ORACLE

Oracle Utilities Testing Accelerator
User’s Guide

Release 6.0.0.0.2
F13724-01

December 2018

Oracle Utilities Testing Accelerator Uset’s Guide, Release 6.0.0.0.2
F13724-01
Copyright © 2000, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This softwate or hardware and documentation may provide access to or information about content, products,
and services from third patties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurted due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

0 S T TR i-i
AUAICIICE oAb i-ii
Prerequisite KNOWIEAEE ... s i-id
ADDICVIALIONS 1..viiviiiiiiiiiiii bbb i-ii
Supported Oracle Utilities APPHCAtIONS.......ccuiiviiiiiiiiiiiiii bbb i-id
Related DOCUMEIIES «...vuiuiiiiiiiiiiiici bbb bbb bbb bbb i-iii
CONVENTONS ...ttt bbb s bbb R bbb bbb i-iii

Chapter 1

OVEIVIEW . curieieiieiiirieiieeeitte st e eee et eee e e e s as e s sa e e s s e e s s s e s s s s e s s s e e s s s e s s s e e s saseessaesesssaesesssessssssesssesesssesssssessaesssssessssnensssnsss
Introduction
Terminology
APPHCAION ATCRITECTULE ...oviiiiiiiiiiiiiii bbb bbb 1-3
APPHCALION FEATULES ...ttt 1-3

Chapter 2

Oracle Utilities Testing Accelerator Features

Administration
Components.........
Dashboardccceevevrevenennene.

Chapter 3

Developing Metadata Driven Web Service Based Test AUtOMAtiONueeiveeeiiiiieiiiieeiiieeniieenie st esne e sessnesssnne
Metadata Driven Automation Development MethodOlOgy ...
PLANNING ¢
Design and DevelOPMENLE ...t
Test BEXecution.......ccccviuvicinivicinicicicicscccens
Setting Up Automation Development Environment
Setting Up the Oracle Utilities Testing Accelerator Server ...
Setting Up Workstations for Development/ Testing.............
Setting Up Application UNAEr TESt....uuiuiciiiiiciiiiciciiiic it sa s

Chapter 4
Oracle Utilities Testing Accelerator AdmiNiStration.....ueiueeiiieiiiiieiiiieiiieeiieinie et esssre s sssessseesssseessssesssssens
OVEIVIEW ettt bbb 8RR
AdmINIStrAtion TAD w...cuivciiicii R
Managing Releases ...
Managing Portfolios......
Managing Products
Managing Modules.....
MANAGING USEES ..t bbb

Contents - i
Oracle Utilities Testing Accelerator User’'s Guide

USEE ACCESS TYPES wvuviieiiiiiiiiiii i b s 4-6
Chapter 5

Creating Components.........couuuee.
Component Structure

Component Lifecycle
Locking/Unlocking Components..

Component TYPEscovrvvimeicrrieininnieriineinnn.
Web Setvice Based Components...
GUI Based COMPONENLS......cuiiuimiaiiiiieiiiasissisisssasesssssssssssss s sssss s e s s sa e sasees
Creating Web Service Based COMPONENLSc.cuuiieimiiiiiiiiiiiiiiiiiicisii s ssss s saes 5-4
Creating @ COMPONENTiuiiiiiriiiie e bbb bbb bR bbbt 5-5
Creating a Component DefINItion ... 5-6
Defining Default Data at Component Level ... 5-7
Setting Up Operation Name for a Web SEIVICE ... sesaes 5-8
Using Runtime Variables in COMPONENLS ..ottt snees 5-8
Using FUNCHON LIDIATIES....uvuiuiiieiiiiiiiiiiiiiiiicicicciss s s s 5-8
Resolving the Repeating Elements in Response XIML........cccciiiiiiiii s 5-8
AddING VAAAEONS ... s s 5-9
Logging and REPOTTIZuvuiuiiiiiiiiiiiiiiiiiiiciciic s s s 5-10
Handling the List EICMENTSocuiiiiiiiiiiiiiiiiiicce s s sss s s ss s s s sssssssssssenes 5-11
Creating GUI Based COMPONENLSouvuvivrivciireiciiieicieieieicisians ceveeenene O-14
Creating a Component Definition for GUI Components.. ceveeenee =15
COPYING COMPOIIEILES o.evvriveiiiiiriiiistcs ittt bbb s bR bbb bbb s bbb bbb bbb b s 5-16
Chapter 6
Creating TeSt FLOWSciiiiiiiiiiiiiiiiiiiit et s b s bae e bbb be e s bb s s e bb s s ba s s bbe e s bbe s e bneeessnaes
Creating FLOWS ..oucviiiiiiiiiii bbb bbb
Creating Flows By Dragging-and-Dropping COMPONEALS.......ccivimiuiiimiiiiiiiiiicisiesesesse s sssessessesses
Creating Flows Using Behavior Driven Development SCENario ...
CLEAtING SCENATIOS w.uvuiviiiiiiiiiiit bbb bR bbb bR bR bbb bbb a s
Using Global Variables.....
Flow Lifecycle......cccoviervunienenee
Locking/Unlocking Flows..........
Copying Flowsccccvuiivrniiiniiniininnes
Reordering Components in a Flow
Copying Test Data from One Component to Another in a Flow.
Test Data Managementccoveiiiiiinicii s
Adding the Email Capabilities t0 FLOWS.......ccviuiiiiiiiiiiicc i sssss s sesns
Support for HTTPS Web SEIvICES....oiiiiiiiiiiiiiiiii s
Support for INtegration FLOWS ..o
EXectuting Test FIOWS ... b s 6-11
Generating Oracle Ultilities Testing ACCelerator SCHPLScviiuiiciiriiiiii e 6-11
Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse IDEccccocviivciniiniicincnnee 6-11
Executing Flows from Command LINC........ceiiiiiiiiiiiiciieie s st sss s sss s s s sssssesssssssssssens
ENCIYPNg PassWords.. .o st
Generating Keystore for Encryption from Windows EXPLOLer ...
Generating Keystore for Encryption from Command Prompt.........cciiiiiiiisnines
Using Password Encryptor Tool From Windows Explorert...................
Using PasswordEncryptor Tool From Console/Command Line
Configuring the Runtime PrOPertiescocviiiiiiiiiiiiiiiiicc s 6-14
Chapter 7
Development ACCELErator TOOISciiiiiiirueiniiiieiiiinitiitcnieee ettt ssae s sbe e s s e s sesbs e ssessbesssssssesssesssnessaensses 7-1
Component EXPOTrt TOOL ... bbb 7-2
FloOW BEXPOLE TOOL ..ottt br bbb 7-2
Component/ FIOW IMPOLE TOOL......cuririereneieniiieriseeiesiseseesisesee e ssessssasessssssessse e sasesssssssessssssessssssessssssesssessesssesssssensases 7-2
Component Generation TOOl ... s 7-3

Contents - ii
Oracle Utilities Testing Accelerator User’'s Guide

Password ENCIYPHON TOOL ... s s s e 7-3
OVEIVIEW oottt R R R bR R bR a s a bbb 7-4
Executing the Password ENctyption TOOL ... ssssaes 7-4

Chapter 8

Function Library Reference
CLOUDLIB.................
OUTSPCORELIB
WSCOMMONLIB......
WSVALIDATELIB

Appendix A

Web Service Component KeYWords.......uuuieiiiieiiiiiniiiieiiieciieeiieeeieseeteenteeente e see s saeesesaesesssese s ssssessssssessnsssssssssssesesnns
WS-SETWEBSERVICENAME ...ttt s s saa s s snsnsnens
WS-SETXMLELEMENT
WS-SETXMLLISTELEMENT
WS-SETVARIABLE ...,
WS-SETVARIABLEFROMRESPONSE....
WS-SETTRANSACTIONTYPE
WS-LOGMESSAGE ...,
WS-CREATEWSREQUEST
WS-PROCESSWSREQUEST ..ottt s s a s snees
WS-STARTPOLLWS ...ttt s a e a s
WS-STOPPOLLWSIEorieieiiie ittt e s R e e a e a s nnes

Appendix B

GUI Component KEYWOISccoueieueiiiiiiniiiiniieieieenieeeieceiteseieeseteeesaesssaseseasesessesessssssssses sesssssesssessssasssssssssssssssssane B-1
APPROVE
CANCEL.............
CHECK.................
CLICK.....cccouninn.

GET_ATTRIBUTE_VALUE ..ottt B-3
GET_ATTRIBUTE_ID ..ottt B-4
LAUNCH .o b R B-4
MAXIMIZE ..ottt bR B-4
MINIMIZEooiiiiiiiiiiii s B-4

Appendix C

Setting Up INbound Web ServiCes.....uuuuiiiiiiiniiiiiiiiniieniieciecteene ettt e ae s saa e s s sae s ssae s ssae s sasessassessaans C-1
Creating Inbound Web SErvICes ... s C-2
Importing INbound Web SEIvICES......ociiiiiiiiiii s C-2
Searching INbound Web SErviCes........ciiiiiiiiii s C-2

Appendix D

Generating Re-runnable Test Datacoueiuiiiiiiiiiiiiiiiinieie et sse e e s s sss e s e s e s s e as s anes D-1

Appendix E

Connecting to Multiple Databasescccueiiiiiiiiiiiiiiiiiiiinieiie e s e s sae s sae s sbae s b e e s sae s snnaes E-1

Contents - iii
Oracle Utilities Testing Accelerator User’'s Guide

Appendix F

Configuring Authentication for Web Service ReqUESES........ueevuiiriiiiiiiiiiiiiiniieitecie ettt aae s sae e F-1

Contents - iv
Oracle Utilities Testing Accelerator User’'s Guide

Preface

Welcome to the Oracle Utilities Testing Accelerator User’s Guide.

The guide explains how to use Oracle Utilities Testing Accelerator to automate the business test
flows for testing the Oracle Utilities’ applications.

This preface focuses on the following:

e Audience

* Prerequisite Knowledge

* Abbreviations

* Supported Oracle Utilities Applications
* Related Documents

¢ Conventions

Preface - i
Oracle Utilities Testing Accelerator User’s Guide

Audience

This guide is intended for Automation Developers, and Test Engineers who automate the
business test flows for testing the Oracle Utilities' applications.

Prerequisite Knowledge

The metadata driven automation development paradigm of Oracle Ultilities Testing Accelerator
does not require any programming experience to develop scripts for testing. However, the

advanced programming features available in the application require experience with the Java
programming language.

Abbreviations

The following abbreviations are used throughout this document:

Term Expanded Form

BDD Behavior Driven Development

CCB Oracle Utilities Customer Care and Billing
Cc2M Oracle Utilities Customer To Meter

MDM Oracle Utilities Meter Data Management
MWM Oracle Utilities Mobile Workforce Management
UTA Oracle Utilities Testing Accelerator

WAM Oracle Utilities Work and Asset Management

Supported Oracle Utilities Applications

The Oracle Utilities’ applications supporting this Oracle Utilities Testing Accelerator v6.0.0.0.2
release are as follows:

Core

Oracle Utilities Mobile Workforce Management/ Oracle Real-Time Scheduler v2.3.0.0
Oracle Utilities Customer Care and Billing v2.6.0.0

Oracle Utilities Customer Care and Billing v2.6.0.1

Oracle Utilities Customer To Meter v2.6.0.1

Oracle Utilities Work and Asset Management/ Oracle Utilities Operational Device
Management v2.2.0.1

Oracle Utilities Meter Data Management / Oracle Utdlities Smatt Grid Gateway v2.2.0.1
Oracle Utilities Meter Data Management / Oracle Utdlities Smatt Grid Gateway v2.2.0.2

Preface - ii
Oracle Utilities Testing Accelerator User’s Guide

Related Documents

For more information, refer to the following Oracle resources.

Release Notes

3

Oracle Utilities Testing Accelerator Release Notes

Installation and Administration Guide

3

Oracle Utilities Testing Accelerator Installation and Administration Guide

User and Reference Guides

Conventions

Oracle Utilities Testing Accelerator Upgrade Guide
Oracle Utilities Testing Accelerator Licensing Information User Mannal
Oracle Utilities Testing Accelerator Reference Guide for Core

Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Mobile Workforce Management/
Oracle Real-Time Schednler v2.3.0.0

Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Customer Care and Billing v2.6.0.0
Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Customer Care and Billing v2.6.0.1
Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Customer To Meter v2.6.0.1

Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Work and Asset Management/
Oracle Utilities Operational Device Management v2.2.0.1

Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Meter Data Management | Oracle
Utilities Smart Grid Gateway v2.2.0.1

Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Meter Data Management | Oracle
Utilities Smart Grid Gateway v2.2.0.2

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Preface - iii
Oracle Utilities Testing Accelerator User’s Guide

Chapter 1

Overview

This chapter introduces the Oracle Utilities Testing Accelerator application and provides an
overview of the application architecture and features.

¢ Introduction
* Terminology
* Application Architecture

* Application Features

Overview 1-1
Oracle Utilities Testing Accelerator User’s Guide

Introduction

Terminology

Oracle Utilities Testing Accelerator comprises test automation accelerators for the automated
testing of Oracle Utilities applications. It is a framework based on Java and Selenium for creating
the web services and user interface automation scripts.

Oracle Utilities Testing Accelerator enables you to create the automation scripts using keywords
or metadata, and without using any programming language. This saves the test automation
development effort and avoid programming the scripts manually.

The accelerators contain out-of-the-box delivered test components that can be used to build test
flows for the Oracle Utilities applications. You can extend the delivered components or create a
new component to build their customized test flows. Utilities” application-specific sample test
flows are provided in the respective reference guides. For information about the reference guides
included in this release, refer to the Related Documents section in Preface.

The different terms used in this document are as follows:

Term Description

Oracle Utilities Test Accelerator Helps to build and maintain components and flows for

(UTA) automated testing.

Keyword A pre-defined word used to define a specific step in a
test case.

Component Reusable automated test or part of a test.

A component is the building block of an automated test
flow. Each component is made up of a definition which
allows users to define a keyword and associate values
and parameters for the keyword.

Flow An automated test.

A flow comptises one ot more components and/ot
component sets that are called in a pre-determined
sequence.

Databank Container of test data used by an automated test flow.

The databank is defined using comma separated values
(-csv) in a text file.

All components and flows in Oracle Utilities Testing Accelerator are organized into hierarchy
for better manageability. The hierarchy is:

Release > Portfolio > Product > Module

Release Represents the highest level of hierarchy.

There is one release per an Oracle Utilities Testing
Accelerator version, and it contains one or motre
portfolios.

Portfolio Represents a product family consisting of one or more
related products.

A portfolio contains one or more products.

Overview 1-2
Oracle Utilities Testing Accelerator User’s Guide

Term Description

Product Represents an Oracle Utilities application. For example:
CCB

A product contains one or more modules.

Module Represents an Oracle Ultilities application functional
area. For example: Billing in CCB

A module contains one or more components that are
used to automate a specific functional atea in an Oracle
Utilities application.

For information about these terms, refer to Chapter 2: Oracle Ultilities Testing Accelerator
Features.

Application Architecture

The following diagram depicts the high-level architecture of Oracle Utilities Testing Accelerator.

Script Generator

Flow Definition Java/Selenium
Code Generation

Databank

Generation Generated Test
Components

Eclipse Project Flow

Generation UTA Eclipse Plugin

Databank and Lib
Association

UTA Accelerator

Script Compilation

UTA Workbench UTA Runtime

High-Level Architecture Diagram

Components are defined using metadata in Oracle Utilities Testing Accelerator. Using these
components a flow can be assembled and generated. Execute the generated script using Eclipse
IDE for Java Developers that has the Oracle Utilities Testing Accelerator plugin installed.

For more information about Oracle Utilities Testing Accelerator, refer to the Oracle Utilities
Testing Accelerator Installation and Administration Guide.

Application Features

The features available in this Oracle Utilities Testing Accelerator release are the dashboard,
components, flows, vatious tools, and administration.

For more information about these features and their significance, refer to Chapter 2: Oracle
Utilities Testing Accelerator Features.

Overview 1-3
Oracle Utilities Testing Accelerator User's Guide

Chapter 2

Oracle Utilities Testing Accelerator Features

This chapter describes the features available in this Oracle Utilities Testing Accelerator release:
e Administration

* Components

e Dashboard

e Flows

e Tools

Oracle Utilities Testing Accelerator Features 1-1
Oracle Utilities Testing Accelerator User’s Guide

Administration

Components

Dashboard

Notifications

The Administration tab allows the users with Administrator role to do the following:

Create/edit release, portfolio, product and modules
Create/manage Oracle Utilities Testing Accelerator application user accounts
Allow upgrading CM content from one version of an Oracle Ultilities application to a later

version

For example: From CCB v2.6.0.0 to CCB v2.6.0.1

For more details, refer to Chapter 4: Oracle Utllities Testing Accelerator Administration.

The Components page displays all the available components imported/created in the application.

On this page, you can do the following:

Create a new component
Define/update the definition of a component
Submit the component for approval

Accept/reject the approval based on the state of the component

For more information about components, refer to Chapter 5: Creating Components.

This is the Home page of the application and displays the following information:

Notifications assigned to your role
Statistics about the number of components/flows in the application
Total number of custom components vs Total number of approved components

Total number of flows vs Total number of approved flows

The Dashboard page displays notifications of interest to the user currently logged in and also

some basic analytics on the total number of components and flows in Oracle Ultilities Testing

Accelerator and a breakdown of those based on their lifecycle state.

On the Dashboard page, you can do the following:

Click the bell icon [#7) to navigate directly to the Notifications page.

Click List All to display a popup with all the unread notifications applicable to the current
user.

Click the Refresh icon (*, to populate the notification area with all the latest notifications
generated.

Oracle Utilities Testing Accelerator Features 2-2
Oracle Utilities Testing Accelerator User’s Guide

ORACLE oracie UTA Workbench D acministrator v
a-u
§ Dsshboard BEB Components 't & Flows M& Tooks P e
e P -u N
Notifications
it C©
SN, Notification Type Read 2%
Component uivek is updated by the user nawAdrmin under relesse sbed portfolio abe product ab
! modulea o v
5 Component vivek is updated by the user newAdmin under release abed portfolio abe product ab - 4 Components
module a
) Component ivek is updated by the user newAdmin under release abed portfolio abc productab /
module a
. Component uivek is created by the user newAdmin under relesse sbed portislio abe product sb o J/
module a
5 Flow testNewhgain is created by the user newAdmin under release sbed portisii sbe productab Yl v
3 Flow testNew is created by the user newAdmin under release abcd portfolio abc product ab FYl Vi
. Component test is updated by the user adminisrator under release abed portfolio abe productab /
module a
In Pr Pending Aj Vi A ved
. Component F1-UlMapCreate is crasted by the user agministrator under release OFTAPOU 60.0.0 - / W inprogress [Pending Approval [Approve
portiolis CORE product CORE UI 6.00.0 module ZonesAndPartal
. Companent FI-UlMapCreste is reated by the user sdministrator undler relesse OFAPOU 6000 /
portfolio CORE product CORE U 6.0.0.0 madule ZonesAndPortal
o Component ZZ_TESTLOGIN s deleted by the user administrator under release OFTAPOU 6.0.0.0 - /
portfolio CORE product CORE Ul 6.0.0.0 module AdminlI501
Page 1 of25 (1-100f 241items) m 2 3 45 .25 > A
Flows
W In Progress W Pending Approval 1 Approved
The Dashboard page

Any event of interest in the application triggers a notification that is sent to one or more users.
Events could be either of the following:

Creating/updating any hierarchy related entity (for example: Release/Pottfolio/Product/
Module)

Change in lifecycle state of a component/flow (for example: submitting a component for
apptroval/rejection, etc.)

The different types of notifications are as follows:

FYI Notifications - For informational purpose only, and are generated when the following
are performed:

* A component/flow for all users is created.

* A release/pottfolio/product/module for an administrator is created.
* A user for an administrator is created.

* A flow/component for approval for a developer is submitted.

Click an FYT notification for more information about the event and also mark the notification
as ‘read’. Once an FYT notification is read, it is removed from the notification area.

ToDo Notifications - For a component/flow when submitted for approval by an approver/
administrator. They require some action from the user. They are displayed in the
Notification atea for users with Approver/Administrator role.

A ToDo notification displays detailed information about the respective event. It also allows
users to take appropriate action as applicable. (for example: Reject, Revert to Approve,
Approve, or Send to in progress (Flow)). Click the Read column to mark a ToDo notification
as ‘read’.

Oracle Utilities Testing Accelerator Features 2-3
Oracle Utilities Testing Accelerator User’s Guide

Flows

This page displays all the available flows imported/created in the application. On this page, you
can do the following:

* Create a new flow

* Define the flow

* Submit the flow for approval

* Accept/reject the approval based on the state of the flow

You can also generate a flow by providing a plain text Behavior Driven Development scenario.
For more details, refer to the Creating Flows section in Chapter 6: Creating Test Flows.

Tools

This feature provides access to various tools that allow you to import/export components and
flows in the application. web service components are automatically generated by specifying the
WSDL of the web service that the component makes a call to in the Oracle Ultilities applications,
such as C2M or CCB.

For more details, refer to Chapter 7: Development Accelerator Tools.

Oracle Utilities Testing Accelerator Features 2-4
Oracle Utilities Testing Accelerator User’s Guide

Chapter 3

Developing Metadata Driven Web Service Based
Test Automation

The Oracle Utilities Testing Accelerator components, component sets, and flows are organized in
a tree hierarchy. This hierarchy compartmentalizes these for different Oracle Ultilities applications.

This chapter is intended primarily for automation developers and testers. It describes the
metadata-driven automation development methodology and the set up of automation
development environment.

* Metadata Driven Automation Development Methodology

* Setting Up Automation Development Environment

Developing Metadata Driven Web Service Based Test Automation 3-1
Oracle Utilities Testing Accelerator User’'s Guide

Metadata Driven Automation Development Methodology

This section describes the metadata-driven automation development methodology that enables a
test automation engineer to create automation scripts for an Oracle Utilities application.

An application has to be tested for its base functionality and extensions ot customization. For this,
you can create granular tests or larger end-to-end business test flows. Irrespective of the test
design techniques, these tests can be used for regression testing the application in case of upgrades
or customization to ensure that the existing functionality is not broken.

Typically, automation development is a time consuming exercise and teams have challenges in
knowing and implementing the industry best practices and automation tools that work best for
their product technology stack, helping them be successful in their efforts. Few of such challenges
are as follows:

* Selecting an automation tool

* Creating the automation framework

* Identifying the automation development methodology

* Ensuring the automated tests are updated for new releases
* Ensuring the coverage levels are up to date

* Configuration management of automated test programs

The metadata-driven automation development methodology provides solutions to such
challenges.

Repeat for each upgrade

Record Add

. cpe e Parameterize
Script(s) Verifications

@

=
2
=
o
£
=

Approach

= Flow Building Script Generation
2
g E Component Set
g § e — Regenerate
Assemble for each | v Includes verifications
business process UTA and parameters

Development Methodology

For the Oracle Utilities applications built on Oracle Utilities Application Framework, web service
based automated testing is proven to be more robust, maintainable, and faster to develop and
execute. Oracle Utilities Testing Accelerator comprises web services and UI based components
that enable creation and execution of test flows.

The following sections provide the test automation development phases in which an automated
test flow is created.

* Planning
* Design and Development

e Test Execution

Developing Metadata Driven Web Service Based Test Automation 3-2
Oracle Utilities Testing Accelerator User’s Guide

Planning

To plan an automated test flow, identify the business test flow to be automated and the
components required for the flow. If necessary, create additional components or extend the
delivered components.

For details about how to extend the components, refer to the Copying Components section in
Chapter 5: Creating Components.

Design and Development

Test Execution

A flow design explains the order in which the components will be used to interact with each other
in the flow. It also defines the test data combinations to use.

To design and develop an automated test flow, follow these steps:
1. Create/extend the requited components that are identified in planning phase.

2. Create a test flow in Oracle Utilities Testing Accelerator that maps to the identified business
test flow in the application.

For details about how to create a test flow, refer to the Creating Flows section in Chapter 6:

Creating Test Flows.

For information about delivered sample flows to understand the flow creation, refer to the
Sample Work Flows chapter in the respective product-specific reference guides. For a list of
reference guides available in this release, refer to the Related Documents section in Preface.

3. Dragand drop the required components into the flow.
4. Add the test data for the flow.

The test data can be modified at the runtime using the standard Oracle Ultilities Testing
Accelerator databanks. For more details, refer to the Test Data Management section in
Chapter 6: Creating Test Flows.

5. Assemble and generate the script for the test flow.

6. Download the test script.

To execute the automated test flow, execute the script in Oracle Utilities Testing Accelerator.

To use another data set to execute the script, change the databanks in the generated scripts project
and execute the script. For more details, refer to the Executing Test Flows section in Chapter 6:
Creating Test Flows.

The components and test flows developed using this approach are stored and version controlled
in the Oracle Utilities Testing Accelerator database. It takes care of the challenges in configuration
management of automated tests.

Setting Up Automation Development Environment

The steps involved to set up the development environment for Oracle Utilities Testing
Accelerator are as follows:

* Step 1: Setting Up the Oracle Utilities Testing Accelerator Server
* Step 2: Setting Up Workstations for Development/ Testing
* Step 3: Setting Up Application Under Test

Developing Metadata Driven Web Service Based Test Automation 3-3
Oracle Utilities Testing Accelerator User’s Guide

Setting Up the Oracle Utilities Testing Accelerator Server
This section explains the steps to be performed to setup the server.
* Installing Oracle Utilities Testing Accelerator
* Installing Oracle Utilities Testing Accelerator Client Runtime

* Creating Users

Installing Oracle Utilities Testing Accelerator
For detailed instructions to install Oracle Utilities Testing Accelerator, refer to the Oracle Utilities
Testing Accelerator Installation and Administration Guide.

Installing Oracle Utilities Testing Accelerator Client Runtime
Oracle Ultilities Testing Accelerator Client Runtime has to be installed on a client workstation.

For installation instructions, refer to the Installing on Client Admin Workstation section in
Oracle Utilities Testing Accelerator Installation and Administration Guide.

Note: The Oracle Utilities Testing Accelerator application need not be installed
on the user workstations. Users only need:

* A browser access to it for the component and flow development.

* Aninstallation of Eclipse IDE for Java Developers with Oracle Utilities
Testing Accelerator Eclipse plugin to enable the execution of flows.

Creating Users
Create users with Administrator access. A user with Administrator access can create the necessary
users with vatious roles (Developer/Approver/Administrator) so the automation developers can
start using the Oracle Ultilities Testing Accelerator application.

Setting Up Workstations for Development/ Testing

This section provides the steps to set up the Oracle Utilities Testing Accelerator developer
workstations. The tasks include:

* Extracting Oracle Utilities Testing Accelerator Client Runtime
* Installing Oracle Utilities Testing Accelerator Eclipse IDE for Java Developers

* Installing Oracle Utilities Testing Accelerator Eclipse Plugin

Extracting Oracle Utilities Testing Accelerator Client Runtime
The Oracle Utilities Testing Accelerator package downloaded from Oracle Software Delivery

Cloud (OSDC) (https://edelivety.oracle.com/) contains UTA_Client.zip file that includes all the
Client Runtime artifacts.

After the UTA_Client.zip file is unzipped, a folder structure similar to as shown in the following
diagram is created.

Developing Metadata Driven Web Service Based Test Automation 3-4
Oracle Utilities Testing Accelerator User’s Guide

v UTA_Client

v C2M
2.6.0.1

v CCB
2600
260,

4 Core
6.0.0.0

EclipsePlugin

runtime

Runtime Folder Structure

Creating Oracle Utilities Testing Accelerator Client Runtime Folder Structure
To create a Oracle Utilities Testing Accelerator client runtime folder structure, do the following:

1. Create/select a folder to use as your runtime folder.

Note: This folder is referred to as <UTA_CLIENT_WORK_DIR> in the
following sections.

2. Copy the contents of the runtime folder from UTA_Client.zip.

For more details about UTA_Client.zip refer to the Extracting Oracle Utilities Testing
Accelerator Client Runtime section.

After copying the contents of the runtime folder, the <UTA_CLIENT_WORK_DIR> should

look as follows.

custom_libraries
drivers

etc

flows

jar

Legs

tools

X5D

Folder Structure for Generated Scripts

e drivers

The Chrome and Firefox browser drivers are used to invoke the browser during execution of
flows that contain Graphical User Interface (GUI) based components.

. etc

The configuration.properties file includes all the properties that the Oracle Utilities Testing
Accelerator flows refer to during the flow execution. The log4j.properties file controls the
logging output from flows.

Note: All passwords contained in this file have to be encrypted. The Password
Encryption Tool can be used to encrypt plain-text passwords. For more details,
refer to the Encrypting Passwords section in Chapter 6: Creating Test Flows.

Developing Metadata Driven Web Service Based Test Automation 3-5
Oracle Utilities Testing Accelerator User’s Guide

flows

The scripts that are generated and downloaded from Oracle Utilities Testing Accelerator
should be placed in this folder.

jar

The 3rd party jar files that are needed to execute the Oracle Utilities Testing Accelerator
flows.

Logs

The runtime generated test execution logs that can be later used for debugging.

tools

The Password Encryption Tool that you can use to encrypt any passwords. For information
about how to encrypt passwords that are stored in the configutaion.properties file, refer to
the Encrypting Passwords section in Chapter 6: Creating Test Flows.

xsd

The run-time generated XSDs required for processing the web services request.

Installing Oracle Utilities Testing Accelerator Eclipse IDE for Java Developers
Ensure Eclipse IDE for Java Developers is installed on each user workstation where automation

execution is performed or where component and flow development is intended to be performed.

For certified Eclipse IDE for Java Developers version details, refer to the System Requirements

section in Oracle Utilities Testing Accelerator Installation and Administration Guide.

To install Eclipse IDE for Java Developers, do the following:

1.

Download Eclipse IDE for Java Developers from the following location:

https://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygen3a
Extract the downloaded zip file to a folder. For example: C:\UTA_Eclipse

Navigate to the unzipped Eclipse folder and double-click the eclipse.exe file to launch the
Eclipse IDE.

When prompted for workspace, select the runtime folder (as created in the Creating Oracle
Utilities Testing Accelerator Client Runtime Folder Structure section) as the workspace

folder.

Oracle Utilities Testing Accelerator Eclipse IDE for Java Developers is successfully installed.

Installing Oracle Utilities Testing Accelerator Eclipse Plugin
The Oracle Utilities Testing Accelerator Eclipse Plugin provides a custom Eclipse perspective

with necessary information about the Oracle Utilities Testing Accelerator generated script

execution (such as components executed, request/tesponse xml content, etc.).

To install the Oracle Utilities Testing Accelerator Eclipse Plugin, do the following:

1.

Extract the UTA_Eclipse_Plugin.zip file from the EclipsePlugin folder.

For instructions to extract the plugin, refer to the Extracting Oracle Utilities Testing
Accelerator Client Runtime section.

Launch Eclipse.

For instructions to install Eclipse, refer to the Installing Oracle Utilities Testing Accelerator
Eclipse IDE for Java Developers section.

Navigate to Help menu > Install New Software.

Developing Metadata Driven Web Service Based Test Automation 3-6
Oracle Utilities Testing Accelerator User’s Guide

° »® N ;s

10.
11.
12.

13.
14.

On the Install dialog box, click Add.

On the Add Repository dialog box, click Local.

Browse to the location where the UTA_Eclipse_Plugin.zip was extracted and click OK.
Click the Uncategorized checkbox.

Click Next.

Accept the License Agreement and click Finish.

When prompted for click Install Anyway.

Restart Eclipse IDE to use the Oracle Utilities Testing Accelerator Eclipse Plugin.

To use the Oracle Utilities Functional Test perspective, navigate to Window > Perspective
> Open Perspective > Other...

Select Oracle Utilities Functional Test from the list of perspectives.

Click Open.

The Eclipse with the Oracle Utilities Testing Accelerator Plugin is now setup.

Setting Up Application Under Test

For setup details, refer to the respective Oracle Utilities” application-specific installation guide.

Ensure that Oracle Utilities Testing Accelerator related metadata exists in this application instance.
For more details, refer to the Post-Installation Tasks section in Oracle Utilities Testing
Accelerator Installation and Administration Guide.

Developing Metadata Driven Web Service Based Test Automation 3-7
Oracle Utilities Testing Accelerator User’s Guide

Chapter 4

Oracle Utilities Testing Accelerator
Administration

This chapter introduces the Administration feature in Oracle Utilities Testing Accelerator. It
focuses on the following:

. Overview

e Administration Tab

Oracle Utilities Testing Accelerator Administration 4-1
Oracle Utilities Testing Accelerator User’s Guide

Overview

The Administration feature in Oracle Utilities Testing Accelerator allows the users with

Administrator role to do the following:

* Create/edit release, portfolio, product, and modules

* Create/manage Oracle Utilities Testing Accelerator application user accounts

* Allow upgrading CM content from one version of an Oracle Utilities application to a later
version. For example: from CCB v2.6.0.0 to CCB 2.6.0.1

Administration Tab

The Administration tab in the Oracle Ultilities Testing Accelerator application allows users with
Administrator role to perform the following actions:

* Managing Releases

* Managing Portfolios

* Managing Products
* Managing Modules
* Managing Users

* User Access Types

The following diagram shows the organization of components and flows as per hierarchy in the

Oracle Utilities Testing Accelerator application.

Component Tree

F |

6000 ———» Release

» Portfolio

Component Tree

Oracle Utilities Testing Accelerator Administration 4-2

Oracle Utilities Testing Accelerator User’s Guide

Managing Releases

A release represents the highest level of hierarchy. There is one release per an Oracle Utilities
Testing Accelerator version, and it contains one or more portfolios.

Creating a Release
To create a release:

1. On the Administration tab, click Releases in the left pane.
2. In the Create Release window, enter the release name and its description.

3. Click Save.

Updating a Release

Note that you can only edit a custom release.

To update an existing release:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.
2. Select and right-click the release to be updated.

3. From the Context menu, click Update Release.
4

Enter the modified description and click Update.

Managing Portfolios

A portfolio represents a product family consisting of one or more related products. It contains
one or more products.

Creating a Portfolio
To create a portfolio:

1. On the Administration tab, click Portfolios in the left pane.
2. In the Create Portfolio window, enter the portfolio name and its description.

3. Click Save.

Updating a Portfolio

Note that you can only edit a custom portfolio.
To update an existing portfolio:
1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the portfolio to be updated. From the Context menu, click Update
Portfolio.

3. Enter the modified description and click Update.

Managing Products

A product represents an Oracle Ultilities application. A product contains one or more modules.

For example: CCB

Creating a Product
To create a new product:

1. On the Administration tab, click Products in the left pane.

Oracle Utilities Testing Accelerator Administration 4-3
Oracle Utilities Testing Accelerator User’s Guide

2.
3.

In the Create Product window, enter the product name and its description.

Click Save.

Alternatively, you can create a new product as follows:

1.
2.

On the Components (or Flows) tab, expand the Component (or Flow) tree.

Select and right-click the portfolio under which the product has to be created. From the
Context menu, click Create Product.

Enter the new product name and its description.

Click Save.

Updating a Product

Note that you can only edit a custom product.

To update an existing product:

1.
2.

Managing Modules

On the Components (or Flows) tab, expand the Component (or Flow) tree.

Select and right-click the product name to be updated. From the Context menu, click
Update Product.

Enter the modified description and click Update.

A module represents an Oracle Utilities application functional atea. For example: Billing in CCB

Creating a Module
To create a new module:

1.
2.
3.

On the Administration tab, click Modules in the left pane.
In the Create Module window, enter the module name and its description.

Click Save.

Alternatively, you can create a module as follows:

1.

2
3
4.
5

On the Components (or Flows) tab, expand the Component (or Flow) tree.
Select and right-click the product under which the module has to be created.
From the Context menu, click Create Module.

Enter the new module name and its description.

Click Save.

Updating a Module

Note that you can only edit a custom module.

To update an existing module:

1.

2
3.
4

On the Components (or Flows) tab, expand the Component (or Flow) tree.
Select and right-click the module name to be updated.
From the Context menu, click Update Module.

Enter the modified description and click Update.

Oracle Utilities Testing Accelerator Administration 4-4
Oracle Utilities Testing Accelerator User’s Guide

Managing Users
Only users with an Administrator role can manage the other users.

To create, search for, upgrade, or delete a user, you need to be on the Administration page to
perform the task. You can also change the password from this page.

To get to the Administration page, do the following:
1. Loginto the application.
2. Navigate to the Administration tab.

3. On the Administration page, details of all users are shown in the right pane.

Creating a User
To create a new user:

1. On the Administration page, click Add to create a new user.
2. Fill in the following fields and click Save.

¢ Username

* Full name

* Manager name

* Password (length should be 6-15 characters)

* E-mail

* Access type (For information about access types, refer to the User Access Types
section.)

LR}

On success, the “User created successfully” message is displayed. If the user name entered

already exists, the “User Name already exists” message is displayed.

Tip: Click Back to get redirected to the Search Users page. Click Cancel to refresh all the fields.

Searching for User(s)
To search for a user, do the following:

1. On the Administration page, click Search to search for a specific user.
2. Enter “%” in the User Name field to view all the existing users.

You can also search based on a particular name or use a wild card search (For example: “J%”
will fetch all the users starting with the alphabet “J”).

Updating User Details

To update the details of an existing user, do the following:
1. On the Administration page, click Search and select the record you want to update.

+

2. Modify the required fields and click the update icon | *.

Deleting a User
To delete an existing user, do the following:

1. On the Administration page, click Search to select the record to be deleted.

2. Click the delete icon & .

A window appears asking for confirmation about the deletion.

Oracle Utilities Testing Accelerator Administration 4-5
Oracle Utilities Testing Accelerator User’s Guide

3. Select Yes to delete the user.

Please note that deleting the default “administrator” user is not allowed.

Changing a User's Password
To change the password of an existing user, do the following:

1. On the Administration page, click Search and select the record for which you want to
change the password.

2. Click the change password icon e .
3. On the Update Password window, enter the new password in both the fields.

4, Click Submit.

On success, the “Password is changed” message is displayed.

User Access Types

The following table lists the privileges provided to users for various types of access.

Access Developer Approver Administrator
Apptove/reject a component v v
Approve/reject a flow 4 v
Change Password (self) v v v
Component - Create/update/ v v v
view/delete

Copy Component 4 v v
Create Module 4
Create Portfolio v
Create Product v
Create Release 4
Export Component 4 v
Export Flow 4 v v
Flow - Cteate/update/view/ v
delete

Generate a component from v v v
WSDL

Import Component v v v
Impott Flow v v v
Update Module 4 v v
Update Portfolio 4 v v
Update Release v v v

Oracle Utilities Testing Accelerator Administration 4-6
Oracle Utilities Testing Accelerator User’s Guide

Access Developer Approver Administrator

User Management 4
* Create/update/view/
delete

* Change other user
password

Oracle Utilities Testing Accelerator Administration 4-7
Oracle Utilities Testing Accelerator User’s Guide

Chapter 5

Creating Components

The Oracle Utilities Testing Accelerator components, component sets, and flows are organized in

a tree hierarchy. The hierarchy is organized as follows:

Oracle Utilities Testing Accelerator Release > Portfolio> Product > Module > Components

This chapter describes the component hierarchy and also the steps to create different types of
components in Oracle Ultilities Testing Accelerator.

Component Structure

Component Lifecycle

Component Types

Creating Web Service Based Components
Creating GUI Based Components
Creating REST Web Service Components

Copying Components

Creating Components 5-1
Oracle Utilities Testing Accelerator User’s Guide

Component Structure

The following figure shows the high-level component structure.

Component Tree
4 | OFTAPOU 6000 — > Release
> Bc2M
» B Meter
» BE= Work And Asset Management
» B ORS/MWM
4 E=CORE Portfolio
4 % CORE U16.0.0.0 » Product
. ‘> Module
S = Component
» 2= ToDoUI
» % CORE 6.0.0.0
» B5cce
b Wl test

Component Structure

Component Lifecycle

The component lifecycle begins once a component is created in Oracle Utilities Testing
Accelerator. It can exist in one of the several possible lifecycle states as shown in the following

diagram.

Component Lifecycle

Save

Submit for Approval

0

<i>

Create Component

Send To
In-Progress

Approved

Save and
Approve

Lifecycle of a Component

Creating Components 5-2

Oracle Utilities Testing Accelerator User’s Guide

The state of a component determines the actions that can be performed on the component. The

following table summarizes the component states, and the possible actions and roles that can take

the actions.
Component Permitted Role Resultant State (after
Lifecycle State Actions action)
In Progress Submit for Developer Pending Approval
Approval Approver
Administrator
Approve Approver Approved
Administrator
Save Developer In Progress
Approver
Administrator
Pending Approval Send to In Approver In Progress
Progress / Reject Administrator
Approve Approver Approved
Administrator
Revert to Approver Approved (Reverts to
Approved Administrator Previous Approved
version of the component)
Save Developer Pending Approval
Approver
Administrator
Approved Send to In Developer In Progress
Progress Approver
Administrator
Submit for Developer Pending Approval
Approval Approver
Administrator
Approve (save Approver Approved
and approve) Administrator

Locking/Unlocking Components

A component is/can be locked in the following scenarios:

* To prevent any other users from editing the component until the component definition is

complete.

* By default when the component is submitted for approval.

* When moved to the ‘In Progress’ state, the component gets locked. You can then unlock and

edit it as needed.

Click the € icon to lock/unlock a component in the Oracle Utilities Testing Accelerator

application.

Tip: After a component is moved to ‘Approved’ status, it gets unlocked automatically.

Creating Components 5-3

Oracle Utilities Testing Accelerator User’s Guide

Component Types

Ensure the component is created under the required hierarchy level.
Oracle Utilities Testing Accelerator supports the following types of components:
* Web Service Based Components

* GUI Based Components

Web Service Based Components

A web service based component represents an Inbound Web Service/Business Object/Business
Service in an Oracle Utilities application (such as CCB/C2M/WAM/Meter).

A distinguishing feature of the web service component is that its component type is defined as
“WS” and the keywords used in defining it are specific to a web service request.

For information about web service specific keywords, refer to Appendix A: Web Service
Component Keywords.

GUI Based Components

A GUI based component typically represents a page/part of the page in an Oracle Utilities
application (such as CCB/C2M/WAM/Meter).

A distinguishing feature of the GUI based component is that it's component type is defined as
“Web” and the keywords used in defining the component are specific to a web page. For example:
Click, Edit, etc.

For information about GUI-specific keywords, refer to Appendix B: GUI Component Keywords.

Creating Web Service Based Components

You can create web service based components in either of the following ways:

* Using the Component Generation Tool feature in Oracle Utilities Testing Accelerator.
For detailed instructions about the Component Generation Tool, refer to the Component
Generation Tool section in Chapter 7: Development Accelerator Tools.

* Create the component manually.

This section focuses on the following:

* Creating a Component

* Creating a Component Definition

* Defining Default Data at Component Level

* Setting Up Operation Name for a Web Service

* Using Runtime Variables in Components

* Using Function Libraries

* Resolving the Repeating Elements in Response XML

* Adding Validations

* Logging and Reporting

* Handling the List Elements

Creating Components 5-4
Oracle Utilities Testing Accelerator User’s Guide

Creating a Component
To create a web service based component manually, follow these steps:
1. Navigate to the component tree where the component has to be created.
2. Right-click the feature (telease/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

-

R —
[T STrae

aim Service Management I
am

|]

zm8 Resource Managem

11-BreakTazk

Create Component

Search Component
Collapse

A1-CrewShftClo Expand All Below
AL-CrewShift

Collapse All Below
s I|1-CrewShiftTel

g y Paste
A1-Deactivatelre..

Creating a Component

3. Select Create Component.

Note: The component name must be prefixed with ‘CM’ and the Tags field
should have a CM tag for every component. The tagging enables porting the
custom components to latest Oracle Utilities Testing Accelerator release.

4. Enter the component name in the Component field.

Note: For information about extending components, refer to the Copying
Components section.

Select Web Service in the ComponentType drop-down list.
Enter a description in the Description field.
Click Attach Code to add the metadata. The Component window is displayed.

Create component definitions.

Y ® N w

Click Save & Unlock to save and create the component.

Following is an example to create the CM-MobileWorker component under the Resource
Management feature for the Oracle Real-Time Scheduler v2.3.0.0.

1. Navigate to UTA 6.0.0.0 > ORS / MWM Porttfolio > ORS 2.3.0.0 > Resource
Management.

Right-click the Resource Management module.
Select Create Component.

Enter CM-MobileWorker in the Component field to name the component.

AT S

Follow steps 5-9 as shown in the procedure mentioned above.

Creating Components 5-5
Oracle Utilities Testing Accelerator User’s Guide

Creating a Component Definition

A component consists of several component definition lines. Each component definition line
comprises a keyword, object, display name, attribute values, default data, function name, and
output parameters.

The following list describes each entity in a component definition:

* Keyword: The step to be performed. Example: WS-SETVARIABLEFROM RESPONSE,
WS-VALIDATE, etc

* Object: The Oracle Utilities Testing Accelerator function library name from where the
function is called.

* Display Name: The component definition.

* Attribute Values: The web service XML tag name used as variable to store its value.
* Default Data: The default data used in the component definition.

* Function Name: The function name called from the library.

e Output Parameters: The output in the form of a variable.

For more options, refer to Appendix D: Generating Re-runnable Test Data.
* Tooltip: The data presented as a tool tip during the flow creation.

The following figure shows the Component page with the available component definitions.

A
[Components Content Areas
Component Name : CM-MobileWorker Component Status: Approved
Rows to Add : 1 Add Rows | Save Save &Unlock = Submit For Approval | Delete | Approve
Page of 2 (1-20 of 38 items) 2 >
S.No Insert | Keyword Object DisplayName AttributeValues DefaultData OutputParameter FunctionName ToolT.. | De
1 a2 3 -
1 E) b SETAPPTYPE - ws - Select Function - del
2 Eme WS-SETWEBSERVICE... ¥ Select Object ¥ Web Service Name ATMI1Mobi Select Function - del
3 Emie WS-SETTRANSACTL.. ¥ Select Object ¥ Web Transaction Ty ADD Select Function - del
4 e WS-SETXMLELEMENT v Select Object ¥ bo bo Select Function - | del
5 Elie WS-SETXMLELEMENT v Select Object ¥ boStatus boStatus Select Function - del
6 S WS-SETXMLELEMENT W Select Object W mobileWorkerType mobileWarkerT: Select Function - del
7 57 Fa WS-SETXMLELEMENT W Select Object W userld userld Select Function - del
8 g B WS-SETXMLELEMENT w Select Object employeeld employeeld Select Function - del
9 it WS-SETXMLELEMENT w Select Object v contractorld contractorld Select Function - del
10 Ee WS-SETXMLELEMENT + Select Objsct = relativeEfficiency relativeEfficienc Select Function - del
1 5% 3 WS-SETXMLELEMENT w Select Object v addressl homeAddress/a Select Function - del
12 Ele WS-SETXMLELEMENT w Select Object v address2 homeAddress/a Select Function - | del
»

Component Definition Page
Add the required component definition lines using the Keyword drop-down list to define the web
services based component.

For a list of keywords used to define the web service based components, refer to Appendix A:
Web Service Component Keywords.

The following example shows different component lines created for the CM-MobileWorker
component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

Creating Components 5-6
Oracle Utilities Testing Accelerator User’s Guide

2. Select WS in the Object drop-down list to denote that it is a web service based component.
3. Select the WS-SETWEBSERVICENAME keyword to define the web service name.

4. Select the WS-SETTRANSACTIONTYPE keyword to define the transaction type of the
web service call.

Note: The final script of a component is web service call to create, update, and
delete.

5. Select the WS-LOGMESSAGE keyword to log comments in component definition. This
helps in debugging the script code for that component.

6. Select the WS-SETXMLELEMENT keyword to set the value into a specific element of
request XML.

Consider the CM-MobileWorker component in Oracle Utilities Mobile Workforce
Management. This component maps to the MobileWorker business object. It includes
elements, such as:

<mobileWorkerType />
<contractorId />

7. Select the WS-SETXMLLISTELEMENT keyword to set a value into the list element tags.
The list element is ‘skills’.

Note: The schema of a web service/business object/business service can be
complex (the schema has group elements which in turn may have group
elements within them).

For instructions about how to handle such scenarios, refer to the Handling the
List Elements section.

8. Click Save.

Defining Default Data at Component Level

In Oracle Utilities Testing Accelerator the test data is maintained at component level for quick and
easy use at the flow level.

In each component definition line the “Default Data” column is available to hold the default data.
Using this field, default test data can be populated in the component. While using a component
with default data in a flow, the default data can easily be copied from component to flow using the
“Move” option available on the Flow Test Data window.

Even after the default data is populated in the flow test data, data elements in the test data entry
page can still be edited, if required. This helps to build the flow faster for cases where
administration and master test data are pre-determined.

Default Data Usage (Move)

Definition Populating Mave all data fislds
Component Component default _
default data * data populationin 2 Movergdats fields
flow data
Move selected field
Update/Delete on move
Data Flow

Creating Components 5-7
Oracle Utilities Testing Accelerator User’s Guide

Setting Up Operation Name for a Web Service

An operation name determines the action to be taken while executing a web service request. The
value for the WS-SETTRANSACTIONTYPE keyword is specified while adding the test data for
the flow. If designed so, the same component can be used to add record, update record, or delete
record operations.

For example: To create a new mobile worker, or to update or delete an existing mobile worker, set
up the transaction type for appropriate the instance of the component in the flow.

Using Runtime Variables in Components

In some cases, few elements from the response component execution have to be passed as inputs
to another component’s request XML. To achieve this, store the output of first component in the
global variable by using the WS-SETVARIABLEFROMRESPONSE keyword. This keyword
requires Xpath of the response element whose value are to be stored. It should be specified in the
Attribute Values column. The global variable which holds this value in the script is defined in the
Output Parameter column.

The WS-SETVARIABLEFROMRESPONSE keyword stores the mobileWorkerld obtained after
a mobile worker component execution to the global variable gVar_mobileWorkerId1 declared in
the Output Parameter column.

For information about how a dependent component reads such global variables, refer to the Using
Global Variables section.

Using Function Libraries

This section explains how to use the function libraries shipped with this Oracle Utilities Testing
Accelerator release and create new help libraries.

Function libraries shipped with Oracle Utilities Testing Accelerator can be accessed in the
Component window using the FUNCTIONCALL key word and specifying the library name in
the Object column and the function name in the Function Name column. Define the variable
name in the Output Parameters field to store the return value of the function.

Function parameters can be provided while entering test data for the component in a flow. For
more details, refer to the Test Data Management section in Chapter 6: Creating Test Flows.

For a list of libraries and functions available in Oracle Utilities Testing Accelerator, refer to
Chapter 8: Function Library Reference.

Resolving the Repeating Elements in Response XML

If the response XML has repeating elements, the value embedded within the repeating elements is
retrieved as follows.

<ContactDetails>

<Phone> 123-456-7890 </Phone>
<Phone>234-567-8901 </Phone>
<email> joe@oracle.com </email>
</ContactDetails>

1. Use the WS-SETVARIABLEFROMRESPONSE keyword to retrieve the response of the
web setvice invocation into the global variable. gVarl is defined in the Output Parameter
column.

The keyword resolves all occurrences of the Phone element and stores all values in the gVarl
variable separated by comma. gVarl will be set to “123-456-7890,234-567-8901"".

Creating Components 5-8
Oracle Utilities Testing Accelerator User’s Guide

2. Use the FUNCTIONCALL keyword to call the setVariableValueUsingListIndex function

available in the OUTSPCORE library.

The keyword retrieves the value(s) based on the parameters passed. Parameters passed are

global variables storing the values (gVarl and index).

For more information, refer to the Chapter 8: Function Library Reference.

Adding Validations

The different ways in which you can add validations are as follows:

* Using the FUNCTIONCALL keyword

To validate the response, use the FUNCTIONCALL keyword to validate the content; in

particular, the Xpath of response XML.

Select the wSVALIDATELIB function library from the Object drop-down list. Select the

function to be called from the Function Name drop-down list.

For a complete reference of the validation function library, refer to Chapter 8: Function

Library Reference.

* Using flow-level validations

Validations can be added before and after the existing flow. The same flow can be reused with
different or no validations before (pre-level validations) and after (post-level validations).

For more information about the flow-level validations, refer to the Flow-Level Validations
b

section.

Flow-Level Validations
Please note that this feature is available only for web service based components.

Apart from being able to define validations at the component level, you can also define validations

at a flow level as follows:
1. Navigate to the component in the flow.
2. Right-click and select Edit Test Data from the context menu.

3. On the Test Data page, click Open Pre Section.

Component PreData
Open Pre Section
keyword Object

No data to display.

OP Var Name Function Na... Logical Name valuel value2 value3 valued

values values

Component Pre Data

Creating Components 5-9

Oracle Utilities Testing Accelerator User’s Guide

4. Specify the validations that should be triggered before the web service request is sent to the
Oracle Utilities application.

Enter Component pre TestData
Add Row

X

keyword Insert Object OP Var Name Function Na Logical Name valuet value2 value3 valued values valueb Delete

Enter Component pre TestData

5. On the Test Data page, click Open post Section.

Compo 'ostData
Open post Section

keyword Object OP Var Name Function Na.._ Logical Name valuel value2 value3 valued value5s valuet

No data to display.

Component PostData

6. Specify the validations that should be triggered after a response comes back from the Oracle
Utilities application.

Logging and Reporting
Oracle Utilities Testing Accelerator provides the following types of logging and reporting:

* Test execution log file: The test execution logs are created in the Logs folder and separate
logs are generated for each flow.

* Email report in HTML format: The test execution email provides brief information about
the overall test execution. It comprises the following:

e Teststep
e Testdata
e Result (Pass/Fail)

The following figure is a snippet of the email generated.

UTA Automated test results report - Executed on : Thu May 10 19:12:54 IST 2018
(Executed by : BOBHUYAN-IN)
This Automated mail is powered by : UTA Framework

Current Testing Environment - Seftloment QA

Execution Result for Scenario

S No Test Step Test Data |Result
1 |Retrieve Person Contact —~NA--
2 |Starting Webservice Request Creation... —NA-
3 | Complete web service URL used for transaction is ‘https://slc07hgw_us.oracle.com:6900/V43030_W1_SFX_LIN_WLN_S/webservices/ATC1PersonContact | — NA —

Execution Result for Scenario

Test

S No Test Step Data | Result
1 |Start Importing Bundle ~NA-
2 Starting Webservice Request Creation. —~NA -
3 | Complete web service URL used for transaction is Al

https://slc07hgw. us.oracle.com:6900/V43030_W1_SFX_LIN WLN_Siwebservices/ATF1BundleImportApply

Logging and Reporting Result

Creating Components 5-10
Oracle Utilities Testing Accelerator User’s Guide

Handling the List Elements

The list elements of a schema should be defined using the keyword WS-
SETXMLLISTELEMENT.

Consider the following partial schema. Note that the node usageDetails has a usagePeriods list
element which in turn has another list element serviceQty and other non-list nodes (leaf nodes)
(such as startDateTime, standardStartDateTime, endDateTime, etc.,). The list node serviceQty has
non-list nodes such as seq, uom, tou, etc.

<usageDetails>
<usagePeriods>
<serviceQty>
<seq>l</seq>
<uom>TH< /uom>
<tou>ON</tou>
<3gi>LOSSADI</ sqi>
<gty>103.772922</qty>
</serviceQty>
<serviceQty>
<seq>2</seqg>
<uom>TH< /uom>
<tou>SH</tou>
<3gi>LOSSADI</sqi>
<gty>61.976037</gty>
</serviceQty>
<serviceQty>
<seqg>3</seq>
<uom>TH< /uom>
<tou>0FF</tou>
<3gi>LOSSADI</sgi>
<gty>189.281789</qgry>
</serviceQty>
<startDateTime>2012-12-01T02:00: 00</startDateTime>
<standardStartDateTime>2012-12-01T02:00:00</standardStartDateTime>
<endDateTime>2013-02-01T02:00:00</endDateTime>
<standardEndDateTime>2013-02-01T02:00:00</standardEndDateTime>
<usageRequestType>C1IS</usageRequestTyper
</usagePeriocds>
<usagePeriods>
<serviceQty>
<segrl</seqg>
<uom>TH< /uom>
<tou>0N</tou>
<3gi>LOSSADJ</ sgi>
<gty>103.772922< /gy
</serviceQty>
<serviceQty>
<seqx2</seqg>
<uom>TH< /uom>
<tou>SH</tou>
<sgi>LOSSADTI</=sqi>
<gty>61.976037</gry>
</serviceQty>
<serviceQty>
<seqr3</seqg>
<uom>TH< /uom>
<tou/>
<sgi/>
<gty>355.030748</qry>
</serviceQry>
<serviceQty>
<seq>4</seq>
<uom>TH< /uom>
<tou>0FF</tou>
<3gi>LOSSADI</ sqi>
<gty>189.281789</qrv>
</serviceQty>
<startDateTime>2012-12-01T02:00: 00</startDateTime
<standardStartDateTime>2012-12-01TD2:00: 00</standardStartDateTime>
<endDateTime>2013-02-01T02:00:00</endDateTime>>
<standardEndDateTime>2013-02-01T02:00:00</standardEndDateTime>
<usageRequestType>ClIN</usageRequestType>
</usagePeriods>
</uzageDetailss>

Sample Partial Schema

Creating Components 5-11
Oracle Utilities Testing Accelerator User’s Guide

To define this schema in the component, consider the non-list nodes and enter a row for each of
them, with the keyword as WS-SETXMLLISTELEMENT and Attribute value as the full xpath of
the element, making sure to enter the appropriate Display names.

WS-SETXMLLISTELEMENT Select Object v uom usageDetails/usagePeriods/serviceQty/uom
WS-SETXMLLISTELEMENT ¥ Select Object v tou usageDetails/usagePeriods/service(ty/tou
WS-SETXMLLISTELEMENT Select Object v sqi usageDetails/usagePeriods/serviceQty/sqi
WS-SETXMLLISTELEMENT Select Object v gty usageDetails/usagePeriods/serviceQty/ gty
WS-SETXMLLISTELEMENT Select Object v startDateTime usageDetails/usagePeriods/startDateTime
WS-SETXMLLISTELEMENT Select Object i standardStartDa usageDetails/usagePeriods/standardStartDateTime
WS-SETXMLLISTELEMENT Select Object v endDateTime usageDetails/usagePeriods/endDateTime
WS-SETXMLLISTELEMENT Select Object v standardEndDat usageDetails/usagePeriods/standardEndDateTime
WS-SETXMLLISTELEMENT Select Object v usageRequestTy usageDetails/usagePeriods/usageRequestType
Defining Schema

Note: If any of the list nodes repeat (serviceQty occurrs thrice inside
usagePeriods, which in turn occurrs twice in usageDetais), do not define the
elements multiple times in the component definition. The number of
occurrences can be controlled in the test data (as defined in the Entering Test
Data section).

Entering Test Data
On the test data page, each of the list nodes (usageDetails, usagePeriods and serviceQty for
example) has an Add button next to them and are expandable. Expand the list node to view the
children of that particular node.

For example: Expand usageDetails to view usagePeriods, and expand usagePeriods to view
serviceQty, startDateTime, standardStartDateTime, etc.

Initially only one instance exists for all the list nodes. To add more nodes, click Add next to the
desired element.

For example: To have two instances of usagePeriods inside usageDetails, click Add next to
usagePeriods. There will be two usagePeriods nodes inside usageDetials, each of which will have
the same content.

To view three serviceQty nodes in the first usagePeriods node and four in the second one:
1. Expand the first usagePeriods and add three serviceQty nodes.
2. Expand the second usagePeriods and add four serviceQty nodes.

The complete structure of the final schema is ready. You can add data to all the leaf nodes.

Creating Components 5-12
Oracle Utilities Testing Accelerator User’s Guide

4 usageDetails

4 serice(ty

aty

b seniceQty
startDateTime
standardStartDateTime
endDateTime
standardEndDateTime
uzagefeqguestType

Py

riods

4 usag

w
i
i

b seniceQty

senvice(ty

b seniceQty

HE

k seniceQty

12-00T02

12-01

02-0

Entering Test Data

Creating Components 5-13

Oracle Utilities Testing Accelerator User’s Guide

Creating GUI Based Components

To manually create a GUI based component, follow these steps:
1. Navigate to the component tree where the component has to be created.
2. Right-click the feature (release/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

3. Seclect Create Component.

4. Enter the name of the component in the Component field.

4 iz ToDoU

282 [cM-CompleteToDoEntn
5 F1-CompleteToDoEntry
S8s F1-ForwardTallser
s F1-ReopenToDoEntry

888 F1-SendBackTolser

Creating Component

Note: The component name must be prefixed with ‘CM’ and the Tags field
should have a CM tag for every component. The tagging enables porting the
custom components to latest Oracle Utilities Testing Accelerator release.

For information about extending components, refer to the Copying
Components section.

Select User Interface in the ComponentType drop-down list.
Enter a description in the Description field.
Click Attach Code to add the metadata. The Component window is displayed.

Create component definitions.

Y O N o owm

Click Save & Unlock to save and create the component.

Following is an example to create the CM-CompleteToDoEntry component under the ToDoUI
feature for the Core product:

1. Navigate to UTA 6.0.0.0 > CORE 6.0.0.0 Portfolio > CORE UI 6.0.0.0 > ToDoUI.
Right-click the ToDoUI module.

2

3. Select Create Component.

4. Enter CM-CompleteToDoEntry in the Component field.
5

Follow steps 5 to 9 as mentioned in the procedure above.

Creating Components 5-14
Oracle Utilities Testing Accelerator User’s Guide

Creating a Component Definition for GUl Components

A user interface component consists of several component definition lines. Each component
definition line comprises of a keyword, object, display name, attribute values, default data,
function name, and output parameters.

The following list describes each entity in a component definition:

* Keyword: The step to be performed. Example: WS-SETVARIABLEFROM RESPONSE,
WS-VALIDATE, etc

* Object: The Oracle Utilities Testing Accelerator function library name from where the
function is called.

* Display Name: The component definition (mandatory).
* Attribute Values: The xpath/ID of the Ul element (mandatory).

For example: If ID is specified, specify the attribute value as id;TD_ENTRY_ID, where
TD_ENTRY_ID is the unique ID of the UI element being defined.

If xpath is specified, it can be provided similar to //
lij@id="CI_ADMINMENU_topMenultem0x18'/span

Note: If the attribute values contain special characters (such as '$"), the

character should be prefixed by the backslash ('\") character.

For example: To input the attribute value as
id;ZONE_PRM\:0$ZONE_PARM_VAL, specify it as
id;ZONE_PRM\:0\$ZONE_PARM_VAL.

* Default Data: The default data used in the component definition.
* Function Name: The function name called from the library.

e Output Parameters: The output in the form of a variable.

For more options, refer to Appendix D: Generating Re-runnable Test Data.

* Tooltip: The data presented as a tool tip during the flow creation.

Creating Components 5-15
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the Component page with the available component definitions.

Components

Component Name
Rows to Add : 1
Page 1 of 1 (1-

S.No

[

o

w

10

Content Areas

F1-CompleteToDoEntry

Add Rows

17 of 17 items)

Insert Keyword

= = SETAPPTYPE

FUNCTIONCALL
FUNCTIONCALL
3% 3. semmext

CLICK

3% 4a FUNCTIONCALL

3% 3o ruNCTIONCALL
3% da war

7 3. i

3% 32 swickTo

Component Status : Approved

Attributevalues DefaultData

To Do Entry

d:TD_ENTRY_IC

id:BU_criteria_tc

QutputParameter

FunctionName

Select Function

navigatePageThroughMen

Select Function

switchToWindow

Select Function

Select Function

Select Function

Save | Save & Unlock | Submit For Approval Delete | Approve
Object DisplayName
b i WEB
v QuafCorelib Navigate to To
» NORMAL
v QuafCorelib Function Ca
v NORMAL
- ED! Enter Id
v BUTTON Click search
¥ QuafCorelib v
A QuafCorelib v tabPage
- NORMAL v
L BUTTON v
»: STARTFRAME v LOG_GRID

windowClose
tabPage switchToFrame
Select Function
d;COMPLETE_S

Select Function

LOG_GRID

Select Function

Component Definition Page

Add the required component definition lines using the Keyword drop-down list to define the web

services based component.

For a list of keywords used to define the GUI based components, refer to Appendix B: GUI

Component Keywords.

The following example shows different component lines created for the CM-

CompleteToDoEntry component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

2. Select Web in the Object drop-down list to denote that it is a web services based component.

3. Select the WS-LOGMESSAGE keyword to log comments in component definition. This
helps in debugging the script code for that component.

4. Add more component definition lines as needed and select appropriate keywords based on
the GUI page that the component represents.

5. Click Save.

Creating REST Web Service Components

To create a REST web service component:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature (telease/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree

structure.

3. Select Create Component.

Creating Components 5-16
Oracle Utilities Testing Accelerator User’s Guide

4.

A O L

Enter the name of the component in the Component field.

Note: The component name must be prefixed with 'CM' and the Tags field
should have a CM tag for every component. The tagging enables porting the

custom components to latest Oracle Utilities Testing Accelerator release.

For information about extending components, refer to the Copying

Components section.

Select REST SERVICE in the ComponentType drop-down list.

Enter a description in the Description field.

Click Attach Code to add the metadata. The Component window is displayed.

Create component definitions.

Click Save & Unlock to save and create the component.

Once the component is created, use it in a flow by dragging and dropping the component into the
desired location of the Flow Definition page. Once the component has been added to the flow,

you can enter the test data for the component.

Entering Test Data

To enter the test data:

1.
2.
3.

Navigate to the Flows tab.

On the left pane, expand the desired flow from the flow tree.

Right-click the flow and select Create/Update Flow Structure.

ORACLE 0racke utilities Testing Accelerator Workbench

AE Vivek ¥

n-u
[ty Dastboura EEE components 3% Flows 3 Took §3F Administration

b W testing *Release

4 W UTA6.000
rEam Update Header
[=[]
» S CORE
=]
4 = DEMO TEST Generate Scripts

4 F DEMOPROD. Creste/Update Flow Structure ‘ 3

&) dema floy

aduct Family

Delete aduct

Rename
low Name

Copy Flow
2 &) RestDemo

W) 77 TESTFLOW
b Wl OFTAPOUS 01
W Sentinel 6.0.00

Flow Tree A‘ Search Flow

Expand the flow on the right pane.

Select Release v
Select Product Family v

Select Product v

(Use "%’ for wild card search)

)

Right-click a REST component and select Edit test data. The Rest Test Data window
opens with four tabs:

Pre Validations

Test Data (Default tab)

Body

Post Validations

Creating Components 5-17
Oracle Utilities Testing Accelerator User’s Guide

Validations

Rest Test Data x
Pre Validations Test Data Body Post Validations
Enable Keyword Object Function Name. Caption Logical Name Valuel Value
WS-LOGMESSAGE Log Message log message for rest component v
RS-SETREQUESTHEADER Header Content-Type text/plain -
RS-SETENDPOINT EndPointUrl http://google.com v
RS-ARGUMENT PathVariable Path Variable for url location hyd v
RS-ARGUMENT QueryParameter ‘Add Query Params name raviname v =
Save
The table below provides description of each of the tabs.
Pre Validations/Post
Test Data Body

Lists the validations
performed pre or post
(before/after) the
component is executed.

For a new component, this
section is empty. Add
validations by clicking New
Row.

The Object column in each
added row contains a list of
functions used for validation.

Specify the parameters for
the functions by providing
value against the Value
column.

Use the OP Variable Name
column to store the output of
the function, used in test data
of the current component or
in subsequent components in
the flow.

OP Variable Name should
be unique for a flow.

Used to enter the
component’s test data.

Enter plain text as data or
use the value of an already
defined global variable by
choosing the variable name
from the drop-down list.

Allows to choose whether the
REST service invocation uses
form data, raw data, or binary
data.

* Form data - A table with
key-value pairs. These
are sent as body with the
REST request.

* Rawdata - Sends request
text that cannot be sent
in as either form data or
binary data.

* Binary data - A single
flow attachment can be
added as body data in
REST.

Creating Components 5-18

Oracle Utilities Testing Accelerator User’s Guide

Pre Validations/Post

Validations Test Data Body

To use an OP Variable
Name declared in the
previous scenarios/
components, click the
Values drop-down list. You
can also provide a custom
value by typing in the value
into the column.

After the test data entry is complete, click Save.

Copying Components

The components delivered can be customized; however, modifying the existing components is not
a good practice.

A component can be extended by making its copy and saving it with a different name prefixed and
tagged by CM, and then adding or modifying the metadata or key words as follows:

1. Right-click an existing component and select Copy Component.

2. Select and right-click a module.

3. TFrom the context menu, select Paste Component.
If the component name already exists in the module, a prompt is displayed to provide a new
name to the component.

4. Click Save as New Component.

The component is copied successfully.

Creating Components 5-19
Oracle Utilities Testing Accelerator User’s Guide

Chapter 6

Creating Test Flows

Test flows are actual business tests executed on the application under test. The flows are

assembled in Oracle Ultilities Testing Accelerator by using predetermined components and are

updated with data to guide the flow execution.

A test flow consists of one or more scenarios, which in turn consist of one or more components.

This chapter describes the steps to create a flow, including:

Creating Flows

Creating Scenarios

Adding the Email Capabilities to Flows
Support for HT'TPS Web Services
Support for Integration Flows
Executing Test Flows

Executing Flows from Command Line

Encrypting Passwords

Creating Test Flows 6-1
Oracle Utilities Testing Accelerator User’s Guide

Creating Flows

You can create a flow in either of the following ways:

* By drag-and-drop of components into a flow (Creating Flows By Dragging-and-Dropping
Components)

* By using the behavior driven development scenario (Creating Flows Using Behavior Driven
Development Scenario)

Creating Flows By Dragging-and-Dropping Components
Before creating a flow, identify the components required to create the flow.

Note: The components delivered with Oracle Ultilities Testing Accelerator have
to be extended or new components have to be created.

To create a flow, follow these steps:
1. Navigate to the product in the flow tree to create the flow.
2. Right-click the product and select Create Flow.
3. In the Create Flow pane, enter the Flow Name, Flow Type, Tags, and Description.
4. Save in either of the following ways:
* Save: Saves the flow and redirects to the Search Flow page.

¢ Create Structure: Creates the flow with a default scenario and redirects to the Flow
Structure page.

5. Expand the flow tree.

6. Drag and drop the components from the Approved Components pane to the Flow
Creation pane. For information about adding scenarios to a flow, refer to the Creating
Scenarios section.

7. The test data needs to be entered at the component level while defining a flow and before the
flow is assembled.

To add data for a component, right-click it and select Edit Test Data. Similatly, data can be
added for the remaining components.

8. Enter the test data in the Test Data page. For more details, refer to the Flow-Level
Validations section in Chapter 5: Creating Components.

CC o>

If the test data contains the double quotes character (“), it needs to be escaped with another
double quote character. For example: To enter My “Test Data”, you need to enter it as My

“Test Data””.

9. Click Save & Close to return to the Flow Creation page.

Creating Flows Using Behavior Driven Development Scenario

This Oracle Ultilities Testing Accelerator feature uses a training dictionary that contains entries
against each component and the likely keywords that match the components. For more details,
refer to the Creating Behavior Driven Development Training Dictionary section.

Use the Behavior Driven Development (BDD) scenario to create a flow definition, review it,
modify it as needed, and then finalize it thereby creating the flow.

The following is a typical BDD scenario used to create a flow that has two scenarios (pre-
requisites and sanity testing) and each scenario has the standard BDD notation of Given-When-
Then that defines the test case.

Creating Test Flows 6-2
Oracle Utilities Testing Accelerator User’s Guide

Feature: Flow

This flow can be used in an initial installation environment. It installs minimal data to perform the
end-to-end sanity test flows.

Scenario Outline: Pre-Requisites
Given user is already authorized
When he performs Bundle Import
Then user configures installation options
Then user changes the display profile
Scenario: Sanity Testing
Given there is 1 coffee left in the machine
And I deposited 1$
When I press the coffee button
Then I should be served a “coffee”
To create a flow using the BDD scenario (mentioned above), follow these steps:
1. Navigate to the Flows tab.

2. Expand the Flow tree (on the left pane) and right-click the product for which the flow needs
to be created.

Click Create Flow in the context menu.

Enter the necessary details for the flow (such as flow type, flow name, and tags).
Click Create Structure.

Click BDD on the right pane.

Enter the BDD scenario in the text editor.

®» N e ;W

Click Generate Flow-Tree.

This creates a flow definition in the Flow Creation section. You can see it to the right of the
Generate Flow-Tree button.

9. Review the flow definition generated.

10. Replace the components that were incorrectly suggested by the application.

11. Right-click the component to be replaced and select the alternate components that are
suggested.

12. After confirming that the flow definition matches the requirement, click Finalize Flow to
create the flow.

Creating Behavior Driven Development Training Dictionary
Oracle Utilities Testing Accelerator uses a Behavior Driven Development (BDD) Training
dictionary to suggest components that best match the BDD scenario used to generate a flow. This
training dictionary should contain one or more entries for every component in the application,
more entries per component increase the accuracy with which the component will be matched
with a given BDD scenario.

Few sample entries for a F1-Login component are as follows:
* Fl-Login the logged in user

* Fl-Login the authorized user

Creating Test Flows 6-3
Oracle Utilities Testing Accelerator User’s Guide

* Fl-Login the user currently logged into the application
* Fl-Login user login

Based on these entries, Oracle Utilities Testing Accelerator suggests F1-Login as the component
when any of the keywords match the given entries. Each time you replace the suggested
component with another component, Oracle Utilities Testing Accelerator makes a new entry into
the training file and suggests more accurately when those keywords are used.

You can specify the location of the training file in the application.properties file in the folder
where Oracle Utilities Testing Accelerator was installed.

Creating Scenarios

To create a scenario, do the following:
1. Navigate to the flow to be modified.
2. Select Create/Update Flow Structure.

3. Select and right-click the flow or a scenario inside the flow. You can create a scenario from
the Flow menu or from the Scenario menu.

4. Click Add Scenario from the Flow menu.

Alternatively, click Add Scenatrio Above/Add Scenario Below from the Scenario menu.
5. Enter the new scenario name.

6. Click Go.

Using Global Variables
This section explains the usage of global variables to pass data across components.

The component M1-CrewShift is a dependent component and during runtime needs The IDs of
the M1-MobileWorker, M1-Vehicle, and M1 MultiPersonCrew components in addition to the
other data.

To add component references to a dependent component (M1-CrewShift), follow these steps:

1. To add the MobileWorker ID, select gVar_mobileWorkerlId1 from the Valuel drop-down
list against the resourceAllocationList/resourceld display name.

2. To add Vehicleld, select gVar_vehicleldl from the Value2 drop-down list against the
resourceAllocationList/resourceld display name.

3. To add MultiPersonCrewld, select gVar_Crewld in the Value 1 drop-down list against the
crewld display name.

Invoking OpenScript scripts

Manual OpenScript scripts can be triggered from within an Oracle Utilities Testing Accelerator
component by using the invokeOpenScript function available in the OUTSPCORELIB library.

Create an OpenScript.properties property file under the existing Oracle Application Testing Suite
(OATS) client installation. Make sure the property file has the following entries.

Property Description

parentFolder Path of the base folder where all OpenScript
scripts exist

Creating Test Flows 6-4
Oracle Utilities Testing Accelerator User’s Guide

Flow Lifecycle

Property Description

runScriptBatLocation Location of the runOpenScript_ OUTA.bat
batch file.

This file is present in the installation folder as
runOpen-Script_ OUTA.bat. Copy it to the
OpenSecript folder inside the OATS client
installation folder.

In the configuration.properties file located in the Oracle Utilities Testing Accelerator client folder
structure, add a new entry to point to the OpenScript.properties file. A sample entry is as below.

openScriptPropertiesLocation=<Full path of the folder where the
OpenScript.properties can be found>
In the component from where the OpenScript script is invoked, update the component definition

to include an additional definition entry. Make sure the entry is the format mentioned below.

KEYWORD =FUNCTIONCALL, OBJECT=OUTSPCORELIB,
FUNCTION=invokeOpenScript

After the component definition is saved, navigate to the test data page of the component in a flow
and provide the test data to the added component definition page.

* Parameter 1 - Relative path of OpenScript script's jwg file to be invoked, with respective to
the path mentioned in parentFolder property from the OpenScrip.properties file.

* Parameter 2 - Relative path of the app.properties file, with respective to the path
mentioned in parentFolder property from OpenScript.properties.

* Parameter 3 - Either 1 or 0 to indicate whether script execution should stop or proceed
based on the success/failure of OpenSctipt script.

The app.properties file contains all the parameters needed to be passed to the OpenScript script.
For example:

accountId=1232343433
propertiesPath=absolute path for playback settings file

The flow lifecycle begins once a flow is created in Oracle Ultilities Testing Accelerator. It can exist
in one of the several possible lifecycle states as shown in the following diagram.

Creating Test Flows 6-5
Oracle Utilities Testing Accelerator User’s Guide

0

Create Flow

Flow Lifecycle

Save

Submit for Approval

</>

In Progress Send to In Progress /

Pending Approval

Unlock
-

Send To
In-Progress

Approved

Flow Lifecycle

The state of a flow determines the actions that can be performed on the component. The

following table summarizes the component states, and the possible actions and roles that can take

the actions.
Flow Lifecycle Permitted Resultant State (after
- Role -
State Actions action)
In Progress Submit for Developer, Pending Approval
Approval Approver,
Administrator
Pending Approval ~ Send to In Developer, In Progress
Progress Approver,
Administrator
Unlock Developer, In Progress
Approver,
Administrator
Approve Approver, Approved
Administrator
Approved Send to In Developer, In Progress
Progress Approver,
Administrator

Locking/Unlocking Flows

A flow is/can be locked in the following scenatios:

* To prevent any other users from editing the flow until the flow is complete.

* By default when the flow is submitted for approval.

* If the flow is unlocked while in the ‘Pending Approval’ state, its state is changed back to ‘In
Progress’. However, if it is moved to ‘In Progress’ state from ‘Pending Approval’ state, it stays
locked until the user unlocks it.

Creating Test Flows 6-6

Oracle Utilities Testing Accelerator User’s Guide

Click the o icon to lock/unlock a flow in the Oracle Utdlities Testing Accelerator application.

Note that scripts can be generated only when the flow is in an “Approved” state.

Copying Flows

To copy a flow from one product to another product(s):

1.

2
3
4
5.
6
7
8

Login to the application.

Navigate to the Flows menu.

In the left navigation pane, expand the flow to be copied.
Right-click the flow to be copied and select Copy Flow.
Navigate to the product to which the flow needs to be copied.
Right-click the product and select Paste Flow.

In the pop-up window, enter the name for the new flow.

Click Paste flow.

Reordering Components in a Flow

Note that a flow needs to be “In progress” for components to be re-ordered. You cannot re-order
components in a flow that is locked by another user.

To change the sequence of components in a scenario:

1.

9.

2
3
4
5.
6
7
8

Log into the application.

Navigate to the Flows menu.

In the left pane, right-click the flow for which components have to be reordered.
Select Create /update Flow Structure.

Click the Reorder Flow. A popup appears with the flow in it.

Expand the flow.

Right-click the component to be moved and select Move Component.

Move the selected component in any of the following ways:

* Right-click another component in the flow and choose Paste Above.

* Right-click another component in the flow and choose Paste Below.

* Right-click a scenario in the flow and choose Paste. This will move the selected
component to the first position in the scenario.

After reordering the components, click Save to save the modified flow.

The popup closes and the flow tree is refreshed to reflect the correct order of components.

Copying Test Data from One Component to Another in a Flow

To copy the test data from one instance of a component to another instance of the same

component within and actoss the scenatio/flow:

1.

2.
3.
4.

Log into application and navigate to the Flows tab.
In the left navigation pane, right-click the flow and select Create/update Flow Structure.
Expand the flow.

Right-click a component from which you want copy the test data and select Copy Test Data.

Creating Test Flows 6-7
Oracle Utilities Testing Accelerator User’'s Guide

5. Navigate to the component in the flow.

6. Right-click the component where you want to paste the test data and select Paste.

Test Data Management

The test data can be mentioned in the flow meta data. The Oracle Utilities Testing Accelerator
code generator generates Oracle Utilities Testing Accelerator databanks (CSV files) for each
component. Number and names of the columns in the generated databanks are based on the test
data provided. The databanks can be updated with new data before test execution.

Row Handler column for
multiple records

Xpath as column name to
simplify multi child elements

A

3

1 @owsaan‘h lD!bc

crewType crewName mobileWorkerld vehicleld|crewshiftOverrideDetails/serviceArea/serviceAreaList/serviceArea JerewShift
2 |SET1_100000104 M1-SinglePersonCrew AT SINGLEPERSONCREW TESTSingleCrewDemo020 {{MWId}} AT_CANTON QHIO MI1AL

B C D E F G H

Sample CSV File

The generated script for the test flow can be executed for multiple sets of data. The data sets have
to be provided in the component databank CSV for each of the component. The first data set for
a flow will be generated by the script generator using the Oracle Utilities Testing Accelerator data.

Case 1: In the flow, the component is called just once and has repeated list elements (such as
location). The following figure shows the CSV generated for the component.

Child element “location”
repeated 3 time hence specified 3

times
DBRowSearch_ID [bo crewType crewName mobileWork{vehicleld |crewShiftOverrideDgcrewShiftOvqcrewLocation/{crewLocation/crewlocations/resourcelocationFlag |crewlocation/crewLocations/location
SETL_100000104 |M1-SinglePergAT SINGLEPERS(TEST SinglePerd{{Mwid)} AT_CANTON OHIO |M1AL 3|MINP AT_OHIO
1M1 AT OHIO
2|MILF AT_OHIO

Child element “resourcelocationFlag”
repeated 3 times hence 2 separate
rows used to handle multiple child

Case 1: CSV for Component

Creating Test Flows 6-8
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the CSV after adding a second set of data. (Since the data has
repeating list elements, the second data set starts two rows after the first with the prefix SET2_).

Dataset 1 for component. This
setis automatically generated

SET1_100000104:

SET1=Dataset 1
100000104= Component ID

MILN

AT_CANTON

from the test data
DBRowSearch_ID |bo crewType i mobileWork{vehicleld |crewShiftOverrideDdcrewsShiftOvicrewLocation/{crewlLocation/crewLocations/resourcelocationFlag |crewLocation/crewLocations/location
SET1_100000104 |Mi-SinglePerdAT SINGLEPERS(TEST SinglePerg{{Mwid}} IAT_CANTON OHIO [M1AL 3|MINP AT _OHIO
1|MILN AT OHIO
2|MILF AT _OHIO
SET2 100000104 Ml-SlngIaPar [AT_SINGLEPERSH TESTZislngJEPE‘ {{mwid}} AT_CANTON CHIO MI1AL 3|MINP AT _CANTON
1
2

MILF

AT_CANTON

Data set 2 for same component. This setis manually created for
the purpose of iterative test execution

Case 1: CSV After Adding Second Data Set

Case 2: The component is called morte than once in the flow and it does not have repeating list
elements. The following figure shows the CSV generated for the component. In the figure, the
text enclosed in the curly brackets is the variable.

DBRowSearch_ID

taskld

bo

boStatus

SET1 100000110

{{Assgnmntid}}

M1-Assignment

ENROUTE

SET1_100000111

{{Assgnmntid}}

M1-Assignment

ONSITE

SET1_100000112

{{Assgnmntid}}

M1-Assignment

COMPLETED

Case 2: CSV for Component
Note: The taskId column points to the Assgnmntld global variable declared
within the cutly brackets. The value stored in Assgnmntld will be set from the

execution ot the previous component and stored in AssgnmntId.

The following figure shows the CSV values after adding the second data set. (since the data has
repeating list elements, the second data set starts two rows after the first with the prefix SET2_).

DBRowSearch_ID |taskld bo boStatus
SET1_100000110 [{{Assgnmntid}} [M1-Assignment |ENROUTE
SET1_100000111 |{{Assgnmntid}} [M1-Assignment |ONSITE
SET1_100000112 |{{Assgnmntid}} [M1-Assignment |COMPLETED
SET2_100000110 |{{Assgnmntid}} [M1-Assignment |ENROUTE
SET2_100000111 |{{Assgnmntid}} [M1-Assignment |ONSITE
SET2_100000112 |{{Assgnmntid}} [M1-Assignment |COMPLETED

Case 2: CSV after adding Second Data Set

Creating Test Flows 6-9

Oracle Utilities Testing Accelerator User’s Guide

Adding the Email Capabilities to Flows

The test execution report can be sent to users as an email. To add email capabilities in a flow, add

the component line mentioned in the following table towards the end in the flow.

Usage Details Value

Keyword FUNCTIONCALL
Object wSCOMMONLIB
Function Name generateAndSendReport

The email related properties have to be specified in the configuration.properties file located under
<UTA-CLIENT>/etc folder, where <UTA-CLIENT> is the location of the folder where the
UTA_Client_FolderStructure.zip was extracted.

Update the following values as mentioned to configure the email:

#Email Details

gStrSMTP_HOST NAME=<mention your SMTP server details here>
gStrSMTP PORT=<mention SMTP port here>

gStrTO EMAIL RECIPIENTS=<mention target user/group email id>

Support for HTTPS Web Services

While connecting to the edge applications that use the HT'TPS protocol, before executing the

Oracle Utilities Testing Accelerator scripts, the security certificate should be saved on the system

from where the Oracle Utilities Testing Accelerator test cases are being executed. Register the

certificate in the Java security certificates repository.

To import the security key store into Java key store:

1.

2
3
4
5.
6
7
8

10.
11.

Enter the URL (HTTPS) of the application in the browser (Example: Internet Explorer).
Click Continue to this Website (not recommended) link on the Security certificate page.
Click Certificate error in the address bar.

Click the View certificates link on the Certificate Invalid pop-up window.

On the Details tab, click Copy to File.

Click Browse and select the file you want to export. Click Next.

Review the settings and click Finish.

Login to the machine where this certificate has to be imported into the Java key store, and
open the command prompt.

If the Java path is not set in the envitonment variables, navigate to the Java/jdk/bin directory
and execute the following command:

keytool -import -alias <Alias Name> -file <path of the file which

we exported in Step 7> -keystore <Java keystore path>

Enter “changeit” as the Password.

Click Yes to import the certificate. The property file attributes for HT'TPS requests are as
follows:

##Handling Https WSDL - Java key Store
gStrJavaKeyStorePath=C:\\jdk8\\jre\\1lib\\security\\
gStrJavaKeyStorePwd=changeit

The setup is ready to process the HTTPS requests.

Creating Test Flows 6-10
Oracle Utilities Testing Accelerator User’'s Guide

Support for Integration Flows

To test an end-to-end flow, the functional testing typically involves accessing different applications
integrated for running the flow. In order to execute the integration tests, create flows that span
multiple applications. These flows send/receive information to and from different applications.

To perform complete end-end tests, add the URL as an attribute in the properties file.
configuration.properties

Integration Environments gStrMWMApplication=https\://<server
name>\ : <port>/ouaf/webservices/ gStrCCBAppliation=https\://<server
name>\ : <port>/ouaf/webservices/ gStrMDMAppliation=https\://<server
name>\ :<port>/ouaf/webservices/

Following is the example where the Oracle Utilities Customer Care and Billing service AT-
C1Premise is called.

Test data:

Calling CCB service: gStrCCBAppliation/AT-ClPremise
Calling MWM Service: gStrMWMApplication/AT-M1CrewShift

Note that this test data is a combination of environment and application service names.

In cases where the integration environments used for testing have different authentication
credentials (usetID/password), suppott is provided for setting the username and password for
each environment. To enable this support, in the configuration.properties file, provide the user
name/password variable prefixed with the environment URL variable, separated by an underscore.

Following is an example that extends the above integration environments example to use different
user names and passwords for each environment:

configuration.properties

Integration Environments gStrMWMApplication=https\://<server
name>\ :<port>/ouaf/webservices/
gStrCCBAppliation=https\://<server name>\:<port>/ouaf/webservices/
gStrMDMAppliation=https\://<server name>\:<port>/ouaf/webservices/

Setting user name/password for a Oracle Utilities Customer Care and Billing service:

gStrCCBAppliation gStrApplicationUserName=<%CCBUsername%>
gStrCCBAppliation gStrApplicationUserPassword=<3CCBPassword$%>

Setting user name/password for a Oracle Utilities Mobile Workforce Management
service:

gStrMWMApplication gStrApplicationUserName=<3MWMUsername3%>
gStrMWMApplication gStrApplicationUserPassword=<$MWMPassword%>

Note: If the integration flow spans across multiple environments that use
common user credentials (user name and password), then the above setting is
not required.

The sample configuration file in this case is as follows.
configuration.properties

Integration Environments

gStrMWMApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrCCBApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrMDMApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrApplicationUserName=<$CommonUsername$>
gStrApplicationUserPassword=<%$CommonPassword%>

Creating Test Flows 6-11
Oracle Utilities Testing Accelerator User’s Guide

Executing Test Flows

This section explains the steps to execute a test flow.

Generating Oracle Ultilities Testing Accelerator Scripts

Importing the Generated Oracle Ultilities Testing Accelerator Script into Eclipse IDE

Generating Oracle Utilities Testing Accelerator Scripts

To generate Oracle Utilities Testing Accelerator scripts for a flow:

1.
2.

Login to the Oracle Utilities Testing Accelerator application.

On the flow tree page, right-click a flow and select Generate Scripts.
Note that the Generate Scripts option is available only for those flows in “Approved” state.

A zip file containing the generated flow is downloaded by the browser.

The Oracle Utilities Testing Accelerator scripts generated for the test flow have the following
structure:

Databank folder - The databanks (text files with comma separated values (.csv)) for the flow
that was downloaded. Each component in the flow has a corresponding databank(s) file
generated that contains the test data.

src folder - The generated script files for the flow.

Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse

IDE

To import the Oracle Ultilities Testing Accelerator scripts into Eclipse IDE:

1.

A A T o

Launch the Eclipse IDE for Java Developers that has the Oracle Utilities Testing Accelerator
Eclipse plugin installed.

For instructions to install Eclipse IDE, refer to the Installing Oracle Utilities Testing
Accelerator Client Runtime section in Chapter 3: Developing Metadata Driven Web Service
Based Test Automation.

In the Eclipse IDE, right-click the Project Explorer panel and click Import.
Click General and select Existing Projects into Workspace.

Click Next.

Select Select archive file: and click Browse.

Navigate to the downloaded zip file and click Open.

Click Finish.

You can now view the project in the Project Explorer panel.
Right-click the masterdrive and click Run.

Important: Before executing GUI component based flows, make sure to
download the ChromeDriver v2.40/geckodtiver v0.20.1 and copy it into the
'drivers' folder mentioned in the Creating Oracle Utilities Testing Accelerator
Client Runtime Folder Structure section in Chapter 3: Creating Test Flows.

Download the drivers from the following URLs:

Creating Test Flows 6-12
Oracle Utilities Testing Accelerator User’s Guide

* Geckodriver: https://github.com/mozilla/geckodriver/releases/download/
v0.20.1/geckodriver-v0.20.1-win64.zip

* ChromeDriver: http://chromedriver.storage.googleapis.com/2.40/
chromedriver_win32.zip

While executing the Sentinel script, if a failure occurs at any point, it is possible to resume
execution from the point of failure by setting the runFromLastPointOfError flag to “true” in the
script.

package com.oracle.tests;

import static org.junit.Assert.ossertNotNull;[]

public class F1_BundleImport extends FunctionalTestScript{

WSCOMMONLIB wSCOMMONLIB = new WSCOMMONLIB();
WSVALIDATELIB wWSVALIDATELIE = new WSVALIDATELIE();
OUTSPCORELIB oUTSPCORELIB = new OUTSPCORELIE();
oUAFLIB oUAFLIB = new ocUAFLIB();

IFinal static boolean runFromLastPointOfError = false; I

[iBeforeClass

public static void preSetup{) throws SQLException{
system.out.println("@BeforeExecution: Initializing Configuraticns Variables before Script Startup”);
WSCOMMONLIB. initalizeSetUp("F1_BundleImport”, System.getProperty("user.dir"),runFromLastPointOfError);
beginScript("F1_BundleImport");

The runFromLastPointOfError Flag

Executing Flows from Command Line

To execute the scripts downloaded from Oracle Ultilities Testing Accelerator from the command
line:

1. Navigate to the directory where the runtime folder is created.
For information about the folder, refer to the Creating Oracle Utilities Testing Accelerator
Client Runtime Folder Structure section in Chapter 3: Creating Test Flows.

2. Open a Windows command line window at this location.

3. Execute the flow as follows:

java —-jar utascriptwrapper.jar -f “<directory containing the flow>"
-t “<Scenario name>”

4. After the script execution is complete, the Console shows the execution status.

The detailed status can be found in the log file under the logs directory.

Encrypting Passwords

All the password fields (gStrApplicationUserPassword, gStrApplicationDBPassword,
gStrjavaKeyStorePwd) in the configuration.properties file must be encrypted. Before encrypting
the configuration.propetties file, the keystore should be generated.

You can generate the keystore in either of the following ways:
* From Windows Explorer (Generating Keystore for Encryption from Windows Explorer)

* From Command Line (Generating Keystore for Encryption from Command Prompt)

Creating Test Flows 6-13
Oracle Utilities Testing Accelerator User’s Guide

https://github.com/mozilla/geckodriver/releases/download/v0.20.1/geckodriver-v0.20.1-win64.zip
https://github.com/mozilla/geckodriver/releases/download/v0.20.1/geckodriver-v0.20.1-win64.zip
http://chromedriver.storage.googleapis.com/2.40/chromedriver_win32.zip
http://chromedriver.storage.googleapis.com/2.40/chromedriver_win32.zip

Use the Password Encryptor Tool to encrypt the configuration.properties file. You can use the

Password Encryptor Tool in either of the following ways:

From Windows Explorer (Using Password Encryptor Tool From Windows Explorer)

From Command Line (Using PasswordEnctyptor Tool From Console/Command Line)

Generating Keystore for Encryption from Windows Explorer

To generate the keystore for encryption from Windows Explorer:

1.

2
3.
4

Launch Windows Explorer.
Navigate to the <UTA-CLIENT-WORK-DIR>\tools folder.
Double-click the KeystoreGenerator.jar file.

If the keystore and password store do not exist, they will be generated. Else, you will be
prompted to confirm to overwrite the existing keystore and password store with the new one.

Click Yes to overwrite the existing keystore.

To continue with the existing keystore and password store, click No.

If you regenerate a keystore, all the passwords should be re-encrypted using the Password

Encryptor tool.

Generating Keystore for Encryption from Command Prompt

To generate the keystore for encryption from the command prompt:

1.
2.
3.

Navigate to the <UTA-CLIENT-WORK-DIR>/tools folder.
Run the command: java -jar KeystoreGenerator.jar.

If the keystore and the password store for the keystore do not already exist, they will be
generated. Else, you will be prompted to overwrite the existing keystore.

Enter 'y' to generate a new keystore. Enter 'n' if you want to continue using the existing
keystore.

If you regenerate a keystore, all the passwords should be re-encrypted using the Password

Encryptor tool.

Using Password Encryptor Tool From Windows Explorer

Important: Make sure to generate the keystore before encrypting the configuration.properties

file. For instructions, refer to the Generating Keystore for Encryption from Windows Explorer

section.

To use the password encryption tool from Windows:

1.
2.
3.

Launch Windows Explorer.
Navigate to the <UTA-CLIENT-WORK-DIR>\tools folder.

Double-click the PasswordEncryptor.jar file.

You will be prompted to enter the password.

After entering the password, click OK.

A dialog box with encrypted text appears.

Copy this text and enter it as the value of the respective password field in the
configuration.properties file.

Creating Test Flows 6-14
Oracle Utilities Testing Accelerator User’s Guide

Using PasswordEncryptor Tool From Console/Command Line
To use the password encryption tool from console/command line:
1. Navigate to <UTA-CLIENT-WORK-DIR>/tools directory.
2. Enter the following command:

java -jar PasswordEncryptor.jar

The tool prompts to enter a password.
3. Type in the password and press Enter. A dialog box with encrypted text appears.

4. Copy this text and enter it as the value of the respective password field in the
configuration.properties file.

Configuring the Runtime Properties

The configuration.properties file is located in the <UTA-CLIENT-WORK-DIR>\etc\ folder.
It is used to store the runtime test execution parameters, such as application URL, application
access information, email configuration, etc.

To use the email functionality for receiving the test execution report, provide the following values
as mentioned in the configuration.properties file.

#Email Details
gStrSMTP HOST NAME=
gStrSMTP_PORT=
gStrTO_EMAIL RECIPIENTS=

To provide the test environment details, provide the following values:

Application URL pointing to test execution
gStrApplicationURL =
gStrApplicationXAIServerPath=
gStrEnvironmentName=

To provide the application user information for login, provide the values for the following keys:

gStrApplicationUserName =
gStrApplicationUserPassword =<Encrypted Password>

If the test suite has any database-side validations, provide the database details as follows:

gStrApplicationDBConnectionString =
gStrApplicationDBUsername =
gStrApplicationDBPassword =<Encrypted Password>

The path for the output files generated for reporting is as follows:

Output file details
gStrOutputFilePath =
gStrXSDFiles=

For properties related to the integration environment, refer to the Support for Integration Flows
section.

Creating Test Flows 6-15
Oracle Utilities Testing Accelerator User’s Guide

Chapter 7

Development Accelerator Tools

This chapter describes the development accelerator tools available in this Oracle Utilities Testing
Accelerator release:

* Component Export Tool

* TFlow Export Tool

* Component/ Flow Import Tool
* Component Generation Tool

* Password Encryption Tool

Development Accelerator Tools 7-1
Oracle Utilities Testing Accelerator User’s Guide

Component Export Tool

This tool is used to export one or more components to another environment. Note that only
components in “Approved” state can be exported.

To export a component pack:

1.

2
3.
4

6.

Login to the application.
Navigate to the Tools tab.
Click Export Components in the left pane.

Select the Release, Portfolio, Product, Module, Component Name, Tags (example: CM)
and Owner Flag as required.

Click Export.

A prompt appears on the screen to open or save the generated zip file “component.zip”.

Click Save to download the zip file.

The component has been exported as a .zip file.

Flow Export Tool

This feature is used to export one or more flows to another environment. Note that only flows in
“Approved” state can be exported.

To export a flow:

1.

2
3.
4

6.

Login to the application.
Navigate to the Tools tab.
Click Export Flows in the left pane.

Select the Release, Portfolio, Product, Flow Name, Tags (example: CM) and Owner Flag
as required.

Click Export.

A prompt appears on the screen to open or save the generated zip file “flow.zip”.

Click Save to download the zip file.

The flow has been exported as a .zip file.

Component/ Flow Import Tool

This featute is used to import components and/or flows to another environment.

To import a component/flow:

1.

2
3.
4

Login to the application.
Navigate to the Tools tab.
Click Import in the left pane.

Drop the component/flow pack in to Import wizard in the right pane.

When a file is selected/ dropped in the wizatd, the file name appears.

Click Save.

Development Accelerator Tools 7-2
Oracle Utilities Testing Accelerator User’s Guide

If the component/flow already exists in the database, a pop-up is displayed giving a choice to
continue or abort the process.

When you click Cancel, the import component/flow process is not triggered and it goes
back to step 3 (you can still import it again).

When you click OK on the pop-up, the process of importing component/ flows begins with
progress bar.

The component/flow is imported successfully.

Component Generation Tool

This feature is used to generate components from WSDL.

To generate components :

1.

2
3
4.
5
6
7

Login to the application.

Navigate to the Tools tab.

Click Generate Components on the left pane.

Enter the data in the required fields.

Specify the number of rows to add and click Add Rows.

Enter the component name, tags, and description, and provide a WSDL URL.
Click GenerateComp.

The WSDL Method column is an operation in WSDL. The following figure shows the name
of operation in WSDL.

v <usdl:portType name="D2-DetermineEstimatedindHighlowScalarReadingsPortType™s
v <usdL:documentation>
[2-DetermineEstimatedindighlovScalarReadings version 1t Determine Estimated, Hi-lo Scalar Readings
</wsdl:documentation
v<usdl:operation name=

D2-DetermineEstinatedindHishlonsealarheadings -
<wsdliinput mess tns B eqandig zaoingsRequest”/>
<wsdl:output ge="tns:D2-DetermineEstimstedindHighlowscalarReadingsResponse” >
<wsdlifault name="fault" message="tns:Fault"/>
¢/wsdl:operation;
</wsdL:portType>

Upon successful component generation, a list of generated components and failed components is

displayed.

Password Encryption Tool

The Password Encryption Tool is used to encrypt passwords for additional security.

This section provides the following details about the tool:

Overview

Executing the Password Encryption Tool

Development Accelerator Tools 7-3
Oracle Utilities Testing Accelerator User’s Guide

Overview

All the password fields (gStrApplicationUserPassword, gStrApplicationDBPassword) in the
configuration.properties file and security.properties file, if any, must be encrypted.

Use the PasswordEncryptor tool to encrypt the password.

Executing the Password Encryption Tool
To encrypt plain text using the Password Encryption Tool, follow these steps:
1. Double-click the PasswordEncryptor.jar file. when asked for, enter the password.
2. Click OK. A dialog box with the encrypted text is displayed.

3. Copy this text and paste it in the respective password field in the configuration.properties or
security.properties file.

Alternatively, you can perform the following steps in the Console:
1. Navigate to <ECLIPSE-WORKDIR>/tools.
2. Enter the following command:

java -jar PasswordEncryptor.jar

3. When prompted, enter the password.
4. Press Enter.

5. Copy this text and paste it in the respective password field in the configuration.properties or
security.properties file.

Development Accelerator Tools 7-4
Oracle Utilities Testing Accelerator User’s Guide

Chapter 8

Function Library Reference

This chapter lists the Oracle Utilities Testing Accelerator function libraries and functions available
to create components and flows in Oracle Utilities Testing Accelerator Workbench for testing
Oracle Utilities Testing Accelerator.

The following function libraries are described:
« CLOUDLIB

e OUTSPCORELIB

e WSCOMMONLIB

« WSVALIDATELIB

Function Library Reference 8-1

Oracle Utilities Testing Accelerator User’s Guide

CLOUDLIB

This library includes functions to support the Oracle Utilities applications deployed in Oracle

Cloud.
login
Logs into the Oracle Utilities Application Cloud environment (uses configuration.properties for
URL, user name, password, etc).
login
Input Parameters: none
Return Type: void
importBundle
Imports a bundle into the Oracle Utilities Application Cloud environment. Note that the bundle
has to be attached to the script.
importBundle ()
Input Parameters: strFilename - name of bundle file
Return Type: void
createTimeZone

Creates a TimeZone in the Oracle Utilities Application Cloud environment using data provided in
the component.

createTimeZone

Input Parameters:None
Return Type: void

updatelnstallOptionsWithTimeZone
Adds an existing TimeZone to the installation options in the Oracle Utilities Application Cloud
environment using data provided in the component.

updateInstallOptionsWithTimeZone

Input Parameters: None
Return Type: void

OUTSPCORELIB

This library develops the component code and flows for web services and general applications. It
includes functions with date and time processing and string processing capabilities, as well as
database and file operations.

This section provides a list of the functions included in the library, along with their usage details.

runBatchFile
Executes an existing batch file.

Example:

runBatchFile ("C://Test//Test.bat")

Input Parameters: String
Return Type: void

Function Library Reference 8-2
Oracle Utilities Testing Accelerator User’s Guide

killBatchFile

Kills the batch process in execution.
Example:

killBatchFile ("cmd.exe™)

Input Parameters: String
Return Type: void

getCurrentTimelnMilliSeconds
Gets the time in milliseconds.

Example:

getCurrentTimeInMilliSeconds ()

Input Parameters: <none>
Return Type: Sting

rand
Gets the random number for the given range.

Example:

rand (int lo, int hi) ()

Input Parameters: lo, hi
Return Type: int

randomStringWithGivenRange

Gets the random string in lower case for the given range.
Example:

randomStringWithGivenRange (int lo, int hi)

Input Parameters: lo, hi
Return Type: String

Randomstring
Generates the random string based on the parameters passed. ‘lo” and ‘hi’ are the lowest and
highest numbers to be used to generate the random string.

Example:

randomstring (lowerLim, higherLim)

Input Parameters: int lowerLim , int higherLim
Return Type: String

compare2Strings
Compares two strings and returns a boolean result based on the result of comparison.

Note: This function returns “True” if strings provided are same. Else, it
returns Talse’.

Example:

compare2Strings (String A, String B)

Input Parameters: String A, String B
Return Type: String

Function Library Reference 8-3
Oracle Utilities Testing Accelerator User’s Guide

randomNumberUsingDateTime
Gets the random string with date and time in it.

Example:
randomNumberUsingDateTime ()

Input Parameters: <none>
Return Type: String

getCurrentDateTimeWithGivenDateFormat
Gets the current date and time in the specified format.

Example:
getCurrentDateTimeWithGivenDateFormat (String dFormat)

getCurrentDateTimeWithGivenDateFormat ("mm-dd-yyyy:hh.mm.ss")

Input Parameters: dFormat
Return Type: String

getDateDiffinSecsWithGivenDateFormat()
Gets the difference in the date.

Example:

getDateDiffInSecsWithGivenDateFormat (String dateStart, String
dateStop, String dFormat)

getDateDiffInSecsWithGivenDateFormat (“12-13-2014", “12-29-2014",
“mm-dd-yyy”)

Input Parameters: String dateStart, String dateStop, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateTime

Gets the adjusted time with the given date and time.
Example:

getAdjustedTimeWithGivenDateTime (String dateTime, String offset,
String dFormat)

getAdjustedTimeWithGivenDateTime (“12-13-2014", “-02:30”,”mm-dd-
yyvy”)

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithCurrentDateTime

Returns the date and time after adding the specified offset to the current date and time in the
specified date/time format. Date and time ate the inputs to this function.

Example:

getAdjustedTimeWithCurrentDateTime (String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime ("-2.30", "mm-dd-yyyy")

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

Function Library Reference 8-4
Oracle Utilities Testing Accelerator User’s Guide

getAdjustedTimeWithGivenDateAndTime

Returns the date and time after adding the specified offset to specified date and time in the
specified date/time format.

Example:

getAdjustedTimeWithGivenDateAndTime (String cuDate, String
cuTime, String offset, String dFormat)
getAdjustedTimeWithGivenDateAndTime ("12-13-2014","12:15:00", "~
2.30", "mm-dd-yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String dFormat
Return Type: String

addDaysToCurrentDateWithGivenFormat

Adds the number of days to the current date and returns the result in the specified format.

Example:

serverDate

addDaysToCurrentDateWithGivenFormat (String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat ("45", "mm-dd-yyyy")

Input Parameters: String noOfDays, String dFormat
Return Type: String

Gets the server date.

Example:

serverDate ()

Input Parameters: <none>
Return Type: String

executeSQLQry

Executes SQL and returns the record set.

Example:

executeSQLQOry (String Query)
executeSQLQry ("SELECT * FROM EMP")

Input Parameters: String Query
Return Type: Result Set

executeSQLQryWithGivenDBDetails

Executes SQL and returns the record set.

Example:

executeSQLQryWithGivenDBDetails (String Query, String
ConnectionString ,String DBUsername, String DBPassword)
executeSQLQryWithGivenDBDetails ("SELECT * FROM EMP", CONN_ STR,
"system", "system00")

Input Parameters: String Query, String ConnectionString,String
DBUsername, String DBPassword

Return Type: Result Set

Exceptions: Database exception

Function Library Reference 8-5
Oracle Utilities Testing Accelerator User’s Guide

serverTime
Gets the server time.

Example:

serverTime ()

Input Parameters: <none>
Return Type: String

waitForTime
Waits for the specified time.

Example:
wailtForTime (String strWaitTimeInMinutes)

wailtForTime (“15”)

Input Parameters: String strWaitTimeInMinutes
Return Type: void

verifyLastBatchRun

Verifies if the batch is in execution in the last x minutes.
Example:
verifyLastBatchRun (String Batch CD, String strMaXTimeToCheck)

verifyLastBatchRun ("1234567890", "90")

Input Parameters: String Batch CD, String strMaXTimeToCheck
Return Type: String

getCurrentOffsetTime

Gets the current offset time.
Example:

getCurrentOffsetTime (String cuDate, String cuTime, String
offset,String timeFormat)
getCurrentOffsetTime ("12-13-2014", "12:30:00", "+2:30", "mm-dd-

yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String timeFormat
Return Type: String

addDaysToAGivenDate
Adds days to the provided date.

Example:

addDaysToAGivenDate (String date, String noOfDays)
addDaysToAGivenDate ("12-13-2014", "19")

Input Parameters: String date, String noOfDays
Return Type: String

randomNumber
Gets the random number.

Example:

randomNumber ()

Function Library Reference 8-6
Oracle Utilities Testing Accelerator User’s Guide

Input Parameters: <none>
Return Type: String

createFile
Creates file in the specified path.

Example:
createFile (String FilePath)

createFile ("C:\Logs.txt")

Input Parameters: String FilePath
Return Type: void

getWaitConditionState

Waits for the specified time.
Example:
getWaitConditionState (long StartTime, float TimeInMinutes)

getWaitConditionState ("12345L", "12.00")

Input Parameters: long StartTime, float TimeInMinutes
Return Type: boolean

compare2Files
Compares two files.

Example:
compare2Files (String strFileName A, String strFileName B)

compare2Files ("C:\Logs01", "C:\Logs04")

Input Parameters: strFileName A, String strFileName B
Return Type: String

copyFile

Copies files from source to destination.

Example:
copyFile (String srcFilePath, String destFilePath)
copyFile ("C:\temp.txt", "D:\temp.txt")

Input Parameters: strFileName A, String strFileName B
Return Type: void

deleteFile
Deletes a file.

Example:

deleteFile (String filePath)
deleteFile ("C:\temp.txt")

Input Parameters: String filePath
Return Type: void

Function Library Reference 8-7
Oracle Utilities Testing Accelerator User’s Guide

executeSQLQryUpdate
Executes SQL for the update query.

Example:

executeSQLQryUpdate (String Query, String ConnectionString,String
DBUsername, String DBPassword)

executeSQLQryUpdate ("UPDATE EMP SET NAME="Oracle" where
EMPID='123"'" CONN_STR, "system", "system00")

Input Parameters: String Query, String ConnectionString,String
DBRUsername, String DBPassword
Return Type: String

getDistinctObjects

Returns the count of distinct objects in a specific column in a table.
Example:

getDistinctObjects (String tableName, String columnName, String
condition, String ConnectionString ,String DBUsername, String
DBPassword)

getDistinctObjects ("EMP", "EMPID" CONN STR, "system", "system00")

Input Parameters: String tableName, String columnName, String
condition, String ConnectionString,String DBUsername, String
DBPassword

Return Type: String

setVariableValueUsingListindex
Handles the resolving repeating elements in the response XML and retrieves the value(s) based on
the parameters passed. The parameters passed are global variable (gVarl) and index value.

Example:

setVariableValueUsingListIndex (String listVariableName, String
index)
setVariableValueUsingListIndex (“datal,data2,data3”, 2)

Input Parameters: String listVariableName: List values separated by
comma

String index: the index number to retrieve value

Return Type: String: Value

closeConnections
Closes the database connection opened for database verification.

Example:

closeConnection ()

Input Parameters: <none>
Return Type: <none>

executeSQLQryForSingleRecord

Executes the SQL query for a single record.
Example:

executeSQLQrySingleRecord(String Query, String recId)

Input Parameters: Query,recld
Return Type: String

Function Library Reference 8-8
Oracle Utilities Testing Accelerator User’s Guide

appendStrings

Appends strings provided in the parameters.
Example:
appendStrings (String strValuel, String strValue2, String

strValue3, String strValued4, String strValue5, String strValueb

Input Parameters: stringl, string2, string3, string4, stringb,
string6
Return Type: String

getCurrentMonth

Gets the current month.
Example:

getCurrentMonth ()

Input Parameters: none
Return Type: String

WSCOMMONLIB

This library performs common operations in the Oracle Utilities Testing Accelerator web services
testing, such as composing request, sending request, composing email summary, converting it to
HTML format, sending an email, and parsing WSDL.

Note: This library does not have any component development functions other
than the generateAndSendReport function that provides result reporting and
email capabilities to the user. For more details. refer to the Logging and Reporting
section in Chapter 5: Creating Components.

This section provides the functions included in the library, along with their usage details.

generateAndSendReport
Generates the HTML test execution report and sends the execution summary via email. The email
settings can be specified in the configuration.properties file available in the /etc directory of the
execution folder structure.

generateAndSendReport ()

Input Parameters: NA
Return Type: NA

WSVALIDATELIB

Use the WSVALIDATELIB function library to validate the test components (referred to as
verification points) in the components. The library covers validation routines for string and XML
elements in the returned response XML.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in response are not null.

Example:

elementListNotNull (String xPath) elementNotNull (contact/
mobileNumber)

Function Library Reference 8-9
Oracle Utilities Testing Accelerator User’s Guide

Input Parameters: String xPath
Return Type: void

elementListNull
Verifies if all the elements in response with the specified xpath are null.

Example:

elementListNull (String xPath) elementNotNull (contact/mobileNumber)

Input Parameters: String xPath
Return Type: void

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the response.

Example:

validateXpathOccurenceCount (String xpath,String expectedCount)
validateXpathOccurenceCount (contact/mobileNumber, 20)

Input Parameters: String xpath,String expectedCount
Return Type: void

elementNotNull
Verifies if the specified element in response is null.

Example:

elementNotNull (String responseTag)
elementNotNull (mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementisNull
Verifies if the specified element in response is not null.

Example:

elementIsNull (String responseTag)
elementIsNull (mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementValueEquals
Verifies if the specified element value in response is equal to the provided value.

elementValueEquals (String responseTag, String expectedValue)
elementValueEquals (mobileNumber, "1234567890")

Input Parameters: String responseTag, String expectedValue
Return Type: void

elementValueNotEquals
Verifies if the specified element value in response is not equal to the provided value.

Example:

elementValueNotEquals (String responseTag, String expectedValue)
elementValueNotEquals (mobileNumber, "1234567890")

Function Library Reference 8-10
Oracle Utilities Testing Accelerator User’s Guide

Input Parameters: String responseTag, String expectedValue
Return Type: void

elementValueGreaterThan
Verifies if the specified element value in response is greater than the provided value.

Example:
elementValueGreaterThan (String responseTag, String valueToCompare)

elementValueGreaterThan ("count","5")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in response is greater than or equal to the provided value.

Example:

elementValueGreaterThanEqualTo (String responseTag,String
valueToCompare)
elementValueGreaterThanEqualTo ("totalRecords", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThan
Verifies if the specified element value in response is less than the provided value.

elementValuelesserThan (String responseTag,String valueToCompare)

elementValueLesserThan ("counter", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in response is less than or equal to the provided value.

Example:

elementValuelesserThanEqualTo (String responseTag, String
valueToCompare)
elementValuelesserThanEqualTo ("attempts™, "10")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementContains
Verifies if the specified element is available in the response.

Example:
elementContains (String responseTag, String valueToBeChecked)

elementContains ("batchName", "F1-BILLING)

Input Parameters: String responseTag, String valueToCompare
Return Type: void

Function Library Reference 8-11
Oracle Utilities Testing Accelerator User’s Guide

elementNotContains
Verifies if the specified element is not available in the response.
Example:

elementNotContains (String responseTag, String valueToBeChecked)
elementNotContains ("description", "billing")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

reponseNotContains
Verifies if the specified value or element is not available in the response.

Example:

reponseNotContains (String value)
reponseNotContains ("Failed")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

responseContains
Verifies if the specified value or element is available in the response.

responseContains (String value)

responseContains ("Exception")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

Function Library Reference 8-12
Oracle Utilities Testing Accelerator User’s Guide

Appendix A

Web Service Component Keywords

This chapter provides the list of keywords used in a web service based component.
* WS-SETWEBSERVICENAME

* WS-SETXMLELEMENT

e WS-SETXMLLISTELEMENT

* WS-SETVARIABLE

* WS-SETVARIABLEFROMRESPONSE
* WS-SETTRANSACTIONTYPE

* WS-LOGMESSAGE

* WS-CREATEWSREQUEST

* WS-PROCESSWSREQUEST

e WS-STARTPOLLWS

e WS-STOPPOLLWSIF

Web Service Component Keywords A-1
Oracle Utilities Testing Accelerator User’s Guide

WS-SETWEBSERVICENAME

Sets the name of the application web service.

Use Case: Defines the web service to which the component’s web service request is sent. The
web service name is provided in the attribute values column during the component development.
This service name is appended with the WebContainerURL to form a complete WSDL URL for
processing the request. The WebContainerURL has to be specified in the flow runtime
configuration property file.

Usage Details Value

Keyword WS-SETWEBSERVICENAME
Display Name User Defined Display Name
Attribute Values Web Service Name

WS-SETXMLELEMENT

Sets the element (Xpath) value in the web service request using either a variable or a value.

Use Case: Enables the web service creation request (XML) with the element values populated by
setting each value for the defined element.

Usage Details Value

Keyword WS-SETXMLELEMENT
Display Name User Defined Display Name
Attribute Values Xpath of the element

WS-SETXMLLISTELEMENT

Sets the repeating list element (Xpath) value in the web service request using either a variable or a
value.

Use Case: Enables the web service creation request (XML) with repeating list element values
populated by setting each value set for the defined element list. The values are provided from the

test data.
Usage Details Value
Keyword WS-SETXMLLISTELEMENT
Display Name User Defined Display Name
Attribute Values Xpath of the element

Web Service Component Keywords A-2
Oracle Utilities Testing Accelerator User’s Guide

WS-SETVARIABLE

Sets a value to a global variable.

Use Case: Used for setting a value to a global variable used across the flow for validations or for
setting XML elements. The values are provided from the test data.

Usage Details Value

Keyword WS-SETVARIABLE
Display Name User Defined Display Name
Output Parameters Variable Name

WS-SETVARIABLEFROMRESPONSE

Used to retrieve the XML element value from the response and stores it in a global variable for
further processing.

Use Case: Enables use of a response value, such as ID from a component, as an input to a request

in another component.

Usage Details Value

Keyword WS-SETVARIABLEFROMRESPONSE
Display Name User Defined Display Name

Attribute Values Xpath of the element in response
Output Parameters Variable Name

WS-SETTRANSACTIONTYPE

Sets a value for the transaction type.

Use Case: Used to set a value to a transaction type variable used in the request XML to pass a
request for specific operations, such as ADD, UPDATE, READ, DELETE, etc. The transaction

type is provided from the test data.

Usage Details Value
Keyword WS-SETTRANSACTIONTYPE
Display Name User Defined Display Name

WS-LOGMESSAGE

Used to set custom log messages in the execution results report.

Use Case: Provides the necessary extensibility to provide custom log messages for the generated
results report, such as to identify the start and completion of a transaction, etc.

Usage Details Value

Keyword WS-LOGMESSAGE

Web Service Component Keywords A-3
Oracle Utilities Testing Accelerator User’s Guide

Usage Details Value

Display Name User Defined Value

Attribute Values Message

WS-CREATEWSREQUEST

Creates a web service request XML and stores it in the “WSDLXML” global variable.

Use Case: Enables the manipulation of the web service XML request generated before
submitting it to the application for processing, giving greater flexibility in development.

Usage Details Value

Keyword WS-CREATEWSREQUEST
Display Name User Defined Display Name
Attribute Values Web Service Name

WS-PROCESSWSREQUEST

Sends the web services request and receives the response from the application for the specified
WSDL URL.

Use Case: Posts the generated XML request from WS-CREATEWSREQUEST to the
application and processes the response. This keyword performs the core process of the web

services based request-response model.

Usage Details Value

Keyword WS-PROCESSWSREQUEST
Display Name User Defined Display Name
Attribute Values Web Service Name

WS-STARTPOLLWS

Starts the polling of the web services request and receives the response from the application for
the specified WSDL URL. It takes two parameters, the first is for the total time for which polling
should occur and the second is the interval between polls.

Use Case: Provides a means to run a loop to keep polling a web service for a specified time
measure or till a condition is met (specified in WS-STOPPOLLWSIF).

Usage Details Value

Keyword WS-STARTPOLLWS
Display Name User Defined Display Name
Attribute Values User Defined Display Name

Web Service Component Keywords A-4
Oracle Utilities Testing Accelerator User’s Guide

WS-STOPPOLLWSIF

Indicates the end of the polling specified by WS-STARTPOLLWS.

Use Case: The condition to stop the poll can be specified here. The attribute takes the xpath of
the element against which the condition is to be compared. The condition is specified while
entering the test data. If the test data is just a string, say <val>, then polling would stop when
element value is <val>.

For example, if a web service needs to be polled unless the element Batchjobld is “ED”, the
attribute value should be set as the xpath of BatchJobld and the test data should be entered as
((ED)J.

Similarly, if polling needs to continue as long as a certain value is returned, a “I”’ should be prefixed
to the value of test data. If we want to continue polling as long as the Batchjobld is “PD”, test

ata should be “! e symbol ! indicates “not equals”). Similar conditions can be set for
data should be “IPD” (the symbol ! indicates “not equals”). Simil diti be set f
greater than, less than, greater than equal to and less than equal to, by prefixing the test data with
CC>7” CC<(E, C(>:,7 and (C<:77 respecdvel}f_

Usage Details Value

Keyword WS- STOPPOLLWSIF
Display Name User Defined Display Name
Attribute Values Xpath of element

Web Service Component Keywords A-5
Oracle Utilities Testing Accelerator User’s Guide

Appendix B

GUI Component Keywords

This chapter provides the list of keywords used in a GUI based component.

APPROVE

CANCEL

CHECK

CLICK

CLOSE
GET_ATTRIBUTE_VALUE
GET_ATTRIBUTE_ID
LAUNCH

MAXIMIZE
MINIMIZE

POPUP
PRESSTABKEY
SELECT

SETTEXT

SWITCHTO
UNCHECK
UNSELECT
UI-STARTBROWSER
UI-ENDBROWSER
WAIT

GUI Component Keywords B-1

Oracle Utilities Testing Accelerator User’s Guide

APPROVE

Approves the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword APPROVE

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid ALERT - Closes the Alert box, gets its text, and

sets the value to ‘true’.

CANCEL

Cancels the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword CANCEL

Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid ALERT

CHECK

Checks a checkbox object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword CHECK

Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid CHECKBOX

GUI Component Keywords B-2
Oracle Utilities Testing Accelerator User’s Guide

CLICK

CLOSE

Cancel the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value
Keyword CLICK
Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid IMAGE
LINK
TAB
EDIT (edit is for a text box)
BUTTON
ELEMENT

Closes the specified window object. It is used to close a single browser window.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword CLOSE

Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid CLOSE

GET_ATTRIBUTE_VALUE

Retrieves the “value” attribute of the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword GET_ATTRIBUTE_VALUE
Display Name User Defined Display Name
Attribute Values Xpath of the element

Objects Valid No objects required

GUI Component Keywords B-3
Oracle Utilities Testing Accelerator User’s Guide

GET_ATTRIBUTE_ID

Retrieves the “ID” attribute of the specified object.

LAUNCH

MAXIMIZE

MINIMIZE

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the

element” format.

You can replace xpath with ID or name.

Usage Details

Value

Keyword

GET_ATTRIBUTE_ID

Display Name

User Defined Display Name

Attribute Values

Xpath of the element

Objects Valid

No objects required

Launches the specified browser object.

Use Case: The attribute value takes the browser URL.

Usage Details

Value

Keyword

LAUNCH

Display Name

User Defined Display Name

Attribute Values Browser URL

Objects Valid BROWSER
Maximizes the specified window object.

Usage Details Value

Keyword MAXIMIZE

Display Name User Defined Display Name

Attribute Values None

Objects Valid WINDOW
Minimizes the specified window object.

Usage Details Value

Keyword MINIMIZE

Display Name

User Defined Display Name

Attribute Values

None

GUI Component Keywords B-4
Oracle Utilities Testing Accelerator User’s Guide

POPUP

PRESSTABKEY

SELECT

Usage Details Value

Objects Valid WINDOW

Handles the pop-up of the window.

Usage Details Value

Keyword POPUP

Display Name User Defined Display Name
Attribute Values Xpath of the element

Objects Valid STARTPOPUP - To go to the popup

ENDPOPUP - To come out from the popup

Performs a tab key press on the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword PRESSTABKEY

Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid EDIT

Performs a ‘select’ action on the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format. You can replace xpath with ID or name. The test data should be given a value
from the list of values present in the select list.

Usage Details Value
Keyword SELECT
Display Name User Defined Display Name
Attribute Values Xpath of the element
Objects Valid LISTBOX
RADIOBUTTON
LIST

GUI Component Keywords B-5
Oracle Utilities Testing Accelerator User’s Guide

SETTEXT

SWITCHTO

UNCHECK

Closes the specified window object. It can be used to close a single browser window.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the

element” format. You can replace xpath with ID or name. Provide the actual text for that object in

the test data.

Usage Details

Value

Keyword

SETTEXT

Display Name

User Defined Display Name

Attribute Values

Xpath of the element

Objects Valid

EDIT (edit is for a text box)
TEXTAREA

PASSWORD

DATE

Used to switch between different frames.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format. You can replace xpath with ID or name.

Usage Details

Value

Keyword

SWITCHTO

Display Name

User Defined Display Name

Attribute Values

Xpath of the element for STARTFRAME
None for ENDFRAME

Objects Valid

STARTFRAME - Switches to the specified
frame

ENDFRAME - Navigates back to the parent
frame

Uncheck the specified checkbox object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format. You can replace xpath with ID or name.

Usage Details Value
Keyword UNCHECK
Display Name User Defined Display Name

Attribute Values

Xpath of the element

Objects Valid

CHECKBOX

GUI Component Keywords B-6
Oracle Utilities Testing Accelerator User’s Guide

UNSELECT

Unselects the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of the
element” format. You can replace xpath with ID or name. The test data should be given a value

from the list of values in the list selected previously.

Usage Details

Value

Keyword

UNSELECT

Display Name

User Defined Display Name

Attribute Values

Xpath of the element

UI-STARTBROWSER

Objects Valid LISTBOX
Starts the browser.
Usage Details Value

Keyword

UI-STARTBROWSER

Display Name

User Defined Display Name

Attribute Values

None

Objects Valid

No objects required

UI-ENDBROWSER

Closes the browset.

Usage Details

Value

Keyword

UI-ENDBROSER

Display Name

User Defined Display Name

Attribute Values

None

Objects Valid

No objects required

WAIT

Wiaits for the specified object. It is used to communicate to wait for a certain amount of time

before throwing an exception that it cannot find the element on the page.

Use Case: The attribute value takes the xpath of the element in the “xpath; actual xpath of the
element” format. xpath can be replaced with ID or name.

GUI Component Keywords B-7
Oracle Utilities Testing Accelerator User’s Guide

In the test data, provide the wait time(number) for LIST, LISTBOX, TEXTAREA, LINK, and
BUTTON objects. For EDIT, IMAGE, WINDOW, and NORMAL objects, no test data is
required.

Usage Details Value

Keyword WAIT

Display Name User Defined Display Name
Attribute Values Xpath of the element

EDIT, IMAGE, WINDOW, NORMAL - None

Objects Valid LIST
LISTBOX
TEXTAREA
LINK
BUTTON
EDIT
IMAGE
WINDOW
NORMAL - Can be used for any element

GUI Component Keywords B-8
Oracle Utilities Testing Accelerator User’s Guide

Appendix C

Setting Up Inbound Web Services

The Oracle Utilities application-specific components are developed using the web services
method, and these components need the Inbound Web Services to be defined in the application.

This chapter includes the following sections:
. Creating Inbound Web Services
* Importing Inbound Web Services

. Searching Inbound Web Services

Setting Up Inbound Web Services C-1
Oracle Utilities Testing Accelerator User’s Guide

Creating Inbound Web Services

To create an Inbound Web Service, follow these steps:

1.

Y ® Nk Db

Login to the Oracle Utilities application.

Navigate to Admin > Integration > Inbound Web Service > Add.

On the Inbound Web Service page, enter the Inbound Web Service Name.
Enter the Description and the Detailed Description.

Select the appropriate trace,debug.active,post error option from the drop down.
Select the Annotation.

Enter the Operation Name.

Select the Schema Type, Schema Name, and Transaction Type.

Click Save.

Importing Inbound Web Services

To import an Inbound Web Service into the Oracle Ultilities application, follow these steps:

AT S A

Note: Ensure the exported Inbound Web Services are available in the local
machine.

Login to the Oracle Utilities application.

Click Admin > Implementation Tools > Bundle Import > Add.

On the Bundle Import page, enter the reference and detailed description.
Copy paste the bundle details from the Inbound Web Services bundle.

Click Apply bundle. The “Imported Successfully” message appears in the Message text
column.

Searching Inbound Web Services

To search an Inbound Web Service in an Oracle Ultilities application, follow these steps:

1.
2.
3.

Login to the Oracle Utilities application.
Navigate to Admin > Integration > Inbound Web Service > Search.

On the Inbound Web Service Search page, enter the name of the required web service in
the Name field.

Enter the description in the Description field.

Click Refresh.

The web service, if found, is retrieved and displayed.

Setting Up Inbound Web Services C-2
Oracle Utilities Testing Accelerator User’s Guide

Appendix D

Generating Re-runnable Test Data

To run a flow multiple times, some fields might need unique values for each execution. Instead of

changing the value in the databank, we can enable re-runnable test data so that the test data is

generated randomly every time the flow is executed.

This chapter describes the options available on how the random data generated can be configured.

Requirement Test Data Example Test Data Generated String
Structure
A specified number of random lower <int>?data 4rvan vancara
case characters need to be appended 3rappl applxtg
to the given test data. 6°AC ACkdbvdl
2? nd
? ufdbn
A specified number of random upper <int>U?data 4Urvan vanCARA
case characters need to be appended 3urappl appIXTG
to the given test data. 6UrAC ACKDBVDL
207 ND
U? UFDBN
A specified number of random lower — <int>Brdata 4Brvan caravan
case characters need to be prefixed to 3brappl xtgappl
the given test data. 6BrAC kdbvdIAC
2B? nd
B? ufdbn
A specified number of random upper <int>BU?data 4BUrvan CARAvan
case characters need to be prefixed to 3burappl XTGappl
the given test data. 6BurAC KDBVDLAC
2BU? ND
BU? UFDBN

Generating Re-runnable Test Data D-1

Oracle Utilities Testing Accelerator User’s Guide

Generating Re-runnable Test Data D-2
Oracle Utilities Testing Accelerator User’s Guide

Appendix E

Connecting to Multiple Databases

While building the integration flows that involve using components from various product packs,
there might be a need to access databases of individual products as part of verification process.
Users can connect to different databases by specifying the database connection properties
prefixed with the application prefix. This is similar to the application prefix that is used for
connecting to different application URLs.

Following is a sample configuration.properties file. It shows the entries for two environments.

hhkhkhkhkhk kA hkk A hkhkrhkhkrhhkhkhkhkhkrhkhkrhkhkrhkhkhkhkhhkkhxkkhkxkhkxk*x

Test Environment Details - UATI1
R B B I i i i I I b e I I I I b I b I b b b b b I b b b ab b b b g

Application URL pointing to test execution

gStrUAT1 gStrApplicationURL = http://myuatlenvironment:8001/cuaf
gStrUAT1 gStrApplicationXAIServerPath=/webservices/

gStrUAT1 gStrEnvironmentName=UAT1

Application Database Details

gStrUAT1 gStrApplicationDBConnectionString
=jdbc\:oracle\:thin\:@myuatserverl1\:1521\:UATSID1
gStrUAT1 gStrApplicationDBUsername=mydbuserl

gStrUAT1 gStrApplicationDBPassword==<Entrypted Password>

KA KK AR A AR A AR AR AR A I A A AR AR AR A A A AR A AR A A A A Ak kK

Test Environment Details - UAT2
hAhkhh kA hhhkhk kA hkhh kA rhhkhkhkhkhkhk kA rhhkhkhkrhhkkhk Ak rhhkhkhkhhkk*x*x

Application URL pointing to test execution

gStrUAT2 gStrApplicationURL = http:// myuatlenvironment2:8001/ouaf
gStrUAT2 gStrApplicationXAIServerPath=/webservices/

gStrUAT2 gStrEnvironmentName=UAT2

Application Database Details

gStrUAT2 gStrApplicationDBConnectionString =jdbc\:oracle\:thin\:@
myuatserver2\:1521\: UATSID2

gStrUAT2 gStrApplicationDBUsername= mydbuser?2

gStrUAT2 gStrApplicationDBPassword= <Entrypted Password>

##Handling Https WSDL - Java key Store
gStrJavaKeyStorePath=
gStrJavaKeyStorePwd=<Entrypted Password>

#Email Details
gStrSMTP HOST NAME==<SMTP server address>
gStrSMTP_ PORT=25

Connecting to Multiple Databases E-1
Oracle Utilities Testing Accelerator User’s Guide

gStrTO_EMAIL RECIPIENTS=

Application user name

gStrApplicationUserName=<Your OUAF Application Username>
Application user password
gStrApplicationUserPassword=<Encrypted Password>

Output file details
gStrOutputFilePath=/<UTA-CLIENT-WORK-DIR>//Logs/
gStrXSDFiles=/<UTA-CLIENT-WORK-DIR>//XSD/

Connecting to Multiple Databases E-2
Oracle Utilities Testing Accelerator User’s Guide

Appendix F

Configuring Authentication for Web Service
Requests

Based on the version of the Oracle Ultilities application (and the Oracle Utilities Application
Framework), the web service requests are expected to include additional information apart from
the user credentials. In order to support this, two new properties have been introduced in the
configuration.properties file using which users can specify the authentication used by the
environment.

For the latest versions of Oracle Ultilities applications, a timestamp is expected in the web service
requests. For these environments, specify the header type as TIMESTAMP, the other property
gStrTimeToLive specifies the validity of the request in seconds.

#Header Type
gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrTimeToLive=120

In cases where the configuration.properties contains details of more than one environment, prefix
the header property with the application string.

#Header Type

gStrUAT gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval

gStrUAT gStrTimeToLive=120

For the older versions of Oracle Ultilities applications, only the user credentials are expected. So
specify the header as USERTOKEN.

#Header Type
gStrApplicationHeaderType=USERTOKEN

In cases where there is a mix of environments that use the new header type and old header type in
the same configuration.properties file, specify the properties for individual environments as
follows.

#Header Type

gStrUAT gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval

gStrUAT gStrTimeToLive=120

#Header Type
gStrINT gStrApplicationHeaderType=USERTOKEN

Configuring Authentication for Web Service Requests F-1
Oracle Utilities Testing Accelerator User’s Guide

Note: The user credentials are sent as digest by default. To send them as plain
text, set the property mentioned needs to ‘true’.

gStrSendPasswordAsText = true

Configuring Authentication for Web Service Requests F-2
Oracle Utilities Testing Accelerator User’s Guide

	User’s Guide
	Contents
	Preface
	Audience
	Prerequisite Knowledge
	Abbreviations
	Supported Oracle Utilities Applications
	Related Documents
	Conventions

	Chapter 1
	Overview
	Introduction
	Terminology
	Application Architecture
	Application Features

	Chapter 2
	Oracle Utilities Testing Accelerator Features
	Administration
	Components
	Dashboard
	Notifications

	Flows
	Tools

	Chapter 3
	Developing Metadata Driven Web Service Based Test Automation
	Metadata Driven Automation Development Methodology
	Planning
	Design and Development
	Test Execution

	Setting Up Automation Development Environment
	Setting Up the Oracle Utilities Testing Accelerator Server
	Setting Up Workstations for Development/ Testing
	Setting Up Application Under Test

	Chapter 4
	Oracle Utilities Testing Accelerator Administration
	Overview
	Administration Tab
	Managing Releases
	Managing Portfolios
	Managing Products
	Managing Modules
	Managing Users
	User Access Types

	Chapter 5
	Creating Components
	Component Structure
	Component Lifecycle
	Locking/Unlocking Components

	Component Types
	Web Service Based Components
	GUI Based Components

	Creating Web Service Based Components
	Creating a Component
	Creating a Component Definition
	Defining Default Data at Component Level
	Setting Up Operation Name for a Web Service
	Using Runtime Variables in Components
	Using Function Libraries
	Resolving the Repeating Elements in Response XML
	Adding Validations
	Logging and Reporting
	Handling the List Elements

	Creating GUI Based Components
	Creating a Component Definition for GUI Components

	Creating REST Web Service Components
	Entering Test Data

	Copying Components

	Chapter 6
	Creating Test Flows
	Creating Flows
	Creating Flows By Dragging-and-Dropping Components
	Creating Flows Using Behavior Driven Development Scenario

	Creating Scenarios
	Using Global Variables
	Invoking OpenScript scripts
	Flow Lifecycle
	Locking/Unlocking Flows
	Copying Flows
	Reordering Components in a Flow
	Copying Test Data from One Component to Another in a Flow
	Test Data Management

	Adding the Email Capabilities to Flows
	Support for HTTPS Web Services
	Support for Integration Flows
	Executing Test Flows
	Generating Oracle Utilities Testing Accelerator Scripts
	Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse IDE

	Executing Flows from Command Line
	Encrypting Passwords
	Generating Keystore for Encryption from Windows Explorer
	Generating Keystore for Encryption from Command Prompt
	Using Password Encryptor Tool From Windows Explorer
	Using PasswordEncryptor Tool From Console/Command Line
	Configuring the Runtime Properties

	Chapter 7
	Development Accelerator Tools
	Component Export Tool
	Flow Export Tool
	Component/ Flow Import Tool
	Component Generation Tool
	Password Encryption Tool
	Overview
	Executing the Password Encryption Tool

	Chapter 8
	Function Library Reference
	CLOUDLIB
	OUTSPCORELIB
	WSCOMMONLIB
	WSVALIDATELIB

	Appendix A
	Web Service Component Keywords
	WS-SETWEBSERVICENAME
	WS-SETXMLELEMENT
	WS-SETXMLLISTELEMENT
	WS-SETVARIABLE
	WS-SETVARIABLEFROMRESPONSE
	WS-SETTRANSACTIONTYPE
	WS-LOGMESSAGE
	WS-CREATEWSREQUEST
	WS-PROCESSWSREQUEST
	WS-STARTPOLLWS
	WS-STOPPOLLWSIF

	Appendix B
	GUI Component Keywords
	APPROVE
	CANCEL
	CHECK
	CLICK
	CLOSE
	GET_ATTRIBUTE_VALUE
	GET_ATTRIBUTE_ID
	LAUNCH
	MAXIMIZE
	MINIMIZE
	POPUP
	PRESSTABKEY
	SELECT
	SETTEXT
	SWITCHTO
	UNCHECK
	UNSELECT
	UI-STARTBROWSER
	UI-ENDBROWSER
	WAIT

	Appendix C
	Setting Up Inbound Web Services
	Creating Inbound Web Services
	Importing Inbound Web Services
	Searching Inbound Web Services

	Appendix D
	Generating Re-runnable Test Data
	Appendix E
	Connecting to Multiple Databases
	Appendix F
	Configuring Authentication for Web Service Requests

