WebCenter Sites cannot close the
database connection until either the online page is completely rendered or the
uncached resultset is explicitly flushed from the scope with a flush tag. When this
occurs, your available database connections can be quickly used up (even on a
relatively simple page).

As a general rule, resultset caching should be enabled for all of your database tables.
Although there are times when you might have to limit either the number of resultsets
that are cached or the length of time that they are cached for, it is rarely a good idea to
disable resultset caching altogether.

Note:

Never disable resultset caching on the ElementCatalog table. If you do, the
performance of your system will suffer greatly, especially if you are using
JSP in any of your elements.

Specifying the Table Name
Always remember to associate a table name with a query to cache the resultset
against that table. Then, whenever you update the table through the WebCenter
Sites interface or through your own custom elements, CatalogManager flushes all the
resultsets associated with that table.

The way that the table name is specified for a resultset depends on the type of query
you are running. The following sections describe the most commonly used methods for
querying the database and how you specify the table name for such a query.

• SELECTTO

• EXECSQL

• CALLSQL

Chapter 28
Reducing the Load on the Database

28-3

• Search Forms in the WebCenter Sites Interface

• Query Asset

• SEARCHSTATE

SELECTTO
When you use the ics.SelectTo Java method, SELECTTO XML tag, or ics:selectto
JSP tag, you must specify the name of the table with a FROM parameter (clause). For
example:

<SELECTTO FROM="EmployeeInfo"
 WHERE="name"
 WHAT="*"
 LIST="MatchingEmployees"/>

In this case, EmployeeInfo is the name of the table that is being queried and is the
name of the table that the resultset is cached against. Whenever the EmployeeInfo
table is updated, CatalogManager flushes all the resultsets cached against it.

EXECSQL
EXECSQL lets you execute an inline SQL statement. You specify the table or tables
that you want to cache the resultset against using the TABLE parameter. If you specify
multiple tables (by using a comma-separated list), the resultset is cached against the
first table in the list. Note that this means the resultset is cached based on the resultset
cache settings specified for the first table, including timeout and maximum size.

CatalogManager deletes outdated resultsets as the specified tables are updated.

For example, the following query caches the resultset against the article table:

<EXECSQL SQL="SELECT article.headline, images.imagefile FROM
article,images WHERE article.id='FTX1EE17FWB' AND images.id='FTK9384FWW'"
LIST="sqlresult" TABLE="article,images"/>

CALLSQL
When you use the ics.CallSQL Java method, CALLSQL XML tag, or ics:callsql JSP
tag to invoke a SQL query that is stored in the SystemSQL table, the table name is set
by the query's entry (row) in the SystemSQL table.

The SystemSQL table has a deftable column that identifies the table name that the
resultset from the query should be cached against. You can specify multiple tables by
putting a comma-separated list of tables in the deftable column. The first table in the
list is the table that the query is cached against.

Each query stored in the table must have a value in the deftable column. If it does
not, CatalogManager cannot store the resultsets accurately, which means they cannot
be flushed when it is necessary. Note that the table name must identify an existing
table. If you enter the name of a table that does not exist yet or if you misspell the
name of the table, the resultset cannot be cached correctly.

Chapter 28
Specifying the Table Name

28-4

Search Forms in the WebCenter Sites Interface
The Search forms that you use to look for assets in the WebCenter Sites interface
search by asset type. The resultsets from the search form queries are stored against
the primary storage table for assets of that type.

For example, for the avisports sample site asset type named Article, those resultsets
are cached against the AVIArticle table, for page assets it is the Page table, and so
on.

Query Asset
Query assets can return assets of only one type. When you create a query asset,
you specify what kind of asset the query asset returns in the Result of Query field:
articles, imagefiles, and so on.

When that query asset is used on a page in the online site, WebCenter Sites stores
the resultset against the table name of the primary storage table for the asset type that
the query asset returns, for example, Article or Imagefile.

SEARCHSTATE
The SEARCHSTATE XML and JSP tags create a set of search constraints that are
applied to a list or set of flex assets (created with the ASSETSET tags). A constraint can
be either a filter (restriction) based on the value of an attribute or based on another
searchstate (called a nested searchstate).

You can use the SEARCHSTATE and ASSETSET tags to extract and display flex assets
or flex parent assets (not definitions or flex attributes) on your online pages for your
visitors.

WebCenter Sites caches the resultsets of searchstates against the _Mungo table for the
flex asset type. For example, if the searchstate returns the avisports sample site flex
asset named article, the resultset is cached against the AVIArticle_Mungo table.

When you configure the delivery system, be sure to add resultset caching properties
for all of your _Mungo tables.

Flushing the Resultset Cache
In most cases, data is written to the database through the CatalogManager API, which
flushes the resultset cache when it is appropriate to do so. CatalogManager can flush
all the resultsets cached against that table. Or, it can flush the resultsets cached
against the tables that are written to. There are more possibilities for you to learn
about.

For example:

• If you use WebCenter Sites Explorer to add a row to a table (the SiteCatalog
table or the ElementCatalog table, for example), CatalogManager flushes all the
resultsets cached against that table.

Chapter 28
Flushing the Resultset Cache

28-5

• If you use a form in the WebCenter Sites interface to add or edit an asset, a
source, a category, a workflow process, a user, an ACL, etc., CatalogManager
flushes the resultsets cached against the tables that are written to.

• If you use CatalogManager commands in an element of your own to update a
single table, Catalog Manager automatically flushes the resultsets cached against
that table.

• If you use CatalogManager commands in an element of your own to update
multiple (joined) tables, Catalog Manager automatically flushes the resultsets
cached against the joined tables.

• If you use the CALLSQL tag to execute a SQL statement that is stored in the
SystemSQL table, Catalog Manager automatically updates the resultsets cached
against the table or tables specified in the deftable column.

Switching Between Caching Frameworks
You can switch between the inCache and hash table frameworks by setting the
rsCacheOverInCache property to either true or false in the wcs_properties.json file.

Resultset caching over inCache is enabled when the following conditions are met:

• The linked-cache.xml configuration file is placed in the application server's
classpath (WEB-INF/classes directory).

• The rsCacheOverInCache property (in wcs_properties.json) is set to true.

About Resultset Caching Strategy and Properties
Before you configure resultset caching for your database, discuss with your team and
database administrators how you should configure the database tables’ properties to
maximize the performance of the delivery system. The default properties control the
table resultset caches. Table-specific properties enable you to fine-tune your systems
for peak performance.

These topics describe the process of planning and using resultset caching properties
for all tables and specific tables.

• Planning Your Resultset Caching Strategy

• Default Properties

• Table-Specific Properties

Planning Your Resultset Caching Strategy
Before you configure resultset caching for your database, create a spreadsheet of
all the tables in your WebCenter Sites database, assemble a team of developers
and database administrators, and discuss what the settings should be for all of
your systems (development, management, testing, and delivery). One strategy is
to identify default properties for a large group of similar tables, and then add table-
specific properties for the exceptions. To fine-tune your delivery system for the best
performance possible, however, it is likely that you will create custom properties for
each table in the database.

Chapter 28
Switching Between Caching Frameworks

28-6

Note:

If you set the com.fatwire.logging.cs.cache.resultset property,
debugging messages about the resultset cache are written to the WebCenter
Sites log file. Set the property in logging-config.xml.

Default Properties
This table describes resultset caching properties in WebCenter Sites
wcs_properties.json that are assigned to all tables. The properties control the table
resultset caches while no table-specific caching properties are assigned to the tables.
The same properties are valid for resultset caching in both inCache and hash tables.
Use the Property Management Tool, in the Admin interface, to change the values of
the properties in the WebCenter Sites wcs_properties.json file. For information about
using the Property Management Tool, see Introducing WebCenter Sites Tools and
Utilities.

Table 28-1 Default Properties That Control the Resultset Cache

property description

cc.cacheResults Specifies the default number of resultsets to cache in memory.
Note that this does not mean the number of records in a resultset,
but the number of resultsets.

Important: Unless you are debugging, do not set this property to
0 or -1. If you do, the WebCenter Sites interface will fail to save
assets properly. (Setting this property to 0 or -1 disables resultset
caching for all tables that do not have their own caching properties
configured.)

cc.cacheResultsTimeou
t

Specifies the number of minutes to keep a resultset cached in
memory.

Setting this property to -1 means there is no timeout value for
tables that do not have their own caching properties configured.

cc.cacheResultsAbs Specifies how expiration time in the resultset cache is calculated.

• If this property is set to true, the expiration time is
absolute. For example, if cc.cacheResultsTimeout is set
to 5 minutes, then 5 minutes after the resultset was cached, it
is flushed from the cache.

• If this property is set to false, the expiration time is based
on its idle time. For example, if cc.cacheResultsTimeout
is set to 5 minutes, the resultset is flushed from the cache
5 minutes after the last time it was requested, rather than 5
minutes since it was originally cached.

Table-Specific Properties
Table-specific properties override the default properties and enable you to fine-tune
your systems for peak performance.CatalogManager uses the default properties
described in Table 28-1 and checks the wcs_properties.json file to determine if it
contains any table-specific resultset caching properties.

Chapter 28
About Resultset Caching Strategy and Properties

28-7

You can create three resultset caching properties for each table in the WebCenter
Sites database. Table-specific properties work in the same way as the default
properties (described in Table 28-1).

Syntax for table-specific properties is as follows:

cc.<tablename>CSz=<number of resultsets>
cc.<tablename>Timeout=<number of minutes>
cc.<tablename>Abs=<true or false>

Note:

If an asset type is enabled for revision tracking, and you want to cache
the resultsets of asset versions, use the properties above, but add _t after
<tablename>:

cc.<tablename>_tCSz=<number of resultsets>
cc.<tablename>_tTimeout=<number of minutes>
cc.<tablename>_tAbs=<true or false>

See Resultset Caching Properties in the Property Files Reference for Oracle
WebCenter Sites.

Open the Property Management Tool and add table-specific properties for each table
that you want to control. See Property Management Tool.

Chapter 28
About Resultset Caching Strategy and Properties

28-8

29
Using Cache Management with WebCenter
Sites

For all components to work together in your site, you must configure the rendering
engine cache properly. Learn about some important caching concepts such as the
rendering engine cache and its components. Also learn which cache configuration
properties enable CacheManager to clear all caches (ContentServer, BlobServer, and
Satellite Server caches) of any object that becomes obsolete because of changes in
its underlying content.

Topics:

• About the WebCenter Sites Rendering Engine Cache

• About the CacheManager

• Enabling CacheManager

About the WebCenter Sites Rendering Engine Cache
The WebCenter Sites rendering engine cache is a two-tier cache. Tier 1 consists of
ContentServer and BlobServer. And, tier 2 consists of Satellite Server.

Each component is independently configurable, with controls that fine-tune cache size,
cache timeout, and dependency management behavior.

If the components are configured correctly, WebCenter Sites can effectively prevent
users from viewing uncached content nearly all of the time. However, if these
components are mis-configured, the behavior of WebCenter Sites can be non-intuitive
and unpredictable. Inadequate caching can hamper performance, and improper co-
ordination of the cache inventory can result in stale content being rendered. To
address this, WebCenter Sites includes a module called CacheManager, which can
actively manage the cache on behalf of the whole system.

About the CacheManager
CacheManager can record the existence of a compositional dependency against an
object that is to be cached by the rendering engine. For example, if a pagelet renders
an asset, then the asset is a compositional dependency on that page. If the asset
changes, the page is no longer valid and must be flushed from cache.

Using CacheManager to flush the cache requires that you surrender full control
over the lifecycle of rendering engine cache objects to CacheManager. You do this
by specifying that the objects never expire from the cache. When CacheManager
determines that they are obsolete because of changes in the underlying content (that
is, in one of the compositional dependencies recorded against each object), it removes
those objects from the cache.

29-1

Note:

When you specify an infinite expiration time, CacheManager keeps a record
of all objects that are cached, and what dependencies are tracked against
them. This record is stored on WebCenter Sites, and it is linked to the
cached object on the first tier. This record enables CacheManager to infer
the existence of objects in the second tier cache and therefore flush the
objects from the second tier cache.

If an object expires from the cache, its record is removed, leaving
CacheManager without the information it requires to properly flush the object
from the second tier cache.

CacheManager features are almost completely automatically enabled.

• By default, the cache is configured so that objects never expire.

• Compositional dependencies are recorded against the Blob and Page cache
on the lower tier. Tags such as <asset:load> and <render:sateliteblob>
provide automatic compositional dependency recording (see the Tag Reference
for Oracle WebCenter Sites Reference for a complete list), whereas the two
tags <portal:logdep>, and <render:logdep> provide explicit compositional
dependency recording.

• Whenever assets are modified or published, WebCenter Sites automatically
invokes CacheManager to purge the old content from the cache and, in the
case of publishing, instructs CacheManager to pre-cache the new content in the
background before flushing the second tier cache.

Site visitors enjoy the best possible cache performance when they only view cached
content.

Enabling CacheManager
Learn about Tier 1 properties that regulate Page and BlobServer blob cache and Tier 2
properties that deal with the Satellite Server page and blob cache.

These topics describe the Tier 1 and Tier 2 cache configuration properties and how
they must be set to enable CacheManager.

• Tier 1 Cache Configuration Properties

• Tier 2 Cache Configuration Properties

Tier 1 Cache Configuration Properties
The tables in this section describe properties that regulate the page cache and
BlobServer blob cache.

See the Property Files Reference for Oracle WebCenter Sites.

The following table describes page cache properties:

Chapter 29
Enabling CacheManager

29-2

Table 29-1 WebCenter Sites Page Cache Properties

Property Description

cs.IItemList This property specifies the class implementing the IItemList
interface.

An illegal value results in CacheManager having no effect.

The following table describes BlobServer cache properties:

Table 29-2 BlobServer Cache Properties

Property Description

bs.bCacheTimeout This property specifies how many seconds a blob should remain
cached by BlobServer.

bs.bCacheSize This property specifies how many blobs will be stored in the
BlobServer cache. This has no effect on CacheManager.

cs.recordBlobInventory This property specifies whether compositional dependencies
should be recorded against blobs.

This property must be set to true (the default) for
CacheManager to operate on blobs.

bs.security This property controls the security feature of BlobServer.

When BlobServer security is enabled, caching is disabled.
Consequently, BlobServer security is incompatible with
CacheManager's Intelligent Cache Management features.

By default, this level of security is disabled.

Tier 2 Cache Configuration Properties
Tier 2 cache configuration properties deal with the Satellite Server cache, both page
and blob.

None of the Tier 2 properties affect the correct operation of CacheManager. They do,
however, serve as important diagnostic aids if CacheManager is operating incorrectly.
The timeout and configuration values of the Tier 2 cache properties are important in
troubleshooting unpredictable behavior.

Typically, unpredictable behavior results when objects are cached on the Tier 2 cache
but not on the Tier 1 cache, and so they are not actively flushed when the dependent
asset is saved or published. See the Property Files Reference for Oracle WebCenter
Sites for configuration details.

Unpredictable behavior can also result if no compositional dependency is recorded
against an object that is cached. This scenario precludes all active management
of that object in the caches. See the Tag Reference for Oracle WebCenter
Sites Reference for details about which tags automatically record compositional
dependencies, and which tags must be used in conjunction with explicit recording
using one of the :logdep tags.

Chapter 29
Enabling CacheManager

29-3

Note:

Do not record excessive compositional dependencies on your pages or
blobs. This causes unnecessary flushing of the cache, which under certain
circumstances can result in severe performance problems during publishing.
Be very careful when recording unknown compositional dependencies. See
Coding Elements for Templates and CSElements.

Chapter 29
Enabling CacheManager

29-4

30
Using Advanced Page Caching Techniques

Advanced page caching techniques include caching pages and blobs, where they are
cached, and how they are retrieved from cache on both WebCenter Sites and Satellite
Server systems.

Topics:

• About Advanced Page Caching

• Configuring the WebCenter Sites Cache

• Configuring the Blob Server Cache

• Configuring the Satellite Server Cache

• CacheInfo String Syntax

• Caching Best Practices

About Advanced Page Caching
Caching improves the speed at which WebCenter Sites serves pages. The caching-
rendered content doesn’t need to be re-rendered at each request. This improves the
response time.

The caching system has multiple layers. This allows cached objects to be regenerated
on one cache level, while the client is being served cached content from another
cache level. WebCenter Sites is the inner level of cache, and Satellite Server is the
outer layer of cache.

Configuring the WebCenter Sites Cache
Both WebCenter Sites and Satellite Server cache pages, pagelets, and blobs.
WebCenter Sites provides three different rendering engine caches: CS page cache,
BlobServer cache, and SS cache.

All the caches can be configured and emptied as follows:

• For information on setting expiration times for WebCenter Sites cache and
BlobServer cache, see Setting Expiration Time for an Individual Entry.

• For information on removing objects from the cache for WebCenter Sites cache,
BlobServer cache, and Satellite Server cache, see Explicitly Removing Entries
from Cache.

There are two levels of caching for the WebCenter Sites page cache:

• In the database.

• In memory. Memory cache is a transparent subset of the database cache;
however, it is independently configurable.

See these topics:

30-1

• Setting Expiration Time for an Individual Entry

• Explicitly Removing Entries from Cache

Setting Expiration Time for an Individual Entry
The lifetime of an entry in the page cache is determined by the cscacheinfo setting.
The CacheInfo object derives values that are not explicitly set in the cscacheinfo field
from the configuration file. For CacheInfo syntax, see CacheInfo String Syntax.

Explicitly Removing Entries from Cache
WebCenter Sites provides two ways of removing entries from cache: manually and
automatically, using CacheManager.

Manual Removal
You can remove entries from the page cache manually using the CacheServer servlet.
The CacheServer provides two options:

• Flush the entire cache.

• Force a flush of all pages at the moment they expire. To invoke the CacheServer
flush all functionality, you must be logged in as a user with destroy privileges on
the SiteCatalog table, and specify the parameter all=true when invoking the
CacheServer servlet. If you do not specify a parameter, then all expired entries
(those whose expiry date is in the past) are cleared from the cache immediately.
Entries that have not yet expired are not cleared.

Note:

In no case will an expired entry be served from the cache, even if it is
still in the database table. WebCenter Sites checks the expiry date of any
page it retrieves from cache before serving the page. If WebCenter Sites
attempts to serve a page that has expired, the page will be removed
from the cache immediately and a new page will be generated.

The CacheServer URL is in the following
format: http://{hostname}:{port}/{context}/CacheServer?
all=true&authusername=fwadmin&authpassword=xceladmin

– Hostname: The name of server that hosts the CacheServer servlet.

– Portnumber: The port number of the server that hosts the CacheServer
servlet.

– authusername: The username of the user who is authorized to access the
servlet.

– authpassword: The password of the user who is authorized to access the
servlet.

Chapter 30
Configuring the WebCenter Sites Cache

30-2

Automatic Removal
CacheManager is a module closely tied into the WebCenter Sites page and blob cache
mechanisms. It lets you manage the contents of all of the rendering caches based on
the items loaded on a page, on the expiration of the pages, or on parameters passed
into pages.

CacheManager alone could be the subject of an independent document. An overview
of its functionality is provided here. For complete information about methods and
required arguments, consult the COM.FutureTense.Cache.CacheManager Javadoc.

1. CacheManager is instantiated using one of two constructors. One constructor sets
CacheManager with all of the currently registered Satellite Servers. The other
constructor lets you specify which Satellite Servers this instance of CacheManager
is to manage.

2. Next, CacheManager needs to be populated with pages and blobs. This is done by
using one of the following methods:

setByCachedDate(ICS ics, boolean before, String timestamp)
setByItemDate(ICS ics, boolean before, String timestamp)
setPagesByArg(ICS ics, String paramName, String paramValue)
setPagesByID(ICS ics, String[] ids)

The contents of the Page, Blob and Satellite caches are closely tied together. It
is always the case, except as a result of a configuration error, that any object
cached on Satellite Server is present in the WebCenter Sites cache. This means
that WebCenter Sites has a record of all entries in all rendering engine caches.
CacheManager uses this record to manage the contents of each of the caches,
without having to directly interrogate each cache for the information explicitly.

setByCachedDate(ICS ics, boolean before, String timestamp)

This method lets you populate CacheManager based on the date an entry was last
added to the cache. You can choose whether you want to populate it with all of the
entries modified either before or after the date specified.

setByItemDate(ICS ics, boolean before, String timestamp)

This method lets you populate CacheManager based on the date an item on an
entry was last modified. As with setByCachedDate(ICS, boolean, String), you
can choose whether you want all entries whose items were modified before or
after the date specified.

setPagesByArg(ICS ics, String paramName, String paramValue)

This method lets you populate CacheManager based on name-value pairs present
in the cache key (including pagename).

setPagesByID(ICS ics, String[] ids)

This method lets you populate CacheManager based on the exact item IDs of the
items stored on the pages or blobs in the cache.

Once fully populated, CacheManager is able to manage the contents of the
caches. This is done using one of the four main service methods:

• flushCSEngine(ICS ics, int mode)

Chapter 30
Configuring the WebCenter Sites Cache

30-3

This method flushes all of the pages and blobs currently populated in the
CacheManager from the WebCenter Sites page and blob caches.

• flushSSEngines(ICS ics)

This method flushes all of the pages and blobs currently populated in the
CacheManager from the Satellite Server cache. This is done by sending an
HTTP request to the FlushServer servlet with the appropriate <page> and
<blob> tags embedded in it. Satellite Server interprets these tags and converts
them into a cache key, then flushes the corresponding pages from cache.

• refreshCSEngine(ICS ics, int mode)

This method sends a request (using ICS.ReadPage or ICS.BlobServer) that
regenerates the object and automatically re-populates the cache.

• refreshSSEngines(ICS ics)

This method sends a request using HTTP to Satellite Server to read the
pages. The returned bytes are ignored, but the result is that the Satellite
Server cache is re-populated.

You can use these methods to take advantage of double-buffered caching, a tool
that can enable extremely high performance dynamic sites. See Understanding Page
Design and Caching.

Configuring the Blob Server Cache
The BlobServer cache is an all or nothing cache. Its entries are either globally cached
or globally not cached. BlobServer caching is disabled if security is enabled, or if
bs.security=true.

See these topics:

• Consideration About Configuring Maximum Cache Size

• Setting Expiration Time for an Individual Entry

• Explicitly Removing Entries from Cache

Consideration About Configuring Maximum Cache Size
The property bs.bCacheSize in the WebCenter Sites wcs_properties.json file
specifies the number of entries the blob cache contains. If the size is set to a negative
number, the blob cache is allowed to grow indefinitely.

Setting Expiration Time for an Individual Entry
Blob Server does not support expiration for cached entries. All cached objects
reside in cache for the timeout determined by the bs.bCacheTimeout property in the
WebCenter Sites wcs_properties.json file. A negative timeout indicates that entries
should not time out. A positive integer specifies the number of minutes an object
resides in cache.

Explicitly Removing Entries from Cache
You can use BlobServer to flush either individual entries or all entries from the cache.

Chapter 30
Configuring the Blob Server Cache

30-4

Manual Removal
To remove an entry from cache manually, rename the blobtable parameter to
flushblobtable. This removes the entry corresponding to the rest of the parameters
from the cache.

To remove all entries from the cache manually, there are two options.

• Invoke the BlobServer servlet with the parameter flushblobtables (notice the
"s").

• Invoke the CacheServer servlet as described above. Note that this flushes all
pages and all blobs from the cache.

Automatic Removal
Because blob dependency items are recorded when blob links are generated, you
may invoke CacheManager to manage blobs and pages. CacheManager always
manages blobs and pages together. See CacheManager, About the CacheManager,
and Enabling CacheManager.

Note:

Developers should check the asset status before serving blobs. This avoids
issues such as the BlobServer serving a blob after an asset has been voided
(this behavior occurs with basic assets only).

Configuring the Satellite Server Cache
You configure the generic Satellite Server cache in the wcs_properties.json file.

However, cache configuration is often overridden on an object-by-object basis.

Configuring Maximum Cache Size
• Update the cache_max property in the wcs_properties.json file to the maximum

number of entries that can be stored in the cache at once.

If you set the property to a negative integer, the cache is not limited by size. Any
positive integer specifies the maximum number of entries that can be stored in the
cache.

Explicitly Removing Entries from Cache
You can remove individual entries from the Satellite Server cache either manually or
using CacheManager, as explained in this section.

• Manual Removal: Satellite Server includes a servlet called FlushServer. By
submitting a GET request to this servlet, specifying the user name, password and
reset parameters, it is possible to flush all of the contents of the Satellite Server
cache. It is not possible to flush individual entries using GET.

Chapter 30
Configuring the Satellite Server Cache

30-5

• Automatic Removal: It is possible to flush the Satellite Server cache using
CacheManager. CacheManager is only able to flush entries on Satellite Server
if a corresponding object is cached on WebCenter Sites. This is because of the
way WebCenter Sites tracks the contents of the Satellite Server cache.

When the Satellite Server cache is flushed by using CacheManager, a
corresponding object is cached on WebCenter Sites. The corresponding object is
required because of the way WebCenter Sites tracks the contents of the Satellite
Server cache.

The relevant CacheManager methods for dealing with the Satellite Server cache
are flushSSEngines() and refreshSSEngines(). See Explicitly Removing Entries
from Cache.

CacheInfo String Syntax
The cscacheinfo and sscacheinfo fields of the SiteCatalog are populated with a
CacheInfo string. Learn how the format of the two-part, comma-separated string
determines whether the page is to be cached and when it expires.

Sample values are as follows:

false
true
true,*
true,~4
true,@1987-06-05 04:32:10
true,#00:00:00 */*/*
*
(blank)

CacheInfo String: First Part

The first part in CacheInfo must be one of the following values:

false
true
(blank)*

• If the value is false, then the page is not cached.

• If the value is true, then the page is cached according to the information provided
in the second element.

• If the value is blank, then the wcs_properties.json property cs.alwaysusedisk is
checked. If this property is set to yes, then a blank value is interpreted as having
the same behavior as true. If the value is set to no (the default value), then a
blank value is interpreted as having the same behavior as false.

• If the value is *, then it is treated as blank.

CacheInfo String: Second Part

This describes when a page that is to be cached should be removed from cache. If the
first element is false (or is interpreted as false), then the second element is ignored.

There are three ways of specifying the expiration of a page:

page timeout (in minutes)
instant in time expiration
cron-like TimePattern expiration

Chapter 30
CacheInfo String Syntax

30-6

Legal values include:

~<number of minutes>
@<date in JDBC format>
#<COM.FutureTense.Util.TimePattern format>
*
(blank)

Page Timeout

If the second element starts with the tilde symbol (~), then the following value must
be an integer. The value of this integer is the number of minutes a page will remain in
cache after it was first created. A negative value or 0 indicates that the page will never
expire (it will remain in cache forever).

Absolute Moment in Time

If the second element starts with the at symbol (@), then the following value must be
a date expressed in the JDBC date string format, that is, YYYY-MM-DD HH:MM:SS. Once
that date has passed, cached pages are flushed from cache and the page is no longer
cached.

TimePattern

The TimePattern format is supported for describing page cache expiration.
If the second element starts with a hashtag (#), then the following
value must be a valid TimePattern string as defined by the public class
COM.FutureTense.Util.TimePattern.

In general, the TimePattern syntax corresponds to the format used in most UNIX cron
tables. It lets you specify expiration at a specific time or times every day, month, week,
day of week, and year.

The TimePattern format is expected to become the most widely used format for page
expiration.

Wildcard

If the second element is *, then the page will assume a timeout expiration behavior, as
described in Page Timeout. The timeout value is read from the wcs_properties.json
file cs.pgCacheTimeout property.

Blank

If the second element is blank, then it assumes the same behavior as *.

Caching Best Practices
Ideally, a WebCenter Sites webpage should have a maximum of six to ten cached
primary pagelets served by Remote Satellite Server. Too many cached pagelets lead
to overcaching and adversely affect the system performance.

These topics describe practices that prevent overcaching and improve response times
and throughput:

• Few Pagelets Per Page

• Share Cache Between Pages

Chapter 30
Caching Best Practices

30-7

Few Pagelets Per Page
• Design page templates in such a way that there are fewer uncached pagelets

per page. The default style=pagelet from the <render:calltemplate> tag is not
always the best choice. Fewer pagelets per page improve response times and
throughput.

• Switch from Remote Satellite Server to Co-Resident Satellite Server if you already
have page templates and redesigning them is not feasible. No roundtrips are
required between the WebCenter Sites servlet and Co-Resident Satellite Server.
Co-Resident SatelliteServer is likely to give better response times than Remote
Satellite Server when there are more uncached pagelets on a page.

• Reduce the number of cached pagelets by combining them. First check if each
<render:calltemplate> call is using the pagelet default style attribute value.
Reduce the number of pagelets by inlining the <render:calltemplate> calls as
element calls (style=element).

The typical use case for specifying style="element" is when the outer calling
template (whether page or pagelet) shares the same c, cid as an inner called
pagelet template. Since both cached objects expire at the same time (that is,
they have the same asset dependencies), there is no advantage in caching them
separately.

• Rather than caching subpagelets directly on Remote Satellite Server, back up
subpagelets through pagelet cache on the ContentServer servlet by using the
style="embedded" variant. That is, inline the <render:calltemplate> calls as
ContentServer page fragments (style=embedded).

For example, if a list of product summaries in a webpage contains ten
items, it means the default style="pagelet" is applied to each of them.
Due to the pagelet style, ten roundtrips between the WebCenter Sites servlet
and Remote Satellite Server would be required to render this list. However,
if existing <render:calltemplate> calls for the subpagelets are set to use
style="embedded" -- while ensuring to cache the outer list template itself -- then
just one roundtrip for the entire product list pagelet is required. This is because
only the outer template is served by Remote Satellite Server with the remaining
subpagelets only served back on the ContentServer servlet.

Share Cache Between Pages
When the cid is passed to every cached pagelet, the cache is not shared between
webpages. For example, a site may contain 5,000 webpages, all of which pass the cid
to the leftnav. There would also be 5,000 leftnavs cached independently of the calling
webpage. This scenario can produce two situations:

• When a single Page asset in the site navigation tree is edited and published, all
5000 leftnavs uncache. This is because the Page asset just published has logged
a dependency to all leftnav pagelets.

• When a single Article asset is edited and published, both the cached outer
webpage (typically the Layout template) and the leftnav are uncached and need to
be re-evaluated. Because cid is passed to leftnav, Content Server uncaches outer
webpage and leftnav as well. This approach is not efficient since the Article has
nothing to do with the Site Navigation hierarchy.

Chapter 30
Caching Best Practices

30-8

To avoid overcaching in these situations, change the leftnav so that it always takes a
Page cid, and not just any cid. The calling template should be able to determine what
Page it belongs to so that it can pass that as a cache argument. Only the Page cid
should log a cache dependency to the pagelet and no other Page assets. Pseudocode
is as follows:

If c is not "Page"
then
 Calculate the site navigation PageNode by doing a reverse look up of the
Page from the current asset's cid.
 Alternatively, have the site navigation Page as an attribute of the current
asset and simply fetch it.
 then calculate the PageNode from that
else
 Calculate the PageNode from the current Page cid.

This way, the cached version of this pagelet is bound to the owner's related Page
asset alone. When a single Page asset is edited in the site navigation tree and
published, only a single leftnav, whose cid=<the current Page asset>, will uncache.
When a single Article asset is edited and published, only the cached outer webpage
(typically the Layout template) needs to be re-evaluated.

When editors are updating and changing the system on a daily basis, developers'
choices have a huge impact on the efficiency of the system. Without the suggested
improvement, even editing a single asset can cause the system to do a lot more work
at publish time than required. The arguments that are explicitly passed to each pagelet
have a direct impact on overall performance.

Chapter 30
Caching Best Practices

30-9

Part VI
Migrating Your Work to Your Content
Management System

Get introduced to the process of importing assets with the XMLPost utility, and also to
the posting elements that you use with the XMLPost utility and the BulkLoader utility.

• Importing Assets of Any Type

• Importing Flex Assets

• Importing Flex Assets with the BulkLoader Utility

31
Importing Assets of Any Type

You can import assets of all types into the WebCenter Sites database using the
XMLPost utility. This utility is based on the WebCenter Sites FormPoster Java class,
and it is delivered with the WebCenter Sites base product. It imports data using
the HTTP POST protocol.

Topics:

• About Importing Assets Using the XMLPost Utility

• Using XMLPost Configuration Files

• Using XMLPost Source Files

• Using the XMLPost Utility

• Customizing RemoteContentPost and PreUpdate

• Troubleshooting XMLPost

For information about importing your assets when you are using the flex asset data
model, see Importing Flex Assets.

About Importing Assets Using the XMLPost Utility
After you have determined your data design, created your asset types, tested them
on your development system, and moved them to your management system, you’re
ready to import assets (content) from their current source into the database on the
management system. You may also have remotely generated content (generated
using a wire feed service or some other source) that you would like to import into
the WebCenter Sites database on your management system.

You use the XMLPost utility to import any data into the WebCenter Sites database. To
import assets, you instruct the XMLPost utility to invoke one of the importing (posting)
elements provided by WebCenter Sites, as appropriate for that asset type.

There are four components involved in this process:

• The XMLPost utility, which is delivered with WebCenter Sites.

• A posting element. WebCenter Sites delivers a posting element named
RemoteContentPost. WebCenter Sites delivers three additional posting elements,
described in Importing Flex Assets.

• A configuration file with an .ini file extension. You create a configuration file for
each asset type that you plan to import. This file contains information about what
to expect in the source files (what tags XMLPost will find there), what to do with
the data provided, and which importing (posting) element to use to import the data.

• The source files. You provide an individual source file for each asset that you want
to import (well-formed XML files). Each tag in a file identifies a field for that asset
type. The information contained in the tag is the data to be written to that column.

31-1

The XMLPost utility parses the configuration file to determine how to interpret the
data provided for the asset type. It parses the source files and creates name/value
pairs for each field value, and passes those name/value pairs as ICS variables to the
RemoteContentPost element. The RemoteContentPost element then creates the asset
from the variables.

You can also create your own posting elements that work with the XMLPost utility.
However, for importing assets, the posting elements that are provided by WebCenter
Sites should meet your needs.

Note:

For added security, you must rename the RemoteContentPost page to
prevent attempts to hack into the system.

What the Developer Does
This section provides a brief overview of the steps that the developer completes before
invoking the XMLPost utility and what the XMLPost utility does.

General steps that you perform when you import assets into your WebCenter Sites
database:

1. Create a configuration file that identifies the type of asset that is to be imported
and the tags that are used in the source files.

This file also sets several configuration properties, including the name of the
SiteCatalog entry for the posting element that you want XMLPost to use. For all
assets, the name of this posting element is RemoteContentPost. For information
about the posting elements for flex assets, see Importing Flex Assets.

Note that the configuration file is specific for this asset type. You must provide a
separate configuration file for each asset type.

2. Create the source files for the data that you want to import. Create a separate
source file for each individual asset.

3. Place the source and configuration files in a directory on the management system.

4. From that directory, invoke the XMLPost utility, identifying the source files and the
configuration file to use for those source files.

What XMLPost and WebCenter Sites Do
After you invoke the XMLPost utility to import the source files, the process begins as
shown in the following figure and in the list of steps that follows.

Chapter 31
About Importing Assets Using the XMLPost Utility

31-2

Figure 31-1 XMLPost Utility Process Diagram

1. The XMLPost utility parses the configuration file.

2. XMLPost parses the source file and creates name/value pairs for each field value
specified in the source file.

3. XMLPost invokes the FormPoster Java class by posting (HTTP POST) the name/
value pairs as ICS variables to the pagename passed in from the configuration file.
When you are importing basic asset types, that pagename is:

OpenMarket/Xcelerate/Actions/RemoteContentPost

4. WebCenter Sites locates the page in the SiteCatalog table and invokes the root
element of the RemoteContentPost page, which has the same name by default
(RemoteContentPost).

5. The RemoteContentPost element passes the data from the source files as
variables to the PreUpdate element for assets of that type.

6. The PreUpdate element sets the variable values for that asset and then returns to
the RemoteContentPost element.

7. The RemoteContentPost element creates the asset.

8. The web server returns a stream of HTML to XMLPost, which then parses the
stream to determine whether the import operation succeeded or failed, logging the
results to a text file that you specify in the configuration file.

9. If the asset type of the asset that you are importing uses a search engine,
RemoteContentPost indexes the new element.

10. If you set a certain parameter in the configuration file, RemoteContentPost deletes
the source files for the assets that were successfully imported.

Using XMLPost Configuration Files
An XMLPost configuration file includes three types of properties. Some properties
provide database and environment information to XMLPost, some import configuration
values, and some specify the tags used in the source files.

• Properties that provide information to XMLPost about the database and
environment remain the same even if you create your own posting element.

Chapter 31
Using XMLPost Configuration Files

31-3

• Properties that provide configuration values for the posting (importing) process.
The following topics describe properties that you must provide for the
RemoteContentPost element to function correctly.

Examples of properties include the URL of the page that invokes
RemoteContentPost, a user name and password that gives XMLPost write
privileges to the asset type table in the database, the name of the asset type
that you want to import, how to log errors, and any data values that are the same
for all of the assets that you are importing.

• Properties that specify the tags that are used in the source files.

Certain information, such as which site the assets should belong to or which workflow
should be assigned to the asset, can be configured either in the RemoteContentPost
section of the configuration file or the source file section.

For example, when working with a single content management site or importing assets
that belong to the same site, specify the name of the site in the configuration section to
avoid repeating that information in each source file. For multiple content management
sites, specify which sites an asset belongs to in the individual source files.

This section includes the following topics:

• Configuration Properties for XMLPost

• Configuration Properties for the Posting Element

• Configuration Properties for the Source Files

• Sample XMLPost Configuration File

Configuration Properties for XMLPost
This table lists the properties that specify database connection information and other
general configuration instructions that the XMLPost utility needs.

Table 31-1 Configuration Properties for XMLPost

Property Description

xmlpost.xmlfilenamefi
lter

Required.

The file extension for your source files. Typically set to xml.

For example:

xmlpost.xmlfilenamefilter: .xml

xmlpost.proxyhost Optional.

If a firewall separates you and the WebCenter Sites database that
you want to import the assets in to, use this property to specify the
host name of the proxy server.

For example:

xmlpost.proxyhost: nameOfServer

xmlpost.proxyport Optional.

If a firewall separates you and the WebCenter Sites database that
you want to import the assets in to, use this property to specify the
port number on the proxy server that XMLPost should connect to.

For example:

xmlpost.proxyport: 80

Chapter 31
Using XMLPost Configuration Files

31-4

Table 31-1 (Cont.) Configuration Properties for XMLPost

Property Description

xmlpost.url Required.

The first part of the URL for the page entry of the posting element.

XMLPost creates the URL for the posting element by prepending
the value specified for this property to the value specified for the
pagename postargname (described below).

The value that you set for this property should use the following
convention:

• The name of the server that holds the WebCenter Sites
database.

• The CGI path appropriate for the application server software
installed on the server. For WebLogic and WebSphere this
path is /servlet/.

• The name of the ContentServer servlet.
For example:

xmlpost.url: http://servername/servlet/
ContentServer

xmlpost.logfile Optional.

The name of the file to log the results of importing (posting) each
source file.

Each source file is posted to the WebCenter Sites database
through a post request. When the post request returns from
the web server, XMLPost parses the HTML stream that the
web server returned, searching for the postsuccess and
postfailure parameters. XMLPost then writes the result to the
file that you name identify with this parameter.

For example:

xmlpost.logfile: ArticlePost.txt

xmlpost.success Optional.

The string to look for in the response to determine if the post was
a success.

For example:

xmlpost.success: Success!

xmlpost.failure Optional.

The string to look for in the response to determine if the post was
a failure.

For example:

xmlpost.failure: Error

xmlpost.deletefile Optional.

Whether to delete the source files after they have been
successfully imported into the WebCenter Sites database. Valid
settings are y (yes) or n (no). By default, the source files are not
deleted.

For example:

xmlpost.deletefile: y

Chapter 31
Using XMLPost Configuration Files

31-5

Configuration Properties for the Posting Element
This table lists the arguments that specify information that must be posted to the
RemoteContentPost page (and passed to the RemoteContentPost element). The
values of these arguments are concatenated into the URL that is posted to the
RemoteContentPost page. These arguments can be in any order in the configuration
file.

Table 31-2 Configuration Properties for the Posting Element

Property Description

xmlpost.numargs Required.

The page name is the primary variables out of several
required variables that the configuration file passes to
XMLPost as name/value pairs attached to the URL. Use
this property (xmlpost.numargs) to tell XMLPost how
many variables the configuration file is passing in.

For example:

xmlpost.numargs: 7

Note that you can also specify your own custom
variables with these name/value pairs.

xmlpost.argname1: pagename Required.

The pagename for the RemoteContentPost element.
Typically the pagename argument is specified as
xmlpost.argname1.

For example:

xmlpost.argname1:
pagenamexmlpost.argvalue1: OpenMarket/
Xcelerate/Actions/RemoteContentPost

xmlpost.argname2: AssetType Required.

The asset type of the assets that are defined in
the source files. Typically, AssetType is specified as
xmlpost.argname2.

For example:

xmlpost.argname2: AssetType

xmlpost.argvalue2: Collection

Note that the value for the AssetType argument must
exactly match the table name of the table that holds
assets of this type.

Chapter 31
Using XMLPost Configuration Files

31-6

Table 31-2 (Cont.) Configuration Properties for the Posting Element

Property Description

xmlpost.argname3:
authusername

Required.

The user name that you want XMLPost to use to log
in to the WebCenter Sites database into which you
are importing the assets. Typically, authusername is
specified as xmlpost.argname3.

For example:

xmlpost.argname3: authusername

xmlpost.argvalue3: editor

The user name that you specify must have permission
to write to the table that holds assets of the type that
you are importing. (That is, it must have the appropriate
ACLs assigned to it.)

xmlpost.argname4:
authpassword

Required.

The password for the user that XMLPost logs in
as to the WebCenter Sites database into which you
are importing the assets. Typically, authpassword is
specified as xmlpost.argname4.

For example:

xmlpost.argname4: authpassword

xmlpost.argvalue4: xceleditor

xmlpost.argname5:
xmlpostdebug

Optional

Whether to include debugging information with the
results information that is written to the XMLPost log file
identified with the xmlpost.logfile property.

You can set this property to any value. For example:

xmlpost.argname5: xmlpostdebug

xmlpost.argvalue5: on

Note: Be sure to include a value for the
xmlpost.logfile property if you enable debugging.

xmlpost.argname6: inifile Optional.

The name of the ini file to use when connecting to
the WebCenter Sites database. Typically, inifile is
specified as xmlpost.argname5.

For example:

xmlpost.argname6: inifile

xmlpost.argvalue6: futuretense.ini

Chapter 31
Using XMLPost Configuration Files

31-7

Table 31-2 (Cont.) Configuration Properties for the Posting Element

Property Description

xmlpost.argname7:
publication

Optional.

Although using this property is optional, you must
specify a site for each asset that you are importing.

If your system uses one content management site
(publication), or if all assets of this type should be
enabled on the same site, use this argument to set the
name of the site.

For example:

xmlpost.argname7:
publicationxmlpost.argvalue7: Fiscal News

You must specify the value for site for each asset in
the individual source files when using multiple content
management sites.

xmlpost.argname8:startmenu Optional.

If you are using workflow and you want the same
workflow assigned to all of the assets that you are
importing, use this argument to set the Start Menu
shortcut for the assets. (It is a Start Menu shortcut that
assigns a workflow ID to a new asset.)

For example:

xmlpost.argname8: startmenu

xmlpost.argvalue8: New Article

If you have multiple workflows for assets of this type, you
must specify the value for the Start Menu shortcut for
each asset in the individual source files.

Configuration Properties for the Source Files
The source file section in a configuration file specifies which tags are used in the
source files. A tag represents a column name in the table that holds assets of this
type. The content between a pair of tags is the information that is to be written to that
column. Configuration files must list a tag for each column in the asset type's primary
storage table, which is why you must provide a separate configuration file for each
asset type.

This section includes the following topics:

• Site Properties

• Asset Type Properties

Site Properties
In addition to the tags available for your asset types, The following table describes
more tags that let you specify the sites an asset should be associated with and the
workflow it should use.

Chapter 31
Using XMLPost Configuration Files

31-8

Table 31-3 Site Properties

Site tag property Value Description

postpublication y or n

(yes or no)

Optional.

Specifies that a source file will provide a
site name that identifies which site the asset
belongs to.

For example:

postpublication: y

Note that a site (publication) value provided
in a source file with the publication tag
overrides the value specified for a publication
argument in the XMLPost section of the
configuration file.

postprimarypubid y or n

(yes or no)

Optional.

Specifies that a source file will provide a
value for pubid (a unique ID for the site) that
identifies which site the asset belongs to.

For example:

postprimarypubid: y

postpublist y or n

(yes or no)

Optional.

Specifies that a source file will provide a list of
sites that the asset is shared with.

For example:

postpublist: y

poststartmenu y or n

(yes or no)

Optional.

Specifies that a source file will provide a value
for the Start Menu short cut that places the
asset into a workflow process.

For example:

poststartmenu: y

When the site or the workflow is the same for all of the assets that you are importing,
specify the value for site or workflow as an argument in the XMLPost section of the
configuration file. That way, you do not have to duplicate the same information in all of
the source files.

Asset Type Properties
To set up the tags that are specific to your asset types, you specify a tag for each
column in the database table for assets of that type. However, the source files are not
required to include data tagged with every tag in the configuration file. (Of course, they
must include data for required fields.)

For each tag representing a field (column), you specify the name of the tag and
optionally some additional processing properties for the tag. The name of the tag is
the name of the field (column). For the additional properties, the convention is a word
prepended to the name of the tag.

This table describes how to specify the tags that are specific to your asset types:

Chapter 31
Using XMLPost Configuration Files

31-9

Table 31-4 Asset Type Properties

Tag property Value Description

posttagname y or n

(yes or no)

Required.

Specifies the name of the tag. The name
should exactly match the name of the field that
it represents.

For example, the tag property for a name field
is:

postname: y

trunctagname N

(integer)

Optional.

Whether to truncate the data in the source file
marked by this tag.

For example:

truncname: 64

If XMLPost finds a string in the <name> tag
that exceeds 64 characters, it shortens it to 64
characters and stores the truncated string in
the variable.

notrimtagname y or n

(yes or no)

Optional.

Whether to trim the white space at the
beginning or end of the tag.

To keep the white space, set this property to y
(yes).

For example:

notrimname: y

Leave it blank to let XMLPost trim the white
space for the tag by default.

Chapter 31
Using XMLPost Configuration Files

31-10

Table 31-4 (Cont.) Asset Type Properties

Tag property Value Description

multitagname combine

or

separate

Required if the same tag is used more than
once in a single source file.

Determines how many variables to use for the
data when a tag is used more than once in the
source file.

Set it to combine, to store the data from all
of the tags in the same variable with commas
separating each value (a comma delimited
string).

Set it to separate, to store the data from each
tag in a separate variable. Those variables are
identified by appending the value that you set
for seedtagname to the variable name.

For example, for a keyword field (column):

• If you set multikeyword: combine,
XMLPost stores all the values marked
by a keyword tag to the same keyword
variable.

• If you set multikeyword: separate
and seedkeyword: 1, XMLPost stores
each value in a separate variable. The first
value it finds is stored in a variable named
keyword1. The second value is stored in
a variable named keyword2, and so on.

seedtagname seed value Required when multitagname is set to
separate.

The number to start at when XMLPost
increments the suffix assigned to variable
names, when a tag is used more than once
and you do not want the data contained in
those tags written to the same variable. See
the description of multitagname.

For example:

multikeyword: separate

seedkeyword: 1

Chapter 31
Using XMLPost Configuration Files

31-11

Table 31-4 (Cont.) Asset Type Properties

Tag property Value Description

filetagname y or n

(yes or no)

Required if the tag represents an upload field
(a URL column or BLOB).

If the tag represents a field that has a URL
column, you must include this property and the
source file must specify the name of the file
that RemoteContentPost is to upload to that
column.

For example, an imagefile asset type
has an upload field named urlpicture. A
configuration file for the imagefile asset type
will contain the following properties:

posturlpicture: y

fileurlpicture: y

Then, in the source file for an imagefile
asset, you specify the value for the
urlpicture field like this:

<urlpicture>relative_path_to/
filename.jpg

</urlpicture>

Note that you must specify the location of the
file with a relative path (relative to the directory
in which you are running the XMLPost utility).

Sample XMLPost Configuration File
Here is a sample configuration file named imagefile.ini, used to import imagefile
assets for a site named Fiscal News.

xmlpost.xmlfilenamefilter: xml
#xmlpost.xmlproxypost: Future
#xmlpost.xmlproxyport: 80
xmlpost.url: http://localhost/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ImageFile
xmlpost.argname3: authusername
xmlpost.argvalue3: user_author
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: publication
xmlpost.argvalue6: FiscalNews

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: ImageFilePost.txt

postpublication: y
postprimarypubid: y

Chapter 31
Using XMLPost Configuration Files

31-12

postpublist: y

postcategory: y
truncategory: 4

postpath: y
truncpath: 255

postname: y
truncname: 32

posttemplate: y
trunctemplate: 32

postsubtype: y
truncsubtype: 24

postfilename: y
truncfilename: 64

poststartdate: y

postdescription: y
truncdescription: 128

postsource: y

posturlpicture: y
fileurlpicture: y

posturlthumbnail: y
fileurlthumbnail: y

postmimetype: y
postwidth: y
postheight: y
postalign: y
postalttext: y

postkeywords: y
multikeywords: combine
trunckeywords: 128

postimagedate: y

Using XMLPost Source Files
Source files must be made up of well-formed XML without the need for a document
type definition (DTD) file. Actually, the configuration file functions something like a DTD
file—it defines the tags that are processed in the source files.

The data in your source files must be tagged with tags whose names match the
column names for the table that holds assets of that type. For example, a source file
for an imagefile asset uses tags named name, caption, picutureurl, and so on.

This section describes what needs to be in your source files and what XMLPost does
with them. It does not describe how to automate the generation of your XML source
files. How you create your source files depends on the source of your data and the
tools that you have to convert your data into XML files.

Chapter 31
Using XMLPost Source Files

31-13

This section includes the following topics:

• Sample XMLPost Source File

• XMLPost and File Encoding

Sample XMLPost Source File
Here is a sample source file for an imagefile asset. Its tags are defined in the sample
configuration file in Sample XMLPost Configuration File.

<document>
<name>High Five 25</name>
<keyword>Five</keyword>
<category>a</category>
<artist>by Ann. Artist</artist>
<alttext>Congratulations</alttext>
<align>CENTER</align>
<caption>A man extends <keyword>congratulations</keyword> with a boy.</caption>
<pictureurl>/images/eZine/highfive.jpg</pictureurl>
</document>

How the Data is Passed (Posted)

All of the text contained between a pair of XML tags in a source file is passed
to the RemoteContentPost element from XMLPost as a variable that uses the
Variables.tagname syntax convention.

For example, this line of code:

<name>High Five 25</name>

is sent to RemoteContentPost as Variables.name and the value of name is the string
High Five.

XMLPost and File Encoding
When the source file data doesn't use the WebCenter Sites system's default file
encoding but the database can accommodate that character set, specify the alternate
file encoding in the XML version statement at the beginning of the file. For example:

<?xml version= "1.0" encoding="UTF-8" ?>

Using the XMLPost Utility
You can invoke the XMLPost utility from the command line, or from a script or batch
file, or from a program.

No matter how you start XMLPost, you must provide the following information:

• The name of the configuration file to use

• The source files, which can be specified as a single file, a list of files, or a directory
of files

See these topics:

• Before You Begin

Chapter 31
Using the XMLPost Utility

31-14

• Running XMLPost from the Command Line

• Identifying Source Files

• Running XMLPost as a Batch Process

• Running XMLPost Programmatically

Before You Begin
• Before you can use the XMLPost utility, the following must be true:

– Your asset types are created. (Otherwise, there are no database tables to
import the assets into.)

– Your content management sites are created and the appropriate asset types
are enabled for each site.

– If you are using workflow, your workflow processes are created.

– Your Start Menu shortcuts are created and, if you are using workflow, they
assign the appropriate workflow process to the appropriate asset types.

– The templates for the asset type are created.

– The association fields for the asset types are created. However, custom
code is required to set the value of an association field using XMLPost. See
Customizing RemoteContentPost and PreUpdate.

• When invoking XMLPost, include the following command before the classpath to
ensure UTF-8 encoding: -Dfile.encoding=UTF-8.

Note:

– Check all .jar files for version number, which can differ from one
WebCenter Sites patch to the next.

– When creating a file encoded with UTF-8 for XML Post imports,
ensure that it is created without BOM because the use of a BOM is
neither required nor recommended for UTF-8. However, the use of
BOM may be encountered where UTF-8 data is converted from other
encoding forms that use BOM, or where BOM is used as a UTF-8
signature.

Running XMLPost from the Command Line
To run XMLPost:

1. Place the configuration file and source files in a directory on a system that has
WebCenter Sites installed.

2. To get XMLPost up and running, set the following
directories to classpath: <ORACLE_HOME>\wcsites\webcentersites\sites-
home\lib*, <ORACLE_HOME>\oracle_common\modules\clients*,
<ORACLE_HOME>\oracle_common\modules\thirdparty*, and
<ORACLE_HOME>\wcsites\wcsites_common\lib*.

3. Run the following command (on a single command line) from that directory.

Chapter 31
Using the XMLPost Utility

31-15

This example uses Windows syntax, for UNIX-based systems including Linux and
Solaris, the forward-slash (/) and colon (:) should be used as separators:

Note:

You are no longer allowed to give user credentials in the ini file. Only
way you can provide them now is via command line.

java -Xmx512m -Dfile.encoding=UTF-8 -Dhttpclient=true -classpath
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib*;
<ORACLE_HOME>\oracle_common\modules\clients*;
<ORACLE_HOME>\oracle_common\modules\thirdparty*;
<ORACLE_HOME>\wcsites\wcsites_common\lib*;
<cs_app_dir>\WEB-INF\lib\servlet-api.jar;
<Sites WLS Domain>\wcsites\wcsites\config*
COM.FutureTense.XML.Post.XMLPostMain -sSourcefile.xml -cConfigfile.ini
-ufwadmin -pxceladmin

where:

• -Xmx512m sets the maximum memory to use, which is needed with larger
inserts.

• <cs_app_dir> is the directory on your application server where the WebCenter
Sites application has been deployed.

Note that there are several options for designating the source file. See Identifying
Source Files for information.

Note:

The j2ee.jar file is part of the J2EE SDK. You must install the SDK before
running XMLPost.

In the command line, provide the path to the source files and configuration
file that are not in the working directory. For example: -s/products/
product.xml.

Identifying Source Files
The source parameter that you use to identify the source files to the XMLPost utility
can point to any of the following:

• A single file.

• A directory of files. All the files in that directory that have the file extension
(typically .xml) designated by the configuration file will be posted (imported).

• A list file that provides a list of all the files that you want to import. It is similar to
an .ini file but it has a file extension of .lst.

Chapter 31
Using the XMLPost Utility

31-16

A Single File
To post the contents of one file, specify the name of that file in the command
line. The following example instructs XMLPost to use a configuration file named
articlepost.ini and one source file named article.xml.

This example uses Windows syntax, for UNIX-based systems including Linux and
Solaris, the forward-slash (/) and colon (:) should be used as separators:

java -Xmx512m -Dfile.encoding=UTF-8 -Dhttpclient=true -Dsites.config=<Sites WLS
Domain>\wcsites\wcsites\config -classpath
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\apache-mime4j-0.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-codec-1.7.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-
fileupload-1.3.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang-2.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang3-3.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-logging-1.1.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\esapi-2.0.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpclient-4.3.6.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpcore-4.3.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpmime.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\log4j-1.2.17.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cache.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-core.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cs.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-msxml.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-nio.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-security.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
beans-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
context-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
core-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
expression-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-web-3.2.6.RELEASE.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.jersey.fmw.client.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.webservices.fmw.client.jar

COM.FutureTense.XML.Post.XMLPostMain -sSourcefile.xml -cConfigfile.ini
-ufwadmin -pxceladmin

A Directory of Files
To post all the files in a directory, specify the path to that directory in the command
line. The following example instructs XMLPost to import the files in the xmlpostfiles
directory.

This example uses Windows syntax, for UNIX-based systems including Linux and
Solaris, the forward-slash (/) and colon (:) should be used as separators:

java -Xmx512m -Dfile.encoding=UTF-8 -Dhttpclient=true -Dsites.config=<Sites WLS
Domain>\wcsites\wcsites\config -classpath
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\apache-mime4j-0.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-codec-1.7.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-
fileupload-1.3.1.jar;

Chapter 31
Using the XMLPost Utility

31-17

<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang-2.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang3-3.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-logging-1.1.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\esapi-2.0.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpclient-4.3.6.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpcore-4.3.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpmime.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\log4j-1.2.17.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cache.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-core.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cs.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-msxml.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-nio.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-security.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
beans-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
context-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
core-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
expression-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-web-3.2.6.RELEASE.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.jersey.fmw.client.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.webservices.fmw.client.jar

COM.FutureTense.XML.Post.XMLPostMain -sxmlpostfiles -carticlepost.ini
-ufwadmin -pxceladmin

A List File
As an alternative to specifying a directory, you can create a list file that uses the format
of an .ini file and includes the following properties:

• numfiles, which specifies how many files are included in the list.

• fileN, which specifies the path to a file and its file name. The N stands for the file's
order in the list file. The first file listed is file1, the second is file2, and so on.

The value of N for the last fileN in the list must match the value specified by the
numfiles property. XMLPost stops importing when it has imported as many files
as it is told to expect by the numfiles property. XMLPost does not import more
files than numfiles states.

The file extension for a list file must be .lst.

The following sample list file is named xmlpostfiles.lst:

numfiles: 3
file1: c:\xmlpost\article1.xml
file2: c:\xmlpost\article2.xml
file3: c:\xmlpost\article3.xml

To post the files referenced in this file list, specify the name of the list file in the
command line. The following example instructs XMLPost to import the files specified in
the xmlpostfiles.lst file.

This example uses Windows syntax, for UNIX-based systems including Linux and
Solaris, the forward-slash (/) and colon (:) should be used as separators:

Chapter 31
Using the XMLPost Utility

31-18

java -Xmx512m -Dfile.encoding=UTF-8 -Dhttpclient=true -Dsites.config=<Sites WLS
Domain>\wcsites\wcsites\config -classpath
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\apache-mime4j-0.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-codec-1.7.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-
fileupload-1.3.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang-2.5.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-lang3-3.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\commons-logging-1.1.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\esapi-2.0.1.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpclient-4.3.6.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpcore-4.3.3.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\httpmime.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\log4j-1.2.17.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cache.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-core.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-cs.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-msxml.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-nio.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\sites-security.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
beans-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
context-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
core-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-
expression-3.2.6.RELEASE.jar;
<ORACLE_HOME>\wcsites\webcentersites\sites-home\lib\spring-web-3.2.6.RELEASE.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.jersey.fmw.client.jar;
<ORACLE_HOME>\oracle_common\modules\clients\com.oracle.webservices.fmw.client.jar

COM.FutureTense.XML.Post.XMLPostMain-sc:\xmlpostfiles.lst -carticlepost.ini
-ufwadmin -pxceladmin

Running XMLPost as a Batch Process
When you import assets of multiple types, identify a unique configuration file for each
asset type by running XMLPost individually for each type. You can run XMLPost either
manually, or automatically from a batch file. In the batch file, include a command line
statement for each asset type (the statement identifies the configuration file and the
location of the source files). You can use any of the ways described in the preceding
section to identify the source files.

Running XMLPost Programmatically
You can also invoke the XMLPost utility programmatically by creating an XMLPost
object and calling the doIt method doIt(String[] args), where the input is a string
array. The elements of the array are the same flags that you use when running
XMLPost from the command line.

For example:

String args [] = {"-sSourcefile.xml","-cConfigfile.ini"};
COM.FutureTense.XML.Post.XMLPost poster = new
COM.FutureTense.XML.Post.XMLPost();
try {
 poster.doIt(args);
 } catch (Exception e) {

Chapter 31
Using the XMLPost Utility

31-19

 e.printStackTrace();("error in XMLPost under program control");
}

Note that you must include the complete path to source files and configuration file.

Customizing RemoteContentPost and PreUpdate
If necessary, you can customize the XMLPost process by adding or modifying code in
the RemoteContentPost element or the PreUpdate element for your asset types.

To import information about an asset to other tables, you must modify the PreUpdate
element for that asset type.

This section provides two customization examples:

• Customizing the PreUpdate element for the Article asset type so that it sets
headline information in the description field. There is a description column in the
Article table but the field in the New or Edit article form is called Headline.

• Customizing the PreUpdate element for the Article asset type so that it can add
associations to articles.

See these topics:

• Setting a Field Value Programmatically

• Setting an Asset Association

Setting a Field Value Programmatically
The article asset type has a field in the New and Edit forms called Headline, whose
value is stored in the description column in the Article table. In order for headline
text to be written to the correct column, when an Article asset is imported (that is, the
description column), the PreUpdate element for the Article asset type is modified.

First, examine the sample configuration file named ArticlePost.ini that is located in
the Xcelerate/Samples/XMLPost directory in your WebCenter Sites product kit. It has
a tag specified for the Headline field:

headline gets stored in the description field
postheadline: y

The following code in the PreUpdate element for the Article asset type writes the
data that RemoteContentPost passes in as Variable.headline to the correct database
column:

<if COND="IsVariable.headline=true">
 <then>
 <ASSET.SET NAME="theCurrentAsset"
 FIELD="description"
 VALUE="Variables.headline"/>
 </then>
</if>

This example uses a tag called ASSET.SET. This tag sets data in a field for the asset
that is currently in memory. It takes three parameters:

• NAME: (required). The name of the asset object that is in memory. This asset
object must have been previously instantiated either with the ASSET.LOAD tag

Chapter 31
Customizing RemoteContentPost and PreUpdate

31-20

or the ASSET.CREATE tag. By convention, WebCenter Sites uses the name
theCurrentAsset to refer to the current asset object.

• FIELD: (required). The name of the field whose value you want to set. The name of
this field must exactly match the name of a column in the storage table for assets
of this type.

• VALUE: (required). The data to be inserted in the column.

Setting an Asset Association
The information about association between assets is written to the AssetRelationTree
table. Because the standard behavior of XMLPost is to write asset information to the
primary storage table of the asset type only, you must modify the PreUpdate element
for the asset type to specify asset associations. For example, the Article asset type
has an association field named MainImageFile. When a content provider creates an
article asset, she selects the appropriate imagefile asset in this field.

Examine the sample configuration file named ArticlePost.ini that is located in the
Xcelerate/Samples/XMLPost directory in your WebCenter Sites product kit. It has a
tag specified for the MainImageFile association field:

postMainImageFile-name: y

The following code in the PreUpdate element for the article asset type writes the
data that RemoteContentPost passes in as Variable.mainimagefile to the correct
database table:

<if COND="IsVariable.MainImageFile-name=true">
<then>
 <ASSET.LOAD NAME="anAssociatedImage" TYPE="ImageFile"
 FIELD="name" VALUE="Variables.MainImageFile-name"/>
 <if COND="IsError.Variables.errno=false">
 <then>
 <ASSET.GET NAME="anAssociatedImage" FIELD="id" OUTPUT="imageid"/>
 <ASSET.ADDCHILD NAME="theCurrentAsset" TYPE="ImageFile"
 CHILDID="Variables.imageid" CODE="MainImageFile"/>
 </then>
 </if>
</then>
</if>

Note:

The ASSET.ADDCHILD tag creates only the link between the two assets. It
does not create the associated asset. In order for this code to work, the asset
specified with the CHILDID parameter must exist in the WebCenter Sites
database.

This example uses a tag named ASSET.ADDCHILD. This tag associates a child asset
with the asset that is currently held in memory. It takes five parameters:

• NAME (required). The name of the asset object that is in memory. This asset
object must have been previously instantiated either with the ASSET.LOAD tag

Chapter 31
Customizing RemoteContentPost and PreUpdate

31-21

or the ASSET.CREATE tag. By convention, WebCenter Sites uses the name
theCurrentAsset to refer to the current asset object.

• TYPE (required). The asset type of the child asset.

• CHILDID (required). The ID of the child asset.

• CODE (optional). The name of the association. This value is written to the ncode
column in the AssetRelationTree table.

• RANK (optional). A numeric value to establish an order for the child assets. This
value is written to the nrank column in the AssetRelationTree table.

For information about ASSET.GET and ASSET.LOAD, see the Tag Reference for Oracle
WebCenter Sites Reference.

Troubleshooting XMLPost
Sometimes XMLPost doesn’t run, and it doesn’t create a log file. Sometimes, when
you’re trying to save an asset, the error 105 is triggered. Read further to know more
about XMLPost errors and debugging the Posting element.

This is a brief list of some possible problems that can occur when you run the
XMLPost utility.

XMLPost Does Not Run and Does Not Create a Log File Message
There are two possible reasons for XMLPost to not start:

• An invalid server name has been specified in the xmlpost.URL property setting in
your configuration file.

• WebCenter Sites is not running on the system you are importing to. Start it.

XMLPost Fails and there is a Missing Entity Statement in the Log File
This message means that there is invalid XML in the source file. Typically, your XML
includes HTML code and that code includes special HTML characters that are not
referred to by their character entity codes. For best coding practice, embed any HTML
code in a <![CDATA[...]]> tag.

Error 105 is Triggered when XMLPost Tries to Save an Asset
There are several reasons why saving an asset can cause a database error. One
common reason for a 105 error is XMLPost trying to save data that is too large for the
column (field). Resolving this depends on your goals. If it is acceptable for XMLPost to
truncate the data that doesn't fit into the column, you can add a trunctag property to
the configuration file. For example, truncbody: 2000.

Another common reason for this error code is that an asset of that type with the same
name exists. Try changing the name of the asset and importing the asset again.

Debugging the Posting Element
Use the XML Debugger utility to test the RemoteContentPost element if you
have modified it or created your own posting element. To use XML Debugger,

Chapter 31
Troubleshooting XMLPost

31-22

replace ContentServer with DebugServer in the xmlpost.url property setting.
For example, change xmlpost.url: http://6ipjk/servlet/ContentServer to
xmlpost.url: http://6ipjk/servlet/DebugServer

See XML Debugger utility in Introducing WebCenter Sites Tools and Utilities.

Chapter 31
Troubleshooting XMLPost

31-23

32
Importing Flex Assets

WebCenter Sites provides the XMLPost utility and a bulk processing utility named
BulkLoader to import flex assets.

For information about importing flex assets using the XMLPost utility, see these topics:

• About Importing Flex Assets

• Understanding XMLPost and the Flex Asset Model

• About Importing the Structural Asset Types in the Flex Model

• Importing Flex Assets with XMLPost

• Editing Flex Assets with XMLPost

• Deleting Assets with XMLPost

For an in-depth information about using the BulkLoader utility, see Importing Flex
Assets with the BulkLoader Utility.

About Importing Flex Assets
WebCenter Sites provides two utilities for importing assets that use the flex data model
into the WebCenter Sites database, XMLPost and BulkLoader. XMLPost. WebCenter
Sites provides three additional posting elements that work with XMLPost: addData,
modifyData, and deleteData

See these topics:

• Before You Begin Importing the Data Structure Flex Asset Types

• About Importing the Flex Assets

• Overview of the Process to Import Flex Assets

• About Custom Data Delimiters

Before You Begin Importing the Data Structure Flex Asset Types
Before you can use either method, you must first create or import the data design or
structural asset types into your flex families with XMLPost and the standard posting
element, RemoteContentPost, provided by the WebCenter Sites product. That is, first
you create or import the attribute editors, flex attributes, flex definitions, and flex parent
definitions with the standard XMLPost posting element.

To use the BulkLoader utility, the flex parents must also be imported with XMLPost or
created.

About Importing the Flex Assets
After importing your data structure asset types, import your flex assets using one of
the two import methods:

32-1

• Use BulkLoader to import a large number (thousands or hundreds of thousands) of
flex assets.

• Use the posting element to load a moderate number (hundreds) of flex and flex
parent assets.

When to Use BulkLoader
When working within the basic asset model, it is typical to use XMLPost to import
assets into the database on the management system and then publish those assets to
the delivery system. This methodology changes with flex assets because the volume
of data involved in a flex asset data model tends to be much greater than that in a
basic asset model.

You use the BulkLoader utility during the initial setup of your WebCenter Sites system.
See Importing Flex Assets with the BulkLoader Utility.

When to Use XMLPost
For regular or incremental updates after the initial setup of your WebCenter Sites
system, perhaps some or all of your data originates in an ERP system, for example,
you use the XMLPost utility and the addData posting element.

Overview of the Process to Import Flex Assets
Because assets using the flex model have dependencies on each other, flex asset
types must be imported in a specific sequence. And, as with basic assets, the asset
types must exist, sites must be created, and so on before you use XMLPost to import
assets.

For information about the basic prerequisites for using XMLPost that apply to all asset
types (both asset models), see Before You Begin.

After those basic requirements are met, you must import your flex asset types into the
WebCenter Sites database on the management system in the following sequence:

1. Attribute editors are optional. To use attribute editors, either import them or create
them before you import your flex attributes. The configuration file must instruct
XMLPost to call the RemoteContentPost element. See Attribute Editors.

2. Flex attributes. The configuration file must instruct XMLPost to call the
RemoteContentPost element. See Flex Attributes.

3. Flex parent definitions. The configuration file must instruct XMLPost to call the
RemoteContentPost element. See Flex Definitions and Flex Parent Definitions:
Sample Files.

Note:

You must import the flex parent definitions in the proper order. A parent
definition asset referred by another parent definition must exist in the
database.

It is typical to import parent definitions one hierarchical level at a time,
starting with the top level definitions.

Chapter 32
About Importing Flex Assets

32-2

4. Flex definitions. The configuration file must instruct XMLPost to call the
RemoteContentPost element. See Flex Definitions and Flex Parent Definitions:
Sample Files.

5. Flex parent assets. Do one of the following:

• Import the flex parents individually or as part of the flex family tree for a flex
assets using XMLPost.

• To import the flex assets using the BulkLoader utility, first import the flex parent
assets using XMLPost. The configuration file must instruct XMLPost to call
the RemoteContentPost element. The file cannot specify the addData element
because you are importing the parents without the entire family tree for the flex
assets.

See Flex Parents.

6. (Optional) First approve and publish all of the structural assets (attribute editors,
flex attributes, flex definitions, parent definitions, and flex parents) from the
management system to the delivery system, and then import flex assets into both
the systems using the BulkLoader utility.

7. Flex assets. Do one of the following:

• Use the BulkLoader utility. See Importing Flex Assets with the BulkLoader
Utility.

• Use XMLPost. See Importing Flex Assets with XMLPost.

You must follow the sequence outlined in the preceding steps because there are
dependencies built in to the data structure of a flex asset family. Additionally, note the
following dependencies:

• If a flex parent or flex asset has an attribute of type asset, the asset that you
designate as the value of that attribute field must have been created or imported.

• An asset that you set as the value for an attribute of type asset must be of the
correct asset type.

• When you are using XMLPost to create an asset that has an asset attribute of
Type asset, you must use the unique name of the asset for this attribute value.
Non-unique value for this attribute is not supported.

About Custom Data Delimiters
Custom data delimiters are used when an out of the box delimiter is used in the
content. If the data you are importing, editing, or deleting via XMLPost uses a different
data delimiting schema than the WebCenter Sites default schema (see the table below
for CS‐default delimiter characters), specify custom delimiters as explained in the
following table.

Chapter 32
About Importing Flex Assets

32-3

Table 32-1 Custom Data Delimiters

Tag Property Description

<_xmlnamevaldelim_> post_xmlnamevaldelim_ Optional.

Lets you specify a custom character for delimiting name/
value pairs from one another.

To specify a custom delimiter:

1. Set the property to y in the configuration file.

2. Use the tag in your XML file to define the custom
delimiter. For example, to use the "at" character as a
delimiter:

<_xmlnamevaldelim_>@</_xmlnamevaldelim_>

The default delimiter is the colon (:).

<_xmlpostequaldelim_> post_xmlpostequaldeli
m_

Optional.

Lets you specify a custom character for delimiting
attribute names from their values.

To specify a custom delimiter:

1. Set the property to y in the configuration file.

2. Use the tag in your XML file to define the custom
delimiter. For example, to use two equal signs as a
delimiter:

<_xmlpostequaldelim_>==</
xmlpostequaldelim>

The default delimiter is the equal sign (=).

<_xmlpostmulvaldelim_
>

post_xmlpostmulvaldel
im_

Optional.

Lets you specify a custom character for delimiting the
values of a multivalued attribute from one another.

To specify a custom delimiter:

1. Set the property to y in the configuration file.

2. Use the tag in your XML file to define the custom
delimiter. For example, to use a hyphen as a delimiter:

<_xmlpostmulvaldelim_>-</
xmlpostmulvaldelim>

The default delimiter is the semicolon (;).

Understanding XMLPost and the Flex Asset Model
The XMLPost utility works the same no matter which asset model or WebCenter
Sites product you are using. However, for flex assets that store their data in multiple
database tables, WebCenter Sites provides additional processing logic in some
standard elements. This processing logic enables the flex asset types to support
XMLPost.

Additionally, WebCenter Sites provides both a posting element that enables you to use
XMLPost to edit flex assets (modifyData) and a posting element that enables you to
use XMLPost to delete assets of any type (deleteData).

This chapter provides additional information about creating configuration and source
files specifically for the asset types in a flex family (and attribute editors). Be sure

Chapter 32
Understanding XMLPost and the Flex Asset Model

32-4

to also read Importing Assets of Any Type for basic information that pertains to all
XMLPost configuration and source files.

In the flex asset model, you specify a different posting element based on the following
categories of asset types:

• Structural asset types that give the flex asset type and flex parent asset type their
data structure. That is, attribute editors, attributes, flex definitions, and flex parent
definitions.

Use the standard WebCenter Sites posting element RemoteContentPost to import
the structural asset types. (You cannot use the addData element with assets of
these types.)

• Flex and flex parent asset type (for example, product and product parent types).

Depending on the situation, either use the posting element addData to import the
flex and flex parent asset types or the posting element RemoteContentPost. (See
Flex Parents and Importing Flex Assets with XMLPost for information about which
posting element to use.)

In both cases, you create configuration files and source files (as described in About
Importing Flex Assets and supplemented in this chapter), and then invoke the
XMLPost utility (as described in Using the XMLPost Utility).

Note:

For reference, sample XMLPost code is provided in the WebCenter Sites
installer package, in the /Xcelerate/Samples/XMLPost directory. The same
folder contains the readme.txt file that describes the sample files.

Internal Names vs. External Names

When you create your flex family of asset types (see Creating a Flex Family in
Creating a Flex Asset Family), you specify both an internal and an external name
for your asset types.

The internal name is used for the primary storage table in the database. The external
name is used in the New, Edit, and Inspect forms, in search results list, and so on.
For example, the internal name for the attribute editor asset type is AttrTypes, but that
name is not used in the user interface.

Because XMLPost communicates with the database, you must always use the internal
name of the asset type in the configuration files and source files. For example, in a
configuration file for attribute editors, you would specify the following:

postargname2: AssetType
postargvalue2: AttrTypes

About Importing the Structural Asset Types in the Flex
Model

The configuration and source files for the flex asset types are similar to those for basic
assets. Let's take a look at sample configuration and source files for the structural flex
asset types.

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-5

For information about configuration and source files, see Importing Assets of Any
Type.

See these topics:

• Attribute Editors

• Flex Attributes

• Flex Definitions and Flex Parent Definitions: Sample Files

• Flex Parents

Attribute Editors
Attribute editors store their data in one table, named AttrTypes. AttrTypes is the
internal name of the attribute editor asset type. Be sure to use this name in your
configuration file for attribute editors.

This table describes the configuration file properties and source file tags that you use
with attribute editors:

Table 32-2 Attribute Editor Tag and Properties

Tag Property Description

<name> postname Required for all asset types.

Name of the attribute editor asset. Attribute names are
limited to 64 characters and cannot contain spaces.

<description> postdescription Optional.

Description of the use or function of the attribute.

<AttrTypeText> postAttrTypeText Required.

Either the name of the file with the attribute editor XML
code, or the actual code.

This tag corresponds to the XML in file field and Browse
button and the XML field in the New and Edit attribute
editor forms in the WebCenter Sites interface.

Sample Configuration File: Attribute Editor
This is a sample configuration file for the attribute editor asset type. It works with the
sample source file immediately following this example.

xmlpost.xmlfilenamefilter: .xml
xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: AttrTypes
notice that you use the internal name of the asset type

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-6

xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Attribute Editor

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: attreditorpostlog.txt

xmlpost.deletefile: y

postpublication: y

postname: y
postdescription: y
postAttrTypeText: y

Sample Source File: Attribute Editor
The following source file is tagged for importing a check box attribute editor, or
presentation object. It works with the preceding sample configuration file.

<document>
<publication>AA Illumination</publication>
<name>Editor4-CheckBoxes</name>
<description>Attribute Type Four Check Box</description>
<AttrTypeText>
 <![CDATA[
 <?XML VERSION="1.0"?>
 <!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
 <PRESENTATIONOBJECT NAME="CheckBoxTest">
 <CHECKBOXES LAYOUT="VERTICAL">
 <ITEM>Red</ITEM>
 <ITEM>Green</ITEM>
 <ITEM>Blue</ITEM>
 </CHECKBOXES>
 </PRESENTATIONOBJECT>
]]>
</AttrTypeText>
</document>

Flex Attributes
Flex attributes have several tables, but XMLPost writes to only two of them: the main
storage table and the attribute asset type's _Extension table.

This means that the source file section of the configuration file must specify and the
source file itself must use tags that represent columns in both tables. Those source file
tags and configuration file properties are shown in the following table:

Table 32-3 Flex Attribute Tags and Properties

Tag Property Description

<name> postname Required for all asset types.

Name of the attribute. Attribute names are limited to 64
characters and cannot contain spaces.

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-7

Table 32-3 (Cont.) Flex Attribute Tags and Properties

Tag Property Description

<description> postdescription Optional.

Description of the use or function of the attribute.

<valuestyle> postvaluestyle Optional.

Whether the attribute can hold a single value (S) or
multiple values (M). If no, this tag is not used, the
attribute is set to hold a single value by default.

<type> posttype Required.

The data type of the attribute. Valid options are asset,
date, float, int, money, string, text, or
blob.

<assettypename> postassettypename Required if <type> is set to asset.

The name of the asset type that the attribute holds.

<upload> postupload Required if <type> is set to blob.

The path to the directory in which you want to
store the attribute values. Note that the value that
you enter in this field is appended to the value
set as the default storage directory (defdir) for the
attribute table by the cc.urlattrpath property in the
wcs_properties.json file.

<attributetype> postattributetype Optional.

The name of the attribute editor to use, if applicable.

<enginename> postenginename Optional.

The name of the search engine you may be using on
your management system.

<charsetname> postcharsetname Optional.

The search engine character set to use. By default, it is
set to ISO 8859-1.

<editing> postediting Foreign attributes only.

Whether a foreign attribute can be edited through the
WebCenter Sites forms (L), or edited externally using a
third-party tool (R). L is the default.

<storage> poststorage Foreign attributes only.

Whether the values for a foreign attribute are to be
stored in a _Mungo table in the WebCenter Sites
database (L) or in a foreign table (R). L is the default.

<externalid> postexternalid Foreign attributes only.

The name of the column that serves as the primary key
for the table that holds this foreign attribute; that is, the
column that uniquely identifies the attribute.

<externalcolumn> postexternalcolumn Foreign attributes only.

The name of the column in the foreign table that holds
the values for this attribute.

<externaltable> postexternaltable Foreign attributes only.

The name of the foreign table that contains the columns
identified by externalid and external column.

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-8

Table 32-3 (Cont.) Flex Attribute Tags and Properties

Tag Property Description

<publication> postpublication Optional.

The names of all the sites that can use this attribute.

Sample Configuration File: Flex Attribute
This is a sample configuration file for a product attribute asset type works with the
sample source file immediately following this example:

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: PAttributes
Notice that this is the internal name of the asset
type. The external name of this asset type is
Product Attribute.

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Attribute

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: attributespostlog.txt

xmlpost.deletefile: y

postpublication: y
postname: y
postattributetype: y
postdescription: y
postvaluestyle: y
posttype: y
postediting: y
poststorage: y
postenginename: y
poststatus: y
postassettypename: y
postupload: y
postexternalid: y
postexternalcolumn: y
postexternaltable: y
postcharsetname: y

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-9

Sample Source File: Attribute
This is a sample source file for importing a product attribute named footnotes. It
works with the preceding sample configuration file.

<document>
 <publication>AA Illumination</publication>
 <name>footnotes</name>
 <description>Footnotes</description>
 <valuestyle>S</valuestyle>
 <type>URL</type>
 <editing>L</editing>
 <storage>L</storage>
</document>

Note:

Remember that all the dependencies and restrictions concerning the data
type of a flex attribute apply whether you are creating an attribute through the
WebCenter Sites interface (the New or Edit flex attribute forms) or through
XMLPost. See Create Flex Attributes in Creating a Flex Asset Family.

Flex Definitions and Flex Parent Definitions: Sample Files
The flex definition and flex parent definition asset types are very similar and you code
their configuration and source files in nearly the same way. They require several of
the same tags in their source files and the same properties in their configuration files.
Each has one additional property/tag.

This section includes the following topics:

• Sample Configuration File: Flex Definition

• Sample Source File: Flex Definition

The source file tags and configuration file properties for flex definitions and flex parent
definitions are listed in the following table. Note that they are case-sensitive.

Table 32-4 Flex Definition and Flex Parent Definition Tags and Properties

Flex definition and flex parent
definition tag and property

Description

tag:

<internalname>

property:

postinternalname

Required.

The name of the asset; this is a required value
for all asset types. Flex definition and flex parent
definition names are limited to 64 characters and
they cannot contain spaces.

tag:

<internaldescription>

property:

postinternaldescription

Optional.

The description of the use or function of the asset.

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-10

Table 32-4 (Cont.) Flex Definition and Flex Parent Definition Tags and
Properties

Flex definition and flex parent
definition tag and property

Description

tag:

<renderid>

property:

postrenderid

Optional. For flex definitions only.

The ID of the Template asset that is to be assigned
to all the flex assets that are created with this flex
definition.

tag:

<parentselectstyle>

property:

postparentselectstyle

Optional. For flex parent definitions only.

Defines how flex parents are to be selected when a
user creates a flex asset using the definition.

This property/tag represents the Parent Select
Style field in the New and Edit parent definition
forms.

When using the tag in the source file, the options
are treepick and selectboxes.

The next four tags and properties perform
the same function as the buttons and
fields in the Product Parent Definition
section on the New and Edit forms for
parent definitions and flex definitions. See
(Conditional) Creating Flex Filter Assets
and Creating Flex Definition Assets in
Creating a Flex Asset Family.

n/a

tag:

<OptionalSingleParentList>

property:

postOptionalSingleParentList

Use this tag to specify any single optional parent
definition.

tag:

<RequiredSingleParentList>

property:

postRequiredSingleParentList

Use this tag to specify any single required parent
definition.

tag:

<RequiredMultipleParentList>

property:

postRequiredMultipleParentList

Use this tag to specify multiple required parent
definitions.

tag:

<OptionalMultipleParentList>

property:

postOptionalMultipleParentList

Use this tag to specify multiple optional parent
definition.

The next three tags and properties
perform the same functions as the
buttons and fields in the Attributes section
on the New and Edit forms for flex
definitions and flex parent definitions. See
(Conditional) Creating Flex Filter Assets
and Creating Flex Definition Assets in
Creating a Flex Asset Family.

n/a

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-11

Table 32-4 (Cont.) Flex Definition and Flex Parent Definition Tags and
Properties

Flex definition and flex parent
definition tag and property

Description

tag:

<RequiredAttrList>

property:

postRequiredAttrList

The list of attributes that are required for the flex
parents or the flex assets that use the definition.

tag:

<OptionalAttrList>

property:

postOptionalAttrList

The list of attributes that are optional for the flex
parents or the flex assets that use the definition.

tag:

<OrderedAttrList>

property:

postOrderedAttrList

The order in which all attributes, be they required
or optional, should appear in the New, Edit, Inspect,
and similar forms.

This tag replaces the other attribute tags. The
example source file in this section shows an
example of how to use this tag in a source file.

A configuration file must include all the properties that could be used by any one of
the assets of the type that the configuration file works with. The individual source files
include only the tags that are needed to define those individual assets.

Sample Configuration File: Flex Definition
The following example is a configuration file for importing product definitions. It works
with the sample source file immediately following this example.

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ProductTmpls
Notice that this is the internal name of the asset type.
The external name of this asset type is
Product Definition.

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Definition

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-12

postinternalname: y
postinternaldescription: y

postparentselectstyle: y

postOptionalSingleParentList: y
postRequiredSingleParentList: y
postRequiredMultipleParentList: y
postOptionalMultipleParentList: y

postRequiredAttrList: y
postOptionalAttrList: y
postOrderedAttrList: y

postrenderid: y

Sample Source File: Flex Definition
The following source file, lighting.xml, is for a product definition named Lighting. It
works with the preceding sample configuration file.

<document>
<publication>AA Illumination</publication>
<internalname>Lighting</internalname>
<internaldescription>Generic Lighting Template</internaldescription>
<RequiredAttrList>sku</RequiredAttrList>
 <OptionalAttrList>
 productdesc;caseqty;bulbshape;bulbsize;basetype;
 colortemp;meanlength;lightcenterlength;reducedwattage;beamspread;
 fixturetype;ballasttype;colorrenderingindex;minstarttemp;powerfactor;
 totalharmonicdist;spreadbeam10h;spreadbeam10v;spreadbeam50h;
 spreadbeam50v;halogen;operatingposition;filamenttype;bulbimage;
 baseimage;filamentimage;footnotes;price;life;voltage;wattage
 </OptionalAttrList>
<parentselectstyle>treepick</parentselectstyle>
<OptionalMultipleParentList>SubCategory</OptionalMultipleParentList>
</document>

Examine the preceding list of attributes. When you include multiple values in a tag,
separate them from each other with a semicolon (;).

Note that while the optional/multiple parent model is used, there are other possible
configurations:

<OptionalSingleParentList>flexparentdefinition</OptionalSingleParentList>
<RequiredSingleParentList>flexparentdefinition</RequiredSingleParentList>
<RequiredMultipleParentList>flexparentdefinition</RequiredMultipleParentList>

Supplying a List of Ordered Attributes

To use the <OrderedAttrList> tag because the attributes have to be displayed in a
specific order, do not also include the <RequiredAttrList> and <OptionalAttrList>
tags. In the string contained in the <OrderedAttrList> tag, specify which attributes are
required and which are optional, as follows:

• For required attributes, precede the attribute name with R (required)

• For optional attributes, precede the attribute name with or O (optional)

• Be sure to list the attributes in order.

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-13

• Be sure to use a semicolon (;) to separate the values.

For example:

<OrderedAttrList>Rsku;Oproductdesc;Ocaseqty;Obulbshape;Obulbsize;Obasetype;Ocolor
temp;Omeanlength;Olightcenterlength;Oreducedwattage;<OrderedAttrList>

Flex Parents
You can use XMLPost to import flex parent assets in two ways:

• Individually. You code a separate XMLPost source file for each flex parent and an
XMLPost configuration file that identifies the asset type and the pagename for the
standard RemoteContentPost posting element. To use the BulkLoader utility, first
import the flex parent assets with XMLPost in this way.

• As part of the flex family tree for a flex asset. To import your flex assets (rather
than the BulkLoader) using XMLPost, combine the flex parents with the flex assets
and import the flex parents as a part of a flex family tree, within the context of a
specific flex asset. You code a separate XMLPost source file for each flex asset
and identify all the parents for that flex asset in that source file. XMLPost then
creates the variables for one flex asset and multiple flex parents (if they do not yet
exist) when it parses the source file.

This topic describes the source and configuration file for importing them individually.
For information about importing them with the flex assets, see Importing Flex Assets
with XMLPost.

This topic includes the following topics:

• Sample Configuration File: Individual Flex Parent

• Sample Source File: Individual Flex Parent

Sample Configuration File: Individual Flex Parent
The following example is a configuration file for importing product parents. It works
with the sample source file immediately following this example.

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ProductGroups
notice that you use the internal name of the asset type

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Parent

xmlpost.success: Success
xmlpost.failure: Error

Chapter 32
About Importing the Structural Asset Types in the Flex Model

32-14

xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y
postinternalname: y
postinternaldescription: y
postflexgrouptemplateid: y
postfgrouptemplatename: y
postParentList: y
postcat1: y
postcat2: y

Sample Source File: Individual Flex Parent
The following source file creates a product parent (flex parent) named Halogen. It
works with the preceding sample configuration file.

<document>
<publication>AA Illumination</publication>
<internalname>Halogen</internalname>
<fgrouptemplatename>Category</fgrouptemplatename>
<cat1>Halogen</cat1>
</document>

Remember that when you use the RemoteContentPost posting element, you must
provide one source file for each parent asset.

Importing Flex Assets with XMLPost
Remember to import the structural asset types (attributes, flex definitions, and flex
parent definitions) before you import flex assets with XMLPost.

Use RemoteContentPost or addData posting elements for flex assets:

• The addData posting element creates parent assets for the flex asset if they do not
yet exist. For example, use this posting element for the initial import of your flex
assets if you are not using the BulkLoader utility.

When you use the addData posting element, the source file must specify the entire
family tree for the flex asset. Each flex asset requires a separate source file, but
you can specify any number of parents for that flex asset in that source file and
XMLPost creates the flex asset and its parents (if they do not yet exist).

• The RemoteContentPost element creates flex assets and sets values for their
parents. Those parents must exist. For example, use this posting element if you
wish to perform the initial import using BulkLoader and then on use XMLPost.

When you use RemoteContentPost to import a flex asset, the source file must
specify only the asset's immediate parents (which requires you to include fewer
lines of code). However, to create a new flex parent for the new flex asset, use the
addData posting element and specify the entire family tree in the source file.

This section includes the following topics:

• Configuration File Properties and Source File Tags for Flex Assets

• Sample Flex Asset Configuration File for addData

• Configuration File Properties and Attributes of Type Blob (or URL)

Chapter 32
Importing Flex Assets with XMLPost

32-15

• Sample Flex Asset Source File for addData

• Sample Flex Asset Configuration File for RemoteContentPost

• Sample Flex Asset Source File for RemoteContentPost

Configuration File Properties and Source File Tags for Flex Assets
As with the structural asset types, you must use the internal name of the flex and
flex parent asset types in your configuration and source files. However, unlike the
structural asset types, you do not have to include an argument for the asset type in
the configuration file. Source files for flex assets have a required tag that identifies the
asset type so you do not have to repeat this information in the configuration file.

This section includes the following topics:

• For the addData Posting Element

• For the RemoteContentPost Posting Element

• For the RemoteContentPost Posting Element

For the addData Posting Element
The following table lists the source file tags and configuration file properties for flex
assets (and their flex parents) when you are using the addData posting element. Note
that they are case sensitive.

Table 32-5 addData Posting Element

Tag Property Description

<_ASSET_> post_ASSET_ Required.

The internal name of the asset type. For example,
Products, AArticles, and AImages.

<_TYPE_> post_TYPE_ Required.

The name of the flex definition that this flex asset is
using.

<_ITEMNAME_> post_ITEMNAME_ Required.

The name of the asset.

<_ITEMDESCRIPTION_> post_ITEMDESCRIPTION_ Optional.

The description of the asset.

<_GROUP_parentDefinit
ionName>

post_GROUP_parentDefi
nitionName

Optional.

The flex asset's parents. The configuration file must
include a tag for each possible parent definition. For
example, if flex assets have parents that use either of
two parent definitions named Division and Department,
the following two properties to define a tag for each are
required in the configuration file:

post_Group_Department

post_Group_Division

<_GROUPDESCRIPTIONS_> post_GROUPDESCRIPTION
S_

Optional.

When designating a new parent include the description
of the parent definition.

Chapter 32
Importing Flex Assets with XMLPost

32-16

Table 32-5 (Cont.) addData Posting Element

Tag Property Description

<displaytype> postdisplaytype Optional.

The name of the Template asset for the flex asset.

<AttributeName> postAttributeName Include a property in the configuration file for each
attribute that assets of the type can have (both required
and optional). The source files then have to supply a
value for each required attribute and any optional ones
that apply to that asset.

For example, for an attribute named SKU, include a
property called postSKU in the source files and lines of
code like this:

<SKU>123445</SKU>

For the RemoteContentPost Posting Element
The following table lists the source file tags and configuration file properties for flex
assets (and their flex parents) when you are using the RemoteContentPost posting
element. Note that they are case-sensitive.

Table 32-6 RemoteContentPost Posting Element

Tag Property Description

<_DEFINITION_> post_DEFINITION_ Required.

The name of the flex definition that this flex asset is
using.

(Note that post_TYPE will also work.)

<_ITEMNAME_> post_ITEMNAME_ Required.

The name of the asset.

<_ITEMDESCRIPTION_> post_ITEMDESCRIPTION_ Optional.

The description of the asset.

<ParentList> post_ParentList Optional.

The flex asset's immediate parents.

<template> posttemplate Optional.

The name of the Template asset for the flex asset.

(Note that postdisplaytype will also work.)

<AttributeName> postAttributeName Include a property in the configuration file for each
attribute that assets of the type can have (both required
and optional). The source files then have to supply a
value for each required attribute and any optional ones
that apply to that asset.

For example, for an attribute named SKU, include a
property called postSKU in the source files and lines of
code like this:

<SKU>123445</SKU>

Chapter 32
Importing Flex Assets with XMLPost

32-17

Sample Flex Asset Configuration File for addData
This is a sample configuration file for a product asset type. The file invokes the
addData posting element and works with the source file example immediately following
this example:

xmlpost.xmlfilenamefilter: .xml

#xmlpost.proxyhost: Future
#xmlpost.proxyport: 80

xmlpost.url: http://wally9:80/servlet/ContentServer

notice that it uses addData
rather than RemoteContentPost
xmlpost.numargs: 5

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/addData

Notice that you do not need to provide
the name of the asset type because that information
is required in the source files for flex assets.

xmlpost.argname2: inifile
xmlpost.argvalue2: futuretense.ini
xmlpost.argname3: authusername
xmlpost.argvalue3: editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: xceleditor
xmlpost.argname5: startmenu
xmlpost.argvalue5: New Product

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdatalog.txt

xmlpost.postdeletefile: y

post_ASSET_: y
post_ITEMNAME_: y
post_TYPE_: y
post_GROUP_Category: y
post_GROUP_SubCategory: y
postpublication: y
postsku: y
postproductdesc: y
postcaseqty: y
postbulbshape: y
postbulbsize: y
postbasetype: y
postcolortemp: y
postmeanlength: y
postlightcenterlength: y
postreducedwattage: y
postbeamspread: y
postfixturetype: y
postballasttype: y
postcolorrenderingindex: y

Chapter 32
Importing Flex Assets with XMLPost

32-18

postminstarttemp: y
postpowerfactor: y
posttotalharmonicdist: y
postspreadbeam10h: y
postspreadbeam10v: y
postspreadbeam50h: y
postspreadbeam50v: y
posthalogen: y
postoperatingposition: y
postfilamenttype: y
postbulbimage: y
postbaseimage: y
postfilamentimage: y
postfootnotes: y
postcat1: y
postcat2: y
postprice: y
postvoltage: y
postwattage: y
postlife: y

Configuration File Properties and Attributes of Type Blob (or URL)
If the asset type has an attribute of type blob (or url), the configuration file needs two
entries for the tag that references the attribute: one to identify the attribute and one to
identify the file name of either the file that holds the content for the attribute (an upload
field) or the name that you want WebCenter Sites to give the file that it creates from
text entered directly into a text field (a text field of type blob or URL).

Attribute of Type Blob (or URL) As an Upload Field
An attribute of type blob can be an upload field. For example, a blob attribute named
footnotes is an upload field with a Browse button for finding the file rather than a text
field that you enter text into. Therefore, it has two properties:

• posttag, which in this scenario is postfootnotes: y

• filetag, which in this scenario is filefootnotes: y

When you include a value for this attribute in a source file, you use the following
convention:

<footnotes>FileName.txt</footnotes>

Note that when you are importing an asset that has this kind of field (attribute), the file
that holds the text that you want to store as the attribute value for the flex asset must
be located in the same directory as the source file for the asset.

Attribute of Type Blob (or URL) As a Text Field
If the fictitious footnotes attribute is a field that takes text directly rather than a file, the
configuration file requires the following properties:

• postfootnotes: y

• postfootnotes_file: y

Then, when you include a value for the attribute in the source file, you use the
following convention:

Chapter 32
Importing Flex Assets with XMLPost

32-19

<footnotes>lots and lots of text</footnotes>
<footnotes_file>FileNameYouWantUsed.txt</footnotes_file>

Sample Flex Asset Source File for addData
The following source file works with the example flex asset configuration file preceding
this section.

This section includes the following topics:

• Sample File

• Handling Special Characters

• Flex Assets and Their Parents

• Specifying the Parents of a Flex Asset

• Setting Attribute Values for Parents

• Setting Multiple Values in a Flex Source File

Sample File
This source file creates a lightbulb product named 10004 from the product definition
named Lighting:

<document>

the first three tags are required
<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_TYPE_>Lighting</_TYPE_>

This tag is required because the publication is
not set in the configuration file
<publication>AA Illumination</publication>

This tag assigns a Template asset to the product
<displaytype>Lighting Detail</displaytype>

The rest of these tags set flex attribute values for the product
<price>5</price>
<sku>10004</sku>
<productdesc>F4T5/CW</productdesc>
<caseqty>24</caseqty>
<bulbshape>T</bulbshape>
<bulbsize>5</bulbsize>
<basetype>Miniature Bipin (G5)</basetype>
<colortemp>4100</colortemp>
<meanlength></meanlength>
<lightcenterlength></lightcenterlength>
<reducedwattage></reducedwattage>
<beamspread></beamspread>
<fixturetype></fixturetype>
<ballasttype></ballasttype>
<colorrenderingindex>60</colorrenderingindex>
<minstarttemp></minstarttemp>
<powerfactor></powerfactor>
<totalharmonicdist></totalharmonicdist>
<spreadbeam10h></spreadbeam10h>

Chapter 32
Importing Flex Assets with XMLPost

32-20

<spreadbeam10v></spreadbeam10v>
<spreadbeam50h></spreadbeam50h>
<spreadbeam50v></spreadbeam50v>
<halogen></halogen>
<operatingposition></operatingposition>
<filamenttype></filamenttype>
<bulbimage>BLB-260.gif</bulbimage>
<baseimage>BLB-250.gif</baseimage>
<filamentimage></filamentimage>
<footnotes>
</footnotes>
<life>6000</life>
<voltage></voltage>
<wattage>4</wattage>
<cat1>Fluorescent</cat1>
<cat2>Preheat Lamps</cat2>

<!-- GROUP tags that specify the parents. Remember that you have to
specify the entire family tree for the flex asset when using the addData posting
element-->

<_GROUP_Category>Fluorescent</_GROUP_Category>
<_GROUP_SubCategory>Preheat Lamps</_GROUP_SubCategory>
</document>

The preceding source file set the product's parent to Preheat Lamps and the parent of
Preheat Lamps to Fluorescent.

Handling Special Characters
XMLPost uses the HTTP POST protocol, which means that it sends data in an HTTP
stream. Therefore, certain characters are considered to be special characters and
must be encoded because they are included in URLs.

In your source file, if any attribute values contains any special character, replace all its
instances with its corresponding URL encoding sequence, found in About Values for
Special Characters.

Flex Assets and Their Parents
The GROUP tags specify the parents in the family tree. When XMLPost uses the
addData posting element and parses the GROUP section of the source file, it does the
following:

1. Determines which parent definitions are legal for an asset using this flex definition.

2. For each legal parent definition, it verifies whether the source file specifies a
parent of that definition:

• If yes, it sets the parent. And if the parent does not yet exist, it creates the
parent.

• If no, it does not set the parent. However, if a parent of that definition is
required, it returns an error.

Specifying the Parents of a Flex Asset
To specify the parents of a flex asset, you provide the name of the parents nested in
the <_GROUP_parentDefinitionName> tag. For example:

Chapter 32
Importing Flex Assets with XMLPost

32-21

<_GROUP_subcategory>Blacklights</_GROUP_subcategory>

Where subcategory is the name of the parent definition for the Blacklights parent
(product parent).

Remember that you must specify the entire family tree for the flex asset. For example,
in addition to specifying the parent for the lightbulb (Blacklights), you specify the
grandparent:

<_GROUP_subcategory>Blacklights</_GROUP_subcategory>

<_GROUP_category>Fluorescent</_GROUP_category>

Setting Attribute Values for Parents
If an attribute can belong to multiple parents, in XMLPost specify to which parent the
attribute belongs. For example, let's say that the bulbshape attribute is assigned to
parents rather than products. In this case, you would include a line of code such as
this:

<bulbshape>Halogen=T</bulbshape>

Setting Multiple Values in a Flex Source File
All of the tags that configure parents and the tags that specify attributes (while the
attribute is configured to accept multiple values) can handle multiple values. Those
tags are as follows:

• _GROUP_parentDefinitionName

• _GROUPDESCRIPTIONS_

• the attribute tags

When you have multiple parents from the same definition for a flex asset, you provide
all of the names of the parents in the same _GROUP_parentDefinitionName tag and
you use a semicolon (;) to separate the parent names.

For example:

<_GROUP_Cateogry>Incandescent;Halogen</_GROUP_Category>

When XMLPost imports this asset, it sets its parents as Incandescent and Halogen,
which are both of the Category parent definition. If Incandescent and Halogen do not
exist yet, XMLPost creates them.

Use a similar syntax to set multiple attribute values for the multiple parents. Once
again, let's say that the Category definition requires that parents of that definition have
a value for the bulbshape attribute. You can set the value of the bulbshape attribute for
both of the parents that were specified by the <_GROUP_Category> tag as follows:

<bulbshape>Incandescent=E;K:Halogen=T</bulbshape>

Note the following about this syntax:

• You use parentName=attributeValue pairs to set the attribute value (Halogen=T).

• You use a colon to separate the parents from each other.
(Incandescent=S:Halogen=T).

Chapter 32
Importing Flex Assets with XMLPost

32-22

• You use a semicolon to separate the attribute values for a parent when that parent
has multiple values for the attribute (Incandescent=E;K:Halogen=T).

And, as mentioned, specify descriptions for the parents that you identify in the same
tag, too. For example:

<_GROUPDESCRIPTIONS>
Incandescent=From Detroit:Halogen=From Chicago
</_GROUPDESCRIPTIONS>

Sample Flex Asset Configuration File for RemoteContentPost
This is a sample configuration file for a product asset type. It works with the source file
example immediately following this example.

xmlpost.xmlfilenamefilter: .xml

#xmlpost.proxyhost: Future
#xmlpost.proxyport: 80

xmlpost.url: http://wally9:80/servlet/ContentServer
xmlpost.numargs: 5

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost

Notice that you do not need to provide
the name of the asset type because that information
is required in the source files for flex assets.

xmlpost.argname2: inifile
xmlpost.argvalue2: futuretense.ini
xmlpost.argname3: authusername
xmlpost.argvalue3: editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: xceleditor
xmlpost.argname5: startmenu
xmlpost.argvalue5: New Product

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdatalog.txt

xmlpost.postdeletefile: y

postpublication: y

post_ASSET_: y
post_ITEMNAME_: y
post_DEFINITION_: y
posttemplate: y

postsku: y
postproductdesc: y
postcaseqty: y
postbulbshape: y
postbulbsize: y
postbasetype: y
postcolortemp: y
postmeanlength: y
postlightcenterlength: y

Chapter 32
Importing Flex Assets with XMLPost

32-23

postreducedwattage: y
postbeamspread: y
postfixturetype: y
postballasttype: y
postcolorrenderingindex: y
postminstarttemp: y
postpowerfactor: y
posttotalharmonicdist: y
postspreadbeam10h: y
postspreadbeam10v: y
postspreadbeam50h: y
postspreadbeam50v: y
posthalogen: y
postoperatingposition: y
postfilamenttype: y
postbulbimage: y
postbaseimage: y
postfilamentimage: y
postfootnotes: y
postcat1: y
postcat2: y
postprice: y
postvoltage: y
postwattage: y
postlife: y

postParentList: y

Sample Flex Asset Source File for RemoteContentPost
This following source file works with the example configuration file immediately
preceding this section. This source file creates a lightbulb product named 10004 from
the product definition named Lighting:

<document>

the first three tags are required
<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_DEFINITION_>Lighting</_DEFINITION_>

This tag is required because the publication is
not set in the configuration file
<publication>AA Illumination</publication>

This tag assigns a Template asset to the product
<template>Lighting_Detail</template>

The rest of these tags set flex attribute values for the product
<price>5</price>
<sku>10004</sku>
<productdesc>F4T5/CW</productdesc>
<caseqty>24</caseqty>
<bulbshape>T</bulbshape>
<bulbsize>5</bulbsize>
<basetype>Miniature Bipin (G5)</basetype>
<colortemp>4100</colortemp>
<colorrenderingindex>60</colorrenderingindex>
<bulbimage>BLB-260.gif</bulbimage>
<baseimage>BLB-250.gif</baseimage>

Chapter 32
Importing Flex Assets with XMLPost

32-24

<filamentimage></filamentimage>
<life>6000</life>
<voltage></voltage>
<wattage>4</wattage>
<cat1>Fluorescent</cat1>
<cat2>Preheat Lamps</cat2>

this tag sets the immediate parents only
<ParentList>Preheat Lamps</ParentList>

</document>

The preceding source file sets several attribute values for the product and sets its
immediate parent to Preheat Lamps. This parent must exist.

Editing Flex Assets with XMLPost
With XMLPost, you can edit the value of an attribute and the asset's parents (either the
flex asset's parents or the parent's parents).

You cannot edit attribute assets, flex definition assets, or flex parent definition assets
with XMLPost.

To edit the attribute value for a flex asset, the source file needs to include only the
name of the asset and the attribute that you want to change.

To edit the attribute value for a flex parent, you must provide the context of a flex
asset. The source file must name the flex asset and can then reference just parent
and the parent attribute that you want to change. But you must specify a flex asset for
XMLPost to start with so that it can work its way through the family tree.

See these topics:

• Configuration Files for Editing Flex Assets

• Source Files for Editing Flex Assets

Configuration Files for Editing Flex Assets
There are two differences in the configuration file for editing a flex asset: the pagename
argument and an additional tag and property.

Pagename Argument

The pagename argument must be set to: OpenMarket/Gator/XMLPost/modifyData.

For example:

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/modifyData

You invoke XMLPost from the command line as usual, identifying the configuration file
and the source files.

Additional Tag/Property

You can use the following optional tag and property when you are editing a flex asset:

• tag: <_REMOVE_parentDefinitionName>

Chapter 32
Editing Flex Assets with XMLPost

32-25

• property: post_REMOVE_parentDefinitionName

It removes a parent from the flex asset.

You can use the following optional tag and property to identify the asset to be modified
when there are other assets with the same name (_ITEMNAME_), the same asset
type (_ASSET_), and the same subtype (_TYPE_) in the same site:

• tag: <_ID_>

• property:post_ID_

Source Files for Editing Flex Assets
The source file for an edited flex asset does not have to include all the information
for that asset, you only have to provide the information that you want to change. Any
attributes that you do not specify are not modified in any way.

This section includes the following topics:

• Changing the Value of an Attribute

• Removing an Attribute Value

• Editing Parent Relationships

Changing the Value of an Attribute
To change the value of an attribute, you specify the new attribute value in the source
file. When XMLPost runs the import, it writes over the old value with the value provided
in the source file.

The following sample source file changes two attribute values (bulbshape and
bulbsize) for the product named 10004 that was defined in Sample Flex Asset Source
File for addData:

<document>
<!-- predefined xml tags (required) -->

<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_TYPE_>Lighting</_TYPE_>

<!-- attribute xml tags -->

<bulbshape>E</bulbshape>
<bulbsize>9</bulbsize>

</document>

Removing an Attribute Value

• To remove an attribute value and leave it blank, code a line that names the
attribute and specify _EMPTY_ as the attribute's value.

For example:

<bulbsize>_EMPTY_</bulbsize>

Chapter 32
Editing Flex Assets with XMLPost

32-26

Note:

To empty a multivalued attribute, in place of _EMPTY_ , set the multivalue
delimiter which, by default, is the ; char. For example: <someattribute>;</
someattribute>.

You can also edit attribute values for parents. Let's say that the bulbsize attribute is
set at the parent level. If that were the case, the following lines of code would set two
parents and provide a value for bulbsize for each:

<_GROUP_SubCategory>All-Weather Lamps;Appliance Lamps
</GROUP_SubCategory>
<bulbsize>All-Weather Lamps=10:Appliance Lamps=8</bulbsize>

Option 1

This line of code clears the bulbsize for the All-Weather Lamps parent:

<bulbsize>All-Weather Lamps=_EMPTY_:Appliance Lamps=8</bulbsize>

Option 2

Alternatively, you could just use this line of code, without repeating the value for
Appliance Lamps:

<bulbsize>All-Weather Lamps=_EMPTY_</bulbsize>

Editing Parent Relationships
You can use XMLPost to make the following edits to the parent relationships for a flex
asset:

• Add another parent to the existing parents.

• Change a parent from one parent to another.

The GROUP_parentDefinitionName tag works differently than the attribute tags:

• When you use an attribute tag, XMLPost writes the new value over the old value.

• When you use a GROUP_parentDefinitionName tag, XMLPost does not overwrite
an old parent with a new parent, even when the parent definition name is the
same. It adds the new parent to the list of parents that the asset has, which may
not be what you want.

1. To add another parent to the list of existing parents, include the line of code in the
source file. For example:

<_GROUP_SubCategory>Blacklights</_GROUP_SubCategory>

2. To remove a parent, use the <_REMOVE _> tag. Note that you must be careful not to
remove a required parent unless you are replacing it. For example:

<_REMOVE_Processor>Appliance Lamps</_REMOVE_Processor>

Deleting Assets with XMLPost
You can delete any asset of any type using XMLPost. Read this to know how:

Chapter 32
Deleting Assets with XMLPost

32-27

• Your configuration file must instruct XMLPost to call the deleteData element.

For example:

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/deleteData

• You also need these source file tags and configuration file properties:

<_ASSET_>/post_ASSET_ which identifies the asset type of the asset you want to
delete.

<_ITEMNAME>/post_ITEMNAME_ which identifies the asset you want to delete.

When XMLPost uses this posting element, it changes the value in the Status column
for that asset to VO for void. (It does not physically remove it from the database).

See these topics:

• Configuration Files for Deleting Assets

• Source Files for Deleting Assets

Configuration Files for Deleting Assets
Here is an example configuration file:

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 4
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/deleteData
xmlpost.argname2: authusername
xmlpost.argvalue2: user_editor
xmlpost.argname3: authpassword
xmlpost.argvalue3: user
xmlpost.argname4: inifile
xmlpost.argvalue4: futuretense.ini

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y
post_ASSET_: y
post_ITEMNAME_: y

You invoke XMLPost from the command line as usual.

Source Files for Deleting Assets
The source files for deleting assets are short and simple. For example:

<document>

<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>Pentium 90</_ITEMNAME_>
<publication>my publication</publication>

</document>

Chapter 32
Deleting Assets with XMLPost

32-28

This code instructs XMLPost to delete a product asset named Pentium 90 (it changes
the status of Pentium 90 to VO, for void).

Chapter 32
Deleting Assets with XMLPost

32-29

33
Importing Flex Assets with the BulkLoader
Utility

You need the BulkLoader utility to import flex assets when you’re setting up your
WebCenter Sites system.

Topics:

• About the BulkLoader Utility

• Importing Flex Assets Using a Custom Extraction Mechanism

• Approving Flex Assets with the BulkApprover Utility

About the BulkLoader Utility
With the BulkLoader utility, you can quickly extract large amounts of flex asset data in
a user-defined way from your own data sources. This utility can import that data into
the WebCenter Sites database on any of your systems (development, management,
testing, or delivery).

The extraction mechanism is abstracted away using a Java interface that customers
can implement. BulkLoader invokes methods on this interface to extract input data
from your data sources. For backward functional and data compatibility, WebCenter
Sites also includes an implementation of this Java interface so that BulkLoader will still
be able to extract data from an external JDBC-compliant data source.

The following topics provide information about the BulkLoader utility:

• Understanding BulkLoader Features

• How BulkLoader Works

• About Using the BulkLoader Utility

• Importing Flex Assets from Flat Tables

• When to Use XMLPost to Import Structural Assets

• Creating the Input Table (Data Source)

• Creating the Mapping Table

• Creating the BulkLoader Configuration File

• Running the BulkLoader Utility

• Enabling Access to Imported Assets in the Contributor Interface

• Reviewing Feedback Information

• Approving and Publishing the Assets to the Delivery System

33-1

Understanding BulkLoader Features
Features in BulkLoader include the following:

• Support for a user-defined extraction mechanism, using a Java API. Users can
provide a custom implementation of this extraction interface or use the built-in
support for extracting from a JDBC data source.

• Support for inserts, voids, and updates of flex asset and group data.

• Support for incremental inserts, voids and updates.

• Performance improvements for higher throughput, using concurrent multi-threaded
import operations while data extraction is in progress.

• Support for chunk (slice) processing of input data.

• Support for importing asset data that belongs to multiple flex families.

• Backward functional and data compatibility. Supports importing asset data from an
external JDBC source.

How BulkLoader Works
The BulkLoader has been redesigned for higher performance, throughput, and
scalability. Instead of reading all input data and then generating output SQL files,
BulkLoader reads input data in chunks. As soon as each chunk is read, it is handed
over to an import thread while the main BulkLoader thread goes back to read the
next chunk. The import thread uses a direct JDBC connection to the WebCenter Sites
database. In this way, reading and importing are done in parallel, thereby achieving
higher throughput. For scalability, the number of BulkLoader import threads can be
increased using the database computer's hardware's additional CPUs and an I/O
configuration that supports higher concurrency.

The BulkLoader utility requires a configuration file containing parameters that specify
the number of processing threads, the name of the Java class that implements the
data extraction interface, commit frequency, the starting unique ID to be used as the
asset ID, and more.

The following figures show a client-specific implementation and the built-in ready-to-
use implementation supplied by WebCenter Sites.

Figure 33-1 Client-specific implementation of BulkLoader

Chapter 33
About the BulkLoader Utility

33-2

Figure 33-2 Built-in OOTB (out-of-the-box) implementation of BulkLoader

About Using the BulkLoader Utility
There are two ways to use the BulkLoader depending on how you supply input data to
import into the WebCenter Sites database.

• To use BulkLoader to import input data from an external JDBC data source, you
provide input data in a flat table or view.

• To provide your own way of supplying input data to the BulkLoader, you use a
Java object that implements the extraction interface, IDataExtract.

Note:

For reference, sample BulkLoader code is provided on the WebCenter
Sites installation medium, in the Samples folder. The same folder
contains the readme.txt file that describes the sample files.

Importing Flex Assets from Flat Tables
This section describes the general procedure that you use to import flex assets with
BulkLoader, followed by subsequent sections that describe each step in detail. Using
this model, import new flex assets and parents and void assets that were previously
imported. This model also supports changing and deleting attribute values for existing
assets.

The Basic Steps
To import flex assets with the BulkLoader utility:

1. Use XMLPost to import the structural assets into the WebCenter Sites database
on the management system. The structural flex assets are as follows: attribute
editors, flex attributes, flex parent definitions, flex definitions, and flex parent
assets.

2. Write a view or a stored procedure that gives you a view of the source database
that you want to import into the WebCenter Sites database as a flat table. This flat
table is your source table.

3. In the same source database, create a mapping table with two columns: one
column that lists the names of the columns in the source file and the other column
that lists the names that are used for those attributes in the WebCenter Sites
database.

4. Code a configuration file that identifies the source table and the mapping table.

Chapter 33
About the BulkLoader Utility

33-3

5. Put the configuration file on a system from which you have access to both
the WebCenter Sites database on the management system, and to your source
database.

6. Stop the application server on the management system.

7. Run the BulkLoader utility. BulkLoader will import the flex asset data and gives the
feedback in a table named bulk_feedback, that has been created at the input data
source.

8. Restart the application server on the management system.

9. Use the BulkApprover utility to approve all of the assets that were loaded.

Note:

Because the BulkLoader utility is designed for speed, it does not check
for the existence of the attributes or flex parent definitions or flex
definitions. You must import all of the structural asset types before you
run the BulkLoader utility.

Driver Requirements
The BulkLoader requires JDBC (or Java DataBase Connectivity) drivers, which are not
provided by Oracle Corporation. You must obtain JDBC drivers for both the source
database and the destination database, that is, the WebCenter Sites database. For
an ODBC-compliant source database, use a JDBC-ODBC bridge, which is included as
part of the Java SDK.

Requirement for DB2
Run the usejdbc2.bat file on the client computer before you can use BulkLoader. Run
the batch file once, and then run BulkLoader as usual.

When to Use XMLPost to Import Structural Assets
Use XMLPost and the RemoteContentPost posting element to import the structural
assets into the WebCenter Sites database on the management system. Import assets
of the following types:

• attribute editors

• flex attributes

• flex parent definitions

• flex definitions

• flex parent assets

See About Importing the Structural Asset Types in the Flex Model.

Creating the Input Table (Data Source)
You must create input flat tables (data sources) for holding all new asset data and for
holding update data. These are flat tables/views in which each row corresponds to a

Chapter 33
About the BulkLoader Utility

33-4

single flex asset item and each column corresponds to a flex attribute asset for the
BulkLoader utility.

There is no requirement regarding the names of columns in the data source, but you
must supply a separate mapping table, described in Creating the Mapping Table.

This section includes the following topics:

• Inserts

• Updates

Inserts
The name of the data source table is specified by the inputTable parameter in the
configuration file.

The source table must also include the names of the following four columns, which you
specify in the configuration file with the following properties:

• inputTableTemplateColumn: The name of the column in the source table that
holds the names of the flex definitions.

• inputTableNameColumn: The name of the column in the source table that holds the
names of the flex assets. The name of this column cannot exceed 64 characters.

• inputTableDescriptionColumn: The name of the column in the source table that
holds the description of the flex assets.

• inputTableGroupsColumn: The name of the column in the source table that holds
the parent names. Each value in this column can include multiple flex parent
names, separated by the multivalueDelimeter character, which is defined in the
configuration file.

Note that you can optionally specify the name of the column that serves as a unique
identifier for each input item, using the following parameter in the configuration
file: inputTableUniqueIdColumn. If there is no value assigned for this parameter,
BulkLoader will generate a unique identifier for each input item and store it in a
mapping table (bulkloader_ids) in the WebCenter Sites database.

The following is an example of a source table (input table):

Chapter 33
About the BulkLoader Utility

33-5

Figure 33-3 Sample Source Input Table

Based on the column names in this source table, the source table properties in the
corresponding configuration file would be set as follows:

inputTableTemplateColumn=SNSTEMPLATE
inputTableNameColumn=SNSNAME
inputTableDescriptionColumn=SNSDESCRIPTION
inputTableGroupsColumn=SNSGROUPS

Updates
To update attribute data for existing assets, to add new parents or delete existing
parents for existing assets, you use the update parameter.

Use the inputTableForUpdates parameter in the configuration file to specify the name
of the data source table. The source table must also include the names of the following
three columns, which you specify in the configuration file with the following properties:

• inputTableForUpdatesUniqueIdColumn: The name of the column in the source
table that uniquely identifies the flex asset or parent in the WebCenter Sites
database.

• inputTableForUpdatesDeleteGroupsColumn: The name of the column in the
source table that specifies a list of parents to be deleted for the current flex asset.

• inputTableForUpdatesAddGroupsColumn: The name of the column in the source
table that specifies a list of parents to be added for the current flex asset.

BulkLoader interprets column values as follows when applying updates to the
attributes:

• A null value in a specific attribute column indicates that the attribute for the current
flex asset should be deleted. For example, a null value in the deletegroups
column indicates that no parents have to be deleted. A null value in the addgroups
column indicates that no parents have to be added.

Chapter 33
About the BulkLoader Utility

33-6

• A non-null value indicates that the existing attribute value should be replaced
with the given value. For example, a non-null value in the deletegroups column
specifies a list of parents to be deleted. A non-null value for addgroups denotes
the addition of new parents to a given flex asset.

Creating the Mapping Table
You must also create a mapping table for the BulkLoader utility, and it must have the
following two columns:

• A column that holds the names of the flex attribute columns in your flat data
source.

• A column that holds their corresponding names in the WebCenter Sites database.

The mapping table provides a one-to-one correspondence between these two
columns. For example, your source table might have a column of vendor names with
an automatically generated name like A96714328445 that maps to a product attribute
asset named, simply, VENDOR_ID.

You include the following configuration file properties for the mapping table:

• inputAttributeMapTable: The name of the mapping table file.

• inputAttributeMapTableKeyCol: The name of the column in the mapping table
that lists the attribute names in the source table.

• inputAttributeMapTableValCol: The name of the column that lists the
corresponding attribute asset names in the WebCenter Sites database.

The following is an example of a mapping table:

Figure 33-4 Sample Mapping Table

Based on the column names in this source table, the source table properties in the
corresponding configuration file would be set as follows:

Chapter 33
About the BulkLoader Utility

33-7

inputAttributeMapTable=93ATTR_MAP
inputAttributeMapTableKeyCol=SOURCENAME
inputAttributeMapTableValCol=ATTRIBUTENAME

Creating the BulkLoader Configuration File
You configure the BulkLoader utility by creating a configuration file for it that has the
properties described in this section. You can name the file anything you want.

You set the properties in the file according to the following syntax:

property=value

Note:

All property names and values in the configuration file are case-sensitive.

This section includes the following topics:

• BulkLoader Configuration File Properties

• Setting the initID Parameter

• Example Configuration File

BulkLoader Configuration File Properties
This table describes properties in a BulkLoader configuration file:

Table 33-1 BulkLoader Configuration File Properties

Property Name Required/
Optional

Comments

maxThreads Required The maximum number of concurrent processing
threads. This can be the number of database
connections to the WebCenter Sites database
server. Use as many threads as the number of
CPUs on the database host. For a single CPU
database host, set it to 2.

Example: 4

dataSliceSize Required Number of items retrieved in one read request;
this number will also be processed by a single
processing thread.

Example: 2000

dataExtractionImplCla
ss

Required User-specific Implementation class for data
extraction API. Needs a constructor with
(String configFilename) signature. The one
mentioned here is a reference implementation
class for backward compatibility. Data in flat
tables.

Default value (ready-to-use):
com.openmarket.gatorbulk.objects.Data
ExtractImpl

Chapter 33
About the BulkLoader Utility

33-8

Table 33-1 (Cont.) BulkLoader Configuration File Properties

Property Name Required/
Optional

Comments

initId Required Starting WebCenter Sites ID used the very first
time BulkLoader operates; subsequently will use
the value from idSyncFile.

Example: 800000000000

idSyncFile Required Next available WebCenter Sites ID is saved in
this file; updated during a BulkLoader session.

Example:
C:\FutureTense\BulkLoaderId.txt

idPoolSize Required Each time BulkLoader needs to generate
WebCenter Sites IDs, it collects this many
IDs and caches in memory. A good estimate
is (number of assets * average number of
attributes *2).

Example: 1000

commitFrequency Required Number of flex asset groups to be part of a
database transaction.

Example: 100

outputJdbcDriver Required The name of the JDBC driver class to access
the WebCenter Sites database. The value here
reflects the Oracle 9.0 driver.

Example:
oracle.jdbc.driver.OracleDriver

outputJdbcURL Required The JDBC URL. The following example value is
a typical type2 oracle JDBC driver URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsername Required WebCenter Sites database user name.

outputJdbcPassword Required WebCenter Sites database user password.

inputTable Required Name of the flat, input table from which new
asset data is inserted.

inputAttributeMapTabl
e

Required Name of the mapping table that lists the source
table columns and the corresponding attribute
names.

inputAttributeMapTabl
eKeyCol

Required The name of the column in the mapping table
that lists the source table column names.

For example:

inputAttributeMapTableKeyCol=SOURCENA
ME

inputAttributeMapTabl
eValCol

Required The name of the column in the mapping table
that lists the corresponding attribute names.

For example:

inputAttributeMapTableValCol=ATTRIBUT
ENAME

Chapter 33
About the BulkLoader Utility

33-9

Table 33-1 (Cont.) BulkLoader Configuration File Properties

Property Name Required/
Optional

Comments

inputTableDescription
Column

Required The name of the column in the source table that
contains the descriptions of the flex assets.

For example:

inputTableDescriptionColumn=SNSDESCRI
PTION

inputTableGroupsColum
n

Required Name of the column in the source table that
contains the names of parents.

Each value can include several parents,
separated by the multivalueDelimeter
character, which is defined in the configuration
file.

For example:

inputTableGroupsColumn=SNSGROUP

inputTableNameColumn Required The name of the column in the source table that
contains the name of the product (or advanced
article or advanced image) for each row.

For example:

inputTableNameColumn=SNSNAME

inputTableTemplateCol
umn

Required The name of the column in the source table that
contains the flex definitions.

For example:

inputTableTemplateColumn=SNSTEMPLATE

createdby Required The user name that you want to be entered in
the createdby field for your flex assets.

For example:

createdby=editor

multivalueDelimeter Required The delimiter that separates multiple attribute
values. The default character is the semicolon
(;).

For example:

multivalueDelimiter=;

siteName Required The name of the site. All products will behave as
if they were created under this site.

For example:

siteName=AA Illumination

status Required The status code for all imported flex assets. You
should set this to PL for imported.

For example:

status=PL

tableProducts Required Name of the flex asset type as defined in the
WebCenter Sites database.

Chapter 33
About the BulkLoader Utility

33-10

Table 33-1 (Cont.) BulkLoader Configuration File Properties

Property Name Required/
Optional

Comments

inputTableUniqueIdCol
umn

Required Name of the column in the source table that
serves as a unique identifier when importing
a new flex asset. This will be used for any
subsequent updates and void operations.

To allow BulkLoader to generate unique
identifiers, leave this value blank.

targetName Required Name of the publish target, as defined in
WebCenter Sites.

renderTemplate Optional Name of the template used for rendering flex
assets (deprecated).

inputFeedbackTable Required Name of the table that BulkLoader creates and
uses for recording the processing feedback for
every input item that was processed. Note that
this table is created in the input data source.

inputTableForUpdates Optional Needed only if an update action is specified
when running the BulkLoader utility. Otherwise,
this can be an empty value. This is the name
of the source table that contains attributes and
parents that need updates.

inputTableForUpdatesU
niqueIdColumn

Optional Needed only if an update action is specified
when running the BulkLoader utility. This is the
name of the column in the source table that
specifies a unique identifier for the flex asset.

inputTableForUpdatesD
eleteGroupsColumn

Optional Needed only if update action is specified and
you have one or more flex assets that need one
or more parents to be deleted.

This is the name of the column in the source
table that specifies the list of parents to be
deleted.

inputTableForUpdatesA
ddGroupsColumn

Optional Needed only if an update action is specified and
you have one or more flex assets that need one
or more parents to be added. This is the name
of the column in the source table that specifies a
list of parents to be added.

inputLimitRows Optional Needed only for testing. Limits the number of
input items processed for each action (insert,
void, or update).

updatedby Optional The user name that you want to be entered in
the createdby field for your flex assets. For
example: updateby=editor

updatedstatus Optional The status code for all updated flex assets. This
must be set to ED.

For example: updatestatus=ED

Chapter 33
About the BulkLoader Utility

33-11

Setting the initID Parameter
The initID parameter is the seed value that the BulkLoader starts at and increments
from when creating a unique asset ID for each asset. You must choose a seed value
number that allows the BulkLoader to create a contiguous block of ID numbers that
cannot cause ID conflicts with existing (or future) asset ID numbers that are generated
by WebCenter Sites.

Currently, WebCenter Sites starts at 1 trillion for the asset IDs that it creates. To
be sure that you won't have conflicts, select a number low enough that when the
BulkLoader utility is done, the highest ID number is under 900,000,000,000.

The BulkLoader creates one asset for each row/column value in the data source table.
Each output table row requires its own unique asset ID.

Use these guidelines to determine the approximate number of asset IDs that are
created by the BulkLoader utility:

• Five rows for each flex asset, plus

• Two rows per attribute for each flex asset

For example, if your data source table contains the following:

• 10,000 product assets

• 20 attributes per product (as determined by the product definition)

• 10 inherited attributes per product (as determined by the product parent
definitions)

Then you have to allow for the following number of IDs:

(5 x 10,000) + (2 x 30 x 10,000) = 50,000 + 600,000 = 650,000 asset IDs

If your initID value is 800,000,000,000, then the BulkLoader creates ID numbers
ranging from 800,000,000,000 to approximately 800,000,650,000.

Example Configuration File
The following is an example of a BulkLoader configuration file:

New BulkLoader configuration for backward compatibility
#
input datasource configuration
inputJdbcDriver=sun.jdbc.odbc.JdbcOdbcDriver
inputJdbcURL=jdbc:odbc:access-db-conn
inputJdbcUsername=
inputJdbcPassword=
#
Source tables
#
inputTable=PRD_FLAT_50000
inputAttributeMapTable=PRD_FLAT_ATTRIBUTE_MAP
inputAttributeMapTableKeyCol=SOURCENAME
inputAttributeMapTableValCol=ATTRIBUTENAME
#
input column names
#
inputTableTemplateColumn=CCTemplate
inputTableNameColumn=CCName

Chapter 33
About the BulkLoader Utility

33-12

inputTableDescriptionColumn=CCDescription
inputTableGroupsColumn=CCGroups
#
WebCenter Sites database
#
This database is always used for looking up Attributes, # Product Types and
Product Group Types. # Data is imported into this database.
#
outputJdbcDriver=oracle.jdbc.driver.OracleDriver
outputJdbcURL=jdbc:oracle:oci8:@foo
outputJdbcUsername=csuser
outputJdbcPassword=csuser
#
Data-specific settings
#
siteName=AA Illumination
targetName=Mirror Publish to burst37
initId=800000000000
createdby=user_designer
status=PL
renderTemplate=CLighting Detail
MAX_ATTRIBUTES=100
multivalueDelimiter=;
commitFrequency=50
#
The following denotes the flex asset type that we are importing.
tableProducts=Products
#
Additional information needed for BulkLoader
maxThreads=2
dataSliceSize 0 means read all input data in one slice.
dataSliceSize=500
dataExtractionImplClass=com.openmarket.gatorbulk.objects.DataExtractImpl
idSyncFile=C:\\FutureTense50\\bulk_uniqueid.dat
idPoolSize=50000
For inserts
inputTableUniqueIdColumn=
inputFeedbackTable=bulk_feedback
For updates
inputTableForUpdates=prod_flat_2_upd
inputTableForUpdatesUniqueIdColumn=input_id
inputTableForUpdatesDeleteGroupsColumn=CCGroups
inputTableForUpdatesAddGroupsColumn=
inputLimitRows=1000
##

Running the BulkLoader Utility
Before you begin, be sure that you have the appropriate JDBC drivers for both your
source database and your target WebCenter Sites database.

To run the BulkLoader utility:

1. In the Admin interface, disable Lucene search engine indexing. See Disabling the
Lucene Search Engine in Administering Oracle WebCenter Sites.

2. Put the configuration file on a system from which you have access to both
the WebCenter Sites database on the management system, and to your source
database.

3. Stop the application server on the management system.

Chapter 33
About the BulkLoader Utility

33-13

4. To get Bulkloader up and running, set the following directories to
classpath: <ORACLE_HOME>\wcsites\webcentersites\sites-home\lib* and
<ORACLE_HOME>\oracle_common\modules\clients*.

If WebCenter Sites is using the SQL Server database, include in classpath:
Oracle_Home\oracle_common\modules*.

5. Enter the following command, all on a single line, with paths that are appropriate
for your installation:

For UNIX

java -ms16m -mx256m -cp <ORACLE_HOME>/wcsites/webcentersites/
sites-home/lib/*:<ORACLE_HOME>/oracle_common/modules/clients/*
com.openmarket.gatorbulk.objects.BulkLoader config=bulkloader.ini
action=<insert|void|update> validate=<yes|no>

For Windows

java -ms16m -mx256m -cp <ORACLE_HOME>\wcsites\webcentersites\sites-
home\lib*:<ORACLE_HOME>\oracle_common\modules\clients*
com.openmarket.gatorbulk.objects.BulkLoader config=bulkloader.ini
action=<insert|void|update> validate=<yes|no>

Note that the action parameter specifies what BulkLoader needs to do: insert,
void, or update. Setting the validate parameter to yes makes BulkLoader do extra
validations during updates and voids. You may also have to increase the memory
for the JVM, depending on the size of your input data.

6. Examine the screen output to be sure that the BulkLoader utility was able to
connect to the appropriate database.

Enabling Access to Imported Assets in the Contributor Interface
To access assets imported with the BulkLoader utility from the Oracle WebCenter
Sites: Contributor interface, complete the following steps:

1. Re-enable the Lucene search engine indexing. See Setting Up Search Indices in
Administering Oracle WebCenter Sites.

2. Add the assets you imported with the BulkLoader utility to the search index. See
Adding Asset Types to the Search Index in Administering Oracle WebCenter Sites.

3. Verify the assets are accessible from the Contributor interface, by conducting
a search, in the Contributor interface, for the assets you imported with the
BulkLoader utility. For instructions about conducting searches in the Contributor
interface, see Finding and Organizing Assets in Using Oracle WebCenter Sites.

Reviewing Feedback Information
After the BulkLoader utility completes an operation, review the feedback information in
the bulk_feedback table that is located in your input data source. That table contains
information about all the input items that BulkLoader processed.

After reviewing that information, take any corrective actions that might be necessary. If
you modify any of your input data, run BulkLoader again to verify that the errors were
corrected.

Chapter 33
About the BulkLoader Utility

33-14

Approving and Publishing the Assets to the Delivery System
Use the BulkApprover utility to approve the assets that you just loaded. See Using
BulkApprover.

Importing Flex Assets Using a Custom Extraction
Mechanism

Sometimes users need alternative mechanisms to provide input asset data to
BulkLoader. In such cases, the data may have to be gathered from multiple types
of sources, such as XML documents, files, and legacy databases. To accomplish
that, users can implement their own mechanism to provide data to BulkLoader, using
the Java interface com.openmarket.bulkloader.interfaces.IDataExtract, which is
provided with WebCenter Sites.

A user can implement a Java object supporting IDataExtract and specify the Java
object in the BulkLoader configuration file. BulkLoader will then invoke methods on
this interface to initialize a read request, to repetitively read chunks of input data and
then signal the end of the read request. This interface also has a method that provides
import feedback from the BulkLoader utility, which can be used by the input provider to
know the status of import and know any errors that may occur during import.

There are three Java interfaces that can help users with custom implementations of
IDataExtract:

• IDataExtract: Required for any custom extraction.

• IPopulateDataSlice: Provides data to the BulkLoader utility. A container object
supporting this interface is created by BulkLoader and passed into the client.

• IFeedback: Provides the status of each input item that has been processed by the
BulkLoader. A feedback object that is created and populated by BulkLoader import
thread is passed into the client.

See these topics:

• IDataExtract Interface

• IPopulateDataSlice

• IFeedback Interface

IDataExtract Interface
This interface is required for any custom extraction.

The following is a sample code that implements this interface:

com.openmarket.gatorbulk.interfaces.IDataExtract

package com.openmarket.gatorbulk.interfaces;
import java.util.Iterator;

/**
 * To be implemented by input data provider.
 * Interface for extracting data from an input source

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-15

 * for BulkLoader.
 * BulkLoader loads an object supporting this interface and invokes
 * the GetNextInputDataSet() method on this interface repeatedly to
 * fetch data in batches.
 */

public interface IDataExtract {

 public final int HAS_DATA = 100;
 public final int NO_DATA = 101;

 public final int SUCCESS = 0;
 public final int ERROR = -1;

 public final int INSERT_ASSETS = 1000;
 public final int VOID_ASSETS = 1010;
 public final int UPDATE_ASSETS = 1020;
 public final int NONE_ASSETS = 1030;

 /**
 * Begin requesting input data; tells the client to
 * start the database query, get a cursor, etc.
 * @param requestType
 * IDataExtract.INSERT_ASSETS,
 * IDataExtract.VOID_ASSETS,
 * IDataExtract.UPDATE_ASSETS
 * @param sliceOrNot true/false
 * true - if data will be requested in batches
 * false - data will be requested all in one attempt
 * @param sliceSize >0 number of rows to be
 * retrieved in one data set
 * @return none
 * @exception java.lang.Exception
 */

 public void InitRequestInputData(int requestType,
 boolean sliceOrNot, int sliceSize) throws Exception ;

 /**
 * Get a set/slice of input data records.
 * @param dataSlice object to be populated using the
 * methods from IPopulateDataSlice
 * @return IDataExtract.HAS_DATA when dataSlice has some data,
 * IDataExtract.NO_DATA when there is no data,
 * IDataExtract.ERROR when there is an error
 * @exception java.lang.Exception
 */

 public int GetNextInputDataSet(IPopulateDataSlice dataSlice)
 throws Exception;

 /**
 * Signal the end of extracting data for given request type
 * @param requestType
 * IDataExtract.INSERT_ASSETS,
 * IDataExtract.VOID_ASSETS,
 * IDataExtract.UPDATE_ASSETS
 * @return none
 * @exception java.lang.Exception
 */

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-16

 public void EndRequestInputData(int requestType)
 throws Exception;

 /**
 * Update the client as to what happened to input data
 * processing. Note that this method would be called by multiple
 * threads, with each thread passing its own IFeedback
 * handle. The implementor of this method should write
 * thread-safe code.
 * @param requestType
 * IDataExtract.InsertAsset,
 * IDataExtract.VoidAsset,
 * IDataExtract.UpdateAsset
 * @param processingStatus - An object containing processing
 * status for all items in one dataset. The implementor of this
 * interface should invoke the IFeedback interface
 * methods on processingStatus to get status for individual
 * rows. This method will be invoked by multiple BulkLoader
 * threads, so make sure this method is implemented in a
 * thread-safe way.
 * @return none
 * @exception java.lang.Exception
 */

 void UpdateStatus(int requestType, IFeedback processingStatus)
 throws Exception;
}

Implementation Notes for IDataExtract

The Java object implementing IDataExtract needs to have a constructor with a string
parameter. BulkLoader will pass the name of its configuration file to the constructor
when instantiating this object.

The method UpdateStatus(..) is invoked by multiple BulkLoader threads, so the
implementation of this method should be thread-safe.

This table lists and describes the configuration parameters for the BulkLoader utility
when using custom data extraction method:

Table 33-2 Configuration Parameters for BulkLoader

Property Name Required/
Optional

Comments

maxThreads Required The maximum number of concurrent processing
threads. This can be the number of database
connections to the WebCenter Sites database
server. Use as many threads as the number of
CPUs on the database host. For a single CPU
database host, set it to 2.

Example: 4

dataSliceSize Required Number of items retrieved in one read request;
this number will also be processed by a single
processing thread.

Example: 2000

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-17

Table 33-2 (Cont.) Configuration Parameters for BulkLoader

Property Name Required/
Optional

Comments

dataExtractionImp
lClass

Required User-specific Implementation class for data
extraction API. Needs a constructor with (String
configFilename) signature. The one mentioned
here is a reference implementation class for
backward compatibility. Data in flat tables.

Default value (ready-to-use):
com.openmarket.gatorbulk.objects.DataEx
tractImpl

initId Required Starting WebCenter Sites ID used the very first
time BulkLoader operates; subsequently will use
the value from idSyncFile.

Example: 800000000000

idSyncFile Required Next available WebCenter Sites ID is saved in this
file; updated during a BulkLoader session.

Example: C:\FutureTense\BulkLoaderId.txt

idPoolSize Required Each time BulkLoader needs to generate
WebCenter Sites IDs, it collects this many IDs and
caches in memory. A good estimate is (number of
assets * average number of attributes *2).

Example: 1000

commitFrequency Required Required.

Specifies when "COMMIT" statements will be
inserted into the generated SQL file. A value
of 0 means that "COMMIT" statements will be
inserted every 50 lines (the default); any positive
integer specifies the number of lines between each
"COMMIT" statement.

For example:

commitFrequency=5

(A COMMIT statement will be inserted for every 5
lines of SQL code.)

outputJdbcDriver Required The name of the JDBC driver class to access the
WebCenter Sites database. The value here reflects
the Oracle 9.0 driver.

Example: oracle.jdbc.driver.OracleDriver

outputJdbcURL Required The JDBC URL. The following example value is a
typical type2 oracle JDBC driver URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsernam
e

Required WebCenter Sites database user name.

outputJdbcPasswor
d

Required WebCenter Sites database user password.

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-18

IPopulateDataSlice
The following is the sample code that implements this interface:

com.openmarket.gatorbulk.interfaces.IPopulateDataSlice

package com.openmarket.gatorbulk.interfaces;

import java.sql.Timestamp;

/**
 * To be implemented by Oracle Corporation
 * Interface to populate a dataSlice by the client.
 * BulkLoader creates an object implementing this interface and then
 * hands it over to the client, which uses this interface's methods
 * to populate that object with input data records.
 */

public interface IPopulateDataSlice {

/**
 * Creates a new input data object to hold all the data for a
 * flex asset and makes it the current object. This method is
 * invoked repetitively to populate this object with flex asset
 * input data. Each invocation is to be followed by Set..()
 * methods and AddAttribute..() methods to supply data for one
 * flex asset.
 */

public void AddNewRow();

/**
 * Specify a unique identifier for flex asset input data
 * @param id user-specific unique identifier
 * @exception java.lang. Exception thrown if any unique-id
 * validation is enabled.
 */

public voidSetAssetUniqueId(String id);

/**
 * Specify the name of the site with which the current flex
 * asset is created or to be created under.
 * @param sitename name of the site
 */

public void SetSiteName(String sitename);

/**
 * Set the asset type for the flex asset.
 * @param flexAssetType asset type as defined in WebCenter Sites system
 */

public void SetFlexAssetType(String flexAssetType);

/**
 * Specify the name of the parent for the current flex asset.
 * Use this method repeatedly to add a list of parent names.
 * @param groupName name of a parent that the current asset

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-19

 * inherits some of its attributes from.
 */

public void AddParentGroup(String groupName);

/**
 * Specify the name of the parent to be deleted for the current
 * flex asset.
 * Use this method repeatedly to add a list of parent names.
 * @param groupName - name of a parent that the current asset
 * inherited some of its attributes from.
 */

public void AddParentGroupForDelete(String groupName);

/**
 * Specify definition asset name for the current flex asset.
 * @param definitionAssetName name of the flex definition asset
 */

public void SetDefinitionAssetName(String definitionAssetName);

/**
 * Specify name of the flex asset.
 * @param name - name of the flex asset.Should be unique in
 * a flex asset family
 */

public voidSetAssetName(String name);

/**
 * Specify description for the flex asset
 * @param description description
 */

public void SetAssetDescripiton(String description);

/**
 * Specify WebCenter Sites username with which this flex asset is being
 * processed
 * @param username WebCenter Sites username
 */

public void SetCreatedByUserName(String userName);

/**
 * Set WebCenter Sites status code for this asset
 * @param status
 */

public void SetAssetStatus(String status);

/**
 * Set template name
 * @param template WebCenter Sites template name
 */

public void SetRenderTemplateName(String template);

/**
 * Specify startMenu for workflow participation

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-20

 * @param startMenuName start menu name for this flex asset
 */

public void SetStartMenuName(String startMenuName);

/**
 * WebCenter Sites
 * Specify publish approval target name
 * @param targetName approval target name
 */

public void SetApprovalTargetName(String targetName);

/**
 * Add a name/value pair to specify a WebCenter Sites attribute
 * of type 'text' for the current input object.
 * Call this method more than once, if this is a
 * multi-valued attribute.
 * @param attrName attribute name as defined in the WebCenter Sites
 * database for the flex asset being processed
 * @param value java.lang.String
 */

public void AddAttributeValueString(String attrName, String value);

/**
 * Add a name/value pair to specify a WebCenter Sites attribute
 * of type 'date' for the current input object.
 * Call this method more than once, if this is a
 * multi-valued attribute.
 * @param attrName attribute name as defined in the WebCenter Sites
 * database for the flex asset being processed
 * @param value java.sql.Timestamp
 */

public void AddAttributeValueDate(String attrName, Timestamp value);

/**
 * Add a name/value pair to specify an attribute for the current
 * input object.
 * Call this method more than once, if this is a multi-valued *attribute
 * @param attrName attribute name as defined in WebCenter Sites database
 * for the flex asset being processed
 * @param value java.lang.Double
 */

public void AddAttributeValueDouble(String attrName, Double value);

/**
 * Add a name/value pair to specify a WebCenter Sites attribute
 * of type 'money' for the current input object
 * Call this method more than once if this is a
 * multi-valued attribute
 * @param attrName attribute name as defined in WebCenter Sites database
 * for the flex asset being processed
 * @param value java.lang.Float
 */

public void AddAttributeValueFloat(String attrName, Float value);

/**

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-21

 * Add a name/value pair to specify a WebCenter Sites attribute
 * of type 'int' for the current input object.
 * Call this method more than once, if this is a
 * multi-valued attribute.
 * @param attrName attribute name as defined in WebCenter Sites
 * database for the flex asset being processed
 * @param value java.lang.Integer
 */

public void AddAttributeValueInteger(String attrName,
 Integer value);

/**
 * Add a name/value pair to specify any WebCenter Sites attribute for the
 * current input object.
 * Use the datatype-specific methods above instead of this
 * method, as this one is for
 * supporting any other new types in future.
 * Call this method more than once, if this is a
 * multi-valued attribute
 * @param attrName attribute name as defined in the WebCenter Sites
 * database for the flex asset being processed.
 * @param value java.lang.Object
 */

public void AddAttributeValueObject(String attrName,
 Object value);
}

IFeedback Interface
The following is the sample code that implements this interface:

com.openmarket.gatorbulk.interfaces.IFeedback

package com.openmarket.gatorbulk.interfaces;

import java.util.Iterator;

/**
 * To be implemented by Oracle Corporation
 * Interface for the BulkLoader client to get the status of
 * processing request to insert/void/update flex assets.
 */

public interface IFeedback {
 public final int ERROR=-1;
 public final int SUCCESS=0;
 public final int NOT_PROCESSED=1;

/**
 * Get a list of keys from input data slice that has
 * been processed
 * @return java.util.Iterator
 */

public Iterator GetInputDataKeyValList();

/**
 * Get WebCenter Sites asset ID for given input identifier

Chapter 33
Importing Flex Assets Using a Custom Extraction Mechanism

33-22

 * @param inputDataKeyVal key value of the unique identifier
 * in the input data record
 * @return Get the associated asset ID from the WebCenter Sites system.
 * null if missing.
 */

public String GetWebCenter SitesAssetId(String inputDataKeyVal);

/**
 * Get the processing status for the input data record
 * identified by a key
 * @param inputDataKeyVal key value of the unique identifier
 * column in the input data record
 * @return ERROR - processed but failed, SUCCESS - processed
 * successfully, NOT_PROCESSED - unknown item or not part of
 * the processing dataset.
 */

public int GetStatus(String inputDataKeyVal);

/**
 * Get the associated error message for a given key,
 * unique identifier in input data
 * @param inputDataKeyVal unique identifier for input data
 * @return error message, if GetStatus() returned ERROR
 * or NOT_PROCESSED
 */

public String GetErrorDescription(String inputDataKeyVal);

Note:

When you implement a custom extraction method, you use the same
previously described procedures to run BulkLoader. See About Using the
BulkLoader Utility.

Approving Flex Assets with the BulkApprover Utility
BulkApprover quickly and easily approves large numbers of flex assets that you have
loaded into the system via BulkLoader.

BulkApprover can perform the following tasks:

• Notify the approval system of all updates and deletions that were made during a
previous BulkLoader session.

• Approve all newly loaded flex assets for one or more publishing targets.

• Mark all newly loaded flex assets as published for a given mirror destination,
without actually publishing the assets. For example, to bypass a long mirror
publishing session, copy selected assets from the content management database
to a mirror destination on the delivery system and have BulkApprover mark the
assets as published to the mirror destination.

Chapter 33
Approving Flex Assets with the BulkApprover Utility

33-23

Note:

Only users with the xceladmin role can run BulkApprover.

This section includes the following topics:

• Configuring BulkApprover

• Using BulkApprover

Configuring BulkApprover
Before running BulkApprover for the first time, you must create a configuration file
for the utility. You can create a separate BulkApprover.ini file on a system that can
access WebCenter Sites database, or you can append the BulkApprover configuration
information to one of BulkLoader's .ini files.

This table lists required and optional configuration parameters:

Table 33-3 BulkApprover Configuration Parameters

Parameter Description

bulkApprovalURL

(Required)

The URL on the host server that has the data imported with
BulkLoader.

The correct value is as follows:

http://<myServer>/cs/ContentServer?
pagename=OpenMarket/Xcelerate/Actions/BulkApproval

where <myServer> is the name of the host server.

adminUserName

(Required)

The WebCenter Sites username of a user with the xceladmin
role.

adminUserPassword

(Required)

The password for adminUserName.

approvalTargetList

(Required)

A list of destinations that the assets are to be approved for.
For destination names, see the Publish option on the Admin
tab, or the name column of the pubtarget table. Separate
each destination with the delimiter that you specify in the
multiValueDelimiter parameter. The syntax is:

name1<multiValueDelimiter>name2<multiValueDelimiter
>name3

multiValueDelimiter
(Required)

A delimiter that you select. Use this delimiter to separate the
approval targets that you specify in the appovalTargetList
parameter.

assetIdSqlFilter

(Optional)

A statement that can be appended to a SQL WHERE clause to filter
asset IDs.

For example:

asset_id%20=0

or

asset_id%20!=0

Chapter 33
Approving Flex Assets with the BulkApprover Utility

33-24

Table 33-3 (Cont.) BulkApprover Configuration Parameters

Parameter Description

debug

(Optional)

Turn BulkApprover debugging on and off.

A value of true turns debugging on. Leave this parameter blank
for no debugging.

Debug messages are written to the file specified in the
output_file parameter of the command line.

assetschunksize

(Optional)

Specifies the number of assets that are approved in a single
transaction. For example, setting this property to 20 means that
assets will be approved in groups of 20.

Setting this property helps prevent session timeouts.

Default value: 25

outputJdbcDriver

(Required)

The name of the JDBC driver class to access the WebCenter
Sites database.

Example: oracle.jdbc.driver.OracleDriver

outputJdbcURL

(Required)

The JDBC URL. The following example value is a typical type 2
oracle JDBC driver URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsername

(Required)

WebCenter Sites database user name.

outputJdbcPassword

(Required)

WebCenter Sites database user password.

Sample BulkApprover.ini File

The following sample shows the proper syntax of the BulkApprover configuration
parameters:

bulkApprovalURL=http://MyServer/cs/ContentServer?pagename=OpenMarket/Xcelerate/
Actions/BulkApproval
multiValueDelimiter=;;;;;;
assetIdSqlFilter=
assetsChunkSize=3
debug=true
outputJdbcDriver=oracle.jdbc.driver.OracleDriver
outputJdbcURL=jdbc:oracle:thin:@19zln:1521:MyServer
#outputJdbcUsername=izod10
outputJdbcUsername=ftuser3
outputJdbcPassword=ftuser3

Using BulkApprover
After you have configured the BulkApprover utility, use it to approve assets that were
imported into the database via the BulkLoader utility.

BulkApprover runs from the command line. Parameters are described in the following
table and included in the example that follows.

Chapter 33
Approving Flex Assets with the BulkApprover Utility

33-25

Table 33-4 BulkApprover Parameters

Command-Line
Parameter

Description

config The name of the file that stores your BulkApprover configuration
information; for example, BulkApprover.ini.

action The action or actions that you want BulkApprover to perform. You
must set this parameter to notify or approve. Add other actions, as
necessary. To have BulkApprover perform multiple actions, name the
actions in a comma-separated list.

Valid values:

• notify: Notifies the approval system about all updates and voids
processed during a previous BulkLoader session.

• approve: Instructs BulkApprover to approve all of the assets that
it processes for the given publishing destination(s).

• mark_publish: Marks all of the assets that it processes
as published to a given mirror destination, without actually
publishing the assets. Specify the publishing targets in
the approvalTargetList parameter in the BulkApprover
configuration file. Do not include this parameter if the assets
should not be marked published.

output_file The name of the log file that contains all output from the server; for
example, bulkapprover.txt.

To run BulkApprover, set paths as shown in the following example.

This example uses Windows syntax. For UNIX-based systems including Linux and
Solaris, the forward-slash (/) and colon (:) should be used as separators:

java -ms16m -mx64m -cp <ORACLE_HOME>\wcsites\webcentersites\sites-
home\lib*;<ORACLE_HOME>\oracle_common\modules\clients*;<path to
jtds-1.2.2.jar>\jtds-1.2.2.jar;<path to servlet-api.jar>\servlet-api.jar;
com.openmarket.gatorbulk.objects.BulkApprover config=bulkapprover.ini
action=<notify|approve|mark_publish> output_file=<out.txt>
target_list=Dynamic;;;;;;testdest username=<adminUserName(fwadmin)>
password=<adminUserPassword(xceladmin)>

Chapter 33
Approving Flex Assets with the BulkApprover Utility

33-26

Part VII
Security: Managing Content Management
Users

WebCenter Sites provides tags for authentication and user profile management and
ACLs to enforce security.

Topic:

• Managing Users on the Management System

34
Managing Users on the Management
System

WebCenter Sites provides authentication functionality through the USER tags, user
profile management through the DIR tags, and enforces security on database tables
and rendered pages through access control lists (ACLs). You use these user
management and security mechanisms to manage users and control user access on
your distribution system and on your WebCenter Sites development and management
systems.

Topics:

• About the Directory Services API

• Working with Custom User Management

• Controlling User Access

About the Directory Services API
The Directory Services API enables your WebCenter Sites system to connect to
directory servers that contain authentication information, user information, and so on.
WebCenter Sites delivers three directory services plug-ins, one of which is installed
along with your WebCenter Sites systems.

• The WebCenter Sites directory services plug-in, which uses the native WebCenter
Sites user management tables; that is, the SystemUsers and SystemUserAttrs
tables.

• The LDAP plug-in, which supports any JNDI server.

• The NT plug-in, which retrieves user credentials and login name from the NT
directory but gets all other user information from the SystemUserAttrs table.

The plug-in is installed during the installation of your WebCenter Sites systems and
it is configured by setting properties in the wcs_properties.json file. For information
about configuring your user management setup, see Understanding the LDAP Plug-In
in Administering Oracle WebCenter Sites.

This section includes the following topics:

• Entries

• Hierarchies

• Groups

• Directory Services Tags

• Directory Operations

• Error Handling

• Directory Services Applications Troubleshooting

34-1

Entries
A directory entry is a named object with assigned attributes, in particular, user and
group type entries:

• A user type object has a distinguished name and a set of attributes such as
commonname, user name, password and email.

• A group type object, similar to a WebCenter Sites ACL, also has a distinguished
name and a set of attributes.

Names reflect the hierarchy in which they are associated. To ensure portability across
directory implementations, names should be treated as opaque strings.

Hierarchies
Some directory databases organize entries using a hierarchical structure. With
WebCenter Sites directory services API, an entry's attributes and its place in the
hierarchy are distinct. As a result, retrieving an entry's attributes does not yield
information about its children.

Support for hierarchies depends on the underlying directory implementation; for
example, LDAP directories support a hierarchical structure, while WebCenter Sites
native directory database does not support a hierarchical structure. To ensure
portability across directory implementations, your code should not assume support
for hierarchical data.

Note:

Group hierarchies do not affect internal WebCenter Sites permissions.

Groups
WebCenter Sites directory services API does not enforce referential integrity. When
you delete a user with the directory tags first remove the user from the groups that he
is associated with. This ensure that group memberships are also deleted.

When a member is added to a group, the JNDI implementation always builds a fully
distinguished name for the value of the uniquemember attribute, regardless of the name
passed into the addmember tag.

Directory Services Tags
You can use the DIR tag family, as shown in the following table, with both XML and
JSP versions to invoke the Directory Services API.

Chapter 34
About the Directory Services API

34-2

Table 34-1 Directory Services Tags

Tag Description

DIR.ADDATTRS

dir:addattrs

Adds attributes to an existing entry (which can be either a
user or a group).

DIR.ADDGROUPMEMBER

dir:addgroupmember

Adds a member to a group (usually a user).

DIR.CHILDREN

dir:children

Retrieves the child entries for a specified parent in a list
variable.

DIR.CREATE

dir:create

Creates a directory entry.

DIR.DELETE

dir:delete

Deletes a directory entry.

DIR.GETATTRS

dir:getattrs

Gets the attribute values for a specified entry in a list
variable.

DIR.GROUPMEMBERS

dir:groupmembers

Lists the members of a specified group.

DIR.GROUPMEMBERSHIPS

dir:groupmemberships

Lists all the groups that an entry (either a group or a user)
belongs to.

DIR.LISTUSERS

dir:listusers

Returns a list of all the users in the directory.

DIR.REMOVEATTRS

dir:removeattrs

Deletes an attribute value for an entry.

DIR.REMOVEGROUPMEMBER

dir:removegroupmember

Removes an entry from a group.

DIR.REPLACEATTRS

dir.replaceattrs

Replaces the value of an attribute for an entry (either a user
or a group).

DIR.SEARCH

dir:search

Searches the directory for entries who match the specified
search criteria.

Regardless of whether the directory is implemented with LDAP or WebCenter Sites
only, the code you write with the DIR tags is very similar.

See the Tag Reference for Oracle WebCenter Sites Reference and Directory Services
Code Samples.

Directory Operations
Some WebCenter Sites Directory Services tags write information to the database. If
your database administrators will be handling all of the website's write operations,
such as adding user information to the database, restrict use of the directory tags
to read-only operations. This policy avoids synchronization issues with third-party
directory administration tools.

Chapter 34
About the Directory Services API

34-3

The read-only operations are presented in this section. These operations are
performed using the credentials and read permissions of the currently authenticated
user.

This section includes the following topics:

• Searching

• Looking Up a User

• Listing Users

• Directory Services Code Samples

Searching
Due to limitations in some directory servers, search is not allowed from the top
organizational level. To avoid portability issues, always specify the context attribute
on the DIR.SEARCH tag.

Looking Up a User
Looking up a user generally involves two steps:

1. Call DIR.SEARCH on the userid to get the entry name.

2. Call DIR.GETATTRS to get the attributes of the user in question.

Listing Users
It is recommended that you use one of the following three methods to list users:

• For small user databases, use the DIR.LISTUSERS tag, which recursively lists
all users under the peopleParent property. This tag is inefficient on large user
databases.

• For large user databases, use the DIR.CHILDREN tag to walk the hierarchy. The
DIR.CHILDREN tag is best used for group types and not for user types.

• For user databases with a flat hierarchy, narrow results with a search.

Directory Services Code Samples
The following JSP code sample illustrates some possible directory operations:

<%
String sMainTestUserName = "user name";
String sMainTestUserPW="password";

String sPeopleParent = ics.GetProperty("peopleparent", "dir.ini", true);
String sGroupParent = ics.GetProperty("groupparent", "dir.ini", true);
String sUsername = ics.GetProperty("username", "dir.ini", true);
String sCommonName = ics.GetProperty("cn", "dir.ini", true);
IList mylist;
%>

<user:su username='<%=sMainTestUserName%>' password='<%=sMainTestUserPW%>'>

<H2>List All Users</H2>

Chapter 34
About the Directory Services API

34-4

<ics:clearerrno/>
<dir:listusers list='mylist'/>

dir:listusers errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist'>

<ics:listget listname='mylist' fieldname='NAME'/>
</ics:listloop>

<H2>Look Up the ContentServer User by Username</H2>

<ics:clearerrno/>
<dir:search list='mylist' context='<%=sPeopleParent%>'>
<dir:argument name='<%=sUsername%>' value='ContentServer'/>
</dir:search>

dir:search errno: <ics:getvar name='errno'/>

<%
mylist = ics.GetList("mylist");
if(mylist.numRows() != 1) {
out.print("
Error finding entry.");
}
mylist.moveTo(1);
ics.SetVar("ContentServerDn", mylist.getValue("NAME"));
%>

<H2>Show ContentServer Attributes</H2>

<ics:clearerrno/>
<dir:getattrs list='mylist'
name='<%=ics.GetVar("ContentServerDn")%>'/>

dir:getattrs errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist'>

<ics:listget listname='mylist' fieldname='NAME'/>=
<ics:listget listname='mylist' fieldname='VALUE'/>
</ics:listloop>

<H2>Show Group Memberships for ContentServer</H2>

<ics:clearerrno/>
<dir:groupmemberships name='<%=ics.GetVar("ContentServerDn")%>'
list='mylist'/>

dir:groupmemberships errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist'>

<ics:listget listname='mylist' fieldname='NAME'/>
</ics:listloop>

<H2>Lookup the SiteGod Group by CommonName</H2>

<ics:clearerrno/>
<dir:search list='mylist' context='<%=sGroupParent%>'>
<dir:argument name='<%=sCommonName%>' value='SiteGod'/>
</dir:search>

dir:search errno: <ics:getvar name='errno'/>

<%
mylist = ics.GetList("mylist");
if(mylist.numRows() != 1) {
 out.print("
Error finding entry.");
}

Chapter 34
About the Directory Services API

34-5

mylist.moveTo(1);
ics.SetVar("SiteGodDn", mylist.getValue("NAME"));
%>

<H2>Show SiteGod Attributes</H2>

<ics:clearerrno/>
<dir:getattrs list='mylist' name='<%=ics.GetVar("SiteGodDn")%>'/>

dir:getattrs errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist'>

<ics:listget listname='mylist' fieldname='NAME'/>=
<ics:listget listname='mylist' fieldname='VALUE'/>
</ics:listloop>

<H2>Show SiteGod Group Members</H2>

<ics:clearerrno/>
<dir:groupmembers name='<%=ics.GetVar("SiteGodDn")%>' list='mylist2'/>

dir:groupmembers errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist2'>

<ics:listget listname='mylist2' fieldname='NAME'/>
</ics:listloop>

<H2>Children of groupparent </H2>

<ics:clearerrno/>
<dir:children name='<%=sGroupParent%>' list='mylist'/>

dir:children errno: <ics:getvar name='errno'/>
<ics:listloop listname='mylist'>

<ics:listget listname='mylist' fieldname='NAME'/>
</ics:listloop>

</user:su>

Error Handling
Any of the directory tags can cause a range of directory errors to be set. See the Tag
Reference for Oracle WebCenter Sites Reference for a comprehensive list of directory
services error messages.

Your directory services code should handle every one of the error codes listed for a
given tag call. This is necessary to support the J2EE JNDI interface.

Directory Services Applications Troubleshooting
The first step in troubleshooting directory services applications is to check the error log
(in the WebCenter Sites log file).

You enable directory services logging by setting the log.filterLevel property (found
in the logging.ini property file). There are seven levels of error messages that you
can view:

• fatal: Logs fatal level messages.

Chapter 34
About the Directory Services API

34-6

• severe: Logs severe and fatal level messages.

• error: Logs error and fatal level messages.

• warning: Logs warning and fatal level messages.

• info: Logs warning, error, severe, and fatal level messages.

• trace: Logs trace messages.

• detail: Logs all types of messages.

During troubleshooting, trace is the most verbose setting, and as a result, has the
highest performance impact.

Directory services log entries use the following format:

[<timestamp>][Directory-<severity>-<errno>]
[<class>:<method>][<message>][<session id>]

For example:

[Jan 17, 2002 1:49:44 PM][Directory-T]
[BaseFactory:instantiateImplementation(ICS,String,Class[],
Object[])][Instantiating:com.openmarket.directory.common.Factory]
[PEccxyF1Ueh7zYvjNgg4D6bqZzf0llfWMaiBimIN9H1Z9KomDcPy]

The previous message is a trace (T), and thus has no associated errno value.

See Logging and Debugging Errors.

A common problem for LDAP implementations is incorrectly specified permissions on
the directory server. If the error log indicates a permission problem, ensure that the
authenticated user has permissions to execute the requested operation by checking
the permission settings on the directory server. Try logging into the directory server
directly (outside of WebCenter Sites) and performing the same action to ensure that
permissions are correctly set. After checking the log and permissions, you can often
resolve a configuration error by examining the property files.

See the Property Files Reference for Oracle WebCenter Sites.

Working with Custom User Manager
You can access user information stored in the database tables or in LDAP
(or other Directory protocols) using the implementation available through the
CustomUserManager class.

Topics:

• What is Custom User Manager?

• Sample Implementation of Custom User Manager

• Integrating the Sample Implementation with WebCenter Sites

• What You May Need to Know About the Custom User Manager

What is Custom User Manager?
For those who want greater flexibility than that provided by the WebCenter Sites
out of the box authentication mechanism, Oracle also provides implementations to
access user information stored in the database tables or in LDAP (or other Directory

Chapter 34
Working with Custom User Manager

34-7

protocols). These implementations are available through the CustomUserManager
class.

The CustomUserManager class enables clients to implement a connection to an
arbitrary user repository by extending the existing architecture. This connection is
used to authenticate and authorize WebCenter Sites users. It provides read-only
access to the user directory. The write-access is not required because all user
maintenance operations are performed in a central directory system. Those who
implement UserDirectory are responsible for correctly mapping the user attributes of
the users in the arbitrary user repository to those that WebCenter Sites uses. For
example, ACLs and Roles per site.

Interfaces to Extend a Site Architecture

• oracle.fatwire.sites.directory.custom.UserDirectory: Clients implement
this interface. WebCenter Sites invokes the client’s implementation to authenticate
the user and obtain user roles and ACLs.

• oracle.fatwire.sites.directory.custom.UserFactory and
oracle.fatwire.sites.directory.custom.UserFactory.Builder: WebCenter
Sites provides an implementation of these interfaces as a container to populate
user information.

See Java API Reference for Oracle WebCenter Sites.

Webcenter Sites doesn’t cache any user information or roles from the arbitrary
user repository. Clients can customize their implementation to handle caching of
user information and roles. Clients can create new roles in WebCenter Sites
after setting this property in the wcs_properties.json under the config directory:
xcelerate.rolemanagerclass=com.openmarket.xcelerate.roles.RoleManager

These roles can’t be updated.

All property changes are retained when WebCenter Sites is upgraded. However,
clients need to back up any classes used for the UserDirectory implementation.

Logger for Custom User Manager

A new logger oracle.wcsites.directory.custom is added for this Custom User
Management customization hook. This hook provides clients with the flexibility
to customize or define their own authentication. Use log level TRACE. Legacy
code continues using old loggers (dirLogger/ics.LogMsg() and logging.ini,
com.fatwire.logging.cs.auth, com.fatwire.logging.cs.session etc.).

Sample Implementation of Custom User Manager
To help you develop a good understanding of Custom User Manager, a sample
implementation is provided in the WebCenter Sites repository.

The sample code is located under <ORACLE_HOME>/wcsites/webcentersites/sites-
home/bootstrap/samples/CustomUserManager.

This implementation consists of the following files:

• user-repository.json: This json file stores the user details such as username,
encrypted password, roles, and ACLs. Ensure that the userId contains the proper
parent string as it was defined during installation. See the peopleparent property in
the wcs_properties.json file for the value of the parent string.

Chapter 34
Working with Custom User Manager

34-8

• FileUserRepository.java: It is a backend store for user information. It reads the
json file and populates the SampleUser objects in the memory. You need to restart
the server to reflect any changes to user-repository.json.

• SampleUser.java: Holds the user information in the memory.

• SampleUserRepository.java: This class implements the
oracle.fatwire.sites.directory.custom.UserDirectory interface. WebCenter
Sites invokes this implementation when it needs to authenticate a user, get the
user roles, list users matching criteria and so on.

The sample implementation project is easy to compile with WebCenter Sites 12.2.1.2.0
and above. To understand the project setup, see ReadMe.txt under <ORACLE_HOME>/
wcsites/webcentersites/sites-home/bootstrap/samples/CustomUserManager.

Integrating the Sample Implementation with WebCenter Sites
All you need to do to integrate the sample implementation of Custom User Manager is
change and add a few properties to the wcs_properties.json file, compile the project,
and update the application server class path.

1. Change the following properties in the wcs_properties.json file:

• cs.manageUser=oracle.fatwire.sites.directory.custom.CustomLogin

• cs.manageproperty=dir.ini

• xcelerate.usermanagerclass=oracle.fatwire.sites.directory.custom.Cu
stomUserManager

• className.IDir=oracle.fatwire.sites.directory.custom.CustomDir

• className.IUserDir=oracle.fatwire.sites.directory.custom.CustomDir

• xcelerate.rolemanagerclass=com.openmarket.xcelerate.roles.RoleManag
er

2. Add the following properties to the wcs_properties.json file:

• className.UserDirectory=oracle.fatwire.sites.auth.sample.SampleUser
Repository

If this property does not exist, add:

• defaultReaderACLs=Browser,Visitor

Of all the properties that need to be changed, only the className.UserDirectory
is specific to each client. The others are needed to make use of this plugin.
The className.UserDirectory property needs to contain the class name of the
custom implementation of the UserRepository.

3. Compile the project and add the classes to the WebCenter Sites webapp WEB-
INF/lib folder.

4. Place the user-repository.json file in the application server’s classpath so the
FielUserRepository.java file can read the users.

5. To verify:

a. Install WebCenter Sites (with or without LDAP), and test if it is working.

b. Change and add the properties discussed in step 1 and 2.

Chapter 34
Working with Custom User Manager

34-9

c. Add the CustomUserManager-sample-0.0.1-SNAPSHOT.jar and the user-
repository.json file to the application server’s class path.

d. Restart and log into the application server with the credentials given in the json
file.

What You May Need to Know About the Custom User Manager
The UserDirectory interface provides a read-only access to the user directory because
all user maintenance operations are performed in a central directory system.

• As a result, the following operations may not work or show erroneous success
messages:

– The <DIR> tags allow you to perform functions such as creating and updating
user profiles and adding user roles. When these tags are invoked, WebCenter
Sites logs the operation not supported exception and sets the error number
-15004 in the ics scope.

– WebCenter Sites UI uses these tags in many places. UI forms have not been
changed to reflect the error message on the interface pages. As a result,
updating a user profile (or other such operations) may erroneously indicate the
operation was successful but in reality nothing changes.

• REST Groups security must work as before. When accessing the REST resources
make sure that the users have been assigned to proper groups.

Controlling User Access
WebCenter Sites manages users through access control lists (ACLs). By using ACLs,
you can restrict access to tables in the WebCenter Sites database and the rendered
pages served on your sites by WebCenter Sites. You must associate registered
users with one or more ACLs for a site to which users log in with user names and
passwords.

When a user first visits a site, WebCenter Sites creates a session and implicitly logs in
the user as the standard default user, DefaultReader. The identity of a user is updated
(and any associated ACLs go into effect) when a USER.LOGIN command is used and
the user is authenticated against a password.

See these topics:

• ACL Tags

• USER Tags

• WebCenter Sites and Encryption

ACL Tags
WebCenter Sites provides a set of access control list tags (both XML and JSP
versions) that you can use to create ACLs. You can use either the WebCenter Sites
interface on the management system or the WebCenter Sites ACL tags to create
the ACLs that you need for your user accounts on your management system. The
following table lists the ACL tags:

Chapter 34
Controlling User Access

34-10

Table 34-2 ACL Tags

Tag Description

ACL.CREATE acl: create Creates an ACL.

ACL.DELETE acl:delete Deletes an ACL.

ACL.GATHER acl:gather Gathers fields into an ACL.

ACL.GET acl:get Copies a field from an ACL.

ACL.LIST acl:list Retrieves a list of ACLs.

ACL.LOAD acl:load Loads an ACL.

ACL.SAVE acl:save Saves an ACL.

ACL.SCATTER acl:scatter Scatters a field from an ACL.

ACL.SET acl:set Sets a field in an ACL.

For more information:

• ACL tags: See the Tag Reference for Oracle WebCenter Sites Reference.

• ACLs in general: See Administering Oracle WebCenter Sites.

USER Tags
WebCenter Sites also provides the USER tags (both XML and JSP versions) described
in the following table. You use these tags on pages that log users in and out.

Table 34-3 User Tags

Tag Description

USER.LOGIN

user:login

Logs a user in.

USER.LOGOUT

user:logout

Logs a user out.

USER.SU

user:su

Logs the user in as a specific user to perform an operation
such as creating an account or edit a user profile.

See the Tag Reference for Oracle WebCenter Sites Reference.

WebCenter Sites and Encryption
WebCenter Sites includes a default key for encrypting passwords and other sensitive
information. You can specify your own encryption key by using the Utilities class
encryptString method. See the Java API Reference for Oracle WebCenter Sites for
information about Java methods that deal with encryption.

WebCenter Sites also supports Secure Sockets Layer (SSL), which allows encryption
of information going to and from your web servers. See Implementing Security in
Administering Oracle WebCenter Sites.

Chapter 34
Controlling User Access

34-11

Part VIII
Publishing Your Site

WebCenter Sites provides these publishing methods: RealTime, Mirror to Server,
Export to Disk, and export to XML.

Topic:

• Publishing Your Content Management Site to Make it Available Online

• Guidelines and Limitations for Previewing Assets in Timeline Mode

35
Publishing Your Content Management Site
to Make it Available Online

The publishing system provides means to migrate sites and their content from one
system to another. WebCenter Sites provides these publishing methods: RealTime,
Mirror to Server, Export to Disk, and export to XML. You use the Mirror to Server or
RealTime publishing method to migrate the structure of the site (that is, the database
schema).

For information about using different publishing methods, see these topics in
Administering Oracle WebCenter Sites:

• Understanding Publishing

• Working with Export to Disk Publishing

• Working with Mirror to Server Publishing and Export to XML

• Exporting Assets to XML Publishing Method

• Using RealTime Publishing

35-1

36
Guidelines and Limitations for Previewing
Assets in Timeline Mode

The Timeline feature allows a developer to build a website using the content having
revision history.

It allows the Contributor to view how the content and the design of a web page looked
in the past. The Contributor can also preview the web page with the previous history
of changes in the content. This feature loads revisions of the content and template that
were available at that time.

Topic:

• Guidelines and Limitations

Guidelines and Limitations
To support rendering in the Timeline mode and fetch asset data from the repository,
replace the AssetDataManager API with the AssetDataPreviewManager API.

To read a single asset with its attributes:

Session ses = SessionFactory.getSession();
AssetDataPreviewManager mgr =(AssetDataPreviewManager)
ses.getManager(AssetDataPreviewManager.class.getName());
AssetId id = new AssetIdImpl("Content_C", 1114083739888L);
List attrNames = new ArrayList();
attrNames.add("name");
attrNames.add("description");
attrNames.add("FSIIBody");
AssetData data = mgr.readAttributes(id, attrNames);

To read all the attributes:

Session ses = SessionFactory.getSession();
AssetDataPreviewManager mgr =(AssetDataPreviewManager)
ses.getManager(AssetDataPreviewManager.class.getName());
AssetId id = new AssetIdImpl("Content_C", 1114083739888L);
AssetData data = mgr.read(id);

To filter the assets based on revision and their start date and end date:

Session ses = SessionFactory.getSession();
AssetDataPreviewManager mgr =(AssetDataPreviewManager)
ses.getManager(AssetDataPreviewManager.class.getName());
AssetId id = new AssetIdImpl("Content_C", 1114083739888L);
AssetId id1 = new AssetIdImpl("Content_C", 1114083739884L);

36-1

List<AssetId> idList=new ArrayList<AssetId>();
idList.add(id);
idList.add(id1);
List<AssetId> returnedIdList = mgr.filterAssetsByDate(idList);

The following Asset Types and JSP tags are supported in the Timeline mode.

• Asset Types

– CSElement

– SiteEntry

– Template

– DimensionSet

– Recommendations (AdvCols)

– Flex Assets

– Basic Assets

– Page

• JSP Tags

– commercecontext:getrecommendation

– asset:load

– assetset:setasset

– assetset:getmultiplevalues

– assetset:getattributevalues

– render:calltemplate

– render:getbloburl

– render:satelliteblob

– satellite:blob

– dimensionset:getenableddimensions

Limitations

There are some limitations that a developer need to understand while working in the
Timeline mode.

• The Timeline supports fetching of the asset details only by the Asset Id and not by
the Asset Name and Search API as their values will change after sometime. It is
not possible for the search criteria to search through the revisions.

• Only Realtime publishing is supported and not other publishing types.

• Revision tracking of controllers are not supported. Create a new controller for
every tracked change. Assign a new controller to the template. Whenever the
revision of the template is loaded, the particular controller will be executed.

• Do not unshare assets from a site. This will cause the preview to break.

• Do not delete assets. This will show improper results while rendering assets as it
may be associated with the deleted assets in the revisions.

Chapter 36
Guidelines and Limitations

36-2

• Do not perform remove operations on flex definitions. Removing and editing
attributes will cause incorrect rendering. Adding new attributes should not cause
any problem.

• Do not edit flex filters to remove derived attributes. You can add new attributes as
derived.

• Do not remove a parent for a given asset. Adding new parents (in case of
multivalued parents) will not cause any problem.

• Do not use AssetReader API. The .levelOfChildren(3) and .forSite("")
methods are not supported. All other methods of the AssetReader API are
supported.

• Do not support the following Asset Types:

– SiteNavigation

– DeviceGroups

– Device

– Dimension

– Promotion

– Segments

– Any Attribute Asset Type

– Any Definition Asset Type

– Any Flex Filter

– Controller

– Slots

Chapter 36
Guidelines and Limitations

36-3

Part IX
Developing Personalized and Targeted
Websites with Engage

Visitor data assets let you group your site visitors into segments. Recommendation
assets collect, evaluate, and sort product and content assets to recommend the most
appropriate flex asset. The memory-centric method enables you to track visitors.
There are some requirements that you need to address before you implement this
method. With Engage you can design an online site that gathers visitor information
and personalize promotional messages for each visitor.

Topics:

• Creating Visitor Data Assets

• Understanding Recommendation Assets

• Working with Memory-Centric Visitor Tracking

• Coding Engage Pages

37
Creating Visitor Data Assets

Oracle WebCenter Sites: Engage lets you design online sites that gather information
about your site visitors and customers, and then use that information to personalize
the product placements and promotional offerings for each visitor. The information
about visitors is stored in visitor data assets. There are three kinds of visitor data
assets: visitor attributes, history attributes, and history types. The definitions of visitor
data types are treated as assets in the WebCenter Sites database.

Topics:

• About Visitor Data Assets

• Creating Visitor Data Assets

• Verifying Visitor Data Assets

• Approving Visitor Data Assets

About Visitor Data Assets
Do you want to group your site visitors into segments? You can do this with the three
types of visitor data assets: Visitor attributes, History attributes, and History types.

To create visitor data assets, you create entries in the visitor data tables in the
WebCenter Sites database and reserve a place in the database to store information of
that kind for your site visitors.

See these topics:

• Visitor Attributes

• History Attributes and History Definitions

• Segments

• Developing Visitor Data Assets: Process Overview

Visitor Attributes
Visitor attributes hold types of information that specify one characteristic only (scalar
values). For example, you can create visitor attributes named years of experience, job
description, or number of children.

When the visitor changes the data, the new data overwrites the old data. Engage does
not assign a timestamp to the data that is stored as a visitor attribute and does not
store revisions. For example, if a visitor changes his entry for job description from
butcher to baker, the information that the visitor was once a butcher is overwritten. You
cannot, for example, create a segment based on bakers who used to be butchers.

For historical data, you must use history types.

37-1

History Attributes and History Definitions
History attributes are individual information types that you group together to create a
vector of information that Engage treats as a single record. This record is the history
definition. For example, a history definition called purchases can consist of the history
attributes SKU, itemname, quantity, and price.

Engage references data stored as a history definition as a whole or an aggregate. It
assigns a timestamp to each instance of the recorded definition and keeps each of
those records. This means that you can sum or count history definitions and you can
determine the first time or the last time a history definition was recorded for a visitor.
Using the example in the preceding paragraph, you can create a segment based on
the amount of money a visitor spends on specific items during a set period of time.

History definitions store historical data.

Segments
Segments are assets that divide visitors into groups based on common characteristics.
Segments are built by determining which visitor data assets to base them on and then
setting qualifying values for those criteria.

To create visitor data assets, you create fields that can be used in two places:

• As criteria for segments. That is, as configuration options in the Engage Segment
Filtering forms (because you define segments with the visitor data assets). In other
words, the choices you make about the data types for the attributes determine
their appearance and behavior in the Segment forms. When you create these
assets, you are customizing the Segment forms.

• On your public site pages. That is, as form fields or hidden fields on registration
pages and other pages.

Segments are the key to personalizing merchandising messages with Engage. When
visitors browse your site, the information they submit is used to qualify them for
segment membership. When the site opens a page with a recommendation or
promotion, Engage determines which segments a visitor belongs to and opens the
product recommendations or promotional messages that are designated for those
segments.

Configuring Bluekai Type of Segments

Websites that use Bluekai (Oracle Marketing Data Cloud) can track site visitors
using the Bluekai related WebCenter Sites APIs. WebCenter Sites provides two
types of APIs that help identify visitor behavior and recommend personalized content
respectively.

Bluekai Client Side API: This JavaScript API helps identify the visitor behavior. It is
available at <sites-war>/integration/bluekai/bluekaihelper.js. This API uses a
JavaScript object whose constructor contains the following signature:

 function(bluekaiSitesCookieName, bkSegmentsCookiePrefix, pixelLimit,
expires)

where:

Chapter 37
About Visitor Data Assets

37-2

• bluekaiSitesCookieName: Value of the bluekai.sites.cookie property in
WebCenter Sites.

• bkSegmentsCookiePrefix :Value of the bluekai.segments.cookie.prefix
property in WebCenter Sites.

• pixelLimit – It’s a Bluekai property. It indicates the number of slots available
in the container for firing image tags. (See Integrating into the Oracle Bluekai
Platform in Using Oracle Data Cloud) If you do not provide any value for this
parameter in the constructor, API sets its default value as 1.

• expires : A numeric value indicating the cookie expiry time as number of days.
This expiry time is for the cookie which this JavaScript API creates. To address
the case when a user does not want to store this cookie for a fixed period (that is,
the cookie should remain only for the current session), the value for this property
should be zero (0). The default value is 1.

The JavaScript object contains these methods:

fetchSements(siteID): Based on information from Bluekai, this method determines
WebCenter Sites segments for which the current visitor qualifies. Client side
developers should use this API in web pages (preferably in a wrapper) of their site
as follows:

<html> <html>
<head>
<script type="text/javascript" src="http://<server host n port>/
sites/js/integrations/bluekai/bluekaihelper.js"></script>
</head>
<body>
<script>
var bkClient = new
com.oracle.bluekai.Client('<%=ics.GetProperty("bluekai.sites.cookie")
%>','<%=ics.GetProperty("bluekai.segments.cookie.prefix")%>',1,2); //
expiry time is 2 days for cookies to be created using
call 'fetchSegments'
bkClient.fetchSegments(bluekaiContainerID); //'bluekaiContainerID' is
the site ID created in the Bluekai partner website.
</script>
....
...
</html>

Assuming that some segments of the Bluekai type have been created in WebCenter
Sites, the above code identifies those Segment assets that the current site visitor
qualifies for, based on the data (campaigns) returned by Bluekai. This API then sets
these segment names (comma separated) in a cookie. The naming convention of the
cookie is as follows:

<bluekai.segments.cookie.prefix><bluekaiContainerID>

For example, if the value of the bluekai.segments.cookie.prefix property is
extSegments and bluekaiContainerID’s value is '55552', then the cookie name
would be 'extSegments55552'. And, its value would be the names of the Bluekai
type of Segments. If no segments are qualified (either because Bluekai knows
nothing about current visitor OR WebCenter Sites has no Bluekai Segments matching
campaigns returned by Bluekai), then the cookie value would be 'none'. Before the

Chapter 37
About Visitor Data Assets

37-3

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-160C5787-1226-4CE2-A418-24454DA3EC36
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=GUID-160C5787-1226-4CE2-A418-24454DA3EC36

cookie expires, the subsequent call to the fetchSegments method does not hit Bluekai
anymore. This saves money, as each call to Bluekai incurs cost.

postUserData(siteId, data): Websites can use this Java Script API to post the
visitor behavior data to Bluekai on behalf of the current site visitor. For example, if a
website is dedicated to tennis fans, it can let the API know that the website visitors are
interested in the 'Tennis' sport. To inform the API, the website can post a key-value pair
to Bluekai indicating that the current visitor is interested in tennis, as follows:

var data = []; data["interest"]="Tennis"; data["location"] = "India";
bkClient.postUserData(<siteID>,data);
In Bluekai terminology, these pieces of information are called pHints. You should
create 'rules' in the Bluekai partner site, say interest is Tennis. You use these rules
in a category and use that category while creating Audience to associate a campaign
with that audience. Once this is done, the above code sends data to Bluekai that
enables the current site visitor to qualify for this campaign.

Server Side API: The Java API BluekaiHelper (available in the package
oracle.fatwire.integrations.bluekai) provides the names of qualified bluekai
segments by reading the cookie created above. This API should be used in
conjunction with WebCenter Sites Engage API to display recommended items to
a site visitor. Class BluekaiHelper includes the getQualifiedBluekaiSegments(ICS)
method, which can be used to get recommended assets. For example, you create
a segment named interestedInTravel which uses a campaign created in Bluekai,
meant for identifying visitors interested in travelling. You create a recommendation
asset, say named TravelRecommendation which uses this segment to define what all
articles/assets should be shown to a visitor that qualifies for the interestedInTravel
segment. So, the server side code to fetch recommended articles for current visitor
(this sample code is assumed to be in a template controller) can be as follows:

List<Map> recommendations = newRecommendationReader()
 .forSegments(BluekaiHelper.getInstance().get
QualifiedBluekaiSegments(ics))
 .forSite("avisports")
 .readRecommendations("TravelRecommendation")
;

Developing Visitor Data Assets: Process Overview
There are five general steps for creating and using visitor data assets (fields):

1. A cross-functional design team including developers and marketers determines
what kind of data you want to gather about your site visitors.

2. You (the developers) create and define the necessary visitor attributes, history
attributes, and history definitions by using the forms in Engage.

3. The marketers use the Segment Filtering forms in Engage to categorize groups of
visitors based on these visitor attributes, history attributes, and history definitions.

4. You program the appropriate site pages with the Engage XML or JSP object
methods to collect and store the data, using either server-side validation or
Javascript to validate the input on the pages. For example, you can create an
online registration form for visitors to fill out by using JavaScript to validate the

Chapter 37
About Visitor Data Assets

37-4

input and the Engage XML or JSP tags to process and store that information in the
WebCenter Sites database.

5. When visitors browse your site, the information they submit is used to qualify them
for segment membership. If your site is using promotions and recommendations
based on segments, the message displayed for the visitor is personalized based
on the segments that he or she qualifies for.

Creating Visitor Data Assets
Before you begin creating visitor data assets, meet with the marketing and design
teams to determine the kinds of data that you want to collect about visitors. And,
examine the Segment Filtering forms to understand the context in which the visitor
data assets that you create are used by the marketers.

Additionally, note that the visitor data assets are listed by their descriptions rather
than by their names in the Segment Filtering forms.

You can use the following data definitions for your visitor and history attributes:

Note:

When you're using the vdm:setscalar API, keep in mind that it doesn't
validate the size limit that you’ve specified for each data type. Therefore,
Oracle recommends that you follow these ranges when you're specifying
values for scalar attributes for each type.

• String: Can hold up to 255 characters.

• Boolean: True and false are the only legal values.

• Short: Valid range of values is 0 through 255.

• Integer: Valid range of values is 0 through 65,535.

• Long: Valid range of values is 0 through 65,535.

• Double: Valid range of values is 0 through 4,294,967,295.

• Date: format is yyyy-mm-dd hh:mm:ss.s

• Money: Format is currency; valid range of values is unlimited.

• Binary: For visitor attributes only; used for binary data such as image files or cart
objects.

Chapter 37
Creating Visitor Data Assets

37-5

Note:

Binary visitor attributes can record binary data for individual visitors.
Visitor attributes of this type are not displayed in the Segment
Filtering forms and cannot be used to define a segment. Creating
an attribute of type binary reserves space in the WebCenter Sites
database that you use to store objects by using the XML object method
VDM.SAVESCALAROBJECT or its JSP equivalent vdm:savescalarobject to
convert an object from the WebCenter Sites name space into a binary
form.

This section includes the following topics:

• Creating Visitor Attributes

• Creating History Attributes

• Creating History Definitions

Creating Visitor Attributes
Create visitor attributes with the Engage forms.

To create a new visitor attribute:

1. Open the Admin interface.

2. Click New on the button bar.

3. From the list of asset types, select New Visitor Attribute. (Site Visitor Attribute
asset types must be enabled for your site.)

The Site Visitor Attribute form opens.

Chapter 37
Creating Visitor Data Assets

37-6

Figure 37-1 Site Visitor Attribute

Note:

Visitor Attribute does not appear in the menu when your login
password combination doesn't have administrator rights. Contact the site
administrator and request that the admin user profile be assigned to your
user name.

4. In the Name field, enter a unique, descriptive name for the attribute (field). You can
enter up to 32 alphanumeric characters, including spaces. The first character must
be a letter.

5. In the Description field, enter a description of the attribute (field). Enter a value
(alphanumeric characters) that help you easily identify the attribute (attributes are
listed by their descriptions rather than their names in the Segment Filtering forms).

6. In the Category field, enter the category for the attribute. The text that you enter in
this field determines where the attribute is listed in the Segment Filtering form. You
can enter up to 32 alphanumeric characters.

Chapter 37
Creating Visitor Data Assets

37-7

Note:

Categories for visitor attributes must be different from the categories for
history definitions.

Configure the Data Type
To configure the data type:

1. From the Type drop-down list, choose a data type.

2. If you chose string, then in the Length field enter the maximum number of
characters allowed for input in the attribute (field). You can enter a value up to
255.

3. From the Null allowed drop-down list, choose true to allow null values or false
to require input for the attribute when it is used. For example, an attribute with a
Boolean data type cannot allow a null value.

4. If you chose false from the Null allowed drop-down list, then in the Default Value
field enter a default value that is appropriate for the attribute's data type. For
example, for the integer datatype, the default value must be a number.

Note:

If you selected binary as the data type, you cannot specify a default value
for the attribute.

Configure the Constraint Criteria
The constraint options that are available for validating input into the attribute depend
on the data type that you designated for the attribute.

Option 1: Configure the Attribute to Accept Free-Form Text

From the Constraint type drop-down list, choose none. For example, a visitor
attribute named residence of type string might accept unconstrained text as input.

Option 2: Configure the Attribute to Accept Input from a Range of Values

To configure the attribute to accept a specific range of values, the data type must be
integer, short, long, double, or money.

1. From the Constraint type drop-down list, choose range.

The form displays range fields.

2. In the Lower range limit field, specify the smallest possible value that can be
accepted in the attribute when it is used as a field. This value cannot be a negative
number.

3. In the Upper range limit field, enter the largest possible value that can be
accepted in the attribute when it is used as a field. (For a short data type, you can
enter a value up to 255; for integer, up to 65,535; for double, up to 4,294,967,295;
for money, unlimited.)

Chapter 37
Creating Visitor Data Assets

37-8

For example, an attribute named Age can be restricted to accept values between 1
and 110 only.

Option 3: Configure the Attribute to Offer a Set List of Values in a Drop-Down
List

1. From the Constraint type drop-down list, choose enumeration.

The form displays text boxes for adding options.

2. In the Add Enumerated Value field, enter the name of the first option. For
example, an attribute named gender can have female as an option.

3. Click Add.

The option is moved to the list.

Figure 37-2 Enumeration Constraints

4. Repeat these steps for each of the options that you want to make available for this
attribute (field).

Save the Attribute
1. (Optional) If you have access to multiple sites, specify whether you want to share

this attribute with them. On the Inspect form, from the More menu, choose Share
Visitor Attribute.

2. When you are finished configuring the visitor attribute, click Save.

Engage creates an entry for this attribute in the visitor data asset tables in
the WebCenter Sites database and reserves a place in the database to store
information of that type for your site visitors.

Engage opens a summary of the attribute in the Inspect form.

You can now use this visitor attribute in a segment.

Chapter 37
Creating Visitor Data Assets

37-9

Note:

After a visitor attribute is used to define a segment, deleting the attribute
invalidates the segment. Be sure to correct your segments if you delete an
attribute.

Creating History Attributes
The purpose of history attributes is different from the purpose of visitor attributes: you
create history attributes to be used by history definitions. You cannot use them in the
Segment Filtering forms until they are used to define a history definition.

Perform the procedures in this section to create history attributes by using the Engage
forms.

Note:

You cannot edit or delete a history attribute after it has been used to define
a history definition. You also cannot remove it from the history definition.
Therefore, stop using the history definition whose history attribute has been
changed. Create a new history attribute, create a new history definition, and
then start using the new history definition.

To create a new history attribute:

1. Open the Admin interface.

2. On the button bar, click New, then select New History Attribute from the list.

The History Attribute form opens.

Chapter 37
Creating Visitor Data Assets

37-10

Figure 37-3 History Attribute Form

Note:

If History Attribute does not appear in the menu, it means that your
login/password combination does not give you administrator rights.
Contact the site administrator and request that the admin user profile
be assigned to your user name.

3. In the Name field of the History Attribute form, enter a unique, descriptive name
for the attribute (field). You can enter up to 32 alphanumeric characters, including
spaces. The first character must be a letter.

4. In the Description field, enter a description of the attribute (field). Enter a value
(alphanumeric characters) that help you easily identify the attribute (attributes are
listed by their descriptions rather than their names in the Segment Filtering forms).

5. From the Type drop-down list, choose a data type.

6. If you selected string, in the Length field enter the maximum number of
characters allowed for input in the attribute (field).

7. To make this attribute a required field when the history definitions that use it define
a segment, select true in the Must be specified field.

Chapter 37
Creating Visitor Data Assets

37-11

8. From the Filter drop-down list, choose true.

If you do not set Filter by to true, the marketers cannot use the attribute (field) as
a constraint for any history definition that it belongs to when they create segments.

If the data type for this attribute is numeric, then by default the attribute is included
in the list of attributes that can be selected for a Total constraint in a segment,
whether you set Filter by to true or to false. However, to use a numeric attribute
as a constraint in any other way, you must set Filter by to true.

9. From the Null allowed drop-down list, choose true to allow null values or false
to require input for the attribute when it is used. For example, an attribute with a
Boolean data type cannot allow a null value.

10. If you chose false from the Null allowed drop-down list, in the Default Value field
enter a default value that is appropriate for the attribute's data type. For example,
the default value for the integer datatype must be a number.

Configure the Constraint Criteria
The constraint options available for validating input into the attribute depend on the
data type you designated for the attribute.

Configure the Attribute to Accept Free-Form Text

From the Constraint type drop-down list, choose none. For example, a history
attribute named Street Name of type string might accept unconstrained text as input.

Configure the Attribute to Accept Input from a Range of Values

To configure the attribute to accept a specific range of values, the data type must be
integer, short, long, double, or money. This figure shows the range constraints and
related fields.

Figure 37-4 Range Constraints and Related Fields

1. From the Constraint type drop-down list, choose range.

The form displays range fields.

2. In the Lower range limit field, specify the smallest possible value that can be
accepted in the attribute when it is used as a field. This value cannot be a negative
number.

3. In the Upper range limit field, enter the largest possible value that can be
accepted in the attribute when it is used as a field. (For a short data type, you can

Chapter 37
Creating Visitor Data Assets

37-12

enter a value up to 255; for integer, up to 65,535; for double, up to 4,294,967,295;
for money, unlimited.)

For example, an attribute named Number of Items can be restricted to accept
values between 1 and 50 only.

Configure the Attribute to Offer a Drop-Down List of Specific Values

1. From the Constraint type field, choose enumeration.

The form displays text boxes for adding options.

Figure 37-5 Enumeration Constraints Fields

2. In the Add Enumerated Value field, enter the name of the first option.

3. Click Add.

4. Repeat these steps for each of the options that you want to make available for this
attribute.

Save the History Attribute
When you are finished configuring the history attribute, click Save.

Engage creates an entry for this attribute in the visitor data asset tables in the
WebCenter Sites database and reserves a place in the database to store information
of that type for your site visitors.

You can now use this history attribute to define a history definition.

Creating History Definitions
History definitions are made up of history attributes. Therefore, there must be at least
one history attribute created before you can create a history definition.

To create history definitions using the Engage forms:

1. Log in to the Admin interface.

2. Click New and select History Definition from the list.

The History Definition form opens.

Chapter 37
Creating Visitor Data Assets

37-13

Figure 37-6 History Definitions Fields

Note:

History Definition does not appear in the menu if your login/password
combination does not have administrator rights. Contact the site
administrator and request that the admin user profile be assigned to your
user name.

3. In the Name field, enter a unique, descriptive name for the history definition
(record). You can enter up to 32 alphanumeric characters, including spaces. The
first character must be a letter.

4. In the Description field, enter a description of the history definition. Enter a
value (alphanumeric characters) that help you easily identify the history definition
(history definitions are listed by their descriptions rather than their names in the
Segment Filtering forms).

5. In the Category field, enter a category for the history definition. The text that you
enter in this field determines how the history definition is sorted and displayed in
the Segment Filtering forms. You can enter up to 32 alphanumeric characters.

Chapter 37
Creating Visitor Data Assets

37-14

Note:

Categories for history definitions must be different from the categories for
visitor attributes.

6. In the Fields area, select the history attributes that make up this history definition.
Select an attribute and then click the right arrow to move it to the list on the right.
Use Ctrl+click to select multiple attributes at the same time.

Note:

After a history attribute is used to define a history definition, you can no
longer edit or delete that history attribute.

7. Click Save.

Engage creates an entry for this history definition (record) in the visitor data asset
tables in the WebCenter Sites database and reserves a place in the database to
store information of that type for your site visitors.

Engage then opens a summary of the history definition in the Inspect form.

You can now use this history definition in a segment.

Verifying Visitor Data Assets
To determine that the visitor attributes, history attributes, and history definitions are
properly set up, examine the Segment Filtering forms and check whether the visitor
assets that you created were configured correctly.

• Create segments that use each of the visitor attributes and history definitions that
you created.

• Determine that the constraint definitions are correct and that the input ranges are
accepting the correct range of input.

Approving Visitor Data Assets
To correctly publish a history definition, you must also approve its history attributes for
publishing.

When your visitor data assets are ready, approve them so that they can be published
to the delivery system.

To approve any asset, choose Approve for Publish from the drop-down list in the
icon bar in the asset's Edit or Inspect form.

Chapter 37
Verifying Visitor Data Assets

37-15

38
Understanding Recommendation Assets

You use Recommendations assets to determine which products or content should
be featured or recommended on a rendered page. These assets are a set of rules
that might be based on the segments the visitors qualify for, and, in some cases,
relationships between the product or content assets or both.

These topics describe what recommendations are and how you develop them, and
how you can create a custom element that returns recommendable assets:

• About Recommendation Assets

• Development Process for Setting Up Recommendations

• About Creating a Dynamic List Element

About Recommendation Assets
A recommendation asset collects, evaluates, and sorts product and content assets.
It determine the most appropriate assets by consulting the list of segments that the
visitor belongs to, and it recommends the chosen flex assets for the current visitor.

The product assets and content flex assets are rated for their importance to each
segment. When a recommendation asset is called from a template, Oracle WebCenter
Sites: Engage determines which segments the current visitor qualifies for, and then
selects the assets that are identified by the recommendation as having the highest
rating for those segments. These are the assets that are recommended to the visitor.

There are three kinds of recommendations:

• Static Lists: Return a static list of recommended items.

• Dynamic Lists: Return a list of recommended items that is generated by a
dynamic list element that you create.

• Related Items: Return a list of recommended items based on relationships
between flex assets, such as products.

Engage uses a recommendation's configuration options and the asset ratings to
constrain the list when the list contains more items than the template is programmed to
display. For related items recommendations, Engage also uses asset relationships to
constrain the list. For all recommendations, Engage eliminates assets that are rated 0
for the current visitor.

To implement Insite editing for Recommendation assets, use <insite:slotlist>, but
you need to use field="Manualrecs", and it only works for Recommendations of type
List.

The recommendation asset is the only Engage asset that can be assigned a
template. You code your recommendation templates to render the items that the
recommendation returns in an appropriate way on the rendered page.

The template tells the recommendation how many assets to return, and the
recommendation asset determines which assets to select and return to the template

38-1

based on the way it is configured and on the segments that the current visitor belongs
to.

There are several XML and JSP object methods (tags) that you can use to code
templates for recommendations. For information about coding templates when you are
using Engage, see Coding Engage Pages. For information about all of the Engage
tags see the Tag Reference for Oracle WebCenter Sites Reference.

Development Process for Setting Up Recommendations
Here are basic steps to help you understand how you can set up recommendations.

1. Developers and designers meet with the marketing team to define all the
merchandising messages that you want to display on your site and to plan how to
represent those messages using recommendation and promotion assets.

2. The developers and designers use the XML or JSP object methods to design and
code templates for the recommendations. Coding Engage Pages explains how to
code these templates.

3. If the website uses dynamic list recommendations, then the developers code the
dynamic list elements that return the assets to recommend. About Creating a
Dynamic List Element explains how to code dynamic list elements.

4. The marketing team uses the Engage recommendation wizard to create and
then configure the recommendations. They assign the appropriate template to the
appropriate recommendation.

5. Using the Engage product and content asset forms, the marketers rate how
important the assets are to each segment, and, therefore, to the individual visitors
who become members of those segments. (Typically, you assign ratings to flex
parents, such as product parents, instead of to individual assets.)

6. For each related items recommendation, the marketers configure the relationships
maintained by those recommendations by assigning related assets in the flex
asset or flex parent forms. (Typically, relationships are configured among flex
parents, such as product parents, instead of individual assets.)

About Creating a Dynamic List Element
For websites that use dynamic list recommendations, the dynamic list elements
return the lists of recommended assets. A dynamic list element is an instance of the
CSElement asset type. This asset type enables the transfer of the dynamic list element
to the delivery system at the time of publishing.

A dynamic list element must return a list named AssetList. The set of assets that
becomes your AssetList must have the following traits:

• It must contain only assets of the types that you want to recommend.

• It must contain the IDs of the assets that you want to recommend.

• It should contain the assets' confidence ratings, although this is optional.

The following sample code is an excerpt from a dynamic list element. Line 2 in the
following code adds a constraint to the ssprod searchstate, filtering it to find items
with a browse category of Fund Type. Line 3 adds another constraint to the ssprod
searchstate, creating an assetset composed entirely of Product assets. Finally, line 4
turns the assetset created in line 3 into the AssetList list.

Chapter 38
Development Process for Setting Up Recommendations

38-2

<SEARCHSTATE.CREATE NAME="ssprod"/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ssprod" TYPENAME="PAttributes"
ATTRIBUTE="BrowseCategory" VALUE="Fund Type"/>
<ASSETSET.SETSEARCHEDASSETS NAME="asprod" CONSTRAINT="ssprod"
ASSETTYPES="Products"/>
<ASSETSET.GETASSETLIST NAME="asprod" LISTVARNAME="AssetList"/>

When you have completed coding your dynamic list elements, provide their names
and information about what sort of content they return to the users who create the
recommendation assets.

Chapter 38
About Creating a Dynamic List Element

38-3

39
Working with Memory-Centric Visitor
Tracking

Site visitors who browse Oracle WebCenter Sites: Engage assets typically provide
information about themselves in a personal profile. Demographics information is also
collected as the visitors browse. To prevent overloading the WebCenter Sites database
with large amounts of visitor data, and therefore, to improve performance, memory-
centric visitor tracking was developed for Engage assets.

For information about the memory-centric method for tracking visitors and
requirements for implementing this method, see these topics:

• About Memory-Centric Visitor Tracking

• Enabling Memory-Centric Visitor Tracking

• How Memory-Centric Visitor Tracking Works

About Memory-Centric Visitor Tracking
When large numbers of visitors browse a website, storing all of their personal
information in a single repository degrades the performance of the delivery system.
For this reason, websites that collect demographic information about visitors often
require an additional repository to help improve site performance. You can gain
additional performance by preventing load on the WebCenter Sites database.

WebCenter Sites supports add-on repositories, enabling Engage developers to
implement a repository of their own choice to store visitor scalar attribute values.
Custom code must be written to store and retrieve visitor information to and from the
repository. In addition, the WebCenter Sites memory-centric visitor tracking method
must be enabled. Differences between memory- and database-centric methods are
outlined in this overview. Information about enabling memory-centric tracking is
provided in the rest of this chapter, followed by diagrams illustrating how memory-
centric visitor tracking works.

This section includes the following topics:

• Database-Centric Model

• Memory-Centric Model

Database-Centric Model
In database-centric visitor tracking, performance issues on Engage-enabled websites
arise for the following reasons:

• All visitor information is stored in the WebCenter Sites database. Multiple
database accesses are required to store and retrieve information.

• When dynamic recommendations are used and a large amount of data is returned,
WebCenter Sites logs a greater number of dependencies in cache, which leads

39-1

to performance degradation. To restore performance, the render:overridedeps
tag limits the number of dependencies that are logged in the WebCenter Sites
database. This tag applies to both the database and memory-centric models.

Memory-Centric Model
Memory-centric tracking improves system performance by reducing load on the
WebCenter Sites database.

• All computations are performed in memory:

– When custom code retrieves visitor scalar attribute values (such as age and
gender) from the add-on repository, the memory-centric model stores the
retrieved values in memory and uses them with history attribute values to
compute segments to which the visitor belongs.

– Memory-centric tracking computes statistics on various history attribute values
in memory and then caches the statistics. Statistics include sums, counts,
oldest, and newest.

• Alias and history attribute values are stored in the WebCenter Sites database.
It helps reduces both the volume of visitor information and the number of calls
required to access the information.

As in database-centric tracking, developers can use the render:overridedeps tag to
specify the number and types of Engage asset dependencies to log in the WebCenter
Sites database. Enabling memory-centric tracking requires setting a property in
wcs_properties.json and writing supporting template code.

Enabling Memory-Centric Visitor Tracking
You can enable memory-centric visitor tracking by manually adding the
vis.useSessionVisitorConnection property to the wcs_properties.json file on the
delivery system. The code that you write should support memory-centric visitor
tracking. You can also batch save History attributes to reduce memory usage.

See these topics:

• Visitor Tracking Property

• Supporting Code

• Batch-Saving History Attributes to the Database

Visitor Tracking Property
Memory-centric visitor tracking is enabled by the property
vis.useSessionVisitorConnection, which must be manually added (using the
Property Management Tool) to the WebCenter Sites wcs_properties.json file on the
delivery system:

• Setting vis.useSessionVisitorConnection=true enables memory-centric visitor
tracking. Supporting template code must also exist on the delivery system for
Engage visitors to be correctly tracked; pre-existing code can be reused. See
Supporting Code.

• Setting vis.useSessionVisitorConnection=false, leaving it blank, or omitting it
from wcs_properties.json enables the database-centric method.

Chapter 39
Enabling Memory-Centric Visitor Tracking

39-2

Note:

Visitor attributes are not stored in the database when using the
memory mode. Therefore, on all content management systems,
vis.useSessionVisitorConnection must be either set to false or
omitted, thus enabling the database-centric method, which allows visitor
attributes to be created and otherwise managed. (Visitor attribute
management is supported only on content management systems that
are enabled for database-centric tracking. It is not supported on delivery
systems. Visitor attributes must be published to the delivery system.)

Supporting Code
The skeleton template in this section shows the type of code that must be written to
support memory-centric tracking.

Note:

How the template code executes depends on the value of the
vis.useSessionVisitorConnection property. If the value is set to false,
the database method of tracking visitors is used. If the value is set to true,
memory-centric tracking takes effect.

vdm:setalias
retrieve visitor scalar attributes from add-on repository
vdm:setscalar
commercecontext:calculatesegments
commercecontext:getrecommendations
render Engage assets
vdm:recordhistory
...
render:overridedeps

See How Memory-Centric Visitor Tracking Works.

Batch-Saving History Attributes to the Database
As of WebCenter Sites 7.5 Patch 2, history attributes are saved first to memory,
then to the file system, and finally as a batch to the WebCenter Sites database.
Batch-saving prevents excessive memory usage (which would otherwise occur when
data is produced faster than it can be saved to the database). The batch-save process
batches one HistoryAttributeDef table at a time from the file and saves the tables to
the database in bulk.

Batch saving to the database requires Engage to have access to
database information. Database access is enabled by adding a file named
<dataSourceName>.properties to the classpath to specify the following information:
driver, url, user, and password. For example, if the data source name is
csDataSource, then a file named csDataSource.properties must be placed in the
classpath. In our example, properties in the file are set as follows:

Chapter 39
Enabling Memory-Centric Visitor Tracking

39-3

driver=com.jnetdirect.jsql.JSQLDriver
url=jdbc:JSQLConnect://localhost:1433/database=TomcatDB
user=tomcatuser
password=tomcatuser

The following Java JVM parameter controls the time interval at which threads are
spawned for asynchronous batch-saving of history attributes from memory to the
WebCenter Sites database through the file system:

-Dvisitor.SyncInterval=<seconds>

If left unspecified, the parameter value defaults to 30 seconds.

How Memory-Centric Visitor Tracking Works
A first-time visitor creates a personal profile, a tag in the template code logs the
visitor's alias to the WebCenter Sites database, memory-centric visitor tracking logs
a unique ID per visitor, the existing database-centric method logs a unique ID per
visit, and the visitor's personal information such as age and gender are stored to the
add-on repository. WebCenter Sites computes the visitor's segments from scaler and
History attribute values. It computes the sums and counts and stores the results in
memory. WebCenter Sites compares the visitor's scalar values in memory to those
in the segment rules, the history attribute values to those in the segment rules, the
sums and counts in memory to the sums or counts in the segment rules. From the
comparisons, WebCenter Sites determines the visitor's segments. Then it determines
which Engage assets are of most interest to the visitor.

Diagrams in these topics show how memory-centric tracking works.

Note:

In the diagrams that follow, the add-on repository is a system of your own
choice, used to store and retrieve visitor scalar attribute values. Custom code
must be written to store and retrieve the values.

See these topics:

• Visitor Detection

• Retrieval of Scalar Values

• Collection of History Attribute Values

• Computation of Sums and Counts

• Computation of Segments

• Display of Recommended Assets

• Logging of Dependencies

Visitor Detection
A first-time visitor enters the site and creates a personal profile. The following events
occur:

Chapter 39
How Memory-Centric Visitor Tracking Works

39-4

1. The vdm:setalias tag in the template code is used to log the visitor's alias to the
WebCenter Sites database. In subsequent sessions, the visitor is automatically
recognized. As a result, a single ID unique to the visitor is kept in the database,
which improves performance.

Memory-centric visitor tracking logs a unique ID per visitor, whereas the existing
database-centric method logs a unique ID per visit even for returning visitors.
Extra IDs create extra load on the database and reduce performance.

2. The visitor's scalar values (personal information, such as age and gender) are
stored to the add-on repository (by custom code).

In the remaining steps, WebCenter Sites gathers and computes information that helps
determine the visitor's segments and Engage assets to display to the visitor.

This figure shows the flow for visitor detection:

Figure 39-1 Visitor Detection Flow

Chapter 39
How Memory-Centric Visitor Tracking Works

39-5

Retrieval of Scalar Values
WebCenter Sites begins computing the visitor's segments, starting with scalar values:

1. WebCenter Sites retrieves scalar values from the add-on repository (using custom
code).

2. WebCenter Sites sets retrieved scalar values in memory, using the vdm:setscalar
tag.

The session-based implementation stores visitor information (scalar values) only
in the http session. Therefore, when a new session begins, visitor information is
made available through the add-on repository, instead of the WebCenter Sites
database. A new level of caching has been added to optimize the performance of
querying for visitor scalar values.

This figure shows the flow for scalar value retrieval:

Figure 39-2 Scalar Value Retrieval Flow

Collection of History Attribute Values
History attribute values are also required for computing a visitor's segments. During
the session, history attribute values are collected cyclically:

1. The vdm:recordhistory tag is used to collect history attribute values into memory
at one-minute intervals.

2. The history attribute values are saved to the file system and then written to the
WebCenter Sites database in batches. The memory is cleared and the cycle starts
again.

Visitor history attribute values are collected first in memory to avoid the need for
acquiring database connections at each call. They are saved to the file system

Chapter 39
How Memory-Centric Visitor Tracking Works

39-6

to enable batch saving to the database, which minimizes memory and database
connections usage, and increases the availability of history attribute values.

When history attribute values are committed to the database, computation of sums
and counts begins, as shown in Computation of Sums and Counts.

The following figure shows the flow for history attribute values:

Figure 39-3 History Attribute Value Flow

Computation of Sums and Counts
After the first set of history attribute values is collected and written to the database,
WebCenter Sites reads the database at 1-minute intervals, computes the sums and
counts, and stores the results in memory.

Caching of sums and counts significantly reduces database queries, while the 1-
minute interval makes the computation of sums and counts accurate to within 1
minute.

The following figure shows the flow for computing sums and counts:

Chapter 39
How Memory-Centric Visitor Tracking Works

39-7

Figure 39-4 Computing Sums and Counts Flow

Computation of Segments
At this point, WebCenter Sites has enough information to compute the visitor's
segments. Using the commercecontext:calculatesegments tag, WebCenter Sites
does the following:

1. Compares the visitor's scalar values in memory to those in the segment rules.

2. Compares the history attribute values in the database to those in the segment
rules.

3. Compares the sums and counts in memory to the sums or counts in the segment
rules.

From the comparisons, WebCenter Sites determines the visitor's segments.

This figure shows the flow for computing segments:

Chapter 39
How Memory-Centric Visitor Tracking Works

39-8

Figure 39-5 Computing Segments Flow

Display of Recommended Assets
Having determined the visitor's segments, WebCenter Sites uses the
commercecontext:getrecommendations tag to determine which Engage assets are of
most interest to the visitor. Templates for Engage assets display the recommended
assets to the visitor.

Further performance gains are achieved by use of the render:overridedeps tag, as
explained in Logging of Dependencies.

The following figure shows the flow to display recommended assets:

Chapter 39
How Memory-Centric Visitor Tracking Works

39-9

Figure 39-6 Displaying Recommended Assets Flow

Logging of Dependencies
The render:overridedeps tag is used to reduce the number of dependencies logged
in cache. The tag must be inserted in the template (or CSElement), just before the
</cs:ftcs> tag, to remove all the existing dependencies logged on the page and to
log the dependencies that are specified by the render:overridedeps tag. The possible
dependencies are:

• Unknown dependencies

• Dependencies on a single specific asset

• Unknown dependencies for a specific asset type

The render:overridedeps tag takes the following parameters:

• cid: ID of the asset of type c. When combined with c, it works like asset, a
dependency is logged against the asset determined by c and cid.

• c: Type of asset.

• deptype: Dependency type.

Which parameters are used and how they are set determines the dependency that is
logged:

• When deptype alone is specified and set to unknowndeps, render:overridedeps
logs an unknown dependency.

Chapter 39
How Memory-Centric Visitor Tracking Works

39-10

• When c and cid are both specified, render:overridedeps logs a dependency on
the asset specified by c and cid.

• When c and deptype='unknowndeps' are both specified, render:overridedeps
logs an unknown dependency on the asset type specified by c.

Note:

Use render:overridedeps carefully. The only way to flush page caches
is to edit the asset for which dependencies are logged. For example,
when logging dependencies for a single asset (or asset type), flush the
cache by editing the asset for which dependencies are logged. Users
must know which asset(s) to edit.

Chapter 39
How Memory-Centric Visitor Tracking Works

39-11

40
Coding Engage Pages

With Oracle WebCenter Sites: Engage you can design online sites that gather
information about visitors which is useful in discerning products and services that
visitors would be interested in. Based on this information, these sites display
personalized promotional messages for each visitor.

Topics:

• Commerce Context and Visitor Context

• Identification of Visitors and Linking Sessions

• Collection of Visitor Data

• Coding of Site Pages That Collect Visitor Data

• Templates and Recommendations

• What You May Need to Know About Shopping Carts and Engage

• Debugging Site Pages

Note:

This chapter refers to specific XML tags that you use to accomplish the
tasks being described. In all cases, there are also equivalent JSP tags. The
XML and JSP tags are all documented in the Tag Reference for Oracle
WebCenter Sites Reference.

Commerce Context and Visitor Context
At an Engage site, a visitor context is created during a visitor's session. This context
includes session objects such as the shopping cart, visitor segments and promotions.
The commerce context encompasses the visitor context and gives you access to it.

Five types of session objects are placed in the visitor context:

• Current shopping cart.

• List of segments that the visitor belongs to.

• List of promotions that the visitor qualifies for.

• Time object that is used for calculating time-based rules for segments and
promotions.

• Utility object that gives you, the developer, access to product attributes.

There are two sets of XML and JSP object methods that serve as your interface to
these contexts:

• Commerce context methods, which you use to place objects in the visitor context.

40-1

• Visitor Data Manager methods, which you use to gather, store, and retrieve visitor
data and to associate a visitor's data with the correct visitor.

Identification of Visitors and Linking Sessions
Engage creates a unique visitor ID for each visitor for each session. It stores these
IDs in the VMVISITOR table in the WebCenter Sites database. The data gathered for a
visitor during that session is identified by that visitor ID. To link the data gathered from
one session to the data from another, your site pages must assign aliases that link
those visitor IDs.

You use the following Visitor Data Manager object method to create an alias:

<VDM.SETALIAS KEY="keyvalue" VALUE="aliasvalue"/>

When you use this tag, Engage associates the visitor session ID with the alias, and
writes them both to the VMVISITORALIAS table.

Figure 40-1 VMVISITORALIAS Table

The values in this table link the data that is gathered in separate sessions to the
same visitor because the alias provides a link to the visitor IDs that are recorded
for that visitor. In the illustration above, the data recorded in the session associated
with the visitor ID 973717492772 is linked to the data associated with the visitor ID
973717564355 because they have aliases with the same key/value pair.

All visitor information is associated with sessions that are linked through common
aliases. That is, aliases with the same key/value pairs can be accessed during the
current session. It is considered current visitor information. You can create aliases
with cookies, with login IDs, or with any other unique identifier that your site uses to
recognize visitors.

The VMVISITORALIAS table grows quickly. See Visitor Tables (Engage) in Administering
Oracle WebCenter Sites.

Chapter 40
Identification of Visitors and Linking Sessions

40-2

Collection of Visitor Data
You need to program your online pages for collecting, validating, and writing the visitor
data to the WebCenter Sites database. There are three Visitor Data Manager object
methods that write visitor information to the database.

• <VDM.SETSCALAR ATTRIBUTE="attribute" VALUE="value"/> records visitor
attributes.

• <VDM.RECORDHISTORY ATTRIBUTE="attribute" LIST="valuelist"/> records
history definitions.

• <VDM.SAVESCALAROBJECT ATTRIBUTE="attribute" OBJECT="objectname"/>
records visitor attributes of type binary. The demo site delivered with Engage uses
this method to store shopping carts across sessions and to store saved searches
for visitors.

Note:

Because these tags write information to the database, they can be a
factor in the performance of your delivery system. Be sure to use them
efficiently.

This table shows the tables that store the visitor data:

Table 40-1 Tables to Store Visitor Data

XML or JSP Object Method Database Table That It Writes To

VDM.SETSCALAR

vdm:setscalar

VMVISITORSCALARVALUE

VDM.SAVESCALAROBJECT

vdm:savescalarobject

VMVISITORSCALARBLOB

VDM.RECORDHISTORY

vdm:recordhistory

VMz------------

(These tables are dynamically generated for
each history definition. Engage creates a
unique table for each one.)

These tables grow quickly. See Visitor Tables (Engage) in Administering Oracle
WebCenter Sites.

There are also several Visitor Data Manager object methods that retrieve this
information from the WebCenter Sites database. See Logging and Debugging Errors.

For information about these and other Engage XML and JSP tags, see the Tag
Reference for Oracle WebCenter Sites Reference.

Chapter 40
Collection of Visitor Data

40-3

Coding of Site Pages That Collect Visitor Data
It takes you three steps to code site pages that collect visitor data. Create forms to
capture the data, create a submit page to validate the data, and program the submit
page to write the validated data to the database.

The general steps to code your site pages to collect visitor data are:

1. Create forms to capture the data that you need your visitors to manually provide.
It is a good practice to create form fields with names that match the names of the
attributes that you created. See Creating Visitor Data Assets.

Attributes are listed by their descriptions rather than by their names in the Engage
Segment forms. Be sure that you do not confuse their attribute names with
attribute descriptions when you are creating form fields or writing values to the
WebCenter Sites database.

2. Create a submit page that validates the data that the visitor entered in the fields
(either by using JavaScript or with a server-side validation method). The input data
must comply with the constraints that you set for the attributes. For example, when
a visitor attribute of type string has a length of 30, the form must not try to submit
data from the form field with a length of 31.

3. Program the submit page to write the validated data to the WebCenter Sites
database. Be sure to use the names of the attributes and history definitions and
not their descriptions. Here are some examples:

See these topics:

• Example 1: Visitor Attributes

• Example 2: History Definition

• Example 3: Visitor Attribute of Type Binary

Example 1: Visitor Attributes
The following example uses attribute names to write the registration information to the
database:

<!-- Write the registration information to the database.-->
<VDM.SETSCALAR ATTRIBUTE="name" VALUE="Variables.name"/>
<VDM.SETSCALAR ATTRIBUTE="age" VALUE="Variables.age"/>
<VDM.SETSCALAR ATTRIBUTE="jobdesc" VALUE="Variables.jobdesc"/>

Example 2: History Definition
Because history definitions hold multiple values as an aggregate, you must create a
list of the data before you can write it to the database. In this example, a form writes
an order to the WebCenter Sites database:

<!-- Write the order details to a list. -->
<!-- assume that Variables.order_id is set to the order id -->
<!-- assume that Variables.wasCouponUsed is set to 1 (yes) or 0 (no) -->
<!-- assume that Variables.shippingtype is set to UPS or FedEx -->
<!-- assume that Variables.order_price is set to the total amount of the
order -->

Chapter 40
Coding of Site Pages That Collect Visitor Data

40-4

<LISTOBJECT.CREATE NAME="histList" COLUMNS="orderid, shippingtype, price,
couponUsed"/>
<LISTOBJECT.ADDROW NAME="histList" orderid="Variables.order_id"
shippingtype="Variables.shippingtype" price="Variables.order_price"
couponUsed="Variables.wasCouponUsed"/>
<LISTOBJECT.TOLIST NAME="histList" LISTVARNAME="itemList"/>

<!-- Write the list to the history definition named visitorOrderHistory in the
WebCenter Sites database.-->
<VDM.RECORDHISTORY ATTRIBUTE="visitorOrderHistory" LIST="itemList"/>

You can use that record to determine information about how many orders a visitor had
made, when their first or last purchase was, and the total amount they've spent.

Example 3: Visitor Attribute of Type Binary
Binary visitor attributes allow you to convert an object from the WebCenter Sites name
space into a binary form. The following procedure uses two visitor attributes of type
binary: one to store shopping carts across sessions and one to store saved searches:

1. To gather data about visitor behavior (such as clickstream information), program
your pages to collect the data without using input forms.

For example, you can use a history definition to record the number of times a
visitor browses the site.

2. Whenever visitor data is written to the database, segments and promotions can
also change. After any change to visitor data, be sure to recalculate the segments
and promotions lists. There are two Commerce Context object methods that you
can use:

• COMMERCECONTEXT.CALCULATEPROMOTIONS

• COMMERCECONTEXT.CALCULATESEGMENTS

COMMERCECONTEXT.CALCULATEPROMOTIONS recalculates both the segments that the
visitor belongs to and the promotions that apply to those segments.

3. Whenever visitor data is written to the database, ratings for assets can also
change. After any change to visitor data, be sure to refresh the ratings of any
assets that are in an existing asset set.

Use the ASSETSET.ESTABLISHRATINGS tag to refresh the asset ratings of the assets
in a set.

Note:

For information about these and other Engage XML and JSP object
methods, see the Tag Reference for Oracle WebCenter Sites Reference.

Templates and Recommendations
You need to create a template element that invokes a recommendation asset and
displays the items that the recommendation returns. You use the key Commerce
Context object method to invoke a recommendation asset. This method retrieves and

Chapter 40
Templates and Recommendations

40-5

lists the assets that meet the recommendation criteria. The object method invokes
other methods that calculate the segment and promotion lists.

<COMMERCECONTEXT.GETRECOMMENDATIONS COLLECTION="recommendationname"
[LIST="inputlist" VALUE="rating" MAXCOUNT="assetcount"]
LISTVARNAME="assetlist"/>

This method retrieves and lists the assets that match the recommendation constraints
passed to the method. It uses the following arguments:

• COLLECTION: The name of the recommendation. To use the same Template for
several recommendations, code it to supply the recommendation identity through a
variable.

• LIST: The name of the list of assets. This is the name that you want to be used as
the input for the calculation.

You use this argument when the recommendation named by COLLECTION is a
context-based recommendation. Columns are assettype and assetid. You can
create this list by creating a list object and adding rows for each asset that you
want to use as input.

• VALUE: The default rating for assets that do not have one. If you do not declare a
value, unrated assets are assigned a default rating of 50 on a scale of 0-100. It is
recommended that you keep this value set to 50.

• MAXCOUNT: (Optional.) The maximum number of assets to return. Use this value to
constrain the list of recommended assets.

• LISTVARNAME: The name that you want to assign to the list of assets. Its columns
are: assettype and assetid.

The object method invokes the methods that calculate the segment list and the
promotion list, if they have not yet been created and placed in the visitor context.
Remember that promotions do not have templates, they override the Template that
a recommendation is using. Rather than the items identified by the recommendation
asset, the object method returns the promotion asset's ID if promotions apply to the
current visitor and override the recommendation named by the COLLECTION argument.

Note:

The COMMERCECONTEXT.GETSINGLERECOMMENDATION object method returns one
recommended asset based on the recommendation criteria passed to the
method. Typical uses for this method are to feature one product or to put
one product on sale. For information about this object method and its JSP
equivalent, see the Tag Reference for Oracle WebCenter Sites Reference.

Creating Templates for Recommendations
Before you begin coding the Templates for recommendations, be sure to complete the
following tasks:

• Meet with the marketing team to define all the merchandising messages that
you want to display on your site and plan how to represent those messages in
recommendations and promotions. For example, do you want to display a list of
links to other products? What information should the link include? The product

Chapter 40
Templates and Recommendations

40-6

name only or also the price? What will be displayed when a recommendation
returns a promotion rather than a list of assets?

• Determine where and on which pages the recommended assets from each
recommendation are displayed.

To use templates to render items that are returned by recommendation assets, you
must complete at least the following basic steps:

1. Create a template element that invokes a recommendation asset. Use the object
method described in the preceding section.

2. Code the template to display the items that are returned by the recommendation.
The returned items are stored in a variable designated by the LISTVARNAME
argument. This list includes the asset IDs and asset types of those items. Use that
information to extract the asset attributes that you want to display (for example,
Name, Price, and SKU).

You can use the ASSETSET.SETLISTEDASSETS and ASSETSET.GETASSETLIST object
methods to sort and display the returned assets and their attributes.

3. Open Engage. Under New, choose Template. Create a corresponding Template
asset for this Template element. Enter a name that describes what the element
does so that when you create a recommendation asset, you know which Template
to assign to it. Identify the path to the element (its location in the element catalog)
in the Element Name field.

4. Publish the Template asset when other assets are published.

5. Render the recommendations on the appropriate site pages.

Creation of Templates for Recommendations Using Oracle Real-Time
Decisions

Oracle Real-Time Decisions (RTD) is an engine that helps site visitors make
decisions by recommending the best options when they make their choices.
When the commercecontext:getrecommendations tag is invoked, it sends a list of
recommendations and certain visitor profile information to Oracle RTD. Oracle RTD
then ranks the recommendations and, using the maxcount="<n>" parameter, returns a
refined list of n recommendations best suited for the visitor's profile.

Note:

This release of WebCenter Sites supports Oracle Real-Time Decisions
(RTD) version 3.0 series. RTD 11g is not supported.

Oracle RTD (and other engines) can be integrated with WebCenter Sites by use of the
following tags:

• The commercecontext:getrecommendations tag, where engine and
engineparameters are generic parameters that can be set to invoke any engine.
For integration with Oracle RTD, the engine parameter must be set to rtd
and engineparameters must name a list of the following Oracle RTD-specific

Chapter 40
Templates and Recommendations

40-7

parameters: advisor (integration point), attributes (visitor profile), sessionkey,
and assetattributes.

• The commercecontext:inform tag, which also takes the parameters engine and
engineparameters. For this tag, engineparameters must name a list of the
following parameters: informant (integration point), attributes (visitor profile),
and sessionkey.

Note:

The choices parameter (choice of recommendations) was removed from this
tag. The list of choices is now passed to RTD with the list tag attribute.

After Oracle RTD learns the list of attributes from the
commercecontext:getrecommendations tag, you, the developer, can
use the sessionkey parameter to map visitors to their profiles
for subsequent commercecontext:inform calls. For example, after a
commercecontext:getrecommendations call has been made to Oracle RTD, the next
call from the same visitor may pass an empty string for attributes and use the same
sessionkey to get recommendations.

Note:

Using the commercecontext:getrecommendations and
commercecontext:inform tags to invoke Oracle RTD requires
adding the following properties to the wcs_properties.json file:
rtd.inline.service.name and rtd.host.

For more information about the commercecontext tags, parameter definitions,
integration with Oracle RDT, and sample code, see the Tag Reference for Oracle
WebCenter Sites Reference. For information about the rtd.inline.service.name
property, rtd.host property, and rtd.choiceId.pattern property, see the Property
Files Reference for Oracle WebCenter Sites.

What You May Need to Know About Shopping Carts and
Engage

When you code your shopping cart pages using the shopping cart interface with
Engage there are some facts and tips that you should keep in mind.

• If your site uses promotions, you must code your cart pages to apply the discounts
from the promotions.

Use the COMMERCECONTEXT.DISCOUNTCART and
COMMERCECONTEXT.DISCOUNTTEMPCART object methods to apply promotional
discounts to the shopping cart.

• It is a good practice to clear existing discounts from the cart before applying them
again.

Chapter 40
What You May Need to Know About Shopping Carts and Engage

40-8

• You can store carts across sessions by writing them to the database as a visitor
attribute of type binary (a scalar object). Be sure to write the cart object to the
database each time the cart is modified.

• If your site uses a visitor login feature, there can be conditions under which you
should merge shopping carts. For example, a visitor adds products to her cart
before she logs in. Then, when she logs in, Engage finds a stored cart that also
has items in it. In such a case, merge the carts.

For information about the CART object methods and their JSP equivalents, see the Tag
Reference for Oracle WebCenter Sites Reference.

Debugging Site Pages
During development phase, you must verify that session linking is set up correctly,
specific attributes obtain the value that you expect, and recommendations return the
items that you expect. There are several Engage object methods that you can use to
retrieve and review information and values by writing information to a browser window
or to the JRE log.

This topic lists the Visitor Data Manager object methods that you probably use the
most. For information about these and any other XML and JSP object methods, see
the Tag Reference for Oracle WebCenter Sites Reference.

See these topics:

• Session Links

• Visitor Data Collection

• Recommendations and Promotions

Session Links
Use the following Visitor Data Manager object methods to verify that pages that handle
session linking are creating the aliases correctly:

• <VDM.GETALIAS KEY="keyvalue" VARNAME="varname"/>

Retrieves an alias.

• <VDM.GETCOMMERCEID VARNAME="varname"/>

Retrieves the visitor's commerce ID from session data.

• <VDM.GETACCESSID KEY="pluginname" VARNAME="varname"/>

Retrieves the visitor's access ID from session data.

Visitor Data Collection
Use the following Visitor Data Manager object methods to retrieve values stored for
specific visitor attributes, history attributes, and history definitions (records):

• <VDM.GETSCALAR ATTRIBUTE="attribute" VARNAME="varname"/>

Retrieves a specific visitor attribute.

• <VDM.LOADSCALAROBJECT ATTRIBUTE= "attribute" VARNAME= "varname"/>

Retrieves (materializes) an object stored as a visitor attribute of type binary.

Chapter 40
Debugging Site Pages

40-9

• <VDM.GETHISTORYCOUNT
ATTRIBUTE="attribute"VARNAME="varname"[STARTDATE="date1"
ENDDATE="date2"LIST="constraints"]/>

Retrieves the number of history definition records that were recorded for the visitor
that match the specified criteria.

• <VDM.GETHISTORYSUM ATTRIBUTE="attribute"
VARNAME="varname"[STARTDATE="date1" ENDDATE="date2"
LIST="constraints"]FIELD="fieldname"/>

Sums the entries in a specific field for the specified history definition.

• <VDM.GETHISTORYEARLIEST VARNAME="varname"
[STARTDATE="date1"ENDDATE="date2" LIST="constraints"]/>

Retrieves the timestamp of the first time the specified history definition was
recorded for this visitor.

• <VDM.GETHISTORYLATEST
VARNAME="varname"[STARTDATE="date1"ENDDATE="date2"
LIST="constraints"] />

Retrieves the timestamp of the last time (that is, the most recent time) the
specified history definition was recorded for this visitor.

Recommendations and Promotions
Use the following Commerce Context object methods to verify pages that display
recommendations and promotions:

• <COMMERCECONTEXT.CALCULATESEGMENTS/>

Lists the segments that the visitor belongs to. It examines the available visitor
data, compares it to the data types that define the segments, and then lists the
segments that are a match.

• <COMMERCECONTEXT.GETPROMOTIONS LISTVARNAME="promotionlist"/>

Creates the list of promotions that the current visitor is eligible for.

• <COMMERCECONTEXT.GETRATINGS ASSETS="assetlist"
LISTVARNAME="ratinglist" DEFAULTRATING="defaultrating"/>

Calculates the ratings of the assets in a named list according to how important the
asset is to this visitor based on the segments that the visitor belongs to.

• <COMMERCECONTEXT.GETSEGMENTS LISTVARNAME="segmentlist"/>

Retrieves the list of segments that the current visitor belongs to.

Chapter 40
Debugging Site Pages

40-10

Part X
Running A/B Testing

Learn about your role in running Oracle WebCenter Sites: A/B Testing and how you
can develop conversion tracking for measuring ROI.

Note:

Currently, we are making changes to the A/B testing feature. Earlier, A/B
test functionality was provided through an integration with Google Analytics
and to use the A/B test functionality, you had to register with Google for
a Google Analytics account. This integration with Google Analytics was
using Management APIs for experiment creation. You won’t be able to
create experiments as these Management APIs are not available. For more
information, see Content Experiments by Google Analytics.

Now, we will use Oracle Maxymiser client-side integration with WebCenter
Sites to experiment with design and content variations on your website
pages. For information, see Working with A/B Testing in Using Oracle
WebCenter Sites.

https://support.google.com/analytics/answer/9366791

Part XI
Customizing Blogs

You can customize the blog data model. Sample template code and guidelines for
developing blog functionality on different CM sites is available for you.

Topic:

• Customizing Blog Components

41
Customizing Blog Components

You can customize the default blog components such as Blog flex family hierarchy,
RSS feed URLs to render custom pages. You can also create blog pages and modify
the code.

Topics:

• Customizing the Blog Asset Form

• Adding Blog Functionality to CM Sites

• Customizing URLs for the RSS Feed

Customizing the Blog Asset Form
You can modify the Blog flex family hierarchy as you need. When you want to display
the attribute as a field in the blog asset form, all you need to do is, create a new blog
attribute and then add that attribute to the blog asset definition.

Note:

To see the hierarchical relationships between blog categories and blog
assets, create a tree tab for your own reference. For instructions about
creating a tree tab, see Creating a Tree Tab in Administering Oracle
WebCenter Sites.

This section includes the following topics:

• Creating a Blog Attribute

• Adding a Blog Attribute to the Blog Asset Definition

Creating a Blog Attribute
The blog attribute you create will be displayed as a field in the blog asset form once
you add the attribute to the blog asset definition.

To create a blog attribute:

1. Log in to the Admin interface as a general administrator.

2. Select the site on which the Blogs component is enabled.

3. In the button bar, click New.

4. Click New Blog Attribute.

5. In the Blog Attribute form, fill in the fields.

41-1

Figure 41-1 Blog Attribute Form

Note:

The fields can differ significantly based on the data type that you select
for your attribute.

• Name: Enter a name of up to 64 characters (the name cannot contain
spaces).

• Description: Enter a short summary that describes the use or function of the
attribute.

• Value Type: Select a data type for this attribute.

• Asset Type: If the attribute is of type asset, select an asset from the drop-
down list.

Chapter 41
Customizing the Blog Asset Form

41-2

• Mirror Dependency Type: If the attribute is of type asset, select a
dependency type.

• Folder: (Optional) If the attribute is of type blob, enter a path to the directory
in which you want to store the attribute values.

• Allow Embedded Links: If the attribute is of type text, blob, or URL, select
whether links to other pages or websites can be embedded in the attribute's
content field.

• Number of Values: Choose either single or multiple from the drop-down list,
depending on the data type selected for the Value Type field.

• Attribute Editor: (Optional) To use an input type other than the default, in the
Attribute Editor field, select the appropriate attribute editor for the field.

• (Optional) Character Set: To override the default ISO character set
(ISO-8859-1), enter the character set you want to use for this attribute.

If you are creating a foreign attribute (keeping data in an external system) fill in the
following fields:

• Editing Style: To make this attribute available to users in its native table on
the external system, select external.

• Storage Style: Select external. See Creating Foreign Flex Attributes.

• External ID: Specify the name of the column that serves as the primary key
for the table that holds this foreign attribute (the column that uniquely identifies
the attribute).

• External Table: Enter the name of the table that stores this attribute.

• External Column: Enter the name of the column in the table specified in the
External Table field that holds the value of the attribute.

6. Click Save.

Now that you have created the attribute, add the attribute to the blog asset
definition. For instructions, see the next section.

Adding a Blog Attribute to the Blog Asset Definition
To add an attribute to the blog asset form you must add the attribute to the blog asset
definition.

To add an attribute to the blog asset definition:

1. Log in to the Admin interface as a general administrator, and select the site on
which the Blogs component is enabled.

2. Access the blog asset definition's Inspect form:

a. In the button bar, click Search.

b. In the Search form, click Find Blog Asset Definition, and click Search.

c. Select BlogAssetDef.

3. In the Inspect form, click Edit.

Chapter 41
Customizing the Blog Asset Form

41-3

Figure 41-2 Blog Attribute Form

4. In the Attributes field, select the attribute(s) from the Available list and use the
Required or Optional button to move the attribute(s) to the Selected list. Which
button you choose determines whether the attribute(s) will be required or optional
in the blog asset form.

5. Click Save.

The attributes you selected are now included as fields in the blog asset form.
When a user creates a blog asset, the new attributes will be displayed as either
required or optional fields.

Adding Blog Functionality to CM Sites
Would you like to use the Blogs component on a different CM site? You need to first
create blog pages for that site.

To add blog functionality to your website:

1. Create pages on the content management site that will be used to render blog
assets on the website.

2. Copy the blog code from the default blog templates and CSElements to your site's
templates and CSElements. How your site is set up determines the modifications
you must make to the default code once you insert it into your templates and
CSElements.

3. Add the blogsperpage parameter that is specified in the Blogs component’s
SiteEntry asset to your own site's SiteEntry asset.

See these topics:

Chapter 41
Adding Blog Functionality to CM Sites

41-4

• Creating Blog Pages

• Adding Blog Code

• Adding Blog Parameters to Your Site's SiteEntry Asset

Creating Blog Pages
Before creating blog pages, map out their types: the main blog page (which is the
FW_RecentBlogs page in the Blogs component), category pages, and so on. Also
determine your site's graphical, navigational, and functional features to create blog
pages that will conform to the layout of your website.

To create blog pages:

1. Log in to WebCenter Sites as a general administrator, select the site on which you
want to create the pages for displaying blogs to website visitors and then select
the icon for the Oracle WebCenter Sites: Contributor interface.

2. In the menu bar, select Content, then select New, and then select New Page.

A tab opens displaying the New Page form.

Figure 41-3 New Page Form

3. In the New Page form, fill in the fields:

• Name: Enter a name of up to 64 characters.

• Tags: Enter a single word or phrase to attach to the page.

• Template: Select the template that will render the page.

• Associated Items: Add content (for example, related articles) to this field's
Drop Zone.

4. Click the Save icon.

Chapter 41
Adding Blog Functionality to CM Sites

41-5

Now that you have created a page to display blog assets, code your site's
templates and CSElements to call the new page and render blog functionality on
your website.

Adding Blog Code
The Blogs component is configured to render sample blog pages. Your own site's
layout is likely to differ from the layout of the sample blog pages. For example, your
site may call a left navigation, while the sample blog pages call a right navigation.
Instead of coding your templates from scratch to incorporate blog functionality, reuse
the sample code by inserting it into your own templates and CSElements, then
reconfiguring the code as necessary.

Note:

Your site's wrapper element renders the layout of your site. To ensure that
your wrapper element renders blog pages in addition to existing pages, copy
the relevant blog code from the default FW_Wrapper element to your site's
wrapper element.

To add blog code to your site's layout template:

1. Log in to the Admin interface as a general administrator.

2. Select the site on which the Blogs component was installed.

3. Access the FW_BlogLayout template:

a. In the button bar, click Search.

b. In the Search list, select Find Template.

c. In the Search field, enter FW_BlogLayout, and then click Search.

d. Click FW_BlogLayout.

4. In the layout template's Inspect form, click Edit.

5. Copy the necessary code from the Blogs component's layout template and insert it
into your own layout template:

The following lines retrieve the site description from the wrapper and load the site:

<ics:if condition='<%=ics.GetVar("tid")!=null%>'>
 <ics:then>
 <render:logdep cid='<%=ics.GetVar("tid")%>' c="Template"/>
 </ics:then>
</ics:if>

<publication:load name='Publication' field="name"
 value='<%=ics.GetVar("site")%>'/>
<publication:get name='Publication' field="id" output="spubid"/>
<publication:get name='Publication' field="description" output="pubdesc"/>

The following line retrieves the body of the page:

String sContainerTName = "FW_BlogContainer";

The following lines load the site, page, and asset descriptions:

Chapter 41
Adding Blog Functionality to CM Sites

41-6

 String sTitle = "";
 if (!"Page".equals(ics.GetVar("c")))
 {
 %><asset:load name='t2' type='<%=ics.GetVar("c")%>'
 objectid='<%=ics.GetVar("cid")%>' /><%
 %><asset:get name='t2' field='name' output='t2Name' /><%
 %><asset:get name='t2' field='description' output='t2Desc' /><%
 sTitle += ": "+(Utilities.goodString(ics.GetVar("t2Desc")) ?
 ics.GetVar("t2Desc") : ics.GetVar("t2Name"));
 } else if (Utilities.goodString(ics.GetVar("p"))) {
 %><asset:load name='t1' type='Page' objectid='<%=ics.GetVar("p")%>' /><%
 %><asset:get name='t1' field='name' output='t1Name' /><%
 %><asset:get name='t1' field='description' output='t1Desc' /><%
 sTitle += ": "+(Utilities.goodString(ics.GetVar("t1Desc")) ?
 ics.GetVar("t1Desc") : ics.GetVar("t1Name"));
}

The following line calls the style sheet for the blog layout template. The style sheet
defines the look and feel of the sample blog pages. Because your site has its
own style sheet, copy the parameters you need from the Blogs component's style
sheet and insert them into your own site's style sheet. Make sure you resolve any
conflicts between the Blogs component's style sheet and your own style sheet:

<render:callelement elementname="FW_Blogs/CSS/blogsCSS/">

The following lines are the JavaScript method that retrieves the More link for the
Archive blogs page:

<script type="text/javascript">
function getMoreBlogs(url) {
 var xhtReq = getXMLHttpRequest();
 xhtReq.open(GET, url, true);
 xhtReq.onreadystatechange = function() {
 if(xhtReq.readyState==3) {
 document.getElementById('moreLink').innerHTML =
 ' <img src="<%=ics.GetSSVar("baseurl")%>images/wait_ax_tiny.gif/>';
 }
 else if(xhtReq.readyState==4) {
 document.getElementById('archiveDiv').innerHTML = xhtReq.responseText;
 }
 };
 xhtReq.send(null);
}

function getXMLHttpRequest() {
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 alert("XMLHttpRequest not supported");
 return null;
}
</script>

The following lines call the main blog page or the body of a given asset. These
lines also call the header and footer for the blog sample pages. Since your site has
its own headers and footers, copy only the code you require for your site's blog
functionality, and retain your own site's headers and footers:

<!--main start-->
<div id="main">

 <!--header start-->

Chapter 41
Adding Blog Functionality to CM Sites

41-7

 <%-- <div id="header">
 <!--Call header from here-->
 </div> --%>

 <!--header end container start-->
 <div id="container">
 <!--Body -->
 <%-- Call the container template for the current page subtype --%>
 <render:calltemplate
 tname='<%=sContainerTName%>'
 site='<%=sSite%>'
 tid='<%=ics.GetVar("tid")%>'
 slotname="BlogBodyContainer"
 c='<%=ics.GetVar("c")%>'
 cid='<%=ics.GetVar("cid")%>'
 ttype="Template">
 <render:argument name=p
 value='<%=ics.GetVar("p")%>' />
 <render:argument name=locale
 value='<%=ics.GetVar("locale")%>'/>
 <render:argument name=packedargs
 value='<%=ics.GetVar("packedargs")%>'/>
 <render:argument name=site
 value='<%=ics.GetVar("site")%>'/>
 <render:argument name=spubid
 value='<%=ics.GetVar("spubid")%>'/>
 <render:argument name=blogsperpage
 value='<%=ics.GetVar("blogsperpage")%>'/>
 </render:calltemplate>
 </div><!-- End of container -->
</div><!-- End of main -->

<!-- Footer -->
<%-- <div id="footer">
<!--Call footer from here-->
</div> --%>
</body>

6. Reconfigure the blog code you inserted into your site's layout template to fit your
requirements.

7. Inspect the code of the other default blog templates and CSElements and copy the
relevant sections into your own templates and CSElements.

Adding Blog Parameters to Your Site's SiteEntry Asset
The Blogs component's SiteEntry asset specifies the blogsperpage parameter, which
enables you to specify the number of blog assets that can be displayed on a Web
page at one time. You can specify this parameter in your own site's SiteEntry asset.

Note:

If you do not specify the blogsperpage parameter in your site's SiteEntry
asset, then the default number of blogs per page, which is 10, will be used.

To add the blogsperpage parameter to your custom SiteEntry asset:

Chapter 41
Adding Blog Functionality to CM Sites

41-8

1. Log in to the Admin interface as a general administrator.

2. Select the site to which you are adding blog functionality.

3. In the button bar, click Search to find your site's SiteEntry asset.

a. In the Search form, click Find SiteEntry.

b. Click Search.

c. Select your site's SiteEntry asset.

4. In the SiteEntry asset's Inspect form, click Edit.

5. In the Pagelet Parameters field, add the following:

• Name: Enter blogsperpage.

• Value: Enter the number of blogs that can be displayed on a page at one time.

6. Click Save.

Customizing URLs for the RSS Feed
The right navigation panel of the sample blog pages contains an RSS Feed link. When
a visitor clicks the RSS Feed link, it renders an up-to-date listing of the titles and
summaries of the blog assets that are published to the sample blog pages. When a
visitor clicks the title of a blog, the entire content of the selected blog is rendered.
External URLs for the blog assets included in the RSS Feed are created by the
GetExternalURL CSElement.

By default this element creates the local WebCenter Sites URL:

http://<host name>:<port number>/<application context>/<path to file>

where <host name> is the host name of the WebCenter Sites installation from which
the assets of the RSS Feed are accessible, <port number> is the port number of
the WebCenter Sites application, and <application context> is the context of the
WebCenter Sites application on which the Blogs component is running.

• To use the RSS Feed with your own site's external URLs, modify the
GetExternalURL element's URL string, and add the parameters listed in the
following table to the futuretense_xcel.ini file with the values for the host
information and context of your site. The GetExternalURL element reads these
parameters from the futuretense_xcel.ini file to create the external URLs for
the blog assets listed in your site's RSS Feed.

Table 41-1 Parameters read by GetExternalURL element to create external
URLs

Parameter Description

fwblogs.hostscheme Specifies the top level of the URL naming structure.
For example, http.

fwblogs.hostname Specifies the host name of the WebCenter Sites
installation from which the assets of the RSS Feed
are accessible.

fwblogs.portnumber Specifies the port number of the WebCenter Sites
application.

Chapter 41
Customizing URLs for the RSS Feed

41-9

Table 41-1 (Cont.) Parameters read by GetExternalURL element to create
external URLs

Parameter Description

fwblogs.contextinfo Specifies the context of the WebCenter Sites
installation on which the Blogs component is running.

Chapter 41
Customizing URLs for the RSS Feed

41-10

Part XII
Developing WebCenter Sites: Visitor
Services

You don't have to build Oracle WebCenter Sites: Visitor Services as an add-on. Read
more to find out how you can configure Visitor Services.

• Developing WebCenter Sites: Visitor Services

42
Developing WebCenter Sites: Visitor
Services

Oracle WebCenter Sites: Visitor Services fetches and compiles visitor profile
information. Marketers use this information to orient their website content, such as
product information and marketing campaigns, toward visitor needs.

Topics:

• Visitor Services Overview

• Configuring the Visitor Services URL

• Configuring an Identity Provider

• Configuring an Access Provider

• Configuring One or More Profile Providers

• Creating One or More Aggregation Templates

• Optimizing Experiences Using Visitor Services Data

• Visitor Services Reference

Note:

For information about Visitor Services-specific terms, see the Visitor Services
Glossary.

Visitor Services Overview
Visitor's profile information is typically captured across different systems within
customers’ online presence. For example, a visitor may have recently viewed an
Eloqua email, downloaded a CRM white paper, or logged into Facebook or Google.
Each online activity collects a different set of visitor attributes. Visitor Services collects
these visitor attributes and serves this information through an aggregate template.

The Visitor Services component provides discovery, aggregation, and query features
that you can use for targeting. Choosing selected attributes from different visitor
profiles, you can create as many aggregated templates as the marketers need.
Marketers use the visitor information to target content on WebCenter Sites delivered
pages.

Visitor Services Tasks for Developers

Visitor Services configuration primarily involves developer tasks organized on the
Visitors Admin node of the Admin interface, as shown below. For more information
about Visitor Services from a marketer perspective, see Understanding WebCenter
Sites: Visitor Services in Using Oracle WebCenter Sites.

42-1

Developer tasks include:

• Configure the Visitor Services URL as described in Configuring the Visitor
Services URL.

To configure Visitor Services with WebCenter Sites, you need to identify the
Visitor Services URL configured during installation. See Configuring the Visitor
Services URL and Deploying Visitor Services in Installing and Configuring Oracle
WebCenter Sites.

• Configure an identity provider for the single sign-on system (SSO) to
authenticate site visitors to Visitor Services. See Configuring an Identity Provider.

Visitor Services ships with an Oracle Access Manager identity provider for
integration with Oracle Access Manager. You can also create a custom identity
provider, as described in Creating a Custom Identity Provider: Example.

• Configure access providers to authenticate profile information requests. See
Configuring Access Providers.

An access provider qualifies the REST calls made from the application to Visitor
Services. Oracle recommends using an access provider to maintain a secure
connection between Visitor Services and WebCenter Sites.

• Create profile providers to compile and enrich visitor profiles.

A profile provider allows a visitor identity to be associated with a visitor profile.
You implement and configure profile providers for specified repositories in Visitor
Services, and write enrichment rules to collect visitor information from all profile
providers. Visitor Services ships with an Eloqua profile provider for integration with
the Eloqua Cloud Marketing Service, an Oracle Access Manager profile provider
for integration with Oracle Access Manager, a Facebook profile provider. See
Configuring One or More Profile Providers and About the Profile Providers and
Enrichment Service.

• Create aggregate templates that determine which data, based on visitor profiles,
is returned to the site visitors. See Creating One or More Aggregation Templates
and About the Identity Providers.

An aggregation template links visitor profiles and lets you combine information
from different visitor profiles. Developers write aggregation rules and templates
that combine profile information from visitor profiles.

• Configure how visitor profiles from Visitor Services are requested and used.

Chapter 42
Visitor Services Overview

42-2

To make use of visitor profiles, WebCenter Sites components must request them
via Visitor Services APIs (REST, JAVA, or JavaScript) during runtime. Visitor
Services comes integrated with:

– Engage: Use visitor profiles to determine Engage segments and provide
recommendations. For example, a marketer might use visitor profile attributes
such as age and income to create segments and deliver recommendations.
For anonymous visitors, create segments for them based on attributes such as
device used to access the site, time zone, locale, browser, referrer (Facebook,
Twitter, Bing), or IP address. See Working with Engage Assets in Using Oracle
WebCenter Sites.

– A/B Testing: Use visitor profiles for determining segments, then use the
segments to target visitors for the A/B test. See Working with A/B Testing
in Using Oracle WebCenter Sites.

Visitor Services API References

• Visitor Services Java API: Provides Java API documentation for client
developers of Visitor Services to write custom identity provider, access provider,
and profile provider interface implementations.

• Visitor Services Client Java API: Provides Java API documentation for
developers of applications such as Oracle WebCenter Sites and Engage that
communicate with Visitor Services to get visitor profile information.

Configuring the Visitor Services URL
Before you can use Visitor Services, you need to configure its instance with your
WebCenter Sites. The Property Management tool available in the Admin interface lets
you quickly configure your Visitor Services instance.

1. Log into the Admin interface.

2. On the tree, expand the Admin node and the System Tools node.

3. Double-click the Property Management node.

The Property Management Tool page is displayed.

4. From the Category drop-down list, choose Visitors and then click Search.

The Properties section on the Property Management Tool page is populated with
the properties for the Visitors category.

5. Under the Key column, click visitors.rest.url.

6. In the Value field, enter the Visitor Services instance URL in format: http://
<visitorserviceshost>:<visitorservicesport>/visitors-webapp.

Chapter 42
Configuring the Visitor Services URL

42-3

Figure 42-1 Properties section of the Property Management Tool Page

7. Click Save .

Your Visitor Services instance has been configured.

Figure 42-2 visitors.rest.url Property Configured in the Properties Section

Configuring an Identity Provider
An identity provider finds the status of visitor authentication to Visitor Services. You
can configure an identity provider using the OSGi bundle or develop your own identity
provider as an OSGi bundle.

• Using the Oracle Access Manager identity provider (OSGi bundle) provided with
Visitor Services, then integrating Oracle Access Manager (OAM) with Visitor
Services. See Configuring Identity Provider Settings and Integrating Oracle
Access Manager (OAM) with Visitor Services.

• Developing your own custom identity provider as an OSGi bundle, then configuring
it in Visitor Services. See Creating a Custom Identity Provider: Example.

Note that Visitor Services supports authenticated and unauthenticated visitors as
follows:

• Authenticated visitors: These visitors are authenticated through identity
providers. For example, a valid OAM user can be authenticated by an identity

Chapter 42
Configuring an Identity Provider

42-4

provider created to identify those OAM users that reach Visitor Services via a
request call.

• Unauthenticated/Anonymous visitors: This type of visitor never signs in, so
Visitor Services has no attributes for this user. While Visitor Services cannot
identify anonymous visitors, if a client application (for example, WebCenter Sites)
decides to register them explicitly, these visitors become authenticated visitors
after their registration. The client applications can save attributes on their behalf
post registration. The website can store the Visitor Services-generated visitor ID in
a cookie and use it for associating the user sessions.

Configuring Identity Provider Settings
Whether you use the out of the box identity provider or create your own provider, the
identity provider’s settings described in this topic must be set in the Admin interface.

To configure an identity provider:

1. Log into the Admin interface.

2. On the tree, expand the Visitors Admin node.

3. Double-click the Identity Providers option.

The Identity Providers List page is displayed.

4. Click Add New.

The Visitors Identity Providers form is displayed.

5. In the Name field, enter a meaningful name.

6. In the Implementation box, either drop the implementation OSGi bundle in the
Drop File Here region, or click Browse to upload it. For example, to configure
OAM identity provider, use the OAMIdentityProvider implementation provided
with the Visitor Services application.

7. In the Configuration box, enter the configuration parameters of the identity
provider you are creating. For example, if you are configuring OAM identity
provider, the parameters are:

• Visitor Identity Header name: oam.headers.dn=OAM_REMOTE_USER

• Identity Storage Header name:
oam.headers.identityStorage=OAM_IDENTITY_DOMAIN

• Anonymous Visitor Identity Header value: oam.guest=Anonymous

Chapter 42
Configuring an Identity Provider

42-5

Figure 42-3 Visitors Identity Providers Form

When the LDAP embedded with OAM is down and requests made through OAM
do not reach Visitor Services, the Visitor Services application does not return any
response about the LDAP’s unavailability.

8. Click the Save icon.

The new identity provider is available on the Identity Providers List page.

To enable an identity provider for this site, first go to the Identity Providers List by
double-clicking the Identity Providers node in the Admin tree on the left. Then,
choose the Enable radio button for the provider you want to enable. At a time, only
one identity provider can be enabled for a site.

Integrating Oracle Access Manager (OAM) with Visitor Services
Before performing steps described in this section, ensure that you have configured
the OAMIdentityProvider provided with Visitor Services. The OAM identity provider
enables Visitor Services to communicate with OAM. Steps to configure this provider
are described in Implementing and Configuring Identity Providers.

After integrating OAM with Visitor Services as described in this section:

• Configure the OAM profile provider in Visitor Services. This profile provider will
retrieve the actual data from the OAM storage. Steps to configure the profile
provider are described in Implementing and Configuring Profile Providers and
Enrichment Rules.

Chapter 42
Configuring an Identity Provider

42-6

• Verify that the integration is successful.

Note:

The OAM-Visitor Services integration must be a standard implementation.

To integrate OAM Mobile & Social with Visitor Services:

1. Go to the OAM Admin console: http://host:port/oamconsole.

2. Click the Application Domains tab, then create an application domain.

Figure 42-4 Applications Domains

3. To create protection policies:

• Under the Application Domains page, on the Authentication Policies tab,
click Create Authentication Policy.

Chapter 42
Configuring an Identity Provider

42-7

Figure 42-5 Authentication Policies

• On the Authentication Policy page, from the Authentication Scheme drop-
down list, choose OICSchema and call it oicpolicy.

• Click Add for Resources, add /index.html, and then click Apply.

Figure 42-6 Authentication Policy - Authentication Scheme

• On the Authentication Policy page, click Protect Resource Policy.

• From the Authentication Scheme drop-down list, choose LDAPSchema so
that OAM uses LDAP as the AuthenticationModule.

• Click Add for Resources, add /sites/avi/home.html , /**. and then click
Apply.

Chapter 42
Configuring an Identity Provider

42-8

• From Launch Pad, open Authentication Module. Then, verify identity storage
used for the LDAP module (see the administrator’s guide for Oracle Access
Manager). This storage is used when configuring the LDAP profile provider.

4. Under Search, from the Resource Type drop-down list, select HTTP and then
click Search. Add the following resources if the search result doesn't return them.

• Add the following resources (see image below).

– /index.html

– /visitor-webapp/rest/*/visitor/**

– /visitors-webapp/rest/*

– /visitors-webapp/rest/*/visitor/current/**

– /sites/avi/*.*

– /visitors-webapp/**

– /sites/avi/home.html

– /**

• For /visitors-webapp/rest/*/visitor/**, choose the protection level as
Excluded.

• For /visitors-webapp/rest/**, choose the protection level as Unprotected.

Chapter 42
Configuring an Identity Provider

42-9

Figure 42-7 HTTP Resource Type

5. Create an SSO agent:

• On the Launch Pad, click SSO Agent Registration.

• Select 11g Webgate.

• Complete the form.

Figure 42-8 svsSSOAgent

Chapter 42
Configuring an Identity Provider

42-10

6. Configure Oracle Http Server (OHS):

a. Go to Enterprise Manager: http://host:port/em.

b. In the navigation tree, expand Web Tier, then select the OHS instance.

c. To create a new virtual host, choose Administration and then choose
mod_wl_ohs Configuration from the Oracle Http Server drop-down menu.

Figure 42-9 mod_wl_ohs Configuration

d. Edit the mod_wl_ohs.conf file.

e. In the section containing the WebLogicCluster directive, set
DynamicServerList to OFF.

f. Save the mod_wl_ohs.conf file and restart OHS.

7. Configure Mobile and Social:

a. From Launch Pad, open Social Identity.

b. Create an application profile with the same name that you specified while
creating the application domain.

c. Map application user attributes and Internet identity provider user attributes.

Figure 42-10 Application User Attribute and Internet Identity Provider
User Attributes Mapping

Configure the profile provider, as described in Implementing and Configuring Profile
Providers and Enrichment Rules.

Chapter 42
Configuring an Identity Provider

42-11

For your reference here is a sample code that lets you use the Java Script client with
OAM:

<html>

<head>
 <title>Sample Page</title>
 //Assuming OAM is at 'http://<host>:<port>',(Actual Visitor Service
application may be deployed somewhere else. Its location must be
registered with OAM),
 //use OAM server in URLs for Visitor Services to go to the Visitor
Services application via OAM so that the identity token set by OAM is
available to Visitor Services.
 <script src="<host>:<port>/visitors-webapp/js/client.js"></script>
</head>

<body>

<script type="text/javascript">

 var handleSuccess = function(visitorId)
 {
 // Got visitorId
 console.log("visitor id received from visitor Services =
"+visitorId);
 };

 var handleError = function(error)
 {
 conole.log(error.errorCode);
 };

 var client = new com.oracle.sites.visitors.Client("<host>:<port>/
visitors-webapp"); //URL having OAM instance as server part
 client.getVisitorId(handleSuccess,handleError);
</script>

</body>

</html>

Verify OAM-Visitor Services integration

1. Get a visitor Id using the Visitor Services Javascript client. For this, a page in
WebCenter Sites, which is protected in OAM through policy 'protected', can be
called via OHS so that the user is asked by OAM to log in. The use provides his
credentials and lands on the page where the Javascript client code is present.
The visitor ID received by the Javascript client is an OAM authenticated visitor ID.
Use the OHS virtual host and port instead the host and port of Visitor Services.
Do not specify any external ID because OAMIdentityProvider gets it from request.
Generate visitor ID for each call.

2. Log into Visitor Services using an existing user.

Chapter 42
Configuring an Identity Provider

42-12

3. Get the visitor ID as described in step 1. User ID should be generated on the first
call, and it should be the same for each call.

4. Try to get the visitor's linked profiles using the Visitor Services REST API for the
user generated in step 3.

Creating a Custom Identity Provider: Example
OAM identify provider is provided with Visitor Services out of the box. This section
guides you to implement a custom identify provider with the help of an example.

The following points can guide you to implement a sample identity provider:

• Every identity provider must be an OSGi bundle, and this bundle should consist
of the provider implementation and an activator to register the provider to Felix
runtime.

• The implementation class should first implement the identity provider interface and
then the profile provider interface. It must implement the identity provider interface
with at least one of the following methods fully implemented:

– Identity getVisitorIdentity(String externalId);

– Identity getVisitorIdentity(HttpServletRequest request);

• The method shown in the following example returns the identity (just the
Distinguished Name (dn)), which is passed to the profile provider to fetch the
profile information.

package com.oracle.sites.visitors.api.providers;

import ...
public interface IdentityProvider
{
String getProviderName();
void setProviderConfig(Properties config);
Identity getVisitorIdentity(HTTPServletRequest request);
}

• The following is a sample code to implement an identity provider. This
implementation uses an external Id consisting of a provider name and a user dn:

public class SampleIdentityProvider implements IdentityProvider
{
 private static final String PARAMETER_EXTERNAL_ID_NAME =
"parameter.external_id";
 private static final String COOKIE_NAME_ATTRIBUTE_NAME =
"cookie.external_id";

 @override
 public Identity getVisitorIdentity)HttpServletRequest request)
 {
 String externalId = getExternalIdFromCookie(request);

 if (null ==externalId || externalId.isEmpty())
 {
 externalId = getExternalIdFromParams(request);
 }
 //Returns an identity object based on external id
 return getVisitorIdentity(externalId);
 }

Chapter 42
Configuring an Identity Provider

42-13

The system calls the profile provider with the identity object returned above. Every
time a user requests for the visitor Id, the external id (provider and dn) is stored in
the cookie for the future use.

• OSGi bundles require an activator class to activate the code contained in the
bundles. Write an activator class that can register the sample identity provider.

public class Activator implements BundleActivator {
 /**
 * Implements BundleActivator.start(). Prints
 * a message and adds itself to the bundle context as a service listener.
 * @param context the framework context for the bundle.
 **/
 public void start(BundleContext context)
 {
 context.registerService (ProfileProvider.class.getName(),
 new
SampleProfileProvider(context.getBundle().getLocation()), null);
 }

 /**
 *Implements BundleActivator.stop().Prints a message
 *and removes itself from the bundle context as a service listener.
 *@param context the framework context for the bundle.
 **/
 public void stop(BundleContext context)
 {
 }
}

• Configure the identity provider by following the steps described in Configuring an
Identity Provider.

Configuring an Access Provider
An access provider controls applications’ access to visitor profile information. The
access provider service works in pair with the REST client. For example, for the
container protection authentication you should upload the access provider bundle with
basic authentication settings on Visitor Services, and set the same authentication type
on the REST client.

See Access Provider Reference.

Visitor Services ships with a basic LDAP access provider for authentication against an
LDAP directory.

Follow the steps in this section to enable an access provider to use with Visitor
Services:

To configure an access provider:

1. Log in to the Admin interface.

2. On the tree, expand the Visitors Admin node.

3. Double-click the Access Providers option.

The Access Providers List page is displayed.

4. Click Add New.

The Visitors Access Providers form is displayed.

Chapter 42
Configuring an Access Provider

42-14

Figure 42-11 Visitors Access Providers Form

5. In the Name field, enter a meaningful name.

6. In the Implementation box, either drop the implementation OSGi bundle (For
example, ContainerBasicAccessProvider) in the Drop File Here region, or click
Browse to upload it.

The access provider is a OSGi bundle containing the files required by Visitor
Services. This OSGi bundle is an actual JAVA-based implementation of the
communication required between Visitor Services and the desired storage. The
access provider OSGi bundle consists of the following:

• The Activator class which is the entry point of the OSGi framework.

• The MANIFEST.mf file with OSGi Headers described in this table:

Table 42-1 OSGi Headers in MANIFEST.mf File

Header Name Description

Bundle-Name Name of the access provider.

Bundle-SymbolicName com.sample

Bundle-Description Description of the access provider

Bundle-ManifestVersion 1

Bundle-Version 1.0.0

Bundle-Activator com.sample.Activator

Chapter 42
Configuring an Access Provider

42-15

Table 42-1 (Cont.) OSGi Headers in MANIFEST.mf File

Header Name Description

Import-Package org.osgi.framework;version=4.2.1,org.js
on,
com.oracle.sites.visitors.api.providers,
com.oracle.sites.visitors.api.providers
.beans

• The name of the configuration file must be the same:
accessProviderConfig.properties. This file must contain key=value pairs
of properties required by current implementation of the access provider. The
configuration file must always exist in the OSGi bundle, even though blank.

7. In the Configuration box, enter the configuration of the access provider you
are creating. For example, for ContainerBasicAccessProvider, enter role=role
Configured In Container for Visitors Services.

If Sitewrapperapi is used, then you must also
set the following properties in the Property Management
Tool: wcsites.visitors.auth.password, visitors.rest.authalias,
visitors.rest.authtype, visitors.rest.authheader.

8. Click the Save icon.

The new access provider is available on the Visitors Access Providers page.

9. To enable this access provider for this site, go to the Access Providers List by
double-clicking the Access Providers node in the Admin tree on the left. Then,
choose the Enable radio button for the provider you want to enable. At a time, only
one access provider can be enabled for a site.

Configuring One or More Profile Providers
A profile provider lets you associate a visitor identity with a visitor profile. Visitor
Services ships with an Eloqua profile provider that you integrate with Eloqua, an
Oracle Access Manager profile provider for Oracle Access Manager, and a sample
profile provider.

See Profile Provider Reference.

You can configure a profile provider by:

• Using the Eloqua provided with Visitor Services. See About Configuring Eloqua
Profile Provider.

• Using the Oracle Access Manager profile provider (OSGi bundle) provided with
Visitor Services. See Configuring Profile Provider Settings and Enrichment Rules.

• Developing your own custom profile provider as an OSGi bundle, then configuring
it in Visitor Services. See Creating a Custom Profile Provider: Example.

Note:

Do not change the attribute names of the profile providers once these
attributes are set.

Chapter 42
Configuring One or More Profile Providers

42-16

Configuring Profile Provider Settings and Enrichment Rules
To configure a profile provider and enrichment rules:

1. Log in to the Admin interface.

2. On the tree, expand the Visitors Admin node.

3. Double-click the Profile Providers option.

The Profile Providers List page is displayed.

Figure 42-12 Profile Providers List

4. Click Add New.

The Visitors Profile Providers form is displayed.

5. In the Name field, enter a meaningful name for the profile provider you are
configuring. In case of the OAM identity provider, the name of the profile provider
should be the same as that of the embedded LDAP store.

6. Next to the Implementation field, click Browse to upload the profile provider
OSGi bundle. If LDAP is used, then upload the LDAP profile provider provided with
Visitor Services, otherwise use your custom implementation.

The profile provider OSGi bundle consists of the following:

• The Activator class which is the entry point of the OSGi framework.

• The MANIFEST.mf file with OSGi Headers.

Table 42-2 OSGi Headers in MANIFEST.mf File

Header Name Description

Bundle-Name Name of the profile provider.

Bundle-SymbolicName com.sample

Bundle-Description Description of the profile provider

Bundle-ManifestVersion 1

Bundle-Version 1.0.0

Bundle-Activator com.sample.Activator

Chapter 42
Configuring One or More Profile Providers

42-17

Table 42-2 (Cont.) OSGi Headers in MANIFEST.mf File

Header Name Description

Import-Package org.osgi.framework;version=4.2.1
,org.json,
com.oracle.sites.visitors.api.pr
oviders,
com.oracle.sites.visitors.api.pr
oviders.beans

• The name of the configuration file must be the same:
profileProviderConfig.properties. This file must contain key=value pairs
of properties required by current implementation of the profile provider. The
configuration file must always exist in the OSGi bundle even if the file is blank.

7. In the Configuration box, enter configuration parameters for your profile provider.
If you are using the LDAP profile provider, see this table:

Table 42-3 LDAP Profile Provider Configuration Parameters

Parameter Value

LDAP Address Format: ldap://<host>:<port>/.

Base Distinguished Name for
users

BaseUserDN=cn=Users,dc=com

Distinguished Name of the
manager (admin)

AdminDN=cn=admin,dc=com

Password Password of the manager (admin).
AdminPassword=password

LDAP attribute used as the
user login name

Default is uid. LoginUserAttribute=uid.

Supported LDAP
objectClasses

ObjectClasses=top;inetOrgPerson

LDAP profile attributes ProfileAttributes=cn,sn,displayName,mail,titl
e,givenName,name

Chapter 42
Configuring One or More Profile Providers

42-18

Figure 42-13 Visitors Profile Providers Form

8. In the Enrichment Rule box, enter enrichment rules you wish to apply on visitor
profiles. Enrichment rules includes attributes that define visitors profile. These
rules are based on multiple visitor profiles available in different storages, as
well as arbitrary attributes that customers wish to add to visitor data that Visitor
Services will be collecting and providing to applications.

To configure enrichment rules for LDAP, CRM, and Eloqua profile providers, dn
used in LDAP profile provider must be the same as the name in the CRM profile
provider, the CRM profile provider includes the email attribute, and the Eloqua
profile provider includes the Id attribute. Thus, to allow enrichment process to run,
profile providers should be configured as follows:

• Add the following enrichment rule to the LDAP profile provider: dn=CRM:name

• Add the following enrichment rules in CRM profile provider:

– name=LDAP:dn

Chapter 42
Configuring One or More Profile Providers

42-19

– Id=ELOQUA:Id

• You can write the enrichment rule for the Eloqua profile provider based on the
Id attribute. For example:

Eloqua enrichment rule for LDAP:

Id=eloqua:Id

Eloqua enrichment rule for unknown profile providers:

dn=eloqua:id

Consider the following:

• In case of LDAP profile provider, the LDAP embedded with OAM does
not support search for some attributes such as homePhone, employeetype,
departmentnumber, homepostaladdress, c, l, employeenumber. Therefore,
enrichment rules based on these attributes may not work.

• Oracle Virtual Directory's search functionality supports only those attributes
that use ASCII characters.

9. Click the Save icon.

A new row is created in the Providers table. The Visitor Services log is updated
confirming that the new provider has been added.

The new profile provider is available for editing on the Profile Providers List page.

10. To enable this profile provider, go to the Profile Providers List by double-clicking
the Profile Providers node in the Admin tree on the left. Then, select Enable
check boxes for the providers you want to enable. You can enable multiple profile
providers simultaneously.

About Configuring Eloqua Profile Provider

To use the Eloqua profile provider, you must:

1. Follow the procedure described in Configuring Profile Provider Settings and
Enrichment Rules to create a profile provider for Eloqua.
Ensure that you enter the details of the Eloqua provider instance in the
Configuration box.

For example:

##
###############################
ELOQUA SETTINGS
##
###############################

Auth Settings
#######################################
#
Client's Company name
#
company = OraclePOC

#

Chapter 42
Configuring One or More Profile Providers

42-20

Client's user name
#
user = username

#
Client's user password
#
password = password

Proxy Settings
#######################################
#
Use proxy in provider
#
useProxy = true

#
Proxy server host
#
proxyHost = www-proxy.us.oracle.com

#
Proxy server port
#
proxyPort = 80

#
Proxy server type
This can be "DIRECT", "HTTP", or "SOCKS"
#
proxyType = HTTP

Search Settings
#######################################
#
Eloqua REST URL
#
restUrl = https://secure.eloqua.com/API/REST/1.0

#
Depth or level of visitor detail returned.
This can be "minimal", "partial", or "complete".

searchDepth = partial

2. To enable the Eloqua Profile Provider profile provider, go to the Profile Providers
List by double-clicking the Profile Providers node in the Admin tree on the left.
Then, select Enable check boxes for Eloqua Profile Provider .

Chapter 42
Configuring One or More Profile Providers

42-21

Note:

Eloqua does not support email-based search. Therefore, enrichment rules
based on the email field in Eloqua do not work. Only Id-based search is
supported. Ensure that the identity provider is configured in such a way that it
identifies the user Id in Eloqua so the profile provider can fetch visitor profile
details.

Creating a Custom Profile Provider: Example
Visitor Services comes packaged with LDAP profile provider, Eloqua profile provider,
and a sample profile provider. The following points can guide you to implement a
custom CSV profile provider:

• Every provider must be an OSGi bundle, and this bundle should consist of the
provider implementation and an activator to register the provider to Felix runtime.

• The implementation class should first implement the identity provider interface and
then the profile provider interface.

• The profile provider method shown in the following example fetches the profile
information.

public interface ProfileProvider
{
String getProviderName();
RawProfile getProfile(String dn);
List<RawProfile> search(String attribute, String value);
void setProviderConfig(Properties config);

• Write an activator class that can register the sample profile provider:

public class Activator implements BundleActivator {
 /**
 * Implements BundleActivator.start(). Prints
 * a message and adds itself to the bundle context as a service listener.
 * @param context the framework context for the bundle.
 **/
 public void start(BundleContext context)
 {
 context.registerService (ProfileProvider.class.getName(),
 new
SampleProfileProvider(context.getBundle().getLocation()), null);
 }

 /**
 *Implements BundleActivator.stop().Prints a message
 *and removes itself from the bundle context as a service listener.
 *@param context the framework context for the bundle.
 **/
 public void stop(BundleContext context)
 {
 }
}

• In the following sample implementation, the dn passed for the identity object can
be used to get the raw profile information. The profiles are loaded from *.csv file.

Chapter 42
Configuring One or More Profile Providers

42-22

ID,Name,Email,Address,Country,City
1,Alek,Alek.Z@mycompany.com,Kyiv,Ukraine,Kyiv
2,Avi,avi.n@mycompany.com,Gachibowli,India,Hyderabad
3,Joe,Joe.d@mycompany.com,Miyapur,India,Hyderabad
4,Reva,reva.p@mycompany.com,Kukatpally,India,Hyderabad

@Override
public RawProfile getProfile(String dn) {
 List<CSVProfile> profiles = csvManager.getProfiles();
 CSVProfile selected = null;
 for (CSVProfile p : profiles) {
 if (p.getName().equalsIgnoreCase(dn)) {
 selected = p;
 break;
 }
 }

 if (selected == null)
 return null;
 RawProfile rawProfile = new RawProfile();
 rawProfile.setUserId(selected.getId());
 rawProfile.setProviderId(getProviderName());
 rawProfile.setAttributes (getAttributes (selected));
 return rawProfile;
 }

 private JsonObject getAttributes(CSVProfile csvProfile)
 {
 JsonObject attributes = new JsonObject();

 attributes.addProperty("email", csvProfile.getEmail());
 attributes.addProperty("address", csvProfile.getAddress());
 attributes.addProperty("country", csvProfile.getCountry());
 attributes.addProperty("city", csvProfile.getCity());
 return attributes;
 }

• Write an activator class that can register the sample profile provider:

public class Activator implements BundleActivator {
 @Override
 public void start(BundleContext bundleContext) throws Exception {
 bundleContext.registerService(ProfileProvider.class.getName(),
 new
CSVProfileProvider(bundleContext.getBundle().getLocation()), null);
 }

 @Override
 public void stop(BundleContext bundleContext) throws Exception {

 }
}

• Configure the profile provider by following the steps described in Configuring One
or More Profile Providers.

Creating One or More Aggregation Templates
Based on visitor profiles, an aggregation template helps determine what information
should be sent to the site visitors. For example, you can call an aggregation template

Chapter 42
Creating One or More Aggregation Templates

42-23

from Engage to identify the attributes that you want to use for recommendations. You
can create aggregation templates using Velocity or JavaScript.

See Aggregation Template Reference.

To configure aggregation templates:

1. Log in to the Admin interface.

2. On the tree, expand the Visitors Admin node.

3. Double-click the Aggregation Templates option.

The Aggregation Templates List page is displayed.

Figure 42-14 Aggregation Templates List

4. Click Add New.

The Visitors Aggregation Templates form is displayed.

5. In the Name field, enter a meaningful name for the template you are configuring.

6. In the Language field, choose either Velocity or JavaScript.

7. In the Template box, enter aggregation template code. The following example
shows a sample aggregation template that compiles visitor information from
multiple profile storages. This sample is a Velocity code.

Sample Velocity Code for Creating an Aggregation Template

#set($sn ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).sn} != "null")
 #set($sn = ${profiles.LDAPProfileProvider.get(0).sn.getAsString()})
 #end

 #set($displayName ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).displayName} != "null")
 #set($displayName = $
{profiles.LDAPProfileProvider.get(0).displayName.getAsString()})
 #end

 #set($mail ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).mail} != "null")
 #set($mail = $
{profiles.LDAPProfileProvider.get(0).mail.getAsString()})
 #end

 #set($homePhone ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).homePhone} != "null")
 #set($homePhone = $
{profiles.LDAPProfileProvider.get(0).homePhone.getAsString()})
 #end

Chapter 42
Creating One or More Aggregation Templates

42-24

 #set($name ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).name} != "null")
 #set($name = $
{profiles.LDAPProfileProvider.get(0).name.getAsString()})
 #end

 #set($description ="Not Provided")
 #if(${profiles.LDAPProfileProvider.get(0).description} != "null")
 #set($description = $
{profiles.LDAPProfileProvider.get(0).description.getAsString()})
 #end

#else
 #set($otherProvider = "other profile provider used.")
#end

#if (${profiles.has("LDAPProfileProvider")})
{
"Name ": "$name",
"displayName ": "$displayName",
"description ": "$description",
"sn ": "$sn",
"mail ": "$mail",
"homePhone ": "$homePhone"
}
#else
{
"otherProvider ": "$otherProvider"
}
#end

The following example shows a sample aggregation template that compiles visitor
information from multiple profile storages. This sample is a Javascript code that
does the same as the Velocity code above:

Sample JavaScript Code for Creating an Aggregation Template

function aggregate()
{
 var result={};
 if(profiles.get("LDAPProfileProvider"))
 {
 var NOT_PROVIDED_LABEL = "Not Provided";
 var internalAttrs =
JSON.parse(profiles.get("LDAPProfileProvider").get(0).getAttributes(
));

 result.Name = internalAttrs.name || NOT_PROVIDED_LABEL;
 result.displayName = internalAttrs.displayName ||
NOT_PROVIDED_LABEL;
 result.description = internalAttrs.description ||
NOT_PROVIDED_LABEL;
 result.sn = internalAttrs.sn || NOT_PROVIDED_LABEL;
 result.mail =internalAttrs.mail || NOT_PROVIDED_LABEL;
 result.homePhone = internalAttrs.homePhone ||
NOT_PROVIDED_LABEL;

 }

Chapter 42
Creating One or More Aggregation Templates

42-25

 else
 {
 result.otherProvider = "other profile provider used.";
 }
 return result;
}

Figure 42-15 Visitors Aggregation Templates Form

8. Click the Save icon.

The new aggregation template is available on the Aggregation Templates page.

Optimizing Experiences Using Visitor Services Data
To help you optimize visitors’ experience, extended attributes and activities collect
visitor information from multiple profiles of a visitor. You can also integrate Visitor
Services with Engage. In WebCenter Sites, page authors use this information to
design segments and recommendations to display relevant content to the targeted
users. Marketers use Visitor Services data for targeting, testing, and analysis.

Requesting visitor information involves two steps:

• Requesting the visitor ID.

• Requesting the visitor profile using a specified aggregation template.

Returns the aggregated template and specified attributes.

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-26

This section includes the following topics:

• How WebCenter Sites Components Request Visitor Services Profile Information

• Configuring Visitor Services with Engage

• Storing Additional Information with Extended Attributes and Activities

How WebCenter Sites Components Request Visitor Services Profile
Information

To enable communication between Visitor Services and client applications such as
WebCenter Sites, Visitor Services provides client APIs (Java and JavaScript) that are
executed in client applications to hit Visitor Services. Out of the box, Visitor Services
provides Java client for the server side and JavaScript client for the client side. Java
client is used when Visitor Services and applications try to access profile information
from server side. JavaScript client APIs are used when visitors, using applications
from browsers, try to communicate with Visitor Services. The difference between the
Java Client API and the JavaScript Client API is that the Java Client API is expected
to be running inside trusted applications such as the server side code in WebCenter
Sites. Therefore, these applications have the credentials available to authenticate
themselves before processing some sensitive operations on the visitor data (update
operation). The JavaScript Client executes inside a browser, and it is less secured.
Therefore, it can read the current visitor’s information only. Visitor Services provides
information about all the visitors' profiles to trusted applications. To visitors, it provides
information only about themselves.

Java and JavaScript client APIs have these functions in common. However, in case of
JavaScript the functions are for the current/logged in visitors.

• GetVisitorId: Gets the visitor's ID from Visitor Services using the external
ID stored in the SSO solution. In JavaScript APIs, this function is called
GetCurrentVisitorId. It gets the visitor ID for the current user from Visitor
Services.

• GetAggregatedProfile: Gets the aggregated profile from Visitor Services
using the existing visitor's ID. In JavaScript APIs, this function is called
GetCurrentAggregatedProfile. It gets the aggregated profile for the current user
from Visitor Services.

You can set profile expiration period from 0 day to any positive number (1 = 1
day). The expiration period determines how many days the profile information

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-27

fetched from external storage should remain in the Visitor Services database, until
this information is refreshed. If you do not specify an expiration period, then the
profile information is not refreshed at all. The General Configuration page, which
is accessed through the General Configuration node under the Visitors Admin
node, contains the Profile Update Period configuration. Edit this configuration to
set the expiration period.

• IsExists: Verifies if the visitor ID exists in the database. Whether a guest or
a registered user with some profile exists or not, the response will be true if
the visitor Id exists in the database. In JavaScript APIs, this function is called
IsCurrentExists. It verifies if the visitor ID exists in the database. Whether a
guest or a registered user with some profile exists in the database or not, the
response will be true if the visitor Id exists in the database.

• IsGuest: Verifies that visitor has no profiles in the database. Whether the visitor
information exists or not, the response will be true in both cases. In JavaScript
APIs, this function is called IsCurrentGuest. It verifies that the no visitor profile for
this guest visitor exists in the database. Whether the guest visitor is stored in the
database or not, the response will be true in both cases.

Java client is run at the server, while JavaScript is executed from the web browser.
The URLs for both are differently structured. For example:

• Java REST function for trusted applications: http://
visitorserviceshost:visitorservicesport/visitors-webapp/rest/v1/
visitor/id/690b507b-efb6-4c35-9e6e-0c9f2a28b37d/profile/aggregated/
arrg

In this URL notice id/690b507b-efb6-4c35-9e6e-0c9f2a28b37d. This is the
specified visitor ID (for the logged-in visitor, current is used in its place, as shown
in the next point.)

• JavaScript REST function for non-trusted
visitors: http://visitorserviceshost:visitorservicesport/visitors-webapp/
rest/v1/visitor/current/profile/aggregated/arrg

In the above URL the visitor Id path is replaced with the current context which
indicates that untrusted visitor can information only about himself. All REST calls
for untrusted customer include the current context.

When all applications are deployed on OAM, Oracle HTTP Protection is set to the
excluded security type. If a client application requests for profile information for which
the data is already prepared, Visitor Services Java client APIs' Send request (through
which already prepared data is provided to these applications) can be protected
through Visitor Services' own protection:

• Container Protection: All the information about users is stored in the container
storage, and Visitor Services only checks for users' roles. Oracle recommends
using the container protection if client's web server allows basic authentication.

• Visitor Services Protection: Use Visitor Services protection when a client's web
server doesn't support the basic authentication mechanism.

You can also implement your own access provider using Visitor Services API and
upload your provider through the Admin interface.

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-28

Note:

When a request for an aggregated or linked profile is processed with the
updated param set to false, the behavior of Visitor Services for expired
profiles is as follows:

• JMS configured for Visitor Services: The current request returns old
profile data while Visitor Services updates the profile in the background
to refresh the profile data in sometime.

• JMS not configured for Visitor Services: Returns the updated profile in
the request call since the background processing capability is dependent
on JMS.

It is recommended that each application has its own credentials for accessing REST
APIs. Visitor Services verifies this access by itself. Visitor Services REST APIs for
untrusted applications are secured by SSO, and in OAM the protection level is set to
unprotected. Visitor Services has no protected REST resources. Oracle recommends
using the Container protection.

See the Java API Reference for Oracle WebCenter Sites: Visitor Services.

Configuring Visitor Services with Engage
You can integrate Visitor Services with Engage to collect and provide visitor
information to Engage for use in segments and recommendations. In WebCenter
Sites, page authors use this information to design segments and recommendations
to display relevant content to the targeted users. To get profile information from
Visitor Services, developers or page authors use the Value Source field in the Visitor
Attributes form which is designed to collect and store visitor information as attributes.

1. In the Properties Management tool, ensure that Visitor Services properties are set,
as described in Oracle WebCenter Sites: Visitor Services Properties in Property
Files Reference for Oracle WebCenter Sites.

2. On the Visitor Services node in the Admin interface, configure the aggregation
template to be used in the recommendation or segmenting. See Creating One or
More Aggregation Templates.

3. In the Contributor interface, configure the Value Source field in the Visitor
Attributes form, using Expression Language (EL) to reference the data in
the aggregated template to populate the value of the visitor attribute. The
visitor attribute is then used for segmenting and evaluating recommendations.
For example, an EL expression in the Value Source field might look like
this, where Agg_Temp is an aggregated template that collects the visitors’
addresses, street numbers/name, and house address, AnotherTemplate identifies
a second aggregated template, My City is the city in which a visitor
lives, and Zip Code is the city’s zip code: ${Agg_Temp.Address.PostalCode},$
{AnotherAggregatedTemplate["My City"].ZipCode}. For more information
about EL, see https://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html.

4. In the Recommendation Reader API, create an implementation object that
includes the same attributes set up in the aggregation template. During execution,
the Recommendation Reader API interacts with Visitor Services to obtain the
aggregated template using the following methods:

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-29

https://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

• readSegments: Determines the Engage segments to which the user belongs,
after evaluating the visitor attributes provided or computed for the user. This
method returns a list of map items where the key/value pairs in the map items
describe the segments.

• retainSegments: Determines the user’s membership in the specified
Segments, after evaluating the visitor attributes provided or computed for the
user. This method returns a list of map items where the key/value pairs in the
map items describe the segments. This method is similar to the readSegments
method, but it only considers the supplied list of segments, not all available
segments.

• readRecommendations: Evaluates the named Engage Recommendation
based on the visitor attributes provided or computed for the user. This method
returns a list of map items where the key/value pairs in the map describe the
assets produced by the recommendation.

5. The readSegments, retainSegments, and readRecommendations APIs set the
svsvisitorid cookie if metadata used to address the call comes from Visitor
Services. No cookie is set if the segments or recommendations can be computed
without the use of Visitor Services. If the user has not logged in to Visitor Services,
then svsvisitorid is set to a guest Id. This guest Id is used for subsequent
segment or recommendation computation calls. If the user logs in, the developer
needs to set the correct svsvisitorid cookie for that user. Similarly, when the
user logs out, thesvsvisitorid cookie may need to be reset.

Linking Visitor Profiles and Managing Cookies
You can use the oracle.fatwire.integrations.svs.VisitorServiceHelper class to
get the current visitor's profile information and to manage visitor cookie lifecycles.

Suppose your website contains a Home page and a My Account page. If a visitor has
not logged into the Home page using the Visitor Services identity provider service, the
Helper API code (helper.getProfile(ics,aggregationTemplateName,..)) inside the
page sets a guest ID in the browser as a cookie. (Note that a guest ID has no profile
information.) If a link to the My Account page is protected through an authentication
mechanism and the visitor logs in using the identity provider service before coming
to the My Account page, then the visitor becomes an authenticated visitor. However,
because the Helper API already set the guest ID in the browser cookie in the Home
page, the cookie in the browser needs to be updated, by passing the updateNow
param as true (helper.getProfile(ics,aggregationTemplateName,true)) inside the
My Account page code. If the cookie is not updated, the My Account page won't
receive the authenticated visitor ID and the related profile information, and it will keep
using the guest visitor ID from the cookie.

In this example, the My Account page uses the following code:

VisitorServiceHelper helper = VisitorServiceHelper.getInstance();
Helper. getProfile(ics,<someAggregationTemplateName>,true);

In the above code, the behavior of the true value for the Boolean param is as follows:

• If the visitor ID from the browser cookie is null, it indicates that the visitor landed
directly on an authenticated page. Otherwise, it indicates that it is a guest ID: that
the ID does not exist in Visitor Services and was cached in the local browser only.
In this case, generate the new visitor ID and replace the value in the cookie.

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-30

• If the visitor ID from the cookie exists in Visitor Services, keep using this
ID, as the cookie links the two IDs. This is what happens when the guest
ID in the cookie is registered explicitly before it is used in the My Account
page. The code in the Home page either calls this API passing the Boolean
param as false or calls another method that takes only two parameters:
Helper. getProfile(ics,<someAggregationTemplateName>), where this parameter
is assumed to be false by default.

Storing Additional Information with Extended Attributes and
Activities

This section describes extended attributes and activities, and it explains how they work
in Visitor Services. This section includes the following:

• About Extended Attributes and Activities

• How to Use Extended Attributes and Activities in Visitor Services

About Extended Attributes and Activities
Extended attributes are based on visitors' characteristics such as, language, locale,
gender, and so on. Extended attributes relate to a visitor by the visitor Id and include
name and value. These attributes are specific to the applications. With an application's
approval, these attributes are stored in Visitor Services and used by other applications.
For instance, extended attributes from Engage, if approved, can be used by any other
application.

Extended activities are based on a visitor's actions on a website. For example,
opening a page, performing searches, bids etc. Activities relate to a visitor by the
visitor Id and include type, data, timestamp, and rating. These activities are specific
to the applications. With an application's approval, these activities are stored in Visitor
Services and used by other applications.

Extended activities and attributes are collected from all the profiles of the visitors. That
is, if a visitor has more than one linked profile, then the get rated(latest) function
returns the same result for all profiles.

Adding Activities in REST using a Java Client: Example

VisitorsClient client = new VisitorsClient(..);
Map<String,String> acts = new HashMap<>();
acts.put("product", " dell v560"); // type,data
acts.put("catalog", " laptops");
acts.put("web_page", "http://online.store.com/dell/v560");
client.addActivity("c11e123e-7fd0-4e55-9f6f-ef581e30d86a", acts);

Getting Activities in REST using a Java Client: Example

can get activities using two types:
getRated: fetches most rated activities
getLatest: fetches latest activities

getRated Method:
VisitorsClient client = new VisitorsClient(..);
List<Activity> res = client.getRated("c11e123e-7fd0-4e55-9f6f-ef581e30d86a",
"product", 5);

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-31

getLatest Method:
VisitorsClient client = new VisitorsClient(..);
List <Activity>res = client.getLatest("c11e123e-7fd0-4e55-9f6f-ef581e30d86a",
"product", 5);

5 - count. How many activities are needed

Adding Extended Attributes in REST using a Java Client: Example

VisitorsClient client = new VisitorsClient(..);
Map<String,String> attrs = new HashMap<>();
attrs.put("language", "en"); // name,value
attrs.put("gender", "male");
client. saveExtendedAttributes ("c11e123e-7fd0-4e55-9f6f-ef581e30d86a", attrs);

How to Use Extended Attributes and Activities in Visitor Services
The extended attributes are available for aggregation and enrichment in Visitor
Services:

• Aggregation: Linked profiles have an additional profile named extended that
contains all the extended attributes for the visitor.

• Enrichment: You can add enrichment rules for extended attributes as Extended
Attribute Configuration’s value. Visitor Services will use these enrichment rules
to enrich visitors profiles. An example of extended attribute is a phone number
that a visitor leaves for callback on a website. This number can be used as
the visitor's extended attribute in Visitor Services to find the visitor's profiles
from other profile stores. So the enrichment rules for this example would be
callback_phone=LDAP:Personal_Phone.

The following process flow involves a sample online store, a visitor, and the Visitor
Services activities functionality:

1. A visitor opens a browser and navigates to http://online.store.com/dell/v560
and then selects the Dell v560 laptop.

2. The browser sends a request to the web server for the page with URL: http://
online.store.com/dell/v560

3. The web server calculates the required data and performs the following
operations:

• (Optional) Fetches data from the database.

• (Optional) Requests Visitor Services for the visitor's interests so they can
include advertisements about the most relevant/interested (rated) goods.

Sample code: List<Activity> res =
client.getRated("c11e123e-7fd0-4e55-9f6f-ef581e30d86a", "product",
5);

Visitor Services returns that this visitor is interested in Lenovo laptops (this
information is based on previous activities).

• Includes advertisements related to Lenovo laptops.

• (Optional) Saves the recent activities of the visitor and requests Visitor
Services to add activities:

First: visited page = 'http://online.store.com/dell/v560'

Chapter 42
Optimizing Experiences Using Visitor Services Data

42-32

Second: product = 'dell v560'

Sample Code:

Map<String,String> acts = new HashMap<>();
acts.put("product", " dell v560'");
acts.put("web_page", "http://online.store.com/dell/v560");
client.addActivity("c11e123e-7fd0-4e55-9f6f-ef581e30d86a", acts);

Visitor Services Reference
Here is information about Visitor Services architecture, data model, aggregation
templates, and providers such as Identity, Profile, Access.

• About the Visitor Services Architecture

• Identity Provider Reference

• Access Provider Reference

• Profile Provider Reference

• Aggregation Template Reference

• Diagnostics

• About the Visitor Services Data Model

• Glossary

About the Visitor Services Architecture
Visitor Services fetches visitor's profiles from different profile storages and lets
developers store visitor profile information (such as city, education, interests, job
profile, and so on) in a repository as different profile attributes. Visitor Services allows
developers to query, enrich, store, and link visitor profiles for tracking usage and
effective content targeting.

Visitor Services communicates with profile storages through profile providers that
collect user data requested by applications. To access user information, Visitor
Services relies on customers' single sign-on (SSO) solutions. Visitor Services uses
identity providers to communicate with SSO solutions.

The following figure shows the Visitor Services architecture. Visitor Services includes
the following integration layers:

• Profile Providers: Enable communication between Visitor Services and profile
storages.

• Identity Provider: Enables communication between Visitor Services and its SSO
solution.

• REST Services: Enable communication between Visitor Services and its client
APIs.

Chapter 42
Visitor Services Reference

42-33

Figure 42-16 Visitor Services Architecture

These integration layers are designed to support custom identity and profile providers
in Visitor Services.

Identity Provider Reference
This reference includes the following topics:

• About the Identity Providers

• How Visitor Services Identifies Visitors to Your Website

About the Identity Providers
The Identity Provider Service enables integration between Visitor Services and the
customer's SSO system to provide a communication mechanism between Visitor
Services and the SSO system. When a browser requests the REST service for a
visitor's profile, the REST service asks for an identify object from the identity provider.
The identity provider passes on the identity object (consisting of DN and Provider)
to the profile provider. If the user exists in the storage, the profile provider returns a
unique Id. Otherwise, the user is considered a guest user, and therefore, a new unique
Id is returned. Then, the REST service returns the visitor Id to the browser.

Using some identifiers such as a browser cookie ticket, identity provider provides the
following information (called identity in Visitor Services) about the requested visitor:

• Visitor's login name (unique name in the storage).

• The name of the storage in which the visitor information is stored.

Chapter 42
Visitor Services Reference

42-34

The identity provider functionality is an integral part of the Visitor Services application
and cannot be accessed directly. Therefore, all requests about getting visitors' IDs
are sent to the identity provider through REST services. Some SSO solutions work
with external IDs such as cookie tickets, while others take HTTP request as an input
parameter. Keep in mind that the identity provider implementation should support both
situations.

How Visitor Services Identifies Visitors to Your Website
Visitor Services helps identify website visitors by providing each with a unique visitor
ID. It identifies visitors as one of the following types:

• Authenticated: Visitor Services identifies visitors who are registered with the
website and can authenticate themselves through an SSO solution such as Oracle
Access Manager (OAM) or SiteMinder.

• Unauthenticated/Anonymous: This type of visitor never signs in, so Visitor
Services has no attributes for this user. While Visitor Services cannot identify
anonymous visitors, if a client application (for example, WebCenter Sites) decides
to register them explicitly, these visitors become authenticated visitors after their
registration. The client applications can save attributes on their behalf post
registration. The website can store the Visitor Services-generated visitor ID in a
cookie and use it for associating the user sessions.

To handle authenticated visitor profiles, Visitor Services integrates with Oracle Access
Manager (OAM) out of the box, including OAM Mobile and Social. For other SSO
solutions, developers can create extensions and configure custom identity providers.

See Configuring an Identity Provider.

Access Provider Reference
This service is used to protect the connection between Visitor Services and
applications. You can configure either basic, LDAP-based authentication, or any
other, to verify the authenticity of the clients that interact with Visitor Services. If
authentication is not configured through the access provider service, all resources are
considered public and can be accessed by anyone. It is strongly recommended that
you set up the access provider in production systems.

Note:

The JavaScript API used to connect applications with Visitor Services on the
client side is considered a public API, and it is not supported by the access
provider service.

This reference includes the following topics:

• About Container Protection and Visitor Services Protection

• How Container Protection Works

• How Visitor Services Protection Works

Chapter 42
Visitor Services Reference

42-35

About Container Protection and Visitor Services Protection
The access provider service provides the following types of protection:

• Container Protection: All the information about users is stored in the container
storage, and Visitor Services only checks for users' roles. Oracle recommends
using the container protection if client's web server allows to configure basic
authentication. The basic authentication requires the following:

– Web Server: user = "username", password="pass", role="svsclient"

– Access Provider: Upload the access-provider-container-basic.jar bundle.
Config: role= svsclient

– REST Client: Initialize the client with new HttpAuthentication("username
"," pass ")

• Visitor Services Protection: Information about users can be stored in LDAP,
database, etc. If client's web server doesn't support the basic authentication
mechanism, use the Visitor Services protection.

The basic LDAP protection from Visitor Services requires the following:

– Access Provider: Upload the access-provider-ldap-basic.jar bundle.

Config:

* LDAP connection settings are the same as LDAP profile provider.

* auth type settings: HeaderName=Visitors-Authorization and
AuthAlias=Visitors-Basic

– LDAP with user's username along with password.

– REST Client: Initialize the client with new
VisitorsHttpAuthentication("username","pass")

How Container Protection Works
1. Client sends a profile information request to Visitor Services. This request contains

the required authentication, that is, auth token in the Authentication header.

2. Web server halts this request and checks the Authentication header.

3. If the user cannot be authenticated, the web server returns the 401 error.

4. If the user is authenticated successfully, the web server adds user roles to the
request.

5. The request comes to the access provider.

6. The function boolean check(HttpServletRequest request) checks the request
for the required role.

7. If the role check is successful, Visitor Services processes the request.

How Visitor Services Protection Works
1. Client sends a profile information request to Visitor Services. This request contains

the required authentication information.

Chapter 42
Visitor Services Reference

42-36

2. When the request comes to the access provider service, the function boolean
check(HttpServletRequest request) checks the request for the authentication
information.

3. The access provider checks its storage to verify the authentication information that
came with the request.

4. Visitor Services processes the request.

Profile Provider Reference
This reference includes the following topics:

• About the Profile Providers and Enrichment Service

• How Visitor Services Gathers and Enriches Visitor Attributes from Multiple
Channels

About the Profile Providers and Enrichment Service
Profile providers let Visitor Services fetch visitor profile information from respective
repositories. The Enrichment service let Visitor Services fetch a visitor's profile
information from all the repositories for which profile providers exist.

• Profile Providers

• Enrichment Service

• How Profile Provider and Enrichment Services Work

Profile Providers
The main task of Visitor Services is to retrieve visitor information from external
storages. These storages could be text files containing some structured data, an
LDAP, or external web services built on some database. To fetch visitor data from
profile storages, developers can implement custom profile providers and plug them in
to Visitor Services. For each profile storage, there can be one profile provider.

For customers who use LDAP and Eloqua, profile providers are available out of the
box. These profile providers are available as OSGi bundles that are installed using the
Admin interface. These OSGi bundles are actual JAVA-based implementation of the
communication required with the desired storage.

Note:

To use Eloqua profile provider and get the visitor Id, the -
DUseSunHttpHandler=true parameter must be set in the Visitor Services
managed server if the application server being used is the WebLogic server.

Enrichment Service
The Enrichment service enables Visitor Services to search for visitor information in
different profile storages using profile providers. Each profile provider is configured
with a single set of rules that enable Visitor Services to search for information that all
profile providers search for. Therefore, enrichment rules collect visitor information from

Chapter 42
Visitor Services Reference

42-37

all profile providers. These rules have the following structure:
AttributeNameInCurrentProfileProvider=DifferentProfileProviderName:Attribu
teNameInThatProfileProvider.

When Visitor Services receives a request to get a visitor's profile from LDAP, in
the background, Visitor Services also searches for this visitor's profile in CRM by
enrichment rules specified for the corresponding profile. If it finds the visitor profile
in CRM, it searches Eloqua using email address as the search criterion. Enrichment
process is time consuming. Therefore, when a visitor's profile is retrieved from a
storage using profile provider for the first time, the process runs as a separate flow in
the background.

When Visitor Services has collected visitor information from multiple storages, it
compiles them (based on aggregation templates) for applications such as Engage.

How Profile Provider and Enrichment Services Work
The figure below shows how Visitor Services communicates with profile providers to
get raw profiles from profile storages and apply enrichment rules to the profiles.

Figure 42-17 Process Flow between Visitor Services and Profile Providers

Procedure based on the Process Flow Depicted in the figure above:

1. A visitor tries to log into Facebook.

2. The login request is passed via the SSO solution to the Facebook login page.

3. Visitor's credentials are passed to the SSO solution.

4. The session starts.

5. The website requests Visitor Services for visitor ID.

6. The SSO solution passes visitor's identity to Visitor Services.

Chapter 42
Visitor Services Reference

42-38

7. Visitor Services requests the Facebook profile provider for visitor's Facebook
profile.

8. The Facebook profile provider gets the visitor's Facebook profile from the
Facebook profile storage.

9. The Facebook profile provider returns the raw Facebook profile to Visitor Services.

10. The raw Facebook profile is saved to Visitor Services database.

11. Visitor Services gets enrichment rules for Facebook profile provider.

12. Visitor Services requests Google profile provider for Google profile.

13. The Google profile provider gets the visitor's Google profile from the Google profile
storage.

14. The Google profile provider returns the raw Google profile to Visitor Services.

15. Google profile and Facebook profile are linked and saved in Visitor Services
database.

16. Visitor Services gets enrichment rules for Google profile provider.

17. Visitor Services sends the visitor ID to the website.

How Visitor Services Gathers and Enriches Visitor Attributes from Multiple
Channels

Using profile providers, Visitor Services searches for and fetches visitor data from
multiple profile stores such as LDAP, Facebook, Eloqua, and CRM. Profile providers
for LDAP and Eloqua are provided. For other profile stores, developers can create and
configure custom profile providers.

For each visitor a profile provider finds, Visitor Services creates a raw visitor profile,
with the visitor ID and attributes found. For example, a visitor's name and email may
come from an LDAP profile provider, and his or her shipping address may come from a
CRM provider.

To help build a comprehensive visitor view, Visitor Services can search for and gather
visitor attributes from profile providers through profile enrichment, and link visitor
profiles. For example, for a visitor who logged in through OAM, Visitor Services might
find an email address in an LDAP provider profile and search for a matching email
address in an Eloqua profile.

See Configuring One or More Profile Providers.

Aggregation Template Reference
This reference includes the following topics:

• About Aggregation Templates

• How Visitor Services Merges Raw Visitor Profiles into a Single Aggregated Profile

• How Visitor Services Makes Aggregated Visitor Profiles Available for Targeting,
Testing, and Analysis

Chapter 42
Visitor Services Reference

42-39

About Aggregation Templates
An aggregation template is used to aggregate profile attributes from one or more
profile providers defined in Visitor Services. For example, different profile storages
use different names for the same attributes. A visitor's name and email Id may be
different in Google+ and Facebook. The Visitor Services aggregation service provides
aggregation templates that contain the following parameters to identify the attributes of
the same types irrespective of how they are named across different profiles:

• Metadata of the profile (List of attributes)

• Set of rules to combine information from different profiles

The requests made to the aggregation service go through the Visitor Services API
to which clients send visitor IDs and the aggregation templates. Each client has its
own profile structure irrespective of the visitor profile currently available in Visitor
Services. The aggregation service builds a profile using the application's template. An
aggregation template is a set of required attributes and rules using which attributes
are collected and compiled from different raw profiles. The structure of the aggregated
profile is always the same regardless of the list of available profiles in Visitor Services
for that visitor and regardless of the structure of raw profiles from different profile
providers.

How the Aggregation Service Works
The figure below shows how the aggregation service gets all linked profiles and the
required template when requested.

Figure 42-18 Process Flow: How the Aggregation Service Works

Procedure based on the Process Flow Depicted in Figure 42-18:

1. To get an aggregated profile of a visitor with the specific attributes, website
provides the visitor ID and the aggregation template name to the REST service.

2. The REST service sends the visitor ID and aggregation template name to the
aggregation service.

3. The aggregation service gets all the linked profiles available for the visitor ID from
the Visitor Services database.

Chapter 42
Visitor Services Reference

42-40

4. The aggregation service gets the aggregation template for the aggregation
template name provided by the REST service.

5. The aggregation service sends the aggregated profile based on the aggregated
template to the REST service.

6. The REST service sends the aggregated profile to the website.

How Visitor Services Merges Raw Visitor Profiles into a Single Aggregated
Profile

Profile aggregation uses aggregation templates to consolidate visitor attributes from
multiple visitor profiles into an aggregated profile. (Raw visitor profiles remain
separate.) You can create different aggregation templates depending on business
need. For example, the marketing department might request one template that
provides name, email address from LDAP, and phone number from CRM, and another
template that provides name from LDAP and mailing address data from CRM profiles.

In addition to combining visitor profiles from different sources, you can also use an
aggregation template to use stored profile information, compute a value found (for
example, total orders placed during the past year), and add the computed value as a
profile attribute.

See Creating One or More Aggregation Templates.

How Visitor Services Makes Aggregated Visitor Profiles Available for Targeting,
Testing, and Analysis

Visitor Services collects, links, and stores attributes into aggregated visitor profiles. To
make use of the profiles, WebCenter Sites components must request them via Visitor
Services APIs (Java Client and JavaScript) during the runtime.

Marketers can use visitor profiles from Visitor Services to determine and create
Engage segments. For example, a marketer might use visitor profile attributes
from Visitor Services such as age and income to create segments and deliver
recommendations.

For unauthenticated and unknown visitors, marketers can create segments for them
based on their attributes such as device used to access the site, time zone, locale,
browser, referrer (Facebook, Twitter, Bing), or IP address.

Diagnostics
Cache Tool Resources

If you would like to see what's inside Visitor Services, you should use the debug tool.

Cache Tool Resources:
GET

http://<host>:<port>/<context>/rest/v1/cachetool/{region}/list
The resource endpoint can be used to fetch the list of all the providers currently
installed in Visitor Services.

REQUEST:

Path Parameters: Name Description Format

Chapter 42
Visitor Services Reference

42-41

Region: Accepts the values common and shared_cache. Common returns the list of all the
installed providers, and Shared_cache returns the list of all the installed providers with
the date of install/update String.

RESPONSE:

Supported Media Types: application/json

200 Response: The list of installed providers.

Example 42-1 Example 1: Fetch the list of currently installed providers

curl -i -H "Accept: application/json" -X GET
http://<host>:<port>/<context>/rest/v1/cachetool/common/list
Response:
Content-Length:1111
Content-Type:application/json

{
 "type": "cacheToolResponse",
 "status": "success",
 "entry": {
 "entry": [
{
 "key": "profileProviderConfig.pr1",
 "value": "profileProviderConfig.pr1"
 },
 {
 "key": "profileProviderConfig.pr2",
 "value": "profileProviderConfig.pr2"
 },
 {
 "key": "profileProvider.pr1",
 "value": "profileProvider.pr1"
 },
 {
 "key": "profileProvider.pr2",
 "value": "profileProvider.pr2"
 },
 {
 "key": "identityProviderConfig.identityProvider1",
 "value": "identityProviderConfig.identityProvider1"
 },
 {
 "key": "identityProvider.identityProvider1",
 "value": "identityProvider.identityProvider1"
 }
]
 }
}

Chapter 42
Visitor Services Reference

42-42

Example 42-2 Example 2: Fetch the installed/updated time of currently
installed providers

curl -i -H "Accept: application/json" -X GET
http://<host>:<port>/<context>/<rest>v1/cachetool/shared_cache/tool
Response:

Content-Type:application/json
 {
 "type": "cacheToolResponse",
 "status": "success",
 "entry": {
 "entry": [
 {
 "key": "profileProviderConfig.pr1",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 },
 {
 "key": "profileProviderConfig.pr2",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 },
 {
 "key": "profileProvider.pr1",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 },
 {
 "key": "profileProvider.pr2",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 },
 {
 "key": "identityProviderConfig.identityProvider1",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 },
 {
 "key": "identityProvider.identityProvider1",
 "value": "Fri Sep 04 12:03:41 IST 2015"
 }
]
 }
}

About the Visitor Services Data Model
The configurations of identity, profile, and access providers are stored in the
WebCenter Sites database and retrieved by Visitor Services through the Sites REST
API. Visitors' raw profiles, attributes, and activities are stored in the local Visitor
Services database.

WebCenter Sites database includes the tables described in the table below. These
tables are created during WebCenter Sites installation.

Chapter 42
Visitor Services Reference

42-43

Table 42-4 Tables in WebCenter Sites Database

Table Name Description

WCS_ProfileProviders Contains profile providers' implementation, configuration, and
enrichment rules.

WCS_IdentityProviders Contains identity providers' implementation and configuration.

WCS_AccessPrividers Contains access Providers' implementation and configuration.

WCS_AggregatedTemplate
s

Contains aggregation templates.

WCS_VisitorsConfig Contains Visitor Services general configuration.

The local Visitor Services database includes the tables described in the table below.

Table 42-5 Tables in the Local Visitor Services Database

Table Name Description

WCS_VIS_Profiles Contains raw profiles from profile storages, provided by profile
providers.

WCS_VIS_Attributes Contains activities registered by applications.

WCS_VIS_Activity Contains extended attributes saved by applications.

The figure below shows the Visitor Services data model and the tables each of the
databases includes.

Chapter 42
Visitor Services Reference

42-44

Figure 42-19 Visitor Services Data Model

Glossary
Aggregation

The process of retrieving an aggregated profile from the raw profiles based on the
aggregation rules defined in Visitor Services.

Aggregated Profile

Unique profile attributes compiled by Visitor Services from different linked profiles of a
visitor.

Aggregation Template

Configurations to retrieve profile attributes from raw profiles to create an aggregated
profile.

Enrichment

Chapter 42
Visitor Services Reference

42-45

The process of capturing raw profiles of a visitor from all the profile storages based on
enrichment rules defined in Visitor Services.

External Id

An external user identifier provided by a SSO solution.

Identity

A pair of values: visitor's profile provider name and distinguished name (DN). This pair
comes from the identity provider.

Identity Provider

An entity implemented by developers which accepts an externalID to provide the
profile provider name and user DN pair from the corresponding identity store to Visitor
Services.

Identity Store

A storage that contains visitors' information. It could be an LDAP or a database.

Linked Profile

Data provided by Visitor Services that contains all linked raw profiles in the form of a
few lines in the Visitor Services database.

Profile Provider

An entity implemented by developers to receive visitors' profiles from specific profile
stores. In general, one provider is implemented per profile store.

Profile Storages

External storages that contain information about visitors' profiles.

Raw Profile

Visitor data provided by the profile provider from its profile store.

Stored Profile

An internal Visitor Services entity that contains processed profile data in the form of
RawProfile, Identity, LinkId, and VisitorId.

SSO Solution

An authentication system which provides the single sign-on functionality between
Visitor Services and applications. Visitor Services comes packaged with the OAM SSO
system.

Visitor Services Database

The local database used by Visitor Services to store visitors' profile data and settings
such as aggregation rules and mapping rules.

Chapter 42
Visitor Services Reference

42-46

Part XIII
Controlling the Site Capture Process

You can control a crawler's site capture process by implementing methods and
interfaces of the BaseConfigurator class.

Topic:

• Coding the Crawler Configuration File

43
Coding the Crawler Configuration File

The BaseConfigurator class, its methods, and interfaces control a crawler's site
capture process. A sample code is available in the Site Capture installation for the
FirstSiteII crawler.

Topics:

• About Controlling a Crawler

• BaseConfigurator Methods

• Crawler Customization Methods

• getSocketTimeout

• getPostExecutionCommand

• getNumWorkers

• getUserAgent

• createResourceRewriter

• createMailer

• getProxyHost

• getProxyCredentials

• Interfaces

• Summary of Methods and Interfaces

About Controlling a Crawler
To control a crawler, you need to code its CrawlerConfigurator.groovy file with, at
minimum, the starting URI and link extraction logic. You supply this information through
the getStartUri() and createLinkExtractor() methods. You can also add additional
code to specify, for example, the number of links to be crawled, the crawl depth, and
the invocation of a post-crawl event such as copying statically downloaded files to a
web server's doc base.

The methods and interfaces you use are provided in the BaseConfigurator class. The
default implementations can be overridden to customize and control a crawl process in
a way that agrees with the structure of the target site and the data you have to collect.

The BaseConfigurator methods and a simple CrawlerConfigurator.groovy file
described in the topics that follow demonstrate the usage of the required methods.
Crawler customization methods are then discussed and followed by information about
Site Capture's Java interfaces, including their default and custom implementations.

43-1

BaseConfigurator Methods
The CrawlerConfigurator.groovy file contains the code of the CrawlerConfigurator
class. This class must extend BaseConfigurator, which is an abstract class that
provides default implementations for the crawler.

This table lists the methods and interfaces of the BaseConfigurator class:

Table 43-1 Methods in the BaseConfigurator Class

Method Type Method Notes

Required getStartUri N/A

Required createLinkExtractor Factory method in the LinkExtractor
interface.1,2

Crawler
Customization

getMaxLinks N/A

Crawler
Customization

getMaxCrawlDepth N/A

Crawler
Customization

getConnectionTimeout N/A

Crawler
Customization

getSocketTimeout N/A

Crawler
Customization

getPostExecutionComman
d

N/A

Crawler
Customization

getNumWorkers N/A

Crawler
Customization

getUserAgent N/A

Crawler
Customization

createResourceRewriter Factory method in the ResourceRewriter
interface.a,b

1 The listed interfaces have default implementations, described in this chapter.
2 Site Capture provides a sample link extractor and resource rewriter, both used by the FirstSiteII sample

crawler. See Writing and Deploying a Custom Link Extractor and Writing a Custom ResourceRewriter.

This topic includes the following:

• getStartUri

• createLinkExtractor

getStartUri
This method injects the crawler's start URI. Configure one or more start URIs for the
crawl if the URIs belong to the same site. Multiple starting points enable the crawls to
start in parallel.

To provide the start URI for the www.example.com site:

/**
 * The method is used to configure the site url which needs to be crawled.
 */

Chapter 43
BaseConfigurator Methods

43-2

public String[] getStartUri()
{
return ["http://www.example.com/home"]; //Groovy uses brackets for an array.
}

To provide multiple start URIs for the site, enter a comma-separated array:

/**
 * The method is used to configure the site url which needs to be crawled.
 */
public String[] getStartUri()
{
return ["http://www.example.com/product","http://www.example.com/support"]; //
Groovy uses brackets for an array.
}

createLinkExtractor
This method configures the logic for extracting links from the crawled
pages. The extracted links are then traversed. It shows a basic sample
CrawlerConfigurator.groovy file.

Two abstract methods in BaseConfigurator must be overridden in
CrawlerConfigurator. They are getStartUri() and createLinkExtractor(). The
createLinkExtractor method is a factory method in the LinkExtractor interface:

• Implement the LinkExtractor interface to create your own link extraction
algorithm, for example, using an HTML parser to parse the pages and extract
links for the crawler to consume.

• To extract links, use the default implementation, PatternLinkExtractor, which
uses regular expressions. For example, PatternLinkExtractor can be used to
extract links of the format /home/products from expressions such as <a href="/
home/product">Products.

To use a regular expression for extracting links from <a href="/home/
product">Products on the www.example.com site:

/**
 * The method is used to define the link extraction
 * algorithm from the crawled pages.
 * PatternLinkExtractor is a regex based extractor
 * which parses the links on the web page
 * based on the pattern configured inside the constructor.
 */
public LinkExtractor createLinkExtractor()
{
return new PatternLinkExtractor("['\"\\(](/[^\\s<'\"\\)]*)",1);
}

• For more information about regular expressions and PatternLinkExtractor, see
Using the Default Implementation of LinkExtractor.

• For more information about implementing the LinkExtractor interface, see Writing
and Deploying a Custom Link Extractor.

Basic Configuration File

This example of a simple CrawlerConfigurator.groovy file, the required methods,
getStartUri() and createLinkExtractor(), are overridden.

Chapter 43
BaseConfigurator Methods

43-3

In this example, we override an additional method getMaxLinks(). In the example, it is
set to return 150 so that the test run can be completed quickly.

The file named CrawlerConfigurator.groovy is used to inject dependency. Hence, its
name must not be changed.

package com.fatwire.crawler.sample

import java.text.DateFormat;
import java.text.SimpleDateFormat;

import java.util.regex.Pattern;

import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;

import com.fatwire.crawler.*;
import com.fatwire.crawler.remote.*;
import com.fatwire.crawler.remote.di.*;
import com.fatwire.crawler.impl.*;
import com.fatwire.crawler.util.FileBuilder;

import org.apache.commons.lang.SystemUtils;
import org.apache.http.HttpHost;
import org.apache.http.auth.*;
import org.apache.http.client.*;
import org.apache.http.impl.client.*;
/**
 * Configurator for the crawler.
 * This is used to inject the dependency inside the crawler
 * to control the crawling process
 */

public class CrawlerConfigurator extends BaseConfigurator {

public CrawlerConfigurator(GlobalConfigurator delegate){
super(delegate);
}

/**
 * The method is used to configure the site url which needs to be crawled.
 */
public String[] getStartUri() {
return ["http://www.fatwire.com/home"]; //Groovy uses brackets for an array.
}

/**
 * The method is used to define the link extraction algorithm
 * from the crawled pages.
 * PatternLinkExtractor is a regex based extractor which parses
 * the links on the web page
 * based on the pattern configured inside the constructor.
 */
public LinkExtractor createLinkExtractor() {
return new PatternLinkExtractor("['\"\\(](/[^\\s<'\"\\)]*)",1);
}

/**
 * The method is used to control the maximum number of links
 * to be crawled as part of this crawl session.
 */

Chapter 43
BaseConfigurator Methods

43-4

public int getMaxLinks()
{
150;
}

Crawler Customization Methods
In addition to the required methods, the BaseConfigurator class has methods with
default implementations. You may want to override these methods to customize the
crawl process in a way that agrees with the structure of the target site and the data
you have to collect.

See these topics:

• getMaxLinks

• getMaxCrawlDepth

• getConnectionTimeout

getMaxLinks
This method controls the number of links to be crawled. The number of links should be
a positive integer. Otherwise, the crawl scans all the links in the same domain that are
reachable from the start URI(s).

To specify crawling 500 links:

/**
 * default: -1; crawler will crawl over all the links reachable from the start
URI
 * @return the maximum number of links to download.
 */
public int getMaxLinks()
{
return 500;
}

getMaxCrawlDepth
This method controls the maximum depth to which a site is crawled. Links beyond the
specified depth are ignored. The depth of the starting page is 0.

/**
 * default: -1. Indicates infinite depth for a site.
 * @return the maximum depth to which we need to crawl the links.
 */
public int getMaxCrawlDepth()
{
return 4;
}

getConnectionTimeout
This method determines how long the crawler will wait to establish a connection to its
target site. If a connection is not established within the specified time, the crawler will
ignore the link and continue to the next link.

Chapter 43
Crawler Customization Methods

43-5

To set a connection timeout of 50,000 milliseconds:

/**
 * default: 30000 ms
 * @return Connection timeout in milliseconds.
 */
public int getConnectionTimeout()
{
return 50000; // in milliseconds
}

getSocketTimeout
This method controls the socket timeout of the request that is made by the crawler for
the link to be crawled.

To provide a socket timeout of 30,000 milliseconds:

/**
 * default: 20000 ms
 * @return Socket timeout in milliseconds.
 */
public int getSocketTimeout()
{
return 30000; // in milliseconds
}

getPostExecutionCommand
This method injects custom post-crawl logic, and it’s invoked when the crawler finishes
its crawl session. It must return the absolute path of the script or command and
parameters (if any).

For example, the getPostExecutionCommand() can be used to automate deployment
to a web server's doc base by invoking a batch or shell script to copy statically
captured files after the crawl session ends.

Note:

• The script or command should be present in the same location on all
servers hosting Site Capture.

• Avoid downloading large archive files (exceeding 250MB) from the Site
Capture interface. Use getPostExecutionCommand to copy the files from
the Site Capture file system to your preferred location. Archive size can
be obtained from the crawler report, on the Job Details form.

To run a batch script named copy.bat on the Site Capture server:

/**
 * default: null.
 * @return the command string for post execution.
 * Null if there is no such command.
 */
public String getPostExecutionCommand()

Chapter 43
getSocketTimeout

43-6

{
// The file is supposed to be at the path C:\\commands folder
// on the computer where the site capture server is running
return "C:\\commands\\copy.bat";
}

getNumWorkers
This method controls the number of worker threads used for the crawl process. The
ideal number of parallel threads to be spawned for the crawl session depends on the
architecture of the computer on which Site Capture is hosted.

To start 10 worker threads for a crawl process:

/**
 * default: 4.
 * @return the number of workers to start.
 * Workers will concurrently downloads resources.
 */
public int getNumWorkers()
{
// Start 10 worker threads which is involved in the crawl process.
return 10;
}

getUserAgent
This method configures the user agent that the crawler uses when it traverses the
site. You should use this method to render the site in a different way than usual. For
example, to render the site on a mobile device.

To configure the FireFox 3.6.17 user agent:

/**
 * default: publish-crawler/1.1 (http://www.fatwire.com)
 * @return the user agent identifier
 */
public String getUserAgent()
{
return "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US;rv:1.9.2.17) Gecko/
20110420 Firefox/3.6.17 ";
}

createResourceRewriter
This method rewrites URLs inside the HTML pages that are crawled. For example, you
may want to rewrite the URLs to enable static delivery of a dynamic WebCenter Sites
website.

The createResourceRewriter method is a factory method in the ResourceRewriter
interface:

• Implement the ResourceRewriter interface to convert dynamic URLs to static
URLs, absolute URLs to relative URLs, and so on.

• You can also use the following default implementations:

– NullResourceRewriter: Does not rewrite any of the URLs.

Chapter 43
getNumWorkers

43-7

– PatternResourceRewriter: Searches for a regular pattern and rewrites as
specified.

To use PatternResourceRewriter to rewrite URLs such as http://www.site.com/
home.html to /home.html:

/**
 * Factory method for a ResourceRewriter.
 * default: new NullResourceRewriter();
 * @return the rewritten resource modifies the html before it is saved to disk.
 */
public ResourceRewriter createResourceRewriter()
{
new PatternResourceRewriter("http://www.site.com/([^\\s'\"]*)", '/$1');
}

• For more information about the default implementations, see Using the Default
Implementations of ResourceRewriter.

• For more information about implementing the ResourceRewriter interface, see
Writing a Custom ResourceRewriter.

createMailer
This method provides the implementation for sending email after the crawl. The
createMailer method is a factory method in the Mailer interface.

• Site Capture comes with an SMTP over TLS implementation, which emails the
crawler report when a static or archive capture session ends (the crawler report is
the report.txt file, described in Administering Oracle WebCenter Sites).

• If you are using a mail server other than SMTP-TLS (such as SMTP without
authentication, or POP3), you must provide your own implementation.

To send no email:

/**
 * Factory method for a Mailer.
 * <p/>
 * default: new NullMailer().
 * @return mailer holding configuration to send an email at the end of the crawl.
 * Should not be null.
 */
public Mailer createMailer()
{
return new NullMailer();
}

• For more information about the default implementation, see Using the Default
Implementation of Mailer.

• For more information about implementing the ResourceRewriter interface, see
Writing a Custom Mailer.

Chapter 43
createMailer

43-8

getProxyHost
The getProxyHost method must be overridden if the site being crawled is behind a
proxy server. You can configure the proxy server in this method.

Note:

If you use getProxyHost, also use getProxyCredentials, described on
getProxyCredentials.

To configure a proxy server:

/**
 * default: null.
 * @return the host for the proxy,
 * null when there is no proxy needed
 */
public HttpHost getProxyHost()
{
//using the HTTPClient library return a HTTPHost
return new HttpHost("www.myproxyserver.com", 883);
}

getProxyCredentials
This method injects credentials for the proxy server which is configured in the
getProxyHost method.

See getProxyHost.

To authenticate a proxy server user named sampleuser:

/**
 * default: null.
 * example: new UsernamePasswordCredentials(username, password);
 * @return user credentials for the proxy.
 */
public Credentials getProxyCredentials()
{
return new UsernamePasswordCredentials("sampleuser", "samplepassword");
//using the HTTPClient library return credentials
}

Interfaces
Site Capture provides these interfaces with default implementations: LinkExtractor,
ResourceRewriter, and Mailer. Read further to know more about these interfaces.

• LinkExtractor

• ResourceRewriter

• Mailer

Chapter 43
getProxyHost

43-9

LinkExtractor
A link extractor specifies which links are traversed by Site Capture in a crawl session.
The implementation is injected through the CrawlerConfigurator.groovy file. The
implementation is called by the Site Capture framework during the crawl session to
extract links from the markup that is downloaded as part of the crawl session.

Site Capture comes with one implementation of LinkExtractor. You can also write
and deploy your own custom link extraction logic. For more information, see the
following sections:

• LinkExtractor Interface

• Using the Default Implementation of LinkExtractor

• Writing and Deploying a Custom Link Extractor

LinkExtractor Interface
This interface has only one method (extract) that needs to be implemented to
provide the algorithm for extracting links from downloaded markup.

package com.fatwire.crawler;
import java.util.List;
import com.fatwire.crawler.url.ResourceURL;

/**
 * Extracts the links out of a WebResource.
 */

public interface LinkExtractor
{
/**
 * Parses the WebResource and finds a list of links (if possible).
 * @param resource the WebResource to inspect.
 * @return a list of links found inside the WebResource.
 */
List<ResourceURL> extract(final WebResource resource);
}

Using the Default Implementation of LinkExtractor
PatternLinkExtractor is the default implementation for the LinkExtractor interface.
PatternLinkExtractor extracts links on the basis of a regular expression. It takes a
regular expression as input and returns only links matching that regular expression.

Common usage scenarios include using PatternLinkExtractor for sites with dynamic
URLs and using PatternLinkExtractor for sites with static URLs.

• Using PatternLinkExtractor for sites with dynamic URLs:

For example, on www.example.com, the links have a pattern of /home, /
support, and /cs/Satellite/. To extract and traverse such kinds of links, use
PatternLinkExtractor in the following way:

/**
 * The method is used to define the link extraction algorithm
 * from the crawled pages.

Chapter 43
Interfaces

43-10

 * PatternLinkExtractor is a regex based extractor which parses
 * the links on the web page
 * based on the pattern configured inside the constructor.
 */
public LinkExtractor createLinkExtractor()
{
return new PatternLinkExtractor("['\"\\(](/[^\\s<'\"\\)]*)",1);
}

The pattern ['\"\\(] (/[^\\s<'\"\\)]*) is used to extract links:

– that start with any one of the following characters:

* Single quote (')

* Double quotes (")

* Left parenthesis (

– continue with a slash (/) ,

– and end with any one of the following characters:

* Spaces (\s)

* Less-than symbol (<)

* Single quote (')

* Double quote (")

* Right parenthesis)

Let's consider the URL inside the following markup:

Click Me

We are interested only in extracting the /home link. This link matches the regular
expression pattern because it starts with a single quote (') and ends with a single
quote ('). The grouping of 1 will return the result as /home.

• Using PatternLinkExtractor for sites with static URLs:

For example, the markup for www.example.com has links such as:

Click Me

To extract and traverse such types of links, we can use PatternLinkExtractor in
the following way:

/**
 * The method is used to define the link extraction algorithm
 * from the crawled pages.
 * PatternLinkExtractor is a regex based extractor which parses
 * the links on the web page
 * based on the pattern configured inside the constructor.
 */
public LinkExtractor createLinkExtractor()
{
return new PatternLinkExtractor(Pattern.compile("http://www.example.com/[^\
\s<'\"]*"));
}

The above example instructs the crawler to extract links that start with http://
www.example.com and end with any one of the following characters: spaces (\s),
less-than symbol (<), single quote ('), or double quotes (").

Chapter 43
Interfaces

43-11

Note:

For more details on groups and patterns, refer to the Java
documentation for the Pattern and Matcher classes.

Writing and Deploying a Custom Link Extractor
Site Capture provides a sample link extractor (and resource rewriter) used by the
FirstSiteII sample crawler to download WebCenter Sites FirstSiteII dynamic website as
a static site. For more information, see the source code for the FSIILinkExtractor
class in the following folder:

<SC_INSTALL_DIR>/fw-site-capture/crawler/_sample/FirstSiteII/src

To write a custom link extractor:

1. Create a project in your Java IDE.

2. Copy the file fw-crawler-core.jar from the <SC_INSTALL_DIR>/fw-site-
capture/webapps/ROOT/WEB-INF/lib folder to your project's build path.

3. Implement the LinkExtractor interface to provide the implementation for the
extract() method. (The LinkExtractor interface is shown on LinkExtractor
Interface.)

Below is pseudo-code showing a custom implementation:

package com.custom.crawler;
import java.util.List;
import com.fatwire.crawler.url.ResourceURL;
import com.fatwire.crawler.LinkExtractor;
/**
 * Extracts the links out of a WebResource.
 */
public class CustomLinkExtractor implements LinkExtractor
{
/**
 * A sample constructor for CustomLinkExtractor
 */
public CustomLinkExtractor(String)
 {
 // Initialize if there are private members.
 // User's custom logic
 }

/**
 * Parses the WebResource and finds a list of links (if possible).
 * @param resource the WebResource to inspect.
 * @return a list of links found inside the WebResource.
 */
List<ResourceURL> extract(final WebResource resource)
 {
 // Your custom code for extraction Algorithm.
 }
}

4. Create a jar file for your custom implementation and copy it to the following folder:

<SC_INSTALL_DIR>/fw-site-capture/webapps/ROOT/WEB-INF/lib

Chapter 43
Interfaces

43-12

5. Restart the Site Capture application server.

6. Inject the dependency by coding the CrawlerConfigurator.groovy file to include
the custom link extractor class (CustomLinkExtractor, in this example):

/**
 * User's custom link extractor mechanism to extract the links from the
 * web resource downloaded as part of the crawl session.
 * The code below is only a pseudo code for an example.
 * User is free to implement their own custom constructor
 * as shown in the next example.
 */
public LinkExtractor createLinkExtractor()
{
return new CustomLinkExtractor("Custom Logic For Your Constructor");
}

ResourceRewriter
A resource rewriter rewrites URLs inside the markup that is downloaded
during the crawl session. The implementation must be injected through the
CrawlerConfigurator.groovy file.

Some use cases that require a resource rewriter are:

• Crawling a dynamic site and creating a static copy.

• Converting absolute URLs to relative URLs. For example, if the markup has URLs
such as http://www.example.com/abc.html, then the crawler should remove
http://www.example.com from the URL, thus allowing resources to be served
from the host on which the downloaded files are stored.

Site Capture comes with the two implementations of ResourceRewriter. You can also
create custom implementations. For more information, see the following sections:

• ResourceRewriter Interface

• Using the Default Implementations of ResourceRewriter

• Writing a Custom ResourceRewriter

ResourceRewriter Interface
The rewrite method rewrites URLs inside the markup that is downloaded during the
crawl session.

package com.fatwire.crawler;
import java.io.IOException;

/**
 * Service for rewriting a resource. The crawler will use the implementation for
 * rewrite method to rewrite the resources that are downloaded as part of crawl
 * session.
 */
public interface ResourceRewriter
{
/**
 * @param resource
 * @return the bytes after the rewrite.
 * @throws IOException
 */

Chapter 43
Interfaces

43-13

byte[] rewrite(WebResource resource) throws IOException;

}

Using the Default Implementations of ResourceRewriter
Site Capture comes with the following implementations of ResourceRewriter:

• NullResourceRewriter, configured by default to skip the rewriting of links. If
ResourceRewriter is not configured in the CrawlerConfigurator.groovy file, then
NullResourceRewriter is injected by default.

• PatternResourceRewriter, used to rewrite URLs based on the regular expression.
PatternResourceRewriter takes as input a regular expression to match the links
inside the markup and replaces those links with the string that is provided inside
the constructor.

To rewrite an absolute URL as a relative URL:

From:

Click Me

To:

Click Me

/**
 * Factory method for a ResourceRewriter.
 * default: new NullResourceRewriter();
 * @return the rewritten resource modifies the html before it is saved to
disk.
 */
public ResourceRewriter createResourceRewriter()
{
new PatternResourceRewriter("http://www.example.com/([^\\s'\"]*)", '/$1');
}

PatternResourceRewriter has only one constructor that takes a regular
expression and a string replacement:

PatternResourceRewriter(final String regex, final String replacement)

Writing a Custom ResourceRewriter
Site Capture provides a sample resource rewriter (and link extractor) used by the
FirstSiteII sample crawler to download WebCenter Sites' FirstSiteII dynamic website
as a static site. For more information, see the source code for the FSIILinkExtractor
class in the following folder:

<SC_INSTALL_DIR>/fw-site-capture/crawler/_sample/FirstSiteII/src

To write a custom resource rewriter:

1. Create a project in your IDE.

2. Copy the files fw-crawler-core.jar from <SC_INSTALL_DIR>/fw-site-capture/
webapps/ROOT/WEB-INF/lib folder to your project's build path.

3. Implement the ResourceRewriter interface to provide the implementation for the
rewrite method.

Chapter 43
Interfaces

43-14

Below is a pseudo-code showing a custom implementation:

package com.custom.crawler;
import com.fatwire.crawler.WebResource;
import com.fatwire.crawler.ResourceRewriter;

/**
 * Rewrite the links inside the markup downloaded as part of
 * crawl session.
 */
public class CustomResourceRewriter implements ResourceRewriter
{
/**
 * A sample constructor for CustomResourceRewriter
 */
public CustomResourceRewriter(String)
 {
 // Initialize if there are private members.
 // User's custom logic
 }

/**
 * @param resource
 * @return the bytes after the rewrite.
 * @throws IOException
 */
byte[] rewrite(WebResource resource) throws IOException
 {
 // Your custom code for re-writing Algorithm.
 }
}

4. Create a jar file for your custom implementation and copy it to the following folder:
<SC_INSTALL_DIR>/fw-site-capture/webapps/ROOT/WEB-INF/lib

5. Restart your Site Capture application server.

6. Inject the dependency by coding the CrawlerConfigurator.groovy file to include
the custom resource rewriter class (CustomResourceRewriter, in this example):

/*
 * User's custom resource rewriting mechanism to rewrite the links from the
 * web resource downloaded as part of the crawl session.
 *
 * The code below is only a pseudo code for an example.
 * User is free to implement their own custom constructor
 * as shown in the next example.
 */
public ResourceRewriter createResourceRewriter()
 {
 new CustomResourceRewriter("User's custom logic to initialize the things");
 }

Mailer
A mailer sends email after the crawl ends. The implementation must be injected
through the CrawlerConfigurator.groovy file.

Site Capture provides an SMTPTlsMailer implementation, which can be used to send
the crawler report from the SMTP-TLS mail server. You also can implement the
Mailer interface to provide custom logic for sending emails from a server other than

Chapter 43
Interfaces

43-15

SMTP-TLS (such as SMTP without authentication, or POP3). Your custom logic also
can specify the email to be an object other than the crawler report. If Mailer is not
configured in the CrawlerConfigurator.groovy file, then NullMailer is injected by
default.

This section includes the following topics:

• Mailer Interface

• Using the Default Implementation of Mailer

• Writing a Custom Mailer

Mailer Interface
The sendMail method is automatically called if the Mailer is configured in the
CrawlerConfigurator.groovy file.

package com.fatwire.crawler;
import java.io.IOException;
import javax.mail.MessagingException;

/**
 * Service to send an email.
 */
public interface Mailer
{
/**
 * Sends the mail.
 *
 * @param subject
 * @param report
 * @throws MessagingException
 * @throws IOException
 */
void sendMail(String subject, String report)
throws MessagingException, IOException;
}

Using the Default Implementation of Mailer
Site Capture provides an SMTP-TLS server-based email implementation that sends
out the crawler report when a static or archive crawl session ends. (The crawler report
is a (report.txt file, described in About Accessing Log Files in Administering Oracle
WebCenter Sites).

• Use the default mailer by injecting it through the CrawlerConfigurator.groovy
file, as shown below:

/**
 * Factory method for a Mailer.
 * <p/>
 * default: new NullMailer().
 * @return mailer holding configuration to send an email
 * at the end of the crawl.
 * Should not be null.
 */
public Mailer createMailer()
{
 try

Chapter 43
Interfaces

43-16

 {
 // Creating a SmtpTlsMailer Object
 SmtpTlsMailer mailer = new SmtpTlsMailer();

 InternetAddress from;
 // Creating an internet address from whom the mail
 // should be sent from = new InternetAddress("example@example.com");

 // Setting the mail address inside the mailer object mailer.setFrom(from);

 // Setting the email address of the recipient inside
 // mailer.mailer.setTo(InternetAddress.parse("example@example.com"));

 // Setting the email server host for to be used for email.
 // The email server should be SMTP-TLS enabled.
 mailer.setHost("smtp.gmail.com", 587);

 // Setting the credentials of the mail account
 // mailer.setCredentials("example@example.com", "examplepassword");

 return mailer;
 }
catch (AddressException e)
 {
 log.error(e.getMessage());
 }
}

Writing a Custom Mailer
This section provides the steps to write a custom mailer.

To write a custom mailer:

1. Create a project in your IDE.

2. Copy the files fw-crawler-core.jar from the <SC_INSTALL_DIR>/fw-site-
capture/webapps/ROOT/WEB-INF/lib folder in your project's build path.

3. Implement the Mailer interface with the sendMail method.

Below is a pseudo-code showing a custom implementation:

package com.custom.crawler;
import java.io.IOException;
import javax.mail.MessagingException;
import com.fatwire.crawler.Mailer;

/**
 * Implements an interface to implement the logic for sending emails
 * when the crawl session has been completed.
 */
public class CustomMailer implements Mailer
{
/**
 * A sample constructor for CustomMailer
 */
public CustomMailer()
 {
 // Initialize if there are private members.
 // User's custom logic
 }

Chapter 43
Interfaces

43-17

/**
 * Sends the mail.
 *
 * @param subject
 * @param report
 * @throws MessagingException
 * @throws IOException
 */
void sendMail(String subject, String report)
throws MessagingException, IOException
 {
 // User's custom logic to send the emails.
 }
}

4. Create a jar file for your custom implementation and copy it to the following folder:
<SC_INSTALL_DIR>/fw-site-capture/webapps/ROOT/WEB-INF/lib

5. Restart your Site Capture application server.

6. Inject the dependency by coding the CrawlerConfigurator.groovy file to include
the custom mailer class (CustomMailer, in this example):

/**
 * Factory method for a Mailer.
 * <p/>
 * default: new NullMailer().
 * @return mailer holding configuration to send an email
 * at the end of the crawl.
 * Should not be null.
 */
public Mailer createMailer()
{
CustomMailer mailer = new CustomMailer();
// Do some of the initilization stuffs
return mailer;
}
package com.custom.crawler;
import java.io.IOException;
import javax.mail.MessagingException;
import com.fatwire.crawler.Mailer;

/**
 * Implements an interface to implement the logic for sending emails
 * when the crawl session has been completed.
 */
public class CustomMailer implements Mailer
{
 /**
 * A sample constructor for CustomMailer
 */
 public CustomMailer()
 {
 // Initialize if there are private members.
 // User's custom logic
 }
 /**
 * Sends the mail.
 *
 * @param subject
 * @param report

Chapter 43
Interfaces

43-18

 * @throws MessagingException
 * @throws IOException
 */
 void sendMail(String subject, String report)
 throws MessagingException, IOException
 {
 // User's custom logic to send the emails.
 }
}

This implementation emails the crawler report (the report.txt file), given that the
String report argument in the sendMail method names the crawler report, by
default. You can customize the logic for emailing objects other than the crawler report.

Summary of Methods and Interfaces
For controlling a crawler's site capture process, the default implementations of
methods and interfaces in the Site Capture BaseConfigurator class are described
here.

See these topics:

• Methods

• Interfaces

Methods
The following interfaces are used in the Site Capture BaseConfigurator class:

• getStartUri

• createLinkExtractor

• getMaxLinks

• getMaxCrawlDepth

• getConnectionTimeout

• getSocketTimeout

• getPostExecutionCommand

• getNumWorkers

• getUserAgent

• createResourceRewriter

• createMailer

• getProxyHost

• getProxyCredentials

The factory methods are in the following interfaces:

• createLinkExtractor is in the LinkExtractor interface.

• createResourceRewriter is in the ResourceRewriter interface.

• createMailer is in the Mailer interface.

Chapter 43
Summary of Methods and Interfaces

43-19

Interfaces
The following interfaces are used in the Site Capture BaseConfigurator class:

• LinkExtractor

Its default implementation is PatternLinkExtractor, which extracts links on the
basis of a regular expression.

Site Capture also provides a sample link extractor (and a sample resource
rewriter), used by the FirstSiteII sample crawler to download WebCenter
Sites' FirstSiteII dynamic website as a static site. Source code is available
in the following folder: <SC_INSTALL_DIR>/fw-site-capture/crawler/_sample/
FirstSiteII/src

You can write and deploy your own custom link extraction logic.

• ResourceRewriter

Its default implementations are NullResourceRewriter, which skips the rewriting
of links, and PatternResourceRewriter, which rewrites URLs based on the regular
expression.

Site Capture provides a sample resource rewriter (and a sample link extractor),
used by the FirstSiteII sample crawler to download WebCenter Sites' FirstSiteII
dynamic website as a static site. Source code is available in the following
folder:<SC_INSTALL_DIR>/fw-site-capture/crawler/_sample/ FirstSiteII/src

You can write and deploy your own logic for rewriting URLs.

• Mailer

Its default implementation is SMTPTlsMailer, which sends the crawler report from
the SMTP-TLS mail server. You can customize the logic for emailing other types of
objects from other types of servers.

Chapter 43
Summary of Methods and Interfaces

43-20

Part XIV
Integrating with Third-Party Content
Sources

You can use Proxy assets to extend the Content Integration Platform to publish from
systems of your own choice to Oracle WebCenter Sites.

• Integrating Third-Party Content Sources Using Proxy Assets

44
Integrating Third-Party Content Sources
Using Proxy Assets

Content and marketing teams often need to publish content that resides outside
websites developed with WebCenter Sites. You can enable them to integrate external
web content using the proxy asset type framework.

Topics:

• Proxy Asset Architecture and the Contributor Interface

• Installing Sample Proxy Assets

• Integrating External Content in the Contributor Interface

• Setting Up YouTube Proxy Assets

• User Interface Customizations

• Information About Embedding Proxy Assets in Web Pages

Proxy Asset Architecture and the Contributor Interface
In the proxy asset architecture, you make a third-party content repository accessible
from the editorial and delivery instances and customize the contributor interface to
access this repository.

Proxy Asset Architecture

A proxy asset is an asset representing content stored and managed in a remote
location. This figure shows the proxy asset architecture:

Figure 44-1 Proxy Asset Architecture

In this architecture:

44-1

• A third-party content repository is assumed, accessible through a public read API
from both the editorial and delivery instances.

• The Contributor interface is customized to access the third-party repository to
make external content visible in the UI.

• A proxy asset is created on the fly for every external content rendered in the UI.
A proxy asset does not store any metadata, which is assumed to be accessible
through a public read API provided by the third-party service.

• On the live instance, templates written for proxy assets are accessing the same
repository and API to render external content on the live site.

Note:

Only those proxy assets that are used are permanently stored in the
WebCenter Sites database. For example, proxy assets created while
rendering search results are later purged by a dedicated cleaning event.

Contributor Interface

Once a new proxy asset type is registered in the WebCenter Sites database,
developers have to provide the appropriate UI customizations before contributors can
start interacting with external content.

The nature of the UI customizations being implemented depend on the contributor's
specific requirements. For example, it is expected that the Contributor interface search
functionality is hooked to the external repository's own search service in most cases.

After this is done, and external content is surfaced in the Contributor interface in the
form of proxy assets, they behave mostly like standard assets. That is, contributors are
able to:

• Search the external content repository, using the same asset search tab, showing
results in list or thumbnail view, docked or undocked.

• Use drag and drop from search or tree.

• Associate external content to other assets, whether in form view or web view.

• Preview external content, using WebCenter Sites templates.

• Bookmark, tag, set in workflow, approve, and publish.

Chapter 44
Proxy Asset Architecture and the Contributor Interface

44-2

Note:

The following restrictions apply:

• The external content lifecycle is assumed to be entirely managed in a
third-party UI; that is, WebCenter Sites only needs read access to the
external repository. Consequently, UI actions such as editing, versioning,
and so forth, are disabled by default for all proxy asset types.

• Proxy assets cannot have associated assets or subtypes.

• The external content repository must be accessible from both the
contribution and delivery WebCenter Sites instances.

Installing Sample Proxy Assets
To install proxy assets in Oracle WebCenter Sites, you begin with setting up a proxy
asset directory and creating a proxy asset.

• Set up a Proxy Asset Directory

• Create a Proxy Asset

• Add the Search Functionality for the Proxy Asset

• Add the Thumbnail Grid Functionality for the Proxy Asset

• Add the Tree Functionality for the Proxy Asset

Note:

See Integrating External Content in the Contributor Interface.

Set up a Proxy Asset Directory
To set up a proxy asset directory:

1. In your Oracle WebCenter Sites installation, navigate to sites-
home\bootstrap\samples\miscellaneous\SampleProxy\proxy_sample. In the
subsequent steps this directory is referred to as ${WCS_PROXY}.

2. Copy the proxy_samples directory under the web application root on the server.
For example, sites-webapp-server\webapps\sites\proxy_samples.

This directory contains the sample JSON and images to simulate a third-party API.

3. To test the proxy_samples directory, start the server and navigate to http://
localhost:8080/sites/proxy_samples/search/ski.json. Then click one of the
files in your browser to see the JSON text.

Create a Proxy Asset
To create a proxy asset:

1. Log into WebCenter Sites and launch the Admin interface.

Chapter 44
Installing Sample Proxy Assets

44-3

2. Expand Admin, then Proxy Asset Maker, and then double click Add New.

3. In the form, enter values in these fields: Name (e.g: ProxyTest), Description, and
Plural Form (e.g.: ProxyTests) for the proxy asset.

4. Click Save.

5. Enable the ProxyTest asset in your site. To do this, create a Search start menu for
ProxyTest.

You cannot yet access the ProxyTest Search start menu in the Contributor
interface.

Add the Search Functionality for the Proxy Asset
To add the search functionality:

1. Open Sites Explorer and log in to your WebCenter Sites instance.

2. In Sites Explorer, under Tables/ElementCatalog/CustomElements, create the
following directory structure: ProxyTest/UI/Data/Search:

3. Under ProxyTest/UI/Data/Search, add two new rows.

4. Copy and paste the contents from the corresponding files in ${WCS_PROXY}
\src\jsp\cs_deployed\CustomElements\ProxyTest\UI\Data\Search and save:

• SearchAction

– elementname: SearchAction

– url: CustomElements\ProxyTest\UI\Data\Search\SearchAction.jsp

• SearchJson

– elementname: SearchJson

Chapter 44
Installing Sample Proxy Assets

44-4

– url: CustomElements\ProxyTest\UI\Data\Search\SearchJson.jsp

5. In Sites Explorer, under ElementCatalog, add ProxyTest:
Tables\ElementCatalog\ProxyTest.

6. Under Tables\ElementCatalog\ProxyTest, create a new entry
by copying and pasting the contents from ${WCS_PROXY}
\src\jsp\cs_deployed\ProxyTest\GetData.jsp : GetData (elementname:
GetData, url: ProxyTest/GetData.jsp), and then save these changes.

7. In the Contributor interface, in the Search field for ProxyTest, enter ski, surfing, or
nothing.

You should see a list populated with proxy assets.

Add the Thumbnail Grid Functionality for the Proxy Asset
To add the thumbnail grid functionality:

1. In Sites Explorer, under Tables\ElementCatalog\CustomElements\ProxyTest\UI,
create the following folder structure: \Layout\CenterPane\Search\View.

2. Add the following entries by copying and pasting the contents from the
corresponding files in ${WCS_PROXY}
\src\jsp\cs_deployed\CustomElements\ProxyTest\UI\Layout\CenterPane\Sea
rch\View.

• ThumbnailViewConfig:

– elementname: ThumbnailViewConfig

– url:
CustomElements\ProxyTest\UI\Layout\CenterPane\Search\View\Thumb
nailViewConfig.jsp

• DockedThumbnailViewConfig:

– elementname: DockedThumbnailViewConfig

– url:
CustomElements\ProxyTest\UI\Layout\CenterPane\Search\View\Docke
dThumbnailViewConfig.jsp

3. In the Contributor interface, enter a valid search term for ProxyTest assets.

You will see the thumbnail images in the grid mode.

Add the Tree Functionality for the Proxy Asset
To add the tree functionality:

1. In Sites Explorer, under Tables\ElementCatalog\ProxyTest, create a directory
called Tree.

2. Add the following entries by copying and pasting the contents from the
corresponding files in ${WCS_PROXY}\src\jsp\cs_deployed\ProxyTest\Tree.

• Load

– elementname: Load

– url: ProxyTest\Tree\Load.jsp

Chapter 44
Installing Sample Proxy Assets

44-5

• Root

– elementname: Root

– url: ProxyTest\Tree\Root.jsp

3. Switch to the Admin interface.

4. Add a tree tab:

a. Expand the Admin node.

b. In the tree, double-click Tree.

The Tree Tabs page is displayed.

c. Click Add New Tree Tab.

d. Enter the following:

• In the Title field, enter ProxyTestTreeTab.

• In the Sites box, choose avisports (or whichever site you're using).

• In the Required Roles box, choose Any.

• In the Tab Contents box, select ProxyTest and click Add Selected
Items.

• In the selected box, click ProxyTest.

• In the Section Name field, enter ProxyTest.

• In the Element Name field, enter ProxyTest/Tree/Root (use only forward
slashes).

• Click Edit Section, then click Save.

5. Switch to the Contributor interface.

6. On the Content Tree, and expand the ProxyTestTreeTab tree tab.

You should see the categories ski and surfing available for drag and drop, along
with their respective assets.

Integrating External Content in the Contributor Interface
Contributors will be able to work with external content when you’ve integrated the
external content repository with the repository search service and content tree.

In this topic, we'll use the ProxyTest content repository as a case study and explain the
steps to integrate it with:

• Search: To use the repository search service instead of the standard WebCenter
Sites search.

• Content tree: To allow contributors to browse the repository content in a custom
content tree.

Topics:

• Case Study: The ProxyTest Repository

• Registering a New Proxy Asset Type

• About Implementing UI Integration Code

• Customizing Search

Chapter 44
Integrating External Content in the Contributor Interface

44-6

• Implementing a Custom Tree

Case Study: The ProxyTest Repository
This section describes setting up sample data and retrieving data from the ProxyTest
repository.

Setting Up Sample Data

We're using a set of static JSON files deployed directly in the WebCenter Sites web
application to emulate the ProxyTest content repository. The ProxyTest content is
assumed to be media content (images).

Those JSON files simulate the following services:

• Search the repository for a given term (searching on all, ski or surfing
returns actual results): http://localhost:7001/sites/proxy_samples/search/
<searchterm>.json

• Get all content categories (Ski and Surfing): http://localhost:7001/sites/
proxy_samples/browse/categories.json

• Get all ProxyTest content for a given category: http://localhost:7001/sites/
proxy_samples/browse/<category>.json

• Get metadata for a given content ID: http://localhost:7001/sites/
proxy_samples/content/<id>.json

For example, /proxy_samples/search/ski.json returns the following example
content:

{
 "items": [
 {
 "id": "1001",
 "title": "Yellow Skier",
 "foo": "bar1",
 "lastModified": "1354735336444",
 "thumbnail": "proxy_samples/images/image7_thumbnail.png"
 },
 {
 "id": "1002",
 "title": "Female Skier",
 "foo": "bar2",
 "lastModified": "1354735336444",
 "thumbnail": "proxy_samples/images/image8_thumbnail.png"
 },
 {
 "id": "1003",
 "title": "Ski Jump",
 "foo": "bar3",
 "lastModified": "1354735336444",
 "thumbnail": "proxy_samples/images/image9_thumbnail.png"
 }
]
}

Chapter 44
Integrating External Content in the Contributor Interface

44-7

Note:

Sample code is stored in the folder /misc/
proxy_samples/. This folder is located in sites-
home\bootstrap\proxy_samples\miscellaneous\SampleProxy. Sample
code specific to proxy assets is here: sites-
home\bootstrap\samples\miscellaneous\SampleProxy\proxy_samples\.

Retrieving Data from the ProxyTest Repository

To avoid duplication of code, logic needed to query the external content source is
encapsulated in a dedicated element named ProxyTest/GetData. In this example,
data is returned in JSON format. Therefore, this example uses the jersey (http://
jersey.java.net/) and jettison (http://jettison.codehaus.org/) libraries, deployed
in the WebCenter Sites web application, to retrieve and deserialize incoming JSON
data.

The element receives a query, for example, /search/ski.json, in an ICS variable
named serviceURL and returns a JSONArray object stored in the ICS scope using
ics.SetObj(String, Object):

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><%@ page import="javax.ws.rs.client.*"
%><%@ page import="javax.ws.rs.core.*"
%><%@ page import="org.codehaus.jettison.json.*"
%><cs:ftcs>
<%
//
// get data from proxytest repository
//
//

Client client = ClientBuilder.newClient();
Response resp = null;
WebTarget res = null;

String host = request.getServerName();
String port = Integer.toString(request.getServerPort());
String contextPath = request.getContextPath();
String urlPath = "http://"+host+":"+port+"/"+contextPath+"/
proxy_samples" + ics.GetVar("serviceURL");

try {
 res = client.target(urlPath);
 resp = res.request(MediaType.APPLICATION_JSON).get();
}
catch(Exception e) {
 e.printStackTrace();
 throw e;

Chapter 44
Integrating External Content in the Contributor Interface

44-8

}

JSONArray list = new JSONArray();

if (resp.getStatus() == 200) {
 String jsonString = resp.readEntity(String.class);
 JSONObject json = new JSONObject(jsonString);
 list = json.getJSONArray("items");
}

ics.SetObj("items", list);

%>

</cs:ftcs>

Registering a New Proxy Asset Type
To represent ProxyTest content in the WebCenter Sites repository, define a new proxy
asset type.

To create a proxy asset type:

1. On the Admin node, expand Proxy Asset Manager, and double-click Add New.

The Add New Proxy Asset Type page opens.

Figure 44-2 Add New Proxy Asset Type Page

2. In the Name field, enter a name for the proxy asset type. Similarly, enter a
description in the Description field, and enter a plural form of the name in the
Plural Form field.

Chapter 44
Integrating External Content in the Contributor Interface

44-9

Note:

Creating or editing proxy assets through the Contributor interface is not
available. Consequently, in this step, only a Search start menu should be
enabled.

In this example, and to use with the examples continuing through the rest of the
document, enter ProxyTest in the Name field, ProxyTest in the Description field,
and ProxyTests in the Plural Form field.

3. Click Save.

Note:

Proxy Asset Maker registers the new asset type and creates a single table
with the same name. A proxy asset table has only a subset of standard asset
metadata, and defines only one specific column: externalid. This column is
meant to store the identifier of the external content in the external repository.

About Implementing UI Integration Code
Assets can appear in many places in the Contributor interface. Some examples of
these places include:

• Asset forms, for fields including asset references

• Search results

• Content tree panel

In each case, the actual integration code varies based on the requirements and
available customization hooks. However, in all cases, the following principle must be
followed: All external content presented in the Contributor interface must be registered
as a proxy asset.

In practice, this means creating (or reusing) a proxy asset which externalid refers to
the content identifier in the external content source. This can be done using the usual
Asset API classes and methods. However, for simplicity, the proxy JSP tag library is
provided.

It contains utility tags to register a given external content as a proxy asset type:

• <proxy:register />

It also contains utility tags to generate a JSON datastore for data grid widgets (such as
search):

• <proxy:createstore />: Initializes a new store.

• <proxy:addstoreitem />: Adds an item to a given store.

• <proxy:tojson />: Serializes a store to JSON.

See the Tag Reference for Oracle WebCenter Sites Reference and the code examples
in Customizing Search.

Chapter 44
Integrating External Content in the Contributor Interface

44-10

Customizing Search
As explained in Customizing the Search Start Menu, an override of the controller
element UI/Data/Search/Search for the ProxyTest asset type is created using the
following elements:

\sites-
home\bootstrap\samples\miscellaneous\SampleProxy\proxy_sample\src\jsp\cs_deployed
\CustomElements\ProxyTest\UI\Data\Search\SearchAction.jsp
\sites-
home\bootstrap\samples\miscellaneous\SampleProxy\proxy_sample\src\jsp\cs_deployed
\CustomElements\ProxyTest\UI\Data\Search\SearchAction.jsp\SearchJson

The figure below shows the ProxyTest option in the search drop-down. Selecting
ProxyTest (that is, the name of the proxy asset type created) runs the custom search
code, instead of the Lucene-based search.

Figure 44-3 Search Drop-Down Showing ProxyTest Asset

To implement a full custom search, complete the remaining topics in this section.

This topic includes the following:

• Getting Search Results Using the Provided Third-Party API

• Turning Search Results into Proxy Assets, Filter Incoming Search Results,
Register External Content, and Gather Data for Search Grid Widget

• Building a Data Store for the Grid Widget

• Testing Custom Search

• Additional Customizations

Getting Search Results Using the Provided Third-Party API
1. In CustomElements/ProxyTest/UI/Data/Search/SearchAction, retrieve the JSON

data using the element written in Case Study: The ProxyTest Repository.

Use this code example in the retrieval:

Chapter 44
Integrating External Content in the Contributor Interface

44-11

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="proxy" uri="futuretense_cs/proxy.tld"%>
<%@ page import="org.codehaus.jettison.json.*"%>
<%@ page import="COM.FutureTense.Interfaces.Utilities"%>
<cs:ftcs>

<%
// in this ProxyTest example, only the empty search string, 'ski' or
'surfing' will
// return results String searchTerm = ics.GetVar("searchText");
if (!Utilities.goodString(searchTerm)) searchTerm = "all";
%>
<ics:setvar name="serviceURL" value='<%="/search/" + searchTerm + ".json"
%>' />
<ics:callelement element="ProxyTest/GetData" />
<%
JSONArray list = (JSONArray)ics.GetObj("items");

//
// ...to be continued in the next section
//
%>

</cs:ftcs>

2. At this point, list contains the JSON data received from the external content
source.

Turning Search Results into Proxy Assets, Filter Incoming Search Results,
Register External Content, and Gather Data for Search Grid Widget

This builds the code through a series of steps:

1. Build a new data store:

<proxy:createstore store="<storeName>" />

where <storeName> is an arbitrary string designating the data store.

2. Then, for each incoming external content asset, register the current asset as a
proxy asset:

<proxy:register
 externalid="<external_content_identifier>"
 type="<proxy_asset_type>"
 name="<proxy_asset_name>"
 varname="<variable_name>" />

where:

• <external_content_identifier> is the identifier of the current external
content item in the third-party repository. In the case of this example ProxyTest
repository, this identifier is returned in the id of incoming JSON data.

• <proxy_asset_type> is the proxy asset type name. In this example,
ProxyTest.

• <proxy_asset_name> is the readable string to be used as name throughout
the Contributor interface. In this example, the title returned in the incoming
JSON data.

Chapter 44
Integrating External Content in the Contributor Interface

44-12

• <variable_name> is the name of the WebCenter Sites variables that contain
the proxy asset ID corresponding to the current external content item.

3. Then, for each incoming registered proxy asset, add the asset to the data store:

<proxy:addstoreitem
 store="<storeName>"
 id="<proxy_asset_id>"
 type="<proxy_asset_type>" />

where:

• <storeName> is the data store, as defined by <proxy:createstore />.

• <id> is the proxy asset identifier.

• <type> is the proxy asset type.

The full code for the ProxyTest proxy asset type is then:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="proxy" uri="futuretense_cs/proxy.tld"%>
<%@ page import="org.codehaus.jettison.json.*"%>
<%@ page import="COM.FutureTense.Interfaces.Utilities"%>
<cs:ftcs>

<%
// in this ProxyTest example, only the empty search string, 'ski' or 'surfing'
will
// return results
String searchTerm = ics.GetVar("searchText");
if (!Utilities.goodString(searchTerm)) searchTerm = "all";
%>
<ics:setvar name="serviceURL" value='<%="/search/" + searchTerm + ".json" %>' />
<ics:callelement element="ProxyTest/GetData" />
<%
JSONArray list = (JSONArray)ics.GetObj("items");
%>

<%-- create a new data store --%>
<proxy:createstore store="assets" />
<%
// go through each incoming item
for (int i = 0; i < list.length(); i++) {
 JSONObject item = (JSONObject)list.get(i);%>

 <%-- Register the current external content item as a proxy asset --%>
 <proxy:register externalid='<%=item.getString("id") %>'
 type="ProxyTest"
 name='<%=item.getString("title") %>'
 varname="internalid" />

<%-- Add the proxy asset to the datastore --%>
<proxy:addstoreitem store="assets"
 id='<%=ics.GetVar("internalid") %>'
 type="ProxyTest" />
<%
}
// put store name in request scope
request.setAttribute("store", "assets");
request.setAttribute("total", Integer.valueOf(list.length()));

Chapter 44
Integrating External Content in the Contributor Interface

44-13

%>
</cs:ftcs>

Building a Data Store for the Grid Widget
This renders the JSON to be sent back to the UI widget.

Inside CustomElements/ProxyTest/UI/Data/Search/SearchJson, use the
proxy:tojson utility tag does this, as shown in the following example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="proxy" uri="futuretense_cs/proxy.tld"%>
<cs:ftcs>
<proxy:tojson store="${store}" total="${total}" />
</cs:ftcs>

Testing Custom Search
After the JSON is scripted, test the search function to ensure everything works
properly. To test the search:

In the Contributor interface, from the search box, select ProxyTest as the search type.
Click the Search icon.

The Search tab opens displaying the associated data.

Figure 44-4 Search Results

The following figure shows the same content in Thumbnail view.

Chapter 44
Integrating External Content in the Contributor Interface

44-14

Figure 44-5 Search Results in Thumbnail View

The Search tab also is functional in docked mode. The following figure shows that the
tooltip is filled in with default data.

Chapter 44
Integrating External Content in the Contributor Interface

44-15

Figure 44-6 Search Results in Docked Panel

Additional Customizations
You can implement additional customizations. However, it is not necessary to use
them to implement a custom search.

Rendering a Thumbnail

In the example, the ProxyTest repository returns a URL to a thumbnail image for
each content item. We modify it to retrieve the thumbnail URL (sent by our ProxyTest
repository) to render it. For that to happen, we must customize the grid in thumbnail
view (whether docked and undocked); that is, overriding the configuration elements
for:

UI/Layout/CenterPane/Search/View/ThumbnailView
UI/Layout/CenterPane/Search/View/DockedThumbnailView

Configuration files for each must be created:

Chapter 44
Integrating External Content in the Contributor Interface

44-16

CustomElements/ProxyTest/UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
CustomElements/ProxyTest/UI/Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

The ThumbnailViewConfig configuration file has the following XML configuration:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="xlat" uri="futuretense_cs/xlat.tld" %>
<cs:ftcs>
 <thumbnailviewconfig>
 <formatter>fw.ui.GridFormatter.simpleThumbnailFormatter</formatter>
 </thumbnailviewconfig>
</cs:ftcs>

You can see that this overrides the formatter setting for the ProxyTest thumbnail view
(any other setting contained in the global configuration element is maintained). This
formatter renders a default view for each search result showing a thumbnail image,
and the name field (inspect link).

Similarly, docked thumbnail view settings should be overwritten by creating
DockedThumbnailViewConfig in CustomElements/ProxyTest/UI/Layout/CenterPane/
Search/View/ with the following XML:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<cs:ftcs>
<ics:callelement element=
"[CustomElements/ProxyTest/UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig]" />
</cs:ftcs>

Note:

See Customizing Search Views of the Contributor Interface.

The brackets around the element name indicate that the ics:callelement
tag should not search for a customized version of the given element name.

Configuring the Grid Context Menu

Not all asset operations apply to proxy assets. Therefore, we have to override the
default grid context menu setup. Override the element UI/Config/GlobalHtml by
creating new element MyConfig in UI/Config. For more information about creating
MyConfig, see Customizing Context Menus.

This ensures that none of the global settings are merged with the overridden settings.

Sorting Proxy Assets by Fields

Sorting of proxy assets is done by the external content source API (WebCenter Sites
does not sort results internally). Thus, there may or may not be any support for sorting
all fields. A user can carry out a sorted search for proxy assets by clicking the Sort
icon and choosing among the sort options.

Chapter 44
Integrating External Content in the Contributor Interface

44-17

Note:

The ProxyTest asset example does not support sorting.

The sort options are set in CustomElements/ProxyTest/UI/Layout/CenterPane/
Search/View/SearchTopBarConfig. You must define the following for the sort options:

• fieldname: The value of the sort variable that is passed with the request object to
SearchAction, which should indicate the field to sort on (e.g. date).

• displayname: The string displayed in the Sort drop-down menu (e.g. View
Count(Most-Least)).

• sortorder: descending or ascending. If descending, WebCenter Sites adds a
negative sign (-) in front of the fieldname value.

The following code is written for the YouTube proxy assets:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="xlat" uri="futuretense_cs/xlat.tld"
%><cs:ftcs>
 <!-- Here the field name is the index column on which the sort is
performed.-->
 <sortconfig>
 <sortfields>
 <sortfield id="title">
 <fieldname>title</fieldname>
 <displayname><xlat:stream key="UI/UC1/Layout/NameSort1"
escape="true"/></displayname>
 <sortorder>ascending</sortorder>
 </sortfield>
 <sortfield id="updateddate_dsc">
 <fieldname>date</fieldname>
 <displayname><xlat:stream key="UI/UC1/Layout/
ModifiedSort1" escape="true"/></displayname>
 <sortorder>descending</sortorder>

Chapter 44
Integrating External Content in the Contributor Interface

44-18

 </sortfield>
 <sortfield id="viewCount">
 <fieldname>viewCount</fieldname>
 <displayname><xlat:stream key="UI/UC1/Layout/
ViewCountSort" escape="true"/></displayname>
 <sortorder>descending</sortorder>
 </sortfield>
 </sortfields>
 </sortconfig>
</cs:ftcs>

After a sort field is chosen, a new sorted search is initiated and SearchAction is called.
A sort parameter is available in the request object, which provides the field to sort
by. For example, in the YouTube proxy asset SearchAction, the sort parameter is
obtained and used as a query parameter value:

...

String sort = request.getParameter("sort");
if(sort != null && StringUtils.isNotEmpty(sort)){
 // incase of descending sort, UI sends the field with a -ve sign,
 // YouTube doesn't take as is, so remove the -ve sign if any
 sort.trim();
 if(sort.startsWith("-")){
 sort = sort.substring(1,sort.length());
 }
}else{
 sort = "relevance";
}

...

// build YouTube URL
String baseYtURL = "https://www.googleapis.com/youtube/v3/";
StringBuffer ytQuery = new StringBuffer(baseYtURL);
ytQuery.append("search?part=snippet");
ytQuery.append("&maxResults=" + maxResults); // number of results per
page
ytQuery.append("&type=video"); //only return videos, no channels or
playlists
ytQuery.append("&order=" + sort); // ordering
ytQuery.append("&key=" + apiKey); // add user's API public access key
ytQuery.append("&q=").append(URLEncoder.encode(searchTerm));

...

Be aware that both SearchTopBarConfig and ContextMenuConfig elements must have
merge=false set in the element resdetails1 (or resdetails2) field.

Chapter 44
Integrating External Content in the Contributor Interface

44-19

Figure 44-7 Configuration File Element Details Value Field

Implementing a Custom Tree
A custom tree is useful to allow users to browse external content by category.

Figure 44-8 Custom Tree

Two elements are created to render the tree:

• ProxyTest/Tree/Root: Renders the tree root nodes, that is, the content
categories.

• ProxyTest/Tree/Load: Renders all content under a given category.

To implement the custom tree, you must first register the custom tree tab, and then
implement the custom tree code.

This topic includes the following:

• Registering the Custom Tree Tab

• Implementing the Tree Code

Chapter 44
Integrating External Content in the Contributor Interface

44-20

Registering the Custom Tree Tab
The custom tree tab is defined in the Add New Tree Tab page. With the tab created
in this example, a new content tree called Proxy Assets is created, containing a single
custom section (ProxyTest) pointing at ProxyTest/Tree/Root.

To register the custom tree tab for this example:

1. In the Admin interface, expand the Admin node, then double-click Tree.

The Tree Tabs page opens.

2. At the bottom of the Tree Tabs page, click Add New Tree Tab.

The Add New Tree Tab page opens.

3. Fill in the fields as needed. For this specific example, fill in the fields in this way:

• Title: Enter Proxy Assets for the title of the tab.

• Sites: Select Proxy from the list.

• Required Roles: Select Any from the list.

• Tab Contents: Select ProxyTest and click Add Selected Items to move it
to the Selected column. ProxyTest should be the only item in the selected
column.

• Section Name: Enter ProxyTest in the field.

• Element Name: Enter ProxyTest/Tree/Root in the field.

Chapter 44
Integrating External Content in the Contributor Interface

44-21

Figure 44-9 Add New Tree Tab Page

4. Once the fields have been properly entered, click Save to save the asset.

Implementing the Tree Code
1. In ProxyTest/Tree/Root, query the external repository to get the tree root nodes

(in this case, the list of categories).

2. Generate the Tree node data for each category:

Chapter 44
Integrating External Content in the Contributor Interface

44-22

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ page import="org.codehaus.jettison.json.*"%>
<cs:ftcs>

<%-- Retrieve all categories from ProxyTest repository --%>
<ics:setvar name="serviceURL" value="/browse/categories.json" />
<ics:callelement element="ProxyTest/GetData" />

<%
JSONArray list = (JSONArray)ics.GetObj("items");
for (int i = 0; i < list.length(); i++) {
 String category = (String)list.get(i);
 // 1) build a tree node id - needs to be unique
 // Note: we need to make sure that AssetType is not present in the scope
 // (BuildTreeNodeID is otherwise assuming the tree node to be an asset
node)
 %>
 <ics:removevar name="AssetType" />
 <ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNodeID"
>
 <ics:argument name="AdHoc" value='<%=category %>' />
 </ics:callelement>
 <%
 // 2) build the 'LoadURL' that is, the URL to call to load this node's
children
 // OpenMarket/Gator/UIFramework/LoadTab is a standard element.
 // Required input is:
 // - populate: the element rendering tree nodes to execute
 // - op: must be set to 'load'
 //
 // We're also passing 'category' which is required by our custom logic
in
 // ProxyTest/Tree/Load
 //
 %>
 <satellite:link assembler="query"
 pagename="OpenMarket/Gator/UIFramework/LoadTab"
 outstring="LoadURL">
 <satellite:argument name="populate" value="ProxyTest/Tree/Load"/>
 <satellite:argument name="op" value="load"/>
 <satellite:argument name="category" value='<%=category %>' />
 </satellite:link>

 <ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNode">
 <ics:argument name="Label" value='<%=category %>' />
 </ics:callelement>
<%}%>
</cs:ftcs>

This figure shows the tree generated with this code:

Chapter 44
Integrating External Content in the Contributor Interface

44-23

Figure 44-10 Generated Custom Tree

Note:

The elements OpenMarket/Gator/UIFramework/BuildTreeNodeID
and OpenMarket/Gator/UIFramework/BuildTreeNode both consume
variables in the ICS scope. Since the <ics:callelement /> tag has
a global scope, it is, in some cases, necessary to explicitly remove
(permanently or temporarily) certain variables from the ICS scope, using
<ics:removevar />.

3. In ProxyTest/Tree/Load, query the external service to retrieve all content in a
given category, then render a node for each content item:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="proxy" uri="futuretense_cs/proxy.tld"%>
<%@ page import="org.codehaus.jettison.json.*"%>
<cs:ftcs>

<%-- Retrieve all content for a given category --%>
<ics:setvar name="serviceURL" value='<%="/browse/" + ics.GetVar("category") +
 ".json"%>' />
<ics:callelement element="ProxyTest/GetData" />

<%
JSONArray list = (JSONArray)ics.GetObj("items");

for (int i = 0; i < list.length(); i++) {
 JSONObject item = (JSONObject)list.get(i);%>

 <proxy:register externalid='<%=item.getString("id") %>'
 type="ProxyTest"
 name='<%=item.getString("title") %>'
 varname="internalid" />

 <ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNodeID">
 <ics:argument name="AssetType" value="ProxyTest" />
 <ics:argument name="ID" value='<%=ics.GetVar("internalid") %>' />
 </ics:callelement>

 <ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNode">

Chapter 44
Integrating External Content in the Contributor Interface

44-24

 <ics:argument name="Label" value='<%=item.getString("title") %>' />
 <ics:argument name="Description" value='<%=item.getString("title")
%>' />
 <ics:argument name="executeFunction" value="inspect" />
 </ics:callelement>
 <%
}
%>
</cs:ftcs>

You then should be able to browse each category.

Figure 44-11 Browsing Custom Tree Objects

4. Double-click a node to open the default proxy asset inspection page for that node.

Setting Up YouTube Proxy Assets
To access YouTube proxy assets, you need to add an API key and set up a proxy
server or WebLogic Server– if your WebCenter Sites instance is installed on WebLogic
Server.

To set up YouTube proxy assets:

1. Obtain the Google Developers YouTube API key:

a. Register your project in the Google Developers Console.

b. Enable the YouTube Data API v3.

c. Generate a public API server key.

2. Copy the generated key into the properties file:

a. Open the wcs_properties.json file.

Chapter 44
Setting Up YouTube Proxy Assets

44-25

b. Search for the wcsites.youtube.api.key key, and add the generated API key
into the value:

{
"key" : "wcsites.youtube.api.key",
"value" : "AIzaSyBnYqexNhlvU6QaJ2emS829bF...",
"valid_values" : [""],
"defaultValue" : "",
"category" : "Core",
"subcategory" : "",
"global" : true,
"localServerValues" : { },
"hide" : false,
"readonly" : false,
"restart_required" : false,
"deprecated" : false,
"description" : "YouTube public API access key used to search
Youtube videos (proxy assets). Created by registering project in
the Google Developers Console, enabling YouTube Data API v3, and
generating a public API server key."
}

3. Search and use the YouTube proxy asset that make use of the YouTube API v3:

a. Switch to the avisports site.

b. Go to the Contributor interface.

c. In the Search bar, set the search type as YouTube Video.

d. Enter a search term and click the Search icon.

YouTube videos are displayed.

4. If you are using a proxy server, follow these steps to configure it for YouTube proxy
assets:

a. In Sites Explorer, navigate to Tables > ElementCatalog > CustomElements
> YouTube > UI > Data > Search.

b. Edit the row for SearchAction.jsp.

• In the resdetails1 column, enter the proxy host. For example,
proxyHost=my-proxy.company.com.

• In the resdetails2 column, enter the proxy port. For example,
proxyPort=80.

5. If you are using the WebLogic Server on which WebCenter Sites is installed, follow
these steps to configure the WebLogic Server for YouTube proxy assets:

a. Open the Admin console: host:admin port/console.

b. Expand Domain Structure, then Environment, and then Servers.

c. Click the managed server on whichWebCenter Sites is running.

d. Under the SSL tab, expand Advanced.

• Under Hostname Verification, select Custom Hostname Verifier.

• For Custom Hostname Verifier, enter
weblogic.security.utils.SSLWLSWildcardHostnameVerifier.

Chapter 44
Setting Up YouTube Proxy Assets

44-26

e. Ensure that the WebLogic server’s truststore trusts googleapis.com.
WebLogic's default settings allow this:

• Under the Keystores tab, for Keystores, click Change, and select Demo
Identity and Demo Trust.

• Under the Keystores tab, ensure that the passphrase contains the Java
Standard Trust Keystore (default is changeit).

6. Restart the server.

User Interface Customizations
You can make WebCenter Sites an enjoyable experience for contributors and
marketers if you customize the Contributor interface in ways that make the common
tasks easier. For instance, you may want to customize search to help them search
content faster.

This topic describes customizable portions of the interface to synchronize with third-
party software.

• Customizing the Search Start Menu

• Customizing the Content Tree

Customizing the Search Start Menu
In the Contributor interface, users run searches restricted to a specific asset type by
selecting a Search start menu. This figure shows the Search Type list:

Figure 44-12 Search Type Start Menu Selection

Chapter 44
User Interface Customizations

44-27

To customize search for a given asset type, override the controller element UI/Data/
Search/Search by creating the following elements:

CustomElements/<AssetType>/UI/Data/Search/SearchAction
CustomElements/<AssetType>/UI/Data/Search/SearchJson

For more details about controller elements and element overrides, see Customizing
Search Views of the Contributor Interface.

UI/Data/Search/Search runs the search code and generates the appropriate JSON
data for the grid widget's consumption (whether in list or thumbnail view, docked or
undocked). The JSON data must be a valid Dojo datastore. For an implementation
example, see Customizing the Content Tree.

Customizing the Content Tree
The content tree can be customized by defining a custom tree section, contained in a
new or existing tree tab: For more details about defining custom tree tab sections, see
Options for Managing Access to the Tree (Admin Interface Only).

A custom tree tab section points to a JSP element generating data based on some
rendering logic, eventually consumed by the tree widget. Tree data is generated using
the following utility elements:

• OpenMarket/Gator/UIFramework/BuildTreeNodeId: Generates a tree node ID.

• OpenMarket/Gator/UIFramework/BuildTreeNode: Generates properly formatted
tree node data.

The following examples show how to build a tree node, whether it represents an asset
or not (that is, an asset node compared to an adhoc node). See Customizing the Tree
in the Admin Interface.

Example 1: Build a Tree Node Representing an Asset

This example shows how to generate a tree node representing a single asset
node. The node runs the inspect action when double-clicked (see executeFunction
parameter); that is, the asset default inspect view is rendered in a new tab (or focused
if the asset is opened in a tab).

<%--
- Generates a tree node id.
- The element expects the asset id and type to be passed in parameters
- called respectively "ID" and "AssetType".
- The generated id is stored in a WebCenter Sites variable called "TreeNodeID"
--%>
<ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNodeID">
 <ics:argument name="AssetType" value="Article" />
 <ics:argument name="ID" value="1234567890" />
</ics:callelement>

<%--
- Generates a tree node for this asset.
- Note that this element implicitly consumes variables
- currently present in the ICS scope, including "TreeNodeID"
--%>
<ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNode">
 <ics:argument name="Label" value="Node Label, for example asset name or
other
 readable string" />

Chapter 44
User Interface Customizations

44-28

 <ics:argument name="Description" value="Some optional tooltip text" />
 <ics:argument name="executeFunction" value="inspect" />
</ics:callelement>

Example 2: Build an adhoc Tree Node

Tree nodes do not necessarily represent assets, in which case they are called adhoc
nodes. This example shows how to generate an adhoc node representing a parent
node, a node that has children and can be expanded and collapsed.

<%--
- Generates a tree node id.
- For adhoc nodes, the expected parameter is called "AdHoc",
- and can be any arbitrary string, which must be unique across tree nodes
--%>
<ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNodeID" >
 <ics:argument name="AdHoc" value="SomeUniqueString" />
</ics:callelement>

<%--
- Generates a "LoadURL", that is the URL to be called when a tree node
- is expanded. In this case, we're calling the default utility SiteCatalog entry
- (OpenMarket/Gator/UIFramework/LoadTab) which, in turn, will invoke
- a custom element ("Some/Other/Element" in our example), in charge
- of generating the child nodes, based on some custom logic.
--%>
<satellite:link
 assembler="query"
 pagename="OpenMarket/Gator/UIFramework/LoadTab"
 outstring="LoadURL">
 <satellite:argument name="populate" value="Some/Other/Element"/>
 <satellite:argument name="op" value="load"/>
</satellite:link>

<%--
- Generates the corresponding tree node data
- Note that this element consumes the "LoadURL" variable previously generated.
- The presence of LoadURL indicates whether a node should be marked as expandable
or not.
--%>
<ics:callelement element="OpenMarket/Gator/UIFramework/BuildTreeNode">
 <ics:argument name="Label" value="Some meaningful node label" />
</ics:callelement>

Information About Embedding Proxy Assets in Web Pages
You can define templates for proxy assets to make them appealing on the website and
embed proxy assets inside pages.

Topics:

• Writing a Template for Proxy Assets

• Using Proxy Assets in Slots

• About Caching Proxy Assets

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-29

Writing a Template for Proxy Assets
Templates can be defined for proxy assets, just as templates can be defined for any
other asset type.

Using a Template to Render Proxy Assets:

1. In the Admin interface, click New on the menu bar and then choose New
Template.

The Template form is displayed.

2. In the Name field, enter ProxyTestSummary.

3. From the For Asset Type drop-down list, choose ProxyTest.

4. In the Applied to subtypes box, choose Any, if not selected already.

5. On the Element tab:

• From the Usage drop-down list, choose Element is used as Layout.

• In the Create Template Element? section, click JSP .

• In the Element Logic box, enter the following code from ${WCS_PROXY}
\templates\ProxyTestSummary.jsp:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><%@ taglib prefix="render" uri="futuretense_cs/render.tld"
%><%@ taglib prefix="fragment" uri="futuretense_cs/fragment.tld"
%><%@ page import="javax.ws.rs.client.*"
%><%@ page import="javax.ws.rs.core.*"
%><%@ page import="org.codehaus.jettison.json.*"
><%@ page import="com.fatwire.cs.ui.framework.UIException"
%><%@ taglib prefix="asset" uri="futuretense_cs/asset.tld"%>

<cs:ftcs>
<%-- ProxyTest/ProxyTestSummary --%>

<%-- Record dependencies for the Template --%>
<ics:if condition='<%=ics.GetVar("tid")!=null%>'>
 <ics:then><render:logdep cid='<%=ics.GetVar("tid")%>'
c="Template"/>
 </ics:then>
</ics:if>

<%-- Set the urlPath to proxy_samples --%>
<%
String host = request.getServerName();
String port = Integer.toString(request.getServerPort());
String contextPath = request.getContextPath();
String urlPath = "http://"+host+":"+port+"/"+contextPath+"/
proxy_samples/content/";
%>

<%-- first, retrieve the external id --%>
<asset:load name="asset" type='<%=ics.GetVar("c") %>'

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-30

 objectid='<%=ics.GetVar("cid") %>' />
<asset:get name="asset" field="name" />
<asset:get name="asset" field="externalid" />

<%
// given the external content id, invoke the third-party
repository API
// to retrieve content metadata
Client client = ClientBuilder.newClient();
Response resp = null;
WebTarget res = null;

try {
 res = client.target(urlPath + ics.GetVar("externalid") +
".json");
 resp = res.request(MediaType.APPLICATION_JSON).get();
} catch (Exception e) {
 // propagate exception to client-side
 request.setAttribute(UIException._UI_EXCEPTION_, e);
 e.printStackTrace();
 throw e;
}

String jsonString = resp.readEntity(String.class);
JSONObject data = new JSONObject(jsonString);
%>

<%-- finally render content --%>
<h4><%=data.getString("title") %></h4>
<p><%=data.getString("foo") %></p>
<img src="<%=data.getString("image") %>"
alt="<%=data.getString("title") %>" />

</cs:ftcs>

6. In the Contributor interface, search for ProxyTest assets while leaving the Search
field blank.

7. Click a ProxyTest asset that includes asset details (for example, YellowSkier).

8. Click Preview , then choose the ProxyTestSummary layout, and then click
Apply.

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-31

Title, metadata, and image of the ProxyTest asset should be displayed.

Using Proxy Assets in Slots
Proxy assets can be embedded inside pages using the exact same tags and principles
that apply to standard assets.

1. Create a Page attribute:

a. In the Name field, enter ProxyTestAttribute.

b. From the Attribute Type drop-down list, choose asset.

c. From the Asset Type drop-down list, choose ProxyTest.

d. Click the Save icon.

2. Create a Page definition:

a. In the Name field, enter ProxyTestPageDef.

b. In the Attributes section, select the ProxyTest attribute and then click
Optional.

c. Click the Save icon.

3. Create a template for the Page asset:

a. In the Name field, enter ProxyTestSlotTemplate.

b. From the For Asset Type drop-down list, choose Page.

c. In the Applied to subtypes box, choose Any, if not selected already.

d. On the Element tab:

• From the Usage drop-down list, choose Element is used as Layout.

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-32

• In the Create Template Element? section, click JSP .

• In the Element Logic box, enter the following code from ${WCS_PROXY}
\templates\ProxyTestSlotTemplate.jsp

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>
<%@ taglib prefix="assetset" uri="futuretense_cs/
assetset.tld"%>
<cs:ftcs><render:logdep cid='<%=ics.GetVar("tid")%>'
c="Template"/>
<html>
<head>
 <title>ProxyTest Slots Example</title>
</head>
<body>
 <assetset:setasset name="page" id='<%=ics.GetVar("cid")
%>'
 type='<%=ics.GetVar("c") %>' />
 <assetset:getattributevalues
attribute="ProxyTestAttribute" listvarname="ProxyTest"
 name="page"
typename="PageAttribute" />
 <ics:listget listname="ProxyTest" fieldname="value"
output="id" />
 <h3>ProxyTest Slots Example</h3>
 <insite:calltemplate field="ProxyTestAttribute"
c='ProxyTest'
 cid='<%=ics.GetVar("id") %>'
tname="ProxyTestSummary" />
</body>
</html>
</cs:ftcs>

4. Create the Page asset:

a. In the Contributor interface, from the menu bar, select Content, New, and then
select Page (Section).

b. In the Name field, enter ProxyTestPage.

c. From the Page Definition drop-down list, choose ProxyTestPageDef.

d. From the Template drop-down list, choose ProxyTestSlotTemplate.

e. In form mode and web mode, drag and drop ProxyTest assets into the
ProxyTestAttribute slot.

In web mode, the ProxyTest asset is rendered using the ProxyTestSummary
template.

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-33

About Caching Proxy Assets
Because the rendered content is stored and managed in a separate repository,
WebCenter Sites has no way to know when any content is modified, or even if content
is modified. Oracle recommends to set cache expiration to a limited period of time on
templates rendering proxy assets, such as the Summary template defined in Writing a
Template for Proxy Assets.

Chapter 44
Information About Embedding Proxy Assets in Web Pages

44-34

Part XV
Developing Applications with the
Web Experience Management (WEM)
Framework

Become familiar with the Web Experience Management (WEM) Framework that lets
you develop applications. Learn the process of developing applications and custom
Representational State Transfer (REST) resources. Learn how you can implement and
customize Single Sign-On (SSO).

• About the Web Experience Management (WEM) Framework

• Understanding the WEM Framework and Services

• Working with the Articles Sample Application

• Developing Applications with WEM Framework

• Developing Custom REST Resources with WEM Framework

• Working with Single Sign-On for Production Sites

• Using REST Resources with the WEM Framework

• Introducing Customizable Single Sign-On Facility in WEM Framework

• Buffering in WEM Framework

• Registering Applications Manually in WEM Framework

45
About the Web Experience Management
(WEM) Framework

With the Web Experience Management (WEM) Framework you can develop
applications and integrate them with Oracle WebCenter Sites. Through its single
administrative interface, WEM Admin, you can centrally manage applications and user
authorization. WEM lets you implement single sign-on so the users log in only once to
gain access to all applications that are allowed to them during a session.

Topics:

• About the WEM Framework

• Prerequisites for Application Development

• Getting Started

About the WEM Framework
The WEM Framework provides you the technology to develop and integrate
applications with Oracle WebCenter Sites. The WEM Framework relies on
WebCenter Sites for content management, and it’s shipped with the WebCenter
Sites Representational State Transfer (REST) API.

Objects in the WebCenter Sites database, such as sites, users, and data model map
to REST resources in the WEM Framework.

Figure 45-1 WEM Framework

45-1

When implemented on the WEM Framework, applications communicate with the
WebCenter Sites database through REST services. The applications appear in WEM
Admin as list items on the Apps page. Administrators authorize users, which involves
configuring access to the applications and their resources. To this end, the WEM
Admin interface exposes authorization items (along with applications) through links on
the menu bar.

Figure 45-2 Apps Page, WEM Admin

Coupling the items enables applications for users.

Figure 45-3 Authorization Model

Chapter 45
About the WEM Framework

45-2

Once the coupling is complete, users are authorized at the database, REST, and
application levels.

Figure 45-4 Roles, Groups, and ACLs

Experienced WebCenter Sites developers will recognize that the WEM Framework
extends the use of sites and roles to control access to applications. However, unlike
WebCenter Sites, the WEM Admin interface does not expose the data model. The
REST API does. In this respect, WEM Admin can be thought of as strictly an
authorization interface, supported by the Admin interface (for configuring ACLs and
groups).

Although WEM Admin is seldom used by developers, the concepts behind user
authorization can come into play in application development. The next chapters
describe the WEM Framework as it relates to application development and provides
examples of application code.

Prerequisites for Application Development
When you’re developing an application with WEM, you code the application's logic,
deploy the application, and register the application to expose it in WEM Admin
interface. Administrators can manage the applicable from this interface and make it
available to other users. You need to be an expert WebCenter Sites developers, and
you should have a working knowledge of the technologies that are discussed for
reference here.

Topics:

• Technologies

• WebCenter Sites Interfaces, Objects, and APIs

Chapter 45
Prerequisites for Application Development

45-3

• Documentation

• Sample Applications and Files

• Application Access

Technologies
• Representational State Transfer (REST), used to communicate with the

WebCenter Sites platform

• Central Authentication Service (CAS), which is deployed during WebCenter Sites
installation to support single sign-on for WEM

• Java Server Pages Standard Tag Library (JSTL), Java, JavaScript, Jersey, and
the Spring MVC framework, to follow the code of the Articles sample application
provided with WEM

WebCenter Sites Interfaces, Objects, and APIs
Developers must have a working knowledge of:

• WebCenter Sites Admin (the administrative interface)

• WebCenter Sites basic and flex asset models

• Asset API

• ACLs, which protect database tables and define the types of operations that can
be performed on the tables

• Concept of sites and roles

Documentation
This section discusses the following documents:

• REST API Resource Reference for Oracle WebCenter Sites

• Java API Reference for Oracle WebCenter Sites

Information about ACLs, sites, and roles, and their usage in WebCenter Sites is
available in Working with ACLs and Roles in Administering Oracle WebCenter Sites.

Sample Applications and Files
• The following sample applications are used in this part of the guide:

– Articles, a lightweight content management application

– SSO sample application, a small authentication application for production
sites. The application is packaged as wem-sso-api-cas-sample.war.

– Recommendations, which demonstrates the process of creating REST
resources

• The Customizable Single Sign-On facility is used in this section of the guide to
illustrate customization of login behavior.

• WEM Framework ships with sample files to illustrate cross-domain
implementations and management of assets over REST using our API.

Chapter 45
Prerequisites for Application Development

45-4

https://docs.oracle.com/middleware/12213/related-docs/WBCSR/toc.htm
https://docs.oracle.com/en/middleware/webcenter/sites/12.2.1.3/wcsea/index.html

All sample applications and files are located in the Misc/Samples/WEM Samples folder
in your WebCenter Sites installation directory.

Application Access
When using information in this part of the guide, or developing and testing, access the
WEM Admin interface to test the results of your application registration process as
follows:

1. In a Web browser, access the following URL:

http://wcs-server:wcs-port/wcs-context-root/

2. Log in as fwadmin (or an equivalent user).

3. In the page that appears, select AdminSite, then Admin (the first icon).

4. The
WEM Admin Sites page appears. Registered applications are listed on the Apps
page.

Figure 45-5 Sites Page

Getting Started
You’ll work with a sample application called Articles to understand how you can use
WEM to create applications. You’ll learn about creating REST resources, single sign-
on, and system security.

• For information about the WEM Framework, see Understanding the WEM
Framework and Services.

• For a demonstration of the Articles application, see Working with the Articles
Sample Application.

Chapter 45
Getting Started

45-5

• For information about the Articles application code, programmatic application
registration, and cross-domain implementations, see Developing Applications with
WEM Framework. An example of manual application registration is available in
Registering Applications Manually in WEM Framework.

• For information about creating REST resources, see Developing Custom REST
Resources with WEM Framework.

• For a demonstration of the SSO sample application, see Working with Single
Sign-On for Production Sites.

• For information about system security, see Using REST Resources with the WEM
Framework.

• For information about customizing the login behavior for the WEM Framework, see
Introducing Customizable Single Sign-On Facility in WEM Framework.

• For information about buffering, see Buffering in WEM Framework.

Chapter 45
Getting Started

45-6

46
Understanding the WEM Framework and
Services

The application developer's environment consists of the WEM Framework running on
WebCenter Sites using REST services. Applications can be written in any language to
make REST calls to WebCenter Sites. Custom-built applications can be deployed to
an application server other than the platform's, and therefore written independently of
the platform's deployment infrastructure.
For information about the WEM framework and services, see these topics:

• Support for Application Development

• REST Services

• UI Container

• Single Sign-On

• Authorization Model

• Custom Applications

• Requirements for REST Resources

Support for Application Development
When you’re developing an application with WEM, you use REST services to access
WebCenter Sites objects, UI container to expose applications, SSO to authenticate
users, and REST authorization model to control access to REST resources.

Support for application development is in the following components (which are also
described in their own sections in this chapter):

• REST services, a set of programmatic interfaces that provide access to the
WebCenter Sites objects.

• UI container, which exposes registered applications. Registration enables
rendering of the applications' interfaces. The UI container also supports the WEM
Context object, used by applications to get details from the WEM Framework
about the logged-in user and current site.

• Single Sign-On (SSO), which enables authenticated users to log in only once to
access all applications allowed to them during the session. (The WebCenter Sites
installation process installs the Central Authentication Service web application to
support single sign-on in WEM.)

• REST authorization model, which provides fine-grained access control over
REST resources, based on group membership. Application development does not
directly involve authorization (which is configured graphically in WEM Admin and
the Admin interface), except when a predefined user is specified in the code.

WEM Admin is also part of the WEM Framework, but seldom used in application
development, mainly to test the results of the application registration process,
or to obtain administrative information about sites, users, groups, and roles. For

46-1

information about WEM Admin and the Web Experience Management Framework,
see Administering Oracle WebCenter Sites.

REST Services
With REST API, you can expose the WebCenter Sites data model and objects such as
sites, users, roles, ACLs, groups, and so on.

• Basic asset types and basic assets (read-write)

• Flex asset types and definitions (read-only)

• Flex children and parents (read-write)

• Indexing to support asset searches

The following objects are also exposed by the REST API. They are used mainly by
administrators in the authorization process (the objects are displayed in the WEM
Admin interface):

• Sites (read-write)

• Users (read-write)

• Roles (read-write)

• ACLs (read-only)

• Groups (read-only), introduced in this release to control access to the REST layer.

• Auxiliary services: user locale and server time zone

(Sites, roles, and users can be configured in WEM Admin. ACLs and groups are
exposed in WEM Admin (under Users) as read-only items; they must be configured in
the Admin interface.)

Objects in WebCenter Sites map to REST resources in WEM. All other features,
such as publishing, workflow, database management tools, and page caching must be
accessed from the Admin interface or through JSP and XML tags.

Among the authorization objects that general administrators manage, sites and
roles are the most likely candidates for application development, depending on
your requirements. You can also specify predefined users to simplify administrators'
authorization tasks.

• Sites: Using sites in application code is a requirement when the application's
asset types and assets must be programmatically installed. The code must specify
at least one site on which to enable the asset types (site-specific access to assets
requires their asset types to be enabled on at least one site). Otherwise, install just
the asset types (without naming any sites). Administrators will follow up by using
the Admin interface to enable the asset types and assets on sites of their own
choice.

• Roles: In WEM, roles are used to manage access to applications. Sharing a
role to a user and an application on the same site grants the user access to
the application on that site. Roles can be used in application code to protect
interface functions, such as Edit. The Admin interface exemplifies an application
with role-protected interface functions.

• Users: The only user you are likely to specify in your application code is the
predefined user, to simplify administrators' authorization processes. Specifying
the user involves coding a user name and password. Instead of authorizing all

Chapter 46
REST Services

46-2

application users individually at the REST level, an administrator will authorize
your predefined user. Permissions granted to the predefined user will be passed to
the logged-in users when they access the application. For more information about
predefined users and the authorization model, see Authorization Model.

Keeping track of how sites and roles are used across the system is an administrator
task that requires support from application developers. Tracking becomes especially
important when the WebCenter Sites platform also functions as a staging system,
only because the WEM Framework uses the WebCenter Sites database. For example,
sites created in WEM Admin are stored in the database. They might not be used in
WebCenter Sites for staging, but they are exposed in the Admin interface, along with
its dedicated CM sites. Conversely, sites that are created in the Admin interface for
CM purposes are exposed in WEM Admin, where other applications can be assigned
to those sites. For users to be properly authorized, developers must communicate
to administrators the nature of the custom-built applications: the resources they use,
role-protected interface functions, and predefined users, if any.

UI Container
With the UI container, you expose registered applications in WEM Admin.
Administrators manage these applications and make them available to other users.
You use this container to support the Context object. These applications need this
object to get details about the logged-in user and site (for example, the current site's
name from the UI container) from the WEM Framework and to get utility methods that
applications use to share data.

Topics:

• Registration

• WEM Context Object

Registration
The purpose of registering an application is to expose the application in WEM Admin
for administrators to manage and make available to other users. Registration allows
the system to recognize the application as an asset, which in turn allows the system
to:

• List the application on the Apps page in WEM Admin

• Locate the icon you have chosen to represent the application

• Display the application's icon on the WebCenter Sites login page, and in the
applications bar on each site to which the application is assigned

• Render the application's interface when the application's icon is selected

Chapter 46
UI Container

46-3

Figure 46-1 Registered Applications in UI Container

Registering an application includes registering its views. While multiple and shared
views are supported, applications with a single, unshared view are typical (and used in
this part of the guide). Views can be of type iframe, HTML, and JavaScript.

To support registration, the WEM Framework ships with the basic asset types
FW_Application and FW_View. Both are created when the WEM option is selected
during the WebCenter Sites installation process. They are enabled by default on
AdminSite (also created during the WebCenter Sites installation process).

Registering an application (once it is deployed) requires creating an instance of
FW_Application, creating an instance of FW_View for each view, and associating the
FW_View instances with the FW_Application instance. Applications must be registered
on AdminSite, even if they will be used on other sites. Registration allows applications
to be assigned to other sites.

Applications can be registered either programmatically through the REST API's
applications service, or manually from the Admin interface. Programmatic
registration is preferred. For general instructions, see Registering Applications with
Different Views. An example of manual registration is available in Registering
Applications Manually in WEM Framework.

WEM Context Object
The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details
from the WEM Framework about the logged-in user and site (for example, the current
site's name from the UI container). The Context object also provides various utility
methods that applications will use to share data. The Context Object can be used by
applications running in the same domain as WebCenter Sites or in different domains.
See Accessing Parameters from the WEM Framework.

Chapter 46
UI Container

46-4

Single Sign-On
You’ll implement single-sign on with Central Authentication Service (CAS) which is a
single sign-on protocol for the web. CAS permits a user to access multiple applications
just by logging in only once.

You can read about Central Authentication Service here: http://www.jasig.org/cas.
As shown in the sample Articles example, the servlet filter that ships with the WEM
Framework is ready-to-use for any application that is deployed as a Java web
application. If your application is developed using a different technology, refer to CAS
clients specific to your choice of technology, at the following URL:

http://www.ja-sig.org/wiki/display/CASC/Official+Clients

When a user tries to access an application protected by CAS, the authentication
system responds with the steps below.

1. Initial Access

a. When the user first attempts to access an application protected by CAS, the
user is redirected to the CAS login page.

b. Upon successful login, the user is redirected back to the application with a
ticket. The cookie for the CAS login page is saved.

c. The application verifies the user's identity by verifying the ticket against CAS.
(On content management systems, CAS authenticates by default against the
WebCenter Sites database.)

Figure 46-2 Accessing an Application Protected by CAS

2. Subsequent Access

a. When the user attempts to access another application protected by CAS, the
user is redirected to the CAS login page.

Chapter 46
Single Sign-On

46-5

http://www.jasig.org/cas
http://www.ja-sig.org/wiki/display/CASC/Official+Clients

b. The cookie is retrieved from the request, implicit login is performed, and the
login page is bypassed.

c. The user is redirected back to the application with a ticket.

d. The application verifies the user's identity by verifying the ticket against CAS.

Authorization Model
General administrator grants users access to applications using WEM Admin. You can
simplify the administrator’s job by coding a predefined user.

General administrator uses WEM Admin to couple objects. You code a predefined user
for the application. How the user fits into the authorization model is explained below.

In the figure below, Site, Application, User, and Role each have a counterpart menu
option in WEM Admin. ACLs and groups are exposed on each user's page.

Figure 46-3 Authorization Model

Figure 46-4 WEM Admin Menu Bar

Authorization is managed at three levels: application, REST, and database.

Chapter 46
Authorization Model

46-6

• Application-level authorization requires sharing a role to a user and an application
on the same site, which grants the user access to the application on that site. The
roles of role-protected interface functions must be shared to the application users.

• REST-level authorization regulates the user's permission to operate on the
application's resources, assuming ACLs are correctly assigned. REST-level
authorization requires configuring groups with privileges to operate on objects that
map to REST resources. Users who are assigned to a group gain the group's
privileges.

Developers can define a user in their applications (by user name and password) to
act as a proxy for logged-in users, which eliminates the need for administrators
to configure REST security for each logged-in user. Once an application is
deployed and registered, a general administrator authorizes its predefined user
by: 1) configuring the predefined user in WEM Admin for application access, 2)
configuring a group (in the Admin interface) with privileges to operate on the
applications' resources, and 3) assigning the predefined user to the group (by
using either the WEM Admin or the Admin interface). The group's privileges are
passed to the predefined user and then to logged-in users when they access the
application. Supported security configurations are described and listed in REST
Authorization. The Articles sample application provided with the WEM Framework
specifies a predefined user.

• At the database level, ACLs determine the individual user's access to the system,
that is, permission to log in and operate on the database, regardless of the user's
membership in any groups. Membership in a group does not grant permissions to
a user who lacks the appropriate ACLs and permissions to the database tables.

Default ACLs give users almost unrestricted permissions, but not the means,
to operate on objects in many of the database tables. Those permissions are
modulated at the REST level: Either directly by the user's membership in groups
(in the absence of a predefined user), or indirectly by the application's predefined
user and his membership in groups. Modifying a group's privileges to operate
on objects modifies the group member's privileges to operate on resources.
The same user on the WebCenter Sites side remains unaffected by group
memberships. Permissions to content are still regulated by ACLs and actuated
by sites and roles.

Custom Applications
With WEM you can develop custom applications that you can implement in a
loosely coupled manner to the content management platform. The applications you
develop will use the REST API Web services and SSO mechanism enabled by the
WEM Framework. You deploy these applications to an application server different
from the platform’s application server. You can, therefore, write custom applications
independently of the platform's deployment infrastructure.

Most custom applications are deployed remotely.

Chapter 46
Custom Applications

46-7

Figure 46-5 Remote Application Deployment

Custom applications can be implemented as content management or delivery
applications. We recommend getting started with the content management side, as
it typically does not require much performance tuning effort.

The WEM Framework ships with several lightweight sample applications, which
you can launch and analyze as models for developing your own applications.
Articles illustrates a content management application. Specifications can be found
in Developing Applications with WEM Framework, source code is provided in the
WebCenter Sites Misc/Samples folder, and other supporting information is provided
in the REST API resource and Bean references. The SSO sample application is
for authentication on live sites and the Recommendations application illustrates the
creation of REST resources.

Requirements for REST Resources
A REST request requires a header with a key and a value of a CAS ticket or session
Id.

To authenticate all REST POST/PUT/DELETE requests as valid, each request requires a
header with the X-CSRF-Token as the key and a value of either a CAS ticket (multi or
single) or a sessionid.

Chapter 46
Requirements for REST Resources

46-8

47
Working with the Articles Sample
Application

The Articles sample application is a simple content management application for
managing article assets. When you work with the application’s richly documented
source code and a self-installation process, it will help you gain knowledge that you’ll
find useful in developing applications.

Topics:

• About the Articles Sample Application

• Launching the Articles Sample Application

• Testing the Articles Application

About the Articles Sample Application
The Articles home page displays two articles that you can edit directly in WEM from
the custom interface. In this application, you can use the WebCenter Sites REST
API to perform a search query from Java code and a modification asset query from
JavaScript code. You will be able to run the Articles application and REST services on
different application servers.

Cross-domain restrictions in JavaScript prevent AJAX calls directly from the
Articles application to the REST services. Therefore, a simple ProxyController is
introduced to redirect calls from JavaScript to WEM REST Web Services. Custom
implementations may reuse this controller implementation.

The application's home page looks like this figure:

47-1

Figure 47-1 Home Page

The Articles application is based on the Spring MVC framework. Articles includes
a predefined administrative user named fwadmin with password xceladmin, who
is assigned to the REST group named RestAdmin. The application's self-installer
contains specifications for registering the Articles application and installing its asset
model and sample articles. The application does not have internally configured sites
or role-protected functions. It has a single, iframe view. Additional specifications are
available in Working with the Articles Sample Application.

Launching the Articles Sample Application
To be able to launch the Articles sample application, you build and deploy it, and then
run the installer.

Topics:

• Building and Deploying the Articles Application

• Registering the Articles Sample Application

Building and Deploying the Articles Application
1. Determine or create the site to which you will assign the sample Articles

application. The default site is FirstSiteII (a sample WebCenter Sites CM site).
It is possible that FirstSiteII is not installed on your system.

Chapter 47
Launching the Articles Sample Application

47-2

To select or create a site, log in to WEM Admin at the URL:

http://<server>:<port>/<cs_application_context>/login

using the credentials of a general administrator (fwadmin/xceladmin are the
default values).

Note:

In step 5, you specify the site you have chosen here, which allows the
installer to enable the application's asset model and assets on that site.

2. Download and install Java Development Kit 8 Update 51 (or later).

3. Download the latest Apache Ant from http://ant.apache.org/ and place the Ant
bin directory into the system PATH.

4. Copy servlet-api.jar to the Articles application lib folder. The jar file can
be taken from your application server's home directory (for example, Tomcat's
servlet-api.jar is located in the home lib directory).

5. Set the following parameters in the applicationContext.xml file (in
src\articles\src\main\webapp\WEB-INF\):

• casUrl: Specify the URL of the CAS application: http://<server>:<port>/
<context_path>

• csSiteName: Specify the name of the site that you selected in step 1.

• csUrl: Specify the URL where the WebCenter Sites platform is running:
http://<server>:<port>/<context>

• csUserName: The default value is fwadmin. This is the application's predefined
user, a general administrator with membership in the RestAdmin group which
has unrestricted permissions to REST services. If you specify a different user,
you must name a user equivalent to fwadmin. For instructions about creating a
general administrator, see Creating Users in Administering Oracle WebCenter
Sites.

• csPassword: Specify the predefined user's password.

• articlesUrl: Point to the URL where the sample application is accessed.

6. Run the Ant build with the default target (enter ant on the command line).

7. Deploy the resulting target/articles-1.0.war to an application server.

On deployment, the following content is copied from source to target: The contents
of the lib folder are copied to /WEB-INF/lib. The contents of the resources folder
are copied to /WEB-INF/classes/. For information about the structure of the source
application, see Developing Applications with WEM Framework.

Chapter 47
Launching the Articles Sample Application

47-3

http://ant.apache.org/

Note:

The mcast port in cas-cache.xml is not replaced by the installer. The
mcast port is left as @casCacheMultiCastGroupPort@ and the application
will fail to deploy unless manually edited.

A solution is to copy cas-cache.xml from WebCenter Sites into the
Articles application. This can eliminate some problems associated with
manually updating the mcast address and port.

8. In the customBeans.xml file (located in the sitesinstall/config folder), specify
the trusted URLs CAS can redirect a visitor to upon successful login. For example,
add the following URL to the customBeans.xml file:

<value>http://<hostname>:<portnumber>/articles-1.0/*</value>

Registering the Articles Sample Application
The Articles application has a self-installer, which starts running when you log in to the
install.app page. The installer registers the sample application (including the view)
and creates its data model and assets in the WebCenter Sites database.

Note:

Specifications for the registration asset types FW_View and FW_Application
can be found in the Java API Reference for Oracle WebCenter Sites and in
Registering Applications Manually in WEM Framework.

To run the Articles installer:

1. Navigate to the install.app page:

http://<hostname>:<portnumber>/<context_path>/install.app

For example:

http://localhost:9080/articles-1.0/install.app

2. Use any credentials to log in.

The application's predefined user, specified by csUserName and csPassword ,
provides you with permissions to the application. The sample application does
not perform authorization checks as it does not use roles.

3. The self-installation process invokes InstallController.java, which first
registers the application (including the view, in an application Bean), then writes
the sample asset type and assets to the database.

a. InstallController.java registers the Articles application with the WEM
Framework:

• InstallController.java creates an application asset named Articles
(asset type FW_Application) in the WebCenter Sites database.

Chapter 47
Launching the Articles Sample Application

47-4

The iconurl attribute points to the URL where the icon representing the
application is located.

The layouturl attribute specifies the URL of the layout.app page
(implemented by LayoutController.java). The layout.app page defines
the application layout.

The layouttype attribute takes the default (and only) value:
layoutrenderer. Using the layoutrenderer value, the UI container is
responsible for rendering the application's associated views by using the
layout.app page, specified by layouturl.

• InstallController.java creates a view asset named ArticlesView
(asset type FW_View) in the WebCenter Sites database. The association
between the view asset and the application asset is made through the
views attribute in the FW_Application asset type.

b. InstallController.java installs the application's asset model and sample
assets:

• Creates the application's FW_Article asset type in the WebCenter
Sites database. (FW_Article is a basic asset type defined in
InstallController.java.)

• Enables the FW_Article asset type on the site that was specified in the
csSiteName parameter in applicationContext.xml (step 5 of Building and
Deploying the Articles Application).

• Writes the two sample article assets to the FW_Article asset type tables.
(The articles' text and images are stored in: /sample app/articles/src/
main/resources/install.)

c. InstallController.java creates an asset type-based index to support
searches on assets of type FW_Article. (The controller specifies index
configuration data.)

4. When the installation process completes successfully, InstallController.java
displays a confirmation (at http://<server>:<port>/articles/install.app),
that the sample data imported successfully and directing you to the Home page
(home.app).

Testing the Articles Application
Try out the Articles sample application. All you need to do is navigate to the home
page and log in.

To test the Articles application:

1. Navigate to the home.app page:

http://<hostname>:<portnumber>/<context_path>/home.app

For example:

http://localhost:8080/articles-1.0/home.app

2. Use any credentials to log in.

Chapter 47
Testing the Articles Application

47-5

The application's predefined user, specified by csUserName and csPassword ,
provides you with permissions to the application. The sample application does
not perform authorization checks as it does not use roles.

WEM displays the application's home page.

3. To experiment with this application (for example assign it to other sites and add
users), use WEM Admin.

Chapter 47
Testing the Articles Application

47-6

48
Developing Applications with WEM
Framework

You can explore the Articles sample application to understand the basic architecture of
an application that makes REST calls.

For information about developing applications with the WEM framework, see these
topics:

• About the Articles Sample Application's Structure

• About the Articles Sample Application's Configuration Files

• Making REST Calls

• Constructing URLs to Serve Binary Data

• Accessing Parameters from the WEM Framework

• Registering Applications with Different Views

About the Articles Sample Application's Structure
In the source directory for the Articles sample application, you will see source files,
logger file, installer resources, home page files, and configuration files.

The following figure shows the source structure of the Articles sample application. On
deployment, the following directories are copied from source to target: The contents of
the lib directory are copied to /WEB-INF/lib/. The contents of the resources directory
are copied to /WEB-INF/classes/.

48-1

Figure 48-1 Articles Sample Application Source Structure

Articles is a Java Web application developed on Spring MVC. The following pages are
available:

• /install.app is the Articles installation page, which also displays a confirmation
message when the application is successfully installed.

• /home.app is the home page of the Articles application.

About the Articles Sample Application's Configuration Files
The Articles sample application’s configuration files are applicationContext.xml and
spring-servlet.xml.

• applicationContext.xml (in /WEB-INF/) holds SSO and application-specific
configurations (such as a predefined user and the site on which to enable the
data model and assets).

• spring-servlet.xml (in /WEB-INF/) is the default Spring configuration file. This
file stores the Spring configuration and references the following controllers
(described in Source Files):

– HomeController

– InstallController

– LayoutController

Chapter 48
About the Articles Sample Application's Configuration Files

48-2

– ProxyController

– loggingconfig.xml (in /<sitesshared>/config) is the logging configuration
file. On application deployment, it is copied from /<sitesshared>/config to
webcentersites\sites-home\template\config.

Source Files

/sample app/articles/src/main/java/

The /sample/ folder contains the source files listed below:

• Configuration.java is populated (by the Spring framework) from the
applicationContext.xml file.

• HomeController.java is the home page controller, which renders a single home
page. This controller reads the list of sample articles from the WebCenter Sites
platform using the REST API and displays them on the home page.

The sample articles consist of images and text, stored in /sample app/
articles/src/main/resources/install. The sample articles are installed in the
WebCenter Sites database by InstallController.java.

• InstallController.java registers the Articles application, and writes the
application's asset model and sample assets to the database.

• LayoutController.java displays the application's layout page (layout.app) used
by the WEM UI framework. LayoutController.java is also used during the
application registration procedure.

• ProxyController.java delegates AJAX requests to the WebCenter Sites REST
servlet.

• TldUtil.java utility class contains TLD function implementations.

Installer Resources

/sample app/articles/src/main/resources/install

The /install/ folder contains the following resources, used by the
InstallController to construct the home page (Figure 48-3):

• strategies.png

• strategies.txt

• tips.png

• tips.txt

Home Page Files

/sample app/articles/src/main/webapp/images

The /images/ folder contains:

• articles.png icon (Figure 48-2), which represents the Articles application in the
applications bar

• In Figure 48-3:

– edit.png is the icon for the Edit function

– save.png is the icon for the Save function

– cancel.png is the icon for the Cancel function

Chapter 48
About the Articles Sample Application's Configuration Files

48-3

Scripts

/sample app/articles/src/main/webapp/scripts

The /scripts/ folder contains the json2.js utility script, used to convert strings to
and from JSON objects.

Styles

/sample app/articles/src/main/webapp/styles

The /styles/ folder contains main.css, which specifies CSS styles used by this Web
application.

Views

/sample app/articles/src/main/WEB-INF/jsp

The /jsp/ folder contains:

• home.jsp, which is used to render the home page view of the Articles application
(Figure 48-3).

• layout.jsp, which defines the application layout.

WEB-INF

/sample app/articles/src/main/WEB-INF

The /WEB-INF/ folder contains:

• articles.tld, the TLD declaration file

• spring-servlet.xml, the Spring configuration file

• web.xml, the Web application deployment descriptor

Figure 48-2 Articles Icon (articles.png)

Chapter 48
About the Articles Sample Application's Configuration Files

48-4

Figure 48-3 Articles Home Page

Making REST Calls
WebCenter Sites REST resources support two types of input and output formats: XML
and JSON. If you would like to get specific return formats, use HTTP headers that
specify the MIME type application/xml or application/json.

For example, when specifying input format to be XML, set Content-Type to
application/xml. When specifying the output format, set Accept (the expected
format) to application/xml. If other output formats are specified, they are ignored.
The default is XML, if not specified in Content-Type or Accept (for sample code, see
Making REST Calls from JavaScript).

Topics:

• Making REST Calls from JavaScript

• Making REST Calls from Java

Making REST Calls from JavaScript
• Use the following code (in home.jsp) to perform AJAX calls to the asset REST

services to save asset data. Note that the request is actually performed to the
proxy controller which redirects the request to the destination REST service.

Chapter 48
Making REST Calls

48-5

Note:

We use the JSON stringify library to serialize a JavaScript object as
a string. It is much more convenient to write JSON objects instead of
strings.

// Form the URL pointing to the asset service
// to the proxy controller, which will redirect this request to the CS REST
servlet.
var idarr = assetId.split(":");
var assetUrl = "${pageContext.request.contextPath}/REST/sites/$
{config.csSiteName}/types/" + idarr[0] + "/assets/" + idarr[1];

// For the data object to be posted.
var data =
{
 "attribute" :
[
{
 "name" : "source",
 "data" :
 {
 "stringValue" : document.getElementById("source_e_" + assetId).value
}
},
{
 "name" : "cat",
 "data" :
 {
"stringValue" : document.getElementById("cat_e_" + assetId).value
}
}
],
 "name" : document.getElementById("name_e_" + assetId).value,
 "description" : document.getElementById("desc_e_" + assetId).value,
 // This should be removed.
 "publist" : "${config.csSiteName}"
};
// Convert JSON data to string.
var strdata = JSON.stringify(data);

// Perform AJAX request.
var req = getXmlHttpObject();
req.onreadystatechange = function ()
{
if (req.readyState == 4)
{
if (req.status == 200)
 {
 // On successful result
// update the view controls with new values and switch the mode to 'view'.
 for (c in controls)
{
document.getElementById(controls[c] + "_v_" + assetId).innerHTML =
document.getElementById(controls[c] + "_e_" + assetId).value;
}
switchMode(assetId, false);
}

Chapter 48
Making REST Calls

48-6

else
{
// Error happened or the session timed out,
// reload the current page to re-acquire the session.
alert("Failed to call " + assetUrl + ", " + req.status + " " +
req.statusText);
window.location.reload(false);
}
}
};
// We put Content-Type and Accept headers
// to tell CS REST API which format we are posting
// and which one we are expecting to get.
req.open("POST", assetUrl, true);
req.setRequestHeader("Content-Type", "application/json;charset=utf-8");
req.setRequestHeader("Content-Length", strdata.length);
req.setRequestHeader("Accept", "application/json");
req.send(strdata);
}

Making REST Calls from Java
• Use the code below (in HomeController.java) to call the assets search service

to list all assets of type FW_Article. The code uses the Jersey Client library
passing objects from the rest-api-<version>.jar library provided by the WEM
Framework. This leverages strong typing in Java.

It is important to note that a token must be acquired from Java code by calling
the SSOAssertion.get().createToken() method. It is unnecessary to do so in
JavaScript as that side is authenticated against WEM SSO.

// Use Jersey client to query CS assets.
Client client = Client.create();
String url = config.getRestUrl() + "/types/FW_Article/search";
WebResource res = client.resource(url);

// Construct URL and add token (for authentication purposes)
// and fields (specify which fields to retrieve back) parameters.
res = res.queryParam("fields",
URLEncoder.encode("name,description,content,cat,source", "UTF-8"));
res = res.queryParam("ticket",
SSO.getSSOSession().getTicket(res.getURI().toString(),
config.getCsUsername(), config.getCsPassword()));
// Put Pragma: auth-redirect=false to avoid redirects to the CAS login page.
Builder bld = res.header("Pragma", "auth-redirect=false");

// Make a network call.
AssetsBean assets = bld.get(AssetsBean.class);

Note:

The custom Pragma: auth-redirect=false header instructs the CAS
SSO filter not to redirect to the CAS sign-in page, but to return a 403
error instead, when no ticket is supplied or the supplied ticket is invalid.

Chapter 48
Making REST Calls

48-7

Constructing URLs to Serve Binary Data
For the Articles application, you can leverage the Blob server in WebCenter Sites to
serve BLOB data. You can use the getBlobUrl function to construct a URL pointing to
the binary data for a given attribute in a given asset.

• blobUrl points to the Blob server (http://localhost:8080/cs/BlobServer by
default.

public String getBlobUrl(String assetType, String assetId, String attrName,
String contentType)
throws Exception
{
String contentTypeEnc = URLEncoder.encode(contentType, "UTF-8");

return blobUrl + "?" +
"blobkey=id" +
"&blobnocache=true" +
"&blobcol=thumbnail" +
"&blobwhere=" + assetId +
"&blobtable=" + assetType +
"&blobheader=" + contentTypeEnc +
"&blobheadername1=content-type" +
"&blobheadervalue1=" + contentTypeEnc;
 }

• Alternatively, to get binary data, load an asset using the resource /sites/
{sitename}/types/{assettype}/assets/{id}. When loaded, the asset contains
the URL pointing to the BLOB server.

Accessing Parameters from the WEM Framework
With the WemContext JavaScript Context object, you can empower applications to find
out which user has logged in to which site. You can also enable applications to share
data.

The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details from
the WEM Framework about the logged-in user and site (typically, to get the current
site's name from the UI container). The Context object also provides various utility
methods that the applications use to share data. The Context Object can be used by
applications running in the same domain as WebCenter Sites or in different domains.

Note:

The wemcontext.html file lists the exposed methods, summarized in
Methods Available in Context Object.

Topics:

• Initializing and Using Context Object in the Same Domain

• Initializing and Using Context Object for Cross-Domain Applications

Chapter 48
Constructing URLs to Serve Binary Data

48-8

• Methods Available in Context Object

Initializing and Using Context Object in the Same Domain
To initialize and use Context Object for applications in the WebCenter Sites domain:

1. Include wemcontext.js.

2. Retrieve an instance of the WemContext object.

3. Use the methods of WemContext.

<script src='http://<csinstalldomain>/<contextpath>/wemresources/js/
WemContext.js'></script>
<script type="text/javascript">
var wemContext = WemContext.getInstance(); // Instantiate Context Object
var siteName = wemContext.getSiteName(); // Get Site Name
var userName = wemContext.getUserName(); // Get UserName
</script>

Initializing and Using Context Object for Cross-Domain Applications
To initialize and use Context Object for cross-domain applications:

1. Copy wemxdm.js, json2.js, and hash.html (from the Misc/Samples folder) to
your application.

2. Open the sample.html file and make the following changes to perform cross-
domain calls:

• Change the paths of wemxdm.js and json.js and hash.html to their paths in
the application (see the example after step d).

• Change the path of wemcontext.html to its location in WebCenter Sites .
(wemcontext.html is located under /wemresources/wemcontext.html. Use the
WebCenter Sites host name and context path.)

• In the interface declaration, specify methods to be used in the framework.

• Implement those methods in the local scope and invoke the remote method.

<script type="text/javascript" src="../js/wemxdm.js"></script>
<script type="text/javascript">
// Request the use of the JSON object
WemXDM.ImportJSON("../js/json2.js");
var remote;
window.onload = function() {
// When the window is finished loading start setting up the interface
remote = WemXDM.Interface(/** The channel configuration */
{
// Register the url to hash.html.
local: "../hash.html",
// Register the url to the remote interface
remote: "http://localhost:8080/cs/wemresources/wemcontext.html"
}, /** The interface configuration */
{
remote: {
getSiteName :{},
...

}
},/**The onReady handler*/ function(){

Chapter 48
Accessing Parameters from the WEM Framework

48-9

// This function will be loaded as soon as the page is loaded
populateAttributes();
});
}
</script>

<script type="text/javascript">
/** Define local methods for accessing remote methods */
function getSiteName(){
remote.getSiteName(function(result){
alert("result = " + result);
});
}
 ...
</script>

Methods Available in Context Object
The following table lists and describes the methods available in Context Object.

Table 48-1 Methods Available in Context Object

Return Type Method name and Description

Object getAttribute(attributename)

Returns attribute value for the given attribute name.

Object getAttributeNames()

Returns all the attribute names.

Object getCookie(name)

Returns cookie value for the given name. It has all restrictions of the
normal browser cookie.

Object getCookies()

Returns all the cookies.

Object getLocale()

Returns locale.

Object getSiteId()

Returns the site ID.

Object getSiteName()

Returns the site name.

Object getUser()

Returns user object.

Object getUserName()

Returns user name.

void removeCookie(name, properties)

Removes cookie.

void setAttribute(attributename, attributevalue)

Sets attribute. These attributes can be accessed in other applications.

void setCookie(name,value,expiredays,properties)

Sets the cookie.

Chapter 48
Accessing Parameters from the WEM Framework

48-10

Registering Applications with Different Views
In WEM Framework, when you register an application to expose it, an asset of type
FW_Application and another of type FW_View are created for each view associated
with the application. These asset types are enabled on AdminSite.

Their attributes are defined in the Java API Reference for Oracle WebCenter Sites.
Programmatic registration is the preferred method. For an example of manual
registration, see Registering Applications Manually in WEM Framework.

Topics:

• Registering Applications with an iframe View

• Registering Applications with JavaScript and HTML Views

Registering Applications with an iframe View
The section uses code from the Articles sample application to illustrate the registration
process. Articles has a single view of type iframe. The same steps apply to JavaScript
and HTML views.

To register an application:

1. Create or get an icon to represent your application. (The icon is displayed in the
applications bar.)

(The Articles sample application uses the articles.png image file located in: /
sample app/articles/src/main/webapp/images/)

2. Create a file that specifies the layout of the application in HTML, that is, for each
view, create a placeholder element to hold the content rendered by the view.
Applications and views are related as shown in the next figure.

For example, layout.jsp for the Articles sample application contains the following
line:

<div id="articles" style="float:left;height:100%;width:100%"
class="wemholder"></div>

The view's content is rendered within the placeholder element when the
application is displayed (layout.app renders the application's layout; home.app
renders the view).

Note:

When creating the layout file, specify a unique id for the placeholder
element. Specify the same id for the parentnode attribute when coding
the view object. Use class="wemholder" for the placeholder elements.

Chapter 48
Registering Applications with Different Views

48-11

Figure 48-4 Applications and Views

The relationship between applications and views is many-to-many. One application
can have multiple views and each view can be used by many applications. Only
registered views can be shared (through their asset IDs). The view is created
within the context of its application if the asset ID is omitted. In the basic case, an
application has only one view associated with it.

3. Invoke the PUT wem/applications/{applicationid} REST service and specify
your application bean.

4. Populate the bean with the view asset and application asset.

For an iframe view, use the code of the Articles sample application, that is,
InstallController.java (locate the comment lines // Create a new view
object and // Create a new application object). Set the layouturl attribute
to specify the URL of the application's layout page.

In the Articles application, the layouturl attribute points to the URL of layout.app
(implemented by LayoutController.java):

app.setLayouturl(config.getArticlesUrl() + "/layout.app");

5. To test the results of your registration process, log in to the WEM Admin interface
as a general administrator and select Apps on the menu bar. Your application
should be listed on that page.

Registering Applications with JavaScript and HTML Views
For applications that use HTML and JavaScript views, follow the steps in Registering
Applications with an iframe View, but use the sample code and attributes listed in the
following sections:

• Rendering JavaScript View

• Rendering HTML View

Chapter 48
Registering Applications with Different Views

48-12

Rendering JavaScript View

Note:

JavaScript specified in the view is rendered (executed) when the application
is rendered. Ensure the JavaScript does not conflict with other views.

Sample code:

 window.onload = function () {
 if (GBrowserIsCompatible()) {
 var map = new GMap2(document.getElementById("map_canvas"));
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 map.setUIToDefault();
 }
 }

• Rendering the JavaScript view from a source URL

Set the following attributes:

– name: Name of the view

– parentnode: ID of the placeholder element (from step 2 in Registering
Applications with an iframe View)

– viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript into
the placeholder element

– sourceurl: Path of the .js file, which provides content for the view. For
example: http://example.com:8080/js/drawTree.js

• Rendering the JavaScript view from source code

Set the following attributes:

– name: Name of the view

– parentnode: ID of the placeholder element (from step 2 in Registering
Applications with an iframe View)

– viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript into
the placeholder element

– javascriptcontent: JavaScript code (sample provided above). The code
must not contain <script> tags.

Rendering HTML View

Note:

HTML specified in the view is rendered (executed) when the application is
rendered.

Chapter 48
Registering Applications with Different Views

48-13

Sample code:

<object width="480" height="385">
 <param name="movie" value="http://www.localhost:8080/jspx/
flash_slider_main.swf"></param>
 <param name="allowFullScreen" value="true"></param>
 <embed src=" http://www.localhost:8080/jspx/flash_slider_main.swf"
 type="application/x-shockwave-flash" allowscriptaccess="always"
allowfullscreen="true"
 width="480" height="385">
 </embed>
</object>

• Rendering the HTML view from a source URL

Set the following attributes:

– name: Name of the view

– parentnode: ID of the placeholder element (from step 2 in Registering
Applications with an iframe View)

– viewtype: fw.wem.framework.IncludeRenderer, which renders JavaScript
into the placeholder element

– sourceurl: Path to the HTML file that provides content for the view. For
example: http://example.com:8080/js/drawTree.jsp.

• Rendering the HTML view from source code

Set the following attributes:

– view: Name of the view

– parentnode: ID of the placeholder element (from step 2 in Registering
Applications with an iframe View)

– viewtype: fw.wem.framework.IncludeRenderer, which renders JavaScript
into the placeholder element

– includecontent: HTML content (sample provided above. The code must not
contain <html> or <body> tags.

Chapter 48
Registering Applications with Different Views

48-14

49
Developing Custom REST Resources with
WEM Framework

Within the WEM Framework, you can develop custom REST resources as the
Recommendation sample application demonstrate.

Topics:

• Creating REST Resources for WebCenter Sites and Satellite Server: Example

• Creating REST Resources

Creating REST Resources for WebCenter Sites and Satellite
Server: Example

Through the Recommendation sample application you can learn how you can create
REST resources for WebCenter Sites and Satellite Server.

The application registers a new REST resource sample/recommendations/<id> with
GET and POST operations, which allow for retrieval and modification of static list
recommendations. The application also demonstrates how it is possible to leverage
the Satellite Server caching system.

Topics:

• Building and Deploying the Recommendations Sample Application

• Testing the Recommendations Sample Application

Building and Deploying the Recommendations Sample Application
1. The Recommendations sample application is located in the Misc/Samples folder

under your WebCenter Sites installation directory. Navigate to recommendations
and edit the build.properties file. Specify the correct paths for cs.webapp.dir
and ss.webapp.dir properties.

2. Run Apache ant while in the recommendations folder.

This will build and deploy your sample application.

3. Launch the catalogmover application. Use the Server, Connect menu to
connect to WebCenter Sites. Go to Catalog, then Auto Import Catalog(s) and
select src\main\schema\elements.zip file. Append xceladmin, xceleditor when
specifying the list of ACLs.

4. Go to the WebCenter Sites web application folder. Edit the WEB-INF/
classes/custom/RestResource.xml file. Uncomment recommendationService,
recommendationConfig and resourceConfigs beans.

49-1

5. Go to the Satellite Server web application folder. Edit WEB-INF/
classes/custom/RestResource.xml file. Uncomment recommendationService,
recommendationConfig, and resourceConfigs beans.

6. Restart both WebCenter Sites and Satellite Server.

Testing the Recommendations Sample Application
You can test the Recommendations sample application as follows:

• Use the existing static list recommendation ID (or create a new
recommendation) for the URL http://<hostname>:<port>/<contextpath>/REST/
sample/recommendations/<recommendationid>.

• Use the same URL for both WebCenter Sites and Satellite Server installations.
For example, use http://localhost:8080/cs/REST/sample/recommendations/
1266874492697. See the XML response for both WebCenter Sites and Satellite
Server.

Creating REST Resources
This section includes the following topics:

• About the Recommendations Sample Application's Structure

• Implementing Custom REST Resources

About the Recommendations Sample Application's Structure
The Recommendations sample application was created to guide you through the
process of creating your own REST resources.

Figure 49-1 Recommendations Sample Application

• Schema files: src/main/schema

– elements.zip contains a sample element, which is used by Satellite Server for
caching purposes.

Chapter 49
Creating REST Resources

49-2

– jaxb.binding is a customization for the default JAXB bindings used during the
bean generation process.

– recommendation.xsd is an XML schema for the RecommendationService
beans.

• Java source files: src/main/java/ ... /sample

– RecommendationResource contains the REST resource implementation. It is
used on both WebCenter Sites and Satellite Server.

– RecommendationService is an interface that provides the functionality for the
RecommendationResource class. It is implemented differently, depending on
where the resource is hosted: locally (on WebCenter Sites) or remotely (on
Satellite Server).

– beans/* classes are generated using Java xjc compiler. They are pre-
packaged with the application. To regenerate beans (that is, when changing
the recommendation.xsd file), run generate Ant's task from build.xml.

– LocalRecommendationService is a local (WebCenter Sites) implementation for
the RecommendationService interface.

– RemoteRecommendationService is a remote (Satellite Server) implementation
for the RecommendationService interface.

Implementing Custom REST Resources
1. Write your XSD file describing your REST service (recommendations.xsd file).

2. Generate beans using the JAXB xjc utility (generate Ant's task).

3. Create your REST interface, which will be implemented differently for WebCenter
Sites and Satellite Server.

4. Implement the REST interface by extending the following classes:
com.fatwire.rest.BaseLocalService com.fatwire.rest.BaseRemoteService

5. This step is optional in case you decide to leverage Satellite Server caching:

Create elements on the WebCenter Sites side, which load the same assets as the
local implementation does.

6. Create your REST resource class by extending the
com.fatwire.rest.BaseResource class.

7. Register your REST service and configuration in WEB-INF/classes/custom/
RestResources.xml file on both WebCenter Sites and Satellite Server sides.

The custom/RestResources.xml file contains the following components:

• The only mandatory bean is the bean with resourceConfigs ID. The
resourceConfigs property contains references to all REST configurations
used.

Note:

If custom resourceConfigs is uncommented, then bean should be
referenced. Otherwise, the default REST resource, which is provided
with the WEM installation is not registered.

Chapter 49
Creating REST Resources

49-3

• Resource configurations must be of type com.fatwire.rest.ResourceConfig.
Typically only one instance of this class is registered (multiple services can be
registered per configuration).

Note:

For multiple services, create a new configuration for each disjoint
group of your REST services, usually identified by separate XSD
files.

• The resourceClasses property contains the list of all resources used.

• beanPackage contains the Java package name specified for the output beans
when running the xjc utility.

• schemaLocation is the xsi:schemaLocation attribute to be put in all output
XML files produced by your REST service.

Chapter 49
Creating REST Resources

49-4

50
Working with Single Sign-On for Production
Sites

Here is a simple example that helps you understand how you can enable single
sign-on and sign-out for applications on live sites where you won’t be able to secure
applications with ready-to-use CAS.

Topics:

• Deploying the SSO Sample Application

• Understanding SSO Sample Application's Structure

• Implementing Single Sign-On

• Implementing Single Sign-Out

Deploying the SSO Sample Application
All you need to do is unpack the WAR file, modify the context file, and deploy the
application.

1. Unpack the wem-sso-api-cas-sample.war file (to the /sso-sample folder, for
example). The application is located in the WebCenter Sites installation directory
in the Misc/Samples/WEM Samples/WEM Sample applications/ directory.

2. Modify the applicationContext.xml file in the WEB-INF folder by setting the
following properties:

• casUrl: Point to the CAS server base path:

http://localhost:8080/cas

• casLoginPath: Include the login form template hosted by the SSO sample
application:

/login?wemLoginTemplate=http%3A%2F%2Flocalhost%3A9080%2Fsso-cas-
sample%2Ftemplate.html

3. Deploy the modified SSO sample application to your application server.

4. Access the application.

The SSO sample application consists of the following pages:

• Protected area: A page that is protected by the WEM SSO filter. This page
contains two single sign-out links.

50-1

Figure 50-1 Protected Page with Single Sign-Out Links

The first link (single sign-out with redirect) is an HTML link that performs single
sign-out on the CAS side and redirects the user back to the home page. The
second link (single sign-out without redirect) is also an HTML link that performs
single sign-out on the CAS side, but without leaving or reloading the current page.

• Public area: A page that is excluded from the protection filter.

• Public area with login form: This page is excluded from the protection filter, but
has a login form, which allows performing a sign-in operation without leaving or
reloading the current page.

Figure 50-2 Public Area with the Sign in Link

Chapter 50
Deploying the SSO Sample Application

50-2

Note:

On successful login CAS redirects the user to the requested service.
For security purposes, you may validate the requested service before
redirecting the user. Do this by specifying the list of trusted and permitted
urls using the Property Management Tool under the System Tools node
in the Admin interface. Add the trusted urls (comma separated) to the
valid.urls property. This property specifies that the trusted URLs users are
permitted to use to access WebCenter Sites. Default value of this property
is <wcsites.app.protocol>://<wcsites.app.host>:<wcsites.app.port>/
<wcsites.app.contextroot>/*. See Property Files Reference for Oracle
WebCenter Sites.

The URLs can be in either of the following formats:

• Exact URL. For instance:

http://hostname:port/cs/wem/fatwire/wem/Welcome

• Matching URL. For instance:

http://hostname:port/SitesWebapp/*

Where /* at the end indicates any URL that has the same prefix as
specified

Trusted resources using IP must have URLs specified as well.

Understanding SSO Sample Application's Structure
With the SSO sample application’s basic code for configuring single sign-on and sign-
out you can protect applications on production sites.

The following components provide access to the SSO sample application:

• index.jsp: Starting page. This page contains links to the pages described as
Protected area, Public area, and Public area with login form pages (see
Deploying the SSO Sample Application).

• template.html: Used to provide a custom sign-in form for CAS. Its path
is referenced in the wemLoginTemplate parameter in casLoginPath in the
applicationContext.xml file.

Chapter 50
Understanding SSO Sample Application's Structure

50-3

Figure 50-3 sso-sample

Configuration Files in /sso-sample/WEB-INF

WEB-INF contains the following configuration files:

• applicationContext.xml: Spring web application configuration file, which
configures the SSO subsystem.

• web.xml: Web application deployment descriptor.

Protected Files in /sso-sample/protected/jsp

Files in this area are protected by the SSO filter. By default, the following files are
included in this folder:

• protected.jsp: A page protected by the SSO filter. This page hosts two links for
performing single sign-out. The first link leads to the CAS sign-out page with a
redirect to the application's home page when sign-out is complete. The second
link embeds an iframe into this page, which calls the CAS sign-out page with a
redirect to the signoutCallback.jsp page. The protected.jsp page also prints
out all attributes from the Assertion object, which describes the current logged in
user.

• protected/jsp/protectedSection.jsp: Page that is referenced from the
public.jsp page, when the Sign in link is clicked in an embedded iframe. As
this page is protected, a login screen is presented in the embedded iframe.

Public Files in /sso-sample/public/jsp

Files in this area are not protected by the SSO filter. By default, the following sample
files are included in the /public/jsp/ folder:

• public.jsp: This page not protected by the CAS filter.

• publicWithAuth.jsp: This page displays the Sign in link. Clicking the link
embeds an iframe into the publicWithAuth.jsp with the iframe pointing to
the protectedSection.jsp page. As the page is protected, a login screen is
presented in the embedded iframe.

• signoutCallback.jsp: This page is called from the protected.jsp page upon
sign-out completion when using iframe.

Chapter 50
Understanding SSO Sample Application's Structure

50-4

Implementing Single Sign-On
You can implement single sign-on for a website by either presenting the sign-in form
when the visitor tries to access a protected page or embedding it into a public page.

• The sign-in form is presented when the visitor tries to access a protected page.
This is the default sign-in implementation. This sign in form could be either
a default sign-in form shipped with CAS or a custom form provided by an
application.

Figure 50-4 Sign-On Form

• The sign-in form is embedded into a public page, and the sign-in function is
performed without the user leaving the current page. This behavior can be
implemented by embedding the iframe that points to a protected page. As the
page is being protected, the sign-in form is presented to the visitor.

Figure 50-5 Sign In Form

Implementing Single Sign-Out
You implement single sign-out either by retrieving the single sign-out URL or by using
an iframe-embedding technique.

• Retrieve the single sign-out URL by invoking the following method:

getSignoutUrl() or getSignoutUrl(String callbackUrl) method of
com.fatwire.wem.sso.SSO.getSSOSession() object.

After performing single sign-out, CAS can optionally redirect to the visitor-supplied
URL, which is set in the callbackUrl parameter.

• Use an iframe-embedding technique if the sign-out is to be performed without
leaving the current page. This technique involves embedding an iframe with the
single sign-out URL as source. When the iframe is loaded, the sign-out URL is
called (this is done primarily to avoid cross-domain restrictions in browsers).

Chapter 50
Implementing Single Sign-On

50-5

51
Using REST Resources with the WEM
Framework

You can manage assets using the WebCenter Sites REST API if you grant privileges
on applications' resources to perform REST operations.

Topics:

• Authentication for REST Resources

• About Configuring CAS

• REST Authorization

• Management of Assets Over REST

Authentication for REST Resources
The WEM Framework uses the SSO mechanism built on top of CAS for authentication
purposes. The system behaves differently when you use the REST API from a browser
or programmatically.

When accessing the REST API from a browser, the user is redirected to the
CAS login page and, upon successful login, back to the original location with the
ticket parameter, which is validated to establish the user's identity. When accessing
the REST API programmatically, the developer must supply either the ticket or
multiticket parameter.

Both the ticket and multiticket parameters could be acquired by using either the
Oracle SSO API if making calls from Java, or simply by using the HTTP protocol if
making calls from any other language. The difference between ticket and multicket
is that a ticket is acquired per each REST resource and can be used only once (as
the name implies, think of a train or a theater ticket, which is valid for one ride or
one play), while a multiticket could be used multiple times for any resource. Both the
ticket and multiticket parameters are limited in time, but the typical usage pattern
differs. As a ticket is acquired per each call, there is no expiration time. However,
reusing the same multiticket will eventually lead to its expiration and getting an HTTP
403 error. The application must be able to recognize such behavior and fall back to the
multiticket re-acquisition procedure in such a case. The decision to use either ticket
or multiticket is up to the application developer.

Topics:

• Acquiring Tickets from Java Code

• Acquiring Tickets from Other Programming Languages (Over HTTP)

• Using Tickets and Multitickets

• SSO Configuration for Standalone Applications

51-1

Acquiring Tickets from Java Code
The Oracle SSO API is implemented in an authentication provider-independent
manner. Users are not able to register their own SSO authentication providers.
Support for a new authentication provider can be implemented only by Oracle.
Switching between providers involves only changing the SSO configuration files.

All SSO calls originate at the SSO front-end class SSO. It is used to get the
SSOSession object. SSOSession is acquired per each SSO configuration. It is a single
configuration in the web application case, which is loaded using the Spring Web
application loader or a configuration loaded from a configuration file in the case of a
standalone application.

• To acquire a ticket in a Web application:

SSO.getSession().getTicket(String service, String username, String
password)
SSO.getSession().getMultiTicket(String username, String password)

• To acquire a ticket in a standalone application:

SSO.getSession(String configName).getTicket
 (String service, String username, String password)
SSO.getSession(String configName).getMultiTicket
 (String username, String password)

Acquiring Tickets from Other Programming Languages (Over HTTP)
The CAS REST API is used to acquire a ticket, or a multiticket, or both in the delivery
environment. Two HTTP POST calls should be performed to acquire either ticket or
multiticket. The difference between ticket and multiticket is that the service parameter
is * (asterisk) for multiticket, while it is an actual REST resource you are trying to
access for the ticket parameter.

The example below demonstrates the calls to be made to the CAS server to get a
ticket to the http://localhost:8080/cs/REST/sites service with fwadmin/xceladmin
credentials:

1. Call to get Ticket Granting Ticket

Request

POST /cas/v1/tickets HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 35

username=fwadmin&password=xceladmin

Response

HTTP/1.1 201 Created
Location: http://localhost:8080/cas/v1/tickets/TGT-1-
ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas
Content-Length: 441
...

2. Call to get a Service ticket

Request

Chapter 51
Authentication for REST Resources

51-2

POST /cas/v1/tickets/TGT-1-
ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 57

service=http%3A%2F%2Flocalhost%3A8080%2Fcs%2FREST%2Fsites

Response

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 29

ST-1-7xsHEMYR9ZmKdyNuBz6W-cas

The protocol is fairly straightforward. First a call to get Ticket Granting Ticket
(TGT) is made by passing the user name and password parameter in application/
x-www-form-urlencoded POST request. The Response will contain the Location
HTTP header, which should be used to issue a second application/x-www-form-
urlencoded POST request with service parameter. The response body will contain the
actual ticket.

Using Tickets and Multitickets
To use the generated ticket/multiticket, supply the ticket/multiticket URL query
parameter. For example:

http://localhost:8080/cs/REST/sites?ticket=ST-1-7xsHEMYR9ZmKdyNuBz6W-cas
http://localhost:8080/cs/REST/sites?multiticket=ST-2-Bhen7VnZBERxXcepJZaV-cas

Figure 51-1 Tickets and Multitickets

1. The application performs a call to get the ticket/multiticket.

• Input: service, user name, password

Chapter 51
Authentication for REST Resources

51-3

• Output: ticket /multiticket

2. The application performs call to Remote Satellite Server to get the resource.

• Input: ticket, resource input data

• Output: resource output data

3. Remote Satellite Server performs a call to validate the resulting assertion. The
assertion contains user information. Satellite Server also maintains a time-based
cache of multitickets, so that subsequent calls do not incur the cost of validation.

• Input: ticket/multiticket

• Output: assertion

4. This step is optional. The proxyTickets parameter, when set to true in the
SSOConfig.xml file on the Satellite Server side, also proxies the ticket.

• Input: ticket

• Output: proxied ticket

5. Remote Satellite Server performs a call to WebCenter Sites.

• Input: assertion (in serialized form), resource input data

• Output: resource output data

6. This step is optional. If security is enabled on the WebCenter Sites side, it
performs a call to validate the ticket.

• Input: ticket/multiticket

• Output: assertion

By default the communication channel between WebCenter Sites and Remote Satellite
Server is not trusted. The proxyTickets parameter in the SSOConfig.xml file on
Remote Satellite Server is set to true, which forces Remote Satellite Server to proxy
the ticket supplied by the application that is being accessed.

For optimal performance, the system can be configured for authentication by Satellite
Server alone. The security check should be disabled on the WebCenter Sites side by
excluding the REST and WebCenter Sites elements used by the REST API from the
SSO filter. The proxyTickets parameter in the SSOConfig.xml file on Remote Satellite
Server should be set to false. In this mode it is possible to leverage multitickets.
Note that the WebCenter Sites installation should be hosted inside a private network
in this mode, and the communication channel between WebCenter Sites and Remote
Satellite Server should be trusted.

SSO Configuration for Standalone Applications
The single sign-on module relies on the Spring configuration. The only required bean
is ssoprovider, which references the ssoconfig bean.

This section includes the following topics:

• Beans and Properties

• Query Parameters Processed by SSO Filter

Beans and Properties
The following table describes ssolistener beans and properties.

Chapter 51
Authentication for REST Resources

51-4

id="ssolistener", class="com.fatwire.wem.sso.cas.listener.CASListener"

Table 51-1 id="ssolistener"

Property Description

No properties for this bean. n/a

The following table describes ssofilter beans and properties.

id="ssofilter",
class="com.fatwire.wem.sso.cas.filter.CASFilter"

Table 51-2 id="ssofilter"

Property Description

config Required. SSO configuration reference.

Sample Value: ssoconfig

provider Required. SSO provider reference.

Sample Value: ssoprovider

The following table describes provider beans and properties.

id="provider",
class="com.fatwire.wem.sso.cas.CASProvider"

Table 51-3 id="provider"

Property Description

config SSO configuration reference.

Sample Value: ssoconfig

The following table describes config beans and properties.

id="config",
class="com.fatwire.wem.sso.cas.conf.CASConfig"

Table 51-4 id="config"

Property Description

applicationProxyCallbackP
ath

Proxy callback path, relative to casUrl.

Sample Value: /proxycallback

authRedirect Use this property to specify the default behavior on
unauthenticated access to protected pages. true redirects
the user to the CAS login page; false displays a 403
error if users are not unauthenticated. This setting could be
overridden by the Pragma: auth-redirect HTTP header.

Sample Value: true

Chapter 51
Authentication for REST Resources

51-5

Table 51-4 (Cont.) id="config"

Property Description

casLoginPath Login page path, relative to casUrl.

Can accept additional query parameters:

• wemLoginTemplate, points to the page containing the
HTML login template to be used instead of the default
template. The template must have two input fields:
username and password. Note, that the HTML <form>
tag should not be used in the template.

• wemLoginCss, points to the CSS page containing style
declarations used on the login form.

Sample Value: /login

casRESTPath CAS REST servlet path, relative to casUrl.

Sample Value: /v1

casSignoutPath Logout page path, relative to casUrl.

Sample Value: /logout

casUrl Required property. CAS URL prefix.

The URL must resolve both internally and externally.

Example: http://localhost:8080/cas

gateway If true, the request to protected pages will be redirected to
CAS. If a ticket-granting cookie is present, then the user will
be implicitly authenticated; if not, the user will be redirected
back to the original location. This is used primarily to allow
implicit authentication if the user is logged in to another
application.

gateway (continued) Be careful when enabling the redirect behavior to occur by
default. Ensure the clients are able to follow the redirects.
Otherwise, gateway=false URL query parameter should
be used to override the default behavior. For example,
while processing wemLoginTemplate and wemLoginCss
parameters, CAS does not follow redirects; you will have to
prepend gateway=false to URLs when turning this setting
on.

Default value: false

multiticketTimeout Multiticket timeout in msecs.

Default value: 600000

The CAS multiticket timeout is based on cs.timeout. The
timeout expiration calculation starts when the ticket is first
used against Web Center Sites.

protectedMappingExcludes List of mappings that should be excluded. Regular
expressions are allowed.

Allowed value: See protectedMappingIncludes

Chapter 51
Authentication for REST Resources

51-6

Table 51-4 (Cont.) id="config"

Property Description

protectedMappingIncludes List of protected mappings. Regular expressions are allowed.

Allowed value: path?[name=value,#]

path is a URL path part. It may contain asterisks (* and **).
The single asterisk * symbolizes any character sequence up
to the slash (/), while ** applies to the entire path.

Example
/folder1/folder2 matches against /folder1/*,
while /folder1/folder2/folder3 does not.

/folder1/folder2 matches against /folder1/**,
as well as /folder1/folder2/folder3.

?[..] block is optional. Query parameters can be specified
inside the block. Parameters are comma separated. The
special character # means that the specified parameters
are a subset of those from the request; omitting # requires
the request parameters to exactly match the specified
parameters.

Parameters may contain only name. The match will be done
against name only, or against name=value (that is, both
name and value). A parameter can take multiple values. In
this case, the match test will pass if any of the specified
parameter values match the corresponding parameter value
from the request.

Example
/file1[size=1|2] matches against /file1?size=2,
but not against /file1?size=2&author=admin

/file1[size=1|2,name=file1,#] matches against /
file1?size=2 and /file1?size=2&author=admin,but
not against /file1?size=3

protectedMappingIncludes
(continued)

To make custom REST resources in an application available
through remote Satellite Server, specify the following value:

/ContentServer?[pagename=rest/<path
toCSElement>,#]

Example
/ContentServer?[pagename=rest/sample/
recommendation,#] for custom REST
resources in Creating REST Resources
for WebCenter Sites and Satellite Server: Example.

proxyTickets Specifies whether to proxy tickets.

Set this property to false for the last server in the call chain
for optimal performance.

Set this property to true if you have to call
another CAS-protected application from this application
on behalf of the currently logged-in user. This
results in the ability to call the following method:
SSO.getSSOSession().getTicket(String service,
String username, String password)

Default value: true

Chapter 51
Authentication for REST Resources

51-7

Table 51-4 (Cont.) id="config"

Property Description

useMultiTickets Specifies whether to use multitickets.

Default value: true

Query Parameters Processed by SSO Filter
This table describes query parameters that are processed by SSO filter.

Table 51-5 Query Parameters Processed by SSO Filter

Property Name Description

ticket Used to verify user identity. Can be used only during some
limited period of time for one resource and only once.

Type: <query parameter>

Value: <random string>

multiticket Used to verify user identity. Can be used only during some
limited period, multiple times for any resource.

Type: <query parameter>

Value: <random string>

gateway If this property is set to true, the request for public pages
will be redirected to CAS. If the ticket granting cookie is
present, then the user will be implicitly authenticated; if not,
the user will be redirected back to the original location.
This is primarily to allow implicit authentication if the user is
logged in to another application.

Type: <query parameter>

Value: true | false

auth-redirect Used to specify the default behavior on unauthenticated
access to protected pages. If this property is set to true,
the user will be redirected to the CAS login page; if false, a
403 error will be presented.

Type: <Pragma HTTP header>

Value: true | false

About Configuring CAS
Here are some sources for information on CAS clustering.

• For information about CAS architecture, use the following link:

https://www.apereo.org/projects/cas/about-cas

• For information about configuring CAS clustering during the WebCenter Sites
installation, see Setting Up a CAS Cluster in Installing and Configuring Oracle
WebCenter Sites.

• For information about configuring CAS with LDAP providers, use the following link:

Chapter 51
About Configuring CAS

51-8

https://www.apereo.org/projects/cas/about-cas

https://www.apereo.org/projects/cas/server-deployment/authentication-
handler

REST Authorization
REST authorization is the process of granting privileges to perform REST operations
on applications' resources (which map to objects in WebCenter Sites). REST
authorization uses the deny everything by default model. A privilege is denied when it
is not explicitly granted to a particular group.

Topics:

• Security Model

• Use of the Security Model to Access REST Resources

• About Configuring REST Security

• Privilege Resolution Algorithm

Security Model
The WEM security model is based on objects, groups, and actions. Security must
be configured per object type in the Admin interface. Objects of a given type are
accessible to a user only if the user belongs to at least one group with privileges to
perform specified actions on the objects of the given type.

Chapter 51
REST Authorization

51-9

https://www.apereo.org/projects/cas/server-deployment/authentication-handler
https://www.apereo.org/projects/cas/server-deployment/authentication-handler

Figure 51-2 Add New Security Configuration

• Object is a generic term that refers to any entity in the WEM Framework such as a
site, a user, or an asset. Protected objects are of the following types:

– Asset Type

– Asset

– Index

– Site

– Role

– User

– User Locale

– ACL

– Application

• Security groups are used to gather users for the purpose of managing their
permissions (to operate on objects) simultaneously.

Chapter 51
REST Authorization

51-10

• An action is a security privilege: LIST,READ, UPDATE, CREATE, DELETE. LIST
provides GET permission on services that list objects (such as /types), whereas
READ provides GET permission on services that retrieve individual objects in full
detail (such as /types/{assettype}).

Privileges are assigned to groups to operate on allowed objects. Some objects,
such as ACLs, are read-only (they can be created directly in WebCenter Sites, but
not over REST).

A security configuration is an array, such as shown above, which specifies:

• The protected object type and object(s)

• Groups that are able to access the objects

• Actions that groups (and their members) can perform on the objects

For more information about possible security configurations and the Web Experience
Management Framework, see the Administering Oracle WebCenter Sites.

Use of the Security Model to Access REST Resources
Object types and objects in WebCenter Sites map to REST resources in the WEM
Framework. For example, the Asset Type object maps to:

• <BaseURI>/types/ resource (which lists all asset types in the system)

• <BaseURI>/types/<assettype> resource (which displays information about the
selected asset type), and so on

Actions in WebCenter Sites map to REST methods in the WEM Framework. For
example, granting the READ privilege to group Editor to operate on asset type
Content_C gives users in the Editor group permission to use GET and HEAD methods
on the REST resource /types/Content_C.

• The LIST action allows group members to use GET methods on REST resources.

• The READ action allows group members to use GET and HEAD methods on REST
resources.

• The UPDATE action allows group members to use POST methods on REST
resources.

• The CREATE action allows group members to use PUT methods on REST resources.

• The DELETE action allows group members to use DELETE methods on REST
resources.

For comprehensive information, see REST API Resource Reference for Oracle
WebCenter Sites.

About Configuring REST Security
See Using REST Security in Administering Oracle WebCenter Sites.

Privilege Resolution Algorithm
When configuring a security privilege, specify that the privilege applies to all objects of
a certain type or a single object of a certain type. For example, granting the privilege to

Chapter 51
REST Authorization

51-11

https://docs.oracle.com/middleware/12213/related-docs/WBCSR/toc.htm
https://docs.oracle.com/middleware/12213/related-docs/WBCSR/toc.htm

UPDATE (POST) any site allows users in the group to modify the details of all sites in the
WEM Framework.

The Asset object type requires you to specify the site to which the security setting
applies, as assets are always accessed from a particular site. The AssetType object
can be extended by specifying a subtype, which is used to make the security
configuration more granular. For example, setting the DELETE privilege on asset type
Content_C allows a DELETE request to be performed on the REST resource /types/
Content_C (that is, to delete the Content_C asset type from the system).

Because privileges can be granted only to groups, a user's total privileges are not
obvious until they are computed across all of the user's groups. The WEM Framework
provides a privilege resolution algorithm. Its basic steps are listed below:

1. REST finds the groups in which the user has membership.

2. REST determines which groups can perform which REST operations on which
REST resources. If site or subtype is specified, each is taken into account.

3. REST compares the results of steps 1 and 2. Access is granted if at least one of
the groups from step 1 is in the list of groups from step 2. Otherwise, access is
denied.

Management of Assets Over REST
Sample code that illustrates how you can manage assets with the WebCenter Sites
REST API is available in your WebCenter Sites installation directory.

See the following locations:

Misc/Samples/WEM Samples/REST API samples/Basic Assets/com/fatwire/rest/samples/
basic/
Misc/Samples/WEM Samples/REST API samples/Basic Assets/com/fatwire/rest/samples/
flex/

The subfolders basic and flex each contain the following set of files:

• CreateAsset.java

• DeleteAsset.java

• ReadAsset.java

• UpdateAsset.java.

The code is richly documented with step-by-step instructions.

Chapter 51
Management of Assets Over REST

51-12

52
Introducing Customizable Single Sign-On
Facility in WEM Framework

WEM Framework’s authentication includes a customization layer called the Oracle
Customizable Single Sign-On (CSSO) facility. You can use the CSSO facility’s
authentication extensions to create a custom SSO solution, without directly modifying
the CAS configuration. When you implement the login behavior, the Spring
configuration injects these extensions into the CAS configuration.

Topics:

• About Customizing Login Behavior for the WEM Framework

• About Components of the Default CSSO Implementation

• Configuring and Deploying Custom SSO Behavior

• Running the CSSO Sample Implementation

About Customizing Login Behavior for the WEM Framework
You need to extend the CSSO facility’s pre-packaged classes to implement a custom
SSO solution. The CSSO facility’s default Spring configuration file identifies the
classes to Spring for instantiation.

When you customize WEM SSO, you can use a different login screen, add credentials
other than a user name/password pair, or use an external authentication authority to
authenticate WebCenter Sites users. A custom SSO implementation consists of:

• Three Java classes (which extend the default classes)

• A configuration file that exposes the new classes to the framework

The default CSSO classes defer all credential discovery and authentication to
the standard WEM SSO implementation. These classes are instantiated by the
customdefaultWEMSSObean.xml Spring configuration file. Extending the default CSSO
classes enables you to define methods which specify the behavior of your custom
SSO solution. For example, you can create a different authentication for browser
access, REST, or thick client authentication or both. When you extend the default
CSSO classes, you must create a custom Spring configuration file that identifies the
custom classes and exposes them to the WEM Framework.

The CSSO facility provides a complete SSO sample (including Java source files) that
replaces the default WEM login behavior with custom login behavior. The sample
SSO implementation demonstrates two different types of authentication: user name/
password pair (with an additional domain field) and external user identifier. The
external identifier maps a user authenticated by an external authentication authority
to a WebCenter Sites system user.

The rest of this chapter provides information about the default components of the
CSSO facility and instructions on implementing a custom SSO solution. To see an

52-1

example of a custom SSO solution, the end of this chapter provides information about
the CSSO sample, and instructions for running the sample.

About Components of the Default CSSO Implementation
Your starting point for customizing your SSO implementation is the default components
of the CSSO facility. These components are the default classes that you extend
to create your SSO solution and a Spring configuration file that instantiates these
classes.

The com.fatwire.wem.sso.cas.custom.basis package (shown in the table below)
contains the default classes that are included in the CSSO facility. The default
Spring configuration file (customdefaultWEMSSObeans.xml) instantiates these classes
to implement the default WEM login behavior.

Note:

The CSSO facility provides a complete SSO sample that replaces the default
WEM login behavior with custom login behavior. See Running the CSSO
Sample Implementation.

Table 52-1 com.fatwire.wem.sso.cas.custom.basis

Class Description

CustomAuthenticator.java Implements the CustomAuthentication interface. This
class controls the behavior of the login sequence and
handles authentication requests. By default, it returns to
the WEM Framework to complete the authentication by
displaying the standard WEM login form.

CustomConfiguration.java Provides access to the properties that are set in the
default Spring configuration file. You can extend this class
when additional properties are required for a custom SSO
implementation.

CustomCredentials.java Provides a standard set of credential values for custom
authentication. You can extend this class when additional
attributes are needed for a custom SSO implementation.

The com.fatwire.wem.sso.cas.custom.interfaces package (shown in the table
below) defines the custom authentication interfaces.

Table 52-2 com.fatwire.wem.sso.cas.custom.interfaces

Class Description

CustomAuthenticator.java Defines the interfaces that must be implemented by any
custom SSO solution.

CustomRestCodec.java Defines the interfaces that must be implemented to encode
and decode a custom REST authentication token that is not
user name/password based.

Chapter 52
About Components of the Default CSSO Implementation

52-2

Configuring and Deploying Custom SSO Behavior
You begin configuring and deploying your custom SSO by extending the CSSO
facility’s default classes. Then, you identify the new Java classes to Spring by creating
a custom Spring configuration file. This file instantiates the classes, exposing them to
the CSSO framework.

To configure and deploy custom SSO behavior:

1. Extend the default CSSO classes: CustomAuthenticator.java,
CustomConfiguration.java, and CustomCredentials.java (contained within the
com.fatwire.wem.sso.cas.custom.basis package):

a. Create Java classes that extend the default CSSO classes.

b. Package the Java classes you created in a jar file, then place the jar file in
the classpath of the CAS servlet (in cas/WEB-INF/lib).

2. Set the username and password properties in the customResolverCredential.xml
file, located in the spring-configuration folder (in cas/WEB-INF). For instructions,
see Settings Resolver Credentials.

3. Identify your new Java classes to Spring for instantiation:

a. Create a Spring configuration file that contains all the custom class names and
properties for your SSO implementation.

b. Place the custom Spring configuration file in the spring-configuration folder
(in cas/WEB-INF/).

c. Remove the .xml extension from the default Spring configuration file
(customDefaultWEMSSObeans.xml).

4. If an external authentication authority is used to authenticate a user, map the
external user identifier to the appropriate WebCenter Sites system user name,
unique identifier, and ACLs. For instructions, see Mapping External User Identifiers
to WebCenter Sites Credentials.

5. Restart the CAS web application.

About Extending the Default CSSO Classes
An SSO implementation is a set of called methods that are specified in the
default CSSO classes CustomAuthenticator.java, CustomConfiguration.java, and
CustomCredentials.java. To replace the default WEM login behavior with custom
behavior, you must create Java classes that extend the default CSSO classes. By
extending the CSSO classes, the methods specified in the default CSSO classes are
replaced by the methods specified in the custom classes for the functionality you want
to change.

The three classes (located in the com.fatwire.wem.sso.cas.custom.basis package)
that must be extended to implement a custom SSO solution are:

• CustomConfiguration.java: Provides access to the externally defined properties
that are specified in the default Spring configuration file. By default, this class
exists only as a placeholder for injecting properties into the SSO configuration
from the Spring configuration file. Extend this class to include additional properties,

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-3

such as URLs or other configuration information, that are specific to your custom
SSO implementation.

• CustomCredentials.java: Provides a standard set of credential values for custom
authentication. This class is built and populated by the web-flow handler or
the custom REST authenticator. By default, this class defines the standard
UsernamePasswordCredentials object (provided by CAS), which collects all
information required to complete user authentication in the following properties;
username, userId, and currentACL. The values of these properties populate the
attributes map used by the authenticator (CustomAuthenticator.java), to perform
the actual user authentication.

Extend this class to require additional credentials for your custom SSO
solution. For an example of how this class passes user information to
the authenticator to complete user authentication, refer to the code of the
sample CSSO class SampleCredentials.java (located in the Misc/Samples/WEM/
Samples/CustomizableSSO/lib folder).

• CustomAuthenticator.java: Implements the CustomAuthentication interface.
This class controls the behavior of the login sequence and handles authentication
requests. By default, it returns to the WEM Framework to complete the
authentication by displaying the standard WEM login form.

Note:

The default CustomAuthenticator.java class is the most important
class because it contains all the authentication methods for an SSO
implementation.

All authentication decisions and CAS web-flow actions are directed to this class
for action. CAS web-flow performs several steps, one of which invokes the
performLoginAction method. This method displays a login form or communicates
with an external authentication authority.

This class also defines the static method callCsResolverPage which maps
an external user to a WebCenter Sites user. If your custom SSO
implementation uses an external authentication authority to authenticate users,
the callCsResolverPage method must define the unique name for the CSSO
authenticator. See Mapping External User Identifiers to WebCenter Sites
Credentials.

The following is a complete interface description of the methods this class
implements:

static final int SUCCESS = 0;
static final int GOTOWEM = 1;
static final int FAILURE = 2;
static final int REDIRECT = 3;
static final int ERROR = 4;
static final int REPEAT = 5;

/**
 * Called from UserAuthentication handler to check for alternate
 * credentials and validate appropriately.
 * @param userCredentials
 * @return

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-4

 */
public int
authenticate(com.fatwire.wem.sso.cas.custom.basis.CustomCredentials
userCredentials);

/**
 * Called from CSAuthenticationHandler to check for REST user
 * credentials and validate appropriately.
 */
public int authenticateRest(UsernamePasswordCredentials restCredentials);

/**
 * Called from CSAuthenticationHandler to check is username/password
 * combination is detected.
 */
public boolean checkRestCredentials(String token);

/**
 * Called from CSAttributeDAO to check for encoded credentials and
 * if so then return the correct username for DAO processing.
 * @param username
 * @return
 */
public String resolveRestUsername(String username);

/**
 * Called from LoginViewAction to handle login view processing. This
 * method allows the calling of internal CAS methods.
 * @param context
 * @param userAuthentication
 * @param centralAuthenticationService
 * @return
 */
public int performLoginAction(RequestContext context,
CustomAuthentication userAuthentication,
CentralAuthenticationService centralAuthenticationService);

/**
 * Called from casLogoutView to perform sign in cleanup
 * @param request
 * @param response
 */
public void performLogoutAction(HttpServletRequest request,
HttpServletResponse response);

Settings Resolver Credentials
The customResolverCredentials.xml file, located in the spring-configuration folder
(in cas/WEB-INF), defines the resolver credentials externally, so the credentials
are encrypted independent from the custom SSO bean definitions. If an external
authentication authority is used to authenticate users, you must set the username and
password properties in the customResolverCredential.xml file and then reference this
file in the Spring configuration file.

To set resolver credentials:

1. Open for editing the customResolverCredentials.xml file, located in the spring-
configuration folder (in cas/WEB-INF). The file looks as follows:

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-5

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/
schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">
 <description>This defines the SitesCS username/password credentials needed
for identity resolution</description>
<bean id="resolverCredential"
class="com.fatwire.security.common.SecurityCredential">
 <property name="username" value="theUsername" />
 <property name="password" value="theUserpassword" />
 <property name="csfKeyname" value="passwordkey" />
 </bean>
 </beans>

2. Set the username and password properties.

• username – If an external authentication authority is used to authenticate a
user, this property must specify the user name of a WebCenter Sites user who
has permissions to read the SystemAttr table. This user name is used when
the customCsResolver page queries the WebCenter Sites database to resolve
an external user identifier into a registered WebCenter Sites user.

• password – If an external authentication authority is used to authenticate a
user, this property must specify the password of the user identified by the
username property.

For example:

<property name="username" value="fwadmin" />
<property name="password" value="xceladmin" />

See Mapping External User Identifiers to WebCenter Sites Credentials.

About Identifying Your Java Classes to Spring for Instantiation
All customization settings for an SSO implementation are specified in a single Spring
configuration file, located in the spring-configuration folder (in cas/WEB-INF).

This section includes the following topics:

• About Creating a Spring Configuration File

• About Placing Your Spring Configuration File

About Creating a Spring Configuration File
The classes and properties for the default SSO implementation are defined by
the Spring configuration file customDefaultWEMSSObeans.xml, which is located in
the spring-configuration folder (in cas/WEB-INF). When customizing CSSO, either
create a new Spring configuration file or customize the classes and properties
referenced in the default Spring configuration file. The rest of this section focuses
on the second option.

The default Spring configuration file contains several bean identifiers that reference
the classes and properties required for the default SSO implementation. The
customUserConfiguration bean references the CustomConfiguration.java class and
the customUserAuthenticator bean references the CustomAuthenticator.java class.
These classes are instantiated by the Spring configuration file, which uses them to
create the persistent objects for the SSO implementation's authentication process. To

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-6

create a custom SSO solution, you must reference your custom Java classes within
these beans.

Note:

The CustomCredentials.java class is not referenced by the Spring
configuration file. Instead, you provide the code that instantiates this
object in the performLoginAction method, defined in the default CSSO
CustomAuthenticator.java class. This method creates a custom credentials
object for every login request and passes it into CAS for authentication.

The customUserConfiguration bean also identifies the configuration properties which
supply system information to the default SSO implementation. These properties
are set with values of the environment on which you are deploying the SSO
implementation. When you customize the Spring configuration file, you must modify
the values of the properties to match the custom SSO implementation's environment,
or include additional properties required by the custom SSO implementation.

Extending the CustomConfiguration.java class enables you to define additional
properties in the Spring configuration file's customUserConfiguration bean. For
example, if you created a JSP file that provides a custom login form for your
SSO implementation, create a property that specifies the location of the JSP file by
extending the CustomConfiguration.java class.

The rest of this section analyzes the classes and properties that are referenced in the
default Spring configuration file (customDefaultWEMSSObean.xml).

The Default Spring Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:flow="http://www.springframework.org/schema/webflow-config"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springframework.org/schema/webflow-config http://
www.springframework.org/schema/webflow-config/spring-webflow-config-1.0.xsd">
<!-- Custom SSO Bean definitions. This file defines either the default CAS/SSO
configuration or a special user implementation. No other CAS configuration files
are modified for a custom implementation -->
<!-- This file defines the resolver credentials externally so the credentials
can be encrypted independent from the custom SSO bean definitions -->
 <import resource="customResolverCredential.xml" />
 <!-- This bean is never modified. It defines the web-flow controller which
always passes control into the custom authenticator -->
 <bean id="customUserLoginAction"
class="com.fatwire.wem.sso.cas.web.CustomLoginViewAction"
p:centralAuthenticationService-ref="centralAuthenticationService"
p:customAuthentication-ref="customUserAuthenticator" />
 <!-- This bean is usually not modified. Override it when there needs to be
a custom encoding for information passed between the web-flow and any external
component -->
 <bean id="customRestCoder"
class="com.fatwire.wem.sso.cas.custom.basis.CustomRestTokenCoding" />
 <!-- Modify this bean with a custom configuration implementation class when

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-7

additional parameters are needed for a custom implementation -->
 <bean id="customUserConfiguration"
class="com.fatwire.wem.sso.cas.custom.basis.CustomConfiguration"
p:casLoginUrl="@CSConnectPrefix@://@hostname@:@portnumber@/cas/login"
p:resolverUrl="@CSConnectPrefix@://@hostname@:@portnumber@/@context-path@/custom/
customCsResolver.jsp" p:resolverCredential-ref="resolverCredential"
p:traceFlag="false" />
 <!-- Modify this bean with a customAuthentication class for a custom
implementation. -->
 <bean id="customUserAuthenticator"
class="com.fatwire.wem.sso.cas.custom.basis.CustomAuthenticator"
p:credentialLocation="cas-spring-configuration/customResolverCredential.xml"
p:customConfiguration-ref="customUserConfiguration"
p:customRestCoder-ref="customRestCoder" />
</beans>

Analyzing the Default Spring Configuration File

• The customResolverCredentials.xml file in which you specified the resolver
credentials externally is imported. See Settings Resolver Credentials.

• The customUserConfiguration bean, which references the default CSSO
customConfiguration.java class. See About Extending the Default CSSO
Classes.

• The resolverURL property and the traceflag property are referenced.

– resolverURL: If an external authentication authority is used to authenticate a
user, this property must specify the full URL to the customCsResolver page,
located on WebCenter Sites. The customCsResolver page obtains a user's
external identifier and queries the WebCenter Sites database to retrieve the
user's WebCenter Sites credentials. The domain and port number specified in
this property must be modified if the values specified are different from the
WebCenter Sites installation.

See Mapping External User Identifiers to WebCenter Sites Credentials.

– traceflag: This property specifies whether the trace log, which provides
information about the custom SSO layer, is enabled. This property can be
set to either true or false.

• The customUserAuthenticator bean references the default CSSO
CustomAuthenticator.java class. See About Extending the Default CSSO
Classes.

About Placing Your Spring Configuration File
The default Spring configuration file, which specifies the classes and properties for
the default WEM login behavior, is located in the spring-configuration folder (in
cas/WEB-INF). Placing your own file into the same location requires deactivating the
default file (by removing or changing the file's .xml extension). This is because Spring
loads all Spring configuration files contained in the spring-configuration folder (in
cas/WEB-INF) and merges those files into a single configuration. As both the custom
and the default files specify the same bean identifiers, only one of the files can be
recognized by the Spring configuration. Duplicate bean identifiers result in initialization
failure.

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-8

Note:

Avoid deleting customDefaultWEMSSObeans.xml. Instead, remove or change
the file's .xml extension. This way you can restore the file to return to using
the default WEM login screen.

Mapping External User Identifiers to WebCenter Sites Credentials
The CSSO facility enables you to use an external authentication authority to
authenticate WebCenter Sites users. When the external authentication authority
validates the user's credentials, it associates a unique external identifier with that user.
To complete WEM authentication, the user's external identifier must be mapped to
the corresponding WebCenter Sites system user name, unique identifier, and ACLs
by using the method callCsResolverPage (defined as a static method in the default
CSSO class CustomAuthenticator.java).

To map an external identifier to a WebCenter Sites system user, ensure you have set
the external authentication properties in the customResolverCredentials.xml file (see
Settings Resolver Credentials). To implement mapping from an external identifier to
the appropriate WebCenter Sites system credentials, do the following:

To implement mapping:

1. Define a unique CSSO authenticator name for the external authentication authority
of your custom SSO implementation in the callCsResolverPage method (defined
in your extended CustomAuthenticator.java class).

For example, the following callCsResolverPage method (defined in the Sample
CSSO class SampleAutheticator.java) defines samplesso as the unique
authenticator name:

Map<String,String>csTokens=callCsResolverPage(externalUserId,
"samplesso")

2. Access the Admin interface as a general administrator (for example, fwadmin/
xceladmin).

3. Under the Admin node, expand the User Access Management node and double-
click User.

4. Select the user whose external identifier you want to map to WebCenter Sites
credentials:

a. In the Enter User Name field, enter the name of the user.

b. In the Select Operation section, select the Modify User Attributes option.

c. Click OK.

The Modify User form opens.

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-9

Figure 52-1 Modify User Form

5. In the User Name column, click the name of the user whose external identifier you
want to map to WebCenter Sites credentials.

The User Attribute form opens.

Figure 52-2 User Attribute Form

6. In the form, fill in the fields:

• In the Attribute Name field, enter the unique CSSO authenticator name
(the name used to identify the external authentication authority). This name
must match the unique name of the CSSO authenticator defined in the
callCsResolverPage method (in step 1).

• In the Attribute Values field, enter the user's external identifier provided by
the external authentication authority.

7. Click Modify to store the new attribute and value in the WebCenter Sites
SystemUserAttr database table.

8. Repeat steps 3 through 7 for all users associated with an external identifier.

Analysis of the Mapping Process

When the callCsResolverPage method is called to map an external identifier to a
WebCenter Sites system user, it defines the unique CSSO authenticator name for
your custom SSO implementation. The method uses the external identifier and the
unique CSSO authenticator name to map the external user to the WebCenter Sites
system user. This map contains the following items, which are placed in the associated
properties of the CustomCredentials object:

• username: The user's WebCenter Sites user name.

• currentUser: The user's WebCenter Sites unique identifier.

• currentACL: The user's ACLs.

The CustomCredentials object passes the username, currentUser, and currentACL
values to the authenticate method, defined in the CustomAuthenticator.java class.
The authenticate method uses these values to build the response map, which
identifies the WebCenter Sites user.

Chapter 52
Configuring and Deploying Custom SSO Behavior

52-10

Restarting the CAS Web Application
• To deploy your custom SSO implementation, restart the CAS web application.

Once CAS has been restarted, it uses the classes defined in the custom Spring
configuration file, located in the spring-configuration folder (in cas/WEB-INF) to
provide the custom login behavior.

Running the CSSO Sample Implementation
Try out CSSO’s sample SSO implementation (including Java source files) to replace
the default WEM login behavior with custom login behavior. This sample includes the
standard user name and password fields, an additional field for a user to specify a
domain name, and a field for an external user identifier. You will find two different types
of authentication in this implementation, user name/password pair (with an additional
domain field) and user authentication through an external authentication authority.

Note:

The CSSO sample does not enforce any validation rules that apply to
the fields on the login form. Fields are not checked for completeness
and incorrect values are not reported. If authentication fails, the form is
re-displayed without comment. When implementing this form in a production
environment, ensure that all rules are enforced with suitable diagnostic
messages if an error occurs.

For information about all the sample components included in the CSSO facility, see
Sample CSSO Components.

To run the sample SSO implementation:

1. Deploy the customizable-sso-1.0.jar (Misc/Samples/WEM Samples/
CustomizableSSO) by placing it in the CAS classpath (cas/WEB-INF/lib folder).
This file contains the sample CSSO classes.

2. Create a fatwire folder in the CAS web application context folder. Copy the
SampleLoginform.jsp file into the fatwire folder.

3. Identify the classes contained in the customizable-sso-1.0.jar file to Spring for
instantiation:

a. Copy the customSampleSSObeans.xml configuration file into the spring-
configuration folder.

b. Modify the properties in the customSampleSSObeans.xml file to match your
operation environment.

c. Remove the .xml extension from the customDefaultWEMSSObeans.xml
configuration file's name, located in the spring-configuration folder.

4. To use the external identifier credentials to validate users, define the mapping
relationship between the external user identifier and the user's WebCenter Sites
system credentials by adding the appropriate entry to the SystemUserAttr table.

Chapter 52
Running the CSSO Sample Implementation

52-11

For instructions, see Mapping External User Identifiers to WebCenter Sites
Credentials.

5. Restart the CAS web application.

The sample login form opens.

Figure 52-3 Sample CAS Login Form

Sample CSSO Classes
The CSSO sample contains three Java classes which extend the default CSSO
classes, providing the methods for the sample SSO implementation's login behavior:

• SampleConfiguration.java: This class extends the default CSSO
CustomConfiguration.java class to include a domain property (sampleDomain)
which will be validated by an external authentication authority when a user
provides a value for this field on the login form. The sampleDomain property is
injected into the CSSO configuration by Spring.

This class also includes the sampleFormURL property which defines the sample
login form that is called to retrieve a user's credentials. Standard and custom
properties for this class are supplied through the sample Spring configuration file.

• SampleCredentials.java: This class extends the default CSSO
CustomCredentials.java class and collects all information required to
complete user authentication. The SampleAuthenticator class uses the
UsernamePasswordCredentials object when a user supplies a user name and
password on the login form. If a user supplies an external identifier on the login
form instead of user name and password credentials, the SampleCredentials
object is created to provide that information to the authenticator (in this example,
sample SSO class SampleAuthenticator.java).

In CAS, the type of credentials object that is created controls which authenticator
is used (either standard or custom). If user name and password credentials
are supplied on the login form, the standard WEM user name and password
authenticator is used automatically. If an external identifier is supplied on the login
form, the custom authenticator is called to authenticate the SampleCredentials
object.

• SampleAuthenticator.java: This class extends the default CSSO
CustomAuthenticator.java class and contains all the authentication methods
that are called by the CSSO framework. When the sample is deployed, all
authentication decisions and web-flow actions, during CAS authentication, are
directed to this class for action.

Chapter 52
Running the CSSO Sample Implementation

52-12

The performLoginAction method (extended by this class) displays the sample
login form. When a user submits his credentials on the form, CAS returns to
this method to process the input fields. Depending on the credentials that require
verification, the method creates either a UsernamePasswordCredentials object or
a SampleCredentials object, populated with the user's assigned credentials. The
credentials object is then inserted into the CAS context (provided by CAS) and
a TGT is requested. The TGT request triggers authentication of the credentials
object. If authentication is denied, a ticket exception results in the login form being
redisplayed. If the authentication is successful, the next action in the web-flow
occurs. For example, acquire a ticket, append the ticket to the original service URL
(the WebCenter Sites URL), and redirect back to the original service.

There are two authentication methods in this class. One handles authentication
using SampleCredentials and the other authenticates REST requests, which are
usually user name/password based. The sample introduces the sampleDomain
value as a new value to be authenticated. In this case, the performLoginAction
method encodes the user name, password, and sampleDomain values provided by
the user and passes the encoded values to the UsernamePasswordCredentials
object. The default WEM authentication handler detects the sampleDomain value
and passes that credential to the authenticationRest method. This method
decodes the sampleDomain value from the other values and verifies that the correct
domain has been specified. Authentication fails if the value is incorrect. If the
value is correct, this method encodes the user name and password back into the
credentials object, and the default WEM authentication handler validates the user
name and password.

Sample Spring Configuration File
The classes and properties for the sample SSO implementation are defined
by the sample Spring configuration file customSampleSSObeans.xml (located
in Misc/Samples/WEM Samples/CustomizableSSO/src/main/webapp/WEB-INF/spring-
configuration).

This section includes the following topics:

• Analysis of the Sample Spring Configuration File

• Placing the Sample Spring Configuration File

Analysis of the Sample Spring Configuration File
The sample Spring configuration file contains the same bean identifiers as the default
Spring configuration file. However, the property values are modified to implement
the sample login behavior. For example, the customUserConfiguration bean
references the SampleConfiguration.java class and the customUserAuthenticator
bean references the SampleAuthenticator.java class.

The customUserConfiguration bean also identifies the configuration properties which
supply system information to the sample SSO implementation. For example, since
the SampleLoginForm.jsp file provides the browser form that is used by the sample
to obtain a user's credentials, the SampleConfiguration.java class is extended to
include the sampleFormURL property. This property specifies the full URL of the login
page for the sample SSO implementation. The domain name and port number match
the CAS server installation, and the path points to where this page was placed during
set up.

Chapter 52
Running the CSSO Sample Implementation

52-13

The following is the sample Spring configuration file's code. For more information
about the properties referenced by this file, see Analyzing the Default Spring
Configuration File in About Creating a Spring Configuration File.

The Sample Spring Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:flow="http://www.springframework.org/schema/webflow-config"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/webflow-config http://
www.springframework.org/schema/webflow-config/spring-webflow-config-1.0.xsd">

<!-- Custom SSO Bean definitions. This file defines either the default CAS/SSO
configuration or a special user implementation. No other CAS configuration files
are modified for a custom implementation -->

<!-- This file defines the resolver credentials externally so the credentials can
 be encrypted independent from the custom SSO bean definitions -->
<import resource="customResolverCredential.xml" />

<!-- This bean is never modified. It defines the web-flow controller which always
 passes control into the custom authenticator -->
<bean id="customUserLoginAction"
class="com.fatwire.wem.sso.cas.web.CustomLoginViewAction"
 p:centralAuthenticationService-ref="centralAuthenticationService"
 p:customAuthentication-ref="customUserAuthenticator"
 />
<!-- This bean is usually not modified. Override it when there needs to be a
 custom encoding for information passed between the web-flow and any external
 component -->
<bean id="customRestCoder" class="com.fatwire.wem.sso.cas.custom.basis.
 CustomRestTokenCoding"
 />
<!-- Modify this bean with a custom configuration class when additional
parameters are needed for a custom implementation -->
<bean id="customUserConfiguration"
class="com.fatwire.wem.sso.cas.sample.SampleConfiguration"
 p:casLoginUrl="http://localhost:8080/cas/login"
 p:resolverUrl="http://localhost:8080/cs/custom/customCsResolver.jsp"
 p:resolverCredential-ref="resolverCredential"
 p:traceFlag="false"
 p:sampleDomain="mydomain"
 p:sampleFormUrl="http://localhost:8080/cas/fatwire/SampleLoginForm.jsp"
 />
<!-- Modify this bean with a customAuthentication class for a custom
implementation. -->
<bean id="customUserAuthenticator"
class="com.fatwire.wem.sso.cas.sample.SampleAuthenticator"
p:credentialLocation="cas-spring-configuration/customResolverCredential.xml"
p:customConfiguration-ref="customUserConfiguration"
 p:customRestCoder-ref="customRestCoder"
 />

</beans>

Chapter 52
Running the CSSO Sample Implementation

52-14

Placing the Sample Spring Configuration File
To instantiate the sample classes, place the sample Spring configuration file in the
spring-configuration folder (in cas/WEB-INF) and remove the .xml extension from
the default Spring configuration file.

For more information, see About Placing Your Spring Configuration File.

Sample CSSO Components
The sample CSSO implementation's components are located in the /WEM Samples/
CustomizableSSO folder. The folders described in the table below are included with the
sample CSSO implementation.

Table 52-3 Sample CSSO Components

Folder Description

Misc/Samples/WEM Samples/
CustomizableSSO

Contains the customizable-sso-1.0.jar
file. This jar file provides the classes of the
executable code for the sample. To deploy the
sample SSO implementation, place this jar
file in the CAS classpath (cas/WEB-INF/lib
folder).

Misc/Samples/WEM Samples/
CustomizableSSO/lib

Contains all the third-party jar files required
to compile the Java source files for the sample
SSO implementation.

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/dist

Contains Word documents that explain the
individual source components and operations
of the sample implementation.

Note: We recommend reviewing these
documents before viewing the sample's source
code.

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/java

The root folder for the Java source files.

Misc/Samples/WEM
Samples/CustomizableSSO/src/main/
webapp/fatwire

Contains SampleLoginForm.jsp. The JSP
provides the browser form that is used
by the sample to obtain a user's login
credentials. Implementing the sample requires
creating a fatwire folder in the CAS
application context folder and copying the
SampleLoginForm.jsp to that folder.

Chapter 52
Running the CSSO Sample Implementation

52-15

Table 52-3 (Cont.) Sample CSSO Components

Folder Description

Misc/Samples/WEM Samples/
CustomizableSSO/src/main/webapp/WEB-
INF/spring-configuration

Contains the sample Spring configuration file
customSampleSSObeans.xml, which defines
the Spring bean definitions required by the
sample SSO implementation. This file must
be placed in the spring-configuration
folder (in cas/WEB-INF). The file that
exists in the spring-configuration folder
(customDefaultWEMSSObeans.xml) must be
given an extension other than .xml or
removed.

Note: Save a copy of the
customDefaultWEMSSObeans.xml file so it
can be restored when you return to the
standard WEM login screen.

Chapter 52
Running the CSSO Sample Implementation

52-16

53
Buffering in WEM Framework

Asset create, update, and delete operations are much slower than the read operation.
Sometimes, you may prefer that these operations occur at a future time with the
guarantee of eventual consistency. That is, in case of a delayed (buffered) operation,
the WebCenter Sites platform surely receives the change at some finite, undetermined
period of time. Although buffering operations are extremely fast, they do not speed up
the total time that you need to create, update, and delete assets in the platform.

Topics:

• Architecture of Buffering System

• Using Buffering

Architecture of Buffering System
The current implementation of buffering subsystem relies on Java Messaging Service
(JMS) technology. It has two components, buffering producer and buffering consumer.
The producer produces messages and puts them into the Messaging Queue (MQ).
The consumer picks messages from MQ and persists them in the platform.

Figure 53-1 Buffering System Architecture

The buffering producer can be used on both WebCenter Sites and Remote
Satellite Server, where the asset REST service <BaseURI>/sites/<sitename>/types/
<assettype>/assets/<id> is available. When used on Remote Satellite Server, the
buffering producer does not communicate with WebCenter Sites, which ensures linear
scalability of the entire system.

53-1

Note:

The buffering consumer is available only on WebCenter Sites. We
recommend enabling the buffering consumer only on the primary cluster
member. Enabling on multiple cluster members cannot guarantee that the
sequence of CRUD operations will be preserved.

Using Buffering
If you would like to use buffering, go ahead and enable the buffering option in the
BufferingConfig.xml file.

1. Install the JMS provider if one is not available. (For supported providers, see the
Oracle Fusion Middleware WebCenter Sites Certification Matrix available from the
Oracle Technology Network at http://otn.oracle.com.

2. Configure BufferingConfig.xml on WebCenter Sites and optionally on Remote
Satellite Server.

id="bufferingManager" class=
 "com.fatwire.cs.core.buffering.jms.JmsBufferingManager"

Table 53-1 Properties in BufferingConfig.xml

Property name Description

jmsConnectionFactory Required. Instance of javax.jms.ConnectionFactory

jmsDestination Required. Instance of javax.jms.Destination

messageConsumers List of
com.fatwire.cs.core.buffering.IMessageConsume
r implementations.

Note:

When you configure BufferConfig.xml, add activemq-all.jar to the
WebCenter Sites web application's classpath (for example, WEB-INF/
lib).

3. Specify buffer=true when invoking the REST asset service <BaseURI>/sites/
<sitename>/types/<assettype>/assets/<id>.

Note:

Buffering does not return the result of PUT and POST operations in the
response. Instead, an empty payload is sent. Developers should be
aware of this behavior when coding the client application.

Chapter 53
Using Buffering

53-2

http://otn.oracle.com

The default BufferingConfig.xml file, provided with WebCenter Sites, contains the
sample configuration for Apache ActiveMQ. The BufferingConfig.xml file is similar
for both WebCenter Sites and Remote Satellite Server, except that the list of message
consumers for Remote Satellite Server is empty.

Chapter 53
Using Buffering

53-3

54
Registering Applications Manually in WEM
Framework

When you register an application manually, you create an asset for the application,
create an asset for each of its views, and associate the view assets with the
application asset in the Admin interface. You can enable the registration asset types
FW_Application and FW_View on AdminSite.

Topics:

• Registering Applications in WEM Framework

• Reference: Registration Asset Types

Registering Applications in WEM Framework
Learn how you can register an application and its views by registering the Articles
sample application and its view.

See Working with the Articles Sample Application. Articles has a single view of type
iframe. The same steps apply to JavaScript and HTML views.

To manually register an application and view:

1. Create or get an icon to represent your application. (The icon will be displayed in
the applications bar.)

The Articles sample application uses the articles.png image file located in: /
sample app/articles/src/main/webapp/images/

2. Create a file that specifies the layout of the application in HTML, that is, for each
view, create a placeholder element to hold the content rendered by the view.

For example, layout.jsp (for the Articles sample application) contains the
following line:

<div id="articles" style="float:left;height:100%;width:100%"
 class="wemholder"></div>

The view's contents are rendered within the placeholder element when the
application is displayed (layout.app renders the application's layout; home.app
renders the view).

Note:

When creating the layout file, specify a unique Id for the placeholder
element. You will specify the same Id for the Parent Node attribute when
creating the view asset. Use class="wemholder" for the placeholder
elements.

54-1

3. Register the view and application.

a. Log in to the Admin interface as a general administrator, navigate to
the AdminSite and expand the Admin node, where the FW_View and
FW_Application asset types are enabled.

(We assume you will create the view and application assets in the same
session, in which case both assets will be listed on the History tab. When
creating the application asset, you will select the view asset from the History
tab and associate it with the application asset. The History tab is volatile; it
is cleared after the user's session. Assets can be permanently placed on the
Active List tab. See Administering Oracle WebCenter Sites.)

b. Create an instance of the FW_View asset type:

Click New, select New FW_View, and set attributes. (The following figure
displays attribute values for the view asset of the Articles sample application.)

Figure 54-1 Attribute Values for the View Asset

Name: Enter a short descriptive name for this view asset.

Parent Node: Enter the id of the placeholder element (defined in step 2
of Registering Applications in WEM Framework) that will hold the content
rendered by the view.

View Type: Select one of the following options to specify how the view's
contents should be rendered in the placeholder:

Chapter 54
Registering Applications in WEM Framework

54-2

• Iframe: Renders the view in an iframe into the placeholder element

• IncludeHTML: Renders HTML into the placeholder element

• IncludeJavaScript: Renders JavaScript into the placeholder element

Source URL: Enter the URL that provides contents for the view. For example,
Source URL for the Articles sample application takes the following value:
http://localhost:9080/articles-1.0/home.app

c. Create an instance of the FW_Application asset type:

Click New, select New FW_Application, and set attributes. (The following
figure displays attribute values for the application asset of the Articles sample
application.)

Figure 54-2 Attribute Values for the Application Asset

Name: Enter a short descriptive name for this application asset.

ToolTip: Enter the text that will be displayed over the application's icon when
users hover over the icon.

Icon URL: Enter the URL of the icon that represents the application. The icon
will be displayed on the login page and at the top of the WEM interface. For
example, the Icon URL for the Articles sample application takes the following
value: http://localhost:9080/articles-1.0/images/articles.png

Hover Icon URL: Enter the URL of the icon that represents the application
when users place mouse over the icon.

Click Icon URL: Enter the URL of the icon that represents the application
when users click the icon.

Chapter 54
Registering Applications in WEM Framework

54-3

Active Icon URL: Enter the URL of the icon that represents the application
when it is in use.

Layout Type: LayoutRenderer (the default and only value). Layout Type
is used by the UI container to render the application's views by using the
application's layout page (specified below in the Layout URL attribute).

Layout URL: Enter the URL of the page that displays the application's layout.
The layout page has only HTML placeholder elements (such as div) for placing
the view(s).

For example, Layout URL for the Articles sample application takes
the value: "http://localhost:9080/articles-1.0/layout.app" rather than
".../layout.jsp", given the Spring MVC framework.

Related: Associated FW_View: views: Select the view asset created in step
3 of Registering Applications in WEM Framework (click the History tab, select
the view asset, and click Add Selected Items).

Reference: Registration Asset Types
With the FW_View asset type you can register views of your application. And, you can
use the FW_Application asset type to register your application.

Topics:

• FW_View Asset Type

• FW_Application Asset Type

FW_View Asset Type
This asset type is used to register the views of an application. For each view, create an
instance of FW_View. Attributes of FW_View are listed in the table below as they appear
in the Admin interface. This asset type is enabled on the site named AdminSite.

Table 54-1 FW_View Asset Type Attributes

Attribute:
WebCenter
Sites Interface

Attribute: REST
API

Description

Name name Short descriptive name for this view asset.

Description description Description of this view asset.

Parent Node parentnode ID of the placeholder element in the application's layout
file. The placeholder element holds the content rendered
by the view. The layout file has only HTML placeholder
elements (such as div) for placing the views.

View Type viewtype How the view should be rendered. The following view
types are available:

Iframe: Renders the view in an iframe into the
placeholder element

IncludeHTML: Renders HTML into the placeholder
element

IncludeJavaScript: Renders JavaScript into the
placeholder element

Chapter 54
Reference: Registration Asset Types

54-4

Table 54-1 (Cont.) FW_View Asset Type Attributes

Attribute:
WebCenter
Sites Interface

Attribute: REST
API

Description

Source URL sourceurl URL that provides content for the view.

JavaScript javascriptcon
tent

Required if IncludeJavaScript is the view type and
Source URL is not specified.

The content specified by this attribute is included in a
script tag if IncludeJavaScript is specified as the
view type. If IncludeJavaScript is the view type,
either Source URL must be specified, or code must be
provided for the JavaScript attribute.

Content includeconten
t

Required if IncludeHTML is the view type and Source
URL is not specified. The content specified by this
attribute is included in the placeholder element tag
if IncludeHTML is specified as the view type. If
IncludeHTML is the view type, either the Source URL
must be specified or code must be provided for the
Content attribute.

FW_Application Asset Type
This asset type is used to register the application. The asset type is enabled on
AdminSite. Attributes of FW_Application are listed in the table below as they appear in
the Admin interface.

Table 54-2 FW_Application Asset Type Attributes

Attribute: WebCenter
Sites Interface

Attribute: REST
API

Description

Name name Short descriptive name for this application asset.

Description description Description of this application asset.

Tooltip tooltip Text that is displayed on the application's icon
when users place mouse over the icon.

Icon URL iconurl URL of the icon that represents the application in
the WEM Framework.

Hover Icon URL iconurlhover URL of the icon that represents the application
when users place mouse over the icon.

Click Icon URL clickiconurl URL of the icon that represents the application
when users click the icon.

Active Icon URL iconurlactive URL of the icon that represents the application
while it is in use.

Layout Type layouttype Type of layout. The value is LayoutRenderer.

Layout Type is responsible for rendering the
application's views by using the application's layout
page (specified in the Layout URL attribute).

Chapter 54
Reference: Registration Asset Types

54-5

Table 54-2 (Cont.) FW_Application Asset Type Attributes

Attribute: WebCenter
Sites Interface

Attribute: REST
API

Description

Layout URL layouturl URL of the page where the application's layout is
displayed. This page has only HTML placeholder
elements (such as div) for placing the views.

Related: Associated
FW_Application:
extends

parentnode Parent application which the current application
extends.

Related: Associated
FW_View: views

views List of view assets used in this application.

Chapter 54
Reference: Registration Asset Types

54-6

Part XVI
Customizing Oracle WebCenter Sites

You can customize the Oracle WebCenter Sites: Contributor interface by altering
its customizable components. Make best use of the customization methods and
supporting code .

You can find the sample code at in the misc\Samples\UICustomization\ directory of
the unbundled WebCenter Sites distribution file.

• Code for customizing search views and the dashboard is provided in the
CustomAttrEditor.zip file.

• Code for customizing asset forms is provided in the sample_elements.zip file.

Customizing the WebCenter Sites Interface:

• Customizing the Tree in the Admin Interface

• About Customizing Components of the Contributor Interface

• Understanding the Contributor Interface Framework and UI Controller

• Customizing the Contributor Interface Dashboard

• Customizing Search Views of the Contributor Interface

• Customizing Global Properties, Toolbar, and Menu Bar in the Contributor Interface

Customizing Publishing and Workflow

• Customizing Asset Forms for the Contributor Interface

• Customizing Workflow

• Working with RealTime Publishing Customization Hooks

• Understanding Asset and Publish Events in WebCenter Sites

• Customizing Content Audit Reports

Deploying Customizations: Adding Customizations to WebCenter Sites

55
Adding Customizations to WebCenter Sites

WebCenter Sites 12c provides a modular and upgrade-safe way for you to add
customizations using Weblogic Server’s shared library mechanism. WebCenter Sites’
runtime application refers this shared library, and therefore, customizations that you
add to this shared library become available at runtime and in the WebCenter Sites’
class path.

There are several benefits of using the shared library. When you upgrade WebCenter
Sites, your customizations will remain intact, as they are externally managed in a
separate shared library. Further, errors caused by customizations during deployment
will be easier for you to debug.

Working with the Shared Library

WebCenter Sites runtime (sites.war) refers a shared library called
extend.sites.webapp-lib.war. Out-of-the-box, this shared library is a placeholder. You
must add all WebCenter Sites customizations to extend.sites.webapp-lib.war. Here
are some examples of artifacts that you would share in the shared library:

• You are building an application that needs files such as <customapp>.js, an image
(e.g. <custom>.png), and a CSS file (e.g. <custom>.css). You can add these files
to <custom>.war.

• You are building a custom tag library that will be used for creating templates. This
library includes custom.tld and custom.jar.

Here’s how you create the shared library with your customizations:

1. Assemble custom resources (.jar file) and package a shared library (.war file)

2. Deploy the shared library to the managed server where WebCenter Sites is
running

Assemble Custom Resources and Package Your Shared Library

1. Assemble the resources (images, css, etc) in a base directory, with the
relevant subdirectories. See Assembling Shared Java EE Library Files in Fusion
Middleware Developing Applications for Oracle WebLogic Server for more
information about building and deploying shared libraries to the WebLogic Server.

2. Create a META-INF/MANIFEST.MF file describing the library:

Manifest-Version: 1.0
Specification-Title: Customizations
Specification-Version: 1.0
Implementation-Title: Custom Implementation
Implementation-Version: 1.0
Implementation-Vendor: Example.com
Extension-Name: images

55-1

3. Package the base directory as a WAR file. Here is what the packaging of the
library looks like after you zip the library as a WAR file:

$ jar -tf customizations.war
META-INF/
META-INF/MANIFEST.MF
WEB-INF/weblogic.xml
mylogo.gif
WEB-INF/lib/custom.jar
WEB-INF/futuretense_cs/custom.tld
customapp.js
custom.png

Refer to the static resources from the library in the web application as if they are
local to your application. If you plan to deploy two JARs together via a single shared
library that your web application will reference, make sure that like the first library, the
second .jar file is also placed in the /WEB-INF/lib folder.

Note:

The precedence of resource lookup is sites.war first and then the shared
library. WebLogic Server serves the resource it finds first. That is:

• Looks for the resource in the sites.war file.

• If it doesn’t find the resource in the sites.war file, it looks for it in the
shared library.

Deploy Your Shared Library to the Managed Server Where WebCenter Sites is
Running

1. Deploy the WAR as a library to the managed server where WebCenter Sites is
running.

2. You can also deploy two JARs together via a single shared library that your web
application will reference.

Chapter 55

55-2

56
Customizing the Tree in the Admin
Interface

Administrative and editorial users of WebCenter Sites interact with various trees that
display in the Admin interface. You can customize the Admin interface by modifying
these trees.

Topics:

• About the Tree in the Admin Interface

• About Trees and Security

• About Tree Error Logging

About the Tree in the Admin Interface
The tree displays a number of nodes in the left pane of the Admin interface.

56-1

Figure 56-1 Admin Interface

WebCenter Sites tree tabs are created by the tree applet. You can create or modify
your own trees by setting various parameters that are passed to the tree applet. The
tree applet accepts several kinds of parameters:

• Applet-wide parameters, which control the overall appearance and behavior of the
applet.

• Tree-specific parameters, which control the appearance and behavior of the tree.

• Node parameters, which control the appearance and behavior of individual nodes
on the tree.

• OpURL Node parameters, which allow the tree to communicate with WebCenter
Sites.

A set of tree tab tables in the database stores information about tree configuration,
including tab names, what roles have access to a tab, and the path to the element that
populates the tree tab with data. You enter information into these tables through the
Tree Tabs screens. From the Admin interface, select the Admin tab and then click the
Tree node.

Chapter 56
About the Tree in the Admin Interface

56-2

Loading the Tree Tabs
For most of the default tree tabs supplied with WebCenter Sites, requests for tree data
pass through the OpenMarket/Gator/UIFramework/LoadTab element. The LoadTab
element performs several basic tasks, such as checking for session timeout.

For example, the Product tab completes the following steps as it loads:

1. Java code in the Product tab calls the LoadTab element.

2. The LoadTab element queries the TreeTab database tables to retrieve the
elements that load the data for the Product tree's top-level nodes. In this case,
the elements are the OpenMarket/Xcelerate/ProductGroups/LoadTree element
and the OpenMarket/Xcelerate/Product/LoadTree element.

3. The OpenMarket/Xcelerate/ProductGroups/LoadTree element and the
OpenMarket/Xcelerate/Product/LoadTree element query the database for assets
that correspond to the tree nodes and stream back node data to the tree applet.

4. The tree applet parses the node data and opens the nodes.

5. Java code in the Product tab calls an element to initialize its global context menu,
the OpenMarket/Gator/UIFramework/LoadGlobalPopup element. This element
sends a GetTypes command to each tree loading element called by the Product
tab. When the tree loading elements receive this command, they return a list of
asset types whose start menu items should appear in the global context menu.

6. The OpenMarket/Gator/UIFramework/LoadGlobalPopup element finds the start
menu items for the specified asset types and streams that information back to
the tree.

Note that each asset type in the system must have a LoadTree element. The LoadTree
element is a pointer to another element that actually loads the tree. If an asset type
can have children, each of those children must have a LoadTree element. LoadTree
elements have the following path:

OpenMarket/Xcelrate/AssetType/MyAssetType/LoadTree

where MyAssetType is the name of the asset type to which the LoadTree element
refers.

LoadTree elements are called based on the asset type set in the Section field of the
Manage Tree form.

The following table contains a list of several elements used by core asset types to load
their trees.

Table 56-1 Asset Type Elements

Asset Type Location Description

Flex Groups OpenMarket/Gator/UIFramework/
LoadGroupNodes

Displays a FlexGroup
parent hierarchy and
FlexAsset children.

Flex Assets OpenMarket/Gator/UIFramework/
LoadOrphanNodes

Displays flex assets that do
not belong to a flex group.

Chapter 56
About the Tree in the Admin Interface

56-3

Table 56-1 (Cont.) Asset Type Elements

Asset Type Location Description

Site Navigation Tree OpenMarket/Xcelerate/AssetType/
Page/LoadSiteTree

Displays the SitePlan tree.

Site Navigation
Associations

OpenMarket/Gator/UIFramework/
LoadChildren

Displays asset associations
in the SitePlan tree.

Bookmarks OpenMarket/Gator/UIFramework/
LoadActiveList

Displays the Bookmarks
tree.

Administrative Tree OpenMarket/Gator/UIFramework/
LoadAdminTree

Displays the Administrative
tree.

Administrative Tree
Helper Elements

OpenMarket/Gator/UIFramework/
Admin

Loads helper elements for
the Administrative tree.

Asset Types OpenMarket/Gator/UIFramework/
LoadAdministrationAsset

Displays an asset type
node at the top level of the
tree and the names of all
assets of that type on lower
levels of the tree.

To change the appearance or behavior of nodes in your tree, create a new tree loading
element based on one of these standard elements. Your website administrator can
then specify the element's name and the path to that element in the Section Name
and Element Name fields of the New Tree form, located off the Tree Tabs form.

See About Creating Tree Tabs in Administering Oracle WebCenter Sites.

Note:

In some cases with a default JRE installation, some items in the tree may
display with boxes in the name rather than UTF-8 characters. There are two
ways to solve this font issue:

• Copy the supported font files to $JRE_HOME/lib/fonts/fallback

• Configure local fonts to physical fonts via mapping
through one of the font configuration property files, as
described here: http://docs.oracle.com/javase/8/docs/technotes/
guides/intl/fontconfig.html.

For more information about modifying tree nodes, see Node Parameters.

Applet-Wide Parameters
Applet-wide parameters are set in the TreeAppletParams.xml element. To modify the
tree applet's behavior, change the parameter values as shown in the following table.

Chapter 56
About the Tree in the Admin Interface

56-4

http://docs.oracle.com/javase/6/docs/technotes/guides/intl/fontconfig.html
http://docs.oracle.com/javase/6/docs/technotes/guides/intl/fontconfig.html

Table 56-2 Applet-Wide Parameters

Parameter Description

Debug Turns debugging on and off. Valid values are true and false. If
Debug is set to true, Java console debug and error messaging is
turned on.

ServerBaseURL Sets the base string to which all the node data URL strings
are appended. For example, if the ServerBaseURL is set to
file://localhost, and the value of the LoadURL parameter is
NodeReader.test, then the URL used for loading the tree's child
nodes is as follows:

file://localhost/NodeReader.test

BackgroundColor Sets the background color of the tree using a decimal RGB value. If
this parameter is not set, the background color defaults to the color of
the HTML frame in which the tree is embedded.

TotalPanes Sets the number of tree tabs that are displayed. This value is set
automatically.

URLTarget The target frame in which to display node links. The default value
is XcelAction (name of the pane on the right side of the browser
window).

Tree-Specific Parameters
Tree-specific parameters are set by the Add New Tree Tab form and the
OpenMarket\Gator\UIFramework\TreeTabAdd.xml element that creates the Add New
Tree Tab form. To modify the tree's appearance or behavior, change the parameter
values by using the form or by altering the TreeTabAdd element.

Table 56-3 Tree-Specific Parameters

Parameter Description

Title Sets the text that is displayed on the tab.

This value is set in the Title field of the Manage Tree form, found on
the Admin tab.

ToolTip Sets the text that is displayed when the mouse pointer hovers over the
tab index.

This value is set in the Tool Tip field of the Manage Tree form, found
on the Admin tab.

LoadURI The URI of the page to call to retrieve a node's children.

This value is set in the TreeTabAdd element.

ActionURL The URL of the page that performs a context menu action for a node in
the tree. The default value points to the OpURL.xml element.

This value is set in the TreeTabAdd element.

OpenIcon The path to the icon to use when depicting an expanded node. The
default is a plus sign (+).

This value is set in the TreeTabAdd element.

Chapter 56
About the Tree in the Admin Interface

56-5

Table 56-3 (Cont.) Tree-Specific Parameters

Parameter Description

CloseIcon The path to the icon to use when depicting an unexpanded node. The
default is a minus sign (-).

This value is set in the TreeTabAdd element.

LineStyle Sets whether lines connect the nodes of the tree. Valid values are
Angled and blank; Angled is the default. If the parameter is set to
Angled, lines connect the nodes. If the value is left blank, no lines
connect the nodes.

This value is set in the TreeTabAdd element.

RootID Sets the ID of the root node. This string is used for specifying the node
path. It defaults to the value of the Title parameter.

This value is set in the TreeTabAdd element.

GlobalItems This value is set in the GlobalItems field of the Manage Tree form,
found on the Admin tab.

NodeItems This value is set in the NodeItems field of the Manage Tree form,
found on the Admin tab.

Node Parameters
The node parameters determine the appearance and behavior of the nodes in your
tree. To define the appearance and behavior of these nodes, you write an element that
sets the node parameters and passes their values to the BuildTreeNode.xml element,
which creates the tree nodes.

Table 56-4 Node Parameters

Parameter Description

Label Specifies the text to be displayed for this node. The value does not
have to be unique. The default value is "".

ID A string identifier that is unique within the tree, used by WebCenter
Sites to express selection paths. The ID is specified by WebCenter
Sites.

ExecuteURL The URI value of the page to be displayed when completing
the Execute action. This value has the value of ServerBaseURL
prepended to it.

If the node is not executable, do not include this parameter in the node
data.

URLTarget The frame target for ExecuteURL. If ExecuteURL is not included in
the node data, it defaults to the target specified in the Applet-wide
parameters.

Description An alternative to the string specified in Label, if you choose this option
on the tree-wide context menu. The default value is "".

Level The relative level of this node, represented by a number >= 0. A
value of 0 indicates that the node is an immediate child of the node
requesting the data.

To load multiple levels of nodes at a time, set this value to a number
greater than zero. The default value is 0.

Chapter 56
About the Tree in the Admin Interface

56-6

Table 56-4 (Cont.) Node Parameters

Parameter Description

Image The URI for the image to be prepended to the label. If this field is not
included in the node data, then no image is displayed for that node.

LoadURL The URI for the subtree hierarchy. If this field is not included in the
node data, this node requires no additional loading.

The URL specified in this parameter must contain enough information
so that the tree applet can find that node's children. For example, if
your hierarchy is as follows:

Product Tab / Reebok / Running Shoes

the value of LoadURL is as follows:

ContentServer?pagename=OpenMarket/Gator/UIFramework/
LoadTab&AssetType=ProductGroups&populate=OpenMarket/
Xcelerate/AssetType/ProductGroups/LoadTree&op=
load&parent=Variables.parentid

where parentid is the assetid of the "Running Shoes" asset, and
op and populate are used by LoadTab to route to your tree load
element.

OKAction An action that is displayed in the node's context menu. This string may
appear multiple times in the same node data set.

OpURL The URL to execute a given action on the server. This value is
prepended with the value of the ServerBaseURL parameter.

Include this parameter in the node data unless the value of the
NodeItems parameter is a null string, and thus has no OKAction
specified.

RefreshKeys Creates a key or set of set of keys which can be used to refresh the
tree. Set the value to the ID of the current node.

The following excerpt from the LoadAdministrationAsset element sets the values of
the node parameters and passes those values to the BuildTreeNode element.

The ListofAsset list referred to in this excerpt is a list of information about assets of a
given type. This list was generated by a SQL query that is executed elsewhere in the
element.

<CALLELEMENT NAME="OpenMarket/Gator/UIFramework/BuildTreeNode">
 <ARGUMENT NAME="Label"
 VALUE="ListofAsset.name"/>
 <ARGUMENT NAME="Description"
 VALUE="ListofAsset.description"/>
 <ARGUMENT NAME="ID"
 VALUE="Variables.TreeNodeID"/>
 <ARGUMENT NAME="OpURL"
 VALUE="ContentServer?pagename=
 OpenMarket/Gator/UIFramework/TreeOpURL&
 AssetType=Variables.AssetType"/>

 <ARGUMENT NAME="ExecuteURL"
 VALUE="ContentServer?pagename=
 OpenMarket/Gator/UIFramework/TreeOpURL&
 AssetType=Variables.AssetType&n0_=
 Variables.packedTreeNodeID&op=displayNode"/>

Chapter 56
About the Tree in the Admin Interface

56-7

 <ARGUMENT NAME="OKActions"
 VALUE="Status;Inspect;Edit;Delete;refresh"/>
 <ARGUMENT NAME="Image"
 VALUE="Xcelerate/OMTree/TreeImages/AssetTypes/Variables.AssetType.gif"/>
 <ARGUMENT NAME="RefreshKeys"
 VALUE="ListofAsset.id"/>
</CALLELEMENT>

To customize the appearance or behavior of tree nodes, copy one of the standard
elements and modify the node arguments. Note that tree loading elements are passed
the following variables, so any tree loading element that you create or customize must
take these variables into account.

Variables Passed in by the LoadTree Element:

• AssetType: Set to the section name that was created using the New Tree form

• op: Set to init

Variables Passed in by the LoadGlobalPopup Element:

• command: Set to GetTypes

• AssetType: Set to the section name that was created using the New Tree form

• varname: You set this with a comma-separated list of asset types for which you
want to display start menu items

• popupvar: You set to either true, to add items to the global context menu, or
false, if you do not have to add items to the context menu

Adding a Command Node Context Menu
Each node on the tree has a menu that displays when the user right-clicks the mouse.
Commands on this menu allow you to refresh the node or load pages in the right side
of the browser window. You can add commands to a node context menu that allow you
to load forms such as the status and publish forms. Any form that can be called using
an asset type and ID is a good candidate for being called by a node context menu
command.

Add a command to the node context menu by completing the following steps:

1. Add the new command, exactly as you want it to appear, into the node's
OKActions field.

2. In the element referred to in the node's OpURL (usually the TreeOpURL element),
add a new IF statement that calls the form you want to load.

For example, the following code from the TreeOpURL element opens a node:

<IF COND="Variables.op=displayNode">
 <THEN>
 <callelement NAME="OpenMarket/Gator/UIFramework/TreeIDFromPath">
 <argument NAME="TreePath" VALUE="Variables.TreeNodePath"/>
 </callelement>
 <setvar NAME="id" VALUE="Variables.ID"/>
 <callelement NAME="OpenMarket/Xcelerate/UIFramework/
ApplicationPage">
 <argument NAME="ThisPage" VALUE="ContentDetailsFront"/>
 <argument NAME="contentfunctions" VALUE="true"/>

Chapter 56
About the Tree in the Admin Interface

56-8

 <argument NAME="AssetType" VALUE="Variables.AssetType"/>
 </callelement>
 </THEN>

Refreshing the Tree
Elements that can alter the tree are responsible for refreshing the tree so that it
displays current data. There are three different types of refresh actions that you can
specify:

• Self: Refreshes the children of the specified node

• Parent: Refreshes the specified node and its children

• Root: Refreshes the entire tree

There are two steps to refreshing the tree:

1. Code your tree customization elements so that the tree nodes that you want to
refresh have RefreshKeys. RefreshKeys are usually the asset ID of the current
node, and allow the refresh to take place.

2. Call the OpenMarket/Xcelerate/UIFramework/UpdateTreeOMTree element, and
pass the element the _TreeRefreshKeys_ variable, specifying the type of refresh
you want in the variable value.

You set the RefreshKeys for a node by passing the RefreshKeys argument to the
BuildTreeNode element, as shown in the code sample in Node Parameters.

To refresh the tree, call the OpenMarket/Xcelerate/UIFramework/UpdateTreeOMTree
element, as shown in the following example:

<CALLELEMENT NAME="OpenMarket/Xcelerate/UIFramework/UpdateTreeOMTree">
 <ARGUMENT NAME= "_TreeRefreshKeys_" VALUE= "Root:ActiveList"/>
</CALLELEMENT>

About Trees and Security
WebCenter Sites uses security roles to control access to the tree in the WebCenter
Sites Admin interface. You need to assign the xceladmin ACL to the users of the
system-defined nodes such as Admin and Workflow.

Additional control is available by setting properties in wcs_properties.json. For
example, xcelerate.showSiteTree determines whether the tree is displayed by
default; xcelerate.restrictSiteTree determines which users can display or hide the
tree. See Managing Users and Security in Administering Oracle WebCenter Sites.

About Tree Error Logging
All tree-related error and debug messages are logged to the Java Console. You can
turn debugging on and off by supplying a value for the Debug parameter when you
create a tree.

Note that enabling debug affects performance, so error logging in the delivery system
should generally be turned off.

Chapter 56
About Trees and Security

56-9

57
About Customizing Components of the
Contributor Interface

To help improve content contributors’ and marketers’ productivity and save their time,
you can customize Contributor interface’s components such as dashboard, search
views, and asset forms.

Topics:

• Before You Begin

• What Can You Customize in the Contributor Interface?

• Where to Find Sample Code?

• Where to Begin?

Note:

The Contributor interface is designed to be used by content providers, rather
than developers. Therefore, the following system-defined asset types can be
displayed (inspected) in the Contributor interface, but they cannot be created
(or edited) in the Contributor interface: Template, CSElement, SiteEntry,
DimensionSet, Dimension, Attribute Editor, Parent Definitions, Attributes, and
Flex Definitions.

Similarly, the following system-defined asset types are not accessible from
the Contributor interface: FW_Application, and FW_View. Assets of these
types can be created (edited) and displayed only in the Admin interface.

Before You Begin
To be able to customize the Contributor, you should have a working knowledge of
the interface, experience with Java, JavaScript, and HTML, and solid familiarity with
WebCenter Sites development tools.

See Exploring the Contributor Interface in Using Oracle WebCenter Sites and
Configuring the User Interfaces in Administering Oracle WebCenter Sites.

What Can You Customize in the Contributor Interface?
The components you can customize are dashboard, search views, asset forms,
configuration properties, toolbar, and menu bar.

• Dashboard. See Customizing the Contributor Interface Dashboard.

• Search views. See Customizing Search Views of the Contributor Interface.

57-1

• Global and site-specific configuration properties, toolbar, and menu bar. See
Customizing Global Properties, Toolbar, and Menu Bar in the Contributor Interface.

• Asset forms. See Customizing Asset Forms for the Contributor Interface.

Where to Find Sample Code?
Here is some sample code that illustrates how you can customize the interface. Other
code is either packaged in WebCenter Sites or available independently. Paths to such
code are listed in respective topics.

Where to Begin?
The Contributor interface framework contains a component called the UI Controller,
which handles most of the interface-related requests, except for those pertaining to
asset forms.

The UI Controller is described in Understanding the Contributor Interface Framework
and UI Controller.

• If you are customizing the dashboard, search views, configuration properties,
toolbars, or menu bars, you should start with Understanding the Contributor
Interface Framework and UI Controller to obtain basic information about the
concepts and code for the customization process.

• If you are customizing asset forms, you can skip to Customizing Asset Forms for
the Contributor Interface for information about modifying asset form headers and
building an attribute editor.

Chapter 57
Where to Find Sample Code?

57-2

58
Understanding the Contributor Interface
Framework and UI Controller

In the Oracle WebCenter Sites: Contributor interface framework, specifically the UI
Controller handles all interface requests and processes elements.

Topics:

• About the Contributor Interface Framework

• UI Controller

• Custom Elements

About the Contributor Interface Framework
The framework of the Contributor interface sits on top of the Services Layer and
handles client requests.

This figure shows the framework, consisting of the Presentation Layer and UI
Controller.

Figure 58-1 Contributor Interface Framework

58-1

The Presentation Layer consists of elements that render views and elements that
generate a response. The UI Controller processes the requests it receives from the
Contributor interface, as explained in UI Controller.

Note:

The UI Controller is not used to process requests pertaining to asset
forms, given that asset forms exist outside the Contributor framework. See
Customizing Asset Forms for the Contributor Interface.

UI Controller
The UI Controller processes requests in configuration, action, and presentation
phases. In each phase, it determines the corresponding element by a naming
convention. There is a process by which the UI Controller checks for custom elements.

Topics:

• How the UI Controller Processes Requests

• UI Controller Processing an Element Request: Example

How the UI Controller Processes Requests
The UI Controller can be reached by invoking the fatwire/ui/controller SiteCatalog
entry. The UI Controller requires the incoming request to provide at least one
parameter, elementName, which determines the controller element to be executed. For
example, the following URL invokes the controller element Foo/Bar:

http://localhost:7001/sites/ContentServer?pagename=fatwire/ui/controller/
controller&elementName=Foo/Bar

A controller element is processed in the following three phases:

1. Configuration phase

2. Action phase

3. Presentation phase

where each phase consists of running a distinct element. For each phase, the
corresponding element name is determined by a naming convention, described below.

Note:

A controller element is any element that can be invoked through the UI
Controller.

In each of the phases, the UI Controller first tests for the custom element
specific to that phase. The process flow is illustrated in the steps of UI
Controller Processing an Element Request: Example.

Chapter 58
UI Controller

58-2

1. Configuration Phase

This phase consists of evaluating the configuration element. The configuration element
is meant to contain configuration settings used by the controller element being
invoked. The expected element name is <controllerElementName>Config, where
<controllerElementName> is the value of the elementName parameter. For instance,
in our example, where the controller element name is assumed to be Foo/Bar, the
expected name of the configuration element is Foo/BarConfig.

The Configuration phase is based on Apache Commons Configuration and requires
configuration data to be formatted as a valid XML document. For example:

<myconfig>
 <foo>123</foo>
 <bar>foobar</bar>
</myconfig>

The XML configuration data is evaluated into
a configuration object, that is, an instance of
org.apache.commons.configuration.beanutils.ConfigurationDynaBean, which is
kept in the request scope, where it is identified by the name of the XML root element.
In our example, the configuration object can be accessed in the Action phase or
Presentation phase as follows:

ConfigurationDynaBean configBean =
(ConfigurationDynaBean)request.getAttribute("myconfig");

where myconfig matches the name of the top-level XML element in the configuration
element. More information about Apache commons configuration can be obtained at
the following URL: http://commons.apache.org/configuration.

Chapter 58
UI Controller

58-3

http://commons.apache.org/configuration

Note:

About Configuration Elements in the Configuration Phase:

1. The Configuration phase is conditional. If the element
<controllerElementName>Config does not exist, the UI Controller skips
this phase and moves on to the next phase without creating a
configuration object.

2. Unlike in the other two phases, the configuration element is not
evaluated directly (using, for example, ics.callElement). Instead,
it is invoked through the fatwire/ui/controller/readConfiguration
SiteCatalog entry, using ics.ReadPage(), allowing to capture its output.

3. While creating the configuration object, the controller checks if there
is a custom configuration available for the requested element under
CustomElements. If there is one, the controller, by default, merges
the custom configuration with the corresponding system configuration.
This is the default behavior. If you do not want to merge the custom
configuration with the system configuration, specify merge=false for the
field resdetails1 or resdetails2 in the ElementCatalog entry for the
custom configuration element.

For example, if the system configuration is:

<myconfig>
 <foo>123</foo>
 <bar>foobar</bar>
</myconfig>

And if the custom configuration is:

<myconfig>
 <foo1>456</foo1>
 <bar1>foo1bar1<bar1>
</myconfig>

Then the controller merges the system configuration and custom
configuration to have the following:

<myconfig>
 <foo>123</foo>
 <bar>foobar</bar>
 <foo1>456</foo1>
 <bar1>foo1bar1</bar1>
</myconfig>

2. Action Phase

In this phase, the UI Controller evaluates the action element. The expected name
of the action element is <controllerElementName>Action. In our example, the action
element name is Foo/BarAction.

The action element is meant to contain arbitrary business logic. It typically builds Java
objects in the request scope, to be consumed by the next phase.

Chapter 58
UI Controller

58-4

Note:

The Action phase is conditional. If the element
<controllerElementName>Action does not exist, then the UI Controller skips
this phase and moves on to the Presentation phase.

3. Presentation Phase

In this last phase, the UI Controller evaluates the presentation element, whose name
depends on the content type of the generated output. The UI Controller can serve
either HTML (the default behavior) or JSON. The element name would then be
<controllerElementName>Html or <controllerElementName>Json.

In our example, the UI Controller attempts to evaluate Foo/BarHtml, because HTML is
the default content type. To generate JSON data instead, you must explicitly specify a
response type as follows:

http://localhost:7001/sites/ContentServer?pagename=fatwire/ui/controller/
controller&elementName=Foo/Bar&responseType=json

In this case, the UI Controller attempts to evaluate the presentation element called
Foo/BarJson.

UI Controller Processing an Element Request: Example
When the UI Controller processes any element request, it tests for the custom element
as follows:

In each phase (Configuration, Action, and Presentation), the UI Controller first looks
for the custom element specific to that phase. If the custom element is not found, the
UI Controller looks for the default element. If the default element is not found, the UI
Controller skips the phase and moves on to the next phase.

The steps below explain, by example, how the UI Controller processes an element
request. In this example, the request is for an existing element named UI/Layout/
LeftNavigation, and the response type is Html:

1. Configuration Phase. The UI Controller looks for the LeftNavigation element's
configuration. That is, the UI Controller looks for the element named
LeftNavigationConfig.jsp under CustomElements (in the ElementCatalog). If
the element exists, the UI Controller reads this element. Otherwise, it reads the
default element LeftNavigationConfig.jsp (in UI/Layout/). The UI Controller
then generates the configuration object and keeps this object in the request scope.

An alternative is to pass the configuration file name as an argument to the
UI Controller call. The passed parameter is named configName. If configName is
passed, the UI Controller looks for the element specified in that parameter.

2. Action Phase. The UI Controller now looks for the element
LeftNavigationAction.jsp. If it finds the element under CustomElements,
the UI Controller executes this element. Otherwise, it executes the default
LeftNavigationAction.jsp element (in UI/Layout/).

3. Presentation Phase. In the current example, the response type is Html.
Therefore, the UI Controller looks for the element LeftNavigationHtml.jsp.

Chapter 58
UI Controller

58-5

If it finds the element under CustomElements, the UI Controller executes this
element to generate an Html response. Otherwise, it executes the default
LeftNavigationHtml.jsp element (in UI/Layout/).

Custom Elements
When you are customizing the Contributor interface, remember to store your custom
elements in the recommended location. Make sure that you know how the custom
elements are located by the UI Controller.

Topics:

• Element Storage

• How the UI Controller Locates Elements

• Element Naming Conventions

Element Storage
The framework of the Contributor interface allows developers to keep their custom
elements separate from the system default elements, in accordance with best
practices.

Note:

Oracle recommends not modifying the system's default configurations.
Instead, create your own custom elements and store them under
CustomElements of the ElementCatalog to ensure their preservation during
upgrades.

The path to a custom element depends on whether the element is global, site-specific,
site- and asset type- specific, or just asset type-specific. This figure shows paths to
custom elements.

Chapter 58
Custom Elements

58-6

Figure 58-2 Paths to Custom Elements

How the UI Controller Locates Elements
When the UI Controller looks for an element:

1. The UI Controller first looks for the customized version of the element by
traversing all paths under CustomElements in the following order:

a. Site-specific and asset type-specific paths

b. Asset type-specific paths

c. Site-specific paths

d. Global paths

(For an example of paths, see Figure 58-2.)

Chapter 58
Custom Elements

58-7

2. If the custom element is not found, the UI Controller uses the system-defined
element.

Note:

For the UI Controller to use the asset type-specific element, the
assetTypeParam parameter must be passed with a valid asset type as its
value.

Element Naming Conventions
When referring to a system-defined element or sample element packaged with
WebCenter Sites, this guide provides the full path to the element. The full
path always begins with UI/Layout/. For example, the system-defined element
DashBoardContentsConfig.jsp is presented as follows in this guide:

UI/Layout/CenterPane/DashBoardContentsConfig

When referring to a custom-defined element that you create, this guide provides only
the name of the element (JSP), given that its path is unknown. For example:

DashBoardContentsConfig.jsp

It is assumed that the custom element is stored under CustomElements.

Chapter 58
Custom Elements

58-8

59
Customizing the Contributor Interface
Dashboard

Before you start customizing the dashboard, familiarize yourself with its configuration.
You can also use a sample code to try out dashboard customization.

Topics:

• About Dashboard Customization

• Customizing the Dashboard

• Examples of Customizing the Dashboard

About Dashboard Customization
When you log in to the Contributor interface, the dashboard is displayed. By default,
the dashboard opens the following ready-to-use widgets: Bookmarks, SmartLists,
Checkouts, and Assignments.

Figure 59-1 Dashboard with Default Widgets

You can customize the following portions of the dashboard and its widgets:

• Number of columns

59-1

• Column width

• Display name, height, and dashboard position

• Number of widgets

Customizing the Dashboard
When you’re customizing the dashboard, you can override the controller element
which generates the system-defined dashboard. You can configure a dashboard with
a global setting or make it site-specific. On the dashboard, you can customize default
widgets, add new widgets, and delete those that content and marketing teams no
longer need.

• The system-defined dashboard is generated by the controller element UI/Layout/
CenterPane/DashboardContentsConfig.
To customize the dashboard, override this element by creating your own
DashBoardContentsConfig.jsp under CustomElements and customizing its
properties.

Note:

When a new widget is added or an existing widget is updated, you must clear
user preferences in the WEM UI for the changes to take place.

The UI/Layout/CenterPane/DashBoardContentsConfig element is shown next,
followed by property descriptions in the next table.

Element UI/Layout/CenterPane/DashboardContentsConfig

<dashboardconfig>
 <dashboardlayout>
 <numberofcolumns></numberofcolumns>
 <columnwidths></columnwidths>
 </dashboardlayout>
 <components>
 <component id="widgetId">
 <name>widgetName</name>
 <url>widgetURL</url>
 <height>height_in_px</height>
 <dragRestriction>true | false </dragRestriction>
 <column>number_of_column_in_which_to_display_widget</column>
 </component>
 …
 …
 …
 </components>
</dashboardconfig>

Chapter 59
Customizing the Dashboard

59-2

Table 59-1 Properties in UI/Layout/CenterPane/DashBoardContentsConfig.jsp

Property Description Value

<numberofcolumns> Number of columns in the dashboard
display.

Integer greater than 0.

The system default is 2.

<columnwidths> Comma-separated widths of columns. For example, if there are 3 columns
in <numberofcolumns> then the
<columnwidths> can be 30,30,40.

<components> This section is used to define
dashboard widgets.

N/A

<component> Used to define a single widget. N/A

<id> ID of the widget. Alpha-numeric value unique across widgets.
Special characters are not allowed.

<name> Displayed name of the widget. Arbitrary string.

<url> Controller URL. The file location of the widget in
the UI/Layout/CenterPane/DashBoard/
<Your_Element>/ directory.

<height> Height of the widget. Height in pixels. For example, 300px.

<dragRestriction> Restricts dragging of the widget. true | false

<column> The column in which the widget is
displayed.

1 to n , where n is the value specified in
<numberofcolumns>.

Examples of Customizing the Dashboard
You might want to ask content and marketing teams which widgets can help them be
more productive. You can add those widgets to the Contributor dashboard.

To add a new widget:

1. Create the widget element.

2. Register the new widget in your custom DashBoardContentsConfig.jsp element.

Adding a Hello World Widget
These steps show how to create and register the simple widget shown in this figure.

Chapter 59
Examples of Customizing the Dashboard

59-3

Figure 59-2 Hello World Widget

To add your widget to the dashboard create your widget as follows:

1. Create a JSP element under CustomElements. In this example, we name the
element HelloWorldHtml.

2. For widget code, you can navigate to the sample file provided with this guide and
copy its content.

To register your widget (add it to the dashboard):

1. Open your custom DashBoardContentsConfig.jsp, locate the <components>
section, and add the newly created widget's specifications. For example:

<component id="helloworld">
 <name>Hello World</name>
 <url>Path_to_your_widget_under_CustomElements</url>
 <height>300px</height>
 <closable>false</closable>
 <open>true</open>
 <dragRestriction>true</dragRestriction>
 <style>checkoutPortlet</style>
 <column>2</column>
</component>

2. Go to the <applicationServer_install_directory>/webapps/<cs_context>/
WEB-INF/classes/ReqAuthConfig.xml file and add the path to the sample
element, under the excludedControllerElements list. In our example, the path
is:

<property name="excludedControllerElements">
 <list>

Chapter 59
Examples of Customizing the Dashboard

59-4

 <value>UI/Layout/CenterPane/DashBoard/HelloWorld</value>
 </list>
</property>

3. Refresh the home page of your Contributor interface. The new widget is displayed
on your dashboard.

Adding a Widget that Shows Recently Modified Assets
In this section, you create a widget that shows which assets were modified in the past
week. After completing the steps in this section, your dashboard displays a widget
similar to the one in this figure.

Figure 59-3 Recently Modified Assets Widget

To add your widget to the dashboard, create your widget as follows:

1. Create an Action JSP element under CustomElements. In this example, we name
the element RecentlyModifiedAssetsAction.jsp. For the widget code, you can
navigate to the sample file provided with this guide and copy its content.

2. Create a Json JSP element for the Action element created in the previous
step. In this example, we name the element RecentlyModifiedAssetsJson.jsp.
For the code, you can navigate to the sample file provided with this guide
and copy its content. Place the element in the same location as the
RecentlyModifiedAssetsAction.jsp element.

3. Create a presentation element under CustomElements for your widget. Name the
element after the widget element. In this example, we name the display element
RecentlyModifiedAssetsHtml.jsp. For the code, you can navigate to the sample
file provided with this guide and copy its content.

Chapter 59
Examples of Customizing the Dashboard

59-5

Note:

The presentation element calls the RecentlyModifiedAssetsAction.jsp
element. Enter the path to that element.

To register your widget (add it to the dashboard):

1. Open your custom DashBoardContentsConfig.jsp, locate the <components>
section, and add the newly created widget's specifications. For example:

<component id="myrecent">
<!-- a unique identifier for the component. This must be unique among all
the components. It can be alpha numeric but no special characters allowed
-->
 <name>Recently Modified Assets</name>
 <url>Path_to_your_custom_widget's presentation_element</url>
 <height>300px</height>
 <closable>false</closable>
 <open>true</open>
 <dragRestriction>false</dragRestriction>
 <style>checkoutPortlet</style>
 <column>2</column>
</component>

2. Go to the <applicationServer_install_directory>/webapps/<cs_context>/
WEB-INF/classes/ReqAuthConfig.xml file and add the path to the sample
element, under the excludedControllerElements list. In our example, the path
is:

<property name="excludedControllerElements">
 <list>
 <value>UI/Layout/CenterPane/DashBoard/RecentlyModifiedAssets</value>
 </list>
</property>

3. Refresh the dashboard to see the newly configured widget.

Chapter 59
Examples of Customizing the Dashboard

59-6

60
Customizing Search Views of the
Contributor Interface

Different types of search views are available in the Contributor interface. Become
familiar with these views and their configuration elements.

Topics:

• About Search View Customization

• Customization Processes

• Customizing Undocked Views

• About Customizing Docked Views

• Customizing Sort Menus and Tooltips

About Search View Customization
When users log in to the Contributor interface and access their sites, they can perform
a simple or advanced search to locate the required assets. Search results are then
presented in either List view or Thumbnail view. You can customize some features of
different search views.

See Finding and Organizing Assets and Working with the Search Results List in Using
Oracle WebCenter Sites.

Topics:

• Types of Search Views

• What You Can Customize in Search Views

• View-Rendering Process

• Configuration Elements for Search Views

Types of Search Views
The search results panel can be either undocked or docked and displayed as a List
view or Thumbnail view. Thus, the Contributor interface includes the following views:

• List Undocked

• List Docked

• Thumbnail Undocked

• Thumbnail Docked

An undocked view opens only when no assets are open for editing. A docked view is
attached to assets in edit mode and therefore opens only when an asset is open in edit
mode.

60-1

What You Can Customize in Search Views
The following figure summarizes the features you can customize in List view. See
Customizing Undocked Views, which also applies to docked views.

Sort menus and tooltips are customized separately. See Customizing Sort Menus and
Tooltips.

Which view opens by default for a given mode depends on your configuration settings
and the user's search habits. For example, if you set Thumbnail view as the default
view for undocked mode, then Thumbnail view opens when the user first runs search
in undocked mode and continues to open until the user switches to List view. (Search
remembers the user's choice until browser cookies are cleared.)

The following figure shows the customizable features in List view.

Figure 60-1 Customizable Features in List View

Customizable features for List view include:

• Maximum number of items to return

• Number of rows per page

• Fields (columns) to display

Chapter 60
About Search View Customization

60-2

• Column display name

• Column width

• Format of date and other fields

• Default sort field and sort order

• Sort menu (docked mode)

• Context (right-click) menu

• Tooltip (docked mode)

The following figure summarizes the features you can customize in Thumbnail view.

Figure 60-2 Customizable Features in Thumbnail View

Customizable features for Thumbnail view include:

• Maximum number of items to return

• Number of rows per page

• Asset types for which special thumbnails are shown

• Fields to display

• Format of date and other fields

Chapter 60
About Search View Customization

60-3

• Default sort field and sort order

• Sort menu

• Context (right-click) menu

• Tooltip (docked mode)

View-Rendering Process
System-defined and custom-defined views are rendered by similar processes. To
illustrate, we begin with system-defined views.

System-defined views are rendered by the following elements (JSPs), whose names
for undocked and docked views differ only by the Docked prefix.

When undocked:

• List view is rendered by the element: UI/Layout/CenterPane/Search/View/
ListViewHtml

• Thumbnail view is rendered by the element: UI/Layout/CenterPane/Search/
View/ThumbnailViewHtml

When docked:

• List view is rendered by the element: UI/Layout/CenterPane/Search/View/
DockedListViewHtml

• Thumbnail view is rendered by the element: UI/Layout/CenterPane/Search/
View/DockedThumbnailViewHtml

Rendering of undocked and docked views is similar (except that the names of
elements for docked views start with Docked). The following steps illustrate the
rendering of undocked views.

1. When a user runs a search routine, the search functionality determines the user's
current view, which is either the default view or a subsequently chosen view.

Note:

"Default view" is the view that the system renders the first time search
is run. (List view is the system-defined default view for both undocked
and docked modes.) If the user switches to a different view, search
remembers and continues to display the user's choice until browser
cookies are cleared.

2. Search functionality reads UI/Layout/CenterPane/Search/SearchResultsConfig
to obtain the path to the element that initiates the rendering of the view:

• If the user is running search for the first time, or continues using the default
view, search reads the value of the <defaultview> property.

• If the user's view is other than the default view, search reads the value of
either the <listview> or <thumbnailview> property (depending on which view
was determined in step 1).

3. If search determines that List view must be rendered, it reads the element
UI/Layout/CenterPane/Search/View/ListViewConfig and invokes UI/Layout/

Chapter 60
About Search View Customization

60-4

CenterPane/Search/View/ListViewHtml, which then renders the list view. If
search determines that the Thumbnail view must be rendered, it reads the
element UI/Layout/CenterPane/Search/View/ThumbnailViewConfig and invokes
UI/Layout/CenterPane/Search/View/ThumbnailViewHtml, which then renders the
Thumbnail view.

You can override all of the above system-defined elements by customizing your own
identically named elements and placing them under CustomElements to actualize
the changes shown in Figure 60-1 and Figure 60-2. You can also customize
individual features, such as sort menus and tooltips, by using the elements UI/Layout/
CenterPane/Search/View/SearchTopBarConfig and UI/Layout/CenterPane/Search/
View/SearchToolTipHtml respectively.

For a comprehensive list of elements, see Configuration Elements for Search Views.

Configuration Elements for Search Views
This section summarizes the JSP elements you use to customize search views.

• System-defined configuration elements: You can configure identically named
elements to customize search views and searches that are global or specific to a
site, asset type(s), or site and asset type(s). All customized elements should be
stored under CustomElements (for an example, see Figure 60-3). For a summary
of the elements, see the following tables:

– This table lists system-defined configuration elements that define ready-to-use
undocked views (all of the element names end with Config).

Table 60-1 Configuration Elements for Undocked Search Views

Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/
SearchResultsConfig

Element for setting the default search
view (List view or Thumbnail view) in
undocked mode.

Setting the Default Undocked
View to List or Thumbnail

UI/Layout/CenterPane/Search/
View/ListViewConfig

Element for configuring the undocked
List view.

Customizing the Undocked List
View

UI/Layout/CenterPane/Search/
View/ThumbnailViewConfig

Element for configuring the undocked
Thumbnail view.

Customizing the Undocked
Thumbnail View

– This table lists system-defined configuration elements that define ready-to-use
docked views (all of the element names end with Config).

Table 60-2 Configuration Elements for Docked Search Views

Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/
DockedSearchResultsConfig

Element for setting the default search
view (List view or Thumbnail view) in
docked mode.

Customization Processes

UI/Layout/CenterPane/Search/View/
DockedListViewConfig

Element for configuring the docked List
view.

Customization Processes

UI/Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Element for configuring the docked
Thumbnail view.

Customization Processes

Chapter 60
About Search View Customization

60-5

– This table lists system-defined elements for customizing a search view's
individual features, such as sort menus and tooltips (element names end with
either Config or Html).

Table 60-3 Configuration and Presentation Elements for Other Features in Search Views

Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/View/
SearchTopBarConfig

Element for configuring fields as sort
options in the sort drop-down menus
for docked List, undocked Thumbnail,
and docked Thumbnail views.

Customizing Sort Menus

UI/Layout/CenterPane/Search/View/
SearchToolTipHtml

Element for configuring tooltips for
docked views (List and Thumbnail).
This element enables you to configure
tooltip appearance and custom
messages.

Customizing Tooltips for
Search Results

UI/Config/GlobalHtml Element for configuring context (right-
click) menus. This element is valid for
all search views.

Customizing Context
Menus

• Custom elements: This table lists sample custom elements that are packaged
with WebCenter Sites to help illustrate customization code.

Table 60-4 Custom Sample Elements for Search Views

Path to Sample Element Description

CustomElements/avisports/AVIArticle/UI/
Layout/CenterPane/Search/View/
ThumbnailViewConfig

Configuration element for undocked Thumbnail view for
the AVIArticle asset type in the avisports sample site.

CustomElements/avisports/AVIArticle/UI/
Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Configuration element for docked Thumbnail view for
AVIArticle asset type in avisports site.

CustomElements/avisports/AVIImage/UI/
Layout/CenterPane/Search/View/
ThumbnailViewConfig

Configuration element for undocked Thumbnail view for
the AVIImage asset type in the avisports sample site.

CustomElements/avisports/AVIImage/UI/
Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Configuration element for docked Thumbnail view for the
AVIImage asset type in the avisports sample site.

CustomElements/avisports/UI/Layout/
CenterPane/Search/View/ThumbnailViewConfig

Configuration element for undocked Thumbnail view for
the avisports sample site.

CustomElements/avisports/UI/
Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Configuration element for docked Thumbnail view for the
avisports sample site.

Customization Processes
The steps you perform to customize views in undocked and docked mode are similar
with only a few differences. Read further to know what those differences are.

• Customizing undocked and docked views:

Chapter 60
Customization Processes

60-6

When customizing undocked views, follow instructions in Customizing Undocked
Views and name your configuration elements (JSPs) as shown in that section
(also in Table 60-1). When customizing docked views, also follow instructions in
Customizing Undocked Views, but name your configuration elements as shown in
Table 60-2 (that is, include the Docked prefix).

• Customizing sort menus and tooltips for search views:

Elements for creating sort menus and tooltips apply to both undocked and docked
mode. Name the elements exactly as shown in Table 60-3 (and Customizing Sort
Menus and Tooltips, regardless of mode.

• To display a field in docked List view or docked Thumbnail view:

By default, the UI/Layout/CenterPane/Search/View/DockedListViewConfig
element points to the UI/Layout/CenterPane/Search/View/ListViewConfig
element to get only the first listed field and display its name in docked List view.
The field is defined in the first <field> property, as follows:

<field>
 <fieldname>fieldname</fieldname>
 <displayname>DisplayName</displayname>

To display any other field name in the docked List view, specify that name in your
custom DockedListViewConfig.jsp element. The same logic applies to displaying
a field name in docked Thumbnail view (except that your configuration elements
are named ThumbnailViewConfig and DockedThumbnailViewConfig).

Customizing Undocked Views
You customize the undocked List and Thumbnail views by configuring your own
identically named elements and placing them under CustomElements.

Customizing the undocked List and Thumbnail views involves overriding the system-
defined elements shown in Table 60-1.

Topics:

• Basic Steps for Customizing Undocked Views

• Setting the Default Undocked View to List or Thumbnail

• Customizing the Undocked List View

• Customizing the Undocked Thumbnail View

Basic Steps for Customizing Undocked Views
To customize an undocked view, take any combination of the following steps:

• Set the default undocked view to be List or Thumbnail for all asset types or
your choice of asset types. To set the view(s), override the element UI/Layout/
CenterPane/Search/SearchResultsConfig, as shown in Setting the Default
Undocked View to List or Thumbnail.

• Configure the undocked List or Thumbnails views or both. Specify the number
of columns to be displayed in the view(s), configure column names and column
widths, specify the sort order of returned items, and more.

Chapter 60
Customizing Undocked Views

60-7

– To configure the List view, override the element UI/Layout/CenterPane/
Search/View/ListViewConfig, described in Customizing the Undocked List
View.

– To configure the Thumbnail view, override the element UI/Layout/
CenterPane/Search/View/ThumbnailViewConfig, described in Customizing
the Undocked Thumbnail View.

• Configure additional features, such as sort menus for the views. In this step,
configure JSP elements that are specific to the features of the view (such as a sort
menu), rather than the view itself. See Customizing Sort Menus and Tooltips.

Setting the Default Undocked View to List or Thumbnail
When setting the default search view (List or Thumbnail), set it globally for all asset
types. You also can specify a default search view for selected asset types of your
choice.

• To set the default search view(s), override the element UI/Layout/CenterPane/
Search/SearchResultsConfig by creating your own SearchResultsConfig.jsp
under CustomElements and customizing its properties.

The UI/Layout/CenterPane/Search/SearchResultsConfig element is shown
next. Then the table describes the properties.

Element UI/Layout/CenterPane/Search/SearchResultsConfig

<searchconfig>
<listview>UI/Layout/CenterPane/Search/View/ListView</listview>
 <thumbnailview>UI/Layout/CenterPane/Search/View/ThumbnailView</
thumbnailview>
 <defaultview>listview</defaultview>
 <assettypeviews>
 <assettype id="Page" name="Page">listview</assettype>
 …
 …
 …
 </assettypeviews>
</searchconfig>

Table 60-5 Properties in UI/Layout/CenterPane/Search/SearchResultsConfig

Property Description Value

<listview> Path to the ListView controller element. UI/Layout/CenterPane/Search/
View/ListView

Do not change the value of this
property.

<thumbnailview> Path to the ThumbnailView controller
element.

UI/Layout/CenterPane/Search/
View/ThumbnailView

Do not change the value of this
property.

Chapter 60
Customizing Undocked Views

60-8

Table 60-5 (Cont.) Properties in UI/Layout/CenterPane/Search/SearchResultsConfig

Property Description Value

<defaultview> Specifies whether List or Thumbnail is
the default view.

The default view is the view that opens
the first time search is run. If the user
switches the view, search remembers
the user's choice until browser cookies
are cleared.

listview | thumbnailview

The value of this property is case-
sensitive.

<assettypeviews> Used to selectively configure a default
view for one or more asset types.

N/A

<assettype id= name= > Used to specify the asset type and its
default view (which remains until the
user either switches to a different view
or clears browser cookies).

You can specify as many asset types
as necessary (one per <assettype>).

<assettype
id="unique_identifier"
name="AssetTypeName"> listview
| thumbnailview </assettype>

Customizing the Undocked List View
When customizing the List view, you can set the type of content to be returned and its
presentation.

• To customize the undocked List view, override the UI/Layout/CenterPane/
Search/View/ListViewConfig element by creating your own ListViewConfig.jsp
under CustomElements and customizing its properties.

The UI/Layout/CenterPane/Search/View/ListViewConfig element is shown
next. Then the table describes the properties.

Element UI/Layout/CenterPane/Search/View/ListViewConfig

<listviewconfig>
 <numberofitems>1000</numberofitems>
 <numberofitemsperpage>100</numberofitemsperpage>
 <defaultsortfield> </defaultsortfield>
 <defaultsortorder> </defaultsortorder>
 <fields>
 <field id="name">
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <width>350px</width>
 <formatter>fw.ui.GridFormatter.nameFormatter</formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field id="updateDate">
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <!-- <dateformat>MM/dd/yyyy hh:mm a z </dateformat> -->
 <javadateformat>SHORT</javadateformat>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 …

Chapter 60
Customizing Undocked Views

60-9

 …
 …
 </fields>
</listviewconfig>

Table 60-6 Properties in UI/Layout/CenterPane/Search/View/ListViewConfig

Property Description Value

<numberofitems> Maximum number of items returned by
search.

Integer greater than 0.

If -1 is entered for instance, then all
results matching the search criteria are
returned.

<numberofitemsperpage
>

Number of rows per page needed in the
search results.

100 is the default.

<defaultsortfield> Default field that search should sort when
fetching search results.

The default is empty. Therefore, search
results are displayed by relevance.
Configure this element if any other field
should be set as the default for sorting.

<defaultsortorder> Sort order used by search. ascending | descending

Required when <defaultsortfield> is
specified.

<fields> Columns that are shown in List view.
These columns are shown in the same
order as listed under <fields>.

If you are creating an asset type-specific
configuration and you want to display
asset type-specific attributes in the search
results, you must enable the asset
type index and attribute search. See
Configuring Attributes for Asset Type Index
and Adding Asset Types to the Search
Index in Administering Oracle WebCenter
Sites.

If you skip this procedure, search uses the
global index.

N/A

<field id= > Defines a column to be shown in List view. <field id="unique_identifier">

<fieldname> Asset's field name to render in the column. This name must match the column name
in the Lucene index.

If locale is added as the field name,
then it is displayed only if the site
dimension is enabled.

<displayname> Display name shown in the column
header.

Alphanumeric string

<width> Width of the column in pixels. Width in units of px (for example, 350px).

Oracle recommends setting the width to
auto for the last field.

<formatter> Dojo formatter function to display column
values in your preferred format.

The formatter must be made available
in a Dojo module. See the modules
property in UI/Config/GlobalHtml.

Chapter 60
Customizing Undocked Views

60-10

Table 60-6 (Cont.) Properties in UI/Layout/CenterPane/Search/View/ListViewConfig

Property Description Value

<displayintooltip> Indicates whether the associated field
must be listed in the tooltip for docked List
view.

The element UI/Layout/CenterPane/
Search/View/ SearchToolTipHtml
renders tooltips and uses the value of this
property to determine whether to list the
associated field name in the tooltip (the
field value also is listed). Tooltips can be
customized only for docked views. See
Customizing Tooltips for Search Results.

true | false

<dateformat> Applies to date fields only. This is an
option to specify a custom date format if
the date needs to be displayed in a format
other than javadateformat.

A valid date format string.

If <dateformat> is used, it takes
precedence over <javadateformat>.

<javadateformat> Applies to date fields only. Valid values are SHORT, MEDIUM, LONG,
and FULL.

If <javadateformat> is omitted or
left blank, the system uses SHORT by
default. If <dateformat> is used, it takes
precedence over <javadateformat>.

Customizing the Undocked Thumbnail View
When customizing the Thumbnail view, you can set the type of content to be returned
and its presentation.

To customize the undocked Thumbnail view, override the element UI/
Layout/CenterPane/Search/View/ThumbnailViewConfig by creating your own
ThumbnailViewConfig.jsp under CustomElements and customizing its properties.

The UI/Layout/CenterPane/Search/View/ThumbnailViewConfig element is shown
next. Then the table describes the properties.

Note:

Pay particular attention to the following properties: <formatter> and
<assettypes>. While the element UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig is mostly the same as UI/Layout/CenterPane/
Search/View/ListViewConfig, the <formatter> property is defined
differently. Also, the <assettypes> property is exclusive to
ThumbnailViewConfig, where it is used to render thumbnails.

The <assettypes> property is described in detail in More About the
<assettypes> Section in the ThumbnailViewConfig Element, where its usage
is illustrated with examples. One of the examples shows how to supplement
video assets with a custom element that shows a video player.

Element UI/Layout/CenterPane/Search/View/ThumbnailViewConfig

Chapter 60
Customizing Undocked Views

60-11

<thumbnailviewconfig>
 <numberofitems>1000</numberofitems>
 <defaultsortfield></defaultsortfield>
 <defaultsortorder></defaultsortorder>
 <numberofitemsperpage>12</numberofitemsperpage>
 <formatter>fw.ui.GridFormatter.thumbnailFormatter</formatter>
 <fields>
 <field id="name">
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <displayintooltip>true</displayintooltip>
 </field>
 <field id="updateDate">
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <!-- <dateformat>MM/dd/yyyy hh:mm a z </dateformat> -->
 <javadateformat>SHORT</javadateformat>
 <displayintooltip>true</displayintooltip>
 </field>
 …
 …
 …
 </fields>
 <assettypes>
 <assettype id="unique_identifier">
 <type>AVIImage</type>
 <subtype>Image</subtype>
 <element>UI/Layout/CenterPane/Search/View/ImageThumbnail</element>
 <attribute>imageFile</attribute>
 </assettype>
 …
 …
 …
 </assettypes>
</thumbnailviewconfig>

Table 60-7 Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig

Property Description Value

<numberofitems> Maximum number of items to be
returned by search.

Integer greater than 0.

If -1 is entered for instance, then all
results matching the search criteria are
returned.

<numberofitemsperpage> Number of rows per page needed in
the search results.

100 is the default value.

<formatter> Dojo formatter function to display
values in your preferred format.

The formatter must be made available
in a Dojo module. See the modules
property in UI/Config/GlobalHtml.

<defaultsortfield> Default sort field that search should
sort when fetching search results.

The default is empty. Therefore, search
results are displayed by relevance.
Configure this element if any other field
should be set as a default for sorting.

<defaultsortorder> Sort order used by search. ascending | descending

This is required when
<defaultsortfield> is specified.

Chapter 60
Customizing Undocked Views

60-12

Table 60-7 (Cont.) Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig

Property Description Value

<fields> Fields that are shown below the
thumbnails in Thumbnail view. These
fields are shown in the same order as
listed under <fields>.

If you are creating an asset type-
specific configuration and you want to
display asset type-specific attributes in
the search results, you must enable
the asset type index and attribute
search. See the following topics in
Administering Oracle WebCenter Sites:

• Adding Asset Types to the Search
Index

• Configuring Attributes for Asset
Type Index

If you skip this procedure, search uses
the global index.

N/A

<field id=> Describes a field under the thumbnail. <field id="unique_identifier">

<fieldname> Asset's field name to render below the
thumbnail.

This name must match the column
name in the Lucene index.

If locale is added as the field name,
then it is displayed only if the site
dimension is enabled.

<displayname> Display name to render below the
thumbnail.

Alphanumeric string

<dateformat> Applies to date fields only. This is an
option to specify a custom date format
if the date needs to be displayed in a
format other than javadateformat.

A valid date format string.

If <dateformat> is used, it takes
precedence over <javadateformat>.

<javadateformat> Applies to date fields only. Valid values are SHORT, MEDIUM, LONG,
and FULL.

If <javadateformat> is omitted
or left blank, the system uses
SHORT by default. If <dateformat>
is used, it takes precedence over
<javadateformat>.

<displayintooltip> Indicates whether the associated field
must be listed in the tooltip for docked
Thumbnail view.

The
element UI/Layout/CenterPane/
Search/View/SearchToolTipHtml
renders tooltips. It uses the value
of the <displayintooltip> property
to determine whether to list the
associated field in the tooltip (the field
value also is listed). Tooltips can be
customized only for docked views. For
instructions, see Customizing Tooltips
for Search Results.

true | false

Chapter 60
Customizing Undocked Views

60-13

Table 60-7 (Cont.) Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig

Property Description Value

<assettypes> This section specifies the asset types
for which special thumbnails are
shown. Each asset type must have an
attribute whose content is rendered as
a thumbnail.

To learn when this section must
be customized, see More About
the <assettypes> Section in the
ThumbnailViewConfig Element.

N/A

<assettype id= > Describes the asset type for which a
special thumbnail is shown.

<assettype
id="unique_identifier">

<type> Name of the asset type for which a
thumbnail is rendered.

See Re-using the System-Defined
Image Thumbnail Element and
Using a Custom Thumbnail-Rendering
Element.

<subtype> Subtype of the asset type. See Re-using the System-Defined
Image Thumbnail Element and
Using a Custom Thumbnail-Rendering
Element.

<element> Path to the controller element that
renders the content specified in
<attribute> as a thumbnail.

See Re-using the System-Defined
Image Thumbnail Element and
Using a Custom Thumbnail-Rendering
Element.

If you do not specify an
element, the system-defined
element UI/Layout/CenterPane/
Search/View/GlobalThumbnail is
used to render static icons, stored
in the images/search directory. See
Use of Static Icons.

<attribute> Attribute whose content is shown as a
thumbnail.

See Re-using the System-Defined
Image Thumbnail Element and
Using a Custom Thumbnail-Rendering
Element.

More About the <assettypes> Section in the ThumbnailViewConfig Element
Table 60-7 contains the <assettypes> section, which may have to be configured,
depending on which features you choose to customize. Various <assettypes>
configuration scenarios are discussed below in the context of the most commonly
performed customizations.

This section includes the following topics:

• Use of Static Icons

• Re-using the System-Defined Image Thumbnail Element

• Using a Custom Thumbnail-Rendering Element

Chapter 60
Customizing Undocked Views

60-14

Use of Static Icons
To use your own static thumbnails (stored in the file system), it is not required
to customize the <assettypes> section of the UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig element, if you observe the following conventions:

• The name of the thumbnail icon should not contain spaces (they are replaced with
underscores). The name must be in one of the following formats, depending on the
size of the thumbnail:

– <assettypename>.png or <assettypename>-<subtype>.png (small thumbnail,
96x96, docked view)

– <assettypename>_large.png or <assettypename>-<subtype>_large.png
(large thumbnail, 170x170, undocked view)

• The storage location of the icon is the /images/search directory of the file system.

If the above conventions are followed, the icon are automatically rendered
as a thumbnail by the UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
element, which is coded to look for icons in the /images/search directory. Naming
the icon after the asset type and subtype automatically associates the icon with assets
of that type and subtype.

Re-using the System-Defined Image Thumbnail Element
Customizing the <assettypes> section of the ThumbnailViewConfig.jsp element is
a requirement to dynamically render custom images as thumbnails by re-using the
system-defined element ImageThumbnailHtml.jsp. This element processes images
that are associated with image attributes belonging to specific asset types or subtypes
or both.

To re-use the system-defined ImageThumbnailHtml.jsp, in your custom
ThumbnailViewConfig.jsp, do the following:

1. Specify the asset types that require a custom image thumbnail. Each asset type
must have an image attribute.

<assettypes>
 <assettype>
 <type>Name_of_AssetType_containing_the_image_attribute</type>
 <subtype>Name_of_subtype_containing_the_image_attribute</subtype>
 <element>UI/Layout/CenterPane/Search/View/ImageThumbnail</element>
 <attribute>Name_of_imageAttribute_containing_the_image</attribute>
 </assettype>
 …
 …
 </assettypes>

2. For <element>, specify the path to the system-defined element
ImageThumbnailHtml.jsp, exactly as shown in the sample code above.

Using a Custom Thumbnail-Rendering Element
Customizing the <assettypes> section of the ThumbnailViewConfig.jsp is a
requirement if you plan to use a custom element that dynamically renders the content
of an asset type's (or subtype's) blob attribute as a thumbnail.

Chapter 60
Customizing Undocked Views

60-15

In the example below, you create elements that work together to render video
thumbnails. The figure below shows a sample video Thumbnail view, which you can
reproduce by following the steps in this topic.

Figure 60-3 Sample Video Thumbnail View

The steps below provide guidelines for (1) creating elements that work together to
dynamically render video thumbnails, and (2) customizing the <assettypes> section of
the ThumbnailViewConfig element.

Note:

To make this sample work, ensure that you have assets with a blob attribute
and video files for that blob attribute are uploaded to your site's directory.

To play the video file the browser plugin should be available.

To create elements that render video thumbnails:

1. Write a video thumbnail Action element that uses the AssetAPI and gets the URL
of the blob using BlobUtil for the video attribute specified in the element. (The
element can be named as you want, but it must end in Action. The element
should be stored in a directory under CustomElements.)

A sample element named VideoThumbnailAction.jsp is available in the zip file
containing this guide.

2. Write a video thumbnail Html element, which takes the URL built in the previous
step and renders the video and other asset details below the thumbnail. (The
element can be named as you want, but it must end in Html. The element
should be stored in a directory under CustomElements.) This Html element calls
the Action element.

A sample element named VideoThumbnailHtml.jsp is available in the zip file
containing this guide.

Chapter 60
Customizing Undocked Views

60-16

3. To use the video thumbnail Html element, configure the <assettype> property in
your custom ThumbnailViewConfig.jsp element as shown below:

<assettype>
 <type>Name_of_AssetType_containing_blob_attribute</type>
 <subtype>Name_of_asset_subtype</subtype>
 <element>CustomElements/path_to_your_element/Element</element>
 <attribute>Name_of_attribute_containing_video</attribute>
</assettype>

A sample element named ThumbnailViewConfig.jsp is available in the zip file
containing this guide.

About Customizing Docked Views
Methods for customizing docked views are similar to those for undocked views. The
main differences are outlined in Customization Processes.

Customizing Sort Menus and Tooltips
There are some features that you can customize for undocked views, some for docked
views, and some for both.

Features discussed in this section can be customized for undocked views, docked
views, or both, as shown in this table.

Table 60-8 Customizing Other Features for Search Views

Customization
Option

Undocked List Undocked
Thumbnail

Docked List
View

Docked
Thumbnail

See …

Sort Menus No Yes Yes Yes Customizing Sort
Menus

Tooltips for Search
Results

No No Yes Yes Customizing Tooltips
for Search Results

Context Menus Yes Yes Yes Yes Customizing Context
Menus

Topics:

• Customizing Sort Menus

• Customizing Tooltips for Search Results

• Customizing Context Menus

Customizing Sort Menus
Sort menus can be customized only for the views listed in Table 60-8. You can specify
which sort fields to display in a sort menu. You also can specify sort order for each
field.

• To customize a Sort menu, override the element UI/Layout/CenterPane/Search/
View/SearchTopBarConfig by creating your own SearchTopBarConfig.jsp under
CustomElements and customizing its properties.

Chapter 60
About Customizing Docked Views

60-17

The UI/Layout/CenterPane/Search/View/SearchTopBarConfig element is shown
next. The table that follows describes the properties.

Element UI/Layout/CenterPane/Search/View/SearchTopBarConfig

<sortconfig>>
 <sortfields>
 <sortfield id="unique_identifier">
 <fieldname>name</fieldname>
 <displayname>Name(A-Z)</displayname>
 <sortorder>ascending</sortorder>
 </sortfield>
 <sortfield id="unique_identifier">
 <fieldname>name</fieldname>
 <displayname>Name(Z-A)</displayname>
 <sortorder>descending</sortorder>
 </sortfield>
 <sortfield id="unique_identifier">
 <fieldname>AssetType_Description</fieldname>
 <displayname>Asset Type</displayname>
 <sortorder>ascending</sortorder>
 </sortfield>
 …
 …
 </sortfields>
</sortconfig>

Table 60-9 Properties in UI/Layout/CenterPane/Search/View/SearchTopBarConfig

Property Description Value

<sortfield id= > Describes the search index field by
which to sort search results.

id=unique_identifier

<fieldname> Name of the search index field.

The same field can be repeated
multiple times to provide multiple sort
orders.

For example, name in the code above.

<displayname> Display name of the user-readable
field.

For example, Name in the code above.

<sortorder> Sort order. ascending | descending

Customizing Tooltips for Search Results
Tooltips can be customized only for docked views. Docked views are displayed in a
limited space and therefore provide a limited amount of information about the assets
that are returned as search results. Tooltips are a way of displaying more information
about the returned assets. For example, you can customize tooltips to display field
names and values in addition to those displayed in docked mode, as shown in the
figure below. You can also customize tooltips to display custom messages, and you
can modify the appearance of tooltips.

Chapter 60
Customizing Sort Menus and Tooltips

60-18

Figure 60-4 Tooltip in Undocked List View

The default tooltip for docked search results is rendered by the element UI/Layout/
CenterPane/Search/View/SearchToolTipHtml. This element renders the tooltip as
a box. Within the box, it renders the name of each field in the <fields> section
of UI/Layout/CenterPane/Search/View/ListViewConfig (or UI/Layout/CenterPane/
Search/View/ThumbnailViewConfig), but only if the field's <displayintooltip>
property is set to true. For example, the Name, Type, and Modified fields in the
ListViewConfig.jsp below are displayed as part of the tooltip in the preceding figure,
given that <displayintooltip> is set to true:

<fields>
 <field>
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <width>350px</width>
 <formatter>fw.ui.GridFormatter.nameFormatter</formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field>
 <fieldname>type</fieldname>
 <displayname>Type</displayname>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field>
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <javadateformat>SHORT</javadateformat>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>

Chapter 60
Customizing Sort Menus and Tooltips

60-19

Note:

The UI/Layout/CenterPane/Search/View/SearchToolTipHtml element also
renders field values. However, customized messages and changes to tooltip
appearance must be coded in the custom SearchToolTipHtml.jsp element.

To create a tooltip or add fields to the tooltip:

1. To create a tooltip, override the element UI/Layout/CenterPane/Search/
View/SearchToolTipHtml by creating your own SearchToolTipHtml.jsp under
CustomElements.

2. To add fields to the tooltip, add the fields to your custom ListViewConfig.jsp or
ThumbnailViewConfig.jsp and set each field's <displayintooltip> property to
true.

3. To display a custom message in the tooltip (custom or system-defined) or to
change the appearance of the tooltip, code a custom SearchToolTipHtml.jsp
element. For example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><cs:ftcs>
<style>
.customSearchTooltip {
 font-weight: bold;
 color: #333;
 font-style: italic;
}
</style>

<div class='customSearchTooltip'>
 You are Viewing a Custom Tooltip
</div>
</cs:ftcs>

Customizing Context Menus
Context menus can be customized for all search views.

To customize a context menu, override the element UI/Config/GlobalHtml by creating
your own MyConfig.jsp with the following code:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<cs:ftcs>
 webcenter.sites['${param.namespace}'] = function (config) {
 config.contextMenus = {
 "default":["bookmark"],
 "asset":["edit","preview", "share", "bookmark", "tagasset"],
 "asset/Page":["edit", "preview", "delete", "bookmark"],
 "proxy":["preview", "bookmark", "tagasset"],
 ;
 }
</cs:ftcs>

Chapter 60
Customizing Sort Menus and Tooltips

60-20

61
Customizing Global Properties, Toolbar,
and Menu Bar in the Contributor Interface

You work with the global configuration element (UI/Config/GlobalHtml) to customize
the global features (such as global properties, toolbar, and menu bar) of the
Contributor interface.

Topics:

• Customizing Global Configuration Properties

• Customizing the Toolbar

• Customizing the Menu Bar

• Customizing Context Menus

Customizing Global Configuration Properties
Global configuration properties are used to set display conditions for the Contributor
interface across all content management sites.

This section includes the following topics:

• About the Configuration Properties

• Default Configuration Properties That Can Be Modified

• Adding Custom Configuration Properties

About the Configuration Properties
The client-side framework retrieves its main configuration settings from the server-
side controller element UI/Config/GlobalHtml. This presentation element serves
JavaScript code, which is executed by the client-side application at startup. The
JavaScript code defines a JavaScript function, whose name is given as a request
parameter by the client-side application:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 config.maxTabCount = 50;
 config.defaultView = …;
 … merge
}
</cs:ftcs>

The config object is then manipulated as needed in the function body, by setting the
properties expected by the client-side application.

In addition, as explained below, the client-side application is capable of retrieving
additional configuration properties from the server-side, which allows to merge settings

61-1

from multiple sources, without having to duplicate the global properties in multiple
locations.

Default Configuration Properties That Can Be Modified
The following describes the system-defined configuration properties and indicates
which properties can be modified.

Table 61-1 Configuration Properties in UI/Config/GlobalHtml

Property Name Description Values and Examples

maxTabCount Maximum number of tabs that can remain
open simultaneously. A tab is the tab of an
open asset.

Any integer greater than 0.

For example:

config.maxTabCount = 30;

enableContextMenu Indicates whether the default browser
context (right-click) menu should be enabled
when users work in web mode.

true | false

For example:

config.enableContextMenu =
true;

enableWebMode Indicates whether web mode should be
enabled. When this property is set to false,
users can work only with assets in form
mode and use the preview functionality.

By default, this property takes the value
of the xcelerate.enableinsite property,
found in wcs_properties.json.

true | false

For example:

config.enableWebMode = true;

enableDatePreview Indicates whether date-based preview
should be enabled.

By default, this property takes the value
of the cs.sitepreview property, found in
wcs_properties.json.

true | false

For example:

config.enableDatePreview =
false;

enablePreview Indicates whether preview is allowed.

By default, this property takes the value of
the Preview method attribute in the Edit Site
form (accessible from the Admin interface:
Select Admin tab, expand Sites, double-
click SampleSite, and select Edit).

true | false

For example:

config.enablePreview = true;

defaultView Defines the preferred view for working with
assets (that is, whether assets are viewed,
by default, in form mode or web mode).

Note: An asset is opened in web mode
only if the asset is associated with a default
template.

The expected value is one of the
following:

• "default": "form" | "web"
• "assetType" : "form" | "web"
• "assetType/subtype": "form"

| "web"
where assetType is a valid asset type
name, and subtype is a valid subtype
or definition name. For example:

config.defaultView = {
 "default": "form",
 "AVIArticle": "web",
 "Page/AVISection": "web"
}

Chapter 61
Customizing Global Configuration Properties

61-2

Table 61-1 (Cont.) Configuration Properties in UI/Config/GlobalHtml

Property Name Description Values and Examples

toolbars Defines the list of available toolbar actions
for each type of view.

See Customizing the Toolbar.

toolbarButtons Used to define the behavior of specific
toolbar buttons.

See Customizing the Toolbar with
Custom Actions.

menubar Defines the list of available actions in the
menu bar.

See Customizing the Menu Bar.

documents Registers available implementations of
documents.

Do not modify the value of this
property.

The only supported value is asset.

views Registers view implementations. Do not modify the value of this
property.

controllers Registers controller implementations and the
set of actions supported by each controller.

Do not modify the value of this
property.

roles Contains the list of roles for the currently
logged in user.

Do not modify the value of this
property.

supportedTypes Contains the list of asset types that can be
edited from the Contributor interface.

Do not modify the value of this
property.

searchableTypes Contains the list of asset types that can be
searched from the Contributor interface.

Do not modify the value of this
property.

token Used for security when uploading binary file. Do not modify the value of this
property.

sessionid Used for security when uploading binary file. Do not modify the value of this
property.

contextMenus Defines the list of available actions in the
context menu.

See Customizing Context Menus.

Adding Custom Configuration Properties
In addition to retrieving the global properties, stored in UI/Config/GlobalHtml,
the Contributor application attempts to retrieve additional settings in UI/Config/
SiteConfig and any element present in UI/Config. Depending on the requirement,
this lets you set global properties, or site-specific properties, without having to replicate
all the properties defined in UI/Config/GlobalHtml, but only the properties that
actually change.

This section includes the following topics:

• Adding Custom Global Properties

• Adding Site-Specific Properties

Adding Custom Global Properties
Custom global properties are meant to be shared across all sites on a given content
management system. The recommended approach consists of creating a custom
configuration element defined as follows:

Chapter 61
Customizing Global Configuration Properties

61-3

• The presentation element name must be UI/Config/SiteConfigHtml.

• The element code must follow the pattern shown in About the Configuration
Properties.

For example, you may want to:

• Override the value of maxTabCount for all sites.

• Override the default view for Page assets.

• And, define an additional custom property called foo.

To do this, create an element called CustomElements/UI/Config/SiteConfigHtml,
containing the following code:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 // override existing properties
 config.maxTabCount = 60;
 config.defaultView.Page = "form";

 // add custom properties
 config.foo = "bar";

}
</cs:ftcs>

Adding Site-Specific Properties
In some cases, the Contributor interface must be configured differently for each
content management site. It is recommended that you override the core controller
element called UI/Config/SiteConfig.

To override the UI/Config/SiteConfig core element, create an element as follows:

CustomElements/siteName/UI/Config/SiteConfigHtml

where siteName is the name of the content management site (for instance,
avisports).

For example, the avisports demo site enforces web mode as the default mode
for assets of type Page and AVIArticle. This is done by defining the JSP element
CustomElements/avisports/UI/Config/SiteConfigHtml, and providing the following
settings:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 // default view modes for avisports
 config.defaultView.Page = "web";
 config.defaultView.AVIArticle = "web";
}
</cs:ftcs>

Loading of Configuration Elements

The global configuration element is always loaded first. Additional configuration
elements are loaded in alphabetic order. For instance, using the examples above,
configuration properties would be loaded in the following order:

Chapter 61
Customizing Global Configuration Properties

61-4

1. UI/Config/GlobalHtml

2. UI/Config/SiteConfigHtml

Property Values

The value of some properties is, in some cases, an object. That is:

config.someProperty = {
 foo: "bar",
 x: 123
};

When partially overriding this property, it is important to distinguish between the
following types of code:

config.someProperty = {
 x: 3456
};

vs.

config.someProperty.x = 3456;

In the first case, the property foo is overridden as "undefined", whereas in the second
case, the original value of foo is preserved.

Customizing the Toolbar
On the toolbar you can list actions for operating on assets in web mode or form mode.
You can customize the toolbar further per asset type and subtype.

Topics:

• About Toolbar Customization

• Examples of Toolbar Customization

About Toolbar Customization
The global configuration element (UI/Config/GlobalHtml) describes for each type of
view (such as web mode inspect, web mode edit, form mode edit, and form mode
inspect), the list of actions to display in the toolbar to the user. This is done through the
toolbars property. Its value is an object with the following syntax:

config.toolbars = {
 "viewAlias": [action_1, action_2, …],
 or:
 "viewAlias": {
 "view_mode_1": [action_1, action_2, …],
 "view_mode_2": [action_1, action_2, …]
 }
 …
}

where:

viewAlias indicates for which type of view this toolbar must be used. The alias must
match one of the view aliases defined in the config.views section.

Chapter 61
Customizing the Toolbar

61-5

action_i is an action name. For standard actions, such as save and approve, the
action name is automatically mapped to a given icon, title, alternate text, and so
on. For more information about standard actions, custom actions, or customizing the
appearance of a custom button, see Examples of Toolbar Customization.

view_mode_i is one of the modes supported by the view (typically, edit or view).

Examples of Toolbar Customization
This section includes the following topics:

• Customizing the Toolbar with Standard Actions for Web Mode

• Customizing the Toolbar with Standard Actions for Asset Type and Subtype

• Customizing the Toolbar with Custom Actions

Customizing the Toolbar with Standard Actions for Web Mode
• Use the following configuration which determines the toolbar actions that are

available in web mode for all asset types:

config.toolbars = {
 (…)

 "web": {
 "edit": ["form-mode", "inspect", "separator", "save", "preview",
 "approve", "delete", "separator", "changelayout",
 "separator", "checkincheckout", "refresh"],
 "view": ["form-mode", "edit", "separator", "preview", "approve",
 "delete", "separator", "checkincheckout", "refresh"]

 (…)

}

The above configuration defines two lists of actions (edit and view), corresponding to
the asset's views: Edit and Inspect.

Note:

To find the set of standard actions, refer to the list of actions specified in the
following properties under the controllers property:

• fw.ui.document.AssetDocument (all actions supported by assets)

• fw.ui.controller.InsiteController (all actions supported by the view
controller)

Customizing the Toolbar with Standard Actions for Asset Type and Subtype
Each toolbar configuration can be customized by asset type and subtype by adding a
property named:

• viewAlias/assetType

• viewAlias/assetType/assetSubtype

Chapter 61
Customizing the Toolbar

61-6

For example, add the Bookmark/Unbookmark buttons for page assets in web mode.

• In a custom configuration element (such as CustomElements/avisports/UI/
Config/SiteConfigHtml), add the following property:

config.toolbars["web/Page/AVISection"] = {
 "edit": config.toolbars.web.edit, // reuse default for edit mode
 "view": ["form-mode", "edit", "separator", "preview", "approve",
"delete",
 "bookmark", "unbookmark", "separator",
 "checkincheckout", "refresh"]
}

Inspecting the Surfing Page asset now shows the toolbar.

Figure 61-1 Surfing Page Asset Toolbar

Note:

Keep in mind the following:

• We are customizing only the view mode. When a Page/AVISection asset
is being edited in web mode, the standard toolbar is shown.

• The Bookmark and Unbookmark buttons are not shown
simultaneously, because they both depend on the asset's current state
(whether it is bookmarked or not).

Customizing the Toolbar with Custom Actions
• To define custom actions add new entries to the config.toolbarButtons property,

as follows:

config.toolbarButtons.<customActionName> = {
 src: <path_to_icon>,
 onClick: <click_handler>
}

• For example, let's define the following helloWorld custom action:

config.toolbarButtons.helloWorld = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png',
 onClick: function () {
 alert('Hello World!!');
 },

Chapter 61
Customizing the Toolbar

61-7

 buttonType: 'button'
}

The helloWorld action can now be referenced from a toolbar configuration as
follows (we reuse our example from the previous section):

config.toolbars["web/Page/AVISection"] = {
 "view":
 ["form-mode", "edit", "separator", "preview", "approve",
 "bookmark", "unbookmark", "separator",
 "checkincheckout", "separator", "helloWorld", "refresh"],

 "edit": config.toolbars.web.edit // reuse default web mode toolbar
}

Note:

In this example, we have added a separator (a vertical line) and the
custom button to the toolbar.

Figure 61-2 Separator and Toolbar Button

A more elaborate example would involve, for instance, creating a CSElement which
outputs an asset's id and type, and then creating a toolbar option that calls the
element when clicked. For example:

1. Create a CSElement (HelloAsset, in this example) which outputs assets' id and
type.

2. Now, define the helloAsset custom action by adding new entries to the
config.toolbarButtons property (in the SitesConfigHTML.jsp), as follows:

config.toolbarButtons.helloAsset = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png',
 onClick: function () {
 /* current active document which holds the asset*/
 var doc = SitesApp.getActiveDocument();
 var asset = doc.get('asset');
 var id = asset.get("id");
 var type = asset.get("type");
 /* make an ajax call to call an element */
 dojo.xhrGet({
 url: "url of element to call", /*url of the element*/
 /*pass any parameters that need to be passed to the element */
 content:{"id":id,"type":type}

Chapter 61
Customizing the Toolbar

61-8

 /*handleAs:"json" */ /* this is needed only if the element
returns json response */
 }).then(function(response) {
 console.log("Response:", response);
 /*handle response from the element here */

alert(response);
 },
 function(err){
 /*handle error*/
 console.log("error on ajax call");
 });
 }
};

3. Add the custom button (defined in step 2) to the toolbar under config.toolbars
={ }. For example:

/*add the custom button in web mode for AVIArticle*/
 config.toolbars["web/AVIArticle"] = {
 "view" : ["form-mode", "edit", "separator", "preview",
"approve", "delete",
 "bookmark", "unbookmark", "separator", "checkincheckout",
"helloAsset",
 "separator", "refresh",]
 };

This figure shows the custom option in the toolbar:

Figure 61-3 Custom helloAsset Toolbar Button

When the custom helloAsset button is clicked, the CSElement (created in step 1) is
called and a dialog box opens providing the asset's name, id, and type:

Chapter 61
Customizing the Toolbar

61-9

Figure 61-4 Dialog Box Showing Asset's Name, ID, and Type

Customizing the Menu Bar
On the menu bar, you can add submenus that let contributors operate on assets of a
certain type and subtype. You can make these submenus actionable items, additional
menus, or menu separators.

Topics:

• About Menu Bar Customization

• Adding a Custom Action to the Menu Bar

About Menu Bar Customization
The menu bar configuration is defined by the config.menubar property:

config.menubar = {
 "key_i": [
 //menu_i
 {
 "id": "menu_id",
 "label": "menu_label",
 "children": [
 //submenus
 //- actionable menu item
 {
 label: 'menu_item_label',
 action: 'action_name' |
click_handler
 },

Chapter 61
Customizing the Menu Bar

61-10

 //- deferred pop-up menu
 {
 label: 'menu_item_label',
 deferred: 'controller_element',
 cache: true|false
 },
 //- pop-up menu
 {
 label: 'menu_item_label',
 children: [
 // submenu_1
 {
 label:
'menu_item_label',
 action:
'action_name' | click_handler
 }'
 // submenu_2
 {
 label:
'menu_item_label',
 action:
'action_name' | click_handler
 },

 …
 …
 …
]
 },
 //- menu item separator
 {separator: true}

 //additional menu_i
 …
 …
 …
]
 }

where:

key_i is one of the following:

• default: Defines the default menu bar.

• assetType: Defines the customized menu bar for all assets of type assetType.

• assetType/subtype: Defines the customized menu bar for all assets of type
assetType and subtype subtype.

//menu_i starts a section that describes each top menu, where:

• menu_id is the identifier of the menu.

• menu_label is the display name of the menu.

• submenus can be any of the following:

• – An actionable menu item (clicking the menu item produces an action),
where:

* label specifies the display name of the menu item.

Chapter 61
Customizing the Menu Bar

61-11

* action can be any action supported by a controller, such as edit and
inspect, or a custom click handler (see the customization example in
Adding a Custom Action to the Menu Bar).

Note:

When a given action is not supported by the current document/
view, it is disabled (greyed out) in the menu.

For example, a menu item triggering a save action is defined as follows:

{
 label: "Save",
 action: "save"
}

– A deferred pop-up menu (the pop-up menu is determined dynamically by
running a controller element on the server-side), where:

* label specifies the display name of the menu item.

* deferred specifies a controller element name, such as UI/Data/
StartMenu/New.

* cache is a Boolean value indicating whether the output of the controller
element should be cached or not.

For instance, the New pop-up menu, which reads all available start menu
items for the current site/user, is defined as follows:

{
 label: New,
 deferred: "UI/Data/StartMenu/New",
 cache: true
}

– A pop-up menu (the child menu items are hard wired in the configuration
itself).

– A menu item separator (a horizontal line), which is used to group menu
entries together.

Adding a Custom Action to the Menu Bar
In this example, we want to add the helloWorld custom action defined in Customizing
the Toolbar with Custom Actions to the menu bar (to run the custom onClick handler).
Add this action by adding a new entry to the menu bar called Custom Menu, with a
single menu item called Hello World, which triggers the custom action. Our steps are
the following:

1. First, reuse the default menu bar, and add to it. The simplest way to do this is to
make a copy of the original array:

config.menubar["Page/AVISection"] = config.menubar["default"].slice(0);

2. Add the menu, as follows:

config.menubar["Page/AVISection"].push(
 "id": "myCustomMenu",
 "label": "Custom Menu",

Chapter 61
Customizing the Menu Bar

61-12

 "children": [
 // Children go here
]
);

3. Define the child menu items:

config.menubar["Page/AVISection"].push({
 "id": "myCustomMenu",
 "label": "Custom Menu",
 "children": [{
 "label": "Hello World",
 "action": function () {
 alert("Hello from the top menubar!");
 }
 }]
});

The Custom Menu can now be seen whenever an AVISection Page section is
viewed.

Figure 61-5 Custom Menu

Selecting the Hello World menu item should run the custom onClick handler.

Figure 61-6 Custom onClick Handler

4. To run the exact same code, whether clicked from the menu bar or toolbar, write
the following:

// define the helloWorld code once
config.myActions = {
 hello: function (args) {
 var doc = SitesApp.getActiveDocument(),
 asset = doc.get('asset'),
 view = SitesApp.getActiveView();

 view.info('Hello World!! The asset is a ' + asset.type + ' with

Chapter 61
Customizing the Menu Bar

61-13

id:
 + asset.id);
 }
};

// attach it to the helloWorld button
config.toolbarButtons['helloworld'] = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png',
 onClick: config.myActions.hello
};

config.toolbars["web/Page/AVISection"] = {
 "edit": config.toolbars.web.edit, // reuse default for edit mode
 "view": ["form-mode", "edit", "separator", "preview", "approve",
 "delete", "bookmark", "unbookmark", "separator",
 "checkincheckout","separator","helloworld", "refresh"]
}

// attach it to the menubar, under "Custom Menu">"Hello World"
config.menubar['Page/AVISection'] = config.menubar['default'].slice(0);

config.menubar["Page/AVISection"].push({
 "id": "myCustomMenu",
 "label": "Custom Menu",
 "children": [{
 "label": "Hello World",
 "action": config.myActions.hello
 }]
});

Customizing Context Menus
On a right-click, a context menu shows options from which contributors choose what
they need to work with the objects they right clicked. You can customize the specific
items available in a context menu and the order in which the objects are displayed.

To define context menus use the config.contextMenus property:

config.contextMenus = {
 "default": ["action_1", "action_2", … "action_n"]
 "asset": ["action_1", "action_2", … "action_n"],
 "asset/assetType": ["action_1", "action_2", … "action_n"],
}

where the values are defined as:

• default: Defines the default list of context menus. Each menu item displayed in
the list is an action.

• asset: Defines the customized list of context menus for all assets. Each menu item
displayed in the list is an action.

• asset/assetType: Defines the customized list of context menu items for the assets
of type assetType. Each menu item displayed in the list is an action.

An example context menu configuration for the asset type Page:

"asset/Page":["edit", "copy", "preview", "delete", "bookmark", "tagasset"]

Chapter 61
Customizing Context Menus

61-14

62
Customizing Asset Forms for the
Contributor Interface

When you customize asset forms in the Oracle WebCenter Sites: Contributor interface,
you can also modify the asset form headers and also build single-valued and multi-
valued attribute editors for some supported data types.

Topics:

• About Asset Forms Customization

• Modifying the Header of Asset Forms

• Building an Attribute Editor

About Asset Forms Customization
You can modify an asset form’s header and customize or build an attribute editor.

See Customizing Attribute Editorsand Building an Attribute Editor.

Note:

Unlike other components of the Contributor interface, asset forms are not
in the Contributor framework. Therefore, requests for asset forms are not
processed by the UI Controller.

Modifying the Header of Asset Forms
You can modify the header of an asset form by creating a custom assettype-specific
element and including additional stylesheets or JavaScript code.

To modify the header of an asset form, create a custom assettype-specific element in
the OpenMarket/Xcelerate/AssetType/<AssetTypeName>/ directory.

You can include additional stylesheets or JavaScript code instead of modifying the
body of the HTML pages. The name of the element must be Header.

Building an Attribute Editor
You can create a custom attribute editor for the data types supported in WebCenter
Sites. You can also customize the look and feel of some existing ready-to-use attribute
editors.

See Customizing Attribute Editors.

62-1

This topic describes how to build a custom attribute editor that supports a single value
of data type text, string, integer, or money. This section also provides pointers and
sample code for implementing a multi-valued attribute editor for the same data types.

Note:

To create a custom attribute editor for the blob or asset data type, base your
implementation on the UPLOADER attribute editor for the blob type and the
PICKASSET attribute editor for the asset data type.

Topics:

• Creating a Dojo Widget and its Template

• Defining the Attribute Editor as a Presentation Object

• Creating the Attribute Editor Element

• Creating the Attribute Editor

• Implementing a Multi-Valued Attribute Editor

Creating a Dojo Widget and its Template
This section describes how to create a Dojo widget to handle a single value of data
type text, string, integer, or money.

This section includes the following topics:

• Create a Template for the Dojo Widget

• Creating a Dojo Widget

Create a Template for the Dojo Widget
To create an HTML template for the Dojo widget:

1. In your WebCenter Sites installation directory, navigate to the <context_root>/js/
directory.

2. Create a new directory structure under the js directory as follows: extensions/
dijit/templates.

3. In the <context_root>/js/extensions/dijit/templates directory, create an
HTML template file and give it a meaningful name; for example: MyWidget.html.

4. In the HTML template file, define the look and feel of the new Dojo widget. The
content of this HTML template would look similar to the following:

<div>
 <div>
 <input type="text" dojoAttachPoint='inputNode'
 name='${name}'size='60' class='valueInputNode'>
 </input>
 </div>
</div>

Chapter 62
Building an Attribute Editor

62-2

If you use this code for the template, then the input node takes the input from the
end user and the value of the input node is maintained in the Dojo widget which
you create in Creating a Dojo Widget.

5. Save your template file.

Creating a Dojo Widget
To create a Dojo widget:

1. Navigate to the js/extensions/dijit directory of the WebCenter Sites
installation.

2. Create a dojo widget, for example, MyWidget.js (see the example below) by
implementing the following mandatory functions:

• _setValueAttr: This setter method sets the value of the attribute.

• _getValueAttr: This getter method gets the attribute value.

• isValid: This method runs validations to see if the given value is valid or not.

• focus: This sets the focus on the attribute editor.

• onChange: This method is called whenever the user updates the value of the
attribute.

• onBlur: This method updates the widget when the attribute value is entered by
the user. An update is triggered when the user selects another field.

dojo.provide('extensions.dijit.MyWidget');
dojo.require('dijit._Widget');
dojo.require('dijit._Templated');
dojo.declare('extensions.dijit.MyWidget', [dijit._Widget, dijit._Templated],
{
 //string.
 //The value of the attribute.
 value: '',
 //int
 //The Attribute editor's MAXALLOWEDCHARS should be assigned to this
variable.
 //maxAllowedLength: 15,
 //string
 // This variable is required only for single valued instance.
 // The server should recieve information from input element with this
name.
 name: '',
 //HTMLElement
 // This stores the cached template of the widget's representation.
 templateString: dojo.cache('extensions.dijit', 'templates/MyWidget.html'),
 //string
 // This class will be applied to the top div of widget.
 // It will help in managing css well.
 baseClass: 'MyWidget',
 postCreate: function() {
 var self = this;
 // Do not allow typing characters more than allowed length.
 dojo.connect(this.inputNode, 'onkeypress', function(e) {
 if (this.value.length >= self.maxAllowedLength && e.keyCode !=
 dojo.keys.BACKSPACE)
 e.preventDefault();
 });
},

Chapter 62
Building an Attribute Editor

62-3

// Start - Mandatory functions
_setValueAttr: function(value) {
 // summary:
 // Set the value to 'value' attribute and input node
 if (value === undefined || !this._isValid(value)) return;
 this.value = value;
 this._setInputNode(value);
},
_getValueAttr: function() {
 // summary:
 //Get the latest value and return it.
 return this.value;
},
_isValid: function(newVal) {
 //summary:
 //Verify if the given value is as per the expectation or not.
 if (newVal.length > this.maxAllowedLength) {
 return false;
}
 return true;
},
 focus: function() {
 //summary:
 //Set the focus to the representation node, that is, input node here.
 if (typeof this.inputNode.focus === 'function')
 this.inputNode.focus();
},
onBlur: function() {
 //summary:
 //Custom selected browser event when the value should be updated
 //Any activity which leads to value change should update
 //the widget value as well.
 this.updateValue();
},
_onChange: function(newValue) {
 //summary:
 //Internal onChange method
 this.onChange(newValue);
},
onChange: function(newValue) {
 //summary:
 //A public hook for onChange.
},
 // End - Mandatory functions
 // Extra functions used in Mandatory functions
_setInputNode: function(value) {
 //summary:
 //Sets the value to input node.
 this.inputNode.value = value;
},
updateValue: function() {
 //summary:
 //Validate the newly entered value and if it is successful
 //then update widget's value.
 var newVal = this.inputNode.value;
 if (!this._isValid(newVal)) return;
 if (this.value != newVal)
 this._onChange(newVal);
 this.set('value', newVal);
}
});

Chapter 62
Building an Attribute Editor

62-4

Note:

For information about creating Dojo widgets, see:

http://dojotoolkit.org/

3. Create the js/extensions/themes/directory, create a CSS (for example,
MyWidget.css) for this widget. Use the following code in the CSS file, or write
your own code:

.fw .MyWidget .valueInputNode {
color: blue;
}

4. In the js/extensions/themes/directory, create the UI.css with an
import statement for the Dojo widget's CSS. For example, @import
url("MyWidget.css");

5. Save your work.

Defining the Attribute Editor as a Presentation Object
This section describes how to define input tags (presentation objects) for flex
attributes. It also describes how to assign arguments that the input tags can pass
from the attribute editor to the display elements.

To define the attribute editor:

1. In your WebCenter Sites installation,
navigate to the <OracleHome>\wcsites\webcentersites\sites-
home\sites.war\WEB-INF\sites\presentationobject.dtd file, or
to the <OracleHome>\wcsites\webcentersites\sites-home\sites-
samples.war\WEB-INF\sites\presentationobject.dtd file (whichever path
applies to your installation).

2. In the presentationobject.dtd file, do the following;

• Add a new tag (presentation object) to the list in the <!ELEMENT
PRESENTATIONOBJECT …> statement. In this example, the new tag is named
MYATTREDITOR.

In the following line, MYATTREDITOR is the custom attribute editor whose name
matches the name of the element you create in Creating the Attribute Editor
Element. All other tags are ready-to-use attribute editors.

<!ELEMENT PRESENTATIONOBJECT (TEXTFIELD | TEXTAREA | PULLDOWN |
RADIOBUTTONS | CHECKBOXES | PICKFROMTREE | EWEBEDITPRO | REMEMBER |
PICKASSET | FIELDCOPIER | DATEPICKER | IMAGEPICKER | REALOBJECT |
CKEDITOR | DATEPICKER | IMAGEPICKER | REALOBJECT | CKEDITOR | FCKEDITOR
| UPLOAD | MAGEEDITOR | RENDERFLASH | PICKORDERASSET | TYPEAHEAD |
UPLOADER |
MYATTREDITOR)>

• Add an <!ELEMENT … > section that defines the new tag (presentation object)
and the arguments it takes. This new tag includes elements that supply the
logic behind the format and behavior of the attribute when it is displayed on a
form. Ensure that MAXALLOWEDCHARS is marked as a required attribute.

Chapter 62
Building an Attribute Editor

62-5

http://dojotoolkit.org/

<!ELEMENT MYATTREDITOR ANY>
<!ATTLIST MYATTREDITOR MAXALLOWEDCHARS CDATA #REQUIRED>
<!ATTLIST MYATTREDITOR MAXVALUES CDATA #IMPLIED>

• Save and close the presentationobject.dtd file.

Creating the Attribute Editor Element
This section describes how to create an element that shows an "edit" view of an
attribute (single-valued) when it displays in a New or Edit form. This element must
be located in the OpenMarket/Gator/AttributeTypes directory in the ElementCatalog
table. The element name must exactly match the name of the tag you defined in
Defining the Attribute Editor as a Presentation Object, so that it can be invoked by the
tag (in this example, MYATTREDITOR).

1. Navigate to the OpenMarket/Gator/AttributeTypes directory in your
ElementCatalog.

2. Create an attribute element for your new editor (in this example,
MYATTREDITOR.jsp.) Ensure that the name of this element matches the tag name
you defined in the presentationobject.dtd file.

3. To prevent the default rendering of the attribute editor, set the doDefaultDisplay
variable to no.

4. To display the attribute name, call the element OpenMarket/Gator/
FlexibleAssets/Common/DisplayAttributeName. The code is:

<ics:callelement
 element="OpenMarket/Gator/FlexibleAssets/Common/DisplayAttributeName"/>

5. To render the widget, call the element OpenMarket/Gator/AttributeTypes/
CustomTextAttributeEditor by using the following parameters:

• editorName: Name of the widget created in Creating a Dojo Widget. In this
example it is extensions.dijit.MyWidget.

• editorParams: This argument passes the JSON string of parameters to the
widget. In this example, it passes the maxAllowedLength value. For example,
the value can look like this: { maxAllowedLength: "10" }

• maximumValues: Required only for a multi-valued widget. This is the maximum
number of values allowed to be rendered in a multi-valued widget.

For a single-valued widget, the complete code with the initialization
parameters and formatting styles should look like the code in the following
code example.

If you use the code given in the following example, then the single-valued attribute
editor would look like the editor.

Figure 62-1 Single-Valued Attribute Editor

Chapter 62
Building an Attribute Editor

62-6

Note:

In the example below, the following core logic is implemented to render
the single-valued attribute using the new attribute editor:

<ics:if condition='<%= "no".equals(ics.GetVar("MultiValueEntry"))
%>'>
<ics:then>
 <div dojoType='<%= ics.GetVar("editorName") %>'
 name='<%= ics.GetVar("cs_SingleInputName") %>'
 value='<%= attributeValue %>'
 >
 </div>
</ics:then>

The name that is coded in the element must be
ics.GetVar("cs_SingleInputName") to ensure that the input node in the
Dojo template has the same name. The input node value is sent to the
server for saving the attribute.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%//
// OpenMarket/Gator/AttributeTypes/MYATTREDITOR
//
// INPUT
//
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>
<ics:setvar name="doDefaultDisplay" value="no" />
<script>
 dojo.require('extensions.dijit.MyWidget');
</script>
<link href="<%=ics.GetVar("cs_imagedir")%>/../js/extensions/themes/
MyWidget.css"
 rel="stylesheet" type="text/css"/>
<%
FTValList args = new FTValList();
args.setValString("NAME", ics.GetVar("PresInst"));
args.setValString("ATTRIBUTE", "MAXALLOWEDCHARS");
args.setValString("VARNAME", "MAXALLOWEDCHARS");
ics.runTag("presentation.getprimaryattributevalue", args);
args.setValString("NAME", ics.GetVar("PresInst"));
args.setValString("ATTRIBUTE", "MAXVALUES");
args.setValString("VARNAME", "MAXVALUES");
ics.runTag("presentation.getprimaryattributevalue", args);
String maximumValues = ics.GetVar("MAXVALUES");
maximumValues = null == maximumValues ? "-1" : maximumValues;
String editorParams = "{ maxAllowedLength: "
 + ics.GetVar("MAXALLOWEDCHARS") + " }";

Chapter 62
Building an Attribute Editor

62-7

%>
<tr>
<ics:callelement
 element="OpenMarket/Gator/FlexibleAssets/Common/DisplayAttributeName"/>
 <td></td>
 <td>
 <ics:callelement
 element="OpenMarket/Gator/AttributeTypes/CustomTextAttributeEditor">
 <ics:argument name="editorName" value="extensions.dijit.MyWidget" />
 <ics:argument name="editorParams" value='<%= editorParams %>' />
 <ics:argument name="maximumValues" value="<%= maximumValues %>" />
</ics:callelement>
 </td>
 </tr>
</cs:ftcs>

Creating the Attribute Editor
This topic describes how to create an attribute editor asset to make it available to
content contributors on their content management sites. This asset supports the input
types you defined in Creating the Attribute Editor Element, for example, check boxes,
radio options, and drop-down lists. The developer selects this editor when creating or
modifying the attribute.

1. Open the Admin interface of your site.

2. On the New page, under the Name column, click New Attribute Editor.

3. For Name, enter a meaningful name for your editor. For example, MyAttrEditor.

4. For XML, enter the XML code for your attribute editor. Ensure that the name of the
attribute editor in this code is exactly the same as the element name. For example:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT >
<PRESENTATIONOBJECT NAME="MYATTREDITOR">
<MYATTREDITOR MAXALLOWEDCHARS="10"> </MYATTREDITOR> </PRESENTATIONOBJECT>

5. For Attribute Type, accept the appropriate value(s).

6. Click the Save icon.

The attribute editor similar to the editor in the following figure is created.

Chapter 62
Building an Attribute Editor

62-8

Figure 62-2 Sample Attribute Editor for a Site

Implementing a Multi-Valued Attribute Editor
In Creating the Attribute Editor Element, the second example shows the
implementation for a single-valued attribute editor.

• To implement a multi-valued attribute editor for text, integer, string, or money
data types, write a code similar to the code in the following example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%//
// OpenMarket/Gator/AttributeTypes/CustomTextAttributeEditor
//
// INPUT
//
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>
<%
IList attributeValueList = ics.GetList("AttrValueList", false);
boolean hasValues = null != attributeValueList &&
attributeValueList.hasData();
String attributeValue = hasValues ? attributeValueList.getValue("value") :
"";
%>
<ics:if condition='<%= "no".equals(ics.GetVar("MultiValueEntry")) %>'>

Chapter 62
Building an Attribute Editor

62-9

<ics:then>
 <div dojoType='<%= ics.GetVar("editorName") %>'
 name='<%= ics.GetVar("cs_SingleInputName") %>'
 value='<%= attributeValue %>'
 >
 </div>
</ics:then>
<ics:else>
<ics:callelement
 element="OpenMarket/Gator/AttributeTypes/RenderMultiValuedTextEditor">
 <ics:argument name="editorName"
 value='<%= ics.GetVar("editorName") %>' />
 <ics:argument name="editorParams"
 value='<%= ics.GetVar("editorParams") %>' />
 <ics:argument name="multiple"
 value="true" />
 <ics:argument name="maximumValues"
 value='<%= ics.GetVar("maximumValues") %>' />
</ics:callelement>
</ics:else>
</ics:if>
</cs:ftcs>

If the code in the example above is used, then the multi-valued attribute editor
looks similar to the editor in this figure.

Figure 62-3 Multi-Valued Attribute Editor

Note the following points about the code example:

– You can instantiate a multi-valued widget, which uses a single-valued widget
to render multi-valued representations.

– The MultiValueEntry variable with the no value indicates that the attribute
editor renders a single value. Changing the variable value to yes enables the
attribute editor to render multiple values.

– You can implement a multi-valued widget that accepts values in the JSON
object or in any other format.

– For a multi-valued attribute editor, the RenderMultiValuedTextEditor element
creates hidden input nodes required for Save logic. The value of each node is
sent to the server.

– The multi-valued widget is rendered by calling the OpenMarket/Gator/
AttributeTypes/RenderMultiValuedTextEditor element using the following
code in the previous example:

<ics:else>
 <ics:callelement

Chapter 62
Building an Attribute Editor

62-10

 element="OpenMarket/Gator/AttributeTypes/
RenderMultiValuedTextEditor">
 <ics:argument name="editorName"
 value='<%= ics.GetVar("editorName") %>' />
 <ics:argument name="editorParams"
 value='<%= ics.GetVar("editorParams") %>' />
 <ics:argument name="multiple"
 value="true" />
 <ics:argument name="maximumValues"
 value='<%= ics.GetVar("maximumValues") %>' />
 </ics:callelement>
</ics:else>
</ics:if>

• To create a custom attribute editor for the blob or asset data type, base
your implementation on the UPLOADER attribute editor for the blob type and the
PICKASSET attribute editor for the asset data type.

Chapter 62
Building an Attribute Editor

62-11

63
Customizing Workflow

A WebCenter Sites workflow process is the series of states an asset moves through
on its way to publication. The asset moves from one state to the next by taking a
workflow step. You must create the workflow step condition elements which specify the
conditions that an asset must meet to move on to the next state, and the workflow
action elements which perform various actions as the asset moves from one state to
the next.

Topics:

• Workflow Step Conditions

• Workflow Actions

Workflow Step Conditions
A workflow process is composed of one or more workflow states. Workflow steps
move the asset from one workflow state to the next. You can associate each workflow
step that the asset takes with a timed action, such as sending an email to a user when
an asset is assigned to them, or a workflow step condition, which prevents an asset
from moving on to the next step if certain conditions are not fulfilled. Sometimes there
are conditions under which the asset should not move on to the next workflow state.
You need to create the element that defines the condition or conditions that prevent
the asset from moving on to the next state.

This element receives the following data when it is called:

• An IWorkflowable object called Object, which represents the asset whose state is
being changed.

• An IWorkflowStep object called Step, which represents the current workflow step.

• The StepUser variable, which contains the ID of the user attempting the step.

• Variables specified as name-value pairs when a StepCondition is defined in the
WebCenter Sites user interface. See Setting Up the Actions and Conditions in
Administering Oracle WebCenter Sites.

The workflow step condition element should check for a condition and return a
Boolean value. If the value is false, then the step does not proceed.

The following example comes from a sample workflow step condition element:

<?xml version="1.0" ?>

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">

<FTCS Version="1.1">

<!-- OpenMarket/Xcelerate/Actions/Workflow/StepConditions/
ExampleStepCondition

63-1

-

- INPUT

-

- OUTPUT

-

-->

<csvar NAME="This step condition will check if step can be taken"/>

The first line in the following example sets an empty ReturnVal variable:

<setvar NAME="ReturnVal" VALUE="Variables.empty"/>

<!--change the value of ReturnVal to a non-empty string later on,
if you want to stop the step --> <!-- most of the stuff below are
debugging statements and also show you some items available to you to
set up a condition for stopping the step-->

The second line in the following example uses the
WORKFLOWABLEASSET.GETDISPLAYABLENAME tag to get the name of the asset that is in
workflow:

<!-- get asset -->

<WORKFLOWABLEOBJECT.GETDISPLAYABLENAME OBJECT="Object"
VARNAME="assetdisplayablename"/>

Object:<csvar NAME="Variables.assetdisplayablename"/>

Line 2 in the following example creates a variable called StepUser which contains the
ID of the user attempting to take the step. Line 3 uses the USERMANAGER.GETUSER tag
to load the user's ID into the StepUser variable. Line 4 uses the CCUSER.GETNAME tag
to retrieve a human-readable user name, and line 5 uses the csvar tag to display that
user name:

<!-- get userid -->

Userid: <csvar NAME="Variables.StepUser"/>

<USERMANAGER.GETUSER OBJVARNAME="myUserObj" USER="Variables.StepUser"/>

<CCUSER.GETNAME NAME="myUserObj" VARNAME="uname"/>

Username: <csvar NAME="Variables.uname"/>

Chapter 63
Workflow Step Conditions

63-2

Line 2 in the following example uses the WORKFLOWSTEP.GETID tag to get the ID of the
current workflow step. The WORKFLOWSTEP.GETNAME tag, used in line 4, loads the step
with the specified name:

<!-- getstep -->

<WORKFLOWSTEP.GETID NAME="Step" VARNAME="sid"/>

Stepid: <csvar NAME="Variables.sid "/>

<WORKFLOWSTEP.GETNAME NAME="Step" VARNAME="sname"/>

Stepname: <csvar NAME="Variables.sname"/>

The following example defines the conditions that stop the change of step from taking
place. The forcestop and notalloweduser variables that the conditionals check were
set as arguments when the sample step condition was defined in the WebCenter Sites
interface. In a real step condition, you would test for the condition of your choice here.
For example, seeing whether an article asset has an associated image.

<!-- This is the actual condition to stop the step. The following is
just an example. -->

<if COND="Variables.forcestop=true">

<then>

<setvar NAME="ReturnVal" VALUE="You can not take this step because
forcestop=true"/>

</then>

<else>

<if COND="Variables.uname=Variables.notalloweduser">

<then>

<setvar NAME="ReturnVal" VALUE="You are not allowed to take this step"/>

</then>

</if>

</else>

</if>

</FTCS>

Chapter 63
Workflow Step Conditions

63-3

Workflow Actions
As an asset moves through workflow, it can trigger a workflow action. A workflow
action can do anything from send an email to alert a user that he has a new asset to
evaluate to breaking a deadlock after a specified period of time has elapsed.

There are five types of workflow actions:

• Step actions, which are executed as part of a transition between workflow states.

• Timed actions, which are triggered by deadlines when the asset is in a given state,
thus associating the asset with a specific assignment.

• Deadlock actions, which are executed when an asset needs a unanimous vote to
move to the next state, but the voters differ on which step the asset should take.
The deadlock action is run whenever users choose different steps for the asset to
move to.

• Group deadlock actions, which are executed when the assets in a workflow group
need a unanimous vote to move to the next state, but the voters choose different
steps, creating a deadlock.

• Delegation actions, which are executed when an asset is delegated. The
delegated asset remains in its current workflow state, but is assigned to a new
user.

Your workflow administrator must first define workflow actions using the WebCenter
Sites user interface. Then you must create the elements that accomplish these
workflow actions. WebCenter Sites provides several sample workflow action definitions
for you to look at. See Setting Up the Actions and Conditions in Administering Oracle
WebCenter Sites.

The following topics describe sample workflow action elements:

• Step Action Elements

• Timed Action Elements

• Deadlock Action Elements

• Group Deadlock Action Elements

• Delegation Action Elements

Step Action Elements
A Step Action element receives the following data when it is called:

• A WorkflowEngine object called WorkflowEngine.

• An ObjectTotal variable, which represents the total number of assets whose state
is being changed.

• An IWorkflowable object called Objectnnn, which represents the assets whose
state is being changed. nnn is a number between 0 and ObjectTotal -1.

• An IWorkflowStep object called Step, which represents the workflow step being
considered.

• A StepTargetUser variable, which is a comma-separated list of the step's target
users.

Chapter 63
Workflow Actions

63-4

• A StepUser variable, which contains the ID of the user attempting the step.

• A Group variable, which contains the ID of the workflow group to which the assets
belong (if you are using workflow groups).

• Any variables that your workflow administrator has created in the definition for this
Step Action.

In the following example, the Step Action element approves assets for publish; most
other Step Action elements send an email to the assignees.

<?xml version="1.0" ?>

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">

<FTCS Version="1.1">

<!-- OpenMarket/Xcelerate/Actions/Workflow/StepActions/ApproveForPublish

-

- INPUT

- Variables.ObjectTotal - number of loaded workflowasset objects

- Object[n] - loaded workflowasset objects, where n = 0 -
Variables.ObjectTotal

-targets - one or more comma separated names of PubTargets for which to
approve the asset

-

- OUTPUT

-

-->

<!-- This is an action element called by step actions
ApproveForPublish-->

This step action element will approve an asset for publish.

Line 2 in the following example uses the SETCOUNTER tag to create a counter which
keeps track of the number of assets to approve. Lines 3 through 9 use the LOOP tag to
loop through the assets and retrieve the asset types and IDs.

<!-- get the id and assettype of the asset(s) to approve -->

<SETCOUNTER NAME="count" VALUE="0"/>

<LOOP COUNT="Variables.ObjectTotal">

<WORKFLOWASSET.GETASSETTYPE OBJECT="ObjectCounters.count"
VARNAME="assettype"/>

Chapter 63
Workflow Actions

63-5

<WORKFLOWASSET.GETASSETID OBJECT="ObjectCounters.count"
VARNAME="assetid"/>

<SETVAR NAME="idCounters.count" VALUE="Variables.assetid"/>

<SETVAR NAME="typeCounters.count" VALUE="Variables.assettype"/>

<INCCOUNTER NAME="count" VALUE="1"/>

</LOOP>

In the following example, the STRINGLIST tag is used to create a comma-separated
list of publish target names. The PUBTARGET.LOAD and PUBTARGET.GET tags are used to
load information about the publish targets from the PubTarget table. This information
and information about the assets to be approved are passed to the ApprovePost
element for further processing.

<!-- approve for each destination -->

<STRINGLIST NAME="publishTargets" STR="Variables.targets" DELIM=","/>

<if COND="IsList.publishTargets=true">

<then>

<LOOP LIST="publishTargets">

<PUBTARGET.LOAD NAME="pubtgt" FIELD="name" VALUE="publishTargets.ITEM"/>

<if COND="IsError.Variables.errno=false">

<then>

Approving for publish to <CSVAR NAME="publishTargets.ITEM"/>

<PUBTARGET.GET NAME="pubtgt" FIELD="id" OUTPUT="pubtgt:id"/>

<CALLELEMENT NAME="OpenMarket/Xcelerate/PrologActions/ApprovePost">

<ARGUMENT NAME="targetid" VALUE="Variables.pubtgt:id"/>

<ARGUMENT NAME="assetTotal" VALUE="Counters.count"/>

</CALLELEMENT>

</then>

<else>

Cannot approve for publish to destination: <CSVAR
NAME="publishTargets.ITEM"/>, Error: <CSVAR NAME="Variables.errno"/>

</else>

Chapter 63
Workflow Actions

63-6

</if>

</LOOP>

</then>

<else>

Cannot approve for publish. This step action requires a targets
argument with one or more comma separated publishing destination names.

</else>

</if>

</FTCS>

Timed Action Elements
Timed Action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine.

• A WorkflowAssignmentTotal variable, which contains the total number of
assignments for which this action applies.

• An IWorkflowAssignment object called WorkflowAssignmentnnn, which represents
assignments to apply the action to. nnn is a number greater than zero.

• An optional Group variable, which contains the ID of the workflow group to which
the assets belong (if you are using workflow groups).

• Any variables that your workflow administrator has created in the definition for this
Timed Action.

The following excerpt is from a Timed Action element that sends an email. The text of
the subject and body of this email are set in the Workflow Email forms that you access
from the Admin node in the Admin interface. The body text expects the following
variables:

• Variables.assetname, which contains the name of the current asset

• Variables.assigner, which is the name of the user who completed the previous
state in the workflow process

• Variables.instruction, which is the text that the assigner puts in the Action to
Take text box as he or she completes an assignment

In the following example, the variables in the email object, subject and body, are
replaced by their values:

<!-- translate subject -->
<EMAIL.TRANSLATESUBJECT NAME="emailobject"
PARAMS="assetname=Variables.assetname" VARNAME="subject"/>
<!-- translate body -->
<EMAIL.TRANSLATEBODY NAME="emailobject"
PARAMS="assetname=Variables.assetname&time=Variables.time"

Chapter 63
Workflow Actions

63-7

VARNAME="body"/>
<!-- send mail -->
<sendmail TO="Variables.EmailAddress" SUBJECT="Variables.subject"
BODY="Variables.body"/>
</THEN>
<ELSE>
Email address: None

</ELSE>
</IF>
<inccounter NAME="COUNT" VALUE="1"/>
</loop>
</then>
</if>
</FTCS>

Deadlock Action Elements
Deadlock Action elements receive the following data when they are called:

• A WorkflowEngine object.

• An ObjectTotal variable, which represents the total number of deadlocked assets.

• An IWorkflowable object called Objectnnn, which represents the deadlocked
assets.

• An IWorkflowStep object called Step, which represents the workflow step.

• A StepTotal variable, which contains the number of steps chosen by individual
users.

• A StepUser variable, which contains the ID of the user attempting the step.

• An optional Group variable, which contains the ID of the workflow group to which
the assets belong (if you are using workflow groups).

• Any variables that your workflow administrator has created in the definition for this
Deadlock Action.

The following Deadlock Action element sends an email to the users who approve the
asset.

The text of the subject and body of this email are set in the Workflow Email forms in
the administrative user interface. The body text expects the following variables:

<?xml version="1.0" ?>

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">

<FTCS Version="1.1">

<!-- OpenMarket/Xcelerate/Actions/Workflow/DeadlockActions/
SendEmailToAssignees

-

- INPUT

Chapter 63
Workflow Actions

63-8

-

- OUTPUT

-

-->

<!-- This is an action element called by step actions
SendAssignmentEmail and SendRejectionEmail-->

<csvar NAME="This deadlock action element will send emails"/>

Line 2 in the following example uses the EMAILMANAGER.LOAD tag to load an email
object.

<!-- load email object -->

<EMAILMANAGER.LOAD NAME="Variables.emailname" OBJVARNAME="emailobject"/>

Lines 1 through 9 in the following example create a NumOfSteps variable, which
contains either the total number of assets being delegated or zero.

<!-- get total steps -->

<if COND="IsVariable.StepTotal=true">

<then>

<setvar NAME="NumOfSteps" VALUE="Variables.StepTotal"/>

</then>

<else>

<setvar NAME="NumOfSteps" VALUE="0"/>

</else>

</if>

<removevar NAME="Step"/>

<setvar NAME="Header" VALUE="The following users have chosen the
corresponding steps that has resulted in a deadlock. Please take
appropriate actions to resolve deadlock:"/>

<setvar NAME="Message" VALUE="Variables.empty"/>

The code in the following three examples loop through the list of users who have put
the asset in deadlock, creating an email for each one. Line 10 in the following code

Chapter 63
Workflow Actions

63-9

uses the USERMANAGER.GETUSER tag to load the user information of the user specified in
the ID. Lines 11 and 12 use CCUSER tags to get the user's name and email address.

<!-- For each assignment object, get asignee -->

<setcounter NAME="COUNT" VALUE="0"/>

<if COND="Variables.NumOfSteps!=0">

<then>

<loop FROM="0" COUNT="Variables.NumOfSteps">

<!-- get assigner -->

<setvar NAME="userid" VALUE="Variables.StepUserCounters.COUNT"/>

<!-- get email address --->

<USERMANAGER.GETUSER USER="Variables.userid" OBJVARNAME="userobj"/>

<CCUSER.GETNAME NAME="userobj" VARNAME="user_name"/>

<CCUSER.GETEMAIL NAME="userobj" VARNAME="EmailAddress"/>

Lines 1 through 6 in the following example use the WORKFLOWSTEP and WORKFLOWSTATE
tags to retrieve the asset's starting and ending steps and states.

<WORKFLOWSTEP.GETNAME NAME="StepCounters.COUNT" VARNAME="stepname"/>

<WORKFLOWSTEP.GETSTARTSTATE NAME="StepCounters.COUNT"
VARNAME="startstate"/>

<WORKFLOWSTEP.GETENDSTATE NAME="StepCounters.COUNT" VARNAME="endstate"/>

<WORKFLOWSTATE.GETSTATENAME NAME="Variables.startstate"
VARNAME="startstatename"/>

<WORKFLOWSTATE.GETSTATENAME NAME="Variables.endstate"
VARNAME="endstatename"/>

<setvar NAME="Message" VALUE="Variables.Message Variables.user_name:
Variables.stepname - "/>

<!--

user:<csvar NAME="Variables.user_name"/>

step name:<csvar NAME="Variables.stepname"/>

startstate name:<csvar NAME="Variables.startstate"/>

endstate name:<csvar NAME="Variables.endstate"/>

Chapter 63
Workflow Actions

63-10

-->

<!-- get asset -->

<WORKFLOWABLEOBJECT.GETDISPLAYABLENAME
NAME="Variables.ObjectCounters.COUNT" VARNAME="assetname"/>

In lines 3 and 6 in the following example, the variables in the email object, subject
and body, are replaced by their values.

<!-- translate subject -->

<SETVAR NAME="params"
VALUE="username=Variables.user_name&header=Variables.Header&mess
age=Variables.Message&assetname=Variables.assetname"/>

<EMAIL.TRANSLATESUBJECT NAME="emailobject" PARAMS="Variables.params"
VARNAME="subject"/>

<!-- translate body -->

<EMAIL.TRANSLATEBODY NAME="emailobject" PARAMS="Variables.params"
VARNAME="body"/>

<!-- send mail -->

<sendmail TO="Variables.EmailAddress" SUBJECT="Variables.subject"
BODY="Variables.body"/>

<inccounter NAME="COUNT" VALUE="1"/>

</loop>

</then>

</if>

email message:<csvar NAME="Variables.Header Variables.Message"/>

</FTCS>

Group Deadlock Action Elements
Group Deadlock action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine

• An ObjectTotal variable, which represents the total number of deadlocked assets

• An IWorkflowable object called Objectnnn, which represents the deadlocked
asset. nnn is a number greater than zero

• An IWorkflowStep object called Step, which represents the workflow step

Chapter 63
Workflow Actions

63-11

• A StepTotal variable, which contains the number of steps chosen by individual
users

• A StepUser variable, which contains the ID of the user attempting the step

• A Group variable, which contains the ID of the workflow group that is deadlocked

• Any variables that your workflow administrator has created in the definition for this
Group Deadlock Action

The following Group Deadlock Action element sends an email to the users who
approve the asset.

The text of the subject and body of this email are set in the Workflow Email forms in
the administrative user interface. The body text expects the following variables:

<?xml version="1.0" ?>

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">

<FTCS Version="1.1">

<!-- OpenMarket/Xcelerate/Actions/Workflow/GroupActions/
SendEmailToAssignees

-

- INPUT

-

- OUTPUT

-

-->

<!-- user code goes here -->

<csvar NAME="This group deadlock action element will send emails"/>

<!-- load email object -->

<EMAILMANAGER.LOAD NAME="Variables.emailname" OBJVARNAME="emailobject"/>

<!-- get group -->

<WORKFLOWENGINE.GETGROUPID ID="Variables.Group" OBJVARNAME="grpobj"/>

<WORKFLOWGROUP.GETNAME NAME="grpobj" VARNAME="GroupName"/>

<!-- get total steps -->

<if COND="IsVariable.StepTotal=true">

<then>

Chapter 63
Workflow Actions

63-12

<setvar NAME="NumOfSteps" VALUE="Variables.StepTotal"/>

</then>

<else>

<setvar NAME="NumOfSteps" VALUE="0"/>

</else>

</if>

<removevar NAME="Step"/>

<setvar NAME="Header" VALUE="The following users have chosen the
corresponding steps that has resulted in a deadlock for the group:
Variables.GroupName. Please take appropriate actions to resolve
deadlock:"/>

<setvar NAME="Message" VALUE="Variables.empty"/>

<!-- For each assignment object, get asignee -->

<setcounter NAME="COUNT" VALUE="0"/>

<if COND="Variables.NumOfSteps!=0">

<then>

<loop FROM="0" COUNT="Variables.NumOfSteps">

<!-- get assigner -->

<setvar NAME="userid" VALUE="Variables.StepUserCounters.COUNT"/>

<!-- get email address --->

<USERMANAGER.GETUSER USER="Variables.userid" OBJVARNAME="userobj"/>

<CCUSER.GETNAME NAME="userobj" VARNAME="user_name"/>

<CCUSER.GETEMAIL NAME="userobj" VARNAME="EmailAddress"/>

<WORKFLOWSTEP.GETNAME NAME="StepCounters.COUNT" VARNAME="stepname"/>

<WORKFLOWSTEP.GETSTARTSTATE NAME="StepCounters.COUNT"
VARNAME="startstate"/>

<WORKFLOWSTEP.GETENDSTATE NAME="StepCounters.COUNT" VARNAME="endstate"/>

<WORKFLOWSTATE.GETSTATENAME NAME="Variables.startstate"
VARNAME="startstatename"/>

<WORKFLOWSTATE.GETSTATENAME NAME="Variables.endstate"
VARNAME="endstatename"/>

Chapter 63
Workflow Actions

63-13

<!-- get asset -->

<WORKFLOWABLEOBJECT.GETDISPLAYABLENAME
NAME="Variables.ObjectCounters.COUNT" VARNAME="assetname"/>

<!-- set message -->

<setvar NAME="Message" VALUE="Variables.Message Asset:
Variables.assetname, User: Variables.user_name, Step:
Variables.stepname -- "/>

<!-- translate subject -->

<SETVAR NAME="params"
VALUE="username=Variables.user_name&header=Variables.Header&mess
age=Variables.Message&assetname=Variables.assetname"/>

<EMAIL.TRANSLATESUBJECT NAME="emailobject" PARAMS="Variables.params"
VARNAME="subject"/>

<!-- translate body -->

<EMAIL.TRANSLATEBODY NAME="emailobject" PARAMS="Variables.params"
VARNAME="body"/>

<!-- send mail -->

<sendmail TO="Variables.EmailAddress" SUBJECT="Variables.subject"
BODY="Variables.body"/>

<inccounter NAME="COUNT" VALUE="1"/>

</loop>

</then>

</if>

email message:<csvar NAME="Variables.Header Variables.Message"/>

</FTCS>

Delegation Action Elements
Delegation action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine

• A CurrentUser variable, which contains the ID of the user who is delegating the
asset

• An optional Group variable, which contains the ID of the workflow group. All objects
to be delegated must be in the same workflow group

Chapter 63
Workflow Actions

63-14

• A DelegateUser variable, which contains the ID of the user to whom the asset was
delegated

• A DelegateComment variable, which contains a comment addressed to the user ID
contained in the DelegateUser variable

• An ObjectTotal variable, which represents the total number of assets being
delegated

• An IWorkflowable object called Objectnnn, which represents the assets being
delegated. nnn represents a number greater than zero

Delegation action elements should be coded like other Workflow Action elements.

Chapter 63
Workflow Actions

63-15

64
Working with RealTime Publishing
Customization Hooks

Some of things that you need to do when you customize RealTime Publishing are
writing your own transporter, writing implementation details, writing helper methods,
writing example transporter implementation, writing full code listing, and writing edge-
case scenarios. You may also need to write information about intercepting asset
publishing events on the management instance.

You can customize RealTime publishing according to your customers' business needs.
See Working with RealTime Publishing Customization Hooks and Understanding
Asset and Publish Events in WebCenter Sites.

A Realtime publishing environment is configured to WebCenter Sites through the
advpub.xml file. The following list provides some terminologies used to describe the
publishing components:

• Resource: It is a generic term used to indicate approved assets and non-asset
data like tables.

• Resource group: It is a group of resources, possibly related in some way.

Topics:

• About RealTime Publishing

• Writing a Custom Transporter

About RealTime Publishing
RealTime Publishing is a pipeline consisting of several jobs. Some jobs run on
the management instance, while others on the target instance. RealTime Publishing
parameters are located in the advpub.xml file.

The following is a brief description of each job:

• Gatherer: Creates the list of publishable assets and decorates it with additional
resources (asset types, table rows) that together make up the canonical set of
data to be published. It does so by creating groups of interdependent resources
while relying on the underlying Approval Grouping Strategy. Grouping strategy
obtains the lists of approved resources and organizes them into groups. Following
are the grouping strategies available.

– ApprovalAggregatingGroupingStrategy – This is the default grouping
strategy and it is recommended to keep this strategy. It creates collection
of Resource groups. In a resource group, the dominant asset type is one
which has most assets of the same type in that group. While creating resource
groups, this strategy keeps the count of the assets of the same asset type.
The one with the maximum count is the dominant asset type for that group.
Similarly, while creating resource group collection, this strategy collects the
groups with the same dominant asset types together. This strategy helps to
aggregate similar groups together because loading and saving assets of the

64-1

same type works faster in bulk. This strategy leads to larger number of groups
with relatively smaller size.

– ApprovalAccumulatingGroupingStrategy – This strategy simply collects the
resource groups without any additional processing. This leads to smaller
number of groups with relatively larger size.

• DataSerializer and DataDeserializer: It serializes and deserializes the data using
XStream implementation.

• Packager: Given the resource listing assembled by Gatherer, Packager creates
serialized renditions of each resource and saves it in the local fw_PubDataStore
table.

• Transporter: Takes the serialized data in fw_PubDataStore created by
Packager and copies it to the target-side fw_PubDataStore table. The
serialized data can be transported to multiple destinations by providing a
customized multitransporter as described in the Developer’s guide. The property
xcelerate.concurrenttransportunpacker in wcs_properties.json file decides
whether to run the DataTransporter and the DataUnpacker simultaneously (by
default). See Code for Writing RealTime Publishing Transporter.

• Unpacker: Takes the serialized data in the target-side fw_PubDataStore table
and deserializes/saves it to the target database. Although the DataTransporter
and the DataUnpacker run simultaneously, the DataUnpacker waits until the main
packaging is completed and certain priority group information is received.

The number of DataUnpacker threads required to run can be configured using
numParalleltasks. The default value for number of DataUnpacker threads to run
or numParallelTasks is 1 for MSSQL server and DB2 databases and the default
value is 3 for Oracle database. It is recommended to not change the default value.

• Monitor: Communicates and keeps track of all the messages it receives from all
the participants in the publish session. These messages are stored to PubMessage
and PubProgress table. PubSessionMonitor is a component of the asynchronous
messaging system.

Polling frequency or pollFreqMillis is measured in milliseconds and the default
value is 5000.

Time in milliseconds or timeoutMillis is the number of seconds that
PubSessionMonitor should wait for a message before presuming that the
participant has crashed or hung. Default value is 100000 (100 seconds)
milliseconds.

• CacheUpdater: Given the list of assets that were successfully saved by Unpacker,
CacheUpdater flushes and optionally regenerates relevant parts of the page
caches.

Regeneration of specified pages can be done in multiple threads based on
the value of numThreadsPerServer. The default value of numThreadsPerServer
is 3. The component regenServers provides the list of URLs to the server
where the page is to be regenerated. If no URLs are specified, default value of
PageCacheUpdater defaults to standard regeneration (based on user request).

RealTime Publishing uses asynchronous messaging to track the status of each job.
It is not necessary to know the details of the messaging framework, but note that
communication with the target system is facilitated through the Transporter. This also
includes messages issued by Unpacker to inform the management system that an
asset has been saved, prompting the management logic to mark that asset published.

Chapter 64
About RealTime Publishing

64-2

The publishing jobs per each target of the multi-target publish can complete in different
orders because they are independently run on each target during the transport phase.
For example, CacheFluster for target 1 might complete before Unpacker for target 2.

Writing a Custom Transporter
With a transporter, you can replace the HTTP(s)-based OOTB (out-of-the-box or ready
to use) transport with another transport that uses a different protocol, and you can
publish to multiple targets within the same publishing session.

Topics:

• Writing Your Own Transporter

• Considerations About Overriding AbstractTransporter Methods

• Helper Methods in AbstractTransporter

• Implementing a Transporter: Example

• Code for Writing RealTime Publishing Transporter

• Understanding Edge-Case Scenarios

• Intercepting Asset Publishing Events on the Management Instance

• Distinguishing Between Unpackers and CacheUpdates

Writing Your Own Transporter
Follow these steps to write your own transporter:

1. Subclass the com.fatwire.realtime.AbstractTransporter class.

2. Override the methods ping, sendBatch, listTransports, toString, and
remoteExecute.

3. Install the transporter by editing the classes/AdvPub.xml file on the management
side.

Replace the line:

<bean id="DataTransporter"
 class="com.fatwire.realtime.MultiTransporter"
 scope ="prototype">

with:

<bean id="DataTransporter" class="[your transporter class]"
scope="prototype">

Considerations About Overriding AbstractTransporter Methods
When you override the AbstractTransporter methods, keep the following points in
mind.

• ping() contains the logic that checks whether the target is up or down. Its most
prominent use is to power the green/red diagnostic indicator in the publishing
console. It is not necessary for ping to be successful to launch a publishing
session, but this can be a handy tool for diagnosing connection problems.

Chapter 64
Writing a Custom Transporter

64-3

If you are using http(s) to connect to your target, you may be able to use the
default implementation rather than override and implement your own.

• sendBatch() is responsible for uploading data to the remote fw_PubDataStore.
It is invoked multiple times with small batches of data from the local
fw_PubDataStore that comes in the form of an IList. Batching helps keep memory
usage down and is done behind the scenes for you.

• remoteExecute() is responsible for communicating with the remote system.
The communication is two-way: management sends commands to dispatch
remote jobs and cancellation requests, while the target sends back messages
that indicate its status. The contents of these messages are immaterial to
remoteExecute, all it needs to do is send those requests and return the responses.

• listTransports() is a listing of the underlying transports, in case there are
multiple targets. If there is only a single target, this method can just return a
toString() rendition of the current transport.

• toString() is a human-friendly descriptor of this transport. For example, a
typical value would be http://mytarget:8081/cs/. However, any other string is
acceptable, including targetDataCenter-Virginia, serverOn8080, and so on.

Helper Methods in AbstractTransporter
A few helper methods are available in AbstractTransporter:

• protected void writeLog(String msg) writes messages to the publish log.

• protected AbstractTransporter getStandardTransporterInstance() get a
new instance of the standard HTTP-based transporter. This can be useful to
implement a transport to multiple targets.

• protected String getParam(String param) obtains the value of a publishing
parameter, as configured in the publishing console.

Implementing a Transporter: Example
Following is an example of a transporter implementation that works with multiple
targets. The target is configured as follows:

1. In the Destination Address, specify comma-separated destination URLs.

For example:

http://tgt1:9030/cs/
http://virginia:9040/cs/

2. In the More Arguments, specify ampersand-separated user name, password, and
optional proxy information for the additional servers, suffixed with indexes starting
at 1.

For example, with one additional target:

REMOTEUSER1=fwadmin&REMOTEPASS1=xceladmin&PROXYSERVER1=proxy.com&PROXYPORT1=9
090&PROXYUSER1=pxuser&PROXYPASSWORD1=pxpass

3. In AdvPub.xml, replace the DataTransporter bean entry with the following:

<bean id="DataTransporter"
 class="my.sample.MultiTransporter"
 singleton="false">

Chapter 64
Writing a Custom Transporter

64-4

 <property name="id" value="Transporter"/>
</bean>

Code for Writing RealTime Publishing Transporter
com.fatwire.realtime.mypackage;
import COM.FutureTense.Interfaces.*;
import com.fatwire.cs.core.realtime.TransporterReply;
import java.net.URL;
import java.util.*;
/**
 * RealTime Publishing transporter to multiple targets.
 */
public class MultiTransporter extends AbstractTransporter
{
 private boolean initialized = false;
 List<AbstractTransporter> transporters = new ArrayList();
 /**
 * Ping each underlying target and return true if all of them are up.
 */
 @Override
 public boolean ping(StringBuilder sbOut)
 {
 init();
 boolean ret = true;
 for(AbstractTransporter t : transporters)
 {
 boolean thisret = t.ping(sbOut);
 sbOut.append(t.getRemoteUrl() + (thisret ? " OK" : " Not reachable"));
 sbOut.append(" ||| ");
 ret &= thisret;
 }
 return ret;
 }
 /**
 * Send the batch to each underliyng transport.
 */
 @Override
 protected int sendBatch(ICS ics, IList iList, StringBuffer outputMsg)
 {
 init();
 for(AbstractTransporter t : transporters)
 {
 int res = t.sendBatch(ics, iList, outputMsg);
 if(res != 0)
 {
 // Just log the error for now, but this is an
 // indication that the target may be down
 // and other notifications may also be appropriate.
 writeLog("Transporter " + t + " failed with " + res + " " + outputMsg);
 }
 }
 return 0;
 }
 /**
 * Execute the remote command on each transporter and
 * accumulate their responses.
 */
 @Override
 protected List<TransporterReply> remoteExecute(ICS ics, String s,

Chapter 64
Writing a Custom Transporter

64-5

 Map<String, String> stringStringMap)
 {
 init();
 List<TransporterReply> res = new ArrayList<TransporterReply>();
 for(AbstractTransporter t : transporters)
 {
 List<TransporterReply> tres = t.remoteExecute(ics, s, stringStringMap);
 res.addAll(tres);
 }
 return res;
 }
 /**
 * Do some initialization by parsing out the configuration
 * settings and instantiating a standard http transport
 * to each target.
 */
 private void init()
 {
 if(!initialized)
 {
 String remoteURLs = getRemoteUrl();
 int count = 0;
 for(String remoteUrl : remoteURLs.split(","))
 {
 String suffix = (count == 0) ? "" : String.valueOf(count);
 AbstractTransporter t1 =
 AbstractTransporter.getStandardTransporterInstance();
 URL url;
 try
 {
 url = new URL(remoteUrl);
 }
 catch(Exception e)
 {
 throw new RuntimeException(e);
 }
 t1.setRemoteUrl(remoteUrl);
 t1.setHost(url.getHost());
 t1.setUsername(getParam("REMOTEUSER" + suffix));
 t1.setPassword(getParam("REMOTEPASS" + suffix));
 t1.setUseHttps("https".equalsIgnoreCase(url.getProtocol()));
 t1.setContextPath(url.getPath());
 t1.setPort(url.getPort());
 t1.setProxyserver(getProxyserver());
 t1.setProxyport(getProxyport());
 t1.setProxyuser(getProxyuser());
 t1.setProxypassword(getProxypassword());
 t1.setHttpVersion(getHttpVersion());
 t1.setTargetIniFile(getTargetIniFile()); transporters.add(t1);
 ++count;
 }
 initialized = true;
 writeLog("Initialized transporters: " + toString());
 }
 }
 /**
 * Provide a full listing of all underlying transports. This is
 * can be used by other components to determine
 * whether they need to perform special actions depending on
 * the number of targets. For example, asset publishing
 * status processing may need to buffer responses until they're

Chapter 64
Writing a Custom Transporter

64-6

 * received from all targets before marking assets published.
 * @return
 */
 @Override
 public List<String> listTransports()
 {
 init();
 List<String> list = new ArrayList();
 for(AbstractTransporter t : transporters)
 {
 list.add(t.toString());
 }
 return list;
 }
 /**
 * Just a human-friendly description of the transport. This may show
 * up in the logs, so make it descriptive enougn.
 */
 @Override
 public String toString()
 {
 List<String> transs = listTransports();
 StringBuilder sb = new StringBuilder();
 for(String t : transs)
 sb.append(t + " ");
 return sb.toString();
 }
}

Understanding Edge-Case Scenarios
While the example in Code for Writing RealTime Publishing Transporter works in the
optimistic case where all targets are running, there will be times when one target has
stopped for a shorter or longer period of time. If you only publish to one target but still
mark assets as published, then the target that stopped is not synchronized. You can
handle such scenarios in the following ways:

• If a target stops for a short period of time, you should not mark assets as
published, but continue publishing to the target that is running. When the other
target is restarted, you have all earlier assets still queued for publishing. Those
assets are redundantly published to the first target as well, but over short periods
of time this is a negligible overhead.

• If a target stays down for a long period of time, it may be best to remove it from
the list of targets in the destination configuration (in this example, remove the
second target from the Destination Address in the publishing configuration). That
way, assets continue to be marked as published even though you have only one
active target. When the second target is restarted, first perform a database and file
system sync, and then add it back to the list of destination addresses.

Intercepting Asset Publishing Events on the Management Instance
In the first case above, you have to only mark assets as published after they are saved
on all targets. To do so, implement custom notification logic as follows:

1. Extend com.fatwire.realtime.messaging.AssetPublishCallback.

2. Override the notify() and optionally the progressUpdate() method.

Chapter 64
Writing a Custom Transporter

64-7

Sample Implementation for Steps 1 and 2

package my.sample;
import com.fatwire.assetapi.data.AssetId;
import java.util.HashMap;
import java.util.Map;
/**
 * Buffer asset save notifications until we've received one
 * from each target. Then mark asset published.
 */
public class AssetPublishCallbackMulti extends AssetPublishCallback
{
 Map<String, Integer> saveEventsCount = new HashMap<String, Integer>();
 /**
 * Receive notifications about the asset status.
 * Currently the only available status is SAVED.
 */
 @Override
 public void notify(AssetId assetId, String status, String from)
 {
 String assetIdStr = String.valueOf(assetId);
 writeLog("Got " + status + " notification from "
 + from + " for " + assetIdStr);
 if("SAVED".equals(status))
 {
 Integer numNotifications;
 if((numNotifications = saveEventsCount.get(assetIdStr)) == null)
 {
 numNotifications = 0;
 }
 numNotifications = numNotifications + 1;
 saveEventsCount.put(assetIdStr, numNotifications);
 if(numNotifications == this.getTargets().size())
 {
 super.notify(assetId, status, from);
 writeLog("Marked " + assetIdStr + " published");
 }
 }
 }
 /**
 * Intercept progress update messages. Can be used for
 * monitoring the health of the system but is not required.
 */
 @Override
 public void progressUpdate(String sessionId, String job,
 String where, String progress, String lastAction, char status)
 {
 super.progressUpdate(sessionId, job, where, progress, lastAction, status);
 }
}

3. Enable the callback in AdvPub.xml on the management side:

• Add AssetCallback bean.

• Register the bean with PubsessionMonitor.

Enabling the Callback Bean for Step 3

To add the AssetCallback bean:

Chapter 64
Writing a Custom Transporter

64-8

<bean id="AssetCallback"
 class="my.sample.AssetPublishCallbackMulti"
 singleton="false"/>

To register the bean with PubsessionMonitor:

<bean id="PubsessionMonitor"
 class="com.fatwire.realtime.messaging.PubsessionMonitor"
 singleton="false">

 <constructor-arg index="0">
 <ref local="DataTransporter" />
 </constructor-arg>

 <constructor-arg index="1">
 <ref local="AssetCallback" />
 </constructor-arg>

 <property name="pollFreqMillis" value="5000" />
 <property name="timeoutMillis" value="100000" />
</bean>

Distinguishing Between Unpackers and CacheUpdates
When publishing to multiple destinations, it is useful to distinguish between their
respective Unpackers and CacheUpdaters. This comes in handy when looking at the
progress bars in the RT publishing console and looking at logs.

To make that distinction, simply edit the AdvPub.xml file on the target side, and change
the ID values of the DataUnpacker and PageCacheUpdater beans.

For example:

<bean id="DataUnpacker"
 class="com.fatwire.realtime.ParallelUnpacker"
 singleton="false">
 <property name="id" value="Unpacker-Virginia2"/>
 ...
</bean>

<bean id="PageCacheUpdater"
 class="com.fatwire.realtime.regen.ParallelRegeneratorEh"
 singleton="false">
 <property name="id" value="CacheFlusher-Virginia2"/>
 ...
</bean>

Chapter 64
Writing a Custom Transporter

64-9

65
Understanding Asset and Publish Events in
WebCenter Sites

WebCenter Sites supports Asset events and Publishing events in the current release.

Topics:

• Asset Events

• Publishing Events

Asset Events
Asset events take place when assets are added, modified or deleted by a contributor
or programmatically. Upon these events, the event framework looks up and executes
the set of configured events.

This topic describes how to write and register an asset event listener.

• Writing an Asset Event Listener

• Registering an Asset Event Listener

Writing an Asset Event Listener
Asset listeners have to extend AssetEventListener to be notified of asset changes.
A convenient base class AbstractAssetEventListener comes with WebCenter Sites.
Extending from this class makes it easy to recognize the specific type of action that led
to the event (add/modify/delete).

Implement a custom asset listener using the sample code. This code prints the asset
IDs; however, you can also plug in custom business logic.

package com.mycompany
public final class CustomAssetEventListener extends AbstractAssetEventListener
{
 public void assetAdded(AssetId id)
 {
 System.out.println("Asset " + id + " added");
 }
 public void assetUpdated(AssetId id)
 {
 System.out.println("Asset " + id + " updated");
 }
 public void assetDeleted(AssetId id)
 {
 System.out.println("Asset " + id + " deleted");
 }
}

65-1

Blocking asset event listeners are invoked after the asset operation has taken place,
but before committing the data. Non-blocking asset event listeners are invoked
asynchronously.

Registering an Asset Event Listener
This section describes how to register an asset event listener.

Note:

WebCenter Sites ships with a standard listener that is used for search
indexing. Do not alter or delete it.

Asset event listeners are registered in the AssetListener_reg database table.

Table 65-1 AssetListener_reg Database Table

ID (integer) Unique Identifier for the Row

listener(String) Fully qualified class name that
implements AssetEventListener. For example:
com.mycompany.CustomAssetEventListener

blocking(Y or N) 'Y' indicates that the listener is blocking (runs synchronously
with the thread that generated the event).

'N' indicates that the listener is non-blocking (runs in a
separate thread).

Publishing Events
Publishing events are events that the RealTime publishing framework generates at
each step of the publishing process. This feature is intended to facilitate system
monitoring (such as SNMP) and other housekeeping processes.

Topics:

• Writing a Publishing Event Listener

• Registering a Publishing Event Listener

Writing a Publishing Event Listener
Publishing listeners have to implement PublishingEventListener. A
PublishingEvent passed into the listener indicates the specific event that caused the
invocation.

Use the following example to implement a custom even listener that prints the
pubsession ID to the console:

package com.mycompany;
public class CustomPublishingEventListener implements PublishingEventListener
{
 public void onEvent(PublishingEvent event) throws EventException

Chapter 65
Publishing Events

65-2

 {
 System.out.println("Publishing event fired for pubsession: " +
event.getPubSessionId());
 System.out.println("Publishing task : " + event.getTaskName());
 System.out.println("Status of the task : " + event.getStatus());
 System.out.println("Message associated with the task : " +
event.getMessage());
 }
}

Publishing consists of multiple tasks (data gathering, packaging, transport, and so on),
and each of them generates events. The PublishingEvent class represents an event
in the publishing task. An implementation can query the task and its status from the
event, as shown above.

Each task generates events when the following states are reached:

• STARTED

• DONE

• CANCELLED

• SUBTASK_FINISHED

• FAILED

Registering a Publishing Event Listener

• Register Publish event listeners in the FW_PublishingEventRegistry database
table.

Table 65-2 FW_PublishingEventRegistry Database Table

ID (integer) Unique Identifier for the Row

listener(String) Fully qualified class name that implements
PublishingEventListener. For example:
com.mycompany.CustomPublishingEventListener

blocking(Y or N) 'Y' indicates that the listener is blocking (runs synchronously
with the thread that generated the event).

'N' indicates that the listener is non-blocking (runs in a separate
thread).

Chapter 65
Publishing Events

65-3

66
Customizing Content Audit Reports

You can customize content audit reports by adding custom charts to these reports or
changing the OOTB charts.

Topics:

• About the Content Audit Reports

• Customizing the Content Audit Report

About the Content Audit Reports
The Content Audit report is a collection of charts that show statistics on visitor traffic
for a given asset. A chart is a visualization component that enables users to view and
analyze data on website visitors. These Chart components query the WebCenter Sites
database for data that will be displayed in the Content Audit report.

To view the Content Audit report, access an asset's Inspect view and then click the
Report icon in the asset's toolbar. By default, the report shows the following charts:

• Metrics Bar: Contains a set of tickers that display statistics on site visitor activity on
the asset during the selected time interval.

• Authoring Statistics Chart: This report plots the number of assets created and
edited against the number of assets published during the selected time period,
excluding technical assets such as Template assets.

• Publish Details Report: This report provides details about publishing history and
scheduled publishing jobs for the selected time period.

• Author Productivity Report: This report displays information about the content
contributors who created and edited assets in the selected time period, on the
given content management site.

• Content Tag Cloud: This report displays the most common tags that were applied
to assets during the selected time range.

• Asset Type List: This report displays a list of the top five asset types on which
users performed create and edit operations during the selected time range, on the
given content management site.

• Top Internal Searches List: This report lists the top 10 search words and phrases
that Contributor interface users entered into the Search field during the reported
time range.

See Working with Content Audit Reports in Using Oracle WebCenter Sites.

You can customize the Content Audit report by creating and adding custom charts to
the report, customizing the default charts shown on the report, and removing charts
from the report. You can either customize the default Content Audit report, or create
your own Content Audit report which will override the default report.

66-1

Customizing the Content Audit Report
You can customize the Content Audit report by creating a chart and its rendering
elements that you will use to implement the chart, and then adding the chart to the
report.

Topics:

• Creating a Custom Chart for the Content Audit Report

• Adding a Custom Chart to a Report

Creating a Custom Chart for the Content Audit Report
To create a chart, you must first create a chart asset (using the WCS_Chart asset type)
and then create its rendering elements under CustomElements in the ElementCatalog.

The following procedures use the example of a custom bar chart, that displays the
number of page visits to a selected asset, to provide instructions for creating a custom
chart:

• Create a Chart Asset

• Create Rendering Elements to Implement the Chart

Note:

For detailed information about rendering elements, see UI Controller. For
information about storing custom elements, see Element Storage.

• Add the Chart to a Report

Create a Chart Asset
1. Log in to WebCenter Sites, select the site for which you want to create a chart,

and then select the Admin interface.

2. In the navigation pane, select the Content bar, expand the Insights tree, and then
expand the Charts node.

3. Under the Charts node, click Add New.

The create form for the Chart asset opens.

4. Fill in the following fields:

• Name: Enter a name for the chart (for example, Custom).

• Description: Provide a description for the chart (for example, Custom bar
chart).

5. Click Save.

Chapter 66
Customizing the Content Audit Report

66-2

Create Rendering Elements to Implement the Chart
To implement a custom chart, you must create the chart's rendering elements under
CustomElements. The UI Controller then tests for these custom elements in three
phases: Configuration, Action, and Presentation.

For this example, create the <CustomChart>Action.jsp and <CustomChart>Html.jsp
elements for the chart under CustomElements/avisports/UI/Layout/CenterPane/
Insights/Charts. This location specifies the chart to be shown on the Content Audit
report in the avisports sample site.

Note:

The chart in this example does not require a configuration element
(<CustomChart>Config.jsp) because there are no configuration settings to
be processed by the UI Controller. See UI Controller.

1. Create the <CustomChart>Action.jsp. For example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%@ taglib prefix="controller" uri="futuretense_cs/controller.tld"%>
<%@page import="java.util.*"%>
<%@page import="java.text.*"%>
<%@page import="org.codehaus.jackson.map.ObjectMapper"%>
<%@page import="com.fatwire.cs.ui.framework.UIException"%>
<%@page import="com.fatwire.ui.util.GenericUtil"%>
<cs:ftcs>
<controller:callelement elementname="UI/Layout/CenterPane/Insights/
Charts/DateRange">
</controller:callelement>
<%
try{

 // BUSINESS LOGIC TO RETRIEVE DATA FOR THE CHART
 //convert the results to json string and set in the request
attribute.
 ObjectMapper m = new ObjectMapper();
 // CONVERT OBJECT TO JSON
 //String json = m.writeValueAsString(mainList);
 request.setAttribute("json", json);
} catch(UIException e) {
 request.setAttribute(UIException._UI_EXCEPTION_, e);
 throw e;
} catch(Exception e) {
 UIException uie = new UIException(e);
 request.setAttribute(UIException._UI_EXCEPTION_, uie);
 throw uie;
}
%>

Chapter 66
Customizing the Content Audit Report

66-3

</cs:ftcs>

2. Create the CustomHtml.jsp. For example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<cs:ftcs>
<div id='<%=ics.GetVar("chartId")%>'>
<h3 style="text-align:center">Custom Page Visit Bar Chart</h3>
 <div data-bind="ojComponent: {
 component: 'ojChart',
 type: 'bar',
 selection: 'multiple',
 series: visitsValue,
 groups: timestampValue,
 timeAxisType: 'enabled',
 animationOnDisplay: 'auto',
 legend: {position: 'top'}
 }"
 style="width:100%;height:100%;">
 </div>
</div>

<script>
 require(['ojs/ojcore', 'knockout', 'jquery', 'ojs/ojknockout', 'ojs/
ojcomponents', 'ojs/ojchart'],
 function(oj, ko, $)
 {
 function ChartModel() {
 var data = <%=request.getAttribute("json")%>;

 var visits = [];
 for(var i=0; i<data.length; i++){
 visits.push({name:data[i].name,
items:data[i].items});
 }
 var timestamps = (data.length > 0) ? data[0].timestamps :
[];
 this.visitsValue = ko.observableArray(visits);
 this.timestampValue = ko.observableArray(timestamps);
 }
 var chartModel = new ChartModel();
 $(document).ready(
 function()
 {
 ko.applyBindings(chartModel,
document.getElementById('<%=ics.GetVar("chartId")%>'));
 }
);
 }
);
</script>
</cs:ftcs>

The element in this example plots the chart. This element creates a bar chart
using Oracle Jet library and the data retrieved in CustomAction.jsp.

To view the chart in the Contributor interface, add it to the Content Audit report
(ReportHtml.jsp).

Chapter 66
Customizing the Content Audit Report

66-4

Add the Chart to a Report
To view this chart in the Contributor interface, add it to the Content Audit report. See
Adding a Custom Chart to a Report.

Modifying the Chart's Rendering Elements
1. In the ElementCatalog, copy the chart's rendering elements from UI/

Layout/CenterPane/Insights/Charts/<ChartName> to CustomElements, under
the same path, in the ElementCatalog. For example: CustomElements/UI/Layout/
CenterPane/Insights/Charts/<ChartName>.

2. Open the rendering elements in a text editor and make your changes to the JSP
files. See Custom Elements.

Adding a Custom Chart to a Report
1. Add the custom chart to the Content Audit report:

• To add the chart to a custom Content Audit report, insert the following lines
into the custom ReportHtml.jsp:

<!-- Include the charts here -->
<div class="block box event-box">
<div id="PageVisitRankContainer" class="siteinsightschart"
data-chartname="Custom"></div>
</div>

• To add the chart to the default Content Audit report, insert the following line
into UI\Layout\CenterPane\Insights\Dashboard\ContentAuditHtml.jsp:

Note:

Make a copy of this element to CustomElements before making the
changes.

<div class="siteinsightschart" data-chartname="<ChartName>"></div>

2. Verify the chart displays properly on the Content Audit report:

a. Log in to WebCenter Sites, select the avisports sample site, and then select
the Contributor icon.

b. Open an Article or Page asset, and then click the Reports icon.

The custom report loads with the custom chart:

Chapter 66
Customizing the Content Audit Report

66-5

Figure 66-1 Custom Content Audit Report with Custom Chart

Chapter 66
Customizing the Content Audit Report

66-6

Part XVII
Troubleshooting

Get familiar with WebCenter Sites error logging and source code debugging system
and general error logging and debugging techniques.

Topic:

• Logging and Debugging Errors

67
Logging and Debugging Errors

WebCenter Sites logs its activity in a log file, which in a new installation, is named
sites.log, located in the logs folder. The type and volume of information that is
written to the log file is controlled by the loggers that you choose to enable or define.
WebCenter Sites also has a reserved variable that is used by JSP and XML tags for
returning an error code if the tag did not successfully complete its task.

Topics:

• About Writing Custom Messages to the WebCenter Sites Log File

• Using Error Codes with Tags

About Writing Custom Messages to the WebCenter Sites
Log File

You use the log ODL tool to view loggers and add new loggers. If you would like to
write your own log messages to the WebCenter Sites log file, use the ics:logmsg tag.

WebCenter Sitesuses log ODL logging system. In log ODL, the loggingconfig.xml
file specifies which information will be logged and how. The Admin interface provides
the Configure Log ODL tool in the System Tools node, on the Admin tab. Using
Configure Log ODL, you can configure log ODL and view loggers in the Admin
interface. You can also dynamically add new loggers and change logger levels.
Changes will persist upon system restart if you copy the text version of the loggers
from the interface to the loggingconfig.xml file. See Using the Configure Log ODL
Tool in Administering Oracle WebCenter Sites.

To define your own loggers or write your own messages to the WebCenter Sites log
file, use the ics:logmsg tag. The following example writes a warning message to the
WebCenter Sites log file.

<ics:logmsg msg="This is a warning message"
 name="com.fatwire.logging.cs.jsp" severity="warn"/>

For more information about ics:logmsg, see the Tag Reference for Oracle WebCenter
Sites Reference.

67-1

Note:

It is recommended that you set loggers to a level that agrees with the type
of system on which logging is implemented. On development and content
management systems, logging levels can be set to a greater severity (such
as INFO or DEBUG), which provides a large amount of information. On delivery
systems, loggers can be either disabled or set to low severity (WARN or ERROR)
to avoid performance setbacks and making system information available on
a publicly accessed environment.

Using Error Codes with Tags
You can use a reserved variable named Variables.errno in WebCenter Sites when
the JSP and XML tags don’t successfully complete their task. Most JSP and XML tags
use this variable for returning error codes (generally referred to as "errno").

For example, the <CALLELEMENT> XML tag sets Variables.errno as follows:

• -10: If you specified a nonexistent element.

• -12: If you specified an existing element that WebCenter Sites could not evaluate.

On success, <CALLELEMENT> does not modify the value of Variables.errno.

Note:

For revision tracking operations, the reserved variable named
Variable.errdetails provides additional information about the error.

Use the following strategy with tags that use Variables.errno:

1. Initialize Variables.errno to 0 before calling the tag.

2. Call the tag.

3. Evaluate Variables.errno.

Tag Examples Using Error Codes

For example, the following code performs all three steps:

<SETVAR NAME="errno" VALUE="0"/>
<SETCOUNTER NAME="pi" VALUE="3.14159"/>
 <IF COND="Variables.errno=-501">
 <THEN>
 <p>Bad value of pi</p>
 </THEN>
 </IF>

Running this code yields the following HTML because SETCOUNTER cannot handle
floating-point values:

<p>Bad value of pi</p>

Chapter 67
Using Error Codes with Tags

67-2

The ASSET, RENDER, and SITEPLAN tags clear errno before they execute. You do not
have to set errno to 0 when you use these tags. For example, after you use an ASSET
tag, just check the value of errno to determine whether it has changed:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>
 <IF COND="IsError.Variables.errno=false">
 <THEN>
 <ASSET.CHILDREN NAME="topArticle" LIST="listOfChildren"/>
 </THEN>
 </IF>

At the end of template elements, include error checking code such as this:

<IF rendermode="preview">
 <THEN>
 <IF COND="IsError.Variable.errno=true">
 <THEN>

 Error <CSVAR NAME="Variables.errno"/>
 while rendering <CSVAR NAME="pagename"/>
 with asset ID <CSVAR NAME ="Variables.cid"/>.

 </THEN>
 </IF>
 </THEN>
</IF>

Java Interface

After making calls to WebCenter Sites, the String variable errno can be retrieved and
tested for success or failure. Here's an example:

cs.clearErrno();

IList rslt = cs.SelectTo(SYSTEMUSERS_TABLE, ALL_FIELDS, USERNAME,
 null, NO_LIMIT, null, CACHE_RESULTS, errstr);

errno = cs.GetVar("errno");

if (errno.compareTo(ERRNO_SUCCESS) == 0)
 {
 ...

Error Number Rules

Error numbers are always integers. This table summarizes error numbering rules for
Variables.errno.

See the Tag Reference for Oracle WebCenter Sites Reference for specific error
numbers for each tag.

Table 67-1 Error Number Rules

Number Significance

Negative integers Failure

0 (zero) Success

Chapter 67
Using Error Codes with Tags

67-3

Table 67-1 (Cont.) Error Number Rules

Number Significance

Positive integers in a tag other than a revision
tracking tag.

Information

Positive integers in a revision tracking tag. Failure

Chapter 67
Using Error Codes with Tags

67-4

Part XVIII
Reference

Learn about the Asset API, the search framework for managing search indices, and
how you can use the search API to build public site searches.

Topics:

• Using Asset API: Tutorial

• Using Public Site Search

68
Using Asset API: Tutorial

Use this Asset API tutorial as a quick reference. Know that it’s not a substitute for the
Java API Reference for Oracle WebCenter Sites. Code samples in this tutorial will help
you use the Asset API.

Topics:

• Understanding the Asset API

• Primary Interfaces

• Getting Started

• Asset API Read

• Asset API Write

• Development Strategies

• Optional: Setting Up to Use the Asset API from Standalone Java Programs

Understanding the Asset API
With the Asset API, you can access and manipulate WebCenter Sites assets. The
main purpose of this API is to broaden the context in which you handle assets.

The Asset API is a Java API. Its major features are:

• The Asset API supports WebCenter Sites in a non-servlet context.

Before the Asset API, WebCenter Sites exposed primary interfaces for
programming in the form of tags (both in XML and JSP), used as the means for
creating web pages and applications. In this sense, WebCenter Sites was tightly
built around the servlet model and was not usable in other contexts, such as
standalone Java programs (EJB, for example). Therefore, there was a need to
create an API that could be used anywhere, regardless of the servlet framework.

• The Asset API unifies the retrieval, creation, and modification of the two asset
families: basic and flex.

– The Asset API represents both asset families with AssetData and
AttributeData.

– The Asset API uses generic Condition and Query objects for both flex and
basic assets.

• The Asset API supports the creation and editing of basic assets, flex assets, and
flex parent assets in the form of Java objects.

68-1

Note:

The Asset API does not log any dependencies other than the asset that
is being loaded.

Primary Interfaces
With the Asset API, you can access data and definitions for WebCenter Sites assets.

The Asset API provides:

• Package com.fatwire.assetapi.data contains classes that are useful in reading
data.

• Classes under com.fatwire.assetapi.def are for asset definitions.

• Package com.fatwire.assetapi.query contains constructs necessary for building
a Query. See the Java API Reference for Oracle WebCenter Sites.

The Asset API defines the following primary interfaces:

• Session: The primary entry point into WebCenter Sites from the API. One has to
obtain a session to be able to do anything at all in the Asset API.

• AssetDataManager: A manager for reading asset data. Developers can query for
information here, and look up asset associations and other information.

• AssetTypeDefManager: A manager for reading an asset type's definition.
'Definition' is a loaded term in WebCenter Sites where flex assets are concerned.
Here it is used in the generic sense, as something that defines the structure of an
asset type. As a result, basic asset types also have a definition.

• AssetData: An asset's data; basically a collection of AttributeData instances and
other information about the asset itself.

• AssetId: The asset type-ID combination.

• DimensionableAssetManager: A manager that supports multilingual assets by
retrieving translations of any given asset.

Getting Started
The following are the prerequisites to follow this tutorial:

• FirstSiteII (FSII) is required to run the examples in this tutorial. The tools.jar file
(available in JDK 1.5 and above) must be in the classpath.

Note:

The Asset API can be used from a standalone Java program. Doing so
requires some configuration. See Optional: Setting Up to Use the Asset
API from Standalone Java Programs.

Chapter 68
Primary Interfaces

68-2

• Working through the examples in this chapter requires a knowledge of jsp
elements and how they are created in the WebCenter Sites environment. See
Creating Template, CSElement, and SiteEntry Assets.

Asset API Read
Let's start writing some code based on FSII data.

Topics:

• A Simple Example: Reading Field Values

• Reading AssetId

• Reading Attributes Given the Asset ID

• Running a Query

• Running a Complex Query

• Retrieving the Results by Sorting

• Reading BlobObject

• Retrieving Multi-Valued Attributes

• Multilingual Assets: Retrieving Translations

• Reading Asset and Attribute Definitions

• Reading Key-Value Mappings

A Simple Example: Reading Field Values
Let's try to read all the values of the FSIIHeadline field in FSII Articles. These are the
steps to follow:

1. Get a session.

2. Get a handle to AssetDataManager.

3. Build a query.

4. Perform 'read' and print the results.

Here is the code that implements these steps (in a jsp element):

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr =(AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
Query q = new SimpleQuery("Content_C", "FSII Article", null,
Collections.singletonList("FSIIHeadline"));
for(AssetData data : mgr.read(q))
{
out.println(data.getAttributeData("FSIIHeadline").getData());
out.println("
");
}

Chapter 68
Asset API Read

68-3

%>
</cs:ftcs>

1. SessionFactory.newSession() builds a session for a given user. From that point
on, all data that is read using this session instance is based on the user's
ACL permissions. You could also simply call newSession(null, null) and get
a Session that belongs to DefaultReader, an assumed user. WebCenter Sites-
powered web applications generally run as this user at runtime. However, error
occurs if the incorrect user name and password are specified.

2. Using the session, get a handle to AssetDataManager.getManager. (The
AssetDataManager.class.getName() method does this.)

3. A Query represents results that are based on the user's search criteria. In this
example, we are using a simple version of Query, where we specify the asset
type (Content_C) subtype (FSII Article) and the list of attributes to be returned
(just FSIIHeadline in this case). We want all assets; therefore the third parameter
(which takes Condition instance) is null. For information about how to use
Conditions, see Running a Complex Query.

4. The read() method of AssetDataManager returns an Iterable over AssetData.
Each piece of asset data contains an instance of AttributeData against an
attribute name. AttributeData.getData() returns the real data of the attribute
itself.

Reading AssetId
• To know the IDs of all these assets, use AssetData.getAssetId() which returns

an AssetId instance.

• To print AssetId, modify the code in A Simple Example: Reading Field Values, as
shown below:

for(AssetData data : mgr.read(q))
{
AssetId id = data.getAssetId();
out.println(data.getAttributeData("FSIIHeadline").getData() + " id=" + id);
out.println("
");
}

The code above prints the following lines (note that AssetId is a composite
that contains the id number and type. AssetId.getId() and AssetId.getType()
return ID and type separately:

AudioCo. America Announces H300 series id=Content_C:1114083739888
AudioCo. New Portable Media Player Offers Full Video Experience
id=Content_C:1114083739926
AudioCo.'s First Under Water MP3 Player id=Content_C:1114083739951
...

Reading Attributes Given the Asset ID
You can also read the attributes of an asset ID (either passed into a template or
acquired programmatically).

• Let's consider an AssetId (Content_C:1114083739888, for example, as shown in
the code used in Reading AssetId) and attempt to print the name, description, and
FSIIBody using the following code:

Chapter 68
Asset API Read

68-4

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<%@ page import="com.openmarket.xcelerate.asset.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr =(AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
AssetId id = new AssetIdImpl("Content_C", 1114083739888L);
List attrNames = new ArrayList();
attrNames.add("name");
attrNames.add("description");
attrNames.add("FSIIBody");

AssetData data = mgr.readAttributes(id, attrNames);
AttributeData attrDataName = data.getAttributeData("name");
AttributeData attrDataDescr = data.getAttributeData("description");
AttributeData attrDataBody = data.getAttributeData("FSIIBody");

out.println("name:" + attrDataName.getData());
out.println("
");
out.println("description:" + attrDataDescr.getData());
out.println("
");
out.println("FSII Body:" + attrDataBody.getData());
out.println("
");
%>
</cs:ftcs>

Here, we are indicating which attributes to read for a given ID. As you can see,
you can specify basic fields (such as name, description) and flex attributes; both
are treated as attributes.

• Alternatively, you can load all attributes for a given ID by using
AssetDataManager.read(List<AssetId> ids). The following code demonstrates
how this is done for a single AssetId:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<%@ page import="com.openmarket.xcelerate.asset.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr =(AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
AssetId id = new AssetIdImpl("Content_C", 1114083739888L);

Iterable<AssetData> dataItr = mgr.read(Collections.singletonList(id));

for(AssetData data : dataItr)
{
for(AttributeData atrData : data.getAttributeData())
{
out.println("
");
out.println("attribute name:" + atrData.getAttributeName());
out.println("data: " + atrData.getData());
}
}

Chapter 68
Asset API Read

68-5

%>
</cs:ftcs>

Running a Query
A Query specifies the criteria based on which data is looked up.

• To look up a product whose SKU is iAC-008 use the code below which also prints
the name and ID.

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
Condition c = ConditionFactory.createCondition("FSIISKU",
OpTypeEnum.EQUALS, "iAC-008");
Query query = new SimpleQuery("Product_C", "FSII Product", c,
Collections.singletonList("name"));

for(AssetData data : mgr.read(query))
{
AttributeData attrData = data.getAttributeData("name");
out.println("name:" + attrData.getData());
out.println("
");
out.println("id:" + data.getAssetId());
}
%>
</cs:ftcs>

Query consists of a Condition, a set of attributes to be returned, and a SortOrder.
The example above uses a condition that is built on the FSIISKU attribute value
being EQUAL to iAC-008. Just as we did in the previous example, we pass in the list
of attribute names we want to be returned in the resulting collection of AssetData.

• There are some considerations as to what types of attributes can be queried and
how. For a complete discussion of different query algorithms, see Query Types.

In short, some types of queries are possible with one algorithm, but not with the
other. Note that this is exactly the behavior we have in the Asset family of tags and
AssetSet family of tags. To illustrate this point, say we want to read all products
whose price (FSIIPrice) is greater than 179.

FSIIPrice is of type MONEY. Consulting Table 68-2 in Data Types and Valid Query
Operations, we see that the GREATER_THAN operation is allowed for this data type
only in the basic/generic algorithm. The following code uses that algorithm to get
all products whose price is greater than 179. The choice of query algorithm is
made by the highlighted line in the code below:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>

<cs:ftcs>
<%

Chapter 68
Asset API Read

68-6

Session ses = SessionFactory.getSession();
 AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
Condition c = ConditionFactory.createCondition("FSIIPrice",
OpTypeEnum.GREATER_THAN, 179.0f);
Query query = new SimpleQuery("Product_C", "FSII Product", c,
Arrays.asList("name", "FSIIPrice"));
query.getProperties().setIsBasicSearch(true);

for(AssetData data : mgr.read(query))
{
AttributeData name = data.getAttributeData("name");
AttributeData price = data.getAttributeData("FSIIPrice");

out.println("name:" + name.getData());
out.println("id:" + data.getAssetId());
out.println("price:" + price.getData());

out.println("
");
}
%>
</cs:ftcs>

Running a Complex Query
A complex query can be achieved through nested Conditions. According to the choice
of query algorithm, the query is subject to the constraints listed in Query Types.

Use the following code to retrieve all the Product_C assets whose FSIIPrice attribute
is greater than 179.0 or whose names are like "FSII" or both:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
Condition c1 = ConditionFactory.createCondition("FSIIPrice",
OpTypeEnum.GREATER_THAN, 179.0f);
Condition c2 = ConditionFactory.createCondition("name", OpTypeEnum.LIKE,
"FSII");
Condition c = c1.and(c2); // c1.or(c2);

Query query = new SimpleQuery("Product_C", "FSII Product", c,
Arrays.asList("name", "FSIIPrice"));
query.getProperties().setIsBasicSearch(true);

for(AssetData data : mgr.read(query))
{
AttributeData name = data.getAttributeData("name");
AttributeData price = data.getAttributeData("FSIIPrice");

out.println("name:" + name.getData());
out.println("id:" + data.getAssetId());
out.println("price:" + price.getData());

out.println("
");

Chapter 68
Asset API Read

68-7

}
%>
</cs:ftcs>

Retrieving the Results by Sorting
You can retrieve the results by sorting on a field, and you can reverse the sort order,
as follows:

• To retrieve the results sorted by price use the following code (specifying a
SortOrder, ascending in this example):

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
 AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());

SortOrder so = new SortOrder("FSIIPrice", true);
Query query = new SimpleQuery("Product_C", "FSII Product",
null, Collections.singletonList("FSIIPrice"),
Collections.singletonList(so));

for(AssetData data : mgr.read(query))
{
AttributeData price = data.getAttributeData("FSIIPrice");

out.println("id:" + data.getAssetId());
out.println("price:" + price.getData());

out.println("
");
}
%>
</cs:ftcs>

The above code sorts and prints asset ids and price in the ascending order
of FSIIPrice,

id:Product_C:1114083739851 price:89.99
id:Product_C:1114083739757 price:99.95
id:Product_C:1114083739696 price:129.99
id:Product_C:1114083739301 price:129.99
id:Product_C:1114083739471 price:179.95
id:Product_C:1114083739350 price:189.95
id:Product_C:1114083739225 price:399.99
id:Product_C:1114083739596 price:899.95
id:Product_C:1114083739804 price:1399.99
id:Product_C:1114083739549 price:3799.95
id:Product_C:1114083739663 price:6999.99

• To reverse the sort order, change true to false in the highlighted line of the code
above.

Chapter 68
Asset API Read

68-8

Reading BlobObject
The Asset API defines a special class to represent file type of data, data that is stored
as a binary file. For example, the FSIIDocumentFile attribute in FirstSiteII is of type
blob.

• Use the following code to read FSIIDocumentFile from all Document_C instances
and print the asset ID, file name, and file size:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());

Query query = new SimpleQuery("Document_C", "FSII Document", null,
Collections.singletonList("FSIIDocumentFile"));

for(AssetData data : mgr.read(query))
{
AttributeData docAttr = data.getAttributeData("FSIIDocumentFile");
BlobObject fileObj = (BlobObject)docAttr.getData();
byte [] d = new byte[fileObj.getBinaryStream().available()];
fileObj.getBinaryStream().read(d);

out.println("id:" + data.getAssetId());
out.println("file name:" + fileObj.getFilename());
out.println("file size:" + d.length);

out.println("
");
}
%>
</cs:ftcs>

Retrieving Multi-Valued Attributes
The Asset API supports multi-valued attributes in the same way it supports single-
valued attributes. AttributeData contains a companion method, getDataAsList() to
retrieve multiple values.

Use the following code to print data contained in FSIIKeyword, a multi-valued attribute:

Note:

Because sample data that ships with FirstSiteII does not have data for the
FSIIKeyword attribute, this sample code does not print any keywords. Before
running this code, edit some FSIIDocument instances to add data for this
attribute.

Chapter 68
Asset API Read

68-9

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());

Query query = new SimpleQuery("Document_C", "FSII Document",
null, Collections.singletonList("FSIIKeyword"));

for(AssetData data : mgr.read(query))
{
AttributeData attrData = data.getAttributeData("FSIIKeyword");
List retData = attrData.getDataAsList();
out.println("id:" + data.getAssetId());

for(Object o : retData)
{
out.println("data:" + o);
}

out.println("
");
}
%>
</cs:ftcs>

Multilingual Assets: Retrieving Translations
The Asset API also provides interfaces and methods to deal with multilingual assets.
Basically, you have methods in DimensionableAssetManager to handle multilingual
assets. They deal with getting all the locales for a given asset and specific translation
of an asset.

Use the following example to first retrieve the translations for asset Page:
1118867611403 by using the getRelatives method in DimensionableAssetManager
with group set to Locale, and then use the getRelative method to get the fr_FR
translation of the asset:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.mda.DimensionableAssetManager"%>
<%@ page import="com.openmarket.xcelerate.asset.*"%>
<%@ page import="java.util.*"%>

<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
DimensionableAssetManager mgr =
(DimensionableAssetManager)ses.getManager(DimensionableAssetManager.class.getNam
e());

AssetId page_asset = new AssetIdImpl("Page", 1118867611403L);

for(AssetId id : mgr.getRelatives(page_asset, null, "Locale"))
{
out.println(id);
}

Chapter 68
Asset API Read

68-10

out.println("
");

AssetId fr_translation = mgr.getRelative(page_asset, "fr_FR");
out.println(fr_translation);

%>
</cs:ftcs>

Reading Asset and Attribute Definitions
In addition to asset data, APIs also provide access to their definitions. Information
such as the attributes that make up an asset definition or the type of each attribute can
be obtained through a manager called AssetTypeDefManager.

Use the following example to read all definition information from Document_C and print
it to the browser:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.def.*"%>
<%@ page import="java.util.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
 AssetTypeDefManager mgr = (AssetTypeDefManager)
ses.getManager(AssetTypeDefManager.class.getName());

AssetTypeDef defMgr = mgr.findByName("Document_C", "FSII Document");

out.println("Asset type description: " + defMgr.getDescription());
out.println("
");

for(AttributeDef attrDef : defMgr.getAttributeDefs())
{
out.println("Attribute name: " + attrDef.getName());
out.println("Attribute description: " + attrDef.getDescription());
out.println("is required: " + attrDef.isDataMandatory());
out.println("Attribute type: " + attrDef.getType());
out.println("
");
}

%>
</cs:ftcs>

Reading Key-Value Mappings
The Asset API provides access to a given CSElement or template's key-value
mapping pairs.

Use the following example to read all mapping pairs from a CSElement:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager mgr = (AssetDataManager)
(ses.getManager(AssetDataManager.class.getName()));

Chapter 68
Asset API Read

68-11

Condition c = ConditionFactory.createCondition("name", OpTypeEnum.LIKE,
"FSIICommon/Nav/LocaleForm");
Query query = new SimpleQuery("CSElement", null, c, null);
query.getProperties().setReadAll(true);
for (AssetData data : mgr.read(query))
{
 List<AttributeData> mappingArray =
(List<AttributeData>)data.getAttributeData("Mapping"). getData();
 for (int i=0; i<mappingArray.size(); i++)
 {
 HashMap mappingMap = (HashMap)mappingArray.get(i).getData();
 String key = (String)((AttributeData)mappingMap.get("key")).getData();
 String type =(String)
((AttributeData)mappingMap.get("type")).getData();
 String value = (String)((AttributeData)mappingMap.get("value")).getData();
 String siteid = (String)
((AttributeData)mappingMap.get("siteid")).getData();

 out.println("Mapping Entry #"+String.valueOf(i+1));
 out.println("
");
 out.println("Key: "+key);
 out.println("Type: "+type);

out.println("Value: "+value);

 out.println("Siteid: "+siteid);
 out.println("
");
 }
}
%>
</cs:ftcs>

Asset API Write
With the Asset API, you can perform write operations on basic assets and selected
types of flex assets. The write operations are asset creation, modification, and
deletion. The status field of an asset gets updated according to the action you perform.

The supported assets are basic assets, flex assets, and flex parents. These asset
types are not supported at present: Flex Parent Definition, Flex Asset Definition, Flex
Filter, and Flex Attribute. An UnsupportedOperationException is thrown if any write
operation (insert or update) is attempted on those asset types.

Topics:

• Creating New Assets

• Updating Existing Assets

• Deleting Existing Assets

• Multilingual Assets

Creating New Assets
Asset API uses the AssetDataManager.insert(List<AssetData> data) method to
create a new asset in WebCenter Sites. The method takes in a list of AssetData and
uses these AssetData to create assets in WebCenter Sites. If successful, the method
populates the passed in AssetData with the IDs of the newly created assets.

Chapter 68
Asset API Write

68-12

Asset API is able to create a new flex asset by combining the
AssetDataManager.newAssetData method and insert method. The newAssetData
method returns an empty AssetData with all the AttributeData objects populated
with null or empty List/Collection. The flextemplateid (for flex assets) or
flexgroupid (for flex parents) is automatically populated if the correct subtype is
specified.

• To create a new flex asset, use the following code:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="com.openmarket.xcelerate.asset.AssetIdImpl"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager adm = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
 MutableAssetData d = adm.newAssetData("Content_C", "FSII Article");
 d.getAttributeData("name").setData(New Content");
 d.getAttributeData("FSIIHeadline").setData("headline");
 d.getAttributeData("FSIIAbstract").setData("abstract");
 d.getAttributeData("FSIIBody").setData("body");

d.getAttributeData("Publist").setData(Arrays.asList("FirstSiteII"));
 d.setParents(Arrays.<AssetId>asList(new AssetIdImpl("Content_P",
1112192431478L)));
 adm.insert(Arrays.<AssetData>asList(d));
 out.println(d.getAssetId());
%>
</cs:ftcs>

• Asset API is also capable of creating new basic assets. To create a new basic
asset, use the following code:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager adm = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
 MutableAssetData d = adm.newAssetData("HelloArticle", "");
 d.getAttributeData("name").setData(New Hello Article");
 d.getAttributeData("headline").setData("headline");
 d.getAttributeData("byline").setData("abstract");
 d.getAttributeData("category").setData("g");
 BlobObject b = new BlobObjectImpl("filename.txt", null,
"body".getBytes());
 d.getAttributeData("urlbody").setData(b);

d.getAttributeData("Publist").setData(Arrays.asList("HelloAssetWorld"))
;
 adm.insert(Arrays.<AssetData>asList(d));
 out.println(d.getAssetId());
%>
</cs:ftcs>

Chapter 68
Asset API Write

68-13

• You can create a new Content_C asset of subtype FSIIArticle and set
myAPItestvanity.html as its vanity URL with the FSII webroot and an HTTP
response code of 200, as shown in this example:

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="com.openmarket.xcelerate.asset.AssetIdImpl"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager adm = (AssetDataManager) ses.getManager(
AssetDataManager.class.getName());
 MutableAssetData d = adm.newAssetData("Content_C", "FSII
Article");
 d.getAttributeData("name").setData("New Content");
 d.getAttributeData("FSIIHeadline").setData("headline");
 d.getAttributeData("FSIIAbstract").setData("abstract");
 d.getAttributeData("FSIIBody").setData("body");

d.getAttributeData("Publist").setData(Arrays.asList("FirstSiteII
"
));
 d.setParents(Arrays.<AssetId>asList(new
AssetIdImpl("Content_P",
 1112192431478L)));
.
 //Retrieve a AttributeData reference to the asset's
Webreference
 attribute containing a list of vanity urls for the asset
 AttributeData webReferenceAttrData =
 d.getAttributeData("Webreference");

 //Create new Vanity URL for this asset.
 // Specify the follwing:
 //String webroot: the name of the webroot to use
 //String url: the vanity url
 //Integer httpstatus: the http response code
 //Long patternid: id of WebReferencesPatterns entry. 0 for urls
not created
 from pattern.
 //boolean flag: indicates whether this the default vanity url
for this
 asset
 //String template: SiteCatalog path for Template
 //String wrapper: SiteCatalog path for Wrapper
 WebReference vanityURL = new WebReferenceImpl("FSII",
 "myAPItestvanity.html", new Integer("200"), 0L,
 true,"FirstSiteII/FSIILayout","FSIIWrapper");
 .
 //Set tthe asset's WebReference data attribute with the
updated list:

Chapter 68
Asset API Write

68-14

webReferenceAttrData.setDataAsList(Arrays.<WebReference>asList(vanit
yURL));

 //Save the asset
 adm.insert(Arrays.<AssetData>asList(d));
 out.println(d.getAssetId()+"
");
 .
 %>
</cs:ftcs>

Updating Existing Assets
Another operation that Asset API supports, in addition to insert, is update. Similar to
insert, update saves the data from AssetData into WebCenter Sites, but to an existing
asset. If the asset does not exist, then the update operation throws an exception.

To update existing assets, use the following code:

<%@ page import="com.openmarket.xcelerate.asset.AssetIdImpl"%>
<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>
<%
Session ses = SessionFactory.getSession();
AssetDataManager adm = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
Iterable<AssetData> assets = adm.read(Arrays.<AssetId>asList(new
AssetIdImpl("HelloArticle", 1238171255471L), new AssetIdImpl("Content_C",
1238171254486L)));
 List<AssetData> sAssets = new ArrayList<AssetData>();
 for (AssetData a : assets)
 {
 sAssets.add(a);
 a.getAttributeData("name").setData("Changed Name");
 }
 adm.update(sAssets);
%>
</cs:ftcs>

Deleting Existing Assets
AssetAPI also supports deletion of assets from WebCenter Sites.

Use the following code to delete assets from WebCenter Sites.

After removing all the references to the two assets, adm.delete can delete both assets
from WebCenter Sites. An exception is thrown if an asset is referenced by other
assets, or if the asset is invalid. The delete process stops when an exception is
thrown.

<%@ page import="com.openmarket.xcelerate.asset.AssetIdImpl"%>
<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.assetapi.query.*"%>
<%@ page import="java.util.*"%>
<cs:ftcs>

Chapter 68
Asset API Write

68-15

<%
 Session ses = SessionFactory.getSession();
 AssetDataManager adm = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
 adm.delete(Arrays.<AssetId>asList(new AssetIdImpl("HelloArticle",
1238171255471L), new AssetIdImpl("Content_C", 1238171254486L)));
%>
</cs:ftcs>

Multilingual Assets
Asset API supports the creation of multilingual assets. Creation of the assets requires
a two-step process. First, the asset is created and saved. Next, locale information is
added.

Use the following example to create a new Content_C asset and set the locale to
en_US.

<%@ page import="com.fatwire.system.*"%>
<%@ page import="com.fatwire.assetapi.data.*"%>
<%@ page import="com.fatwire.mda.*"%>
<%@ page import="com.fatwire.mda.DimensionableAssetInstance.
 DimensionParentRelationship"%>
<%@ page import="java.util.*"%>
<%@ page import="com.openmarket.xcelerate.asset.*"%>
<%@ page import="com.openmarket.xcelerate.common.*"%>
<cs:ftcs>

<%
Session ses = SessionFactory.getSession();

AssetDataManager adm = (AssetDataManager)
ses.getManager(AssetDataManager.class.getName());
MutableAssetData d = adm.newAssetData("Content_C", "FSII Article");
d.getAttributeData("name").setData(New Content");
d.getAttributeData("FSIIHeadline").setData("headline");
d.getAttributeData("FSIIAbstract").setData("abstract");
d.getAttributeData("FSIIBody").setData("body");
d.getAttributeData("Publist").setData(Arrays.asList("FirstSiteII"));
d.setParents(Arrays.<AssetId>asList(new AssetIdImpl("Content_P",
1112192431478L)));
adm.insert(Arrays.<AssetData>asList(d));
DimensionManager dam =
(DimensionManager)ses.getManager(DimensionManager.class.getName());
Dimension dim = dam.loadDimension("en_US");
d.getAttributeData("Dimension") .setData(Arrays.asList(new Dimension[]{dim}));
DimensionParentRelationship dpr = new DimParentRelationshipImpl("Locale",
d.getAssetId());
d.getAttributeData("Dimension-parent").setData(Arrays.asList(new
DimensionParentRelationship[]{dpr}));
adm.update(Arrays.<AssetData>asList(d));
%>
</cs:ftcs>

Development Strategies
In this topic you will learn about data types and attribute data (maps WebCenter Sites
data types to Java types) and query types (compares types of queries, their usage,
and supported operations). AttributeData includes information about the WebCenter

Chapter 68
Development Strategies

68-16

Sites-specific data type and the actual data. Using the Asset API, you can perform
generic/basic and flex queries. The query that you run may have restrictions on what
type of operation you can perform for a given data type.

Topics:

• Data Types and Attribute Data

• Query Types

• Data Types and Valid Query Operations

Data Types and Attribute Data
AttributeData contains information about the data type (WebCenter Sites specific
type) and the actual data. The types are defined by AttributeTypeEnum.
AttributeData.getData() and AttributeData.getDataAsList() return data objects
of a specific Java type.

This table maps WebCenter Sites types to their corresponding Java types.

Table 68-1 WebCenter Sites Data Types and Java Types

WebCenter Sites Data Type Java Type

INT Integer

FLOAT Double

STRING String

DATE Date

MONEY Double

LONG Long

LARGE_TEXT String

ASSET AssetId

BLOB BlobObject

Query Types
Using the Asset API, you can perform two kinds of queries: generic/basic and flex.

There are two different algorithms, one using the generic asset infrastructure (generic/
basic query), and the other using AssetSets and Search States (flex query). Note that
it is possible to use the generic/basic query for flex assets and basic assets; flex query,
however, works only for flex assets.

Each of these algorithms has its advantages and disadvantages. The Asset API seeks
to unify the querying mechanism and eventually let the API user not be concerned
about the choice of algorithm. However, at the present time as there is no equivalence
between these algorithms, the user needs to specify if she wants to use a specific
feature, offered by one of the two.

QueryProperties.setIsBasicSearch(true) sets the query algorithm to generic/
basic search for this query. It is set to false by default. For basic assets, the setting
does not matter.

Chapter 68
Development Strategies

68-17

Which type of query to choose? Very simply put, to look for basic attributes of a flex
asset, use the basic. Otherwise use the default. This works for most queries one
generally encounters. Things are a bit more subtle than that. Given below are other
considerations for each type of query.

Basic/Generic Query

• Cannot search on flex attributes if you do not specify subtype.

• Cannot search on a flex attribute that is not in the flex definition.

• Cannot sort on a flex attribute.

• Case sensitivity is not guaranteed (depends on the database).

• Only the AND operation is allowed between different fields (name=name1 AND
description=descr1 is allowed, but name=name1 AND name=name2 is not).

• Only OR is allowed for two conditions involving the same field name. The OR
condition does not work on flex attributes.

Flex Query

• Cannot have basic attributes in the condition (id, name, description, and so on).

• Cannot sort by basic attributes.

• Flex query works without a subtype being specified. The search applies to data of
all subtypes.

• Can use only the following operands in the condition: LIKE, EQUALS, BETWEEN, and
RICHTEXT.

Data Types and Valid Query Operations
Depending on the type of query being performed, there are further restrictions on what
type of operation is allowed for a given data type.

In general, a flex type query (which is the default for flex assets) allows only the
following OpTypeEnums; LIKE, EQUALS, BETWEEN, and RICHTEXT. Note that these are
the same operations available from AssetSet/SearchState tags.

To use other OpTypeEnums, you have to use basic/generic query (by setting
QueryProperties.setIsBasicSearch(true)). Such a query, of course, has to
adhere to the basic query rules above.

This table shows the allowed set of operations per data type (single-valued or multi-
valued) for a basic/generic query.

Table 68-2 Allowed Set of Operations

Data Type EQUALS NOT_EQ
UALS

LIKE GREATE
R

LESSTH
AN

BETWE
EN

RICHTE
XT

INT Y Y N Y Y – N

FLOAT Y Y N Y Y – N

STRING Y Y Y Y Y – N

DATE Y Y N Y Y – N

MONEY Y Y N Y Y – N

Chapter 68
Development Strategies

68-18

Table 68-2 (Cont.) Allowed Set of Operations

Data Type EQUALS NOT_EQ
UALS

LIKE GREATE
R

LESSTH
AN

BETWE
EN

RICHTE
XT

LONG Y Y N Y Y – N

LARGE_TEXT N N Y N N – N

ASSET Y Y N N N – N

BLOB N N N N N – N

The following table shows the allowed set of operations per data type (single-valued or
multi-valued) for the flex type query.

Table 68-3 Allowed Set of Operations per Data Type

Data Type EQUALS NOT_EQ
UALS

LIKE GREATE
R

LESS
THAN

BETWE
EN

RICHTE
XT

INT Y – N – – Y N

FLOAT Y – N – – Y N

STRING Y – Y – – Y N

DATE Y – N – – Y N

MONEY Y – N – – Y N

LONG Y – N – – Y N

LARGE_TEXT N – Y – – N Y

ASSET Y – N – – Y N

BLOB N – N – – N Y

Optional: Setting Up to Use the Asset API from Standalone
Java Programs

You can use the Asset API from JSP templates and also from a standalone Java
program. When you want to use this API from a Java program, set up a single
database connection or a connection pool outside WebCenter Sites.

Note:

In the following steps, we assume that all components are local to your
WebCenter Sites installation.

Before setting up a single database connection or pool:

1. Make sure the following files are in the classpath of your Java program:

• javaee.jar and tools.jar (both are available in JDK 1.5 and higher
versions).

Chapter 68
Optional: Setting Up to Use the Asset API from Standalone Java Programs

68-19

• ServletRequest.properties. This file can be copied from the WEB-INF/
classes folder.

• SSOConfig.xml, given that your WebCenter Sites installation has WEM
installed and single sign-on (in wcs_properties.json) is set to true. The
SSOConfig.xml file can be copied from the WEB-INF/classes folder.

• cs-cache.xml, ss-cache.xml, linked-cache.xml, and cas-cache.xml.

• SitesSecurityContext.xml. This file can be copied from the WEB-INF/
classes folder.

• All of the WebCenter Sites binary files (jar files in the WEB-INF/lib folder).

2. Continue with the steps in one of the following sections:

• To set up a single database connection:

• To set up a database connection pool:

To set up a single database connection:

1. Set the following system properties for your Java program:

cs.dburl=<JDBC_URL_to_connect_to_DB>
cs.dbdriver=<driverClass>
cs.dbuid=<dbUserName>
cs.dbpwd=<dbPassword>

2. Locate the WebCenter Sites installation folder and pass its name as a JVM
argument:

-Dcs.installDir=<install_dir>

To set up a database connection pool:

1. Add the following jar files to the classpath: commons-dbcp.jar (which ships with
WebCenter Sites) and commons-pool.jar (available from the Apache website).

2. Create the property file with the same name as your data source:

Note the following:

• The name of the data source is the value of the cs.dsn property (in
wcs_properties.json).

• The value of cs.dbconnpicture (also in wcs_properties.json) must refer to
cs.dsn (the combination of cs.dbconnpicture and cs.dsn must yield a valid
resource).

For example, the combination of

cs.dsn= csDataSource and

cs.dbconnpicture= java\:comp/env/$dsn

yields a valid resource:

java:/csDataSource

Therefore, you would name the property file csDataSource.properties (the
value of cs.dsn).

• When creating the property file, make sure to place it in the classpath of your
Java program.

3. When the property file is created, add the following keys to the file:

Chapter 68
Optional: Setting Up to Use the Asset API from Standalone Java Programs

68-20

driver=<driverClass>
url=<JDBC_URL_to_connect_to_DB>
maxconnections=<number_of_connections_to_pool>
user=<dbUserName>
password=<dbPassword>

4. Locate the WebCenter Sites installation folder and pass its name as a JVM
argument:

-Dcs.installDir=<install_dir>

Chapter 68
Optional: Setting Up to Use the Asset API from Standalone Java Programs

68-21

69
Using Public Site Search

WebCenter Sites includes a new framework for managing search indices. This
framework forms the basis for searches in both the editorial interface and on the live
site. That is, the visitors' side. Hence the name public site search.

Topics:

• About the Search Framework

• Index Types

• About Search API

• Advanced Configuration

About the Search Framework
The search framework consists of the Search API, special asset event listeners, and
a polling system for queues. You use this framework in coordination with the Event
Management and Queue Management frameworks. This topic focuses primarily on the
search framework.

Note:

You can skip this topic if you are primarily interested in the usage of the
search API.

The following figure shows how the search engine integration framework works with
the rest of WebCenter Sites.

69-1

Figure 69-1 Search Engine Integration

1. Asset framework detects changes/additions to assets and fires off events.

2. Registered listeners queue the changes, using a persistent queue implementation.
A given event can be queued into one or many persistent queues. Each queue
can be thought of as the source of data for a search index.

3. Once asset events are queued, a background process empties the queue contents
and routes them to the Search API.

4. The Search API chooses the appropriate (configurable) search engine vendor
implementation to start the indexing process.

Index Types
Two types of indices are created in WebCenter Sites: Global index and AssetType
index. Global index is the index of all data (all asset types enabled for Global index).
To search for a phrase or expression in multiple asset types (such as attempting to
build a Google-like search interface), Global index is more appropriate.

While Global index contains data for all fields of the index, it does not store the
data in a form that is suitable for parametric searches. An AssetType index contains
indexed information for a given asset type in a manner that can be searched
parametrically. The Admin interface supports the configuration of Asset Type searches,
which includes attribute-based searches for the indexing-enabled asset types. See
Adding Asset Types to the Search Index in Administering Oracle WebCenter Sites.

Topics:

Chapter 69
Index Types

69-2

• Global Index

• Asset Type Index

Global Index
Global index is used by the Oracle WebCenter Sites: Contributor interface to build a
global search UI. An instance of the index also exists on the delivery server. The index
on the delivery server can be used to build public site searches.

Only those assets that are published to the live site after search is configured are
available for searches. It is during publishing that the data gets indexed. All assets that
may exist on the live site before search is configured is not reflected in the Global
index (until the assets are re-indexed on the live site).

A search index functions roughly similar to a database table.

The following table describes the fields in Global index.

Note:

The field names are case-sensitive.

Table 69-1 Fields in the Global Index

Field name Description

defaultSearchField This contains all the data of the indexed asset. This is the field you
would search for in full-text searching.

This contains index data for all attributes of the asset, including any
binary field data. Data for all the attributes is merged into this single
field and indexed. The index itself does not 'store' data for this field, but
does allow full-text searching.

Note: Search strings must be entered in lowercase only, no capitals.

id This contains the asset ID.

AssetType This contains the asset type (Content_C/Product_P).

locale This contains the locale string (for example, en_US).

name This contains the name of the asset.

description Description associated with the asset.

subtype Name of the subtype (flex definition name).

subtypeid ID of the subtype (flex def ID).

updateddate Last updated date as found at the time of indexing.

siteid IDs of all sites in which this asset is available.

startdate Start date field in the asset table.

enddate End date field in the asset table.

Chapter 69
Index Types

69-3

Asset Type Index
An asset type index is created when it is enabled from the Admin interface by selecting
the Admin tab, then Search, and then Configure Asset Type Search. Once an asset
type is enabled, an index is created under /shared/lucene/<Asset type name>. This
index contains all attributes of the given type as fields in the index.

The following table describes the fields in the Content_C index.

Note:

The field names are case-sensitive.

Table 69-2 Fields in the Asset Type Index

Field Name Description

DefaultSearchField This contains all the data of the indexed asset. This is the field
you would search for in full text searching.

This contains index data for all attributes of the asset, including
any binary field data. Data for all the attributes is merged into this
single field and indexed.

The index itself does not 'store' data for this field, but does allow
full text searching.

Note: Search strings must be entered in lowercase only, no
capitals.

id This contains the asset ID

AssetType This contains the asset type (Content_C/Product_P)

locale Contains the locale string (example en_US)

name Name of the asset

description Description associated with the asset

subtype Name of the subtype (flex definition name)

subtypeid Id of the subtype (flex def ID)

updateddate Last updated date as found at the time of indexing.

siteid All site IDs this asset is available in

startdate Startdate field in the asset table

enddate Enddate field in the asset table

Dimension ID of the dimension

Dimension-parent ID of the Dimension parent

createdby User name that created this asset

createddate Date the asset was created

Publist List of site names this asset belongs to

Relationships Asset IDs of related items (flex only)

externaldoctype Not used

Chapter 69
Index Types

69-4

Table 69-2 (Cont.) Fields in the Asset Type Index

Field Name Description

filename File name used for static publishing

flextemplateid ID of the flex definition (flex only)

fw_uid Globally unique ID of this asset

path Path used for static publishing

renderid Object ID of the Template asset assigned to a flex asset.

ruleset XML document of the ruleset

status Status associated with the asset

subtype Subtype name

subtypeid Subtype ID (flex only)

template Template name

updatedby User name that last updated this asset

updateddate Date of last update

urlexternaldoc Not used

urlexternaldocxml Not used

FSIIAbstract Flex attribute

FSIIBody Flex attribute

FSIIByline Flex attribute

FSIIDescriptionAttr Flex attribute

FSIIHeadline Flex attribute

FSIINameAttr Flex attribute

FSIIPostDate Flex attribute

FSIISubheadline Flex attribute

FSIITemplateAttr Flex attribute

To visualize which fields are available in a given index, use the tool Luke, available at:

http://www.getopt.org/luke/

After you launch the tool, use the tool's browse function to load the index by
simply locating the folder that contains the index (for example: ../shared/lucene/
Content_C).

About Search API
When you use the Search API, you’ll work with the SearchEngine interface and
the QueryExpression interface.

Topics:

• SearchEngine

• QueryExpression

Chapter 69
About Search API

69-5

http://www.getopt.org/luke/

• Configuring Query Expression

SearchEngine
The SearchEngine interface defines the key functions of a search engine
implementation; indexing and searching. More information about SearchEngine is
available in the Java API Reference for Oracle WebCenter Sites.

• The source of index data is given to SearchEngine. SearchEngine, in response to
the indexing request, creates the search index (if it is not created), and updates
the contents based on the IndexSource accessors.

• index() works off of a given IndexSource instance. Depending on the search
engine's implementation details, it operates on new, modified, and deleted data
coming from the IndexSource (in most search engines, all that is modified must be
deleted first and then re-indexed).

index() also invokes index lifecycle methods (startIndexing() and
endIndexing()) on the given instance of IndexSource.

• search() operates on a QueryExpression against one or many indexes
(IndexSources), resulting in a single set of results, sorted by their relevance (or
SortOrder, if specified and usable across indices.

• A configuration lookup interface (IndexSourceConfig) is supplied to the
SearchEngine instance which it can look up IndexSource properties, if needed.

• A QueryConverter interface is supplied to SearchEngine. This interface converts
a given QueryExpression to its native form (recognizable by the specific search
engine). This makes it possible to control the query language that the search
engine uses externally.

• SearchResult is an abstraction over what is returned from the search engine.
SearchResult is an iterator over ResultRow, a sub class of IndexRow, that contains
relevance information. The getRelavence() method returns a double; the higher
the value, the higher is the relevance of this ResultRow for the given query.

QueryExpression
The QueryExpression interface is a generic interface for defining search criteria. All
search engines support native formats for building queries. The native form contains
definitions of wildcards, relevance hints, and so on. These tend to be very specific to
each search engine.

Search engines also provide a basic query construct, which can be programmatically
built (AND & OR over field matches). These can be thought of in terms of generalized
programmable interfaces, although limited in power.

QueryExpression encapsulates four distinct characteristics of search engine queries:

• Native text search format: Most search engines support a very sophisticated native
format for search, including wild cards, special hints, and so on. This is available
through getStringFormat().

• Conjunction and disjunction: ANDs and ORs of conditions using and() and or()
methods.

• Pagination: Using getStartIndex() and getMaxResults() methods.

Chapter 69
About Search API

69-6

• Sorting: using getSortOrder().

Configuring Query Expression
1. Ensure search indexing is enabled:

In the SystemEvents table, verify that the SearchIndexEvent is enabled (enabled
field =1). This is configured to run in the background constantly (*:*:* */*/*);
in practice it runs about every 30 seconds.

2. Make sure Asset listener is registered:

Assets are queued for processing by the search framework, using asset events.
The asset events are registered in the AssetListener_reg table. Make sure the
entry in the following table exists. Add it if it doesn't exist.

Table 69-3 AssetListener_reg Table

ID Listener Blocking

1153937286234 com.openmarket.basic.event.SearchAssetIdEve
ntListener

Y

IndexSourceMetaDataConfig: table that stores configuration information for
IndexSource. This describes the structure and nature of the index itself. This should
have a row for Global by default. Any asset type enabled for Asset type index has an
additional row in this table.

SearchEngineMetaDataConfig: stores the search engine configuration. This table
should have a row for Lucene, by default.

These are configured correctly by the installer and managed by the Admin interface.

Defaults here should suffice. See Advanced Configuration.

Advanced Configuration
While in most cases you will find that the defaults are sufficient, in some use cases you
may need to configure Lucene parameters and AnalyzerFactory.

Topics:

• Configuration of Lucene Parameters

• Configuration of Custom AnalyzerFactory

Chapter 69
Advanced Configuration

69-7

Configuration of Lucene Parameters

Note:

Some parameters can cause significant changes in the way the index
performs at run time. Refer to the Lucene documentation and rely on
experimentation to determine the best settings for your site. It is highly
advised that you keep the defaults unless you have compelling reasons to
change them.

In the Lucene search engine, an index can be created with a certain set of parameters
that determine how the index is created and how it performs. While the Lucene default
parameters are reasonable, WebCenter Sites provides administrators with a way to
change them.

The SearchEngineMetaDataConfig table contains one row per index. Each row has
a field named properties whose contents are used to configure Lucene parameters.
Parameter-value pairs are separated by a semicolon (';') as shown below:

param1=value1;param2=value2

This table describes the parameters supported by WebCenter Sites.

Table 69-4 Parameters Supported by WebCenter Sites

Parameter Type Description

mergeFactor Integer Determines how often segment indices are
merged.

With smaller values, less RAM is used while
indexing, and searches on unoptimized indices
are faster, but indexing speed is slower.

With larger values, more RAM is used during
indexing, and while searches on unoptimized
indices are slower, indexing is faster. Thus
larger values (> 10) are best for batch index
creation, and smaller values (< 10) for indices
that are interactively maintained.

This must never be less than 2. The default
value is 10.

maxMergeDocs Integer Determines the largest number of documents
ever merged. Small values (for example, less
than 10,000) are best for interactive indexing,
as this limits the length of pauses while
indexing to a few seconds. Larger values
are best for batched indexing and speedier
searches.

Defaults to max integer value (231-1).

Chapter 69
Advanced Configuration

69-8

Table 69-4 (Cont.) Parameters Supported by WebCenter Sites

Parameter Type Description

maxBufferedDocs Integer Determines the minimal number of documents
required before the buffered in-memory
documents are merging and a new Segment
is created.

Defaults to 10.

optimizeInterval Integer Determines the time interval (in seconds)
between optimize() calls. The default value is
30 seconds, which is the recommended value
for most systems. To allow a large amount of
data changes, set this parameter to any value
within the range of 300 to 600 seconds.

commitLockTimeout Long Sets the maximum time to wait for a commit
lock (in milliseconds).

Defaults to 10000.

maxFieldLength Integer Maximum number of terms that are indexed
for a single field in a document. This limits
the amount of memory required for indexing,
so that collections with very large files will not
crash the indexing process by running out of
memory.

Note that this effectively truncates large
documents, excluding from the index terms
that occur further in the document. To support
large source documents, be sure to set
this value high enough to accommodate
the expected size. If you set it to max
value of Integer (231-1), then the only limit
is memory, but you should anticipate an
OutOfMemoryError.

By default, no more than 10,000 terms will be
indexed for a field.

Chapter 69
Advanced Configuration

69-9

Table 69-4 (Cont.) Parameters Supported by WebCenter Sites

Parameter Type Description

termIndexInterval Integer Sets the interval between indexed terms.
Large values cause less memory to be used
by IndexReader, but slow random-access to
terms. Small values cause more memory to be
used by an IndexReader, and speed random-
access to terms.

This parameter determines the amount
of computation required per query term,
regardless of the number of documents that
contain that term. In particular, it is the
maximum number of other terms that must
be scanned before a term is located and its
frequency and position information may be
processed.

In a large index with user-entered query
terms, query processing time is likely to be
dominated not by term lookup but rather by the
processing of frequency and positional data.
In a small index or when many uncommon
query terms are generated (for example, by
wildcard queries) term lookup may become a
dominant cost. In particular, numUniqueTerms/
interval terms are read into memory by an
IndexReader, and, on average, interval/2terms
must be scanned for each random term
access.

Default value is 128.

useCompoundFile String (must be
yes or no)

Setting to turn on usage of a compound file.
When on, multiple files for each segment are
merged into a single file once the segment
creation is finished.

writeLockTimeout Long Sets the maximum time to wait for a write lock.

Default value is 1000.

Configuration of Custom AnalyzerFactory
In Lucene, an Analyzer represents a policy for extracting index terms from text.
Analyzers are used at the time of indexing and searching for various tasks such as
removing stop words and removing white spaces.

Different Analyzers exist in the Lucene repository for handling various locales.
Often Analyzers are used for injecting synonyms or addressing accented characters
gracefully. You can also build your own Analyzer by using any of the Lucene standard
analyzers as a basis.

The WebCenter Sites Lucene implementation uses StandadAnalyzer, a general
purpose analyzer for the English language. However, WebCenter Sites supports
custom Analyzers through a plugin interface, AnalyzerFactory. The configured
AnalyzerFactory is used to look up the analyzer, when required, in the process of
indexing or searching. The AnalyzerFactory looks up the analyzer in the following
instances:

Chapter 69
Advanced Configuration

69-10

• When building the index as a whole

• When parsing a query

• When indexing an individual row

To plug in a custom AnalyzerFactory, you have to implement and register
the AnalyzerFactory interface. Registration is done by modifying a row in the
SearchEngineMetaDataConfig table. Add the following to the properties field of the
row whose Name field is set to Lucene.

AnalyzerFactory=<fully qualified class name of your custom
AnalyzerFactory>

Chapter 69
Advanced Configuration

69-11

Part XIX
Coding with Developer Tools

Developer Tools, a toolkit used to integrate Oracle WebCenter Sites with the Eclipse
Integrated Development Environment (IDE), lets you work in a distributed environment
using the Eclipse IDE and version control systems (VCS).

Topics:

• About Developer Tools

• Installing and Configuring Developer Tools

• Introducing Developer Tools Features in Eclipse

• Developing JSPs with Developer Tools

• Creating Templates for Mobile Websites Using Developer Tools

• Synchronizing and Exchanging Data Using Developer Tools

• Using Workspaces in Developer Tools

• Using Developer Tools Command Line Interface (CLI)

• Integrating Developer Tools Workspaces with Version Control Systems

• Using Developer Tools to Manage and Exchange Resources

• Using the Developer Tools Command Line Interface (CLI) to Create Reusable
Modules

70
About Developer Tools

Oracle Developer Tools lets you integrate WebCenter Sites with the Eclipse IDE so
you can create a personal and flexible development environment.

Topics:

• Introduction to Developer Tools Architecture

• IDE Integration

• The Developer Tools Workspace

• Connecting to WebCenter Sites Instances

• Synchronization

• JSP Management

• Command Line Interface (CLI)

• About Using a Version Control System

Introduction to Developer Tools Architecture
You and other developers like you would like to work in personal and flexible
environments. Integrate WebCenter Sites with the Eclipse IDE to create an
environment that improves your productivity. You interact with Developer Tools (and
therefore WebCenter Sites), primarily through Eclipse. And, you get a rich set of
functions for managing WebCenter Sites resources.

Developer Tools may be running on any computer (local or remote). Whether
managed through Eclipse or in WebCenter Sites, the resources can be either
automatically or manually synchronized by the Developer Tools kit.

For example, Eclipse-managed resources are stored as files in a file system, giving
developers the option to integrate with a version control system of their choice. If
the resources are modified and WebCenter Sites is running, then the resources
are automatically synchronized, that is, imported into WebCenter Sites, in its native
database representation. Manual synchronization can be performed in both directions.

This figure shows a summary of Developer Tools:

70-1

Figure 70-1 Developer Tools Process Flow

IDE Integration
With Eclipse, you can create and manage templates and elements, export and import
assets, preview pages, and so on.

• Create, edit, and delete CSElement, Template, Controller, SiteEntry assets, and
SiteCatalog and ElementCatalog entries.

• Develop JSP elements with standard Eclipse features such as tag completion,
syntax highlighting, and debugging.

• Export and import assets, asset types, flex families, sites, roles, tree tabs, and
start menu items.

• Preview WebCenter Sites pages within the Eclipse IDE using an embedded
preview browser.

• View the WebCenter Sites log file in a dynamically refreshing panel.

Chapter 70
IDE Integration

70-2

• Integrate with version control systems.

Note:

Integrating Developer Tools with Eclipse embeds the Admin and Oracle
WebCenter Sites: Contributor interfaces in Eclipse to make them easily
accessible to developers. The Admin interface is used in many parts of this
guide (for example, to create flex families). See What Can You Do in the
Contributor Interface? inUsing Oracle WebCenter Sites.

The Developer Tools Workspace
WebCenter Sites resources that you manage in Eclipse are stored as files in a file
system structure called the main Developer Tools workspace.

This structure enables resources to be easily managed and exchanged with
WebCenter Sites instances. The main Developer Tools workspace is the only
workspace accessible from Eclipse.

Note:

Creating a custom workspace is optional. In most distributed environments
the only necessary workspace is the main Developer Tools workspace.
Custom workspaces are not accessible from Eclipse. Creating a custom
workspace is described in Using Workspaces in Developer Tools. All other
Developer Tools topics in this guide discuss the main Developer Tools
workspace.

Connecting to WebCenter Sites Instances
Developer Tools enables you to connect to any local or remote WebCenter Sites
instance. Each WebCenter Sites instance that you integrate with Eclipse is assigned
an Eclipse project and each project is displayed in the main Developer Tools
workspace. The Eclipse project tracks the WebCenter Sites resources stored in
Eclipse for that WebCenter Sites instance.

You can connect to as many WebCenter Sites instances (locally and remotely) as
you want; an Eclipse project folder is created for each instance you connect to. See
Understanding Projects and Workspaces in Eclipse.

Synchronization
With the Developer Tools kit, you synchronize resources in Eclipse with those in
WebCenter Sites. This way you ensure that the Developer Tools workspace and
WebCenter Sites database contain the same content.

Manual synchronization is bi-directional; that is, you can import resources into the
WebCenter Sites database and export resources to the Developer Tools workspace.

Chapter 70
The Developer Tools Workspace

70-3

Exporting resources to Eclipse converts the resources into files. Importing a resource
into WebCenter Sites converts the resource to native WebCenter Sites format
(database representation).

Note:

Automatic synchronization occurs when WebCenter Sites resources are
edited, created, or deleted in Eclipse, but only if the WebCenter Sites
instance is running. This synchronization includes transparent flushing of
page and resultset caches in WebCenter Sites.

JSP Management
The Developer Tools kit exposes WebCenter Sites JSPs as individual files in the
Developer Tools workspace for you to manage the JSPs as any other JSP file.

That is, you can create, edit, and debug your JSPs as any other JSP file.

Command Line Interface (CLI)
With the Developer Tools kit’s command line interface you can automate import
and export tasks and large-scale resource movement. You can also create custom
workspaces, and synchronize resources with any workspace.

The Eclipse integration lets you work only with resources stored in the main Developer
Tools workspace.

About Using a Version Control System
A version control system lets you check out resources to any target system, including
testing servers, Management WebCenter Sites systems, or another developer's
WebCenter Sites instance, to make use of their functions (such as publishing). Your
Developer Tools kit supports version control system. So, you can implement one
to be able to exchange resources between WebCenter Sites instances and your
colleagues. You also can update your workspace with the resources checked in by
other developers.

The figure shows an example of using Developer Tools with a version control system.
This example uses a dedicated WebCenter Sites instance to publish resources to a
Management WebCenter Sites instance. Therefore, the Approval/Publishing feature
provided by WebCenter Sites can be used to publish resources that were checked
out from the version control system. This example is the recommended way to use a
version control system with Developer Tools, but it is not required.

Chapter 70
JSP Management

70-4

Figure 70-2 Using Developer Tools with a Version Control System

Chapter 70
About Using a Version Control System

70-5

71
Installing and Configuring Developer Tools

Would you like to start managing WebCenter Sites resources in Eclipse? Set up
Developer Tools on your machine and integrate your instance of WebCenter Sites with
Eclipse.

For information about installing, configuring, and updating Developer Tools, as well as
managing WebCenter Sites resources in Eclipse, see these topics:

• Prerequisites

• Setting Up Developer Tools

• Updating Developer Tools

• Managing WebCenter Sites Resources in Eclipse

• Uninstalling Developer Tools

Prerequisites
Are you planning to set up Developer Tools on your system? Here are some important
points that you should keep in mind before you set up Developer Tools.

• The Developer Tools plug-in you need to integrate with the Eclipse IDE and
the executable JAR file for the command line interface are both located in the $
{Oracle Home}/wcsites/clients directory of your WebCenter Sites installation.

• The Developer Tools and Eclipse IDE work with JDK 1.8 and higher versions only.
If you use JDK versions lower than 1.8, then the Eclipse IDE plugin reports that it
is running on a lower platform than specified, and this might cause code runtime
errors due to an unmatched platform.

• Determine whether you will be connecting to a local or remote WebCenter Sites
instance.

• After you have integrated Eclipse with WebCenter Sites, you must log in to
WebCenter Sites with general administrator credentials (for example, fwadmin/
xceladmin). This user must be a part of the RestAdmin group.

• To use the command line interface feature:

– Developer Tools requires access to the CAS internal URL for the WebCenter
Sites instance to which you are connecting. The CAS internal URL is specified
during the Oracle WebCenter Sites installation. The internal URL must be
publicly accessible for Developer Tools to access it.

See Configuring the CAS Primary Cluster Node in Installing and Configuring
Oracle WebCenter Sites.

– You must have an advanced knowledge of Developer Tools. See Using
Developer Tools Command Line Interface (CLI).

71-1

Setting Up Developer Tools
To set up Developer Tools, you install the Developer Tools Plug-in, integrate
WebCenter Sites with it, and enable code completion on remote hosts. You also
need to know how to work with existing resources using Developer Tools and how to
manage resources.

• How to Install the Developer Tools Plug-in

• How to Verify the Developer Tools Plug-In Installation

• How to Integrate WebCenter Sites with the Eclipse IDE

• How to Enable Code Completion for Remote Hosts

• How to Use Developer Tools to Work with Existing Resources

• How to Manage WebCenter Sites Resources

• How to Work with a Pre-Existing Project in Eclipse

How to Install the Developer Tools Plug-in
1. Download the Eclipse package that suits your development needs. The Eclipse

IDE for Java EE Developers is recommended for development on WebCenter
Sites. You can download Eclipse from the following URL:

http://www.eclipse.org/downloads/

2. Locate the clients/eclipse-plugin folder in your WebCenter Sites installation
directory (${Oracle Home}/wcsites/clients/eclipse-plugin). This folder
contains the the developer Tools plug-in com.oracle.sites.developer-tools.zip
files.

3. Start Eclipse (run eclipse.exe).

Note:

Eclipse installs plug-ins from local file system (or archive) locations and
remote locations. The location of a plug-in is referred to as a software
site. For the Developer Tools plug-in, the software site is the path to the
Developer Tools plug-in on the file system.

4. From the Eclipse menu, choose Help, then choose Install New Software.

The installation wizard opens showing Available Software).

5. On the Available Software page, click Add (located to the right of the Work with
field).

6. In the Add Repository dialog, fill in the following fields, and then click OK.

• In the Name field, enter a unique name for the Developer Tools plug-in.

• In the Location field, click Archive to specify the location (software site) of the
Developer Tools plug-in located in the clients/eclipse-plugin folder.

Chapter 71
Setting Up Developer Tools

71-2

http://www.eclipse.org/downloads/

The installation wizard picks up the Developer Tools plug-in from the specified
location (software site), and lists the name of the plug-in on the Available Software
page.

7. On the Available Software page, select Oracle WebCenter Sites Developer
Tools, then click Next .

Figure 71-1 Installation Wizard: Available Software Listing the Developer Tools Plug-In

The Install Details page opens.

8. On the Install Details page, click Finish .

Figure 71-2 Installation Wizard: Install Details Window

Chapter 71
Setting Up Developer Tools

71-3

Note:

The version numbers in all figures are for representation purpose only.
These numbers may differ depending upon which WebCenter Sites
version you use.

9. During the installation process, a Security Warning dialog opens. Click OK to
continue with the installation.

10. After the installation completes successfully, the Software Updates dialog open.

To ensure WebCenter Sites is running, access ${base_url}/HelloCS, where $
{base_url} is the base URL for your WebCenter Sites instance. For example,
if your base URL is http://example:8080/cs, then http://example:8080/cs/
HelloCS is the verification URL for your WebCenter Sites instance.

11. Restart Eclipse by clicking Yes in the Software Updates dialog.

Restarting Eclipse refreshes the plug-in cache and makes the Developer Tools
plug-in available in Eclipse.

How to Verify the Developer Tools Plug-In Installation
1. After Eclipse restarts, verify that the Developer Tools plug-in is installed

successfully. From the Eclipse menu, choose Help, then choose About Eclipse.

The About Eclipse dialog opens showing the Developer Tools icon in the list of
installed plug-ins.

Figure 71-3 About Eclipse Dialog

2. Open the Oracle WebCenter Sites perspective by clicking the Open Perspective
icon, located on the top right of the Eclipse IDE. In the Open Perspective dialog,
select Oracle WebCenter Sites, then click OK.

Chapter 71
Setting Up Developer Tools

71-4

Figure 71-4 Open Perspective: Oracle WebCenter Sites

How to Integrate WebCenter Sites with the Eclipse IDE
If you are setting up Developer Tools for the first time, the configuration form is
automatically displayed.

If you have connected to a WebCenter Sites instance and want to connect
to a different instance, navigate to the WebCenter Sites toolbar and click the
ConfigurePreference wizard to open the configuration form.

To integrate WebCenter Sites with the Eclipse IDE, enter information for the
WebCenter Sites instance to which you want to connect into the configuration form, as
follows:

Chapter 71
Setting Up Developer Tools

71-5

Figure 71-5 Configuration Form

1. In the Instance field, do one of the following, depending on whether you are
connecting to a local or remote host:

Note:

A remote connection supports the creation of multiple projects on the
same remote host. Local connections support only one project at a time.

• If you are connecting to a local host, click Browse to select the locations of the
config folder (which contains the wcs_properties.json file for the WebCenter
Sites instance).

• If you are connecting to a remote host (for example, http://example:8080/
cs), enter the path to the host in the format [host]:[port]/[path]. (You must
prefix either http:// or https:// .)

After you enter a value in the Instance field, the following fields are automatically
populated. The values of these fields are based on whether you specified a local
or remote host in the Instance field:

• Remote Connection: If you are connecting to a remote host, the value is set
to true. If you are connecting to a local host, the value is set to false.

• Host IP Address: Specifies the IP address of the host to which you are
connecting.

• Port: Specifies the port number of the host to which you are connecting.

• Web Context Path: Specifies the context path to the host.

• Workspace: Specifies the location of the Developer Tools workspace (Eclipse
project).

Chapter 71
Setting Up Developer Tools

71-6

• Sites Context Root: If you are connecting to a local host, this field contains
the path of the WebCenter Sites web application. If you are connecting to a
remote host, this field is blank.

2. In the Project name field, enter a name for the project on which you will be
working.

3. In the Username field, enter the user name of a general administrator. This user
must be a member of the RestAdmin group.

4. In the Password field, enter the password for the user name.

5. Select the Go Online checkbox to access the server and work with the
WebCenter Sites resources in Eclipse.

6. Click Test Connection.

A dialog opens stating that the connection was successful.

7. In the dialog box, click OK.

8. In the configuration form, click OK.

The Oracle WebCenter Sites perspective opens. The following figure shows how
the Oracle WebCenter Sites perspective look if you are accessing WebCenter
Sites-integrated Eclipse for the first time.

Note:

You are not required to open the Oracle WebCenter Sites perspective
to work with WebCenter Sites resources.

Chapter 71
Setting Up Developer Tools

71-7

Figure 71-6 Oracle WebCenter Sites Perspective

If the Oracle perspective renders as shown in the figure above, then you have
successfully set up Developer Tools. When WebCenter Sites is integrated with Eclipse,
you are not required to open the Oracle WebCenter Sites perspective to work with
WebCenter Sites resources.

Note:

The panels containing the Eclipse and Developer Tools views are
interchangeable. To move a view to a different panel, click the view's tab
and drag it to the panel.

How to Enable Code Completion for Remote Hosts
1. Copy the WEB-INF directory from the remote computer to your local file system. It

is recommended that you copy it into your Eclipse project folder, located under the

Chapter 71
Setting Up Developer Tools

71-8

workspace folder you created when you initially integrated Eclipse with WebCenter
Sites.

2. In the Project view in Eclipse, right-click the WEB-INF folder and select Properties.

The Properties for WEB-INF window opens.

Figure 71-7 Properties for WEB-INF Window

3. In the Location field, click Edit.

The Edit a Link Location window opens.

Figure 71-8 Edit a Link Location Window

4. In the Location field, click Folder... and then navigate to the location of the
WEB-INF folder you copied from step 1. Then, click OK.

5. In the Properties for WEB-INF window, click OK.

This enables Eclipse to perform tag completion and proper syntax highlighting.

Chapter 71
Setting Up Developer Tools

71-9

Note:

Code completion is enabled automatically for local instances.

How to Use Developer Tools to Work with Existing Resources
If you upgraded your WebCenter Sites system and want to use Developer Tools to
work with resources created before this release (existing resources), see What You
Should Know About Using Developer Tools with Pre-Existing Resources.

How to Manage WebCenter Sites Resources
To quickly get started with managing WebCenter Sites resources in the Oracle
WebCenter Sites perspective, continue to Managing WebCenter Sites Resources in
Eclipse.

How to Work with a Pre-Existing Project in Eclipse
When you integrate Eclipse with a WebCenter Sites instance, you specify the name
and location of your workspace. Upon subsequent access of this workspace, you must
log in with the credentials you specified in the Configuration form when you initially
integrated WebCenter Sites with the Eclipse IDE. Otherwise, you will be working offline
and have no access to WebCenter Sites resources in Eclipse.

To work with a pre-existing project in the Eclipse IDE:

1. Open the Eclipse IDE and select the workspace associated with the WebCenter
Sites instance you want to work with.

Eclipse opens, however, you are working in offline mode.

2. To go online and gain server access to the WebCenter Sites instance, do one of
the following:

• Select any WebCenter Sites component in Eclipse.

For example:

a. Click the Create New Template icon.

An Error dialog opens with a message stating that your current project is
currently offline.

b. Click Yes.

The Credentials dialog opens.

c. In the Credentials dialog, enter the username and password for the
WebCenter Sites instance to which you want to connect, and then click
Go Online.

• Open the Configuration form and enter your credentials for the WebCenter
Sites instance to which you want to connect, as follows:

a. In the WebCenter Sites toolbal, click the ConfigurePreferences icon.

The Configuration form opens.

Chapter 71
Setting Up Developer Tools

71-10

b. In the Configuration form, enter your credentials into the Username and
Password fields.

c. Select the Go Online checkbox.

Figure 71-9 Configuration Form

d. Click OK.

You are now working online and can create and manage WebCenter Sites
resources in Eclipse.

Updating Developer Tools
Here are the steps you need to perform after you’ve upgraded your WebCenter Sites
installation.

• How to Update the Location of the Developer Tools Plug-In

• How to Check for Updates to Existing Plug-Ins

• How To Verify That the Developer Tools Plug-In Has Been Updated

How to Update the Location of the Developer Tools Plug-In
1. Ensure that the updated Developer Tools plug-in (com.oracle.sites.developer-

tools.zip) is available in the {$Oracle Home}/wcsites/clients/eclipse-plugin
directory.

2. Start Eclipse (execute eclipse.exe).

3. From the Eclipse menu, choose Help, then choose Install New Software.

The Available Software dialog opens.

4. In the Available Software dialog box, click Add.

5. In the Add Repository dialog, fill in the following fields, and then click OK.

Chapter 71
Updating Developer Tools

71-11

• In the Name field, enter a name for the Developer Tools plug-in

• In the Location field, click Archive to specify the location of the updated
plug-in, then click OK.

Figure 71-10 Add Repository Dialog

6. In the Available Software dialog box, select the update for the Developer Tools
plug-in and then click Next.

Figure 71-11 Available Software: Select Updated Plug-in

The Install Details dialog opens showing updated plug-in was installed
successfully.

7. In the Install Details dialog, click Finish.

8. Restart Eclipse for the changes to take effect.

Chapter 71
Updating Developer Tools

71-12

How to Check for Updates to Existing Plug-Ins
1. From the Eclipse menu, choose Help, then choose Check for Updates.

The Available Updates dialog opens.

2. Select Oracle WebCenter Sites Developer Tools, then click Next.

The Update Details dialog opens.

3. Click Finish.

4. During the update process, a Security Warning dialog opens. Click OK to continue
the update.

5. After the update completes successfully, the Software Updates dialog opens.
Before proceeding to the next step, start your local WebCenter Sites instance
and restart Eclipse by clicking Yes in the Software Updates dialog.

How To Verify That the Developer Tools Plug-In Has Been Updated
After Eclipse restarts, verify that the Developer Tools plug-in has been successfully
updated to the latest version.

1. From the Eclipse menu, choose Help, then choose About Eclipse.

The About Eclipse dialog opens showing the Developer Tools icon in the list of
installed plug-ins.

Figure 71-12 About Eclipse Dialog

2. In the About Eclipse dialog, click the Developer Tools icon.

The About Eclipse Features window opens, showing the version details of the
Developer Tools plug-in.

Chapter 71
Updating Developer Tools

71-13

Figure 71-13 About Eclipse Features Window

Managing WebCenter Sites Resources in Eclipse
In Eclipse, you can create, edit, and otherwise manage code-based WebCenter Sites
resources.

• Template assets

• Controller assets

• SiteEntry assets

• CSElement assets

• ElementCatalog Entries

• SiteCatalog Entries

See these topics that summarize the steps for managing resources in Eclipse:

• How to Create Resources

• How to Display Developer Tools Views in Panels

• How to Export and Import Data Between WebCenter Sites and Developer Tools

Chapter 71
Managing WebCenter Sites Resources in Eclipse

71-14

How to Create Resources
1. Start your local WebCenter Sites.

2. Start Eclipse.

3. Open the Oracle WebCenter Sites perspective:

From the Eclipse menu, choose Window, then choose Perspective, then Open
Perspective, then Other, and then select Oracle WebCenter Sites.

4. Create any or all of the following resources:

• To create a Template asset, click the Create New Template icon and fill in the
forms.

• To create a new Controller asset, click the Create New Controller icon and fill
in the form.

• To create a CSElement asset, click the Create New Element icon and fill in
the forms.

• To create a SiteEntry asset, click the Create New Site Entry icon and fill in the
forms.

• To create an ElementCatalog entry, click the Create New Element Catalog
Entry icon and fill in the forms.

• To create a SiteCatalog entry, click the Create New SiteCatalog Entry icon
and fill in the forms.

For field definitions and information about Template, CSElement, SiteEntry assets
and SiteCatalog and ElementCatalog entries, see Creating Template, CSElement,
and SiteEntry Assets. For field definitions and information about Controller assets,
see Creating a Controller.

5. When you click Save, the resource you created is automatically imported into
WebCenter Sites.

6. To manage the resources you create, edit, delete, or share with other sites use the
Sites Workshops Elements view. Right-click the resource and select an option.
For information about the available options, see Workspace.

How to Display Developer Tools Views in Panels
1. Start your local WebCenter Sites.

2. Start Eclipse.

3. Open the Oracle WebCenter Sites perspective:

From the Eclipse menu, choose Window, then choose Open Perspective, then
Other, and then Oracle WebCenter Sites.

4. Select Window, then Show View, and then Other.

5. In the Show View dialog, select a view (located under the Oracle WebCenter
Sites folder):

• Sites UI shows the embedded Admin and Oracle WebCenter Sites:
Contributor interfaces.

• Sites Log View shows the log file for WebCenter Sites.

Chapter 71
Managing WebCenter Sites Resources in Eclipse

71-15

• Developer Reference shows the Tag Reference for Oracle WebCenter Sites
Reference and Java API Reference for Oracle WebCenter Sites only if you
have associated the Tag Reference and Javadoc with your current WebCenter
Sites instance.

• Sites Workspace Elements provides access to code-related resources. This
view shows the resources in a tree and groups each resource according to its
site affiliation.

• Logging Configuration shows a dynamically updating view of the Log ODL
configuration. In this view you can set the log levels of each WebCenter Sites
logger.

• Preview Browser shows an embedded preview browser.

• Template View, shows all the Template assets created in Eclipse and any
Template assets exported from WebCenter Sites to Eclipse.

See About Developer Tools Views.

How to Export and Import Data Between WebCenter Sites and
Developer Tools

1. Start your local WebCenter Sites.

2. Start Eclipse.

3. Open the Oracle WebCenter Sites perspective:

From the Eclipse menu, choose Window, then choose Open Perspective, then
Other, and then Oracle WebCenter Sites.

4. Select the SynchUp icon. The synchronization tool enables you to either export
data from WebCenter Sites to the Developer Tools workspace or import data to
WebCenter Sites from your Developer Tools workspace.

• For a quick overview of using the synchronization tool, see Data
Synchronization (Export/Import) Tool.

• For detailed information about synchronizing resources, see Synchronizing
and Exchanging Data Using Developer Tools.

Uninstalling Developer Tools
Uninstalling Developer Tools only takes a few clicks.

To uninstall Developer Tools:

1. Close the Oracle WebCenter Sites Perspective (along with any views associated
with the Oracle WebCenter Sites perspective).

2. From the Eclipse menu, choose Window, then choose Preferences.

The Preferences dialog opens.

3. Select Install/Update, then click the Uninstall or update link.

Chapter 71
Uninstalling Developer Tools

71-16

Figure 71-14 Preferences: Install/Update

4. On the Eclipse Installation Details page, select the Developer Tools plug-in and
then click Uninstall .

Chapter 71
Uninstalling Developer Tools

71-17

Figure 71-15 Eclipse Installation Details

5. On the Uninstall Details page, click Finish to proceed with the process of
uninstalling the Developer Tools plug-in.

6. After the update completes successfully, the Software Updates dialog opens. Click
Yes to restart Eclipse.

Restarting Eclipse refreshes the plug-in cache and completely removes the
Developer Tools plug-in from Eclipse.

Chapter 71
Uninstalling Developer Tools

71-18

72
Introducing Developer Tools Features in
Eclipse

In the WebCenter Sites-integrated Eclipse IDE, you can create projects, workspaces,
and a variety of views, export and import data, and do much more.

Topics:

• About the Oracle WebCenter Sites Perspective

• Understanding the Configuration Form

• Understanding Projects and Workspaces in Eclipse

• About Developer Tools Views

• Data Synchronization (Export/Import) Tool

About the Oracle WebCenter Sites Perspective
All Developer Tools functionality in Eclipse is grouped under the Oracle WebCenter
Sites perspective. However, you do not have to open the perspective to work with
WebCenter Sites components. These components are available as long as Eclipse is
integrated with a WebCenter Sites instance.

To open the Oracle WebCenter Sites perspective, select Window, then select Open
Perspective, then Other, and then Oracle WebCenter Sites.

The following figure shows the Oracle WebCenter Sites perspective:

72-1

Figure 72-1 Oracle WebCenter Sites Perspective

The following views are available in Eclipse when Developer Tools is successfully
integrated with WebCenter Sites:

• Project Explorer and Sites Work (displayed in the left navigation pane)

• Templates View (displayed in the right navigation pane)

• Error Log, Sites UI, and Sites Preview Browser (displayed on the bottom of the
Eclipse IDE)

• Wizards (displayed in the WebCenter Sites toolbar, at the top of the Eclipse IDE)

• Sites Log

• Sites Logging Configuration

• Sites Developer Reference

See About Developer Tools Viewsand Understanding Projects and Workspaces in
Eclipse.

Chapter 72
About the Oracle WebCenter Sites Perspective

72-2

Understanding the Configuration Form
The configuration form opens automatically the first time you access a WebCenter
Sites-integrated Eclipse. In this form you specify the WebCenter Sites instance with
which you want to work.

On subsequent access, you can open the configuration form by selecting the
ConfigurePreference wizard on the WebCenter Sites toolbar.

Figure 72-2 Configuration Form

The configuration form requires the path to the WebCenter Sites installation directory,
a WebCenter Sites user that is part of the RestAdmin group, and a project name for the
WebCenter Sites instance. After you fill in all the required information, Developer Tools
determines several other parameters for your WebCenter Sites instance, showing
them in read-only fields. In addition, the Test Connection button enables you to
determine whether Developer Tools is connected to the specified WebCenter Sites
instance. The Go Online checkbox provides you the option of working online or offline.
If you deselect this box, you will still have access to all the WebCenter Sites vies in
Eclipse, however, you will not be able to create or edit WebCenter Sites resources.
Click OK to create the project. If you chose to work online, clicking OK also logs you in
to the WebCenter Sites instance and refreshes all the WebCenter Sites views.

Understanding Projects and Workspaces in Eclipse
Each WebCenter Sites instance that you access through Eclipse is assigned an
Eclipse project. The Eclipse project's folder is displayed in the Project Explorer view.
You’ll need this project for tracking Developer Tools workspace items. Only one project
is created by default for each WebCenter Sites instance and only one WebCenter
Sites instance can be serviced by a project.

Chapter 72
Understanding the Configuration Form

72-3

Note:

The main purpose of the project is to facilitate information tracking and
process Eclipse events. Projects are managed by the Developer Tools plug-
in. Do not open, close, or modify the project.

Each Eclipse project includes the following elements:

• datasource: This folder is linked to the location to which all your data is exported.
For local connections, this folder is linked directly to the config folder under
<sites-home> in your file system. For remote connections, this folder is created
inside the project (envision) folder, which is linked to the datastore of the
WebCenter Sites instance to which you are connected.

• src: By default, Developer Tools provides you with one src folder which contains
all the Controller assets you have exported from WebCenter Sites. The resources
in this folder can be checked in to a version control system. This folder
remains empty until you export Controllers from WebCenter Sites to your Eclipse
workspace.

• WEB-INF: This folder contains links to the current WebCenter Sites instance's
WEB-INF folder. For remote connections, you must manually link this folder to the
WEB-INF folder for the WebCenter Sites instance to which you are connected. See
How to Enable Code Completion for Remote Hosts.

This figure shows a sample Eclipse project folder.

Figure 72-3 Sample Eclipse Project

About Developer Tools Views
Several different views are available to help you preview different aspects of your site.
For instance, you can preview code-related resources, assets, template assets in their
hierarchy, pages, and even Admin and Contributor interfaces in an embedded browser.

Chapter 72
About Developer Tools Views

72-4

See these topics about the views available in Developer Tools:

• Workspace

• Log Viewer

• Templates View

• Preview View

• Sites View

• Controllers View

• Logging Configuration View

• Developer Reference View

• Wizards

Workspace
This view provides access to code-related resources. The resources are grouped
according to their site affiliation. When you select a resource, a quick summary of that
resource is shown in the text box at the bottom of the view.

Figure 72-4 Workspace View

Right-click a resource in the tree to view the available management options. The
options that are displayed depend on the resource you select:

Chapter 72
About Developer Tools Views

72-5

• Show Metadata: Shortcut to the .main.xml file, which contains the metadata of
the selected item.

• Site Entry: View the resource's site entry, share the site entry with other sites,
create a new site entry, and delete a site entry.

• Share: Manage the sites with which this resource is associated.

• Properties: Manage properties of this resource, such as cache criteria and default
arguments.

• Delete: Delete this resource.

Log Viewer
This view shows a dynamically updating record of the WebCenter Sites log file. This
view can be used to monitor the behavior of your Eclipse-integrated WebCenter Sites
instance.

Figure 72-5 Log File

Templates View
This view provides a hierarchical view of the Template assets you created in Eclipse
and any Template assets you exported from WebCenter Sites into Eclipse. Click the
Sort option to group templates by either their associated device groups or sites.

The following figure shows the Template view in the Eclipse IDE.

Chapter 72
About Developer Tools Views

72-6

Figure 72-6 Templates View

Preview View
This view provides a quick way to preview pages. To preview a web page with this
view, enter the URL of the page in the address bar and press Enter or click Go. To
refresh the current page, use the Ctrl + R keyboard shortcut or click Go.

Figure 72-7 Sites Preview Browser View

Chapter 72
About Developer Tools Views

72-7

Sites View
This view shows the Admin and Oracle WebCenter Sites: Contributor interfaces in
an embedded browser. This is equivalent to using either the Admin interface or
Contributor interface in a standalone browser.

Figure 72-8 Sites View

Controllers View
This view shows the Controller Asset Utility form, which is used to view and manage
Controller assets.

This form is also available in the Admin interface (select the General Admin tree,
expand Admin, then System Tools, and then double-click Controller).

Figure 72-9 Controllers View

Chapter 72
About Developer Tools Views

72-8

Logging Configuration View
If your WebCenter Sites system is using ODL, this view shows a dynamically updating
Configure Log ODL form. The Configure Log ODL form enables you to view current
loggers, change logger levels, add new loggers, and search logs.

Figure 72-10 Configure Log ODL Form

See Using the Configure Log ODL Tool in Administering Oracle WebCenter Sites.

Developer Reference View
This view contains tabs for Tag Reference for Oracle WebCenter Sites Reference,
Java API Reference for Oracle WebCenter Sites, and Java API Reference for Oracle
WebCenter Sites: Visitor Services.

Wizards
Wizards can be invoked from either the Oracle menu or the WebCenter Sites toolbar.
They enable you to create code-based WebCenter Sites resources.

Figure 72-11 Wizards

Chapter 72
About Developer Tools Views

72-9

The following wizards are available: Create New Template, Create New Controller,
Create New Element, Create New SiteEntry, Create New Element Catalog Entry,
and Create New SiteCatalog Entry.

See How to Create Resources.

Data Synchronization (Export/Import) Tool
This tool lets you synchronize resources in your workspace with those in your
WebCenter Sites instance, and vice versa.

The data synchronization tool, accessible from the SynchUp wizard on the WebCenter
Sites toolbar, provides you with two tabs:

• Export (Sync Resources to Workspace from WebCenter Sites)

• Import (Sync Resources to WebCenter Sites from the Workspace)

Export (Sync Resources to Workspace from WebCenter Sites)
The Export tab is used to export data from the IDE-integrated WebCenter Sites to
your Developer Tools workspace. In the process, Developer Tools serializes selected
resources (transforms database representations into files) and copies the serialized
representation to the Developer Tools workspace. You then can modify the resources
in Eclipse.

The following figure shows the Export tab in the Synchronize Data form:

Figure 72-12 SynchUp Icon / Export Tab

To export items from WebCenter Sites to your workspace:

1. Select the items you want to export. To narrow down the list of items, go to the
regex search bar and enter the name of the asset type you are searching for. To
search for multiple asset types, enter a comma-separated list.

Chapter 72
Data Synchronization (Export/Import) Tool

72-10

2. Click Export and Close.

The assets you exported to your Developer Tools workspace are now listed in the
Sites Work tree tab.

Import (Sync Resources to WebCenter Sites from the Workspace)
The Import tab is used to import resources from your Developer Tools workspace into
the IDE-integrated WebCenter Sites. In the process, Developer Tools transforms the
selected resource to its native WebCenter Sites representation and copies it to the
WebCenter Sites database.

The following figure shows the Import tab in the Synchronize Data form.

Figure 72-13 SynchUp Icon / Import Tab

To import items into WebCenter Sites from the Workspace:

1. Select the items you want to import. To narrow down the list of items, go to the
regex search bar and enter the name of the asset type you are searching for.

2. Click Import and Close.

Chapter 72
Data Synchronization (Export/Import) Tool

72-11

73
Developing JSPs with Developer Tools

You can develop WebCenter Sites JSPs using the native Eclipse JSP editor using
Developer Tools kit. Eclipse uses tag libraries and JAR files of your the current
WebCenter Sites instance, and it also supports WebCenter Sites style of syntax
highlighting and debugging.

Topics:

• JSP Development with Developer Tools

• Tag and Java API Completion

• Debugging

JSP Development with Developer Tools
Developing WebCenter Sites JSPs using the native Eclipse JSP editor is a convenient
and productive experience. This is because the Eclipse JSP editor includes support for
WebCenter Sites tag and Java API completion, syntax highlighting, and debugging.

The following figure shows an example of a WebCenter Sites JSP in the Eclipse editor:

Figure 73-1 Eclipse JSP Editor

73-1

WebCenter Sites JSPs can include page caching, resultset caching, and associated
metadata such as Template assets, CSElement assets, or ElementCatalog entries.
The metadata of a JSP enables WebCenter Sites to track and manage it. Developer
Tools handles a JSP's underlying WebCenter Sites processes transparently, including
tracking the JSP and its corresponding metadata. If your WebCenter Site instance
is running, and you save a JSP in Eclipse, the Developer Tools kit automatically
synchronizes those changes with the WebCenter Sites instance. Any metadata
associated with the JSP is also synchronized with WebCenter Sites. This enables
you to view the changes in WebCenter Sites as soon as you save the JSP in Eclipse.

Tag and Java API Completion
In Eclipse you find tag and Java API completion features. Eclipse uses the tag libraries
and JAR files of the current WebCenter Sites instance to provide the appropriate code
completion for WebCenter Sites related tags and Java APIs.

For local hosts, the WebCenter Sites tag libraries and JAR files are automatically
linked to your Eclipse project, and contained within the Eclipse project folder (located
in the Project Explorer view). For remote hosts, the WebCenter Sites tag libraries and
JAR files must be manually copied from the remote host to your Eclipse project. See
Setting Up Developer Tools.

• The tag libraries are contained in the futuretense_cs folder under the WEB-INF
folder.

• The JAR files are contained in the WEB-INF/lib folder.

Note:

When you use the tag and Java API completion feature, keep in mind
the following:

– Make sure you follow strict JSP coding standards so that your code
can be deployed on any application server.

– Eclipse code completion shows all public Java methods contained
within the WebCenter Sites JARs. Only use the APIs described
in the WebCenter Sites documentation. Using undocumented
functionality is risky and unsupported.

In Eclipse, the tag and Java API completion features display information about each
tag and piece of Java code you use when managing a WebCenter Sites JSP. For
example, when you are working with a WebCenter Sites JSP and you begin to type the
name of a tag, a window opens listing code completion suggestions. Then, a second
dialog opens containing information about each suggestion.

Chapter 73
Tag and Java API Completion

73-2

Figure 73-2 Tag and Java API Completion Feature

In addition to the code completion feature, the Javadoc, Visitor Services API, and Tag
Reference are made accessible in the Sites Developer Reference view. See Sites
Developer Reference View.

Debugging
If you would like to debug Java and JSP code in Developer Tools, you should first
attach the debugger to the JVM process that runs WebCenter Sites. We recommend
this especially when you plan to do remote debugging.

To attach the WebCenter Sites JVM, follow the instructions provided by Eclipse at the
following URL:

http://www.ibm.com/developerworks/library/os-ecbug/

After the JVM is attached to the debugger, you can set breakpoints in your JSP and
Java code, view variables, and so on.

Chapter 73
Debugging

73-3

http://www.ibm.com/developerworks/library/os-ecbug/

74
Creating Templates for Mobile Websites
Using Developer Tools

When you’re creating templates for mobile websites, in the Sites view you can see
templates under each asset type. And, the template variants that you create show up
under each template. In the Device Groups (suffixes) view, you can view asset types
under each device group instead. These views offer you a convenient development
experience.

Topics:

• About Mobility Support in Developer Tools

• Creating Mobile Templates from the Sites Workspace Tab

• Creating Mobile Templates in Sites and Device Groups Views

About Mobility Support in Developer Tools
The Mobility feature in Developer Tools allows you to create websites for mobile
devices.

See Configuring WebCenter Sites to Support Mobile Websites.

Creating Mobile Templates from the Sites Workspace Tab
The templates (default and mobile) you exported from your WebCenter Sites instance
to Eclipse show under the Workspace tab. You can recognize mobile templates
by their developer-defined suffix. For example, a template that you created for a
touchscreen device may include the _Touch suffix.

You can create mobile templates from an existing template. To create a template for
mobile websites:

1. In either the Sites Workspace Elements tab (located in the left panel), expand
the node of the site for which you want to create a mobile template.

Note:

A mobile template is associated with one or more device groups (that is,
a group of devices with similar features) by a developer-defined suffix.

This figure shows the expanded MarketingSite tree containing the Home.jsp
template for the default device group (for desktop and laptop devices):

74-1

Figure 74-1 Home.jsp Template Element Displayed Under the MarketingSite
Node

2. Right-click the template on which you want to base the mobile template. From
the context menu, choose Create Device Group Template and then choose the
name of the device group for which you want to create the template (see the next
figure).

Note:

Multiple device groups can share the same suffix. If you do not see
the device group in the list, a template defined by the same suffix as
that device group may have been created. For more information about
developer-defined suffixes, see Configuring WebCenter Sites to Support
Mobile Websites.

Figure 74-2 Create Device Group Template Context Menu

Chapter 74
Creating Mobile Templates from the Sites Workspace Tab

74-2

The Create New Template dialog opens showing fields with fixed and modifiable
property values that the template wizard copied from the source template (the
Home_Touch template of the MarketingSite in this example).

3. Edit the properties in the modifiable fields according to your mobile template
requirements, and then click Finish .

Figure 74-3 Create New Template Form for the Home_Touch Mobile
Template

The file name of the mobile template is listed in the Sites Workspace Elements
tab.

Chapter 74
Creating Mobile Templates from the Sites Workspace Tab

74-3

Figure 74-4 Home_Touch.jsp Displayed in the Sites Workspace Elements
Tab

The mobile template is named Home_Touch, where Home is the name of the
template and _Touch is the suffix defined for the device group for which this
template was created.

4. Modify the code of your new mobile template in the native Eclipse JSP editor.

Creating Mobile Templates in Sites and Device Groups
Views

You can view template variants by grouping templates by sites or suffixes. In the Sites
view, templates are shown under each asset type and template variants under each
template. This view is especially useful when you and other developers are working on
different templates. This view lets you can create template variants anytime you want,
without waiting for others to complete their work. In the Device Groups (suffixes) view,
asset types are available under each device group so that developers of each suffix or
device group can work simultaneously on their template variants.

To create template variants in Sites view:

1. On the toolbar, click the down arrow, then choose Group by, then Sites from the
context menu.

Chapter 74
Creating Mobile Templates in Sites and Device Groups Views

74-4

Figure 74-5 Group by Sites

2. Under your site, expand template for which you wish to create variants. For
example, if you wish to create a template variant for non-touch device group,
you may choose the Touch template which may be quite similar to non-touch and
create its variant. You can then edit this new variant for non-touch as required.

Figure 74-6 Site Tree Expanded to Show Suffixes

3. Do one of the following, as required:

• To create a template variant for a single device group, right-click a similar
variant under the template, then choose Create Device Group Template, and
then the device group for which you wish to create a template variant.

Chapter 74
Creating Mobile Templates in Sites and Device Groups Views

74-5

Figure 74-7 Create Device Group Template

The Create New Template dialog pre-populated with corresponding values for
the target variant is displayed.

Figure 74-8 Create a Single Template

Make your changes, if any, then click Finish. The new variant is displayed
under the template for which you created it.

Chapter 74
Creating Mobile Templates in Sites and Device Groups Views

74-6

• To create template variants for multiple device groups, right-click the template,
then choose Bulk Generate Device Group Template. In the multiple
selection dialog, choose the device groups to create their template variants
for the corresponding suffixes.

Figure 74-9 Multiple Variants Selection

Click OK. The new variants are displayed under the template for which you
created them.

4. Edit the template code as required, and save your changes.

To create template variants for device groups:

1. On the toolbar, click the down arrow, then choose Group by, then Device Groups
from the context menu.

2. Expand the templates by device groups.

3. Under the asset type for which you wish to create a template, do one of the
following, as required:

• To create a variant of a template, right-click the template under the asset type
node, then choose Create Device Group Template , and then choose the
device group for which you wish to create a template variant.

Chapter 74
Creating Mobile Templates in Sites and Device Groups Views

74-7

Figure 74-10 Template Variant Context Menu

The Create New Template dialog pre-populated with corresponding values for
the target variant is displayed.

• To create multiple variants of a template, right-click the template, choose Bulk
Generate Device Group Template. In the multiple selection dialog, choose
the device groups to create their template variants for the corresponding
suffixes.

4. Edit the template code as required, and save your changes.

Chapter 74
Creating Mobile Templates in Sites and Device Groups Views

74-8

75
Synchronizing and Exchanging Data Using
Developer Tools

The export/import feature lets you synchronize and exchange data. The Developer
Tools kit uses ID and site mapping processes that enable you to exchange resources
between WebCenter Sites instances.

Topics:

• Synchronization Using Developer Tools

• Synchronization Scenarios

• About Dependency Resolution

• ID Mapping

• Working with Site Mappings

Synchronization Using Developer Tools
Synchronization is the bidirectional flow of resources between a WebCenter Sites
instance and its associated workspace. Using Developer Tools, you can export and
import asset types, assets, site definitions, site catalogs, and also remap your site.

Using Developer Tools, you can perform these synchronization operations:

• Export/import assets with built-in dependency resolution and ID mapping

• Export/import asset types, such as flex families and AssetMaker asset types

• Export/import site definitions, roles, start menu items, and tree tabs

• Export/import SiteCatalog and ElementCatalog entries

• Perform site re-mapping; for example, creating reusable modules which can be
imported into any WebCenter Sites CM site (command line interface operation)

Exporting or importing all resources of a given site enables you to track the entire site
in a version control system. Advanced developers can use the command line interface
to re-map the resources of one site to another by creating reusable modules (custom
workspaces).

Synchronization Scenarios
Resources synchronize automatically, or you synchronize them as the need arises.
Code-based resources synchronize automatically when you create or edit them with
Developer Tools.

If WebCenter Sites is running, resources between WebCenter Sites and Eclipse are
automatically synchronized when the following actions are performed in Eclipse:

75-1

• Code-based resources (Templates, CSElements, SiteEntries, ElementCatalog
entries, and SiteCatalog entries) are created with the Developer Tools wizards
in Eclipse.

• Code-based resources (Templates, CSElements, and ElementCatalog entries)
stored in the Developer Tools workspace are edited in Eclipse. This includes edits
to JSP files, XML files, metadata, and other files associated with the resource.

For example, if you edit a resource's associated JSP file in the Eclipse editor, the
Developer Tools kit automatically synchronizes the changes into the WebCenter
Sites instance. Using the Eclipse editor, advanced developers can also edit
metadata files (.main.xml) of flex definitions, and the Developer Tools kit
automatically synchronizes the changes into WebCenter Sites. However, Oracle
recommends using the Admin interface to modify flex definitions.

In certain cases, resources must be manually synchronized using either the
Synchronization tool in the Eclipse IDE or (for advanced developers) the command
line interface. Manual synchronization is required for the following situations:

• The Eclipse editor is not used to edit resources stored in the Developer Tools
workspace; for example, when resources are copied to the Developer Tools
workspace from a shared network file system or a version control system.

• WebCenter Sites resources are modified in the WebCenter Sites interfaces.

Note:

The Eclipse IDE provides an embedded Admin interface. However,
Eclipse does not detect the changes that are made using this interface.
Therefore, working in the embedded Admin interface is the same as
working in a standalone browser running the Admin interface.

• WebCenter Sites is not running while you are creating or editing resources in the
Eclipse IDE. After WebCenter Sites is restarted, you must manually synchronize
the resources you created or edited.

The command line interface is used to synchronize resources mainly for deployment
purposes, such as nightly builds that are deployed to test servers. For example,
an advanced developer can embed a synchronization command into a script for
an automated deployment procedure. See Using Developer Tools Command Line
Interface (CLI).

About Dependency Resolution
WebCenter Sites resources often depend on other resources. For example, first
you create a flex definition before you create the flex asset itself. In turn, the flex
definition depends on a set of attributes and possibly other resources. Therefore, all
flex constructs require that the flex family exist on the system.

To import a flex asset into an empty WebCenter Sites system, you must first create a
flex family to which the flex asset will be associated. Then, create the following:

1. Create the flex attributes; for example, name, address, age, and so on.

2. Create the flex parent definitions.

3. Create flex definitions.

Chapter 75
About Dependency Resolution

75-2

4. Create the flex parents.

5. Create flex assets.

When you export a flex asset, the Developer Tools kit performs all dependency
resolutions for that asset and automatically exports all of its dependencies. Therefore,
you only have to select the resource (such as the flex asset) and the Developer Tools
kit computes all of the asset's dependencies.

Note:

The Developer Tools kit does not resolve a resource's dependency on site
definitions. This enables you to choose whether you want to export or import
an entire site, a subset of sites, or completely ignore site definitions (for
example, if you are using the command line interface to create a reusable
module that can be imported into any site). For a detailed example of
creating a reusable module, see Using the Developer Tools Command Line
Interface (CLI) to Create Reusable Modules.

ID Mapping
Each resource created in WebCenter Sites is assigned a unique local identifier. A
resource's local identifier is unique to the WebCenter Sites instance on which it was
created. Since multiple WebCenter Sites instances are used to create resources, it is
possible for two different resources, on separate WebCenter Sites instances, to have
the same local identifier.

See these topics:

• About ID Mapping

• Overriding a Resource's fw_uid

• What You Should Know About Using Developer Tools with Pre-Existing Resources

About ID Mapping
To uniquely identify resources, the Developer Tools kit assigns each resource a
globally unique identifier (fw_uid), which is unique across all WebCenter Sites
instances. In addition, when you import a resource into a WebCenter Sites instance,
the Developer Tools kit assigns a new local identifier to that resource on that instance.
If the resource references other assets (such as associations, asset pointers, and
flex definitions), a new local identifier is generated for each of those assets. On
subsequent imports to that WebCenter Sites instance, the resources are assigned the
same local identifier. The Developer Tools kit maintains the resources' fw_uid values
across all WebCenter Sites instances. If the resource and its referenced assets are
imported back into their original WebCenter Sites instance, the Developer Tools kit
re-maps their local identifiers back to their original value.

Chapter 75
ID Mapping

75-3

Note:

Certain WebCenter Sites resources, such as Template assets, flex attributes,
and tree tabs have unique name constraints. To avoid name conflicts, make
sure each resource is uniquely named across all WebCenter Sites instances.

For example, Developer A is working with a WebCenter Sites instance named
CS1, and Developer B is working with a WebCenter Sites instance named CS2.
Both developers created a completely different Template asset. Developer A created
Template A, and Developer B created Template B. The two Template assets have
different fw_uid values and different names. However, since local identifiers are
randomly assigned, both Template assets, by chance, have been assigned the same
local identifier (12345). Developers A and B want to exchange Template assets
between each other's WebCenter Sites instances. Developer A wants to import
Template B into the CS1 instance, and Developer B wants to import Template A into
the CS2 instance.

The next figure illustrates the steps both developers take to exchange Template assets
between their WebCenter Sites instances. Both Template assets' local identifiers are
re-mapped when imported into the other developer's WebCenter Sites instance. When
Template A is imported into the CS2 instance, the system assigns it the local identifier
52563. When Template B is imported into the CS1 instance, the system assigns it the
local identifier 22342. In each case, the fw_uid values for both Template assets remain
the same.

Note:

To exchange resources between WebCenter Sites instances, the developers
in our examples use a VCS or shared file system. See Integrating Developer
Tools Workspaces with Version Control Systems.

Chapter 75
ID Mapping

75-4

Figure 75-1 Exchanging Two Different Assets with the Same Local Identifier
Between Two WebCenter Sites Instances

In the next figure, Developer A wants to deploy Template A to the Deployment
WebCenter Sites instance (managed by the system administrator), and Developer B
wants to deploy Template B to the same instance. Both Template assets have the
same local identifier (12345).

Developers A and B each export their Template to the main Developer Tools
workspace for their WebCenter Sites instance. They then copy their Templates to a
VCS or shared file system. From here, the system administrator copies both Template
assets to the Deployment WebCenter Sites' main Developer Tools workspace. The
system administrator then imports the two Template assets from the workspace to the
Deployment WebCenter Sites. Upon import, the system assigns both Templates a new
local identifier. Template A is assigned the local identifier of 45678, and Template B is
assigned the local identifier of 98765. The assets' fw_uid values remain the same.

Chapter 75
ID Mapping

75-5

Figure 75-2 Deploying Two Different Assets with the Same Local Identifier to a
Third WebCenter Sites Instance

When a resource is exported to a workspace, it is identified by its fw_uid .
ElementCatalog and SiteCatalog entries are not assigned an fw_uid because these
entries are uniquely identified by element name.

Overriding a Resource's fw_uid
When a resource is created, a UUID value is automatically generated as its globally
unique identifier and stored in an asset attribute named fw_uid. Advanced developers
can use the Asset API to override the default fw_uid scheme with their own by
modifying the fw_uid attribute. See the Java API Reference for Oracle WebCenter
Sites.

Chapter 75
ID Mapping

75-6

Note:

Oracle recommends using the default WebCenter Sites fw_uid scheme. If
you override a resource's default fw_uid value, make sure the value is
unique across all WebCenter Sites instances. After you set a resource's
fw_uid attribute, do not change the value.

What You Should Know About Using Developer Tools with Pre-
Existing Resources

If your Oracle WebCenter Sites system is an upgrade from FatWire Content Server,
some of its pre-existing resources may have their fw_uid values set to CSSystem:
[type]:id. However, as of Content Server version 7.6, a resource's fw_uid is
generated as a UUID value. Developer Tools can map resources with either type
of fw_uid value, if the resource's fw_uid value is globally unique. Therefore, you
can continue to use a pre-existing resource's current fw_uid value (in the format of
CSSystem:[type]:id).

When using Developer Tools to work with pre-existing resources, do one of the
following (or both):

• Oracle recommends continuing to use the pre-existing resource's fw_uid value
of CSSystem:[type]:id. However, you must ensure that no other WebCenter
Sites instance has generated the same fw_uid value for a different resource. For
example, if you have a WebCenter Sites development instance and you published
resources to a management instance, then the fw_uid values of the published
resources remain the same on both instances. Therefore, synchronizing resources
between these two instances using Developer Tools does not result in ID conflicts.

• If you have pre-existing resources that were created on separate FatWire Content
Server instances but with identical fw_uid values, then each of those resources
must be assigned a new, unique fw_uid value. To avoid ID conflicts, you can
either remove the current fw_uid value and allow Developer Tools to generate a
new UUID value when you export the resource from a WebCenter Sites instance,
or you can assign your own unique identifier to the resource. See Overriding a
Resource's fw_uid.

Note:

If you assign a resource a new fw_uid, make sure to assign the new
fw_uid value to every instance of that resource. For example, if you
published the resource to another WebCenter Sites instance before
modifying its fw_uid value, make sure you assign the same fw_uid to
both copies of that resource.

Working with Site Mappings
Most WebCenter Sites resources, such as assets, are associated with at least one
site. When a resource is exported from a WebCenter Sites instance to a workspace,

Chapter 75
Working with Site Mappings

75-7

it stores a complete (canonical) list of sites with which it is associated in its .main.xml
file. The resource's canonical list remains the same on every WebCenter Sites
instance, unless you add a new site affiliation, remove a current one, or (if you are an
advanced developer) override the resource's natural site mapping using the command
line interface.

See these topics:

• About Natural Site Mappings

• About Overriding Natural Site Mappings With the Command Line Interface (CLI)

About Natural Site Mappings
By default, Developer Tools maps resources to their associated sites by referencing
the canonical list stored in a resource's .main.xml file. If any of the sites referenced
in this list exist on the WebCenter Sites instance to which the resource is imported,
then Developer Tools maps the resource to those sites. If none of the sites referenced
in the resource's canonical list exist on the WebCenter Sites instance, then the import
fails.

For example, Developer A installs two sites: News and Sports. On a separate
WebCenter Sites instance, Developer B also installs two sites: News and Weather.
Both developers import the same Template asset into their WebCenter Sites instances.
This Template asset is associated with both the Sports and Weather sites (both sites
are referenced in the asset's canonical list). Upon import, Developer Tools references
the Template asset's canonical list and then maps the asset to the Sports site on
Developer A's environment and the Weather site on Developer B's environment.

When Developers A and B share the changes they made to the Template asset
with each other, Developer Tools maps the asset to the appropriate sites on both
WebCenter Sites instances. The canonical list enables Developer Tools to recognize
the sites with which the Template asset is associated, even when the asset is exported
into an instance where some of those sites are not installed.

About Overriding Natural Site Mappings With the Command Line
Interface (CLI)

Advanced developers can use the command line interface to import a resource into
sites that are not referenced in its canonical list. This interface enables you to create
reusable modules, which are workspaces containing resources that can be imported
into any site.

For example, a developer creates a blogging solution within the FirstSiteII sample site.
This solution includes resources such as a flex family, assets, and Templates. The
developer wants the resources to be imported into various sites, including sites that do
not exist yet. Since he is an advanced developer, he uses the command line interface
to export the resources to an empty workspace, and then archives the content of this
workspace (using a .zip or .tar format). Using the command line interface, other
developers can then customize the site mappings of the resources contained in this
module and manually specify the sites into which the module is imported.

See Using Developer Tools Command Line Interface (CLI)and Using the Developer
Tools Command Line Interface (CLI) to Create Reusable Modules.

Chapter 75
Working with Site Mappings

75-8

76
Using Workspaces in Developer Tools

Developer Tools stores resources exported from an integrated WebCenter Sites
instance. The storage structures for each type of resource such as assets, code-based
resources, attribute editor, and asset type is different. Continue reading to know how
each storage structure is designed.

For information about using workspaces in Developer Tools to store resources, see
these topics:

• Introduction to Workspaces

• Workspace Structure

• Asset Storage Structure

• Code-Based Resource Storage Structure

• Attribute Editor Storage Structure

• Asset Type Storage Structure

Introduction to Workspaces
A workspace is a disk-based repository of serialized WebCenter Sites data that
represents resources from either the workspace's WebCenter Sites instance or
another instance's workspace. Workspaces can store any type of WebCenter Sites
resource including assets, flex families, sites, and so on. Each workspace is
associated with one WebCenter Sites instance.

By default, Eclipse provides each WebCenter Sites instance with a main Developer
Tools workspace (located in the Eclipse project folder) that is used for continuous
development when working in the Eclipse IDE. Custom workspaces can be created by
advanced developers using the Developer Tools command line interface. See Using
Developer Tools Command Line Interface (CLI). Custom workspaces can be used for
special projects, such as creating modules.

With the use of a version control system (such as Subversion) or a shared file system,
resources stored on one workspace can be exchanged with other workspaces. Any
resource exported from a WebCenter Sites instance into the associated workspace
can be copied to another WebCenter Sites instance's workspace. This makes the
resource available for import into the second workspace's associated WebCenter Sites
instance. For more information about sharing resources between different workspaces,
see Integrating Developer Tools Workspaces with Version Control Systems.

Workspace Structure
All workspaces have the same structure. The main Developer Tools workspace is the
only visible workspace in the Eclipse project folder.

76-1

Workspaces are created under the export/envision folder inside the WebCenter
Sites installation directory. The main Developer Tools workspace is located under the
export/envision/cs_workspace folder.

Each resource contained in a workspace is stored as a single file or several
interrelated files. The main file for each resource ends in .main.xml and contains
resource-specific metadata. This main file also contains links to other files associated
with the resource (such as an attached document, a JSP file, or a blob). This enables
each resource to be fully self-contained, if all of a resource's associated files are
stored in the workspace. Otherwise, the resource is incomplete.

Multiple files of a resource are listed in the bottom section of the .main.xml file as
storable0, storable1, and so on. The associated files of any given resource have
similar names. This way, all of a resource's associated files appear together, except
ElementCatalog entries which are stored separately to preserve their original root
path.

The location of a resource's files in the workspace depends on the type of resource.
The workspace is divided into the following sections:

• src/_metadata: The metadata section of a given resource which contains assets,
asset types, sites, roles, and so on. In addition, legacy XML code is stored under
the ELEMENTS/ subfolder.

• src/jsp/cs_deployed: This section stores a resource's JSP file under its proper
path.

Because workspaces have a highly consistent structure, resources from one
workspace can be copied to another. As with all file system copy operations, ensure
you are not overwriting files that have the same name.

Asset Storage Structure
Assets are stored under folders named src/_metadata/ASSET/asset type.

Under this structure, there is a two-level hash-based hierarchy, which contains asset
data. The name of the asset file is based on the asset name and its fw_uid value. If
the asset includes attached documents or blobs, then the file name is based on the
asset name, attribute name, fw_uid value, and the name of the document or blob (if
any).

For example, a Document_C asset named FSII IES_Manual.pdf contains an attached
document called IES_MDPlayer_Manual.pdf. Therefore, this asset is stored as two
separate files:

• The first is the .main.xml file, which contains the asset's metadata and links to the
files associated with the asset:

.src/_metadata/ASSET/Document_C/8/0/FSII IES_MDPlayer_
 Manual.pdf(aa0b47b5-f558-49d4-a6ac2ee012d1b75).main.xml

• The second is the actual document, which is a PDF file in this example:

.src/_metadata/ASSET/Document_C/8/0/FSII IES_MDPlayer_
 Manual.pdf.FSIIDocumentFile(aa0b47b5-f558-49d4-8a6a-
 c2ee012d1b75).IES_MDPlayer_Manual.pdf

Chapter 76
Asset Storage Structure

76-2

Note:

Because all file names of the asset are based on the asset's name, renaming
the asset also renames the file. If you are tracking the asset in a VCS, then
delete the file with the old name.

Code-Based Resource Storage Structure
Templates, CSElements, and ElementCatalog entries are stored under the storage
path required by their code elements.

The JSP files associated with code-based resources are stored in the workspace
under src/jsp/cs_deployed, and the XML elements are stored under src/_metadata/
ELEMENTS. The metadata files of code-based resources are stored under the same
name as the resource's JSP with the appended .main.xml extension. Therefore, the
code-based resource's metadata, JSP, and XML files are grouped together in the
workspace.

Attribute Editor Storage Structure
Attribute editors are tracked as assets, but also have implicit references to a set
of ElementCatalog entries. An attribute editor's ElementCatalog entries are tracked
independently.

For example, the TextArea editor uses the OpenMarket/Gator/AttributeTypes/
TEXTAREA ElementCatalog entry, which is registered as a dependency. Developer Tools
maintains the following files for the TextArea editor:

• The .main.xml file:

src/_metadata/ASSET/AttrTypes/9/10/TextArea(e64f983d-9c7c-489baedb-
 476d56f8121e).main.xml

• The urlxml metadata file:

src/_metadata/ASSET/AttrTypes/9/10/TextArea.urlxml(e64f983d-9c7c-
 489b-aedb-476d56f8121e).1095346398911.txt

• The ElementCatalog entry, tracked as an independent resource:

– The .main.xml file of the ElementCatalog entry:

src/_metadata/ELEMENTS/OpenMarket/Gator/AttributeTypes/TEXTAREA
 .xml.main.xml

– The attribute editor's element code:

 src/_metadata/ELEMENTS/OpenMarket/Gator/AttributeTypes/
 TEXTAREA.xml

Asset Type Storage Structure
Asset types have a main metadata part and a set of elements.

For example, the following is the structure of a Page asset type:

Chapter 76
Code-Based Resource Storage Structure

76-3

• The main metadata of the page is stored in the .main.xml file:

src/_metadata/Asset_Type/Page(b8d8ae9-14cc-4554-b80e-0c22e39a3ec8).main.xml

• The associated elements are tracked independently (each element has its
own .main.xml file):

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 SearchForm.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 CheckDelete.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 ContentForm.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 ContentDetails.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 LoadSiteTree.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexReplace.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 LoadTree.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexAdd.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 SearchForm.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexReplace.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 PreviewPage.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 LoadTree.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 PreUpdate.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 Tile.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 SimpleSearch.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 SimpleSearch.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 ContentForm.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 AppendSelectDetailsSE.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 LoadSiteTree.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 AppendSelectDetails.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 ManageSchVars.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 PreviewPage.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 CheckDelete.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 ManageSchVars.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/
 Page/PreUpdate.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 AppendSelectDetails.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexCreateVerity.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/

Chapter 76
Asset Type Storage Structure

76-4

 ContentDetails.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 PostUpdate.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexAdd.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 IndexCreateVerity.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 Tile.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 AppendSelectDetailsSE.xml.main.xml
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
 PostUpdate.xml.main.xml

Chapter 76
Asset Type Storage Structure

76-5

77
Using Developer Tools Command Line
Interface (CLI)

You use the Developer Tools CLI for deployment and other resource movement
activities. CLI gives you freedom to work with any workspace, not just the Developer
Tools workspace. The command line interface also include import and export features.
For example, with CLI you can create reusable modules (workspaces). These
workspaces include resources that you can import into any site.

For information about running and using CLI, see these topics:

• Running and Using the Command Line Interface (CLI)

• Example Commands

• About Importing Modules

• Status Codes for Operations Invoked from the Developer Tools CLI

Running and Using the Command Line Interface (CLI)
Running CLI involves a few easy steps.

To run the command line interface:

1. Unzip the developer-tools-command-line-x.y.z.zip file, which is located in the
clients folder in your WebCenter Sites installation directory (${Oracle Home}/
wcsites/clients).

2. Execute the developer-tools-command-line-x.y.z.jar file and include the Java
EE libraries (for example, the Servlet API implementation) in the classpath as
follows:

java -Xbootclasspath/a:lib/servlet-api.jar -jar developer-tools-command-
line.jar
http://<hostname>:<port>/<context-path>/ContentServer username=<username>
password=<password>
cmd=export|import|listcs|listds [options]

Replace the placeholder parameters with the information about your development
environment and the command you want to run:

• http://<hostname>:<port>/<context-path>: The URL of your local
WebCenter Sites instance, including the ContentServer servlet (for example,
http://localhost:8080/cs/ContentServer)

• username and password: The user name and password of a WebCenter Sites
general administrator. This user must be a member of the RestAdmin group
(for example, fwadmin/xceladmin).

• cmd: The command to execute. The following commands are available:

– export: Export data from WebCenter Sites to a workspace.

77-1

– import: Import data into WebCenter Sites from a workspace.

– listcs: List WebCenter Sites content.

– listds: List workspace content.

• options: Specify one of the following to either import or export:

– resources: Specify which resources you want to import or export
in a semicolon-separated list of resource type and resource ID. To
specify multiple resources, use a comma-separated list. To specify all
resources of a given type, use the * symbol. To export a resource
(to a workspace), specify the resource's local ID. For example, use
resources=Content_C:12345;Product_C:* to export a specific Content_C
asset and all Product_C assets.

If you are importing a resource (to a WebCenter Sites instance), specify
the resource's fw_uid. To get the resource's fw_uid, use the listds
option.

The following is a full listing of resource selectors:

@SITE: Specify the sites.

@ROLE: Specify the roles.

@ASSET_TYPE: Specify the asset types.

@TREETAB: Specify the tree tabs.

@STARTMENU: Specify the start menu items.

@ELEMENTCATALOG: Specify the ElementCatalog entries.

@SITECATALOG: Specify the site catalog entries.

@ALL_NONASSETS: Use this short-hand notation to select all non-asset
resources.

@ALL_ASSETS: Use this short-hand notation to select all available assets.

asset type: Specify assets of a certain type.

Note:

To verify that selectors are picking up the correct resources
before import or export, use listcs for export activities and
listds for import activities. These commands fine-tune the
selectors before execution by providing a list of the resources
that will be moved.

Resources' dependencies are exported and imported
automatically. However, dependencies are not listed using the
listcs and listds commands.

User preferences such as bookmarks and saved searches are
not imported/exported as part of the CSDT import/export.

– fromSites: Select resources from specified sites only.

Chapter 77
Running and Using the Command Line Interface (CLI)

77-2

– toSites: (Import only) Override the natural site affiliation during import
with a comma-separated list of sites. Specified sites must exist on the
target system.

– modifiedSince: (Assets only) Select only resources that have been
modified since the specified date. The date format is yyyy-mm-dd
hh:MM:ss. The date is treated as UTC 0 time zone.

– datastore: Specify the workspace you want to either export WebCenter
Sites resources to or import WebCenter Sites resources from. If you
do not specify a value for this parameter, the main Developer Tools
workspace is specified by default. If you are exporting resources and
specify a workspace that does not exist, CLI automatically creates the
workspace and exports the resources to it.

Example Commands
Here is a list of sample export and import commands that you can run using the
command line interface.

• This command exports the specified Content_C assets and all Product_C assets
that belong to FirstSiteII and were modified since the specified date. Because no
workspace is specified, the Developer Tools workspace is used by default:

java -Xbootclasspath/a:lib/servlet-api.jar -jar
developer-tools-command-line-x.y.z.jar http://localhost:8080/cs/
ContentServer username=bob password=password
resources=Content_C:123432123423,11234234212,111234341234;Product_C:*
fromSites=FirstSiteII modifiedSince="2016-08-08 19:14:00" cmd=export

• This command imports the specified Content_C asset and all Product_C assets
that are found in the workspace to the FirstSiteII site and were modified since
the specified date. Because no workspace is specified, the Developer Tools
workspace is used by default:

java -Xbootclasspath/a:lib/servlet-api.jar -jar developer-
tools-command-line-x.y.z.jar http://localhost:8080/cs/ContentServer
username=bob password=password resources=Content_C:aad618e9-f04e-4ee4-
b902-076224bb6f7b;Product_C:* toSites=FirstSiteII modifiedSince="2016-09-17
12:09:00" cmd=import

• This command exports all resources from the site SecondSiteII into a workspace
named TheOutput:

java -Xbootclasspath/a:lib/servlet-api.jar -jar developer-
tools-command-line-x.y.z.jar http://localhost:8080/cs/ContentServer
username=bob password=password resources=@ALL_ASSETS:*;@ALL_NONASSETS:*
fromSites=SecondSiteII datastore=TheOutput cmd=export

• This command imports all assets and tree tabs from the workspace named
TheInput into the site MySite:

java -Xbootclasspath/a:lib/servlet-api.jar -jar developer-tools-command-
line-x.y.z.jar http://localhost:8080/cs/ContentServer username=bob
password=password resources=@ALL_ASSETS:*;@TREETAB:* toSites=MySite
datastore=TheInput cmd=import

Chapter 77
Example Commands

77-3

Note:

modifiedSince works only with export|listcs|import.

About Importing Modules
Modules are sets of related resources that you export from your WebCenter Sites
instance into a given workspace. Modules are reusable, so you can import their
content into any CM sites (even if the site is not listed in the resources' canonical
list of sites).

The datastore parameter enables you to specify the workspace you want to either
export WebCenter Sites resources to or import WebCenter Sites resources from. If you
export WebCenter Sites resources to a workspace that does not exist, the command
line interface automatically creates that workspace and exports the resources into it.

To import a module into a CM site, you must execute an import command. In the
datastore parameter, specify the workspace that contains the resources and in the
toSites parameter, specify the site(s) to which you want to import those resources.
This imports the content of the workspace into the specified CM site(s).

Status Codes for Operations Invoked from the Developer
Tools Command Line Interface (CLI)

The CLI for the Developer Tools return these status codes for each operation invoked.

Status Code Description

SUCCESS -> 0 Represents a successful invocation of a developer tools command (for
example, export / import). This status is returned only when the request
has been processed without any errors either on the client or the server
side and there is at least one resource which could be processed as a
result of the invocation.

NO CONTENT ->
1

Represents a successful invocation of a developer tools command (for
example, export / import). This status is returned only when the request
has been processed without any errors either on the client or the server
side, but there are no resources which could be processed as a result of
the invocation.

IMPROPER
SHUTDOWN ->
11

A rare error code due to an unexpected breakdown of the process invoked.

CONSOLE
UNAVAILABLE ->
12

Client-side error code. It’s returned when the CLI interacts using a system
other than the system console.

RUNTIME
SANITY CHECK
FAILED -> 13

Client-side error code. It’s returned when the runtime provided for
running the application is not sufficient, for example, there are missing
dependencies.

BAD REQUEST -
> 40

Client side error code. It’s returned when the usage is violated.

UNAUTHORIZED
-> 41

Client side error code. It’s returned when the credentials or roles are invalid
or insufficient to perform the processing.

Chapter 77
About Importing Modules

77-4

Status Code Description

SERVICE
ERROR -> 50

Server side error code. It’s returned if an exception occurs while invoking
the request.

RESPONSE
PARSE ERROR -
> 50

Server side error code. It’s returned when the response sent from the
server does not match the expectation of the client. This error code is
currently the same as SERVICE ERROR, but maybe expanded in future.

Chapter 77
Status Codes for Operations Invoked from the Developer Tools Command Line Interface (CLI)

77-5

78
Integrating Developer Tools Workspaces
with Version Control Systems

The resources in the Developer Tools workspace are stored in a version control
system (VCS). You can share these resources with other developers if the need
arises.

Topics:

• About Version Control With Developer Tools

• About Integrating Developer Tools With a VCS

• Using a Developer Tools-Integrated VCS: Example

About Version Control With Developer Tools
With version control systems (VCS) you can create source code repositories. A VCS
can provide advanced tools for versioning, branching, and managing source files.

The file system structure in which the Developer Tools workspace stores WebCenter
Sites resources enables those resources to be stored on any VCS and enables
complete CM sites to be tracked in a VCS.

About Integrating Developer Tools With a VCS
In case of some VCSs, you need to their plug-ins for checking in resources into
the VCS directly from Eclipse. For example, the Eclipse IDE supports the Subclipse
plug-in for the Subversion repository. This plug-in enables you to check resources into
the Subversion directory directly from the Eclipse IDE.

The Developer Tools workspace is located in the src folder of the Eclipse project. This
folder can be accessed directly from the WebCenter Sites installation directory (under
export/envision/cs_workspace/src). To copy the content of your Developer Tools
workspace folder to a VCS, you must first determine which VCS you want to use.
Then, check-in the resources stored in the Developer Tools workspace to the VCS.
The VCS you choose to use determines the steps you must take to check resources in
from the Eclipse IDE.

The Developer Tools workspace stores all resources as one or more files, depending
on the type of resource. If you check a resource into a VCS, you must also check-in
all associated files of that resource. For example, an asset that contains attached
documents (such as a PDF) is represented by a metadata file (.main.xml) and the
associated document file(s). All associated files of the asset must be checked in to the
VCS. Otherwise, the check-in fails. For a detailed description of the Developer Tools
workspace layout and for information about how resources are mapped to workspace
files, see Using Workspaces in Developer Tools.

78-1

Note:

Checking data into a VCS from the Developer Tools workspace does not
require an extensive understanding of the Developer Tools workspace file
structure. Instead, most VCS clients detect incremental changes to the
Developer Tools workspace folder and indicate those changes during a VCS
commit operation.

Using a Developer Tools-Integrated VCS: Example
You can exchange the resources–that you check WebCenter Sites into a VCS from
your Developer Tools workspace–with other developers and also track changes to
those resources over time.

The following is an example of a development team using a VCS to share WebCenter
Sites resources:

Developer A creates a resource in WebCenter Sites and exports it to the Developer
Tools workspace. Developer A then checks that resource into a VCS. From the VCS,
Developer B then can check-out the resource to his own Developer Tools workspace.
This developer now can modify the resource and then check the changes back into the
VCS. Developer A, and the rest of the development team, now can see the changes
made to the resource from the VCS. This enables the members of the development
team to synchronize their Developer Tools workspaces with the most recent changes
made to the resource. Additional developers can join the group by checking-out
resources from the VCS into their own respective Developer Tools workspaces. As
the project advances, the cycle of adding and modifying resources continues.

Note:

WebCenter Sites provides a revision tracking system for resources that are
kept within a given WebCenter Sites instance. The WebCenter Sites revision
tracking system cannot be integrated with a VCS.

Chapter 78
Using a Developer Tools-Integrated VCS: Example

78-2

79
Using Developer Tools to Manage and
Exchange Resources

Consider this scenario: A team of developers uses Developer Tools to create a
CM site and its resources. This team uses the synchronization tool provided by
Developer Tools to manage and exchange resources between multiple WebCenter
Sites instances. They deploy the CM site and its resources as a nightly build using the
command line interface.

Topics:

• Today: Develop a Site and Associated Resources

• Three Days Later... Deployment

Today: Develop a Site and Associated Resources
These example tasks involve developing a site and associated resources.

7:14 am: The New Project is Assigned

Artie the architect wakes up and finds himself appointed the leader of a new web-
based project.

7:34 am: Setting Up Developer Tools

Artie gets some coffee and installs a WebCenter Sites instance on his laptop. He then
starts the Eclipse IDE and configures the Developer Tools kit.

Note:

To successfully integrate Eclipse with a WebCenter Sites instance, Artie
must enter the user name and password of a general administrator. This user
must be a member of the RestAdmin group.

79-1

Figure 79-1 Eclipse IDE

7:45 am: Create the Site Definition

Artie creates the site definition (naming the site Acceptance) by using the embedded
Admin interface view in Eclipse.

Figure 79-2 Creating the Site Definition

Chapter 79
Today: Develop a Site and Associated Resources

79-2

Artie could have used a separate browser window running the Admin interface to
create the site definition. However, being a huge Eclipse fan, he indulges in the fact
that he can usually write complete WebCenter Sites CM sites without leaving Eclipse.

7:46 am: Create Resources for the Site

Artie primes the site with the following resources:

• Enables asset types.

• Assigns permissions.

• Creates and enables a flex family to store information assets (author information
assets in this scenario) for the site:

– Flex Attribute: Author_A

– Flex Parent Definition: Author_PD

– Flex Definition: Author_CD

– Flex Parent: Author_P

– Flex Asset: Author_C

– Flex Filter: Author_F

• Creates flex attributes (authorName and authorBio) and a flex definition
(fictionAuthor). He then adds the attributes to the flex definition.

This figure shows this configuration:

Figure 79-3 Creating Resources for the Site

8:12 am: The VCS Discussion

Chapter 79
Today: Develop a Site and Associated Resources

79-3

Artie arrives at the office and meets with the rest of the development team: Sonoko
(coder), Matthäus (coder), and Yogesh (system engineer). The discussion is about
whether to use a version control system for the project:

Yogesh: I can set up a version control system in-house, but I would like to avoid doing
extra work. Do you guys really want one?

Artie: Well, we expect this project to last several months. We could just create a
shared folder on the network and synchronize all our work to it. However, we have to
be careful not to overwrite each other's work. For example, if two people are working
on the same Template asset, they have to wait for each other.

Sonoko: Artie, do you remember how the last project turned out to be very intense
toward the end? Waiting for other people to finish their work is so unnerving when you
have all this pressure from the management. I would much rather use a version control
system. Also, can we keep the repository on the web this time so I can work from
Stellarbucks when I'm bored?

Matthäus: I agree with Sonoko. We can get SVN hosting for next to nothing. We can
even get an SVN with SSL for peace of mind.

Yogesh: If I don't have time to set up an in-house SVN, I could at least get you an
SVN hosting subscription.

Artie: OK then, I guess we'll go with SVN. Anything else?

Artie and the rest of the development team decide to use SVN to track the resources
of their site.

9:42 am: Synchronizing Workspaces With a VCS

Artie and his team install the Subclipse plug-in from http://subclipse.tigris.org/.
Now, Artie needs to check-in the site and resources he created earlier:

1. Using Developer Tools Synchronization in Eclipse, Artie accesses the Export tab
and enters the @Site selector in the Search field to retrieve a listing of all the sites
on his WebCenter Sites instance.

Figure 79-4 Listing Sites on WebCenter Sites Instance

Chapter 79
Today: Develop a Site and Associated Resources

79-4

http://subclipse.tigris.org/

Artie selects the site he created earlier (Acceptance site) and clicks the Export
button to export the site definition from his WebCenter Sites instance to his
workspace.

2. Next, Artie exports the site's associated flex family to the workspace. He uses the
@ASSET_TYPE selector to list all the assets on his WebCenter Sites instance. To
narrow down the results, he uses the Author_ search string. Artie then selects all
listed items and clicks Export.

Figure 79-5 Associating the Flex Family to the Workspace

The flex family types are serialized to the workspace, including their type-specific
ElementCatalog entries.

3. Now, Artie exports the flex definition to his workspace. He uses the Author_CD
selector, which lists all available definitions of that type. In this case, there is only
one definition (fictionAuthor).

Chapter 79
Today: Develop a Site and Associated Resources

79-5

Figure 79-6 Exporting the Flex Definition to the Workspace

Note:

Artie did not select the flex attributes (Author_A instances) on which
the site definition depends, because he knows the Developer Tools kit
synchronizes them automatically with the definition.

4. Artie looks at his workspace in the Eclipse Project Explorer view to verify that all
his work. From top to bottom, he sees the following under the project's src folder:

• _metadata.ASSET_TYPE entries for each asset type he synchronized.

• _metadata.ASSET.Author_A files for both of the Author_A attributes.

• _metadata.ASSET.Author_CD file for the serialized definition.

• _metadata.ELEMENTS entries for ElementCatalog entries related to each of the
serialized asset types.

• _metadata.SITE entry for the site definition.

Chapter 79
Today: Develop a Site and Associated Resources

79-6

Figure 79-7 Workspace in the Project Explorer View

Note:

Artie could have looked in the export/envision/cs_workspace
folder in his WebCenter Sites installation directory to see the same
data.

Looks like all the resources are in Artie's workspace now. However, this is all on
Artie's laptop and the team has no access to it. Time to check-in.

Chapter 79
Today: Develop a Site and Associated Resources

79-7

5. Using Subclipse, Artie connects to the development team's SVN repository and
shares his Developer Tools project by committing his main Developer Tools
workspace folder (src folder) to the SVN repository.

Figure 79-8 Committing the Project to SVN

Note:

The main Developer Tools workspace is located under the src folder in
the Eclipse Project Explorer view. Only commit the files that are located
inside the src folder. All other files are auxiliary local resources and must
not be committed.

10:12 am: The Other Team Members Synchronize their Workspaces to the SVN
Repository

Sonoko and Matthäus just finished setting up their own, individual Eclipse-integrated
WebCenter Sites instances. They both connect their Eclipse projects to the SVN
repository.

Because Artie checked the site and its resources into the SVN repository earlier,
Subclipse detects that the target location exists.

Chapter 79
Today: Develop a Site and Associated Resources

79-8

Figure 79-9 Remote Project Exists Dialog

Sonoko and Matthäus both synchronize their main Developer Tools workspaces with
the resources Artie made available in the SVN repository. Those resources are now
accessible on both Sonoko's and Matthäus' main Developer Tools workspaces.

Figure 79-10 Synchronized Workspaces

However, the resources are not synchronized with Sonoko's or Matthäus' WebCenter
Sites instances yet.

10:18 am: Synchronize the Workspace to the WebCenter Sites Instance

Sonoko opens the Developer Tools Synchronization and selects the Import tab. All
resources contained in Sonoko's main Developer Tools workspace are listed.

As required, she will first import the site definition, then the flex family, and then the
assets, in separate runs as described below:

Note:

Matthäus will do the same later, when he finishes his meeting with Marketing.

Chapter 79
Today: Develop a Site and Associated Resources

79-9

1. Import the site definition (Acceptance in this scenario).

Sonoko imports the site definition first. She narrows down her search by using
the Site.*Accepta expression in the search field. She then selects the site
(Acceptance) and synchronizes it to her WebCenter Sites instance by clicking
Sync to WebCenter Sites .

Figure 79-11 Importing the Site Definition

Using the Sites Log view, Sonoko verifies that the site is imported successfully.

Figure 79-12 Confirmation of Site Import

2. Sonoko opens the synchronization configuration again, and imports the site's flex
family, starting with the flex attribute (Author_A in this scenario).

Because Sonoko did not set up the Acceptance site's flex family on her
WebCenter Sites instance, she must first import the flex attribute (Author_A) to
her WebCenter Sites instance. After the flex attribute is imported, she can then
synchronize the rest of the asset types that comprise the site's flex family to her
WebCenter Sites instance.

Chapter 79
Today: Develop a Site and Associated Resources

79-10

Figure 79-13 Importing Flex Attributes

3. As a final step, Sonoko synchronizes the flex definition, which automatically
imports the required attributes.

The Sites Log view shows that the local asset identifiers of all the site's resources
are re-mapped when imported into the new WebCenter Sites instance.

Figure 79-14 Synchronizing the Flex Definition

10:21 am: Assign Site Permissions

After synchronizing the resources to her WebCenter Sites instance, Sonoko assigns
site permissions to herself. These permissions enable her to access the site and its
resources from the Admin interface.

Note:

To access the tree applet in the new site, Sonoko must assign at least one
tree tab to the site.

Chapter 79
Today: Develop a Site and Associated Resources

79-11

Figure 79-15 Assigning Site Permissions

10:22 am: The Start Menu Issue

Sonoko logs into the site, and clicks the New option. However, she finds there are no
start menu items available. Of course, Artie did not check the site's start menu items
into the SVN repository.

Chapter 79
Today: Develop a Site and Associated Resources

79-12

Figure 79-16 No Start Menu Items Available

10:24 am: Resolving the Start Menu Issue

Sonoko sends Artie an IM informing him that he forgot to check-in the new site's start
menu items.

1. Artie synchronizes the site's start menu items to his main Developer Tools
workspace.

Chapter 79
Today: Develop a Site and Associated Resources

79-13

Figure 79-17 Synchronizing Start Menu Items to Developer Tools Workspace

2. Artie then checks the site's start menu items into the SVN repository.

Figure 79-18 Committing Start Menu Items to SVN

Chapter 79
Today: Develop a Site and Associated Resources

79-14

3. Sonoko finds that Artie committed the start menu items to the SVN. Sonoko then
updates her Eclipse project. She accesses the SVN repository and synchronizes
the start menu items to her main Developer Tools workspace. She then imports
those start menu items to her WebCenter Sites instance.

Figure 79-19 Importing Start Menu Items to WebCenter Sites Instance

4. Without restarting her WebCenter Sites instance, Sonoko clicks Search.

The start menu items she imported into her WebCenter Sites instance are listed.

Figure 79-20 Start Menu Items List

11:17 am: Marketing Requests Changes

Subject: Proposed Author Definition Changes

Chapter 79
Today: Develop a Site and Associated Resources

79-15

Date: Wed, 16 Feb 2011 11:17:39

From: matthäus.companynone.com

To: Tech-Development

Team,

I just synchronized your changes into my system. As per my meeting with
Marketing, we must have date of birth and birthplace attributes in the
Author Definition. I noticed these attributes do not exist, so I will add
them. Artie, can you review the changes I make when you have the chance?

Regards,

Matthäus

11:22 am: Adding New Attributes to the Author Definition

Matthäus creates the attributes Marketing requested and adds them to the flex
definition (Author definition in this scenario). He then exports the new attributes and
the flex definition to his main Developer Tools workspace and commits them to the
SVN repository.

Figure 79-21 Exporting New Attributes and Flex Definition

11:25 am: Reviewing the Changes to the Site

Artie retrieves the modified Author definition from SVN and imports it into his
WebCenter Sites instance.

Chapter 79
Today: Develop a Site and Associated Resources

79-16

Figure 79-22 Reviewing Changes to the Site

Subject: RE: Proposed Author Definition Changes

Date: Wed, 16 Feb 2011 11:37:31

From: artie.companynone.com

To: matthäus.companynone.com

Matthäus,

Thank you for taking care of this. Corporate standards require us to
capitalize the first letter of each subsequent word. I will delete the
birthplace attribute and add birthPlace instead.

Thank you,

Artie

11:44 am: Modifying the Attributes of the Author Definition

1. Artie creates the birthPlace attribute and adds it to the flex definition. He then
removes the original birthplace attribute from the site definition.

2. Artie commits the new attribute and the changes to the Author definition to the
SVN repository. He then verifies that the birthplace attribute has a status of VO,
indicating the attribute is voided.

When Sonoko and Matthäus update their WebCenter Sites instances, the
birthplace attribute is correspondingly voided on their own workspaces.

Chapter 79
Today: Develop a Site and Associated Resources

79-17

Figure 79-23 Modifying Attributes of the Author Definition

11:53 am: The Team Updates Their Workspaces and WebCenter Sites Instances

1. Sonoko and Matthäus update their main Developer Tools workspaces with the
resources Artie checked in to the SVN repository.

2. They then import the resources in their workspaces to their WebCenter Sites
instances by opening the Import tab. For convenience, they sorted by the
Modified Date column so the most recent changes are shown on top.

Any voided attributes (such as the birthplace attribute Artie voided) show a
status hint (status=VO) in the Name column.

Figure 79-24 Updating Workspaces and WebCenter Sites Instances

3. Sonoko and Matthäus import these changes from their workspaces to their
WebCenter Sites instances. Their workspaces and WebCenter Sites instances are
now up to date.

12:27 pm: The Team Creates a Template Asset for the Site

Chapter 79
Today: Develop a Site and Associated Resources

79-18

1. (12:27 pm) Matthäus creates a Template asset for the site's Welcome page.

Figure 79-25 Creating Template Asset for Site

2. (12:34 pm) Matthäus edits the Template asset and previews the changes in the
Sites Preview Browser view. As soon as he saves the changes made to the
Template asset's JSP, he uses the Ctrl+R keyboard command to refresh the
preview browser.

Chapter 79
Today: Develop a Site and Associated Resources

79-19

Figure 79-26 Sites Preview Browser Edits

3. (12:39 pm) Matthäus commits the Template's .jsp and .main.xml files to the SVN
repository.

Subclipse finds all changes to the project and brings those changes to the
attention of the developer. Because the only new asset was the Template asset,
Matthäus is able to deduce that the .main.xml file is the Template's metadata and
the JSP file is the Template's code.

Chapter 79
Today: Develop a Site and Associated Resources

79-20

Figure 79-27 Committed Template Files

4. (12:44 pm) Sonoko makes some touch ups to the Template's JSP file in her own
workspace.

Figure 79-28 Editing the Templates JSP File in Workspace

5. Sonoko reviews the changes to the JSP file and then commits those changes to
the SVN.

Chapter 79
Today: Develop a Site and Associated Resources

79-21

Figure 79-29 Committing Changes to SVN

Note:

If another team member were to modify and check-in this file at the same
time as Sonoko, SVN would indicate to Sonoko that another version of
the file is checked in. She would then be able to integrate those changes
with her own to avoid inadvertent overwrites.

Three Days Later... Deployment
Yogesh uses the command line interface to deploy the site.

See Using Developer Tools Command-Line Tool.

9:32 am: Preparing for Deployment

Yogesh finally got around to setting up the test environment and is preparing to deploy
the current build using the command line interface. He installed a WebCenter Sites
system on hardware that matches the environment used in production.

To test the Developer Tools import before adding it to a fully-automated nightly script:

1. Using the command line interface, Yogesh checks the Acceptance site and its
resources out of SVN and into the workspace of the target WebCenter Sites
instance.

Command:

go to the workspace location under export/envision/
 cs_workspace in the ${sites-shared}/config directory

checkout site from svn

Chapter 79
Three Days Later... Deployment

79-22

${sites-shared}/config/export/envision/cs_workspace$ svn checkout svn://
 yoursvnhost/projects/mysite/src

Output:

A mysite/src
A mysite/src/_metadata
A mysite/src/_metadata/ASSET
A mysite/src/_metadata/ASSET/Author_A
A mysite/src/_metadata/ASSET/Author_A/10
A mysite/src/_metadata/ASSET/Author_A/10/14
A mysite/src/_metadata/ASSET/Author_A/10/14/authorName(cbf4d8aa-d23a-4f0d-
b55d-a87a0e9bbf33).main.xml
A mysite/src/_metadata/ASSET/Author_A/11
A mysite/src/_metadata/ASSET/Author_A/11/79
A mysite/src/_metadata/ASSET/Author_A/11/79/birthPlace(42afd458-e90c-4e18-
a4b6-47d322b46414).main.xml
A mysite/src/_metadata/ASSET/Author_A/5
A mysite/src/_metadata/ASSET/Author_A/5/64
A mysite/src/_metadata/ASSET/Author_A/5/64/birthplace(49d63312-c74d-4ccd-
bb7f-4dc698a9da22).main.xml
A mysite/src/_metadata/ASSET/Author_A/15
A mysite/src/_metadata/ASSET/Author_A/15/76
A mysite/src/_metadata/ASSET/Author_A/15/76/
DOB(9fe04c6e-36e7-4ee3-8c76-8c02edf74136).main.xml
A mysite/src/_metadata/ASSET/Author_A/71
A mysite/src/_metadata/ASSET/Author_A/71/74
A mysite/src/_metadata/ASSET/Author_A/71/74/authorBio(ada2d6be-ef14-4766-
b446-911bfa838835).main.xml
A mysite/src/_metadata/ASSET/Author_CD
A mysite/src/_metadata/ASSET/Author_CD/76
A mysite/src/_metadata/ASSET/Author_CD/76/4
A mysite/src/_metadata/ASSET/Author_CD/76/4/
fictionAuthor(71d6067b-35f6-47f4-ae97-3876303abb37).main.xml
A mysite/src/_metadata/ASSET_TYPE
A mysite/src/_metadata/ASSET_TYPE/Author_F(5f9b4964-e9be-4f25-
a413-877e8a5c7469).main.xml
A mysite/src/_metadata/ASSET_TYPE/
Author_P(1552d907-5f38-400b-9460-36e46d14abc3).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_A(162d0b70-7e69-4266-
acca-2f472e3d71bd).main.xml
A mysite/src/_metadata/ASSET_TYPE/
Author_CD(33faf87e-9e8f-4f49-97cd-424810408938).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_PD(7c748df3-
d149-4b71-802a-64b11360e74b).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_C(d1497b50-665c-4b0c-80a7-
d25f61566be4).main.xml
A mysite/src/_metadata/STARTMENU
A mysite/src/_metadata/STARTMENU/Find+Author+Attribute(2f6b2552-
efde-493b-995f-ff13287f95e0).main.xml
...

2. Yogesh runs a workspace listing (cmd=listds) to verify that the site and all of
its resources will be imported into the WebCenter Sites instance. He uses the
@ALL_ASSETS and @ALL_NONASSETS selectors to generate listings of all asset and
non-asset resources in the workspace:

• Command to use the @ALL_ASSETS selector:

 ${sites-shared}/config/export/envision/cs_workspace$
 java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/

Chapter 79
Three Days Later... Deployment

79-23

 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@ALL_ASSETS cmd=listds

Output:

Resource Type ||| Resource Id ||| Name |||
Description ||| Modified On

Author_A ||| cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 ||| authorName
(status=ED) ||| author name ||| 2011-02-17 15:26:34.000
Author_A ||| 42afd458-e90c-4e18-a4b6-47d322b46414 ||| birthPlace
(status=PL) ||| place of birth ||| 2011-02-17 15:26:34.000
Author_A ||| 9fe04c6e-36e7-4ee3-8c76-8c02edf74136 ||| DOB
(status=PL) ||| date of birth ||| 2011-02-17 15:26:34.000
Author_CD ||| 71d6067b-35f6-47f4-ae97-3876303abb37 |||
fictionAuthor (status=ED) ||| authors who write fiction |||
2011-02-17 15:26:34.000
Author_A ||| ada2d6be-ef14-4766-b446-911bfa838835 ||| authorBio
(status=ED) ||| author biography ||| 2011-02-17 15:26:34.000
Author_A ||| 49d63312-c74d-4ccd-bb7f-4dc698a9da22 ||| birthplace
(status=VO) ||| author birthplace ||| 2011-02-17 15:12:43.000
Template ||| 89b05c0f-227b-4dcb-961e-2ab6e6af2dae ||| welcome
(Typeless status=PL) ||| welcome page ||| 2011-02-17 23:18:18.000

• Command to use the @ALL_NONASSETS selector:

${sites-shared}/config/export/envision/cs_workspace$
 java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@ALL_NONASSETS cmd=listds

Output:

Resource Type ||| Resource Id ||| Name |||
Description ||| Modified On

@STARTMENU ||| 66edea6d-218e-41b7-b5ac-ec3453bd53b7 ||| New
Author () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| c416c0d6-98a7-4ebf-babb-78d0699698de ||| Find
Author Filter () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| 162d0b70-7e69-4266-acca-2f472e3d71bd ||| Author_A
() ||| Author Attribute ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 2821ef28-39a2-4008-9a94-296fc0fd4f29 ||| Find
Author Definition () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| d45be3de-a8e0-4479-a909-f79e9320e84f ||| Find
Author () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 2f6b2552-efde-493b-995f-ff13287f95e0 ||| Find
Author Attribute () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| 7c748df3-d149-4b71-802a-64b11360e74b ||| Author_
PD () ||| Author Parent Def ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 208aee2a-ad16-433a-9ee8-6658ce8f3abf ||| New
Author Attribute () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 8428e490-b99c-4bea-b5a1-1c1768fa9d7d ||| Find
Author Parent () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| d1497b50-665c-4b0c-80a7-d25f61566be4 ||| Author_C
() ||| Author ||| 2011-02-18 11:02:23.000
…

3. Yogesh then makes sure all necessary asset types will be imported by using the
@ASSET_TYPE:* selector:

Command:

Chapter 79
Three Days Later... Deployment

79-24

${sites-shared}/config/export/envision/cs_workspace$
 java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@ASSET_TYPE:* cmd=listds

Output:

Resource Type ||| Resource Id ||| Name ||| Description ||| Modified On
--
Author_A ||| cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 ||| authorName (status=ED) ||| author
name ||| 2011-02-17 15:26:34.000
Author_A ||| 42afd458-e90c-4e18-a4b6-47d322b46414 ||| birthPlace (status=PL) ||| place of
birth ||| 2011-02-17 15:26:34.000
Author_A ||| 9fe04c6e-36e7-4ee3-8c76-8c02edf74136 ||| DOB (status=PL) ||| date of birth
||| 2011-02-17 15:26:34.000
Author_CD ||| 71d6067b-35f6-47f4-ae97-3876303abb37 ||| fictionAuthor (status=ED) |||
authors who write fiction ||| 2011-02-17 15:26:34.000
Author_A ||| ada2d6be-ef14-4766-b446-911bfa838835 ||| authorBio (status=ED) ||| author
biography ||| 2011-02-17 15:26:34.000
Author_A ||| 49d63312-c74d-4ccd-bb7f-4dc698a9da22 ||| birthplace (status=VO) ||| author
birthplace ||| 2011-02-17 15:12:43.000
Template ||| 89b05c0f-227b-4dcb-961e-2ab6e6af2dae ||| welcome (Typeless status=PL) |||
welcome page ||| 2011-02-17 23:18:18.000

4. Yogesh notes that all necessary resources for the site will be imported into the
build.

10:04 am: Deploying the Site and its Resources

Using the command line interface, Yogesh runs the import sequence.

1. First, he imports the site:

Command:

${sites-shared}/config/export/envision/cs_workspace$
 java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@SITE:Acceptance cmd=import

Output:

 *** Importing batch 1297868431526
Importing DSKEY @SITE-Acceptance (batch 1297868431526)
Saved Acceptance (batch 1297868431526)
*** Completed importing batch 1297868431526

2. Then, the flex family:

Command:

${sites-shared}/config/export/envision/cs_workspace$
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@ASSET_TYPE:* cmd=import

Output:

*** Importing batch 1298064678765
Importing DSKEY @ASSET_TYPE-162d0b70-7e69-4266-acca-2f472e3d71bd (batch
1298064678765)

Chapter 79
Three Days Later... Deployment

79-25

Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/Author_A/
LoadTree (batch 1298064678765)
Saved OpenMarket/Xcelerate/AssetType/Author_A/LoadTree (batch 1298064678765)
…

3. Next, the assets:

Command:

${sites-shared}/config/export/envision/cs_workspace
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@ALL_ASSETS cmd=import

Output:

*** Importing batch 1298064679760
Importing DSKEY Author_A-cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071437 (batch 1298064679760)
Importing DSKEY Author_A-42afd458-e90c-4e18-a4b6-47d322b46414 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071441 (batch 1298064679760)
Importing DSKEY Author_A-9fe04c6e-36e7-4ee3-8c76-8c02edf74136 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071445 (batch 1298064679760)
Importing DSKEY Author_CD-71d6067b-35f6-47f4-ae97-3876303abb37 (batch 1298064679760)
Importing DSKEY Author_A-ada2d6be-ef14-4766-b446-911bfa838835 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071449 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_C already exists, skipping.
Dependency @ASSET_TYPE-Author_P already exists, skipping.
Dependency @ASSET_TYPE-Author_CD already exists, skipping.
Dependency @ASSET_TYPE-Author_PD already exists, skipping.
Dependency @ASSET_TYPE-Author_F already exists, skipping.
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_CD:1295889071453 (batch 1298064679760)
Importing DSKEY Author_A-49d63312-c74d-4ccd-bb7f-4dc698a9da22 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071460 (batch 1298064679760)
Importing DSKEY Template-89b05c0f-227b-4dcb-961e-2ab6e6af2dae (batch 1298064679760)
Saved Template:1295889071461 (batch 1298064679760)
*** Completed importing batch 1298064679760

4. Because this is a delivery install, start menu items are optional. However, Yogesh
imports the start menu items because he wants to use the Admin interface to
verify that all of the resources are successfully imported.

Command:

${sites-shared}/config/export/envision/cs_workspace$
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@STARTMENU:* cmd=import

Output:

*** Importing batch 1298064681075
Importing DSKEY @STARTMENU-66edea6d-218e-41b7-b5ac-ec3453bd53b7 (batch 1298064681075)
Saved 1297720502210 (batch 1298064681075)
Importing DSKEY @STARTMENU-c416c0d6-98a7-4ebf-babb-78d0699698de (batch 1298064681075)

Chapter 79
Three Days Later... Deployment

79-26

Saved 1297720502230 (batch 1298064681075)
Importing DSKEY @STARTMENU-2821ef28-39a2-4008-9a94-296fc0fd4f29 (batch 1298064681075)
Saved 1297720502222 (batch 1298064681075)
Importing DSKEY @STARTMENU-d45be3de-a8e0-4479-a909-f79e9320e84f (batch 1298064681075)
Saved 1297720502206 (batch 1298064681075)
Importing DSKEY @STARTMENU-2f6b2552-efde-493b-995f-ff13287f95e0 (batch 1298064681075)
Saved 1297720502214 (batch 1298064681075)
Importing DSKEY @STARTMENU-208aee2a-ad16-433a-9ee8-6658ce8f3abf (batch 1298064681075)
Saved 1297720502218 (batch 1298064681075)
Importing DSKEY @STARTMENU-8428e490-b99c-4bea-b5a1-1c1768fa9d7d (batch 1298064681075)
Saved 1297720502238 (batch 1298064681075)
Importing DSKEY @STARTMENU-2d31208a-4053-4fc1-a0d4-3789b23bd897 (batch 1298064681075)
Saved 1297720502226 (batch 1298064681075)
Importing DSKEY @STARTMENU-480cc5d1-3e73-4a92-85ef-48d0e44b81ef (batch 1298064681075)
Saved 1297720502242 (batch 1298064681075)
Importing DSKEY @STARTMENU-84309e2b-54ed-4e08-9244-84d331a60742 (batch 1298064681075)
*** Completed importing batch 1298064681075

10:55 am: The Deployment is Successful

Yogesh concludes that the import sequence was successful. He plans to automate
daily installs on this system by writing the following script:

Reinstall ContentServer to start with a clean slate.
Optionally skip this and just do an update
Reinstall_CS()

Bring in the latest source from SVN
SVN_Update()

Prepare for import: compile any Java code such as url assemblers and flex filters, and so on.
Prepare the database with any custom settings, and so on.
preImport()

Run the CSDT import sequence
CSDT_Import()

Run the test suite – sanity, performance, acceptance tests
runTestSuite()

Report results to the team by email so they know about any failures first thing in the morning
runReports()

The script runs as a cron job at five past midnight every night.

Chapter 79
Three Days Later... Deployment

79-27

80
Using the Developer Tools Command
Line Interface (CLI) to Create Reusable
Modules

With the Developer Tools kit you are able to reuse and share resources in the form
of modules. Modules are workspaces that are not site-specific and contain resources
such as Templates, flex families, and ElementCatalog entries. Unlike the standard
export/import functionality where assets are added to sites using natural mappings,
modules typically utilize site overriding so they can be imported into any site you
designate.

Topics:

• Creating a Reusable Model

• List the Resources in the WebCenter Sites Instance

• List Start Menu Items

• Export All Resources to a Workspace

• Inspect the Module's Content

• Archive the Module

• Import the Module to a WebCenter Sites Instance

Creating a Reusable Model
Artie has a flex family with a flex definition that he wants to reuse in other sites. He
also has a Template asset associated with the flex definition. In the following scenario,
Artie creates a module containing these resources.

This scenario uses the command line interface to create a module containing the
resources Artie and his team developed in Using Developer Tools to Manage and
Exchange Resources.

Note:

To use the command line interface, Artie must specify the user name and
password of a general administrator in each command he executes. This
user must be a member of the RestAdmin group. In this scenario, Artie uses
fwadmin/xceladmin.

See the following sections:

• List the Resources in the WebCenter Sites Instance

• List Start Menu Items

80-1

• Export All Resources to a Workspace

• Inspect the Module's Content

• Archive the Module

• Import the Module to a WebCenter Sites Instance

List the Resources in the WebCenter Sites Instance
Artie uses the command line interface to browse his WebCenter Sites instance. He
uses the resources=@ALL_ASSETS and the fromSites=Acceptance selectors to list all
the assets of the Acceptance site. The command Artie uses is listcs, which lists all
the resources on his WebCenter Sites instance.

Command:

${sites-shared}/config/export/envision/cs_workspace$
java - Xbootclasspath/a:lib/servlet-api.jar -jar
developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@ALL_ASSETS fromSites=Acceptance cmd=listcs

Output:

Resource Type ||| Resource Id ||| Name ||| Description ||| Modified On
--
Author_CD ||| 1297720502271 ||| fictionAuthor (status=ED) ||| authors who write fiction |||
2011-02-17 15:10:41
Author_A ||| 1297720502260 ||| authorName (status=ED) ||| author name ||| 2011-02-17 14:46:40
Author_A ||| 1297720502265 ||| authorBio (status=ED) ||| author biography ||| 2011-02-17 14:46:40
Author_A ||| 1297720502289 ||| 1297720502289 (status=VO) ||| author birthplace ||| 2011-02-17
15:12:35
Author_A ||| 1297720502293 ||| DOB (status=PL) ||| date of birth ||| 2011-02-17 14:46:40
Author_A ||| 1297720502305 ||| birthPlace (status=PL) ||| place of birth ||| 2011-02-17 15:10:22
Template ||| 1297720502331 ||| welcome (Typeless, status=ED) ||| welcome page ||| 2011-02-17
23:18:18

Artie notes that there are five Author_A flex attribute instances (one of which is
voided), one Author_CD flex definition, and a Template asset.

List Start Menu Items
Artie further uses the command line interface to browse for any start menu items that
are assigned to the Acceptance site.

Command:

${sites-shared}/config/export/envision/cs_workspace$
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@STARTMENU:* fromSites=Acceptance cmd=listcs

Output:

Resource Type ||| Resource Id ||| Name ||| Description ||| Modified On
--
@STARTMENU ||| 1297720502206 ||| Find Author ||| null ||| -
@STARTMENU ||| 1297720502214 ||| Find Author Attribute ||| null ||| -

Chapter 80
List the Resources in the WebCenter Sites Instance

80-2

@STARTMENU ||| 1297720502222 ||| Find Author Definition ||| null ||| -
@STARTMENU ||| 1297720502230 ||| Find Author Filter ||| null ||| -
@STARTMENU ||| 1297720502238 ||| Find Author Parent ||| null ||| -
@STARTMENU ||| 1297720502246 ||| Find Author Parent Def ||| null ||| -
@STARTMENU ||| 1297720494070 ||| Find CSElement, FirstSiteII ||| Find CSElement ||| -
@STARTMENU ||| 1297720494086 ||| Find Page, FirstSiteII ||| Find Page ||| -
@STARTMENU ||| 1297720494078 ||| Find SiteEntry, FirstSiteII ||| Find SiteEntry ||| -
@STARTMENU ||| 1297720494066 ||| Find Template, FirstSiteII ||| Find Template ||| -
@STARTMENU ||| 1297720502210 ||| New Author ||| null ||| -
@STARTMENU ||| 1297720502218 ||| New Author Attribute ||| null ||| -
@STARTMENU ||| 1297720502226 ||| New Author Definition ||| null ||| -
@STARTMENU ||| 1297720502234 ||| New Author Filter ||| null ||| -
@STARTMENU ||| 1297720502242 ||| New Author Parent ||| null ||| -
@STARTMENU ||| 1297720502250 ||| New Author Parent Def ||| null ||| -
@STARTMENU ||| 1297720501427 ||| New CSElement ||| null ||| -
@STARTMENU ||| 1297720494052 ||| New Page, FirstSiteII ||| New Page ||| -
@STARTMENU ||| 1297720501431 ||| New SiteEntry ||| null ||| -
@STARTMENU ||| 1297720501435 ||| New Template ||| null ||| -

Export All Resources to a Workspace
Before he creates a module, Artie first exports all resources into a particular
workspace.

Artie wants to create a module using all of the resources listed in List the Resources
in the WebCenter Sites Instance and List Start Menu Items. He runs the following
command to export all of the resources, at one time, into the specified workspace:

Command:

${sites-shared}/config/export/envision/cs_workspace$
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@STARTMENU:*;@ALL_ASSETS fromSites=Acceptance cmd=export
 datastore=authorModule

Output:

*** Exporting batch 1298385511005
Exporting ASSETDATA Author_CD:1297720502271 (batch 1298385511005)
Exporting ASSETDATA Author_A:1297720502260 (batch 1298385511005)
Exporting ASSET_TYPE Author_A (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/LoadSiteTree (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetails (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetailsSE (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/IndexAdd (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/IndexReplace (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/IndexCreateVerity (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/ContentDetails (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/ContentForm (batch
1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/PostUpdate (batch 1298385511005)

Chapter 80
Export All Resources to a Workspace

80-3

Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/PreUpdate (batch 1298385511005)
...

All asset types for the flex family are included in the export. In addition, all elements
belonging to those types are included as well. This information, although not usually
modified, is necessary to make the module Artie is creating reusable on other
WebCenter Sites instances.

Inspect the Module's Content
Artie inspects the authorModule workspace on his file system.

Figure 80-1 authorModule

Artie notes that the Template asset, flex family members, asset types, and start menu
items were all exported to the workspace on his file system.

Archive the Module
Artie is just one step away from importing the authorModule to a WebCenter Sites
instance.

Artie creates a .zip file archive of the authorModule workspace and saves it.

Import the Module to a WebCenter Sites Instance
Artie is ready to import the module into a sample site.

1. Artie unzips the module into the workspace location of the target WebCenter Sites
instance.

Chapter 80
Inspect the Module's Content

80-4

Figure 80-2 authorModule in Workspace Location

2. Using the command line interface, Artie imports the asset types and start menu
items into the target WebCenter Sites instance.

Command:

${sites-shared}/config/JSKdemo/ContentServer>
 java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<hots>:<port>/
 <context>/ContentServer username=fwadmin password=xceladmin
 resources=@ALL_NONASSETS cmd=import datastore=authorModule
 toSites=FirstSiteII

Output:

*** Importing batch 1298052933085
Importing DSKEY @STARTMENU-4340b65d-a9e4-4131-ac7f-51185a79b18d (batch 1298052933085)
Saved 1297720494070 (batch 1298052933085)
Importing DSKEY @STARTMENU-0a2decd4-b6be-418c-9992-a4332480bb20 (batch 1298052933085)
Saved 1297720501435 (batch 1298052933085)
Importing DSKEY @STARTMENU-66edea6d-218e-41b7-b5ac-ec3453bd53b7 (batch 1298052933085)
Saved 1297720502210 (batch 1298052933085)
Importing DSKEY @STARTMENU-c416c0d6-98a7-4ebf-babb-78d0699698de (batch 1298052933085)
Saved 1297720502230 (batch 1298052933085)
Importing DSKEY @ASSET_TYPE-162d0b70-7e69-4266-acca-2f472e3d71bd (batch 1298052933085)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/Author_A/LoadSiteTree (batch
1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/LoadSiteTree (batch 1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetails
(batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetails (batch 1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/Author_A/
AppendSelectDetailsSE (batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetailsSE (batch 1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/Author_A/IndexAdd (batch
1298052933085)

Chapter 80
Import the Module to a WebCenter Sites Instance

80-5

Saved OpenMarket/Xcelerate/AssetType/Author_A/IndexAdd (batch 1298052933085)
...

3. Artie opens the Admin interface for the FirstSiteII sample site and confirms that the
asset types and start menu items were imported successfully.

Figure 80-3 Start Menus for FirstSiteII

4. Now, Artie imports the assets.

Command:

${sites-shared}/config/JSKdemo/ContentServer>
java - Xbootclasspath/a:lib/servlet-api.jar -jar
 developer-tools-command-line.jar http://<host><:port>/
 <context>/ContentServer username=fwadmin
 password=xceladmin resources=@ALL_ASSETS cmd=import datastore=authorModule
 toSites=FirstSiteII

Output:

*** Importing batch 1298480206533
Importing DSKEY Author_A-cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451977 (batch 1298480206533)
Importing DSKEY Author_A-42afd458-e90c-4e18-a4b6-47d322b46414 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451981 (batch 1298480206533)
Importing DSKEY Author_A-9fe04c6e-36e7-4ee3-8c76-8c02edf74136 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451985 (batch 1298480206533)
Importing DSKEY Author_CD-71d6067b-35f6-47f4-ae97-3876303abb37 (batch 1298480206533)
Importing DSKEY Author_A-ada2d6be-ef14-4766-b446-911bfa838835 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451989 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_C already exists, skipping.
Dependency @ASSET_TYPE-Author_P already exists, skipping.
Dependency @ASSET_TYPE-Author_CD already exists, skipping.
Dependency @ASSET_TYPE-Author_PD already exists, skipping.
Dependency @ASSET_TYPE-Author_F already exists, skipping.
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_CD:1297837451993 (batch 1298480206533)
Importing DSKEY Template-89b05c0f-227b-4dcb-961e-2ab6e6af2dae (batch 1298480206533)

Chapter 80
Import the Module to a WebCenter Sites Instance

80-6

Saved Template:1297837452000 (batch 1298480206533)
*** Completed importing batch 1298480206533

5. Artie verifies that the flex definition is imported into the FirstSiteII sample site
successfully.

Figure 80-4 Inspect Author Definition

6. Using the command line interface, he also imports the Template asset. He then
opens the Admin interface again to verify the Template asset is imported correctly.

Figure 80-5 Template Welcome

Chapter 80
Import the Module to a WebCenter Sites Instance

80-7

The entire module is imported successfully into the FirstSiteII sample site. This
module can be reused and imported into any WebCenter Sites instance.

Chapter 80
Import the Module to a WebCenter Sites Instance

80-8

Part XX
Appendixes for Oracle WebCenter Sites
Core

There are WebCenter Sites tools and utilities that you can use with the WebCenter
Sites browser-based interface for developing and maintaining your websites. You can
compress undesirable white space to reduce the size of the response as well as
consumption of bandwidth. You can use WebCenter Sites URL assemblers to manage
URL assembly and disassembly and define the appearance of URLs.

Topics:

• Introducing WebCenter Sites Tools and Utilities

• Understanding White Space and Compression

• Using WebCenter Sites URL Assemblers

81
Introducing WebCenter Sites Tools and
Utilities

For developing and maintaining your websites, you use tools and utilities such as
WebCenter Sites Explorer Tool, CatalogMover, XMLPost Property Management Tool,
together with the WebCenter Sites browser-based interface.

Topics:

• Oracle WebCenter Sites Explorer

• Connecting to a WebCenter Sites Database

• CatalogMover

• Property Management Tool

• About Importing with XMLPost

Oracle WebCenter Sites Explorer
Oracle WebCenter Sites Explorer tool, a Microsoft Windows application, for viewing
and editing tables and rows in the WebCenter Sites database, and for creating and
editing executable elements (or files) written in XML or JSP.

You use Oracle WebCenter Sites Explorer to do the following:

• Add entries to tables

• Edit rows within tables

• Track revisions to rows of tables

• Create and drop WebCenter Sites tables

• Organize tables and folders into projects

• Preview SiteCatalog records as pages in a browser

• Export and import records as integrated .cse type files

• Export and import tables and projects in .zip files

Oracle WebCenter Sites Explorer is installed along with WebCenter Sites.

Connecting to a WebCenter Sites Database
You can use Oracle WebCenter Sites Explorer on any remote Microsoft Windows
computer simply by copying the Oracle WebCenter Sites Explorer directory from a

81-1

computer on which WebCenter Sites is installed (<domain home>/wcsites/clients/
oracle.wcsites.explorer.zip) to a directory on the remote computer.

You then unzip oracle.wcsites.explorer.zip and start the Oracle WebCenter Sites
Explorer executable file (ContentServerExplorer.exe). Log in to WebCenter Sites by
supplying a user name, password, host name, port, and protocol information.

To connect to a system that is running WebCenter Sites:

1. Start Oracle WebCenter Sites Explorer.

2. Choose File then Open WebCenter Sites to display the Login dialog.

3. Enter the following values:

Name: Your WebCenter Sites user name.

Password: Your WebCenter Sites password. (Depending on your site security, it
may not be necessary to enter a name and password.)

Host Name: The host name or IP address. You cannot leave this field blank.

Port: The port number (the default is 80).

Protocol: Typically, this is HTTP. You may select HTTPS if the web server is
running SSL.

Application Server URL Path: The type of application server for your site.

4. Click OK to log in.

The Oracle WebCenter Sites Explorer utility opens.

Figure 81-1 Oracle WebCenter Sites Explorer

You may want to create a shortcut on your Windows desktop to Oracle WebCenter
Sites Explorer. For instructions about using Oracle WebCenter Sites Explorer, see the

Chapter 81
Connecting to a WebCenter Sites Database

81-2

Oracle WebCenter Sites Explorer online help and sections in this guide that describe
specific tasks requiring Oracle WebCenter Sites Explorer.

CatalogMover
You use the CatalogMover tool to export and import WebCenter Sites database tables,
including the ElementCatalog and SiteCatalog tables. You can export and import
database tables as either HTML files or ZIP files.

You can use CatalogMover through either the Windows interface described in the
following sections, or the command line interface described in Command Line
Interface.

Note:

In previous versions of WebCenter Sites, tables in the WebCenter Sites
database were called catalogs. This term still applies to the names of some
database tables and to the CatalogMover tool itself.

Topics:

• Starting CatalogMover

• Connecting to WebCenter Sites

• CatalogMover Menu Commands

• Catalog Menu

• Exporting Tables

• Importing Tables

• Command Line Interface

Starting CatalogMover
To start CatalogMover, run the following scripts at the MS DOS prompt or in a UNIX
shell:

• Windows: catalogmover.bat

• Solaris: catalogmover.sh

The CatalogMover utility opens.

Chapter 81
CatalogMover

81-3

Figure 81-2 CatalogMover

Connecting to WebCenter Sites
Before using CatalogMover, you must first connect to a WebCenter Sites system.

1. To connect to WebCenter Sites, choose Server then Connect.

The Connect to Server dialog opens.

Figure 81-3 Connect to Server Dialog

2. In the Server field, enter the name of the HTTP server you want to connect to.

3. For the Secure option, select No (default port 80) or Yes (default port 443). In the
port field, enter the port (if not default) on which the server is running.

Chapter 81
CatalogMover

81-4

4. In the Name field, enter your user name.

5. In the Password field, enter your password.

6. Select one of the following options:

• Standard Servlets: To connect to a system using WebSphere or WebLogic.

• IAS 6.0: To connect to a NAS-App system.

• CS Based Servlets: To connect to the CS-based servlets.

• Custom: To connect to a different application server, enter the following value
in the field (referencing the .sh or .bat script):

<ft.approot><ft.cgipath>/catalogmanager.

7. Click Connect.

CatalogMover Menu Commands
CatalogMover includes the following menu commands:

File Menu

• Exit: Disconnect from WebCenter Sites and close CatalogMover.

Server Menu

• Connect: Display the Connect to Server dialog.

• Reconnect: Display the Connect to Server dialog and renew the current
WebCenter Sites connection.

• Disconnect: Disconnect from WebCenter Sites.

• Purge Temporary Tables: Purge imported tables before committing.

• Commit Individual Tables: Commit imported tables to the database.

• Normalize Filenames on Export: Enable CatalogMover's file name normalization
behavior, which changes the names of files that are being moved to names that
match their corresponding ID numbers. File names are not altered if this feature is
not enabled.

CatalogList Menu

• Load: Display a list of all tables in the database.

Catalog Menu
• Load: Load into local memory a table from the list.

This figure shows a loaded ElementCatalog table.

Chapter 81
CatalogMover

81-5

Figure 81-4 ElementCatalog Table in CatalogMover

Select the ElementCatalog tab to view all rows in the table, and to select specific
rows for export.

• Refresh: Update the loaded tables from the WebCenter Sites database.

• Auto Import Catalog(s): Import a previously exported ZIP file.

• Import Catalog: Import into the local database a table that was exported from
another WebCenter Sites database.

• Export Catalog Rows: Export the selected rows in the loaded table.

Selection Menu

• Select All Rows: Select all rows in the currently displayed table.

• Deselect All Rows: Deselect all rows in the currently displayed table.

• Select Rows By SubString: Select rows in the currently displayed table by typing
a portion of any field value string that uniquely identifies a set of rows.

Help Menu

• About: Display version information about the WebCenter Sites installation.

Exporting Tables
Exporting is the process of retrieving table rows and their content from the database
and saving them in local HTML files and associated data directories. CatalogMover
creates one HTML file per table.

This section includes the following topics:

• Exporting Selected Table Rows

• Selecting Rows for Export

Chapter 81
CatalogMover

81-6

• Exporting to a ZIP File

Exporting Selected Table Rows
To export selected table rows follow these steps:

1. Connect to WebCenter Sites as described in Connecting to WebCenter Sites.

2. Choose CatalogList then Load to display a list of all tables in the database.

3. Choose Catalog then Load to load a table, and select rows as described in
Selecting Rows for Export.

4. Choose Catalog then Export Catalog Rows.

A dialog opens prompting you to specify a directory for the HTML file containing
the exported rows.

5. Navigate to your directory of choice, and click Save.

CatalogMover exports the selected rows to your selected directory.

Selecting Rows for Export
You can select specific rows for export in a loaded table by clicking them, or you can
search for specific rows by substring.

To search for and select rows according to a substring:

1. Choose Selection and then Select Rows By SubString.

The Catalog Mover dialog opens.

Figure 81-5 Catalog Mover Dialog

2. In the text field, enter the substring you want to locate. For example, to search
the ElementCatalog primary key for all rows with folder in the element name, enter
folder and click OK.

CatalogMover searches the table and selects the rows that match your substring
query against the primary key for the table.

Chapter 81
CatalogMover

81-7

Figure 81-6 CatalogMover Results

Note:

Selecting rows by substring only works for the left-most column in the
table. However, you can change column positions so that any column
can become the left-most column. To do this, simply click and drag the
column header.

Exporting to a ZIP File
You can select several rows from several tables and export them to a ZIP file on the
local computer from which you are running CatalogMover. After you create the ZIP file,
import the contents of the file into server tables.

To export a ZIP file with CatalogMover:

1. Choose CatalogList then Load to display a list of all tables in the database.

2. Choose Catalog then Load to load a table, and select rows as described in
Selecting Rows for Export.

3. Choose Catalog then Export Catalog Rows.

The Select Base Directory for Export dialog opens.

Chapter 81
CatalogMover

81-8

Figure 81-7 Select Base Directory for Export Dialog

4. Navigate to the directory where you want to save the ZIP file.

5. In the File Name field, enter a name for the files and type a ZIP file extension.

6. Click Save. The rows you selected from all of the tables are exported to a ZIP file
in the directory you chose.

Importing Tables
Importing is the process of sending locally stored HTML files and the associated data
to the server. You can select a particular HTML file to import, or you can choose to
import all HTML files.

This section includes the following topics:

• Importing HTML Files Previously Exported

• Importing a Previously Exported ZIP File

• Merging Existing CatalogMover Files

• Replacing Existing CatalogMover Files

Importing HTML Files Previously Exported
To import HTML files that have been previously exported from another table:

1. Connect to the WebCenter Sites installation you want to import the HTML files to.

2. Choose CatalogList then Load to display a list of all tables in the database.

3. Choose Catalog then Import Catalog.

4. Navigate to the HTML file containing the previously exported table rows.

5. Select the HTML file and click Open.

The Select Base Directory for Export dialog opens.

Chapter 81
CatalogMover

81-9

6. To import new table rows that do not currently exist, enter the information in the
Catalog Data Directory and the Catalog ACL List fields.

To replace existing table rows with the imported table rows, leave these fields
blank.

7. Click OK. The table rows contained in the previously export HTML file are
imported into the WebCenter Sites database to which you are connected.

A dialog opens, listing the table rows that were imported.

Note:

The new tables are automatically created when you import tables that do
not exist on the server to which you are connected.

Importing a Previously Exported ZIP File
You can import table rows stored in an exported ZIP file to your server using
CatalogMover.

To import a previously exported ZIP file:

1. While connected to your database, choose Catalog then Auto Import Catalogs.

2. In the dialog, navigate to the directory where you previously exported the table
rows. To see the ZIP file, change the Files by Type menu to all files.

3. Select the ZIP file and click Save. The rows contained in the ZIP file are
automatically imported to your database.

Merging Existing CatalogMover Files
To merge CatalogMover files follow these steps:

1. Connect to the WebCenter Sites installation you want to import the HTML files to.

2. Choose CatalogList then Load to display a list of all tables in the database.

3. Choose Catalog then Load to load a table, and select the rows that you want to
merge into another file, as described in Selecting Rows for Export.

4. Choose Catalog then Export Catalog Rows.

5. Navigate to the HTML file you want to merge the rows with. Click Save.

The Overwrite dialog opens.

6. Click Update existing exported data. CatalogMover merges the exported rows
into the HTML file you selected.

Replacing Existing CatalogMover Files
To replace CatalogMover files follow these steps:

1. Connect to the WebCenter Sites installation you want to import the HTML files to.

2. Choose CatalogList then Load to display a list of all tables in the database.

Chapter 81
CatalogMover

81-10

3. Choose Catalog then load to load a table, and select the rows that you want to
merge into another file, as described in Selecting Rows for Export.

4. Choose Catalog then Export Catalog Rows.

5. Navigate to the HTML file you want to merge the rows with and click Save.

The Overwrite dialog opens.

6. Click Replace existing exported data.

CatalogMover replaces rows in the HTML file you selected with the exported rows.

Command Line Interface
Parameters described in the table below allow CatalogMover to perform functions
without displaying a GUI. The parameter is followed by a space followed by the value.

Table 81-1 Command Line Interface Parameters

Parameters Description

-h Display command line parameters

-u username User name

-p password Password

-s servername Servername to connect

-b baseurl Base URL: either

http://($host)/cgi-bin/gx.cgi/
AppLogic+FTCatalogManager (NAS)

or

http://($host)/servlet/CatalogManager(WebLogic)

-t table Table name: Used when exporting to designate tables to
export, use multiple -t parameters to export multiple tables.

-x function Function to perform: Legal values are import, import_all,
export, export_all.

-d directory Directory: When exporting, directory to contain exported
tables. When importing all, directory containing all tables to
import.

-f filename File containing table to import: Can either be an HTML file or
a ZIP file generated by export.

-c directory Upload directory to be used if creating a table.

-a aclone,acltwo,... ACL list: Comma-separated list of ACLs to be used if creating
a table.

Property Management Tool
The Property Management Tool includes an easy-to-use form that you use when you
want to search for, view, modify, and add properties in the wcs_properties.json file.

Topics:

• Accessing the Property Management Tool

Chapter 81
Property Management Tool

81-11

• Setting Properties

• Adding Properties to the wcs_properties.json File

Accessing the Property Management Tool
1. Log in to WebCenter Sites, select the name of the site, and then select the Admin

interface icon.

2. In the General Admin tree, expand the System Tools node.

3. Under the System Tools node, double click Property Management.

The Property Management Tool opens.

Figure 81-8 Property Management Tool

The Search by section of the Property Management Tool enables you to search for the
full or partial name of a property. You can also search by the Category assigned to the
property in the wcs_properties.json file.

When you click Search, the Properties section of the form lists all the properties that
match the search criteria you enters in the Search by section of the form.

The Key column displays the name of the property, the Category column displays the
category assigned to the property, the SubCategory column displays the sub category
(if any) assigned to the property, the Value column shows the value to which the
property is currently set. and the Default Value column displays the recommended
value for the property.

Note:

The wcs_properties.json file contains a release number string, ft.version,
which contains a value such as 4.0.0. that is set by WebCenter Sites.

Do not modify this property, it is for reference only.

Chapter 81
Property Management Tool

81-12

Setting Properties
To set WebCenter Sites properties on your system:

1. If necessary, open the Property Management Tool.

2. In the Search by section, do one of the following:

• In the Name field, enter the name of the property you want to modify.

• In the Category drop-down menu, select the Category assigned to the
property in the wcs_properties.json file.

3. Click Search.

4. In the Key column, select the name of the property.

5. In the Value field, enter the new value.

6. Click Save.

7. Repeat steps 2 through 6 for all the properties you want to change.

8. Stop and restart the application server to apply the changes.

Adding Properties to the wcs_properties.json File
In certain cases, you might need to add properties to the wcs_properties.json file. In
such cases, use the Property Management Tool to add properties to this file.

1. Open the Property Management Tool.

2. In the Search by section of the form, click Add.

3. Enter values for the new property. See Adding Properties in the Property Files
Reference for Oracle WebCenter Sites.

4. Click Save.

5. Stop and restart the application server so the new property can take effect.

About Importing with XMLPost
You use the XMLPost utility to import data into the WebCenter Sites database. This
utility is based on the WebCenter Sites FormPoster Java class and it is delivered with
the WebCenter Sites base product. It imports data using the HTTP POST protocol.

To import assets, you use XMLPost with posting elements that are delivered with
WebCenter Sites.

Topics:

• Importing Assets of Any Type

• Importing Flex Assets

Chapter 81
About Importing with XMLPost

81-13

82
Understanding White Space and
Compression

When WebCenter Sites streams a text page, the page may contain a significant
amount of white space (spaces, carriage returns, and tabs) that have no effect on the
data that is consumed by the client. The white space is visible when the source code
is viewed by the consumer. Furthermore, excessive white space needlessly increases
the size of the response, which ultimately increases bandwidth use. So, it’s a good
practice to eliminate the white space whenever possible.

Topics:

• White Space and JSP

• White Space and XML

• Compression

• JSP Design

White Space and JSP
The JSP specification needs you to preserve the white space.

Thus, a page that looks like this:

<%@ page import="my class name"%>
<%@ page import="my class 2"%>
<cs:ftcs>
<p>Hello world!</p>
</cs:ftcs>

has three carriage returns and a tab preceding the <p> because the text is displayed
on third line after the JSP has been interpreted. With more complicated pages, the
problem is compounded.

White Space and XML
WebCenter Sites XML processing language, being a proprietary set of XML-compliant
tags, does not adhere to the white space preserving rules of JSP.

As such, a WebCenter Sites XML page like this:

<? XML version 1.0 ?>
<FTCS>
<p>Hello World!</p>
</FTCS>

displays <p> as the first characters of output, because our XML parser strips all of the
white space. (An exception is if XML debug is enabled, in which case all white space is
preserved).

82-1

Compression
White space is an artifact of writing well-formatted code. Its presence is a side effect
of programming practices that benefit the developer. The impact on the consumer
and the customer is minimal except for bandwidth. To address bandwidth, you can
compress the output of all text-based pages. You need to be on the server-side to
compress the output. The consumer's user-agent (browser) performs decompression.

The compression/decompression is completely transparent to the end user. This sort
of compression can yield up to an 80% reduction in bandwidth use.

One commonly-used compression mechanism is the mod-gzip extension to the
Apache web server. This module automatically gzips all output to the user agent,
provided that it can decompress it. Configuration is minimal and its effectiveness is
quite high. It can be obtained from SourceForge (http://sourceforge.net/projects/
mod-gzip/). Similar tools are available for other common web servers, such as IIS.

Another possibility is to do the compression at the application server layer, and leave
the web server alone. This is best done by connecting a standard servlet filter to
Satellite Server (or to WebCenter Sites if Satellite Server is not being used). The
servlet filter is invoked in a prescribed order before or after the invocation of the
specified servlet (or both), and during invocation it can compress the output before
sending it to compatible user-agents, exactly the same way mod-gzip works. One such
compression filter can be found at SourceForge (http://sourceforge.net/projects/
pjl-comp-filter/).

If you need assistance with compression, contact Oracle Consulting Services.

JSP Design
If compression is not an option, consider altering your JSP pages in a way that white
space doesn’t occur.

You can do this by changing the code above to the following:

<%@ page import="my class name"
%><%@ page import="my class 2"
%><cs:ftcs><p>Hello world!</p></cs:ftcs>

While this is not as elegant (or readable), it results in page output without any white
space whatsoever before the <p> tag. An intermediate solution may be something like
the following:

<%@ page import="my class name"
%><%@ page import="my class 2"
%><cs:ftcs>
<p>Hello world!</p>
</cs:ftcs>

For extensive examples of how to address white space issues in JSP, refer to our
WebServices elements in the ElementCatalog. They are included with WebCenter
Sites.

Chapter 82
Compression

82-2

83
Using WebCenter Sites URL Assemblers

WebCenter Sites URL assemblers manage URL assembly and disassembly. You can
use the interface that they provide to define the appearance of URLs.

Topics:

• About WebCenter Sites URL Assemblers

• Assemblers Installed with WebCenter Sites

• Working with Assemblers

• Vanity URL Links in a Web Page

About WebCenter Sites URL Assemblers
You can use URL assemblers along with URL generation tags to generate WebCenter
Sites URLs and to disassemble the URLs.

URL Assemblers are the legacy method of URL management. Vanity URLs are the
current method. See Vanity URL Links in a Web Page.

Topics:

• URL Assembly

• Assembler Discovery and Disassembly

• URL Assembly and Disassembly Using GET and POST Requests

URL Assembly
WebCenter Sites URL generation tags (<satellite.link>, <satellite.blob>,
<render.getpageurl>, <render.getbloburl>, <render.satelliteblob>,
<rendergettemplateurl>) are used to construct a link to a WebCenter Sites resource,
such as a page or a blob. The data, such as tag attributes and nested argument
tags which you specify when using the tag, is converted into an abstract object called
a URL definition. The URL definition is passed into the URL assembler. The URL
assembler then converts the definition into a string URL that is returned.

Two assemblers are installed with WebCenter Sites, but you have the option of
creating your own assemblers to directly control the appearance of your URLs. Before
you can use the assemblers you create, you must first register them with WebCenter
Sites.

The assembler that is configured as the default is used to create all WebCenter Sites
URLs. You can change the default assembler. You can also override the use of this
default assembler in individual link tags.

83-1

Assembler Discovery and Disassembly
Because an assembler can create a URL in any form that the assembler's author
dictates, it may be impossible for the URL to be decoded into parameters by
an application server when an assembled link is requested. For decoding to take
place, the assembler must be able to disassemble the string URL into its definition.
Assemblers are therefore reversible, that is, capable of disassembling any URLs that
they assembled.

URL created using an assembler other than the default one can't be disassembled
by the default assembler. At that point, the next highest ranked assembler attempts
to disassemble the URL. If it succeeds in creating a definition, then the assembler
engine has discovered its assembler, and the definition is converted into parameters
for processing. If the next highest ranked assembler fails to disassemble the URL,
the third highest ranked assembler is called upon to disassemble it. This process
continues until the URL is successfully disassembled. Note that this process requires
an assembler to be able to recognize the URLs it assembled as its own, and all other
URLs as foreign.

See Creating Assemblers and Registering and Ranking Assemblers.

URL Assembly and Disassembly Using GET and POST Requests
URL assemblers are only invoked on GET requests. They are not invoked on POST
requests. For example, when accessing a page with a GET request, the URL assembler
is invoked to disassemble the URL. It then provides the appropriate parameters that
WebCenter Sites requires to open that page (such as c, cid, and pagename) by adding
them to the definition (if they do not exist in the definition). However, when a request
is POSTed, such as a form with method=post, the URL assembler is not invoked to
disassemble the URL. Therefore, the parameters WebCenter Sites requires to open
the page must be part of the post request itself.

This can be accomplished by encoding the following tag into the page's template or
element (replacing the sample values with the parameters WebCenter Sites requires
for the page's URL):

<satellite:form method="post" id="assetid">
<render:gettemplateurlparameters list="args" ... /><!-- add all
parameters that are normally part of a URL -->
 <ics:listloop listname="args">
 <input type="hidden" name="<string:stream list="args"
column="name"/>" value="<string:stream list="args" column="value"/>"/>
 </ics:listloop>

Assemblers Installed with WebCenter Sites
The two assemblers that are installed with WebCenter Sites are Query Assembler and
QueryAsPathInfo Assembler. While the Query Assembler uses query strings to create
URLs, the QueryAsPathInfo Assembler encodes the query strings and appends them
to the end of servlet names.

Topics:

• Query Assembler

Chapter 83
Assemblers Installed with WebCenter Sites

83-2

• QueryAsPathInfo Assembler

Query Assembler
The Query Assembler creates URLs with query strings. It is the default assembler,
and it is automatically registered in WebCenter Sites. Therefore, until you make any
modifications (such as changing the default assembler or overriding the default in link
tags), Query Assembler is used to generate all URLs.

QueryAsPathInfo Assembler
The QueryAsPathInfo Assembler does not use query strings. Instead, the
QueryAsPathInfo Assembler encodes the query string and appends it to the end of the
servlet name. The benefit of this assembler is that it creates URLs that can be indexed
by search engines. The QueryAsPathInfo Assembler is not automatically registered
with WebCenter Sites.

Working with Assemblers
You can create and register your own assemblers and modify link tags to override the
use of the default assembler.

Topics:

• Creating Assemblers

• Registering and Ranking Assemblers

• Link Tags Modification

Creating Assemblers
The WebCenter Sites URL Assembly module enables you to create your own
assemblers. This option gives you direct control of the appearance of your URLs.

To create an assembler:

1. Write a Java class that implements the com.fatwire.cs.core.uri.Assembler
interface. For information about this class, see the Java API Reference for Oracle
WebCenter Sites.

2. Compile the class into a .jar file.

3. Deploy your class into the WebCenter Sites web application and the web
application for each remote Satellite Server you have installed.

This usually means copying the .jar file you just created into your web
application's WEB-INF/lib folder. For remote Satellite Servers, this means copying
it to the resin/webapp/ROOT/WEB-INF/lib folder.

4. Register your new assembler in the wcs_properties.json file on WebCenter
Sites and all of your remote Satellite Servers. (See Registering and Ranking
Assemblers.)

5. Restart WebCenter Sites and all of your remote Satellite Servers.

Chapter 83
Working with Assemblers

83-3

Registering and Ranking Assemblers
Before an assembler can be used to create URLs, it must first be registered with
WebCenter Sites. The registration is done by listing assembler class names with
corresponding short forms in a property file. The registration also includes a ranking
that indicates in which order the assemblers should be used.

To register an assembler:

1. In the Admin interface, open the Property Management Tool.

2. In the Category drop-down menu, select ServletRequest to access the
assembler properties.

3. Click Search.

4. Specify the classname and shortform of the assembler you want to register.

The third element in the property name indicates the ranking of the assembler. The
assembler with the ranking of 0 is the highest ranked (and default) assembler, the
assembler with the ranking of 1 is the next highest ranked, and so on.

To configure the new assembler to be the default assembler, enter the classname
and shortform values in the properties that have 1 as their ranking.

For example, the syntax to register the QueryAsPathInfo assembler as the default
assembler would be as follows:

Table 83-1 Assembler Properties

Property Name Property Value

uri.assembler.0.classname com.fatwire.cs.core.uri.QueryAsPat
hInfoAssembler

uri.assembler.0.shortform pathinfo

uri.assembler.1.classname com.fatwire.cs.core.uri.QueryAssem
bler

uri.assembler.1.shortform query

Note:

Ensure the Query Assembler is always registered, even if you have
lowered its ranking. The Query Assembler must be registered with the
shortform value of query.

5. Depending on the ranking of the new assembler, you may have to adjust the
rankings of the other assemblers. Verify that all of the assemblers are configured
and ranked correctly in the property file. If they are not, make any necessary
changes.

6. After you change the value of an assembler, click Save before modifying the value
of a different assembler.

7. Repeat steps 5 through 6 for each remote Satellite Server you have installed.

Chapter 83
Working with Assemblers

83-4

8. Restart WebCenter Sites and all of your remote Satellite Servers.

Link Tags Modification
WebCenter Sites link tags can be modified to use an assembler other than the default
assembler. The link tags accept an attribute, assembler, which take an assembler
short form as a value. For example, to override the default assembler with the
QueryAsPathInfo assembler in an individual link tag, the syntax would be as follows:

<satellite:link pagename=example assembler=pathinfo />

Vanity URL Links in a Web Page
If an asset has a vanity URL for the template that is passed in the name argument,
then the <render:gettemplateurl> tag returns the vanity URL. If the asset does not
have a vanity URL, then the tag returns the WebCenter Sites URL.

The <render:gettemplateurl> tag can be used to generate a vanity URL link. Thus
any redirected URL always returns the vanity URL if present. That way, if an existing
link is accessed (for example, from a bookmark), then all subsequent URLs are vanity
URLs.

To generate a vanity URL for a specific WebRoot, an additional optional attribute called
webrootname should be passed to tag render: gettemplateurl. The value of the tag
attribute webrootname should match the hostname attribute of WebRoot. This is used
to generate a link to another website or subdomain within the same website. For
example:

<render:gettemplateurl outstr="pageURL" webrootname=<name of WebRoot used for
retrieving URL> tname='<%=ics.GetVar("template")%>' args="c,cid" />

Chapter 83
Vanity URL Links in a Web Page

83-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with Oracle WebCenter Sites
	1 Introduction to Developing with WebCenter Sites
	About Developing with WebCenter Sites
	Typical Tasks for WebCenter Sites Developers
	Data Models for Content Display
	Content Entry Forms for Content Management Sites
	Templates and Elements to Render Content on the Website
	Element Files
	APIs and JSP Tags
	Sessions and Cookies

	WebCenter Sites Systems for Development, Management, Delivery, and Testing
	Approvals and Publishing
	Caching to Optimize Performance
	Page Caching
	Resultset Caching
	Asset Caching
	Satellite Server Caching
	HTTP Requests
	Satellite Server Servlets

	WebCenter Sites Utilities
	WebCenter Sites Interfaces
	Use Case Scenarios for WebCenter Sites
	Developing Informational (Branding) Websites
	Creating Marketing-Oriented Websites
	Creating Mobile Websites

	2 Overview of the Avisports Sample Site
	Touring the Avisports Sample Site as a Content Contributor
	Touring the Infrastructure of the Avisports Sample Site

	3 The WebCenter Sites Development Process
	Step 1: Set Up the Team
	Step 2: Create Functional and Design Specifications
	Functional Requirements
	Page Design
	Caching Strategy
	Security Strategy (Access Control)
	Separate Format from Content (Elements from Assets)
	Determine the Asset Types (Content)
	Decide How to Handle Images and Other Blobs
	Map Out the Functional Design and Format (Elements)

	Data Design
	Asset Types
	Auxiliary Tables That Support Your Asset Types
	Visitor Data

	Step 3: Set Management System Requirements
	Step 4: Implement the Data Design
	Step 5: Build the Online Site
	Step 6: Set Up the Management System
	Import Content as Assets
	Import Catalog Data and Flex Asset Data
	Instruct the Editorial Team About Site Design

	Step 7: Set Up the Delivery System
	Step 8: Publish to the Delivery System

	Part II Building Your Data Model
	4 Understanding the Asset Types and Asset Models
	What Are Asset Types?
	Asset Types Delivered with WebCenter Sites
	Asset Types Delivered with Engage

	What Are Asset Models?
	When to Use the Basic Model
	When to Use the Flex Model

	The Basic Asset Model
	Relationships Between Basic Assets
	Associations
	Unnamed Relationships

	Category, Source, and Subtype
	Category
	Source
	Subtype

	Basic Asset Types and the Database
	Template Asset Type and the Database
	Default Columns in the Basic Asset Type Database Table

	The Flex Asset Model
	The Flex Family
	Parent, Child, and Flex Assets

	The Flex Family in the Avisports Sample Site
	Flex Attributes
	Data Types for Attributes
	Default Input Styles for Attributes
	Foreign Attributes

	Flex Parents and Flex Parent Definitions
	Business Rules and Taxonomy

	Flex Assets and Flex Definition Assets
	Flex Families and the Database
	Default Columns in the Flex Asset Type Database Table
	The _Mungo Tables
	The MungoBlobs Table
	The _AMap Tables

	Assetsets and Searchstates
	Search Engines and the Two Asset Models
	Tags and the Two Asset Models
	Summary: Basic and Flex Asset Models

	5 Designing Basic Asset Types
	About the AssetMaker Utility
	How AssetMaker Works
	Asset Descriptor Files
	About the Asset Descriptor File
	About Format and Syntax
	About the AssetMaker Tags

	Columns in the Asset Type's Database Table
	The Source Column: A Special Case
	Storage Types for the Columns
	Input Types for the Fields
	Data Types for Standard Asset Fields

	Elements and SQL Statements for the Asset Type
	The Elements
	About PreUpdate and PostUpdate Elements

	The SQL Statements

	Before You Begin Creating Basic Asset Types
	Planning the Asset Type Design
	Setting Up Your Development System

	Creating Basic Asset Types
	Coding the Asset Descriptor File
	Uploading the Asset Descriptor File to WebCenter Sites
	Creating the Asset Table
	Configuring the Asset Type
	Enabling the Asset Type on Your Site
	Fine-Tuning the Asset Descriptor File
	Customizing the Asset Type Elements (Optional)
	Adding Subtypes (Optional)
	Configuring Association Fields (Optional)
	Configuring Categories (Optional)
	Adding Mimetypes (Conditional)
	Editing Search Elements to Enable Indexed Search (Optional)
	Creating and Assigning Asset Type Icons (Contributor Interface Only)
	Coding Templates for the Asset Type
	Moving the Asset Types to Other Systems

	Deleting Basic Asset Types

	6 Designing Flex Asset Types
	About Designing Flex Asset Types
	Design Tips for Flex Families
	Visitors on the Delivery System
	Users on the Management System
	How Many Attribute Types Should You Create?
	Designing Flex Attributes
	Which Data Types Are Available for Attributes
	About Using Attribute Editors
	Where Will Each Attribute Be Used?
	Attribute Dependencies Imposed by Hierarchy

	How Many Definition Types Should You Create?
	Designing Parent Definition and Flex Definition Assets
	Determining Hierarchical Place
	Determining Attribute Inheritance
	How Many Flex Parent Definition Assets?
	How Many Flex Definition Assets?

	The Flex Family Maker Utility
	Flex Asset Elements
	Setting Up Your Development System
	Creating a Flex Asset Family
	Creating a Flex Family
	(Conditional) Creating Additional Flex Family Members
	(Conditional) Configuring the Flex Family Members
	Enabling the New Flex Asset Types
	Create Flex Attributes
	Creating Flex Attributes: Basic Procedure
	Creating Flex Attributes of Type Blob (Upload Field)
	Creating Flex Attributes of Type Asset
	Creating Foreign Flex Attributes

	(Conditional) Creating Flex Filter Assets
	Creating Parent Definition Assets
	Creating Flex Definition Assets
	Creating Flex Parent Assets
	Creating and Assigning Asset Type Icons (Contributor Interface Only)
	Coding Templates for the Flex Assets
	Testing Your Design (Creating Test Flex Assets)
	(Conditional) Creating Flex Asset Associations
	Moving Asset Types to Other Systems

	What You May Need to Know About Editing Flex Attributes, Parents, and Definitions
	What You May Need to Know About Editing Attributes
	What You May Need to Know About Editing Parent Definitions and Flex Definitions
	What You May Need to Know About Editing Parents and Flex Assets

	Using Product Sets
	About Using Product Sets
	Creating a Product Set

	7 Creating a Hierarchical Flex Family
	Hierarchical Organization
	Flex Family Specifications
	Creating a Sample Flex Family Using a Real-World Example
	Creating a Flex Family
	Enabling the New Flex Asset Types
	Adding a Flex Family Tab to the WebCenter Sites Tree
	Creating Parent Definition Assets
	Creating Flex Parent Assets
	Creating Flex Definition Assets
	Creating Flex Assets
	Translating the Formulaic Data Model into a Real-World Data Model
	Developing Your Real-World Model

	8 Creating Flex Filters
	About Flex Filter Classes and Assets
	Flex Filter Classes
	Flex Filter Assets

	Defining a Flex Filter Class and Creating a Flex Filter Asset
	Implementation of a Flex Filter Class
	AbstractFlexFilter Class Extension

	Defining a Custom Flex Filter Class
	Creating a Flex Filter Asset

	Document Transformation Flex Filter
	Default Solution
	About Custom Solutions
	Using a Default Transformation Engine
	Customizing Document Transformation Flex Filter
	Writing and Deploying a Document Transformer Flex Filter
	Registering the Transformation Engine
	Registering the Document Transformer

	SampleFlexFilter.java

	9 Designing Attribute Editors
	About Attribute Editors
	The presentationobject.dtd File
	The Attribute Editor Asset
	The Syntax and the Default Tags
	CHECKBOXES
	CKEditor
	PICKASSET
	PULLDOWN Example
	RADIOBUTTONS
	TEXTAREA
	TEXTFIELD
	TYPEAHEAD
	UPLOADER

	The Attribute Editor Elements
	Conventions for the Attribute Editor Elements

	Creating Attribute Editors
	Customizing Attribute Editors
	Example: Customized Attribute Editor
	Step 1: Editing the presentationobject.dtd File
	Step 2: Specifying Permission for the Example Attribute Editor
	Step 3: Editing the TEXTAREA Element

	Adding Custom Logic to Validate an Uploaded File

	Considerations About Editing Attribute Editors

	10 Configuring Bundled Attribute Editors
	Configuring CKEditor
	Before You Begin
	How to Create a CKEditor Instance and Enable It for a Field
	How to Enable CKEditor for Use in Web Mode
	How to Enable Selected Asset Types for the CKEditor
	How to Set the Approval Dependency for Included Assets
	How to Customize the CKEditor Toolbar
	How to Configure Spell Check Support in CKEditor

	Configuring the Clarkii Online Image Editor
	How to Create a Clarkii OIE Instance and Enable it for a Field
	How to Configure Clarkii OIE Properties
	How to Implement a Field Copier Filter to Classify Assets

	Configuring the Image Picker
	How to Categorize Image Assets for Display in Image Picker
	How to Create Image Picker Attribute Editor Definition Code

	11 Working with the WebCenter Sites Database
	Types of Database Tables
	Object Tables
	Tree Tables
	Content Tables
	Foreign Tables
	System Tables
	Identifying a Table's Type

	Types of Columns (Fields)
	Generic Field Types
	Database-Specific Field Types
	Indirect Data Storage with the WebCenter Sites URL Field

	About Adding to the System Tables
	About Property Files and Databases

	12 Managing Data in Non-Asset Tables
	Using Methods and Tags to Program Data Management in Non-Asset Tables
	About Writing and Retrieving Data
	Security Through CatalogManager
	Tree Manager Commands for Managing the Tree Tables

	Methods for Querying for Data
	Lists and Listing Data

	Coding Data Entry Forms
	How To Add a Row
	The addrowFORM Element
	Root Element for the addrow Page

	How To Delete a Row
	The deleterowFORM Element
	Root Element for the deleterow Page

	How To Query a Table
	The SelectNameForm Element
	The Root Element for the QueryEditRowForm Page
	The Root Element for the QueryEditRow Page

	How To Query a Table with an Embedded SQL Statement
	QueryInlineSQLForm
	The Root Element for the QueryInlineSQL Page

	Consideration About Deleting Non-Asset Tables

	Part III Developing a Website
	13 Website Development with the MVC Framework and APIs
	Server-Side and Client-Side Development Methodologies
	Server-Side MVC Framework
	Developer’s Samples Website
	WebCenter Sites MVC Framework Overview
	Controllers
	Views

	Pages, Pagelets, and Elements
	Template and CSElement Assets
	Page Assets and Site Navigation
	Date-Based Preview
	Multilingual Support
	Caching in the MVC Framework
	Server-Side Java APIs
	Asset Reader
	Navigation Reader
	Link Builder
	Blob Link Builder
	Searcher
	Recommendation Reader
	Table Reader

	REST APIs
	Sample Websites

	14 Developing a Server-Side Website
	About Developing a Server-Side Website
	Working with the Controller Interface
	Creating a Controller
	Creating a Template
	Setting Up the Home Page
	Adding Site Navigation

	15 Developing a Client-Side Website
	About Client-Side Websites
	REST Calls for Developing REST-Avisports: Examples
	Getting Navigation Menus
	Getting the Home Page
	Getting an Additional Website Page
	Calling an Article from a Page
	Calling a Collection Resource with Pagination
	Calling a Search Resource
	Calling Page Segments
	Calling a Page Without Segments
	Calling a Page with Segments That Target Specific Visitors
	Calling a Page with Segments That Target Different Visitors
	Calling a Page with Segments That Target More Visitors

	16 Website Development with Tag Technologies
	About Choosing a Coding Language
	About the Oracle WebCenter Sites Context
	The ICS Object
	The FTCS tag

	Understanding WebCenter Sites JSP
	About the WebCenter Sites Standard Beginning
	Taglib Directives
	Page Directives
	The cs:ftcs Tag

	About JSP Implicit Objects
	About JSP Syntax
	About JSP Actions
	About JSP Declarations
	About Scriptlets and Expressions
	About JSP Directives
	About Oracle WebCenter Sites Tag Libraries

	Understanding WebCenter Sites XML
	WebCenter Sites Standard Beginning
	XML Version and Encoding
	The DTD File
	The FTCS Tag

	XML Entities and Reserved Characters
	XML Parsing Errors

	Understanding WebCenter Sites Tags
	Tags That Create the WebCenter Sites Context
	Tags That Handle Variables
	Tags That Call Pages and Elements
	Tags That Create URLs
	Tags That Control Caching
	Tags That Set Cookies
	Programming Construct Tags
	Tags That Manage Compositional and Approval Dependencies
	Tags That Retrieve Information About Basic Assets
	Performance Notes About the Asset Tags

	Tags That Create Assetsets (Flex Assets)
	Tags That Create Searchstates (Flex Assets)

	About Variables Supported in WebCenter Sites
	Reserved Variables
	Regular Variables
	Variables with SETVAR
	Variables Using a URL
	Default Variables for Elements and Templates with Explorer
	Variables Using HTML Forms

	Session Variables
	Working With Variables
	Syntax to Read Variables' Values
	Tags to Display Variables' Values
	Assigning of One Variable Value to Another Variable
	Variables in HTML Tags
	Evaluation of Variables with IF/THEN/ELSE

	Variables and Precedence
	Best Practices with Variables

	Other WebCenter Sites Storage Constructs
	Built-ins
	Lists
	Looping Through Lists

	Counters

	About Values for Special Characters

	17 About Sessions and Cookies
	About Sessions
	Session Lifetime
	Session Variables Maintained by WebCenter Sites
	Logging In and Logging Out

	Sessions Example
	FeelingsForm Element
	SetFeeling Element
	Meat Element

	About Cookies
	CookieServer
	Cookie Tags

	Cookie Example
	Start.xml
	ColorForm
	CreateCookie
	DisplayWelcome
	Running the Cookie Example

	Tips and Tricks
	Satellite Server Session Tracking
	Flushing a Session Using a URL
	Flushing Current Session Information
	Flushing Other Session Information

	18 Creating Template, CSElement, and SiteEntry Assets
	About Template, CSElement, and SiteEntry Assets
	About Pages
	Elements, Pagelets, and Caching
	Calling Pages and Elements
	Page vs. Pagelet

	Using CSElement, Template, and SiteEntry Assets
	Template Assets
	CSElement Assets
	SiteEntry Assets
	Non-Asset Elements

	Creating Template Assets
	Before You Begin Creating a Template Asset
	Naming a Template Asset
	Designating a Template as Typed or Typeless
	Template Sharing and Site Replication

	Creating a Template Asset
	Open the Template Form
	Name and Describe the Template Asset
	Configure the Template's Element
	Configure SiteEntry
	Configure the Map
	Create a Thumbnail (Optional)
	Inspect the Template

	Creating CSElement Assets
	Before You Begin Creating a CSElement
	Naming the CSElement
	CSElement Sharing and Site Replication

	Creating a CSElement Asset
	Open the CSElement Form
	Name and Describe the CSElement Asset
	Configure the Element
	Configure the Map
	Save and Inspect the CSElement
	Add the CSElement to Bookmarks

	Creating SiteEntry Assets
	Before You Begin Creating SiteEntry Assets
	Creating a SiteEntry Asset
	Open the SiteEntry Form
	Create the SiteEntry Asset
	Save and Inspect the SiteEntry Asset

	Managing Template, CSElement, and SiteEntry Assets
	Designating Default Approval Templates (Static Publishing Only)
	Editing Template, CSElement, and SiteEntry Assets
	Sharing Template, CSElement, and SiteEntry Assets
	Deleting Template, CSElement, and SiteEntry Assets
	Previewing Template, CSElement, and SiteEntry Assets
	Templates and Preview
	CSElement and SiteEntry Assets and Preview

	Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic
	Creating Templates and CSElements
	Editing Templates and CSElements

	19 Creating Templates and Wrappers
	Working with Templates
	Layout Templates
	A layout template can be invoked from a browser
	A layout template can be assigned to an asset
	A layout template typically renders an entire web page
	Use Case 1: Building a Layout Template for Article Assets

	Pagelet Templates
	A pagelet template cannot be invoked directly from a browser
	A pagelet template cannot be assigned to an asset
	A pagelet template renders a page fragment
	Use Case 2: Using Pagelet Templates

	Page Templates
	A Page Template Can be Invoked from a Browser
	A Page Template Cannot be Assigned to an Asset
	A Page Template Can be Used for Previewing

	Working with Wrappers
	Creating a Wrapper Page
	Previewing Wrappers

	20 Coding Elements for Templates and CSElements
	About Dependencies
	The Publishing System and Approval Dependencies
	Calculating Approval Dependencies
	Exists vs. Exact vs. None
	Approval Templates for Export to Disk
	Subtypes, Flex Definitions, and Approval Templates

	Page Generation and Compositional Dependencies
	CacheManager and Dynamic Publish Sessions
	CacheManager and the Preview Function

	About Coding to Log Dependencies
	ASSET.LOAD and asset:load
	The ASSETSET (assetset) Tag Family
	Setting the Approval Dependency Type

	RENDER.GETPAGEURL and render:getpageurl
	RENDER.LOGDEP (render:logdep)
	Setting the Approval Dependency Type

	RENDER.FILTER and render:filter
	RENDER.UNKNOWNDEPS and render:unknowndeps

	About Invoking CSElement and SiteEntry Assets
	Coding Elements to Display Basic Assets
	Assets That Represent Simple Content
	Associations
	ImageFile Assets or Other Blob Assets
	Basic Assets That Can Have Embedded Links
	Collections
	Collection Templates and Approval Dependencies
	Collection Templates and Compositional Dependencies

	Query Assets
	Page Assets

	About Coding Elements that Display Flex Assets
	Assetsets
	Searchstate Objects
	Assetsets, Searchstates, and Flex Attribute Asset Types
	Scope

	Coding Templates That Display Flex Assets
	Example Data Set for the Examples in This Section
	Examples of Assetsets with One Product (Flex Asset)
	Create a Searchstate and Apply It to an Assetset
	Get the Price of the Product
	Display the Price of the Product
	Get the Colors for the Product
	Display the Colors of the Product
	Create a List Object for the ASSETSET.GETMULTIPLEVALUES tag
	Get the Value for Both Price and Color with ASSETSET.GETMULTIPLEVALUES
	Display the Value of Price and Color for the jeans-2 Product

	Special Cases: Flex Attributes of Type Text, Blob, and URL
	About Flex Attributes of Type Text
	About Flex Attributes of Type Blob
	Creating a BlobServer URL
	Getting and Displaying the Value of a Blob Flex Attribute

	Examples of Assetsets with Multiple Products (Flex Assets)
	Creating a Searchstate and Apply it to an Assetset
	Displaying the Number of Assets in the Assetset
	Displaying the Colors That the Jeans Are Available In
	Displaying Both the Colors and the Styles for the Jeans in the Assetset
	Creating a Table That Displays All the Jeans and Their Attribute Values
	Searching for Jeans Based on a Range of Prices
	Searching for Jeans with a Wildcard for Color
	Searching for Jeans with Specific Colors

	Creating URLs for Hyperlinks
	RENDER.GETPAGEURL (render:getpageurl)
	RENDER.SATELLITEBLOB (render:satelliteblob)
	RENDER.GETBLOBURL (render:getbloburl)
	Using the referURL Variable

	Handling Error Conditions
	Using the Errno Variable
	Ensuring that Incorrect Pages Are Not Cached

	Encoding Page Arguments
	What You May Need to Know About Securing Your Site Against XSS Attacks

	21 Coding Templates for In-Context and Presentation Editing
	Coding Templates for In-Context Content Editing
	Attribute Data Types
	Making String Fields Editable
	Variants of the <insite:edit/> Tag

	Making Text Fields Editable
	Making Date Fields Editable
	Date Formatting APIs
	Enabling Date Fields for Editing in Web Mode

	Making Binary Fields Editable
	Making Asset Fields Editable
	Editing an Association
	Editing a Parent Asset

	Number Fields
	Multivalued Fields
	Example 1: Editing Multivalued Text Fields
	Example 2: Modifying Multivalued Text Fields
	Specifying a Different Ordering
	Editing Mode and Caching

	Coding Templates for Presentation Editing
	Selecting a Different Layout for the Entire Web Page
	Selecting a Different Layout for a Page Fragment
	Defining a Slot for Presentation Editing
	Adjusting the Slot Title
	Controlling Template Arguments

	Editing Presentation and Content Simultaneously
	Understanding Content-Editable Slots and Presentation-Editable Slots
	Combining Content-Editable Slots and Presentation-Editable Slots

	Understanding the Context System Variable
	About Defining the Scope of the Slot
	Using the Context Variable in Action
	Initializing the Context Value
	Overriding Context
	Caching Context

	Using Slots with CSElement and SiteEntry Assets
	Defining a Slot Containing a CSElement Asset
	When to Use CSElement or SiteEntry Assets
	About Defining Legal Arguments
	Consideration About Using Nested Slots

	Constraining Asset Types
	Preventing CSS and JavaScript Conflicts

	Enabling Content Creation for Web Mode
	Defining a Start Menu for In-Context Creation
	Providing Layout Templates for In-Context Creation
	Adjusting Stylesheets
	Adjusting Stylesheets for Slots

	Providing Empty Value Indicators
	Providing Editing-Specific Presentation Logic

	22 Template Element Examples for Basic Assets
	Creating Basic Modular Design
	Home Element
	MainStoryList Element
	LeadSummary Element
	TeaserSummary Element
	Back to LeadSummary
	Back to MainStoryList
	Back to Home

	Coding Links to the Article Assets in a Collection Asset
	SectionFront Element
	PlainList Element

	Using the ct Variable
	SectionFront Element
	TextOnlyLink Element
	ColumnistFront

	Coding Templates for Query Assets
	Home Element
	WireFeedBox Element
	ExecuteQuery Element
	Back to WireFeedBox

	Displaying an Article Asset Without a Template
	Full Element
	AltVersionBlock Element
	EmailFront Element

	Displaying Site Navigation Information
	Home Element
	SiteBanner Element
	TopSiteBar Element
	Creating the Link for the Home Page
	Creating the Links to the Home Page's Child Pages

	Back to SiteBanner

	Displaying Non-Asset Information
	Home Element
	ShowMainDate Element

	23 Creating Collection Assets, Query Assets, and Page Assets
	About Creating Assets
	Creating Collection Assets
	Before You Begin
	Creating a Collection Asset
	Sharing a Collection Asset

	Creating Query Assets
	How to Use Query Assets and Other Assets
	How to Store the Query
	Commonly Used Fields for Queries
	Before You Begin Creating Query Assets
	Creating a Query Asset
	Sharing Query Assets
	Previewing and Approving Query Assets

	Creating Page Assets
	Understanding the Page Asset Model
	How To Design Page Attributes
	How to Create a Page Asset
	How To Place Page Assets
	How To Move Page Assets in the Site Tree
	Reordering Child Pages
	Changing Parent Pages

	Considerations About Placing Page Assets and Workflow
	Tips About Editing Page Assets
	Considerations About Deleting Page Assets

	24 Best Practices for Creating Future Site Preview Assets and Templates
	About Implementing Future Site Preview
	Creating Sets of Assets
	Writing Templates for Future Site Preview
	The asset:filterassetsbydate Tag
	The Input List

	Caching Considerations

	25 Configuring Sites for Multilingual Support
	About Configuring a Site for Multilingual Support
	Dimensions
	Dimension Sets
	Cross-Site Multilingual Support
	Master Assets, Translations, and Multilingual Sets
	Translations and Asset Relationships
	Approval Dependencies

	Working with Locale Filtering
	Options for Implementing Asset Relationships Through Locale Filtering
	Understanding the Included Locale Filters
	The Simple Filter
	The SimpleLookup Filter
	The Hierarchical Filter

	About Using Custom Locale Filters
	Accounting for Compositional Dependencies
	Asset Lookup Chain
	Caching Rules

	About Adding Filtering Support to Your Site
	About Adding Filtering to Templates
	About Obtaining and Maintaining a Visitor's Locale Preference
	About Filtering Search Results

	Planning Multilingual Support for a Site
	Configuring Multilingual Support for a Site
	Configuration Quick Reference
	Enabling the Dimension and DimensionSet Asset Types
	Enabling the Locale Subtype of the Dimension Asset Type
	How To Create a Locale
	How to Share a Locale to Another Site
	How To Create and Configure a Dimension Set
	How To Share a Dimension Set to Another Site
	How To Configure a Locale Filter
	How to Configure the Fallback Hierarchy of the Hierarchical Filter
	How to Bulk-Assign a Default Locale to Assets in a Site
	Sample Element Code for Bulk-Assigning a Default Locale

	Tips for Using WebCenter Sites Translation Mechanism
	What Do Customers Want?
	Use of WebCenter Sites Translation Mechanism to Effectively Meet Customers' Requirements

	Part IV Developing Mobile Websites
	26 Configuring WebCenter Sites to Support Mobile Websites
	Prerequisites for Mobility Developers
	Understanding Key Mobility Concepts
	About Device Repository
	About Device Groups and Suffixes
	About Device Assets
	About Site Navigations
	About Mobile Templates

	Prerequisites for Configuring Mobility Features
	Configuring Mobility Features
	How to Activate Your Device Repository
	How to Configure the Device Repository
	How to Create Custom Filters for Device Group Criteria
	Using the Default DefaultCustomFIlter.java Custom Filter Provided with WebCenter Sites
	Creating Your Own DeviceGroupFilter Implementation

	How to Configure Device Groups
	How to Prioritize Device Groups
	How to Create Device Assets
	How to Create Site Navigations
	How to Organize Site Navigations

	Mirror Publishing the Device Repository to Delivery System
	Creating Templates
	Basic Guidelines for Creating Template Variants
	Understanding Mobility Tags
	Tags Modified to Support Device Detection and Page Rendering
	Creating Template Variants
	How to Create a Variant of a Single Template
	How to Create Template Variants in Bulk

	Optimizing Images for Mobile Websites
	How to Optimize Images Using the Image Optimization Filter
	Create a Flex Filter of the ImageOptimizationFilter Type
	Include the Filter in Your Site's Image Definition
	Create Instances of the blob Type Attribute Asset
	Set Image Properties for Optimization
	Apply the Image Optimization Filter on Existing Images
	Verify If the Image Optimization Filter Has Been Applied
	Use the Optimized Images in Your Site

	How to Optimize Images Using a Pluggable Interface

	How Device Detection Works

	Part V Managing Caching
	27 Understanding Page Design and Caching
	About Modular Page Design
	About Caching
	WebCenter Sites Caching
	BlobServer and Caching
	Satellite Server Caching
	Cache Expiration
	Caching with the Satellite Servlet
	Viewing the Contents of the Satellite Server Cache
	CacheManager
	The SiteCatalog Table
	The Cache Key
	pagecriteria and the Cache Key

	Caching Properties
	Page Caching Properties
	Satellite Server Properties

	Double-Buffered Caching
	About Implementing Double-Buffered Caching
	Pagelet Caching Strategies

	Setting cscacheinfo
	Coding for Caching
	Caching and Security
	WebCenter Sites Security
	Satellite Server Security

	28 Working with Resultset Caching and Queries
	About Resultset Caching and Queries
	Caching Frameworks
	Database Queries
	How Resultset Caching Works
	Reducing the Load on the Database
	Specifying the Table Name
	SELECTTO
	EXECSQL
	CALLSQL
	Search Forms in the WebCenter Sites Interface
	Query Asset
	SEARCHSTATE

	Flushing the Resultset Cache
	Switching Between Caching Frameworks
	About Resultset Caching Strategy and Properties
	Planning Your Resultset Caching Strategy
	Default Properties
	Table-Specific Properties

	29 Using Cache Management with WebCenter Sites
	About the WebCenter Sites Rendering Engine Cache
	About the CacheManager
	Enabling CacheManager
	Tier 1 Cache Configuration Properties
	Tier 2 Cache Configuration Properties

	30 Using Advanced Page Caching Techniques
	About Advanced Page Caching
	Configuring the WebCenter Sites Cache
	Setting Expiration Time for an Individual Entry
	Explicitly Removing Entries from Cache
	Manual Removal
	Automatic Removal

	Configuring the Blob Server Cache
	Consideration About Configuring Maximum Cache Size
	Setting Expiration Time for an Individual Entry
	Explicitly Removing Entries from Cache
	Manual Removal
	Automatic Removal

	Configuring the Satellite Server Cache
	Configuring Maximum Cache Size
	Explicitly Removing Entries from Cache

	CacheInfo String Syntax
	Caching Best Practices
	Few Pagelets Per Page
	Share Cache Between Pages

	Part VI Migrating Your Work to Your Content Management System
	31 Importing Assets of Any Type
	About Importing Assets Using the XMLPost Utility
	What the Developer Does
	What XMLPost and WebCenter Sites Do

	Using XMLPost Configuration Files
	Configuration Properties for XMLPost
	Configuration Properties for the Posting Element
	Configuration Properties for the Source Files
	Site Properties
	Asset Type Properties

	Sample XMLPost Configuration File

	Using XMLPost Source Files
	Sample XMLPost Source File
	XMLPost and File Encoding

	Using the XMLPost Utility
	Before You Begin
	Running XMLPost from the Command Line
	Identifying Source Files
	A Single File
	A Directory of Files
	A List File

	Running XMLPost as a Batch Process
	Running XMLPost Programmatically

	Customizing RemoteContentPost and PreUpdate
	Setting a Field Value Programmatically
	Setting an Asset Association

	Troubleshooting XMLPost
	XMLPost Does Not Run and Does Not Create a Log File Message
	XMLPost Fails and there is a Missing Entity Statement in the Log File
	Error 105 is Triggered when XMLPost Tries to Save an Asset
	Debugging the Posting Element

	32 Importing Flex Assets
	About Importing Flex Assets
	Before You Begin Importing the Data Structure Flex Asset Types
	About Importing the Flex Assets
	When to Use BulkLoader
	When to Use XMLPost

	Overview of the Process to Import Flex Assets
	About Custom Data Delimiters

	Understanding XMLPost and the Flex Asset Model
	About Importing the Structural Asset Types in the Flex Model
	Attribute Editors
	Sample Configuration File: Attribute Editor
	Sample Source File: Attribute Editor

	Flex Attributes
	Sample Configuration File: Flex Attribute
	Sample Source File: Attribute

	Flex Definitions and Flex Parent Definitions: Sample Files
	Sample Configuration File: Flex Definition
	Sample Source File: Flex Definition

	Flex Parents
	Sample Configuration File: Individual Flex Parent
	Sample Source File: Individual Flex Parent

	Importing Flex Assets with XMLPost
	Configuration File Properties and Source File Tags for Flex Assets
	For the addData Posting Element
	For the RemoteContentPost Posting Element

	Sample Flex Asset Configuration File for addData
	Configuration File Properties and Attributes of Type Blob (or URL)
	Attribute of Type Blob (or URL) As an Upload Field
	Attribute of Type Blob (or URL) As a Text Field

	Sample Flex Asset Source File for addData
	Sample File
	Handling Special Characters
	Flex Assets and Their Parents
	Specifying the Parents of a Flex Asset
	Setting Attribute Values for Parents
	Setting Multiple Values in a Flex Source File

	Sample Flex Asset Configuration File for RemoteContentPost
	Sample Flex Asset Source File for RemoteContentPost

	Editing Flex Assets with XMLPost
	Configuration Files for Editing Flex Assets
	Source Files for Editing Flex Assets
	Changing the Value of an Attribute
	Removing an Attribute Value
	Editing Parent Relationships

	Deleting Assets with XMLPost
	Configuration Files for Deleting Assets
	Source Files for Deleting Assets

	33 Importing Flex Assets with the BulkLoader Utility
	About the BulkLoader Utility
	Understanding BulkLoader Features
	How BulkLoader Works
	About Using the BulkLoader Utility
	Importing Flex Assets from Flat Tables
	The Basic Steps
	Driver Requirements
	Requirement for DB2

	When to Use XMLPost to Import Structural Assets
	Creating the Input Table (Data Source)
	Inserts
	Updates

	Creating the Mapping Table
	Creating the BulkLoader Configuration File
	BulkLoader Configuration File Properties
	Setting the initID Parameter
	Example Configuration File

	Running the BulkLoader Utility
	Enabling Access to Imported Assets in the Contributor Interface
	Reviewing Feedback Information
	Approving and Publishing the Assets to the Delivery System

	Importing Flex Assets Using a Custom Extraction Mechanism
	IDataExtract Interface
	IPopulateDataSlice
	IFeedback Interface

	Approving Flex Assets with the BulkApprover Utility
	Configuring BulkApprover
	Using BulkApprover

	Part VII Security: Managing Content Management Users
	34 Managing Users on the Management System
	About the Directory Services API
	Entries
	Hierarchies
	Groups
	Directory Services Tags
	Directory Operations
	Searching
	Looking Up a User
	Listing Users
	Directory Services Code Samples

	Error Handling
	Directory Services Applications Troubleshooting

	Working with Custom User Manager
	What is Custom User Manager?
	Sample Implementation of Custom User Manager
	Integrating the Sample Implementation with WebCenter Sites
	What You May Need to Know About the Custom User Manager

	Controlling User Access
	ACL Tags
	USER Tags
	WebCenter Sites and Encryption

	Part VIII Publishing Your Site
	35 Publishing Your Content Management Site to Make it Available Online
	36 Guidelines and Limitations for Previewing Assets in Timeline Mode
	Guidelines and Limitations

	Part IX Developing Personalized and Targeted Websites with Engage
	37 Creating Visitor Data Assets
	About Visitor Data Assets
	Visitor Attributes
	History Attributes and History Definitions
	Segments
	Developing Visitor Data Assets: Process Overview

	Creating Visitor Data Assets
	Creating Visitor Attributes
	Configure the Data Type
	Configure the Constraint Criteria
	Save the Attribute

	Creating History Attributes
	Configure the Constraint Criteria
	Save the History Attribute

	Creating History Definitions

	Verifying Visitor Data Assets
	Approving Visitor Data Assets

	38 Understanding Recommendation Assets
	About Recommendation Assets
	Development Process for Setting Up Recommendations
	About Creating a Dynamic List Element

	39 Working with Memory-Centric Visitor Tracking
	About Memory-Centric Visitor Tracking
	Database-Centric Model
	Memory-Centric Model

	Enabling Memory-Centric Visitor Tracking
	Visitor Tracking Property
	Supporting Code
	Batch-Saving History Attributes to the Database

	How Memory-Centric Visitor Tracking Works
	Visitor Detection
	Retrieval of Scalar Values
	Collection of History Attribute Values
	Computation of Sums and Counts
	Computation of Segments
	Display of Recommended Assets
	Logging of Dependencies

	40 Coding Engage Pages
	Commerce Context and Visitor Context
	Identification of Visitors and Linking Sessions
	Collection of Visitor Data
	Coding of Site Pages That Collect Visitor Data
	Example 1: Visitor Attributes
	Example 2: History Definition
	Example 3: Visitor Attribute of Type Binary

	Templates and Recommendations
	Creating Templates for Recommendations
	Creation of Templates for Recommendations Using Oracle Real-Time Decisions

	What You May Need to Know About Shopping Carts and Engage
	Debugging Site Pages
	Session Links
	Visitor Data Collection
	Recommendations and Promotions

	Part X Running A/B Testing
	Part XI Customizing Blogs
	41 Customizing Blog Components
	Customizing the Blog Asset Form
	Creating a Blog Attribute
	Adding a Blog Attribute to the Blog Asset Definition

	Adding Blog Functionality to CM Sites
	Creating Blog Pages
	Adding Blog Code
	Adding Blog Parameters to Your Site's SiteEntry Asset

	Customizing URLs for the RSS Feed

	Part XII Developing WebCenter Sites: Visitor Services
	42 Developing WebCenter Sites: Visitor Services
	Visitor Services Overview
	Configuring the Visitor Services URL
	Configuring an Identity Provider
	Configuring Identity Provider Settings
	Integrating Oracle Access Manager (OAM) with Visitor Services
	Creating a Custom Identity Provider: Example

	Configuring an Access Provider
	Configuring One or More Profile Providers
	Configuring Profile Provider Settings and Enrichment Rules
	About Configuring Eloqua Profile Provider

	Creating a Custom Profile Provider: Example

	Creating One or More Aggregation Templates
	Optimizing Experiences Using Visitor Services Data
	How WebCenter Sites Components Request Visitor Services Profile Information
	Configuring Visitor Services with Engage
	Linking Visitor Profiles and Managing Cookies
	Storing Additional Information with Extended Attributes and Activities
	About Extended Attributes and Activities
	How to Use Extended Attributes and Activities in Visitor Services

	Visitor Services Reference
	About the Visitor Services Architecture
	Identity Provider Reference
	About the Identity Providers
	How Visitor Services Identifies Visitors to Your Website

	Access Provider Reference
	About Container Protection and Visitor Services Protection
	How Container Protection Works
	How Visitor Services Protection Works

	Profile Provider Reference
	About the Profile Providers and Enrichment Service
	Profile Providers
	Enrichment Service
	How Profile Provider and Enrichment Services Work

	How Visitor Services Gathers and Enriches Visitor Attributes from Multiple Channels

	Aggregation Template Reference
	About Aggregation Templates
	How the Aggregation Service Works

	How Visitor Services Merges Raw Visitor Profiles into a Single Aggregated Profile
	How Visitor Services Makes Aggregated Visitor Profiles Available for Targeting, Testing, and Analysis

	Diagnostics
	About the Visitor Services Data Model
	Glossary

	Part XIII Controlling the Site Capture Process
	43 Coding the Crawler Configuration File
	About Controlling a Crawler
	BaseConfigurator Methods
	getStartUri
	createLinkExtractor

	Crawler Customization Methods
	getMaxLinks
	getMaxCrawlDepth
	getConnectionTimeout

	getSocketTimeout
	getPostExecutionCommand
	getNumWorkers
	getUserAgent
	createResourceRewriter
	createMailer
	getProxyHost
	getProxyCredentials
	Interfaces
	LinkExtractor
	LinkExtractor Interface
	Using the Default Implementation of LinkExtractor
	Writing and Deploying a Custom Link Extractor

	ResourceRewriter
	ResourceRewriter Interface
	Using the Default Implementations of ResourceRewriter
	Writing a Custom ResourceRewriter

	Mailer
	Mailer Interface
	Using the Default Implementation of Mailer
	Writing a Custom Mailer

	Summary of Methods and Interfaces
	Methods
	Interfaces

	Part XIV Integrating with Third-Party Content Sources
	44 Integrating Third-Party Content Sources Using Proxy Assets
	Proxy Asset Architecture and the Contributor Interface
	Installing Sample Proxy Assets
	Set up a Proxy Asset Directory
	Create a Proxy Asset
	Add the Search Functionality for the Proxy Asset
	Add the Thumbnail Grid Functionality for the Proxy Asset
	Add the Tree Functionality for the Proxy Asset

	Integrating External Content in the Contributor Interface
	Case Study: The ProxyTest Repository
	Registering a New Proxy Asset Type
	About Implementing UI Integration Code
	Customizing Search
	Getting Search Results Using the Provided Third-Party API
	Turning Search Results into Proxy Assets, Filter Incoming Search Results, Register External Content, and Gather Data for Search Grid Widget
	Building a Data Store for the Grid Widget
	Testing Custom Search
	Additional Customizations

	Implementing a Custom Tree
	Registering the Custom Tree Tab
	Implementing the Tree Code

	Setting Up YouTube Proxy Assets
	User Interface Customizations
	Customizing the Search Start Menu
	Customizing the Content Tree

	Information About Embedding Proxy Assets in Web Pages
	Writing a Template for Proxy Assets
	Using Proxy Assets in Slots
	About Caching Proxy Assets

	Part XV Developing Applications with the Web Experience Management (WEM) Framework
	45 About the Web Experience Management (WEM) Framework
	About the WEM Framework
	Prerequisites for Application Development
	Technologies
	WebCenter Sites Interfaces, Objects, and APIs
	Documentation
	Sample Applications and Files
	Application Access

	Getting Started

	46 Understanding the WEM Framework and Services
	Support for Application Development
	REST Services
	UI Container
	Registration
	WEM Context Object

	Single Sign-On
	Authorization Model
	Custom Applications
	Requirements for REST Resources

	47 Working with the Articles Sample Application
	About the Articles Sample Application
	Launching the Articles Sample Application
	Building and Deploying the Articles Application
	Registering the Articles Sample Application

	Testing the Articles Application

	48 Developing Applications with WEM Framework
	About the Articles Sample Application's Structure
	About the Articles Sample Application's Configuration Files
	Making REST Calls
	Making REST Calls from JavaScript
	Making REST Calls from Java

	Constructing URLs to Serve Binary Data
	Accessing Parameters from the WEM Framework
	Initializing and Using Context Object in the Same Domain
	Initializing and Using Context Object for Cross-Domain Applications
	Methods Available in Context Object

	Registering Applications with Different Views
	Registering Applications with an iframe View
	Registering Applications with JavaScript and HTML Views
	Rendering JavaScript View
	Rendering HTML View

	49 Developing Custom REST Resources with WEM Framework
	Creating REST Resources for WebCenter Sites and Satellite Server: Example
	Building and Deploying the Recommendations Sample Application
	Testing the Recommendations Sample Application

	Creating REST Resources
	About the Recommendations Sample Application's Structure
	Implementing Custom REST Resources

	50 Working with Single Sign-On for Production Sites
	Deploying the SSO Sample Application
	Understanding SSO Sample Application's Structure
	Implementing Single Sign-On
	Implementing Single Sign-Out

	51 Using REST Resources with the WEM Framework
	Authentication for REST Resources
	Acquiring Tickets from Java Code
	Acquiring Tickets from Other Programming Languages (Over HTTP)
	Using Tickets and Multitickets
	SSO Configuration for Standalone Applications
	Beans and Properties
	Query Parameters Processed by SSO Filter

	About Configuring CAS
	REST Authorization
	Security Model
	Use of the Security Model to Access REST Resources
	About Configuring REST Security
	Privilege Resolution Algorithm

	Management of Assets Over REST

	52 Introducing Customizable Single Sign-On Facility in WEM Framework
	About Customizing Login Behavior for the WEM Framework
	About Components of the Default CSSO Implementation
	Configuring and Deploying Custom SSO Behavior
	About Extending the Default CSSO Classes
	Settings Resolver Credentials
	About Identifying Your Java Classes to Spring for Instantiation
	About Creating a Spring Configuration File
	About Placing Your Spring Configuration File

	Mapping External User Identifiers to WebCenter Sites Credentials
	Restarting the CAS Web Application

	Running the CSSO Sample Implementation
	Sample CSSO Classes
	Sample Spring Configuration File
	Analysis of the Sample Spring Configuration File
	Placing the Sample Spring Configuration File

	Sample CSSO Components

	53 Buffering in WEM Framework
	Architecture of Buffering System
	Using Buffering

	54 Registering Applications Manually in WEM Framework
	Registering Applications in WEM Framework
	Reference: Registration Asset Types
	FW_View Asset Type
	FW_Application Asset Type

	Part XVI Customizing Oracle WebCenter Sites
	55 Adding Customizations to WebCenter Sites
	56 Customizing the Tree in the Admin Interface
	About the Tree in the Admin Interface
	Loading the Tree Tabs
	Applet-Wide Parameters
	Tree-Specific Parameters
	Node Parameters
	Adding a Command Node Context Menu

	Refreshing the Tree

	About Trees and Security
	About Tree Error Logging

	57 About Customizing Components of the Contributor Interface
	Before You Begin
	What Can You Customize in the Contributor Interface?
	Where to Find Sample Code?
	Where to Begin?

	58 Understanding the Contributor Interface Framework and UI Controller
	About the Contributor Interface Framework
	UI Controller
	How the UI Controller Processes Requests
	UI Controller Processing an Element Request: Example

	Custom Elements
	Element Storage
	How the UI Controller Locates Elements
	Element Naming Conventions

	59 Customizing the Contributor Interface Dashboard
	About Dashboard Customization
	Customizing the Dashboard
	Examples of Customizing the Dashboard
	Adding a Hello World Widget
	Adding a Widget that Shows Recently Modified Assets

	60 Customizing Search Views of the Contributor Interface
	About Search View Customization
	Types of Search Views
	What You Can Customize in Search Views
	View-Rendering Process
	Configuration Elements for Search Views

	Customization Processes
	Customizing Undocked Views
	Basic Steps for Customizing Undocked Views
	Setting the Default Undocked View to List or Thumbnail
	Customizing the Undocked List View
	Customizing the Undocked Thumbnail View
	More About the <assettypes> Section in the ThumbnailViewConfig Element
	Use of Static Icons
	Re-using the System-Defined Image Thumbnail Element
	Using a Custom Thumbnail-Rendering Element

	About Customizing Docked Views
	Customizing Sort Menus and Tooltips
	Customizing Sort Menus
	Customizing Tooltips for Search Results
	Customizing Context Menus

	61 Customizing Global Properties, Toolbar, and Menu Bar in the Contributor Interface
	Customizing Global Configuration Properties
	About the Configuration Properties
	Default Configuration Properties That Can Be Modified
	Adding Custom Configuration Properties
	Adding Custom Global Properties
	Adding Site-Specific Properties

	Customizing the Toolbar
	About Toolbar Customization
	Examples of Toolbar Customization
	Customizing the Toolbar with Standard Actions for Web Mode
	Customizing the Toolbar with Standard Actions for Asset Type and Subtype
	Customizing the Toolbar with Custom Actions

	Customizing the Menu Bar
	About Menu Bar Customization
	Adding a Custom Action to the Menu Bar

	Customizing Context Menus

	62 Customizing Asset Forms for the Contributor Interface
	About Asset Forms Customization
	Modifying the Header of Asset Forms
	Building an Attribute Editor
	Creating a Dojo Widget and its Template
	Create a Template for the Dojo Widget
	Creating a Dojo Widget

	Defining the Attribute Editor as a Presentation Object
	Creating the Attribute Editor Element
	Creating the Attribute Editor
	Implementing a Multi-Valued Attribute Editor

	63 Customizing Workflow
	Workflow Step Conditions
	Workflow Actions
	Step Action Elements
	Timed Action Elements
	Deadlock Action Elements
	Group Deadlock Action Elements
	Delegation Action Elements

	64 Working with RealTime Publishing Customization Hooks
	About RealTime Publishing
	Writing a Custom Transporter
	Writing Your Own Transporter
	Considerations About Overriding AbstractTransporter Methods
	Helper Methods in AbstractTransporter
	Implementing a Transporter: Example
	Code for Writing RealTime Publishing Transporter
	Understanding Edge-Case Scenarios
	Intercepting Asset Publishing Events on the Management Instance
	Distinguishing Between Unpackers and CacheUpdates

	65 Understanding Asset and Publish Events in WebCenter Sites
	Asset Events
	Writing an Asset Event Listener
	Registering an Asset Event Listener

	Publishing Events
	Writing a Publishing Event Listener
	Registering a Publishing Event Listener

	66 Customizing Content Audit Reports
	About the Content Audit Reports
	Customizing the Content Audit Report
	Creating a Custom Chart for the Content Audit Report
	Create a Chart Asset
	Create Rendering Elements to Implement the Chart
	Add the Chart to a Report

	Modifying the Chart's Rendering Elements
	Adding a Custom Chart to a Report

	Part XVII Troubleshooting
	67 Logging and Debugging Errors
	About Writing Custom Messages to the WebCenter Sites Log File
	Using Error Codes with Tags

	Part XVIII Reference
	68 Using Asset API: Tutorial
	Understanding the Asset API
	Primary Interfaces
	Getting Started
	Asset API Read
	A Simple Example: Reading Field Values
	Reading AssetId
	Reading Attributes Given the Asset ID
	Running a Query
	Running a Complex Query
	Retrieving the Results by Sorting
	Reading BlobObject
	Retrieving Multi-Valued Attributes
	Multilingual Assets: Retrieving Translations
	Reading Asset and Attribute Definitions
	Reading Key-Value Mappings

	Asset API Write
	Creating New Assets
	Updating Existing Assets
	Deleting Existing Assets
	Multilingual Assets

	Development Strategies
	Data Types and Attribute Data
	Query Types
	Data Types and Valid Query Operations

	Optional: Setting Up to Use the Asset API from Standalone Java Programs

	69 Using Public Site Search
	About the Search Framework
	Index Types
	Global Index
	Asset Type Index

	About Search API
	SearchEngine
	QueryExpression
	Configuring Query Expression

	Advanced Configuration
	Configuration of Lucene Parameters
	Configuration of Custom AnalyzerFactory

	Part XIX Coding with Developer Tools
	70 About Developer Tools
	Introduction to Developer Tools Architecture
	IDE Integration
	The Developer Tools Workspace
	Connecting to WebCenter Sites Instances
	Synchronization
	JSP Management
	Command Line Interface (CLI)
	About Using a Version Control System

	71 Installing and Configuring Developer Tools
	Prerequisites
	Setting Up Developer Tools
	How to Install the Developer Tools Plug-in
	How to Verify the Developer Tools Plug-In Installation
	How to Integrate WebCenter Sites with the Eclipse IDE
	How to Enable Code Completion for Remote Hosts
	How to Use Developer Tools to Work with Existing Resources
	How to Manage WebCenter Sites Resources
	How to Work with a Pre-Existing Project in Eclipse

	Updating Developer Tools
	How to Update the Location of the Developer Tools Plug-In
	How to Check for Updates to Existing Plug-Ins
	How To Verify That the Developer Tools Plug-In Has Been Updated

	Managing WebCenter Sites Resources in Eclipse
	How to Create Resources
	How to Display Developer Tools Views in Panels
	How to Export and Import Data Between WebCenter Sites and Developer Tools

	Uninstalling Developer Tools

	72 Introducing Developer Tools Features in Eclipse
	About the Oracle WebCenter Sites Perspective
	Understanding the Configuration Form
	Understanding Projects and Workspaces in Eclipse
	About Developer Tools Views
	Workspace
	Log Viewer
	Templates View
	Preview View
	Sites View
	Controllers View
	Logging Configuration View
	Developer Reference View
	Wizards

	Data Synchronization (Export/Import) Tool
	Export (Sync Resources to Workspace from WebCenter Sites)
	Import (Sync Resources to WebCenter Sites from the Workspace)

	73 Developing JSPs with Developer Tools
	JSP Development with Developer Tools
	Tag and Java API Completion
	Debugging

	74 Creating Templates for Mobile Websites Using Developer Tools
	About Mobility Support in Developer Tools
	Creating Mobile Templates from the Sites Workspace Tab
	Creating Mobile Templates in Sites and Device Groups Views

	75 Synchronizing and Exchanging Data Using Developer Tools
	Synchronization Using Developer Tools
	Synchronization Scenarios
	About Dependency Resolution
	ID Mapping
	About ID Mapping
	Overriding a Resource's fw_uid
	What You Should Know About Using Developer Tools with Pre-Existing Resources

	Working with Site Mappings
	About Natural Site Mappings
	About Overriding Natural Site Mappings With the Command Line Interface (CLI)

	76 Using Workspaces in Developer Tools
	Introduction to Workspaces
	Workspace Structure
	Asset Storage Structure
	Code-Based Resource Storage Structure
	Attribute Editor Storage Structure
	Asset Type Storage Structure

	77 Using Developer Tools Command Line Interface (CLI)
	Running and Using the Command Line Interface (CLI)
	Example Commands
	About Importing Modules
	Status Codes for Operations Invoked from the Developer Tools Command Line Interface (CLI)

	78 Integrating Developer Tools Workspaces with Version Control Systems
	About Version Control With Developer Tools
	About Integrating Developer Tools With a VCS
	Using a Developer Tools-Integrated VCS: Example

	79 Using Developer Tools to Manage and Exchange Resources
	Today: Develop a Site and Associated Resources
	Three Days Later... Deployment

	80 Using the Developer Tools Command Line Interface (CLI) to Create Reusable Modules
	Creating a Reusable Model
	List the Resources in the WebCenter Sites Instance
	List Start Menu Items
	Export All Resources to a Workspace
	Inspect the Module's Content
	Archive the Module
	Import the Module to a WebCenter Sites Instance

	Part XX Appendixes for Oracle WebCenter Sites Core
	81 Introducing WebCenter Sites Tools and Utilities
	Oracle WebCenter Sites Explorer
	Connecting to a WebCenter Sites Database
	CatalogMover
	Starting CatalogMover
	Connecting to WebCenter Sites
	CatalogMover Menu Commands
	Catalog Menu
	Exporting Tables
	Exporting Selected Table Rows
	Selecting Rows for Export
	Exporting to a ZIP File

	Importing Tables
	Importing HTML Files Previously Exported
	Importing a Previously Exported ZIP File
	Merging Existing CatalogMover Files
	Replacing Existing CatalogMover Files

	Command Line Interface

	Property Management Tool
	Accessing the Property Management Tool
	Setting Properties
	Adding Properties to the wcs_properties.json File

	About Importing with XMLPost

	82 Understanding White Space and Compression
	White Space and JSP
	White Space and XML
	Compression
	JSP Design

	83 Using WebCenter Sites URL Assemblers
	About WebCenter Sites URL Assemblers
	URL Assembly
	Assembler Discovery and Disassembly
	URL Assembly and Disassembly Using GET and POST Requests

	Assemblers Installed with WebCenter Sites
	Query Assembler
	QueryAsPathInfo Assembler

	Working with Assemblers
	Creating Assemblers
	Registering and Ranking Assemblers
	Link Tags Modification

	Vanity URL Links in a Web Page

