
Oracle® Database
JSON Developer's Guide

19c
E96227-17
April 2022

Oracle Database JSON Developer's Guide, 19c

E96227-17

Copyright © 2015, 2022, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Oracle JSON development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Conventions xvi

Code Examples xvi

 Changes in This Release for Oracle Database JSON Developer's Guide

Changes in Oracle Database Release 19c, Version 19.1, for JSON Developer’s Guide xviii

Changes in Oracle Database Release 18c, Version 18.1, for JSON Developer’s Guide xxi

Part I Introduction to JSON Data and Oracle Database

1 JSON in Oracle Database

1.1 Overview of JSON in Oracle Database 1-2

1.2 Getting Started Using JSON with Oracle Database 1-4

1.3 Oracle Database Support for JSON 1-6

2 JSON Data

2.1 Overview of JSON 2-1

2.2 JSON Syntax and the Data It Represents 2-2

2.3 JSON Compared with XML 2-4

Part II Store and Manage JSON Data

3 Overview of Storing and Managing JSON Data

iii

4 Creating a Table With a JSON Column

4.1 Determining Whether a Column Necessarily Contains JSON Data 4-3

5 SQL/JSON Conditions IS JSON and IS NOT JSON

5.1 Unique Versus Duplicate Fields in JSON Objects 5-2

5.2 About Strict and Lax JSON Syntax 5-2

5.3 Specifying Strict or Lax JSON Syntax 5-5

6 Character Sets and Character Encoding for JSON Data

7 Considerations When Using LOB Storage for JSON Data

8 Partitioning JSON Data

9 Replication of JSON Data

Part III Insert, Update, and Load JSON Data

10

Overview of Inserting, Updating, and Loading JSON Data

11

Oracle SQL Function JSON_TRANSFORM

12

Updating a JSON Document with JSON Merge Patch

13

Loading External JSON Data

Part IV Query JSON Data

iv

14

Simple Dot-Notation Access to JSON Data

15

SQL/JSON Path Expressions

15.1 Overview of SQL/JSON Path Expressions 15-1

15.2 SQL/JSON Path Expression Syntax 15-2

15.2.1 Basic SQL/JSON Path Expression Syntax 15-2

15.2.2 SQL/JSON Path Expression Syntax Relaxation 15-9

15.3 SQL/JSON Path Expression Item Methods 15-10

15.4 ISO 8601 Date and Time Support 15-14

15.5 Types in Comparisons 15-15

16

Clauses Used in SQL Query Functions and Conditions

16.1 RETURNING Clause for SQL Query Functions 16-1

16.2 Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE 16-4

16.3 Error Clause for SQL Query Functions and Conditions 16-5

16.4 Empty-Field Clause for SQL/JSON Query Functions 16-8

16.5 ON MISMATCH Clause for JSON_VALUE 16-9

17

SQL/JSON Condition JSON_EXISTS

17.1 Using Filters with JSON_EXISTS 17-2

17.2 JSON_EXISTS as JSON_TABLE 17-4

18

SQL/JSON Function JSON_VALUE

18.1 Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value 18-3

18.2 SQL/JSON Function JSON_VALUE Applied to a null JSON Value 18-4

18.3 Using JSON_VALUE To Instantiate a User-Defined Object Type Instance 18-4

18.4 JSON_VALUE as JSON_TABLE 18-7

19

SQL/JSON Function JSON_QUERY

19.1 JSON_QUERY as JSON_TABLE 19-2

20

SQL/JSON Function JSON_TABLE

20.1 SQL NESTED Clause Instead of JSON_TABLE 20-4

20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE 20-5

v

20.3 JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions 20-8

20.4 Using JSON_TABLE with JSON Arrays 20-9

20.5 Creating a View Over JSON Data Using JSON_TABLE 20-12

21

Oracle SQL Function JSON_SERIALIZE

22

JSON Data Guide

22.1 Overview of JSON Data Guide 22-2

22.2 Persistent Data-Guide Information: Part of a JSON Search Index 22-4

22.3 Data-Guide Formats and Ways of Creating a Data Guide 22-7

22.4 JSON Data-Guide Fields 22-9

22.5 Data-Dictionary Views For Persistent Data-Guide Information 22-13

22.6 Specifying a Preferred Name for a Field Column 22-14

22.7 Creating a View Over JSON Data Based on Data-Guide Information 22-15

22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data Guide 22-17

22.7.2 Creating a View Over JSON Data Based on a Path Expression 22-19

22.8 Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide
Information 22-23

22.8.1 Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide 22-25

22.8.2 Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled
Search Index 22-28

22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-Guide Information 22-31

22.9 Change Triggers For Data Guide-Enabled Search Index 22-31

22.9.1 User-Defined Data-Guide Change Triggers 22-33

22.10 Multiple Data Guides Per Document Set 22-35

22.11 Querying a Data Guide 22-39

22.12 A Flat Data Guide For Purchase-Order Documents 22-41

22.13 A Hierarchical Data Guide For Purchase-Order Documents 22-47

Part V Generation of JSON Data

23

Generation of JSON Data with SQL/JSON Functions

23.1 Overview of SQL/JSON Generation Functions 23-1

23.2 Handling of Input Values For SQL/JSON Generation Functions 23-3

23.3 SQL/JSON Function JSON_OBJECT 23-6

23.4 SQL/JSON Function JSON_ARRAY 23-11

23.5 SQL/JSON Function JSON_OBJECTAGG 23-12

vi

23.6 SQL/JSON Function JSON_ARRAYAGG 23-13

Part VI PL/SQL Object Types for JSON

24

Overview of PL/SQL Object Types for JSON

25

Using PL/SQL Object Types for JSON

Part VII GeoJSON Geographic Data

26

Using GeoJSON Geographic Data

Part VIII Performance Tuning for JSON

27

Overview of Performance Tuning for JSON

28

Indexes for JSON Data

28.1 Overview of Indexing JSON Data 28-2

28.2 How To Tell Whether a Function-Based Index for JSON Data Is Picked Up 28-3

28.3 Creating Bitmap Indexes for SQL/JSON Condition JSON_EXISTS 28-3

28.4 Creating JSON_VALUE Function-Based Indexes 28-3

28.5 Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries 28-5

28.6 Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries 28-6

28.7 Data Type Considerations for JSON_VALUE Indexing and Querying 28-8

28.8 Indexing Multiple JSON Fields Using a Composite B-Tree Index 28-9

28.9 JSON Search Index: Ad Hoc Queries and Full-Text Search 28-10

29

In-Memory JSON Data

29.1 Overview of In-Memory JSON Data 29-1

29.2 Populating JSON Data Into the In-Memory Column Store 29-3

vii

29.3 Upgrading Tables With JSON Data For Use With the In-Memory Column Store 29-5

30

JSON Query Rewrite To Use a Materialized View Over JSON_TABLE

A Oracle Database JSON Restrictions

B Diagrams for Basic SQL/JSON Path Expression Syntax

Index

viii

List of Examples

2-1 A JSON Object (Representation of a JavaScript Object Literal) 2-3

4-1 Using IS JSON in a Check Constraint to Ensure JSON Data is Well-Formed 4-1

4-2 Inserting JSON Data Into a VARCHAR2 JSON Column 4-2

5-1 Using IS JSON in a Check Constraint to Ensure JSON Data is Strictly Well-Formed (Standard) 5-5

7-1 JDBC Client: Using the LOB Locator Interface To Retrieve JSON BLOB Data 7-3

7-2 JDBC Client: Using the LOB Locator Interface To Retrieve JSON CLOB Data 7-4

7-3 ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON BLOB Data 7-4

7-4 ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON CLOB Data 7-5

7-5 JDBC Client: Using the LOB Data Interface To Retrieve JSON BLOB Data 7-6

7-6 JDBC Client: Using the LOB Data Interface To Retrieve JSON CLOB Data 7-7

7-7 JDBC Client: Reading Full BLOB Content Directly with getBytes 7-7

7-8 JDBC Client:Reading Full CLOB Content Directly with getString 7-8

7-9 ODP.NET Client: Reading Full BLOB Content Directly with getBytes 7-8

7-10 ODP.NET Client: Reading Full CLOB Content Directly with getString 7-9

8-1 Creating a Partitioned Table Using a JSON Virtual Column 8-1

11-1 Updating a JSON Column Using JSON_TRANSFORM 11-4

11-2 Modifying JSON Data On the Fly With JSON_TRANSFORM 11-4

11-3 Adding a Field Using JSON_TRANSFORM 11-4

11-4 Removing a Field Using JSON_TRANSFORM 11-5

11-5 Creating or Replacing a Field Value Using JSON_TRANSFORM 11-5

11-6 Replacing an Existing Field Value Using JSON_TRANSFORM 11-5

11-7 Using FORMAT JSON To Set a JSON Boolean Value 11-5

11-8 Setting an Array Element Using JSON_TRANSFORM 11-6

11-9 Prepending an Array Element Using JSON_TRANSFORM 11-6

11-10 Appending an Array Element Using JSON_TRANSFORM 11-6

12-1 A JSON Merge Patch Document 12-3

12-2 A Merge-Patched JSON Document 12-3

12-3 Updating a JSON Column Using JSON Merge Patch 12-3

12-4 Updating Selected JSON Documents On the Fly 12-4

13-1 Creating a Database Directory Object for Purchase Orders 13-2

13-2 Creating an External Table and Filling It From a JSON Dump File 13-2

13-3 Creating a Table With a BLOB JSON Column 13-2

13-4 Copying JSON Data From an External Table To a Database Table 13-2

14-1 JSON Dot-Notation Query Compared With JSON_VALUE 14-3

14-2 JSON Dot-Notation Query Compared With JSON_QUERY 14-3

ix

17-1 JSON_EXISTS: Path Expression Without Filter 17-2

17-2 JSON_EXISTS: Current Item and Scope in Path Expression Filters 17-3

17-3 JSON_EXISTS: Filter Conditions Depend On the Current Item 17-3

17-4 JSON_EXISTS: Filter Downscoping 17-3

17-5 JSON_EXISTS: Path Expression Using Path-Expression exists Condition 17-4

17-6 JSON_EXISTS Expressed Using JSON_TABLE 17-4

18-1 JSON_VALUE: Returning a JSON Boolean Value to PL/SQL as BOOLEAN 18-3

18-2 JSON_VALUE: Returning a JSON Boolean Value to SQL as VARCHAR2 18-3

18-3 Instantiate a User-Defined Object Instance From JSON Data with JSON_VALUE 18-5

18-4 Instantiate a Collection Type Instance From JSON Data with JSON_VALUE 18-6

18-5 JSON_VALUE Expressed Using JSON_TABLE 18-7

19-1 Selecting JSON Values Using JSON_QUERY 19-2

19-2 JSON_QUERY Expressed Using JSON_TABLE 19-3

20-1 Equivalent JSON_TABLE Queries: Simple and Full Syntax 20-2

20-2 Equivalent: SQL NESTED and JSON_TABLE with LEFT OUTER JOIN 20-4

20-3 Accessing JSON Data Multiple Times to Extract Data 20-9

20-4 Using JSON_TABLE to Extract Data Without Multiple Parses 20-9

20-5 Projecting an Entire JSON Array as JSON Data 20-10

20-6 Projecting Elements of a JSON Array 20-10

20-7 Projecting Elements of a JSON Array Plus Other Data 20-10

20-8 JSON_TABLE: Projecting Array Elements Using NESTED 20-11

20-9 Creating a View Over JSON Data 20-13

20-10 Creating a Materialized View Over JSON Data 20-13

21-1 Using JSON_SERIALIZE To Convert BLOB Data To Pretty-Printed Text 21-1

22-1 Enabling Persistent Support for a JSON Data Guide But Not For Search 22-6

22-2 Disabling JSON Data-Guide Support For an Existing JSON Search Index 22-7

22-3 Gathering Statistics on JSON Data Using a JSON Search Index 22-7

22-4 Specifying Preferred Column Names For Some JSON Fields 22-15

22-5 Creating a View Using a Hierarchical Data Guide Obtained With

GET_INDEX_DATAGUIDE 22-17

22-6 Creating a View Using a Hierarchical Data Guide Obtained With JSON_DATAGUIDE 22-18

22-7 Creating a View That Projects All Scalar Fields 22-20

22-8 Creating a View That Projects Scalar Fields Targeted By a Path Expression 22-21

22-9 Creating a View That Projects Scalar Fields Having a Given Frequency 22-22

22-10 Adding Virtual Columns That Project JSON Fields Using a Data Guide Obtained With

GET_INDEX_DATAGUIDE 22-26

22-11 Adding Virtual Columns, Hidden and Visible 22-27

x

22-12 Projecting All Scalar Fields Not Under an Array as Virtual Columns 22-28

22-13 Projecting Scalar Fields With a Minimum Frequency as Virtual Columns 22-29

22-14 Projecting Scalar Fields With a Minimum Frequency as Hidden Virtual Columns 22-30

22-15 Dropping Virtual Columns Projected From JSON Fields 22-31

22-16 Adding Virtual Columns Automatically With Change Trigger ADD_VC 22-32

22-17 Tracing Data-Guide Updates With a User-Defined Change Trigger 22-33

22-18 Adding a 2015 Purchase-Order Document 22-36

22-19 Adding a 2016 Purchase-Order Document 22-36

22-20 Creating Multiple Data Guides With Aggregate Function JSON_DATAGUIDE 22-37

22-21 Querying a Data Guide Obtained Using JSON_DATAGUIDE 22-39

22-22 Querying a Data Guide With Index Data For Paths With Frequency at Least 80% 22-40

22-23 Flat Data Guide For Purchase Orders 22-41

22-24 Hierarchical Data Guide For Purchase Orders 22-47

23-1 Declaring an Input Value To Be JSON 23-5

23-2 Using Name–Value Pairs with JSON_OBJECT 23-7

23-3 Using Column Names with JSON_OBJECT 23-8

23-4 Using a Wildcard (*) with JSON_OBJECT 23-8

23-5 Using JSON_OBJECT With ABSENT ON NULL 23-9

23-6 Using a User-Defined Object-Type Instance with JSON_OBJECT 23-10

23-7 Using JSON_ARRAY to Construct a JSON Array 23-11

23-8 Using JSON_OBJECTAGG to Construct a JSON Object 23-12

23-9 Using JSON_ARRAYAGG to Construct a JSON Array 23-14

23-10 Generating JSON Objects with Nested Arrays Using a SQL Subquery 23-15

25-1 Constructing and Serializing an In-Memory JSON Object 25-1

25-2 Using Method GET_KEYS() to Obtain a List of Object Fields 25-2

25-3 Using Method PUT() to Update Parts of JSON Documents 25-2

26-1 A Table With GeoJSON Data 26-2

26-2 Selecting a geometry Object From a GeoJSON Feature As an SDO_GEOMETRY Instance 26-3

26-3 Retrieving Multiple geometry Objects From a GeoJSON Feature As SDO_GEOMETRY 26-4

26-4 Creating a Spatial Index For Scalar GeoJSON Data 26-5

26-5 Using GeoJSON Geometry With Spatial Operators 26-5

26-6 Creating a Materialized View Over GeoJSON Data 26-6

26-7 Creating a Spatial Index on a Materialized View Over GeoJSON Data 26-6

28-1 Creating a Bitmap Index for JSON_EXISTS 28-3

28-2 Creating a Bitmap Index for JSON_VALUE 28-3

28-3 Creating a Function-Based Index for a JSON Field: Dot Notation 28-4

28-4 Creating a Function-Based Index for a JSON Field: JSON_VALUE 28-4

xi

28-5 Specifying NULL ON EMPTY for a JSON_VALUE Function-Based Index 28-4

28-6 Use of a JSON_VALUE Function-Based Index with a JSON_TABLE Query 28-5

28-7 JSON_EXISTS Query Targeting Field Compared to Literal Number 28-6

28-8 JSON_EXISTS Query Targeting Field Compared to Variable Value 28-7

28-9 JSON_EXISTS Query Targeting Field Cast to Number Compared to Variable Value 28-7

28-10 JSON_EXISTS Query Targeting a Conjunction of Field Comparisons 28-7

28-11 JSON_VALUE Query with Explicit RETURNING NUMBER 28-8

28-12 JSON_VALUE Query with Explicit Numerical Conversion 28-8

28-13 JSON_VALUE Query with Implicit Numerical Conversion 28-9

28-14 Creating Virtual Columns For JSON Object Fields 28-9

28-15 Creating a Composite B-tree Index For JSON Object Fields 28-9

28-16 Two Ways to Query JSON Data Indexed With a Composite Index 28-9

28-17 Creating a JSON Search Index That Is Synchronized On Commit 28-11

28-18 Creating a JSON Search Index That Is Synchronized Each Second 28-11

28-19 Execution Plan Indication that a JSON Search Index Is Used 28-11

28-20 Full-Text Query of JSON Data 28-12

28-21 Some Ad Hoc JSON Queries 28-12

29-1 Populating JSON Data Into the IM Column Store 29-4

30-1 Creating a Materialized View of JSON Data To Support Query Rewrite 30-1

30-2 Creating an Index Over a Materialized View of JSON Data 30-2

xii

List of Figures

B-1 json_basic_path_expression B-1

B-2 json_absolute_path_expression B-1

B-3 json_nonfunction_steps B-1

B-4 json_object_step B-1

B-5 json_field_name B-1

B-6 json_array_step B-2

B-7 json_function_step B-2

B-8 json_item_method B-3

B-9 json_filter_expr B-3

B-10 json_cond B-4

B-11 json_conjunction B-4

B-12 json_comparison B-4

B-13 json_relative_path-expr B-4

B-14 json_compare_pred B-5

B-15 json_var B-5

B-16 json_scalar B-5

xiii

List of Tables

5-1 JSON Object Field Syntax Examples 5-4

15-1 Compatibility of Type-Conversion Item Methods and RETURNING Types 15-12

16-1 JSON_QUERY Wrapper Clause Examples 16-5

18-1 Compatible Scalar Data Types: Converting JSON to SQL 18-4

22-1 SQL and PL/SQL Functions to Obtain a Data Guide 22-8

22-2 JSON Schema Fields (Keywords) 22-9

22-3 Oracle-Specific Data-Guide Fields 22-10

22-4 Preferred Names for Some JSON Field Columns 22-14

22-5 Parameters of a User-Defined Data-Guide Change Trigger Procedure 22-33

26-1 GeoJSON Geometry Objects Other Than Geometry Collections 26-1

xiv

Preface

This manual describes the use of JSON data that is stored in Oracle Database. It covers how
to store, generate, view, manipulate, manage, search, and query it.

• Audience
Oracle Database JSON Developer's Guide is intended for developers building JSON
Oracle Database applications.

• Documentation Accessibility

• Related Documents
Oracle and other resources related to this developer’s guide are presented.

• Conventions
The conventions used in this document are described.

• Code Examples
The code examples in this book are for illustration only. In many cases, however, you can
copy and paste parts of examples and run them in your environment.

Audience
Oracle Database JSON Developer's Guide is intended for developers building JSON Oracle
Database applications.

An understanding of JSON is helpful when using this manual. Many examples provided here
are in SQL or PL/SQL. A working knowledge of one of these languages is presumed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
Oracle and other resources related to this developer’s guide are presented.

• Oracle Database Error Messages Reference. Oracle Database error message
documentation is available only as HTML. If you have access to only printed or PDF
Oracle Database documentation, you can browse the error messages by range. Once

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

you find the specific range, use the search (find) function of your Web browser to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle
Database online documentation.

• Oracle as a Document Store for information about Simple Oracle Document
Access (SODA)

• Oracle Database API for MongoDB

• Oracle Database Concepts

• Oracle Database In-Memory Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Text Reference

• Oracle Text Application Developer's Guide

• Oracle Database Development Guide

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

For additional information, see:

• ISO/IEC 13249-2:2000, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, International Organization
For Standardization, 2000

Conventions
The conventions used in this document are described.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples
The code examples in this book are for illustration only. In many cases, however, you
can copy and paste parts of examples and run them in your environment.

• Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is
sometimes shown pretty-printed (formatted) in code examples.

Preface

xvi

https://docs.oracle.com/en/database/oracle/mongodb-api/

• Execution Plans
Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is likely
to result in different execution plans from those presented here.

• Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

Execution Plans
Some of the code examples in this book present execution plans. These are for illustration
only. Running examples that are presented here in your environment is likely to result in
different execution plans from those presented here.

Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

When examining the examples in this book, keep in mind the following:

• SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you
enclose them in double quotation marks (").

• JSON is case-sensitive. You must refer to SQL names in JSON code using the correct
case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double quotation
marks, then you must refer to it in JSON code as "MY_TABLE".

Preface

xvii

Changes in This Release for Oracle
Database JSON Developer's Guide

Changes in Oracle Database for this book are described.

Oracle Database JSON Developer's Guide was a new book in Oracle Database 12c
Release 2 (12.2.0.1). Information about using JSON data in Oracle Database 12c
Release 1 (12.1.0.2) is available in Oracle XML DB Developer’s Guide.

• Changes in Oracle Database Release 19c, Version 19.1, for JSON Developer’s
Guide
The changes in JSON support and in Oracle Database JSON Developer’s Guide
for Oracle Database Release 19c, Version 19.1, are described.

• Changes in Oracle Database Release 18c, Version 18.1, for JSON Developer’s
Guide
The changes in JSON support and in Oracle Database JSON Developer’s Guide
for Oracle Database Release 18c, Version 18.1, are described.

Changes in Oracle Database Release 19c, Version 19.1, for
JSON Developer’s Guide

The changes in JSON support and in Oracle Database JSON Developer’s Guide for
Oracle Database Release 19c, Version 19.1, are described.

• New Features
The following features are new in this release.

New Features
The following features are new in this release.

• JSON Materialized View Support
Performance enhancement: If you create a refresh-on-statement materialized view
over json_table and some other conditions apply then a query that matches the
query defining the view can be rewritten to a materialized-view table access. You
can use this feature instead of creating multiple functional indexes.

• SQL Function JSON_MERGEPATCH: Declarative Update of JSON Documents
You can now update a JSON document declaratively, using new SQL function
json_mergepatch. You can apply one or more changes to multiple documents
using a single statement. This feature improves the flexibility of JSON update
operations.

Changes in This Release for Oracle Database JSON Developer's Guide

xviii

http://www.oracle.com/pls/topic/lookup?ctx=E50529-01&id=ADXDB-GUID-A8A58B49-13A5-4F42-8EA0-508951DAE0BB

• New SQL/JSON Function JSON_SERIALIZE and JSON Data Guide Support for
GeoJSON Data
You can use new SQL function json_serialize to serialize JSON data to text or to
UTF-encoded BLOB data. SQL aggregate function json_dataguide can now detect
GeoJSON geographic data in your documents. You can use it to create a view that
projects such data as SQL data type SDO_GEOMETRY.

• Syntax Simplifications
Syntax simplifications are offered for SQL/JSON path expressions and SQL/JSON
generation with function json_object. A new SQL query clause, NESTED, provides a
simple alternative to using json_table with LEFT OUTER JOIN.

• Mapping of JSON Data To and From SQL Object Types
This feature enables the mapping of JSON data to and from user-defined SQL object
types and collections. You can convert JSON data to an instance of a SQL object type
using SQL/JSON function json_value. In the opposite direction, you can generate JSON
data from an instance of a SQL object type using SQL/JSON function json_object or
json_array.

JSON Materialized View Support
Performance enhancement: If you create a refresh-on-statement materialized view
over json_table and some other conditions apply then a query that matches the query
defining the view can be rewritten to a materialized-view table access. You can use this
feature instead of creating multiple functional indexes.

SQL Function JSON_MERGEPATCH: Declarative Update of JSON Documents
You can now update a JSON document declaratively, using new SQL function
json_mergepatch. You can apply one or more changes to multiple documents using a single
statement. This feature improves the flexibility of JSON update operations.

Related Topics

• Updating a JSON Document with JSON Merge Patch
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

New SQL/JSON Function JSON_SERIALIZE and JSON Data Guide Support for
GeoJSON Data

You can use new SQL function json_serialize to serialize JSON data to text or to UTF-
encoded BLOB data. SQL aggregate function json_dataguide can now detect GeoJSON
geographic data in your documents. You can use it to create a view that projects such data as
SQL data type SDO_GEOMETRY.

Related Topics

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type, VARCHAR2,
CLOB, or BLOB) as input and returns a textual representation of it (as VARCHAR2, CLOB, or
BLOB data). VARCHAR2(4000) is the default return type.

Changes in This Release for Oracle Database JSON Developer's Guide

xix

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON
Schema fields (keywords) and Oracle-specific fields.

Syntax Simplifications
Syntax simplifications are offered for SQL/JSON path expressions and SQL/JSON
generation with function json_object. A new SQL query clause, NESTED, provides a
simple alternative to using json_table with LEFT OUTER JOIN.

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg,
and json_arrayagg to construct JSON data from non-JSON data in the database.
The JSON data is returned as a SQL value.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of
evaluating its argument SQL expressions.

• SQL NESTED Clause Instead of JSON_TABLE
In a SELECT clause you can often use a NESTED clause instead of SQL/JSON
function json_table. This can mean a simpler query expression. It also has the
advantage of including rows with non-NULL relational columns when the JSON
column is NULL.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions
are presented for the basic SQL/JSON path expression syntax.

Mapping of JSON Data To and From SQL Object Types
This feature enables the mapping of JSON data to and from user-defined SQL object
types and collections. You can convert JSON data to an instance of a SQL object type
using SQL/JSON function json_value. In the opposite direction, you can generate
JSON data from an instance of a SQL object type using SQL/JSON function
json_object or json_array.

Related Topics

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

Changes in This Release for Oracle Database JSON Developer's Guide

xx

• ON MISMATCH Clause for JSON_VALUE
When the RETURNING clause specifies a user-defined object-type or collection-type
instance, function json_value accepts an optional ON MISMATCH clause, which specifies
handling to use when a targeted JSON value does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described here.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating
its argument SQL expressions.

Changes in Oracle Database Release 18c, Version 18.1, for
JSON Developer’s Guide

The changes in JSON support and in Oracle Database JSON Developer’s Guide for Oracle
Database Release 18c, Version 18.1, are described.

• New Features
The following features are new in this release.

• Deprecated Features
The following features are deprecated in this release, and may be desupported in a future
release.

New Features
The following features are new in this release.

• SQL Enhancements
Multiple SQL enhancements are provided for storing and querying JSON data in the
database.

• Sharding Support
Sharding support for JSON data has been enhanced.

• Performance Improvements for LOB Storage
Performance has been improved for JSON data that uses LOB storage. This particularly
affects the common use case of reading and writing an entire JSON document stored as
a LOB.

• JSON Search Index Support for Longer Field Names
The maximum JSON field name length supported for a JSON search index is now 255
bytes (formerly it was 64 bytes).

SQL Enhancements
Multiple SQL enhancements are provided for storing and querying JSON data in the
database.

You Can Specify That a SQL Expression Returns JSON Data

You can apply SQL function treat, with keywords AS JSON, to a SQL expression to specify
that the expression returns JSON data. This is useful in situations where Oracle cannot

Changes in This Release for Oracle Database JSON Developer's Guide

xxi

determine that the result is JSON data. It is also useful in situations where you want to
force some text to be interpreted as JSON data. For example, you can use it to tell
Oracle to interpret a VARCHAR2 value of {} not as a string but as an empty JSON
object.

See Also:

Oracle Database SQL Language Reference

LOB Results for JSON_VALUE, JSON_QUERY, and JSON_TABLE

SQL/JSON function json_value can now return a CLOB instance.

SQL/JSON function json_query can now return a CLOB or BLOB instance. A BLOB result
is in the AL32UTF8 character set.

As before, the data type of a json_table column depends on whether the column is
specified as FORMAT JSON. If it is, the json_query return types are supported; if it is not,
the json_value return types are supported.

Previously:

• json_value supported only VARCHAR2, NUMBER, DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and SDO_GEOMETRY
as return types.

• json_query supported only VARCHAR2 as return type.

See Also:

Oracle Database SQL Language Reference

SQL/JSON Generation Function Enhancements

• Optional keyword STRICT has been added. When present, any inputs that are
declared or otherwise expected to be JSON data are checked to ensure that they
are, in fact, well-formed JSON data. If any of them is not then an error is raised.

(You can declare input to be JSON by using keywords FORMAT JSON or by using
SQL function treat with keywords AS JSON. Input is expected to be JSON data if it
is from a table column that has an is json constraint or it is the output of another
JSON generation function.)

• The SQL/JSON generation functions (json_object, json_array, json_objectagg,
and json_arrayagg) can now return a CLOB or BLOB instance. A BLOB result is in the
AL32UTF8 character set.

• The input expression to a generation function can now be of any of these SQL
data types (in addition to NUMBER, VARCHAR2, DATE and TIMESTAMP):

– BINARY_DOUBLE
– BINARY_FLOAT

Changes in This Release for Oracle Database JSON Developer's Guide

xxii

– CLOB
– BLOB
– NVARCHAR2
– RAW
– TIMESTAMP WITH TIME ZONE
– TIMESTAMP WITH LOCAL TIME ZONE
– INTERVAL YEAR TO MONTH
– INTERVAL DAY TO SECOND
How the result of generation is rendered in JSON depends on the data type of the input.

See Also:

– Handling of Input Values For SQL/JSON Generation Functions

– Oracle Database SQL Language Reference

Item Methods for SQL/JSON Path Expressions

• New item methods have been added: numberOnly(), stringOnly(), boolean(),
booleanOnly(), size(), and type().

The data-type conversion methods with “only” in their name are the same as the
corresponding methods with names without “only”, except that the former convert only
JSON values that are of the given type (e.g., number) to the related SQL data type (e.g.
NUMBER). The methods without “only” in the name allow conversion, when possible, of any
JSON value to the given SQL data type.

• All item methods can now be used in path expressions for SQL/JSON functions
json_value, json_query, and json_table (columns). In Oracle Database 12c Release 2
(12.2.0.1), item methods could only be used in path expressions for SQL/JSON condition
json_exists.

• Item method string() can now return CLOB or BLOB (in addition to VARCHAR2). The default
is VARCHAR2(4000).

See Also:

SQL/JSON Path Expression Item Methods

JSON Data Guide Enhancements

• Oracle SQL aggregate function json_dataguide now accepts optional formatting
arguments:

– You can return a hierarchical dataguide, by specifying keyword FORMAT with argument
DBMS_JSON.FORMAT_HIERARCHICAL.

Changes in This Release for Oracle Database JSON Developer's Guide

xxiii

– You can specify pretty-printing (indentation to improve readability) of the
returned dataguide, by specifying keyword PRETTY with argument
DBMS_JSON.PRETTY .

• New data-dictionary views are available, to show you the dataguide information
recorded for individual JSON object fields in a dataguide-enabled search index:
USER_JSON_DATAGUIDE_FIELDS, ALL_JSON_DATAGUIDE_FIELDS,
DBA_JSON_DATAGUIDE_FIELDS. (These are in addition to views
USER_JSON_DATAGUIDES, ALL_JSON_DATAGUIDES, and DBA_JSON_DATAGUIDES, which
list the tables that have JSON columns with a dataguide-enabled search index.)

• For JSON documents that contain an array of scalar values, a dataguide now
records the scalar types as well as the type ARRAY. The recorded path for the
scalar values is indicated in a flat data guide by appending [*] to the path
recorded for the array itself.

See Also:

Oracle Database SQL Language Reference

Data-Dictionary Views That Record the Presence of JSON Columns

Data-dictionary views USER_JSON_COLUMNS, ALL_JSON_COLUMNS, and DBA_JSON_COLUMNS
now list the views, as well as the tables, that have columns with JSON data.

See Also:

Oracle Database Reference for information about ALL_JSON_COLUMNS and the
related data-dictionary views

SQL/JSON Function JSON_TABLE Syntax

The syntax of json_table has been enhanced by making it simpler for some common
use cases:

• You can now use simple dot-notation syntax in place of a path expression.

• If a column is the projection of a JSON object field, and if you want the column to
have the same name as the field, then you need not provide a path expression to
that object — the path is inferred from the column name.

See Also:

Oracle Database SQL Language Reference

Changes in This Release for Oracle Database JSON Developer's Guide

xxiv

ON STATEMENT Support For JSON_TABLE Materialized Views

You can now use keywords ON STATEMENT when creating a materialized view using a
json_table query. Using ON STATEMENT instead of ON COMMIT means that the view is
automatically synchronized for each DML statement against the base table.

New SQL Function TO_UTC_TIMESTAMP_TZ

SQL function to_UTC_timestamp_tz takes as input an ISO 8601 date format string and
returns an instance of SQL data type TIMESTAMP WITH TIMEZONE. It normalizes the input to
UTC time (Coordinated Universal Time, formerly Greenwich Mean Time). Unlike SQL function
to_timestamp_tz, the new function assumes that the input string uses the ISO 8601 date
format, defaulting the time zone to UTC 0.

A typical use of this function would be to provide its output to SQL function sys_extract_UTC,
obtaining a UTC time that is then passed as a SQL bind variable to SQL/JSON condition
json_exists, to perform a time-stamp range comparison.

See Also:

ISO 8601 for information about the ISO date formats

New Oracle SQL Condition JSON_EQUAL

Oracle SQL condition json_equal compares two JSON values and returns true if they are
equal, false otherwise. For this comparison, insignificant whitespace and insignificant object
member order are ignored. For example, JSON objects are equal if they have the same
members, regardless of their order. However, if either of two compared objects has one or
more duplicate fields then the value returned by json_equal is unspecified.

Related Topics

• Determining Whether a Column Necessarily Contains JSON Data
How can you tell whether a given column of a table or view is well-formed JSON data?
Whenever this is the case, the column is listed in the following static data dictionary
views: DBA_JSON_COLUMNS, USER_JSON_COLUMNS, and ALL_JSON_COLUMNS.

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of a
context-item symbol ($) followed by zero or more object, array, and descendant steps,
each of which can be followed by a filter expression, followed optionally by a function
step. Examples are provided.

• Data-Dictionary Views For Persistent Data-Guide Information
You can query static data-dictionary views to see which tables have JSON columns with
data guide-enabled JSON search indexes and to extract JSON object field information
that is recorded in dataguide-enabled JSON search indexes.

Sharding Support
Sharding support for JSON data has been enhanced.

The following are now supported:

Changes in This Release for Oracle Database JSON Developer's Guide

xxv

• JSON search index on sharded tables, whether user-managed or system-
managed.

• Cross-shard (and in-shard) queries for JSON data returned as CLOB or BLOB from
SQL and PL/SQL. This includes projection of JSON data to CLOB and BLOB
columns using SQL/JSON function json_table.

• Evaluation on individual shards of cross-shard queries that use SQL/JSON
functions and conditions. This includes the use of the following:

– Function json_value and aggregate function json_dataguide in a SELECT
clause

– Function json_table in a FROM clause

– Function json_value, and conditions json_exists and json_textcontains, in
a WHERE clause.

• Automatic relocation of base-table and index storage-table partitions during chunk
migration.

See Also:

Using Oracle Sharding

Performance Improvements for LOB Storage
Performance has been improved for JSON data that uses LOB storage. This
particularly affects the common use case of reading and writing an entire JSON
document stored as a LOB.

JSON Search Index Support for Longer Field Names
The maximum JSON field name length supported for a JSON search index is now 255
bytes (formerly it was 64 bytes).

Note:

You must rebuild any JSON search indexes and Oracle Text indexes
created prior to Oracle Database 18c if they index JSON data that contains
object fields with names longer than 64 bytes. See Oracle Database
Upgrade Guide for more information.

Related Topics

• Oracle Database JSON Restrictions
The restrictions associated with Oracle support of JSON data in Oracle Database
are listed here.

Changes in This Release for Oracle Database JSON Developer's Guide

xxvi

Deprecated Features
The following features are deprecated in this release, and may be desupported in a future
release.

• SQL/JSON functions returning a Boolean JSON value as a number (zero or one). Return
the value as VARCHAR2 or (in PL/SQL only) as BOOLEAN; do not return it as NUMBER. If you
really need a SQL numeric value then you can use SQL DECODE or CASE WHEN to obtain
zero or one from a VARCHAR2 value.

Changes in This Release for Oracle Database JSON Developer's Guide

xxvii

Part I
Introduction to JSON Data and Oracle
Database

Get started understanding JSON data and how you can use SQL and PL/SQL with JSON
data stored in Oracle Database.

Schemaless development based on persisting application data in the form of JSON
documents lets you quickly react to changing application requirements. You can change and
redeploy your application without needing to change the storage schemas it uses.

SQL and relational databases provide flexible support for complex data analysis and
reporting, as well as rock-solid data protection and access control. This is typically not the
case for NoSQL databases, which have often been associated with schemaless development
with JSON in the past.

Oracle Database provides all of the benefits of SQL and relational databases to JSON data,
which you store and manipulate in the same ways and with the same confidence as any other
type of database data.

• JSON in Oracle Database
Oracle Database supports JavaScript Object Notation (JSON) data natively with
relational database features, including transactions, indexing, declarative querying, and
views.

• JSON Data
JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format) and ECMA-262 (ECMAScript Language Specification, third edition).
The JavaScript dialect of ECMAScript is a general programming language used widely in
web browsers and web servers.

1
JSON in Oracle Database

Oracle Database supports JavaScript Object Notation (JSON) data natively with relational
database features, including transactions, indexing, declarative querying, and views.

This documentation covers the use of database languages and features to work with JSON
data that is stored in Oracle Database. In particular, it covers how to use SQL and PL/SQL
with JSON data.

Note:

Oracle also provides a family of Simple Oracle Document Access (SODA) APIs
for access to JSON data stored in the database. SODA is designed for schemaless
application development without knowledge of relational database features or
languages such as SQL and PL/SQL. It lets you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know how the documents are stored in the database.

There are several implementations of SODA:

• SODA for REST — Representational state transfer (REST) requests perform
collection and document operations, using any language capable of making
HTTP calls.

• SODA for Java — Java classes and interfaces represent databases,
collections, and documents.

• SODA for PL/SQL — PL/SQL object types represent collections and
documents.

• SODA for C — Oracle Call Interface (OCI) handles represent collections and
documents.

For information about SODA see Oracle as a Document Store.

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data
can be stored in the database, indexed, and queried without any need for a schema that
defines the data.

• Getting Started Using JSON with Oracle Database
In general, you will perform the following tasks when working with JSON data in Oracle
Database: (1) create a JSON column with an is json check constraint, (2) insert JSON
data into the column, and (3) query the JSON data.

• Oracle Database Support for JSON
Oracle Database support for JavaScript Object Notation (JSON) is designed to provide
the best fit between the worlds of relational storage and querying JSON data, allowing

1-1

http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

relational and JSON queries to work well together. Oracle SQL/JSON support is
closely aligned with the JSON support in the SQL Standard.

1.1 Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON
data can be stored in the database, indexed, and queried without any need for a
schema that defines the data.

(The JSON data is schemaless, even though a database schema is used to define the
table and column in which it is stored. Nothing in that schema specifies the structure of
the JSON data itself.)

JSON data has often been stored in NoSQL databases such as Oracle NoSQL
Database and Oracle Berkeley DB. These allow for storage and retrieval of data that is
not based on any schema, but they do not offer the rigorous consistency models of
relational databases.

To compensate for this shortcoming, a relational database is sometimes used in
parallel with a NoSQL database. Applications using JSON data stored in the NoSQL
database must then ensure data integrity themselves.

Native support for JSON by Oracle Database obviates such workarounds. It provides
all of the benefits of relational database features for use with JSON, including
transactions, indexing, declarative querying, and views.

Database queries with Structured Query Language (SQL) are declarative. With Oracle
Database you can use SQL to join JSON data with relational data. And you can project
JSON data relationally, making it available for relational processes and tools. You can
also query, from within the database, JSON data that is stored outside Oracle
Database in an external table.

You can access JSON data stored in the database the same way you access other
database data, including using Oracle Call Interface (OCI), and Java Database
Connectivity (JDBC).

The JSON-language standard defines JSON data in a textual way: it is composed of
Unicode characters in a standard syntax. In Oracle Database, you can store JSON
data textually using the common SQL data types VARCHAR2, CLOB, and BLOB, as
unparsed character data.

Oracle recommends that you always use an is json check constraint to ensure that
column values are valid JSON instances. See Example 4-1.

JSON Columns in Database Tables

Oracle Database places no restrictions on the tables that can be used to store JSON
documents. A column containing JSON documents can coexist with any other kind of
database data. A table can also have multiple columns that contain JSON documents.

When using Oracle Database as a JSON document store, your tables that contain
JSON columns typically also have a few non-JSON housekeeping columns. These
typically track metadata about the JSON documents.

If you are using JSON to add flexibility to a primarily relational application then some of
your tables likely also have a column for JSON documents, which you use to manage
the application data that does not map directly to your relational model.

Chapter 1
Overview of JSON in Oracle Database

1-2

By definition, textual JSON data is encoded using a Unicode encoding, either UTF-8 or
UTF-16. You can use textual data that is stored in a non-Unicode character set as if it were
JSON data, but in that case Oracle Database automatically converts the character set to
UTF-8 when processing the data.

Use SQL With JSON Data

In SQL, you can access JSON data stored in Oracle Database using either specialized
functions and conditions or a simple dot notation. Most of the SQL functions and conditions
belong to the SQL/JSON standard, but a few are Oracle-specific.

• SQL/JSON query functions json_value, json_query, and json_table.

These evaluate SQL/JSON path expressions against JSON data to produce SQL values.

• Oracle SQL condition json_textcontains and SQL/JSON conditions json_exists, is
json, and is not json.

Condition json_exists checks for the existence of given JSON data; json_textcontains
provides full-text querying of JSON data; and is json and is not json check whether
given JSON data is well-formed.

json_exists and json_textcontains check the data that matches a SQL/JSON path
expression.

• A simple dot notation that acts similar to a combination of query functions json_value
and json_query.

This resembles a SQL object access expression, that is, attribute dot notation for an
abstract data type (ADT). This is the easiest way to query JSON data in the database.

• SQL/JSON generation functions json_object, json_array, json_objectagg, and
json_arrayagg.

These gather SQL data to produce JSON object and array data (as a SQL value).

• Oracle SQL condition json_equal, which tests whether two JSON values are the same.

• Oracle SQL aggregate function json_dataguide.

This produces JSON data that is a data guide, which you can use to discover information
about the structure and content of other JSON data in the database.

As a simple illustration of querying, here is a dot-notation query of the documents stored in
JSON column po_document of table j_purchaseorder (aliased here as po). It obtains all
purchase-order requestors (JSON field Requestor).

SELECT po.po_document.Requestor FROM j_purchaseorder po;

Use PL/SQL With JSON Data

You can manipulate JSON data within PL/SQL code using SQL code or PL/SQL object types
for JSON. (You cannot use an empty JSON field name in any SQL code that you use in PL/
SQL.)

The following SQL functions and conditions are also available as built-in PL/SQL functions:
json_value, json_query, json_object, json_array, json_exists, is json, is not json,
and json_equal.

Unlike the case for Oracle SQL, which has no BOOLEAN data type, in PL/SQL:

Chapter 1
Overview of JSON in Oracle Database

1-3

• json_exists, is json, is not json, and json_equal are Boolean functions.

• json_value can return a BOOLEAN value.

There are also PL/SQL object types for JSON, which you can use for fine-grained
construction and manipulation of In-Memory JSON data. You can introspect it, modify
it, and serialize it back to textual JSON data.

Related Topics

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases. Queries of
JSON data that use dot-notation syntax return JSON values whenever possible.

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content
of JSON documents stored in Oracle Database.

• Oracle Database Support for JSON
Oracle Database support for JavaScript Object Notation (JSON) is designed to
provide the best fit between the worlds of relational storage and querying JSON
data, allowing relational and JSON queries to work well together. Oracle SQL/
JSON support is closely aligned with the JSON support in the SQL Standard.

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is
simpler to use than XML data. This is an important part of the JSON Data
Interchange Format (RFC 4627). For JSON data processed by Oracle Database,
any needed character-set conversions are performed automatically.

• PL/SQL Object Types for JSON
You can use PL/SQL object types for JSON to read and write multiple fields of a
JSON document. This can increase performance, in particular by avoiding multiple
parses and serializations of the data.

• Overview of Storing and Managing JSON Data
This overview describes: (1) data types for JSON columns, (2) LOB storage
considerations for JSON data, and (3) ensuring that JSON columns contain well-
formed JSON data.

1.2 Getting Started Using JSON with Oracle Database
In general, you will perform the following tasks when working with JSON data in Oracle
Database: (1) create a JSON column with an is json check constraint, (2) insert
JSON data into the column, and (3) query the JSON data.

1. Create a table with a primary-key column and a JSON column, and add an is
json check constraint to ensure that the JSON column contains only well-formed
JSON data.

The following statement creates table j_purchaseorder with primary key id and
with JSON column po_document (see also Example 4-1).

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,

Chapter 1
Getting Started Using JSON with Oracle Database

1-4

 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document VARCHAR2 (32767)
 CONSTRAINT ensure_json CHECK (po_document IS JSON));

2. Insert JSON data into the JSON column, using any of the methods available for Oracle
Database.

The following statement uses a SQL INSERT statement to insert some simple JSON data
into the third column of table j_purchaseorder (which is column po_document — see
previous). Some of the JSON data is elided here (...). See Example 4-2 for these
details.

INSERT INTO j_purchaseorder
 VALUES (SYS_GUID(),
 to_date('30-DEC-2014'),
 '{"PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "ShippingInstructions" : {...},
 "Special Instructions" : null,
 "AllowPartialShipment" : true,
 "LineItems" : [...]}');

3. Query the JSON data. The return value is always a VARCHAR2 instance that represents a
JSON value. Here are some simple examples.

The following query extracts, from each document in JSON column po_document, a
scalar value, the JSON number that is the value of field PONumber for the objects in JSON
column po_document (see also Example 14-1):

SELECT po.po_document.PONumber FROM j_purchaseorder po;

The following query extracts, from each document, an array of JSON phone objects,
which is the value of field Phone of the object that is the value of field
ShippingInstructions (see also Example 14-2):

SELECT po.po_document.ShippingInstructions.Phone FROM j_purchaseorder po;

The following query extracts, from each document, multiple values as an array: the value
of field type for each object in array Phone. The returned array is not part of the stored
data but is constructed automatically by the query. (The order of the array elements is
unspecified.)

SELECT po.po_document.ShippingInstructions.Phone.type FROM
j_purchaseorder po;

Related Topics

• Creating a Table With a JSON Column
You can create a table that has JSON columns. You use SQL condition is json as a
check constraint to ensure that data inserted into a column is (well-formed) JSON data.

Chapter 1
Getting Started Using JSON with Oracle Database

1-5

Oracle recommends that you always use an is_json check constraint when you
create a column intended for JSON data.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases. Queries of
JSON data that use dot-notation syntax return JSON values whenever possible.

1.3 Oracle Database Support for JSON
Oracle Database support for JavaScript Object Notation (JSON) is designed to provide
the best fit between the worlds of relational storage and querying JSON data, allowing
relational and JSON queries to work well together. Oracle SQL/JSON support is
closely aligned with the JSON support in the SQL Standard.

See Also:

• ISO/IEC 9075-2:2016, Information technology—Database languages—
SQL—Part 2: Foundation (SQL/Foundation)

• ISO/IEC TR 19075–6

• Oracle Database SQL Language Reference

• JSON.org

• ECMA International

Chapter 1
Oracle Database Support for JSON

1-6

2
JSON Data

JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format) and ECMA-262 (ECMAScript Language Specification, third edition). The
JavaScript dialect of ECMAScript is a general programming language used widely in web
browsers and web servers.

• Overview of JSON
JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format) and ECMA-262 (ECMAScript Language Specification, third edition).
The JavaScript dialect of ECMAScript is a general programming language used widely in
web browsers and web servers.

• JSON Syntax and the Data It Represents
JSON (and JavaScript) values, scalars, objects, and arrays are described.

• JSON Compared with XML
Both JSON and XML (Extensible Markup Language) are commonly used as data-
interchange languages. Their main differences are listed here.

2.1 Overview of JSON
JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format) and ECMA-262 (ECMAScript Language Specification, third edition). The
JavaScript dialect of ECMAScript is a general programming language used widely in web
browsers and web servers.

JSON is almost a subset of the object literal notation of JavaScript.1 Because it can be used
to represent JavaScript object literals, JSON commonly serves as a data-interchange
language. In this it has much in common with XML.

Because it is (almost a subset of) JavaScript notation, JSON can often be used in JavaScript
programs without any need for parsing or serializing. It is a text-based way of representing
JavaScript object literals, arrays, and scalar data.

Although it was defined in the context of JavaScript, JSON is in fact a language-independent
data format. A variety of programming languages can parse and generate JSON data.

JSON is relatively easy for humans to read and write, and easy for software to parse and
generate. It is often used for serializing structured data and exchanging it over a network,
typically between a server and web applications.

1 JSON differs from JavaScript notation in this respect: JSON allows unescaped Unicode characters U+2028 (LINE
SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in strings. JavaScript notation requires control characters such
as these to be escaped in strings. This difference can be important when generating JSONP (JSON with padding) data.

2-1

See Also:

• ECMA 404 and IETF RFC4627 for the definition of the JSON Data
Interchange Format

• ECMA 262 for the ECMAScript Language Specification

• JSON.org for information about JSON

2.2 JSON Syntax and the Data It Represents
JSON (and JavaScript) values, scalars, objects, and arrays are described.

A JSON value is one of the following: object, array, number, string, Boolean (true or
false), or null. All values except objects and arrays are scalar.

Note:

A JSON value of null is a value as far as SQL is concerned. It is not NULL,
which in SQL represents the absence of a value (missing, unknown, or
inapplicable data). In particular, SQL condition IS NULL returns false for a
JSON null value, and SQL condition IS NOT NULL returns true.

A JavaScript object is an associative array, or dictionary, of zero or more pairs of
property names and associated JSON values.2 A JSON object is a JavaScript
object literal.3 It is written as such a property list enclosed in braces ({, }), with
name–value pairs separated by commas (,), and with the name and value of each pair
separated by a colon (:). (Whitespace before or after the comma or colon is optional
and insignificant.)

In JSON each property name and each string value must be enclosed in double
quotation marks ("). In JavaScript notation, a property name used in an object literal
can be, but need not be, enclosed in double quotation marks. It can also be enclosed
in single quotation marks (').

As a result of this difference, in practice, data that is represented using unquoted or
single-quoted property names is sometimes referred to loosely as being represented in
JSON, and some implementations of JSON, including the Oracle Database
implementation, support the lax syntax that allows the use of unquoted and single-
quoted property names.

A string in JSON is composed of Unicode characters, with backslash (\) escaping. A
JSON number (numeral) is represented in decimal notation, possibly signed and
possibly including a decimal exponent.

An object property is typically called a field. It is sometimes called a key, but this
documentation generally uses “field” to avoid confusion with other uses here of the

2 JavaScript objects are thus similar to hash tables in C and C++, HashMaps in Java, associative arrays in PHP,
dictionaries in Python, and hashes in Perl and Ruby.

3 An object is created in JavaScript using either constructor Object or object literal syntax: {...}.

Chapter 2
JSON Syntax and the Data It Represents

2-2

word “key”. An object property name–value pair is often called an object member (but
sometimes member can mean just the property). Order is not significant among object
members.

Note:

• A JSON field name can be empty (written "").4

• Each field name in a given JSON object is not necessarily unique; the same
field name can be repeated. The SQL/JSON path evaluation that Oracle
Database employs always uses only one of the object members that have a
given field name; any other members with the same name are ignored. It is
unspecified which of multiple such members is used.

See also Unique Versus Duplicate Fields in JSON Objects.

A JavaScript array has zero or more elements. A JSON array is represented by brackets
([,]) surrounding the representations of the array elements (also called items), which are
separated by commas (,), and each of which is an object, an array, or a scalar value. Array
element order is significant. (Whitespace before or after a bracket or comma is optional and
insignificant.)

Example 2-1 A JSON Object (Representation of a JavaScript Object Literal)

This example shows a JSON object that represents a purchase order, with top-level field
names PONumber, Reference, Requestor, User, Costcenter, ShippingInstruction, Special
Instructions, AllowPartialShipment and LineItems.

{ "PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "ShippingInstructions" : { "name" : "Alexis Bull",
 "Address": { "street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America" },
 "Phone" : [{ "type" : "Office", "number" : "909-555-7307" },
 { "type" : "Mobile", "number" :
"415-555-1234" }] },
 "Special Instructions" : null,
 "AllowPartialShipment" : false,
 "LineItems" : [{ "ItemNumber" : 1,
 "Part" : { "Description" : "One Magic Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 13131092899 },
 "Quantity" : 9.0 },
 { "ItemNumber" : 2,

4 In a few contexts an empty field name cannot be used with Oracle Database. Wherever it can be used, the name must
be wrapped with double quotation marks.

Chapter 2
JSON Syntax and the Data It Represents

2-3

 "Part" : { "Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 85391628927 },
 "Quantity" : 5.0 }] }

• Most of the fields here have string values. For example: field User has value
"ABULL".

• Fields PONumber and zipCode have numeric values: 1600 and 99236.

• Field ShippingInstructions has an object as its value. This object has three
members, with fields name, Address, and Phone. Field name has a string value
("Alexis Bull").

• The value of field Address is an object with fields street, city, state, zipCode,
and country. Field zipCode has a numeric value; the others have string values.

• Field Phone has an array as value. This array has two elements, each of which is
an object. Each of these objects has two members: fields type and number with
their values.

• Field Special Instructions has a null value.

• Field AllowPartialShipment has the Boolean value false.

• Field LineItems has an array as value. This array has two elements, each of
which is an object. Each of these objects has three members, with fields
ItemNumber, Part, and Quantity.

• Fields ItemNumber and Quantity have numeric values. Field Part has an object as
value, with fields Description, UnitPrice, and UPCCode. Field Description has a
string value. Fields UnitPrice and UPCCode have numeric values.

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

See Also:

Example 4-2

2.3 JSON Compared with XML
Both JSON and XML (Extensible Markup Language) are commonly used as data-
interchange languages. Their main differences are listed here.

JSON is most useful with simple, structured data. XML is useful for both structured
and semi-structured data. JSON is generally data-centric, not document-centric; XML
can be either. JSON is not a markup language; it is designed only for data
representation. XML is both a document markup language and a data representation
language.

Chapter 2
JSON Compared with XML

2-4

• JSON data types are few and predefined. XML data can be either typeless or based on
an XML schema or a document type definition (DTD).

• JSON has simple structure-defining and document-combining constructs: it lacks
attributes, namespaces, inheritance, and substitution.

• The order of the members of a JavaScript object literal is insignificant. In general, order
matters within an XML document.

• JSON lacks an equivalent of XML text nodes (XPath node test text()). In particular, this
means that there is no mixed content (which is another way of saying that JSON is not a
markup language).

• JSON has no date data type (unlike both XML and JavaScript). A date is represented in
JSON using the available data types, such as string. There are some de facto standards
for converting between dates and JSON strings. But programs using JSON must, one
way or another, deal with date representation conversion.

Because of its simple definition and features, JSON data is generally easier to generate,
parse, and process than XML data. Use cases that involve combining different data sources
generally lend themselves well to the use of XML, because it offers namespaces and other
constructs facilitating modularity and inheritance.

Chapter 2
JSON Compared with XML

2-5

Part II
Store and Manage JSON Data

This part covers creating JSON columns in a database table, partitioning such tables,
replicating them using Oracle GoldenGate, and character-set encoding of JSON data. It
covers the use of SQL/JSON condition is json as a check constraint to ensure that the data
in a column is well-formed JSON data.

• Overview of Storing and Managing JSON Data
This overview describes: (1) data types for JSON columns, (2) LOB storage
considerations for JSON data, and (3) ensuring that JSON columns contain well-formed
JSON data.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. You use SQL condition is json as a
check constraint to ensure that data inserted into a column is (well-formed) JSON data.
Oracle recommends that you always use an is_json check constraint when you create a
column intended for JSON data.

• SQL/JSON Conditions IS JSON and IS NOT JSON
SQL/JSON conditions is json and is not json are complementary. They test whether
their argument is syntactically correct, that is, well-formed, JSON data. You can use them
in a CASE expression or the WHERE clause of a SELECT statement. You can use is json in
a check constraint.

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is simpler
to use than XML data. This is an important part of the JSON Data Interchange Format
(RFC 4627). For JSON data processed by Oracle Database, any needed character-set
conversions are performed automatically.

• Considerations When Using LOB Storage for JSON Data
LOB storage considerations for JSON data are described, including considerations when
you use a client to retrieve JSON data as a LOB instance.

• Partitioning JSON Data
You can partition a table using a JSON virtual column as the partitioning key. The virtual
column is extracted from a JSON column using SQL/JSON function json_value.

• Replication of JSON Data
You can use Oracle GoldenGate to replicate tables that have columns containing JSON
data.

3
Overview of Storing and Managing JSON
Data

This overview describes: (1) data types for JSON columns, (2) LOB storage considerations
for JSON data, and (3) ensuring that JSON columns contain well-formed JSON data.

Data Types for JSON Columns

You can store JSON data in Oracle Database using columns whose data types are VARCHAR2,
CLOB, or BLOB. Whichever type you use, you can manipulate JSON data as you would
manipulate any other data of those types. Storing JSON data using standard data types
allows all features of Oracle Database, such as advanced replication, to work with tables
containing JSON documents. The choice of which to use is typically motivated by the size of
the JSON documents you need to manage:

• Use VARCHAR2(4000) if you are sure that your largest JSON documents do not exceed
4000 bytes (or characters)1.

If you use Oracle Exadata then choosing VARCHAR2(4000) can improve performance by
allowing the execution of some JSON operations to be pushed down to Exadata storage
cells, for improved performance.

• Use VARCHAR2(32767) if you know that some of your JSON documents are larger than
4000 bytes (or characters) and you are sure than none of the documents exceeds 32767
bytes (or characters)1.

With VARCHAR2(32767), the first roughly 3.5K bytes (or characters) of a document is
stored in line, as part of the table row. This means that the added cost of using
VARCHAR2(32767) instead of VARCHAR2(4000) applies only to those documents that are
larger than about 3.5K. If most of your documents are smaller than this then you will likely
notice little performance difference from using VARCHAR2(4000).

If you use Oracle Exadata then push-down is enabled for any documents that are stored
in line.

• Use BLOB (binary large object) or CLOB (character large object) textual JSON storage if
you know that you have some JSON documents that are larger than 32767 bytes (or
characters)1.

• Use BLOB storage with optimized binary format OSON if you want the fastest query and
update performance. To do this, use a check constraint with condition is json FORMAT
OSON.

For Release 19c, BLOB with format OSON is supported only for Oracle Autonomous
Databases.

Ensure That JSON Columns Contain Well-Formed JSON Data

You can use SQL/JSON condition is json to check whether or not some JSON data is well
formed. Oracle strongly recommends that you apply an is json check constraint to any

1 Whether the limit is expressed in bytes or characters is determined by session parameter NLS_LENGTH_SEMANTICS.

3-1

JSON column, unless you expect some rows to contain something other than well-
formed JSON data.

The overhead of parsing JSON is such that evaluating the condition should not have a
significant impact on insert and update performance, and omitting the constraint
means you cannot use the simple dot-notation syntax to query the JSON data.

What constitutes well-formed JSON data is a gray area. In practice, it is common for
JSON data to have some characteristics that do not strictly follow the standard
definition. You can control which syntax you require a given column of JSON data to
conform to: the standard definition (strict syntax) or a JavaScript-like syntax found in
common practice (lax syntax). The default SQL/JSON syntax for Oracle Database is
lax. Which kind of syntax is used is controlled by condition is json. Applying an is
json check constraint to a JSON column thus enables the use of lax JSON syntax, by
default.

Related Topics

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is
simpler to use than XML data. This is an important part of the JSON Data
Interchange Format (RFC 4627). For JSON data processed by Oracle Database,
any needed character-set conversions are performed automatically.

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database.
You can use Oracle SQL function json_transform or json_mergepatch to update
a JSON document. You can work directly with JSON data contained in file-system
files by creating an external table that exposes it to the database.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases. Queries of
JSON data that use dot-notation syntax return JSON values whenever possible.

Chapter 3

3-2

4
Creating a Table With a JSON Column

You can create a table that has JSON columns. You use SQL condition is json as a check
constraint to ensure that data inserted into a column is (well-formed) JSON data. Oracle
recommends that you always use an is_json check constraint when you create a column
intended for JSON data.

Example 4-1 and Example 4-2 illustrate this. They create and fill a table that holds data used
in examples elsewhere in this documentation.

For brevity, only two rows of data (one JSON document) are inserted in Example 4-2.

Note:

SQL/JSON conditions IS JSON and IS NOT JSON return true or false for any non-
NULL SQL value. But they both return unknown (neither true nor false) for SQL NULL.
When used in a check constraint, they do not prevent a SQL NULL value from being
inserted into the column. (But when used in a SQL WHERE clause, SQL NULL is never
returned.)

It is true that a check constraint can reduce performance for data insertion. If you are sure
that your application inserts only well-formed JSON data into a particular column, then
consider disabling the check constraint, but do not drop the constraint.

See Also:

• Loading External JSON Data for the creation of the full table j_purchaseorder
• Oracle Database SQL Language Reference for information about CREATE

TABLE

Example 4-1 Using IS JSON in a Check Constraint to Ensure JSON Data is Well-
Formed

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document VARCHAR2 (23767)
 CONSTRAINT ensure_json CHECK (po_document IS JSON));

4-1

Example 4-2 Inserting JSON Data Into a VARCHAR2 JSON Column

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-DEC-2014'),
 '{"PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "ShippingInstructions" :
 {"name" : "Alexis Bull",
 "Address" : {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "Phone" : [{"type" : "Office", "number" : "909-555-7307"},
 {"type" : "Mobile", "number" : "415-555-1234"}]},
 "Special Instructions" : null,
 "AllowPartialShipment" : true,
 "LineItems" :
 [{"ItemNumber" : 1,
 "Part" : {"Description" : "One Magic Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 13131092899},
 "Quantity" : 9.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 85391628927},
 "Quantity" : 5.0}]}');

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-DEC-2014'),
 '{"PONumber" : 672,
 "Reference" : "SBELL-20141017",
 "Requestor" : "Sarah Bell",
 "User" : "SBELL",
 "CostCenter" : "A50",
 "ShippingInstructions" : {"name" : "Sarah Bell",
 "Address" : {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "Phone" : "983-555-6509"},
 "Special Instructions" : "Courier",
 "LineItems" :
 [{"ItemNumber" : 1,
 "Part" : {"Description" : "Making the Grade",
 "UnitPrice" : 20,

Chapter 4

4-2

 "UPCCode" : 27616867759},
 "Quantity" : 8.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" : "Nixon",
 "UnitPrice" : 19.95,
 "UPCCode" : 717951002396},
 "Quantity" : 5},
 {"ItemNumber" : 3,
 "Part" : {"Description" : "Eric Clapton: Best Of 1981-1999",
 "UnitPrice" : 19.95,
 "UPCCode" : 75993851120},
 "Quantity" : 5.0}]}');

• Determining Whether a Column Necessarily Contains JSON Data
How can you tell whether a given column of a table or view is well-formed JSON data?
Whenever this is the case, the column is listed in the following static data dictionary
views: DBA_JSON_COLUMNS, USER_JSON_COLUMNS, and ALL_JSON_COLUMNS.

4.1 Determining Whether a Column Necessarily Contains JSON
Data

How can you tell whether a given column of a table or view is well-formed JSON data?
Whenever this is the case, the column is listed in the following static data dictionary views:
DBA_JSON_COLUMNS, USER_JSON_COLUMNS, and ALL_JSON_COLUMNS.

Each of these views lists the column name, data type, and format (TEXT or BINARY); the table
or view name (column TABLE_NAME); and whether the object is a table or a view (column
OBJECT_TYPE).

For a table column to be considered JSON data it must have an is json check constraint.
But in the case of a view, any one of the following criteria suffices for a column to be
considered JSON data:

• The underlying data has an is json check constraint.

• The column results from the use of SQL/JSON function json_query.

• The column results from the use of a JSON generation function, such as json_object.

• The column results from the use of SQL function treat with keywords AS JSON.

If an is json check constraint determines that a table column is JSON data, and if that
constraint is later deactivated, the column remains listed in the views. If the check constraint
is dropped then the column is removed from the views.

Note:

If a check constraint combines condition is json with another condition using
logical condition OR, then the column is not listed in the views. In this case, it is not
certain that data in the column is JSON data. For example, the constraint jcol is
json OR length(jcol) < 1000 does not ensure that the data in column jcol is
JSON data.

Chapter 4
Determining Whether a Column Necessarily Contains JSON Data

4-3

See Also:

Oracle Database Reference for information about ALL_JSON_COLUMNS and the
related data-dictionary views

Chapter 4
Determining Whether a Column Necessarily Contains JSON Data

4-4

5
SQL/JSON Conditions IS JSON and IS NOT
JSON

SQL/JSON conditions is json and is not json are complementary. They test whether their
argument is syntactically correct, that is, well-formed, JSON data. You can use them in a CASE
expression or the WHERE clause of a SELECT statement. You can use is json in a check
constraint.

If the argument is syntactically correct then is json returns true and is not json returns
false.

If an error occurs during parsing then the error is not raised, and the data is considered to not
be well-formed: is json returns false; is not json returns true. If an error occurs other than
during parsing then that error is raised.

Well-formed data means syntactically correct data. JSON data stored textually can be well-
formed in two senses, referred to as strict and lax syntax. In addition, for textual JSON data
you can specify whether a JSON object can have duplicate fields (keys).

Whenever textual JSON data is generated inside the database it satisfies condition is json
with keyword STRICT. This includes generation in these ways:

• Using a SQL/JSON generation function (unless you specify keyword STRICT with either
FORMAT JSON or TREAT AS JSON, which means that you declare that the data is JSON
data; you vouch for it, so its well-formedness is not checked)

• Using SQL function json_serialize
• Using SQL function to_clob, to_blob, or to_varchar2 on a PL/SQL DOM

• Using SQL/JSON function json_query
• Using SQL/JSON function json_table with FORMAT JSON

• Unique Versus Duplicate Fields in JSON Objects
By default, field names need not be unique for a given JSON object. But you can specify
that particular JSON data is to be considered well-formed only if none of its objects have
duplicate field names.

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript syntax
for object fields; the Boolean and null values are not case-sensitive; and it is more
permissive with respect to numerals, whitespace, and escaping of Unicode characters.

• Specifying Strict or Lax JSON Syntax
The default JSON syntax for Oracle Database is lax. Strict or lax syntax matters only for
SQL/JSON conditions is json and is not json. All other SQL/JSON functions and
conditions use lax syntax for interpreting input and strict syntax when returning output.

5-1

Related Topics

• Creating a Table With a JSON Column
You can create a table that has JSON columns. You use SQL condition is json
as a check constraint to ensure that data inserted into a column is (well-formed)
JSON data. Oracle recommends that you always use an is_json check constraint
when you create a column intended for JSON data.

See Also:

Oracle Database SQL Language Reference for information about is json
and is not json.

5.1 Unique Versus Duplicate Fields in JSON Objects
By default, field names need not be unique for a given JSON object. But you can
specify that particular JSON data is to be considered well-formed only if none of its
objects have duplicate field names.

The JSON standard does not specify whether field names must be unique for a given
JSON object. This means that, a priori, a well-formed JSON object can have multiple
members that have the same field name. This is the default behavior for handling
JSON data in Oracle Database because checking for duplicate names takes additional
time.

You can specify that particular JSON data is to be considered well-formed only if all of
the objects it contains have unique field names, that is, no object has duplicate field
names. You do this by using the keywords WITH UNIQUE KEYS with SQL/JSON
condition is json.1

If you do not specify UNIQUE KEYS, or if you use the keywords WITHOUT UNIQUE KEYS,
then objects can have duplicate field names and still be considered well-formed.

The evaluation that Oracle Database employs always uses only one of the object
members that have a given field name; any other members with the same field name
are ignored. It is unspecified which of multiple such members is used.

Whether duplicate field names are allowed in well-formed JSON data is orthogonal to
whether Oracle uses strict or lax syntax to determine well-formedness.

5.2 About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it is
more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

Standard ECMA-404, the JSON Data Interchange Format, and ECMA-262, the
ECMAScript Language Specification, define JSON syntax.

1 An object field is sometimes called an object “key”.

Chapter 5
Unique Versus Duplicate Fields in JSON Objects

5-2

According to these specifications, each JSON field and each string value must be enclosed in
double quotation marks ("). Oracle supports this strict JSON syntax, but it is not the default
syntax.

In JavaScript notation, a field used in an object literal can be, but need not be, enclosed in
double quotation marks. It can also be enclosed in single quotation marks ('). Oracle also
supports this lax JSON syntax, and it is the default syntax.

In addition, in practice, some JavaScript implementations (but not the JavaScript standard)
allow one or more of the following:

• Case variations for keywords true, false, and null (for example, TRUE, True, TrUe,
fALSe, NulL).

• An extra comma (,) after the last element of an array or the last member of an object (for
example, [a, b, c,], {a:b, c:d,}).

• Numerals with one or more leading zeros (for example, 0042.3).

• Fractional numerals that lack 0 before the decimal point (for example, .14 instead of
0.14).

• Numerals with no fractional part after the decimal point (for example, 342. or 1.e27).

• A plus sign (+) preceding a numeral, meaning that the number is non-negative (for
example, +1.3).

This syntax too is allowed as part of the Oracle default (lax) JSON syntax. (See the JSON
standard for the strict numeral syntax.)

In addition to the ASCII space character (U+0020), the JSON standard defines the following
characters as insignificant (ignored) whitespace when used outside a quoted field or a string
value:

• Tab, horizontal tab (HT, ^I, decimal 9, U+0009, \t)

• Line feed, newline (LF, ^J, decimal 10, U+000A, \n)

• Carriage return (CR, ^M, decimal 13, U+000D, \r)

The lax JSON syntax, however, treats all of the ASCII control characters (Control+0 through
Control+31), as well as the ASCII space character (decimal 32, U+0020), as (insignificant)
whitespace characters. The following are among the control characters:

• Null (NUL, ^@, decimal 0, U+0000, \0)

• Bell (NEL, ^G, decimal 7, U+0007, \a)

• Vertical tab (VT, ^K, decimal 11, U+000B)

• Escape (ESC, ^[, decimal 27, U+001B, \e)

• Delete (DEL, ^?, decimal 127, U+007F)

An ASCII space character (U+0020) is the only whitespace character allowed, unescaped,
within a quoted field or a string value. This is true for both the lax and strict JSON syntaxes.

For both strict and lax JSON syntax, quoted object field and string values can contain any
Unicode character, but some of them must be escaped, as follows:

• ASCII control characters are not allowed, except for those represented by the following
escape sequences: \b (backspace), \f (form feed), \n (newline, line feed), \r (carriage
return), and \t (tab, horizontal tab).

Chapter 5
About Strict and Lax JSON Syntax

5-3

• Double quotation mark ("), slash (/), and backslash (\) characters must also be
escaped (preceded by a backslash): \", \/, and \\, respectively.

In the lax JSON syntax, an object field that is not quoted can contain any Unicode
character except whitespace and the JSON structural characters — left and right
brackets ([,]) and curly braces ({, }), colon (:), and comma (,), but escape
sequences are not allowed.

Any Unicode character can also be included in a name or string by using the ASCII
escape syntax \u followed by the four ASCII hexadecimal digits that represent the
Unicode code point.

Note that other Unicode characters that are not printable or that might appear as
whitespace, such as a no-break space character (U+00A0), are not considered
whitespace for either the strict or the lax JSON syntax.

Table 5-1 shows some examples of JSON syntax.

Table 5-1 JSON Object Field Syntax Examples

Example Well-Formed?

"part number": 1234 Lax and strict: yes. Space characters are allowed.

part number: 1234 Lax (and strict): no. Whitespace characters, including space characters, are not
allowed in unquoted names.

"part\tnumber": 1234 Lax and strict: yes. Escape sequence for tab character is allowed.

"part number": 1234 Lax and strict: no. Unescaped tab character is not allowed. Space is the only
unescaped whitespace character allowed.

"\"part\"number": 1234 Lax and strict: yes. Escaped double quotation marks are allowed, if name is quoted.

\"part\"number: 1234 Lax and strict: no. Name must be quoted.

'\"part\"number': 1234 Lax: yes, strict: no. Single-quoted names (object fields and strings) are allowed for
lax syntax only. Escaped double quotation mark is allowed in a quoted name.

"pärt : number":1234 Lax and strict: yes. Any Unicode character is allowed in a quoted name. This
includes whitespace characters and characters, such as colon (:), that are structural
in JSON.

part:number:1234 Lax (and strict): no. Structural characters are not allowed in unquoted names.

Related Topics

• JSON Syntax and the Data It Represents
JSON (and JavaScript) values, scalars, objects, and arrays are described.

See Also:

• IETF RFC4627 and ECMA 404 for the syntax of JSON Data Interchange
Format

• ECMA International and JSON.org for more information about JSON and
JavaScript

Chapter 5
About Strict and Lax JSON Syntax

5-4

5.3 Specifying Strict or Lax JSON Syntax
The default JSON syntax for Oracle Database is lax. Strict or lax syntax matters only for SQL/
JSON conditions is json and is not json. All other SQL/JSON functions and conditions
use lax syntax for interpreting input and strict syntax when returning output.

If you need to be sure that particular JSON input data has strictly correct syntax, then check it
first using is json or is not json.

You specify that data is to be checked as strictly well-formed according to the JSON standard
by appending (STRICT) (parentheses included) to an is json or an is not json expression.

Example 5-1 illustrates this. It is identical to Example 4-1 except that it uses (STRICT) to
ensure that all data inserted into the column is well-formed according to the JSON standard.

See Also:

Oracle Database SQL Language Reference for information about CREATE TABLE

Example 5-1 Using IS JSON in a Check Constraint to Ensure JSON Data is Strictly
Well-Formed (Standard)

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document VARCHAR2 (32767)
 CONSTRAINT ensure_json CHECK (po_document IS JSON (STRICT)));

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript syntax
for object fields; the Boolean and null values are not case-sensitive; and it is more
permissive with respect to numerals, whitespace, and escaping of Unicode characters.

Chapter 5
Specifying Strict or Lax JSON Syntax

5-5

6
Character Sets and Character Encoding for
JSON Data

JSON data always uses the Unicode character set. In this respect, JSON data is simpler to
use than XML data. This is an important part of the JSON Data Interchange Format (RFC
4627). For JSON data processed by Oracle Database, any needed character-set conversions
are performed automatically.

Oracle Database uses UTF-8 internally when it processes JSON data (parsing, querying). If
the data that is input to such processing, or the data that is output from it, must be in a
different character set from UTF-8, then character-set conversion is carried out accordingly.

Character-set conversion can affect performance. And in some cases it can be lossy.
Conversion of input data to UTF-8 is a lossless operation, but conversion to output can result
in information loss in the case of characters that cannot be represented in the output
character set.

If your JSON data is stored in the database as Unicode then no character-set conversion is
needed for storage or retrieval. This is the case if the database character set is AL32UTF8
(Unicode UTF-8) or if your JSON data is stored in CLOB instances that have character set
AL16UTF16. Oracle recommends that you use AL32UTF8 as the database character set if at
all possible.

Regardless of the database character set, JSON data that is stored using data type BLOB
never undergoes character-set conversion for storage or retrieval. JSON data can be stored
using data type BLOB as AL32UTF8, AL16UTF16, or AL16UTF16LE.

If you transform JSON data using SQL/JSON functions or PL/SQL methods and you return
the result of the transformation using data type BLOB then the result is encoded as
AL32UTF8. This is true even if the input BLOB data uses another Unicode encoding.

For example, if you use function json_query to extract some JSON data from BLOB input and
return the result as BLOB, it is returned using AL32UTF8.

Lossy character-set conversion can occur if application of a SQL/JSON function or a PL/SQL
method specifies a return data type of VARCHAR2 or CLOB and the database character set is not
Unicode. If input JSON data was stored in a BLOB instance then even if it is ultimately written
again as BLOB, if some of it was temporarily changed to VARCHAR2 or CLOB then the resulting
BLOB data can suffer from lossy conversion.

Related Topics

• Overview of Storing and Managing JSON Data
This overview describes: (1) data types for JSON columns, (2) LOB storage
considerations for JSON data, and (3) ensuring that JSON columns contain well-formed
JSON data.

6-1

See Also:

• Unicode.org for information about Unicode

• IETF RFC4627 and ECMA 404 for the JSON Data Interchange Format

• Oracle Database Migration Assistant for Unicode Guide for information
about using different character sets with the database

• Oracle Database Globalization Support Guide for information about
character-set conversion in the database

Chapter 6

6-2

7
Considerations When Using LOB Storage for
JSON Data

LOB storage considerations for JSON data are described, including considerations when you
use a client to retrieve JSON data as a LOB instance.

General Considerations

If you use LOB storage for JSON data, Oracle recommends that you use BLOB, not CLOB
storage.

This is particularly relevant if the database character set is the Oracle-recommended value of
AL32UTF8. In AL32UTF8 databases CLOB instances are stored using the UCS2 character
set, which means that each character requires two bytes. This doubles the storage needed
for a document if most of its content consists of characters that are represented using a
single byte in character set AL32UTF8.

Even in cases where the database character set is not AL32UTF8, choosing BLOB over CLOB
storage has the advantage that it avoids the need for character-set conversion when storing
the JSON document (see Character Sets and Character Encoding for JSON Data).

When using large objects (LOBs), Oracle recommends that you do the following:

• Use the clause LOB (COLUMN_NAME) STORE AS (CACHE) in your CREATE TABLE statement,
to ensure that read operations on the JSON documents are optimized using the database
buffer cache.

• Use SecureFiles LOBs.

SQL/JSON functions and conditions work with JSON data without any special considerations,
whether the data is stored as BLOB or CLOB. From an application-development perspective,
the API calls for working with BLOB content are nearly identical to those for working with CLOB
content.

A downside of choosing BLOB storage over CLOB (for JSON or any other kind of data) is that it
is sometimes more difficult to work with BLOB content using command-line tools such as
SQL*Plus. For instance:

• When selecting data from a BLOB column, if you want to view it as printable text then you
must use SQL function to_clob.

• When performing insert or update operations on a BLOB column, you must explicitly
convert character strings to BLOB format using SQL function rawtohex.1

1 The return value of SQL function rawtohex is limited to 32767 bytes. The value is truncated to remove any converted
data beyond this length.

7-1

See Also:

• Oracle Database SQL Language Reference for information about SQL
function to_clob

• Oracle Database SQL Language Reference for information about SQL
function rawtohex

Considerations When Using a Client To Retrieve JSON Data As a LOB Instance

If you use a client, such as Oracle Call Interface (OCI) or Java Database Connectivity
(JDBC), to retrieve JSON data from the database then the following considerations
apply.

There are three main ways for a client to retrieve a LOB that contains JSON data from
the database:

• Use the LOB locator interface, with a LOB locator returned by a SQL/JSON
operation2

• Use the LOB data interface

• Read the LOB content directly

In general, Oracle recommends that you use the LOB data interface or you read the
content directly.

If you use the LOB locator interface:

• Be aware that the LOB is temporary and read-only.

• Be sure to read the content of the current LOB completely before fetching the next
row. The next row fetch can render this content unreadable.

Save this current-LOB content, in memory or to disk, if your client continues to
need it after the next row fetch.

• Free the fetched LOB locator after each row is read. Otherwise, performance can
be reduced, and memory can leak.

Consider also these optimizations if you use the LOB locator interface:

• Set the LOB prefetch size to a large value, such as 256 KB, to minimize the
number of round trips needed for fetching.

• Set the batch fetch size to a large value, such as 1000 rows.

Example 7-1 and Example 7-2 show how to use the LOB locator interface with JDBC.

Example 7-3 and Example 7-4 show how to use the LOB locator interface with
ODP.NET.

Each of these examples fetches a LOB row at a time. To ensure that the current LOB
content remains readable after the next row fetch, it also reads the full content.

If you use the LOB data interface:

2 The SQL/JSON functions that can return a LOB locator are these, when used with RETURNING CLOB or
RETURNING BLOB: json_serialize, json_value, json_query, json_table, json_array, json_object,
json_arrayagg, and json_objectagg.

Chapter 7

7-2

• In OCI, use data types SQLT_BIN and SQLT_CHR, for BLOB and CLOB data, respectively.

• In JDBC, use data types LONGVARBINARY and LONGVARCHAR, for BLOB and CLOB data,
respectively.

Example 7-5 and Example 7-6 show how to use the LOB data interface with JDBC.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Example 7-7 and Example 7-8 show how to read the full LOB content directly with JDBC.

Example 7-9 and Example 7-10 show how to read the full LOB content directly with
ODP.NET.

Example 7-1 JDBC Client: Using the LOB Locator Interface To Retrieve JSON BLOB
Data

static void test_JSON_SERIALIZE_BLOB() throws Exception {
 try(
 OracleConnection conn = getConnection();
 OracleStatement stmt = (OracleStatement)conn.createStatement();
) {
 stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

 // Set LOB prefetch size to be 256 KB.
 ((OraclePreparedStatement)stmt).setLobPrefetchSize(256000);

 // Query the JSON data in column jblob of table myTab1,
 // serializing the returned JSON data as a textual BLOB instance.
 String query =
 "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";
 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 Blob blob = rs.getBlob(1);

 // Do something with the BLOB instance for the row...

 // Read full content, to be able to access past current row.
 String val =
 new String(blob.getBytes(1,
 (int)blob.length()),
 StandardCharsets.UTF_8);

 // Free the LOB at the end of each iteration.
 blob.free();
 }
 rs.close();
 stmt.close();

Chapter 7

7-3

 }
}

Example 7-2 JDBC Client: Using the LOB Locator Interface To Retrieve JSON
CLOB Data

static void test_JSON_SERIALIZE_CLOB() throws Exception {
 try(
 OracleConnection conn = getConnection();
 OracleStatement stmt = (OracleStatement)conn.createStatement();
){
 stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

 // Set LOB prefetch size to be 256 KB.
 ((OraclePreparedStatement)stmt).setLobPrefetchSize(256000);

 // Query the JSON data in column jclob of table myTab2,
 // serializing the returned JSON data as a textual CLOB instance.
 String query =
 "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";

 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 Clob clob = rs.getClob(1);

 // Do something with the CLOB instance for the row...

 // Read full content, to be able to access past current row.
 String val = clob.getSubString(1, (int)clob.length());

 // Free the LOB at the end of each iteration.
 blob.free();
 }
 rs.close();
 stmt.close();
 }
}

Example 7-3 ODP.NET Client: Using the LOB Locator Interface To Retrieve
JSON BLOB Data

static void test_JSON_SERIALIZE_BLOB()
{
 try
 {
 using (OracleConnection conn =
 new OracleConnection(
 "user id=<schema>;password=<password>;data source=oracle"))
 {
 conn.Open();
 OracleCommand cmd = conn.CreateCommand();

 // Set LOB prefetch size to be 256 KB.

Chapter 7

7-4

 cmd.InitialLOBFetchSize = 256000;

 // Query the JSON datatype data in column jblob of table myTab1,
 // serializing the returned JSON data as a textual BLOB instance.
 cmd.CommandText =
 "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";

 OracleDataReader rs = cmd.ExecuteReader();

 // Iterate over the returned rows.
 while (rs.Read())
 {
 OracleBlob blob = rs.GetOracleBlob(0);

 // Do something with the BLOB instance for the row...

 // Read full content, to be able to access past current row.
 String val = Encoding.UTF8.GetString(blob.Value);

 blob.Close();
 blob.Dispose();
 }
 rs.Close();
 }
 }
 catch (Exception e)
 {
 throw e;
 }
}

Example 7-4 ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON
CLOB Data

static void test_JSON_SERIALIZE_CLOB()
{
 try
 {
 using (OracleConnection conn =
 new OracleConnection(
 "user id=<schema>;password=<password>;data source=oracle"))
 {
 conn.Open();
 OracleCommand cmd = conn.CreateCommand();

 // Set LOB prefetch size to be 256 KB.
 cmd.InitialLOBFetchSize = 256000;

 // Query the JSON datatype data in column jclob of table myTab2,
 // serializing the returned JSON data as a textual CLOB instance.
 cmd.CommandText =
 "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";

Chapter 7

7-5

 OracleDataReader rs = cmd.ExecuteReader();

 // Iterate over the returned rows.
 while (rs.Read())
 {
 OracleClob clob = rs.GetOracleClob(0);

 // Do something with the CLOB instance for the row...

 // Read full content, to be able to access past current row.
 String val = clob.Value;

 clob.Close();
 clob.Dispose();
 }
 rs.Close();
 }
 }
 catch (Exception e)
 {
 throw e;
 }
}

Example 7-5 JDBC Client: Using the LOB Data Interface To Retrieve JSON
BLOB Data

static void test_JSON_SERIALIZE_LONGVARBINARY() throws Exception {
 try(
 OracleConnection conn = getConnection();
 OracleStatement stmt = (OracleStatement)conn.createStatement();
){

 // Query the JSON data in column jblob of table myTab1,
 // serializing the returned JSON data as a textual BLOB instance.
 String query =
 "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";
 stmt.defineColumnType(1, OracleTypes.LONGVARBINARY, 1);
 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 BufferedReader br =
 new BufferedReader(
 new InputStreamReader(rs.getBinaryStream(1)));
 int size = 0;
 int data = 0;
 data = br.read();
 while(-1 != data){
 System.out.print((char)(data));
 data = br.read();
 size++;
 }
 br.close();

Chapter 7

7-6

 }
 rs.close();
 stmt.close();
 }
}

Example 7-6 JDBC Client: Using the LOB Data Interface To Retrieve JSON CLOB Data

static void test_JSON_SERIALIZE_LONGVARCHAR() throws Exception {
 try(
 OracleConnection conn = getConnection();
 OracleStatement stmt = (OracleStatement)conn.createStatement();
){

 // Query the JSON data in column jclob of table myTab2,
 // serializing the returned JSON data as a textual CLOB instance.
 String query =
 "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";
 stmt.defineColumnType(1, OracleTypes.LONGVARCHAR, 1);
 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 Reader reader = rs.getCharacterStream(1);
 int size = 0;
 int data = 0;
 data = reader.read();
 while(-1 != data){
 System.out.print((char)(data));
 data = reader.read();
 size++;
 }
 reader.close();
 }
 rs.close();
 stmt.close();
 }
}

Example 7-7 JDBC Client: Reading Full BLOB Content Directly with getBytes

static void test_JSON_SERIALIZE_BLOB_2() throws Exception {
 try(
 OracleConnection con = getConnection();
 OracleStatement stmt = (OracleStatement)con.createStatement();
){
 stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

 // set LOB prefetch size to be 256 KB.
 ((OracleStatement)stmt).setLobPrefetchSize(256000);

 // Query the JSON data in column jblob of table myTab1,
 // serializing the returned JSON data as a textual BLOB instance.
 String query =
 "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";

Chapter 7

7-7

 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 String val = new String(rs.getBytes(1), StandardCharsets.UTF_8);
 }
 rs.close();
 stmt.close();
 }
 }

Example 7-8 JDBC Client:Reading Full CLOB Content Directly with getString

static void test_JSON_SERIALIZE_CLOB_2() throws Exception {
 try(
 OracleConnection conn = getConnection();
 OracleStatement stmt = (OracleStatement)conn.createStatement();
){
 stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

 // Set LOB prefetch size to be 256 KB.
 ((OracleStatement)stmt).setLobPrefetchSize(256000);

 // Query the JSON data in column jclob of table myTab2,
 // serializing the returned JSON data as a textual CLOB instance.
 String query =
 "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";
 ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) { // Iterate over the returned rows.
 String val = rs.getString(1);
 }
 rs.close();
 stmt.close();
 }
 }

Example 7-9 ODP.NET Client: Reading Full BLOB Content Directly with
getBytes

static void test_JSON_SERIALIZE_BLOB_2()
{
 try
 {
 using (OracleConnection conn = new OracleConnection("user
id=scott;password=tiger;data source=oracle"))
 {
 conn.Open();
 OracleCommand cmd = conn.CreateCommand();

 // Set LOB prefetch size to be 256 KB.
 cmd.InitialLOBFetchSize = 256000;

 // Query the JSON datatype data in column blob of table myTab1,
 // serializing the returned JSON data as a textual BLOB instance.

Chapter 7

7-8

 cmd.CommandText =
 "SELECT json_serialize(blob RETURNING BLOB) FROM myTab1";
 OracleDataReader rs = cmd.ExecuteReader();

 // Iterate over the returned rows.
 while (rs.Read())
 {
 long len = rs.GetBytes(0, 0, null, 0, 0); /* Get LOB length */
 byte[] obuf = new byte[len];
 rs.GetBytes(0, 0, obuf, 0, (int)len);
 String val = Encoding.UTF8.GetString(obuf);
 }
 rs.Close();
 }
 }
 catch (Exception e)
 {
 throw e;
 }
}

Example 7-10 ODP.NET Client: Reading Full CLOB Content Directly with getString

static void test_JSON_SERIALIZE_CLOB_2()
{
 try
 {
 using (OracleConnection conn =
 new OracleConnection(
 "user id=<schema>;password=<password>;data source=oracle"))
 {
 conn.Open();
 OracleCommand cmd = conn.CreateCommand();

 // Set LOB prefetch size to be 256 KB.
 cmd.InitialLOBFetchSize = 256000;

 // Query the JSON datatype data in column clob of table myTab2,
 // serializing the returned JSON data as a textual CLOB instance.

 cmd.CommandText = "SELECT json_serialize(clob RETURNING CLOB) FROM
myTab2";

 OracleDataReader rs = cmd.ExecuteReader();

 // Iterate over the returned rows.
 while (rs.Read())
 {
 String val = rs.GetString(0);
 }
 rs.Close();
 }
 }

Chapter 7

7-9

 catch (Exception e)
 {
 throw e;
 }
}

Chapter 7

7-10

8
Partitioning JSON Data

You can partition a table using a JSON virtual column as the partitioning key. The virtual
column is extracted from a JSON column using SQL/JSON function json_value.

Partition on a Non-JSON Column When Possible

You can partition a table using a JSON virtual column, but it is generally preferable to use a
non-JSON column. A partitioning key specifies which partition a new row is inserted into. A
partitioning key defined as a JSON virtual column uses SQL/JSON function json_value, and
the partition-defining json_value expression is executed each time a row is inserted. This
can be costly, especially for insertion of large JSON documents.

Rules for Partitioning a Table Using a JSON Virtual Column

• The virtual column that serves as the partitioning key must be defined using SQL/JSON
function json_value.

• The data type of the virtual column is defined by the RETURNING clause used for the
json_value expression.

• The json_value path used to extract the data for the virtual column must not contain any
predicates. (The path must be streamable.)

• The JSON column referenced by the expression that defines the virtual column can have
an is json check constraint, but it need not have such a constraint.

See Also:

Oracle Database SQL Language Reference for information about CREATE TABLE

Example 8-1 Creating a Partitioned Table Using a JSON Virtual Column

This example creates table j_purchaseorder_partitioned, which is partitioned using virtual
column po_num_vc. That virtual column references JSON column po_document (which uses
CLOB storage). The json_value expression that defines the virtual column extracts JSON field
PONumber from po_document as a number. Column po_document does not have an is json
check constraint.

CREATE TABLE j_purchaseorder_partitioned
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document CLOB,
 po_num_vc NUMBER GENERATED ALWAYS AS
 (json_value (po_document, '$.PONumber' RETURNING NUMBER)))
 LOB (po_document) STORE AS (CACHE)
 PARTITION BY RANGE (po_num_vc)

8-1

 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000));

Chapter 8

8-2

9
Replication of JSON Data

You can use Oracle GoldenGate to replicate tables that have columns containing JSON data.

Be aware that Oracle GoldenGate requires tables that are to be replicated to have a
nonvirtual primary key column; the primary key column cannot be virtual.

All indexes on the JSON data will be replicated also. However, you must execute, on the
replica database, any Oracle Text operations that you use to maintain a JSON search index.
Here are examples of such procedures:

• CTX_DDL.sync_index
• CTX_DDL.optimize_index

See Also:

• Oracle GoldenGate for information about Oracle GoldenGate

• Oracle Text Reference for information about CTX_DDL.sync_index
• Oracle Text Reference for information about CTX_DDL.optimize_index

9-1

Part III
Insert, Update, and Load JSON Data

The usual ways to insert, update, and load data in Oracle Database work with JSON data.
You can also create an external table from the content of a JSON dump file.

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database. You can
use Oracle SQL function json_transform or json_mergepatch to update a JSON
document. You can work directly with JSON data contained in file-system files by creating
an external table that exposes it to the database.

• Oracle SQL Function JSON_TRANSFORM
Oracle SQL function json_transform modifies JSON documents. You specify
modification operations to perform and SQL/JSON path expressions that target the
places to modify. The operations are applied to the input data in the order specified: each
operation acts on the result of applying all of the preceding operations.

• Updating a JSON Document with JSON Merge Patch
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

• Loading External JSON Data
You can create a database table of JSON data from the content of a JSON dump file.

10
Overview of Inserting, Updating, and Loading
JSON Data

You can use database APIs to insert or modify JSON data in Oracle Database. You can use
Oracle SQL function json_transform or json_mergepatch to update a JSON document. You
can work directly with JSON data contained in file-system files by creating an external table
that exposes it to the database.

Use Standard Database APIs to Insert or Update JSON Data

All of the usual database APIs used to insert or update VARCHAR2 and large-object (LOB)
columns can be used for JSON columns.

You can specify that a JSON column must contain only well-formed JSON data by using SQL
condition is json as a check constraint.

The database handles this check constraint the same as any other check constraint — it
enforces rules about the content of the column. Working with a column of type VARCHAR2,
BLOB, or CLOB that contains JSON documents is thus no different from working with any other
column of that type.

Inserting a JSON document into a JSON column, or updating data in such a column, is
straightforward if the column is of data type VARCHAR2, CLOB, or BLOB — see Example 4-2. The
same is true of updating such a column. You can also use a client, such as JDBC for Java or
Oracle Call Interface for C or C++, to do this.

Note:

In addition to the usual ways to insert, update, and load JSON data, you can use
Simple Oracle Document Access (SODA) APIs. SODA is designed for schemaless
application development without knowledge of relational database features or
languages such as SQL and PL/SQL. It lets you create and store collections of
documents of any kind (not just JSON), retrieve them, and query them, without
needing to know how the documents are stored in the database. SODA also
provides query features that are specific for JSON documents. There are
implementations of SODA for several languages, as well as for representational
state transfer (REST). See Simple Oracle Document Access (SODA).

Use JSON Transform or JSON Merge Patch To Update a JSON Document

You can use Oracle SQL function json_transform or json_mergepatch to modify specific
portions of a JSON document. These functions are not only for updating stored JSON data.
You can also use them to modify JSON data on the fly, for further use in a query. The
database need not be updated to reflect the modified data.

In addition to providing the input JSON data to each function, you provide the following:

10-1

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

• For json_transform, a sequence of modification operations to be performed on
parts of the data. Each operation consists of the operation name (e.g. REMOVE)
followed by pairs of (1) a SQL/JSON path expression that targets some data to
modify and (2) an update operation to be performed on that data. The operations
are applied to the input data, in the order specified. Each operation acts on the
result of applying the preceding operations.

• For json_mergepatch, a JSON Merge Patch document, which is a JSON
document that specifies the changes to make to a given JSON document. JSON
Merge Patch is an IETF standard.

json_transform provides a superset of what you can do with json_mergepatch.

Updating with json_transform is piecewise in this sense: you specify only the
document pieces to change, and how. A client need send only the locations of
changes (using SQL/JSON path expressions) and the update operations to be
performed. This contrasts with sending a complete document to be modified and
receiving the complete modified document in return.

On the other hand, json_mergepatch can be easier to use in some contexts where the
patch document is generated by comparing two versions of a document. You need not
specify or think in terms of specific modification locations and operations — the
generated patch takes care of where to make changes, and the changes to be made
are implicit. For example, the database can pass part of a JSON document to a client,
which changes it in some way and passes back the update patch for the document
fragment. The database can then apply the patch to the stored document using
json_mergepatch.

Use PL/SQL Object Types To Update a JSON Document

Oracle SQL functions json_transform and json_mergepatch let you modify JSON
data in a declarative way. For json_transform, you specify where to make changes
and what changes to make, but now in detail how to make them. For
json_mergepatch, you specify document-version differences: a patch.

For complex use cases that are not easily handled by these SQL functions you can
use PL/SQL code — in particular JSON PL/SQL object-type methods, such as
remove() — to modify JSON data procedurally. There are no limitations on the kinds
of changes you can make with PL/SQL (it is a Turing-complete programming
language). You can parse JSON data into an instance of object-type JSON_ELEMENT_T,
make changes to it, serialize it (if textual JSON data is needed), and then store it back
in the database.

Use an External Table to Work With JSON Data in File-System Files

External tables make it easy to access JSON documents that are stored as separate
files in a file system. Each file can be exposed to Oracle Database as a row in an
external table. An external table can also provide access to the content of a dump file
produced by a NoSQL database. You can use an external table of JSON documents
to, in effect, query the data in file-system files directly. This can be useful if you need
only process the data from all of the files in a one-time operation.

But if you instead need to make multiple queries of the documents, and especially if
different queries select data from different rows of the external table (different
documents), then for better performance consider copying the data from the external
table into an ordinary database table, using an INSERT as SELECT statement — see
Example 13-4. Once the JSON data has been loaded into a JSON column of an

Chapter 10

10-2

ordinary table, you can index the content, and then you can efficiently query the data in a
repetitive, selective way.

Related Topics

• Loading External JSON Data
You can create a database table of JSON data from the content of a JSON dump file.

• Updating a JSON Document with JSON Merge Patch
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. You use SQL condition is json as a
check constraint to ensure that data inserted into a column is (well-formed) JSON data.
Oracle recommends that you always use an is_json check constraint when you create a
column intended for JSON data.

• Overview of Storing and Managing JSON Data
This overview describes: (1) data types for JSON columns, (2) LOB storage
considerations for JSON data, and (3) ensuring that JSON columns contain well-formed
JSON data.

See Also:

• PL/SQL Object Types for JSON for information about updating JSON data
using PL/SQL object types

• Oracle Database SQL Language Reference for information about Oracle SQL
function json_transform

• Oracle Database SQL Language Reference for information about SQL function
json_mergepatch

• IETF RFC7396 for the definition of JSON Merge Patch

Chapter 10

10-3

11
Oracle SQL Function JSON_TRANSFORM

Oracle SQL function json_transform modifies JSON documents. You specify modification
operations to perform and SQL/JSON path expressions that target the places to modify. The
operations are applied to the input data in the order specified: each operation acts on the
result of applying all of the preceding operations.

Function json_transform is atomic: if attempting any of the operations raises an error then
none of the operations take effect. json_transform either succeeds completely, so that the
data is modified as required, or the data remains unchanged. json_transform returns the
original data, modified as expressed by the arguments.

You can use json_transform in a SQL UPDATE statement, to update the documents in a
JSON column. Example 11-1 illustrates this.

You can use it in a SELECT list, to modify the selected documents. The modified documents
can be returned or processed further. Example 11-2 illustrates this.

Function json_transform can accept as input, and return as output, any SQL data type that
supports JSON data.

The default return (output) data type is the same as the input data type. (If the input is
VARCHAR2 of any size then the default is VARCHAR2(4000)).

Unlike Oracle SQL function json_mergepatch, which has limited applicability (it is suitable for
updating JSON documents that primarily use objects for their structure, and that do not make
use of explicit null values), json_transform is a general modification function.

When you specify more than one operation to be performed by a single invocation of
json_transform, the operations are performed in sequence, in the order specified. Each
operation thus acts on the result of applying all of the preceding operations.

Following the sequence of modification operations that you specify, you can include optional
RETURNING and PASSING clauses. The RETURNING clause is the same as for SQL/JSON
function json_query. The PASSING clause is the same as for SQL/JSON condition
json_exists. They specify the return data type and SQL bind variables, respectively.

The possible modification operations are as follows:

• REMOVE — Remove the input data that is targeted by the specified path expression. An
error is raised if you try to remove all of the data; that is, you cannot use REMOVE '$'. By
default, no error is raised if the targeted data does not exist (IGNORE ON MISSING).

• KEEP — Remove all parts of the input data that are not targeted by at least one of the
specified path expressions. A topmost object or array is not removed; it is emptied,
becoming an empty object ({}) or array ([]).

1 Do not confuse the SQL return type for function json_transform with the type of the SQL result expression that follows
an equal sign (=) in a modification operation other than KEEP and REMOVE.

11-1

• RENAME — Rename the field targeted by the specified path expression to the value
of the SQL expression that follows the equal sign (=). By default, no error is raised
if the targeted field does not exist (IGNORE ON MISSING).

• SET — Set the data targeted by the specified path expression to the value of the
specified SQL expression. The default behavior is like that of SQL UPSERT: replace
existing targeted data with the new value, or insert the new value at the targeted
location if the path expression matches nothing.

(See operator INSERT about inserting an array element past the end of the array.)

• REPLACE — Replace the data targeted by the specified path expression with the
value of the specified SQL expression. By default, no error is raised if the targeted
data does not exist (IGNORE ON MISSING).

(REPLACE has the effect of SET with clause IGNORE ON MISSING.)

• INSERT — Insert the value of the specified SQL expression at the location targeted
by the specified path expression, which must be either the field of an object or an
array position (otherwise, an error is raised). By default, an error is raised if a
targeted object field already exists.

(INSERT for an object field has the effect of SET with clause CREATE ON MISSING
(default for SET), except that the default behavior for ON EXISTING is ERROR, not
REPLACE.)

You can specify an array position past the current end of an array. In that case, the
array is lengthened to accommodate insertion of the value at the indicated
position, and the intervening positions are filled with JSON null values.

For example, if the input JSON data is {"a":["b"]} then INSERT '$.a[3]'=42
returns {"a":["b", null, null 42]} as the modified data. The elements at array
positions 1 and 2 are null.

• APPEND — Append the value of the specified SQL expression to the targeted array.
By default, an error is raised if the path expression does not target an array.

(APPEND has the effect of INSERT for an array position of last+1.)

Immediately following the keyword for each kind of operation is the path expression for
the data targeted by that operation. Operation KEEP is an exception in that the keyword
is followed by one or more path expressions, which target the data to keep — all data
not targeted by at least one of these path expressions is removed.

For all operations except KEEP, and REMOVE, the path expression is followed by an
equal sign (=) and then a SQL result expression. This is evaluated and the resulting
value is used to modify the targeted data. 1

For operation RENAME the result expression must evaluate to a SQL string. Otherwise,
an error is raised.

For all operations except RENAME, the result expression must evaluate to a SQL value
that can be rendered as a JSON value. Otherwise, an error is raised because of the
inappropriate SQL data type. (This is the same requirement as for the value part of a
name–value pair provided to SQL/JSON generation function json_object.)

You can convert the evaluation of the result expression to JSON data by following the
expression immediately with keywords FORMAT JSON. This is particularly useful to
convert the SQL string 'true' or 'false' to the corresponding JSON-language value
true or false. Example 11-7 illustrates this.

Chapter 11

11-2

The last part of an operation specification is an optional set of handlers. Different operations
allow different handlers and provide different handler defaults. (An error is raised if you
provide a handler for an operation that disallows it.)

There are three kinds of handler:

• ON EXISTING — Specifies what happens if a path expression matches the data; that is, it
targets at least one value.

– ERROR ON EXISTING — Raise an error.

– IGNORE ON EXISTING — Leave the data unchanged (no modification).

– REPLACE ON EXISTING — Replace data at the targeted location with the value of the
SQL result expression.

– REMOVE ON EXISTING — Remove the targeted data.

• ON MISSING — Specifies what happens if a path expression does not match the data; that
is, it does not target at least one value.

– ERROR ON MISSING — Raise an error.

– IGNORE ON MISSING — Leave the data unchanged (no modification).

– CREATE ON MISSING — Add data at the targeted location.

Note that for a path-expression array step, an ON MISSING handler does not mean that
the targeted array itself is missing from the data — that is instead covered by handler ON
EMPTY. An ON MISSING handler covers the case where one or more of the positions
specified by the array step does not match the data. For example, array step [2] does
not match data array ["a", "b"] because that array has no element at position 2.

• ON NULL — Specifies what happens if the value of the SQL result expression is NULL.

– NULL ON NULL — Use a JSON null value for the targeted location.

– ERROR ON NULL — Raise an error.

– IGNORE ON NULL — Leave the data unchanged (no modification).

– REMOVE ON NULL — Remove the targeted data.

The default behavior for all handlers that allow ON NULL is NULL ON NULL.

The handlers allowed for the various operations are as follows:

• REMOVE: IGNORE ON MISSING (default), ERROR ON MISSING
• KEEP: no handlers

• RENAME: IGNORE ON MISSING (default), ERROR ON MISSING
• SET:

– REPLACE ON EXISTING (default), ERROR ON EXISTING, IGNORE ON EXISTING,

– CREATE ON MISSING (default), ERROR ON MISSING, IGNORE ON MISSING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

• REPLACE:

– IGNORE ON MISSING (default), ERROR ON MISSING, CREATE ON MISSING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

Chapter 11

11-3

• INSERT:

– ERROR ON EXISTING (default), IGNORE ON EXISTING, REPLACE ON EXISTING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

• APPEND:

– ERROR ON MISSING (default), IGNORE ON MISSING, CREATE ON MISSING. Create
means insert a singleton array at the targeted location. The single array
element is the value of the SQL result expression.

– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL
Example 11-1 Updating a JSON Column Using JSON_TRANSFORM

This example updates all documents in j_purchaseorder.po_document, setting the
value of field lastUpdated to the current timestamp.

If the field already exists then its value is replaced; otherwise, the field and its value
are added. (That is, the default handlers are used: REPLACE ON EXISTING and CREATE
ON MISSING.)

UPDATE j_purchaseorder SET po_document =
 json_transform(po_document, SET '$.lastUpdated' = SYSTIMESTAMP);

Example 11-2 Modifying JSON Data On the Fly With JSON_TRANSFORM

This example selects all documents in j_purchaseorder.po_document, returning
pretty-printed, updated copies of them, where field "Special Instructions" has been
removed.

It does nothing (no error is raised) if the field does not exist: IGNORE ON MISSING is the
default behavior.

The return data type is CLOB.

SELECT json_transform(po_document, REMOVE '$."Special Instructions"'
 RETURNING CLOB PRETTY)
 FROM j_purchaseorder;

Example 11-3 Adding a Field Using JSON_TRANSFORM

These two uses of json_tranform are equivalent. They each add field Comments with
value "Helpful". An error is raised if the field already exists. The input for the field
value is literal SQL string 'Helpful'. The default behavior for SET is CREATE ON
MISSING.

json_transform(po_document, INSERT '$.Comments' = 'Helpful')

json_transform(po_document, SET '$.Comments' = 'Helpful'
 ERROR ON EXISTING)

Chapter 11

11-4

Example 11-4 Removing a Field Using JSON_TRANSFORM

This example removes field Special Instructions. It does nothing (no error is raised) if the
field does not exist: IGNORE ON MISSING is the default behavior.

json_transform(po_document, REMOVE '$.Special Instructions')

Example 11-5 Creating or Replacing a Field Value Using JSON_TRANSFORM

This sets the value of field Address to the JSON object {"street":"8 Timbly Lane",
"city":"Penobsky", "state":"Utah"}. It creates the field if it does not exist, and it replaces
any existing value for the field. The input for the field value is a literal SQL string. The
updated field value is a JSON object, because FORMAT JSON is specified for the input value.

json_transform(po_document,
 SET '$.Address' =
 '{"street":"8 Timbly Rd.",
 "city":"Penobsky",
 "state":"UT"}'
 FORMAT JSON)

Without using FORMAT JSON, the Address field value would be a JSON string that corresponds
to the SQL input string. Each of the double-quote (") characters in the input would be
escaped in the JSON string:

"{\"street\":\"8 Timbly Rd.\","city\":\"Penobsky\",\"state\":\"UT\"}"

Example 11-6 Replacing an Existing Field Value Using JSON_TRANSFORM

This sets the value of field Address to the JSON object {"street":"8 Timbly Lane",
"city":"Penobsky", "state":"Utah"}. It replaces an existing value for the field, and it does
nothing if the field does not exist. The only difference between this example and
Example 11-5 is the presence of handler IGNORE ON MISSING.

json_transform(po_document,
 SET '$.Address' =
 '{"street":"8 Timbly Rd.",
 "city":"Penobsky",
 "state":"UT"}'
 FORMAT JSON
 IGNORE ON MISSING)

Example 11-7 Using FORMAT JSON To Set a JSON Boolean Value

This example sets the value of field AllowPartialShipment to the JSON-language Boolean
value true. Without keywords FORMAT JSON it would instead set the field to the JSON-
language string "true".

json_transform(po_document,
 SET '$.AllowPartialShipment' = 'true' FORMAT JSON)

Chapter 11

11-5

Example 11-8 Setting an Array Element Using JSON_TRANSFORM

This sets the first element of array Phone to the JSON string "909-555-1212".

json_transform(po_document,
 SET '$.ShippingInstructions.Phone[0]' = '909-555-1212')

If the value of array Phone before the operation is this:

[{"type":"Office","number":"909-555-7307"},
 {"type":"Mobile","number":415-555-1234"}]

Then this is the value after the modification:

["909-555-1212",
 {"type":"Mobile","number":415-555-1234"}]

Example 11-9 Prepending an Array Element Using JSON_TRANSFORM

This prepends element "909-555-1212" to array Phone. Insertion at position 0 shifts all
existing elements to the right: element N becomes element N+1.

json_transform(po_document,
 INSERT '$.ShippingInstructions.Phone[0]' =
 '909-555-1212')

Example 11-10 Appending an Array Element Using JSON_TRANSFORM

These two uses of json_tranform are equivalent. They each append element
"909-555-1212" to array Phone.

json_transform(po_document,
 APPEND '$.ShippingInstructions.Phone' =
 '909-555-1212')

json_transform(po_document,
 INSERT '$.ShippingInstructions.Phone[last+1]' =
 '909-555-1212')

See Also:

Oracle Database SQL Language Reference for information about Oracle
SQL function json_transform

Chapter 11

11-6

12
Updating a JSON Document with JSON
Merge Patch

You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to make
to a specified JSON document. JSON Merge Patch is an IETF standard.

You can use json_mergepatch in an UPDATE statement, to update the documents in a JSON
column. Example 12-3 illustrates this.

You can use json_mergepatch in a SELECT list, to modify the selected documents. The
modified documents can be returned or processed further. Example 12-4 illustrates this.

JSON Merge Patch is suitable for updating JSON documents that primarily use objects for
their structure and do not make use of explicit null values. You cannot use it to add, remove,
or change array elements (except by explicitly replacing the whole array). And you cannot
use it to set the value of a field to null.

JSON Merge Patch acts a bit like a UNIX patch utility: you give it (1) a source document to
patch and (2) a patch document that specifies the changes to make, and it returns a copy of
the source document updated (patched). The patch document specifies the differences
between the source and the result documents. For UNIX patch the differences are in the form
of UNIX diff utility output. For JSON Merge Patch both source and patch are JSON
documents.

You can think of JSON Merge Patch as merging the contents of the source and the patch.
When merging two objects, one from source and one from patch, a member with a field that
is in one object but not in the other is kept in the result. An exception is that a patch member
with field value is null is ignored when the source object has no such field.

When merging object members that have the same field:

• If the patch field value is null then the field is dropped from the source — it is not
included in the result.

• Otherwise, the field is kept in the result, but its value is the result of merging the source
field value with the patch field value. That is, the merging operation in this case is
recursive — it dives down into fields whose values are themselves objects.

A little more precisely, JSON Merge Patch acts as follows:

• If the patch is not a JSON object then replace the source by the patch.

• Otherwise (the patch is an object), do the following:

1. If the source is not an object then act as if it were the empty object ({}).

2. Iterate over the (p-field:p–value) members of the patch object.

– If the p-value of the patch member is null then remove the corresponding
member from the source.

12-1

– Otherwise, recurse: Replace the value of the corresponding source field
with the result of merge-patching that value (as the next source) with the
p-value (as the next patch).

If a patch field value of null did not have a special meaning (remove the
corresponding source member with that field) then you could use it as a field value to
set the corresponding source field value to null. The special removal behavior means
you cannot set a source field value to null.

Examples:

• Patch member "PONumber":99999 overrides a source member with field PONumber,
replacing its value with the patch-specified value, 99999.

json_mergepatch('{"User":"ABULL", "PONumber":1600}',
'{"PONumber":99999}') results in {"User":"ABULL", "PONumber":99999}.

• Patch member "tracking":123456 overrides a missing source member with field
tracking, adding that patch member to the result. And source member
"PONumber":1600 overrides a missing patch member with field PONumber — it is
kept in the result.

json_mergepatch('{"PONumber":1600}', '{"tracking":123456}') results in
{"PONumber":1600, "tracking":123456}".

• Patch member "Reference":null overrides a source member with field
Reference, removing it from the result.

json_mergepatch('{"PONumber":1600, "Reference":"ABULL-20140421"}',
'{"Reference":null}') results in {"PONumber":1600}.

• Patch value [1,2,3] overrides the corresponding source value, [4,5,6], replacing
it.

json_mergepatch('{"PONumber":1600, "LineItems":[1, 2, 3]}',
'{"LineItems":[4,5,6]}') results in {"PONumber":1600, "LineItems":[4, 5,
6]}.

Note:

The merge-patch procedure — in particular the fact that there is no recursive
behavior for a non-object patch — means that you cannot add, remove, or
replace values of an array individually. To make such a change you must
replace the whole array. For example, if the source document has a member
Phone:["999-555-1212", "415-555-1234"] then to remove the second
phone number you can use a patch whose content has a member "Phone":
["999-555-1212"].

Chapter 12

12-2

See Also:

• IETF RFC7396 for the definition of JSON Merge Patch

• Oracle Database SQL Language Reference for information about SQL function
json_mergepatch

Example 12-1 A JSON Merge Patch Document

If applied to the document shown in Example 2-1, this JSON Merge Patch document does
the following:

• Adds member "Category" : "Platinum".

• Removes the member with field ShippingInstructions.

• Replaces the value of field Special Instructions with the string "Contact User
SBELL".

• Replaces the value of field LineItems with the empty array, []
• Replaces member "AllowPartialShipment" : null with member "Allow Partial

Shipment" : false (in effect renaming the field, since the field value was already false).

{ "Category" : "Platinum",
 "ShippingInstructions" : null,
 "Special Instructions" : "Contact User SBELL",
 "LineItems" : [],
 "AllowPartialShipment" : null,
 "Allow Partial Shipment" : false }

Example 12-2 A Merge-Patched JSON Document

This example shows the document that results from merge-patching the document in
Example 2-1 with the patch of Example 12-1.

{ "PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "Special Instructions" : "Contact User SBELL",
 "Allow Partial Shipment" : false,
 "LineItems" : [],
 "Category" : "Platinum" }

Example 12-3 Updating a JSON Column Using JSON Merge Patch

This example updates all documents in j_purchaseorder.po_document, removing field
"Special Instructions".

UPDATE j_purchaseorder SET po_document =
 json_mergepatch(po_document, '{"Special Instructions":null}');

Chapter 12

12-3

Example 12-4 Updating Selected JSON Documents On the Fly

This example selects all documents in j_purchaseorder.po_document, returning
pretty-printed, updated copies of them, where field "Special Instructions" has been
removed.

SELECT json_mergepatch(po_document, '{"Special Instructions":null}'
 RETURNING CLOB PRETTY)
 FROM j_purchaseorder;

Related Topics

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database.
You can use Oracle SQL function json_transform or json_mergepatch to update
a JSON document. You can work directly with JSON data contained in file-system
files by creating an external table that exposes it to the database.

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

Chapter 12

12-4

13
Loading External JSON Data

You can create a database table of JSON data from the content of a JSON dump file.

This topic shows how you can load a full table of JSON documents from the data in a JSON
dump file, $ORACLE_HOME/demo/schema/order_entry/PurchaseOrders.dmp. The format of this
file is compatible with the export format produced by common NoSQL databases, including
Oracle NoSQL Database. Each row of the file contains a single JSON document represented
as a JSON object.

You can query such an external table directly or, for better performance if you have multiple
queries that target different rows, you can load an ordinary database table from the data in
the external table.

Example 13-1 creates a database directory that corresponds to file-system
directory $ORACLE_HOME/demo/schema/order_entry. Example 13-2 then uses this database
directory to create and fill an external table, json_dump_file_contents, with the data from
the dump file, PurchaseOrders.dmp. It bulk-fills the external table completely, copying all of
the JSON documents to column json_document.

Example 13-4 then uses an INSERT as SELECT statement to copy the JSON documents from
the external table to JSON column po_document of ordinary database table j_purchaseorder.

Because we chose BLOB storage for JSON column json_document of the external table,
column po_document of the ordinary table must also be of type BLOB. Example 13-3 creates
table j_purchaseorder with BLOB column po_document.

Note:

You need system privilege CREATE ANY DIRECTORY to create a database directory.

See Also:

• Oracle Database Concepts for overview information about external tables

• Oracle Database Utilities and Oracle Database Administrator’s Guide for
detailed information about external tables

• Oracle Database Data Warehousing Guide

• Oracle Database SQL Language Reference for information about CREATE TABLE

13-1

Example 13-1 Creating a Database Directory Object for Purchase Orders

You must replace $ORACLE_HOME here by its value.

CREATE OR REPLACE DIRECTORY order_entry_dir
 AS '$ORACLE_HOME/demo/schema/order_entry';

Example 13-2 Creating an External Table and Filling It From a JSON Dump File

CREATE TABLE json_dump_file_contents (json_document BLOB)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY
order_entry_dir
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY 0x'0A'
 DISABLE_DIRECTORY_LINK_CHECK
 FIELDS (json_document CHAR(5000)))
 LOCATION
(order_entry_dir:'PurchaseOrders.dmp'))
 PARALLEL
 REJECT LIMIT UNLIMITED;

Example 13-3 Creating a Table With a BLOB JSON Column

Table j_purchaseorder has primary key id and JSON column po_document, which is
stored using data type BLOB. The LOB cache option is turned on for that column.

DROP TABLE j_purchaseorder;

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document BLOB
 CONSTRAINT ensure_json CHECK (po_document IS JSON))
 LOB (po_document) STORE AS (CACHE);

Example 13-4 Copying JSON Data From an External Table To a Database Table

INSERT INTO j_purchaseorder (id, date_loaded, po_document)
 SELECT SYS_GUID(), SYSTIMESTAMP, json_document FROM
json_dump_file_contents
 WHERE json_document IS JSON;

Chapter 13

13-2

Part IV
Query JSON Data

You can query JSON data using a simple dot notation or, for more functionality, using SQL/
JSON functions and conditions. You can create and query a data guide that summarizes the
structure and type information of a set of JSON documents.

Because JSON data is stored in the database using standard data types (VARCHAR2, BLOB,
and CLOB), SQL queries work with JSON data the same as with any other database data.

To query particular JSON fields, or to map particular JSON fields to SQL columns, you can
use the SQL/JSON path language. In its simplest form a path expression consists of one or
more field names separated by periods (.). More complex path expressions can contain
filters and array indexes.

Oracle provides two ways of querying JSON content:

• A dot-notation syntax, which is essentially a table alias, followed by a JSON column
name, followed by one or more field names — all separated by periods (.). An array step
can follow each of the field names. This syntax is designed to be simple to use and to
return JSON values whenever possible.

• SQL/JSON functions and conditions, which completely support the path language and
provide more power and flexibility than is available using the dot-notation syntax. You can
use them to create, query, and operate on JSON data stored in Oracle Database.

– Condition json_exists tests for the existence of a particular value within some JSON
data.

– Conditions is json and is not json test whether some data is well-formed JSON
data. The former is used especially as a check constraint.

– Function json_value selects a scalar value from some JSON data, as a SQL value.

– Function json_query selects one or more values from some JSON data, as a SQL
string representing the JSON values. It is used especially to retrieve fragments of a
JSON document, typically a JSON object or array.

– Function json_table projects some JSON data as a virtual table, which you can also
think of as an inline view.

Because the path language is part of the query language, no fixed schema is imposed on the
data. This design supports schemaless development. A “schema”, in effect, gets defined on
the fly at query time, by your specifying a given path. This is in contrast to the more usual
approach with SQL of defining a schema (a set of table rows and columns) for the data at
storage time.

Oracle SQL condition json_equal does not accept a path-expression argument. It just
compares two JSON values and returns true if they are equal, false otherwise. For this
comparison, insignificant whitespace and insignificant object member order are ignored. For
example, JSON objects are equal if they have the same members, regardless of their order.
However, if either of two compared objects has one or more duplicate fields then the value
returned by json_equal is unspecified.

You can generate and query a JSON data guide, to help you develop expressions for
navigating your JSON content. A data guide can give you a deep understanding of the
structure and type information of your JSON documents. Data guide information can
be updated automatically, to keep track of new documents that you add.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases. Queries of
JSON data that use dot-notation syntax return JSON values whenever possible.

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

• Clauses Used in SQL Query Functions and Conditions
Clauses RETURNING, wrapper, error, and empty-field are described. Each is used in
one or more of the SQL functions and conditions json_value, json_query,
json_table, json_serialize, json_mergepatch, is json, is not json,
json_exists, and json_equal.

• SQL/JSON Condition JSON_EXISTS
SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a
row filter, to select rows based on the content of JSON documents. You can use
condition json_exists in a CASE expression or the WHERE clause of a SELECT
statement.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects one or more values from JSON data and
returns a string (VARCHAR2, CLOB, or BLOB instance) that represents the JSON
values. You can thus use json_query to retrieve fragments of a JSON document.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type,
VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it (as
VARCHAR2, CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content
of JSON documents stored in Oracle Database.

See Also:

Oracle Database SQL Language Reference for complete information about
the syntax and semantics of the SQL/JSON functions and conditions

14
Simple Dot-Notation Access to JSON Data

Dot notation is designed for easy, general use and common use cases. Queries of JSON
data that use dot-notation syntax return JSON values whenever possible.

The return value for a dot-notation query is always a string (data type VARCHAR2(4000))
representing JSON data. The content of the string depends on the targeted JSON data, as
follows:

• If a single JSON value is targeted, then that value is the string content, whether it is a
JSON scalar, object, or array.

• If multiple JSON values are targeted, then the string content is a JSON array whose
elements are those values.

This behavior contrasts with that of SQL/JSON functions json_value and json_query, which
you can use for more complex queries. They can return NULL or raise an error if the path
expression you provide them does not match the queried JSON data. They accept optional
clauses to specify the data type of the return value (RETURNING clause), whether or not to
wrap multiple values as an array (wrapper clause), how to handle errors generally (ON ERROR
clause), and how to handle missing JSON fields (ON EMPTY clause).

In the first case above, the dot-notation behavior is similar to that of function json_value for a
scalar value, and it is similar to that of json_query for an object or array value. In the second
case, the behavior is similar to that of json_query with an array wrapper.

The dot-notation syntax is a table alias (mandatory) followed by a dot, that is, a period (.), the
name of a JSON column, and one or more pairs of the form . json_field or . json_field
followed by array_step, where json_field is a JSON field name and array_step is an array
step expression as described in Basic SQL/JSON Path Expression Syntax.

Each json_field must be a valid SQL identifier,1 and the column must have an is json
check constraint, which ensures that it contains well-formed JSON data. If either of these
rules is not respected then an error is raised at query compile time. (The check constraint
must be present to avoid raising an error; however, it need not be active. If you deactivate the
constraint then this error is not raised.)

For the dot notation for JSON queries, unlike the case generally for SQL, unquoted identifiers
(after the column name) are treated case sensitively, that is, just as if they were quoted. This
is a convenience: you can use JSON field names as identifiers without quoting them. For
example, you can write jcolumn.friends instead of jcolumn."friends". This also means
that if a JSON object is named using uppercase, such as FRIENDS, then you must write
jcolumn.FRIENDS, not jcolumn.friends.

Here are some examples of dot notation syntax. All of them refer to JSON column
po_document of a table that has alias po.

• po.po_document.PONumber – The value of field PONumber.

1 In particular, this means that you cannot use an empty field name ("") with dot-notation syntax.

14-1

• po.po_document.LineItems[1] – The second element of array LineItems (array
positions are zero-based).

• po.po_document.LineItems[*] – All of the elements of array LineItems (* is a
wildcard).

• po.po_document.ShippingInstructions.name – The value of field name, a child of
object ShippingInstructions.

Note:

• Each component of the dot-notation syntax is limited to a maximum of
128 bytes.

See Oracle Database SQL Language Reference for more information
about SQL dot-notation syntax and SQL identifiers.

• A simple dot-notation JSON query cannot return a value longer than 4K
bytes. If the value surpasses this limit then SQL NULL is returned instead.
To obtain the actual value, use SQL/JSON function json_query or
json_value instead of dot notation, specifying an appropriate return type
with a RETURNING clause.

See Oracle Database SQL Language Reference for more information
about JSON dot-notation syntax.

Matching of a JSON dot-notation expression against JSON data is the same as
matching of a SQL/JSON path expression, including the relaxation to allow implied
array iteration (see SQL/JSON Path Expression Syntax Relaxation). The JSON
column of a dot-notation expression corresponds to the context item of a path
expression, and each identifier used in the dot notation corresponds to an identifier
used in a path expression.

For example, if JSON column jcolumn corresponds to the path-expression context
item, then the expression jcolumn.friends corresponds to path
expression $.friends, and jcolumn.friends.name corresponds to path
expression $.friends.name.

For the latter example, the context item could be an object or an array of objects. If it is
an array of objects then each of the objects in the array is matched for a field friends.
The value of field friends can itself be an object or an array of objects. In the latter
case, the first object in the array is used.

Chapter 14

14-2

Note:

Other than (1) the implied use of a wildcard for array elements (see SQL/JSON
Path Expression Syntax Relaxation) and (2) the explicit use of a wildcard between
array brackets ([*]), you cannot use wildcards in a path expression when you use
the dot-notation syntax. This is because an asterisk (*) is not a valid SQL identifier.

For example, this raises a syntax error: mytable.mycolumn.object1.*.object2.

Dot-notation syntax is a handy alternative to using simple path expressions; it is not
a replacement for using path expressions in general.

Example 14-1 shows equivalent dot-notation and json_value queries. Given the data from
Example 4-2, each of the queries returns the string "1600", a VARCHAR2 value representing
the JSON number 1600.

Example 14-2 shows equivalent dot-notation and json_query queries. Each query in the first
pair returns (a VARCHAR2 value representing) a JSON array of phone objects. Each query in
the second pair returns (a VARCHAR2 value representing) an array of phone types, just as in
Example 19-1.

See Also:

Oracle Database SQL Language Reference for information about dot notation used
for SQL object and object attribute access (object access expressions)

Example 14-1 JSON Dot-Notation Query Compared With JSON_VALUE

SELECT po.po_document.PONumber FROM j_purchaseorder po;

SELECT json_value(po_document, '$.PONumber') FROM j_purchaseorder;

Example 14-2 JSON Dot-Notation Query Compared With JSON_QUERY

SELECT po.po_document.ShippingInstructions.Phone FROM j_purchaseorder po;

SELECT json_query(po_document, '$.ShippingInstructions.Phone')
 FROM j_purchaseorder;

SELECT po.po_document.ShippingInstructions.Phone.type FROM j_purchaseorder
po;

SELECT json_query(po_document, '$.ShippingInstructions.Phone.type' WITH
WRAPPER)
 FROM j_purchaseorder;

Chapter 14

14-3

Related Topics

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. You use SQL condition is json
as a check constraint to ensure that data inserted into a column is (well-formed)
JSON data. Oracle recommends that you always use an is_json check constraint
when you create a column intended for JSON data.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

Chapter 14

14-4

15
SQL/JSON Path Expressions

Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards and array
ranges. Matching is case-sensitive.

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the ISO
8601 date and time formats.

• Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at
compile time. If the effective types of the operands of a comparison are not known to be
the same then an attempt is sometimes made to reconcile them by type-casting.

15.1 Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

JSON is a notation for JavaScript values. When JSON data is stored in the database you can
query it using path expressions that are somewhat analogous to XQuery or XPath
expressions for XML data. Similar to the way that SQL/XML allows SQL access to XML data
using XQuery expressions, Oracle Database provides SQL access to JSON data using SQL/
JSON path expressions.

SQL/JSON path expressions have a simple syntax. A path expression selects zero or more
JSON values that match, or satisfy, it.

SQL/JSON condition json_exists returns true if at least one value matches, and false if no
value matches. If a single value matches, then SQL/JSON function json_value returns that
value if it is scalar and raises an error if it is non-scalar. If no value matches the path
expression then json_value returns SQL NULL.

SQL/JSON function json_query returns all of the matching values, that is, it can return
multiple values. You can think of this behavior as returning a sequence of values, as in
XQuery, or you can think of it as returning multiple values. (No user-visible sequence is
manifested.)

In all cases, path-expression matching attempts to match each step of the path expression, in
turn. If matching any step fails then no attempt is made to match the subsequent steps, and
matching of the path expression fails. If matching each step succeeds then matching of the
path expression succeeds.

15-1

Related Topics

• SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards
and array ranges. Matching is case-sensitive.

15.2 SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards and
array ranges. Matching is case-sensitive.

You pass a SQL/JSON path expression and some JSON data to a SQL/JSON function
or condition. The path expression is matched against the data, and the matching data
is processed by the particular SQL/JSON function or condition. You can think of this
matching process in terms of the path expression returning the matched data to the
function or condition.

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array
wrapping and unwrapping. This means that you need not change a path
expression in your code if your data evolves to replace a JSON value with an array
of such values, or vice versa. Examples are provided.

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions
are presented for the basic SQL/JSON path expression syntax.

15.2.1 Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of a
context-item symbol ($) followed by zero or more object, array, and descendant steps,
each of which can be followed by a filter expression, followed optionally by a function
step. Examples are provided.

However, this basic syntax is extended by relaxing the matching of arrays and non-
arrays against non-array and array patterns, respectively — see SQL/JSON Path
Expression Syntax Relaxation.

Matching of data against SQL/JSON path expressions is case-sensitive.

Chapter 15
SQL/JSON Path Expression Syntax

15-2

• A SQL/JSON basic path expression (also called just a path expression here) is an
absolute path expression or a relative path expression.

• An absolute path expression begins with a dollar sign ($), which represents the path-
expression context item, that is, the JSON data to be matched. That data is the result of
evaluating a SQL expression that is passed as argument to the SQL/JSON function. The
dollar sign is followed by zero or more nonfunction steps, followed by an optional function
step.

• A relative path expression is an at sign (@) followed by zero or more nonfunction steps,
followed by an optional function step. It has the same syntax as an absolute path
expression, except that it uses an at sign instead of a dollar sign ($).

A relative path expression is used inside a filter expression (filter, for short). The at sign
represents the path-expression current filter item, that is, the JSON data that matches
the part of the (surrounding) path expression that precedes the filter containing the
relative path expression. A relative path expression is matched against the current filter
item in the same way that an absolute path expression is matched against the context
item.

• A nonfunction step is an object step, an array step, or a descendant step, followed by
an optional filter expression.

• A single function step is optional in a basic path expression (absolute or a relative). If
present, it is the last step of the path expression. It is a period (.), sometimes read as
"dot", followed by a SQL/JSON item method, followed by a left parenthesis (() and then
a right parenthesis ()). The parentheses can have whitespace between them (such
whitespace is insignificant).

The item method is applied to the data that is targeted by the rest of the same path
expression, which precedes the function step. The item method is used to transform that
data. The SQL function or condition that is passed the path expression as argument uses
the transformed data in place of the targeted data.

• An object step is a period (.), followed by an object field name or an asterisk (*)
wildcard, which stands for (the values of) all fields. A field name can be empty, in which
case it must be written as "" (no intervening whitespace). A nonempty field name must
start with an uppercase or lowercase letter A to Z and contain only such letters or decimal
digits (0-9), or else it must be enclosed in double quotation marks (").

An object step returns the value of the field that is specified. If a wildcard is used for the
field then the step returns the values of all fields, in no special order.

• An array step is a left bracket ([) followed by either an asterisk (*) wildcard, which
stands for all array elements, or one or more specific array indexes or range
specifications separated by commas (,), followed by a right bracket (]). An error is raised
if you use both an asterisk and either an array index or a range specification.

In a path expression, array indexing is zero-based (0, 1, 2,...), as in the JavaScript
convention for arrays. A range specification has the form N to M, where N and M are array
indexes and N is strictly less than M.1 An error is raised at query compilation time if N is not
less than M.

When indexes or range specifications are used, the array elements they collectively
specify must be specified in ascending order, without repetitions, or else a compile-time
error is raised. For example, an error is raised for each of [3, 1 to 4], [4, 2], [2, 3 to
3], and [2, 3, 3]. Errors are raised on the first two because the order is not ascending,

1 The to in a range specification is sometimes informally called the array slice operator.

Chapter 15
SQL/JSON Path Expression Syntax

15-3

Errors are raised on the last two because of the repetition of array index 3 (which
indexes the fourth array element, because of zero-based indexing).

Similarly, the elements in the array value that results from matching are in
ascending order, with no repetitions. If an asterisk is used in the path expression
then all of the array elements are returned, in array order.

• A descendant step is two consecutive periods (..), sometimes read as "dot dot",
followed by a field name (which has the same syntax as for an object step).

It descends recursively into the objects or arrays that match the step immediately
preceding it (or into the context item if there is no preceding step).

At each descendant level, for each object and for each array element that is an
object, it gathers the values of all fields that have the specified name. It returns all
of the gathered field values.

For example, consider this query and data:

json_query(some_json_column, '$.a..z' WITH ARRAY WRAPPER)

{ "a" : { "b" : { "z" : 1 },
 "c" : [5, { "z" : 2 }],
 "z" : 3 }
 "z" : 4 }

The query returns an array, such as [1,2,3], whose elements are 1, 2, and 3. It
gathers the value of each field z within the step that immediately precedes the dot
dot (..), which is field a. The topmost field z, with value 4, is not matched because
it is not within the value of field a.

The value of field a is an object, which is descended into.

– It has a field z, whose value (3) is gathered. It also has a field b whose value is
an object, which is descended into to gather the value of its field z, which is 1.

– It also has a field c whose value is an array, which has an element that is an
object with a field z, whose value (2) is gathered.

The JSON values gathered are thus 3, 1, and 2. They are wrapped in an array, in
an undefined order. One of the possible return values is [1,2,3].

• A filter expression (filter, for short) is a question mark (?) followed by a filter
condition enclosed in parentheses (()). A filter is satisfied if its condition is
satisfied, that is, returns true.

• A filter condition applies a predicate (Boolean function) to its arguments and is
one of the following, where each of cond, cond1, and cond2 stands for a filter
condition.

– (cond): Parentheses are used for grouping, separating filter condition cond
as a unit from other filter conditions that may precede or follow it.

– cond1 && cond2: The conjunction (and) of cond1 and cond2, requiring that
both be satisfied.

– cond1 || cond2: The inclusive disjunction (or) of cond1 and cond2, requiring
that cond1, cond2, or both, be satisfied.

– ! (cond): The negation of cond, meaning that cond must not be satisfied.

Chapter 15
SQL/JSON Path Expression Syntax

15-4

– exists (, followed by a relative path expression, followed by): The condition that
the targeted data exists (is present).

– A comparison, which is one of the following:

* A relative path expression, followed by a comparison predicate, followed by
either a JSON scalar value or a SQL/JSON variable.

* Either a JSON scalar value or a SQL/JSON variable, followed by a comparison
predicate, followed by a relative path expression.

* A JSON scalar value, followed by a comparison predicate, followed by another
JSON scalar value.

* A relative path expression, followed by has substring, starts with, like,
like_regex, or eq_regex, followed by either a JSON string or a SQL/JSON
variable that is bound to a SQL string (which is automatically converted from the
database character set to UTF8).

* has substring means that the matching data value has the specified string
as a substring.

* starts with means that the matching data value has the specified string as
a prefix.

* like means that the JSON string data value matches the specified string,
which is interpreted as a SQL LIKE pattern that uses SQL LIKE4 character-
set semantics. A percent sign (%) in the pattern matches zero or more
characters. An underscore (_) matches a single character.

Note:

Unlike the case for SQL LIKE, there is no escape character for
path-expression predicate like. Also, Oracle recommends that you
avoid using character `, GRAVE ACCENT (U+0060), in your like
patterns — that character, also known sometimes as backquote or
backtick, is reserved for future use.

* like_regex means that the JSON string data value matches the specified
string, which is interpreted as a SQL REGEXP LIKE regular expression pattern
that uses SQL LIKE4 character-set semantics.

like_regex is exceptional among the pattern-matching comparisons, in that
its pattern matches the empty JSON string ("").

* eq_regex is just like like_regex, except for these two differences:

* eq_regex matches its regular expression pattern against the entire JSON
string data value — the full string must match the pattern for the
comparison to be satisfied. like_regex is satisfied if any portion of the
JSON string matches the pattern.

* The eq_regex pattern does not match the empty JSON string ("").

For all of these predicates, a pattern that is the empty string ("") matches data
that is the empty string. And for all except like_regex, a pattern that is a
nonempty string does not match data that is the empty string. For like_regex a
nonempty pattern does match empty-string data.

Chapter 15
SQL/JSON Path Expression Syntax

15-5

* A relative path expression, followed by in, followed by a value list,
meaning that the value is one of those in the value list.

A comparison predicate is ==, <>, !=2, <, <=, >=, or >, meaning equals, does
not equal, is less than, is less than or equal to, is greater than or equal to, and
is greater than, respectively.

A SQL/JSON variable is a dollar sign ($) followed by the name of a SQL
identifier that is bound in a PASSING clause for json_exists.

– A value list is (, followed by a list of one or more scalar values and SQL/
JSON variables separated by commas (,), followed by).

The predicates that you can use in filter conditions are thus &&, ||, !, exists, ==,
<>, !=, <, <=, >=, >, and in.

As an example, the filter condition (a || b) && (!(c) || d < 42) is satisfied if
both of the following criteria are met:

– At least one of the filter conditions a and b is satisfied: (a || b).

– Filter condition c is not satisfied or the number d is less than or equal to 42, or
both are true: (!(c) || d < 42).

Comparison predicate ! has precedence over &&, which has precedence over ||.
You can always use parentheses to control grouping.

Without parentheses for grouping, the preceding example would be a || b && !
(c) || d < 42, which would be satisfied if at least one of the following criteria is
met:

– Condition b && !(c) is satisfied, which means that each of the conditions b
and !(c) is satisfied (which in turn means that condition c is not satisfied).

– Condition a is satisfied.

– Condition d < 42 is satisfied.

At least one side of a comparison must not be a SQL/JSON variable. The default type
for a comparison is defined at compile time, based on the type(s) for the non-variable
side(s). You can use a type-specifying item method to override this default with a
different type. The type of your matching data is automatically converted, for the
comparison, to fit the determined type (default or specified by item method). For
example, $.a > 5 imposes numerical comparison because 5 is a number, $.a > "5"
imposes string comparison because "5" is a string.

Note:

For powerful full-text search, use Oracle SQL function json_textcontains,
which requires that you create a JSON search index. As a less-powerful
alternative, if you do not create a JSON search index, and you just want
simple string pattern-matching in a filter condition, you can use any of the
pattern-matching comparisons: has substring, starts with, like,
like_regex, or eq_regex.

2 != is an Oracle alias for the SQL/JSON standard comparison predicate <>.

Chapter 15
SQL/JSON Path Expression Syntax

15-6

Here are some examples of path expressions, with their meanings spelled out in detail.

• $ – The context item.

• $.friends – The value of field friends of a context-item object. The dot (.) immediately
after the dollar sign ($) indicates that the context item is a JSON object.

• $.friends[0] – An object that is the first element of an array that is the value of field
friends of a context-item object. The bracket notation indicates that the value of field
friends is an array.

• $.friends[0].name – Value of field name of an object that is the first element of an array
that is the value of field friends of a context-item object. The second dot (.) indicates
that the first element of array friends is an object (with a name field).

• $.friends[*].name – Value of field name of each object in an array that is the value of
field friends of a context-item object.

• $.*[*].name – Field name values for each object in an array value of a field of a context-
item object.

• $.friends[3, 8 to 10, 12] – The fourth, ninth through eleventh, and thirteenth
elements of an array friends (field of a context-item object). The elements must be
specified in ascending order, and they are returned in that order: fourth, ninth, tenth,
eleventh, thirteenth.

• $.friends[3].cars – The value of field cars of an object that is the fourth element of an
array friends. The dot (.) indicates that the fourth element is an object (with a cars
field).

• $.friends[3].* – The values of all of the fields of an object that is the fourth element of
an array friends.

• $.friends[3].cars[0].year – The value of field year of an object that is the first
element of an array that is the value of field cars of an object that is the fourth element of
an array friends.

• $.friends[3].cars[0]?(@.year > 2016) – The first object of an array cars (field of an
object that is the fourth element of an array friends), provided that the value of its field
year is, or can be converted to, a number greater than 2016. A year value such as
"2017" is converted to the number 2017, which satisfies the test. A year value such as
"recent" fails the test — no match.

• $.friends[3].cars[0]?(@.year.number() > 2016) – Same as the previous. Item
method number() allows only a number or a string value that can be converted to a
number, and that behavior is already provided by numeric comparison predicate >.

• $.friends[3].cars[0]?(@.year.numberOnly() > 2016) – Same as the previous, but
only if the year value is a number. Item method numberOnly() excludes a car with a year
value that is a string numeral, such as "2017".

• $.friends[3]?(@.addresses.city == "San Francisco") – An object that is the fourth
element of an array friends, provided that it has an addresses field whose value is an
object with a field city whose value is the string "San Francisco".

• $.friends[*].addresses?(@city starts with "San ").zip – Zip codes of all
addresses of friends, where the name of the address city starts with "San ". (In this
case the filter is not the last path step.)

• $..zip – All values of a zip field, anywhere, at any level.

Chapter 15
SQL/JSON Path Expression Syntax

15-7

• $.friends[3]?(@.addresses.city == "San Francisco" && @.addresses.state
== "Nevada") – Objects that are the fourth element of an array friends, provided
that there is a match for an address with a city of "San Francisco" and there is a
match for an address with a state of "Nevada".

Note: The filter conditions in the conjunction do not necessarily apply to the same
object — the filter tests for the existence of an object with city San Francisco and
for the existence of an object with state Nevada. It does not test for the existence
of an object with both city San Francisco and state Nevada. See Using Filters with
JSON_EXISTS.

• $.friends[3].addresses?(@.city == "San Francisco" && @.state ==
"Nevada") – An object that is the fourth element of array friends, provided that
object has a match for city of "San Francisco" and a match for state of
"Nevada".

Unlike the preceding example, in this case the filter conditions in the conjunction,
for fields city and state, apply to the same addresses object. The filter applies to
a given addresses object, which is outside it.

Related Topics

• Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has
one or more filter expressions, to select documents that contain matching data.
Filters let you test for the existence of documents that have particular fields that
satisfy various conditions.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are
described.

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array
wrapping and unwrapping. This means that you need not change a path
expression in your code if your data evolves to replace a JSON value with an array
of such values, or vice versa. Examples are provided.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions
are presented for the basic SQL/JSON path expression syntax.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

• ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates and times. Oracle Database
supports many of the ISO 8601 date and time formats.

Chapter 15
SQL/JSON Path Expression Syntax

15-8

See Also:

• ISO 8601 for information about the ISO date formats

• Oracle Database SQL Language Reference for information about SQL
condition REGEXP LIKE

• Oracle Database SQL Language Reference for information about SQL
condition LIKE and LIKE4 character-set semantics

15.2.2 SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array wrapping and
unwrapping. This means that you need not change a path expression in your code if your
data evolves to replace a JSON value with an array of such values, or vice versa. Examples
are provided.

Basic SQL/JSON Path Expression Syntax defines the basic SQL/JSON path-expression
syntax. The actual path expression syntax supported relaxes that definition as follows:

• If a path-expression step targets (expects) an array but the actual data presents no array
then the data is implicitly wrapped in an array.

• If a path-expression step targets (expects) a non-array but the actual data presents an
array then the array is implicitly unwrapped.

This relaxation allows for the following abbreviation: [*] can be elided whenever it precedes
the object accessor, ., followed by an object field name, with no change in effect. The reverse
is also true: [*] can always be inserted in front of the object accessor, ., with no change in
effect.

This means that the object step [*].prop, which stands for the value of field prop of each
element of a given array of objects, can be abbreviated as .prop, and the object step .prop,
which looks as though it stands for the prop value of a single object, stands also for the prop
value of each element of an array to which the object accessor is applied.

This is an important feature, because it means that you need not change a path expression in
your code if your data evolves to replace a given JSON value with an array of such values, or
vice versa.

For example, if your data originally contains objects that have field Phone whose value is a
single object with fields type and number, the path expression $.Phone.number, which
matches a single phone number, can still be used if the data evolves to represent an array of
phones. Path expression $.Phone.number matches either a single phone object, selecting its
number, or an array of phone objects, selecting the number of each.

Similarly, if your data mixes both kinds of representation — there are some data entries that
use a single phone object and some that use an array of phone objects, or even some entries
that use both — you can use the same path expression to access the phone information from
these different kinds of entry.

Here are some example path expressions from section Basic SQL/JSON Path Expression
Syntax, together with an explanation of equivalences.

• $.friends – The value of field friends of either:

Chapter 15
SQL/JSON Path Expression Syntax

15-9

– The (single) context-item object.

– (equivalent to $[*].friends) Each object in the context-item array.

• $.friends[0].name – Value of field name for any of these objects:

– The first element of the array that is the value of field friends of the context-
item object.

– (equivalent to $.friends.name) The value of field friends of the context-item
object.

– (equivalent to $[*].friends.name) The value of field friends of each object in
the context-item array.

– (equivalent to $[*].friends[0].name) The first element of each array that is
the value of field friends of each object in the context-item array.

The context item can be an object or an array of objects. In the latter case, each
object in the array is matched for a field friends.

The value of field friends can be an object or an array of objects. In the latter
case, the first object in the array is used.

• $.*[*].name – Value of field name for any of these objects:

– An element of an array value of a field of the context-item object.

– (equivalent to $.*.name) The value of a field of the context-item object.

– (equivalent to $[*].*.name) The value of a field of an object in the context-
item array.

– (equivalent to $[*].*[*].name) Each object in an array value of a field of an
object in the context-item array.

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

15.3 SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

An item method is applied to the JSON data that is targeted by (the rest of) the path
expression terminated by that method. The method is used to transform that data. The
SQL function or condition that is passed the path expression uses the transformed
data in place of the targeted data. In some cases the application of an item method
acts as a filter, removing the targeted data from the result set.

If an item-method conversion fails for any reason, such as its argument being of the
wrong type, then the path cannot be matched (it refers to no data), and no error is
raised. In particular, this means that such an error is not handled by an error clause in
the SQL/JSON function or condition to which the path expression is passed.

Chapter 15
SQL/JSON Path Expression Item Methods

15-10

Application of an Item Method to an Array

With the exception of item methods size() and type(), if an array is targeted by an item
method then the method is applied to each of the array elements, not to the array itself. For
example, $.a.method() applies item-method method() to each element of array a, to convert
it and use it in place of the array. (This is similar, in effect, to the implied unwrapping of an
array when a non-array is expected for an object step.) The resulting set of matches includes
the converted array elements, not the targeted array.

For json_query or a json_table column expression with json_query semantics you can use
a wrapper clause to capture all of the converted array-element values as an array. For
example, this query:

SELECT json_query('["alpha", 42, "10.4"]', '$[*].stringOnly()' WITH ARRAY
WRAPPER) FROM dual;

returns this array (as a VARCHAR2 value): ["alpha", "10.4"].

Item methods size() and type() are exceptional in this regard. When applied to an array
they treat it as such, instead of acting on its elements. For example:

SELECT json_value('[19, "Oracle", {"a":1},[1,2,3]]', '$.type()') FROM dual;

returns the single VARCHAR2 value 'array'.

Item-Method Descriptions

In the item-method descriptions here, in some cases a targeted JSON value is said to be
interpreted as a value of a given SQL data type. This means that it is handled as if it were
controlled by a json_value RETURNING clause with that SQL data type.

For example, item-method string() interprets its target as would json_value with clause
RETURNING VARCHAR2(4000). A Boolean value is thus treated by string() as "true" or
"false"; a null value is treated as "null"; and a number is represented in a canonical string
form.

Because some item methods interpret the targeted JSON data as if it were of a SQL data
type, they can be used with json_value in place of a RETURNING clause, and they can be
used with json_table in place of a column type specification. That is, the item methods can
be used to specify the SQL data type for the extracted JSON data.

You can also use such item methods together with a json_value RETURNING clause or a
json_table column type specification. What happens if the SQL data type to use for
extracted JSON data is controlled by both an item method and either a json_value
RETURNING clause or a json_table column type?

• If the two data types are compatible then the data type for the RETURNING clause or the
column is used. For these purposes, VARCHAR2 is compatible with both VARCHAR2 and
CLOB.

• If the data types are incompatible then a static, compile-time error is raised.

Chapter 15
SQL/JSON Path Expression Item Methods

15-11

Table 15-1 Compatibility of Type-Conversion Item Methods and RETURNING
Types

Item Method Compatible RETURNING Clause Data Types

string() or stringOnly() VARCHAR2 or CLOB, except that string()
returns SQL NULL for a JSON null value

number() or numberOnly() NUMBER
date() DATE
timestamp() TIMESTAMP
boolean() or booleanOnly() VARCHAR2

Using a RETURNING clause or a column specification, you can specify a length for
character data and a precision and scale for numerical data. This lets you assign a
more precise SQL data type for extraction than what is provided by an item method for
target-data comparison purposes.

For example, if you use item method string() and RETURNING VARCHAR2(150) then
the data type of the returned data is VARCHAR2(150), not VARCHAR2(4000).

The data-type conversion methods with “only” in their name are the same as the
corresponding methods with names without “only”, except that the former convert only
JSON values that are of the given type (e.g., number) to the related SQL data type
(e.g. NUMBER). The methods without “only” in the name allow conversion, when
possible, of any JSON value to the given SQL data type. (When an “only” method
targets an array, the conversion applies to each array element, as usual.)

• abs(): The absolute value of the targeted JSON number. Corresponds to the use
of SQL function ABS.

• boolean(): A SQL VARCHAR2(20) interpretation of the targeted JSON value.

• booleanOnly(): A SQL VARCHAR2(20) interpretation of the targeted JSON data,
but only if it is a JSON Boolean value; otherwise, there is no match. Acts as a filter,
allowing matches only for JSON Boolean values.

• ceiling(): The targeted JSON number, rounded up to the nearest integer.
Corresponds to the use of SQL function CEIL.

• date(): A SQL date interpretation of the targeted JSON string. The targeted string
data must be in one of the supported ISO 8601 formats; otherwise, there is no
match.

• double(): A SQL BINARY_DOUBLE interpretation of the targeted JSON string or
number.

• floor(): The targeted JSON number, rounded down to the nearest integer.
Corresponds to the use of SQL function FLOOR.

• length(): The number of characters in the targeted JSON string, interpreted as a
SQL NUMBER.

• lower(): The lowercase string that corresponds to the characters in the targeted
JSON string.

• number(): A SQL NUMBER interpretation of the targeted JSON string or number.

Chapter 15
SQL/JSON Path Expression Item Methods

15-12

• numberOnly(): A SQL NUMBER interpretation of the targeted JSON data, but only if it is a
JSON number; otherwise, there is no match. Acts as a filter, allowing matches only for
JSON numbers.

• size(): The number of elements in an array, or 1 for a scalar or an object. This item
method can be used with json_query, in addition to json_value and json_table. If
applied to data that is an array, no implicit iteration over the array elements occurs: the
resulting value is just the number of array elements. (This is an exception to the rule of
implicit iteration.)

• string(): A SQL VARCHAR2(4000) interpretation of the targeted scalar JSON value.

• stringOnly(): A SQL VARCHAR2(4000) interpretation of the targeted scalar JSON value,
but only if it is a JSON string; otherwise, there is no match. Acts as a filter, allowing
matches only for JSON strings.

• timestamp(): A SQL TIMESTAMP interpretation of the targeted JSON string. The targeted
string data must be in one of the supported ISO 8601 formats; otherwise, there is no
match. 3

• type(): The name of the JSON data type of the targeted data, interpreted as a SQL
VARCHAR2(20) value. This item method can be used with json_query, in addition to
json_value and json_table. If applied to data that is an array, no implicit iteration over
the array elements occurs: the resulting value is "array". (This is an exception to the rule
of implicit iteration.)

– "null" for a value of null.

– "boolean" for a value of true or false.

– "number" for a number.

– "string" for a string.

– "array" for an array.

– "object" for an object.

• upper(): The uppercase string that corresponds to the characters in the targeted JSON
string.

Item methods boolean(), booleanOnly(), date(), length(), lower(), number(),
numberOnly(), string(), stringOnly(), timestamp(), and upper() are Oracle extensions to
the SQL/JSON standard. The other item methods, abs(), ceiling(), double(), floor(),
size(), and type() are part of the standard.

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of a
context-item symbol ($) followed by zero or more object, array, and descendant steps,
each of which can be followed by a filter expression, followed optionally by a function
step. Examples are provided.

• ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the ISO
8601 date and time formats.

3 Applying item method timestamp() to a supported ISO 8601 string <ISO-STRING> has the effect of SQL
sys_extract_utc(to_utc_timestamp_tz(<ISO-STRING>).

Chapter 15
SQL/JSON Path Expression Item Methods

15-13

• Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at
compile time. If the effective types of the operands of a comparison are not known
to be the same then an attempt is sometimes made to reconcile them by type-
casting.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

15.4 ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the
ISO 8601 date and time formats.

International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. You can manipulate strings that are in the
most common ISO 8601 date and time formats as proper Oracle Database date and
time values. The ISO 8601 formats that are supported are essentially those that are
numeric-only, language-neutral, and unambiguous.

This is the allowed syntax for dates and times:

• Date (only): YYYY-MM-DD
• Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]
where:

• YYYY specifies the year, as four decimal digits.

• MM specifies the month, as two decimal digits, 00 to 12.

• DD specifies the day, as two decimal digits, 00 to 31.

• hh specifies the hour, as two decimal digits, 00 to 23.

• mm specifies the minutes, as two decimal digits, 00 to 59.

Chapter 15
ISO 8601 Date and Time Support

15-14

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59, optionally
followed by a decimal point and 1 to 6 decimal digits (representing the fractional part of a
second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not by –
00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is assumed.

No other ISO 8601 date-time syntax is supported. In particular:

• Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. –2018–10–
26T21:32:52), are not supported.

• Hyphen and colon separators are required: so-called “basic” format, YYYYMMDDThhmmss, is
not supported.

• Ordinal dates (year plus day of year, calendar week plus day number) are not supported.

• Using more than four digits for the year is not supported.

Supported dates and times include the following:

• 2018–10–26T21:32:52
• 2018-10-26T21:32:52+02:00
• 2018-10-26T19:32:52Z
• 2018-10-26T19:32:52+00:00
• 2018-10-26T21:32:52.12679
Unsupported dates and times include the following:

• 2018-10-26T21:32 (if a time is specified then all of its parts must be present)

• 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)

• 18-10-26T21:32 (the year is not specified fully)

See Also:

• ISO 8601 standard

• ISO 8601 at Wikipedia

15.5 Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at compile
time. If the effective types of the operands of a comparison are not known to be the same
then an attempt is sometimes made to reconcile them by type-casting.

A SQL/JSON path expression targets JSON data, so the operands of a comparison are
JSON values. Type comparison of JSON values is straightforward: JSON data types string,
number, null, object, and array are mutually exclusive and incomparable.

Chapter 15
Types in Comparisons

15-15

https://en.wikipedia.org/wiki/ISO_8601

But comparison operands are sometimes interpreted (essentially cast) as values of
SQL data types. This is the case, for example, when some item methods, such as
number(), are used. This section addresses the type-checking of such effective
values.

You can prevent such type-casting by explicitly using one of the “only” item methods.
For example, applying method numberOnly() prevents implicit type-casting to a
number.

SQL is a statically typed language; types are determined at compile time. The same
applies to SQL/JSON path expressions, and in particular to comparisons in filter
conditions. This means that you get the same result for a query regardless of how it is
evaluated — whether functionally or using features such as indexes, materialized
views, and In-Memory scans.

To realize this:

• If the types of both operands are known and they are the same then type-checking
is satisfied.

• If the types of both operands are unknown then a compile-time error is raised.

• If the type of one operand is known and the other is unknown then the latter
operand is cast to the type of the former.

For example, in $.a?(@.b.c == 3) the type of $a.b.c is unknown at compile time.
The path expression is compiled as $.a?(@.b.c.number() == 3). At runtime an
attempt is thus made to cast the data that matches $a.b.c to a number. A string
value "3" would be cast to the number 3, satisfying the comparison.4

• If the types of both operands are known and they are not the same then an
attempt is made to cast the type of one to the type of the other. Details are
presented below.

Comparison operands used in the following combinations are not reconciled; a
compile-time error is raised.

• Number compared with any non-number type other than double.

• Double compared with any non-double type other than number.

• String compared with double.

• Boolean compared with any non-Boolean type, except for comparison with a string
value of 'true' or 'false' (or any letter-case variants, such as 'tRUe').

• Date or timestamp compared with string, unless the string has a supported ISO
8601 format.

• Date compared with any non-date type other than string.

• Timestamp (with or without time zone) compared with any non-timestamp type
other than string.

• JSON null compared with any type other than JSON null.

An attempt is made to reconcile comparison operands used in the following
combinations, by type-casting. You can think of a type-casting item method being
implicitly applied to one of the operands in order to make it type-compatible with the
other operand.

4 To prevent such casting here, you can explicitly apply item method numberOnly(): $.a?
(@.b.c.numberOnly() == 3). Data with a string value "3" would simply not match; it would be filtered out.

Chapter 15
Types in Comparisons

15-16

• Number compared with double — double() is implicitly applied to the number to make it
a double value.

• String value of 'true' or 'false' (or any letter-case variants, such as 'tRUe') compared
with Boolean — boolean() is implicitly applied to the string to make it a Boolean value.

• String in a supported ISO 8601 format compared with date — date() is implicitly applied
to the string to make it a date value. (Any time-zone component present is removed.)

• String in a supported ISO 8601 format compared with timestamp (with or without) time
zone — timestamp() is implicitly applied to the string to make it a timestamp value. For
this, the UTC time zone (Coordinated Universal Time, zero offset) is used as the default,
taking into account any time zone specified in the string.

Related Topics

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the ISO
8601 date and time formats.

Chapter 15
Types in Comparisons

15-17

16
Clauses Used in SQL Query Functions and
Conditions

Clauses RETURNING, wrapper, error, and empty-field are described. Each is used in one or
more of the SQL functions and conditions json_value, json_query, json_table,
json_serialize, json_mergepatch, is json, is not json, json_exists, and json_equal.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the data
in a json_table column. This clause and the default behavior (no wrapper clause) are
described here. Examples are provided.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• ON MISMATCH Clause for JSON_VALUE
When the RETURNING clause specifies a user-defined object-type or collection-type
instance, function json_value accepts an optional ON MISMATCH clause, which specifies
handling to use when a targeted JSON value does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described here.

16.1 RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept an
optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

For json_value, you can use any of these predefined SQL data types in a RETURNING clause:
VARCHAR2, NUMBER, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, SDO_GEOMETRY, and CLOB.
You can also use a user-defined object type or a collection type.

16-1

Note:

An instance of Oracle SQL data type DATE can include a time component.
And in your JSON data you can use a string that represents an ISO 8601
date-with-time value, that is, it can have a time component. But json_value
with RETURNING DATE always returns a SQL DATE value that is an ANSI date,
that is, the value has no time component.

To return a SQL DATE value that has a time component use RETURNING
TIMESTAMP and then cast the returned value to DATE. For example:

SELECT cast(json_value('{"a" : "2019-01-02T12:34:56"}', '$.a'
RETURNING TIMESTAMP) AS DATE)
 FROM DUAL;

For json_query, json_serialize, and json_mergepatch you can use VARCHAR2, CLOB,
or BLOB. A BLOB result is in the AL32UTF8 character set. Whatever the data type
returned by json_serialize, the returned data represents textual JSON data.

You can optionally specify a length for VARCHAR2 (default: 4000) and a precision and
scale for NUMBER.

The default behavior (no RETURNING clause) is to use VARCHAR2(4000).

Data type SDO_GEOMETRY is for Oracle Spatial and Graph data. In particular, this means
that you can use json_value with GeoJSON data, which is a format for encoding
geographic data in JSON.

The RETURNING clause also accepts two optional keywords, PRETTY and ASCII. If both
are present then PRETTY must come before ASCII. Keyword PRETTY is not allowed for
json_value.

The effect of keyword PRETTY is to pretty-print the returned data, by inserting newline
characters and indenting. The default behavior is not to pretty-print.

The effect of keyword ASCII is to automatically escape all non-ASCII Unicode
characters in the returned data, using standard ASCII Unicode escape sequences.
The default behavior is not to escape non-ASCII Unicode characters.

Tip:

You can pretty-print the entire context item by using only $ as the path
expression.

If VARCHAR2 is specified in a RETURNING clause then scalars in the value are
represented as follows:

• Boolean values are represented by the lowercase strings "true" and "false".

• The null value is represented by SQL NULL.

Chapter 16
RETURNING Clause for SQL Query Functions

16-2

• A JSON number is represented in a canonical form. It can thus appear differently in the
output string from its representation in textual input data. When represented in canonical
form:

– It can be subject to the precision and range limitations for a SQL NUMBER.

– When it is not subject to the SQL NUMBER limitations:

* The precision is limited to forty (40) digits.

* The optional exponent is limited to nine (9) digits plus a sign (+ or -).

* The entire text, including possible signs (-, +), decimal point (.), and exponential
indicator (E), is limited to 48 characters.

The canonical form of a JSON number:

– Is a JSON number. (It can be parsed in JSON data as a number.)

– Does not have a leading plus (+) sign.

– Has a decimal point (.) only when necessary.

– Has a single zero (0) before the decimal point if the number is a fraction (between
zero and one).

– Uses exponential notation (E) only when necessary. In particular, this can be the case
if the number of output characters is too limited (by a small N for VARCHAR2(N)).

Oracle extends the SQL/JSON standard in the case when the returning data type is
VARCHAR2(N), by allowing optional keyword TRUNCATE immediately after the data type. When
TRUNCATE is present and the value to return is wider than N, the value is truncated — only the
first N characters are returned. If TRUNCATE is absent then this case is treated as an error,
handled as usual by an error clause or the default error-handling behavior.

Related Topics

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-defined
SQL object type or collection type. You do this by targeting a JSON object or array in the
path expression and specifying the object or collection type, respectively, in the
RETURNING clause.

Chapter 16
RETURNING Clause for SQL Query Functions

16-3

See Also:

• Oracle Database SQL Language Reference for information about SQL
data types DATE and TIMESTAMP

• Oracle Database SQL Language Reference for information about SQL
data type NUMBER

• Oracle Spatial and Graph Developer's Guide for information about using
Oracle Spatial and Graph data

• GeoJSON.org

16.2 Wrapper Clause for SQL/JSON Query Functions
JSON_QUERY and JSON_TABLE

SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the
data in a json_table column. This clause and the default behavior (no wrapper
clause) are described here. Examples are provided.

The wrapper clause takes one of these forms:

• WITH WRAPPER – Use a string value that represents a JSON array containing all of
the JSON values that match the path expression. The order of the array elements
is unspecified.

• WITHOUT WRAPPER – Use a string value that represents the single JSON object or
array that matches the path expression. Raise an error if the path expression
matches either a scalar value (not an object or array) or more than one value.

• WITH CONDITIONAL WRAPPER – Use a string value that represents all of the JSON
values that match the path expression. For zero values, a single scalar value, or
multiple values, WITH CONDITIONAL WRAPPER is the same as WITH WRAPPER. For a
single JSON object or array value, it is the same as WITHOUT WRAPPER.

The default behavior is WITHOUT WRAPPER.

You can add the optional keyword UNCONDITIONAL immediately after keyword WITH, if
you find it clearer: WITH WRAPPER and WITH UNCONDITIONAL WRAPPER mean the same
thing.

You can add the optional keyword ARRAY immediately before keyword WRAPPER, if you
find it clearer: WRAPPER and ARRAY WRAPPER mean the same thing.

Table 16-1 illustrates the wrapper clause possibilities. The array wrapper is shown in
bold.

Chapter 16
Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE

16-4

Table 16-1 JSON_QUERY Wrapper Clause Examples

JSON Values
Matching Path
Expression

WITH WRAPPER WITHOUT WRAPPER WITH CONDITIONAL
WRAPPER

{"id": 38327}
(single object)

[{"id": 38327}] {"id": 38327} {"id": 38327}

[42, "a", true]
(single array)

[[42, "a", true]] [42, "a", true] [42, "a", true]

42 [42] Error (scalar) [42]
42, "a", true [42, "a", true] Error (multiple values) [42, "a", true]
none [] Error (no values) []

Consider, for example, a json_query query to retrieve a JSON object. What happens if the
path expression matches a JSON scalar value instead of an object, or it matches multiple
JSON values (of any kind)? You might want to retrieve the matched values instead of raising
an error. For example, you might want to pick one of the values that is an object, for further
processing. Using an array wrapper lets you do this.

A conditional wrapper can be convenient if the only reason you are using a wrapper is to
avoid raising an error and you do not need to distinguish those error cases from non-error
cases. If your application is looking for a single object or array and the data matched by a
path expression is just that, then there is no need to wrap that expected value in a singleton
array.

On the other hand, with an unconditional wrapper you know that the resulting array is always
a wrapper — your application can count on that. If you use a conditional wrapper then your
application might need extra processing to interpret a returned array. In Table 16-1, for
instance, note that the same array ([42, "a", true]) is returned for the very different cases
of a path expression matching that array and a path expression matching each of its
elements.

16.3 Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which specifies
handling for a runtime error that is raised by the function or condition. This clause and the
default behavior (no error clause) are summarized here.

By default, SQL functions and conditions for JSON avoid raising runtime errors. For example,
when JSON data is syntactically invalid, json_exists and json_equal return false and
json_value returns NULL.

But in some cases you can also specify an error clause, which overrides the default behavior.
The error handling you can specify varies, but each SQL function and condition for JSON that
lets you specify error handling supports at least the ERROR ON ERROR behavior of raising an
error.

The optional error clause can take these forms:

• ERROR ON ERROR – Raise the error (no special handling).

• NULL ON ERROR – Return NULL instead of raising the error.

Chapter 16
Error Clause for SQL Query Functions and Conditions

16-5

Not available for json_exists.

• FALSE ON ERROR – Return false instead of raising the error.

Available only for json_exists and json_equal, for which it is the default.

• TRUE ON ERROR – Return true instead of raising the error.

Available only for json_exists and json_equal.

• EMPTY OBJECT ON ERROR – Return an empty object ({}) instead of raising the error.

Available only for json_query.

• EMPTY ARRAY ON ERROR – Return an empty array ([]) instead of raising the error.

Available only for json_query.

• EMPTY ON ERROR – Same as EMPTY ARRAY ON ERROR.

• DEFAULT 'literal_return_value' ON ERROR – Return the specified value instead
of raising the error. The value must be a constant at query compile time.

Not available:

– For json_exists, json_equal, json_serialize, json_mergepatch, or a
json_table column value clause that has json_exists behavior

– For json_query or a json_table column value clause that has json_query
behavior

– For row-level error-handing for json_table
– When SDO_GEOMETRY is specified either as the RETURNING clause data type for

json_value or as a json_table column data type

The default behavior is NULL ON ERROR, except for conditions json_exists and
json_equal.

Note:

There are two levels of error handling for json_table, corresponding to its
two levels of path expressions: row and column. When present, a column
error handler overrides row-level error handling. The default error handler for
both levels is NULL ON ERROR.

Note:

An ON EMPTY clause overrides the behavior specified by ON ERROR for the
error of trying to match a missing field.

Chapter 16
Error Clause for SQL Query Functions and Conditions

16-6

Note:

The ON ERROR clause takes effect only for runtime errors that arise when a
syntactically correct SQL/JSON path expression is matched against JSON data. A
path expression that is syntactically incorrect results in a compile-time syntax error;
it is not handled by the ON ERROR clause.

Related Topics

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various SQL
data types. You use it to map parts of a JSON document into the rows and columns of a
new, virtual table, which you can also think of as an inline view.

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects one or more values from JSON data and returns
a string (VARCHAR2, CLOB, or BLOB instance) that represents the JSON values. You can
thus use json_query to retrieve fragments of a JSON document.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or an
instance of a user-defined SQL object type or SQL collection type (varray, nested table).

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type, VARCHAR2,
CLOB, or BLOB) as input and returns a textual representation of it (as VARCHAR2, CLOB, or
BLOB data). VARCHAR2(4000) is the default return type.

• SQL/JSON Condition JSON_EXISTS
SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a row
filter, to select rows based on the content of JSON documents. You can use condition
json_exists in a CASE expression or the WHERE clause of a SELECT statement.

• ON MISMATCH Clause for JSON_VALUE
When the RETURNING clause specifies a user-defined object-type or collection-type
instance, function json_value accepts an optional ON MISMATCH clause, which specifies
handling to use when a targeted JSON value does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described here.

See Also:

• Oracle Database SQL Language Reference for detailed information about the
error clause for SQL functions for JSON

• Oracle Database SQL Language Reference for detailed information about the
error clause for SQL conditions for JSON

Chapter 16
Error Clause for SQL Query Functions and Conditions

16-7

16.4 Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted JSON
field is absent from the data queried. This clause and the default behavior (no ON
EMPTY clause) are described here.

You generally handle errors for SQL/JSON functions and conditions using an error
clause (ON ERROR). However, there is a special case where you might want different
handling from this general error handling: when querying to match given JSON fields
that are missing from the data. Sometimes you do not want to raise an error just
because a field to be matched is absent. (A missing field is normally treated as an
error.)

You typically use a NULL ON EMPTY clause in conjunction with an accompanying ON
ERROR clause. This combination specifies that other errors are handled according to the
ON ERROR clause, but the error of trying to match a missing field is handled by just
returning NULL. If no ON EMPTY clause is present then an ON ERROR clause handles also
the missing-field case.

In addition to NULL ON EMPTY there are ERROR ON EMPTY and DEFAULT ... ON EMPTY,
which are analogous to the similarly named ON ERROR clauses.

If only an ON EMPTY clause is present (no ON ERROR clause) then missing-field behavior
is specified by the ON EMPTY clause, and other errors are handled the same as if NULL
ON ERROR were present (it is the ON ERROR default). If both clauses are absent then only
NULL ON ERROR is used.

Use NULL ON EMPTY for an Index Created on JSON_VALUE

NULL ON EMPTY is especially useful for the case of a functional index created on a
json_value expression. The clause has no effect on whether or when the index is
picked up, but it is effective in allowing some data to be indexed that would otherwise
not be because it is missing a field targeted by the json_value expression.

You generally want to use ERROR ON ERROR for the queries that populate the index, so
that a query path expression that results in multiple values or complex values raises
an error. But you sometimes do not want to raise an error just because the field
targeted by a path expression is missing — you want that data to be indexed.
Example 28-5 illustrates this use of NULL ON EMPTY when creating an index on a
json_value expression.

Related Topics

• Creating JSON_VALUE Function-Based Indexes
You can create a function-based index for SQL/JSON function json_value. You
can use the standard syntax for this, explicitly specifying function json_value, or
you can use the simple dot-notation syntax. Indexes created in either of these
ways can be used with both dot-notation queries and json_value queries.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

Chapter 16
Empty-Field Clause for SQL/JSON Query Functions

16-8

16.5 ON MISMATCH Clause for JSON_VALUE
When the RETURNING clause specifies a user-defined object-type or collection-type instance,
function json_value accepts an optional ON MISMATCH clause, which specifies handling to use
when a targeted JSON value does not match the specified SQL return value. This clause and
its default behavior (no ON MISMATCH clause) are described here.

Note:

Clauses ON ERROR and ON EMPTY apply only when no JSON data matches the path
expression. Clause ON MISMATCH applies when the JSON data that matches the
path expression does not match the specified object or collection return type.
Clause ON MISMATCH is allowed only when the return type is an instance of a user-
defined object type or collection type. If you use it with another return type then a
query compile-time error is raised.

When you return an instance of a SQL object or collection type that reflects the JSON data
targeted by function json_value, the definitions of that targeted data and the object or
collection to be returned must match, or else a query compile-time error applies.

The default handling of such an error is just to ignore it. But you can instead handle such an
error in various ways, by providing one or more ON MISMATCH clauses, as follows:

• IGNORE ON MISMATCH — Explicitly specify the default behavior: ignore the mismatch. The
object or collection instance returned can contain one or more SQL NULL values because
of mismatches against the targeted JSON data.

• NULL ON MISMATCH — Return SQL NULL as the object-type or collection-type value.

• ERROR ON MISMATCH — Raise a query compile-time error for the mismatch.

Each of these ON MISMATCH clause types can also be followed, in parentheses ((…)), by one
or more clauses that each indicates a kind of mismatch to handle, separated by commas (,).
These are the possible mismatch kinds:

• MISSING DATA — Some JSON data was needed to match the object-type or collection-
type data, but it was missing.

• EXTRA DATA — One or more JSON fields have no corresponding object-type or collection-
type data. For example, for JSON field address there is no object-type attribute with the
same name (matching case-insensitively, by default).

• TYPE ERROR — A JSON scalar value has a data type that is incompatible with the
corresponding return SQL scalar data type. This can be because of type incompatibility,
as put forth in Table 18-1, or because the SQL data type is too constraining (e.g.,
VARCHAR(2) is two short for JSON string "hello").

If no such kind-of-mismatch clause (e.g. EXTRA DATA) is present for a given handler (e.g. NULL
ON MISMATCH) then that handler applies to all kinds of mismatch.

You can have any number of ON MISMATCH clauses of different kinds, but if two or more such
contradict each other then a query compile-time error is raised.

Chapter 16
ON MISMATCH Clause for JSON_VALUE

16-9

Related Topics

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

Chapter 16
ON MISMATCH Clause for JSON_VALUE

16-10

17
SQL/JSON Condition JSON_EXISTS

SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a row filter,
to select rows based on the content of JSON documents. You can use condition json_exists
in a CASE expression or the WHERE clause of a SELECT statement.

Condition json_exists checks for the existence of a particular value within JSON data: it
returns true if the value is present and false if it is absent. More precisely, json_exists
returns true if the data it targets matches one or more JSON values. If no JSON values are
matched then it returns false.

You can also use json_exists to create bitmap indexes for use with JSON data — see
Example 28-1.

Error handlers ERROR ON ERROR, FALSE ON ERROR, and TRUE ON ERROR apply. The default is
FALSE ON ERROR. The handler takes effect when any error occurs, but typically an error
occurs when the given JSON data is not well-formed (using lax syntax). Unlike the case for
conditions is json and is not json, condition json_exists expects the data it examines to
be well-formed JSON data.

The second argument to json_exists is a SQL/JSON path expression followed by an
optional PASSING clause and an optional error clause.

The optional filter expression of a SQL/JSON path expression used with json_exists can
refer to SQL/JSON variables, whose values are passed from SQL by binding them with the
PASSING clause. The following SQL data types are supported for such variables: VARCHAR2,
NUMBER, BINARY_DOUBLE, DATE, TIMESTAMP, and TIMESTAMP WITH TIMEZONE.

Note:

SQL/JSON condition json_exists applied to JSON value null returns the SQL
string 'true'.

• Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has one or
more filter expressions, to select documents that contain matching data. Filters let you
test for the existence of documents that have particular fields that satisfy various
conditions.

• JSON_EXISTS as JSON_TABLE
SQL/JSON condition json_exists can be viewed as a special case of SQL/JSON
function json_table.

17-1

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

See Also:

Oracle Database SQL Language Reference for information about
json_exists

17.1 Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has one or
more filter expressions, to select documents that contain matching data. Filters let you
test for the existence of documents that have particular fields that satisfy various
conditions.

SQL/JSON condition json_exists returns true for documents containing data that
matches a SQL/JSON path expression. If the path expression contains a filter, then
the data that matches the path to which that filter is applied must also satisfy the filter,
in order for json_exists to return true for the document containing the data.

A filter applies to the path that immediately precedes it, and the test is whether both (a)
the given document has some data that matches that path, and (b) that matching data
satisfies the filter. If both of these conditions hold then json_exists returns true for the
document.

The path expression immediately preceding a filter defines the scope of the patterns
used in it. An at-sign (@) within a filter refers to the data targeted by that path, which is
termed the current item for the filter. For example, in the path
expression $.LineItems?(@.Part.UPCCode == 85391628927), @ refers to an
occurrence of array LineItems.

Example 17-1 JSON_EXISTS: Path Expression Without Filter

This example selects purchase-order documents that have a line item whose part
description contains a UPC code entry.

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document, '$.LineItems.Part.UPCCode');

Chapter 17
Using Filters with JSON_EXISTS

17-2

Example 17-2 JSON_EXISTS: Current Item and Scope in Path Expression Filters

This example shows three equivalent ways to select documents that have a line item whose
part contains a UPC code with a value of 85391628927.

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$?(@.LineItems.Part.UPCCode == 85391628927)');

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$.LineItems?(@.Part.UPCCode == 85391628927)');

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$.LineItems.Part?(@.UPCCode == 85391628927)');

• In the first query, the scope of the filter is the context item, that is, an entire purchase
order. @ refers to the context item.

• In the second query, the filter scope is a LineItems array (and each of its elements,
implicitly). @ refers to an element of that array.

• In the third query, the filter scope is a Part field of an element in a LineItems array. @
refers to a Part field.

Example 17-3 JSON_EXISTS: Filter Conditions Depend On the Current Item

This example selects purchase-order documents that have both a line item with a part that
has UPC code 85391628927 and a line item with an order quantity greater than 3. The scope
of each filter, that is, the current item, is in this case the context item. Each filter condition
applies independently (to the same document); the two conditions do not necessarily apply to
the same line item.

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$?(@.LineItems.Part.UPCCode == 85391628927
 && @.LineItems.Quantity > 3)');

Example 17-4 JSON_EXISTS: Filter Downscoping

This example looks similar to Example 17-3, but it acts quite differently. It selects purchase-
order documents that have a line item with a part that has UPC code and with an order
quantity greater than 3. The scope of the current item in the filter is at a lower level; it is not
the context item but a LineItems array element. That is, the same line item must satisfy both
conditions, for json_exists to return true.

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$.LineItems[*]?(@.Part.UPCCode == 85391628927
 && @.Quantity > 3)');

Chapter 17
Using Filters with JSON_EXISTS

17-3

Example 17-5 JSON_EXISTS: Path Expression Using Path-Expression exists
Condition

This example shows how to downscope one part of a filter while leaving another part
scoped at the document (context-item) level. It selects purchase-order documents that
have a User field whose value is "ABULL" and documents that have a line item with a
part that has UPC code and with an order quantity greater than 3. That is, it selects the
same documents selected by Example 17-4, as well as all documents that have
"ABULL" as the user. The argument to path-expression predicate exists is a path
expression that specifies particular line items; the predicate returns true if a match is
found, that is, if any such line items exist.

(If you use this example or similar with SQL*Plus then you must use SET DEFINE OFF
first, so that SQL*Plus does not interpret && exists as a substitution variable and
prompt you to define it.)

SELECT po.po_document FROM j_purchaseorder po
 WHERE json_exists(po.po_document,
 '$?(@.User == "ABULL"
 && exists(@.LineItems[*]?(
 @.Part.UPCCode == 85391628927
 && @.Quantity > 3)))');

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

17.2 JSON_EXISTS as JSON_TABLE
SQL/JSON condition json_exists can be viewed as a special case of SQL/JSON
function json_table.

Example 17-6 illustrates the equivalence: the two SELECT statements have the same
effect.

In addition to perhaps helping you understand json_exists better, this equivalence is
important practically, because it means that you can use either to get the same effect.

In particular, if you use json_exists more than once, or you use it in combination with
json_value or json_query (which can also be expressed using json_table), to
access the same data, then a single invocation of json_table presents the advantage
that the data is parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 17-6 JSON_EXISTS Expressed Using JSON_TABLE

SELECT select_list
 FROM table WHERE json_exists(column, json_path error_handler ON

Chapter 17
JSON_EXISTS as JSON_TABLE

17-4

ERROR);

SELECT select_list
 FROM table,
 json_table(column, '$' error_handler ON ERROR
 COLUMNS ("COLUMN_ALIAS" NUMBER EXISTS PATH json_path)) AS "JT"
 WHERE jt.column_alias = 1;

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

Chapter 17
JSON_EXISTS as JSON_TABLE

17-5

18
SQL/JSON Function JSON_VALUE

SQL/JSON function json_value selects JSON data and returns a SQL scalar or an instance
of a user-defined SQL object type or SQL collection type (varray, nested table).

• If json_value targets a single scalar JSON value then it returns a scalar SQL value. You
can specify the SQL data type for the returned scalar value. By default it is
VARCHAR2(4000).

• If json_value targets a JSON array, and you specify a SQL collection type (varray or
nested table) as the return type, then json_value returns an instance of that collection
type.

The elements of a targeted JSON array provide the elements of the returned collection-
type instance. A scalar JSON array element produces a scalar SQL value in the returned
collection instance (see previous). A JSON array element that is an object (see next) or
an array is handled recursively.

• If json_value targets a JSON object, and you specify a user-defined SQL object type as
the return type, then json_value returns an instance of that object type.

The field values of a targeted JSON object provide the attribute values of the returned
object-type instance. The field names of the targeted JSON object are compared with the
SQL names of the SQL object attributes. A scalar field value produces a scalar SQL
value in the returned object-type instance (see above). A field value that is an array (see
previous) or an object is handled recursively,

Ultimately it is the names of JSON fields with scalar values that are compared with the
names of scalar SQL object attributes. If the names do not match exactly, case-
sensitively, then a mismatch error is raised at query compile time.

You can also use json_value to create function-based B-tree indexes for use with JSON data
— see Indexes for JSON Data.

Function json_value has two required arguments, and it accepts optional returning and error
clauses.

The first argument to json_value is a SQL expression that returns an instance of either a
scalar SQL data type or a user-defined SQL object type. A scalar return value can be of data
type VARCHAR2, BLOB, or CLOB.

The first argument can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. The result of evaluating the SQL expression is used as the context item
for evaluating the path expression.

The second argument to json_value is a SQL/JSON path expression followed by optional
clauses RETURNING, ON ERROR, and ON EMPTY. The path expression must target a single scalar
value, or else an error occurs.

The default error-handling behavior is NULL ON ERROR, which means that no value is returned
if an error occurs — an error is not raised. In particular, if the path expression targets a non-
scalar value, such as an array, no error is raised, by default. To ensure that an error is raised,
use ERROR ON ERROR.

18-1

Note:

Each field name in a given JSON object is not necessarily unique; the same
field name may be repeated. The streaming evaluation that Oracle Database
employs always uses only one of the object members that have a given field
name; any other members with the same field name are ignored. It is
unspecified which of multiple such members is used.

See also Unique Versus Duplicate Fields in JSON Objects.

• Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
JSON has the Boolean values true and false. When SQL/JSON function
json_value evaluates a SQL/JSON path expression and the result is JSON true
or false, it can be returned to PL/SQL as a BOOLEAN value, or it can be returned to
SQL as the VARCHAR2 value 'true' or 'false'.

• SQL/JSON Function JSON_VALUE Applied to a null JSON Value
SQL/JSON function json_value applied to JSON value null returns SQL NULL,
not the SQL string 'null'. This means, in particular, that you cannot use
json_value to distinguish the JSON value null from the absence of a value; SQL
NULL indicates both cases.

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

• JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function
json_table.

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted
JSON field is absent from the data queried. This clause and the default behavior
(no ON EMPTY clause) are described here.

Chapter 18

18-2

See Also:

Oracle Database SQL Language Reference for information about json_value

18.1 Using SQL/JSON Function JSON_VALUE With a Boolean
JSON Value

JSON has the Boolean values true and false. When SQL/JSON function json_value
evaluates a SQL/JSON path expression and the result is JSON true or false, it can be
returned to PL/SQL as a BOOLEAN value, or it can be returned to SQL as the VARCHAR2 value
'true' or 'false'.

In PL/SQL code, BOOLEAN is a valid PL/SQL return type for built-in PL/SQL function
json_value. Example 18-1 illustrates this.

Oracle SQL has no Boolean data type, so a string (VARCHAR2) value is used to return a JSON
Boolean value. Example 18-2 illustrates this — the query returns the string 'true'.

SQL/JSON function json_table generalizes other SQL/JSON query functions such as
json_value. When you use it to project a JSON Boolean value, json_value is used implicitly,
and the resulting SQL value is returned as a VARCHAR2 value. The data type of the projection
column must therefore be VARCHAR2.

Example 18-1 JSON_VALUE: Returning a JSON Boolean Value to PL/SQL as
BOOLEAN

PL/SQL also has exception handling. This example uses clause ERROR ON ERROR, to raise an
error (which can be handled by user code) in case of error.

DECLARE
 b BOOLEAN;
 jsonData CLOB;
BEGIN
 SELECT po_document INTO jsonData FROM j_purchaseorder WHERE rownum = 1;
 b := json_value(jsonData, '$.AllowPartialShipment'
 RETURNING BOOLEAN
 ERROR ON ERROR);
END;
/

Example 18-2 JSON_VALUE: Returning a JSON Boolean Value to SQL as VARCHAR2

SELECT json_value(po_document, '$.AllowPartialShipment')
 FROM j_purchaseorder;

Related Topics

• JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function json_table.

Chapter 18
Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value

18-3

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists
and SQL/JSON functions json_value and json_query. Everything that you can do
using these functions you can do using json_table. For the jobs they accomplish,
the syntax of these functions is simpler to use than is the syntax of json_table.

18.2 SQL/JSON Function JSON_VALUE Applied to a null
JSON Value

SQL/JSON function json_value applied to JSON value null returns SQL NULL, not the
SQL string 'null'. This means, in particular, that you cannot use json_value to
distinguish the JSON value null from the absence of a value; SQL NULL indicates both
cases.

18.3 Using JSON_VALUE To Instantiate a User-Defined
Object Type Instance

You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object or
array in the path expression and specifying the object or collection type, respectively,
in the RETURNING clause.

The elements of a targeted JSON array provide the elements of a returned collection-
type instance. The JSON array elements must correspond, one-to-one, with the
collection-type elements. If they do not then a mismatch error occurs. A JSON array
element that is an object (see next) or an array is handled recursively.

The fields of a targeted JSON object provide the attribute values of a returned object-
type instance. The JSON fields must correspond, one-to-one, with the object-type
attributes. If they do not then a mismatch error occurs.

The field names of the targeted JSON object are compared with the SQL names of the
object attributes. A field value that is an array or an object is handled recursively, so
that ultimately it is the names of JSON fields with scalar values that are compared with
the names of scalar SQL object attributes. If the names do not match (case
insensitively, by default), then a mismatch error occurs.

If all names match then the corresponding data types are checked for compatibility. If
there is any type incompatibility then a mismatch error occurs. Table 18-1 specifies the
compatible scalar data types — any other type combinations are incompatible entails a
mismatch error.

Table 18-1 Compatible Scalar Data Types: Converting JSON to SQL

JSON Type (Source) SQL Type (Destination) Notes

string VARCHAR2 None

string CLOB None

string NUMBER The JSON string must be
numeric.

Chapter 18
SQL/JSON Function JSON_VALUE Applied to a null JSON Value

18-4

Table 18-1 (Cont.) Compatible Scalar Data Types: Converting JSON to SQL

JSON Type (Source) SQL Type (Destination) Notes

string DATE The JSON string must have a
supported ISO 8601 format.

string TIMESTAMP The JSON string must have a
supported ISO 8601 format.

number NUMBER None

number VARCHAR2 None

number CLOB None

boolean VARCHAR2 The instance value is the SQL
string "true" or "false".

boolean CLOB The instance value is the SQL
string "true" or "false".

null Any SQL data type. The instance value is SQL
NULL.

A mismatch error occurs at query compile time if any of the following are true. By default,
mismatch errors are ignored, but you can change this error handling by including one or more
ON MISMATCH clauses in your invocation of json_value.

• The fields of a targeted JSON object, or the elements of a targeted JSON array, do not
correspond in number and kind to the attributes of the specified object-type instance, or
to the elements of the specified collection-type instance, respectively.

• The fields of a targeted JSON object do not have the same names as the attributes of a
specified object-type instance. By default this matching is case-insensitive.

• The JSON and SQL scalar data types of a JSON value and its corresponding object
attribute value or collection element value are not compatible, according to Table 18-1.

Example 18-3 Instantiate a User-Defined Object Instance From JSON Data with
JSON_VALUE

This example defines SQL object types shipping_t and addr_t. Object type shipping_t has
attributes name and address, which have types VARCHAR2(30) and addr_t, respectively.

Object type addr_t has attributes street and city.

The example uses json_value to select the JSON object that is the value of field
ShippingInstructions and return an instance of SQL object type shipping_t. Names of the
object-type attributes are matched against JSON object field names case-insensitively, so
that, for example, attribute address (which is the same as ADDRESS) of SQL object-type
shipping_t matches JSON field address.

(The query output is shown pretty-printed here, for clarity.)

CREATE TYPE shipping_t AS OBJECT
 (name VARCHAR2(30),
 address addr_t);

CREATE TYPE addr_t AS OBJECT
 (street VARCHAR2(100),
 city VARCHAR2(30));

Chapter 18
Using JSON_VALUE To Instantiate a User-Defined Object Type Instance

18-5

-- Query data to return shipping_t instances:
SELECT json_value(po_document, '$.ShippingInstructions'
 RETURNING shipping_t)
 FROM j_purchaseorder;

JSON_VALUE(PO_DOCUMENT,'$.SHIPPINGINSTRUCTIONS'RETURNING
--
SHIPPING_T('Alexis Bull',
 ADDR_T('200 Sporting Green',
 'South San Francisco'))
SHIPPING_T('Sarah Bell',
 ADDR_T('200 Sporting Green',
 'South San Francisco'))

Example 18-4 Instantiate a Collection Type Instance From JSON Data with
JSON_VALUE

This example defines SQL collection type items_t and SQL object types part_t and
item_t. An instance of collection type items_t is a varray of item_t instances.
Attribute part of object-type item_t is itself of SQL object-type part_t.

It then uses json_value to select the JSON

(The query output is shown pretty-printed here, for clarity.)

CREATE TYPE part_t AS OBJECT
 (description VARCHAR2(30),
 unitprice NUMBER);

CREATE TYPE item_t AS OBJECT
 (itemnumber NUMBER,
 part part_t);

CREATE TYPE items_t AS VARRAY(10) OF item_t;

-- Query data to return items_t collections of item_t objects
SELECT json_value(po_document, '$.LineItems' RETURNING items_t)
 FROM j_purchaseorder;

JSON_VALUE(PO_DOCUMENT,'$.LINEITEMS'RETURNINGITEMS_TUSIN
--
ITEMS_T(ITEM_T(1, PART_T('One Magic Christmas', 19.95)),
 ITEM_T(2, PART_T('Lethal Weapon', 19.95)))
ITEMS_T(ITEM_T(1, PART_T('Making the Grade', 20)),
 ITEM_T(2, PART_T('Nixon', 19.95)),
 ITEM_T(3, PART_T(NULL, 19.95)))

Related Topics

• ON MISMATCH Clause for JSON_VALUE
When the RETURNING clause specifies a user-defined object-type or collection-type
instance, function json_value accepts an optional ON MISMATCH clause, which
specifies handling to use when a targeted JSON value does not match the

Chapter 18
Using JSON_VALUE To Instantiate a User-Defined Object Type Instance

18-6

specified SQL return value. This clause and its default behavior (no ON MISMATCH clause)
are described here.

See Also:

Oracle Database SQL Language Reference for information about json_value

18.4 JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function json_table.

Example 18-5 illustrates the equivalence: the two SELECT statements have the same effect.

In addition to perhaps helping you understand json_value better, this equivalence is
important practically, because it means that you can use either function to get the same
effect.

In particular, if you use json_value more than once, or you use it in combination with
json_exists or json_query (which can also be expressed using json_table), to access the
same data, then a single invocation of json_table presents the advantage that the data is
parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 18-5 JSON_VALUE Expressed Using JSON_TABLE

SELECT json_value(column, json_path RETURNING data_type error_hander ON
ERROR)
 FROM table;

SELECT jt.column_alias
 FROM table,
 json_table(column, '$' error_handler ON ERROR
 COLUMNS ("COLUMN_ALIAS" data_type PATH json_path)) AS "JT";

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

Chapter 18
JSON_VALUE as JSON_TABLE

18-7

19
SQL/JSON Function JSON_QUERY

SQL/JSON function json_query selects one or more values from JSON data and returns a
string (VARCHAR2, CLOB, or BLOB instance) that represents the JSON values. You can thus use
json_query to retrieve fragments of a JSON document.

The first argument to json_query is a SQL expression that returns an instance of a scalar
SQL data type (that is, not an object or collection data type). It can be of data type VARCHAR2,
CLOB, or BLOB. It can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. The result of evaluating the SQL expression is used as the context item
for evaluating the path expression.

The second argument to json_query is a SQL/JSON path expression followed by optional
clauses RETURNING, WRAPPER, ON ERROR, and ON EMPTY. The path expression can target any
number of JSON values.

In the RETURNING clause you can specify data type VARCHAR2, CLOB, or BLOB. A BLOB result is in
the AL32UTF8 character set. (VARCHAR2 is the default.) The value returned always contains
well-formed JSON data. This includes ensuring that non-ASCII characters in string values are
escaped as needed. For example, an ASCII TAB character (Unicode character CHARACTER
TABULATION, U+0009) is escaped as \t. Keywords FORMAT JSON are not needed (or
available) for json_query — JSON formatting is implicit for the return value.

The wrapper clause determines the form of the returned string value.

The error clause for json_query can specify EMPTY ON ERROR, which means that an empty
array ([]) is returned in case of error (no error is raised).

Example 19-1 shows an example of the use of SQL/JSON function json_query with an array
wrapper. For each document it returns a VARCHAR2 value whose contents represent a JSON
array with elements the phone types, in an unspecified order. For the document in
Example 4-2 the phone types are "Office" and "Mobile", and the array returned is either
["Mobile", "Office"] or ["Office", "Mobile"].

Note that if path expression $.ShippingInstructions.Phone.type were used in
Example 19-1 it would give the same result. Because of SQL/JSON path-expression syntax
relaxation, [*].type is equivalent to .type.

See Also:

Oracle Database SQL Language Reference for information about json_query

19-1

Example 19-1 Selecting JSON Values Using JSON_QUERY

SELECT json_query(po_document, '$.ShippingInstructions.Phone[*].type'
 WITH WRAPPER)
 FROM j_purchaseorder;

• JSON_QUERY as JSON_TABLE
SQL/JSON function json_query can be viewed as a special case of function
json_table.

Related Topics

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array
wrapping and unwrapping. This means that you need not change a path
expression in your code if your data evolves to replace a JSON value with an array
of such values, or vice versa. Examples are provided.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted
JSON field is absent from the data queried. This clause and the default behavior
(no ON EMPTY clause) are described here.

19.1 JSON_QUERY as JSON_TABLE
SQL/JSON function json_query can be viewed as a special case of function
json_table.

Example 19-2 illustrates the equivalence: the two SELECT statements have the same
effect.

In addition to perhaps helping you understand json_query better, this equivalence is
important practically, because it means that you can use either function to get the
same effect.

In particular, if you use json_query more than once, or you use it in combination with
json_exists or json_value (which can also be expressed using json_table), to

Chapter 19
JSON_QUERY as JSON_TABLE

19-2

access the same data, then a single invocation of json_table presents the advantage that
the data is parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 19-2 JSON_QUERY Expressed Using JSON_TABLE

SELECT json_query(column, json_path
 RETURNING data_type array_wrapper error_hander ON ERROR)
 FROM table;

SELECT jt.column_alias
 FROM table,
 json_table(column, '$' error_handler ON ERROR
 COLUMNS ("COLUMN_ALIAS" data_type FORMAT JSON array_wrapper
 PATH json_path)) AS "JT";

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

Chapter 19
JSON_QUERY as JSON_TABLE

19-3

20
SQL/JSON Function JSON_TABLE

SQL/JSON function json_table projects specific JSON data to columns of various SQL data
types. You use it to map parts of a JSON document into the rows and columns of a new,
virtual table, which you can also think of as an inline view.

You can then insert this virtual table into a pre-existing database table, or you can query it
using SQL — in a join expression, for example.

A common use of json_table is to create a view of JSON data. You can use such a view just
as you would use any table or view. This lets applications, tools, and programmers operate
on JSON data without consideration of the syntax of JSON or JSON path expressions.

Defining a view over JSON data in effect maps a kind of schema onto that data. This
mapping is after the fact: the underlying JSON data can be defined and created without any
regard to a schema or any particular pattern of use. Data first, schema later.

Such a schema (mapping) imposes no restriction on the kind of JSON documents that can be
stored in the database (other than being well-formed JSON data). The view exposes only
data that conforms to the mapping (schema) that defines the view. To change the schema,
just redefine the view — no need to reorganize the underlying JSON data.

You use json_table in a SQL FROM clause. It is a row source: it generates a row of virtual-
table data for each JSON value selected by a row path expression (row pattern). The
columns of each generated row are defined by the column path expressions of the COLUMNS
clause.

Typically a json_table invocation is laterally joined, implicitly, with a source table in the FROM
list, whose rows each contain a JSON document that is used as input to the function.
json_table generates zero or more new rows, as determined by evaluating the row path
expression against the input document.

The first argument to json_table is a SQL expression. It can be a table or view column
value, a PL/SQL variable, or a bind variable with proper casting. The result of evaluating the
expression is used as the context item for evaluating the row path expression.

The second argument to json_table is the SQL/JSON row path expression followed by an
optional error clause for handling the row and the (required) COLUMNS clause, which defines
the columns of the virtual table to be created. There is no RETURNING clause.

There are two levels of error handling for json_table, corresponding to the two levels of path
expressions: row and column. When present, a column error handler overrides row-level
error handling. The default error handler for both levels is NULL ON ERROR.

As an alternative to passing the context-item argument and the row path expression, you can
use simple dot-notation syntax. (You can still use an error clause, and the COLUMNS clause is

20-1

still required.) Dot notation specifies a table or view column together with a simple path
to the targeted JSON data. For example, these two queries are equivalent:

json_table(t.j, '$.ShippingInstructions.Phone[*]' ...)

json_table(t.j.ShippingInstructions.Phone[*] ...)

And in cases where the row path expression is only '$', which targets the entire
document, you can omit the path part. These queries are equivalent:

json_table(t.j, '$' ...)

json_table(t.j ...)

Example 20-1 illustrates the difference between using the simple dot notation and
using the fuller, more explicit notation.

Example 20-1 Equivalent JSON_TABLE Queries: Simple and Full Syntax

This example uses json_table for two equivalent queries. The first query uses the
simple, dot-notation syntax for the expressions that target the row and column data.
The second uses the full syntax.

Except for column Special Instructions, whose SQL identifier is quoted, the SQL
column names are, in effect, uppercase. (Identifier Special Instructions contains a
space character.)

In the first query the column names are written exactly the same as the names of the
targeted object fields, including with respect to letter case. Regardless of whether they
are quoted, they are interpreted case-sensitively for purposes of establishing the
default path (the path used when there is no explicit PATH clause).

The second query has:

• Separate arguments of a JSON column-expression and a SQL/JSON row path-
expression

• Explicit column data types of VARCHAR2(4000)
• Explicit PATH clauses with SQL/JSON column path expressions, to target the

object fields that are projected

SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document
 COLUMNS ("Special Instructions",
 NESTED LineItems[*]
 COLUMNS (ItemNumber NUMBER,
 Description PATH Part.Description))) AS
"JT";

SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document,
 '$'

Chapter 20

20-2

 COLUMNS (
 "Special Instructions" VARCHAR2(4000) PATH '$."Special
Instructions"',
 NESTED PATH '$.LineItems[*]'
 COLUMNS (
 ItemNumber NUMBER PATH '$.ItemNumber',
 Description VARCHAR(4000) PATH '$.Part.Description'))) AS
"JT";

• SQL NESTED Clause Instead of JSON_TABLE
In a SELECT clause you can often use a NESTED clause instead of SQL/JSON function
json_table. This can mean a simpler query expression. It also has the advantage of
including rows with non-NULL relational columns when the JSON column is NULL.

• COLUMNS Clause of SQL/JSON Function JSON_TABLE
The mandatory COLUMNS clause for SQL/JSON function json_table defines the columns
of the virtual table that the function creates.

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

• Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any number
of levels inside other JSON arrays or objects. You can use a json_table NESTED path
clause to project specific elements of an array.

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

Related Topics

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects one or more values from JSON data and returns
a string (VARCHAR2, CLOB, or BLOB instance) that represents the JSON values. You can
thus use json_query to retrieve fragments of a JSON document.

See Also:

Oracle Database SQL Language Reference for information about json_table

Chapter 20

20-3

20.1 SQL NESTED Clause Instead of JSON_TABLE
In a SELECT clause you can often use a NESTED clause instead of SQL/JSON function
json_table. This can mean a simpler query expression. It also has the advantage of
including rows with non-NULL relational columns when the JSON column is NULL.

The NESTED clause is a shortcut for using json_table with an ANSI left outer join. That
is, these two queries are equivalent:

SELECT ...
 FROM mytable NESTED jcol COLUMNS (...);

SELECT ...
 FROM mytable t1 LEFT OUTER JOIN
 json_table(t1.jcol COLUMNS (...)
 ON 1=1;

Using a left outer join with json_table, or using the NESTED clause, allows the
selection result to include rows with relational columns where there is no
corresponding JSON-column data, that is, where the JSON column is NULL. The only
semantic difference between the two is that if you use a NESTED clause then the JSON
column itself is not included in the result.

The NESTED clause provides the same COLUMNS clause as json_table, including the
possibility of nested columns. Advantages of using NESTED are that you need not
provide an is json check constraint (needed for json_table with the simple dot
notation) or a table alias, and you need not specify LEFT OUTER JOIN. The NESTED
clause syntax is simpler, it allows all of the flexibility of the COLUMNS clause, and it
performs an implicit left outer join.

Example 20-2 Equivalent: SQL NESTED and JSON_TABLE with LEFT OUTER
JOIN

These two queries are equivalent. One uses SQL/JSON function json_table with an
explicit LEFT OUTER JOIN. The other uses a SQL NESTED clause.

SELECT id, requestor, type, "number"
 FROM j_purchaseorder LEFT OUTER JOIN
 json_table(po_document
 COLUMNS (Requestor,
 NESTED ShippingInstructions.Phone[*]
 COLUMNS (type, "number")))
 ON 1=1);

SELECT id, requestor, type, "number"
 FROM j_purchaseorder NESTED
 po_document
 COLUMNS (Requestor,
 NESTED ShippingInstructions.Phone[*]
 COLUMNS (type, "number");

Chapter 20
SQL NESTED Clause Instead of JSON_TABLE

20-4

The output is the same in both cases:

7C3A54B183056369E0536DE05A0A15E4 Alexis Bull Office 909-555-7307
7C3A54B183056369E0536DE05A0A15E4 Alexis Bull Mobile 415-555-1234
7C3A54B183066369E0536DE05A0A15E4 Sarah Bell

If table j_purchaseorder had a row with non-NULL values for columns id and requestor, but
a NULL value for column po_document then that row would appear in both cases. But it would
not appear in the json_table case if LEFT OUTER JOIN were absent.

20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE
The mandatory COLUMNS clause for SQL/JSON function json_table defines the columns of
the virtual table that the function creates.

It consists of the keyword COLUMNS followed by the following entries, enclosed in parentheses.
Other than the optional FOR ORDINALITY entry, each entry in the COLUMNS clause is either a
regular column specification or a nested columns specification.

• At most one entry in the COLUMNS clause can be a column name followed by the keywords
FOR ORDINALITY, which specifies a column of generated row numbers (SQL data type
NUMBER). These numbers start with one. For example:

COLUMNS (linenum FOR ORDINALITY, ProductID)

• A regular column specification consists of a column name followed by an optional scalar
data type for the column, which can be SQL data type VARCHAR2, NUMBER, DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, or SDO_GEOMETRY (the same as for the RETURNING
clause of json_value), followed by an optional value clause and an optional PATH clause.
The default data type is VARCHAR2(4000).

Data type SDO_GEOMETRY is used for Oracle Spatial and Graph data. In particular, this
means that you can use json_table with GeoJSON data, which is a format for encoding
geographic data in JSON.

Oracle extends the SQL/JSON standard in the case when the returning data type for a
column is VARCHAR2(N), by allowing optional keyword TRUNCATE immediately after the
data type. When TRUNCATE is present and the value to return is wider than N, the value is
truncated — only the first N characters are returned. If TRUNCATE is absent then this case
is treated as an error, handled as usual by an error clause or the default error-handling
behavior.

• A nested columns specification consists of the keyword NESTED followed by an optional
PATH keyword, a SQL/JSON row path expression, and then a COLUMNS clause. This
COLUMNS clause specifies columns that represent nested data. The row path expression
used here provides a refined context for the specified nested columns: each nested
column path expression is relative to the row path expression. You can nest columns
clauses to project values that are present in arrays at different levels to columns of the
same row.

A COLUMNS clause at any level (nested or not) has the same characteristics. In other
words, the COLUMNS clause is defined recursively. For each level of nesting (that is, for
each use of keyword NESTED), the nested COLUMNS clause is said to be the child of the
COLUMNS clause within which it is nested, which is its parent. Two or more COLUMNS
clauses that have the same parent clause are siblings.

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-5

The virtual tables defined by parent and child COLUMNS clauses are joined using an
outer join, with the parent being the outer table. The virtual columns defined by
sibling COLUMNS clauses are joined using a union join.

Example 20-1 and Example 20-8 illustrate the use of a nested columns clause.

The only thing required in a regular column specification is the column name. Defining
the column projection in more detail, by specifying a scalar data type, value handling,
or a target path, is optional.

• The optional value clause specifies how to handle the data projected to the
column: whether to handle it as would json_value, json_exists, or json_query.
This value handling includes the return data type, return format (pretty or ASCII),
wrapper, and error treatment.

By default, the projected data is handled as if by json_value. If you use keyword
EXISTS then it is handled as if by json_exists. If you use keywords FORMAT JSON
then it is handled as if by json_query.

For FORMAT JSON you can override the default wrapping behavior by adding an
explicit wrapper clause.

You can override the default error handling for the given handler (json_value,
json_exists, or json_query) by adding an explicit error clause appropriate for it.

• The optional PATH clause specifies the portion of the row that is to be used as the
column content. The column path expression following keyword PATH is matched
against the context item provided by the virtual row. The column path expression
must represent a relative path; it is relative to the path specified by the row path
expression.

If the PATH clause is not present then the behavior is the same as if it were present
with a path of '$.<column-name>', where <column-name> is the column name.
That is, the name of the object field that is targeted is taken implicitly as the
column name. For purposes of specifying the targeted field only, the SQL identifier
used for <column-name> is interpreted case-sensitively, even if it is not quoted. The
SQL name of the column follows the usual rule: if it is enclosed in double quotation
marks (") then the letter case used is significant; otherwise, it is not (it is treated as
if uppercase).

For example, these two COLUMNS clauses are equivalent. For SQL, case is
significant only for column Comments.

COLUMNS(ProductId, quantity NUMBER, "Comments")

COLUMNS(ProductId VARCHAR2(4000) PATH '$.ProductId',
 quantity NUMBER PATH '$.quantity',
 "Comments" VARCHAR2(4000) PATH '$.Comments')

Example 20-1 presents equivalent queries that illustrate this.

If you use FORMAT JSON in a given json_table column specification then json_query
semantics are used when projecting the JSON data to the column. The data type
specified for the column can be any of the SQL data types that json_query can return:
VARCHAR2, CLOB, or BLOB.

json_query semantics imply the following:

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-6

• The projected JSON data is always well-formed. This includes ensuring that non-ASCII
characters in string values are escaped as needed. For example, a TAB character
(CHARACTER TABULATION, U+0009) is escaped as \t.

• json_query error handling applies.

• You can use a wrapper clause, to project multiple JSON values as elements in an array.

If you do not use FORMAT JSON in a given json_table column specification then json_value
semantics are used when projecting the JSON data. The data type specified for the column
can be any of the SQL data types that json_value can return: VARCHAR2, NUMBER, DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, SDO_GEOMETRY, or CLOB. json_value error handling
applies (and you cannot use a wrapper clause).

For example, here the value of column FirstName is projected directly using json_value
semantics, and the value of column Address is projected as a JSON string using json_query
semantics:

COLUMNS (FirstName, Address FORMAT JSON)

You typically use FORMAT JSON when the projected data is a JSON object or array. You
typically do not use FORMAT JSON when the projected data is a JSON scalar.

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the data
in a json_table column. This clause and the default behavior (no wrapper clause) are
described here. Examples are provided.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects one or more values from JSON data and returns
a string (VARCHAR2, CLOB, or BLOB instance) that represents the JSON values. You can
thus use json_query to retrieve fragments of a JSON document.

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-7

See Also:

• Oracle Database SQL Language Reference

• Oracle Spatial and Graph Developer's Guide for information about using
Oracle Spatial and Graph data

• GeoJSON.org

20.3 JSON_TABLE Generalizes SQL/JSON Query
Functions and Conditions

SQL/JSON function json_table generalizes SQL/JSON condition json_exists and
SQL/JSON functions json_value and json_query. Everything that you can do using
these functions you can do using json_table. For the jobs they accomplish, the
syntax of these functions is simpler to use than is the syntax of json_table.

If you use any of json_exists, json_value, or json_query more than once, or in
combination, to access the same data then a single invocation of json_table presents
the advantage that the data is parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table instead, so the data is parsed only once.

Example 20-3 and Example 20-4 illustrate this. They each select the requestor and the
set of phones used by each object in column j_purchaseorder.po_document. But
Example 20-4 parses that column only once, not four times.

Note the following in connection with Example 20-4:

• A JSON value of null is a value as far as SQL is concerned; it is not NULL, which
in SQL represents the absence of a value (missing, unknown, or inapplicable
data). In Example 20-4, if the JSON value of object attribute zipCode is null then
the SQL string 'true' is returned.

• json_exists is a SQL condition; you can use it in a SQL WHERE clause, a CASE
statement, or a check constraint. In Example 20-3 it is used in a WHERE clause.
Function json_table employs the semantics of json_exists implicitly when you
specify keyword EXISTS. It must return a SQL value in the virtual column. Since
Oracle SQL has no Boolean data type, a SQL string 'true' or 'false' is used to
represent the Boolean value. This is the case in Example 20-4: the VARCHAR2 value
is stored in column jt.has_zip, and it is then tested explicitly for equality against
the literal SQL string 'true'.

• JSON field AllowPartialShipment has a JSON Boolean value. When json_value
is applied to that value it is returned as a string. In Example 20-4, data type
VARCHAR2 is used as the column data type. Function json_table implicitly uses
json_value for this column, returning the value as a VARCHAR2 value, which is then
tested for equality against the literal SQL string 'true'.

Chapter 20
JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions

20-8

Example 20-3 Accessing JSON Data Multiple Times to Extract Data

SELECT json_value(po_document, '$.Requestor' RETURNING VARCHAR2(32)),
 json_query(po_document, '$.ShippingInstructions.Phone'
 RETURNING VARCHAR2(100))
 FROM j_purchaseorder
 WHERE json_exists(po_document, '$.ShippingInstructions.Address.zipCode')
 AND json_value(po_document, '$.AllowPartialShipment' RETURNING
VARCHAR2(5 CHAR))
 = 'true';

Example 20-4 Using JSON_TABLE to Extract Data Without Multiple Parses

SELECT jt.requestor, jt.phones
 FROM j_purchaseorder,
 json_table(po_document, '$'
 COLUMNS (requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
 phones VARCHAR2(100 CHAR) FORMAT JSON
 PATH '$.ShippingInstructions.Phone',
 partial VARCHAR2(5 CHAR) PATH '$.AllowPartialShipment',
 has_zip VARCHAR2(5 CHAR) EXISTS
 PATH '$.ShippingInstructions.Address.zipCode'))
jt
 WHERE jt.partial = 'true' AND jt.has_zip = 'true';

Related Topics

• Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
JSON has the Boolean values true and false. When SQL/JSON function json_value
evaluates a SQL/JSON path expression and the result is JSON true or false, it can be
returned to PL/SQL as a BOOLEAN value, or it can be returned to SQL as the VARCHAR2
value 'true' or 'false'.

20.4 Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any number of
levels inside other JSON arrays or objects. You can use a json_table NESTED path clause to
project specific elements of an array.

Example 20-5 projects the requestor and associated phone numbers from the JSON data in
column po_document. The entire JSON array Phone is projected as a column of JSON data,
ph_arr. To format this JSON data as a VARCHAR2 column, the keywords FORMAT JSON are
needed.

What if you wanted to project the individual elements of JSON array Phone and not the array
as a whole? Example 20-6 shows one way to do this, which you can use if the array elements
are the only data you need to project.

If you want to project both the requestor and the corresponding phone data then the row path
expression of Example 20-6 ($.Phone[*]) is not appropriate: it targets only the (phone object)
elements of array Phone.

Chapter 20
Using JSON_TABLE with JSON Arrays

20-9

Example 20-7 shows one way to target both: use a row path expression that targets
both the name and the entire phones array, and use column path expressions that
target fields type and number of individual phone objects.

In Example 20-7 as in Example 20-5, keywords FORMAT JSON are needed because the
resulting VARCHAR2 columns contain JSON data, namely arrays of phone types or
phone numbers, with one array element for each phone. In addition, unlike the case
for Example 20-5, a wrapper clause is needed for column phone_type and column
phone_num, because array Phone contains multiple objects with fields type and number.

Sometimes you might not want the effect of Example 20-7. For example, you might
want a column that contains a single phone number (one row per number), rather than
one that contains a JSON array of phone numbers (one row for all numbers for a given
purchase order).

To obtain that result, you need to tell json_table to project the array elements, by
using a json_table NESTED path clause for the array. A NESTED path clause acts, in
effect, as an additional row source (row pattern). Example 20-8 illustrates this.

You can use any number of NESTED keywords in a given json_table invocation.

In Example 20-8 the outer COLUMNS clause is the parent of the nested (inner) COLUMNS
clause. The virtual tables defined are joined using an outer join, with the table defined
by the parent clause being the outer table in the join.

(If there were a second columns clause nested directly under the same parent, the two
nested clauses would be sibling COLUMNS clauses.)

Example 20-5 Projecting an Entire JSON Array as JSON Data

SELECT jt.*
 FROM j_purchaseorder,
 json_table(po_document, '$'
 COLUMNS (requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
 ph_arr VARCHAR2(100 CHAR) FORMAT JSON
 PATH '$.ShippingInstructions.Phone')) AS
"JT";

Example 20-6 Projecting Elements of a JSON Array

SELECT jt.*
 FROM j_purchaseorder,
 json_table(po_document, '$.ShippingInstructions.Phone[*]'
 COLUMNS (phone_type VARCHAR2(10) PATH '$.type',
 phone_num VARCHAR2(20) PATH '$.number')) AS "JT";

PHONE_TYPE PHONE_NUM
---------- ---------
Office 909-555-7307
Mobile 415-555-1234

Example 20-7 Projecting Elements of a JSON Array Plus Other Data

SELECT jt.*
 FROM j_purchaseorder,

Chapter 20
Using JSON_TABLE with JSON Arrays

20-10

 json_table(po_document, '$'
 COLUMNS (
 requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
 phone_type VARCHAR2(50 CHAR) FORMAT JSON WITH WRAPPER
 PATH '$.ShippingInstructions.Phone[*].type',
 phone_num VARCHAR2(50 CHAR) FORMAT JSON WITH WRAPPER
 PATH '$.ShippingInstructions.Phone[*].number')) AS "JT";

REQUESTOR PHONE_TYPE PHONE_NUM
--------- ---------- ---------
Alexis Bull ["Office", "Mobile"] ["909-555-7307", "415-555-1234"]

Example 20-8 JSON_TABLE: Projecting Array Elements Using NESTED

This example shows two equivalent queries that project array elements. The first query uses
the simple, dot-notation syntax for the expressions that target the row and column data. The
second uses the full syntax.

Except for column number, whose SQL identifier is quoted ("number"), the SQL column
names are, in effect, uppercase. (Column number is lowercase.)

In the first query the column names are written exactly the same as the field names that are
targeted, including with respect to letter case. Regardless of whether they are quoted, they
are interpreted case-sensitively for purposes of establishing the proper path.

The second query has:

• Separate arguments of a JSON column-expression and a SQL/JSON row path-
expression

• Explicit column data types of VARCHAR2(4000)
• Explicit PATH clauses with SQL/JSON column path expressions, to target the object fields

that are projected

SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document
 COLUMNS (Requestor,
 NESTED ShippingInstructions.Phone[*]
 COLUMNS (type, "number"))) AS "JT";

SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document, '$'
 COLUMNS (Requestor VARCHAR2(4000) PATH '$.Requestor',
 NESTED PATH
'$.ShippingInstructions.Phone[*]'
 COLUMNS (type VARCHAR2(4000) PATH '$.type',
 "number" VARCHAR2(4000) PATH '$.number'))) AS
"JT";

Chapter 20
Using JSON_TABLE with JSON Arrays

20-11

Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you
project to columns using SQL/JSON function json_table. To further improve
query performance you can create a materialized view and place the JSON data in
memory.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

20.5 Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project
to columns using SQL/JSON function json_table. To further improve query
performance you can create a materialized view and place the JSON data in memory.

Example 20-9 defines a view over JSON data. It uses a NESTED path clause to project
the elements of array LineItems.

Example 20-10 defines a materialized view that has the same data and structure as
Example 20-9. You cannot update such a materialized view directly; you must treat it
as a read-only view and update it indirectly by updating the base table. An error is
raised if you try to modify the view directly. If the materialized view is created using
keywords REFRESH and ON STATEMENT then the view is updated automatically whenever
you update the base table.

You can use json_table to project any fields as view columns, and the view creation
(materialized or not) can involve joining any tables and any number of invocations of
json_table.

The only differences between Example 20-9 and Example 20-10 are these:

• The use of keyword MATERIALIZED.

• The use of BUILD IMMEDIATE.

• The use of REFRESH FAST ON STATEMENT WITH PRIMARY KEY.

The use of REFRESH FAST means that the materialized view will be refreshed
incrementally. For this to occur, you must use either WITH PRIMARY KEY or WITH ROWID
(if there is no primary key). Oracle recommends that you specify a primary key for a
table that has a JSON column and that you use WITH PRIMARY KEY when creating a
materialized view based on it.

You could use ON COMMIT in place of ON STATEMENT for the view creation. The former
synchronizes the view with the base table only when your table-updating transaction is
committed. Until then the table changes are not reflected in the view. If you use ON
STATEMENT then the view is immediately synchronized after each DML statement. This
also means that a view created using ON STATEMENT reflects any rollbacks that you
might perform. (A subsequent COMMIT statement ends the transaction, preventing a
rollback.)

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-12

See Also:

Oracle Database Data Warehousing Guide

Example 20-9 Creating a View Over JSON Data

CREATE VIEW j_purchaseorder_detail_view
 AS SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document, '$'
 COLUMNS (
 po_number NUMBER(10) PATH '$.PONumber',
 reference VARCHAR2(30 CHAR) PATH '$.Reference',
 requestor VARCHAR2(128 CHAR) PATH '$.Requestor',
 userid VARCHAR2(10 CHAR) PATH '$.User',
 costcenter VARCHAR2(16) PATH '$.CostCenter',
 ship_to_name VARCHAR2(20 CHAR)
 PATH '$.ShippingInstructions.name',
 ship_to_street VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.street',
 ship_to_city VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.city',
 ship_to_county VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.county',
 ship_to_postcode VARCHAR2(10 CHAR)
 PATH '$.ShippingInstructions.Address.postcode',
 ship_to_state VARCHAR2(2 CHAR)
 PATH '$.ShippingInstructions.Address.state',
 ship_to_zip VARCHAR2(8 CHAR)
 PATH '$.ShippingInstructions.Address.zipCode',
 ship_to_country VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.country',
 ship_to_phone VARCHAR2(24 CHAR)
 PATH '$.ShippingInstructions.Phone[0].number',
 NESTED PATH '$.LineItems[*]'
 COLUMNS (
 itemno NUMBER(38) PATH '$.ItemNumber',
 description VARCHAR2(256 CHAR) PATH '$.Part.Description',
 upc_code NUMBER PATH '$.Part.UPCCode',
 quantity NUMBER(12,4) PATH '$.Quantity',
 unitprice NUMBER(14,2) PATH '$.Part.UnitPrice'))) jt;

Example 20-10 Creating a Materialized View Over JSON Data

CREATE MATERIALIZED VIEW j_purchaseorder_materialized_view
 BUILD IMMEDIATE
 REFRESH FAST ON STATEMENT WITH PRIMARY KEY
 AS SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document, '$'
 COLUMNS (
 po_number NUMBER(10) PATH '$.PONumber',

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-13

 reference VARCHAR2(30 CHAR) PATH '$.Reference',
 requestor VARCHAR2(128 CHAR) PATH '$.Requestor',
 userid VARCHAR2(10 CHAR) PATH '$.User',
 costcenter VARCHAR2(16) PATH '$.CostCenter',
 ship_to_name VARCHAR2(20 CHAR)
 PATH '$.ShippingInstructions.name',
 ship_to_street VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.street',
 ship_to_city VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.city',
 ship_to_county VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.county',
 ship_to_postcode VARCHAR2(10 CHAR)
 PATH '$.ShippingInstructions.Address.postcode',
 ship_to_state VARCHAR2(2 CHAR)
 PATH '$.ShippingInstructions.Address.state',
 ship_to_zip VARCHAR2(8 CHAR)
 PATH '$.ShippingInstructions.Address.zipCode',
 ship_to_country VARCHAR2(32 CHAR)
 PATH '$.ShippingInstructions.Address.country',
 ship_to_phone VARCHAR2(24 CHAR)
 PATH '$.ShippingInstructions.Phone[0].number',
 NESTED PATH '$.LineItems[*]'
 COLUMNS (
 itemno NUMBER(38) PATH '$.ItemNumber',
 description VARCHAR2(256 CHAR) PATH '$.Part.Description',
 upc_code NUMBER PATH '$.Part.UPCCode',
 quantity NUMBER(12,4) PATH '$.Quantity',
 unitprice NUMBER(14,2) PATH '$.Part.UnitPrice'))) jt;

Related Topics

• Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any
number of levels inside other JSON arrays or objects. You can use a json_table
NESTED path clause to project specific elements of an array.

Related Topics

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples
are provided of creating GeoJSON data, indexing it, and querying it.

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-14

21
Oracle SQL Function JSON_SERIALIZE

Oracle SQL function json_serialize takes JSON data (of any SQL data type, VARCHAR2,
CLOB, or BLOB) as input and returns a textual representation of it (as VARCHAR2, CLOB, or BLOB
data). VARCHAR2(4000) is the default return type.

You typically use json_serialize to transform the result of a query. It supports an error
clause and a returning clause. You can specify pretty-printing for the result, and you can
truncate the result to fit the return type.

Function json_serialize always produces JSON data that conforms to the JSON standard
(RFC 4627). The returned data uses only the standard data types of the JSON language:
object, array, and the scalar types string, number, Boolean, and null.

You can use json_serialize to convert binary JSON data to textual form (CLOB or VARCHAR2),
or to transform textual JSON data by pretty-printing it or escaping non-ASCII Unicode
characters in it. An important use case is serializing JSON data that is stored in a BLOB
column. A BLOB result is in the AL32UTF8 character set. But whatever the data type returned
by json_serialize, the returned data represents textual JSON data.

See Also:

Oracle Database SQL Language Reference for information about Oracle SQL
function json_serialize

Example 21-1 Using JSON_SERIALIZE To Convert BLOB Data To Pretty-Printed Text

This example serializes and pretty-prints the JSON purchase order that has 1600 as the value
of field PONumber data, which is selected from column po_document of table j_purchaseorder
The return-value data type is VARCHAR2(4000) (the default return type).

Example 4-2 shows the insertion of such purchase-order data into a VARCHAR2 table. But
json_serialize is especially useful for serializing BLOB data.

SELECT json_serialize(po_document PRETTY) FROM j_purchaseorder;

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

21-1

22
JSON Data Guide

A JSON data guide lets you discover information about the structure and content of JSON
documents stored in Oracle Database.

Some ways that you can use this information include:

• Generating a JSON Schema document that describes the set of JSON documents.

• Creating views that you can use to perform SQL operations on the data in the
documents.

• Automatically adding or updating virtual columns that correspond to added or changed
fields in the documents.

• Overview of JSON Data Guide
A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents.

• Persistent Data-Guide Information: Part of a JSON Search Index
JSON data-guide information can be saved persistently as part of the JSON search index
infrastructure, and this information is updated automatically as new JSON content is
added. This is the case by default, when you create a JSON search index: data-guide
information is part of the index infrastructure.

• Data-Guide Formats and Ways of Creating a Data Guide
There are two formats for a data guide: flat and hierarchical. Both are made available to
SQL and PL/SQL as CLOB data. You can construct a data guide from the data-guide
information stored in a JSON search index or by scanning JSON documents.

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

• Data-Dictionary Views For Persistent Data-Guide Information
You can query static data-dictionary views to see which tables have JSON columns with
data guide-enabled JSON search indexes and to extract JSON object field information
that is recorded in dataguide-enabled JSON search indexes.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as virtual
columns added to the same table that contains the JSON column. You can specify a
preferred name for such a column.

• Creating a View Over JSON Data Based on Data-Guide Information
Based on data-guide information, you can create a database view whose columns project
particular scalar fields present in a set of JSON documents. You can choose the fields to
project by editing a hierarchical data guide or by specifying a SQL/JSON path expression
and a minimum frequency of field occurrence.

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
Based on data-guide information for a JSON column, you can project scalar fields from
that JSON data as virtual columns in the same table. The scalar fields projected are
those that are not under an array.

22-1

• Change Triggers For Data Guide-Enabled Search Index
When JSON data changes, some information in a data guide-enabled JSON
search index is automatically updated. You can specify a procedure whose
invocation is triggered whenever this happens. You can define your own PL/SQL
procedure for this, or you can use the predefined change-trigger procedure
add_vc.

• Multiple Data Guides Per Document Set
A data guide reflects the shape of a given set of JSON documents. If a JSON
column contains different types of documents, with different structure or type
information, you can create and use different data guides for the different kinds of
documents.

• Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from
a flat data guide that you obtain using either Oracle SQL function json_dataguide
or PL/SQL function DBMS_JSON.get_index_dataguide. In the latter case, a data
guide-enabled JSON search index must be defined on the JSON data.

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of
purchase-order documents.

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a
set of purchase-order documents.

See Also:

• JSON Schema: core definitions and terminology json-schema-core

• JSON Schema: interactive and non interactive validation

22.1 Overview of JSON Data Guide
A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents.

For example, for the JSON object presented in Example 2-1, a data guide specifies
that the document has, among other things, an object ShippingInstructions with
fields name, Address, and Phone, of types string, object, and array, respectively. The
structure of object Address is recorded similarly, as are the types of the elements in
array Phone.

JSON data-guide information can be saved persistently as part of the JSON search
index infrastructure, and this information is updated automatically as new JSON
content is added. This is the case by default, when you create a JSON search index:
data-guide information is part of the index infrastructure.

You can use a data guide:

• As a basis for developing applications that involve data mining, business
intelligence, or other analysis of JSON documents.

Chapter 22
Overview of JSON Data Guide

22-2

• As a basis for providing user assistance about requested JSON information, including
search.

• To check or manipulate new JSON documents before adding them to a document set (for
example: validate, type-check, or exclude certain fields).

For such purposes you can:

• Query a data guide directly for information about the document set, such as field lengths
or which fields occur with at least a certain frequency.

• Create views, or add virtual columns, that project particular JSON fields of interest, based
on their significance according to a data guide.

Note:

• The advantages of virtual columns over a view are that you can build an index
on a virtual column and you can obtain statistics on it for the optimizer.

• Virtual columns, like columns in general, are subject to the 1000-column limit for
a given table.

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

• JSON Search Index: Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and
(2) full-text search. It is an Oracle Text index that is designed specifically for use with
JSON data.

• Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from a flat
data guide that you obtain using either Oracle SQL function json_dataguide or PL/SQL
function DBMS_JSON.get_index_dataguide. In the latter case, a data guide-enabled JSON
search index must be defined on the JSON data.

• Creating a View Over JSON Data Based on a Hierarchical Data Guide
You can use a hierarchical data guide to create a database view whose columns project
specified JSON fields from your documents. The fields projected are those in the data
guide. You can edit the data guide to include only the fields that you want to project.

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
Based on data-guide information for a JSON column, you can project scalar fields from
that JSON data as virtual columns in the same table. The scalar fields projected are
those that are not under an array.

Chapter 22
Overview of JSON Data Guide

22-3

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

22.2 Persistent Data-Guide Information: Part of a JSON
Search Index

JSON data-guide information can be saved persistently as part of the JSON search
index infrastructure, and this information is updated automatically as new JSON
content is added. This is the case by default, when you create a JSON search index:
data-guide information is part of the index infrastructure.

You can use CREATE SEARCH INDEX with keywords FOR JSON to create a search index,
a data guide, or both at the same time. The default behavior is to create both.

To create persistent data-guide information as part of a JSON search index without
enabling support for search in the index, you specify SEARCH_ON NONE in the
PARAMETERS clause for CREATE SEARCH INDEX, but you leave the value for DATAGUIDE as
ON (the default value). Example 22-1 illustrates this.

You can use ALTER INDEX ... REBUILD to enable or disable data-guide support for an
existing JSON search index. Example 22-2 illustrates this — it disables the data-guide
support that is added by default in Example 28-17.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-4

Note:

A data guide-enabled JSON search index can be built only on a column that has an
is json check constraint. Furthermore, for the data-guide information in the index
to be updated the check constraint must be enabled.

If the check constraint becomes disabled for some reason then you must rebuild the
data-guide information in the index and re-enable the check constraint, to resume
automatic data-guide support updating, as follows:

ALTER INDEX index_name REBUILD ('dataguide off');
ALTER INDEX index_name REBUILD ('dataguide on');
ALTER TABLE table_name ENABLE CONSTRAINT
is_json_check_constraint_name;

In particular, using SQL*Loader (sqlldr) disables is json check constraints.

Because persistent data-guide information is part of the search index infrastructure, it is
always live: its content is automatically updated whenever the index is synchronized.
Changes in the indexed data are reflected in the search index, including in its data-guide
information, only after the index is synchronized.

In addition, update of data-guide information in a search index is always additive: none of it is
ever deleted. This is another reason that the index often does not accurately reflect the data
in its document set: deletions within the documents it applies to are not reflected in its data-
guide information. If you need to ensure that such information accurately reflects the current
data then you must drop the JSON search index and create it anew.

The persistent data-guide information in a search index can also include statistics, such as
how frequently each JSON field is used in the document set. Statistics are present only if you
explicitly gather them on the document set (gather them on the JSON search index, for
example). They are not updated automatically — gather statistics anew if you want to be sure
they are up to date. Example 22-3 gathers statistics on the JSON data indexed by JSON
search index po_search_idx, which is created in Example 28-17.

Note:

When a local data guide-enabled JSON search index is created in a sharding
environment, each individual shard contains the data-guide information for the
JSON documents stored in that shard. For this reason, if you invoke data guide-
related operations on the shard catalog database then they will have no effect.

Considerations for a Data Guide-Enabled Search Index on a Partitioned Table

The data-guide information in a data guide-enabled JSON search index that is local to a
partitioned table is not partitioned. It is shared among all partitions.

Because the data-guide information in the index is only additive, dropping, merging, splitting,
or truncating partitions has no impact on the index.

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-5

Exchanging a partitioned table with a table that is not partitioned updates the data-
guide information in an index on the partitioned table, but any data guide-enabled
index on the non-partitioned table must be rebuilt.

Avoid Persistent Data-Guide Information If Serializing Hash-Table Data

If you serialize Java hash tables or associative arrays (such as are found in
JavaScript) as JSON objects, then avoid the use of persistent data-guide information.

The default hash-table serialization provided by popular libraries such as GSON and
Jackson produces textual JSON documents with object field names that are taken
from the hash-table key entries and with field values taken from the corresponding
Java hash-table values. Serializing a single Java hash-table entry produces a new
(unique) JSON field and value.

Persisted data-guide information reflects the shape of your data, and it is updated
automatically as new JSON documents are inserted. Each hash-table key–value pair
results in a separate entry in the JSON search index. Such serialization can thus
greatly increase the size of the information maintained in the index. In addition to the
large size, the many index updates affect performance negatively, making DML slow.

If you serialize a hash table or an associative array instead as a JSON array of
objects, each of which includes a field derived from a hash-table key entry, then there
are no such problems.

The default serialization of a hash table or associative array as a JSON object is
indistinguishable from an object that has field names assigned by a developer. A
JSON data guide cannot tell which (metadata-like) field names have been assigned by
a developer and which (data-like) names might have been derived from a hash table
or associative array. It treats all field names as essentially metadata, as if specified by
a developer.

For example:

• If you construct an application object using a hash table that has animalName as
the hash key and sets of animal properties as values then the resulting default
serialization is a single JSON object that has a separate field ("cat", "mouse",...)
for each hash-table entry, with the field value being an object with the
corresponding animal properties. This can be problematic in terms of data-guide
size and performance because of the typically large number of fields ("cat",
"mouse",...) derived from the hash key.

• If you instead construct an application array of animal structures, each of which
has a field animalName (with value "cat" or "mouse"...) then the resulting
serialization is a JSON array of objects, each of which has the same field,
animalName. The corresponding data guide has no size or performance problem.

Example 22-1 Enabling Persistent Support for a JSON Data Guide But Not For
Search

CREATE SEARCH INDEX po_dg_only_idx ON j_purchaseorder (po_document)
FOR JSON
 PARAMETERS ('SEARCH_ON NONE');

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-6

Example 22-2 Disabling JSON Data-Guide Support For an Existing JSON Search
Index

ALTER INDEX po_search_idx REBUILD PARAMETERS ('DATAGUIDE OFF');

Example 22-3 Gathering Statistics on JSON Data Using a JSON Search Index

EXEC DBMS_STATS.gather_index_stats(docuser, po_search_idx, NULL, 99);

Related Topics

• JSON Search Index: Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and
(2) full-text search. It is an Oracle Text index that is designed specifically for use with
JSON data.

See Also:

• Oracle Text Reference for information about the PARAMETERS clause for CREATE
SEARCH INDEX

• Oracle Text Reference for information about the PARAMETERS clause for ALTER
INDEX ... REBUILD

• Faster XML / Jackson for information about the Jackson JSON processor

• google / gson for information about the GSON Java library

22.3 Data-Guide Formats and Ways of Creating a Data Guide
There are two formats for a data guide: flat and hierarchical. Both are made available to SQL
and PL/SQL as CLOB data. You can construct a data guide from the data-guide information
stored in a JSON search index or by scanning JSON documents.

• You can use a flat data guide to query data-guide information such as field frequencies
and types.

A flat data guide is represented in JSON as an array of objects, each of which represents
the JSON data of a specific path in the document set. A Flat Data Guide For Purchase-
Order Documents describes a flat data guide for the purchase-order data of Example 2-1.

• You can use a hierarchical data guide to create a view, or to add virtual columns, using
particular fields that you choose on the basis of data-guide information.

A hierarchical data guide is represented in JSON as an object with nested JSON data, in
the same format as that defined by JSON Schema (version 4, json-schema-core). A
Hierarchical Data Guide For Purchase-Order Documents describes a hierarchical data
guide for the purchase-order data of Example 2-1.

You use PL/SQL function DBMS_JSON.get_index_dataguide to obtain a data guide from the
data-guide information stored in a JSON search index.

Chapter 22
Data-Guide Formats and Ways of Creating a Data Guide

22-7

You can also use SQL aggregate function json_dataguide to scan your document set
and construct a data guide for it, whether or not it has a data guide-enabled search
index. The data guide accurately reflects the document set at the moment of function
invocation.

Table 22-1 SQL and PL/SQL Functions to Obtain a Data Guide

Uses Data
Guide-
Enabled
Search
Index?

Flat Data Guide Hierarchical Data Guide

Yes PL/SQL function
get_index_dataguide with format
DBMS_JSON.FORMAT_FLAT

PL/SQL function
get_index_dataguide with format
DBMS_JSON.FORMAT_HIERARCHICAL

No SQL function json_dataguide, with
no format argument or with
DBMS_JSON.FORMAT_FLAT as the
format argument

SQL function json_dataguide, with
DBMS_JSON.FORMAT_HIERARCHICAL as
the format argument

Advantages of obtaining a data guide based on a data guide-enabled JSON search
index include:

• Additive updates to the document set are automatically reflected in the persisted
data-guide information whenever the index is synced.

• Because this data-guide information is persisted, obtaining a data guide based on
it (using PL/SQL function get_index_dataguide) is faster than obtaining a data
guide by analyzing the document set (using SQL function json_dataguide).

• If you have gathered statistics on the document set then these are included in the
stored information and in a data guide obtained from it.

• Column-name conflicts encountered when creating a view or virtual columns are
automatically resolved.

Advantages of obtaining a data guide without using a data guide-enabled JSON
search index include assurance that the data guide is accurate and the lack of index
maintenance overhead. In addition, a data guide that is not derived from an index is
appropriate in some particular use cases:

• The JSON data is in an external table. You cannot create an index on it.

• The JSON column could be indexed, but the index would not be very useful. This
can be the case, for example, if the column contains different kinds of documents.
In this case, it can sometimes be helpful to add a column to the table that identifies
the kind of document stored in the JSON column. You can then use the data guide
with SQL aggregate functions and GROUP BY. See Multiple Data Guides Per
Document Set.

Related Topics

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of
purchase-order documents.

Chapter 22
Data-Guide Formats and Ways of Creating a Data Guide

22-8

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a set of
purchase-order documents.

• Persistent Data-Guide Information: Part of a JSON Search Index
JSON data-guide information can be saved persistently as part of the JSON search index
infrastructure, and this information is updated automatically as new JSON content is
added. This is the case by default, when you create a JSON search index: data-guide
information is part of the index infrastructure.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constants DBMS_JSON.FORMAT_FLAT and DBMS_JSON.FORMAT_HIERARCHICAL

22.4 JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema fields
(keywords) and Oracle-specific fields.

A given occurrence of a field in a data guide corresponds to a field that is present in one or
more JSON documents of the document set.

JSON Schema Fields (Keywords)

A JSON Schema is a JSON document that contains a JSON object, which can itself contain
child objects (subschemas). Fields that are defined by JSON Schema are called JSON
Schema keywords. Table 22-2 describes the keywords that can be used in an Oracle JSON
data guide. Keywords properties, items, and oneOf are used only in a hierarchical JSON
data guide (which is a JSON schema). Keyword type is used in both flat and hierarchical
data guides.

Table 22-2 JSON Schema Fields (Keywords)

Field (Keyword) Value Description

properties An object whose members represent the properties of a JSON object used in
JSON data that is represented by the hierarchical data guide (JSON schema).

items An object whose members represent the elements (items) of an array used in
JSON data represented by the hierarchical data guide (JSON schema).

oneOf An array, each of whose items represents one or more occurrences of a JSON
field in the JSON data represented by the hierarchical data guide (JSON
schema).

Chapter 22
JSON Data-Guide Fields

22-9

Table 22-2 (Cont.) JSON Schema Fields (Keywords)

Field (Keyword) Value Description

type A string naming the type of some JSON data represented by the (flat or
hierarchical) data guide.

The possible values are: "number", "string", "boolean", "null",
"object", "array", and "GeoJSON".

Oracle-Specific JSON Data-Guide Fields

In addition to JSON Schema keywords, a JSON data guide can contain Oracle data
guide-specific fields. The field names all have the prefix o:. They are described in
Table 22-3.

Table 22-3 Oracle-Specific Data-Guide Fields

Field Value Description

o:path Path through the JSON documents to the JSON field. Used
only in a flat data guide. The value is a simple SQL/JSON
path expression (no filter expression), possibly with
relaxation (implicit array wrapping and unwrapping), and
possibly with a wildcard array step. It has no array steps with
array indexes or range specifications, and it has no function
step. See SQL/JSON Path Expression Syntax.

o:length Maximum length of the JSON field value, in bytes. The value
is always a power of two. For example, if the maximum
length of all actual field values is 5 then the value of
o:length is 8, the smallest power of two greater than or
equal to 5.

o:preferred_column_name An identifier, case-sensitive and unique to a given data
guide, that you prefer as the name to use for a view column
or a virtual column that is created using the data guide.

This field is absent if the data guide was obtained using
SQL function json_dataguide with format parameter
DBMS_JSON.FORMAT_FLAT or without any format parameter
(DBMS_JSON.FORMAT_FLAT is the default).

o:frequency Percentage of JSON documents that contain the given field.
Duplicate occurrences of a field under the same array are
ignored. (Available only if statistics were gathered on the
document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide.

o:num_nulls Number of documents whose value for the targeted scalar
field is JSON null. (Available only if statistics were
gathered on the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide.

Chapter 22
JSON Data-Guide Fields

22-10

Table 22-3 (Cont.) Oracle-Specific Data-Guide Fields

Field Value Description

o:high_value Highest value for the targeted scalar field, among all
documents. (Available only if statistics were gathered on the
document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide.

o:low_value Lowest value for the targeted scalar field, among all
documents. (Available only if statistics were gathered on the
document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide.

o:last_analyzed Date and time when statistics were last gathered on the
document set. (Available only if statistics were gathered on
the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide.

The data-guide information for documents that contain a JSON array with only scalar
elements records the path and type for both (1) the array and (2) all of the array elements
taken together. For the elements:

• The o:path value is the o:path value for the array, followed by an array with a wildcard
([*]), which indicates all array elements.

• The type value is the type string, if the scalar types are not the same for all elements in
all documents. If all of the scalar elements the array have the same type, across all
documents, then that type is recorded.

For example, if, in all documents, all of the elements in the array value for object field
serial_numbers are JSON numbers, then type for the array elements is number. Otherwise it
is string.

When present, the default value of field o:preferred_column_name depends on whether the
data guide was obtained using SQL function json_dataguide (with format
DBMS_JSON.FORMAT_HIERARCHICAL) or using PL/SQL function
DBMS_JSON.get_index_dataguide:

• json_dataguide (hierarchical format) — Same as the corresponding JSON field name.

• get_index_dataguide — Same as the corresponding JSON field name, prefixed with the
JSON column name followed by $, and with any non-ASCII characters removed. If the
resulting field name already exists in the same data guide then it is suffixed with a new
sequence number, to make it unique.

The column name is uppercase unless the column was defined using escaped lowercase
letters (for example, 'PO_Column' instead of po_column).

For example, the default value for field User for data in JSON column po_document is
PO_DOCUMENT$User.

You can use PL/SQL procedure DBMS_JSON.rename_column to set the value of
o:preferred_column_name for a given field and type.

Chapter 22
JSON Data-Guide Fields

22-11

Field o:preferred_column_name is used to name a new, virtual column in the table that
contains the JSON column, or it is used to name a column in a new view that also
contains the other columns of the table. In either case, the name specified by
o:preferred_column_name must be unique with respect to the other column names of
the table. In addition, the name must be unique across all JSON fields of any type in
the document set. When you use DBMS_JSON.get_index_dataguide, the default name
is guaranteed to be unique in these ways.

If the name you specify with DBMS_JSON.rename_column causes a name conflict then
the specified name is ignored and a system-generated name is used instead.

Related Topics

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as
virtual columns added to the same table that contains the JSON column. You can
specify a preferred name for such a column.

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of
purchase-order documents.

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a
set of purchase-order documents.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples
are provided of creating GeoJSON data, indexing it, and querying it.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

• Oracle Spatial and Graph Developer's Guide for information about using
GeoJSON data with Oracle Spatial and Graph

• Oracle Spatial and Graph Developer's Guide for information about
Oracle Spatial and Graph and SDO_GEOMETRY object type

• GeoJSON.org for information about GeoJSON

Chapter 22
JSON Data-Guide Fields

22-12

22.5 Data-Dictionary Views For Persistent Data-Guide
Information

You can query static data-dictionary views to see which tables have JSON columns with data
guide-enabled JSON search indexes and to extract JSON object field information that is
recorded in dataguide-enabled JSON search indexes.

Tables that do not have JSON columns with data guide-enabled indexes are not present in
the views.

You can use the following views to find columns that have data guide-enabled JSON search
indexes. The views have columns TABLE_NAME (the table name), COLUMN_NAME (the JSON
column name), and DATAGUIDE (a data guide).

• USER_JSON_DATAGUIDES — tables owned by the current user

• ALL_JSON_DATAGUIDES — tables accessible by the current user

• DBA_JSON_DATAGUIDES — all tables

If the JSON column has a data guide-enabled JSON search index then the value of column
DATAGUIDE is the data guide for the JSON column, in flat format as a CLOB instance. If it does
not have a data guide-enabled index then there is no row for that column in the view.

You can use the following views to extract JSON field path and type information that is
recorded in dataguide-enabled JSON search indexes. The views have columns TABLE_NAME,
COLUMN_NAME, PATH, TYPE, and LENGTH. Columns PATH, TYPE, and LENGTH correspond to the
values of data-guide fields o:path, o:type, and o:length, respectively.

• USER_JSON_DATAGUIDE_FIELDS — tables owned by the current user

• ALL_JSON_DATAGUIDE_FIELDS — tables accessible by the current user

• DBA_JSON_DATAGUIDE_FIELDS — all tables

In the case of both types of view, a view whose name has the prefix ALL_ or DBA_ also has
column OWNER, whose value is the table owner.

See Also:

• Oracle Database Reference for information about ALL_JSON_DATAGUIDES and
the related data-dictionary views

• Oracle Database Reference for information about ALL_JSON_DATAGUIDE_FIELDS
and the related data-dictionary views

Chapter 22
Data-Dictionary Views For Persistent Data-Guide Information

22-13

22.6 Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as
virtual columns added to the same table that contains the JSON column. You can
specify a preferred name for such a column.

A data guide obtained from the same document set is used to define this projection.
The name of each projected column is taken from data-guide field
o:preferred_column_name for the JSON data field to be projected. Specifying your
preferred name changes the value of this data-guide field.

If your JSON data has a data guide-enabled search index then you can use procedure
DBMS_JSON.rename_column to specify your preferred name for the column projected
from a given field. Example 22-4 illustrates this. It specifies preferred names for the
columns to be projected from various fields, as described in Table 22-4. (The fields are
projected as columns when you use procedure DBMS_JSON.create_view,
DBMS_JSON.create_view_on_path, or DBMS_JSON.add_virtual_columns.)

Table 22-4 Preferred Names for Some JSON Field Columns

Field JSON Type Preferred Column
Name

PONumber number PONumber
Phone (phone as string, not object – just the number) string Phone
type (phone type) string PhoneType
number (phone number) string PhoneNumber
ItemNumber (line-item number) number ItemNumber
Description (part description) string PartDescription

See Also:

• JSON Data-Guide Fields for information about the default value of field
o:preferred_column_name and the possibility of name conflicts when
you use DBMS_JSON.rename_column

• Creating a Table With a JSON Column for information about the JSON
data referenced here

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

• Oracle Database PL/SQL Packages and Types Referencefor information
about DBMS_JSON.add_virtual_columns

Chapter 22
Specifying a Preferred Name for a Field Column

22-14

Example 22-4 Specifying Preferred Column Names For Some JSON Fields

BEGIN
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.PONumber',
 DBMS_JSON.TYPE_NUMBER, 'PONumber');
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.ShippingInstructions.Phone',
 DBMS_JSON.TYPE_STRING, 'Phone');
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.ShippingInstructions.Phone.type',
 DBMS_JSON.TYPE_STRING, 'PhoneType');
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.ShippingInstructions.Phone.number',
 DBMS_JSON.TYPE_STRING, 'PhoneNumber');
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.LineItems.ItemNumber',
 DBMS_JSON.TYPE_NUMBER, 'ItemNumber');
 DBMS_JSON.rename_column(
 'J_PURCHASEORDER', 'PO_DOCUMENT', '$.LineItems.Part.Description',
 DBMS_JSON.TYPE_STRING, 'PartDescription');
END;
/

22.7 Creating a View Over JSON Data Based on Data-Guide
Information

Based on data-guide information, you can create a database view whose columns project
particular scalar fields present in a set of JSON documents. You can choose the fields to
project by editing a hierarchical data guide or by specifying a SQL/JSON path expression and
a minimum frequency of field occurrence.

(You can create multiple views based on the same JSON document set, projecting different
fields. See Multiple Data Guides Per Document Set.)

You can create a view by projecting JSON fields using SQL/JSON function json_table —
see Creating a View Over JSON Data Using JSON_TABLE. An alternative is to use PL/SQL
procedure DBMS_JSON.create_view or DBMS_JSON.create_view_on_path to create a view by
projecting fields that you choose based on available data-guide information.

This information can come from either a hierarchical data guide that includes only the fields to
project or from a data guide-enabled JSON search index together with a SQL/JSON path
expression and a minimum field frequency.

In the former case, use procedure create_view. You can edit a (hierarchical) data guide to
specify the fields you want. In this case you do not need a data guide-enabled search index.

In the latter case, use procedure create_view_on_path. In this case you need a data guide-
enabled search index, but you do not need a data guide. You provide a SQL/JSON path
expression and possibly a minimum frequency of occurrence. The fields in the document set
that are projected include both:

• All scalar fields that are not under an array.

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-15

• All scalar fields present, at any level, in the data that is targeted by a given SQL/
JSON path expression.

Regardless of which way you create the view, in addition to the JSON fields that are
projected as columns, the non-JSON columns of the table are also columns of the
view.

If you use procedure create_view_on_path then the PATH argument you provide must
be a simple SQL/JSON path expression (no filter expression), possibly with relaxation
(implicit array wrapping and unwrapping), but with no array steps and no function step.
See SQL/JSON Path Expression Syntax.

However it is created, the data guide that serves as the basis for a given view
definition is static and does not necessarily faithfully reflect the current data in the
document set. The fields that are projected for the view are determined when the view
is created.

In particular, if you use create_view_on_path (which requires a data guide-enabled
search index) then what counts are the fields specified by the given path expression
and that have at least the given frequency, based on the index data at the time of the
view creation.

• Creating a View Over JSON Data Based on a Hierarchical Data Guide
You can use a hierarchical data guide to create a database view whose columns
project specified JSON fields from your documents. The fields projected are those
in the data guide. You can edit the data guide to include only the fields that you
want to project.

• Creating a View Over JSON Data Based on a Path Expression
You can use the information in a data guide-enabled JSON search index to create
a database view whose columns project JSON fields from your documents. The
fields projected are the scalar fields not under an array plus the scalar fields in the
data targeted by a specified SQL/JSON path expression.

Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you
project to columns using SQL/JSON function json_table. To further improve
query performance you can create a materialized view and place the JSON data in
memory.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-16

22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data
Guide

You can use a hierarchical data guide to create a database view whose columns project
specified JSON fields from your documents. The fields projected are those in the data guide.
You can edit the data guide to include only the fields that you want to project.

You can obtain a hierarchical data guide using either PL/SQL function
DBMS_JSON.get_index_dataguide or SQL function json_dataguide with argument
DBMS_JSON.FORMAT_HIERARCHICAL. In the former case a data guide-enabled JSON search
index must be defined on the column of JSON data.

You can edit the data guide obtained to include only specific fields, change the length of given
types, or rename fields. The resulting data guide specifies which fields of the JSON data to
project as columns of the view.

You use PL/SQL procedure DBMS_JSON.create_view to create the view.

Example 22-5 illustrates this using a data guide obtained with
DBMS_JSON.get_index_dataguide. Example 22-6 illustrates it using a data guide obtained
with json_dataguide with argument DBMS_JSON.FORMAT_HIERARCHICAL.

If you create a view using the data guide obtained with json_dataguide then GeoJSON data
in your documents is supported. In this case the view column corresponding to the GeoJSON
data has SQL data type SDO_GEOMETRY. For that you pass constant DBMS_JSON.GEOJSON or
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY as the third argument to json_dataguide.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constant DBMS_JSON.FORMAT_HIERARCHICAL

Example 22-5 Creating a View Using a Hierarchical Data Guide Obtained With
GET_INDEX_DATAGUIDE

This example creates a view that projects all of the fields present in the hierarchical data
guide that is obtained from the data guide-enabled JSON search index on JSON column
po_document of table j_purchaseorder. (Columns whose names are italic in the describe

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-17

command output are those that have been renamed using PL/SQL procedure
DBMS_JSON.rename_column.)

EXEC DBMS_JSON.create_view(
 'VIEW1',
 'J_PURCHASEORDER',
 'PO_DOCUMENT',
 DBMS_JSON.get_index_dataguide('J_PURCHASEORDER',
 'PO_DOCUMENT',
 DBMS_JSON.FORMAT_HIERARCHICAL));

DESCRIBE view1
 Name Null? Type
 -------------------------------- -------- ---------------------------
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 ID NOT NULL RAW(16)
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 Phone VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)
 PO_DOCUMENT$UPCCode NUMBER
 PO_DOCUMENT$UnitPrice NUMBER
 PartDescription VARCHAR2(32)
 PO_DOCUMENT$Quantity NUMBER
 ItemNumber NUMBER
 PhoneType VARCHAR2(8)
 PhoneNumber VARCHAR2(16)

Example 22-6 Creating a View Using a Hierarchical Data Guide Obtained With
JSON_DATAGUIDE

This example creates a view that projects all of the fields present in the hierarchical
data guide that is obtained by invoking SQL function json_dataguide on po_document
of table j_purchaseorder. The second and third arguments passed to json_dataguide
are used, respectively, to specify that the data guide is to be hierarchical and pretty-
printed.

Note that none of the view column names here have the prefix PO_DOCUMENT$. That
prefix is used only when you use a data guide that is obtained from the information in a
data guide-enabled JSON search index.

The data guide returned by json_dataguide has only o:path, type, o:length, and
o:preferred_column_name as its predefined fields. The values of field
o:preferred_column_name are the same as the field names. (There can of course be
no fields holding statistical information, as that can only be stored in an index.)

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-18

The view column names come from the values of field o:preferred_column_name of the data
guide that you pass to DBMS_JSON.create_view. By default, the view columns are thus named
the same as the projected fields.

Because the columns must be uniquely named in the view, you must ensure that the field
names themselves are unique, or else you must edit the data guide returned by
json_dataguide to add appropriate o:preferred_column_name entries that ensure
uniqueness. An error is raised by DBMS_JSON.create_view if the names for the columns are
not unique.

DECLARE
 dg CLOB;
 BEGIN
 SELECT json_dataguide(po_document,
 FORMAT DBMS_JSON.FORMAT_HIERARCHICAL,
 DBMS_JSON.PRETTY)
 INTO dg
 FROM j_purchaseorder
 WHERE extract(YEAR FROM date_loaded) = 2014;
 DBMS_JSON.create_view('MYVIEW', 'J_PURCHASEORDER', 'PO_DOCUMENT', dg);
 END;
/

DESCRIBE myview
 Name Null? Type
 -------------------- -------- ---------------------------
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 ID NOT NULL RAW(16)
 User VARCHAR2(8)
 PONumber NUMBER
 UPCCode NUMBER
 UnitPrice NUMBER
 Description VARCHAR2(32)
 Quantity NUMBER
 ItemNumber NUMBER
 Reference VARCHAR2(16)
 Requestor VARCHAR2(16)
 CostCenter VARCHAR2(4)
 AllowPartialShipment VARCHAR2(4)
 name VARCHAR2(16)
 Phone VARCHAR2(16)
 type VARCHAR2(8)
 number VARCHAR2(16)
 city VARCHAR2(32)
 state VARCHAR2(2)
 street VARCHAR2(32)
 country VARCHAR2(32)
 zipCode NUMBER
 Special Instructions VARCHAR2(8)

22.7.2 Creating a View Over JSON Data Based on a Path Expression
You can use the information in a data guide-enabled JSON search index to create a database
view whose columns project JSON fields from your documents. The fields projected are the

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-19

scalar fields not under an array plus the scalar fields in the data targeted by a specified
SQL/JSON path expression.

For example, if the path expression is $ then all scalar fields are projected, because
the root (top) of the document is targeted. Example 22-7 illustrates this. If the path
is $.LineItems.Part then only the scalar fields that are present (at any level) in the
data targeted by $.LineItems.Part are projected (in addition to scalar fields
elsewhere that are not under an array). Example 22-8 illustrates this.

If you gather statistics on your JSON document set then the data-guide information in
a data guide-enabled JSON search index records the frequency of occurrence, across
the document set, of each path to a field that is present in a document. When you
create the view, you can specify that only the (scalar) fields with a given minimum
frequency of occurrence (as a percentage) are to be projected as view columns. You
do this by specifying a non-zero value for parameter FREQUENCY of procedure
DBMS_JSON.create_view_on_path.

For example, if you specify the path as $ and the minimum frequency as 50 then all
scalar fields (on any path, since $ targets the whole document) that occur in at least
half (50%) of the documents are projected. Example 22-9 illustrates this.

The value of argument PATH is a simple SQL/JSON path expression (no filter
expression), possibly with relaxation (implicit array wrapping and unwrapping), but with
no array steps and no function step. See SQL/JSON Path Expression Syntax.

No frequency filtering is done in either of the following cases — targeted fields are
projected regardless of their frequency of occurrence in the documents:

• You never gather statistics information on your set of JSON documents. (No
frequency information is included in the data guide-enabled JSON search index.)

• The FREQUENCY argument of DBMS_JSON.create_view_on_path is zero (0).

Note:

When the FREQUENCY argument is non-zero, even if you have gathered
statistics information on your document set, the index contains no statistical
information for any documents added after the most recent gathering of
statistics. This means that any fields added after that statistics gathering are
ignored (not projected).

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

Example 22-7 Creating a View That Projects All Scalar Fields

All scalar fields are represented in the view, because the specified path is $.

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-20

(Columns whose names are italic in the describe command output are those that have
been renamed using PL/SQL procedure DBMS_JSON.rename_column. Underlined rows are
missing from Example 22-9.)

EXEC DBMS_JSON.create_view_on_path('VIEW2',
 'J_PURCHASEORDER',
 'PO_DOCUMENT',
 '$');

DESCRIBE view2;
 Name Null? Type
 -------------------------------- -------- ------------------
 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 Phone VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)
 PO_DOCUMENT$UPCCode NUMBER
 PO_DOCUMENT$UnitPrice NUMBER
 PartDescription VARCHAR2(32)
 PO_DOCUMENT$Quantity NUMBER
 ItemNumber NUMBER
 PhoneType VARCHAR2(8)
 PhoneNumber VARCHAR2(16)

Example 22-8 Creating a View That Projects Scalar Fields Targeted By a Path
Expression

Fields Itemnumber, PhoneType, and PhoneNumber are not represented in the view. The only
fields that are projected are those scalar fields that are not under an array plus those that are
present (at any level) in the data that is targeted by $.LineItems.Part (that is, the scalar
fields whose paths start with $.LineItems.Part). (Columns whose names are italic in the
describe command output are those that have been renamed using PL/SQL procedure
DBMS_JSON.rename_column.)

SQL> EXEC DBMS_JSON.create_view_on_path('VIEW4',
 'J_PURCHASEORDER',
 'PO_DOCUMENT',
 '$.LineItems.Part');

SQL> DESCRIBE view4;
 Name Null? Type

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-21

 -------------------------------- -------- ------------------
 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 Phone VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)
 PO_DOCUMENT$UPCCode NUMBER
 PO_DOCUMENT$UnitPrice NUMBER
 PartDescription VARCHAR2(32)

Example 22-9 Creating a View That Projects Scalar Fields Having a Given
Frequency

All scalar fields that occur in all (100%) of the documents are represented in the view.
Field AllowPartialShipment does not occur in all of the documents, so there is no
column PO_DOCUMENT$AllowPartialShipment in the view. Similarly for fields Phone,
PhoneType, and PhoneNumber.

(Columns whose names are italic in the describe command output are those that
have been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

SQL> EXEC DBMS_JSON.create_view_on_path('VIEW3',
 'J_PURCHASEORDER',
 'PO_DOCUMENT',
 '$',
 100);

SQL> DESCRIBE view3;
 Name Null? Type
 -------------------------------- -------- ------------------
 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-22

 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)
 PO_DOCUMENT$UPCCode NUMBER
 PO_DOCUMENT$UnitPrice NUMBER
 PartDescription VARCHAR2(32)
 PO_DOCUMENT$Quantity NUMBER
 ItemNumber NUMBER

Related Topics

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as virtual
columns added to the same table that contains the JSON column. You can specify a
preferred name for such a column.

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

22.8 Adding and Dropping Virtual Columns For JSON Fields
Based on Data-Guide Information

Based on data-guide information for a JSON column, you can project scalar fields from that
JSON data as virtual columns in the same table. The scalar fields projected are those that
are not under an array.

You can do all of the following with a virtual column, with the aim of improving performance:

• Build an index on it.

• Gather statistics on it for the optimizer.

• Load it into the In-Memory Column Store (IM column store).

Note:

Virtual columns, like columns in general, are subject to the 1000-column limit for a
given table.

You use PL/SQL procedure DBMS_JSON.add_virtual_columns to add virtual columns based
on data-guide information for a JSON column. Before it adds virtual columns, procedure
add_virtual_columns first drops any existing virtual columns that were projected from fields
in the same JSON column by a previous invocation of add_virtual_columns or by data-guide
change-trigger procedure add_vc (in effect, it does what procedure
DBMS_JSON.drop_virtual_columns does).

There are two alternative sources of the data-guide information that you provide to procedure
add_virtual_columns:

• It can come from a hierarchical data guide that you pass as an argument. All scalar fields
in the data guide that are not under an array are projected as virtual columns. All other
fields in the data guide are ignored (not projected).

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-23

In this case, you can edit the data guide before passing it, so that it specifies the
scalar fields (not under an array) that you want projected. You do not need a data
guide-enabled search index in this case.

• It can come from a data guide-enabled JSON search index.

In this case, you can specify, as the value of argument FREQUENCY to procedure
add_virtual_columns, a minimum frequency of occurrence for the scalar fields to
be projected. You need a data guide-enabled search index in this case, but you do
not need a data guide.

You can also specify that added virtual columns be hidden. The SQL describe
command does not list hidden columns.

• If you pass a (hierarchical) data guide to add_virtual_columns then you can
specify projection of particular scalar fields (not under an array) as hidden virtual
columns by adding "o:hidden": true to their descriptions in the data guide.

• If you use a data guide-enabled JSON search index with add_virtual_columns
then you can specify a PL/SQL TRUE value for argument HIDDEN, to make all of the
added virtual columns be hidden. (The default value of HIDDEN is FALSE, meaning
that the added virtual columns are not hidden.)

• Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide
You can use a hierarchical data guide to project scalar fields from JSON data as
virtual columns in the same table. All scalar fields in the data guide that are not
under an array are projected as virtual columns. All other fields in the data guide
are ignored (not projected).

• Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled Search
Index
You can use a data guide-enabled search index for a JSON column to project
scalar fields from that JSON data as virtual columns in the same table. Only scalar
fields not under an array are projected. You can specify a minimum frequency of
occurrence for the fields to be projected.

• Dropping Virtual Columns for JSON Fields Based on Data-Guide Information
You can use procedure DBMS_JSON.drop_virtual_columns to drop all virtual
columns that were added for JSON fields in a column of JSON data.

Related Topics

• In-Memory JSON Data
A column of JSON data can be stored in the In-Memory Column Store (IM column
store) to improve query performance.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-24

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.drop_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

22.8.1 Adding Virtual Columns For JSON Fields Based on a Hierarchical
Data Guide

You can use a hierarchical data guide to project scalar fields from JSON data as virtual
columns in the same table. All scalar fields in the data guide that are not under an array are
projected as virtual columns. All other fields in the data guide are ignored (not projected).

You can obtain a hierarchical data guide using PL/SQL function
DBMS_JSON.get_index_dataguide. A data guide-enabled JSON search index must be defined
on the column of JSON data.

You can edit the data guide obtained, to include only specific scalar fields (that are not under
an array), rename those fields, or change the lengths of their types. The resulting data guide
specifies which such fields to project as new virtual columns. Any fields in the data guide that
are not scalar fields not under an array are ignored (not projected).

You use PL/SQL procedure DBMS_JSON.add_virtual_columns to add the virtual columns to
the table that contains the JSON column containing the projected fields. That procedure first
drops any existing virtual columns that were projected from fields in the same JSON column
by a previous invocation of add_virtual_columns or by data-guide change-trigger procedure
add_vc (in effect, it does what procedure DBMS_JSON.drop_virtual_columns does).

Example 22-10 illustrates this. It projects scalar fields that are not under an array, from the
data in JSON column po_document of table j_purchaseorder. The fields projected are those
that are indicated in the hierarchical data guide.

Example 22-11 illustrates passing a data-guide argument that specifies the projection of two
fields as virtual columns. Data-guide field o:hidden is used to hide one of these columns.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-25

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.drop_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

• Oracle Database SQL Language Reference for information about
PL/SQL constant DBMS_JSON.FORMAT_HIERARCHICAL

Example 22-10 Adding Virtual Columns That Project JSON Fields Using a Data
Guide Obtained With GET_INDEX_DATAGUIDE

In this example the hierarchical data guide is obtained from a data guide-enabled
JSON search index on JSON column po_document.

The added virtual columns are all of the columns in table j_purchaseorder except for
ID, DATE_LOADED, and PODOCUMENT.

(Columns whose names are italic in the describe command output are those that
have been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

EXEC DBMS_JSON.add_virtual_columns(
 'J_PURCHASEORDER',
 'PO_DOCUMENT',
 DBMS_JSON.get_index_dataguide('J_PURCHASEORDER',
 'PO_DOCUMENT',
 DBMS_JSON.FORMAT_HIERARCHICAL));

DESCRIBE j_purchaseorder;
 Name Null? Type
 --- --------

 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH
TIME ZONE
 PO_DOCUMENT CLOB
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 Phone VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-26

 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)

Example 22-11 Adding Virtual Columns, Hidden and Visible

In this example only two fields are projected as virtual columns: PO_Number and
PO_Reference. The data guide is defined locally as a literal string. Data-guide field o:hidden
is used here to hide the virtual column for PO_Reference. (For PO_Number the o:hidden:
false entry is not needed, as false is the default value.)

DECLARE
 dg CLOB;
BEGIN
 dg := '{"type" : "object",
 "properties" :
 {"PO_Number" : {"type" : "number",
 "o:length" : 4,
 "o:preferred_column_name" : "PO_Number",
 "o:hidden" : false},
 "PO_Reference" : {"type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "PO_Reference",
 "o:hidden" : true}}}';
 DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT', dg);
END;
/

DESCRIBE j_purchaseorder;
 Name Null? Type
 ----------- -------- ---------------------------
 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT CLOB
 PO_Number NUMBER

SELECT column_name FROM user_tab_columns
 WHERE table_name = 'J_PURCHASEORDER' ORDER BY 1;
COLUMN_NAME

DATE_LOADED
ID
PO_DOCUMENT
PO_Number
PO_Reference

5 rows selected.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-27

22.8.2 Adding Virtual Columns For JSON Fields Based on a Data
Guide-Enabled Search Index

You can use a data guide-enabled search index for a JSON column to project scalar
fields from that JSON data as virtual columns in the same table. Only scalar fields not
under an array are projected. You can specify a minimum frequency of occurrence for
the fields to be projected.

You use procedure DBMS_JSON.add_virtual_columns to add the virtual columns.

Example 22-12 illustrates this. It projects all scalar fields that are not under an array to
table j_purchaseorder as virtual columns.

If you gather statistics on the documents in the JSON column where you want to
project fields then the data-guide information in the data guide-enabled JSON search
index records the frequency of occurrence, across that document set, of each field in a
document.

When you add virtual columns you can specify that only those fields with a given
minimum frequency of occurrence are to be projected.

You do this by specifying a non-zero value for parameter FREQUENCY of procedure
add_virtual_columns. Zero is the default value, so if you do not include argument
FREQUENCY then all scalar fields (not under an array) are projected. The frequency of a
given field is the number of documents containing that field divided by the total number
of documents in the JSON column, expressed as a percentage.

Example 22-13 projects all scalars (not under an array) that occur in all (100%) of the
documents as virtual columns.

If you want to hide all of the added virtual columns then specify a TRUE value for
argument HIDDEN. (The default value of parameter HIDDEN is FALSE, meaning that the
added virtual columns are not hidden.)

Example 22-14 projects, as hidden virtual columns, the scalar fields (not under an
array) that occur in all (100%) of the documents.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

Example 22-12 Projecting All Scalar Fields Not Under an Array as Virtual
Columns

The added virtual columns are all of the columns in table j_purchaseorder except for
ID, DATE_LOADED, and PODOCUMENT. This is because no FREQUENCY argument is passed
to add_virtual_columns, so all scalar fields (that are not under an array) are
projected.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-28

(Columns whose names are italic in the describe command output are those that have
been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

DESCRIBE j_purchaseorder;
 Name Null? Type
 --- --------

 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME
ZONE
 PO_DOCUMENT CLOB
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)
 Phone VARCHAR2(16)
 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)

Example 22-13 Projecting Scalar Fields With a Minimum Frequency as Virtual
Columns

All scalar fields that occur in all (100%) of the documents are projected as virtual columns.
The result is the same as that for Example 22-12, except that fields AllowPartialShipment
and Phone are not projected, because they do not occur in 100% of the documents.

(Columns whose names are italic in the describe command output are those that have
been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT', 100);

DESCRIBE j_purchaseorder;
 Name Null? Type
 --- --------

 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME
ZONE
 PO_DOCUMENT CLOB
 PO_DOCUMENT$User VARCHAR2(8)
 PONumber NUMBER
 PO_DOCUMENT$Reference VARCHAR2(16)
 PO_DOCUMENT$Requestor VARCHAR2(16)
 PO_DOCUMENT$CostCenter VARCHAR2(4)
 PO_DOCUMENT$name VARCHAR2(16)

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-29

 PO_DOCUMENT$city VARCHAR2(32)
 PO_DOCUMENT$state VARCHAR2(2)
 PO_DOCUMENT$street VARCHAR2(32)
 PO_DOCUMENT$country VARCHAR2(32)
 PO_DOCUMENT$zipCode NUMBER
 PO_DOCUMENT$SpecialInstructions VARCHAR2(8)

Example 22-14 Projecting Scalar Fields With a Minimum Frequency as Hidden
Virtual Columns

The result is the same as that for Example 22-13, except that all of the added virtual
columns are hidden. (The query of view USER_TAB_COLUMNS shows that the virtual
columns were in fact added.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT',
100, TRUE);

DESCRIBE j_purchaseorder;
 Name Null? Type
 --- --------

 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH
TIME ZONE
 PO_DOCUMENT CLOB

SELECT column_name FROM user_tab_columns
 WHERE table_name = 'J_PURCHASEORDER'
 ORDER BY 1;

COLUMN_NAME

DATE_LOADED
ID
PONumber
PO_DOCUMENT
PO_DOCUMENT$CostCenter
PO_DOCUMENT$Reference
PO_DOCUMENT$Requestor
PO_DOCUMENT$SpecialInstructions
PO_DOCUMENT$User
PO_DOCUMENT$city
PO_DOCUMENT$country
PO_DOCUMENT$name
PO_DOCUMENT$state
PO_DOCUMENT$street
PO_DOCUMENT$zipCode

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-30

22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-Guide
Information

You can use procedure DBMS_JSON.drop_virtual_columns to drop all virtual columns that
were added for JSON fields in a column of JSON data.

Procedure DBMS_JSON.drop_virtual_columns drops all virtual columns that were projected
from fields in a given JSON column by an invocation of add_virtual_columns or by data-
guide change-trigger procedure add_vc. Example 22-15 illustrates this for fields projected
from column po_document of table j_purchaseorder.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.drop_virtual_columns

Example 22-15 Dropping Virtual Columns Projected From JSON Fields

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

22.9 Change Triggers For Data Guide-Enabled Search Index
When JSON data changes, some information in a data guide-enabled JSON search index is
automatically updated. You can specify a procedure whose invocation is triggered whenever
this happens. You can define your own PL/SQL procedure for this, or you can use the
predefined change-trigger procedure add_vc.

The data-guide information in a data guide-enabled JSON search index records structure,
type, and possibly statistical information about a set of JSON documents. Except for the
statistical information, which is updated only when you gather statistics, relevant changes in
the document set are automatically reflected in the data-guide information stored in the index.

You can define a PL/SQL procedure whose invocation is automatically triggered by such an
index update. The invocation occurs when the index is updated. Any errors that occur during
the execution of the procedure are ignored.

You can use the predefined change-trigger procedure add_vc to automatically add virtual
columns that project JSON fields from the document set or to modify existing such columns,
as needed. The virtual columns added by add_vc follow the same naming rules as those you
add by invoking procedure DBMS_JSON.add_virtual_columns for a JSON column that has a
data guide-enabled search index.

In either case, any error that occurs during the execution of the procedure is ignored.

Unlike DBMS_JSON.add_virtual_columns, add_vc does not first drop any existing virtual
columns that were projected from fields in the same JSON column. To drop virtual columns

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-31

projected from fields in the same JSON column by add_vc or by
add_virtual_columns, use procedure DBMS_JSON.drop_virtual_columns.

You specify the use of a trigger for data-guide changes by using the keywords
DATAGUIDE ON CHANGE in the PARAMETERS clause when you create or alter a JSON
search index. Only one change trigger is allowed per index: altering an index to specify
a trigger automatically replaces any previous trigger for it.

Example 22-16 alters existing JSON search index po_search_idx to use procedure
add_vc.

Example 22-16 Adding Virtual Columns Automatically With Change Trigger
ADD_VC

This example adds predefined change trigger add_vc to JSON search index
po_search_idx.

It first drops any existing virtual columns that were projected from fields in JSON
column po_document either by procedure DBMS_JSON.add_virtual_columns or by a
pre-existing add_vc change trigger for the same JSON search index.

Then it alters the search index to add change trigger add_vc (if it was already present
then this is has no effect).

Finally, it inserts a new document that provokes a change in the data guide. Two virtual
columns are added to the table, for the two scalar fields not under an array.

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

ALTER INDEX po_search_idx REBUILD PARAMETERS ('DATAGUIDE ON CHANGE
add_vc');

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-JUN-2015'),
 '{"PO_Number" : 4230,
 "PO_Reference" : "JDEER-20140421",
 "PO_LineItems" : [{"Part_Number" : 230912362345,
 "Quantity" : 3.0}]}');

DESCRIBE j_purchaseorder;
 Name Null? Type
 ------------------------- -------- ----------------------------
 ID NOT NULL RAW(16)
 DATE_LOADED TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT CLOB
 PO_DOCUMENT$PO_Number NUMBER
 PO_DOCUMENT$PO_Reference VARCHAR2(16)

• User-Defined Data-Guide Change Triggers
You can define a procedure whose invocation is triggered automatically whenever
a given data guide-enabled JSON search index is updated. Any errors that occur
during the execution of the procedure are ignored.

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-32

Related Topics

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
Based on data-guide information for a JSON column, you can project scalar fields from
that JSON data as virtual columns in the same table. The scalar fields projected are
those that are not under an array.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.drop_virtual_columns

22.9.1 User-Defined Data-Guide Change Triggers
You can define a procedure whose invocation is triggered automatically whenever a given
data guide-enabled JSON search index is updated. Any errors that occur during the
execution of the procedure are ignored.

Example 22-17 illustrates this.

A user-defined procedure specified with keywords DATAGUIDE ON CHANGE in a JSON search
index PARAMETERS clause must accept the parameters specified in Table 22-5.

Table 22-5 Parameters of a User-Defined Data-Guide Change Trigger Procedure

Name Type Description

table_name VARCHAR2 Name of the table containing
column column_name.

column_name VARCHAR2 Name of a JSON column that
has a data guide-enabled JSON
search index.

path VARCHAR2 A SQL/JSON path expression
that targets a particular field in
the data in column
column_name. This path is
affected by the index change that
triggered the procedure
invocation. For example, the
index change involved adding
this path or changing its type
value or its type-length value.

new_type NUMBER A new type for the given path.

new_type_length NUMBER A new type length for the given
path.

Example 22-17 Tracing Data-Guide Updates With a User-Defined Change Trigger

This example first drops any existing virtual columns projected from fields in JSON column
po_document.

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-33

It then defines PL/SQL procedure my_dataguide_trace, which prints the names of the
table and JSON column, together with the path, type and length fields of the added
virtual column. It then alters JSON search index po_search_idx to specify that this
procedure be invoked as a change trigger for updates to the data-guide information in
the index.

It then inserts a new document that provokes a change in the data guide, which
triggers the output of trace information.

Note that the TYPE argument to the procedure must be a number that is one of the
DBMS_JSON constants for a JSON type. The procedure tests the argument and outputs
a user-friendly string in place of the number.

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

CREATE OR REPLACE PROCEDURE my_dataguide_trace(tableName VARCHAR2,
 jcolName VARCHAR2,
 path VARCHAR2,
 type NUMBER,
 tlength NUMBER)
 IS
 typename VARCHAR2(10);
 BEGIN
 IF (type = DBMS_JSON.TYPE_NULL) THEN typename := 'null';
 ELSIF (type = DBMS_JSON.TYPE_BOOLEAN) THEN typename := 'boolean';
 ELSIF (type = DBMS_JSON.TYPE_NUMBER) THEN typename := 'number';
 ELSIF (type = DBMS_JSON.TYPE_STRING) THEN typename := 'string';
 ELSIF (type = DBMS_JSON.TYPE_OBJECT) THEN typename := 'object';
 ELSIF (type = DBMS_JSON.TYPE_ARRAY) THEN typename := 'array';
 ELSE typename := 'unknown';
 END IF;
 DBMS_OUTPUT.put_line('Updating ' || tableName || '(' || jcolName
 || '): Path = ' || path || ', Type = ' || type
 || ', Type Name = ' || typename
 || ', Type Length = ' || tlength);
 END;
/

ALTER INDEX po_search_idx REBUILD
 PARAMETERS ('DATAGUIDE ON CHANGE my_dataguide_trace');

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-MAR-2016'),
 '{"PO_ID" : 4230,
 "PO_Ref" : "JDEER-20140421",
 "PO_Items" : [{"Part_No" : 98981327234,
 "Item_Quantity" : 13}]}');

COMMIT;
Updating J_PURCHASEORDER(PO_DOCUMENT):
 Path = $.PO_ID, Type = 3, Type Name = number, Type Length = 4
Updating J_PURCHASEORDER(PO_DOCUMENT):
 Path = $.PO_Ref, Type = 4, Type Name = string, Type Length = 16

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-34

Updating J_PURCHASEORDER(PO_DOCUMENT):
 Path = $.PO_Items, Type = 6, Type Name = array, Type Length = 64
Updating J_PURCHASEORDER(PO_DOCUMENT):
 Path = $.PO_Items.Part_No, Type = 3, Type Name = number, Type Length = 16
Updating J_PURCHASEORDER(PO_DOCUMENT):
 Path = $.PO_Items.Item_Quantity, Type = 3, Type Name = number, Type Length
= 2

Commit complete.

See Also:

• Oracle Database SQL Language Reference for information about PL/SQL
constants TYPE_NULL, TYPE_BOOLEAN, TYPE_NUMBER, TYPE_STRING, TYPE_OBJECT,
and TYPE_ARRAY.

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.drop_virtual_columns

22.10 Multiple Data Guides Per Document Set
A data guide reflects the shape of a given set of JSON documents. If a JSON column
contains different types of documents, with different structure or type information, you can
create and use different data guides for the different kinds of documents.

Data Guides For Different Kinds of JSON Documents

JSON documents need not, and typically do not, follow a prescribed schema. This is true
even for documents that are used similarly in a given application; they may differ in structural
ways (shape), and field types may differ.

A JSON data guide summarizes the structural and type information of a given set of
documents. In general, the more similar the structure and type information of the documents
in a given set, the more useful the resulting data guide.

A data guide is created for a given column of JSON data. If the column contains very different
kinds of documents (for example, purchase orders and health records) then a single data
guide for the column is likely to be of limited use.

One way to address this concern is to put different kinds of JSON documents in different
JSON columns. But sometimes other considerations decide in favor of mixing document
types in the same column.

In addition, documents of the same general type, which you decide to store in the same
column, can nevertheless differ in relatively systematic ways. This includes the case of
evolving document shape and type information. For example, the structure of tax-information
documents could change from year to year.

When you create a data guide you can decide which information to summarize. And you can
thus create different data guides for the same JSON column, to represent different subsets of
the document set.

Chapter 22
Multiple Data Guides Per Document Set

22-35

An additional aid in this regard is to have a separate, non-JSON, column in the same
table, which is used to label, or categorize, the documents in a JSON column.

In the case of the purchase-order documents used in our examples, let’s suppose that
their structure can evolve significantly from year to year, so that column date_loaded
of table j_purchaseorder can be used to group them into subsets of reasonably
similar shape. Example 22-18 adds a purchase-order document for 2015, and
Example 22-19 adds a purchase-order document for 2016. (Compare with the
documents for 2014, which are added in Example 4-2.)

Using a SQL Aggregate Function to Create Multiple Data Guides

Oracle SQL function json_dataguide is in fact an aggregate function. An aggregate
function returns a single result row based on groups of rows, rather than on a single
row. It is typically used in a SELECT list for a query that has a GROUP BY clause, which
divides the rows of a queried table or view into groups. The aggregate function applies
to each group of rows, returning a single result row for each group. For example,
aggregate function avg returns the average of a group of values.

Function json_dataguide aggregates JSON data to produce a summary, or
specification, of it, which is returned in the form of a JSON document. In other words,
for each group of JSON documents to which they are applied, they return a data
guide.

If you omit GROUP BY then this function returns a single data guide that summarizes all
of the JSON data in the subject JSON column.

Example 22-20 queries the documents of JSON column po_document, grouping them
to produce three data guides, one for each year of column date_loaded.

Example 22-18 Adding a 2015 Purchase-Order Document

The 2015 purchase-order format uses only part number, reference, and line-items as
its top-level fields, and these fields use prefix PO_. Each line item contains only a part
number and a quantity.

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-JUN-2015'),
 '{"PO_Number" : 4230,
 "PO_Reference" : "JDEER-20140421",
 "PO_LineItems" : [{"Part_Number" : 230912362345,
 "Quantity" : 3.0}]}');

Example 22-19 Adding a 2016 Purchase-Order Document

The 2016 format uses PO_ID instead of PO_Number, PO_Ref instead of PO_Reference,
PO_Items instead of PO_LineItems, Part_No instead of Part_Number, and
Item_Quantity instead of Quantity.

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 to_date('30-MAR-2016'),
 '{"PO_ID" : 4230,

Chapter 22
Multiple Data Guides Per Document Set

22-36

 "PO_Ref" : "JDEER-20140421",
 "PO_Items" : [{"Part_No" : 98981327234,
 "Item_Quantity" : 13}]}');

Example 22-20 Creating Multiple Data Guides With Aggregate Function
JSON_DATAGUIDE

This example uses aggregate SQL function json_dataguide to obtain three flat1 data guides,
one for each year-specific format. The data guide for 2014 is shown only partially — it is the
same as the data guide from A Flat Data Guide For Purchase-Order Documents, except that
no statistics fields are present. (Data guides returned by functions json_dataguide do not
contain any statistics fields.

SELECT extract(YEAR FROM date_loaded), json_dataguide(po_document)
 FROM j_purchaseorder
 GROUP BY extract(YEAR FROM date_loaded)
 ORDER BY extract(YEAR FROM date_loaded) DESC;

EXTRACT(YEARFROMDATE_LOADED)

JSON_DATAGUIDE(PO_DOCUMENT)

 2016
[
 {
 "o:path" : "$.PO_ID",
 "type" : "number",
 "o:length" : 4
 },
 {
 "o:path" : "$.PO_Ref",
 "type" : "string",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items",
 "type" : "array",
 "o:length" : 64
 },
 {
 "o:path" : "$.PO_Items.Part_No",
 "type" : "number",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items.Item_Quantity",
 "type" : "number",
 "o:length" : 2
 }
]

 2015

1 If function json_dataguide were passed DBMS_JSON.FORMAT_HIERARCHICAL as optional second argument then the
result would be three hierarchical data guides.

Chapter 22
Multiple Data Guides Per Document Set

22-37

[
 {
 "o:path" : "$.PO_Number",
 "type" : "number",
 "o:length" : 4
 },
 {
 "o:path" : "$.PO_LineItems",
 "type" : "array",
 "o:length" : 64
 },
 {
 "o:path" : "$.PO_LineItems.Quantity",
 "type" : "number",
 "o:length" : 4
 },
 {
 "o:path" : "$.PO_LineItems.Part_Number",
 "type" : "number",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Reference",
 "type" : "string",
 "o:length" : 16
 }
]

 2014
[
 {
 "o:path" : "$.User",
 "type" : "string",
 "o:length" : 8
 },
 {
 "o:path" : "$.PONumber",
 "type" : "number",
 "o:length" : 4
 },
...
 {
 "o:path" : "$.\"Special Instructions\"",
 "type" : "string",
 "o:length" : 8
 }
]

3 rows selected.

Chapter 22
Multiple Data Guides Per Document Set

22-38

See Also:

Oracle Database SQL Language Reference for information about SQL function
json_dataguide

22.11 Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from a flat data
guide that you obtain using either Oracle SQL function json_dataguide or PL/SQL function
DBMS_JSON.get_index_dataguide. In the latter case, a data guide-enabled JSON search
index must be defined on the JSON data.

See Also:

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_table

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constant DBMS_JSON.FORMAT_FLAT

Example 22-21 Querying a Data Guide Obtained Using JSON_DATAGUIDE

This example uses SQL/JSON function json_dataguide to obtain a flat data guide. It then
queries the relational columns projected on the fly by SQL/JSON function json_table from
fields o:path, type, and o:length. It returns the projected columns ordered lexicographically
by the path column created, jpath.

WITH dg_t AS (SELECT json_dataguide(po_document) dg_doc FROM j_purchaseorder)
 SELECT jt.*
 FROM dg_t,
 json_table(dg_doc, '$[*]'
 COLUMNS
 jpath VARCHAR2(40) PATH '$."o:path"',
 type VARCHAR2(10) PATH '$."type"',
 tlength NUMBER PATH '$."o:length"') jt
 ORDER BY jt.jpath;

JPATH TYPE TLENGTH
-- ------------- -------
$."Special Instructions" string 8
$.AllowPartialShipment boolean 4
$.CostCenter string 4
$.LineItems array 512
$.LineItems.ItemNumber number 1

Chapter 22
Querying a Data Guide

22-39

$.LineItems.Part object 128
$.LineItems.Part.Description string 32
$.LineItems.Part.UPCCode number 16
$.LineItems.Part.UnitPrice number 8
$.LineItems.Quantity number 4
$.PONumber number 4
$.PO_LineItems array 64
$.Reference string 16
$.Requestor string 16
$.ShippingInstructions object 256
$.ShippingInstructions.Address object 128
$.ShippingInstructions.Address.city string 32
$.ShippingInstructions.Address.country string 32
$.ShippingInstructions.Address.state string 2
$.ShippingInstructions.Address.street string 32
$.ShippingInstructions.Address.zipCode number 8
$.ShippingInstructions.Phone array 128
$.ShippingInstructions.Phone string 16
$.ShippingInstructions.Phone.number string 16
$.ShippingInstructions.Phone.type string 8
$.ShippingInstructions.name string 16
$.User string 8

Example 22-22 Querying a Data Guide With Index Data For Paths With
Frequency at Least 80%

This example uses PL/SQL function DBMS_JSON.get_index_dataguide with format
value DBMS_JSON.FORMAT_FLAT to obtain a flat data guide from the data-guide
information stored in a data guide-enabled JSON search index. It then queries the
relational columns projected on the fly from fields o:path, type, o:length, and
o:frequency by SQL/JSON function json_table.

The value of field o:frequency is a statistic that records the frequency of occurrence,
across the document set, of each field in a document. It is available only if you have
gathered statistics on the document set. The frequency of a given field is the number
of documents containing that field divided by the total number of documents in the
JSON column, expressed as a percentage.

WITH dg_t AS (SELECT DBMS_JSON.get_index_dataguide('J_PURCHASEORDER',
 'PO_DOCUMENT',

DBMS_JSON.FORMAT_FLAT) dg_doc
 FROM DUAL)
 SELECT jt.*
 FROM dg_t,
 json_table(dg_doc, '$[*]'
 COLUMNS
 jpath VARCHAR2(40) PATH '$."o:path"',
 type VARCHAR2(10) PATH '$."type"',
 tlength NUMBER PATH '$."o:length"',
 frequency NUMBER PATH '$."o:frequency"') jt
 WHERE jt.frequency > 80;

JPATH TYPE TLENGTH
FREQUENCY

Chapter 22
Querying a Data Guide

22-40

-- ------------- -------- ---------
$.User string 8 100
$.PONumber number 4 100
$.LineItems array 512 100
$.LineItems.Part object 128 100
$.LineItems.Part.UPCCode number 16 100
$.LineItems.Part.UnitPrice number 8 100
$.LineItems.Part.Description string 32 100
$.LineItems.Quantity number 4 100
$.LineItems.ItemNumber number 1 100
$.Reference string 16 100
$.Requestor string 16 100
$.CostCenter string 4 100
$.ShippingInstructions object 256 100
$.ShippingInstructions.name string 16 100
$.ShippingInstructions.Address object 128 100
$.ShippingInstructions.Address.city string 32 100
$.ShippingInstructions.Address.state string 2 100
$.ShippingInstructions.Address.street string 32 100
$.ShippingInstructions.Address.country string 32 100
$.ShippingInstructions.Address.zipCode number 8 100
$."Special Instructions" string 8 100

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

22.12 A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of purchase-order
documents.

The only JSON Schema keyword used in a flat data guide is type. The other fields are all
Oracle data-guide fields, which have prefix o:.

Example 22-23 shows a flat data guide for the purchase-order documents in table
j_purchaseorder. Things to note:

• The values of o:preferred_column_name use prefix PO_DOCUMENT$. This prefix comes
from using DBMS_JSON.get_index_dataguide to obtain this data guide.

• The value of o:length is 8 for path $.User, for example, in spite of the fact that the actual
lengths of the field values are 5. This is because the value of o:length is always a power
of two.

• The value of o:path for field Special Instructions is wrapped in double quotation
marks ("Special Instructions") because of the embedded space character.

Example 22-23 Flat Data Guide For Purchase Orders

Paths are bold. JSON schema keywords are italic. Preferred column names that result
from using DBMS_JSON.rename_column are also italic. The formatting used is similar to that
produced by using SQL/JSON function json_dataguide with format arguments
DBMS_JSON.FORMAT_FLAT and DBMS_JSON.PRETTY.

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-41

Note that fields o:frequency, o:low_value, o:high_value, o:num_nulls, and
o:last_analyzed are present. This can only be because statistics were gathered on
the document set. Their values reflect the state as of the last statistics gathering. See
Example 22-3 for an example of gathering statistics for this data.

[
 {
 "o:path": "$.User",
 "type": "string",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$User",
 "o:frequency": 100,
 "o:low_value": "ABULL",
 "o:high_value": "SBELL",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.PONumber",
 "type": "number",
 "o:length": 4,
 "o:preferred_column_name": "PONumber",
 "o:frequency": 100,
 "o:low_value": "672",
 "o:high_value": "1600",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems",
 "type": "array",
 "o:length": 512,
 "o:preferred_column_name": "PO_DOCUMENT$LineItems",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems.Part",
 "type": "object",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Part",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems.Part.UPCCode",
 "type": "number",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$UPCCode",
 "o:frequency": 100,
 "o:low_value": "13131092899",
 "o:high_value": "717951002396",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-42

 {
 "o:path": "$.LineItems.Part.UnitPrice",
 "type": "number",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$UnitPrice",
 "o:frequency": 100,
 "o:low_value": "20",
 "o:high_value": "19.95",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems.Part.Description",
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PartDescription",
 "o:frequency": 100,
 "o:low_value": "Nixon",
 "o:high_value": "Eric Clapton: Best Of 1981-1999",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems.Quantity",
 "type": "number",
 "o:length": 4,
 "o:preferred_column_name": "PO_DOCUMENT$Quantity",
 "o:frequency": 100,
 "o:low_value": "5",
 "o:high_value": "9.0",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.LineItems.ItemNumber",
 "type": "number",
 "o:length": 1,
 "o:preferred_column_name": "ItemNumber",
 "o:frequency": 100,
 "o:low_value": "1",
 "o:high_value": "3",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.Reference",
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$Reference",
 "o:frequency": 100,
 "o:low_value": "ABULL-20140421",
 "o:high_value": "SBELL-20141017",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-43

 {
 "o:path": "$.Requestor",
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$Requestor",
 "o:frequency": 100,
 "o:low_value": "Sarah Bell",
 "o:high_value": "Alexis Bull",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.CostCenter",
 "type": "string",
 "o:length": 4,
 "o:preferred_column_name": "PO_DOCUMENT$CostCenter",
 "o:frequency": 100,
 "o:low_value": "A50",
 "o:high_value": "A50",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.AllowPartialShipment",
 "type": "boolean",
 "o:length": 4,
 "o:preferred_column_name": "PO_DOCUMENT$AllowPartialShipment",
 "o:frequency": 50,
 "o:low_value": "true",
 "o:high_value": "true",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions",
 "type": "object",
 "o:length": 256,
 "o:preferred_column_name": "PO_DOCUMENT$ShippingInstructions",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.name",
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$name",
 "o:frequency": 100,
 "o:low_value": "Sarah Bell",
 "o:high_value": "Alexis Bull",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Phone",
 "type": "string",

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-44

 "o:length": 16,
 "o:preferred_column_name": "Phone",
 "o:frequency": 50,
 "o:low_value": "983-555-6509",
 "o:high_value": "983-555-6509",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Phone",
 "type": "array",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Phone_1",
 "o:frequency": 50,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Phone.type",
 "type": "string",
 "o:length": 8,
 "o:preferred_column_name": "PhoneType",
 "o:frequency": 50,
 "o:low_value": "Mobile",
 "o:high_value": "Office",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Phone.number",
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PhoneNumber",
 "o:frequency": 50,
 "o:low_value": "415-555-1234",
 "o:high_value": "909-555-7307",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address",
 "type": "object",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Address",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address.city",
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$city",
 "o:frequency": 100,
 "o:low_value": "South San Francisco",
 "o:high_value": "South San Francisco",
 "o:num_nulls": 0,

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-45

 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address.state",
 "type": "string",
 "o:length": 2,
 "o:preferred_column_name": "PO_DOCUMENT$state",
 "o:frequency": 100,
 "o:low_value": "CA",
 "o:high_value": "CA",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address.street",
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$street",
 "o:frequency": 100,
 "o:low_value": "200 Sporting Green",
 "o:high_value": "200 Sporting Green",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address.country",
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$country",
 "o:frequency": 100,
 "o:low_value": "United States of America",
 "o:high_value": "United States of America",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.ShippingInstructions.Address.zipCode",
 "type": "number",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$zipCode",
 "o:frequency": 100,
 "o:low_value": "99236",
 "o:high_value": "99236",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "o:path": "$.\"Special Instructions\"",
 "type": "string",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$SpecialInstructions",
 "o:frequency": 100,
 "o:low_value": "Courier",
 "o:high_value": "Courier",
 "o:num_nulls": 1,

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-46

 "o:last_analyzed": "2016-03-31T12:17:53"
 }
]

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as virtual
columns added to the same table that contains the JSON column. You can specify a
preferred name for such a column.

See Also:

• Example 4-2

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

22.13 A Hierarchical Data Guide For Purchase-Order
Documents

The fields of a sample hierarchical data guide are described. It corresponds to a set of
purchase-order documents.

Example 22-24 shows a hierarchical data guide for the purchase-order documents in table
j_purchaseorder.

Example 22-24 Hierarchical Data Guide For Purchase Orders

Field names are bold. JSON Schema keywords are italic. Preferred column names that
result from using DBMS_JSON.rename_column are also italic. The formatting used is similar
to that produced by using SQL/JSON function json_dataguide with format arguments
DBMS_JSON.FORMAT_HIERARCHICAL and DBMS_JSON.PRETTY.

Note that fields o:frequency, o:low_value, o:high_value, o:num_nulls, and
o:last_analyzed are present in this example. This can only be because statistics were
gathered on the document set. Their values reflect the state as of the last statistics gathering.
See Example 22-3 for an example of gathering statistics for this data.

{
 "type": "object",
 "properties": {
 "User": {
 "type": "string",
 "o:length": 8,

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-47

 "o:preferred_column_name": "PO_DOCUMENT$User",
 "o:frequency": 100,
 "o:low_value": "ABULL",
 "o:high_value": "SBELL",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "PONumber": {
 "type": "number",
 "o:length": 4,
 "o:preferred_column_name": "PONumber",
 "o:frequency": 100,
 "o:low_value": "672",
 "o:high_value": "1600",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "LineItems": {
 "type": "array",
 "o:length": 512,
 "o:preferred_column_name": "PO_DOCUMENT$LineItems",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53",
 "items": {
 "properties": {
 "Part": {
 "type": "object",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Part",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53",
 "properties": {
 "UPCCode": {
 "type": "number",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$UPCCode",
 "o:frequency": 100,
 "o:low_value": "13131092899",
 "o:high_value": "717951002396",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "UnitPrice": {
 "type": "number",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$UnitPrice",
 "o:frequency": 100,
 "o:low_value": "20",
 "o:high_value": "19.95",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "Description": {
 "type": "string",
 "o:length": 32,

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-48

 "o:preferred_column_name": "PartDescription",
 "o:frequency": 100,
 "o:low_value": "Nixon",
 "o:high_value": "Eric Clapton: Best Of 1981-1999",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 }
 }
 },
 "Quantity": {
 "type": "number",
 "o:length": 4,
 "o:preferred_column_name": "PO_DOCUMENT$Quantity",
 "o:frequency": 100,
 "o:low_value": "5",
 "o:high_value": "9.0",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "ItemNumber": {
 "type": "number",
 "o:length": 1,
 "o:preferred_column_name": "ItemNumber",
 "o:frequency": 100,
 "o:low_value": "1",
 "o:high_value": "3",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 }
 }
 }
 },
 "Reference": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$Reference",
 "o:frequency": 100,
 "o:low_value": "ABULL-20140421",
 "o:high_value": "SBELL-20141017",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "Requestor": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$Requestor",
 "o:frequency": 100,
 "o:low_value": "Sarah Bell",
 "o:high_value": "Alexis Bull",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "CostCenter": {
 "type": "string",
 "o:length": 4,

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-49

 "o:preferred_column_name": "PO_DOCUMENT$CostCenter",
 "o:frequency": 100,
 "o:low_value": "A50",
 "o:high_value": "A50",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "AllowPartialShipment": {
 "type": "boolean",
 "o:length": 4,
 "o:preferred_column_name": "PO_DOCUMENT$AllowPartialShipment",
 "o:frequency": 50,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "ShippingInstructions": {
 "type": "object",
 "o:length": 256,
 "o:preferred_column_name": "PO_DOCUMENT$ShippingInstructions",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53",
 "properties": {
 "name": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PO_DOCUMENT$name",
 "o:frequency": 100,
 "o:low_value": "Sarah Bell",
 "o:high_value": "Alexis Bull",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "Phone": {
 "oneOf": [
 {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "Phone",
 "o:frequency": 50,
 "o:low_value": "983-555-6509",
 "o:high_value": "983-555-6509",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 {
 "type": "array",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Phone_1",
 "o:frequency": 50,
 "o:last_analyzed": "2016-03-31T12:17:53",
 "items": {
 "properties": {
 "type": {
 "type": "string",
 "o:length": 8,
 "o:preferred_column_name": "PhoneType",

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-50

 "o:frequency": 50,
 "o:low_value": "Mobile",
 "o:high_value": "Office",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "number": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "PhoneNumber",
 "o:frequency": 50,
 "o:low_value": "415-555-1234",
 "o:high_value": "909-555-7307",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 }
 }
 }
 }
]
 },
 "Address": {
 "type": "object",
 "o:length": 128,
 "o:preferred_column_name": "PO_DOCUMENT$Address",
 "o:frequency": 100,
 "o:last_analyzed": "2016-03-31T12:17:53",
 "properties": {
 "city": {
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$city",
 "o:frequency": 100,
 "o:low_value": "South San Francisco",
 "o:high_value": "South San Francisco",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "state": {
 "type": "string",
 "o:length": 2,
 "o:preferred_column_name": "PO_DOCUMENT$state",
 "o:frequency": 100,
 "o:low_value": "CA",
 "o:high_value": "CA",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "street": {
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$street",
 "o:frequency": 100,
 "o:low_value": "200 Sporting Green",
 "o:high_value": "200 Sporting Green",

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-51

 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "country": {
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "PO_DOCUMENT$country",
 "o:frequency": 100,
 "o:low_value": "United States of America",
 "o:high_value": "United States of America",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 },
 "zipCode": {
 "type": "number",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$zipCode",
 "o:frequency": 100,
 "o:low_value": "99236",
 "o:high_value": "99236",
 "o:num_nulls": 0,
 "o:last_analyzed": "2016-03-31T12:17:53"
 }
 }
 }
 }
 },
 "Special Instructions": {
 "type": "string",
 "o:length": 8,
 "o:preferred_column_name": "PO_DOCUMENT$SpecialInstructions",
 "o:frequency": 100,
 "o:low_value": "Courier",
 "o:high_value": "Courier",
 "o:num_nulls": 1,
 "o:last_analyzed": "2016-03-31T12:17:53"
 }
 }
}

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON
Schema fields (keywords) and Oracle-specific fields.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as columns in a database view or as
virtual columns added to the same table that contains the JSON column. You can
specify a preferred name for such a column.

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-52

See Also:

• Example 4-2

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-53

Part V
Generation of JSON Data

You can use SQL to generate JSON data from other kinds of database data
programmatically, using SQL/JSON functions json_object, json_array, json_objectagg,
and json_arrayagg.

• Generation of JSON Data with SQL/JSON Functions
SQL/JSON functions json_object, json_array, json_objectagg, and json_arrayagg
are presented.

23
Generation of JSON Data with SQL/JSON
Functions

SQL/JSON functions json_object, json_array, json_objectagg, and json_arrayagg are
presented.

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg, and
json_arrayagg to construct JSON data from non-JSON data in the database. The JSON
data is returned as a SQL value.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and render them as JSON
values inside the SQL value that is returned. How the input values are rendered as JSON
depends on their SQL data type.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_OBJECTAGG
SQL/JSON function json_objectagg constructs a JSON object by aggregating
information from multiple rows of a grouped SQL query as the object members.

• SQL/JSON Function JSON_ARRAYAGG
SQL/JSON function json_arrayagg constructs a JSON array by aggregating information
from multiple rows of a grouped SQL query as the array elements. The order of array
elements reflects the query result order, by default, but you can use the ORDER BY clause
to impose array element order.

23.1 Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg, and
json_arrayagg to construct JSON data from non-JSON data in the database. The JSON data
is returned as a SQL value.

These generation functions make it easy to construct JSON data directly from a SQL query.
They allow non-JSON data to be represented as JSON objects and JSON arrays. You can
generate complex, hierarchical JSON documents by nesting calls to these functions. Nested
subqueries can generate JSON collections that represent one-to-many relationships.1

1 The behavior of the SQL/JSON generation functions for JSON data is similar to that of the SQL/XML generation
functions for XML data.

23-1

The Best Way to Construct JSON Data from Non-JSON Data

Alternatives to using the SQL/JSON generation functions are generally error prone or
inefficient.

• Using string concatenation to generate JSON documents is error prone. In
particular, there are a number of complex rules that must be respected concerning
when and how to escape special characters, such as double quotation marks (").
It is easy to overlook or misunderstand these rules, which can result in generating
incorrect JSON data.

• Reading non-JSON result sets from the database and using client-side application
code to generate JSON data is typically quite inefficient, particularly due to
network overhead. When representing one-to-many relationships as JSON data,
multiple SELECT operations are often required, to collect all of the non-JSON data
needed. If the documents to be generated represent multiple levels of one-to-
many relationships then this technique can be quite costly.

The SQL/JSON generation functions do not suffer from such problems; they are
designed for the job of constructing JSON data from non-JSON database data.

• They always construct well-formed JSON documents.

• By using SQL subqueries with these functions, you can generate an entire set of
JSON documents using a single SQL statement, which allows the generation
operation to be optimized.

• Because only the generated documents are returned to a client, network overhead
is minimized: there is at most one round trip per document generated.

The SQL/JSON Generation Functions

• Functions json_object and json_array construct a JSON object or array,
respectively. In the simplest case, json_object takes SQL name–value pairs as
arguments, and json_array takes SQL values as arguments.

• Functions json_objectagg, and json_arrayagg are aggregate SQL functions.
They transform information that is contained in the rows of a grouped SQL query
into JSON objects and arrays, respectively. Evaluation of the arguments
determines the number of object members and array elements, respectively; that
is, the size of the result reflects the current queried data.

For json_objectagg and json_arrayagg, the order of object members and array
elements, respectively, is unspecified. For json_arrayagg, you can use an ORDER
BY clause within the json_arrayagg invocation to control the array element order.

Result Returned by SQL/JSON Generation Functions

By default, the generated JSON data is returned from a generation function as a SQL
VARCHAR2 value. You can use the optional RETURNING clause to specify a VARCHAR2 size
or to specify a CLOB or BLOB return value instead. When BLOB is the return type, the
character set is AL32UTF8.

Handling of Input Values For SQL/JSON Generation Functions

The SQL/JSON generation functions take SQL values as input and render them as
JSON values inside the SQL value that is returned. How the input values are rendered
as JSON depends on their SQL data type.

Chapter 23
Overview of SQL/JSON Generation Functions

23-2

Optional Behavior For SQL/JSON Generation Functions

You can optionally specify a SQL NULL-handling clause, a RETURNING clause, and keyword
STRICT.

• NULL-handling clause — Determines how a SQL NULL value resulting from input
evaluation is handled.

– NULL ON NULL — An input SQL NULL value is converted to JSON null for output. This
is the default behavior for json_object and json_objectagg.

– ABSENT ON NULL — An input SQL NULL value results in no corresponding output. This
is the default behavior for json_array and json_arrayagg.

• RETURNING clause — The SQL data type used for the function return value. The default is
VARCHAR2(4000).

• STRICT keyword — If present, the returned JSON data is checked, to be sure it is well-
formed. If STRICT is present and the returned data is not well-formed then an error is
raised.

Related Topics

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and render them as JSON
values inside the SQL value that is returned. How the input values are rendered as JSON
depends on their SQL data type.

• ISO 8601 Date and Time Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the ISO
8601 date and time formats.

See Also:

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_array

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_arrayagg

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_object

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_objectagg

23.2 Handling of Input Values For SQL/JSON Generation
Functions

The SQL/JSON generation functions take SQL values as input and render them as JSON
values inside the SQL value that is returned. How the input values are rendered as JSON
depends on their SQL data type.

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-3

By default, a SQL NUMBER value is rendered in the output as a JSON number, a SQL
VARCHAR2 value is rendered as a JSON string, and so on. For example, by default the
VARCHAR2 value '{}' is rendered as the JSON string "{}".

In some cases you know or expect that an input value in fact already represents JSON
data, and you want to communicate this to the generation function so that the value is
kept as is. For example, if the input is '{}' then you might want it interpreted
(rendered) as an empty JSON object, {}, not as a JSON string, "{}".

You can do this by adding keywords FORMAT JSON after an input expression to declare
that the value that results from it is to be considered as already representing JSON
data. Equivalently, you can apply SQL function treat with keywords AS JSON to a
generation-function input value — the effect is the same as using FORMAT JSON.

In many cases Oracle can determine automatically that an input value is in fact JSON
data, in which case the input is treated as if it were followed by an explicit FORMAT JSON
declaration. This is the case, for instance, if the value expression is itself an invocation
of a SQL/JSON generation function or function json_query.

If you do not specify FORMAT JSON for a given input value, and if Oracle cannot
determine that the value is JSON data, then it is assumed to be ordinary (non-JSON)
SQL data. In that case it is serialized as follows (any other SQL value raises an error):

• An instance of a user-defined SQL object type is rendered as a JSON object
whose field names are taken from the object attribute names and whose field
values are taken from the object attribute values (to which JSON generation is
applied recursively).

• An instance of a SQL collection type is rendered as a JSON array whose element
values are taken from the collection element values (to which JSON generation is
applied recursively).

• A VARCHAR2, CLOB, or NVARCHAR value is wrapped in double quotation marks ("),
and characters are escaped when necessary to conform to the JSON standard.

• A numeric value (NUMBER, BINARY_DOUBLE, or BINARY_FLOAT) is rendered as a
JSON number. (It is not quoted.)

The numeric values of positive and negative infinity, and values that are the
undefined result of a numeric operation ("not a number" or NaN), cannot be
expressed as JSON numbers. They are instead rendered as JSON strings: "Inf",
"-Inf", and "Nan", respectively.

• A RAW or BLOB value is rendered as a hexadecimal JSON string (with double
quotation marks, ").

• A time-related value (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, or INTERVAL DAY TO SECOND)
is rendered in a supported ISO 8601 format, and the result is enclosed in double
quotation marks (").

• A BOOLEAN PL/SQL value is rendered as JSON true or false. (It is not quoted.)

• A NULL value is rendered as JSON null, regardless of the NULL data type. (It is not
quoted.)

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-4

Note:

For data types CLOB and BLOB, an empty instance is distinguished from NULL and is
rendered as an empty JSON string (""). But for data types VARCHAR2, NVARCHAR2,
and RAW, Oracle SQL treats an empty (zero-length) value as NULL, so do not expect
such a value to be rendered as a JSON string.

The format of an input argument can affect the format of the data that is returned by the
function. In particular, if an input is declared or automatically determined to be of format
JSON then it is treated as JSON data when computing the return value. Example 23-1
illustrates this — it explicitly uses FORMAT JSON to interpret the SQL string "true" as the
JSON Boolean value true.

Example 23-1 Declaring an Input Value To Be JSON

This example specifies FORMAT JSON for SQL string values 'true' and 'false', in order that
the JSON Boolean values true and false are used. Without specifying FORMAT JSON, the
values of field hasCommission would be the JSON string values "true" and "false", not the
JSON Boolean values true and false.

SELECT json_object('name' VALUE first_name || ' ' || last_name,
 'hasCommission' VALUE
 CASE WHEN commission_pct IS NULL THEN 'false' ELSE
'true'
 END FORMAT JSON)
 FROM employees WHERE first_name LIKE 'W%';

JSON_OBJECT('NAME'ISFIRST_NAME||''||LAST_NAME,'

{"name":"William Gietz","hasCommission":false}
{"name":"William Smith","hasCommission":true}
{"name":"Winston Taylor","hasCommission":false}

Related Topics

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg, and
json_arrayagg to construct JSON data from non-JSON data in the database. The JSON
data is returned as a SQL value.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating
its argument SQL expressions.

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-5

See Also:

olink:SQLRF-GUID-7B72E154-677A-4342-A1EA-
C74C1EA928E6#GUID-7B72E154-677A-4342-A1EA-C74C1EA928E6

23.3 SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of
evaluating its argument SQL expressions.

It can accept any number of arguments, each of which is one of the following:

• An explicit field name–value pair. Example: answer : 42.

A name–value pair argument specifies an object member for the generated JSON
object (except when the value expression evaluates to SQL NULL and the ABSENT
ON NULL clause applies). The name and value are SQL expressions. The name
expression must evaluate to a SQL string. The value expression must evaluate to
a SQL value that can be rendered as a JSON value. The name and value
expressions are separated by keyword VALUE or a colon (:).

Note:

Some client drivers might try to scan query text and identify bind
variables before sending the query to the database. In some such cases
a colon as name–value separator in json_object might be
misinterpreted as introducing a bind variable. You can use keyword
VALUE as the separator to avoid this problem ('Name' VALUE Diderot), or
you can simply enclose the value part of the pair in parentheses:
'Name':(Diderot).

• A relational column name, possibly preceded by a table name or alias, or a view
name followed by a dot (.). Example: t1.address.

In this case, for a given row of data, the JSON-object member specified by the
column-name argument has the column name as its field name and the column
value as the field value.

Regardless of whether it is quoted, the column name you provide is interpreted
case-sensitively. For example, if you use Email as a column-name argument then
the data in column EMAIL is used to produce object members with field name
Email (not EMAIL).

• A table name or alias, or a view name, followed by a dot and an asterisk wildcard
(.*). Example: t1.*. (The name or alias can also be prefixed by a database
schema name, as in myschema.t1.*.)

In this case, all columns of the table or view are used as input. Each is handled as
if it were named explicitly. In particular, the column names are interpreted case-
sensitively.

Alternatively, json_object accepts a single argument that is one of the following:

Chapter 23
SQL/JSON Function JSON_OBJECT

23-6

• An instance of a user-defined SQL object-type. Example:
json_object(my_sql_object_42).

In this case, the resulting JSON-object field names are taken from the SQL object
attribute names, and their values are taken from the SQL object attribute values (to which
JSON generation is applied recursively).

• An asterisk wildcard (*). Example: json_object(*).

The wildcard acts as a shortcut to explicitly specifying all of the columns of a table or
view, to produce the object members. The resulting JSON-object field names are the
uppercase column names. You can use a wildcard with a table, a view, or a table alias,
which is understood from the FROM list. The columns can be of any SQL data type.

Note the difference between this case (json_object(*)) and the case described above,
where the asterisk is preceded by an explicit table or view name (or table alias), followed
by a dot: json_object(t.*). In the json_object(*) case, the column names are not
interpreted case-sensitively.

Another way of describing the use of asterisk wildcards with json_object is to say that it
follows what is allowed for wildcards in a SQL SELECT list.

Just as for SQL/JSON condition is json, you can use keywords STRICT and WITH UNIQUE
KEYS with functions json_object and json_objectagg. The behavior for each is the same as
for is json.

Example 23-2 Using Name–Value Pairs with JSON_OBJECT

This example constructs a JSON object for each employee of table hr.employees (from
standard database schema HR) whose salary is greater than 15000.

It passes explicit name–value pairs to specify the members of the JSON object. The object
includes, as the value of its field contactInfo, an object with fields mail and phone.

SELECT json_object('id' : employee_id,
 'name' : first_name || ' ' || last_name,

 'contactInfo' : json_object('mail' : email,
 'phone' : phone_number),
 'hireDate' : hire_date,
 'pay' : salary)
 FROM hr.employees
 WHERE salary > 15000;

-- The query returns rows such as this (pretty-printed here for clarity):

{"id" : 101,
 "name" : "Neena Kochhar",
 "contactInfo" : {"mail" : "NKOCHHAR",
 "phone" : "515.123.4568"},
 "hireDate" : "21-SEP-05",
 "pay" : 17000}

Chapter 23
SQL/JSON Function JSON_OBJECT

23-7

Note:

Because function json_object always returns JSON data, there is no need
to specify FORMAT JSON for the value of input field contactInfo. But if the
value of that field had been given as, for example, '{"mail":' || email ',
"phone":' || phone_number || '}' then you would need to follow it with
FORMAT JSON to have that string value interpreted as JSON data:

"contactInfo" : '{"mail":' || email ', "phone":' ||
phone_number || '}'
FORMAT JSON,

Example 23-3 Using Column Names with JSON_OBJECT

This example constructs a JSON object for the employee whose employee_id is 101.
The fields produced are named after the columns, but case-sensitively.

SELECT json_object(last_name,
 'contactInfo' : json_object(email, phone_number),
 hire_date,
 salary)
 FROM hr.employees
 WHERE employee_id = 101;

-- The query returns rows such as this (pretty-printed here for
clarity):

{"last_name" : "Kochhar",
 "contactInfo" : {"email" : "NKOCHHAR",
 "phone_number" : "515.123.4568"},
 "hire-date" : "21-SEP-05",
 "salary" : 17000}

Example 23-4 Using a Wildcard (*) with JSON_OBJECT

This example constructs a JSON object for each employee whose salary is greater
than 15000. Each column of table employees is used to construct one object member,
whose field name is the (uppercase) column name. Note that a SQL NULL value results
in a JSON field value of null.

SELECT json_object(*)
 FROM hr.employees
 WHERE salary > 15000;

-- The query returns rows such as this (pretty-printed here for
clarity):

JSON_OBJECT(*)

{"EMPLOYEE_ID":100,
 "FIRST_NAME":"Steven",

Chapter 23
SQL/JSON Function JSON_OBJECT

23-8

 "LAST_NAME":"King",
 "EMAIL":"SKING",
 "PHONE_NUMBER":"515.123.4567",
 "HIRE_DATE":"2003-06-17T00:00:00",
 "JOB_ID":"AD_PRES",
 "SALARY":24000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":null,
 "DEPARTMENT_ID":90}

{"EMPLOYEE_ID":101,
 "FIRST_NAME":"Neena",
 "LAST_NAME":"Kochhar",
 "EMAIL":"NKOCHHAR",
 "PHONE_NUMBER":"515.123.4568",
 "HIRE_DATE":"2005-09-21T00:00:00",
 "JOB_ID":"AD_VP",
 "SALARY":17000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":100,
 "DEPARTMENT_ID":90}

{"EMPLOYEE_ID":102,
 "FIRST_NAME":"Lex",
 "LAST_NAME":"De Haan",
 "EMAIL":"LDEHAAN",
 "PHONE_NUMBER":"515.123.4569",
 "HIRE_DATE":"2001-01-13T00:00:00",
 "JOB_ID":"AD_VP",
 "SALARY":17000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":100,
 "DEPARTMENT_ID":90}

Example 23-5 Using JSON_OBJECT With ABSENT ON NULL

This example queries table hr.locations from standard database schema HR to create
JSON objects with fields city and province.

The default NULL-handling behavior for json_object is NULL ON NULL.

In order to prevent the creation of a field with a null JSON value, this example uses ABSENT
ON NULL. The NULL SQL value for column state_province when column city has value
'Singapore' means that no province field is created for that location.

SELECT JSON_OBJECT('city' VALUE city,
 'province' : state_province ABSENT ON NULL)
 FROM hr.locations
 WHERE city LIKE 'S%';

JSON_OBJECT('CITY'ISCITY,'PROVINCE'ISSTATE_PROVINCEABSENTONNULL)
--
{"city":"Southlake","province":"Texas"}
{"city":"South San Francisco","province":"California"}
{"city":"South Brunswick","province":"New Jersey"}

Chapter 23
SQL/JSON Function JSON_OBJECT

23-9

{"city":"Seattle","province":"Washington"}
{"city":"Sydney","province":"New South Wales"}
{"city":"Singapore"}
{"city":"Stretford","province":"Manchester"}
{"city":"Sao Paulo","province":"Sao Paulo"}

Example 23-6 Using a User-Defined Object-Type Instance with JSON_OBJECT

This example creates table po_ship with column shipping of object type shipping_t.
(It uses SQL/JSON function json_value to construct the shipping_t instances from
JSON data — see Example 18-3.)

It then uses json_object to generate JSON objects from the SQL object-type
instances in column po_ship.shipping.

(The query output is shown pretty-printed here, for clarity.)

CREATE TABLE po_ship
 AS SELECT json_value(po_document, '$.ShippingInstructions'
 RETURNING shipping_t)
 shipping
 FROM j_purchaseorder;

DESCRIBE po_ship;

Name Null? Type
--------- ------- ----------
SHIPPING SHIPPING_T

SELECT json_object(shipping) from po_ship;

JSON_OBJECT(SHIPPING)

{"NAME":"Alexis Bull",
 "ADDRESS":{"STREET":"200 Sporting Green",
 "CITY":"South San Francisco"}}
{"NAME":"Sarah Bell",
 "ADDRESS":{"STREET":"200 Sporting Green",
 "CITY":"South San Francisco"}}

Related Topics

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg,
and json_arrayagg to construct JSON data from non-JSON data in the database.
The JSON data is returned as a SQL value.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and render them as
JSON values inside the SQL value that is returned. How the input values are
rendered as JSON depends on their SQL data type.

Chapter 23
SQL/JSON Function JSON_OBJECT

23-10

See Also:

• Oracle Database SQL Language Reference for information about the
select_list syntax

• Oracle Database SQL Language Reference for information about SQL/JSON
function json_object

• Oracle Database SQL Language Reference for SQL identifier syntax

23.4 SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating its
argument SQL expressions.

In the simplest case, the evaluated arguments you provide to json_array are SQL values
that are converted to JSON values as the JSON array elements. The resulting array has an
element for each argument you provide (except when an argument expression evaluates to
SQL NULL and the ABSENT ON NULL clause applies). Array element order is the same as the
argument order.

There are several kinds of SQL values that you can use as an argument to json_array,
including scalar, collection instance, and user-defined object-type instance.

Example 23-7 Using JSON_ARRAY to Construct a JSON Array

This example constructs a JSON object for each employee job in database table hr.jobs
(from standard database schema HR). The fields of the objects are the job title and salary
range. The salary range (field salaryRange) is an array of two numeric values, the minimum
and maximum salaries for the job. These values are taken from SQL columns min_salary
and max_salary.

SELECT json_object('title' VALUE job_title,
 'salaryRange' VALUE json_array(min_salary, max_salary))
 FROM jobs;

JSON_OBJECT('TITLE'ISJOB_TITLE,'SALARYRANGE'ISJSON_ARRAY(MIN_SALARY,MAX_SALAR
Y))

{"title":"President","salaryRange":[20080,40000]}
{"title":"Administration Vice President","salaryRange":[15000,30000]}
{"title":"Administration Assistant","salaryRange":[3000,6000]}
{"title":"Finance Manager","salaryRange":[8200,16000]}
{"title":"Accountant","salaryRange":[4200,9000]}
{"title":"Accounting Manager","salaryRange":[8200,16000]}
{"title":"Public Accountant","salaryRange":[4200,9000]}
{"title":"Sales Manager","salaryRange":[10000,20080]}
{"title":"Sales Representative","salaryRange":[6000,12008]}
{"title":"Purchasing Manager","salaryRange":[8000,15000]}
{"title":"Purchasing Clerk","salaryRange":[2500,5500]}
{"title":"Stock Manager","salaryRange":[5500,8500]}
{"title":"Stock Clerk","salaryRange":[2008,5000]}

Chapter 23
SQL/JSON Function JSON_ARRAY

23-11

{"title":"Shipping Clerk","salaryRange":[2500,5500]}
{"title":"Programmer","salaryRange":[4000,10000]}
{"title":"Marketing Manager","salaryRange":[9000,15000]}
{"title":"Marketing Representative","salaryRange":[4000,9000]}
{"title":"Human Resources Representative","salaryRange":[4000,9000]}
{"title":"Public Relations Representative","salaryRange":[4500,10500]}

Related Topics

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg,
and json_arrayagg to construct JSON data from non-JSON data in the database.
The JSON data is returned as a SQL value.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and render them as
JSON values inside the SQL value that is returned. How the input values are
rendered as JSON depends on their SQL data type.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of
evaluating its argument SQL expressions.

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_array

23.5 SQL/JSON Function JSON_OBJECTAGG
SQL/JSON function json_objectagg constructs a JSON object by aggregating
information from multiple rows of a grouped SQL query as the object members.

Unlike the case for SQL/JSON function json_object, where the number of members
in the resulting object directly reflects the number of arguments, for json_objectagg
the size of the resulting object reflects the current queried data. It can thus vary,
depending on the data that is queried.

Example 23-8 Using JSON_OBJECTAGG to Construct a JSON Object

This example constructs a single JSON object from table hr.departments (from
standard database schema HR) using field names taken from column department_name
and field values taken from column department_id.

SELECT json_objectagg(department_name VALUE department_id) FROM
departments;

-- The returned object is pretty-printed here for clarity.
-- The order of the object members is arbitrary.

JSON_OBJECTAGG(DEPARTMENT_NAMEISDEPARTMENT_ID)
--

Chapter 23
SQL/JSON Function JSON_OBJECTAGG

23-12

{"Administration": 10,
 "Marketing": 20,
 "Purchasing": 30,
 "Human Resources": 40,
 "Shipping": 50,
 "IT": 60,
 "Public Relations": 70,
 "Sales": 80,
 "Executive": 90,
 "Finance": 100,
 "Accounting": 110,
 "Treasury": 120,
 "Corporate Tax": 130,
 "Control And Credit": 140,
 "Shareholder Services": 150,
 "Benefits": 160,
 "Manufacturing": 170,
 "Construction": 180,
 "Contracting": 190,
 "Operations": 200,
 "IT Support": 210,
 "NOC": 220,
 "IT Helpdesk": 230,
 "Government Sales": 240,
 "Retail Sales": 250,
 "Recruiting": 260,
 "Payroll": 270}

Related Topics

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg, and
json_arrayagg to construct JSON data from non-JSON data in the database. The JSON
data is returned as a SQL value.

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_objectagg

23.6 SQL/JSON Function JSON_ARRAYAGG
SQL/JSON function json_arrayagg constructs a JSON array by aggregating information from
multiple rows of a grouped SQL query as the array elements. The order of array elements
reflects the query result order, by default, but you can use the ORDER BY clause to impose
array element order.

Unlike the case for SQL/JSON function json_array, where the number of elements in the
resulting array directly reflects the number of arguments, for json_arrayagg the size of the
resulting array reflects the current queried data. It can thus vary, depending on the data that
is queried.

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-13

Example 23-9 Using JSON_ARRAYAGG to Construct a JSON Array

This example constructs a JSON object for each employee of table hr.employees
(from standard database schema HR) who is a manager in charge of at least six
employees. The objects have fields for the manager id number, manager name,
number of employees reporting to the manager, and id numbers of those employees.

The order of the employee id numbers in the array is determined by the ORDER BY
clause for json_arrayagg. The default direction for ORDER BY is ASC (ascending). The
array elements, which are numeric, are in ascending numerical order.

SELECT json_object('id' VALUE mgr.employee_id,
 'manager' VALUE (mgr.first_name || ' '|| mgr.last_name),
 'numReports' VALUE count(rpt.employee_id),
 'reports' VALUE json_arrayagg(rpt.employee_id
 ORDER BY rpt.employee_id))
 FROM employees mgr, employees rpt
 WHERE mgr.employee_id = rpt.manager_id
 GROUP BY mgr.employee_id, mgr.last_name, mgr.first_name
 HAVING count(rpt.employee_id) > 6;

-- The returned object is pretty-printed here for clarity.

JSON_OBJECT('ID'ISMGR.EMPLOYEE_ID,'MANAGER'VALUE(MGR.FIRST_NAME||''||MGR.LAST_NAME)

{"id": 100,
 "manager": "Steven King",
 "numReports": 14,
 "reports": [101,102,114,120,121,122,123,124,145,146,147,148,149,201]}

{"id": 120,
 "manager": "Matthew Weiss",
 "numReports": 8,
 "reports": [125,126,127,128,180,181,182,183]}

{"id": 121,
 "manager": "Adam Fripp",
 "numReports": 8,
 "reports": [129,130,131,132,184,185,186,187]}

{"id": 122,
 "manager": "Payam Kaufling",
 "numReports": 8,
 "reports": [133,134,135,136,188,189,190,191]}

{"id": 123,
 "manager": "Shanta Vollman",
 "numReports": 8,
 "reports": [137,138,139,140,192,193,194,195]}

{"id": 124,
 "manager": "Kevin Mourgos",
 "numReports": 8,
 "reports": [141,142,143,144,196,197,198,199]}

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-14

Example 23-10 Generating JSON Objects with Nested Arrays Using a SQL Subquery

This example shows a SQL left outer join between two tables: countries and regions. Table
countries has a foreign key, region_id, which joins with the primary key of table regions,
also named region_id.

The query returns a JSON object for each row in table regions. Each of these region objects
has a countries field whose value is an array of country objects — the countries in that
region.

SELECT json_object(
 'region' : region_name,
 'countries' :
 (SELECT json_arrayagg(json_object('id' : country_id,
 'name' : country_name))
 FROM countries c
 WHERE c.region_id = r.region_id))
 FROM regions r;

The query results in objects such as the following:

{"region" : "Europe",
 "countries" : [{"id" : "BE",
 "name" : "Belgium"},
 {"id" : "CH",
 "name" : "Switzerland"},
 {"id" : "DE",
 "name" : "Germany"},
 {"id" : "DK",
 "name" : "Denmark"},
 {"id" : "FR",
 "name" : "France"},
 {"id" : "IT",
 "name" : "Italy"},
 {"id" : "NL",
 "name" : "Netherlands"},
 {"id" : "UK",
 "name" : "United Kingdom"}]}

Related Topics

• Overview of SQL/JSON Generation Functions
You can use SQL/JSON functions json_object, json_array, json_objectagg, and
json_arrayagg to construct JSON data from non-JSON data in the database. The JSON
data is returned as a SQL value.

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_arrayagg

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-15

Part VI
PL/SQL Object Types for JSON

You can use PL/SQL object types for JSON to read and write multiple fields of a JSON
document. This can increase performance, in particular by avoiding multiple parses and
serializations of the data.

• Overview of PL/SQL Object Types for JSON
PL/SQL object types allow fine-grained programmatic construction and manipulation of
In-Memory JSON data. You can introspect it, modify it, and serialize it back to textual
JSON data.

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

24
Overview of PL/SQL Object Types for JSON

PL/SQL object types allow fine-grained programmatic construction and manipulation of In-
Memory JSON data. You can introspect it, modify it, and serialize it back to textual JSON
data.

The principal PL/SQL JSON object types are JSON_ELEMENT_T, JSON_OBJECT_T,
JSON_ARRAY_T, and JSON_SCALAR_T. Another, less used object type is JSON_KEY_LIST, which
is a varray of VARCHAR2(4000). Object types are also called abstract data types (ADTs).

These JSON object types provide an In-Memory, hierarchical (tree-like), programmatic
representation of JSON data that is stored in the database.1

You can use the object types to programmatically manipulate JSON data in memory, to do
things such as the following:

• Check the structure, types, or values of existing JSON data. For example, check whether
the value of a given object field satisfies certain conditions.

• Transform existing JSON data. For example, convert address or phone-number formats
to follow a particular convention.

• Create JSON data using programming rules that match the characteristics of whatever
the data represents. For example, if a product to be represented as a JSON object is
flammable then include fields that represent safety information.

PL/SQL object-type instances are transient. To store the information they contain persistently,
you must serialize them to VARCHAR2 or LOB data, which you can then store in a database
table or marshal to a database client such as Java Database Connectivity (JDBC).

You construct an object-type instance in memory either all at once, by parsing JSON text, or
piecemeal, starting with an empty object or array instance and adding object members or
array elements to it.

An unused object-type instance is automatically garbage-collected; you cannot, and need
not, free up the memory used by an instance that you no longer need.

Typically, after you have constructed a PL/SQL object-type instance and perhaps made use
of it programmatically in various ways, you serialize it to an instance of data type VARCHAR2,
CLOB, or BLOB. That is, you convert the transient representation of JSON data in memory to a
persistent representation in the database. (Alternatively, you might serialize it only as text to
be printed out.)

Relations Among the JSON Object Types

Type JSON_ELEMENT_T is the supertype of the other JSON object types: each of them extends
it as a subtype. Subtypes JSON_OBJECT_T and JSON_ARRAY_T are used for JSON objects and
arrays, respectively. Subtype JSON_SCALAR_T is used for scalar JSON values: strings,
numbers, the Boolean values true and false, and the value null.

1 This is similar to what is available for XML data using the Document Object Model (DOM), a language-neutral and
platform-neutral object model and API for accessing the structure of XML documents that is recommended by the World
Wide Web Consortium (W3C).

24-1

You can construct an instance of type JSON_ELEMENT_T only by parsing JSON text.
Parsing creates a JSON_ELEMENT_T instance, which is an In-Memory representation of
the JSON data. You cannot construct an empty instance of type JSON_ELEMENT_T or
type JSON_SCALAR_T.

Types JSON_OBJECT_T and JSON_ARRAY_T each have a constructor function of the same
name as the type, which you can use to construct an instance of the type: an empty
(In-Memory) representation of a JSON object or array, respectively. You can then fill
this object or array as needed, adding object members or array elements, represented
by PL/SQL object-type instances.

You can cast an instance of JSON_ELEMENT_T to a subtype instance, using PL/SQL
function treat. For example, treat(elt AS JSON_OBJECT_T) casts instance elt as a
JSON object (instance of JSON_OBJECT_T).

Parsing Function

Static function parse accepts an instance of type VARCHAR2, CLOB, or BLOB as
argument, which it parses as JSON text to return an instance of type JSON_ELEMENT_T,
JSON_OBJECT_T, or JSON_ARRAY_T.

Serialization Methods

Parsing accepts input JSON data as text and returns an instance of a PL/SQL JSON
object type. Serialization does essentially the opposite: you apply it to a PL/SQL object
representation of JSON data and it returns a textual representation of that object. The
serialization methods have names that start with prefix to_. For example, method
to_string() returns a string (VARCHAR2) representation of the JSON object-type
instance you apply it to.

Most serialization methods are member functions. For serialization as a CLOB or BLOB
instance, however, there are two forms of the methods: a member function and a
member procedure. The member function accepts no arguments. It creates a
temporary LOB as the serialization destination. The member procedure accepts a LOB
IN OUT argument (CLOB instance for method to_clob, BLOB for method to_blob). You
can thus pass it the LOB (possibly empty) that you want to use for the serialized
representation.

Getter and Setter Methods

Types JSON_OBJECT_T and JSON_ARRAY_T have getter and setter methods, which obtain
and update, respectively, the values of a given object field or a given array element
position.

There are two kinds of getter method:

• Method get() returns a reference to the original object to which you apply it, as an
instance of type JSON_ELEMENT_T. That is, the object to which you apply it is
passed by reference: If you then modify the returned JSON_ELEMENT_T instance,
your modifications apply to the original object to which you applied get().

• Getter methods whose names have the prefix get_ return a copy of any data that
is targeted within the object or array to which they are applied. That data is passed
by value, not reference.

For example, if you apply method get_string() to a JSON_OBJECT_T instance,
passing a given field as argument, it returns a copy of the string that is the value of

Chapter 24

24-2

that field. If you apply get_string() to a JSON_ARRAY_T instance, passing a given
element position as argument, it returns a copy of the string at that position in the array.

Like the serialization methods, most getter methods are member functions. But methods
get_clob() and get_blob(), which return the value of a given object field or the element at a
given array position as a CLOB or BLOB instance, have two forms (like the serialization
methods to_clob() and to_blob()): a member function and a member procedure. The
member function accepts no argument other than the targeted object field or array position. It
creates and returns a temporary LOB instance. The member procedure accepts also a LOB
IN OUT argument (CLOB for get_clob, BLOB for get_blob). You can thus pass it the (possibly
empty) LOB instance to use.

The setter methods are put(), put_null(), and (for JSON_ARRAY_T only) append(). These
update the object or array instance to which they are applied, setting the value of the targeted
object field or array element. Note: The setter methods modify the existing instance, instead
of returning a modified copy of it.

Method append()adds a new element at the end of the array instance. Method put_null()
sets an object field or array element value to JSON null.

Method put() requires a second argument (besides the object field name or array element
position), which is the new value to set. For an array, put() also accepts an optional third
argument, OVERWRITE. This is a BOOLEAN value (default FALSE) that says whether to replace an
existing value at the given position.

• If the object already has a field of the same name then put() replaces that value with the
new value.

• If the array already has an element at the given position then, by default, put() shifts that
element and any successive elements forward (incrementing their positions by one) to
make room for the new element, which is placed at the given position. But if optional
argument OVERWRITE is present and is TRUE, then the existing element at the given
position is simply replaced by the new element.

Introspection Methods

Type JSON_ELEMENT_T has introspection methods that you can use to determine whether an
instance is a JSON object, array, scalar, string, number, or Boolean, or whether it is the JSON
value true, false, or null. The names of these methods begin with prefix is_. They are
predicates, returning a BOOLEAN value.

It also has introspection method get_size(), which returns the number of members of a
JSON_OBJECT_T instance and the number of elements of a JSON_ARRAY_T instance (it returns 1
for a JSON_SCALAR_T instance).

Type JSON_ELEMENT_T also has introspection methods is_date() and is_timestamp(), which
test whether an instance represents a date or timestamp. JSON has no native types for dates
or timestamps; these are typically representing using JSON strings. But if a JSON_ELEMENT_T
instance is constructed using SQL data of SQL data type DATE or TIMESTAMP then this type
information is kept for the PL/SQL object representation.

Date and timestamp data is represented using PL/SQL object type JSON_SCALAR_T, whose
instances you cannot construct directly. You can, however, add such a value to an object (as
a field value) or an array (as an element) using method put(). Retrieving it using method
get() returns a JSON_SCALAR_T instance.

Chapter 24

24-3

Types JSON_OBJECT_T and JSON_ARRAY_T have introspection method get_type(),
which returns the JSON type of the targeted object field or array element (as a
VARCHAR2 instance). Type JSON_OBJECT_T also has introspection methods has(), which
returns TRUE if the object has a field of the given name, and get_keys(), which returns
an instance of PL/SQL object type JSON_KEY_LIST, which is a varray of type
VARCHAR2(4000). The varray contains the names of the fields 2 present in the given
JSON_OBJECT_T instance.

Other Methods

Types JSON_OBJECT_T and JSON_ARRAY_T have the following methods:

• remove() — Remove the object member with the given field or the array element
at the given position.

• clone() — Create and return a (deep) copy of the object or array to which the
method is applied. Modifying any part of this copy has no effect on the original
object or array.

Type JSON_OBJECT_T has method rename_key(), which renames a given object field.2

If the new name provided already names an existing field then an error is raised.

Related Topics

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_ARRAY_T

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_ELEMENT_T

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_OBJECT_T and JSON_KEY_LIST

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_SCALAR_T

2 An object field is sometimes called an object “key”.

Chapter 24

24-4

25
Using PL/SQL Object Types for JSON

Some examples of using PL/SQL object types for JSON are presented.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_ARRAY_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_ELEMENT_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_OBJECT_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_KEY_LIST

Example 25-1 Constructing and Serializing an In-Memory JSON Object

This example uses function parse to parse a string of JSON data that represents a JSON
object with one field, name, creating an instance je of object type JSON_ELEMENT_T. This
instance is tested to see if it represents an object, using introspection method (predicate)
is_object().

If it represents an object (the predicate returns TRUE for je), it is cast to an instance of
JSON_OBJECT_T and assigned to variable jo. Method put() for object type JSON_OBJECT_T is
then used to add object field price with value 149.99.

Finally, JSON_ELEMENT_T instance je (which is the same data in memory as JSON_OBJECT_T
instance jo) is serialized to a string using method to_string(), and this string is printed out
using procedure DBMS_OUTPUT.put_line. The result printed out shows the updated object as
{"name":"Radio-controlled plane","price":149.99}.

The updated transient object je is serialized here only to be printed out; the resulting text is
not stored in the database. Sometime after the example code is executed, the memory
allocated for object-type instances je and jo is reclaimed by the garbage collector.

DECLARE
 je JSON_ELEMENT_T;
 jo JSON_OBJECT_T;
BEGIN
 je := JSON_ELEMENT_T.parse('{"name":"Radio controlled plane"}');
 IF (je.is_Object) THEN
 jo := treat(je AS JSON_OBJECT_T);
 jo.put('price', 149.99);
 END IF;
 DBMS_OUTPUT.put_line(je.to_string);

25-1

END;
/

Example 25-2 Using Method GET_KEYS() to Obtain a List of Object Fields

PL/SQL method get_keys() is defined for PL/SQL object type JSON_OBJECT_T. It
returns an instance of PL/SQL object type JSON_KEY_LIST, which is a varray of
VARCHAR2(4000). The varray contains all of the field names for the given
JSON_OBJECT_T instance.

This example iterates through the fields returned by get_keys(), adding them to an
instance of PL/SQL object type JSON_ARRAY_T. It then uses method to_string() to
serialize that JSON array and then prints the resulting string.

DECLARE
 jo JSON_OBJECT_T;
 ja JSON_ARRAY_T;
 keys JSON_KEY_LIST;
 keys_string VARCHAR2(100);
BEGIN
 ja := new JSON_ARRAY_T;
 jo := JSON_OBJECT_T.parse('{"name":"Beda",
 "jobTitle":"codmonki",
 "projects":["json", "xml"]}');
 keys := jo.get_keys;
 FOR i IN 1..keys.COUNT LOOP
 ja.append(keys(i));
 END LOOP;
 keys_string := ja.to_string;
 DBMS_OUTPUT.put_line(keys_string);
END;
/

The printed output is ["name","jobTitle","projects"].

Example 25-3 Using Method PUT() to Update Parts of JSON Documents

This example updates each purchase-order document in JSON column po_document
of table j_purchaseorder. It iterates over the JSON array LineItems in each
document (variable li_arr), calculating the total price and quantity for each line-item
object (variable li_obj), and it uses method put() to add these totals to li_obj as the
values of new fields totalQuantity and totalPrice. This is done by user-defined
function add_totals.

The SELECT statement here selects one of the documents that has been updated.

CREATE OR REPLACE FUNCTION add_totals(purchaseOrder IN VARCHAR2)
RETURN VARCHAR2 IS
 po_obj JSON_OBJECT_T;
 li_arr JSON_ARRAY_T;
 li_item JSON_ELEMENT_T;
 li_obj JSON_OBJECT_T;
 unitPrice NUMBER;
 quantity NUMBER;

Chapter 25

25-2

 totalPrice NUMBER := 0;
 totalQuantity NUMBER := 0;
BEGIN
 po_obj := JSON_OBJECT_T.parse(purchaseOrder);
 li_arr := po_obj.get_Array('LineItems');
 FOR i IN 0 .. li_arr.get_size - 1 LOOP
 li_obj := JSON_OBJECT_T(li_arr.get(i));
 quantity := li_obj.get_Number('Quantity');
 unitPrice := li_obj.get_Object('Part').get_Number('UnitPrice');
 totalPrice := totalPrice + (quantity * unitPrice);
 totalQuantity := totalQuantity + quantity;
 END LOOP;
 po_obj.put('totalQuantity', totalQuantity);
 po_obj.put('totalPrice', totalPrice);
 RETURN po_obj.to_string;
END;
/

UPDATE j_purchaseorder SET (po_document) = add_totals(po_document);

SELECT po_document FROM j_purchaseorder po WHERE po.po_document.PONumber =
1600;

That selects this updated document:

{"PONumber": 1600,
 "Reference": "ABULL-20140421",
 "Requestor": "Alexis Bull",
 "User": "ABULL",
 "CostCenter": "A50",
 "ShippingInstructions": {"name": "Alexis Bull",
 "Address": {"street": "200 Sporting Green",
 "city": "South San Francisco",
 "state": "CA",
 "zipCode": 99236,
 "country": "United States of America"},
 "Phone": [{"type": "Office", "number":
"909-555-7307"},
 {"type": "Mobile", "number":
"415-555-1234"}]},
 "Special Instructions": null,
 "AllowPartialShipment": true,
 "LineItems": [{"ItemNumber": 1,
 "Part": {"Description": "One Magic Christmas",
 "UnitPrice": 19.95,
 "UPCCode": 13131092899},
 "Quantity": 9.0},
 {"ItemNumber": 2,
 "Part": {"Description": "Lethal Weapon",
 "UnitPrice": 19.95,
 "UPCCode": 85391628927},
 "Quantity": 5.0}],
 "totalQuantity": 14,
 "totalPrice": 279.3}

Chapter 25

25-3

Related Topics

• Overview of PL/SQL Object Types for JSON
PL/SQL object types allow fine-grained programmatic construction and
manipulation of In-Memory JSON data. You can introspect it, modify it, and
serialize it back to textual JSON data.

• Updating a JSON Document with JSON Merge Patch
You can use Oracle SQL function json_mergepatch to update specific portions of
a JSON document. You pass it a JSON Merge Patch document, which specifies
the changes to make to a specified JSON document. JSON Merge Patch is an
IETF standard.

Chapter 25

25-4

Part VII
GeoJSON Geographic Data

GeoJSON data is geographic JSON data. Oracle Spatial and Graph supports the use of
GeoJSON objects to store, index, and manage GeoJSON data.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

26
Using GeoJSON Geographic Data

GeoJSON objects are JSON objects that represent geographic data. Examples are provided
of creating GeoJSON data, indexing it, and querying it.

GeoJSON Objects: Geometry, Feature, Feature Collection

GeoJSON uses JSON objects that represent various geometrical entities and combinations
of these together with user-defined properties.

A position is an array of two or more spatial (numerical) coordinates, the first three of which
generally represent longitude, latitude, and altitude.

A geometry object has a type field and (except for a geometry-collection object) a
coordinates field, as shown in Table 26-1.

A geometry collection is a geometry object with type GeometryCollection. Instead of a
coordinates field it has a geometries field, whose value is an array of geometry objects
other than GeometryCollection objects.

Table 26-1 GeoJSON Geometry Objects Other Than Geometry Collections

type Field coordinates Field

Point A position.

MultiPoint An array of positions.

LineString An array of two or more positions.

MultiLineString An array of LineString arrays of positions.

Polygon A MultiLineString, each of whose arrays is a LineString whose first
and last positions coincide (are equivalent). If the array of a polygon contains
more than one array then the first represents the outside polygon and the
others represent holes inside it.

MultiPolygon An array of Polygon arrays, that is, multidimensional array of positions.

A feature object has a type field of value Feature, a geometry field whose value is a
geometric object, and a properties field whose value can be any JSON object.

A feature collection object has a type field of value FeatureCollection, and it has a
features field whose value is an array of feature objects.

Example 26-1 presents a feature-collection object whose features array has three features.
The geometry of the first feature is of type Point; that of the second is of type LineString;
and that of the third is of type Polygon.

Query and Index GeoJSON Data

You can use SQL/JSON query functions and conditions to examine GeoJSON data or to
project parts of it as non-JSON data, including as Oracle Spatial and Graph SDO_GEOMETRY
object-type instances. This is illustrated in Example 26-2, Example 26-3, and Example 26-5.

26-1

To improve query performance, you can create an Oracle Spatial and Graph index
(type MDSYS.SPATIAL_INDEX) on function json_value applied to GeoJSON data. This is
illustrated by Example 26-4.

Example 26-4 indexes only one particular element of an array of geometry features
(the first element). A B-tree index on function json_value can target only a scalar
value. To improve the performance of queries, such as that of Example 26-3, that
target any number of array elements, you can do the following:

• Create an on-statement, refreshable materialized view of the array data, and place
that view in memory.

• Create a spatial index on the array data.

This is shown in Example 26-6 and Example 26-7.

SDO_GEOMETRY Object-Type Instances and Spatial Operations

You can convert Oracle Spatial and Graph SDO_GEOMETRY object-type instances to
GeoJSON objects and GeoJSON objects to SDO_GEOMETRY instances.

You can use Oracle Spatial and Graph operations on SDO_GEOMETRY objects that you
obtain from GeoJSON objects. For example, you can use operator sdo_distance in
PL/SQL package SDO_GEOM to compute the minimum distance between two geometry
objects. This is the distance between the closest two points or two segments, one
point or segment from each object. This is illustrated by Example 26-5.

JSON Data Guide Supports GeoJSON Data

A JSON data guide summarizes structural and type information contained in a set of
JSON documents. If some of the documents contain GeoJSON data then that data is
summarized in a data guide that you create using SQL aggregate function
json_dataguide. If you use SQL function json_dataguide to create a view based on
such a data guide, and you specify the formatting argument as DBMS_JSON.GEOJSON or
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY, then a column that projects GeoJSON data
from the document set is of SQL data type SDO_GEOMETRY.

See Also:

• Oracle Spatial and Graph Developer's Guide for information about using
GeoJSON data with Oracle Spatial and Graph

• Oracle Spatial and Graph Developer's Guide for information about
Oracle Spatial and Graph and SDO_GEOMETRY object type

• GeoJSON.org for information about GeoJSON

• The GeoJSON Format Specification for details about GeoJSON data

Example 26-1 A Table With GeoJSON Data

This example creates table j_geo, which has a column, geo_doc of GeoJSON
documents.

Chapter 26

26-2

Only one such document is inserted here. It contains a GeoJSON object of type
FeatureCollection, and a features array of objects of type Feature. Those objects have
geometry, respectively, of type Point, LineString, and Polygon.

CREATE TABLE j_geo
 (id VARCHAR2 (32) NOT NULL,
 geo_doc VARCHAR2 (4000) CHECK (geo_doc is json));

INSERT INTO j_geo
 VALUES (1,
 '{"type" : "FeatureCollection",
 "features" : [{"type" : "Feature",
 "geometry" : {"type" : "Point",
 "coordinates" : [-122.236111, 37.482778]},
 "properties" : {"Name" : "Redwood City"}},
 {"type" : "Feature",
 "geometry" : {"type" : "LineString",
 "coordinates" : [[102.0, 0.0],
 [103.0, 1.0],
 [104.0, 0.0],
 [105.0, 1.0]]},
 "properties" : {"prop0" : "value0",
 "prop1" : 0.0}},
 {"type" : "Feature",
 "geometry" : {"type" : "Polygon",
 "coordinates" : [[[100.0, 0.0],
 [101.0, 0.0],
 [101.0, 1.0],
 [100.0, 1.0],
 [100.0, 0.0]]]},
 "properties" : {"prop0" : "value0",
 "prop1" : {"this" : "that"}}}]}');

Example 26-2 Selecting a geometry Object From a GeoJSON Feature As an
SDO_GEOMETRY Instance

This example uses SQL/JSON function json_value to select the value of field geometry from
the first element of array features. The value is returned as Oracle Spatial and Graph data,
not as JSON data, that is, as an instance of PL/SQL object type SDO_GEOMETRY, not as a SQL
string or LOB instance.

SELECT json_value(geo_doc, '$.features[0].geometry'
 RETURNING SDO_GEOMETRY
 ERROR ON ERROR)
 FROM j_geo;

The value returned is this, which represents a point with longitude and latitude (coordinates)
-122.236111 and 37.482778, respectively.

SDO_GEOMETRY(2001,
 4326,
 SDO_POINT_TYPE(-122.236111, 37.482778, NULL),

Chapter 26

26-3

 NULL,
 NULL)

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_value

Example 26-3 Retrieving Multiple geometry Objects From a GeoJSON Feature
As SDO_GEOMETRY

This example uses SQL/JSON function json_table to project the value of field
geometry from each element of array features, as column sdo_val of a virtual table.
The retrieved data is returned as SDO_GEOMETRY.

SELECT jt.*
 FROM j_geo,
 json_table(geo_doc, '$.features[*]'
 COLUMNS (sdo_val SDO_GEOMETRY PATH '$.geometry')) jt;

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_table

The following three rows are returned for the query. The first represents the same
Point as in Example 26-2. The second represents the LineString array. The third
represents the Polygon.

SDO_GEOMETRY(2001,
 4326,
 SDO_POINT_TYPE(-122.236111, 37.482778, NULL),
 NULL,
 NULL)

SDO_GEOMETRY(2002,
 4326,
 NULL,
 SDO_ELEM_INFO_ARRAY(1, 2, 1),
 SDO_ORDINATE_ARRAY(102, 0, 103, 1, 104, 0, 105, 1))

SDO_GEOMETRY(2003,
 4326,
 NULL,
 SDO_ELEM_INFO_ARRAY(1, 1003, 1),
 SDO_ORDINATE_ARRAY(100, 0, 101, 0, 101, 1, 100, 1, 100,
0))

Chapter 26

26-4

The second and third elements of attribute SDO_ELEM_INFO_ARRAY specify how to interpret the
coordinates provided by attribute SDO_ORDINATE_ARRAY. They show that the first row returned
represents a line string (2) with straight segments (1), and the second row represents a
polygon (2003) of straight segments (1).

Example 26-4 Creating a Spatial Index For Scalar GeoJSON Data

This example creates a json_value function-based index of type MDSYS.SPATIAL_INDEX on
field geometry of the first element of array features. This can improve the performance of
queries that use json_value to retrieve that value.

CREATE INDEX geo_first_feature_idx
 ON j_geo (json_value(geo_doc, '$.features[0].geometry'
 RETURNING SDO_GEOMETRY))
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Example 26-5 Using GeoJSON Geometry With Spatial Operators

This example selects the documents (there is only one in this table) for which the geometry
field of the first features element is within 100 kilometers of a given point. The point is
provided literally here (its coordinates are the longitude and latitude of San Francisco,
California). The distance is computed from this point to each geometry object.

The query orders the selected documents by the calculated distance. The tolerance in meters
for the distance calculation is provided in this query as the literal argument 100.

SELECT id,
 json_value(geo_doc, '$.features[0].properties.Name') "Name",
 SDO_GEOM.sdo_distance(
 json_value(geo_doc, '$.features[0].geometry'
 RETURNING SDO_GEOMETRY),
 SDO_GEOMETRY(2001,
 4326,
 SDO_POINT_TYPE(-122.416667, 37.783333, NULL),
 NULL,
 NULL),
 100, -- Tolerance in meters
 'unit=KM') "Distance in kilometers"
 FROM j_geo
 WHERE sdo_within_distance(
 json_value(geo_doc, '$.features[0].geometry'
 RETURNING SDO_GEOMETRY),
 SDO_GEOMETRY(2001,
 4326,
 SDO_POINT_TYPE(-122.416667, 37.783333, NULL),
 NULL,
 NULL),
 'distance=100 unit=KM')
 = 'TRUE';

Chapter 26

26-5

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_value

The query returns a single row:

ID Name Distance in kilometers
----- -------------- ----------------------
1 Redwood City 26.9443035

Example 26-6 Creating a Materialized View Over GeoJSON Data

CREATE OR REPLACE MATERIALIZED VIEW geo_doc_view
 BUILD IMMEDIATE
 REFRESH FAST ON STATEMENT WITH ROWID
 AS SELECT g.rowid, jt.*
 FROM j_geo g,
 json_table(geo_doc, '$.features[*]'
 COLUMNS (sdo_val SDO_GEOMETRY PATH '$.geometry')) jt;

Example 26-7 Creating a Spatial Index on a Materialized View Over GeoJSON
Data

This example first prepares for the creation of the spatial index by populating some
spatial-indexing metadata. It then creates the index on the SDO_GEOMETRY column,
sdo_val, of materialized view geo_doc_view, which is created in Example 26-6. Except
for the view and column names, the code for populating the indexing metadata is fixed
— use it each time you need to create a spatial index on a materialized view.

-- Populate spatial-indexing metadata

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES ('GEO_DOC_VIEW',
 'SDO_VAL',
 MDSYS.sdo_dim_array(
 MDSYS.sdo_dim_element('Longitude', -180, 180, 0.05),
 MDSYS.sdo_dim_element('Latitude', -90, 90, 0.05)),
 7
 4326);

-- Create spatial index on geometry column of materialized view

CREATE INDEX geo_all_features_idx ON geo_doc_view(sdo_val)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX V2;

Chapter 26

26-6

Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

Chapter 26

26-7

Part VIII
Performance Tuning for JSON

To tune query performance you can index JSON fields in several ways, store their values in
the In-Memory Column Store (IM column store), or expose them as non-JSON data using
materialized views.

• Overview of Performance Tuning for JSON
Which performance-tuning approaches you take depend on the needs of your
application. Some use cases and recommended solutions are outlined here.

• Indexes for JSON Data
You can index JSON data as you would any data of the type you use to store it. In
addition, you can define a JSON search index, which is useful for both ad hoc structural
queries and full-text queries.

• In-Memory JSON Data
A column of JSON data can be stored in the In-Memory Column Store (IM column store)
to improve query performance.

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.

27
Overview of Performance Tuning for JSON

Which performance-tuning approaches you take depend on the needs of your application.
Some use cases and recommended solutions are outlined here.

The use cases can be divided into two classes: searching for or accessing data based on
values of JSON fields that occur (1) at most once in a given document or (2) possibly more
than once.

Queries That Access the Values of Fields That Occur at Most Once in a Given
Document

You can tune the performance of such queries in the same ways as for non-JSON data. The
choices of which JSON fields to define virtual columns for or which to index, whether to place
the table containing your JSON data in the In-Memory Column Store (IM column store), and
whether to create materialized views that project some of its fields are analogous to the non-
JSON case.

However, in the case of JSON data it is generally more important to apply at least one such
performance tuning than it is in the case non-JSON data. Without any such performance aid,
it is typically more expensive to access a JSON field than it is to access (non-JSON) column
data, because a JSON document must be traversed to locate the data you seek.

Create virtual columns from JSON fields or index JSON fields:

• If your queries use simple and highly selective search criteria, for a single JSON field:

– Define a virtual column on the field.

You can often improve performance further by placing the table in the IM column
store or creating an index on the virtual column.

– Create a function-based index on the field using SQL/JSON function json_value.

• If your queries involve more than one field:

– Define a virtual column on each of the fields.

You can often improve performance further by placing the table in the IM column
store or creating a composite index on the virtual columns.

– Create a composite function-based index on the fields using multiple invocations of
SQL/JSON function json_value, one for each field.

Queries That Access the Values of Fields That Can Occur More Than Once in a Given
Document

In particular, this is the case when you access fields that are contained within an array.

There are three techniques you can use to tune the performance of such queries:

• Place the table that contains the JSON data in the IM column store.

• Use a JSON search index.

This indexes all of the fields in a JSON document along with their values, including fields
that occur inside arrays. The index can optimize any path-based search, including those

27-1

using path expressions that include filters and full-text operators. The index also
supports range-based searches on numeric values.

• Use a materialized view of non-JSON columns that are projected from JSON field
values using SQL/JSON function json_table.

You can generate a separate row from each member of a JSON array, using the
NESTED PATH clause with json_table.

A materialized view is typically used for optimizing SQL-based reporting and
analytics for JSON content.

Chapter 27

27-2

28
Indexes for JSON Data

You can index JSON data as you would any data of the type you use to store it. In addition,
you can define a JSON search index, which is useful for both ad hoc structural queries and
full-text queries.

• Overview of Indexing JSON Data
There is no dedicated SQL data type for JSON data, so you can index it in the usual
ways. In addition, you can index it in a general way, with a JSON search index, for ad hoc
structural queries and full-text queries.

• How To Tell Whether a Function-Based Index for JSON Data Is Picked Up
To determine whether a given query picks up a given function-based index, look for the
index name in the execution plan for the query.

• Creating Bitmap Indexes for SQL/JSON Condition JSON_EXISTS
You can create a bitmap index for the value returned by json_exists. This is the right
kind of index to use for json_exists, because there are only two possible return values
for a condition (true and false).

• Creating JSON_VALUE Function-Based Indexes
You can create a function-based index for SQL/JSON function json_value. You can use
the standard syntax for this, explicitly specifying function json_value, or you can use the
simple dot-notation syntax. Indexes created in either of these ways can be used with both
dot-notation queries and json_value queries.

• Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries
An index created using json_value with ERROR ON ERROR can be used for a query
involving json_table, if the WHERE clause refers to a column projected by json_table,
and the effective SQL/JSON path that targets that column matches the indexed path
expression.

• Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries
An index created using SQL/JSON function json_value with ERROR ON ERROR can be
used for a query involving SQL/JSON condition json_exists, provided the query path
expression has a filter expression that contains only a path-expression comparison or
multiple such comparisons separated by &&.

• Data Type Considerations for JSON_VALUE Indexing and Querying
By default, SQL/JSON function json_value returns a VARCHAR2 value. When you create a
function-based index using json_value, unless you use a RETURNING clause to specify a
different return data type, the index is not picked up for a query that expects a non-
VARCHAR2 value.

• Indexing Multiple JSON Fields Using a Composite B-Tree Index
To index multiple fields of a JSON object, you first create virtual columns for them. Then
you create a composite B-tree index on the virtual columns.

• JSON Search Index: Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and

28-1

(2) full-text search. It is an Oracle Text index that is designed specifically for use
with JSON data.

28.1 Overview of Indexing JSON Data
There is no dedicated SQL data type for JSON data, so you can index it in the usual
ways. In addition, you can index it in a general way, with a JSON search index, for ad
hoc structural queries and full-text queries.

You can index JSON data as you would any data of the type that you use to store it. In
particular, you can use a B-tree index or a bitmap index for SQL/JSON function
json_value, and you can use a bitmap index for SQL/JSON conditions is json, is
not json, and json_exists.

(More generally, a bitmap index can be appropriate wherever the number of possible
values for the function is small. For example, you can use a bitmap index for function
json_value if the value is expected to be Boolean or otherwise one of a small number
of string values.)

As always, such function-based indexing is appropriate for queries that target
particular functions, which in the context of SQL/JSON functions means particular
SQL/JSON path expressions. It is not very helpful for queries that are ad hoc, that is,
arbitrary. Define a function-based index if you know that you will often query a
particular path expression.

If you query in an ad hoc manner then define a JSON search index. This is a general
index, not targeted to any specific path expression. It is appropriate for structural
queries, such as looking for a JSON field with a particular value, and for full-text
queries using SQL/JSON condition json_textcontains, such as looking for a
particular word among various string values.

You can of course define both function-based indexes and a JSON search index for
the same JSON column.

A JSON search index is an Oracle Text (full-text) index designed specifically for use
with JSON data.

Note:

Oracle recommends that you use AL32UTF8 as the database character set.
Automatic character-set conversion can take place when creating or applying
an index. Such conversion can be lossy, which can mean that some data that
you might expect to be returned by a query is not returned. See Character
Sets and Character Encoding for JSON Data.

Related Topics

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples
are provided of creating GeoJSON data, indexing it, and querying it.

• JSON Search Index: Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both
(1) ad hoc structural queries, that is, queries that you might not anticipate or use

Chapter 28
Overview of Indexing JSON Data

28-2

regularly, and (2) full-text search. It is an Oracle Text index that is designed specifically
for use with JSON data.

28.2 How To Tell Whether a Function-Based Index for JSON
Data Is Picked Up

To determine whether a given query picks up a given function-based index, look for the index
name in the execution plan for the query.

For example, given the index defined in Example 28-4, an execution plan for the json_value
query of Example 14-1 references an index scan with index po_num_id1.

28.3 Creating Bitmap Indexes for SQL/JSON Condition
JSON_EXISTS

You can create a bitmap index for the value returned by json_exists. This is the right kind of
index to use for json_exists, because there are only two possible return values for a
condition (true and false).

This is illustrated by Example 28-1.

Example 28-2 creates a bitmap index for a value returned by json_value. This is an
appropriate index to use if there are only few possible values for field CostCenter in your
data.

Example 28-1 Creating a Bitmap Index for JSON_EXISTS

CREATE BITMAP INDEX has_zipcode_idx
 ON j_purchaseorder (json_exists(po_document,
 '$.ShippingInstructions.Address.zipCode'));

Example 28-2 Creating a Bitmap Index for JSON_VALUE

CREATE BITMAP INDEX cost_ctr_idx
 ON j_purchaseorder (json_value(po_document, '$.CostCenter'));

28.4 Creating JSON_VALUE Function-Based Indexes
You can create a function-based index for SQL/JSON function json_value. You can use the
standard syntax for this, explicitly specifying function json_value, or you can use the simple
dot-notation syntax. Indexes created in either of these ways can be used with both dot-
notation queries and json_value queries.

Example 28-4 creates a function-based index for json_value on field PONumber of the object
that is in column po_document of table j_purchaseorder. The object is passed as the path-
expression context item.

The use of ERROR ON ERROR here means that if the data contains a record that has no
PONumber field, has more than one PONumber field, or has a PONumber field with a non-number
value then index creation fails. And if the index exists then trying to insert such a record fails.

Chapter 28
How To Tell Whether a Function-Based Index for JSON Data Is Picked Up

28-3

An alternative is to create an index using the simplified syntax described in Simple
Dot-Notation Access to JSON Data. Example 28-3 illustrates this; it indexes both
scalar and non-scalar results, corresponding to what a dot-notation query can return.

The indexes created in both Example 28-4 and Example 28-3 can be picked up for
either a query that uses dot-notation syntax or a query that uses json_value.

If the index of Example 28-3 is picked up for a json_value query then filtering is
applied after index pickup, to test for the correct field value. Non-scalar values can be
stored in this index, since dot-notation queries can return such values, but a
json_value query cannot, so such values are filtered out after index pickup.

If you want to allow indexing of data that might be missing the field targeted by a
json_value expression, then use a NULL ON EMPTY clause, together with an ERROR ON
ERROR clause. Example 28-5 illustrates this.

Oracle recommends that you create a function-based index for json_value using one
of these forms:

• Dot-notation syntax

The indexed values correspond to the flexible behavior of dot-notation queries,
which return JSON values whenever possible. They can include non-scalar JSON
values (JSON objects and arrays). They can match dot-notation queries in addition
to json_value queries. The index is used to come up with an initial set of matches,
which are then filtered according to the specifics of the query. For example, any
indexed values that are not JSON scalars are filtered out.

• A json_value expression that specifies a RETURNING data type, uses ERROR ON
ERROR (and optionally uses NULL ON EMPTY).

The indexed values are only (non-null) scalar values of the specified data type.
The index can nevertheless be used in dot-notation queries that lead to such a
scalar result.

Indexes created in either of these ways can thus be used with both dot-notation
queries and json_value queries.

Example 28-3 Creating a Function-Based Index for a JSON Field: Dot Notation

CREATE UNIQUE INDEX po_num_idx2 ON j_purchaseorder po
(po.po_document.PONumber);

Example 28-4 Creating a Function-Based Index for a JSON Field: JSON_VALUE

CREATE UNIQUE INDEX po_num_idx1
 ON j_purchaseorder (json_value(po_document, '$.PONumber'
 RETURNING NUMBER ERROR ON ERROR));

Example 28-5 Specifying NULL ON EMPTY for a JSON_VALUE Function-Based
Index

Because of clause NULL ON EMPTY, index po_ref_idx1 can index JSON documents
that have no Reference field.

CREATE UNIQUE INDEX po_ref_idx1
 ON j_purchaseorder (json_value(po_document, '$.Reference'

Chapter 28
Creating JSON_VALUE Function-Based Indexes

28-4

 RETURNING VARCHAR2(200) ERROR ON ERROR
 NULL ON EMPTY));

Related Topics

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

28.5 Using a JSON_VALUE Function-Based Index with
JSON_TABLE Queries

An index created using json_value with ERROR ON ERROR can be used for a query involving
json_table, if the WHERE clause refers to a column projected by json_table, and the effective
SQL/JSON path that targets that column matches the indexed path expression.

The index acts as a constraint on the indexed path, to ensure that only one (non-null) scalar
JSON value is projected for each item in the JSON collection.

The query in Example 28-6 thus makes use of the index created in Example 28-4.

Note:

A function-based index created using a json_value expression or dot notation can
be picked up for a corresponding occurrence in a query WHERE clause only if the
occurrence is used in a SQL comparison condition, such as >=. In particular, it is not
picked up for an occurrence used in condition IS NULL or IS NOT NULL.

See Oracle Database SQL Language Reference for information about SQL
comparison conditions.

Example 28-6 Use of a JSON_VALUE Function-Based Index with a JSON_TABLE
Query

SELECT jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document, '$'
 COLUMNS po_number NUMBER(5) PATH '$.PONumber',
 reference VARCHAR2(30 CHAR) PATH '$.Reference',
 requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
 userid VARCHAR2(10 CHAR) PATH '$.User',
 costcenter VARCHAR2(16 CHAR) PATH '$.CostCenter') jt
 WHERE po_number = 1600;

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries

28-5

28.6 Using a JSON_VALUE Function-Based Index with
JSON_EXISTS Queries

An index created using SQL/JSON function json_value with ERROR ON ERROR can be
used for a query involving SQL/JSON condition json_exists, provided the query path
expression has a filter expression that contains only a path-expression comparison or
multiple such comparisons separated by &&.

In order for a json_value function-based index to be picked up for one of the
comparisons of the query, the type of that comparison must be the same as the
returning SQL data type for the index. The SQL data types used are those mentioned
for item methods double(), number(), timestamp(), date(), and string() — see
SQL/JSON Path Expression Item Methods.

For example, if the index returns a number then the comparison type must also be
number. If the query filter expression contains more than one comparison that matches
a json_value index, the optimizer chooses one of the indexes.

The type of a comparison is determined as follows:

1. If the SQL data types of the two comparison terms (sides of the comparison) are
different then the type of the comparison is unknown, and the index is not picked
up. Otherwise, the types are the same, and this type is the type of the comparison.

2. If a comparison term is of SQL data type string (a text literal) then the type of the
comparison is the type of the other comparison term.

3. If a comparison term is a path expression with a function step whose item method
imposes a SQL match type then that is also the type of that comparison term. The
item methods that impose a SQL match type are double(), number(),
timestamp(), date(), and string().

4. If a comparison term is a path expression with no such function step then its type
is SQL string (text literal).

Example 28-4 creates a function-based index for json_value on field PONumber. The
index return type is NUMBER.

Each of the queries Example 28-7, Example 28-8, and Example 28-9 can make use of
this index when evaluating its json_exists condition. Each of these queries uses a
comparison that involves a simple path expression that is relative to the absolute path
expression $.PONumber. The relative simple path expression in each case targets the
current filter item, @, but in the case of Example 28-9 it transforms (casts) the matching
data to SQL data type NUMBER.

Example 28-7 JSON_EXISTS Query Targeting Field Compared to Literal
Number

This query makes use of the index because:

1. One comparison term is a path expression with no function step, so its type is SQL
string (text literal).

2. Because one comparison term is of type string, the comparison has the type of the
other term, which is number (the other term is a numeral).

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries

28-6

3. The type of the (lone) comparison is the same as the type returned by the index: number.

SELECT count(*) FROM j_purchaseorder
 WHERE json_exists(po_document, '$.PONumber?(@ > 1500)');

Example 28-8 JSON_EXISTS Query Targeting Field Compared to Variable Value

This query can make use of the index because:

1. One comparison term is a path expression with no function step, so its type is SQL string
(text literal).

2. Because one comparison term is of type string, the comparison has the type of the other
term, which is number (the other term is a variable that is bound to a number).

3. The type of the (lone) comparison is the same as the type returned by the index: number.

SELECT count(*) FROM j_purchaseorder
 WHERE json_exists(po_document, '$.PONumber?(@ > $d)'
 PASSING 1500 AS "d");

Example 28-9 JSON_EXISTS Query Targeting Field Cast to Number Compared to
Variable Value

This query can make use of the index because:

1. One comparison term is a path expression with a function step whose item method
(number()) transforms the matching data to a number, so the type of that comparison
term is SQL number.

2. The other comparison term is a numeral, which has SQL type number. The types of the
comparison terms match, so the comparison has this same type, number.

3. The type of the (lone) comparison is the same as the type returned by the index: number.

SELECT count(*) FROM j_purchaseorder
 WHERE json_exists(po_document, '$.PONumber?(@.number() > $d)'
 PASSING 1500 AS "d");

Example 28-10 JSON_EXISTS Query Targeting a Conjunction of Field Comparisons

Just as for Example 28-7, this query can make use of the index on field PONumber. If a
json_value index is also defined for field Reference then the optimizer chooses which index
to use for this query.

SELECT count(*) FROM j_purchaseorder
 WHERE json_exists(po_document, '$?(@.PONumber > 1500
 && @.Reference == "ABULL-20140421")');

Related Topics

• Creating JSON_VALUE Function-Based Indexes
You can create a function-based index for SQL/JSON function json_value. You can use
the standard syntax for this, explicitly specifying function json_value, or you can use the
simple dot-notation syntax. Indexes created in either of these ways can be used with both
dot-notation queries and json_value queries.

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries

28-7

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

28.7 Data Type Considerations for JSON_VALUE Indexing
and Querying

By default, SQL/JSON function json_value returns a VARCHAR2 value. When you
create a function-based index using json_value, unless you use a RETURNING clause
to specify a different return data type, the index is not picked up for a query that
expects a non-VARCHAR2 value.

For example, in the query of Example 28-11, json_value uses RETURNING NUMBER. The
index created in Example 28-4 can be picked up for this query, because the indexed
json_value expression specifies a return type of NUMBER.

But the index created in Example 28-3 does not use RETURNING NUMBER (the return
type is VARCHAR2(4000), by default), so it cannot be picked up for a such a query.

Now consider the queries in Example 28-12 and Example 28-13, which use
json_value without a RETURNING clause, so that the value returned is of type VARCHAR2.

In Example 28-12, SQL function to_number explicitly converts the VARCHAR2 value
returned by json_value to a number. Similarly, in Example 28-13, comparison
condition > (greater-than) implicitly converts the value to a number.

Neither of the indexes of Example 28-4 and Example 28-3 is picked up for either of
these queries. The queries might return the right results in each case, because of
type-casting, but the indexes cannot be used to evaluate the queries.

Consider also what happens if some of the data cannot be converted to a particular
data type. For example, given the queries in Example 28-11, Example 28-12, and
Example 28-13, what happens to a PONumber value such as "alpha"?

For Example 28-12 and Example 28-13, the query stops in error because of the
attempt to cast the value to a number. For Example 28-11, however, because the
default error handling behavior is NULL ON ERROR, the non-number value "alpha" is
simply filtered out. The value is indexed, but it is ignored for the query.

Similarly, if the query used, say, DEFAULT '1000' ON ERROR, that is, if it specified a
numeric default value, then no error would be raised for the value "alpha": the default
value of 1000 would be used.

Example 28-11 JSON_VALUE Query with Explicit RETURNING NUMBER

SELECT count(*) FROM j_purchaseorder po
 WHERE json_value(po_document, '$.PONumber' RETURNING NUMBER) > 1500;

Example 28-12 JSON_VALUE Query with Explicit Numerical Conversion

SELECT count(*) FROM j_purchaseorder po
 WHERE to_number(json_value(po_document, '$.PONumber')) > 1500;

Chapter 28
Data Type Considerations for JSON_VALUE Indexing and Querying

28-8

Example 28-13 JSON_VALUE Query with Implicit Numerical Conversion

SELECT count(*) FROM j_purchaseorder po
 WHERE json_value(po_document, '$.PONumber') > 1500;

28.8 Indexing Multiple JSON Fields Using a Composite B-Tree
Index

To index multiple fields of a JSON object, you first create virtual columns for them. Then you
create a composite B-tree index on the virtual columns.

Example 28-14 and Example 28-15 illustrate this. Example 28-14 creates virtual columns
userid and costcenter for JSON object fields User and CostCenter, respectively.

Example 28-15 creates a composite B-tree index on the virtual columns of Example 28-14.

A SQL query that references either the virtual columns or the corresponding JSON data
(object fields) picks up the composite index. This is the case for both of the queries in
Example 28-16.

These two queries have the same effect, including the same performance. However, the first
query form does not target the JSON data itself; it targets the virtual columns that are used to
index that data.

The data does not depend logically on any indexes implemented to improve query
performance. If you want this independence from implementation to be reflected in your code,
then use the second query form. Doing that ensures that the query behaves the same
functionally with or without the index — the index serves only to improve performance.

Example 28-14 Creating Virtual Columns For JSON Object Fields

ALTER TABLE j_purchaseorder ADD (userid VARCHAR2(20)
 GENERATED ALWAYS AS (json_value(po_document, '$.User' RETURNING
VARCHAR2(20))));

ALTER TABLE j_purchaseorder ADD (costcenter VARCHAR2(6)
 GENERATED ALWAYS AS (json_value(po_document, '$.CostCenter'
 RETURNING VARCHAR2(6))));

Example 28-15 Creating a Composite B-tree Index For JSON Object Fields

CREATE INDEX user_cost_ctr_idx on j_purchaseorder(userid, costcenter);

Example 28-16 Two Ways to Query JSON Data Indexed With a Composite Index

SELECT po_document FROM j_purchaseorder WHERE userid = 'ABULL'
 AND costcenter = 'A50';

SELECT po_document
 FROM j_purchaseorder WHERE json_value(po_document, '$.User') =
'ABULL'
 AND json_value(po_document, '$.CostCenter') = 'A50';

Chapter 28
Indexing Multiple JSON Fields Using a Composite B-Tree Index

28-9

28.9 JSON Search Index: Ad Hoc Queries and Full-Text
Search

A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly,
and (2) full-text search. It is an Oracle Text index that is designed specifically for use
with JSON data.

Note:

If you created a JSON search index using Oracle Database 12c Release 1
(12.1.0.2) then Oracle recommends that you drop that index and create a
new search index for use with later releases, using CREATE SEARCH INDEX as
shown here.

Note:

You must rebuild any JSON search indexes and Oracle Text indexes
created prior to Oracle Database 18c if they index JSON data that contains
object fields with names longer than 64 bytes. See Oracle Database
Upgrade Guide for more information.

Introduction to JSON Search Indexes

You create a JSON search index using CREATE SEARCH INDEX with the keywords FOR
JSON. Example 28-17 illustrates this.

The column on which you create a JSON search index can be of data type VARCHAR2,
CLOB, or BLOB. It must be known to contain only well-formed JSON data, which means
that it has an is json check constraint. CREATE SEARCH INDEX raises an error if the
column is not known to contain JSON data.

If the name of your JSON search index is present in the execution plan for your query,
then you know that the index was in fact picked up for that query. You will see a line
similar to that shown in Example 28-19.

You can specify a PARAMETERS clause to override the default settings of certain
configurable options. By default (no PARAMETERS clause), the index is synchronized on
commit and both text and numeric ranges are indexed.

If your queries that make use of a JSON search index involve only full-text search or
string-equality search, and never involve string-range search or numeric or temporal
search (equality or range), then you can save some index maintenance time and some
disk space by specifying TEXT for parameter SEARCH_ON. The default value of
SEARCH_ON is TEXT_VALUE, which means index numeric ranges as well as text.

Also by default, the search index created records and maintains persistent data-guide
information, which requires some maintenance overhead. You can inhibit this support

Chapter 28
JSON Search Index: Ad Hoc Queries and Full-Text Search

28-10

for persistent data-guide information by specifying DATAGUIDE OFF in the PARAMETERS clause.

A JSON search index is maintained asynchronously. Until it is synchronized, the index is not
used for data that has been modified or newly inserted. An index can improve query
performance, but the act of synchronizing it with the data affects performance negatively
while it occurs. In particular, it can negatively affect DML operations.

There are essentially three ways to synchronize a JSON search index. Each is typically
appropriate for a different use case.

• Synchronize on commit.

This is appropriate when commits are infrequent and it is important that the committed
changes be immediately visible to other operations (such as queries). (A stale index can
result in uncommitted changes not being visible.) Example 28-17 creates a search index
that is synchronized on commit.

• Synchronize periodically at some interval of time.

For online transaction-processing (OLTP) applications, which require fast and reliable
transaction handling with high throughput, and which typically commit each operation,
periodic index synchronization is often appropriate. In this case, the synchronization
interval is generally greater than the time between commits, and it is not essential that
the result of each commit be immediately visible to other operations.Example 28-18
creates a search index that is synchronized each second.

• Synchronize on demand, for example at a time when database load is reduced.

You generally do this infrequently — the index is synchronized less often than with on-
commit or interval synchronizing. This method is typically appropriate when DML
performance is particularly important.

If you need to invoke procedures in package CTX_DDL, such as CTX_DDL.sync_index to
manually sync the index, then you need privilege CTXAPP.

Note:

To alter a JSON search index j_s_idx, you use ALTER INDEX j_s_idx
REBUILD ... (not ALTER SEARCH INDEX j_s_idx ...).

Example 28-17 Creating a JSON Search Index That Is Synchronized On Commit

CREATE SEARCH INDEX po_search_idx ON j_purchaseorder (po_document) FOR JSON;

Example 28-18 Creating a JSON Search Index That Is Synchronized Each Second

CREATE SEARCH INDEX po_search_1_sec_idx ON j_purchaseorder (po_document)
 FOR JSON
 PARAMETERS('SYNC (EVERY "FREQ=SECONDLY; INTERVAL=1")')

Example 28-19 Execution Plan Indication that a JSON Search Index Is Used

|* 2| DOMAIN INDEX | PO_SEARCH_IDX | | | 4 (0)

Chapter 28
JSON Search Index: Ad Hoc Queries and Full-Text Search

28-11

Full-Text Search of JSON Data

You can use SQL/JSON condition json_textcontains in a CASE expression or the
WHERE clause of a SELECT statement to perform a full-text search of JSON data that is
stored in a VARCHAR2, BLOB, or CLOB column.

Oracle Text technology underlies SQL condition json_textcontains. This means, for
instance, that you can query for text that is near some other text, or query use fuzzy
pattern-matching.

To be able to use condition json_textcontains, you first must create a JSON search
index. If you do not, then an error is raised when json_textcontains is used.

Example 28-20 shows a full-text query that finds purchase-order documents that
contain the keyword Magic in any of the line-item part descriptions.

Note:

For powerful full-text search, use Oracle SQL function json_textcontains,
which requires that you create a JSON search index. As a less-powerful
alternative, if you do not create a JSON search index, and you just want
simple string pattern-matching in a filter condition, you can use any of the
pattern-matching comparisons: has substring, starts with, like,
like_regex, or eq_regex.

Example 28-20 Full-Text Query of JSON Data

SELECT po_document FROM j_purchaseorder
 WHERE json_textcontains(po_document, '$.LineItems.Part.Description',
'Magic');

Ad Hoc Queries of JSON Data

Example 28-21 shows some non full-text queries of JSON data that also make use of
the JSON search index created in Example 28-17.

Example 28-21 Some Ad Hoc JSON Queries

This query selects documents that contain a shipping instructions address that
includes a country.

SELECT po_document FROM j_purchaseorder
 WHERE json_exists(po_document,
'$.ShippingInstructions.Address.country');

This query selects documents that contain user AKHOO where there are more than 8
items ordered. It takes advantage of numeric-range indexing.

SELECT po_document FROM j_purchaseorder
 WHERE json_exists(po_document, '$?(@.User == "AKHOO"
 && @.LineItems.Quantity > 8)');

Chapter 28
JSON Search Index: Ad Hoc Queries and Full-Text Search

28-12

This query selects documents where the user is AKHOO. It uses json_value instead of
json_exists in the WHERE clause.

SELECT po_document FROM j_purchaseorder
 WHERE json_value(po_document, '$.User') = 'ABULL';

Related Topics

• Indexes for JSON Data
You can index JSON data as you would any data of the type you use to store it. In
addition, you can define a JSON search index, which is useful for both ad hoc structural
queries and full-text queries.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content of
JSON documents stored in Oracle Database.

See Also:

• Oracle Database SQL Language Reference for information about condition
json_textcontains

• Oracle Text Reference for information about the PARAMETERS clause for CREATE
SEARCH INDEX

• Oracle Text Reference for information about the PARAMETERS clause for ALTER
INDEX ... REBUILD

• Oracle Text Reference for information about synchronizing a JSON search
index

• Oracle Text Application Developer's Guide for guidance about optimizing and
tuning the performance of a JSON search index

• Oracle Text Reference for information about the words and characters that are
reserved with respect to Oracle Text search, and Oracle Text Reference for
information about how to escape them.

Chapter 28
JSON Search Index: Ad Hoc Queries and Full-Text Search

28-13

29
In-Memory JSON Data

A column of JSON data can be stored in the In-Memory Column Store (IM column store) to
improve query performance.

• Overview of In-Memory JSON Data
You can move a table with a column of JSON data to the In-Memory Column Store (IM
column store), to improve the performance of queries that share costly expressions by
caching the expression results. This is especially useful for analytical queries that scan a
large number of small JSON documents.

• Populating JSON Data Into the In-Memory Column Store
You use ALTER TABLE INMEMORY to populate a table with a column of JSON data into the
In-Memory Column Store (IM column store), to improve the performance of queries that
share costly expressions by caching the results of evaluating those expressions.

• Upgrading Tables With JSON Data For Use With the In-Memory Column Store
A table with JSON columns created using a database that did not have a compatibility
setting of at least 12.2 or did not have max_string_size = extended must first be
upgraded, before it can be populated into the In-Memory Column Store (IM column
store). To do this, run script rdbms/admin/utlimcjson.sql.

See Also:

Oracle Database In-Memory Guide

29.1 Overview of In-Memory JSON Data
You can move a table with a column of JSON data to the In-Memory Column Store (IM
column store), to improve the performance of queries that share costly expressions by
caching the expression results. This is especially useful for analytical queries that scan a
large number of small JSON documents.

The IM column store is supported only for JSON documents smaller than 32,767 bytes. If you
have a mixture of document sizes, those documents that are larger than 32,767 bytes are
processed without the In-Memory optimization. For better performance, consider breaking up
documents larger than 32,767 bytes into smaller documents.

The IM column store is an optional SGA pool that stores copies of tables and partitions in a
special columnar format optimized for rapid scans. The IM column store supplements the
row-based storage in the database buffer cache. You do not need to load the same object
into both the IM column store and the buffer cache. The two caches are kept transactionally
consistent. The database transparently sends online transaction processing (OLTP) queries
(such as primary-key lookups) to the buffer cache and analytic and reporting queries to the IM
column store.

You can think of the use of JSON data in memory as improving the performance of SQL/
JSON path access. SQL/JSON functions json_table, json_query, and json_value, and SQL

29-1

condition json_exists all accept a SQL/JSON path argument, and they can all benefit
from loading JSON data into the IM column store. (Full-text search using SQL/JSON
function json_textcontains does not benefit from the IM column store.) Once JSON
documents have been loaded into memory, any subsequent path-based operations on
them use the In-Memory representation, which avoids the overhead associated with
reading and parsing the on-disk format.

If queried JSON data is populated into the IM column store, and if there are function-
based indexes that can apply to that data, the optimizer chooses whether to use an
index or to scan the data in memory. In general, if index probing results in few
documents then a functional index can be preferred by the optimizer. In practice this
means that the optimizer can prefer a functional index for very selective queries or
DML statements.

On the other hand, if index probing results in many documents then the optimizer
might choose to scan the data in memory, by scanning the function-based index
expression as a virtual-column expression.

Ad hoc queries, that is, queries that are not used frequently to target a given SQL/
JSON path expression, benefit in a general way from populating JSON data into the
IM column store, by quickly scanning the data. But if you have some frequently used
queries then you can often further improve their performance in these ways:

• Creating virtual columns that project scalar values (not under an array) from a
column of JSON data and loading those virtual columns into the IM column store.

• Creating a materialized view on a frequently queried json_table expression and
loading the view into the IM column store.

However, if you have a function-based index that projects a scalar value using function
json_value then you need not explicitly create a virtual column to project it. As
mentioned above, in this case the function-based index expression is automatically
loaded into the IM column store as a virtual column. The optimizer can choose, based
on estimated cost, whether to scan the function-based index in the usual manner or to
scan the index expression as a virtual-column expression.

Note:

• The advantages of a virtual column over a materialized view are that you
can build an index on it and you can obtain statistics on it for the
optimizer.

• Virtual columns, like columns in general, are subject to the 1000-column
limit for a given table.

Prerequisites For Using JSON Data In Memory

To be able to take advantage of the IM column store for JSON data, the following must
all be true:

• Database compatibility is 12.2.0.0 or higher.

• The values set for max_string_size in the Oracle instance startup configuration
file must be 'extended'.

• Sufficient SGA memory must be configured for the IM column store.

Chapter 29
Overview of In-Memory JSON Data

29-2

• A DBA has specified that the tablespace, table, or materialized view that contains the
JSON columns is eligible for population into the IM column store, using keyword
INMEMORY in a CREATE or ALTER statement.

• Initialization parameters are set as follows:

– IMMEMORY_EXPRESSIONS_USAGE is STATIC_ONLY or ENABLE.

ENABLE allows In-Memory materialization of dynamic expressions, if used in
conjunction with PL/SQL procedure DBMS_INMEMORY.ime_capture_expressions.

– IMMEMORY_VIRTUAL_COLUMNS is ENABLE, meaning that the IM column store populates
all virtual columns. (The default value is MANUAL.)

• The columns storing the JSON data must each have is json check constraints. (That is,
the data must be known to be JSON data.)

You can check the value of each initialization parameter using command SHOW PARAMETER.
(You must be logged in as database user SYS or equivalent for this.) For example:

SHOW PARAMETER INMEMORY_VIRTUAL_COLUMNS

Related Topics

• Populating JSON Data Into the In-Memory Column Store
You use ALTER TABLE INMEMORY to populate a table with a column of JSON data into the
In-Memory Column Store (IM column store), to improve the performance of queries that
share costly expressions by caching the results of evaluating those expressions.

29.2 Populating JSON Data Into the In-Memory Column Store
You use ALTER TABLE INMEMORY to populate a table with a column of JSON data into the In-
Memory Column Store (IM column store), to improve the performance of queries that share
costly expressions by caching the results of evaluating those expressions.

The IM column store is an optional SGA pool that stores copies of tables and partitions in a
special columnar format optimized for rapid scans. The IM column store supplements the
row-based storage in the database buffer cache. (It does not replace the buffer cache, but
you do not need to load the same object into both the IM column store and the buffer cache.
The two caches are kept transactionally consistent.)

You specify that a table with a given JSON column (that is, a column that has an is json
check constraint) is to be populated into the IM column store by marking the table as
INMEMORY. Example 29-1 illustrates this.

The IM column store is used for queries of documents that are smaller than 32,767 bytes.
Queries of documents that are larger than that do not benefit from the IM column store.

Chapter 29
Populating JSON Data Into the In-Memory Column Store

29-3

Note:

If a JSON column in a table that is to be populated into the IM column store
was created using a database that did not have a compatibility setting of at
least 12.2 or did not have max_string_size set to extended (this is the case
prior to Oracle Database 12c Release 2 (12.2.0.1), for instance) then you
must first run script rdbms/admin/utlimcjson.sql. It prepares all existing
tables that have JSON columns to take advantage of the In-Memory JSON
processing that was added in Release 12.2.0.1. See Upgrading Tables With
JSON Data For Use With the In-Memory Column Store.

After you have marked a table that has JSON columns as INMEMORY, an In-Memory
virtual column is added to it for each JSON column. The corresponding virtual column
is used for queries of a given JSON column. The virtual column contains the same
JSON data as the corresponding JSON column, but in an Oracle binary format,
OSON.

Example 29-1 Populating JSON Data Into the IM Column Store

SELECT COUNT(1) FROM j_purchaseorder
 WHERE json_exists(po_document,
 '$.ShippingInstructions?(@.Address.zipCode ==
99236)');

-- The execution plan shows: TABLE ACCESS FULL

-- Specify table as INMEMORY, with default PRIORITY setting of NONE,
-- so it is populated only when a full scan is triggered.

ALTER TABLE j_purchaseorder INMEMORY;

-- Query the table again, to populate it into the IM column store.
SELECT COUNT(1) FROM j_purchaseorder
 WHERE json_exists(po_document,
 '$.ShippingInstructions?(@.Address.zipCode ==
99236)');

-- The execution plan for the query now shows: TABLE ACCESS INMEMORY
FULL

See Also:

Oracle Database In-Memory Guide

Chapter 29
Populating JSON Data Into the In-Memory Column Store

29-4

29.3 Upgrading Tables With JSON Data For Use With the In-
Memory Column Store

A table with JSON columns created using a database that did not have a compatibility setting
of at least 12.2 or did not have max_string_size = extended must first be upgraded, before
it can be populated into the In-Memory Column Store (IM column store). To do this, run script
rdbms/admin/utlimcjson.sql.

Script rdbms/admin/utlimcjson.sql upgrades all existing tables that have JSON columns so
they can be populated into the IM column store. To use it, all of the following must be true:

• Database parameter compatible must be set to 12.2.0.0 or higher.

• Database parameter max_string_size must be set to extended.

• The JSON columns being upgraded must have an is json check constraint defined on
them.

Related Topics

• Overview of In-Memory JSON Data
You can move a table with a column of JSON data to the In-Memory Column Store (IM
column store), to improve the performance of queries that share costly expressions by
caching the expression results. This is especially useful for analytical queries that scan a
large number of small JSON documents.

Chapter 29
Upgrading Tables With JSON Data For Use With the In-Memory Column Store

29-5

30
JSON Query Rewrite To Use a Materialized
View Over JSON_TABLE

You can enhance the performance of queries that access particular JSON fields by creating,
and indexing, a materialized view over such data that's defined using SQL/JSON function
json_table.

Example 20-10 shows how to create a materialized view over JSON data using function
json_table. That example creates a virtual column for each JSON field expected in the data.

You can instead create a materialized view that projects only certain fields that you query
often. If you do that, and if the following conditions are all satisfied, then queries that match
the column data types of any of the projected fields can be rewritten automatically to go
against the materialized view.

• The materialized view is created with REFRESH FAST ON STATEMENT.

• The materialized view definition includes either WITH PRIMARY KEY or WITH ROWID (if there
is no primary key).

• The materialized view joins the master table and only one virtual table defined by
json_table.

• The columns projected by json_table use ERROR ON ERROR.

Automatic query rewrite is supported if those conditions are satisfied. You do not need to
specify ENABLE QUERY REWRITE in the view definition. Rewriting applies to queries that use
any of the following in a WHERE clause: simple dot notation, condition json_exists, or function
json_value.

Columns that do not specify ERROR ON ERROR are also allowed, but queries are not rewritten
to use those columns. If you use ERROR ON ERROR for the json_table row pattern, the effect is
the same as if you specify ERROR ON ERROR for each column.

If some of your JSON data lacks a given projected field, using NULL ON EMPTY allows that field
to nevertheless be picked up when it is present — no error is raised when it is missing.

Automatic query rewrite to use a materialized view can enhance performance. Performance
can be further enhanced if you also create an index on the materialized view.

Example 30-1 creates such a materialized view. Example 30-2 creates an index for it.

Example 30-1 Creating a Materialized View of JSON Data To Support Query Rewrite

This example creates materialized view mv_for_query_rewrite, which projects several JSON
fields to relational columns. Queries that access those fields in a WHERE clause using simple
dot notation, condition json_exists, or function json_value can be automatically rewritten to
instead go against the corresponding view columns.

An example of such a query is that of Example 17-5, which has comparisons for fields User,
UPCCode, and Quantity. All of these comparisons are rewritten to use the materialized view.

30-1

In order for the materialized view to be used for a given comparison of a query, the
type of that comparison must be the same as the SQL data type for the corresponding
view column. See Using a JSON_VALUE Function-Based Index with JSON_EXISTS
Queries for information about the type of a comparison.

For example, view mv_for_query_rewrite can be used for a query that checks
whether field UPCCode has numeric value 85391628927, because the view column
projected from that field has SQL type NUMBER. But the view cannot be used for a query
that checks whether that field has string value "85391628927".

CREATE MATERIALIZED VIEW mv_for_query_rewrite
 BUILD IMMEDIATE
 REFRESH FAST ON STATEMENT WITH PRIMARY KEY
 AS SELECT po.id, jt.*
 FROM j_purchaseorder po,
 json_table(po.po_document, '$' ERROR ON ERROR NULL ON EMPTY
 COLUMNS (
 po_number NUMBER PATH '$.PONumber',
 userid VARCHAR2(10) PATH '$.User',
 NESTED PATH '$.LineItems[*]'
 COLUMNS (
 itemno NUMBER PATH '$.ItemNumber',
 description VARCHAR2(256) PATH
'$.Part.Description',
 upc_code NUMBER PATH '$.Part.UPCCode',
 quantity NUMBER PATH '$.Quantity',
 unitprice NUMBER PATH
'$.Part.UnitPrice'))) jt;

You can tell whether the materialized view is used for a particular query by examining
the execution plan. If it is, then the plan refers to mv_for_query_rewrite. For example:

|* 4| MAT_VIEW ACCESS FULL | MV_FOR_QUERY_REWRITE |1|51|3(0)|00:00:01|

Example 30-2 Creating an Index Over a Materialized View of JSON Data

This example creates composite relational index mv_idx on columns userid,
upc_code, and quantity of the materialized view mv_for_query_rewrite created in
Example 30-1.

CREATE INDEX mv_idx ON mv_for_query_rewrite(userid, upc_code,
quantity);

The execution plan snippet in Example 30-1 shows a full table scan (MAT_VIEW ACCESS
FULL) of the materialized view. Defining index mv_idx can result in a better plan for the
query. This is indicated by the presence of INDEX RANGE SCAN (as well as the name of
the index, MV_IDX, and the material view, MV_FOR_QUERY_REWRITE).

| 4| MAT_VIEW ACCESS BY INDEX ROWID BATCHED | MV_FOR_QUERY_REWRITE |1|
51|2(0)|00:00:01|

Chapter 30

30-2

|* 5| INDEX RANGE SCAN | MV_IDX |1| |
1(0)|00:00:01|

Chapter 30

30-3

A
Oracle Database JSON Restrictions

The restrictions associated with Oracle support of JSON data in Oracle Database are listed
here.

Unless otherwise specified, an error is raised if a specified limitation is not respected.

• General

– Number of nesting levels for a JSON object or array: 1000, maximum.

– JSON field name length: 32767 bytes, maximum.

• SQL/JSON functions

– Return-value length: 32767 bytes, maximum.

– Path length: 4K bytes, maximum.

– Number of path steps: 65535, maximum.

• Simplified JSON syntax

– Path length: 4K bytes, maximum.

– Path component length: 128 bytes, maximum.

• JSON search index

– Field name length: 255 bytes, maximum. If a document has a field name longer than
255 bytes then it might not be completely indexed. In that case, an error is recorded
in database view CTX_USER_INDEX_ERRORS.

See Also:

Oracle Text Reference

• JSON data guide

– Path length: 4000 bytes, maximum. A path longer than 4000 bytes is ignored by a
data guide.

– Number of children under a parent node: 1024, maximum. A node that has more than
1024 children is ignored by a data guide.

– Field value length: 32767 bytes. If a JSON field has a value longer than 32767 bytes
then the data guide reports the length as 32767.

– Zero-length field name: A zero-length (empty) object field name ("") is not supported
for use with JSON data guide. Data-guide behavior is undefined for JSON data that
contains such a name.

• OSON

– All field names, total size: 65535 bytes, maximum.

– Field name length (each): 255 bytes, maximum.

A-1

– No duplicate fields: If a JSON object with duplicate field names is represented
using OSON then only one of these fields is present (kept).

• PL/SQL getter method JSON_OBJECT_T.get_keys() returns at most 32767 field
names for a given JSON object. An error is raised if it is applied to an object with
more than 32767 fields.

Appendix A

A-2

B
Diagrams for Basic SQL/JSON Path
Expression Syntax

Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions are
presented for the basic SQL/JSON path expression syntax.

The basic syntax of SQL/JSON path expression is explained in Basic SQL/JSON Path
Expression Syntax. This topic recapitulates that information in the form of syntax diagrams
and BNF descriptions.

Figure B-1 json_basic_path_expression

json_absolute_path_expr

json_relative_path_expr

Figure B-2 json_absolute_path_expression

$

json_nonfunction_steps json_function_step

Figure B-3 json_nonfunction_steps

json_object_step

json_array_step

json_descendent_step

json_filter_expr

Figure B-4 json_object_step

.
*

json_field_name

Figure B-5 json_field_name

json_string

letter

letter

digit

B-1

Figure B-6 json_array_step

Note:

• Array indexing is zero-based, so integer is a non-negative integer (0, 1,
2, 3,...).

• The first integer of a range (integer to integer) must be less than the
second.

• The array elements must be specified by indexes in ascending order,
without repetitions.

A compile-time error is raised if any of these syntax rules is violated.

Figure B-7 json_function_step

. json_item_method ()

Appendix B

B-2

Figure B-8 json_item_method

Figure B-9 json_filter_expr

? (json_cond)

Appendix B

B-3

Figure B-10 json_cond

json_disjunction

json_conjunction

json_negation

(json_cond)

json_comparison

json_exists_cond

json_in_cond

json_like_cond

json_like_regex_cond

json_eq_regex_cond

json_has_substring_cond

json_starts_with_cond

Figure B-11 json_conjunction

json_cond && json_cond

Figure B-12 json_comparison

json_relative_path_expr json_compare_pred
json_var

json_scalar

json_var

json_scalar
json_compare_pred json_relative_path_expr

json_scalar json_compare_pred json_scalar

Figure B-13 json_relative_path-expr

@

json_nonfunction_steps json_function_step

Appendix B

B-4

Figure B-14 json_compare_pred

==

!=

<

<=

>=

>

Figure B-15 json_var

$ identifier

Figure B-16 json_scalar

json_number

true

false

null

json_string

Note:

json_number is a JSON number: a decimal numeral, possibly signed and possibly
including a decimal exponent.

See Also:

Oracle Database SQL Language Reference for information about Oracle syntax
diagrams

Appendix B

B-5

Index

Symbols
! filter predicate, SQL/JSON path expressions,

15-2
!= comparison filter predicate, SQL/JSON path

expressions, 15-2
&& filter predicate, SQL/JSON path expressions,

15-2
< comparison filter predicate, SQL/JSON path

expressions, 15-2
<= comparison filter predicate, SQL/JSON path

expressions, 15-2
<> comparison filter predicate, SQL/JSON path

expressions, 15-2
== comparison filter predicate, SQL/JSON path

expressions, 15-2
> comparison filter predicate, SQL/JSON path

expressions, 15-2
>= comparison filter predicate, SQL/JSON path

expressions, 15-2
|| filter predicate, SQL/JSON path expressions,

15-2
$, SQL/JSON path expressions

for a SQL/JSON variable, 15-2
for the context item, 15-2

A
abs() item method, SQL/JSON path expressions,

15-10
ABSENT ON NULL, SQL/JSON generation

functions, 23-1
absolute path expression, 15-2

syntax, B-1
ad hoc search of JSON data, 28-10
add_vc trigger procedure, 22-31
add_virtual_columns, DBMS_JSON PL/SQL

procedure, 22-23, 22-25, 22-28
adding virtual columns for JSON fields, 22-23

based on a data guide-enabled search index,
22-28

based on a hierarchical data guide, 22-25
ALL_JSON_COLUMNS view, 4-3
ALL_JSON_DATAGUIDE_FIELDS view, 22-13
ALL_JSON_DATAGUIDES view, 22-13

array element, JSON, 2-2
array index, 15-2
array range specification, 15-2
array step, SQL/JSON path expressions, 15-2

syntax, B-1
array, JSON, 2-2
ASCII keyword, SQL functions, 16-1

B
basic SQL/JSON path expression, 15-2

BNF description, B-1
diagrams, B-1

BLOB storage, using for JSON data, 3-1
BNF syntax descriptions, basic SQL/JSON path

expression, B-1
boolean() item method, SQL/JSON path

expressions, 15-10
booleanOnly() item method, SQL/JSON path

expressions, 15-10

C
canonical form of a JSON number, 16-1
case-sensitivity

in data-guide field
o:preferred_column_name, 22-9

in query dot notation, 14-1
in SQL/JSON path expression, 15-2
JSON and SQL, xvii
strict and lax JSON syntax, 5-2

ceiling() item method, SQL/JSON path
expressions, 15-10

change trigger, data guide, 22-31
user-defined, 22-33

character sets, 6-1
check constraint used to ensure well-formed

JSON data, 4-1
child COLUMNS clause, json_table SQL/JSON

function, 20-5
client, using to retrieve JSON Data, 3-1
client, using to retrieve JSON LOB data, 7-1
CLOB storage, using for JSON data, 3-1
COLUMNS clause, json_table SQL/JSON

function, 20-5

Index-1

columns of JSON data, 1-2
compare predicate, SQL/JSON path expressions

syntax, B-1
comparison filter predicates, SQL/JSON path

expressions, 15-2
comparison in SQL/JSON path expression,

types, 15-15
comparison, SQL/JSON path expressions

syntax, B-1
compatibility of data types, item methods, 15-10
condition, SQL/JSON path expressions

syntax, B-1
conditions, Oracle SQL

json_equal, 1
conditions, SQL/JSON

is json, 5-1
and JSON null, 2-2

is not json, 5-1
and JSON null, 2-2

json_exists, 17-1
indexing, 28-3

json_textcontains, 28-10
conjunction, SQL/JSON path expressions

syntax, B-1
context item, SQL/JSON path expressions, 15-2
create_view_on_path, DBMS_JSON PL/SQL

procedure, 22-15, 22-19
create_view, DBMS_JSON PL/SQL procedure,

22-15, 22-17

D
data guide

change trigger, 22-31
user-defined, 22-33

fields, 22-9
flat, 22-41
hierarchical, 22-47
multiple for the same JSON column, 22-35
overview, 22-2

data types for JSON columns, 3-1
date and time formats, ISO 8601, 15-14
date() item method, SQL/JSON path

expressions, 15-10
DBA_JSON_COLUMNS view, 4-3
DBA_JSON_DATAGUIDE_FIELDS view, 22-13
DBA_JSON_DATAGUIDES view, 22-13
DBMS_JSON.add_virtual_columns PL/SQL

procedure, 22-23, 22-25, 22-28
DBMS_JSON.create_view PL/SQL procedure,

22-15, 22-17
DBMS_JSON.create_view_on_path PL/SQL

procedure, 22-15, 22-19
DBMS_JSON.drop_virtual_columns PL/SQL

procedure, 22-23, 22-31

DBMS_JSON.FORMAT_FLAT, 22-7, 22-9, 22-41
DBMS_JSON.FORMAT_HIERARCHICAL, 22-7,

22-17, 22-25, 22-47
DBMS_JSON.get_index_dataguide PL/SQL

function, 22-7, 22-9, 22-17, 22-25
DBMS_JSON.PRETTY, 22-17, 22-41, 22-47
DBMS_JSON.rename_column PL/SQL

procedure, 22-9
descendant step, SQL/JSON path expressions,

15-2
diagrams, basic SQL/JSON path expression

syntax, B-1
disjunction, SQL/JSON path expressions

syntax, B-1
Document Object Model (DOM), 24-1
DOM-like manipulation of JSON data, 24-1
dot-notation access to JSON data, 14-1

use with json_table SQL/JSON function, 20-1
double() item method, SQL/JSON path

expressions, 15-10
drop_virtual_columns, DBMS_JSON PL/SQL

procedure, 22-23, 22-31
dropping virtual columns for JSON fields, 22-23,

22-31
duplicate field names in JSON objects, 5-2

E
element of a JSON array, 2-2
eq_regex filter predicate, SQL/JSON path

expressions, 15-2
error clause, SQL query functions and conditions,

16-5
ERROR ON MISMATCH clause, json_value,

16-9
exists filter predicate, SQL/JSON path

expressions, 15-2
EXISTS keyword, json_table SQL/JSON

function, 20-1
EXTRA DATA clause, ON MISMATCH clause,

json_value, 16-9

F
field name, SQL/JSON path expressions

syntax, B-1
field, JSON object, 2-2
filter condition, SQL/JSON path expressions,

15-2
filter expression, SQL/JSON path expressions,

15-2
filter, SQL/JSON path expressions

syntax, B-1
floor() item method, SQL/JSON path

expressions, 15-10

Index

Index-2

FOR ORDINALITY keywords, json_table SQL/
JSON function, 20-1

FORMAT JSON keywords
json_table SQL/JSON function, 20-5
SQL/JSON generation functions, 23-1, 23-3

FORMAT_FLAT, package DBMS_JSON, 22-7,
22-9, 22-41

FORMAT_HIERARCHICAL, package
DBMS_JSON, 22-7, 22-17, 22-25, 22-47

full-text search of JSON data, 28-10
function step, SQL/JSON path expressions, 15-2

syntax, B-1
functions, Oracle SQL

json_serialize, 21-1
functions, SQL

json_dataguide, 22-7, 22-9
as an aggregate function, 22-35
hierarchical format, 22-47
pretty-print format, 22-47

json_mergepatch, 10-1
json_transform, 10-1

functions, SQL/JSON
json_array, 23-11
json_arrayagg, 23-13
json_object, 23-6
json_objectagg, 23-12
json_query, 19-1
json_table, 20-1
json_value, 18-1

function-based indexing, 28-3
indexing for geographic data, 26-1
null JSON value, 18-4
returning an object-type instance, 18-4

G
generation of JSON data using SQL, 23-1

input SQL values, 23-3
geographic JSON data, 26-1
GeoJSON, 26-1
geometric features in JSON, 26-1
get_index_dataguide, DBMS_JSON PL/SQL

function, 22-7, 22-9, 22-17, 22-25
get() method, PL/SQL object types, 24-1

H
has substring filter predicate, SQL/JSON path

expressions, 15-2
hidden virtual columns projected from JSON

data, 22-23

I
IGNORE ON MISMATCH clause, json_value,

16-9
IM column store, 29-1
In-Memory Column Store, 29-1

populating JSON into, 29-3
upgrading tables with JSON data for, 29-5

index, array, 15-2
indexing JSON data, 28-1

composite B-tree index for multiple fields,
28-9

for json_exists queries, 28-6
for json_table queries, 28-5
for search, 28-10
full-text and numeric-range, 28-10
function-based, 28-3

for geographic data, 26-1
GeoJSON, 26-1
is (not) json SQL/JSON condition, 28-2
json_exists SQL/JSON condition, 28-3
json_value SQL/JSON function, 28-3

data type considerations, 28-8
for geographic data, 26-1
for json_exists queries, 28-6
for json_table queries, 28-5

spatial, 26-1
inserting JSON data into a column, 10-1
introspection of PL/SQL object types, 24-1
is json SQL/JSON condition, 5-1

and JSON null, 2-2
indexing, 28-2
STRICT keyword, 5-5

is not json SQL/JSON condition, 5-1
and JSON null, 2-2
indexing, 28-2
STRICT keyword, 5-5

ISO 8601 date and time formats, 15-14
item method, SQL/JSON path expressions, 15-2,

15-10
data type compatibility, 15-10
syntax, B-1

items data-guide field (JSON Schema keyword),
22-9

J
JavaScript array, 2-2
JavaScript notation compared with JSON, 2-1
JavaScript object, 2-2
JavaScript object literal, 2-2
JavaScript Object Notation (JSON), 2-1
JSON, 2-1

character encoding, 6-1
character-set conversion, 6-1

Index

Index-3

JSON (continued)
compared with JavaScript notation, 2-1
compared with XML, 2-4
overview, 1-1, 2-1
support by Oracle Database, restrictions, A-1
syntax, 1-1, 2-1, 2-2

basic path expression, 15-2, B-1
strict and lax, 5-2

JSON columns, 1-2
JSON data guide, 22-1

overview, 22-2
JSON generation functions, 23-1
JSON LOB data, 7-1
JSON object types, PL/SQL

overview, 24-1
JSON Schema, 22-1

keywords, 22-9
JSON search index, 28-10
json_array SQL/JSON function, 23-11
JSON_ARRAY_T PL/SQL object type, 24-1
json_arrayagg SQL/JSON function, 23-13
json_dataguide SQL function, 22-7, 22-9

as an aggregate function, 22-35
hierarchical format, 22-47
pretty-print format, 22-47

JSON_ELEMENT_T PL/SQL object type, 24-1
json_equal Oracle SQL condition, 1
json_exists SQL/JSON condition, 17-1

as json_table, 17-4
indexing, 28-2, 28-3, 28-6

JSON_KEY_LIST PL/SQL object type, 24-1
json_mergepatch SQL function, 10-1
json_object SQL/JSON function, 23-6
JSON_OBJECT_T PL/SQL object type, 24-1
json_objectagg SQL/JSON function, 23-12
json_query SQL/JSON function, 19-1

as json_table, 19-2
JSON_SCALAR_T PL/SQL object type, 24-1
json_serialize Oracle SQL function, 21-1
json_table SQL/JSON function, 20-1

EXISTS keyword, 20-1
FORMAT JSON keywords, 20-5
generalizes other SQL/JSON functions and

conditions, 20-8
indexing for queries, 28-5
NESTED PATH clause, 20-9
PATH clause, 20-1

json_textcontains SQL/JSON condition, 28-10
json_transform SQL function, 10-1
json_value SQL/JSON function, 18-1

as json_table, 18-7
data type considerations for indexing, 28-8
function-based indexing, 28-3

for geographic data, 26-1
indexing for json_exists queries, 28-6

json_value SQL/JSON function (continued)
indexing for json_table queries, 28-5
null JSON value, 18-4
returning an object-type instance, 18-4

K
key, JSON object

See field, JSON object
keywords

JSON Schema, 22-9

L
lax JSON syntax, 5-2

specifying, 5-5
length() item method, SQL/JSON path

expressions, 15-10
like filter predicate, SQL/JSON path expressions,

15-2
like_regex filter predicate, SQL/JSON path

expressions, 15-2
limitations, Oracle Database support for JSON,

A-1
loading JSON data into the database, 10-1
LOB storage of JSON data, 7-1
LOB storage, using for JSON data, 3-1
lower() item method, SQL/JSON path

expressions, 15-10

M
materialized view of JSON data, 20-12

indexing, 30-1
rewriting automatically, 30-1

MISSING DATA clause, ON MISMATCH clause,
json_value, 16-9

multiple data guides for the same JSON column,
22-35

N
NESTED clause, instead of json_table, 20-4
NESTED PATH clause, json_table, 20-9
NoSQL databases, 1-2
null handling, SQL/JSON generation functions,

23-1, 23-3
NULL ON EMPTY clause, SQL/JSON query

functions, 16-8
NULL ON MISMATCH clause, json_value, 16-9
NULL ON NULL, SQL/JSON generation

functions, 23-1
NULL-handling clause, SQL/JSON generation

functions, 23-1

Index

Index-4

number() item method, SQL/JSON path
expressions, 15-10

numberOnly() item method, SQL/JSON path
expressions, 15-10

numeric-range indexing, 28-10

O
o:frequency data-guide field, 22-9
o:hidden data-guide field, 22-23
o:high_value data-guide field, 22-9
o:last_analyzed data-guide field, 22-9
o:length data-guide field, 22-9
o:low_value data-guide field, 22-9
o:num_nulls data-guide field, 22-9
o:path data-guide field, 22-9
o:preferred_column_name data-guide field, 22-9
object literal, Javascript, 2-2
object member, JSON, 2-2
object step, SQL/JSON path expressions, 15-2

syntax, B-1
object, Javascript and JSON, 2-2
ON EMPTY clause, SQL/JSON query functions,

16-8
ON MISMATCH clause, json_value, 16-9
oneOf data-guide field (JSON Schema keyword),

22-9
Oracle SQL conditions, 1

json_equal, 1
See also SQL/JSON conditions

Oracle SQL functions
json_dataguide, 22-7, 22-9

as an aggregate function, 22-35
hierarchical format, 22-47
pretty-print format, 22-47

json_mergepatch, 10-1
json_serialize, 21-1
json_transform, 10-1

Oracle support for JSON in the database, A-1

P
parent COLUMNS clause, json_table SQL/JSON

function, 20-5
parsing of JSON data to PL/SQL object types,

24-1
PASSING clause, json_exists, 17-1
PATH clause, json_table, 20-1
path expression, SQL/JSON, 15-1

comparison, types, 15-15
item methods, 15-10
syntax, 15-2, B-1

performance tuning, 27-1

PL/SQL functions
DBMS_JSON.get_index_dataguide, 22-7,

22-9, 22-17, 22-25
PL/SQL object types

overview, 24-1
PL/SQL object-type methods, 24-1
PL/SQL procedures

DBMS_JSON.add_virtual_columns, 22-23,
22-25, 22-28

DBMS_JSON.create_view, 22-15, 22-17
DBMS_JSON.create_view_on_path, 22-15,

22-19
DBMS_JSON.drop_virtual_columns, 22-23,

22-31
DBMS_JSON.rename_column, 22-9

PRETTY keyword, SQL functions, 16-1
pretty-printing

in book examples, xvii
PRETTY, package DBMS_JSON, 22-17, 22-41,

22-47
projecting virtual columns from JSON fields,

22-23
properties data-guide field (JSON Schema

keyword), 22-9
property, JSON object

See field, JSON object
put() method, PL/SQL object types, 24-1

Q
queries, dot notation, 14-1

use with json_table SQL/JSON function, 20-1
query rewrite to a materialized view, 30-1

R
range specification, array, 15-2
rawtohex SQL function, for insert or update with

BLOB JSON column, 3-1, 7-1
relational database with JSON data, 1-2
relative path expression, 15-2

syntax, B-1
rename_column, DBMS_JSON PL/SQL

procedure, 22-9
rendering of JSON data, 16-1
restrictions, Oracle Database support for JSON,

A-1
retrieval of JSON LOB data from database by

client, 7-1
RETURNING clause

SQL query functions, 16-1
SQL/JSON generation functions, 23-1

rewrite of JSON queries to a materialized view,
30-1

Index

Index-5

row source, JSON
definition, 20-1

S
scalar value, JSON, 2-2
scalar, SQL/JSON path expressions

syntax, B-1
schema, JSON, 22-1
schemaless database data, 1-2
SDO_GEOMETRY, 26-1
searching JSON data, 28-10
SELECT statement, NESTED clause instead of

json_table, 20-4
serialization

of JSON data from queries, 16-1
of JSON data in PL/SQL object types, 24-1

serializing JSON data, 21-1
setting values in PL/SQL object types, 24-1
sharding, data-guide information in index, 22-4
sibling COLUMNS clauses, json_table SQL/

JSON function, 20-5
simple dot-notation access to JSON data, 14-1

use with json_table SQL/JSON function, 20-1
Simple Oracle Document Access (SODA), 1-1
simplified syntax

See simple dot-notation access to JSON data
size() item method, SQL/JSON path expressions,

15-10
SODA, 1-1
spatial JSON data, 26-1
SQL functions

json_dataguide, 22-7, 22-9
as an aggregate function, 22-35
hierarchical format, 22-47
pretty-print format, 22-47

json_mergepatch, 10-1
json_transform, 10-1

SQL NESTED clause, instead of json_table, 20-4
SQL/JSON conditions, 1

is (not) json, 5-1
is json

and JSON null, 2-2
indexing, 28-2

is not json
and JSON null, 2-2
indexing, 28-2

json_exists, 17-1
as json_table, 17-4
indexing, 28-2, 28-3

json_textcontains, 28-10
See also Oracle SQL conditions

SQL/JSON functions
for generating JSON, 23-1
json_array, 23-11

SQL/JSON functions (continued)
json_arrayagg, 23-13
json_object, 23-6
json_objectagg, 23-12
json_query, 19-1

as json_table, 19-2
json_table, 20-1
json_value, 18-1

as json_table, 18-7
function-based indexing, 26-1, 28-3
null JSON value, 18-4
returning an object-type instance, 18-4

SQL/JSON generation functions, 23-1
input SQL values, 23-3

SQL/JSON path expression, 15-1
comparison, types, 15-15
item methods, 15-10
syntax, 15-2

array step, B-1
basic, 15-2, B-1
compare predicate, B-1
comparison, B-1
condition, B-1
conjunction, B-1
disjunction, B-1
field name, B-1
filter, B-1
function step, B-1
item method, B-1
object step, B-1
relaxed, 15-9
scalar, B-1
variable, B-1

SQL/JSON query functions
WITH WRAPPER keywords, 16-4

SQL/JSON variable, 15-2
starts with filter predicate, SQL/JSON path

expressions, 15-2
step, SQL/JSON path expressions, 15-2
storing and managing JSON data, overview, 3-1
strict JSON syntax, 5-2

specifying, 5-5
STRICT keyword

is (not) json SQL/JSON condition, 5-5
SQL/JSON generation functions, 23-1

string() item method, SQL/JSON path
expressions, 15-10

stringOnly() item method, SQL/JSON path
expressions, 15-10

support for JSON, Oracle Database, A-1
syntax diagrams, basic SQL/JSON path

expression, B-1

Index

Index-6

T
tables with JSON data, 1-2
time and date formats, ISO 8601, 15-14
timestamp() item method, SQL/JSON path

expressions, 15-10
tree-like representation of JSON data, 24-1
trigger for data-guide changes, 22-31
TRUNCATE keyword, Oracle extension for SQL

VARCHAR2 return value, 16-1
TRUNCATE keyword, Oracle extension for SQL/

JSON VARCHAR2 return value, 20-1
type data-guide field (JSON Schema keyword),

22-9
TYPE ERROR clause, ON MISMATCH clause,

json_value, 16-9
type() item method, SQL/JSON path

expressions, 15-10

U
UNCONDITIONAL keyword, SQL/JSON query

functions, 16-4
unique field names in JSON objects, 5-2
updating JSON data, 10-1
upper() item method, SQL/JSON path

expressions, 15-10
USER_JSON_COLUMNS view, 4-3
USER_JSON_DATAGUIDE_FIELDS view, 22-13
USER_JSON_DATAGUIDES view, 22-13
user-defined data-guide change trigger, 22-33

V
value, JSON, 2-2
variable, SQL/JSON path expressions, 15-2

syntax, B-1
view

create based on a data guide, 22-17

view (continued)
create based on data guide-enabled index

and a path, 22-19
create using SQL/JSON function json_table,

20-12
views

ALL_JSON_COLUMNS, 4-3
ALL_JSON_DATAGUIDE_FIELDS, 22-13
ALL_JSON_DATAGUIDES, 22-13
DBA_JSON_COLUMNS, 4-3
DBA_JSON_DATAGUIDE_FIELDS, 22-13
DBA_JSON_DATAGUIDES, 22-13
USER_JSON_COLUMNS, 4-3
USER_JSON_DATAGUIDE_FIELDS, 22-13
USER_JSON_DATAGUIDES, 22-13

virtual columns for JSON fields, adding, 22-23
based on a data guide-enabled search index,

22-28
based on a hierarchical data guide, 22-25

W
well formed JSON data, 5-1
well-formed JSON data

ensuring, 3-1
WITH UNIQUE KEYS keywords, JSON condition

is json, 5-2
WITH WRAPPER keywords, SQL/JSON query

functions, 16-4
WITHOUT UNIQUE KEYS keywords, JSON

condition is json, 5-2
wrapper clause, SQL/JSON query functions, 16-4
WRAPPER keyword, SQL/JSON query functions,

16-4

X
XML

compared with JSON, 2-4
DOM, 24-1

Index

Index-7

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Code Examples
	Pretty Printing of JSON Data
	Execution Plans
	Reminder About Case Sensitivity

	Changes in This Release for Oracle Database JSON Developer's Guide
	Changes in Oracle Database Release 19c, Version 19.1, for JSON Developer’s Guide
	New Features
	JSON Materialized View Support
	SQL Function JSON_MERGEPATCH: Declarative Update of JSON Documents
	New SQL/JSON Function JSON_SERIALIZE and JSON Data Guide Support for GeoJSON Data
	Syntax Simplifications
	Mapping of JSON Data To and From SQL Object Types

	Changes in Oracle Database Release 18c, Version 18.1, for JSON Developer’s Guide
	New Features
	SQL Enhancements
	Sharding Support
	Performance Improvements for LOB Storage
	JSON Search Index Support for Longer Field Names

	Deprecated Features

	Part I Introduction to JSON Data and Oracle Database
	1 JSON in Oracle Database
	1.1 Overview of JSON in Oracle Database
	1.2 Getting Started Using JSON with Oracle Database
	1.3 Oracle Database Support for JSON

	2 JSON Data
	2.1 Overview of JSON
	2.2 JSON Syntax and the Data It Represents
	2.3 JSON Compared with XML

	Part II Store and Manage JSON Data
	3 Overview of Storing and Managing JSON Data
	4 Creating a Table With a JSON Column
	4.1 Determining Whether a Column Necessarily Contains JSON Data

	5 SQL/JSON Conditions IS JSON and IS NOT JSON
	5.1 Unique Versus Duplicate Fields in JSON Objects
	5.2 About Strict and Lax JSON Syntax
	5.3 Specifying Strict or Lax JSON Syntax

	6 Character Sets and Character Encoding for JSON Data
	7 Considerations When Using LOB Storage for JSON Data
	8 Partitioning JSON Data
	9 Replication of JSON Data

	Part III Insert, Update, and Load JSON Data
	10 Overview of Inserting, Updating, and Loading JSON Data
	11 Oracle SQL Function JSON_TRANSFORM
	12 Updating a JSON Document with JSON Merge Patch
	13 Loading External JSON Data

	Part IV Query JSON Data
	14 Simple Dot-Notation Access to JSON Data
	15 SQL/JSON Path Expressions
	15.1 Overview of SQL/JSON Path Expressions
	15.2 SQL/JSON Path Expression Syntax
	15.2.1 Basic SQL/JSON Path Expression Syntax
	15.2.2 SQL/JSON Path Expression Syntax Relaxation

	15.3 SQL/JSON Path Expression Item Methods
	15.4 ISO 8601 Date and Time Support
	15.5 Types in Comparisons

	16 Clauses Used in SQL Query Functions and Conditions
	16.1 RETURNING Clause for SQL Query Functions
	16.2 Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
	16.3 Error Clause for SQL Query Functions and Conditions
	16.4 Empty-Field Clause for SQL/JSON Query Functions
	16.5 ON MISMATCH Clause for JSON_VALUE

	17 SQL/JSON Condition JSON_EXISTS
	17.1 Using Filters with JSON_EXISTS
	17.2 JSON_EXISTS as JSON_TABLE

	18 SQL/JSON Function JSON_VALUE
	18.1 Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
	18.2 SQL/JSON Function JSON_VALUE Applied to a null JSON Value
	18.3 Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
	18.4 JSON_VALUE as JSON_TABLE

	19 SQL/JSON Function JSON_QUERY
	19.1 JSON_QUERY as JSON_TABLE

	20 SQL/JSON Function JSON_TABLE
	20.1 SQL NESTED Clause Instead of JSON_TABLE
	20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE
	20.3 JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
	20.4 Using JSON_TABLE with JSON Arrays
	20.5 Creating a View Over JSON Data Using JSON_TABLE

	21 Oracle SQL Function JSON_SERIALIZE
	22 JSON Data Guide
	22.1 Overview of JSON Data Guide
	22.2 Persistent Data-Guide Information: Part of a JSON Search Index
	22.3 Data-Guide Formats and Ways of Creating a Data Guide
	22.4 JSON Data-Guide Fields
	22.5 Data-Dictionary Views For Persistent Data-Guide Information
	22.6 Specifying a Preferred Name for a Field Column
	22.7 Creating a View Over JSON Data Based on Data-Guide Information
	22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data Guide
	22.7.2 Creating a View Over JSON Data Based on a Path Expression

	22.8 Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
	22.8.1 Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide
	22.8.2 Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled Search Index
	22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-Guide Information

	22.9 Change Triggers For Data Guide-Enabled Search Index
	22.9.1 User-Defined Data-Guide Change Triggers

	22.10 Multiple Data Guides Per Document Set
	22.11 Querying a Data Guide
	22.12 A Flat Data Guide For Purchase-Order Documents
	22.13 A Hierarchical Data Guide For Purchase-Order Documents

	Part V Generation of JSON Data
	23 Generation of JSON Data with SQL/JSON Functions
	23.1 Overview of SQL/JSON Generation Functions
	23.2 Handling of Input Values For SQL/JSON Generation Functions
	23.3 SQL/JSON Function JSON_OBJECT
	23.4 SQL/JSON Function JSON_ARRAY
	23.5 SQL/JSON Function JSON_OBJECTAGG
	23.6 SQL/JSON Function JSON_ARRAYAGG

	Part VI PL/SQL Object Types for JSON
	24 Overview of PL/SQL Object Types for JSON
	25 Using PL/SQL Object Types for JSON

	Part VII GeoJSON Geographic Data
	26 Using GeoJSON Geographic Data

	Part VIII Performance Tuning for JSON
	27 Overview of Performance Tuning for JSON
	28 Indexes for JSON Data
	28.1 Overview of Indexing JSON Data
	28.2 How To Tell Whether a Function-Based Index for JSON Data Is Picked Up
	28.3 Creating Bitmap Indexes for SQL/JSON Condition JSON_EXISTS
	28.4 Creating JSON_VALUE Function-Based Indexes
	28.5 Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries
	28.6 Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries
	28.7 Data Type Considerations for JSON_VALUE Indexing and Querying
	28.8 Indexing Multiple JSON Fields Using a Composite B-Tree Index
	28.9 JSON Search Index: Ad Hoc Queries and Full-Text Search

	29 In-Memory JSON Data
	29.1 Overview of In-Memory JSON Data
	29.2 Populating JSON Data Into the In-Memory Column Store
	29.3 Upgrading Tables With JSON Data For Use With the In-Memory Column Store

	30 JSON Query Rewrite To Use a Materialized View Over JSON_TABLE

	A Oracle Database JSON Restrictions
	B Diagrams for Basic SQL/JSON Path Expression Syntax
	Index

